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CHAPTER 1  

INTRODUCTION 

One of most important characteristic of humans resides in the 

ability of communicate mainly through speech, gesturing, or 

writing. Moreover, in the history of mankind people have been 

successful in finding other ways of expression like music, 

painting, sculptures, photography, film, etc. We are living the 

century of the progress, that changed totally our way to live 

and to communicate. In particular, recent advances in 

technology allows also to probe and monitor physiological 

processes inside the human body, like the blood pressure, the 

heart rate variability, the muscular activity, and the brain 

electrical activity in efficient and non invasive ways. Such 
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activities have been already used as information in new 

communication channels.  

The brain computer interface (BCI) technology can be 

considered a new communication method that provides a direct 

connection between the brain and an external device. More 

specifically, the idea underlying BCIs is to detect patterns of 

brain activity and to link these patterns to commands executed 

by a computer or other devices. In 2000 Wolpaw et al. defined 

a BCI as a communication system that does not depend on the 

normal output pathways of peripheral nerves and muscles [1]. 

Thus, BCI communication could substantially improve quality 

of life for people with very little voluntary muscle control or 

affected by locked-in syndrome. The locked-in syndrome is a 

condition in which patients are fully conscious and aware of 

what is happening in their environment but are not able to 

communicate or move. A disease that is known to lead to the 

locked-in syndrome is amyotrophic lateral sclerosis (ALS) that 

is a progressive, neurodegenerative disease and is characterized 

by the death of motor neurons which in turn leads to the loss of 

control over voluntary muscles. Also multiple sclerosis, stroke 

or other cerebral incidents leading to the infarction or 
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degeneration of parts of the brain can cause the locked-in 

syndrome.  BCI is a promising means to give back basic 

communication abilities and a small degree of autonomy to 

people with severe motor disabilities. Prototype systems allow, 

for example, to choose symbols from an alphabet by 

concentrating on specific mental tasks or to move artificial 

limbs, solely by imagining movements[2]. 

Since the first experiments of electroencephalography (EEG)  

by Hans Berger in 1929 [3], the idea that brain signals could be 

used as a communication channel has rapidly emerged. The 

EEG discovery has enabled researchers to measure the 

human’s brain activity and to start trying to decode this 

activity. However, it is only in 1973 that the first prototype of a 

BCI came out, in the laboratory of Dr. Vidal [4]. To date, the 

modern EEG acquisition devices are relatively inexpensive and 

easily transportable, and for these reasons and because the 

setup of recording sessions takes only little time, the EEG is 

used in many BCI systems.  

The first step of the process involved in the development of a 

BCI system is to measure the signals on the scalp of a subject. 

The brain signals are then processed according to the particular 
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cerebral waves that the system use (µ, β rhythm, sensory motor 

rhythms, slow cortical potential, event related potential). Then, 

a translation algorithm is necessary to convert the brain 

features extracted into control commands using linear or 

nonlinear equations. During  this step the adaptation of specific 

parameters is performed with relation to the output device that 

will be controlled (cursor movement, letter or icon selection, 

external device control). Furthermore, the BCI system has to 

provide a feedback for the user that can be visual, haptic or 

auditory. 

An EEG-based BCI has been used in this thesis to evaluate a 

new method for feature extraction, in particular a new approach 

based on non linear time series analysis is proposed. The recent 

progresses in the theory of nonlinear dynamics and complex 

systems mathematics provide new methods for the study of 

brain signals [5]. Nonlinearity as a necessary condition for 

chaotic behaviour is present in many dynamical systems found 

in nature, including the brain at the cellular level, since the 

dynamics of individual neurons are governed by threshold and 

saturation phenomena [6]. 
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Nowadays, about one-third of BCI designs have used power-

spectral features, so linear methods, because of their ease of 

application, computational speed and direct interpretation of 

the results. The goal of my research activity is to improve the 

potentiality of the classical feature extraction method using a 

non linear parameter, the Lyapunov exponent, using a fast 

algorithm proposed by Bucolo et al.[7], particularly suitable for 

real time processes, thus also for BCI.  

Brain computer interface can improve the quality of life not 

only for people with motor impairment but indirectly also for 

other categories because BCI are also used for the treatments of 

medical disorders. A lot of research group use the BCI 

technology with the purpose to investigate the brain behaviour.  

For example, patients with attention-deficit and hyperactivity 

disorder (ADHD) [8] were treated with self regulation of 12–

15 Hz EEG brain activity. Epilepsy patients were trained to 

suppress epileptic activity by self-regulation of slow cortical 

potentials (SCP) [9]. If the neurobiological basis of the disorder 

is known in terms of abnormal activity in a certain region of 

the brain, functional magnetic resonance image (fMRI) based 

BCI can be targeted to those regions with greater specificity for 
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treatment. Many types of disorders, namely, memory disorders, 

chronic pain, motor disorders, psychopathy, social phobia, 

depression, emotional disturbances, anxiety, and posttraumatic 

disorder might be treated with fMRI based BCI.  

FMRI based BCI is a general system employing real-time 

fMRI technology that enables various applications including 

training to self-regulate activity in precisely specified regions 

of the brain to study plasticity and functional reorganization, 

application of the knowledge so derived in psychophysiologic 

treatement, quality assurance of neuroimaging data, presurgical 

patient assessment and teaching of brain imaging methods [10]. 

In the context of a self regulation experiment, fMRI based BCI 

can extract BOLD activity from voxels in one or more regions 

of interest (ROIs) in the brain to compute average activity in 

the ROIs, or correlation coefficient of activity between ROIs, 

or any other function that could be used to provide feedback to 

the participant. However, fMRI based BCI need not necessarily 

function based on self-regulation of brain activity alone. There 

has recently been much progress in the detection and 

discrimination of mental states using fMRI data [11].  
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In recent years, many imaging studies have focused on defining 

a network of brain structures involved in the processing of 

pain. Additionally, it has been shown that stimulus-evoked 

pain, which is a frequent symptom of neuropathic pain, cause 

distinct patterns of brain activation [25]. In the present study, 

an fMRI experimental protocol is analyzed with the purpose to 

demonstrate that in response to painful stimulation it is 

possible to regulate activation in the so called pain processing 

areas, contributing to the research about the cure of patients 

that suffer of chronic pain.     

In this thesis also different EEG-based BCI applications are 

introduced. The main aim is to provide to people with motor 

impairment a new way for expressing their feelings. Many of 

the applications proposed allow to a user to create artistic 

representation or to compose music. 

Some laboratories have already begun to develop BCI systems 

that provide people with severe motor disabilities an alternative 

way to express their creativity, thus improving their quality of 

life. Kübler et al. [12], for example, developed a BCI 

application that allows screen painting using event related 

potential (ERP). Another example that shows the possibility of 
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creating recreational and therapeutic devices is proposed by 

Miranda et al.[13], who introduce an EEG-based BCI to 

compose and perform music.  

This thesis is organized into four chapters. Chapter 2 contains 

background material, Chapter 3 describes two experimental 

BCI protocols and the new methods used to analyze the brain 

signals acquired during an EEG and an fMRI task, Chapter 4 

introduce different BCI applications designed and realized in 

laboratory, and Chapter 5 contains a summary and an outlook 

on future work. In Chapter 2, a general introduction to the field 

of BCI research is given. Topics reviewed include different 

methods for measuring brain activity, the types of 

neurophysiologic signals that can be used in BCI systems, 

algorithms for extracting useful features from neurophysiologic 

signals, and BCI applications. This chapter provides an 

overview particularly on those methods that mainly are 

relevant in the context of the thesis. In section 2.3, 

electroencephalogram (EEG) and functional magnetic 

resonance imaging (fMRI) techniques for brain signals 

acquisition are introduced more in detail respect to the other 

techniques like electrocorticogram (ECoG), 
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magnetoencephalogram (MEG) or magnetic resonance imaging 

(MRI). Section 2.4 deals with two different approach for the 

discrimination of neurophysiologic signals. The first approach 

concerns the changes  in brain signals resulting from 

perception and processing of stimuli. In the second one users 

control their brain activity by concentrating on a specific 

mental task, for example imagination of hand movement can be 

used to modify activity in the motor cortex. In BCIs  after the 

data acquisition phase, the features extraction module allows to 

transform raw neurophysiologic signals into control commands 

for different kind of applications. For this purpose the 

temporal, frequency and spatial domain processing methods for 

features extraction in BCIs are discussed in section 2.5, with 

particular attention on non linear methods like Lyapunov 

exponent extraction.  

In Chapter 3, two experimental configurations are introduced. 

For the first protocol the user performs a sensory motor task 

imaging to move the left or right hand in relation to an arrow 

displayed on a screen. A new approach based on nonlinear time 

series analysis to extract EEG signals features is proposed. In 

particular a fast algorithm that computes the largest Lyapunov 
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exponent was used. The results obtained reveal the capability 

and the potentiality of this method in respect to the classical 

approach. The second configuration is related to an fMRI based 

BCI protocol. The oxygenation level-dependent (BOLD) 

effects in pain processing areas in response to painful 

stimulation is investigated . Functional connectivity between 

spatially remote brain signals is computed with the aim to 

demonstrate the possibility for a subject to regulate the BOLD 

trend. 

In Chapter 4, three different kinds of applications designed are 

described in details. For the first one the experimental setup of 

a BCI system that allows to a user to control a robotic hand 

using event related potentials and sensory motor rhythms is 

introduced. The second application consists on an interactive 

system that allows to create luminous artistic representation. In 

particular the images shown refer to the paths of light that the 

user creates controlling two twin robots through his sensory 

motor rhythms. Finally, three applications that provide 

alternative form of communication for people with motor 

disabilities are described. The setup and configuration of the 
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music composer, painting and writing application are 

documented separately.   

In Chapter 5 the contributions of this thesis are summarized 

and an outlook on possible extensions of the presented work is 

provided.
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CHAPTER 2  

BRAIN COMPUTER INTERFACE 
 

 

2.1 DEFINITION 

 

In the last decades the analysis of the brain signals, as a valid 

diagnostic approach in neurology, has roused a growing 

interest. Particularly in the eighties for the first time the 

analysis of cerebral waves has been used in a research contexts 

for the design of human machine interfaces (HMI). Among 

these it is included the brain computer interface (BCI) [1] that 
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provides a direct connection between the brain and an external 

device, through the analysis of brain signals acquired from 

multiple electrodes placed on the scalp of a subject.  

In 2000 Wolpaw et al. defined a brain-computer interface as a 

communication system that does not depend on the normal 

output pathways of peripheral nerves and muscles [14]. In 

other words a BCI can be an alternative method, specially for 

subjects affected by particular diseases, for acting on the world.  

