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Chapter 1

Introduction and applications

1.1 Definitions

The modern study of block designs is often said to have begun with the
publication in 1936 of a paper by the statistician F. Yates. In that paper he
considered collections of subsets of a set with certain balance properties, that
are now known as balanced incomplete block designs (BIBD).Using k-subset
as an abbreviation for k-element subset, we make the definition:

Definition 1. A (v, k, λ)−BIBD (S,B) is a collection of k-subsets called
blocks of a v-set S, k < v, such that each pair of elements of S occur together
in exactly λ of the blocks.

Definition 2. A finite projective plane of order n > 1 is a (n2 + n + 1, n +
1, 1)−BIBD.

Definition 3. A finite affine plane of order n > 1 is a (n2, n, 1)−BIBD.

Definition 4. A Triple System of order v and index λ, TS(v, λ), is a
(v, 3, λ)−BIBD. A triple system of index 1 is called a Steiner Tripe system,
STS(v).

Definition 5. A Quadruple System of order v and index λ, Sλ(2, 4, v), is a
(v, 4, λ)−BIBD. A quadruple system of index 1 is called a Steiner Quadruple
System, SQS(v).

Figure 1.1 shows the minimum projective plane, an STS(7) called the
Fano’s Plane.
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Figure 1.1: The Fano’s plane

Definition 6. A BIBD is resolvable if the blocks can be arranged into r groups
so that the blocks of each group are disjoint and contain in their union each
element exactly once. The groups are called the resolution classes.

It is not difficult to prove that every affine plane of order n is resolv-
able with n + 1 resolution classes. For every finite affine plane of order n
(A,R) there exists a finite projective plane of order n (P,R′) and an injec-
tive function f : A→ P such that for all R ∈ R there exists a R′ ∈ R′ with
f(R) ⊆ R′. For this it is sufficient to adjoin to every block of a resolution
class Ci a new point ∞i and the new block {∞1,∞2, . . . ,∞n+1}. We say
that (A,R) is embedded into (P,R′).

In the last part of the previous century a new approch of design theory
appeared: the designs are considered as decompositions of graphs. This
approch is more usefully for applications where the position of the elements
is important, as we show in the next section.

Denote by

• H = (V (H), E(H)) a graph having vertex set V (H) and edge-set E(H);

• λH the graph H in which every edge has multiplicity λ.

• Kn the complete undirected graph on n vertices;

• G a subgraph of Kn having nonisolated vertices;
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Definition 7. A G-decomposition of λH (or a (λH,G)-decomposition) is
a partition of the edges of λH into subgraphs (G-blocks) each of which is
isomorphic to G.

A (λH,G)-decomposition is denoted by (V, C), where V = V (H) is the
vertex set of λH, and C is the G-block-set.

A (λKn, G)-decomposition is called a G-design of order n and index λ.
A G-design of order v and index λ is called a

• (v, k, λ)−BIBD if G = Kk;

• path design P (v, k, λ) if G = Pk, the path of length k − 1 (k vertices);

• m-cycle system if G = Cm, the cycle of length m;

• E2-design if G = E2, the graph with four vertices and two disjoint
edges;

• a Kite System KS(v, λ) if G = K3 + e, the simple graph on 4 vertices
consisting of a triangle and a single edge (tail) sharing one common
vertex.

The following figures show some graphs.
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Figure 1.2 shows a K3-decomposition of K7, i.e. an STS(7) isomorphic
to the Fano Plane.

It is well-known [5, 6, 7, 8, 37, 38, 74] that:

1. a TS(n, λ) exists if and only if λ(n−1) ≡ 0 (mod 2) and λn(n−1) ≡ 0
(mod 6);

2. an Sλ(2, 4, n) exists if and only if λn(n−1) ≡ 0 (mod 12) and λ(n−1) ≡
0 (mod 3);

3. a λ-fold C4-system of order n exists if and only if λn(n−1) ≡ 0 (mod 8)
and λ(n− 1) ≡ 0 (mod 2);

4. a λ-fold kite-system of order n if and only if λn(n− 1) ≡ 0 (mod 8).

If G = Ks and H is a complete multipartite graph with h1 parts of size
g1, h2 parts of size g2, .... hr parts of size gr, an G-decomposition of H is
well known as an s−GDD of type gh1

1 g
h2

2 . . . ghr

r . Figure 1.3 shows a K2,2,3,
i. e. a complete multipartite graph with 2 parts of size 2 and 1 part of size 3.
Trivially a 3−GDD of type 2231 can’t exist because the multipartite graph
has 16 edges and 16 ≡ 1 (mod 3).

Definition 8. We say that a G-design (W,B) is a subdesign of (V, C) if
W ⊆ V and B ⊆ C.

Definition 9. A (λH,G)-decomposition (V, C) is balanced if each vertex
belongs to the same number of blocks. An Hs-design is a balanced Ps-design.
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Figure 1.2: An K3-decomposition of K7

Figure 1.3: A K2,2,3
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A packing of λH with copies of G is a triple (X,B, L), where X is the
vertex set of H, B is a collection of copies of G from the edge set of λH
and L is the graph generated by the set of edges of λH not belonging to a
graph of B. The graph L is called the leave. If |B| is as large as possible,
the packing (X,B, L) is said to be maximum ([49]). When the leave L is
empty, a maximum packing of λH with copies of G coincides with a λ-fold
G-decomposition of λH.

1.2 An application: the networks

Traffic grooming is the generic term for packing low rate signals into higher
speed streams. By using traffic grooming, one can bypass the electronics in
the nodes which are not sources or destinations of traffic, and therefore reduce
the cost of the network. When we consider unidirectional SONET/WDM
ring networks, the routing is unique and we have to assign to each request
between two nodes a wavelength and some bandwidth on this wavelength. If
the traffic is uniform and if a given wavelength can carry at most C requests,
we can assign to each request at most 1C of the bandwidth. C is known as the
grooming ratio or the grooming factor. Furthermore if the traffic requirement
is symmetric, it can be easily shown (by exchanging wavelengths) that there
always exists an optimal solution in which the same wavelength is given to
each pair of symmetric requests. Thus without loss of generality we assign to
each pair of symmetric requests, called a circle, the same wavelength. Then
each circle uses 1C of the bandwidth in the whole ring. If the two end-nodes
of a circle are i and j, we need one ADM at node i and one at node j. The
main point is that if two requests have a common end-node, they can share
an ADM if they are assigned the same wavelength. For example, suppose
that we have symmetric requests between nodes 1 and 2, and also between 2
and 3. If they are assigned two different wavelengths, then we need 4 ADMs,
whereas if they are assigned the same wavelength we need only 3 ADMs. The
so called traffic grooming problem consists in minimizing the total number of
ADMs to be used, in order to reduce the overall cost of the network. Suppose
we have a ring with 4 nodes 0, 1, 2, 3 and all-to-all uniform traffic. There are
therefore 6 circles (pairs of symmetric requests) {i, j} for 0 ≤ i < j ≤ 3.
If there is no grooming we need 6 wavelengths (one per circle) and a total
of 12 ADMs. If we have a grooming factor C = 2, we can put on the same
wavelength two circles, using 3 (assignement 1) or 4 (assignment 2) ADMs
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according to whether they share an end-node or not. For example we can put
together {1, 2} and {2, 3} on one wavelength; {1, 3} and {3, 4} on a second
wavelength, and {1, 4} and {2, 4} on a third one, for a total of 9 ADMs.

In terms of design theory assignment 1 is a E2 design of order 4:

λ1 t t t t

1 2 3 4
λ2 t t t t

1 3 2 4
λ3 t t t t

1 4 2 3

whereas assignment 2 is a P3 design of order 4:

λ1 t t t

1 2 3
λ2 t t t

1 3 4
λ3 t t t

1 4 2

The problem for a unidirectional SONET ring with n nodes, grooming
ratio C, and all-to-all uniform unitary traffic has been modeled as a graph
partition problem in both [3] and [34]. In the all-to-all case the set of requests
is modelled by the complete graph Kn. To a wavelength k is associated a
subgraph Bk in which each edge corresponds to a pair of symmetric requests
(that is, a circle) and each node to an ADM. The grooming constraint, i.e.
the fact that a wavelength can carry at most C requests, corresponds to the
fact that the number of edges |E(Bk)| of each subgraph Bk is at most C.
The cost corresponds to the total number of vertices used in the subgraphs,
and the objective is therefore to minimize this number.

TRAFFIC GROOMING IN THE RING
INPUT: Two integers n and C.
OUTPUT: Partition E(Kn) into subgraphs Bk, 1 ≤ k ≤ s, s.t. |E(Bk)| ≤ C
for all k.
OBJECTIVE: Minimize Σs

k=1|V (Bk)|.

With the all-to-all set of requests, optimal constructions for a given
grooming ratio C have been obtained using tools of graph and design theory,
in particular for grooming ratio C ≤ 7 and C ≥ N(N − 1)/6. For exam-
ple, two different optimal networks with 8 nodes and C = 4 can be obtained
by:

• a (K3 + e)-design (V,B), with V = {1, 2, . . . , 8} and B = {(7, 2, 1)− 3,
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Figure 1.4: Two different assegnment
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(5, 3, 2)−4, (8, 1, 4)−3, (6, 1, 5)−8, (5, 7, 4)−6, (8, 7, 3)−6, (2, 8, 6)−7}.
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• a {K3 + e, C4}-decomposition (V,B), with V = {1, 2, . . . , 8} and
B = {(6, 3, 2)− 4, (7, 4, 3)− 1, (4, 6, 5)− 8, (1, 7, 6)− 8, (2, 5, 7)− 8,
(1, 4, 8, 2), (1, 5, 3, 8)}
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Most of the papers on grooming deal with a single (static) traffic matrix.
Some articles consider variable (dynamic) traffic, such as finding a solution
which works for the maximum traffic demand or for all request graphs with
a given maximum degree, but all keep a fixed grooming factor. In [24] an
interesting variation of the traffic grooming problem, grooming for two-period
optical networks, has been introduced in order to capture some dynamic
nature of the traffic. Informally, in the two-period grooming problem each
time period supports different traffic requirements. During the first period
of time there is all-to-all uniform traffic among n nodes, each request using
1/C of the bandwidth; but during the second period there is all-to-all traffic
only among a subset V of v nodes, each request now being allowed to use a
larger fraction of the bandwidth, namely 1/C0 where C0 < C. Denote by X
the subset of n nodes. Therefore the two-period grooming problem can be
expressed as follows:

TWO-PERIOD GROOMING IN THE RING
INPUT: Four integers n, v, C, C0.
OUTPUT: A partition of E(Kn) into subgraphs Bk, 1 ≤ k ≤ s, such that for
all k, |E(Bk)| ≤ C, and |E(Bk) ∩ (V × V )| ≤ C0, with V ⊆ X, |V | = v.
OBJECTIVE: Minimize Σs

k=1|V (Bk)|.

A grooming of a two-period network N(n, v;C,C0) with grooming ratios
(C,C0) coincides with a graph decomposition (X,B) of Kn such that (X,B)
is a grooming N(n,C) in the first time period, and (X,B) embeds a graph
decomposition of Kv such that (V,D) is a grooming N(v, C0) in the second
time period. In [4] this problem is solved for C = 4.
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Chapter 2

Simultaneous metamorphoses
of K4−designs

2.1 Preliminaries

Definition 10. Let (X,B) be a λ-fold G-decomposition of λH. Let Gi,
i = 1, . . . , µ, be non isomorphic proper subgraphs of G, each without isolated
vertices. Put Bi = {Bi | B ∈ B}, where Bi is a subgraph of B isomorphic
to Gi. A {G1, G2, . . . , Gµ}-metamorphosis of (X,B) is a rearrangement, for
each i = 1, . . . , µ, of the edges of

⋃

B∈B(E(B) \ E(Bi)) into a family B
′
i of

copies of Gi with a leave Li, such that (X,Bi∪B
′
i, Li) is a maximum packing

of λH with copies of Gi.

For µ = 1, the above definition coincides with the first definition of meta-
morphosis given by C. C. Lindner and A. Street in [53]. For this reason a
{Gi, . . . , Gµ}-metamorphosis is a simultaneous metamorphosis introduced by
P. Adams, E. Billington, E. S. Mahmoodian in [1].

In this chapter, we study the simultaneous metamorphosis of an Sλ(2, 4, n)
when it is G = K4, G1 = C4, G2 = K3+ e. In the following we always denote
the sets B′1, B

′
2, L1, L2 by C, K, LC and LK, respectively.

Necessary and sufficient conditions for the existence of an Sλ(2, 4, n) hav-
ing a metamorphosis into a maximum packing of λKn with 4-cycles (with
kites) are given in [46] ([44]). See the following table, where ∅ denotes the
empty graph.
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λ (mod 12) n ≥ 4 LC LK
1,5,7,11 1 (mod 24) ∅ ∅

4 (mod 24) 1-factor P3 or, if n > 4, E2

13 (mod 24) C6 or 2 K3s P3 or E2

16 (mod 24) 1-factor ∅
2,10 1, 4 (mod 12) ∅ ∅

7, 10 (mod 12) 2P2 P3 or 2P2 or E2

3,9 1 (mod 8) ∅ ∅
0 (mod 8) 1-factor ∅
4 (mod 8) 1-factor P3 or 2P2 or E2

5 (mod 8) 2P2 P3 or 2P2 or E2

4,8 1 (mod 3) ∅ ∅
6 0, 1 (mod 4) ∅ ∅

2, 3 (mod 4) 2P2 P3 or 2P2 or E2

0 ∀n ≥ 4 ∅ ∅

Pairing [44] and [46] it is easy to check that in some cases C4-metamorphoses
and (K3 + e)-metamorphoses follow from a same starting Sλ(2, 4, n). Col-
lecting these results we get our first result.

Theorem 2.1.1. [44, 46] If λ = 1 and n ≡ 4, 13 (mod 24), λ = 2 and
n = 7, 10, 19, λ = 3 and n ≡ 4, 5 (mod 8), λ = 6 and n ≡ 2, 3 (mod 4), then
there exists an Sλ(2, 4, n) having a {C4, K3 + e}-metamorphosis.

Theorem 2.1.2. [Weighting construction] . Suppose there exist:

1. an {r, s}-GDD of type gu1

1 g
u2

2 . . . guh

h ;

2. an Sλ(2, 4, α+wgi), i = 1, . . . , h, with α = 0, 1, having a {C4, K3 + e}-
metamorphosis;

3. a 4-GDD of index λ and type wr, having a {C4, K3+e}-metamorphosis;

4. a 4-GDD of index λ and type ws, having a {C4, K3+e}-metamorphosis.

Then there is an Sλ(2, 4, w(g1u1 + . . . + ghuh) + α) having a {C4, K3 + e}-
metamorphosis.

Proof The proof follows easily from the well-known Wilson fundamental
construction [11]. 2
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2.2 λ = 1

Lemma 2.2.1. There exists a 4-GDD of type (2t)4, with t ≥ 2, t 6= 3, having
a {C4, K3 + e}-metamorphosis.

Proof For t ≥ 2, t 6= 3, let X = Z2t × Z4, G = {Z2t × {k}, k ∈ Z4} and
B = {{(i, 1), (j, 2), (i ◦1 j, 3), (i ◦2 j, 0)} | i, j ∈ Z2t}, where (Z2t, ◦1) and
(Z2t, ◦2) are two orthogonal quasigroups of order 2t [2]. Then Γ = (X,G,B)
is the 4-GDD of type (2t)4.

Remove from each block the edges {(i, 1), (j, 2)}, {(i ◦1 j, 3), (i ◦2 j, 0)}.
These edges cover two complete bipartite graphsK2t,2t, then we can rearrange
them into the set C of 4-cycles [39].

For each 0 ≤ i ≤ 2t − 1 and for each 0 ≤ j ≤ t − 1, remove the edges
{(i, 1), (j, 2)}, {(j, 2), (i ◦1 j, 3)}, {(i, 1), (i ◦1 (j+ t), 3)}, {(i ◦1 (j+ t), 3), (i ◦2
(j + t), 0)}. Since {(j, 2), (i ◦1 j, 3) | 0 ≤ i ≤ 2t − 1, 0 ≤ j ≤ t − 1} =
{(j, 2), (i ◦1 (j + t), 3) | 0 ≤ i ≤ 2t− 1, 0 ≤ j ≤ t− 1}, the removed edges can
be assembled into the set K = {((i, 1), (j, 2), (i◦1 (j+ t), 3))− (i◦2 (j+ t), 0) |
0 ≤ i ≤ 2t− 1, 0 ≤ j ≤ t− 1}. 2

In order to give a {G1, G2, . . . , Gµ}-metamorphosis, it is sufficient, for
λ = 1, to indicate, for each i, Li and B

′
i, being straightforward the blocks in

Bi .

Lemma 2.2.2. For n = 25, 49, 73 there is an S(2, 4, n) (X,B), having a
{C4, K3 + e}-metamorphosis with empty leaves.

Proof n=25: X = Z25, B = {{1, 5, 12, 0}, {1, 6, 13, 2}, {3, 7, 14, 2}, {8, 4, 3, 10},
{4, 9, 11, 0}, {5, 10, 17, 6}, {7, 11, 18, 6}, {7, 12, 19, 8}, {9, 15, 13, 8}, {14, 5, 16, 9},
{10, 15, 22, 11}, {12, 16, 23, 11}, {12, 24, 17, 13}, {13, 18, 20, 14}, {10, 14, 21, 19},
{15, 2, 20, 16}, {16, 21, 3, 17}, {17, 22, 4, 18}, {0, 23, 19, 18}, {19, 24, 1, 15},
{21, 20, 7, 0}, {21, 8, 1, 22}, {2, 22, 9, 23}, {23, 5, 3, 24}, {6, 20, 24, 4}, {2, 0, 24, 10},
{3, 20, 11, 1}, {4, 2, 21, 12}, {3, 0, 13, 22}, {4, 14, 23, 1}, {7, 5, 4, 15}, {6, 8, 16, 0},
{7, 9, 17, 1}, {2, 8, 5, 18}, {19, 3, 9, 6}, {9, 20, 12, 10}, {5, 21, 13, 11}, {6, 14, 22, 12},
{7, 23, 10, 13}, {14, 8, 24, 11}, {15, 17, 0, 14}, {10, 18, 1, 16}, {17, 19, 2, 11},
{15, 18, 12, 3}, {16, 19, 13, 4}, {22, 20, 19, 5}, {15, 21, 23, 6}, {24, 16, 22, 7},
{20, 17, 23, 8}, {9, 21, 24, 18}}; C = {(2, 3, 1, 0), (7, 5, 3, 0), (14, 13, 4, 0), (23, 7, 16, 0),
(10, 11, 2, 1), (8, 6, 4, 1), (24, 10, 17, 1), (18, 15, 4, 2), (20, 11, 9, 2), (21, 22, 4, 3),
(19, 5, 12, 3), (9, 7, 6, 5), (21, 24, 8, 5), (22, 20, 9, 6), (15, 22, 13, 6), (14, 10, 8, 7),
(17, 18, 9, 8), (13, 11, 12, 10), (18, 16, 14, 11), (19, 15, 13, 12), (21, 23, 14, 12),
(17, 19, 16, 15), (23, 24, 17, 16), (20, 21, 19, 18), (24, 22, 23, 20)}
K = {(4, 0, 1)− 20, (5, 9, 0)− 22, (1, 3, 2)− 12, (6, 2, 7)− 1, (10, 8, 9)− 1, (6, 10, 4)−

13



12, (11, 5, 6)− 3, (15, 8, 7)− 16, (11, 8, 12)− 6, (18, 9, 14)− 1, (11, 16, 15)− 6,
(19, 10, 11) − 14, (14, 12, 13) − 7, (23, 13, 24) − 7, (15, 14, 19) − 16, (10, 2, 16) − 4,
(11, 21, 17) − 8, (18, 16, 17) − 14, (21, 18, 22) − 3, (23, 2, 18) − 15, (8, 0, 18) − 3,
(24, 15, 5)− 22, (10, 0, 20)− 4, (21, 0, 6)− 19, (20, 8, 22)− 23}
n=49: X = Z49. The starters blocks of B are {0, 8, 3, 1}, {0, 29, 4, 18}, {6, 33, 21, 0},
{32, 19, 9, 0}. The starters blocks of C are (0, 5, 4, 22) and (0, 9, 34, 13). The starters
blocks of K are (0, 1, 19)− 12, (6, 17, 0)− 16.
n=73: X = Z73. The starters blocks of B are {1, 4, 6, 0}, {7, 28, 0, 20}, {9, 33, 44, 0},
{0, 25, 47, 15}, {46, 12, 30, 0}, {0, 31, 14, 50}. The starters blocks of C are (0, 1, 3, 13),
(0, 26, 54, 24) and (0, 29, 65, 31). The starters blocks ofK are (10, 1, 0)−4, (40, 27, 0)−
12, (0, 23, 8)− 22. 2

Lemma 2.2.3. For n ≡ 1 (mod 24), there exists an S(2, 4, n) having a
{C4, K3 + e}-metamorphosis.

Proof For n = 25, 49, 73, the result follows from Lemma 2.2.2. Let Γ be
the 4-GDD in Lemma 2.2.1 with t = 12. Add an infinite point to each
group Gi = Z24 × {i}, i = 0, 1, 2, 3, and place on it a copy of the S(2, 4, 25)
given in Lemma 2.2.2. The result is an S(2, 4, 97) having a {C4, K3 + e}-
metamorphosis. Now let n = 24u + 1, with u ≥ 5. Add an infinite point
to the vertex set of a 4-GDD of type 6u [11] and apply to it the weighting
construction with r = s = 4, α = 1 and w = 4. This completes the proof. 2

Lemma 2.2.4. There exist an S(2, 4, 16) and an S(2, 4, 40) having a {C4, K3+
e}-metamorphosis where LC is an 1-factor and LK is the empty graph.

Proof n=16: X = Z16, B = {{1, 2, 0, 3}, {4, 6, 0, 5}, {0, 7, 8, 9}, {11, 13, 0, 12},

{15, 0, 10, 14}, {4, 1, 7, 11}, {1, 12, 14, 5}, {1, 8, 15, 6}, {9, 13, 10, 1}, {2, 13, 15, 4},

{2, 10, 5, 7}, {2, 9, 12, 6}, {8, 11, 14, 2}, {3, 9, 14, 4}, {3, 5, 8, 13}, {3, 11, 10, 6},

{3, 7, 12, 15}, {8, 10, 4, 12}, {9, 15, 5, 11}, {7, 14, 6, 13}};

C = {(1, 2, 9, 8), (11, 13, 9, 3), (0, 3, 5, 7), (11, 7, 14, 5), (13, 2, 10, 8), (4, 15, 12, 1),

(6, 10, 14, 4), (0, 15, 6, 12)};

LC = {(0, 5), (1, 10), (2, 14), (3, 7), (4, 12), (6, 13), (8, 11), (9, 15)};

K = {(4, 1, 0)−6, (10, 0, 7)−1, (13, 14, 12)−7, (2, 6, 8)−13, (6, 3, 1)−12, (3, 9, 13)−

15, (14, 7, 8)− 10, (11, 12, 15)− 0, (13, 2, 10)− 4, (11, 6, 9)− 14}.

n=40: X = Z40. B = {{i, 1+ i, 4+ i, 13+ i}, {i, 2+ i, 7+ i, 24+ i}, {i, 6+ i, 14+

i, 25 + i},{j, 10 + j, 20 + j, 30 + j} | 0 ≤ i ≤ 39, 0 ≤ j ≤ 9};

C = {(i, 4+i, 20+i, 24+i), (i, 5+i, 20+i, 25+i), (i, 8+i, 20+i, 28+i) | 0 ≤ i ≤ 19};

LC = {j, 20 + j), (10 + j, 30 + j) | 0 ≤ j ≤ 9};

K = {(6, 21, 15)−25, (7, 22, 16)−26, (7, 22, 16)−26, (8, 23, 17)−27, (9, 24, 18)−28,
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(10, 25, 19)−29, (11, 26, 20)−30, (12, 27, 21)−31, (13, 28, 22)−32, (14, 29, 23)−33,

(15, 30, 24)−34, (16, 31, 25)−30, (17, 32, 26)−31, (18, 33, 27)−32, (19, 34, 28)−33,

(20, 35, 29)−34, (21, 36, 30)−35, (22, 37, 31)−36, (23, 38, 32)−37, (24, 39, 33)−38,

(25, 0, 34)−39, (26, 1, 35)−0, (27, 2, 36)−1, (28, 3, 37)−2, (29, 4, 38)−3, (30, 5, 39)−

4, (31, 6, 0) − 17, (32, 7, 1) − 18, (33, 8, 2) − 19, (34, 9, 3) − 20, (35, 10, 4) − 21,

(36, 11, 5) − 22, (37, 12, 6) − 23, (38, 13, 7) − 24, (39, 14, 8) − 25, (0, 15, 9) − 26,

(1, 16, 10) − 27, (2, 17, 11) − 28, (3, 18, 12) − 29, (4, 19, 13) − 30, (5, 20, 14) − 31,

(0, 5, 17)−29, (1, 6, 18)−30, (2, 7, 19)−31, (3, 8, 20)−32, (4, 9, 21)−33, (5, 10, 22)−

34, (6, 11, 23)−35, (7, 12, 24)−36, (8, 13, 25)−37, (9, 14, 26)−38, (10, 15, 27)−39,

(11, 16, 28) − 0, (12, 17, 29) − 1, (13, 18, 30) − 2, (14, 19, 31) − 3, (15, 20, 32) − 2,

(16, 21, 33) − 3, (17, 22, 34) − 4, (18, 23, 35) − 5, (19, 24, 36) − 6, (20, 25, 37) − 7,

(21, 26, 38)− 8, (22, 27, 39)− 9, (23, 28, 0)− 10, (24, 29, 1)− 11}. 2

Remark 2.2.1. In the S(2, 4, 16) given in Lemma 2.2.4, it is possible to
choose a path of lenght 2 from each B ∈ B \ {0, 1, 2, 3} so that the edges be-
longing to these paths can be reassembled into the set of (K3+e)s {(13, 14, 2)−
5, (12, 8, 7)− 13, (2, 8, 6)− 15, (6, 3, 5)− 14, (3, 13, 9)− 14, (11, 12, 15)− 10,
(13, 10, 12)− 5, (9, 6, 11)− 4, (4, 5, 7)− 9} and into the edges {0, 15}, {2, 4}.

Remark 2.2.2. In the S(2, 4, 16) given in Lemma 2.2.4, it is possible to
choose a path of lenght 2 from each B ∈ B \ {0, 1, 2, 3} so that the edges be-
longing to these paths can be reassembled into the set of (K3+e)s {(12, 8, 7)−
11, (6, 2, 8)−15, (3, 6, 5)−12, (3, 13, 9)−14, (11, 12, 15)−13, (13, 12, 10)−15,
(9, 11, 6)− 14, (4, 7, 5)− 14} and into the triangles (0, 7, 10), (2, 13, 14).

The 6t + 4 Construction[46]. Let n = 6t + 4, where t is even and
t ≥ 10. Let X = {1, 2, . . . , t} and let R be a skew room frame of type 2t/2

with holes H = {h1, h2, . . . , ht/2} of size 2. For the definition of a skew room
frame and for results on its existence see [25].

1. For the hole h1 ∈ H, let (Xh1
,B1) be a copy of the S(2, 4, 16) in Lemma

2.2.4 on Xh1
= {a, b, c, d} ∪ (h1 × Z6).

2. For each hole hi ∈ H \ {h1}, let (Xhi
,Bi) be a copy of the S(2, 4, 16) in

Lemma 2.2.4 on Xhi
= {a, b, c, d}∪ (hi×Z6) such that {a, b, c, d} ∈ Bi.

3. If x and y belong to different holes in H, then there exists only one
cell (r, c) in R containing the pair {x, y}. Let D = {{(x, i), (y, i), (r, i+
1), (c, i+ 4)} | i ∈ Z6}.
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Let X =
⋃

hi∈H
Xhi

and B = (
⋃

hi∈H\{h1}
Bi \ {{a, b, c, d}}) ∪ B1 ∪ D. It is

straightforward to see that (X,B) is an S(2, 4, n). For i, j ∈ Z6, the vertices
(x, i) ∈ X will be called ”of level i” and the edge {(x, i), (y, j)} will be called
”between levels i and j”.

Lemma 2.2.5. For n ≡ 16 (mod 24), there exists an S(2, 4, n) having
{C4, K3 + e}-metamorphosis.

Proof Let n = 16+24k. By Lemma 2.2.4 we can assume k ≥ 2. Let (X,B)
the S(2, 4, n) given by the 6t+4 Construction with t = 4k+2. It is proved in
[46](Lemma 2.5) that (X,B) has a C4-metamorphosis with leave a 1-factor.
So we have only to prove the (K3 + e)-metamorphosis of (X,B).

• Take a (K3 + e)-metamorphosis of (Xh1
,B1) as in Lemma 2.2.4.

• For each hole h2i, 1 ≤ i ≤ k, delete the edges from type 2 blocks and
reassemble them as in Remark 2.2.1, where we put a, b, c, d instead of
0, 1, 2, 3.

• For each hole h2i+1, 1 ≤ i ≤ k, delete the edges from type 2 blocks and
reassemble them as in Remark 2.2.2, where we put a, b, c, d instead of
0, 1, 2, 3. Note that the edges from Remark 2.2.1 and the triangles from
2.2.2 can be reassembled into (K3 + e)s.

• Delete the paths [(x, 2), (c, 0), (y, 2)], [(x, 3), (c, 1), (y, 3)] and [(x, 4),
(r, 5), (y, 4)] from all blocks in D of the form {(x, 2), (y, 2), (c, 0), (r, 3)},
{(x, 3), (y, 3), (c, 1), (r, 4)} and {(x, 4), (y, 4), (r, 5), (c, 2)}. Delete the
paths [(y, 0), (x, 0), (r, 1)], [(y, 1), (x, 1), (r, 2)], [(y, 5), (x, 5), (r, 0)]
from all blocks in D of the form {(x, 0), (y, 0), (r, 1), (c, 4)}, {(x, 1),
(y, 1), (r, 2), (c, 5)} and {(x, 5), (y, 5), (r, 0), (c, 3)}, respectively.

The deleted edges don’t belong to the same hole and we can split them into
the following classes:

1. edges between levels 0 and 2;

2. edges between levels 1 and 3;

3. edges between levels 4 and 5;

4. edges on level 0;
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5. edges on level 1;

6. edges on level 5;

7. edges between levels 0 and 1;

8. edges between levels 1 and 2;

9. edges between levels 0 and 5.

Reassemble the edges of type 1, 4, 7 into the (K3+e)s ((c, 2), (y, 0), (x, 0))−
(r, 1), the edges of type 2, 5, 8 into the (K3+ e)s ((c, 3), (y, 1), (x, 1))− (r, 2),
the edges of type 3, 6, 9 into the (K3+ e)s ((c, 4), (y, 5), (x, 5))− (r, 0). Note
that, for example, {{(x, 2), (c, 0)}, {(y, 2), (c, 0)}}= {{(c, 2), (y, 0)}, {(c, 2), (x, 0)}} =
{{(a, 2), (1, 0)}, {(a, 2), (2, 0)}, {(b, 2), (3, 0)}, {(b, 2), (4, 0)}, . . . | a 6= 1, 2, b 6=
3, 4, . . .} = {{(1, 2), (a, 0)}, {(2, 2), (a, 0)}, {(3, 2), (b, 0)}, {(4, 2), (b, 0)}, . . . |
a 6= 1, 2, b 6= 3, 4, . . .}. Therefore we obtain a (K3 + e)-design of order n. 2

Theorem 2.2.6. For n ≡ 1, 4 (mod 12), there exists an S(2, 4, n) having a
{C4, K3 + e}-metamorphosis.

Proof The result follows from Theorem 2.1.1 and Lemmas 2.2.3 and 2.2.5.
2

2.3 λ = 3

Lemma 2.3.1. There exist {4, 5}-GDDs of type 2145, 3154, 61(6u + 4)4,
u ≥ 2.