The principal reason for interest in BCI development is the 

possibilities it can offers for providing new augmentative 

communication technology to those who are paralyzed or have 

severe motor disabilities. With this aim, over the past three 

decade, many laboratories have begun to design BCI 

application. The firsts implemented brain wave controlled tasks 

as the spelling [15], allowing to a subject to select letters of the 

alphabet, and cursor movement control [16], have increased the 

attention toward this technology. Some significant examples 

are controlling a wheelchair on established paths using thought 

[17] or applications in home automation and domotics [18]-

[19].  To date a wide range of BCI systems have been designed 
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also for other purposes like the development of interactive 

platform used on video game console [20].  

The BCI technology can be classified in two categories, 

independent and dependent. Independent BCIs provide the 

brain with wholly new output pathways without using the 

normal pathways of peripheral nerves and muscles. Dependent 

BCIs are of lower theoretical interest than independent one 

because normal channel of communication like extra ocular 

muscles and cranial nerves are also used. Thus, for people with 

the most severe neuromuscular disabilities, who may lack all 

normal output channels, independent BCIs are likely to be 

more useful.  

Successful BCI operation requires that the user develop and 

maintain a new strategy of communication, a strategy that 

consists not of proper muscle control but rather of proper 

control of specific electrophysiological signals, and it also 

requires that the BCI translate that control into output that 

accomplishes the user’s intent. 

Detailed reports about the work in many BCI laboratories 

around the world can be found in the 2006 BCI special issue of 

IEEE Transactions on Neural Systems and Rehabilitation 
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Engineering [21]. Other reviews can be found in the articles of 

Wolpaw et al. [14], Lebedev and Nicolelis [22], Birbaumer and 

Cohen [23], and Mason et al. [24].  

 

 

 

2.2 BCI ARCHITECTURE 

 

A control system has input, output, components that translate 

input into output, and a protocol that determines the onset, 

offset, and timing of operation. In the case of a BCI the input 

are the brain signals that are  recorded, processed in real-time 

and translated into control commands, the output, that operate 

external devices or a computer display. Figure 1 shows these 

elements and their principal interactions.  
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Figure 1 - Building blocks of a BCI. A subject performs a specific 

cognitive task or concentrates on a specific stimulus. Brain signals are 

acquired and then processed with signal processing and translation 

algorithms. The outcome of the translation is fed into an application, for 

example a spelling device, or an external device. The application generates 

feedback to inform the subject about the outcome of translation. 

 

Research areas include evaluation of all blocks. For the brain 

signals acquisitions, different aspects and methods have been 

investigated: invasive and non invasive technologies, different 

types of electrodes, the sampling rate, the methods for 

measuring brain activity. In particular, in this thesis we focus 

on non invasive EEG and fMRI as the measurement 

technologies. A preprocessing is needed for cleaning and 

denoising input data in order to enhance the relevant 

information embedded in the signals [28]. Feature extraction 

and translation are processes that can be performed by using 

different linear or nonlinear signals processing and 

classification methods [1]. The classification step assigns a 

class to a set of features extracted from the signals [29]. This 

class corresponds to the kind of mental state identified. In 



CHAPTER 2 – BRAIN COMPUTER INTERFACE  

17 

 

addition, being the brain signals unique for each subject, an 

adaptation algorithm is needed to optimize the performance of 

BCI processes in relation to each user. Once the mental state is 

identified, a command is associated to this mental state in order 

to control a given application such as a speller or a robot [27]. 

Then, as for the brain’s normal neuromuscular output channels, 

a BCI depends on feedback and on adaptation of brain activity 

based on that feedback, which can be visual, haptic, or 

auditory.  

EEG signals are highly subject-specific and for this reason BCI 

systems must be calibrated and adapted to each user. A 

considerable calibration work is necessary to have an efficient 

BCI system. This work is generally done offline and aims at 

calibrating the classification algorithm, calibrating and 

selecting the optimal features, selecting the relevant sensors, 

etc. In order to do so, a training data set must have been 

recorded previously while the user perform each mental task of 

interest several times, according to given instructions. The 

recorded EEG signals will be used as mental state examples in 

order to find the best calibration parameters for this subject. 
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Thus, the BCI operation depends on the interaction of two 

adaptive controllers: the user’s brain, which produces the 

signals measured by the BCI; and the BCI itself, which 

translates these signals into specific commands. 

 

 

2.3 SIGNAL ACQUISITION 

 

Different methods to measure brain activity can be used in a 

BCI. In 1929 the neuropsychiatric Hans Berger recorded for 

the first time the brain's spontaneous electrical activity [3]. 

Since then the development of the electroencephalography 

(EEG) led to the birth of other important methods for acquiring 

brain signals/imaging like the magnetoencephalography 

(MEG), that is the technique for measuring the magnetic fields 

produced by electrical activity in the brain; the functional 

magnetic resonance imaging (fMRI); or tomographic imaging 

technique like SPECT and PET. Each method has its own 

advantages and disadvantages. Depending on the needs and on 

the willingness of the user one of the methods will be choose 

for acquiring the brain signal for designing a BCI.  Clearly, the 
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development of new methods for measuring brain activity has 

the potential to yield advanced BCI systems.  

In the following paragraphs an overview of EEG and fMRI 

technique is presented.  

 

 

2.3.1 Electroencephalogram 

 

The most widely used non invasive techniques for measuring 

electrical brain activity is probably the electroencephalogram 

(EEG). Since its discovery the EEG has been employed to 

answer many different questions about the functioning of the 

human brain and has served as a diagnostic tool in clinical 

practice.  

The EEG technique consists in the measure of the potentials on 

the scalp surface caused by the extracellular currents that flow 

towards the region of the synapse [30]. 

The EEG signal acquisition method give a best temporal 

resolution compared to the other neuroimaging techniques like 

fMRI, SPECT and PET. Moreover the devices required to the 

EEG are less unmanageable with respect to the other methods 
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(MEG, fMRI, SPECT, PET), that typically monopolize a whole 

room. The EEG required devices are simple and cheap and the 

preparation of measurements takes only a small amount of 

time. EEG signals are recorded with small silver/silver chloride 

electrodes with a radius of about 5mm, placed on the scalp at 

standardized positions, like the 10-20 international system (see 

Fig. 2). Conductive gel or saltwater is used to improve the 

conductivity between scalp and electrodes. To affix the 

electrodes to the scalp, often an electrode cap is used. EEG 

signals are always recorded with respect to reference 

electrodes, i.e. EEG signals are small potential differences (0 - 

100 µV) between electrodes placed at different positions on the 

scalp. The reference is needed because provides a baseline 

against which the activity at each of the other electrodes can 

compared. The reference electrode must not cover muscles, 

because its contractions are induced by electrical signals, for 

this reason usually  is placed at the mastoid bone which is 

located behind the ear. The other electrodes are placed 

following a standardized system. Over the right hemisphere 

electrodes are labeled with even numbers. Odd numbers are 

used for those on the left hemisphere. Those on the midline are 
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labeled with a z. The capital letters stands for the location of 

the electrode (C=central, F=frontal, Fp= frontal pole, O= 

occipital, P= parietal and T= temporal). 

 

 

 

Figure 2 - Electrode placement according to the 10-20 international system. 

Odd numbers indicate electrodes located on the left side of the head. Even 

numbers indicate electrodes located on the right side of the head. Capital 

letters are used to reference each cortical zone, namely frontal (F), central 

(C), parietal (P), temporal (T), and occipital (O). Fp and A stand for frontal 

pole and auricular. The designation 10-20 comes from the percentage ratio 

of the inter-electrode distances with respect to the nasion-inion distance. 

 

When all the electrodes are placed at the right position the 

electrical potential can be measured. According to a person’s 

state the frequency and the shape of the EEG signal change.  If 
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a person is awake beta activity can be recognized, which means 

that the frequency is relatively fast. The alpha activity, which 

have a slower frequency, can be noted before that a person falls 

asleep.  The slowest frequencies are called delta activity, which 

occur during sleep. 

An important aspect of an EEG based BCI is the presence of 

artifacts that can invalidate the information deriving from the 

brain signals. Artefacts often have much larger amplitude than 

the signals of interest, thus the artefacts removal and filtering 

procedures have to be applied online before an analysis of EEG 

signals can be attempted. Artefacts can be due to physiological 

or non physiologic sources. Physiological sources for artefacts 

include eye movements and eye blinks, muscle activity, heart 

activity, and slow potential drifts due to transpiration. Non 

physiologic sources for artefacts include power supply line 

noise (at 50 Hz or 60 Hz), noise generated by the EEG 

amplifier, and noise generated by sudden changes in the 

properties of the electrode-scalp interface.  

EEG is used in many BCI systems because modern acquisition 

devices are relatively inexpensive and easily transportable and 

because the setup of recording sessions takes only little time. 
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Moreover EEG method allows to measure electric potentials of 

the brain at a temporal resolution on the order of milliseconds. 

 

 

2.3.2 Functional magnetic resonance imaging and 

other methods for signal acquisition 

 

The functional magnetic resonance (fMRI)  imaging is a non 

invasive test that measure the metabolic changes that take place 

in an active part of the brain, in other words this method allows 

to detect the brain areas which are involved in a task, a process 

or an emotion. This method is a MRI-based neuroimaging 

technique. MRI is based on a physics phenomenon, called 

nuclear magnetic resonance (NMR), which was discovered 

in1930s by Felix Bloch (working at Stanford University) and 

Edward Purcell (from Harvard University). In this resonance, 

magnetic fields and radio waves cause atoms to give off tiny 

radio signals.  

The fMRI brain mapping is done by setting up an MRI scanner 

in a special way so that the increased blood flow to the 

activated areas of the brain shows up on functional MRI scans. 



CHAPTER 2 – BRAIN COMPUTER INTERFACE  

24 

 

The first MRI equipment in health were available at the 

beginning of the 1980s. In 2002, approximately 22000 MRI 

scanners were in use worldwide, and more than 60 million 

MRI examinations were performed. MRI uses a powerful 

magnetic field, radio frequency pulses and a computer to 

produce detailed pictures of organs, soft tissues, bone and 

virtually all other internal body structures. The images can then 

be examined on a computer monitor. Detailed MR images 

allow physicians to better evaluate various parts of the body 

and determine the presence of certain diseases that may not be 

assessed adequately with other imaging methods such as x-ray, 

ultrasound or computed tomography. 

 The fMRI cannot detect absolute activity of brain regions. It 

can only detect difference of brain activity between several 

conditions. Functional MRI allows to noninvasively measure 

the so called blood oxygen level dependent (BOLD) signal. 

The BOLD signal does not directly represent neuronal 

activation but rather depends on the level of oxygenated and 

deoxygenated hemoglobin and on the hemodynamic response 

to neuronal activation. The peak of the BOLD signal is 

typically very broad and observed four to five seconds after the 
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neuronal activation (Fig.3). Compared to MRI, fMRI does not 

depend on contrast agents although contrast agents enable far 

greater detection sensitivity than BOLD signal. Higher BOLD 

signal intensities arise from decreases in the concentration of 

deoxygenated hemoglobin. 

 

 

Figure 3 -  Simulated neural response to a single stimulus . 