Proof Let (S,G,B) be a 5-GDD of type 55 [11], where the groups are
Gi = Z5×{i}, i = 1, . . . , 5. Let B1, . . . , B5 be the blocks of B meeting (0, 1).
Remove the vertices (0, 1), (1, 1), (2, 1) and form a new GDD of type 2145

having G1 \ {(0, 1), (1, 1), (2, 1)} and Bi \ {(0, 1)}, i = 1, . . . , 5 as groups and
Gi, i = 2, 3, 4, 5 and B \ {(1, 1), (2, 1)}, for every B ∈ B \ {B1, B2, . . . , B5},
as blocks. Note that the blocks of size 5 of this new GDD are those meeting
(3, 1) or (4, 1). The remaining blocks are of size 4.
Now delete (0, 1), (1, 1) in (S,G,B). We get a {4, 5}-GDD of type 3154. The
blocks of the new GDD have size 5 if they contain one of the points (2, 1),
(3, 1), (4, 1), otherwise have size 4.
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Let (S,G,B) be a 5-GDD of type (6u+4)5 u ≥ 2 [11], where the groups are
Gi = Z6u+4×{i}, for 1 ≤ i ≤ 5. By deleting the points (0, 1), (1, 1), . . . , (6u−
3, 1), we obtain a {4, 5}-GDD of type 61(6u + 4)4. The blocks of the new
GDD have size 4 or 5. The blocks of size 5 are those containing (x, 1), for
some 6u− 2 ≤ x ≤ 6u+ 3. 2

Lemma 2.3.2. For t ≥ 2, t 6= 3, there exist 4-GDDs of index 3 and type
(2t)4 or (2t)5 having a {C4, K3 + e}-metamorphosis.

Proof Take the 4-GDD of type (2t)4 constructed in Lemma 2.2.1 and repeat
three times its blocks. The result is a 4-GDD of type (2t)4 and index λ = 3.
Now let (X,B) be an S3(2, 4, 5). Place in each block {x1, x2, x3, x4} ∈ B a
4-GDD of type (2t)4 with groups Gi = {xi} × Z2t having a {C4, K3 + e}-
metamorphosis. The result is the required 4-GDD of index 3 and type (2t)5

having a {C4, K3 + e}-metamorphosis. 2

Lemma 2.3.3. For n ≡ 1 (mod 8), n ≥ 9, there exists an S3(2, 4, n) having
a {C4, K3 + e}-metamorphosis.

Proof
n = 9. X = Z9. The starters blocks of B are {2, 0, 4, 1}, {1, 6, 0, 4}. If we
delete the edges {a, b}, {c, d} from each block {a, b, c, d}, we can reassemble
these edges into a set C = with starter block (0, 4, 8, 2). If we delete the
paths with starters [4, 2, 1], [1, 0, 6], we can reassemble these edges into a set
K with starter block (0, 1, 3)− 4.
n = 17. X = Z17. The starters blocks of B are {6, 4, 1, 0}, {2, 12, 8, 0},
{16, 7, 4, 0}, {15, 8, 14, 0}. If we delete the edges {a, b}, {c, d} from each
block {a, b, c, d}, we can reassemble these edges into a set C with starter
blocks (0, 8, 16, 3), (0, 1, 3, 10). If we delete the paths with starters [1, 4, 0],
[8, 0, 12], [16, 4, 7], [0, 15, 14], we can reassemble these edges into a set K with
starter blocks (0, 1, 4)− 9, (0, 5, 8)− 10.
n = 24u + 1, u ≥ 1. Take 3 copies of the S(2, 4, n) having a {C4, K3 + e}-
metamorphosis given in Lemma 2.2.3.
n = 33. Take the 4-GDD of index 3 and type 84 constructed in Lemma
2.3.2. Add an infinite point to each group Gi, i = 0, 1, 2, 3, and place on it a
copy of the S3(2, 4, 9) above constructed. We obtain an S3(2, 4, 33) having a
{C4, K3 + e}-metamorphosis.
n = 24u + 9, u ≥ 2 or n = 48u + 17, u ≥ 1. Add an infinite point to the
vertex set of a 4-GDD of type 23u+1 (43u+1)[11] and apply Theorem 2.1.2
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with r = s = 4 and w = 4. The result is an S3(2, 4, n) having a {C4, K3+ e}-
metamorphosis.
n = 96u + 41, u ≥ 0. Blow up by 8 an S3(2, 4, 12u + 5) (Z12u+5,B) and
place in each expanded block a 4-GDD of type 84 having a {C4, K3 + e}-
metamorphosis (see Lemma 2.2.1). To complete the proof add an infinite
point to each expanded vertex of Z12u+5 and place on it an S3(2, 4, 9) having
a {C4, K3 + e}-metamorphosis.
n = 96u+ 89, u ≥ 0. Apply Theorem 2.1.2 with λ = 3, α = 1, r = 4, s = 5
(Lemma 2.3.2) and the following ingredients given in Lemma 2.3.1:

• if u = 0: w = 4, a {4, 5}-GDD of type 2145;

• if u = 1: w = 8, a {4, 5}-GDD of type 3154;

• if u ≥ 2: w = 4, a {4, 5}-GDD of type 61(6u+ 4)4.

2

Lemma 2.3.4. For n = 8, 24 there exist an S3(2, 4, n) having a {C4, K3+e}-
metamorphosis.

Proof
n=8: X = Z8, B = {{0, 1, 3, 7}, {1, 2, 4, 7}, {2, 3, 5, 7}, {3, 4, 6, 7}, {4, 5, 0, 7},
{5, 6, 1, 7}, {0, 6, 2, 7}, {2, 4, 5, 6}, {3, 5, 6, 0}, {4, 6, 0, 1}, {5, 1, 0, 2}, {6, 3, 1, 2},
{0, 3, 2, 4}, {1, 3, 4, 5}}. Delete the edges (a, b),(c, d) from each block {a, b, c, d} ∈
B and reassemble them into C = {(0, 1, 2, 7), (6, 5, 1, 7), (5, 4, 3, 7), (2, 3, 5, 4),
(6, 0, 2, 4), (0, 6, 3, 1)} and LC = {(1, 2), (3, 0), (4, 7), (5, 6)}. Delete from
the blocks in B the paths [1, 0, 3], [1, 4, 7], [4, 6, 7], [0, 5, 7], [5, 1, 7], [2, 0, 7],
[5, 4, 6], [3, 6, 5], [6, 0, 4], [1, 0, 5], [2, 1, 3], [0, 3, 4], [1, 3, 5] and reassemble their
edges into K = {(2, 1, 0)−4, (3, 5, 0)−1, (3, 7, 1)−4, (6, 7, 4)−3, (0, 6, 3)−1,
(0, 7, 5)− 1, (4, 6, 5)− 3}.
n=24: X = Z12×{1, 2}. B = {{(i, 1), (11+ i, 2), (1+ i, 1), (2+ i, 2)}, {(i, 1), (i, 2),

(3+i, 1), (5+i, 1)}, {(i, 1), (9+i, 2), (4+i, 1), (6+i, 1)}, {(i, 1), (7+i, 2), (3+i, 1), (5+

i, 1)}, {(i, 1), (6 + i, 2), (4 + i, 1), (5 + i, 1)}, {(i, 1), (8 + i, 2), (3 + i, 1), (4 + i, 1)},

{(i, 1), (6 + i, 2), (10 + i, 2), (11 + i, 2)}, {(i, 1), (4 + i, 2), (8 + i, 2), (9 + i, 2)},

{(i, 1), (11+i, 2), (8+i, 2), (10+i, 2)}, {(i, 1), (i, 2), (3+i, 2), (5+i, 2)}, {(i, 1), (7+

i, 2), (1 + i, 2), (3 + i, 2)}, {(j, 1), (j, 2), (6 + j, 1), (6 + j, 2)} | i ∈ Z12, j ∈ Z6}.

Delete the edges {a, b}, {c, d} from each block {a, b, c, d} and reassemble them into

C = {((i, 1), (2 + i, 1), (1 + i, 2), (11 + i, 2)), ((i, 1), (2 + i, 1), (2 + i, 2), (1 + i, 2)),

((i, 1), (1+ i, 1), (10+ i, 2), (8+ i, 2)), ((j, 1), (6+ j, 1), (j, 2), (6+ j, 2)) | i ∈ Z12, j ∈
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Z6} and LC = {{(j, 1), (j, 2)}, {(6 + j, 1), (6 + j, 2)} | j ∈ Z6}.

K = {((i, 2), (5 + i, 1), (i, 1)) − (2 + i, 2), ((9 + i, 2), (6 + i, 1), (i, 1)) − (5 + i, 1),

((3+i, 2), (1+i, 2), (i, 1))−(4+i, 2), ((11+i, 2), (8+i, 2), (i, 1))−(i, 2) | i ∈ Z12} ∪

{((10, 2), (0, 1), (6, 2))− (0, 2), ((11, 2), (1, 1), (7, 2))− (1, 2), ((12, 2), (2, 1), (8, 2))−

(2, 2), ((13, 2), (3, 1), (9, 2))− (3, 2), ((14, 2), (4, 1), (10, 2))− (4, 2),

((3, 2), (5, 1), (11, 2)) − (7, 2), ((4, 2), (6, 1), (12, 2)) − (8, 2), ((4, 1), (0, 1), (3, 1)) −

(3, 2), ((5, 1), (1, 1), (4, 1))−(4, 2), ((6, 1), (2, 1), (5, 1))−(5, 2), ((7, 1), (3, 1), (6, 1))−

(6, 2), ((8, 1), (4, 1), (7, 1))−(7, 2), ((8, 1), (5, 1), (9, 1))−(3, 2), ((9, 1), (6, 1), (10, 1))−

(4, 2), ((10, 1), (7, 1), (11, 1))− (5, 2), ((0, 1), (1, 1), (9, 1))− (7, 2),

((1, 1), (2, 1), (10, 1)) − (8, 2), ((2, 1), (3, 1), (11, 1)) − (9, 2), ((1, 2), (7, 1), (5, 2)) −

(11, 2), ((2, 2), (8, 1), (6, 2))− (10, 2), ((0, 1), (11, 1), (8, 1))− (8, 2)}. 2

The 4t Construction. [46] Let n = 4t, where t ≥ 4 and t 6= 6. Let
S = {1, 2, . . . , t} and let (S, ◦) be an idempotent self-orthogonal quasigroup
of order t [2]. Set X = S × Z4 and define a collection of blocks B as follows:

1. For each x ∈ S, place in B three copies of the block {(x, 0), (x, 1), (x, 2),
(x, 3)}.

2. For each pair x, y ∈ S, x < y, place in B the blocks {(x, i), (y, i), (x ◦
y, i + 1), (y ◦ x, i + 1)}, where i ∈ Z4 and the second coordinates are
reduced modulo 4.

3. For each pair x, y ∈ S, x < y, place in B the blocks {(x, i), (y, i), (x ◦
y, i + 2), (y ◦ x, i + 2)}, where i = 0, 1 and the second coordinates are
reduced modulo 4.

4. For each pair x, y ∈ S, x 6= y, place in B the block {(x, 0), (y, 1), (x ◦
y, 2), (y ◦ x, 3)}.

Then (X,B) is an S3(2, 4, n). For i ∈ Z4, the vertices (x, i) ∈ X will be called
”of level i” and the edge {(x, i), (x, j)} will be called ”belonging to the same
column”.

Lemma 2.3.5. For n ≡ 0 (mod 8), there exists an S3(2, 4, n) having a
{C4, K3 + e}-metamorphosis.

Proof Let n = 8k. For k = 1, 3, the result follows from Lemma 2.3.4. Now
let k 6= 1, 3 and let (X,B) be the S3(2, 4, 8k) given in the 4t Construction
with t = 2k. Lemma 4.4 in [46] proves that (X,B) has a C4-metamorphosis.

Now we prove that (X,B) has a (K3 + e)-metamorphosis:
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• For each odd x ∈ S, delete the paths 2[(x, 1), (x, 0), (x, 2)] and
[(x, 1), (x, 2), (x, 3)] from type 1 blocks; for each even x ∈ S, delete the
paths 2[(x, 0), (x, 1), (x, 2)] and [(x, 0), (x, 2), (x, 3)] from type 1 blocks.
Reassemble these paths into (K3 + e)s with leave [(x, 1), (x, 0), (x, 2)]
for x odd and
[(x, 0), (x, 1), (x, 2)] for x even.

• From each type 2 block delete the path [(x, i), (x ◦ y, i+1), (y, i)]. The
deleted edges don’t belong to the same column and we can split them
into the following classes: (I) edges between levels 0 and 1, (II) edges
between levels 1 and 2, (III) edges between levels 2 and 3, (IV) edges
between levels 0 and 3.

• From each type 3 block delete the path [(y, i), (x, i), (y ◦ x, i + 2)] if
x = 2j − 1 and y ◦ x = 2j, j = 1, . . . , k, otherwise delete the path
[(x, i), (y, i), (y ◦ x, i+ 2)]. The deleted edges don’t belong to the same
column and we can split them into the following classes: (V) edges on
level 0, (VI) edges on level 1, (VII) edges between levels 0 and 2, (VIII)
edges between levels 1 and 3.

• From each type 4 block delete the path [(y, 1), (x, 0), (x ◦ y, 2)]. The
deleted edges don’t belong to the same column and we can split them
into the following classes: (IX) edges between levels 0 and 2, (X) edges
between levels 0 and 1.

Reassemble the deleted edges (I), (V) and (VII) into the (K3+e)s ((y, 0), (x◦
y, 1), (x, 0))− (y ◦ x, 2) if x = 2j − 1 and y ◦ x = 2j, j = 1, . . . , k; otherwise,
into the (K3 + e)s ((x, 0), (x ◦ y, 1), (y, 0))− (y ◦ x, 2).

Reassemble the deleted edges (II), (VI), (VIII) into the (K3+e)s ((y, 1), (x◦
y, 2), (x, 1))− (y ◦ x, 3) if x = 2j − 1 and y ◦ x = 2j, j = 1, . . . , k; otherwise,
into the (K3 + e)s ((x, 1), (x ◦ y, 2), (y, 1))− (y ◦ x, 3).

Reassemble the deleted edges (III), (IV), (IX) and (X) into the (K3+ e)s
((y ◦ x, 3), (x ◦ y, 2), (x, 0))− (y, 1).

Next we need to rearrange these (K3+e)s to use the paths obtained from
type 1 blocks, [(x, 1), (x, 0), (x, 2)], for x odd, and [(x, 0), (x, 1), (x, 2)], for
x even. For each j = 1, . . . , k, replace the (K3 + e) ((y, 0), (x ◦ y, 1), (2j −
1, 0))− (2j, 2), obtained by rearranging the deleted edges (I), (V) and (VII),
by ((y, 0), (x◦y, 1), (2j−1, 0))− (2j−1, 2). Replace the (K3+ e) ((y, 3), (x◦
y, 2), (2j − 1, 0)) − (2j, 1), obtained by rearranging the deleted edges (III),
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(IV), (IX) and (X), by ((y, 3), (x ◦ y, 2), (2j − 1, 0))− (2j − 1, 1).
Next arrange the remaining edges {(2j, 0), (2j, 1)}, {(2j, 1), (2j, 2)},
{(2j − 1, 0), (2j, 1)} and {(2j − 1, 0), (2j, 2)}, j = 1, . . . , k, into the (K3+ e)s
((2j − 1, 0), (2j, 2), (2j, 1))− (2j, 0), j = 1, . . . , k.

We obtain a 3-fold (K3+ e)-design of order n and so an S3(2, 4, n) having
a {C4, K3 + e}-metamorphosis. 2

Theorem 2.3.6. For n ≡ 0, 1 (mod 4), there exists an S3(2, 4, n) having a
{C4, K3 + e}-metamorphosis.

Proof For n ≡ 4, 5 (mod 8), the result follows from Theorem 2.1.1. For
n ≡ 0 (mod 8) and for n ≡ 1 (mod 8) , the result follows from Lemmas 2.3.5
and 2.3.3, respectively. 2

2.4 Summary

Lemma 2.4.1. For λ = 2 with n ≡ 1, 4 (mod 12), n ≥ 4, λ = 6 with
n ≡ 0, 1 (mod 4), n ≥ 4, λ = 4, 8 with n ≡ 1 (mod 3), n ≥ 4 and λ = 12,
with n ≥ 4, there exists an Sλ(2, 4, n) having a {C4, K3+ e}-metamorphosis.

Proof For the values of λ and n as in hypothesis, there exists an Sλ/2(2, 4, n),
(X,B). By repeating two times each block of (X,B), we obtain an Sλ(2, 4, n).
For eachB1, B2 ∈ B such that B1 = B2 = {x, y, z, t}, remove the edges {x, y},
{z, t} ({x, y} and {x, t}) from B1 and the edges {x, t}, {y, z} ({y, t}, {z, t})
from B2. Rearrange the removed edges into the 4-cycle (x, y, z, t) (into the
K3 + e (x, y, t)− z). This completes the proof. 2

Theorem 2.4.2. There exists an Sλ(2, 4, n) having a {C4, K3+e}-metamorphosis
if and only if n ≥ 4, λn(n− 1) ≡ 0 (mod 12) and λ(n− 1) ≡ 0 (mod 3).

Proof The necessity is trivial. For λ = 1, 3 the result follows from Theo-
rems 2.2.6, 2.3.6. For λ = 2 with n ≡ 1, 4 (mod 12), λ = 6 with n ≡ 0, 1
(mod 4), λ = 4, 8, 12, the result follows from Lemma 2.4.1. For λ = 2,
n = 7, 10, 19, the result follows from Theorem 2.1.1. For λ = 2, n ≡ 7, 10
(mod 12), n ≥ 22, take a PBD(n) with one block of size 7 and others of
size 4 [71] and place an S2(2, 4, 4) or an S2(2, 4, 7) having a {C4, K3 + e}-
metamorphosis on each block. For λ = 6 and n ≡ 2, 3 (mod 4), the result
follows from Theorem 2.1.1. For λ = 5, 7, 9, 10, 11 combine a Sν(2, 4, n) hav-
ing a {C4, K3 + e}-metamorphosis with a Sµ(2, 4, n) having a {C4, K3 + e}-
metamorphosis, with (λ, ν, µ) = (5, 4, 1), (7, 6, 1), (9, 6, 3), (10, 8, 2), (11, 6, 5),
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respectively. For λ = 12k + h, with 0 ≤ h ≤ 11, combine k S12(2, 4, n) hav-
ing a {C4, K3+ e}-metamorphosis with an Sh(2, 4, n) having a {C4, K3+ e}-
metamorphosis. 2
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Chapter 3

Complete simultaneous
metamorphoses of kite designs

3.1 Preliminaries

We say that a {G1, G2, . . . , Gµ}-metamorphosis is complete if {Gi | i =
1, 2, . . . , µ} coincides with the family of all nonisomorphic proper subgraphs
of G without isolated vertices (see Definition 10).

Theorem 3.1.1. [49] Table 1 shows the leaves of maximum packings of λKn

with triangles, where ∅ denotes the empty graph, G is a graph on n vertices
of odd degrees and (n+4)/2 edges, D is a graph with 4 edges and even vertex
degrees and a tripole is a graph consisting of (n − 4)/2 disjoint edges and a
3-star:

It is not difficult to settle the maximum packings of λKn with S3s and
P4s.

Theorem 3.1.2. The leaves of maximum packings of λKn with S3s (or with
P4s) are collections of m = 0, 1, 2 edges, with m ≡ λn(n− 1)/2 (mod 3).

C.C. Lindner, G. Lo Faro and A. Tripodi [51] gave a complete answer
to the existence problem of metamorphoses of a λ-fold kite system into a
maximum packing of λKn with triangles.

G. Lo Faro and A. Tripodi [54] gave also a complete answer to the ex-
istence problem of metamorphoses of a λ-fold kite system into a maximum
packing of λKn with P4s.
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λ n (mod 6)
0 1 2 3 4 5

=1 1-factor ∅ 1-factor ∅ tripole C4

≡ 0 (mod 6) ∅ ∅ ∅ ∅ ∅ ∅
≥ 7 and ≡ 1 (mod 6) 1-factor ∅ 1-factor ∅ tripole D

≡ 2 (mod 6) ∅ ∅ 2P2 ∅ ∅ 2P2

≡ 3 (mod 6) 1-factor ∅ G ∅ tripole ∅
≡ 4 (mod 6) ∅ ∅ D ∅ ∅ D
≡ 5 (mod 6) 1-factor ∅ tripole ∅ tripole 2P2

Table 3.1: Leaves of maximum packings of λKn with triangles

In this chapter, we give a complete answer to the existence problem of
a λ-fold kite system having a complete simultaneous metamorphosis. More
precisely we prove the following

Main Theorem. There exists a λ-fold kite system of order n having a
complete simultaneous metamorphosis if and only if n ≥ 4, λn(n − 1) ≡ 0
(mod 8) and (λ, n) 6= (1, 8). There is not a kite system of order 8 hav-
ing an S3-metamorphosis, but there is a kite system of order 8 having a
{K3, P4, P3, P2, E2}-metamorphosis. We will make use of this

STANDARD WEIGHTING CONSTRUCTION. Suppose there exist:

1. an r-GDD of type gu1

1 g
u2

2 . . . guh

h ;

2. a λ-fold kite system of order wgi (or 1 + wgi), i = 1, . . . , h;

3. a λ-fold kite design of the complete r-partite graph Kr
w.

Then there is a λ-fold kite system of order w(g1u1 + . . . + ghuh) (or 1 +
w(g1u1 + . . .+ ghuh)).

Note that if the kite designs given as ingredients in the above construction
have a Γ-metamorphosis with empty leaves and Γ ⊆ {K3, S3, P4, P3, P2, E2}
then the resulting kite system has a Γ-metamorphosis. Of course the same
result is not always true if the leave of some metamorphosis of some ingredient
is nonempty.
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3.2 {K3, S3, P4}-metamorphosis

Let (X,B) be a λ-fold G-design having a {K3, S3, P4}-metamorphosis. Then,
basing on the definition of simultaneous metamorphosis (Definition 10), we
have µ = 3, G1 = K3, G2 = S3, and G3 = P4. In the following we put T ,S,P
instead of B′1, B

′
2, B

′
3 and LT , LS, LP instead of L1, L2, L3. If B is the kite

(a, b, c)− d, we put B1 = (a, b, c), B2 = [c; a, b, d], B3 = [b, a, c, d]. Moreover
we omit to explicitely mention the empty leave(s), we write (a, b) instead of
{a, b} and m(a, b) to denote the edge {a, b} m times repeated. We use the
subscript notation xi to denote the ordered pair (x, i).

3.2.1 Kite systems

Lemma 3.2.1. There is not an S3-metamorphosis of a kite system of order
8.

Proof Let (Z8,B1∪B
′
1, L) be an S3-metamorphosis of a kite system (Z8,B).

Then |B| = 7, so the two S3s in B
′
1 cover 6 bases. Denote by i and j the

centers of these stars. It is i 6= j, otherwise the vertex i = j should appear as
vertex of degree 2 in at least 6 kites. This is impossible. Let I and J be the
sets of kites from which we picked up the bases of the stars with centers i and
j, respectively. Being |I| = |J | = 3, there exists only one kite B(i) ∈ B \ I
meeting i and only one kite B(j) ∈ B \ J meeting j. Moreover the degree
of i in B(i) and of j in B(j) is 1. Let B be the kite of B covering the edge
(i, j). If B ∈ I then there are at least 4 kites in B having j as a vertex of
degree d(j) ≥ 2. This is impossible. Analogously we obtain that B 6∈ J .
Then B \ (I ∪J ) = {B} and B = B(i) = B(j), a contradiction, because the
degree of i in B(i) and of j in B(j) is 1. 2

The following example gives a simultaneous metamorphosis of a kite sys-
tem of order 8 into a maximum packing of K8 with K3s and P4s and into a
(not maximum) packing with S3s having two 2-stars as leave.

Example 3.2.1. Let X = ∪3
i=0{αi, βi} and let B = {(α0, α1, α3)− β1,

(β0, β1, α2)− α1, (β2, α2, α0)− β0, (β0, α1, β3)− β1, (α1, β2, β1)− α0,
(α3, α2, β3) − α0, (β0, α3, β2) − β3}. Then (X,B) is a kite system of order 8
having

• a K3-metamorphosis with T = {(α0, β1, β3)} and LT = {(β2, β3),
(α3, β1), (α0, β0), (α1, α2)};
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• a P4-metamorphosis with P = {[β3, α1, α3, β2], [β3, α2, β1, β2]} and
LP = (α0, α2).

• a metamorphosis into a packing of K8 with S3s such that
S = {[β0;α3, α1, β1]} and LS = {[α1;α0, β2], [α2;α3, β2]}.

In order to handle the remaining cases we need the following example:

Example 3.2.2. Let K4,4,4 be the complete tripartite graph with partition
classes V1 = {α0, . . . , α3}, V2 = {β0, . . . , β3} and V3 = {γ0, . . . , γ3}. Let
B = {(γ3, α1, β3) − α3, (β1, α1, γ1) − α3,(α1, β2, γ2) − α0, (α2, β3, γ2) − β1,
(γ0, α2, β1)−α0, (α2, β2, γ1)−β3, (γ2, α3, β0)−α2, (α3, β1, γ3)−α2, (β2, α3, γ0)−
α1, (α0, γ1, β0)−α1, (α0, β2, γ3)−β0, (α0, β3, γ0)−β0}. Then (V1∪V2∪V3,B)
is a kite-decomposition of K4,4,4 having a {K3, S3, P4}-metamorphosis with

• T = {(α3, β3, γ1), (α0, β1, γ2), (α1, β0, γ0), (α2, β0, γ3)};

• S = {[α1; γ3, β1, β2], [α2; γ0, β3, β2], [α3; β1, γ2, β2], [α0; γ1, β3, β2]};

• P = {[α2, β1, γ3, β2], [β3, α1, γ1, β2], [β2, γ2, β3, γ0], [γ0, α3, β0, γ1]}.

Lemma 3.2.2. For n=32,40,48,56,64,80 there exist kite systems of order n
having a {K3, S3, P4}-metamorphosis.

Proof Suppose at first n = 32, 40, 48, 56, 64. The existence of a 3-GDD
(S,G,U) of type 24, 2341, 26, 2461 and 234161 is well-known [11]. Apply the
standard weighting construction by giving weight w = 4 and placing in each
expanded block a copy of the kite-decomposition in Example 3.2.2 and in
each expanded group a copy of the kite-designs in Examples 3.2.1, 3.4.1,
3.4.2, 3.4.3, 3.4.4. Starting from any 3-GDD, the result is a kite system of
order n having a K3-metamorphosis but not a {K3, S3, P4}-metamorphosis:
the kite systems induced by the expanded groups of size 8 cannot have an
S3-metamorphosis (see Lemma 3.2.1). Moreover the leaves produced in their
P4-metamorphoses don’t share any vertex. Now we present a procedure that,
starting from a suitable 3-GDD (S,G,U), shows how to rearrange the leaves
and some blocks of S ∪ P in order to construct new S3s and P4s. We will
write {a, b} if, inflating by 4 the group {a, b} ∈ G, we apply Example 3.2.1
in order to produce an S3-metamorphosis with leave {[a1; a0, b2], [a2; a3, b2]}
and a P4-metamorphosis with leave {(a0, a2)}.

Step 1 (Building S3s). Suppose that (S,G,U) contains 3 groups {a, b}, {c, d},
{e, f} and 3 blocks (x, a, w), (x, c, y), (x, e, z) such that x 6∈ {a, b, c, d, e, f}.
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Using the standard weighting construction we produce (from above groups
and blocks) the following S2s and S3s: [a1; a0, b2], [a2; a3, b2], [c1; c0, d2],
[c2; c3, d2], [e1; e0, f2], [e2; e3, f2], [x1;w3, a1, a2], [x1; y3, c1, c2], [x1; z3, e1, e2].
It is easy to rearrange the edges of these stars to construct the following
S3s: [a1; a0, b2, x1], [a2; a3, b2, x1], [c1; c0, d2, x1], [c2; c3, d2, x1], [e1; e0, f2, x1],
[e2; e3, f2, x1], [x1; y3, z3, w3].

Step 2 (Building P4s). Suppose that (S,G,U) contains 3 groups {a, b},
{c, d}, {e, f} and 2 blocks (a, c, t), (e, u, t). Using the standard weight-
ing construction we produce (from above groups and blocks) the following
P2s and P4s: (a0, a2), (c0, c2), (e0, e2), [a2, c1, t3, c2] and [e2, u1, t3, u2]. It is
easy to rearrange the edges of these paths to construct the following P4s:
[a0, a2, c1, t3], [e0, e2, u1, t3], [c0, c2, t3, u2].

Case n = 32. Take the 3-GDD of type 24 with G = {{a, b}, {c, d}, {e, f},
{h, g}} and blocks U = {(g, a, d), (g, c, f), (g, e, b), (b, h, c), (e, d, h), (b, d, f),
(c, e, a), (h, f, a)}.

Apply Step 1 to groups {a, b}, {c, d}, {e, f} and blocks (g, a, d), (g, c, f),
(g, e, b). To complete the S3-metamorphosis take [h1;h0, g2], [h2;h3, g2],
[b1; c3, h1, h2] and form the stars [h1;h0, g2, b1], [h2;h3, g2, b1] and leave
{(b1, c3)}.

Apply Step 2 to groups {c, d}, {e, f}, {h, g} and blocks (c, e, a), (h, f, a).
The result is the required P4-metamorphosis having leave (a0, a2).

Case n = 40. Take the 3-GDD of type 2441 with G = {{a, b}, {c, d}, {e, f},
{x, y, z, t}} and U = {(x, a, d), (x, c, f), (x, e, b), (a, c, z), (e, d, z), (f, b, z),
(y, a, f), (y, b, d), (y, e, c), (e, d, z), (t, a, e), (t, b, c), (t, f, d)}.

Apply Step 1 to groups {a, b}, {c, d}, {e, f} and blocks (x, a, d), (x, c, f),
(x, e, b).

Apply Step 2 to groups {a, b}, {c, d}, {e, f} and blocks (a, c, z), (e, d, z).

Case n = 48. Take the 3-GDD of type 26 with G = {{a, b}, {e, f}, {c, d},
{g, h}, {m, p}, {q, r}} and U = {(p, a, f), (p, e, h), (p, c, g), (a, e, r), (c, f, r),
(a, d, h), (a, c,m), (a, g, q), (b, d, f), (b, c, h), (b,m, q), (b, r, p), (d, p, q), (d, r, g),
(h,m, r), (e, g, b), (e,m, d), (e, q, c), (g,m, f), (q, h, f)}.

Apply Step 1 to the following sets of groups and blocks:

• {a, b}, {e, f}, {c, d}, (p, a, f), (p, e, h), (p, c, g);

• {g, h}, {m, p}, {q, r}, (e, g, b), (e,m, d), (e, q, c).
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Apply Step 2 to the following sets of groups and blocks:

• {a, b}, {e, f}, {c, d}, (a, e, r), (c, f, r);

• {g, h}, {m, p}, {q, r}, (g,m, f), (q, h, f).

Case n = 56. Take the 3-GDD of type 2461 with G = {{a, b}, {c, d},
{e, f}, {g, h}, {1, 2, 3, 4, 5, 6}} and U = {(1, a, d), (1, c, h), (1, e, b), (a, c, 3),
(e, h, 3), (1, g, f) (2, a, e), (2, b, d), (2, c, g), (2, f, h), (3, d, g), (3, b, f), (4, a, f),
(4, c, e), (4, b, g), (4, d, h) (5, a, g), (5, c, f), (5, d, e), (5, b, h), (6, a, h), (6, b, c),
(6, e, g), (6, d, f)}.

Apply Step 1 to the groups {a, b}, {c, d}, {e, f} and blocks (1, a, d),
(1, c, h), (1, e, b). To complete the S3-metamorphosis take [g1; g0, h2],
[g2; g3, h2], [11; f3, g1, g2] and form the stars [g1; g0, h2, 11], [g2; g3, h2, 11] and
the leave {(11, f3)}.

Apply Step 2 to the groups {a, b}, {c, d}, {e, f} and blocks (a, c, 3),
(e, h, 3). The result is a P4-metamorphosis having leave {(g0, g2)}.

Case n = 64. Take the 3-GDD of type 234161 with G = {{a, b}, {d, c}, {f, e},
{x, y, z, t}, {1, 2, 3, 4, 5, 6}} and U = {(1, a, x), (1, d, y), (1, f, z), (a, d, 6),
(f, t, 6), (1, c, b), (1, e, t), (2, x, e), (2, y, a), (2, z, b), (2, t, d), (2, c, f) (3, x, d),
(3, y, e), (3, z, c), (3, t, b), (3, a, f) (4, x, f), (4, y, b), (4, z, a), (4, t, c), (4, d, e),
(5, x, c), (5, y, f), (5, z, d), (5, t, a), (5, b, e), (6, x, b), (6, y, c), (6, z, e), (a, c, e),
(b, d, f)}.

Apply Step 1 to the groups {a, b}, {d, c}, {f, e}, and blocks (1, a, x),
(1, d, y), (1, f, z).

Apply Step 2 to the groups {a, b}, {d, c}, {f, e}, and blocks (a, d, 6),
(f, t, 6).

To complete the proof we prove the case n = 80. We can proceed as above
by applying the standard weighting construction to the 3-GDD of type 2681

with G = {{a, b}, {c, d}, {e, f}, {g, h}, {n,m}, {p, q}, {1, 2, 3, 4, 5, 6, 7, 8}}
and U = {(1, a, d), (1, c, h), (1, e, q), (a, c, 3), (e, b, 3), (2, e, n), (2, f, p), (2,m, q),
(2, d, h), (2, b, c), (2, a, g), (3, d, f), (3, g,m), (3, n, q), (3, h, p), (4, e,m),
(4, n, p), (4, a, h), (4, b, d), (4, c, g), (4, f, q), (5, d,m), (5, c, e), (5, a, q), (5, g, p),
(5, b, f), (5, h, n), (6, a, f), (6, c, n), (6, d, e), (6, g, q), (6, b, p), (6, h,m),
(7, a,m), (7, c, p), (7, d, q), (7, e, g), (7, b, n), (7, f, h), (8, a, n), (8, c, q), (8, e, h),
(8, f, g), (8, b,m), (c, f,m), (a, e, p), (b, h, q), (1, g, b), (1, n, f), (1, p,m),
(g, n, d), (p, 8, d)}.

Apply Step 1 to the following sets of groups and blocks:
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• {a, b}, {c, d}, {e, f}, (1, a, d), (1, c, h), (1, e, q);

• {g, h}, {n,m}, {p, q}, (1, g, b), (1, n, f), (1, p,m).

Apply Step 2 to the following sets of groups and blocks:

• {a, b}, {c, d}, {e, f}, (a, c, 3), (e, b, 3);

• {g, h}, {n,m}, {p, q}, (g, n, d), (p, 8, d).

2

Theorem 3.2.3. There exists a kite system of order n having a {K3, S3, P4}-
metamorphosis if and only if n ≡ 0, 1 (mod 8), n ≥ 9. There exists a kite
system of order 8 having a {K3, P4}-metamorphosis.

Proof The necessary part is trivial, so we prove only the sufficient part.
The proof for n = 8, 9, 16, 17, 24, 32, 40, 48, 56, 64, 80 follows from Examples
3.2.1, 3.4.1, 3.4.2, 3.4.3 and Lemma 3.2.2. For the remaining n ≥ 25, apply
the standard weighting construction by giving weight w = 4 to a 3-GDD as
shown in Table 3.2. LT , LS, LP are obtained by joining the leaves from the
metamorphoses on each expanded group. 2

n k 3-GDD of type LT LS, LP

24k ≥ 3 6k 1-factor ∅
24k+1 ≥ 1 23k ∅ ∅
24k+8 ≥ 4 6k−18 1-factor P2

24k+9 ≥ 1 23k+1 ∅ ∅
24k+16 ≥ 3 6k4 tripole ∅
24k+17 ≥ 1 23k4 C4 P2

Table 3.2: λ = 1 (∅ denotes the empty graph)

Remark 3.2.1. Note that in Theorem 3.2.3 we have:

• for n ≡ 8 (mod 24), n ≥ 32, LT is an 1-factor which contains the edge
(a0, a1), LS = (b1, c3) and LP = (a0, a2);

• for n ≡ 17 (mod 24), LT = (1, 2, 3, 16), LS = (2, 16), LP = (8, 16).
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3.2.2 2-fold kite systems

Example 3.2.3. Let 2K2,2,2 be two copies of the complete tripartite graph
with partition classes V1 = {a0, a1}, V2 = {b0, b1} and V3 = {c0, c1}. Let
B = {(c0, a0, b1)−c1, (b0, a0, c1)−a1,(a0, c1, b1)−a1, (b0, a0, c0)−a1, (b0, a1, c0)−
b1, (b0, c1, a1) − b1}. Then (V1 ∪ V2 ∪ V3,B) is a 2-fold kite-decomposition of
2K2,2,2 having a {K3, S3, P4}-metamorphosis with:

• T = {(a1, b1, c1), (a1, b1, c0)};

• S = {[a0; b0, c1, c0], [b0; a0, a1, c1]};

• P = {[c0, a0, b1, c1], [a0, c1, a1, c0]}.

Theorem 3.2.4. There exists a 2-fold kite system of order n having a
{K3, S3, P4}-metamorphosis if and only if n ≡ 0, 1 (mod 4), n ≥ 4.

Proof The proof of the necessary part is trivial, so we prove only the suf-
ficient part. The proof for n = 4, 5, 8, 9 follows from Examples 3.4.5, 3.4.6,
3.4.7, 3.4.8.

Let n ≡ 0 (mod 4), n ≥ 12. Put n = 4k. Let (S,G,U) be a 3-GDD of
type 2k if k ≡ 0, 1 (mod 3), 2k−241 if k ≡ 2 (mod 3). Apply the standard
weighting construction by giving weight w = 2. By Examples 3.2.3, 3.4.5
and 3.4.7 we obtain the proof.

Let n ≡ 1 (mod 4), n ≥ 13. Put n = 1 + 4k. Let (S,G,U) be a 3-
GDD of type 2k if k ≡ 0, 1 (mod 3), 2k−24 if k ≡ 2 (mod 3) having groups
G1 = {1, 2}, G2 = {3, 4}, . . . , Gk = {2k − 1, 2k} or G1 = {1, 2}, G2 =
{3, 4}, . . . , Gk−1 = {2k − 3, 2k − 2, 2k − 1, 2k}, respectively. Let X =
{∞} ∪ (S × Z2), then |X| = 4k + 1 = n. We define a 2-fold kite system
as follows:

1. For each Gi, let ({∞} ∪ (Gi × Z2),BGi
) be a copy of the 2-fold kite-

system in Example 3.4.6 obtained by renaming its vertices as follows:
0 → ∞, 1 → (2i − 1)0, 2 → (2i)0, 3 → (2i − 1)1, 4 → (2i)1, with
1 ≤ i ≤ k if k ≡ 0, 1 (mod 3) and 1 ≤ i ≤ k − 2 if k ≡ 2 (mod 3); in
the latter case, for i = k−1, take a copy of the system in Example 3.4.8
by renaming its vertices as follows: j → (2k − 4 + j)0, if 1 ≤ j ≤ 4,
j → (2k − 8 + j)1, if 5 ≤ j ≤ 8, 0→∞.

2. For each U = (a, b, c) ∈ U , let ((a × Z2) ∪ (b × Z2) ∪ (c × Z2),BU) be
the 2-fold kite-system, given in Example 3.2.3.
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Let B = (
⋃

G∈G BG)∪(
⋃

U∈U BU). Then (X,B) is a 2-fold kite system of order
n. Now we show that

• (X,B) has a K3-metamorphosis. To prove it note that ({∞} ∪ (Gi ×
Z2),BGi

) has aK3-metamorphosis whose leave L
i
T is {2((2i−1)1, (2i)1)}

(the empty set) if the size of the starting group Gi is 2 (4 respec-
tively). The set of tails of the blocks of the 2-fold kite system placed
on (a, b, c) ∈ U is {2(a1, b1), (a1, c1) , (b1, c1) , (a1, c0) , (b1, c0)}. Us-
ing three of them construct the triangle (a1, b1, c0). The edges (a1, b1),
(a1, c1), (b1, c1) can be assembled with

⋃

Li
T as follows:

1. if k ≡ 0 (mod 3), (
⋃k

i=1 L
i
T )∪(

⋃

U∈U U×{1}) = {(11, 21), (31, 41),
. . . , ((2k− 1)1, (2k)1)}∪K2k, where K2k is the complete graph on
vertex set S×{1}. Since an 1-factor is the padding of a minimum
covering with triangles of order 2k ≡ 0 (mod 6) (see [49]), there
exists a K3-decomposition of (

⋃k
i=1 L

i
T ) ∪ (

⋃

U∈U U × {1}) with
empty leave;

2. if k ≡ 1 (mod 3), (
⋃k

i=1 L
i
T ) ∪ (

⋃

U∈U U × {1})={((2i− 1)1, (2i)1,
(2k)1), ((2i − 1)1, (2i)1, (2k − 1)1) | 1 ≤ i ≤ k − 1} ∪ {2((2k −
1)1, (2k)1)} ∪ K

k−1
2 , where Kk−1

2 is the complete (k − 1)-partite
graph with partition classes G1, G2, . . . , Gk−1. Since there exists
a 3-GDD of type 2k−1 (see [11]), with k ≡ 1 (mod 3), (

⋃k
i=1 L

i
T )∪

(
⋃

U∈U U×{1}) is decomposable into triangles with leave {2((2k−
1)1, (2k)1)};

3. if k ≡ 2 (mod 3), (
⋃k−2

i=1 L
i
T )∪ (

⋃

U∈U U ×{1})= {((2i−1)1, (2i)1,

(2k)1), ((2i− 1)1, (2i)1, (2k − 1)1) | 1 ≤ i ≤ k − 2} ∪Kk−1
2 , where

Kk−1
2 is the complete (k − 1)-partite graph with partition classes

G1, G2, . . . , Gk−2, {(2k−3)1, (2k−2)1}. Since there exist a 3-GDD
of type 2k−1 (see [11]), with k ≡ 2 (mod 3), (

⋃k−1
i=1 L

i
T )∪(

⋃

U∈U U×
{1}) is decomposable into triangles with empty leave.

• (X,B) has an S3-metamorphosis. To prove it note that ({∞} ∪ (Gi ×
Z2),BGi

) has a S3-metamorphosis whose leave L
i
S is {(∞, (2i − 1)0),

(∞, (2i)0)}, for 1 ≤ i ≤ k or 1 ≤ i ≤ k − 2 (if k ≡ 2 (mod 3)).
These edges can be assembled into 3-stars [∞; i0, (i+1)0, (i+2)0] with
i ≡ 1 (mod 3). The leave is empty if k ≡ 0, 2 (mod 3) and {(∞, (2k−
1)0), (∞, (2k)0)} if k ≡ 1 (mod 3).
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• (X,B) has a P4-metamorphosis. To prove it note that ({∞} ∪ (Gi ×
Z2),BGi

) has a P4-metamorphosis whose leave L
i
P is {(∞, (2i)1), ((2i)0,

(2i− 1)1)}, for 1 ≤ i ≤ k or 1 ≤ i ≤ k− 2 (if k ≡ 2 (mod 3)). For each
i, with i 6= k if k ≡ 1 (mod 3), remove the path [(2i)0, (2i)1,∞, (2i −
1)1] and let Γ the set of edges covered by these paths and by

⋃

Li
P .

Construct the following paths, for i ≡ 1 (mod 3): [(2i)0, (2i)1,∞, (2i+
4)1], [(2i + 2)0, (2i + 2)1,∞, (2i)1], [(2i + 3)1, (2i + 4)0, (2i + 4)1,∞],
[(2i)0, (2i − 1)1,∞, (2i + 3)1], [(2i + 2)0, (2i + 1)1,∞, (2i + 2)1]. The
above paths cover all edges in Γ if k ≡ 0, 2 (mod 3) and all edges in
Γ \ {(∞, (2k)1), ((2k)0, (2k − 1)1)} if k ≡ 1 (mod 3). It follows that
LP = ∅ if k ≡ 0, 2 (mod 3) and LP = {(∞, (2k)1), ((2k)0, (2k − 1)1)}
if k ≡ 1 (mod 3).

2

Remark 3.2.2. Note that the nonemty leaves of the 2-fold kite systems hav-
ing a {K3, S3, P4}-metamorphosis constructed in this section are as follows:

• if n ≡ 5 (mod 12), LT = 2(a, b), LS = [c; e, d], LP = {(c, b), (a, e)};

• if n ≡ 8 (mod 12), LT = 2(a, b), LS = [c; e, d], LP = {(c, b), (f, e)}.

3.2.3 3-fold kite systems

Theorem 3.2.5. There exists a 3-fold kite system of order n having a
{K3, S3, P4}-metamorphosis if and only if n ≡ 0, 1 (mod 8), n ≥ 8.

Proof The necessary part is trivial. The sufficiency for n = 8 is given
in Example 3.4.9. Now construct on the same set X of size n ≥ 9 a copy
(X,B1) of the kite system given in Section 2.1 and a copy (X,B2) of the
2-fold kite system given in Section 2.2. It is clear that (X,B1) and (X,B2)
have a {K3, S3, P4}-metamorphosis. Denote by T

i,S i,P i, Li
T , L

i
S, L

i
P the sets

T ,S,P , LT , LS, LP corresponding to (X,Bi), i = 1, 2. Then (X,B1∪B2) is a
3-fold kite system of order n having a {K3, S3, P4}-metamorphosis. To prove
this it is sufficient to put T = T 1 ∪ T 2, S = S1 ∪ S2, P = P1 ∪ P2 and:

• for n ≡ 1, 9 (mod 24), n ≥ 9, L1
T = L2

T = L1
S = L2

S = L1
P = L2

P = ∅.
Then LT = LS = LP = ∅;

• for n ≡ 0 (mod 24), n ≥ 24, L1
S = L1

P = L2
S = L2

P = ∅, L1
T = 1-factor,

L2
T = ∅. Then LS = LP = ∅, LT = L1

T is an 1-factor;
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• for n ≡ 16 (mod 24), L1
S = L1

P = L2
S = L2

P = ∅, L1
T is a tripole and

L2
T = ∅. Then LS = LP = ∅ and LT is a tripole;

• for n ≡ 17 (mod 24), by Remarks 3.2.1 and 3.2.2 the leaves are of
the type: L1

T = {(1, 2, 3, 16)}, L1
S = {(2, 16)}, L1

P = {(16, 8)}, L2
T =

{2(a, b)}, L2
S = {[d, c, e]}, L

2
P = {(c, b), (a, e)}. Construct the required

2-fold kite system by renaming c, a, b, d, e as follows: c → 16, a →
1, b→ 3, d→ 0, e→ 8. The leaves can be reassembled into the triangles
(1, 2, 3), (1, 3, 16), the star [16; 2, 0, 8], the path [3, 16, 8, 1]. Then LT =
LS = LP = ∅;

• for n ≡ 8 (mod 24), n ≥ 32, by Remarks 3.2.1 and 3.2.2 the leaves
are of the type: L1

T = 1-factor containing the edge (a0, a1), L
1
S =

{(b1, c3)}, L
1
P = {(a0, a2)}, L

2
T = {2(a, b)}, L2

S = {(c, d), (c, e)}, L2
P =

{(c, b), (f, e)}. Construct the required kite system by renaming b1, c3,
a1, a0, a2 as follows: b1 → c, c3 → f , a1 → a, a0 → b, a2 → e. The
leaves can be assembled into the star [c; d, e, f ] and the path [c, b, e, f ].
Then LS = LP = ∅, LT contains the 3-times repeated edge 3(a, b) and
an 1-factor on the vertices X \ {a, b}.

2

3.2.4 4-fold kite systems

Example 3.2.4 (4(K6 \ K2)). Let X = {∞1,∞2, 0, 1, 2, 3}, B = {(1, 2,∞1) −
3, (2, 3,∞1) − 1, (0, 3,∞2) − 2, (1,∞1, 0) − ∞2, (∞2, 1, 2) − 3, (∞1, 0, 3) − ∞2,
(∞2, 0, 1)−3, (3, 1,∞1)−2, (3,∞2, 2)−0, (2,∞2, 0)−∞1, (3,∞2, 1)−2, (2,∞1, 0)−
3, (1, 0, 2)− 3, (0, 3, 1)−∞2}. Then (X,B) is a 4-fold kite-system of order 6 with
hole {∞1,∞2} having:

• a K3-metamorphosis with T = {(∞1, 1, 2), (∞1, 0, 3), (∞2, 0, 2), (∞2, 1, 3)}
and leave {(2, 3), (2, 3)};

• an S3-metamorphosis with S = {[1;∞2, 2, 3], [∞2; 0, 2, 3], [3; 0, 2,∞2],
[0; 1,∞1, 3]} and leave {(∞1, 1), (∞1, 2)};

• a P4-metamorphosis with P = {[0,∞1, 2, 1], [∞1, 0, 3, 1], [∞2, 1,∞1, 3],
[3,∞2, 2, 0]} and leave {(0,∞2), (0, 1)}.

Example 3.2.5 (4(K7 \K3)). Let X = {∞1,∞2,∞3, 4, 5, 6, 7}, B = {(∞1, 7, 4)−
∞2, (∞1, 5, 6) − ∞2, (5,∞2, 7) − ∞1, (6,∞3, 7) − 5, (5,∞3, 4) − 6, (7,∞2, 4) −
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∞1, (5,∞2, 6) − ∞1, (5, 7,∞1) − 4, (6, 7,∞3) − 4, (∞3, 5, 4) − 7, (7,∞1, 4) − 6,
(∞1, 5, 6) − ∞3, (5,∞3, 7) − ∞2, (6, 7,∞2) − 5, (5,∞2, 4) − 6, (5,∞3, 4) − ∞2,
(5,∞1, 6)−∞2, (∞3, 7, 6)−4}. Then (X,B) is a 4-fold kite-system of order 7 with
hole {∞1,∞2,∞3} having:

• a K3-metamorphosis with T = {(∞2, 4, 6), (∞2, 4, 6), (∞1, 4, 6), (∞3, 4, 6),
(∞1, 4, 7), (∞2, 5, 7)};

• an S3-metamorphosis with S = {[7;∞1, 5, 6], [7;∞1,∞2, 6], [5;∞1,∞2,∞3],
[5;∞1,∞2,∞3], [5;∞1,∞2,∞3], [∞3; 5, 6, 7]};

• a P4-metamorphosis with P = {[4, 7,∞2, 6], [∞2, 4,∞3, 7], [∞2, 4,∞3, 7],
[6, 5, 4,∞1], [6,∞1, 7,∞3], [∞2, 7, 6, 5]}.

Theorem 3.2.6. For every n ≥ 4 there exists a 4-fold kite system having a
{K3, S3, P4}-metamorphosis. Moreover for n ≡ 2, 5 (mod 6) LT is either a
4-cicle or a 2P3.

Proof If n ≡ 0, 1 (mod 4), let (X,B) be the 2-fold kite system of order n,
having a {K3, S3, P4}-metamorphosis, constructed in Section 2.2. By Remark
3.2.2, for n ≡ 5, 8 (mod 12) it is L1

T = {2(a, b)}, L1
S = {(c, d), (c, e)}, L

1
P =

{(c, b), (e, f)} with |{a, b, c, d, e}| = 5 and |{b, c, e, f}| = 4 (note that for n ≡
5 (mod 12) in L1

P it is f = a). Let B′ be the block set obtained by changing
b with e in each block of B. Then (X,B′) is a 2-fold kite system having
a {K3, S3, P4}-metamorphosis with empty leaves or, for n ≡ 5, 8 (mod 12),
L2
T = {2(a, e)}, L2

S = {(c, d), (c, b)}, L2
P = {(c, e), (b, f)}. Then (X,B ∪ B′)

is a 4-fold kite system of order n having a {K3, S3, P4}-metamorphosis with
empty leaves or, for n ≡ 5, 8 (mod 12), LT = {2[b, a, e]}, LS = {(c, d)},
LP = {(b, f)} and [c; b, e, d] ∈ S, [f, e, c, b] ∈ P .

If n ≡ 2, 3 (mod 4), n = 4k + s, k ≥ 3 and s ∈ {2, 3}, let S =
{1, 2, . . . , 2k}, Rs = {∞1, . . . ,∞s} and (S,G,U) a 3-GDD of type 2k(if
k ≡ 0, 1 (mod 3)) or 2k−24 (if k ≡ 2 (mod 3)), with groupsG1 = {1, 2}, G2 =
{3, 4}, . . . , Gk = {2k − 1, 2k} or G1 = {1, 2, 3, 4}, G2 = {5, 6}, . . . , Gk−1 =
{2k − 1, 2k}, respectively. Set X = Rs ∪ (S × Z2) and define a collection B
of kites as follows:

1. Let (Rs ∪ (G1 × Z2),BG1
) be a copy of the 4-fold kite system of or-

der 2|G1| + s given in Examples 3.4.11,3.4.12,3.4.14,3.4.15 having a
{K3, S3, P4}-metamorphosis with leaves L

1
T , L

1
S, L

1
P ; put BG1

⊆ B.

2. For every U = (x, y, z) ∈ U , let (SU ,BU) be a copy of the 2K2,2,2

kite-decomposition of Example 3.2.3; put 2BU ⊆ B.
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3. For every Gi ∈ G, with i > 1, construct a 4-fold kite system (Rs∪(Gi×
Z2),BGi

) of order 2|Gi|+ s with a hole of size s by taking a copy of the
designs in Examples 3.2.4, 3.2.5 and renaming the vertices 0, 1, 2, 3 of
Example 3.2.4 and 4, 5, 6, 7 of Example 3.2.5 as follows:

• if s = 2, k ≡ 0, 1 (mod 3): 0→ (2i−1)0, 1→ (2i)0, 2→ (2i−1)1,
3→ (2i)1;

• if s = 2, k ≡ 2 (mod 3): 0→ (2i+1)0, 1→ (2i+2)0, 2→ (2i+1)1,
3→ (2i+ 2)1;

• if s = 3, k ≡ 0, 1 (mod 3): 4→ (2i−1)1, 5→ (2i)1, 6→ (2i−1)0,
7→ (2i)0;

• if s = 3, k ≡ 2 (mod 3): 4→ (2i+1)1, 5→ (2i+2)1, 6→ (2i+1)0,
7→ (2i+ 2)0.

Denote the leaves by Li
T , L

i
S, L

i
P . Put BGi

⊆ B. Then (X,B) is a 4-fold kite
system of order 4k + s. The metamorphoses are obtained as follows: apply
the metamorphoses showed in steps 1. 2. 3. to the blocks of BG1

, 2BU and
BGi

, i > 1, respectively. In order to complete our metamorphoses and so to
obtain the leaves LT , LS, LP , proceed as follows:

• For s = 3 and k ≡ 0, 1 (mod 3), we have Li
T = Li

S = Li
P = ∅, for all

Gi ∈ G. Then LT = LS = LP = ∅.

• For s = 3 and k ≡ 2 (mod 3), we have Li
T = Li

S = Li
P = ∅, for i > 1,

then LT = L1
T , LS = L1

S, LP = L1
P .

• For s = 2 and k ≡ 0, 1 (mod 3), we have L1
T = L1

S = L1
P = ∅. Moreover

– in the K3-metamorphosis, it is
⋃k

i=2 L
i
T = {2(31, 41), 2(51, 61), . . . ,

2((2k − 1)1, (2k)1)}. Remove from 2BU the blocks 2(x1, y1, z1) for
each (x, y, z) ∈ U . These blocks and the edges in

⋃k
i=2 L

i
T cover the

graph 2(K2k \K2) on vertex set S×{1} with the hole {11, 21}. For
k ≡ 0 (mod 3), take a decomposition (S × {1}, T ′) of 2K2k into
triangles (see Section 2.2) such that {(11, 21, y1), (11, 21, z1)} ⊆
T ′, with y1 6= z1. Delete the edges 2(11, 21). The result is a
maximum packing of 2(K2k \K2) with triangles having the 4-cycle
(11, y1, 21, z1) as leave; we have LT = {(11, y1, 21, z1)}. For k ≡ 1
(mod 3), take a decomposition of 2K2k on vertex set S×{1} with
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leave {2(11, 21)}. The result is a decomposition of 2(K2k\K2) into
triangles. Then we have LT = emptyset.

– in the S3-metamorphosis, it is
⋃k

i=2 L
i
S = {(∞1, 40), (∞1, 31),

(∞1, 60), (∞1, 51), . . . , (∞1, (2k)0), (∞1, (2k − 1)1)}. The edges
of

⋃k
i=2 L

i
S can be assembled into stars [∞1; i0, (i + 2)0, (i + 4)0],

i = 4 + 6h, h ≥ 0 and [∞1; i1, (i+ 2)1, (i+ 4)1], i = 3 + 6h, h ≥ 0.
It is easy to verify that LS = ∅, if k ≡ 1 (mod 3), or LS =
{(∞1, (2k)0)}, if k ≡ 0 (mod 3).

– in the P4-metamorphosis, it is L
i
P = {(∞2, (2i − 1)0), ((2i −

1)0, (2i)0)}, i ≥ 2. For every i = 2, 3, . . . , k remove the path [(2i−
1)0,∞1, (2i−1)1, (2i)0]. Let Γ be the set of edges covered by these
paths and by

⋃k
i=2 L

i
P . Construct the following paths with i ≡ 2

(mod 3): [∞1, (2i−1)1, (2i)0, (2i−1)0], [∞1, (2i+1)1, (2i+2)0, (2i+
1)0], [∞1, (2i+3)1, (2i+4)0, (2i+3)0], [∞1, (2i+1)0,∞2, (2i+1)0],
[(2i + 1)0,∞1, (2i + 3)0,∞2]. The above paths cover all edges
in Γ if k ≡ 1 (mod 3) or all edges in Γ \ {((2k − 1)0, (2k)0)} if
k ≡ 0 (mod 3). It follows that LP = ∅ for k ≡ 1 (mod 3) and
LP = {((2k − 1)0, (2k)0)} for k ≡ 0 (mod 3).

• s = 2, k ≡ 2 (mod 3). L1
T = L1

S = L1
P = ∅; leaves of the other groups

are:

– in theK3-metamorphosis, it is
⋃k−1

i=2 L
i
T = {2(51, 61), 2(71, 81), . . . ,

2((2k − 1)1, (2k)1)}. Remove from 2BU the blocks 2(x1, y1, z1) for
each (x, y, z) ∈ U . These blocks and the edges in

⋃k−1
i=2 L

i
T cover

the graph 2K2k on vertex set S×{1} with the hole {11, 21, 31, 41}.
Then a maximum packing of 2(K2k \K4) with triangles with leave
empty (see [20]) completes the K3-metamorphosis.

– in the S3-metamorphosis,
⋃k−1

i=2 L
i
S = {(∞1, 60), (∞1, 51), (∞1, 80),

(∞1, 71), . . . , (∞1, (2k)0), (∞1, (2k−1)1)}. The edges of
⋃k−1

i=2 L
i
S

can be assembled into the 3-stars [∞1; i0, (i+2)0, (i+4)0], i = 6h,
h ≥ 1 and [∞1; i1, (i+2)1, (i+4)1] with i = 5+6h, h ≥ 0. There-
fore the leave is empty.

– in the P4-metamorphosis, it is L
i
P = {(∞2, (2i + 1)0), ((2i +

1)0, (2i+2)0)}, 2 ≤ i ≤ k− 1. For every i = 2, 3, . . . , k− 1 remove
the path [(2i + 1)0,∞1, (2i + 1)1, (2i + 2)0]. Let Γ be the set of
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edges covered by these paths and by
⋃k−1

i=2 L
i
P . Construct the fol-

lowing paths with i ≡ 2 (mod 3): [∞1, (2i+1)1, (2i+2)0, (2i+1)0],
[∞1, (2i+3)1, (2i+4)0, (2i+3)0], [∞1, (2i+5)1, (2i+6)0, (2i+5)0],
[∞1, (2i + 1)0,∞2, (2i + 3)0], [(2i + 3)0,∞1, (2i + 5)0,∞2]. The
above paths cover all edges in Γ, because k ≡ 2 (mod 3) and so
2k − 4 ≡ 0 (mod 3). Therefore the leave is empty.

2

Remark 3.2.3. The nonempty leaves of {K3, S3, P4}-metamorphoses con-
structed in this section are

• if n ≡ 5 (mod 6) or n ≡ 8 (mod 12), LT = 2[a, e, b], LS = (f, c),
LP = (e, c);

• if n ≡ 2 (mod 12) and n ≥ 14, LT = (a, b, c, d), LS = (e, f), LP =
(f, g).

3.2.5 λ-fold kite systems

Lemma 3.2.7. For every n ≥ 4 there exists a 12-fold kite system of order
n having {K3, S3, P4}-metamorphosis with empty leaves.

Proof If n ≡ 0, 1, 3, 4 (mod 6), combine 3 copies of the 4-fold kite sys-
tem constructed in Section 2.4. If n ≡ 5 (mod 6) or n ≡ 8 (mod 12), let
(X,B1) be the 4-fold kite system of order n constructed in Section 2.4. By
Remark 3.2.3, we can suppose L1

T = {2[d, a, e]}, L
1
S = {(b, c)}, L

1
P = {(a, c)}.

Applying the permutation ϕ = (a, d, e, b) (ψ = (e, d, b)) to the vertices of
X, we obtain the 4-fold kite system (X,B2) ((X,B3) respectively) having
a {K3, S3, P4}-metamorphosis with L2

T = {2[e, d, b]}, L2
S = {(a, c)}, L2

P =
{(d, c)} and L3

T = {2[b, a, d]}, L3
S = {(e, c)}, L3

P = {(a, c)}. Then (X,B1 ∪
B2 ∪ B3) is a 12-fold kite system having a {K3, S3, P4}-metamorphosis. We
can rearrange the edges of L1

T ∪L
2
T ∪L

3
T into the triangles 2(a, d, e), 2(a, b, d),

the edges of L1
S ∪ L

2
S ∪ L

3
S into the star [c; a, b, e], the edges of L

1
P ∪ L

2
P ∪ L

3
P

into the path [d, c, a, e].
If n ≡ 2 (mod 12), n ≥ 14, let (X,B1) be the 4-fold kite system of

order n given in Section 2.4. By Remark 3.2.3, we can suppose L1
T =

{(a, b, c, d)}, L1
S = {(e, f)}, L1

P = {(f, g)}. Let h,m be two vertices dis-
tinct from a, b, c, d, e, f, g. Applying the permutation ϕ = (f, g, h) and
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changing b with c, we obtain a 4-fold kite system (X,B2) of order n with
L2
T = {(a, c, b, d)}, L2

S = {(e, g)}, L2
P = {(g, h)}. Applying to (X,B1) the

permutation ϕ = (b, c, d) and changing g with m and f with h, we obtain a
4-fold kite system (X,B3) of order n with L3

T = {(a, c, d, b)}, L3
S = {(e, h)},

L3
P = {(h,m)}. Then (X,B1 ∪ B2 ∪ B3) is a 12-fold kite system having a
{K3, S3, P4}-metamorphosis. We can rearrange the edges of L1

T ∪ L
2
T ∪ L

3
T

into the triangles (a, c, b), (a, c, d), (c, d, b), (a, b, d), the edges of L1
S ∪L

2
S ∪L

3
S

into the star [e; f, g, h], the edges of L1
P ∪ L

2
P ∪ L

3
P into the path [m,h, g, f ].

2

Theorem 3.2.8. There exists a λ-fold kite system of order n having a
{K3, S3, P4}-metamorphosis if and only if n ≥ 4, λn(n − 1) ≡ 0 (mod 8),
(λ, n) 6= (1, 8). There exists a kite system of order 8 having a {K3, P4}-
metamorphosis

Proof The necessity is trivial. For 1 ≤ λ ≤ 4 the proof follows from
Sections 2.1, 2.2, 2.3, 2.4. Let λ ≥ 5 and n ≥ 4, with λn(n−1) ≡ 0 (mod 8).
If n = 8 and λ = 5, 7 the proof follows from Examples 3.4.16 and 3.4.18. If
n = 5 and λ = 6, the proof follows from Example 3.4.17.