 

During the fMRI acquisitions the patient is asked to 

alternatively perform several tasks or is stimulated to trigger 

several processes or emotions. Each of these conditions is 



CHAPTER 2 – BRAIN COMPUTER INTERFACE  

26 

 

repeated several times and can be separated by rest periods. 

The combination of these conditions is called a functional MRI 

paradigm. The stimuli are usually audio-visual but can involve 

more complex systems (odors, tastes, etc.). An fMRI 

experiment usually lasts 1-2 hours. The subject will lie in the 

magnet and a particular form of stimulation will be set up and 

MRI images of the subject's brain are taken. In the first step a 

high resolution single scan is taken. This is used later as a 

background for highlighting the brain areas which were 

activated by the stimulus. In the next step a series of low 

resolution scans are taken over time, for example, 150 scans, 

one every 5 seconds. For some of these scans, the stimulus will 

be presented, and for some of the scans, the stimulus will be 

absent. The brain images in the two cases can be compared, to 

see which parts of the brain were activated by the stimulus. 

The analysis is done using a series of tools which correct 

distortions in the images, remove the effect of the subject 

moving their head during the experiment. Then to generate a 

functional map from fMRI data set, signal intensities of images 

obtained during control and stimulation periods are compared 

on a voxel-by-voxel basis. Voxels passing a statistical 
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threshold are considered to be active, and then are color-coded 

based on statistical values such as t values. The final statistical 

image shows up bright in those parts of the brain which were 

activated by this experiment. These activated areas are then 

shown as colored blobs on top of the original high resolution 

scan (see Fig .4). This image can also be rendered in 3D. 

 

 
 

Figure 4 - Examples of the activation maps produced by the software 

package SPM[31]. The colour scale (from red to yellow) represents the 

percentage signal change observed in that region.  
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Functional MRI is becoming the diagnostic method of choice 

for learning how a normal, diseased or injured brain is 

working, as well as for assessing the potential risks of surgery 

or other invasive treatments of the brain. In BCI research fMRI 

has been used in basic proof of concept systems [32]-[33] and 

to elucidate the brain mechanisms underlying successful self 

regulation of brain activity [34] To date, the use in practical 

BCI systems is not so diffused because fMRI devices are 

technically demanding, expensive and cannot be easily moved 

from one place to another. 

The spatial resolution of fMRI is very good, structures of the 

size of a few millimetres can be localized with the fMRI. In 

addition, signals can be acquired from the whole brain and not 

only from the cortex, as for example with the EEG. The 

temporal resolution is relatively low when compared to 

methods that directly measure electrical brain activity. 

Therefore, some research groups are working around this issue 

by combining fMRI with data collection techniques such as 

EEG or magnetoencephalography (MEG), which have much 

higher temporal resolution but rather poorer spatial resolution. 
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2.4 NEUROPHYSIOLOGIC SIGNALS 

 

The goal of an ideal BCI system is to directly detect every wish 

or intention of its user and perform the corresponding action. 

However, it is very difficult to clearly define how wishes or 

intentions are related to neurophysiologic signals. The users 

have to acquire conscious control over their brain, in some 

cases learning to focus the attention in particular events like the 

presence of some stimuli and in other cases performing training 

sessions. Consequently, some features of particular 

neurophysiologic signals are used to interpret the intentions of 

a subject. In BCI systems two fundamentally different 

approaches exist to achieve the goal of translating wishes in 

action . In the first approach subjects perceive a set of stimuli 

displayed by the BCI system and can control their brain 

activity by focusing onto one specific stimulus. The changes in 

neurophysiologic signals resulting from perception and 

processing of stimuli are termed event-related potentials 

(ERPs). In the second approach users control their brain 

activity by concentrating on a specific mental task, for example 
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imagination of hand movement can be used to modify activity 

in the motor cortex. In this approach feedback signals are often 

used to let subjects learn the production of easily detectable 

patterns of neurophysiologic signals. The types of signals 

resulting from concentration on mental tasks together with the 

corresponding BCI paradigms are called oscillatory activity 

that can be classified depending on the frequency bands. The 

most commonly oscillatory activity involved in BCI are the 

sensory motor rhythm (SMR)  that occur during motor tasks 

and even motor imagery in the frequency range of 8–32 Hz. 

In the following paragraphs the attention is focused mainly on 

a wave named P300, a positive deflection in the EEG that 

appears approximately 300 ms after the presentation of a 

stimulus, and on the oscillatory activity that occur during motor 

imagery task, the SMR.  

 

 
2.4.1 Event-Related Potentials 

 
Event-related potentials are voltage fluctuations that are 

associated in time with some physical or mental occurrence, for 

example after the presentation of a stimulus, before execution 
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of a movement, or after the detection of a novel stimulus. 

These potentials can be recorded from the human scalp and 

extracted from the ongoing electroencephalogram by means of 

filtering and signal averaging. Because the temporal resolution 

of these measurements is on the order of milliseconds, ERPs 

can accurately measure when processing activities take place in 

the human brain. Traditionally, ERPs are recorded with the 

EEG and have been used in neuroscience for studying the 

different stages of perception, cognition, and action. Event-

related potentials  can be divided into two classes. Exogenous 

ERPs are the result of early, automatic processing of stimuli 

and the features of this signals depends mainly on the physical 

stimulus characteristics. The motor-related potentials (MRPs) 

are exogenous ERPS and are independent of the perception or 

processing of stimuli. The events to which MRPs are related 

are the preparation or imagination of movements. MRPs are 

slow negative potentials, observable over the sensorimotor 

cortex before movement onset or during movement 

imagination. MRPs have been also used in combination with 

sensorimotor rhythms in a BCI based on motor imagery [35]. 
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Endogenous ERPs are the result of later, more conscious 

processing of stimuli and have characteristics that depend 

mainly on the stimulus context, i.e. on the task the subject was 

given and on the attention the subject pays to the stimuli. The 

P300 is an endogenous ERP that has gained much attention in 

the neuroscientific and medical research. The name of this 

particular signal denotes the positive deflection in the EEG, 

appearing approximately 300 ms after the presentation of rare 

or surprising, task-relevant stimuli [36]. Furthermore, different 

components of ERPs can be observed, for example positive 

deflection after 200 ms and negative one after 100 ms, as 

shown in figure 5. The P300 reflects high-level processing of 

stimuli and for this reason in BCI systems is favorite respect to 

the other ERP components that reflect low-level, automatic 

processing of stimuli.  
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Figure 5 - Typical P300 wave. The P300 (or P3) is a positive deflection in 

the EEG, which appears approximately 300 ms after the presentation of a 

rare or surprising stimulus. A series of negative and positive components 

(N1, P2, N2) precedes the P3. While the P3 reflects high-level processing of 

stimuli, the earlier components reflect low-level, automatic processing of 

stimuli. 

 

To evoke the P300, subjects are asked to observe a random 

sequence of two types of stimuli. One stimulus type (the 

oddball or target  stimulus) appears only rarely in the sequence, 

while the other stimulus type (the normal or nontarget 

stimulus) appears more often. Farwell and Donchin on 1988 for 

the first time exploited the P300, observed after visual 

stimulations,  in a BCI system [37]. They described the P300 
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speller which allows to a subject to select desired letter just 

observing a matrix containing symbols from the alphabet 

displayed on a screen. Rows and columns of the matrix are 

flashed in random order, and flashes of the row or column 

containing the desired symbol constitute the oddball stimulus, 

while all other flashes constitute non target stimuli. 

The use of ERPs is particularly suitable for  subjects with 

concentration problems or for subjects not willing to go 

through a long training phase because no user training is 

necessary. Indeed, ERPs occur as a natural response of the 

brain to stimulation, and this is an important advantage. A 

disadvantage is that communication depends on the 

presentation and perception of stimuli. Subjects are thus 

required to have remaining cognitive abilities. Moreover, BCI 

systems based on ERPs have only limited application scenarios 

because a device to present stimuli is needed and because users 

need to pay attention to stimuli, even in the presence of other 

unrelated, distracting stimuli. 

In the present thesis the P300 waves are used for designing 

some application described in chapter 4. 
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2.4.2 Oscillatory activity 

 

Sinusoid like oscillatory brain activity occurs in many regions 

of the brain and changes according to the state of subjects. 

Oscillation in particular frequency bands could play a key role 

in the emergence of memories, emotions, thoughts, and actions. 

Typically observable oscillatory activity in the EEG are the 

delta (1 - 4 Hz), theta (4 -8 Hz), alpha and mu (8 - 13 Hz)1, 

beta (13 - 25 Hz), and gamma (25 - 40 Hz) rhythms. The 

changes in power of specific bandwidths is used as control 

signals for BCI systems. In particular, sensorimotor rhythms 

(SMR) are specific oscillations in the frequency range of 8–32 

Hz that occur during motor tasks and even motor imagery  and 

can be observed over the sensorimotor cortex also when a 

subject does not perform movements. These oscillations are 

decreased in amplitude when movements of body parts are 

imagined or performed. Imagination of movement of the left 

hand corresponds to a decrease in SMR amplitude over the 

right sensorimotor cortex, whereas imagination of movement 

of the right hand corresponds to a decrease in amplitude over 
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the left sensorimotor cortex. Figure 6 shows the activated brain 

regions during a motor imagery task. 

 

 

 

Figure 6- Brain areas that are active during a motor imagery task. If the 

user thinks to move the left hand a decrease in SMR amplitude can be 

noticed  over the right sensorimotor cortex and the contrary for the 

imagination of the right hand movement.  

 

Feedback training has to be used to let users acquire control 

over sensorimotor rhythms because the changes in SMR 

occurring in untrained users are usually not strong enough to be 

detected by a classification algorithm. Thus the training that 

subjects have to perform is a disadvantage also because it can 
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take several weeks before users are able to reliably control a 

BCI. Therefore, BCI systems based on oscillatory activity 

might be less suited for subjects with concentration problems 

or for subjects who are not willing to go through a long training 

phase. But if oscillatory activity are used, more flexible BCI 

systems can be imagined, in respect to the systems that use the 

ERP, because no computer screen or other device is needed to 

present stimuli. The research group of   Pfurtscheller in Austria 

[38] introduced important studies about BCI systems 

employing imagined movements of hands, feet, or tongue. The 

group of Wolpaw in the United States has also worked on such 

systems, and an impressive sensorimotor rhythm BCI allowing 

for fast control of a 2D cursor has been described by Wolpaw 

and McFarland [16]. Many other groups have performed 

research on testing sensorimotor rhythm interfaces with 

severely handicapped subjects [39]. 

 
 
 

2.5  FEATURES EXTRACTION 
 
In the previous section we have discussed paradigms that let 

users control their brain activity. In a BCI the neurophysiologic 
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signals are acquired and translated into control command. To 

allow the control of external devices the brain waves have to be 

classified for  the discrimination of different classes  of signals.   

In many cases the first step for classification of 

neurophysiologic signals is to acquire labeled training data. 