Let Fn be a 1-factor of Kn containing the edges (a, d), (b, c). Define the
following set of edges: Tn = [a; b, c, d] ∪ (Fn \ {(a, d), (b, c)}), 2P3 = 2[b, a, c],
C4 = (a, b, d, c) and 2P2 = 2(b, c). Put A = 2P3 ∪ Fn = (a, b, c) ∪ Tn,
C = 2P3 ∪ 2P2 = 2(a, b, c); F = 2[a, c, b] ∪ 2[a, b, c] = 2(a, b, c) ∪ 2P2,
H = (a, b, c, d) ∪ (a, d, b, c) = {(a, b, d), (a, c, d)} ∪ 2P2.
Let 5 ≤ λ ≤ 11. Combine a suitable λ1-fold kite system having {K3, S3, P4}-
metamorphosis (with leaves L1

T , L
1
S, L

1
P ) and a suitable λ2-fold kite-system

having {K3, S3, P4}-metamorphosis (with leaves L
2
T , L

2
S, L

2
P ), for suitable val-

ues of λ1 and λ2, and replace the leaves where it is necessary (see Table 3).
For example, for λ = 6 and n ≡ 5, 8 (mod 12), n ≥ 8, let (X,B1) be a copy
of the 2-fold kite-system of order n having a {K3, S3, P4}-metamorphosis
given in Section 2.2 and let (X,B2) be a copy of the 4-fold kite-system of
order n having a {K3, S3, P4}-metamorphosis given in Section 2.4. There-
fore, by Remarks 3.2.2, 3.2.3, we can suppose L1

T = 2(a, b), L1
S = [c; d, e],

L1
P = {(c, b), (e, f)} and L2

T = 2[a, e, b], L2
S = (f, c), L2

P = (e, c). Then
(X,B1 ∪ B2) is a 6-fold kite system having a {K3, S3, P4}-metamorphosis.
We can rearrange the edges of L1

T ∪ L
2
T ∪ L

3
T into the triangles 2(a, e, b), the

edges of L1
S ∪L

2
S ∪L

3
S into the star [c; d, e, f ], the edges of L

1
P ∪L

2
P ∪L

3
P into

the path [f, e, c, b] (f = a if n ≡ 5 (mod 12)).
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For λ = 12 the proof follows from Lemma 3.2.7. Let λ ≡ 1 (mod 6), λ ≥
13. Write λ = 6k + 7 and combine k copies of a 6-fold kite-system having a
{K3, S3, P4}-metamorphosis with a 7-fold kite-system having a {K3, S3, P4}-
metamorphosis. For each λ = 12k+h, with 0 ≤ h ≤ 11 and h 6= 1, 7, combine
k copies of a 12-fold kite system having a {K3, S3, P4}-metamorphosis with
an h-fold kite system having a {K3, S3, P4}-metamorphosis. 2
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λ n ≥ 4 λ1 λ2 L1
T L2

T L1
T ∪ L

2
T LT L1

S L2
S LS L1

P L2
P LP

5 0 (mod 24) 1 4 Fn ∅ Fn Fn ∅ ∅ ∅ ∅ ∅ ∅
5 1, 9 (mod 24) 1 4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
5 16 (mod 24) 1 4 Tn ∅ Tn Tn ∅ ∅ ∅ ∅ ∅ ∅
5 8 (mod 24), n 6= 8 1 4 Fn 2P3 A Tn P2 P2 S2 P2 P2 E2

5 17 (mod 24) 2 3 2P2 ∅ 2P2 2P2 S2 ∅ S2 E2 ∅ E2

6 0, 1, 4, 9 (mod 12) 2 4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
6 5, 8 (mod 12), n 6= 5 2 4 2P2 2P3 C ∅ S2 P2 ∅ E2 P2 ∅
7 17 (mod 24) 3 4 ∅ 2P3 2P3 2P3 ∅ P2 P2 ∅ P2 P2

7 0, 1, 9, 16 (mod 24) 1 6 L1
T ∅ L1

T L1
T ∅ ∅ ∅ ∅ ∅ ∅

7 8 (mod 24), n 6= 8 1 6 L1
T ∅ L1

T L1
T P2 ∅ P2 P2 ∅ P2

8 0, 1 (mod 3) 4 4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
8 2 (mod 3) 4 4 2P3 or C4 2P3 or C4 F or H 2P2 P2 P2 S2 P2 P2 E2

9 0, 1 (mod 8) 3 6 L1
T ∅ L1

T L1
T ∅ ∅ ∅ ∅ ∅ ∅

10 0, 1, 4, 9 (mod 12) 4 6 L1
T ∅ L1

T L1
T ∅ ∅ ∅ ∅ ∅ ∅

10 5, 8 (mod 12) 4 6 L1
T ∅ L1

T L1
T P2 ∅ P2 P2 ∅ P2

11 0, 1, 9, 16 (mod 24) 5 6 L1
T ∅ L1

T L1
T ∅ ∅ ∅ ∅ ∅ ∅

11 8, 17 (mod 24) 5 6 L1
T ∅ L1

T L1
T S2 ∅ S2 E2 ∅ E2

Table 3.3: λ = 5, 6, 7, 8, 9, 10, 11 (∅ denotes the empty graph)
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3.3 Proof of Main Theorem

Theorem 3.3.1. Every λ-fold kite system of order 4 has an E2-metamorphosis.

Proof Let (Z4,B) be a λ-fold kite system of order 4. Then |B| = 3λ
2
. For

each B = (a, b, c) − d ∈ B, let B1 = {(a, b), (c, d)} and B
′
1 = {(a, c), (b, c)}.

Let L be the graph (Z4,
⋃

B∈B B
′
1). We denote by dG(x) the degree of the

vertex x in the graph G. It is easy to check that for every x ∈ Z4 and for every
B ∈ B, dB′

1
(x) = dB(x)− 1. Then dL(x) = dλK4

(x)− |B| = 3λ− 3λ
2
= 3λ

2
, for

every x ∈ Z4. Therefore L is a regular graph. Suppose that the edge (x, y)
appears α times in L. Let {z, t} = Z4 \ {x, y}. Then (z, t) appears α times
in L, otherwise L couldn’t be regular. Using the edges (x, y), (z, t) costruct
α E2s. Since each B1 is an E2, the E2-metamorphosis is trivially completed.
2

Theorem 3.3.2. Every λ-fold kite system of order n, with n ≥ 10 if λ ≥ 2
has an E2-metamorphosis.

Proof Let (X,B) be a λ-fold kite system of order n. Then |B| = λn(n−1)
8

.
For each B = (a, b, c)−d ∈ B, let B1 = {(a, b), (c, d)} and B

′
1 = {(a, c), (b, c)}.

Let L =
⋃

B∈B B
′
1. The degree of each vertex of L is at most

⌊

λ2(n−1)
3

⌋

.

Combine at random the edges of L into E2s. The result is a set E of E2s and
a graph G having 2h ≥ 0 edges. For h = 0 the theorem is proved. Let h > 0.
Then every two edges of G share a common vertex. Let E ′vw = {E ∈ E | E is
not incident in v, w}, Evw = {E ∈ E | E is incident in v and w}, Ev = {E ∈
E | E incident in v}, E ′v = {E ∈ E | E is not incident in v}. The following
two cases arise:

Case 1. G is a star, possibly with repeated edges. Let G = S2h =
[0; v1, v2, . . . , v2h].

Case 1a. Let v1 = v2 = . . . = v2h = 1. Then |E ′01| = |E| − |E0| − |E1| +

|E01| ≥ |E|−2(
⌊

λ2(n−1)
3

⌋

−2h)+(λ−2h) ≥ λn(n−1)
8
−h−4

3
λ(n−1)+4h+λ−2h =

λ(n − 1)(3n−32
24

) + h + λ. It follows |E ′01| > h for n ≥ 10. Choose h blocks
E ∈ E ′01. Combining each of this block with two edges (0, 1) we complete the
E2-metamorphosis.

Case 1b. Let |{v1, v2, . . . , v2h}| ≥ 2. Take vi, vj with vi 6= vj. Note that

|E ′0| = |E| − |E0| ≥ λn(n−1)
8

− h− (
⌊

λ2(n−1)
3

⌋

− 2h) ≥ λn(n−1)
8

− λ2(n−1)
3

+ h =

λ (n−1)(3n−16)
24

+ h. Then |E ′0| > λ + h, for n ≥ 7. Choose a block E ∈ E ′0 not
containing the edge (vi, vj). It is possible to rearrange the edges (0, vi), (0, vj)
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of S2h with the edges of E in order to form two new E2s. Remove (0, vi), (0, vj)
from S2h, substitue E with the new E2s in E and reapply the procedure, that
will stop when S2h is empty.

Case 2. G is a triangle with repeated edges. Suppose G contains the
edges m(0, 1), p(1, 2), q(2, 0). Since m + p + q = 2h, at least one of m, p, q
must be even. Suppose m = 2k. Then |E ′01| = |E| − |E0| − |E1| + |E01| ≥

|E| − (
⌊

λ2(n−1)
3

⌋

− (m + q))− (
⌊

λ2(n−1)
3

⌋

− (m + p)) + (λ−m) ≥ λn(n−1)
8

−

h − 4
3
λ(n − 1)λ + 2h = λ(n − 1)(3n−32

24
) + h + λ. Then |E ′01| > h > k, for

n ≥ 10. Choose k blocks E ∈ E ′01. Combine each of this block with two edges
(0, 1). The left edges make a star S2(h−k) = [2; 0, 0, . . . , 1, 1, . . .] that we can
assemble as in Case 1.

For λ = 1, only subcase 1b holds and n ≥ 8, so every kite system has an
E2-metamorphosis. 2

Main Theorem. There exists a λ-fold kite system of order n having a
complete simultaneous metamorphosis if and only if n ≥ 4, λn(n − 1) ≡ 0
(mod 8) and (λ, n) 6= (1, 8). There is not a kite system of order 8 hav-
ing an S3-metamorphosis, but there is a kite system of order 8 having a
{K3, P4, P3, P2, E2}-metamorphosis.
Proof Every λ-fold G-design has P2-metamorphoses. Let B = (a, b, c) − d
be a block of a λ-fold kite system (X,B). Decompose B into the two
paths [a, b, c] and [a, c, d]. Then every λ-fold kite system (X,B) has a P3-
metamorphosis. Let n ≥ 4, λ such that λn(n− 1) ≡ 0 (mod 8) . Let (X,B)
be the λ-fold kite system of order n having a {K3, S3, P4}-metamorphosis
(see Theorem 3.2.8) or, if (λ, n) = (1, 8), having a {K3, P4}-metamorphosis.
Then (X,B) has a {K3, S3, P4, P3, P2}-metamorphosis or, if (λ, n) = (1, 8),
a {K3, P4, P3, P2}-metamorphosis. (X,B) has also an E2-metamorphosis.
This follows from Theorems 3.3.1 and 3.3.2 for n = 4, n ≥ 10 and for
λ = 1, ∀n ≡ 0, 1 (mod 8). For the remaining values of n and λ, the E2-
metamorphosis of (X,B) follows easily from the proof of Theorems 3.2.4,
3.2.5, 3.2.6, 3.2.8 and from the observation that the starting designs (see
Examples 3.4.6, 3.4.7, 3.4.8, 3.4.9, 3.4.16, 3.4.18, 3.4.17) have also an E2-
metamorphosis. 2
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3.4 Appendix to Chapter 3

The following are λ-fold kite-systems of order n having a {K3, S3, P4}-metamorphosis.
Except otherwise specified, the vertex set is Zn.

Example 3.4.1 (λ = 1, n = 9). B = {(1, 3, 4) − 8, (1, 0, 6) − 5, (1, 8, 7) −
5, (1, 2, 5) − 0, (2, 7, 4) − 6, (0, 2, 8) − 6, (3, 2, 6) − 7, (8, 3, 5) − 4, (3, 7, 0) −
4}; T = {(5, 7, 6), (8, 4, 6), (4, 5, 0)}; S = {[1; 8, 3, 0], [2; 0, 1, 7], [3; 2, 8, 7]}; P =
{[7, 8, 2, 6], [4, 3, 5, 2], [6, 0, 7, 4]}.

Example 3.4.2 (λ = 1, n = 16). B = {(4, 0, 9) − 2, (11, 0, 5) − 13, (3, 0, 1) − 15,
(1, 5, 10)−3, (12, 1, 6)−14, (4, 1, 2)−15, (6, 2, 11)−4, (13, 2, 7)−0, (0, 2, 14)−15,
(7, 3, 12)−5, (3, 14, 8)−1, (6, 3, 4)−15, (8, 4, 13)−6, (12, 8, 2)−10, (7, 8, 10)−15,
(14, 9, 5)−15, (7, 9, 6)−15, (8, 9, 11)−15, (6, 10, 0)−8, (14, 10, 4)−12, (10, 12, 9)−
15, (11, 7, 1)− 9, (11, 10, 13)− 15, (11, 14, 12)− 15, (9, 13, 3)− 11, (13, 12, 0)− 15,
(1, 13, 14)− 7, (4, 5, 7)− 15, (5, 6, 8)− 15, (2, 5, 3)− 15};
T = {(2, 10, 15), (3, 11, 15), (7, 14, 15), (1, 9, 15), (0, 8, 15), (5, 12, 15),
(6, 13, 15)};
S = {[0; 4, 3, 11], [1; 5, 12, 4], [2; 6, 13, 0], [3; 14, 7, 6], [8; 4, 12, 7], [9; 14, 7, 8],
[10; 6, 14, 12], [11; 7, 10, 14], [13; 9, 12, 1], [5; 4, 6, 2]};
P = {[9, 0, 5, 10], [1, 0, 10, 13], [6, 1, 2, 11], [7, 2, 14, 8], [12, 3, 4, 13], [2, 8, 10, 4],
[5, 9, 6, 8], [11, 9, 12, 0], [1, 7, 5, 3], [12, 14, 13, 3]};
LT = {[4; 11, 12, 15], (1, 8), (2, 9), (3, 10), (6, 14), (0, 7), (5, 13)}.

Example 3.4.3 (λ = 1, n = 17). B = {(1, 4, 14)− 3, (1, 5, 7)− 15, (1, 10, 8)− 14,
(15, 2, 5)−10, (2, 6, 8)−3, (2, 11, 9)−1, (3, 4, 6)−14, (3, 7, 9)−15, (3, 10, 12)−15,
(11, 4, 7)−12, (10, 4, 2)−3, (8, 4, 13)−10, (8, 5, 12)−14, (5, 11, 3)−1, (5, 9, 14)−2,
(6, 13, 9)−12, (6, 12, 1)−16, (6, 10, 15)−1, (7, 13, 2)−1, (13, 11, 1)−0, (15, 13, 3)−
16, (16, 5, 4) − 9, (16, 10, 11) − 14, (16, 6, 7) − 10, (16, 13, 12) − 2, (9, 16, 8) − 11,
(16, 14, 15)−11, (0, 5, 6)−11, (0, 11, 12)−4, (0, 8, 7)−14, (0, 14, 13)−5, (4, 0, 15)−8,
(0, 9, 10)− 14, (16, 2, 0)− 3};
T = {(1, 3, 0), (7, 10, 14), (8, 11, 15), (9, 12, 4), (8, 14, 3), (9, 15, 1), (10, 13, 5),
(11, 14, 6), (12, 15, 7), (2, 14, 12)};
S = {[4; 8, 10, 11], [2; 6, 11, 15], [6; 10, 12, 13], [5; 8, 9, 11], [0; 4, 9, 14], [0; 5, 8, 11],
[1; 4, 5, 10], [3; 4, 7, 10], [13; 7, 11, 15], [16; 5, 6, 10], [16; 9, 13, 14]};
P = {[14, 4, 6, 8], [7, 5, 2, 0], [8, 10, 12, 5], [7, 4, 2, 13], [4, 13, 9, 14], [9, 11, 1, 12],
[15, 10, 11, 12], [0, 15, 14, 13], [4, 5, 6, 7], [10, 9, 7, 8], [12, 13, 3, 11]};
LT = (1, 2, 3, 16); LS = (8, 16); LP = (8, 16).

Example 3.4.4 (λ = 1, n = 24). B = {(3, 1, 10)− 11, (4, 1, 9)− 10, (5, 1, 11)− 12,
(4, 2, 11)−23, (5, 2, 10)−22, (2, 12, 6)−7, (5, 3, 12)−13, (6, 3, 11)−22, (3, 7, 13)−0,
(6, 4, 13)− 14, (7, 4, 12)− 0, (8, 4, 14)− 0, (5, 14, 7)− 8, (5, 8, 13)− 1, (5, 9, 15)− 1,

44



(8, 6, 15)−19, (9, 6, 14)−2, (10, 6, 16)−23, (9, 7, 16)−14, (10, 7, 15)−14, (11, 7, 17)−
14, (10, 8, 17)− 20, (11, 8, 16)− 4, (12, 8, 18)− 16, (11, 9, 18)− 19, (12, 9, 17)− 5,
(13, 9, 19) − 5, (12, 10, 19) − 20, (13, 10, 18) − 5, (14, 10, 20) − 6, (13, 11, 20) − 21,
(14, 11, 19) − 6, (15, 11, 21) − 7, (21, 12, 14) − 18, (15, 12, 20) − 7, (12, 16, 22) − 5,
(15, 13, 22) − 17, (16, 13, 21) − 6, (13, 17, 23) − 7, (15, 16, 2) − 9, (17, 15, 0) − 11,
(15, 18, 23) − 14, (17, 16, 3) − 8, (19, 16, 0) − 18, (16, 20, 1) − 12, (18, 17, 4) − 10,
(19, 17, 1) − 2, (21, 17, 2) − 13, (20, 18, 2) − 3, (21, 18, 1) − 14, (22, 18, 3) − 14,
(21, 19, 3) − 4, (2, 19, 22) − 14, (4, 19, 23) − 12, (20, 22, 4) − 5, (20, 23, 3) − 15,
(0, 20, 5)−6, (22, 21, 8)−19, (21, 23, 5)−16, (21, 0, 4)−15, (22, 23, 9)−21, (22, 0, 6)−
18, (22, 1, 7) − 18, (0, 23, 10) − 21, (1, 23, 6) − 17, (2, 23, 8) − 20, (0, 1, 8) − 9,
(0, 2, 7)− 19, (3, 0, 9)− 20};
T = {(1, 2, 13), (2, 3, 14), (3, 4, 15), (4, 5, 16), (5, 6, 17), (6, 7, 18), (7, 8, 19),
(8, 9, 20), (9, 10, 21), (10, 11, 22), (11, 12, 23), (12, 13, 0), (14, 15, 1),
(14, 16, 23), (14, 17, 22), (14, 18, 0), (18, 19, 5), (19, 20, 6), (20, 21, 7)};
S = {[1; 3, 4, 5], [2; 4, 5, 12], [3; 5, 6, 7], [4; 6, 7, 8], [5; 14, 8, 9], [6; 8, 9, 10],
[7; 9, 10, 11], [8; 10, 11, 12], [9; 11, 12, 13], [10; 12, 13, 14], [11; 13, 14, 15],
[12; 21, 15, 16], [13; 15, 16, 17], [15; 16, 17, 18], [16; 17, 19, 20], [17; 18, 19, 21],
[18; 20, 21, 22], [19; 21, 2, 4], [20; 22, 23, 0], [21; 22, 23, 0], [22; 23, 0, 1],
[23; 0, 1, 2], [0; 1, 2, 3]};
P = {[1, 10, 2, 11], [1, 9, 15, 6], [1, 11, 3, 12], [6, 12, 4, 13], [4, 14, 7, 16],
[13, 8, 17, 9], [14, 6, 16, 8], [15, 7, 17, 23], [8, 18, 9, 19], [19, 10, 18, 23],
[10, 20, 11, 19], [11, 21, 13, 22], [14, 12, 20, 1], [22, 16, 2, 7], [15, 0, 16, 3],
[4, 17, 1, 18], [17, 2, 18, 3], [3, 19, 22, 4], [19, 23, 5, 20], [3, 23, 9, 0], [13, 7, 1, 8],
[21, 8, 23, 10], [4, 0, 6, 23]};
LT = {(1, 12), (2, 9), (3, 8), (4, 10), (13, 14), (15, 19), (16, 18), (17, 20), (21, 6),
(22, 5), (23, 7), (0, 11)}.

Example 3.4.5 (λ = 2, n = 4). B = {(3, 0, 1) − 2, (0, 1, 2) − 3, (0, 2, 3) − 1},
T = (1, 2, 3), S = [0; 1, 2, 3], P = [0, 1, 2, 3].

Example 3.4.6 (λ = 2, n = 5). B = {(1, 0, 4) − 3, (2, 0, 4) − 3, (1, 2, 3) − 0,
(1, 3, 0) − 2, (1, 4, 2) − 3}, T = {(0, 2, 3)}, S = {[1; 2, 3, 4]}, P = {[2, 4, 0, 3]},
LT = 2(4, 3), LS = [0; 1, 2], LP = {(2, 3), (0, 4)}.

Example 3.4.7 (λ = 2, n = 8). B = {(6, 7, 1)−5, (4, 7, 5)−3, (7, 2, 3)−1, (4, 6, 2)−
1, (3, 0, 6)−5, (0, 1, 4)−3, (2, 5, 0)−7, (0, 5, 1)−2, (6, 5, 3)−1, (3, 2, 4)−1, (7, 0, 2)−
5, (1, 7, 6)− 2, (4, 5, 7)− 3, (4, 6, 0)− 3}
T = {(1, 3, 4), (2, 5, 6), (3, 7, 0), (1, 3, 5)},
S = {[7; 1, 4, 0], [6; 7, 5, 4], [0; 1, 3, 5], [2; 7, 3, 5]},
P = {[1, 7, 5, 0], [0, 6, 2, 3], [3, 5, 1, 4], [2, 0, 6, 7]},
LT = 2(1, 2), LS = [4; 5, 6], LP = {(4, 2), (7, 5)}.
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Example 3.4.8 (λ = 2, n = 9). It is sufficient doubling the blocks of the above
kite-system of order 9.

Example 3.4.9 (λ = 3, n = 8). B = {(7, 4, 2) − 3, (6, 7, 3) − 1, (7, 5, 1) − 2,
(4, 6, 5)−2, (1, 0, 4)−3, (2, 0, 6)−1, (5, 0, 3)−7, (1, 0, 2)−5, (6, 1, 3)−2, (5, 3, 4)−2,
(7, 0, 5)−1, (2, 7, 6)−5, (4, 1, 7)−0, (4, 6, 0)−3, (4, 6, 2)−1, (7, 4, 1)−3, (4, 5, 3)−2,
(6, 7, 5)− 2, (3, 0, 6)− 1, (2, 0, 7)− 3, (1, 5, 0)− 4}.
T = {(2, 3, 1), (2, 1, 3), (2, 3, 4), (3, 7, 0), (1, 6, 5)};
S = {[4; 6, 7, 5], [7; 6, 2, 0], [0; 2, 1, 3], [5; 7, 3, 1], [6; 1, 7, 4], [0; 1, 5, 2], [4; 6, 1, 7]};
P = {[7, 3, 1, 4], [5, 6, 0, 3], [4, 2, 6, 0], [3, 5, 1, 7], [2, 0, 5, 7], [3, 4, 0, 6], [6, 7, 0, 5]};
LT = {3(2, 5), (1, 6), (3, 7), (4, 0)}.

Example 3.4.10 (λ = 4, n = 5). B = {(1, 2, 0) − 4, (1, 3, 0) − 4, (2, 3, 4) − 1,
(2, 4, 1)−3, (2, 0, 3)−4, (1, 2, 0)−3, (1, 4, 0)−3, (2, 4, 3)−1, (2, 3, 1)−4, (2, 0, 4)−3};
T = {2(1, 3, 4)}; S = {[1; 2, 4, 3], [2; 0, 3, 4], [2; 0, 4, 3]}; P = {[2, 0, 3, 4], [1, 4, 0, 3],
[1, 3, 4, 0]}; LT = 2[3, 0, 4]; LS = (1, 2); LP = (0, 2).

Example 3.4.11 (λ = 4, n = 6). X = Z5 ∪ {∞}, B = {(i, 2 + i,∞) − (i + 1),
(i+ 1, 2 + i, i)−∞, (2 + i, 4 + i, i)− (i+ 1)|i ∈ Z5};
T = {(i, 1+i,∞)|i ∈ Z5)}; S = {[1; 2, 4, 3], [0; 2, 3, 1], [2; 0, 4, 3], [3; 0, 1, 4], [4; 2, 0, 1]};
P = {[∞, 2 + i, i, 4 + i]}.

Example 3.4.12 (λ = 4, n = 7). B = {(1, 0, 4) − 2, (1, 5, 6) − 2, (5, 0, 2) − 1,
(0, 6, 3)−2, (3, 5, 4)−6, (0, 2, 4)−1, (5, 2, 6)−1, (5, 0, 1)−2, (0, 6, 3)−1, (5, 3, 4)−6,
(1, 0, 4)−3, (1, 5, 6)−3, (5, 0, 3)−1, (0, 6, 2)−3, (2, 5, 4)−6, (5, 0, 4)−2, (5, 1, 6)−2,
(0, 1, 2)− 5, (0, 6, 3)− 2, (1, 3, 4)− 6, (2, 1, 3)− 5};
T = {(2, 4, 6), (1, 4, 6), (3, 4, 6), (2, 4, 6), (1, 2, 3), (1, 2, 3), (2, 3, 5)};
S = {[0; 1, 5, 6], [5; 1, 3, 2], [0; 2, 5, 6], [5; 1, 2, 3], [0; 1, 5, 6], [1; 2, 3, 5], [0; 1, 5, 6]};
P = {[4, 0, 2, 6], [0, 4, 5, 6], [4, 3, 6, 1], [4, 2, 6, 3], [1, 0, 3, 4], [6, 3, 1, 2], [6, 5, 4, 0]}.

Example 3.4.13 (λ = 4, n = 8). Take two copies of the 2-fold kite-system of
order 8. In one of them change 5 with 2. The result is a 4-fold kite-system of order
8 having a {K3, S3, P4}-metamorphosis, with
T = {(1, 3, 4), (2, 5, 6), (3, 7, 0), (1, 3, 5), (1, 3, 4), (5, 2, 6), (3, 7, 0), (1, 3, 2)};
S = {[7; 1, 4, 0], [6; 7, 5, 4], [0; 5, 1, 3], [2; 7, 3, 5], [7; 1, 4, 0], [6; 7, 2, 4], [0; 2, 1, 3],
[5; 7, 3, 2], [4; 2, 6, 5]};
P = {[1, 7, 5, 0], [0, 6, 2, 3], [3, 5, 1, 4], [2, 0, 6, 7], [6, 7, 2, 0], [0, 6, 5, 3], [3, 2, 1, 7],
[6, 0, 5, 4], [4, 2, 7, 5]};
LT = 2[2, 1, 5]; LS = (6, 4); LP = (1, 4).

Example 3.4.14 (λ = 4, n = 10). X = Z9 ∪ {∞}, B = {(i, 4 + i,∞) − (i + 1),
(i+6, 4+i, i)−∞, (3+i, 5+i, 1+i)−i, (4+i, 1+i, i)−(3+i), (2+i, 1+i, i)−(3+i)|i ∈
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Z9}; T = {(i, 1 + i,∞)|i ∈ Z9} ∪ (2{(0, 3, 6), (1, 4, 7), (2, 5, 8)});
S = {[0; 2, 1, 7], [8; 0, 1, 7], [2; 1, 4, 3], [3; 4, 1, 5], [5; 4, 6, 7], [6; 4, 7, 8]}∪ {[4+ i; i, 6+
i, 1 + i]|i ∈ Z9};
P = {[∞, 4+i, i, 1+i]|i ∈ Z9} ∪{[0, 5, 6, 2], [1, 5, 4, 8], [1, 6, 7, 3], [1, 2, 7, 8], [3, 8, 0, 1],
[2, 3, 4, 0]}.

Example 3.4.15 (λ = 4, n = 11). Let S = {xj |j ∈ Z5} and X = S ∪ Z5 ∪ {∞}.

1. Let (S,B′) be a copy of the 4-fold kite-system of order 5 above constructed
with the leaves LT , LS , LP .

2. For each i ∈ Z5, let Bi = {(i − 1, i + 1, xi) −∞, (i − 2, i + 2, xi) − (i + 1),
(xi, i,∞)− (i+1), (i,∞, xi)− (i+2), (i−1, i+1, xi)− i, (xi, i−2, i+2)− i,
(∞, i, xi) − (i− 2), (i− 2, i+ 2, xi) − (i− 1), (xi, i+ 1, i− 1) − (i− 2)}. It
is easy to check that (X,∪Bi) is a 4-fold kite-system of order 11 with a hole
of size 5 on S having:

• a K3-metamorphosis with T = {(xi, 1 + i,∞), (i, i + 2, xi), (i − 1, i −
2, xi)} and empty leave;

• an S3-metamorphosis with S = {[xi; i − 2, i, i + 1], 0 ≤ i ≤ 4} ∪{[i −
1; i, i+ 1, i+ 3], 0 ≤ i ≤ 3} ∪{[1; 3, 4,∞], [2; 0, 4,∞], [3; 0, 4,∞],
[3; 0, 2,∞], [∞; 0, 2, 4], [∞; 0, 1, 4]} and empty leave;

• a P4-metamorphosis with P = {[i + 1, xi, i + 2, i − 2], [i,∞, xi, i + 2],
[i, xi, i+ 1, i− 1]} and empty leave.

Then (X,B′ ∪ (
⋃

Bi)) is a 4-fold kite system of order 11 having {K3, S3, P4}-
metamorphosis with leaves LT , LS , LP .

Example 3.4.16 (λ = 5, n = 8). Let B1 = {(1, 2, 5)− 6, (1, 7, 4)− 6, (1, 3, 6)− 5,
(2, 7, 3)−5, (6, 0, 2)−4, (5, 0, 7)−6, (4, 3, 0)−1, (2, 5, 4)−6, (2, 7, 6)−3, (2, 1, 3)−4,
(5, 7, 1)−4, (3, 0, 5)−4, (4, 0, 7)−3, (6, 1, 0)−2, (7, 2, 5)−1, (7, 6, 1)−3, (7, 4, 3)−5,
(2, 6, 4) − 5, (3, 0, 2) − 1, (5, 0, 6) − 3, (1, 4, 0) − 7}. Then (Z8,B1) is a 3-fold kite
system having

• a K3-metamorphosis with T = {(5, 6, 4), (3, 4, 6), (5, 3, 1), (5, 6, 3), (4, 1, 2)}
and leave LT = {(7, 6), (7, 3), (7, 0), (0, 1), (0, 2), (5, 4)};

• an S3-metamorphosis with S = {[2; 6, 1, 7], [1; 6, 3, 7], [2; 5, 1, 7], [4; 3, 1, 7],
[0; 5, 6, 3], [0; 5, 3, 4], [7; 5, 6, 2]};

• a P4-metamorphosis with P = {[5, 2, 0, 7], [4, 7, 3, 6], [3, 0, 1, 7], [7, 0, 5, 4],
[7, 6, 1, 3], [5, 2, 0, 4], [3, 4, 6, 0]}.
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Let (Z8,B2) be the above 2-fold kite system. Then (Z8,B1 ∪ B2) is a 5-fold kite
system having a {K3, S3, P4}-metamorphosis. Note that we can rearrange the
leaves of the K3-metamorphosis of (Z8,B1) and (Z8,B2) into the triangle (1, 2, 0)
and the leave {[7; 6, 3, 0], (1, 2), (5, 4)}.

Example 3.4.17 (λ = 6, n = 5). Let (Z5,B1) be the above 4-fold kite system of
order 5 and (Z5,B2) be the above 2-fold kite system when we change 0 with 2.
Then (Z5,B1 ∪ B2) is a 6-fold kite system having a {K3, S3, P4}-metamorphosis,
with:
T = {(2, 0, 3), 2(1, 3, 4), 2(0, 3, 4)};
S = {[1; 0, 3, 4], [1; 2, 4, 3], [2; 0, 1, 4], [2; 0, 4, 3], [2; 1, 0, 3]};
P = {[0, 4, 2, 3], [2, 0, 3, 4], [1, 4, 0, 3], [1, 3, 4, 0], [3, 0, 2, 4]}.