Thus, the subject has to perform prescribed actions, while 

neurophysiologic signals are recorded and afterwards analyzed 

to learn the desired mapping from signals to classes. 

After the data acquisition phase, significant features are 

extracted from the raw brain signals with the aim to transform 

the neurophysiologic signals into a representation that makes 

classification easy.  In other words, the goal of feature 

extraction is to remove noise and other unnecessary 

information from the input signals, while at the same time 

retaining information that is important to discriminate different 

classes of signals. Another, related, goal of feature extraction is 

to reduce the dimensionality of the data that has to be 

classified.  

In this section we only review some methods for feature 

extraction in BCIs. To achieve the goals of feature extraction, 

neurophysiologic a priori knowledge about the characteristics 
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of the signals in the temporal, the frequency, and the spatial 

domain is necessary. Depending on the type of signals to be 

classified this knowledge can take many different forms. A 

more exhaustive review of feature extraction methods for BCIs 

can be found in [28]. To date, nonlinear  methods for signals 

analysis are also used in many research context and in this 

thesis the extraction of a nonlinear parameter is proposed for 

BCI. 

 

 

2.5.1 Time Domain 

 

The presentation of particular stimuli or the actions of the user 

of a BCI system cause changes in the amplitude of 

neurophysiologic signals in the time domain, at specific time 

interval. P300 and MRPs are signals that can be characterized 

with the help of time domain features. A strategy that is often 

used to separate these signals from background activity and 

noise is lowpass or bandpass filtering, optionally followed by 

downsampling. Indeed, most of the energy of the P300, SCPs, 

and MRPs is concentrated at low frequencies. Lowpass 
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filtering, together with downsampling thus allows to remove 

unimportant information from high frequency bands. In 

addition, the dimensionality of the signals is reduced. 

Examples for systems in which filtering and downsampling 

have been employed are the P300 BCI described by Sellers and 

Donchin [40] and the system for classification of MRPs 

described by Blankertz et al. [41]. 

An alternative to filtering is to use the wavelet transform of the 

signals. Systems based on the discrete wavelet transform 

(DWT), as well as systems based on the continuous wavelet 

transform (CWT) have been described in the literature. An 

example for the use of the DWT is the P300-based BCI system 

described by Donchin et al. [42].  

Besides the use for the EEG signals P300 and MRP, time 

domain features are also used in BCI systems based on 

microelectrode arrays, that is an invasive technique for 

recording activity from single neurons or from small groups of 

neurons.  
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2.5.2 Frequency domain 

 

Frequency domain features are related to changes in oscillatory 

activity. Such changes can be evoked by presentation of stimuli 

or by concentration of the user on a specific mental task. Since 

the phase of oscillatory activity is usually not time-locked to 

the presentation of stimuli or to actions of the user, time 

domain feature extraction techniques cannot be used. Instead, 

feature extraction techniques that are invariant to the exact 

temporal evolution of signals have to be used. The most 

commonly used frequency domain features are related to 

changes in the amplitude of oscillatory activity. For example in 

systems based on motor imagery, the band power in the mu and 

beta frequency bands at electrodes located over the 

sensorimotor cortex is used as a feature. 

During specific tasks the synchronization between signals from 

different brain regions can occur and might indicate that these 

regions communicate. This characteristic can be considered a 

second type of frequency domain features. The communication 

between the brain regions permits to discriminate different 

signals features for different cognitive tasks. The use of 
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synchronization features in combination with band power 

features was explored by Gysels and Celka [43] in a BCI based 

on the cognitive tasks like the left and right hand movement or 

the composition of words. Also Brunner et al. [44] used 

synchronization features in combination with band power 

features in BCI based on other cognitive tasks. In both studies 

the combining synchronization and band power features led to 

classification accuracy that was superior to that obtained with 

only synchronization or band power. 

 

 

2.5.3 Spatial domain 

 

Generally the feature extraction techniques described above 

use data from only one electrode, the synchronization features 

are an exception that are extracted from bivariate time series. 

In many systems however, data from more than one electrode 

is available. The goal of spatial feature extraction methods is to 

find efficient combinations of features from more than one 

electrode. 
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When a user perform a cognitive task some changes occur in 

specific brain regions. The changes in band power, P300 peaks, 

or other features are usually stronger at electrodes over brain 

regions that are related to specific cognitive task. Thus, for 

performing spatial feature extraction method only electrodes 

that carry useful information for a particular task is used. 

A spatial feature extraction consists in applying spatial filtering 

algorithms before further processing takes place. Spatial 

filtering corresponds to building linear combinations of the 

signals measured at several electrodes. Denoting by ERts ∈)(  

the signal from E electrodes at time t, spatial filtering can be 

expressed as )()(ˆ tCsts = . Here the F × E matrix C contains the 

coefficients for F spatial filters and the vector 
FRts ∈)(ˆ contains the spatially filtered signals at time t. 

To determine the filter coefficients different methods can be 

used. For example for motor imagery based BCIs, it has been 

shown that spatial filtering with a Laplacian filter can increase 

performance [45]. Simple Laplacian filters can be built by 

subtracting the mean signal of the surrounding electrodes from 

the signal of each electrode. Applying a Laplacian filter 
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corresponds to spatial high-pass filtering, focal activity which 

is characteristic for motor imagery tasks is thus enhanced. 

In other methods for spatial feature extraction, filter 

coefficients are computed from a set of training data. An 

algorithm which is very popular in the area of motor imagery 

based BCI systems is the common spatial patterns (CSP) 

algorithm [46]. The CSP algorithm determines spatial filters 

that maximize the temporal variance of data recorded under 

one condition and minimize the temporal variance of data 

recorded under a second condition.  

Another method for computing the coefficients of spatial filters 

from training data is independent component analysis (ICA). In 

ICA algorithms it is assumed that a set of multichannel signals 

s(t) is generated by linearly mixing a set of source signals x(t): 

s(t) = Mx(t). 

The goal is to compute a matrix F that allows one to 

reconstruct the source signals x by multiplying s with F. To 

achieve this without having information about M, one assumes 

that the source signals are statistically independent. The ICA 

algorithm thus computes F such that the signals s(t) multiplied 

with F are maximally independent. In the case of EEG signals, 
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the idea underlying the application of ICA is that the signals 

measured on the scalp are a linear and instantaneous mixture of 

signals from independent sources in the cortex, deeper brain 

structures, and noise [47]. ICA has been mainly used in P300-

based BCIs as a feature extraction method. In such systems 

ICA is used to separate multichannel EEG into several 

components, corresponding to sources in the brain or noise, for 

example from eye blinks. By retaining only components that 

have a P300 like spatial distribution or show P300 like 

waveforms, the signal to noise ratio can be improved. 

 

 

2.5.4 Nonlinear methods 

 

Nonlinear time series analysis focuses on methodologies that 

distinguish chaotic signals from noise, and how properties of 

chaos can be used to model and classify dynamical systems 

[48]. The analysis of nonlinear dynamics has a fundamental 

role for studying magnetoencephalography (MEG), 

electroencephalography (EEG) and other brain signals with the 

purpose of characterizing, for example, normal resting activity 
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[49] and pathological states [50]-[51]. Different nonlinear 

parameters are investigate in literature like the maximum 

Lyapunov exponent, the asymptotic distance, the entropy, the 

Higuchi dimension, the detrended fluctuation analysis.  

To date, the Lyapunov exponent calculation ( λ) have been 

applied to a wide range of biological and biomedical 

phenomena. One of the biggest areas of interest has been in 

analyzing functional brain activity (i.e., EEG or MEG) with the 

aim to detect early the disease onset. Stam, for instance, 

suggests that the most promising potential clinical applications 

appear to be in identifying and predicting epileptic seizures and 

sleep disorders [51]. Another area where Lyapunov exponent 

calculations have been applied extensively is in analyzing the 

heart rate variability, so in the electrocardiography (ECG) 

analysis. In this area Perkiomaki presented an interesting 

review [52].   

The nonlinear behaviour of time series is characterized by 

successive phenomena of stretching and folding. It is important 

to note that, while λ is only sensitive to the stretching 

mechanism, another non linear parameters, the asymptotic 

distance, is sensitive to both the stretching and the folding 
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mechanisms. Also the evolution of the asymptotic distance 

∞d [53]-[54] has been studied in literature for characterizing 

nonlinear dynamics in the six experimental datasets. One of the 

method for evaluating ∞d is the implementation introduced by 

Sapuppo that is computationally less onerous then the 

conventional methods [48]. 

Another important indicator used for non linear analyses is the 

entropy. It has been introduced by Pincus to quantify the 

regularity of a sequence [55]. He demonstrates that a larger 

value of entropy correspond to more irregularity in the data. 

Hornero suggests that nonlinear analysis techniques could be 

useful in Alzheimer’s disease diagnosis [50]. The results of his 

work show that EEG and MEG background activities in 

Alzheimer’s disease patients are less complex and more regular 

than in healthy control subjects.  

The fractal dimension is a nonlinear parameter that quantify the 

complexity and the self similarity of a time series. This 

indicator can be computed using various algorithms for 

example that proposed  by Higuchi [56].  

In recent year also the detrended fluctuation analysis (DFA) 

method [57] has become a widely-used technique for providing 
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a simple quantitative parameter to represent the correlation 

properties of a signal [58]-[59]. In the biomedical context, it 

has successfully been applied to diverse fields such as DNA 

sequences, neuron spiking, human gait, and heart rate 

dynamics [57]-[60]-[61] 

Since the first nonlinear EEG studies [5] several steps forward 

have been done, and the nonlinear analysis of EEG has been 

widely used for diagnosis of neurovegetative pathologies. For 

example in Alzheimer's Disease a lower value of correlation 

dimension, maximum Lyapunov exponent and sample entropy, 

than in healthy control subjects have been found. In addition, 

Daly analyzed the performance of the Wackermann parameters 

in the classification of single-trial ERP responses [62] for BCI.  

In this thesis the Lyapunov exponent has been extracted from 

brain signals acquired during a motor imagery task in a BCI 

system. 

In mathematics the Lyapunov exponent or Lyapunov 

characteristic exponent of a dynamical system is a quantity that 

characterizes the rate of separation of infinitesimally close 

trajectories, thus quantize the sensitivity to initial conditions. 
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Given a chaotic system, two trajectories starting from very 

close randomly chosen initial conditions will diverge 

exponentially at a rate given by the largest Lyapunov exponent 

[63]-[64]. Thus, the largest Lyapunov exponent can be defined 

using the following equation where δ(t) is the average 

divergence at time t and C is a constant that normalizes the 

initial separation: 

tCet 1)(
λδ =        (1) 

When plotting ln|δ(t)| versus t, the result is a curve that is close 

to a straight line with a positive slope of λ, indeed: 

tCt 1ln)(ln λδ +=      (2) 

The curve is never exactly straight. It has wiggles because the 

strength of the exponential divergence varies somewhat along 

the attractor. The exponential divergence must stop when the 

separation is comparable to the “diameter” of the attractor – the 

trajectories obviously can’t get any farther apart than that. This 

explains the leveling off or saturation of the curve in Figure 7. 

The value of saturation is the parameter d∞ . 
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Figure 7 - Example of divergence curve. 

 

The number λ is often called the Lyapunov Exponent although 

actually n different Lyapunov exponents exist for a n-

dimensional system. This value coincided with the largest 

Lyapunov exponent. Moreover λ depends on which trajectory 

is studied, thus the true value of λ is obtained by averaging 

over many different points on the same trajectory. 

Given a time series a direct method to calculate the largest 

Lyapunov exponent λmax is thought the formula of the 

prediction error between very close trajectory [5]. Here it is 

reported the formula used in the TISEAN software for the 

calculation of λmax [65]-[5]: 
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where ynn is the nearest neighbour of y n, ts is the sampling time 

and N is the time series length. The Lyapunov exponents are 

fully representative of the sensitivity to initial condition 

(stretching phase) of a given nonlinear dynamical system, 

being positive for chaotic behaviours [66]. Often it is sufficient 

to establish the existence of at least one positive Lyapunov 

exponent to define chaotic dynamics [26]. 
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CHAPTER 3  

EXPERIMENTAL PROTOCOLS AND 

RESULTS ANALYSIS 
 

 

3.1 EEG EXPERIMENTAL PROTOCOL 

 

Signal processing and classification methods are essential tools 

in the improvement of Brain Computer Interface technology. In 

this thesis a new approach based on nonlinear time series 

analysis to extract EEG signals features is proposed. In 
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particular a fast algorithm that computes the largest Lyapunov 

exponent was used. This signal processing approach was tested 

offline considering three sessions of imaginary motor tasks. 

The results obtained reveal the capability and the potentiality 

of this method in respect to the classical approach [77]. 

 

Dataset1 -14 electrodes Dataset2 -16 electrodes Dataset3 -16 electrodes 

1-Training session 60s 1-Training session 60s 1-Training session 60s 

2-Training session 60s 2-Training session 60s 2-Training session 60s 

3-Training session 60s 3-Training session 60s 3-Training session 60s 

 

Table 1 - Experimental data sets over a three-day time period. 

 

For our experiment the user, without any muscular 

involvement, modifies his neuronal activity in the primary 

sensory-motor areas performing a motor imagery task. During 

the training session, the computer screen is either blank, or 

displaying an arrow pointing left or right. The two different 

stimuli appear for several times in a random sequence. 

Depending on the direction of the arrow, the subject is 

instructed to imagine a movement of the left hand or of the 
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right hand. If the screen was blank the user is instructed to have 

a rest. The same task was performed three times in three 

different days by an healthy right-handed subject (female, aged 

28 years) who wore a EEG cap with integrated electrodes. The 

EEG potentials were recorded using two channels 

configuration: for the first session the signals was acquired at 

14 locations (FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, 

CP2, CP6, T7, Pz and T8) and for the second and third sessions 

at 16 locations (replacing T7 and T8 with P3, P4, F3 and F4) 

sites in the standard 10-20 System and digitized at 2000 Hz. 

This change has been decided to have augmentative 

information after a first view of the results obtained for the first 

trial. 
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Figure 8 - Electrodes configuration used for the experiment. 16 channels 
positioned according to the international 10-20 system.  

 

 

3.1.1 Analysis strategy 

 

For this thesis different tools have been used to analyze the 

brain signal acquired from the user that performs an imagery 

movement protocol. The BCI2000 software has been used for 

data acquisition, stimulus presentation and brain monitoring 

applications. Moreover, BCI2000 allows us to convert the 

measured brain signals in a format suitable for MATLAB 

analysis. The BCI2000 software tool has been implemented by 
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Schalk et al. [66] with the purpose to facilitate the research and 

the applications on brain computer interaction. The BCI2000 is 

a general-purpose system for brain-computer interface and it is 

available for free for non-profit research and educational 

purposes. It consists of four modules that communicate with 

each other: source (data acquisition and storage), signal 

processing, user application, and operator interface. The 

modules communicate through a protocol based on TCP/IP, 

thus each one can be written in any programming language and 

can be run on any machine.  

The brain signal recorded using the BCI2000 have been then 

elaborated with MATLAB software. The MATLAB language 

has been used for programming the algorithm that allowed us 

to obtain the results discussed in section 3.1.3. The signals 

acquired during all the training sessions were filtered in six 

different bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), 

beta I (12-16 Hz), beta II (16-20 Hz), and gamma (20-49 Hz. In 

each band and for all the channels the power and the Lyapunov 

exponent (λ) were computed. The DivA algorithm introduced 

by Bucolo et al. has been used for computing the λ parameter. 

Different set of data were extracted depending on the stimulus: 
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the imagination of the right hand, the imagination of the left 

hand or the resting phase. Then, the correlation coefficient  V 

[67] associated with the two conditions, Left (LA) and Right 

(RA) arms imaginary movement versus rest phase (RP) were 

evaluated The total variance was calculated according to the 

following expression: 

∑
=

−=
n

x

x
n

V
1

2)(
1 µ      (4)

 
 

where x and m are the amplitude and the average value of the 

EEG signal for a specific channel and n is the number of 

samples (in our experiments, n = 200). This measure provides a 

way to select the frequency band and locations where the EEG 

signals are more influenced by the task (left and right arm 

imagery).   
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3.1.2 Lyapunov exponent extraction: algorithm 

implementation 

 

For our experiment DivA, an alternative methodology for the 

extraction of the asymptotic distance and of the Lyapunov 

exponent λ was used [7]. This implementation results to be 

computationally less onerous than the conventional ones, since 

it is not based on the time-delay embedding concept and also 

no intermediate computational steps are needed to obtain the 

final result being particularly suitable for real time analysis.  Let 

us assume that x denotes a k-dimensional vector, and consider 

the dynamical system specified by the discrete map:  

)(1 nn xGx =+       (5) 

Let us consider N couples of trajectories starting from two 

nearby points separated by a small distance h0, 
ii xx 0

)(
0 '− £ 0h:  

)( )(
0

)( i
n

i
j xGx =          )(

)(
0

')(' i

n

i
j xGx =    (6)  

Averaging the N couples of trajectories, the mean distance 

between trajectories after j iteration can be defined as:  
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where the |•| operator denotes the usual norm. The dj 

asymptotic value is defined as:  
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lim       (8) 

It is well known that, after n iterations, the map of the time 

diverging distance can be expressed as: 

nn
n

n ddeded Λ===+
λλ

01     (9) 

where λ is the Lyapunov exponent of system. After a 

sufficiently large number of iterations, the folding process 

takes place to keep the trajectories bound in the phase space. 

To take this phenomenon into account, the (9) can be 

considered as a first order expansion of d∞  and, in the 

hypothesis that d n<1 for any n, it includes a second order 

correction term representing the folding action: 

2
1 nnn ddd Γ−Λ=+       (10) 
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The fixed points of (10) are: 

0* =d and ** 1
d d¥

L-
= =

G
    (11) 

The characteristic values describing the evolution of nearby 

trajectories are Λ, Γ, and d ∞ , although only two of these are 

actually needed because of the relationship (11). 

The aim of DivA algorithm, given a signal s(t) (i.e. given a 

time series), is to compute the divergence (dj) among 

trajectories xi. 

The algorithm starts with the choice by the operator of an 

initial condition x0
(0) and a distance h 0, which identifies a small 

range [(x 0- h 0/2), (x 0+ h 0/2)] that generally depends on the 

resolution of the signal s(t) and on the number of trajectories 

found. Then, points whose y-coordinate belongs to the range 

[(x0- h 0/2), (x 0+ h 0/2)], are extracted; these points represent a 

set of candidate to become starting points of the algorithm in 

relation to the equation (6). The first starting point found is 

assumed to be x *≡x0
(0), this point will be used as reference 

point for the following steps.  

The algorithm proceeds with the computing of the first derivate 
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in x *. Among the points in the set of the candidate starting 

points, only those whose derivative meets constrain (12) will 

represent the final set of starting points from which trajectories 

will be calculated.  

))(var( ')(
0

)0(
0 tspxx i ⋅=− &&      (12) 

Parameter p in (12) is the slope ratio and is chosen, by user 

empirically, small enough so that pairs of trajectories that have 

a different initial slope are discarded, thus decreasing the 

number of trajectories for the calculation of the d j, but not too 

strict so that a sufficient number of trajectories, respecting the 

requirement on the range and the initial slope, can be extracted. 

The term var(s’) represents the variance of the derivative of 

signal s(t). The constrain on the slope has been introduced in 

order to collect all points having the same properties in the zero 

order and first order dynamics.  

By means of the above described steps, set of starting points is 

found: X=(x0
(i), i=0,…n). Each point x 0

(i) identifies a trajectory 

made up of all the samples in the range: 

[x0
(i),(x0

(i)+lenght_trj1)], where length_trj is the length of the 

trajectories chosen in a way that, when the distance between 
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them is computed, both the stretching and the folding effects 

are taken into account, and the asymptotic behaviour of the 

system can be studied. Moreover, all the combinations among 

points x0
(i) will be considered, discarding  those couples whose 

distance (in samples) is inferior to the  parameter minimum 

trajectories delay (tdmin), and their differences will be 

computed thus obtaining dj. 

The d∞, representing the asymptotic value of dj, is then 

extracted and used as a parameter for characterizing the 

nonlinear dynamics of the system. Moreover, from the 

computed curve d j, the maximum Lyapunov exponent can be 

extracted as the initial slope of the curve. This extraction can 

be computed in different ways, polynomial fit, custom equation 

fit or in empiric way. This last method is the one used in this 

thesis. The slope is simply computed considering the straight 

line joining the first occurrence of the lowest value with the 

first value settle around the asymptotic value of dj. 
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3.1.3 Results and discussions 

 

The signals acquired during all the training sessions were 

filtered and the power and λ were computed. Then, the 

correlation coefficients associated with the two conditions, Left 

(LA) and Right (RA) arms imaginary movement versus rest 

phase(RP) were evaluated. 

As it is expected from previous well-known results, according 

to the International 10-20 System, the evolution of the power in 

gamma band, reveals that imagination of hands or arms 

movement cause a radial current flow in the sensory-motor 

area close to the positions C3 or C4, respectively associated 

with the right and the left arms [68] (see Fig.11). Figure 9 plots 

the space-frequency map of the correlation coefficient (r) for λ, 

it is possible to distinguish in the gamma-band a higher level of 

sensitivity during the LA imaginary activity in the electrode C4 

(6) and during the RA in C3 (13). 

The same conclusion can be drawn considering Fig.10 where 

for each dataset the r-value for both power (blue line) and λ 

(red line) in gamma band versus the channels have been taken 
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into account. In addition Fig. 11 shows for both parameters the 

head maps of the r-value averaging the dataset 2 and 3. The 

first row of pictures is referred to the LA activity and the 

second to the RA. 