Example 3.4.18 (λ = 7, n = 8). Let (Z8,B1) be the above 4-fold kite-system of
order 8 and (Z8,B2) be the above 3-fold kite system. Then (Z8,B1∪B2) is a 7-fold
kite system having a {K3, S3, P4}-metamorphosis. We can rearrange the leaves of
the K3-metamorphosis of (Z8,B1) and (Z8,B2) into the triangles 2(1, 2, 5) and the
leave {(2, 5), (1, 6), (3, 7), (4, 0)}.
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Chapter 4

Block Colourings of C4−designs

4.1 Preliminaries

It is well-known that a C4-system of order v, briefly 4CS(v), exists if and only if
v = 1+ 8k, k ≥ 1. Every vertex of a 4CS(v) is contained exactly in r = v−1

2 = 4k
blocks. The integer r is called, using the graph theoretic terminology, degree or
also replication number.

A colouring of a 4CS(v) Σ = (V,B) is a mapping φ : B → C, where C is a set
of colours. An h-colouring is a colouring in which exactly h colours must be used.
For each i = 1, . . . , h, the subset Bi of B, containing all the blocks coloured with
colour i, is a colour class. A 4CS(v) Σ is said to be h-uncolourable if there is not
any h-colouring of Σ.

For a partition of degree r into s parts, an h-colouring of type s is a colouring of
blocks such that, for each element x ∈ V , the blocks containing x are coloured with
s colours. For a 4CS(v) Σ = (V,B), we define the colour spectrum Ωs(Σ) = {h :
there exists an h-block-colouring of type s of Σ}, and also define Ωs(v) = ∪Ωs(Σ),
where the union is taken over the set of all 4CS(v)s.

The lower s-chromatic index χ′s(Σ) and the upper s-chromatic index χ
′
s(Σ) of

Σ are defined as χ′s(Σ) = minΩs(Σ), χ
′
s(Σ) = maxΩs(Σ), and similarly, χ

′
s(v) =

minΩs(v), χ
′
s(v) = maxΩs(v). If Ωs(Σ) = ∅ (Ωs(v) = ∅), then we say that Σ (any

4CS(v)) is uncolorable.
For a vertex x and for every i = 1, 2, . . . , s, Bx,i is the set of all the blocks

incident with x and coloured by the ith colour. A colouring of type s is equitable
if for every vertex x and for i, j = 1, . . . , s, |Bx,i − Bx,j | ≤ 1. A bicolouring,
tricolouring or quadricolouring is an equitable colouring with s = 2, s = 3 and
s = 4, respectively.

If x is a vertex of V , then we will say that x is of type AiBj . . . Cu, if i blocks
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containing x are coloured by A, j blocks containing x are coloured by B,. . . and
so on until u blocks containing x are coloured by C.

4.2 Bicolourings

In this section we will consider bicolourings.

Lemma 4.2.1. Let Σ be a 4CS(v), with v = 1 + 8k. If k is odd, then Σ is not
3-bicolourable.

Proof Let Σ = (V,B) be a 4CS(v) and suppose that φ : B → {1, 2, 3} is a
3-bicolouring of Σ. Partition V into three sets X,Y, Z of size x, y, z, respectively,
such that:

each element of X is incident with blocks of colour 1 and 2,
each element of Y is incident with blocks of colour 1 and 3,
each element of Z is incident with blocks of colour 2 and 3.

Observe that there is not any block incident with all three types of elements. Then
the blocks either contain all elements of the same type or contain elements of two
types.
Further, no block contains an odd number of edges having the extremes of different
type.
This implies that it is impossible that two among x, y, z are odd numbers. Further,
since x+y+z = 8k+1, it follows that exactly one among x, y, z is an odd number
and exactly two among x+ y, x+ z, y + z are odd numbers.
Finally, since:

B1 =
2k(x+ y)

4
=
k(x+ y)

2
,

B2 =
k(x+ z)

2
,

B3 =
k(z + y)

2
,

it follows that k is an even number, necessarily. 2

In [39] the author proved the following:

Theorem 4.2.2. [39] The complete bipartite graph KX,Y can be decomposed into
edge disjoint cycles of length 2k if and only if (1) |X| = x and |Y | = y are even,
(2) x ≥ k and y ≥ k, and (3) 2k divides xy.

This permits to prove the following:
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Lemma 4.2.3. For all even k, there is a 2-bicolorable 4CS(1 + 8k) and a 3-
bicolorable 4CS(1 + 8k) .

Proof Let k = 2h. It is not difficult to prove that Σ = (Z8k+1,B), with starter
blocks {(0, i, 4k + 1, k + i) | 1 ≤ i ≤ k}, is a 4CS(8k + 1).
If we assign the colour A to all the blocks obtained for i = 1, 2, . . . , h and to
all their translated, and assign the colour B to all the blocks obtained for i =
h+ 1, h+ 2, . . . , 2h and to all their translated, we define a 2-bicolouring of Σ.

Now, let A = {a1, a2, . . . , a8h}, B = {b1, b2, . . . , b8h}, C = {∞} and let Σ
1
=

(A∪C,B1), Σ2
= (B∪C,B2) be two C4-systems of order 8h+1. By Theorem 4.2.2,

there exists a C4-decomposition of the bipartite graph KA,B (KA,B,B3). Observe
that Σ = (A ∪B ∪ C,B1 ∪ B2 ∪ B3) is a 4CS(1 + 8k). By colouring with a colour
i the blocks of Bi, we obtain a 3-bicolouring, because each vertex of A (of B) has
degree 4h in (KA,B,B3) and degree 4h in (A ∪ C,B1) (in (B ∪ C,B2)). 2

Theorem 4.2.4. For 4-cycle systems it is Ω2(1+8k) = ∅, if k is odd, Ω2(1+8k) =
{2, 3}, if k is even.

Proof Let Σ = (V,B) be an 4CS(v) and φ : B → C an h-bicolouring of Σ. Let
c ∈ C and let x ∈ V an element incident with blocks of colour c. There are 2k
blocks of colour c incident with x. Thus there are at least 1 + 4k elements in V
incident with blocks of colour c. Then h(1 + 4k) ≤ 2v = 2 + 16k. Therefore

h ≤

⌊

16k + 2

4k + 1

⌋

= 3

and so χ′2(v) ≤ 3.
Now, let h = 2. It is

|Bc| =
v · 2k

4
=
8k2 + k

2
.

Then, if k is odd Σ is 2-uncolourable and, by Lemma 4.2.1, uncolourable. If k is
even, by Lemma 4.2.3 this is sufficient to prove that Ω2(1 + 8k) = {2, 3}. 2

4.3 Tricolourings

In this section we will consider tricolourings.

Lemma 4.3.1. There exist 3-tricolourable 4CS(9)s and 4CS(17)s.

Proof Let v = 9 (in these systems each vertex has degree 4).
Consider the following 4CS(9) Σ = (Z9,B), where B = B1 ∪ B2 ∪ B3 and:
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• B1 = {(1, 2, 7, 4), (2, 0, 8, 5), (3, 1, 0, 6)},

• B2 = {(4, 5, 1, 8), (5, 6, 2, 3), (6, 4, 0, 7)},

• B3 = {(7, 8, 6, 1), (8, 3, 4, 2), (3, 7, 5, 0)}.

If we assign the colour A to all the blocks belonging to B1, the colour B to all
the blocks belonging to B2 and the colour C to all the blocks belonging to B3, we
define a 3-tricolouring in Σ, with the vertices 0, 1, 2 of type A2BC, the vertices
4, 5, 6 of type AB2C and the vertices 7, 8, 3 of type ABC2.
Let v = 17. In the systems of order 17, each vertex has degree 8.
Consider the 4CS(9) Σ1 = (V1, C1), where V1 = {0} ∪ {ai : 1 ≤ i ≤ 8}, isomorphic
to the previous system Σ = (Z9,B), by the isomorphism ϕ : V1 → Z9 such that:

ϕ(0) = 0,

ϕ(ai) = i, for i = 1, 2, ..., 8.

Consider the 4CS(9) Σ2 = (V2, C2), where V2 = {0} ∪ {bi : 1 ≤ i ≤ 8}, isomor-
phic to the previous system Σ = (Z9,B), by the isomorphism ψ : V2 → Z9 such
that:

ψ(0) = 0,

ψ(bi) = i, for i = 1, 2, ..., 8.

Let ∆ = (V, C) be the 4CS(17) such that:

V = V1 ∪ V2,

C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5,

and:

• C3 = {(a3, b6, a4, b1), (a7, b2, a8, b1), (a3, b4, a4, b3), (a1, b4, a2, b5),
(a5, b6, a6, b5), (a5, b8, a6, b7)},

• C4 = {(a5, b2, a6, b1), (a1, b6, a2, b3), (a7, b4, a8, b3), (a3, b2, a4, b5),
(a1, b8, a2, b7), (a7, b8, a8, b7)},

• C5 = {(a1, b2, a2, b1), (a5, b4, a6, b3), (a7, b6, a8, b5), (a3, b8, a4, b7)}.
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If we colour:

• the blocks of C1 with the same colour of the correspondent isomorphic blocks
of Σ;

• the blocks of C2, assigning the colour C to the blocks of ψ−1(B1), the colour
B to the blocks of ψ−1(B2) and the colour A to the blocks of ψ−1(B3);

• the blocks of C3 with A;

• the blocks of C4 with B;

• the blocks of C5 with C;

then a 3-tricolouring is defined in the system ∆, with the property that all the
vertices are of type A3B3C2, except the vertices a3, b1, 0 of type A

3B2C3 and the
vertices a7, a8, b2 of type A

2B3C3. 2

Theorem 4.3.2. For all k ≡ 0 (mod 3), k > 0, there exist 3-tricolourable
4CS(1 + 8k)s .

Proof Let k = 3h. Consider the 4CS(8k + 1) Φ = (Z8k+1,B) defined in Lemma
4.2.3, having starter blocks {(0, i, 4k+1, k+ i) | 1 ≤ i ≤ k}. If we assign the colour
A to the blocks in which i = 1, 2, . . . , h and to all their translated, the colour B to
the blocks in which i = h+ 1, h+ 2, . . . , 2h and to all their translated, the colour
C to the blocks in which i = 2h+1, 2h+2, . . . , 3h and to all their translated, then
we obtain a 3-tricolouring of Φ having all the vertices of type A4hB4hC4h . 2

Theorem 4.3.3. For all k ≡ 1 (mod 3), there exist 3-tricolourable 4CS(1+8k)s.

Proof For k = 1, the result is proved in Lemma 4.3.1.
Let k = 3h+ 1, h > 0.
Let V1 = {0} ∪ {xi : 1 ≤ i ≤ 8}, V2 = {0} ∪ {yi : 1 ≤ i ≤ 24h}.
Construct the 4CS(9) (V1,D1), isomorphic to the system Σ defined in Lemma
4.3.1, by the isomorphism 0→ 0 and xi → i, for every i, 1 ≤ i ≤ 8.
Construct a 4CS(24h+1) (V2,D2) isomorphic to the system Φ defined in Theorem
4.3.2, by the isomorphism 0→ 0 and yi → i, for every i, 1 ≤ i ≤ 24h.
Let Γ = (V,D) be the 4CS(24h+ 9) where:

V = V1 ∪ V2,

D = D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5,
and:
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• D3 = {(x1, yi, x2, yi+1), (x3, y16h+i, x4, y16h+i+1), (x5, y8h+i, x6, y8h+i+1), (x7, yi, x8, yi+1) :
1 ≤ i ≤ 8h− 1, i ≡ 1 (mod 2)},

• D4 = {(x1, y8h+i, x2, y8h+i+1), (x3, yi, x4, yi+1), (x5, y16h+i, x6, y16h+i+1), (x7, y8h+i, x8, y8h+i+1) :
1 ≤ i ≤ 8h− 1, i ≡ 1 (mod 2)},

• D5 = {(x1, y16h+i, x2, y16h+i+1), (x3, y8h+i, x4, y8h+i+1), (x5, yi, x6, yi+1), (x7, y16h+i, x8, y16h+i+1) :
1 ≤ i ≤ 8h− 1, i ≡ 1 (mod 2)}.

If we colour

• the blocks of D1 as the correspondent isomorphic blocks of Σ defined in
Lemma 4.3.1;

• the blocks of D2 as the correspondent isomorphic blocks of Φ defined in
Theorem 4.3.2;

• the blocks of D3 with A;

• the blocks of D4 with B;

• the blocks of D5 with C;

then we obtain a 3-tricolouring of Γ such that:

• the vertices 0, x1, x2 and yi, for every i, 1 ≤ i ≤ 8h,
are of type A4h+2B4h+1C4h+1,

• the vertices x6, x4, x5 and yi, for every i, 8h+ 1 ≤ i ≤ 16h,
are of type A4h+1B4h+2C4h+1,

• the vertices x3, x7, x8 and yi, for every i, 16h+ 1 ≤ i ≤ 24h,
are of type A4h+1B4h+1C4h+2.

2

Theorem 4.3.4. For all k ≡ 2 (mod 3), there exist 3-tricolourable 4CS(1 + 8k)
.

Proof For k = 2, the result is proved in Lemma 4.3.1.
Let k = 3h+ 2, h > 0. Let V1 = {0} ∪ {αi : 1 ≤ i ≤ 16}, V2 = {0} ∪ {βi : 1 ≤ i ≤
24h}.
Construct a 4CS(17) (V1,F1) isomorphic to system ∆ defined in Lemma 4.3.1, by
the isomorphism 0 → 0, αi → ai, for every i, 1 ≤ i ≤ 8, α8+i → bi, for every i,
1 ≤ i ≤ 8.
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Construct a 4CS(24h + 1) (V2,F2) isomorphic to system Φ defined in Theorem
4.3.2, by the isomorphism 0→ 0 and βi → i, for every i, 1 ≤ i ≤ 24h.
Let Ω = (V,F) be the 4CS(24h+ 17) where:

V = V1 ∪ V2,

F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5,
and:

• F3 = {(α1, βi, α2, βi+1), (α3, β16h+i, α4, β16h+i+1), (α5, β8h+i, α6, β8h+i+1),
(α7, βi, α8, βi+1), (α9, β16h+i, α10, β16h+i+1), (α11, β8h+i, α12, β8h+i+1),
(α13, βi, α14, βi+1), (α15, β16h+i, α16, β16h+i+1) : 1 ≤ i ≤ 8h − 1, i ≡ 1
(mod 2)},

• F4 = {(α1, β8h+i, α2, β8h+i+1), (α3, βi, α4, βi+1), (α5, β16h+i, α6, β16h+i+1),
(α7, β8h+i, α8, β8h+i+1), (α9, βi, α10, βi+1), (α11, β16h+i, α12, β16h+i+1),
(α13, β8h+i, α14, β8h+i+1), (α15, βi, α16, βi+1) : 1 ≤ i ≤ 8h−1, i ≡ 1 (mod 2)},

• F5 = {(α1, β16h+i, α2, β16h+i+1), (α3, β8h+i, α4, β8h+i+1), (α5, βi, α6, βi+1),
(α7, β16h+i, α8, β16h+i+1), (α9, β8h+i, α10, β8h+i+1), (α11, βi, α12, βi+1),
(α13, β16h+i, α14, β16h+i+1), (α15, β8h+i, α16, β8h+i+1) : 1 ≤ i ≤ 8h − 1, i ≡ 1
(mod 2)}.

If we colour

• the blocks of F1 as the correspondent isomorphic blocks of Σ defined in
Lemma 4.3.1;

• the blocks of F2 as the correspondent isomorphic blocks of Φ defined in
Theorem 4.3.2;

• the blocks of F3 with A;

• the blocks of F4 with B;

• the blocks of F5 with C;

then we obtain a 3-tricolouring of Ω such that:

• the vertices 0, α3, α9 and βi, for every i, 16h+ 1 ≤ i ≤ 24h,
are of type A4h+3B4h+2C4h+3,
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• the vertices α7, α8, α10 and βi, for every i, 8h+ 1 ≤ i ≤ 16h,
are of type A4h+2B4h+3C4h+3,

• all the other vertices are of type A4h+3B4h+3C4h+2. 2

Theorem 4.3.5. For every v ≡ 1 (mod 8), the lower 3-chromatic index χ′3(v)
for 4-cycle systems is 3.

Proof The result follows from Theorems 4.3.2, 4.3.3, 4.3.4. 2

Theorem 4.3.6. For the upper 3-chromatic index χ′3(v) of 4CS(v) the following
inequalities hold:

• χ′3(v) ≤ 8, if v ≡ 1 (mod 24);

• χ′3(v) ≤ 9, if v ≡ 9, 17 (mod 24), v 6= 9, 17;

• χ′3(v) ≤ 8, if v = 9;

• χ′3(v) ≤ 10, if v = 17.

Proof Let Σ = (V,B) be a 4CS(v) and let φ : B → C be a p-tricolouring of Σ.
Let c ∈ C and let x ∈ V be an element incident with the blocks of colour c.
For v = 24h+ 1, the degree partition is (4h, 4h, 4h) and so there are 4h blocks of
colour c incident with x. It follows that there are at least 1 + 8h elements of V
incident with blocks of colour c.

Then: p(1 + 8h) ≤ 3v = 3 + 72h.

Hence: p ≤
⌊

72h+3
8h+1

⌋

= 8,

and so: χ′3(v) ≤ 8.

For v = 24h+9, the degree partition is (4h+1, 4h+1, 4h+2) and so there are
at least 4h+ 1 blocks of colour c incident with x. Thus, there are at least 3 + 8h
elements of V incident with blocks of colour c.

Then: p(3 + 8h) ≤ 3v = 27 + 72h.

Hence: p ≤
⌊

72h+27
8h+3

⌋

= 9,

and so: χ′3(v) ≤ 9.
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If v = 9, since also the size of the block set is 9 and the degree of each vertex
is 4, it follows that a 9-tricolouring is impossible.
So: χ′3(9) ≤ 8.
For v = 24h+ 17, the degree partition is (4h+ 2, 4h+ 3, 4h+ 3) and so there are
at least 4h+ 2 blocks of colour c incident with x. Thus, there are at least 5 + 8h
elements of V incident with blocks of colour c.

Then: p · (5 + 8h) ≤ 3v = 51 + 72h.

Hence: p ≤
⌊

72h+51
8h+5

⌋

.

Therefore: χ′3(v) ≤ 9, for v > 17, and χ′3(v) ≤ 10, for v = 17. 2

4.4 All possible tricolourings for v = 9

In this section we will determine completely the spectrum Ω3(9) about tricolourings
for 4-cycle systems of order 9. From Theorem 4.3.5, 4-cycle systems tricolourable
with 3 colours there exist.

Lemma 4.4.1. There exist 4-tricolourable 4-cycle systems of order 9.

Proof Let Σ = (Z9,D) be the C4-system defined on Z9 as follows:

D = B1 ∪ B2 ∪ B3 ∪ B4,

where

B1 = {(1, 2, 8, 4), (1, 3, 5, 0), (2, 3, 6, 7)},

B2 = {(1, 5, 2, 6), (6, 4, 7, 5)},

B3 = {(1, 7, 3, 8), (7, 0, 6, 8)},

B4 = {(2, 4, 3, 0), (0, 4, 5, 8)}.

If we assign the colour Ai, for each i = 1, 2, 3, 4, to the blocks belonging to Bi,
we obtain a tricolouring of Σ with 4 colours. 2
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Theorem 4.4.2. For 4-cycle systems, we have

Ω3(9) = {3, 4, 5}.

Proof At first, we observe that, for tricolourings with 3 or 4 colours, the state-
ment follows from Theorem 4.3.5 and Lemma 4.4.1, respectively. Now, let Σ=(Z9,B)
be the system defined on Z9 such that:

B = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5,

where

B1 = {(2, 8, 5, 0), (7, 3, 8, 6), (3, 5, 2, 6)};

B2 = {(1, 3, 2, 4), (1, 5, 4, 6)};

B3 = {(1, 0, 4, 7), (5, 7, 0, 6)};

B4 = {(1, 2, 7, 8)};

B5 = {(3, 4, 8, 0)}.

We can verify that Σ is a C4-system of order 9 and if we assign the colour Ai,
for each i = 1, 2, .., 5, to the blocks belonging to Bi, we obtain a tricolouring of Σ
with 5 colours.
Finally, we prove that no C4-system of order 9 is tricolourable with 6 or more
colours.
Let Σ = (V,D) be a C4-system of order 9 tricolourable with 6 colours. If f is the
colouring, Ai the colours and Ci = {B ∈ B : f(B) = Ai} (colouring classes), we
observe that necessarily:

i) there are at least 3 colouring classes containing exactly one block;

ii) every vertex is of type X2Y Z;

iii) for every pair of blocks B′, B′′, we have |B′ ∩B′′| ≤ 2.

Let c be the number of colouring classes containing exactly one block, then
3 ≤ c ≤ 5. Let |C1| ≥ |C2|... ≥ |C6|.

• It is not possible that c = 5, because C1 contains 4 blocks and, therefore,
there exist vertices belonging to 3 blocks of C1.

58



• It is not possible that c = 4, because there are at most 2 vertices belonging
to 2 blocks of C2 and, therefore, at least 7 vertices belonging to 2 blocks of
C1.

• It is not possible that c = 3, because there are at most 2 vertices belonging
to 2 blocks of C1, at most 2 vertices belonging to 2 blocks of C2 and at most
2 vertices belonging to 2 blocks of C3. No other vertex belongs to 2 blocks
of the same colour and this is a contradiction.

For tricolorings of 4-cycle systems of order 9 with 7 or more colours, it suffices
to observe that in any case there are necessarily at least 3 vertices belonging to 4
blocks of 4 distinct colours. 2

4.5 Constructions

In this and in the other sections we will use the following terminology and sym-
bolism.

Let A = {a1, a2, . . . , a2p}, B = {b1, b2, . . . , b2q} be two sets, such that A∩B = ∅.

We will denote by [A,B] the following family of cycles C4:

[A,B] = {(ai, bj , ai+p, bj+q) : 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

Observe that: |[A,B]|=p · q.

Further, for p = 4k and ∞ /∈ A, let [A,∞] be any 4-cycle system of order
v = 1 + 8k constructed on A ∪ {∞}.

CONSTRUCTION 1: v → k(v − 1) + 1.

Theorem 4.5.1. For every v = 8h + 1 and for every positive integer k, it is
possible to construct a 4-cycle system Σ of order k(v− 1) + 1 containing k 4-cycle
systems of order v.

Proof Let
A1 = {a11, a12, . . . , a1,8h},

A2 = {a21, a22, . . . , b2,8h},

.........................

Ak = {ak1, ak2, . . . , ak,8h},
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be any k sets of cardinality 8h and such that Ai ∩ Aj=∅, for every pair i, j =
1, 2, ..., k, i 6= j.
For each i = 1, 2, ..., k, let Σi = (Ai ∪ {∞}, Bi) be any C4-systems of order 1 + 8h,
constructed on Ai ∪ {∞}, where ∞ /∈

⋃

i=1,..,k Ai.
Further, consider the families of C4-cycles:

i<j
⋃

i,j=1,...,k

[Ai, Aj ].

If
X =

⋃

i=1,...,k

Ai,

B = (
⋃

i=1,...,k

Bi) ∪ (

i<j
⋃

i,j=1,...,k

[Ai, Aj ]).

then it is possible to verify that Σ = (X,B) is a C4-system of order k(v − 1) + 1.
It is immediate that, for every pair of distinct elements x, y of X, there exists at
least a cycle C4 of Σ containing the edge {x, y}. Further,

|B| = k · |Bi|+

(

k

2

)

· |[Ai, Aj ]|,

where the indices i, j are fixed. It follows:

|B| = k · h · (8h+ 1) +

(

k

2

)

· 16h2 =

= ..... = 8h2k2 + kh,

which is the number of blocks contained in a 4-cycle systems of order 1 + 8hk =
k(v − 1) + 1, exactly:

(1 + 8hk)hk.

This prove that Σ is a 4-cycle system of order k(v−1)+1, verifying the statement.2

CONSTRUCTION 2: v → v + 8kh, for k odd, k < v

Theorem 4.5.2. Let Σ′ and Σ′′ be any two 4-cycle systems of order v = 8u+ 1
and w = 8h+1 respectively. It is possible to construct a 4-cycle system Σ of order
v + 8kh, for k odd and k ≤ v, containing Σ′ and k systems isomorphic to Σ′′.
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Proof Let Σ′ = (Zv, D) be any C4-system of order v = 8u+ 1.
Let k = 2p+ 1 be any odd positive integer with k ≤ v.
Further, let

A1 = {a11, a12, . . . , a1,8h},

A2 = {a21, a22, . . . , b2,8h},

.........................

Ak = {ak1, ak2, . . . , ak,8h},

be any k sets of cardinality 8h and such that Ai ∩ Aj=∅, for every pair i, j =
1, 2, ..., k, i 6= j.
For each i = 1, 2, ..., k, let Σi = (Ai ∪ {i},Bi) be any C4-system of order 1 + 8h,
constructed on Ai ∪ {i}, where i ∈ Zv.
Further, for each i = 1, 2, .., k, consider any 1-factor Fi of the complete graph K8u

defined on Zv \ {i}. Observe that two factors Fi, Fj can have pairs in common.
Finally, consider the following families of C4-cycles:

ΓAi
=

⋃

{x,y}∈Fi

[Ai, {x, y}],

for each i = 1, 2, ..., k.
If

X = (
⋃

i=1,...,k

Ai) ∪ Zv,

B = (
⋃

i=1,...,k

Bi) ∪ (
⋃

i=1,...,k

ΓAi
) ∪ (

i<j
⋃

i,j=1,...,k

[Ai, Aj ]) ∪D.

then it is possible to verify that Σ = (X,B) is a C4-system of order v + 8hk.
It is immediate that, for every pair of distinct elements x, y of X, there exists at
least a cycle C4 of Σ containing the edge {x, y}. Further,

|B| = k · |Bi|+ k · |ΓAi
)|+

(

k

2

)

|[Ai, Aj ]|+ |D|,

where the indices i, j are fixed. It follows:

|B| = k · h · (8h+ 1) + k · 4h ·
v − 1

2
+

(

k

2

)

· 16h2 + u · (8u+ 1) =

= ..... = 8h2k2 + 16uhk + kh+ 8u2 + u,

which is exactly equal to the number of blocks contained in a 4-cycle systems of
order 8u+ 1 + 8hk:

(8u+ 1 + 8hk)(8u+ 8hk)/8.

This prove that Σ is a 4-cycle system of order v + 8hk verifying the statement. 2
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4.6 All possible tricolourings for v = 1 + 24h

Let A = {a1, a2, . . . , a2p}, B = {b1, b2, . . . , b2q} be any two disjoint sets.

Theorem 4.6.1. For every v = 1+24h and for every σ = 4, 5, 6, 7 there exists a
σ-tricolourable 4CS(v).

Proof Let A = {a1, a2, . . . , a8h}, B = {b1, b2, . . . , b8h}, C = {c1, c2, . . . , c8h},
three sets such that A ∩B = ∅, A ∩ C = ∅, B ∩ C = ∅. Fixed ∞ /∈ A ∪B ∪ C, let

ΣA = [A,∞] = (A ∪ {∞},BA),

ΣB = [B,∞] = (B ∪ {∞},BB),

ΣC = [C,∞] = (C ∪ {∞},BC),

be 4-cycle systems of order 1 + 8h. By Construction 1, we can define a 4-cycle
system Σ = (X,B) of order 3(v − 1) + 1 = 24h+ 1, where:

X = A ∪B ∪ C ∪ {∞}

and
B = BA ∪ BB ∪ BC ∪ [A,B] ∪ [A,C] ∪ [B,C].

The system Σ is tricolourable with 4 colours, with 5 colours and with 6 colours.
In fact, if we define a block-colouring f : B → ∆, where

∆ = {α, β, γ, δ, µ, ̺, ...}

is a set of colours, as follows:

f(2) = α, ∀ 2 ∈ BA ∪ [B,C],

f(2) = β, ∀ 2 ∈ BB ∪ [A,C],

and
f(2) = γ, ∀ 2 ∈ BC ,

f(2) = δ, ∀ 2 ∈ [A,B],

then we can verify that every vertex x ∈ X is of type X4hY 4hZ4h and α, β, γ, δ
are used colours: therefore f is a tricolouring of Σ with 4 colours.

If we define the block-colouring g′ : B → ∆ as follows:

g′(2) = µ, ∀ 2 ∈ [A,C],
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g′(2) = f(2), ∀ 2 ∈ B \ [A,C],

then we can verify that g′ is a tricolouring of Σ which uses the colours α, β, γ, δ, µ.

If we define a block-colouring g′′ : B → ∆ (set of colours), as follows:

g′′(2) = ̺, ∀ 2 ∈ [B,C],

g′′(2) = g′(2), ∀ 2 ∈ B \ [B,C],

then we can verify that g′′ is a tricolouring of Σ which uses 6 colours: α, β, γ, δ, µ, ̺.

To prove the existence of 4-cycle systems tricolourable with 7 colours, at first
consider the following partitions of A,B,C, respectively:

A1 = {a1, a2, . . . , a4h}, A2 = {a4h+1, a4h+2, . . . , a8h},

B1 = {b1, b2, . . . , b4h}, B2 = {b4h+1, b4h+2, . . . , b8h},

C1 = {c1, c2, . . . , c4h}, C2 = {c4h+1, c4h+2, . . . , c8h},

Consider now the following set of 4-cycle systems:

Γ1 = [A1, B1] ∪ [A1, C1] ∪ [B1, C1],

Γ2 = [A2, B2] ∪ [A2, C1] ∪ [B2, C1],

Γ3 = [A1, B2] ∪ [A1, C2] ∪ [B2, C2].

Γ4 = [A2, B1] ∪ [A2, C2] ∪ [B1, C2].

It is easy to check that (X,B) with B = (
⋃4

i=1 Γi) ∪ BA ∪ BB ∪ BC is a
4CS(1 + 24h). Define a block-colouring ϕ : B → ∆ of Σ as follows:

ϕ(2) = α, ∀ 2 ∈ BA,

ϕ(2) = β, ∀ 2 ∈ BB,

ϕ(2) = γ, ∀ 2 ∈ BC ,

and for each i = 1, 2, 3, 4
ϕ(2) = i, ∀ 2 ∈ Γi.

We can verify that ϕ is a tricolouring of Σ which uses seven colours: α, β, γ, 1, 2, 3, 4.
2

In the next section we will prove that m = 7 is the maximum possible value
for m-tricolourable 4-cycle systems of order v = 1 + 24h.
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4.7 The exact value of χ′3(1 + 24h)

We have already proved that χ′3(1+24h) ≤ 8. Here we prove that χ′3(1+24h) = 7.
This result follows from others, which we prove separately.

In what follows, in this section, we suppose always that

Σ = (X,B) is any 4-cycle system of order v = 24h+ 1 for which there
exists a tricolouring f : B → Ω, Ω = {A1, A2, . . . , A8, . . .} set of colours
and Σi = (Xi, Bi) is a 4-cycle family whose blocks are coloured with the
colour Ai, for every i = 1, 2, . . . , 8, . . ..

Σi = (Xi, Bi) is said to be a colouring class of Σ.

Theorem 4.7.1. The following properties are verified in Σ:

(1) For each x ∈ Xi, x is contained in exactly 4h blocks of Σi;

(2) For each x ∈ X, x is contained in exactly 3 sets Xi1, Xi2, Xi3;

(3) For each i = 1, 2, . . . , 8, . . ., |Bi|=|Xi| · h, [|Bi| is a multiple of h];

(4) For each i = 1, 2, . . . , 8, . . ., |Xi| ≥ 8h+ 1.

Proof Properties (1),. . . ,(4) follow from definition of Σ directly.
To prove (5), observe that if for some |Xi∗ | was |Xi∗ | ≥ 16h− 3, then:

∑

i=1,2,...,8

|Xi| ≥ 7(8h+ 1) + 16h− 3 = 72h+ 4 > 3v,

and this is not true. 2

Considering (4) and (5) of Theorem 4.7.1, we can put:

|Xi| = 8h+ 1 + ki,

for each i = 1, 2, ..., 8 and 0 ≤ ki ≤ 8h− 5.
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Theorem 4.7.2. Let Σi = (Xi, Bi) be any colouring class, for i = 1, . . . , 8, . . .
For every x ∈ Xi there are in Σi exactly 8h vertices which form an edge with x in
the blocks of Bi and exactly ki vertices of Xi which do not form an edge with x in
the blocks of Bi.

Proof Easily, in every colouring-class, every vertex is contained in exactly 4h
blocks. 2

Theorem 4.7.3. If Σi = (Xi, Bi), Σj = (Xj , Bj) are two any distinct colouring-
classes, then:

|Xi ∩Xj | ≤ ki + kj + 1.

Proof Suppose that there are two coloring-classes, let Σ′ = (X ′, B′), Σ′′ =
(X ′′, B′′), such that:

|X ′ ∩X ′′| ≥ k′ + k′′ + 2.

Let x ∈ X ′ ∩ X ′′. Since there are exactly k′ vertices of X ′ which does not form
an edge with x in Σ′, it follows that there are at least k′′ + 1 vertices of X ′ ∩X ′′

which form an edge with x in Σ′.
For the same reason, there are exactly k′′ vertices of X ′′ which does not form an
edge with x in Σ′′ and therefore there are at least k′+1 vertices in X ′ ∩X ′′ which
form an edge with x in Σ′′.
It follows that there exists an edge {x, y} contained in a block of B′ and in another
block of B′′ and this is not possible. 2

Theorem 4.7.4. If Σi1 = (Xi1, Bi1), Σi2 = (Xi2, Bi2), Σi3 = (Xi3, Bi3) are any
three distinct colouring-classes, then:

|Xi1 ∪Xi2 ∪Xi3| ≥ 24h− (ki1 + ki2 + ki3).

Proof Let
|Xi1 ∩Xi2| = α12,

|Xi2 ∩Xi3| = α23,

|Xi1 ∩Xi3| = α13.

From previous Theorem it follows:

|Xi1 ∪Xi2 ∪Xi3| ≥ 24h+ 3 + (ki1 + ki2 + ki3)− (α12 + α23 + α13) ≥

24h+ 3 + (ki1 + ki2 + ki3)− [(ki1 + ki2 + 1) + (ki2 + ki3 + 1)+

+(ki1 + ki3 + 1)] = 24h− (ki1 + ki2 + ki3).

2
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Theorem 4.7.5. Let Σi1 = (Xi1, Bi1), Σi2 = (Xi2, Bi2), Σi3 = (Xi3, Bi3),
Σi4 = (Xi4, Bi4) be four distinct colouring-classes. Then, for every j = 1, 2, 3, 4,
there are at least 8h−(ki1+ki2+ki3+2ki4+2) vertices belonging to Σij = (Xij , Bij),
but not belonging to the other three classes.

Proof Without loss of generality, we prove that there are at least 8h+1− (ki1+
ki2 + ki3 + 2ki4 + 2) vertices of Σi4, which do not belong to Xi1 ∪Xi2 ∪Xi3.
Let

|Xi1 ∩Xi4| = β14,

|Xi2 ∩Xi4| = β24,

|Xi3 ∩Xi4| = β34.

From previous Theorems, it follows:

|Xi4 − (Xi1 ∪Xi2 ∪Xi3)| ≥ 8h+ 1 + ki4 − (β14 + β24 + β34) ≥

8h+ 1 + ki4 − [(ki1 + ki4 + 1) + (ki2 + ki4 + 1) + (ki3 + ki4 + 1) =

= 8h− (ki1 + ki2 + ki3 + 2 · ki4 + 2).

2

Theorem 4.7.6. If Σi1 = (Xi1, Bi1), Σi2 = (Xi2, Bi2), Σi3 = (Xi3, Bi3), Σi4 =
(Xi4, Bi4) are four distinct colouring-classes, then:

|Xi1 ∪Xi2 ∪Xi3 ∪Xi4| ≥ 32h− 2 · (ki1 + ki2 + ki3 + ki4 + 1).

Proof From previous Theorems:

|Xi1∪Xi2∪Xi3∪Xi4| ≥ 24h− (ki1+ki2+ki3)+8h− (ki1+ki2+ki3+2 ·ki4+2) =

32h− 2 · (ki1 + ki2 + ki3 + ki4 + 1).

2

Theorem 4.7.7. If Σ is tricolouable with 8 colours, then there are at least four
colouring-classes, let Σi1 = (Xi1, Bi1), Σi2 = (Xi2, Bi2), Σi3 = (Xi3, Bi3), Σi4 =
(Xi4, Bi4), such that:

|Xi1|+ |Xi2|+ |Xi3|+ |Xi4| ≥ 36h+ 2
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Proof Otherwise, it should be:

(|X1|+ |X2|+ |X3|+ |X4|) + (|X5|+ |X6|+ |X7|+ |X8|) ≤

≤ (36h+ 1) + (36h+ 1) = 72h+ 2,

while it should be:
∑

i=1,...8

|Xi| = 3v = 72h+ 3.

2

Theorem 4.7.8. If Σ is tricolourable with 8 colours, then there are at least
four colouring-classes, let Σi1 = (Xi1, Bi1), Σi2 = (Xi2, Bi2), Σi3 = (Xi3, Bi3),
Σi4 = (Xi4, Bi4), such that:

|Xi1|+ |Xi2|+ |Xi3|+ |Xi4| ≤ 36h+ 1

Proof From previous Theorem, if

|X1|+ |X2|+ |X3|+ |X4| ≥ 36h+ 2,

then:
|X5|+ |X6|+ |X7|+ |X8| =

= 72h+ 3−
∑

i=1,..,4

|Xi| ≤ 72h+ 3− (36h+ 2) = 36h+ 1. 2

Theorem 4.7.9. It is not possible that Σ is tricolourable with 8 colours.

Proof From previous Theorems and, in particular from Theorem 4.7.8, there
exist four classes Σ1 = (X1, B1), Σ2 = (X2, B2), Σ3 = (X3, B3), Σ4 = (X4, B4),
such that:

|X1|+ |X2|+ |X3|+ |X4| ≤ 36h+ 1.

It follows:

(8h+ 1 + k1) + (8h+ 1 + k2) + (8h+ 1 + k3) + (8h+ 1 + k4) ≤ 36h+ 1,

from which:
32h+ 4 + (k1 + k2 + k3 + k4) ≤ 36h+ 1,

and therefore:
k1 + k2 + k3 + k4 ≤ 4h− 3.

67



But, for Theorem 4.7.6:

|X1 ∪X2 ∪X3 ∪X4| ≥ 32h− 2 · (ki1 + ki2 + ki3 + ki4 + 1) ≥

≥ 32h− 2 · [(4h− 3) + 1] = 24h+ 4

and this is a contradiction. 2

So, we have the following conclusive result:

Theorem 4.7.10. χ′3(1 + 24h) = 7.

Proof The statement follows from Theorems 4.3.6, 4.7.9. 2

4.8 Tricolourings with four colours

In this section we will consider tricolourings for 4-cycle systems which use 4 colours.

Lemma 4.8.1. There exist 4-tricolourable 4-cycle systems of order 17.

Proof Let Σ = (Z17,B) be the C4-system defined on Z17 as follows:

B = B1 ∪ B2 ∪ B3 ∪ B4,

where

B1 = {(13, 11, 6, 12), (13, 14, 6, 15), (13, 16, 6, 7), (7, 0, 8, 15), (11, 0, 12, 16),

(9, 0, 10, 15), (14, 10, 9, 11), (14, 12, 8, 7), (16, 9, 8, 10)},

B2 = {(13, 4, 0, 6), (13, 1, 14, 8), (13, 9, 12, 10), (2, 0, 5, 1), (1, 3, 2, 10),

(2, 12, 7, 5), (7, 9, 4, 10), (11, 3, 16, 7), (3, 15, 16, 8), (15, 12, 5, 11), (9, 14, 4, 6)},

B3 = {(12, 11, 10, 3), (12, 1, 8, 4), (8, 2, 4, 11), (5, 10, 6, 8), (3, 6, 5, 9),

(9, 1, 11, 2), (7, 3, 5, 4), (6, 1, 7, 2)},

B4 = {(13, 0, 14, 2), (13, 3, 14, 5), (15, 0, 16, 14), (15, 1, 16, 2),

(15, 5, 16, 4), (0, 1, 4, 3)}.
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If we assign the colour Ai, for each i = 1, 2, 3, 4, to the blocks belonging to Bi,
we obtain a tricolouring of Σ with 4 colours. 2

Theorem 4.8.2. There exist 4-tricolourable 4-cycle systems of order v, for every
admissible order v = 1 + 8k.

Proof i) If v = 9, v = 17, v = 1 + 24h for each positive integer h, then the
statement follows from Lemmas 4.4.1, 4.8.1 and Theorem 4.6.1, respectively.

ii) Let v = 9 + 24h, with h > 0. Let A = {a1, a2, . . . , a8h}, B = {b1, b2, . . . , b8h},
C = {c1, c2, . . . , c8h}, be any tree sets such that

A ∩B = A ∩ C = B ∩ C = ∅.

Let D = Z9, where x /∈ A ∪B ∪ C, for every x ∈ D.
Following Construction 2, we define a 4-cycle system Σ = (X,Γ) of order v =
9 + 24h. Using the same symbolism of Theorem 4.5.2, let Σ′ = (Z9, D

′) be a
4-cycle system of order 9 and A1 = A, A2 = B, A3 = C. Further, let Σ1 =
(A ∪ {1},B1),Σ2 = (B ∪ {7},B2),Σ3 = (C ∪ {3},B3) be k = 3 4-cycle systems of
order w = 1 + 8h.
Observe that here, the 4-cycle system Σ′ = (Z9, D

′) is exactly the system define
in Lemma 4.4.1.
Finally, let

F1 = {{0, 8}, {6, 7}, {2, 3}, {4, 5}},

F2 = {{1, 2}, {4, 5}, {3, 6}, {0, 8}},

F3 = {{1, 7}, {2, 6}, {0, 4}, {5, 8}}.

Then, define a block-colouring of Σ, let f : Γ→ Ω, Ω set of colours, as follows:

f(2) = α, ∀ 2 ∈ B1 ∪ B2 ∪ B3 ∪ [A, {0, 8}] ∪ [B, {4, 5}] ∪ [C, {2, 6}];

f(2) = β, ∀ 2 ∈ [A,B] ∪ [A, {6, 7}] ∪ [A, {4, 5}] ∪ [B, {1, 2}];

f(2) = γ, ∀ 2 ∈ [B,C] ∪ [B, {3, 6}] ∪ [B, {0, 8}] ∪ [C, {1, 7}];

f(2) = δ, ∀ 2 ∈ [A,C] ∪ [A, {2, 3}] ∪ [C, {5, 8}] ∪ [C, {0, 4}].

For the colouring of the blocks of Σ′, f assign to them the colour described in
Lemma 4.4.1, putting A1 = α,A2 = β,A3 = γ,A4 = δ.
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We can verify that the mapping f defines a tricolouring of Σ with 4 colours.

iii) Let v = 17 + 24h, with h > 0. We follows the same construction of the
case ii) and use the same symbolism. In this case, instead of Σ′, we consider
a 4-cycle system Σ′′ = (Z17, D

′′) of order 17. Observe that here, the 4-cycle
system Σ′′ = (Z17, D

′′) is exactly the system defined in Lemma 4.8.1, further
A1 = A ∪ {1}, A2 = B ∪ {8}, A3 = C ∪ {9} and:

F1 = {{2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {0, 16}, {12, 13}, {14, 15}},

F2 = {{1, 9}, {2, 3}, {4, 5}, {6, 7}, {10, 11}, {0, 16}, {12, 13}, {14, 15}},

F3 = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 10}, {11, 12}, {13, 14}, {15, 16}}.

Then, define a block-colouring of Σ, let f : Γ→ Ω, Ω set of colours, as follows:

f(2) = α, ∀ 2 ∈ [A,B] ∪ [A, {6, 7}] ∪ [A, {8, 9)}] ∪ [A, {10, 11}]

∪[B, {0, 16}] ∪ [B, {14, 15}] ∪ [B, {12, 13}];

f(2) = β, ∀ 2 ∈ B1 ∪ B2 ∪ B3 ∪ [A, {0, 16}] ∪ [A, {12, 13}] ∪ [A, {14, 15}]

∪[B, {6, 7}] ∪ [B, {10, 11}] ∪ [C, {2, 3}] ∪ [C, {4, 5}];

f(2) = γ, ∀ 2 ∈ [B,C] ∪ [C, {6, 7}] ∪ [C, {8, 10}] ∪ [C, {11, 12}]

∪[B, {1, 9}] ∪ [B, {2, 3}] ∪ [B, {4, 5}];

f(2) = δ, ∀ 2 ∈ [A,C] ∪ [A, {2, 3}] ∪ [A, {4, 5}] ∪ [C, {0, 1}]

∪[C, {13, 14}] ∪ [C, {15, 16}].

Finally, f assign to the blocks of Σ′′ the same colours defined in Lemma 4.8.1,
putting A1 = α,A2 = β,A3 = γ,A4 = δ.

We can verify that the mapping f defines a tricolouring of Σ with 4 colours.
2

4.9 Quadricolourings

In this section, we will consider quadricolourings.
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Lemma 4.9.1. If Σ is a 4-quadricolourable 4CS(1 + 8k), then k ≡ 0 (mod 4).

Proof Let Σ = (V,B) be a 4-quadricolourable 4CS(1 + 8k) and let φ : B →
{1, 2, 3, 4} be a 4-quadricolouring of Σ.
Let B1 be the set of all the blocks coloured by 1 and let |B1| = a. For each vertex,
there exist 1+8k−1

8 = k blocks coloured by 1 and each block contains 4 vertices.
Then: 4a = k(1 + 8k) and so: k ≡ 0 (mod 4). 2

Theorem 4.9.2. The lower 4-chromatic index χ′4(v) for 4-cycle systems is 4 if
and only if v ≡ 1 (mod 32).

Proof The necessary condition is in Lemma 4.9.1. Let Σ = (Z32h+1,B) be the
4CS(32h+1) with starter blocks {(0, i, 16h+1, 4h+ i) | 1 ≤ i ≤ 4h}. If we assign
the colour j to the blocks obtained for i = jh+1, jh+2, . . . , jh+h and j = 0, 1, 2, 3
and to all their translated, we define a 4-quadricolouring of Σ. 2

Theorem 4.9.3. Any 4CS(9) is 9-quadricolourable. For every k = 6, 7, 8, 9 there
exist k-quadricolourable 4CS(9)s. There is not any 5-quadricolourable 4CS(9).

Proof In any 4CS(9) there exists a 9-quadricolouring, assigning nine different
colours to the nine blocks. If Σ = (Z9,B) is the 4-cycle system where:

B = {B1 = (8, 0, 1, 3), B2 = (7, 2, 5, 4), B3 = (0, 4, 2, 6),

B4 = (1, 5, 3, 7), B5 = (1, 4, 3, 2), B6 = (5, 7, 8, 6),

B7 = (0, 5, 8, 2), B8 = (3, 6, 7, 0), B9 = (1, 6, 4, 8)},

then we can verify that there exist in Σ:

• an 8-quadricolouring by φ(B1) = φ(B2) = 1, φ(Bi) = i, for i > 2;

• a 7-quadricolouring by φ(B1) = φ(B2) = 1, φ(B3) = φ(B4) = 2, φ(Bi) = i
for i > 4;

• a 6-quadricolouring by φ(B1) = φ(B2) = 1, φ(B3) = φ(B4) = 2, φ(B5) =
φ(B6) = 3, φ(Bi) = i, for i > 6.

Let Γ = (Z9,B
′) be a 5-quadricolourable 4-cycle system and let A,B,C,D,E be

the corresponding colours.
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Observe that four colours (suppose A,B,C,D) are associated with two blocks,
which involve 8 distinct vertices (leaving out only one vertex). Assume that
1, 2, 3, 4 do not appear in any block coloured with A,B,C and D, respectively,
and the block (1, 2, 3, 4) is coloured with E.
Let X = {1, 2, 3, 4}, Y = {5, 6, 7, 8, 0}.
Denote by Ai, Bi, Ci, Di the blocks coloured with A,B,C,D (respectively) and
containing exactly i elements of X, for i = 1, 2. Assume that {2, 4} is in A2 and
{1, 3} in B2 and so 3 ∈ A1, 4 ∈ B1.

Now, denote by P3(Λ) the path P3 generated by the elements of Y contained
in the block Λ1, coloured by the colour Λ. Observe that no element of Y can
be the center of two of these paths [without loss of generality, if A1 = (5, 7, 3, 6),
B1 = (5, 0, 4, 8), then {8, 0} is an edge of A2 with repetition of a pair between
{4, 8} and {4, 0}; the other cases are immediate]. Further, for every y ∈ Y , if
y ∈ C2, then y /∈ D2; otherwise, y should be the center of P3(A) and P3(B).
Assume 5, 6,∈ C2 and 7, 8 ∈ D2 and observe that 0 cannot be the center of any
P3(Λ). So, {0, 3},{0, 4} are contained in A1,B1, respectively, and we have: C2 =
(5, p, 6, 4),D2 = (7, q, 8, 3), C1 = (7, r, 0, 8),D1 = (5, s, 0, 6), where {p, q}={r, s}={1, 2}.
It follows p = s, with a contradiction. 2

Remark By Theorems 4.9.2 and 4.9.3, it follows that Ω4(9) = {6, 7, 8, 9}.

Theorem 4.9.4. For the upper 4-chromatic index χ′4(8k+1) of 4CS(8k+1) the
following relations hold:

• χ′4 = 9, if k = 1;

• χ′4 ≤ 13, if k = 2;

• χ′4 ≤ 14, if k = 3, 4, 5;

• χ′4 ≤ 15, if k ≥ 6.

Proof For k = 1 the proof is in Theorem 4.9.3. Let Σ = (V,B) be a 4CS(1+8k),
k > 1, and let φ : B → C be a h-quadricolouring of Σ. Let c ∈ C and let x ∈ V be
an element incident with blocks of colour c. There are k blocks of colour c incident
with x. Thus, there are at least 1+2k elements in V incident with blocks of colour

c. Then: h(1+2k) ≤ 4v = 4+32k. Hence: h ≤
⌊

32k+4
2k+1

⌋

, and so: χ′4(1+8k) ≤ 13,

for k = 2, χ′4(1 + 8k) ≤ 14, for k = 3, 4, 5, χ′4(1 + 8k) ≤ 15, for k ≥ 6. 2
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Chapter 5

Embeddings of K4−designs

5.1 Introduction and prelimaries

Definition 11. Let G1 be a subgraph of G2 and let V and W be two sets such
that |V | = v, |W | = w, V ⊆ W . Denote by (V,B) a G1-design of order v and
index λ1, and by (W, C) a G2-design of order n and index λ2. (V,B) is embedded
into (W, C) if there is an injective mapping

f : B → C

such that B is subgraph of f (B) for every B ∈ B.

Example 1. Every affine plane of order n is embedded into some projective plane.

Example 2. Figure 5.1 shows a P2-design (V,B) of order 3 embedded into a
balanced P3-design (W, C) of order 5: V = {0, 1, 2}, W = {0, 1, . . . , 4}, B =
{[0, 1], [1, 2],[0, 2]} and C = {[0, 1, 4], [1, 2, 0], [2, 3, 1], [3, 4, 2], [4, 0, 3]}.

.

Example 3. A balanced P3-design (V,B) of order 5 strictly embedded into a
4-cycle system (W, C) of order 9: V = {0, 1, . . . , 4}, W = {0, 1, . . . , 8}, B =
{[0, 4, 1], [2, 0, 3], [0, 1, 2], [4, 2, 3], [1, 3, 4]} and C = {(0, 4, 1, 6),
(2, 0, 3, 7), (0, 1, 2, 5), (4, 2, 3, 6), (1, 3, 4, 5), (7, 0, 8, 1), (6, 2, 8, 5), (5, 3, 8, 7),
(7, 4, 8, 6)}.

In this chapter we wish to consider the minimum embedding of an S3(2, 4, u)
into an Sλ(2, 4, u+ w), λ ≥ 3. In particular, we will prove the following result:
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Figure 5.1: A P2 design of order 3 embedded into a balanced P3 design of
order 5
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Main Theorem. Let u ≡ 0, 1 (mod 4) and λ ≥ 3. Every S3(2, 4, u) can
be embedded into an Sλ(2, 4, u + w) of minimum order u + w if and only if the
conditions in Table 1 are satisfied.

Table 1

λ (mod 6), λ ≥ 3 u (mod 12), u ≥ 4 w

3 0, 1, 4, 5, 8, 9 0
2, 4 1, 4 0

0, 9 1
5, 8 (u ≥ 17 for λ = 4, 8) 2a

1, 5 1, 4 0
0 1
5 8b

8 5c

9 (u ≥ 21 for λ = 5) 4
0 ∀ 0

λ = 4 u = 5, 8 11, 14
λ = 8 u = 5, 8 5, 2
λ = 5 u = 9 ≥ 7

awith possible exceptions for λ = 4 and u = 29, 32, 41, 44, 53, 56, 65
bwith possible exceptions for λ = 5 and u = 29, 53
cwith possible exceptions for λ = 5 and u = 32, 44

A pairwise balanced design PBD(v,K) of order v with block-sizes from K is a
pair (V,B), where V is a finite set of cardinality v and B is a family of subsets of
V (blocks) such that |B| ∈ K for every B ∈ B and every pair of distinct elements
of V occurs in exactly one block of B.

We recall the existence of some 4-GDD and PBD(v,K) we need in the follow-
ing.

Lemma 5.1.1. [11] There exists a 4-GDD of type

• u11t for each u ≡ 4, 10 (mod 12), t ≡ 0, 9 (mod 12), t ≥ 2u+ 1;

• u11t for each u ≡ 1, 7 (mod 12), t ≡ 0, 3 (mod 12), t ≥ 2u+ 1.

Lemma 5.1.2. [11] There exists a PBD(v, {4, 5}) for each v ≡ 0, 1 (mod 4),
v 6= 8, 9, 12.

Lemma 5.1.3. [10] A PBD(v, {4, 7∗}), that is a pairwise balanced design on v
point with blocks of sizes 4 and exactly one block of size 7 exists if and only if
v ≡ 7, 10 (mod 12), v 6= 10, 19.
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Lemma 5.1.4. Let u ≡ 0, 1 (mod 4) and 0 ≤ w < 2u + 1, λ > 3. If there exists
an Sλ(2, 4, u+ w) which embeds an S3(2, 4, u) then

3λ w2 − λ w(2u+ 3) + (λ− 3)u(u− 1) ≥ 0.

Proof. Let u ≡ 0, 1 (mod 4), W = {ai : i ∈ Zw} and V = Zu ∪ W . Suppose
we embed an S3(2, 4, u) (Zu, C) into a Sλ(2, 4, u + w) (V,B). Simple counting

arguments show that |C| = u(u−1)
4 , |B| = λ (u+w)(u+w−1)

12 and every vertex of V
occurs in λu+w−1

3 blocks of B. Since w < 2u + 1, the vertices of W occur in at

least λ
[

w(u+w−1)
3 − w(w−1)

2

]

blocks of B \ C. Then necessarily we must have

λ

[

w(u+ w − 1)

3
−
w(w − 1)

2

]

≤ λ
(u+ w)(u+ w − 1)

12
−
u(u− 1)

4

which is equivalent to

3λ w2 − λ w(2u+ 3) + (λ− 3)u(u− 1) ≥ 0.

2

Lemma 5.1.5. Let u ≡ 0, 1 (mod 4), λ ≥ 3 and w ≥ u−1
2 . If there exists an

Sλ(2, 4, u+ w) which embeds an S3(2, 4, u) then

λ w2 − λ w(2u+ 1) + 3(λ− 3)u(u− 1) ≥ 0.

Proof. Let u ≡ 0, 1 (mod 4) and W = {ai : i ∈ Zw}. Suppose we embed an
S3(2, 4, u) (Zu, C) into a Sλ(2, 4, u + w) (Zu ∪W,B). Simple counting arguments

show that |C| = u(u−1)
4 , |B| = λ (u+w)(u+w−1)

12 and every vertex of Zu occurs in
u− 1 blocks of C and

λ
u+ w − 1

3
− (u− 1) =

(λ− 3)(u− 1) + λw

3

blocks of B \ C. Since w ≥ u−1
2 , the vertices of Zu occur in at least

(λ− 3)u(u− 1) + λuw

3
−
(λ− 3)u(u− 1)

2
=
2λuw − (λ− 3)u(u− 1)

6

blocks of B \ C. Then necessarily we must have

2λuw − (λ− 3)u(u− 1)

6
≤ λ

(u+ w)(u+ w − 1)

12
−
u(u− 1)

4

which is equivalent to

λ w2 − λ w(2u+ 1) + 3(λ− 3)u(u− 1) ≥ 0.

2

76



Appliyng Lemmas 5.1.4 and 5.1.5 with u = 5, 8, 9 and the spectrum of Sλ(2, 4, u),
we obtain the following

Corollary 5.1.6. If there exists an

• Sλ(2, 4, 5 + w) which embeds an S3(2, 4, 5), then λ ≥ 10 for w = 2, w ≥ 11
for λ = 4 and w ≥ 5 for λ = 8;

• Sλ(2, 4, 8+w) which embeds an S3(2, 4, 8), then λ ≥ 6 for w = 2 and w ≥ 14
for λ = 4;

• Sλ(2, 4, 9+w) which embeds an S3(2, 4, 9), then λ ≥ 6 for w = 4 and w ≥ 7
for λ = 5.

5.2 Proof of Main Theorem

The necessary part of the Main Theorem follows easily from the necessary and
sufficient conditions for the existence of an S3(2, 4, u) and an Sλ(2, 4, u + w) and
from Corollary 5.1.6. It is easy to see that the sufficiency of Main Theorem for
λ = 3, 4, 5, 6, 7, 8, 10 implies its sufficiency for every λ ≥ 3, with λ = a + 6k, a =
0, 1, 2, 3, 4, 5. The minimum embedding is obtained:

• for a = 0, 1, 2 and k ≥ 1, by pasting the blocks of an Sa+6(2, 4, u+w) which
embeds the given S3(2, 4, u) to the blocks of an S6(k−1)(2, 4, u+ w).

• for a = 3 and k ≥ 1, by pasting the blocks of the given S3(2, 4, u) to the
blocks of an S6k(2, 4, u).

• for a = 4, u 6= 5 and k ≥ 1, by pasting the blocks of an S8(2, 4, u+w) which
embeds the given S3(2, 4, u) to the blocks of an S6k−4(2, 4, u+ w),

• for a = 4, u = 5 and k ≥ 2, by pasting the blocks of an S10(2, 4, 5+w) which
embeds the given S3(2, 4, 5) to the blocks of an S6k−6(2, 4, 5 + w)

• for a = 5 and k ≥ 1, by pasting the blocks of an S7(2, 4, u+w) which embeds
the given S3(2, 4, u) to the blocks of an S6k−2(2, 4, u+ w).

5.2.1 λ = 4

For u ≡ 1, 4 (mod 12) the proof of the Main Theorem follows by pasting an
S(2, 4, u) to the given S3(2, 4, u). For u = 5 and u = 8 the proof follows from
Corollary 5.1.6 and cases 6, 9 in the Appendix.
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Theorem 5.2.1. If u ≡ 0, 9 (mod 12), u ≥ 9 then every S3(2, 4, u) can be em-
bedded into an S4(2, 4, u+ 1).

Proof Let (Zu, C) be an S3(2, 4, u). Construct a 4-GDD of type 411u on Zu ∪
{∞0,∞1,∞2,∞3} having {∞0,∞1,∞2,∞3} as group of size 4 and B as the block-
set. Let B̄ be the block-set obtained from B by replacing,for each i ∈ Z4, ∞i with
∞. It is easy to check that (Zu ∪ {∞}, C ∪ B̄) is the required design. 2

Theorem 5.2.2. If u ≡ 5, 8 (mod 12), u ≥ 17 and u 6= 29, 32, 41, 44, 53, 56, 65,
then every S3(2, 4, u) can be embedded into an S4(2, 4, u+ 2).

Proof. For u = 17, 20, see cases 7,8 in Appendix. For u ≥ 68, write u = x+17+12t,
t ≥ 4 and x = 0, 3. Now letX = {a0, a1, ..., a16} (orX = {a0, a1, ..., a19} for x = 3),
U = Zu−17∪X (or U = Zu−20∪X for x = 3) and (U,D) be an S3(2, 4, u). Construct
a 4-GDD of type 2511u−17 (or of type 2811u−20 for x = 3) on U ∪{∞i,∞i : i ∈ Z4}
having X ∪ {∞i,∞i : i ∈ Z4} as group of size 25 (or 28 for x = 3) and B as the
block-set. Let B̄ be the block-set obtained from B by replacing, for each i ∈ Z4,∞i

with ∞1 and ∞i with ∞2. Place on X1 = X ∪ {∞1,∞2} an S4(2, 4, 19) (X1,B1)
which embeds an S3(2, 4, 17) (X, C1) on X (see cases 7, 8 in Appendix). It is easy
to check that (U ∪ {∞1,∞2},D ∪ B̄ ∪ (B1 \ C1) is the required design. 2

5.2.2 λ = 5

For u ≡ 1, 4 (mod 12) the proof of the Main Theorem follows by pasting an
S2(2, 4, u) to the given S3(2, 4, u) and for u ≡ 0 (mod 12), u ≥ 12, by pasting
an S(2, 4, u + 1) to an S4(2, 4, u + 1) which embeds the given S3(2, 4, u). So we
suppose u ≡ 5, 8, 9 (mod 12). For u = 9 the proof follows from Corollary 5.1.6.

Theorem 5.2.3. If u ≡ 5 (mod 12), u 6= 29, 53, then every S3(2, 4, u) can be
embedded into an S5(2, 4, u+ 8).

Proof For u = 5, 17, 41, see cases 10, 13 and 15 in Appendix. For u ≥ 65
write u = 5 + 12t, t ≥ 5. Now let X = {a0, a1, a2, a3, a4}, U = Zu−5 ∪ X and
(U,D) be an S3(2, 4, u). Construct a 4-GDD of type 2511u−5 (see Lemma 5.1.1)
on Zu−5 ∪ {aij : (i, j) ∈ Z5 × Z2} ∪{bij : (i, j) ∈ Z3 × Z5} and a 4-GDD of type
2511u−5 on Zu−5∪{∞ij : (i, j) ∈ Z5×Z5}. For each j ∈ Z2, replace aij with ai, for
each k ∈ Z5, replace∞ik with∞i and bik with bi and denote by B̄ be the block-set
so obtained. On {a0, a1, a2, a3, a4} ∪ {∞0,∞1,∞2,∞3,∞4} ∪ {b0, b1, b2}, place an
S5(2, 4, 13) (V1,B1) which embeds an S3(2, 4, 5) (X, C1) on {a0, a1, a2, a3, a4} (see
case 10 in Appendix). Let V = U∪{∞0,∞1,∞2,∞3,∞4}∪{b0, b1, b2}, C = B1\C1,
B = D ∪ B̄ ∪ C. It is easy to check that (V,B) is the required design. 2
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Theorem 5.2.4. If u ≡ 8 (mod 12), u 6= 32, 44, then every S3(2, 4, u) can be
embedded into an S5(2, 4, u+ 5).

Proof For u = 8, 20, see cases 11 and 14 in Appendix. For u ≥ 56 write u =
8 + 12t, t ≥ 4. Now let X = {ai, i ∈ Z8}, U = Zu−8 ∪ X and (U,D) be an
S3(2, 4, u). Construct a 4-GDD of type 1911u−8 (see Lemma 5.1.1) on Zu−8 ∪
{aij : (i, j) ∈ Z8 × Z2} ∪{∞4j : j ∈ Z3} and a 4-GDD of type 2211u−8 on
Zu−8 ∪ {∞ij : (i, j) ∈ Z4 × Z5}∪{∞4j : j = 3, 4} . For each j ∈ Z2, replace aij
with ai, for each k ∈ Z5, replace ∞ik with ∞i and denote by B̄ be the block-set
so obtained. On X ∪ {∞0,∞1,∞2,∞3,∞4}, place an S5(2, 4, 13) (V1,B1) which
embeds an S3(2, 4, 8) (X, C1) onX. Let V = U∪{∞0,∞1,∞2,∞3,∞4}, C = B1\C1
B = D ∪ B̄ ∪ C. It is easy to check that (V,B) is the required design. 2

Theorem 5.2.5. If u ≡ 9 (mod 12), u ≥ 21 then every S3(2, 4, u) can be embed-
ded into an S5(2, 4, u+ 4).