 

 
Figure 9: Space-frequency map of the correlation coefficient for λ, the first 
image on the left reports the LA versus rest and the second image on the 
right the RA versus rest. 

 

These results could lead to investigate on the potentiality of 

this new parameter to drive a BCI system. In this direction first 

of all a series of statistical comparisons were performed, to 

confirm the attitude of this feature to characterize LA-RA 

activity: 

-between λ in C4 during LA and RA (n1 = n2 = 45, t = 4,1 and 

p = 0,0071%); 
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-between λ in C3 during LA and RA (n1 = n2 = 45, t = -2,9 and 

p = 0,42%); 

-between λ in C4 and in all the other channels during the LA 

(n1 = 45, n2 = 645, t = 3,8 and p = 0,012%); 

-between λ in C3 and in all the other channels during the RA 

(n1 = 45, n2 = 645, t = 1,7 and p = 8%); 

where t=t-test value, n1 and n2=samples size, and 

p=probability of observing a value as extreme or more extreme 

than the obtained t-value. The rejection of the null hypothesis 

at the 5% significance level has been confirmed in the first 

three cases, meanwhile in the last comparison is required the 

8%. In this contest considering the size of the sample n1 and n2 

a power of about 60% can be assumed.  

From these results it is possible to confirm the previous 

analysis and further more can be enhanced the attitudes of the 

subject investigated to an higher level of brain wave control 

during the LA than the RA. For both tests involving channel 

C4 bigger t values were obtained. 

To point out on the parameter sensitivity the indicator 

D=maxleft-maxright has been evaluated, where maxleft and 

maxright are the maximum r value of the signal recorded from 
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the electrodes that cover respectively the left and right motor 

cortex area. Figure 12 shows that the value of D for λ is higher 

than for the power or at least comparable. This results highlight 

the potentiality of λ to be used as more robust feature for BCI. 

In future encouraged from these preliminary results an 

extended case study will be designed taking into account more 

subjects, and higher precision methods for classification will be 

applied. Once the valence of this approach will be proved, to 

move toward the on-line implementation another important 

aspect that has to be faced is the algorithmic complexity. Up to 

now the proposed algorithm for the evaluation of the lambda 

has not been fully-optimized but the low computational time of 

about 30sec involved in the process one complete dataset ( on a 

Quad 1.58 GHz PC) is a promising beginning. 
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Figure 10 - the correlation coefficient for power(blue line) and λ (red line) 
in the gamma band for each experimental datasets. Channels from 1 to 7 are 
related to the right hemisphere and channels from 10 to 16 to the left 
hemisphere.  
 
 
 

 

 

Figure 12 - D value computed for the power(blue) and λ (red) during LA 
and RA for all the dataset. 
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Figure 11 - Head map distribution of the r value for the second and third 
dataset. 

 

 

3.2 FMRI EXPERIMENTAL PROTOCOL 

 

An operant conditioning paradigm has been established by the 

central institute of mental health, Heidelberg University, 

Mannheim [69], with subjects learning to differentially 

regulate the blood oxygenation level-dependent (BOLD) 
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effects in the anterior cingulate cortex (ACC) and the posterior 

Insula (pIns). The use of fMRI technique offers the possibility 

of uncovering the cerebral processing of the human pain 

experience. In recent years, many imaging studies have 

focused on defining a network of brain structures involved in 

the processing of normal pain. These brain areas are often 

referred as the matrix of pain [68].  

The aim of our analysis was to investigate whether it is 

possible to regulate activation in these pain processing areas in 

response to painful stimulation in a way that uncouples the 

response in these functionally related areas.  

One healthy male subject aged 25 years has been selected for 

performing the fMRI paradigm. In the first localizing session 

(LOC) painful electrical stimuli (approximately 70% above 

pain threshold) to the base of the third digit (left hand) have 

been applied for every subject both for localizing the activated 

brain regions and for establishing the individual pain 

threshold. During this stimulation a clearly online localizable 

BOLD change in both the ACC and the pIns has been noticed 

(Fig. 1).  No feedback was given during the baseline section.  

The localizer allowed to pinpoint the exact locations of the 
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individual Regions Of Interest (ROI) in the ACC and pIns. 

Seven days after the LOC, on four consecutive days, the 

subjects performed six feedback sessions, each lasting 7.5 

minutes for the four conditions (24 sessions total, 6 sessions 

per condition), see Table 1. For conditions 1 and 3 feedback 

was computed by subtracting BOLD signal changes in the 

ACC from signal changes in the pIns, for conditions 2 and 4 

this was reversed.  

 

 

 Calculation for 
feedback 

Instruction for 
subjects 

Condition 1 BOLD response in 
ACC – BOLD 
response in pIns 

Ball direction up, i.e. 
positive difference 
(ACC > pIns) 

Condition 2 BOLD response in 
pIns – BOLD 
response in ACC 

Ball direction up, i.e. 
positive difference 
(pIns > ACC) 

Condition 3 BOLD response in 
ACC – BOLD 
response in pIns 

Ball direction down, 
i.e. negative 
difference (ACC < 
pIns) 
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Condition 4 BOLD response in 
pIns – BOLD 
response in ACC 

Ball direction down, 
i.e. negative 
difference (pIns < 
ACC) 

 

Table  1 - Conditions and rules for feedback calculation 

 

Visual feedback was given in the form of a blue or yellow ball 

indicating the condition (1 and 3 or 2 and 4), its movement 

indicating magnitude and direction of difference in BOLD 

activation in the ACC and pIns during the painful stimulation. 

Of the 4 conditions, 2 conditions were identical, i.e. positive 

feedback was given due to the same direction of difference in 

BOLD response in the ROI, different only in ball-color and 

direction of the arrow. On-line data-preprocessing was done 

with Turbo-Brainvoyager. Visual feedback of activation data 

was done with Presentation according to [70].  

In each session subjects were first instructed to move the ball 

up or down during 6 painful stimulation blocks lasting 30s in 

the direction of an arrow that appeared next to the ball during 

stimulation. In the 20s between each stimulation block subjects 

performed mental arithmetic. 
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After the session subjects had to rate the individual perception 

of pain intensity and unpleasantness of the stimulus as well as 

report on the strategy they used to move the ball and rate their 

individual ability to control the ball.  

 

 

 

Figure 12 - Blood oxygenation level-dependent (BOLD) effect in the first 
localizer session in subject 9. Upper panel: Statistical parametric map. 
Lower panel: Time course of BOLD signal in the posterior Insula (pIns,left) 
and in the anterior cingulate cortex (ACC, right). 
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3.2.1 Functional connectivity between spatially 

remote brain signal acquired during BCI protocol 

 

Functional neuroimaging studies in humans have shown that 

physiologic pain stimuli elicit activity in a wide network of 

cortical areas commonly labeled as the ‘pain matrix’ and 

thought to be preferentially involved in the perception of pain. 

The a priori information about how pain is processed in several 

areas in the brain, led us to choose the so called pain matrix as 

region of interest (ROI). Then, the images acquired during the 

discussed protocol have been elaborated using specific tools for 

reconstruct the temporal trend of the signals for every ROI.  

The ROIs that have been selected are: anterior cingulate cortex 

(ACC), left and right posterior insula (pInsL, pInsR), left 

anterior insula (aInsL), medial cingulate cortex (MCC), left 

primary somatosensory area (SI_L), left second somatosensory 

area (SII_L), right second somatosensory area (SII_R). 

Moreover, the signal extracted from a region that have no 

correlation with the pain matrix has been evaluated. 
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In this thesis the estimation of the connectivity between the 

ROIs listed above is presented.  The functional connectivity 

has been evaluated by computing the direct transfer function 

(DTF) technique [71] that is a full multivariate spectral 

measure used to determine directional influences between any 

given pair of signals in a multivariate dataset. It is computed on 

a multivariate autoregressive model (MVAR) that 

simultaneously models the whole set of signals. DTF has been 

demonstrated [72] to be based on the concept of Granger 

causality, according to which an observed time series s 1(n) can 

be said to cause another time series s 2(n) if the prediction error 

for s2(n) at the present time is reduced by the knowledge of the 

past measurements of s1(n). This kind of relation is not 

reciprocal, thus allowing to determine the direction of 

information flow between the time series. 

The DTF technique was applied to the dataset 

X(t)=X1(t)+X2(t)+…+Xk(t) obtained for the nine ROIs 

considered. The MVAR model for this signal can be expressed 

as: 

∑ +−=
p

i

tEitXiAtX )()()()(     (13) 
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where X(t) is the data vector in the time t, E(t) is the vector of 

white noise values, A(i) are the model coefficients and p is the 

model order. Then, equation (13) is transformed to the 

frequency domain, in order to investigate the spectral 

properties of the examined process: 

)()()()()( 1 fEfHfEfAfX == −
    (14) 

H(f) is the transfer matrix of the system, whose element H ij 

represents the connection between the jth input and the ith 

output of the system. With these definitions, the causal 

influence of the cortical waveform estimated in the jth ROI on 

that estimated in the ith ROI. The directed transfer function 

)(2 fij
θ is defined as: 

 
22 )()( fHf ijij

=θ      (15) 

In order to be able to compare the results obtained for cortical 

waveforms with different power spectra, a normalization was 

performed by dividing each estimated DTF by the squared 

sums of all elements of the relevant row, thus obtaining the so 

called normalized DTF [71]: 
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)(fij
γ  expresses the ratio of influence of the cortical 

waveform 

estimated in the jth ROI on the cortical waveform estimated on 

the ith ROI with respect to the influence of all the estimated 

cortical waveforms. Normalized DTF values are in the interval 

[0,1] when the normalization condition: 

∑
=

=
k

n
in f

1

2 1)(γ        (17) 

is applied. The matrix )(fijγ is then visualized in a graph that 

shows the correlation between the different regions of the brain 

using some arrows that elicit also the direction of the 

connection. In the following paragraph the results are shown 

using two explicative figure.  
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3.2.2 Results and discussions 

 

The connectivity patterns between the ROIs have been 

represented by arrows pointing from one brain area toward 

another one. MATLAB functions have been used with the aim 

to represent the resulting dependencies estimated in the DTF 

matrix. A threshold has been choose to visualize just the 

stronger connection, in our case we decide to set the threshold 

to 0.8.  

Figure 13 and 14 show the link between the ROIs for two 

different trials. The first one is related to the first localizing 

session, so no feedback was given and the user was ask, during 

the stimulation, to focus his attention on the pain. Figure ? is 

related to the 6 th trial, that is the last performed by the user, 

recorded when the feedback was computed by subtracting 

BOLD signal changes in the ACC from signal changes in the 

pIns. 

Figure 1 shows the correlations between pInsL, pInsR and 

ACC regions, more strongly connected in respect to the other 

ROIs, because strictly involved in the perception of pain. 
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Instead, after five training sessions the connections between 

ACC, pInsR and pInsL decrease considerably and in Figure 2 

the correlations disappear because lower than 0.8. These results 

suggest that the user is able to modulate his brain signals and in 

this particular case has disconnect the activation in the ACC 

and in the pIns. 