Proof Let (Zu,D) be an S3(2, 4, u). For u = 21, see case 12 in Appendix. For
u ≥ 33 write u = 9 + 12t, t ≥ 2. Take a 4-GDD of type 1611u (see Lemma
5.1.1) on Zu ∪ {∞ij : (i, j) ∈ Z4 × Z4} having G = {∞ij : (i, j) ∈ Z4 × Z4}
as group of size 16 and B1 as the block-set. Let B̄ be the block-set obtained
from B1 by replacing, for each j ∈ Z4, ∞i,j with ∞i. Put in C the blocks of an
S4(2, 4, 4) on {∞0,∞1,∞2,∞3} and the blocks of an S(2, 4, 13 + 12t) on V =
U ∪ {∞0,∞1,∞2,∞3}. Let B = D ∪ B̄ ∪ C. It is easy to check that (V,B) is the
required design. 2

5.2.3 λ = 6

The proof of the Main Theorem follows by doubling the solution for λ = 3. The
following result will be used in this chapter.

Theorem 5.2.6. If u ≡ 5, 8 (mod 12), then every S3(2, 4, u) can be embedded
into an S6(2, 4, u+ 1).

Proof For u = 5, 8, 17 see cases 16, 18 and 19 in Appendix. For u ≥ 20, write
u = x + 5 + 12t, t ≥ 2 and x = 0, 3. Let (U,D) be an S3(2, 4, u) where U =
Zu−5 ∪ {a0, a1, a2, a3, a4}. Construct a 4-GDD of type 711u on U ∪ {∞0,∞1}
having {a0, a1, a2, a3, a4} ∪ {∞0,∞1} as the group of size 7. Replace, for each
i ∈ Z2, ∞i with ∞ and repeat the blocks so obtained three times. Develop (mod
5) the base blocks {∞, a0, a1, a2}, {∞, a0, a1, a3}. The result is an S6(2, 4, u + 1)
on V = U ∪ {∞} which embeds the S3(2, 4, u) (U,D). 2
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5.2.4 λ = 7

For u ≡ 0, 1, 4, 5, 8, 9 (mod 12) and for u 6= 9, 29, 32, 44, 53 the proof of the Main
Theorem follows by pasting an S2(2, 4, u+w) to an S5(2, 4, u+w) which embeds the
given S3(2, 4, u). For u = 9, 29, 32, 44, 53 see cases 22, 23, 24, 26, 25 in Appendix.

5.2.5 λ = 8

For u ≡ 0, 1, 4, 9 (mod 12) the proof of the Main Theorem follows by doubling the
solution for λ = 4. So we suppose u ≡ 5, 8 (mod 12). For u = 5 the proof follows
from Corollary 5.1.6, by embedding the given S3(2, 4, 5) into an S6(2, 4, 10) (see
case 17 in Appendix) and by adding the blocks of an S2(2, 4, 10).

Theorem 5.2.7. If u ≡ 5 (mod 12), u ≥ 17 then every S3(2, 4, u) can be embed-
ded into an S8(2, 4, u+ 2).

Proof Let U = Zu−7∪{ai, i ∈ Z7}. Embed an S3(2, 4, u) on U into an S6(2, 4, u+
1) on U ∪{∞0}. Construct on U ∪{c0, c1, c2, c3}∪ {∞0} a PBD(10+12t, {4, 7∗})
having {a0, a1, a2, a3, a4, a5, a6} as the block of size 7 and {c0, c1, c2, c3} as a block
of size 4. Replace, for each i ∈ Z4, ci with ∞ and repeat the blocks so obtained
twice, after removing the block of size 7 and the block {c0, c1, c2, c3}. Place on
{ai, i ∈ Z7} an S2(2, 4, 7). The result is an S8(2, 4, u + 2) on V = U ∪ {∞0,∞}
which embeds an S3(2, 4, u) on U . 2

Theorem 5.2.8. If u ≡ 8 (mod 12), u ≥ 8 then every S3(2, 4, u) can be embedded
into an S8(2, 4, u+ 2).

Proof For u = 8 see case 27 in Appendix. For u ≥ 20 embed an S3(2, 4, u) on
Zu into an S6(2, 4, u + 1) on Zu ∪ {∞0}. Construct a 4-GDD of type 411u+1 on
Zu ∪ {∞0} ∪ {a0, a1, a2, a3} having {a0, a1, a2, a3} as the group of size 4. Replace,
for each i ∈ Z4, ai with ∞ and repeat the blocks so obtained twice. The result is
an S8(2, 4, u+ 2) on V = Zu ∪ {∞0,∞} which embeds an S3(2, 4, u) on Zu. 2

5.2.6 λ = 10

For u = 5 see case 28 in Appendix. For u ≡ 0, 1, 4, 5, 8, 9 (mod 12) and u 6= 5 the
proof of the Main Theorem follows by pasting an S2(2, 4, u+w) to an S8(2, 4, u+w)
which embeds an S3(2, 4, u).
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5.3 Applications for other designs

In this section,we shall use the Main Theorem to give new results on E2-designs.
Let E2 be the graph [a, b; c, d] having vertices {a, b, c, d} and edges {a, b}, {c, d}. An
E2-design of order u and index 1, E2(u, 1), exists if and only if u ≡ 0, 1 (mod 4).

Lemma 5.3.1. Let u ≡ 0, 1 (mod 4). If there exists an Sλ(2, 4, u + w) which
embeds an E2(u, 1) then λ ≥ 3.

Proof. Let u ≡ 0, 1 (mod 4). Suppose we embed an E2(u, 1) (U, C) into an
Sλ(2, 4, u+w) (V,B). Counting the number of edges of λKu not covered by blocks

of C we obtain λu(u−1)
2 ≥ 6u(u−1)4 and hence λ ≥ 3. 2

Lemma 5.3.2. If u ≡ 0, 1 (mod 4), u ≥ 4 then there is an S3(2, 4, u) which
embeds an E2(u, 1).

Proof. For u = 4, 5, 8, 9, 12 see cases 1,2,3,4 and 5 in Appendix. For u ≥ 13, take
a PBD(u, {4, 5}) (see Lemma 5.1.2) and place on each block an S3(2, 4, k) wich
embeds an E2(k, 1), with k = 4, 5. 2

Now using the results of the Main Theorem and Lemma 5.3.2 we obtain the
following new results for an E2(u, 1).

Theorem 5.3.3. Let u ≡ 0, 1 (mod 4) and λ ≥ 3. Then there exists a minimum
embedding of an E2(u, 1) into an Sλ(2, 4, u + w) if and only if the conditions in
Table 1 are satisfied.
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Appendix to Chapter 5

In this appendix we list some minimum embeddings of an S3(2, 4, u) (U, C) into
an Sλ(2, 4, u + w) (V,B), V = U ∪W , for small values of u. Only for λ = 3 we
list five minimum embeddings of an E2(u, 1) into an S3(2, 4, u). In these cases we
list the blocks of an E2(u, 1)-design using square brackets (braces). For example,
[x, y; z, t] is the block of an E2(u, 1)-design having vertices x, y, z, t and edges {x, y}
and {z, t}.

1. λ = 3, u = 4, w = 0. Let U = Z4. Blocks: [0, 1; 2, 3], [0, 3; 1, 2], [0, 2; 1, 3].

2. λ = 3, u = 5, w = 0. Let U = Z5. Develop (mod 5) the base block [0, 1; 2, 4].

3. λ = 3, u = 8, w = 0. Let U = Z7 ∪ {∞}. Develop (mod 7) the base blocks
[0, 1; 3, 6],
[∞, 3; 0, 2].

4. λ = 3, u = 9, w = 0. Let U = Z8 ∪ {∞}. Develop (mod 8) the base blocks:
[0, 1; 4, 7],[∞, 3; 0, 2]. Add the following blocks: [0, 4; 2, 6], [1, 5; 3, 7].

5. λ = 3, u = 12, w = 0. Let U = Z11 ∪ {∞}. Develop (mod 11) the base
blocks [0, 1; 4, 10], [∞, 6; 0, 4], [0, 3; 4, 6].

6. λ = 4, u = 5, w = 11. Let V = Z5 ∪ {ai : i ∈ Z11}. Embed an S3(2, 4, 5)
on Z5 into an S3(2, 4, 16) on V . Paste an S(2, 4, 16) on V . The result is an
S4(2, 4, 16) on V which embeds an S3(2, 4, 5) on Z5.

7. λ = 4, u = 17, w = 2. Let U = {i, i′ : i ∈ Z8} ∪ {∞} and V = U ∪ {a, b}.
Take on U an S3(2, 4, 17). Put

C = {{∞, 1, 7}, {∞, 2, 0}, {∞, 3, 5}, {∞, 4, 6}, {1, 1′, 5′}, {2, 2′, 6′}, {3, 3′, 7′},
{4, 4′, 0′}, {1, 2′, 7′}, {2, 3′, 0′}, {3, 4′, 5′}, {4, 1′, 6′}, {5, 2′, 3′}, {6, 3′, 4′}, {7, 4′, 1′},
{0, 1′, 2′}, {5, 5′, 6′}, {6, 6′, 7′}, {7, 7′, 0′}, {0, 0′, 5′}}.

D = {∞, 1′, 3′}, {∞, 2′, 4′}, {∞, 5′, 7′}, {∞, 6′, 0′}, {1, 4′, 6′}, {2, 1′, 7′},
{3, 2′, 0′}, {4, 3′, 5′}, {1, 3′, 0}, {2, 4′, 5}, {3, 1′, 6}, {4, 2′, 7}, {1, 0′, 6}, {2, 5′, 7},
{3, 6′, 0}, {4, 7′, 5}, {5, 1′, 0′}, {6, 2′, 5′}, {7, 3′, 6′}, {0, 4′, 7′}}.

Take the blocks {a, x, y, z} for any {x, y, z} ∈ C and {b, x, y, z} for any
{x, y, z} ∈ D. At last add the blocks: {1, 2, 3, 4}, {5, 6, 7, 0},
{a, b, 1, 5}, {a, b, 2, 6}, {a, b, 3, 7}, {a, b, 4, 0}. The result is an S4(2, 4, 19) on
V which embeds an S3(2, 4, 17) on U .

8. λ = 4, u = 20, w = 2. Let U = {i, i′ : i ∈ Z10} and V = U ∪ {a, b}. Take on
U an S3(2, 4, 20). Put
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C = {{0′, 2, 4}, {1′, 1, 3}, {2′, 6, 8}, {3′, 5, 7}, {4′, 6, 3}, {5′, 1, 8},
{6′, 4, 5}, {7′, 7, 2}, {9, 1, 6}, {9, 2, 8}, {9, 3, 5}, {9, 4, 7}, {0, 0′, 5′},
{0, 1′, 6′}, {0, 2′, 7′}, {0, 3′, 4′}, {8′, 4, 4′}, {8′, 2, 2′}, {8′, 5, 5′}, {8′, 7, 1′},
{9′, 0′, 3}, {9′, 3′, 6}, {9′, 6′, 8}, {9′, 7′, 1}}.

D = {{0′, 6, 7}, {1′, 5, 8}, {2′, 1, 4}, {3′, 2, 3}, {4′, 7, 8}, {5′, 3, 4},
{6′, 1, 2}, {7′, 5, 6}, {9, 0′, 6′}, {9, 1′, 7′}, {9, 2′, 4′}, {9, 3′, 5′}, {0, 1, 7},
{0, 2, 5}, {0, 3, 8}, {0, 4, 6}, {8′, 3′, 1}, {8′, 7′, 3}, {8′, 0′, 8}, {8′, 6′, 6},
{9′, 2, 4′}, {9′, 5, 2′}, {9′, 4, 1′}, {9′, 7, 5′}}.

Take the blocks {a, x, y, z} for any {x, y, z} ∈ C and {b, x, y, z} for any
{x, y, z} ∈ D. At last add the blocks: {9, 0, 8′, 9′}, {0′, 1′, 2′, 3′}, {4′, 5′, 6′, 7′},
{0′, 4′, 1, 5}, {1′, 5′, 2, 6}, {2′, 6′, 3, 7}, {3′, 7′, 4, 8}, {a, b, 0′, 7′},
{a, b, 1′, 4′}, {a, b, 2′, 5′}, {a, b, 3′, 6′}. The result is an S4(2, 4, 22) on V which
embeds an S3(2, 4, 20)) on U .

9. λ = 4, u = 8, w = 14. Let U = {ai : i ∈ Z8}, W = Z14 and V = U ∪W .
Take on U an S3(2, 4, 8) . The edges of K14 may be factored into a set of
7 disjoint classes P1, P2,...,P7 where (i, j) ∈ Pk if and only of i − j ≡ k
(mod 14). For i ∈ Z14, let T0 = {i, 6 + i, 5 + i}, T1 = {i, 2 + i, 5 + i},
T2 = {i, 2 + i, 6 + i}, T3 = {i, 3 + i, 4 + i} be four sets of 14 triangles
covering respectively P1, P2,...,P6 repeated twice times. For i = 0, 1, 2, 3, put
Ti+4 = Ti. For i = 0, 1, ...., 7, construct the blocks {ai, x, y, z}, {x, y, z} ∈ Ti.
Let F0, F2,...,F6 be the 1-factors of a 1-factorization of the complete graph
K8 on U . For i = 0, 1, . . . , 6, construct the blocks {i, i+7, x, y}, {x, y} ∈ Fi.
The result is an S4(2, 4, 22) on V which embeds an S3(2, 4, 8) on U .

10. λ = 5, u = 5, w = 8. Let U = {ai : i ∈ Z5}, W = Z8 and V =
U ∪W . Take on U an S3(2, 4, 5). For i ∈ Z5, develop (mod 8) the base
block {ai, 0, 1, 3}. Add the blocks: {a0, a1, 0, 4}, {a0, a1, 1, 5}, {a0, a2, 2, 6},
{a0, a2, 3, 7}, {a0, a4, 0, 4}, {a0, a4, 1, 5}, {a0, a3, 2, 6}, {a0, a3, 3, 7}, {a1, a3, 0, 4},
{a1, a3, 1, 5}
{a1, a2, 2, 6}, {a1, a2, 3, 7}, {a2, a3, 0, 4}, {a2, a3, 1, 5}, {a1, a4, 2, 6}
{a1, a4, 3, 7}, {a2, a4, 0, 4}, {a2, a4, 1, 5}, {a3, a4, 2, 6}, {a3, a4, 3, 7}. The re-
sult is an S5(2, 4, 13) on V which embeds an S3(2, 4, 5) on U .

11. λ = 5, u = 8, w = 5. Let U = Z8, W = {a, b, c, d, e} and V = U ∪W . Take
on U an S3(2, 4, 8). Add the blocks:
{a, b, c, 1}, {a, 1, 2, 3}, {b, 1, 4, 5}, {c, 6, 7, 8}, {a, b, 1, 4}, {a, b, 2, 6},
{a, b, 3, 8}, {a, b, 5, 7}, {a, c, 1, 6}, {a, c, 2, 3}, {a, c, 4, 8}, {a, c, 5, 7},
{b, c, 1, 7}, {b, c, 2, 6}, {b, c, 3, 4}, {b, c, 5, 8}, {a, d, 2, 4}, {a, d, 3, 5},
{a, d, 4, 8}, {a, d, 2, 5}, {a, d, 6, 7}, {a, e, 1, 8}, {a, e, 6, 8}, {a, e, 5, 6},
{a, e, 3, 7}, {a, e, 4, 7}, {b, d, 1, 6}, {b, d, 3, 6}, {b, d, 4, 7}, {b, d, 3, 8},
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{b, d, 8, 5}, {b, e, 6, 4}, {b, e, 2, 7}, {b, e, 3, 7}, {b, e, 2, 8}, {b, e, 2, 5},
{c, d, 1, 2}, {c, d, 4, 6}, {c, d, 2, 7}, {c, d, 3, 5}, {c, d, 7, 8}, {c, e, 1, 3},
{c, e, 4, 5}, {c, e, 5, 6}, {c, e, 3, 4}, {c, e, 2, 8}, {d, e, 1, 5}, {d, e, 1, 7},
{d, e, 1, 8}, {d, e, 2, 4}, {d, e, 3, 6}. The result is an S5(2, 4, 13) on V which
embeds an S3(2, 4, 8) on U .

12. λ = 5, u = 21, w = 4. Let U = Z21 and V = Z5 ∪ {a0, a1, a2, a3}. Let
(U, C) be an S3(2, 4, 21) on Z21. Take on U a resolvable S2(2, 3, 21) having
the resolution classes Rj , j = 0, 1, ..., 19. For each i = 0, 1, 2, 3, place the
blocks {ai, x, y, z}, {x, y, z} ∈

⋃4
j=0R5i+j . Add the blocks of an S5(2, 4, 4)

on {a0, a1, a2, a3} and the result is an S5(2, 4, 25) on V which embeds an
S3(2, 4, 21) on U .

13. λ = 5, u = 17, w = 8. Let (U, C) be an S3(2, 4, 17) having U = (Z8 ×
{0, 1}) ∪ {∞} as point-set and let V be the set (Z8 × {0, 1, 2}) ∪ {∞}.
Let us develop (mod 8) the following 24 base blocks:
{00, 20, 40, 60}, {00, 40, 12, 52}, {00, 30, 72,∞}, {01, 22, 52,∞}, {01, 32, 52,∞},
{00, 01, 02, 12}, {00, 01, 02, 22}, {00, 11, 02, 12}, {00, 11, 02, 22}, {00, 21, 02, 12},
{00, 21, 12, 32}, {00, 31, 22, 62}, {00, 31, 42, 72}, {00, 41, 42, 72}, {00, 41, 62, 72},
{00, 51, 32, 72}, {00, 61, 22, 42}, {00, 61, 32, 62}, {00, 71, 22, 52}, {01, 11, 31, 52},
{01, 11, 41, 52}, {00, 10, 30, 62}, {00, 10, 52, 62}, {00, 51, 71, 32}.
We get 2 blocks from the first base block, 4 blocks from the second base
block, and 8 blocks from each one of the other twenty-two base blocks. Add
these 182 blocks to the 68 of C and denote by B the set containing all these
250 blocks. The result is an S5(2, 4, 25) (V,B) which embeds an S3(2, 4, 17)
(U, C).

14. λ = 5, u = 20, w = 5. Let (U, C) be an S3(2, 4, 20) having U = Z5×{0, 1, 2, 3}
as point-set and let V be the set Z5 × {0, 1, 2, 3, 4}.
Let us develop (mod 5) the following 31 base blocks: {03, 02, 01, 40},
{04, 03, 13, 23}, {04, 02, 12, 22}, {04, 01, 11, 21}, {04, 00, 10, 20}, {04, 14, 03, 23},
{04, 14, 02, 22}, {04, 14, 01, 21}, {04, 14, 00, 20}, {04, 14, 03, 02}, {04, 24, 03, 01},
{04, 24, 03, 00}, {04, 24, 02, 01}, {04, 24, 02, 00}, {04, 24, 01, 00}, {04, 13, 12, 11},
{04, 13, 22, 31}, {04, 13, 22, 31}, {04, 23, 42, 11}, {04, 23, 12, 30}, {04, 23, 32, 40},
{04, 33, 32, 40}, {04, 33, 32, 10}, {04, 43, 41, 10}, {04, 43, 41, 20}, {04, 43, 41, 40},
{04, 33, 11, 20}, {04, 12, 21, 40}, {04, 22, 41, 20}, {04, 42, 21, 10}, {04, 42, 21, 30}.
We get 5 blocks from each base block. Add these 155 blocks to the 95 of
C and denote by B the set containing all these 250 blocks. The result is an
S5(2, 4, 25) (V,B) which embeds an S3(2, 4, 20) (U, C).

15. λ = 5, u = 41, w = 8. Let (U, C) be an S3(2, 4, 41) having U = (Z8 ×
{0, 1, 2, 3, 4})∪{∞} as point-set and let V be the set (Z8×{0, 1, 2, 3, 4, 5})∪
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{∞}. Let us develop (mod 8) the following 72 base blocks:
{05, 04, 14, 24}, {05, 04, 24, 54}, {05, 03, 13, 23}, {05, 03, 23, 53}, {05, 02, 12, 22},
{05, 02, 22, 52}, {05, 01, 11, 21}, {05, 01, 21, 51}, {05, 00, 10, 20}, {05, 00, 20, 50},
{05, 15, 04, 44}, {05, 15, 03, 43}, {05, 15, 02, 42}, {05, 15, 01, 41}, {05, 15, 00, 40},
{05, 25, 04, 03}, {05, 25, 14, 02}, {05, 25, 14, 11}, {05, 25, 14, 10}, {05, 35, 13, 12},
{05, 35, 13, 11}, {05, 35, 13, 10}, {05, 35, 12, 11}, {05, 35, 12, 10}, {05, 45, 11, 10},
{05, 14, 23, 12}, {05, 24, 13, 32}, {05, 24, 33, 42}, {05, 24, 43, 32}, {05, 34, 23, 31},
{05, 34, 53, 21}, {05, 34, 63, 21}, {05, 34, 73, 41}, {05, 44, 23, 20}, {05, 44, 73, 20},
{05, 54, 33, 20}, {05, 44, 22, 51}, {05, 44, 22, 61}, {05, 54, 22, 31}, {05, 54, 42, 21},
{05, 54, 72, 40}, {05, 64, 32, 50}, {05, 64, 72, 30}, {05, 64, 31, 70}, {05, 64, 41, 70},
{05, 74, 71, 30}, {05, 33, 32, 51}, {05, 43, 42, 51}, {05, 53, 52, 71}, {05, 43, 52, 70},
{05, 73, 72, 40}, {05, 43, 52, 60}, {05, 73, 62, 40}, {05, 33, 71, 50}, {05, 53, 41, 60},
{05, 53, 61, 60}, {05, 52, 41, 30}, {05, 42, 31, 50}, {05, 72, 61, 30}, {04, 53, 32, 30},
{04, 53, 31, 40}, {04, 43, 31, 20}, {04, 32, 41, 20}, {04, 42, 21, 30}, {03, 12, 71, 40},
{05, 04, 00,∞}, {05, 02, 01,∞}, {05, 03, 01,∞}, {04, 03, 02,∞}, {05, 45, 00,∞},
{05, 25, 45, 65}, {03, 12, 11, 40}.

We get 2 blocks from the first base block and 8 blocks from each one of
the seventy-one other base blocks. Add these 570 blocks to the 410 of C
and denote by B the set containing all these 980 blocks. The result is an
S5(2, 4, 49) (V,B) which embeds an S3(2, 4, 41) (U, C).

16. λ = 6, u = 5, w = 1. Let U = Z5 and V = Z5 ∪ {∞}. Let (U, C) be an
S3(2, 4, 5) on Z5. Develop (mod 5) the base blocks: {∞, 0, 1, 2}, {∞, 0, 2, 3}.
The result is an S6(2, 4, 6) on V which embeds an S3(2, 4, 5) on Z5.

17. λ = 6, u = 5, w = 5. Let U = Z5 × {0}, W = Z5 × {1} and V =
U ∪W . Let (U, C) be an S3(2, 4, 5) on U . Develop (mod 5) the base blocks:
{00, 10, 01, 11}, {00, 10, 21, 31}, {00, 10, 31, 41}, {00, 20, 01, 21}, {00, 20, 41, 11},
{00, 20, 11, 31}, {00, 01, 21, 31}, {00, 01, 11, 41}. The result is an S6(2, 4, 10)
on V which embeds the given S3(2, 4, 5) on U .

18. λ = 6, u = 8, w = 1. Let U = Z8 and V = Z8 ∪ {∞}. Take on
U an S3(2, 4, 8) and add the blocks {∞, 0, 1, 4}, {∞, 1, 2, 5}, {∞, 2, 3, 6},
{∞, 3, 0, 7}, {∞, 4, 5, 0}, {∞, 5, 6, 1}, {∞, 6, 7, 2}, {∞, 7, 4, 3}, {∞, 0, 1, 6},
{∞, 1, 2, 7}, {∞, 2, 3, 4}, {∞, 3, 0, 5}, {∞, 4, 5, 2}, {∞, 5, 6, 3}, {∞, 6, 7, 0},
{∞, 7, 4, 1}, {0, 1, 2, 3}, {4, 5, 6, 7} {0, 2, 4, 6}, {1, 3, 5, 7}, {0, 2, 5, 7}, {1, 3, 4, 6}.
The result is an S6(2, 4, 9) on V which embeds an S3(2, 4, 8) on U .

19. λ = 6, u = 17, w = 1. Let U = Z17 and V = Z17∪{∞}. Take an S3(2, 4, 17)
on U . Develop (mod 17) the base blocks: {∞, 0, 6, 7}, {∞, 0, 2, 7}, {0, 4, 6, 9},
{0, 1, 3, 12}, {0, 4, 7, 8}. The result is an S6(2, 4, 18) on V which embeds an
S3(2, 4, 17) on Z17.
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20. λ = 6, u = 8, w = 2. Let U = Z8 and V = Z8 ∪ {a, b}. Take on U an
S3(2, 4, 8) and add the blocks
{a, b, 0, 2}, {a, b, 0, 2}, {a, b, 1, 3}, {a, b, 1, 3}, {a, b, 4, 6}, {a, b, 5, 7},
{a, 0, 1, 4}, {a, 1, 2, 5}, {a, 2, 3, 6}, {a, 3, 0, 7}, {a, 0, 4, 5}, {a, 0, 6, 7},
{a, 1, 4, 7}, {a, 1, 6, 5}, {a, 2, 5, 7}, {a, 2, 4, 6}, {a, 3, 4, 5}, {a, 3, 6, 7},
{b, 0, 1, 6}, {b, 1, 2, 7}, {b, 2, 3, 4}, {b, 3, 0, 5}, {b, 0, 5, 6}, {b, 0, 4, 7},
{b, 1, 4, 6}, {b, 1, 5, 7}, {b, 2, 4, 5}, {b, 2, 6, 7}, {b, 3, 4, 7}, {b, 3, 5, 6},
{0, 1, 2, 3}. The result is an S6(2, 4, 10) on V which embeds an S3(2, 4, 8) on
U .

21. λ = 6, u = 29, w = 7. Let U = Z29, W = {ai : i ∈ Z7} and V = U ∪W .
Take an S3(2, 4, 29) and develop (mod 29) the base blocks: {a0, 0, 1, 3},
{a0, 0, 4, 11}, {a1, 0, 10, 24}, {a1, 0, 11, 12}, {a2, 0, 5, 7}, {a2, 0, 5, 8}, {a3, 0, 10, 23},
{a3, 0, 12, 25}, {a4, 0, 8, 14}, {a4, 0, 9, 18}, {a5, 0, 12, 13}, {a5, 0, 8, 10}, {a6, 0, 14, 20},
{a6, 0, 4, 7}. Add the blocks of an S6(2, 4, 7) on W . The result is an
S6(2, 4, 36) on V which embeds an S3(2, 4, 29) on U .

22. λ = 7, u = 9, w = 4. Let U = Z3 × {0, 1, 2}, W = {ai : i ∈ Z4} and
V = U ∪W . Take on U an S3(2, 4, 9). Develop (mod 3) the base blocks:
{a1, a2, 00, 10}, {a1, a2, 01, 02}, {a1, a3, 01, 11},
{a1, a3, 00, 02}, {a1, a0, 02, 12}, {a1, a0, 00, 01}, {a2, a3, 00, 12},
{a2, a3, 01, 12}, {a2, a0, 00, 11}, {a2, a0, 01, 22}, {a3, a0, 00, 21},
{a3, a0, 00, 22}. Take on U a resolvable S2(2, 3, 9) having the resolution
classes Rj , j = 0, 1, ..., 7. For each i = 0, 1, 2, 3, place the blocks {ai, x, y, z},
{x, y, z} ∈

⋃1
j=0R2i+j . Add the blocks of an S(2, 4, 13) on V and the result

is an S7(2, 4, 13) on V which embeds an S3(2, 4, 9) on U .

23. λ = 7, u = 29, w = 8. Let U = Z29, W = {ai : i ∈ Z8} and V = U ∪W .
Take on U ∪ {ai : i ∈ Z7} an S6(2, 4, 36) which embeds an S3(2, 4, 29) on U
(see case 21 in Appendix). Construct on U ∪ {ai : i ∈ Z7} ∪ {∞i : i ∈ Z7}
a 4-GDD of type 71136 having {∞i : i ∈ Z7} as a group of size 7. Replace,
for each i ∈ Z7, ∞i with a7 and take the blocks so obtained. The result is
an S7(2, 4, 37) on V which embeds an S3(2, 4, 29) on U .

24. λ = 7, u = 32, w = 5. Let U = Z31 ∪ {∞}, W = {ai : i ∈ Z5} and
V = U ∪ W . Take an S3(2, 4, 32) on U . Develop (mod 31) the base
blocks: {∞, 0, 11, 12}, {a0, 0, 7, 9}, {a0, 0, 5, 8}, {a1, 0, 13, 27}, {a1, 0, 14, 16},
{a2, 0, 13, 20}, {a2, 0, 6, 14}, {a3, 0, 3, 10}, {a3, 0, 12, 13}, {a4, 0, 1, 3}, {a4, 0, 12, 20},
{0, 5, 9, 15}, {0, 5, 9, 15}. Add the blocks of an S(2, 4, 37) on V . The result
is an S7(2, 4, 37) on V which embeds an S3(2, 4, 32) on U .
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25. λ = 7, u = 53, w = 8. Let U = Z48 ∪ {bi : i ∈ Z5}, W = {ai : i ∈ Z8} and
V = U ∪W . Construct an S3(2, 4, 53) on U . Give weight 7 to every point of
W and weight 4 to every point of {bi : i ∈ Z5}, costruct on V four 4-GDD
of type 191148. On {ai, i ∈ Z8} ∪ {bi : i ∈ Z5}, place an S7(2, 4, 13) (V,B)
which embeds an S3(2, 4, 5) (Y, C) on {bi : i ∈ Z5}. Delete the blocks of C
and take the blocks so obtained. The result is an S7(2, 4, 61) on V which
embeds an S3(2, 4, 53) on U .

26. λ = 7, u = 44, w = 5. Let U = Z39 ∪ {bi : i ∈ Z5}, W = {ai : i ∈ Z5} and
V = U ∪W . Take an S3(2, 4, 44) on U . Give weight 6 to every point of W
and weight 3 to every point of Y = {bi : i ∈ Z5}, costruct on V two 4-GDD
of type 191139 and a 4-GDD of type 71139. On {ai : i ∈ Z5} ∪ {bi : i ∈ Z5},
place an S6(2, 4, 10) (X,B) which embeds an S3(2, 4, 5) (Y, C) on {bi : i ∈ Z5}
(see case 17). Delete the blocks of C and take the blocks so obtained. Finally
paste an S(2, 4, 49) on V . The result is an S7(2, 4, 49) on V which embeds
an S3(2, 4, 44) on U .

27. λ = 8, u = 8, w = 2. The result follows by pasting an S2(2, 4, 10) to an
S6(2, 4, 10) which embeds an S3(2, 4, 8) on U (see case 20).

28. λ = 10, u = 5, w = 2. Let U = Z5 and V = Z5 ∪ {∞1,∞}. Construct
on Z5 ∪ {∞1} an S6(2, 4, 6) which embeds an S3(2, 4, 5) on Z5 (see case 16).
Take on Z5 ∪ {∞1} an S4(2, 3, 6) having block set B and form the blocks
{∞, x, y, z}, for each {x, y, z} ∈ B. The result is an S10(2, 4, 7) on V which
embeds an S3(2, 4, 5) on U .
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Chapter 6

Embeddings of kite designs

6.1 Introduction and definitions

In this chapter we study the minimum embedding of a KS(u, λ) into a KS(u+w, µ).
To begin with, note what follows:

1. If (V,B) is a KS(u + w, µ) embedding a KS(u, λ) (U, C), then C ⊆ B and
replacing C with C′, where C′ is any decomposition of Ku into kites, gives a
KS(u + w, µ) embedding (U, C′), hence proving the existence of a KS(u, λ)
embedded into a KS(u+w, µ) will imply that any KS(u, λ) can be embedded
into a KS(u+ w, µ).