 

 

 

Figure 13-  Functional connectivity between the signals recorded in nine 
regions of interest during the baseline condition. In this task the user is 
asked to focus the attention on the pain. No feedback was provided.  

 



CHAPTER 3 – EXPERIMENTAL PROTOCOLS AND RESULTS ANALYSIS  

79 

 

If an individual can learn to directly control activation of 

localized regions within the brain, this approach might provide 

control over the neurophysiologic mechanism that mediate 

behaviour and cognition and could potentially provide a 

different route for treating disease.  

 

 

 

 

Figure 14 -  Functional connectivity between the signals recorded in nine 
regions of interest. During this task the visual feedback was given in the 
form of a blue ball indicating the condition 1, its movement indicating 
magnitude and direction of difference in BOLD activation in the ACC and 
pIns during the painful stimulation. 
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Another consideration can be done in relation to the role of the 

medial cingulate cortex in the process of pain perception. 

Figure 14 shows clearly that the connectivity between the 

pInsR and the MCC increases in the last trial, thus after the 

performance of five trials. It could be interesting to better 

investigate the causal influence of the cortical waveform 

estimated in the pInsR on that estimated in the MCC. 

Understanding these modulatory mechanisms in health and in 

disease could be useful for developing effective therapies for 

the treatment of clinical pain conditions. 
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CHAPTER 4  

DESIGN OF BCI APPLICATIONS  
 

 

 

4.1 ARTISTIC PATTERN GENERATION USING BRAIN SIGNAL 

In this work, a creative BCI application based on SMR is 

presented. The proposed interactive BCI system allows 

communication between two coordinated robots and a user 

[76]. The twin robots are equipped with light-emitting diodes 

(LEDs) so that the user can create a desired artistic 
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representation by controlling their trajectories. The twin robots 

in motion generate luminous paths and a camera takes pictures 

of these light trajectories that represent the user’s “canvas.” 

The BCI-based interactive system used in this work consists of 

an EEG system, a personal computer, twin robots, and a 

camera (Figure 15). The signals acquired through the EEG 

system are digitalized and elaborated through the BCI2000 

platform running on a PC. 

During the signal processing procedure, a series of spatial and 

temporal filters are applied and specific features extracted from 

the EEG signals are translated into robot control commands. 

Afterward, the control signal is sent at the same time to two 

robots that will perform the same movements and generate a 

luminous artistic pattern. Thus, the trajectories that the robots 

follow depend on the will of the user. 

The interactive BCI platform designed allows two coordinated 

robots and the user to communicate by modulation of the user’s 

SMRs. Our application has been tested exploiting the modules 

of the BCI2000 software [66].  
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Figure 15. Block diagram of the designed interactive platform. 

In the establishment of a BCI task, the training session has a 

fundamental role for two main reasons. First, it is essential for 

a subject to learn how to control the amplitude of his or her 

SMR by imagination or movement of the limbs or hands. 

Second, because the features of EEG signals differ from 

subject to subject, training is mandatory to determine the best 

channel location and most suitable frequency band (i.e., to 

determine which signals are the most suitable for the task and 

which frequency band is the most sensitive to changes). 

The designed technological platform consists also of two 

robots. The robots basic structure, shown in Figure 16 and 17, 

is the classic differential-drive, consisting of two actuated 

wheels and two smaller passive caster wheels whose function 

is to keep the robot statically balanced. The velocities of the 
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two motors (MA and MB) are indicated respectively as VMA 

and VMB. Each robot is equipped with an arm on which an 

electronic device to generate time-varying light patterns is 

mounted. The arm is actuated by a third motor, which turns 

faster than the other two motors. The electronic device 

mounted on the arm consists of an array of 16 red, green, and 

blue (RGB) LEDs and an autonomous microcontroller. Several 

parameters such as colour, brightness, frequency, and 

intermittence of lights can be set, thus generating different 

luminous patterns. The kinematic structure of the robots was 

created using the LEGO MINDSTORMS robotic kit due to its 

simplicity and reconfigurability [73]. 

 

 

Figure 16 - Side view of the robots structure. 
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Figure 17 - Front view of the robots structure . 

 

Real-time analysis of SMRs is at the basis of the 

communication between the user and the robots. The user, 

without any muscular involvement, modifies his or her 

neuronal activity in the primary sensory-motor areas by 

performing a motor imagery task. The task was performed by a 

healthy right-handed subject (female, aged 27 years) who wore 

an EEG cap with integrated electrodes. The EEG potentials 

were recorded at eight locations (F3, F4, T7, C3, Cz, C4, T8, 

and Pz) according to the International 10-20 System [74] and 

digitized at 2000 Hz. The locations of the EEG electrodes have 

been assembled over the motor and somatosensory areas. 
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Movement and imagination of hand or arm movement cause a 

radial current flow in the sensory-motor area close to the 

positions C3 or C4, respectively associated with the right and 

the left arms [75]. During the training session, the total 

variance V of the brain signals was calculated for all eight 

channels in the 0 to 70 Hz frequency range. The variance was 

calculated according to the equation (4). This measure provides 

a way to select the frequency band and locations where the 

EEG signals are more influenced by the task (left and right arm 

imagery). In fact, in Figure 18, the color maps of the variance 

related to training on the right (a) and left (b) arm movement 

for an imagery task show an increase of the variance value 

occurring for the motor imagery of the right arm on the 

electrode 4 (C3) around the frequency of 16 Hz, and for the 

motor imagery of the left arm on the electrode 6 (C4) around 

the frequency of 16 Hz. For this reason, the control law 

implemented has been based on information from such signals. 
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                     (a)                                                                 (b) 
 
Figure 18. Variance values of the brain signals measured on eight channels: 
(a) while the subject thinks about moving the right arm and (b) while the 

subject thinks about moving the left arm . 

 

The two EEG signals have been filtered and then translated 

into an output signal Cv using the following equation: 

llrrv AwAwC ⋅+⋅=       (18) 

where Ar and Al are the time-varying variances of one left-side 

(C3) and one right-side (C4) channel, respectively. The weights 

wr and wl are determined by the offline inspection of the brain 

waves according to the values of Ar and Al. Indeed for some 

subjects, the variances produced by imagining left and right 
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movement have different intensity. If Ar > Al, it is convenient 

to set wl > wr and vice versa; if Al > Ar, it is convenient to set 

wr > wl . The command signal Cv is used both to control the 

robots’ movement and the position of a cursor on the video 

screen as visual feedback for the user. Concerning visual 

feedback, the screen displays a cursor on the left edge that 

begins to move horizontally toward the right edge of the 

screen. The cursor’s vertical position depends on the value of 

Cv that represents the angular coefficient of the tangent to the 

cursor trajectory. Concerning commands to robots, the 

BCI2000 processes in real time the brain signal measured on 

the user’s scalp and sends nine parameters to the MATLAB 

software. For our experiments only the value of Cv is used, but 

the system is general enough so that other parameters could be 

used for future applications. The User Datagram Protocol 

(UDP) has been used for communication between BCI2000 

and MATLAB. The angular coefficient is converted in control 

signals for driving the robots using the following paradigm: 

-  if Cv  < -1, the robots turn right quickly (VMA=80, VMB= 0); 

- if -1 < Cv < 0, the robots turn right slowly (VMA=60, 

VMB=30); 
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- if 0 < Cv  < 1, the robots turn left slowly (VMA=30, 

VMB=60); 

-  if Cv  > 1, the robots turn left quickly (VMA=0, VMB=80). 

The robots can move in all directions within an arena 190 cm 

long and 245 cm wide. The scenario is totally dark. Initially, 

the light is turned off so that the spectator can see just the 

effects produced by the luminous pattern mounted on each 

robot. A camera is located in a strategic point to take pictures 

of the whole arena every 10, 15, or 20 seconds. The camera 

sends the pictures that it takes to a slide projector. The images 

produced can be used to provide feedback to the user. This 

visual feedback helps the user learn to control his or her EEG 

activity. 

The user controlling the robots, which when moving produce 

light patterns, can create a wide variety of images that are then 

taken by the camera. Indeed, every image generated in this 

manner is unique, since several variables continually change. 

Examples of variables include the starting point of a robot with 

respect to the other; the intermittence and color of the luminous 

pattern; the presence of obstacles and the trajectory followed 
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during the data capture process; and the exposure time of the 

camera lens. 

Some pictures of the trajectories observed during the motion of 

the twin robots are now reported. Figure 19 refers to the motion 

of the robots during a time interval of 10 seconds, while 

Figures 20 and 21 refer to an exposure time of the camera lens 

of 15 and 20 seconds, respectively. In particular, in Figure 21 

we can clearly recognize the identical trajectories of the twin 

robots. A1 and A2 indicate the starting points of the two 

robots. In this case, the user has thought to move the right arm 

and consequently the robots turned right. Then, the user again 

imagined a right arm movement and another change of 

direction (points B1 and B2) was observed in the robot 

trajectory. The points where the robots stopped their motion are 

C1 and C2. 
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Figure 19 - Picture obtained by the user controlling the two robots 
modulating her brain signals. The time exposure of the camera lens is 10 
seconds. 
 

 

Figure 20 - Picture obtained by the user controlling the two robots 
modulating her brain signals. The time exposure of the camera lens is 15 
seconds. 
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Figure 21 - Picture obtained by the user controlling the two robots 
modulating her brain signals. The time exposure of the camera lens is 20 
seconds. 

 

 

4.2   CONTROLLING A ROBOTIC HAND USING SMR AND ERP 

 

An EEG based BCI application has been designed with the 

purpose to control a robotic hand through both sensory motor 

rhythms and event related potential.  

The signals measured from the user’s scalp are digitalized, 

elaborated and sent to the external device exploiting the 

BCI2000 [66] and the MATLAB software. During the signal 
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processing procedure, a series of spatial and temporal filters 

are applied and specific features are extracted from the EEG 

signals and translated into control command for the robotic 

hand (Fig.22). The same signal processing and translation 

algorithm techniques of the previous application  have been 

used.  

 

 
 

Figure 22 - Block diagram of the designed BCI application. 

 

The designed application have two configuration. In the first 

one the neurophysiologic signals used are the sensory motor 

rhythms. The trained user is instructed to imagine a movement 

of the left or of the right hand for respectively closing or 

opening the robotic hand.  For the second approach the event 

related potential are the neurophysiologic signals extracted and 

translated for controlling the device. In this case the subject is 

seated in front of a screen that displays a matrix of words as 
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shown in Figure 23. These words are intensified in rows and 

columns in a random order according to the row/column 

paradigm implemented for the first time by Farwell and 

Donchin in 1988 [37]. The intersection of the target row and 

column creates the P300 in EEG signals and, therefore, 

detection of the target word. Due to very low amplitude of the 

P300 in EEG, the classification of the P300 requires a 

minimum numbers of flashes to achieve high accuracy, thus 

the disadvantage of the use of ERP respect to the use of SMR 

is the longer interval of time for distinguishing the will of the 

subject. 

The robotic hand used to design the current application has 

been assembled for the first time by the KTH Royal Institute of 

Technology. The KTHand robot hand is a three fingered under-

actuated hand of anthropomorphic design. All drawings, the 

bill of material, and assembly instructions are freely available 

on the web at the address: www.md.kth.se/kthand. Each finger 

is controlled by a direct current motor which  rotates a pulley 

upon which a tendon is wound up. Shortening the tendon flexes 

the finger. A leaf spring runs along the finger and acts as 

abductor but is also an integral part of the joint design. The 
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position of the pulley is measured by an magnetic absolute 

position encoder (see Fig. 24). 

 

 
 

Figure 23 - Row/column paradigm introduced for the first time by Farwell 

and Donchin in 1988 [37]. 

 

For our experiment we have used a KTHand previously 

assembled and connected to an AVR32 controller. The AVR32 

is a 32-bit RISC microprocessor architecture designed by 

Atmel.  

The physical connection between the controller and the 

computer, where BCI2000 and MATLAB software elaborate 

and transmit the brain signals, is a serial port through which 
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information transfers in or out one bit at a time with a speed 

rate of 115200 bit/s. The UDP communication protocol has 

been used for transferring data from BCI2000 and MATLAB. 

An algorithm programmed in MATLAB language manage both 

the UDP communication with BCI2000 and the serial 

connection with the controller.  

 

        
 

Figure 24 - The KTHand model. 
 

 

Figure 25 and 26 show two different protocol for the SMR 

experiment. In the first case the user is asked to open or close 

the KTHand according to the command that was displayed on a 

screen. The interval presentation of these two visual stimuli 

was totally random, for example the first stimulus could appear 

after 1 sec and the second after also 5 sec. The user had to 
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change the position of the KTHand immediately after the 

stimulus was displayed. In the second case the user was asked 

to mimic the same action of a person that randomly decides to 

close or open his hand. An explicative movie about our robotic 

hand application is available on internet at the following 

address: http://www.youtube.com/watch?v=AmfAynGhVaE.  

 

      
 
 
Figure 25 - In the first experiment the user have to close (he thinks to move 
the right hand) or open (he thinks to move the left hand) the KTHand 
modulating his sensory motor rhythms following the instruction displayed 
on a screen. 
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Figure 26 - In the second experiment the user have to close (he thinks to 
move the right hand) or open (he thinks to move the left hand) the KTHand 
modulating his sensory motor rhythms imitating the same gestures of a 
person that open and close his hand in a random way. 

 

 

4.3 ALTERNATIVE FORM OF COMMUNICATION FOR PEOPLE 

WITH MOTOR DISABILITIES 

 

Music composer  

 

In this paragraph we present a novel interface for music 

composition. The following interface allows a user to create 

and modify short melodies in real time and provides aural and 

visual feedback to the user, thus affording them a controllable 

means to achieve creative expression.  
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Before to start the on line task the user has to perform a 

training session. During this step, the subject learns how to 

control the amplitude of his or her SMR by imagination or 

movement of the hands and of the feet, and specific features of 

EEG signals are determined because they differ from subject to 

subject. During the training session, the total variance V of the 

brain signals was calculated for all eight channels in the 0 to 70 

Hz frequency range for determining the best channel location 

and the most suitable frequency band. 

The music composer application has been tested exploiting the 

modules of the BCI2000 software [66], specifically the 

CursorTask module that is controlled by the output of the 

SignalProcessing module, that have been set thanks to the 

information extracted during the training session. 

When the subject is ready for EEG acquisition, the notes are 

displayed on a screen as appear in Figure 27. Then, a cursor 

appears in the center of the blue squared and begins to move 

only when the user starts to modulate his sensory motor 

rhythms. The subject's task is to move the cursor vertically 

imaging to move the right (up) or the left (down) hand, and  

horizontally imaging to move both the hands (left) or the feet 
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(right). The purpose of the user is to hit the desired target, that 

in our case is a note for composing a melody. Indeed, if the ball 

hit a target the corresponding note is placed on the pentagram 

and  the related sound is emitted. At the end of the composition 

the entire melody is emitted.  

 

 

 
Figure 27 - Interface of Music composer BCI application based on 
modulation of sensory motor rhythms.   

 

In order to create a richer composition environment, there are 

several areas for future modifications to this interface, for 

example a selection of different types of scales or different 

synthesized sounds could be insert. Additionally, implementing 
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a “stop” button can allow the composer to take more time to 

plan the next note or to indicate when they are satisfied with 

what they have created.  

 

 Writing and painting robot 

 

Other two SMR based BCI applications have been designed with the 

purpose to give to people with motor disabilities another way for 

communicating. The first one is the writing robot application that 

allows to a user to select letters of the alphabet, modulating his 

sensory motor rhythms, that will be sent to a robot equipped with a 

paintbrush (see Figure 29). The robot will reproduce on a sheet the 

letter that correspond to the target hit by the user on the screen.  

Feedback training has to be used to let users acquire control 

over sensorimotor rhythms because the changes in SMR 

occurring in untrained users are usually not strong enough to be 

detected by a classification algorithm. Thus, before starting to 

use the writing robot or the painting robot application the 

performance of training sessions is mandatory to determine the 

best channel location and the most suitable frequency band for 

a specific subject. The training allows to the user to learn how 

to control the amplitude of his or her SMR by imagination or 
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movement of the limbs. During the training session, the 

computer screen is either blank, or displaying an arrow 

pointing left, right, up or down. The four different stimuli 

appear for several times in a random sequence. Depending on 

the direction of the arrow, the subject is instructed to imagine a 

movement of the left hand, of the right hand, of both the hands 

or of the feet. If the screen was blank the user is instructed to 

have a rest. The same task was performed several times in 

different days. The signals acquired during this step are 

analyzed and the total variance V are calculated for all the 

channels in the 0 to 70 Hz frequency range. The variance was 

calculated according to the equation (4). The results are 

visualized as in Figure 18. This measure provides a way to 

select the frequency band and locations where the EEG signals 

are more influenced by the task (left and right arm, both arms 

or feet imagery movement). 

After that all the features have been set the subject can start to use 

the writing or painting application. The blue screen that appears 

when the task starts is shown in Figure 28. The same BCI2000 

modules of the music composer application: the SignalProcessing 

and the CursorTask have been used for designing this application.  
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Figure 28 - Interface of Writing robot BCI application based on modulation 
of sensory motor rhythms.   

The robots basic structure is the classic differential-drive, 

consisting of two actuated wheels and one smaller passive 

caster wheels whose function is to keep the robot statically 

balanced. The kinematic structure of the robots was created 

using the LEGO MINDSTORMS robotic kit due to its 

simplicity and reconfigurability [73]. 

Figure 30 illustrates all the sequences of the task. The blue 

screen with the letter of the alphabet and a cursor at the center 

is displayed and the user moves the cursor vertically imaging to 

move the right (up) or the left (down) hand, and  horizontally 
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imaging to move both the hands (left) or the feet (right). When 

a target has been hit the command that will be sent to the 

writing robot appear on the screen (for example if letter C has 

been chose ‘writing C’ will be displayed). The BCI2000 

software communicates with the MATLAB software exploiting 

a UDP protocol. Then MATLAB sent to the robot, through a 

Bluetooth connection, the data elaborated by the BCI2000. 

When the robot receive the control command it starts to write 

the related letter on a sheet.   

 

 

Figure 29 – Robot used for designing the writing robot and the painting 
robot applications. The paintbrush can be noticed at the center of the axis of 
the two wheels. 
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Figure 30 – Sequences of the task performed by a user with the writing 
robot BCI application.  The user controls a cursor on a blue screen 
modulating his sensory motor rhythms. He chooses a letter of the alphabet. 
This information will be sent to a robot equipped with a paintbrush that will 
reproduce the same letter on a sheet. 
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The painting robot BCI application is similar to the last one, 

the difference are just the targets that the user can choose and 

that appear on the screen, shown in Figure 31.   

 

Figure 31  - Interface of painting robot BCI application based on 
modulation of sensory motor rhythms. 
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CHAPTER 5  

CONCLUSION 

In this manuscript three related aspects of research on BCI 

systems were discussed. These aspects were the evaluation of a 

nonlinear feature extraction algorithm for BCI, the analysis of 

the functional connectivity between the signals acquired in 

different brain regions when a user performs an operant 

conditioning paradigm with fMRI based BCI technology, and 

the development of BCIs applications for disabled subjects. 

We have introduced a new EEG signals features extraction 

techniques based on nonlinear time series analysis. This signal 

processing approach was tested offline considering three 
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sessions of imaginary motor tasks. The main objective is 

increasing the performance of BCI systems extracting a more 

robust feature. In order to reach this objective a fast algorithm 

that computes the largest Lyapunov exponent, the DivA [7], 

was used. This implementation results to be computationally 

less onerous than the conventional ones, since it is not based on 

the time-delay embedding concept and also no intermediate 

computational steps are needed to obtain the final result. For 

this reason the DivA is particularly suitable for real time 

analysis, thus for BCI applications. Our evaluations underline 

the capability and the potentiality of this method in respect to 

the classical approach. The idea for future works is to integrate 

the nonlinear algorithm investigated in this thesis in a BCI 

system, thus using it on line. The design of a BCI based on our 

nonlinear feature extraction method could improve the 

performance of the systems that use sensory motor rhythms as 

neurophysiologic signals. 

The analysis of the functional connectivity between brain 

regions involved in the perception of pain is the second topic 

that were dealt with in this thesis. Thanks to the collaboration 

with the central institute of mental health, Heidelberg 
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university in Mannheim, the dataset recorded with an fMRI 

based BCI technology have been analysed. The results reveal 

the possibility for a person to modulate the brain waves, in 

particular the neurophysiologic signals related to the perception 

of pain. Control over the pain modulatory system is an 

important target because it could enable a unique mechanism 

for clinical control over pain. Here, we found that using real-

time functional MRI based BCI to guide training, subjects were 

able to learn to control activation both in anterior cingulated 

cortex and in the posterior insula. The BCI techniques could 

have an important role for treating disease, for example for the 

chronic pain treatment. An aspect that can be investigated in 

future work is the involvement of the medial cingulate cortex 

in the pain perception. Indeed when the subject deliberately 

induced increases or decreases in ACC or pIns fMRI 

activation, there was a corresponding change in the connection 

between the MCC and the other ROIs. In particular a more 

strong connection between MCC and pInsR can be noticed. In 

future works could be interesting to analyze the role of MCC in 

the perception of pain.   
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Finally, we proposed the designs of different EEG based BCI 

applications. We aim to provide a significant quality of life 

improvement to users with severe disabilities. All the 

applications designed have been tested for able-bodied users, 

the future idea is to test the applicability of such tools also for 

the locked-in patients. 
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