2. Taking the union of a KS(u, ν) and a KS(u, λ) (clearly, when they both
exist) gives a KS(u, λ) embedded into a KS(u, λ+ ν);

3. If there exists a KS(u, λ) embedded into a KS(u + w, µ) and u + w is an
admissible order for the existence of a KS of index ν, then any KS(u, λ) can
be embedded into a KS(u+ w, µ+ ν).

To obtain our results we will make a massive use of the difference method. Let
Du denote the following set with elements from Zu:

Du =

{

d : 1 ≤ d ≤ u
2 if u is even;

d : 1 ≤ d ≤ u−1
2 if u is odd.

The elements of Du are called differences of Zu. For any d ∈ Du, if d 6=
u
2 , then

we can form a single 2-factor {{i, d+ i} : i ∈ Zu}, if u is even and d =
u
2 , then we

can form a 1-factor {{i, u2 + i} : 0 ≤ i ≤ u
2 − 1}. It is also worth remarking that
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2-factors obtained from distinct differences are disjoint from each other and from
the 1-factor.

LetW = {∞1,∞2, . . . ,∞w}, W ∩Zu = ∅. Denote by 〈Zu∪W, {d1, d2, . . . , dt}〉
the graph G with vertex set V (G) = Zu ∪W and edge set E(G) = {{x, y} : x −
y or y− x ≡ di (mod u), for some i ∈ {1, 2, . . . , t}} ∪ {{∞, j} : ∞ ∈W, j ∈ Zu}.
When W = ∅, we simply write 〈Zu, {d1, d2, . . . , dt}〉.

Lemma 6.1.1. [55] For any difference d ∈ Du \ {
u
2} such that the integer r =

u
gcd(u,d) is even, the graph 〈Zu ∪ {∞}, {d}〉 can be decomposed into kites.

Lemma 6.1.2. [55] Let u ≡ 0 (mod 8). The graph 〈Zu ∪ {∞1,∞2}, {1,
u
2}〉 can

be decomposed into kites.

Lemma 6.1.3. For any difference d ∈ Du\{
u
2}, the graph 〈Zu, {d}〉∪3Ku,1, where

Ku,1 is the star based on Zu ∪ {∞}, can be decomposed into kites.

Proof Consider the kites (i, d+ i,∞)-(2d+ i), i ∈ Zu. 2

Lemma 6.1.4. For any two distinct differences d1, d2 ∈ Du \ {
u
2}, the graph

〈Zu, {d1, d2}〉∪2Ku,1, where Ku,1 is the star based on Zu∪{∞}, can be decomposed
into kites.

Proof Consider the kites (∞, d1 + i, i)-(d2 + i), i ∈ Zu. 2

We quote the following known result ([55], [56]) for later use.

Theorem 6.1.5. Any KS(u, λ) can be embedded into a KS(v, λ) if and only if
v ≥ 5

3u+ 1 or v = u, and u, v are admissible orders.

6.2 Minimum embedding of a KS(u, 2) into a

KS(u + w, 3)

In this section we determine the minimum embedding of a KS(u, 2) into a KS(u+
w, 3). Since a KS(u, 2) exists if and only if u ≡ 0, 1 (mod 4) and a KS(u + w, 3)
exists if and only if u+w ≡ 0, 1 (mod 8), w = 0 when u ≡ 0, 1 (mod 8). If u ≡ h
(mod 8), with h ∈ {4, 5}, then w ≥ 8− h; here we prove that w = 8− h for every
u ≡ h (mod 8) and h ∈ {4, 5}.

Proposition 6.2.1. For u = 8k + h and h = 4, 5, any KS(u, 2) can be embedded
into a KS(u+ w, 3), w = 8− h.
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Proof For u = 4, it follows from Theorem 6.1.5. For u = 5, 12, 13, see Cases
1, 2, 3 in Appendix. Let k ≥ 2 and (U,K) be a KS(u, 2), u = 8k + h and h = 4, 5;
without loss of generality, we can assume U = Z8k ∪ H, where H = {as : s =
1, 2, . . . , h}. Let W = {∞1,∞2, . . . ,∞w} and take a KS(h + w, 3) (H ∪W,K1)
which embeds a KS(h, 2) (H,K∗1). Consider the collection K2 of kites obtained by
translating the k − 2 base blocks

(4k − 1, 2k + 2, 0)− (2k − 2),
(4k − 2, 2k + 3, 0)− (2k − 4),
. . .
(3k + 2, 3k − 1, 0)− 4.

The result is a decomposition of 〈Z8k, D〉, where D = D8k \ {1, 2, 2k − 1, 2k, 2k +
1, 3k, 3k + 1, 4k}. Handle the remaining differences as follows and say K3 the
resulting collection of kites: by Lemma 6.1.2 arrange the differences 1 and 4k
with the vertices a1 and a2; by Lemma 6.1.1 the differences 2k − 1 and 2k + 1
with a3 and a4, respectively, and by Lemma 6.1.3 the differences 2k, 3k, and
3k + 1 with ∞1, ∞2, and ∞3, respectively; finally, if h = 4, by Lemma 6.1.3
arrange 2 with ∞4, while if h = 5, by Lemma 6.1.1 arrange 2 with a5. Then
(Z8k ∪H ∪W,K ∪ (K1 \ K

∗
1) ∪K2 ∪K3) is a KS(u+w, 3) which embeds the given

KS(u, 2). 2

6.3 Minimum embedding of a KS(u, 4) into a

KS(u + w, 5)

In this section we determine the minimum embedding of a KS(u, 4) into a KS(u+
w, 5). Since a KS(u, 4) exists for every u ≥ 4 and a KS(u+w, 5) exists if and only
if u + w ≡ 0, 1 (mod 8), w = 0 when u ≡ 0, 1 (mod 8). If u ≡ h (mod 8), with
h ∈ {2, 3, 4, 5, 6, 7}, then w ≥ 8− h; here we prove that w = 8− h for every u ≡ h
(mod 8) and h ∈ {2, 3, 4, 5, 6, 7}.

Lemma 6.3.1. There exists a decomposition of 4(K8 \K2) into kites.

Proof Consider the following kites on Z6 ∪ {a, b}: (a, 1 + i, i) − b twice; (b, 2 +
i, i)− (3 + i) and (3 + i, 1 + i, i)− (2 + i) for i ∈ Z6; (2i, 2 + 2i, 1 + 2i)− (3 + 2i)
for i = 0, 1, 2. 2

Proposition 6.3.2. For u = 8k + 2, u ≥ 10, any KS(u, 4) can be embedded into
a KS(u+ 6, 5).
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Proof For k = 1, 2, see Cases 4, 5 in Appendix. Let k ≥ 3, H = {a, b}, W =
{∞j : j ∈ Z6}, and (Z8k ∪ H,K) be a KS(u, 4). By Lemma 6.3.1 decompose
4(K8 \K2) on H ∪W (with H as hole) into kites and say K1 the resulting set of
kites together with those ones of a KS(8, 1) on the vertex set H ∪W . Consider
the collection K2 of kites obtained by translating the k − 3 base blocks

(4k − 2, 2k + 3, 0)− (2k − 4),
(4k − 3, 2k + 4, 0)− (2k − 6),
. . .
(3k + 2, 3k − 1, 0)− 4.

The result is a decomposition of 〈Z8k, D〉, where D = D8k \ {1, 2, 2k − 3, 2k −
2, 2k−1, 2k, 2k+1, 2k+2, 3k, 3k+1, 4k−1, 4k}. Handle the remaining differences
as follows and say K3 the resulting collection of kites: arrange the vertices a, b
with the differences 1, 4k by using Lemma 6.1.2 and the infinity points with the
10 differences left, say dj , d

′
j , for j ∈ Z6 \ {5}, in the blocks (i, i + dj ,∞j) − (i +

1), (i,∞j , i+d
′
j)−∞5, j ∈ Z6\{5}, i ∈ Z8k. Then (Z8k∪H∪W,K∪K1∪K2∪K3)

is a KS(u+ 6, 5) which embeds the given KS(u, 4). 2

Proposition 6.3.3. For u = 8k + 3, u ≥ 11, any KS(u, 4) can be embedded into
a KS(u+ 5, 5).

Proof For k = 1, 2, see Cases 7, 8 in Appendix. Let k ≥ 3, H = {ai : i ∈ Z4},
W = {∞j : j ∈ Z5}, and (Z8k−1∪H,K) be a KS(u, 4). Take a KS(9, 5) (H∪W,K1)
which embeds a KS(4, 4) (H,K∗1) (see Case 6 in Appendix). Consider the collection
K2 of kites obtained by translating the k − 3 base blocks

(4k − 3, 2k + 4, 0)− (2k − 6),
(4k − 4, 2k + 5, 0)− (2k − 8),
. . .
(3k + 1, 3k, 0)− 2.

The result is a decomposition of 〈Z8k−1, D〉, where D = D8k−1\{2k−5, 2k−4, 2k−
3, 2k − 2, 2k − 1, 2k, 2k + 1, 2k + 2, 2k + 3, 4k − 2, 4k − 1}. Handle the remaining
differences as follows and say K3 the resulting collection of kites: arrange ∞4

with the differences 2k − 5, 2k − 4, 2k − 3 by using Lemmas 6.1.3 and 6.1.4 and
the vertices aj , ∞j , for j = 0, 1, 2, 3, with the 8 differences left, say dj , d

′
j , for

j = 0, 1, 2, 3, in the blocks (i, dj + i,∞j)− (1+ i), (i,∞j , d
′
j + i)− aj , j = 0, 1, 2, 3

and i ∈ Z8k−1. Then (Z8k−1 ∪H ∪W,K ∪ (K1 \ K
∗
1) ∪ K2 ∪ K3) is a KS(u+ 5, 5)

which embeds the given KS(u, 4). 2
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Proposition 6.3.4. For u = 8k+4, any KS(u, 4) can be embedded into a KS(u+
4, 5).

Proof For k = 0, it follows from Theorem 6.1.5. For k = 1, 2, see Cases 9, 10
in Appendix. Let k ≥ 3, H = {a1, a2, a3, a4}, W = {∞1,∞2,∞3,∞4}, and
(Z8k ∪H,K) be a KS(u, 4). Take a KS(8, 5) (H ∪W,K1) which embeds a KS(4, 4)
(H,K∗1). Consider the collection K2 of kites obtained by translating the k− 3 base
blocks

(4k − 1, 2k + 2, 0)− (2k − 2),
(4k − 2, 2k + 3, 0)− (2k − 4),
. . .
(3k + 3, 3k − 2, 0)− 6.

The result is a decomposition of 〈Z8k, D〉, whereD = D8k\{1, 2, 3, 4, 2k−1, 2k, 2k+
1, 3k−1, 3k, 3k+1, 3k+2, 4k}. Handle the remaining differences as follows and say
K3 the resulting collection of kites: by Lemma 6.1.2, arrange the differences 1 and
4k with the vertices a1 and a2; by Lemma 6.1.1, 2k− 1 and 2k+1 with a3 and a4,
respectively, and arrange the remaining differences with the infinity vertices in the
blocks (i, 3k−1+i,∞3)−(1+i), (i, 2k+i,∞1)−(1+i), (i, 3+i,∞2)−(1+i), (i, 3k+
1+i,∞4)−(1+i), (∞1, i, 3k+i)−∞4, (∞3, i, 4+i)−∞4, (∞2, i, 3k+2+i)−(3k+i),
for i ∈ Z8k. Then (Z8k ∪H ∪W,K ∪ (K1 \ K

∗
1) ∪K2 ∪ K3) is a KS(u+ 4, 5) which

embeds the given KS(u, 4). 2

Proposition 6.3.5. For every u = 8k + 5, any KS(u, 4) can be embedded into a
KS(u+ 3, 5).

Proof For k = 0, 1, 2, see Cases 11, 12, 13 in Appendix. Let k ≥ 3, H =
{a1, a2, a3, a4, a5}, W = {∞1,∞2,∞3}, and (Z8k ∪ H,K) be a KS(u, 4). Take
a KS(8, 5) (H ∪W,K1) which embeds a KS(5, 4) (H,K

∗
1). Consider the collection

K2 of kites obtained by translating the k − 3 base blocks

(4k − 1, 2k + 2, 0)− (2k − 2),
(4k − 2, 2k + 3, 0)− (2k − 4),
. . .
(3k + 3, 3k − 2, 0)− 6.

The result is a decomposition of 〈Z8k, D〉, whereD = D8k\{1, 2, 3, 4, 2k−1, 2k, 2k+
1, 3k − 1, 3k, 3k + 1, 3k + 2, 4k}. Handle the remaining differences as follows and
say K3 the resulting collection of kites: by Lemma 6.1.2, arrange the differences
1 and 4k with the vertices a1 and a2; by Lemma 6.1.1, arrange 4, 2k with a3, a4,
respectively. Arrange the differences 2, 2k−1, 2k+1 with a5 in the blocks (i, 2k−
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1 + i, 2k + 1 + i) − a5, i ∈ Z8k, and the remaining differences with the infinity
vertices in the blocks (i, 3 + i,∞1)− (1 + i), (i, 3k + 1 + i,∞2)− (1 + i), (i, 3k −
1+ i,∞3)− (1+ i), (∞1, i, 3k+ i)−∞3, (∞2, i, 3k+2+ i)−∞3, i ∈ Z8k}. Then
(Z8k ∪H ∪W,K ∪ (K1 \ K

∗
1) ∪ K2 ∪ K3) is a KS(u+ 3, 5) which embeds the given

KS(u, 4). 2

Proposition 6.3.6. For u = 8k+ 6 any KS(u, 4) can be embedded into a KS(u+
2, 5).

Proof For k = 0, 1, 2, see Cases 14, 15, 16 in Appendix. Let k ≥ 3, H =
{a1, a2, . . . , a6}, W = {∞1,∞2}, and (Z8k ∪H,K) be a KS(u, 4). Take a KS(8, 5)
(H ∪W,K1) which embeds a KS(6, 4) (H,K

∗
1). Consider the collection K2 of kites

obtained by translating the k − 3 base blocks

(4k − 1, 2k + 2, 0)− (2k − 2),
(4k − 2, 2k + 3, 0)− (2k − 4),
. . .
(3k + 3, 3k − 2, 0)− 6.

The result is a decomposition of 〈Z8k, D〉, whereD = D8k\{1, 2, 3, 4, 2k−1, 2k, 2k+
1, 3k − 1, 3k, 3k + 1, 3k + 2, 4k}. Handle the remaining differences as follows and
say K3 the resulting collection of kites: by Lemma 6.1.2, arrange the differences 1
and 4k with the vertices a1 and a2; by Lemma 6.1.1, arrange 2, 4, 2k− 1, 2k with
a3, a4, a5, a6, respectively; finally, by using Lemmas 6.1.3 and 6.1.4 arrange the six
difference left with ∞1, and ∞2. Then (Z8k ∪H ∪W,K ∪ (K1 \ K

∗
1) ∪ K2 ∪ K3) is

a KS(u+ 2, 5) which embeds the given KS(u, 4). 2

Proposition 6.3.7. For u = 8k+7, any KS(u, 4) can be embedded into a KS(u+
1, 5).

Proof Let (Zu,K) be a KS(u, 4), u = 8k+7. Consider the collection K1 of kites
obtained by translating the k base blocks

(4k, 2k + 1, 0)− 2k
(4k − 1, 2k + 2, 0)− (2k − 2),
. . .
(3k + 1, 3k, 0)− 2.

the result is a decomposition of 〈Z8k+7, D〉, where D = Du\{4k+1, 4k+2, 4k+3}.
Consider the set of kites K2 = {(∞, i, 4k+1+i)−(−4+i), (i, 4k+3+i,∞)−(1+i) :
i ∈ Zu}. Then (Zu ∪ {∞},K ∪K1 ∪K2) is a KS(u+ 1, 5) which embeds the given
KS(u, 4). 2
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Proposition 6.3.8. For u = 8k + h, with 2 ≤ h ≤ 7, u ≥ 4, any KS(u, 4) can be
embedded into a KS(u+ w, 5), where w = 8− h.

Proof It follows from Propositions 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 6.3.7. 2

6.4 Minimum embedding of a KS(u, 4) into a

KS(u + w, 6)

In this section we determine the minimum embedding of a KS(u, 4) into a KS(u+
w, 6). Since a KS(u, 4) exists for every u ≥ 4 and a KS(u+w, 6) exists if and only
if u + w ≡ 0, 1 (mod 4), w = 0 when u ≡ 0, 1 (mod 4). If u ≡ h (mod 4), with
h ∈ {2, 3}, then w ≥ 4− h; here we prove that w = 4− h for every u ≡ h (mod 4)
and h ∈ {2, 3}.

Proposition 6.4.1. For u = 4k + 2, u ≥ 6, any KS(u, 4) can be embedded into a
KS(u+ 2, 6).

Proof For k = 2p+ 1 the thesis follows from Proposition 6.3.6. Let k = 2p and
let (Z8p ∪ {a, b},B) be a KS(8p+ 2, 4). Consider the kites obtained by translating
the 2p− 2 base blocks

(0, 4p− 3, 4p− 1)− (4p+ 3),
(0, 4p− 5, 4p− 2)− (4p+ 4),
. . .
(0, 3, 2p+ 2)− 6p.

Now handle the remaining differences as follows: by applying Lemma 6.1.2 twice,
arrange the differences 1 and 4p with the vertices a and b; arrange the infinity points
with the four differences left in the kites (i, 2+i,∞0)−(1+i), (i, 2p+i,∞1)−(1+i),
(∞1, i, 2p+1+ i)−∞0, (∞0, i, 4p−1+ i)−∞1, i ∈ Z8p. Finally, consider the kites
(a,∞1,∞0) − b, (b,∞1,∞0) − a, (a,∞1,∞0) − b, (b,∞0,∞1) − a, (a,∞0,∞1) −
b, (b,∞0,∞1) − a, (∞1, b, a) − ∞0, (∞0, a, b) − ∞1 to obtain a KS(8p + 4, 6) on
Z8p ∪ {a, b,∞0,∞1} which embeds (Z8p ∪ {a, b},B). 2

Proposition 6.4.2. For u = 4k + 3, u ≥ 7, any KS(u, 4) can be embedded into a
KS(u+ 1, 6).

Proof For k = 2p+ 1, the thesis follows from Proposition 6.3.7. Let k = 2p and
(Zu,K) be a KS(8p+3, 4). Consider the kites obtained by translating the 2p base
blocks
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(0, 4p− 1, 4p)− (4p+ 2),
(0, 4p− 3, 4p− 1)− (4p+ 3),
. . .
(0, 1, 2p+ 1)− (6p+ 1),

together with the kites (i, 4p + 1 + i,∞) − (1 + i), i ∈ Z8p+3, twice repeated, to
obtain a KS(8p+ 4, 6) on Zu ∪ {∞} which embeds (Zu,B). 2

6.5 Main theorem

Theorem 6.5.1. The minimum value of w such that a KS(u, λ) can be embedded
into a KS(u+ w, µ) is:

λ u ≥ 4 µ ≥ λ w

any 0, 1 (mod 8) any 0

even 4, 5 (mod 8) even 0

0 (mod 4) 2, 3 (mod 4) 0 (mod 4) 0

0 (mod 4) 4k + h, h = 2, 3 2 (mod 4), µ ≥ 3λ/2 4− h

0 (mod 4) 8k + h, 2 ≤ h ≤ 7 odd, µ ≥ 5λ/4 8− h

2 (mod 4) 8k + h, h = 4, 5 odd, µ ≥ 5λ/4 8− h

Proof The conclusion is trivial in the first three cases.
If λ = 4l and u = 4k+ h, h = 2, 3, then for every even µ = 6l+2q take l copies of
a KS(u, 4) embedded into a KS(u + w, 6) from Propositions 6.4.1 and 6.4.2 so to
obtain a KS(u, 4l) which is embedded into a KS(u+ w, 6l + 2q).
If λ = 4l and u = 8k + h, 2 ≤ h ≤ 7, then for every odd µ = 5l + q take l copies
of a KS(u, 4) embedded into a KS(u+ w, 5) from Proposition 6.3.8 so to obtain a
KS(u, 4l) which is embedded into a KS(u+ w, 5l + q).
If λ = 4l + 2 and u = 8k + h, h = 4, 5, then for every odd µ = 5l + q + 3 embed
a KS(u, 4l) into a KS(u + w, 5l + q) and then paste a KS(u, 2) embedded into a
KS(u+w, 3) from Proposition 6.2.1 so to obtain a KS(u, 4l+2) which is embedded
into a KS(u+ w, 5l + q + 3). 2

6.6 Conclusion

Taking account that if (U ∪W,B) is a KS(u + w, µ) which embeds a KS(u, λ)
(U, C), then each block in B \ C contains at most three pairs of U ×W , it follows
that

µ
uw

3
≤ µ

(u+ w)(u+ w − 1)

8
− λ

u(u− 1)

8
.
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We formulate the following

Conjecture: For every fixed triples of parameters u, λ, and µ, with µ ≥ λ,
any KS(u, λ) can be embedded into a KS(u + w̄, µ), where w̄ is the minimum
admissible value for the existence of a KS(u+ w̄, µ) such that the above inequality
is satisfied.

Theorem 6.5.1 proves the conjecture, fixed any pair of parameters u and λ, for
every µ ≥ λ, with the exception of a finite set of values:

1. for λ < µ < 5λ/4, when u 6≡ 0, 1 (mod 8), µ is odd, and λ is even;

2. for λ < µ < 3λ/2, when u ≡ 2, 3 (mod 4), µ ≡ 2 (mod 4), and λ ≡ 0
(mod 4).

Appendix to Chapter 6

In this appendix we list some embeddings of a KS(u, λ) into a KS(u+ w, µ).

1. λ = 2, u = 5, µ = 3, w = 3

Add the following blocks to a KS(5, 2) on Z5: (0, 1,∞3) − 3, (2, 4, ∞3) −
0, (2, 3,∞3) − 4, (3, 4,∞1) − 0, (0, 4,∞1) − 1, (0, 2,∞2) − 3, (1, 3,∞2) −
4, (1, 4,∞2)−2, (∞1,∞2,∞3)−4, (4,∞2,∞1)−2, (∞2,∞3, 0)−∞1, (∞2,∞3, 1)−
∞1, (2,∞3,∞1)− 3, (3,∞1,∞3)− 1, (1, 2,∞1)−∞2, (0, 3, ∞2)− 2.

2. λ = 2, u = 12, µ = 3, w = 4

Let (Z12,K) be a KS(12, 2). Consider the following sets of blocks: K1 =
{(0, 4, 8)−2, (1, 5, 9)−3, (2, 6, 10)−4, (3, 7, 11)−5, (0, 6,∞3)−5, (∞4,∞1,∞2)−
∞3}, K2 = {(i, 1+i,∞4)−(2+i) : i ∈ Z12}, K3 = {(i, 2+i,∞1)−(1+i) : i ∈
Z12}, K4 = {(i, 3+ i,∞3)− (4 + i) : i ∈ Z12}, K5 = {(i, 5+ i,∞2)− (6 + i) :
i ∈ Z12}. Replace in K4 the kites with tails {∞3, 0}, {∞3, 5}, {∞3, 6} by
(8, 11,∞3) − ∞4, (4,∞3, 1) − 7, (2, 5,∞3) − ∞1. If (W,K5), where W =
{∞1,∞2,∞3,∞4}, is a KS(4, 2), then (Z12∪W,K∪ (∪

5
i=1Ki)) is a KS(16, 3)

which embeds (Z12,K).

3. λ = 2, u = 13, µ = 3, w = 3

Add the following sets of blocks to a KS(13, 2) on Z13: K1 = {(9, 3, 0) −
6, (4, 1, 10)−0, (3, 7, 10)−6}, K2 = {(7, 11, 1)−∞1, (8, 12, 2)−∞1, (5, 11, 2)−
∞0, (6, 12, 3) − ∞2, (7, 4, 0) − ∞1, (8, 5, 1) − ∞2, (9, 6, 2) − ∞2, (8, 11, 4) −
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∞0, (12, 9, 5)−∞0}, K3 = {(i, 1 + i,∞0)− (2 + i) : i ∈ Z13}, K4 = {(i, 2 +
i,∞1)−(1+i) : i ∈ Z13}, K5 = {(i, 5+i,∞2)−(1+i) : i ∈ Z13}. Replace the
tails of K2 in ∪

5
i=3Ki by the tails {∞j ,∞1+j}, j ∈ Z3, three times repeated.

4. λ = 4, u = 10, µ = 5, w = 6

Add the following set of blocks to a KS(10, 4) on Z10: {(i, 1 + j + i,∞j) −
(5 + i) : j = 0, 1, 2, 3, i ∈ Z10} ∪ {(1 + i, 6 + i,∞4) − i : i = 0, 1, 2, 3, 4} ∪
{(∞j ,∞1+j , i)−∞5 : 0 ≤ j = 0, 1, 2, i ≤ 4} ∪ {(∞4, i,∞3)−∞0, (∞5, i,∞4)−
∞1, (∞5,∞0, i) −∞4 : 0 ≤ i ≤ 4} ∪ {(∞j ,∞2+j , i) −∞5 : j = 1, 2, 4, 5 ≤
i ≤ 9} ∪ {(∞j ,∞2+j , i) −∞4 : j = 0, 5, 5 ≤ i ≤ 9} ∪ {(∞3, i,∞5) −∞2 :
5 ≤ i ≤ 9}.

5. λ = 4, u = 18, µ = 5, w = 6

Add the following set of kites to a KS(18, 4) on Z18: {(i, 1+j+i,∞j)−(6+i) :
j = 0, 1, 3, 4, i ∈ Z18} ∪ {(i, 7+i,∞2)−(8+i), (i, 8+i,∞5)−(1+i) : i ∈ Z18}
∪ {(i,∞j ,∞1+j)−(10+i) : j ∈ Z6, 0 ≤ i ≤ 4} ∪ {(i,∞j ,∞2+j)−(5+i) : j ∈
Z6, 5 ≤ i ≤ 9} ∪ {(15,∞3+j ,∞j) − 17, (16,∞j ,∞3+j) − 17 : j = 0, 1, 2} ∪
{(i, 3+i, 9+i)−(15+i) : i = 0, 1, . . . , 5} ∪ {(i, 3+i, 6+i)−(9+i) : i = 6, 7, 8}
∪ {(∞j ,∞3+j , i)− (3 + i) : j = 0, 1, 2, i = 15, 16, 17}.

6. λ = 4, u = 4, µ = 5, w = 5

Given a KS(4, 4) on U = {a, b, c, d}, consider the set of blocks on Z5 ∪ U :
{(i, 1 + i, a)− (2 + i), (c, i, 2 + i)− b, (i, 1 + i, c)− (2 + i), (i, 2 + i, d)− (1 +
i), (a, i, 2+i)−b, (i, 1+i, b)−(2+i) : i ∈ Z5}. Now replace the kites (a, 0, 2)−
b, (a, 1, 3)−b, (c, 0, 2)−b by the kites (0, 2, a)−b, (1, 3, a)−c, (0, 2, c)−b and
add the blocks (2, d, 0)− 4, (3, d, 1)− 0, (2, 4, d)− a, (0, 3, d)− b, (1, 4, d)−
c, (0, 1, 2) − b, (1, 2, 3) − b, (3, 4, 2) − b, (0, 3, 4) − 1 to obtain a KS(9, 5)
which embeds the given KS(4, 4).

7. λ = 4, u = 11, µ = 5, w = 5

Add the following set of blocks to a KS(11, 4) on Z11: {(i, 1 + j + i,∞j) −
(6+i) : j ∈ Z5, i ∈ Z11} ∪ {(∞j , i,∞1+j)−(i+8), (∞j , 4+i,∞2+j)−(8+i) :
j ∈ Z5, i = 0, 1, 2} ∪ {(∞j , i,∞1+j)−∞3+j : j ∈ Z5, i = 3, 7}.

8. λ = 4, u = 19, µ = 5, w = 5

Add to a KS(19, 4) on Z19 the blocks of a KS(5, 2) on {∞j : j ∈ Z5}
together with the blocks: (i, 5 + j + i,∞j)− (1 + i), for j ∈ Z5 and i ∈ Z19;
(i, 3+i,∞0)−∞1+i, (4+i, 7+i,∞0)−∞1+i, (8+i, 11+i,∞0)−∞1+i, for i =
0, 1, 2, 3; (i, 4+i,∞1)−∞2+i, (3+i, 7+i,∞1)−∞2+i, (6+i, 10+i,∞1)−∞2+i,
for i = 0, 1, 2; (∞0, 3+i, i)−∞4, for i = 12, 13, . . . , 18; (∞1, 4+i, i)−∞4, for
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i = 9, 10, . . . , 18; (∞2, 1 + i, i)−∞4, for i = 0, 1, . . . , 11; (∞3, 2 + i, i)−∞4,
for i = 0, 1, . . . , 8; (13, 12,∞2) − ∞3, (14, 13,∞2) − 0, (15, 14,∞2) − 18,
(16, 15,∞2) −∞4, (17, 16,∞2) −∞4, (18, 17,∞2) −∞4, (11, 9,∞3) −∞4,
(12, 10,∞3) − ∞4, (13, 11,∞3) − ∞4, (15, 13,∞3) − 14, (17, 15,∞3) − 12,
(18, 16, ∞3)−∞2, (0, 17,∞3)−∞2, (∞3, 16, 14)− 12, (∞3, 1, 18)− 0.

9. λ = 4, u = 12, µ = 5, w = 4

Add the following set of blocks to a KS(12, 4) on Z12: {(i, 2 + i,∞1)− (1 +
i), (i, 3 + i,∞2) − (1 + i), (i, 4 + i,∞3) − (1 + i), (i, 5 + i,∞4) − (1 + i) :
i ∈ Z12} ∪ {(∞1,∞2, i) − (1 + i), (6 + i,∞1, i) −∞4, (4 + i,∞3,∞4) − i :
1 ≤ i ≤ 4} ∪ {(∞1,∞3, i) − ∞2, (∞2,∞4, i) − (1 + i) : 5 ≤ i ≤ 9}
∪{(i,∞2,∞3) − (2 + i)) : 0 ≤ i ≤ 2} ∪ {(0, 6,∞1) − ∞4, (5, 11,∞1) −
∞4, (0,∞2,∞1) − ∞4, (10,∞1,∞4) − 0, (11,∞1,∞4) − 10, (∞2, 11, 10) −
∞3, (0, 1,∞3)−11, (0,∞4, 11)−∞3, (3,∞3,∞2)−10, (4,∞3,∞2)−11, (9,∞4,∞3)−
10}.

10. λ = 4, u = 18, µ = 5, w = 4

Let (Z20,K) be a KS(20, 4) and consider the following sets of kites: K1 =
{(i, 4 + i,∞1)− (i+ 1), (i, 5 + i,∞2)− (1 + i), (i, 6 + i,∞3)− (1 + i), (i, 7 +
i,∞4)−(1+i), (∞1, i, 8+i)−∞2, (∞3, i, 3+i)−∞2 : i ∈ Z20}, K2 = {(i, 1+
i, 10+i)−(11+i), (2+i,∞4, i)−(11+i) : 0 ≤ i ≤ 9}, K3 = {(∞1,∞3,∞2)−
∞4, (11, 13,∞4)−10, (14,∞4, 12)−10, (13, 15,∞4)−12, (14, 16,∞4)−∞1, (15, 17,∞4)−
∞3, (16, 18,∞4) − 19, (17,∞4, 19) − 1, (18, 0,∞4) − 1}. If (W,K4), where
W = {∞1,∞2,∞3,∞4}, is a KS(4, 4), then (Z20 ∪ W,K ∪ (∪

4
i=1Ki)) is a

KS(24, 5) which embeds (Z20,K).

11. λ = 4, u = 5, µ = 5, w = 3

Add the following set of blocks to a KS(5, 4) on Z5: {(∞1,∞2, i)−∞3, (∞1,∞3, i)−
∞2, (∞2,∞3, i)−∞1 : i ∈ Z5} ∪ {(0, 1,∞1)− 2, (0, 2,∞2)− 3, (0, 3,∞3)−
1, (0, 4,∞1) − 3, (1, 2,∞2) − 0, (1, 3,∞3) − 4, (∞1, 1, 4) − ∞2, (∞1, 3, 2) −
∞3, (2, 4,∞3)− 0, (3, 4,∞2)− 1}.

12. λ = 4, u = 13, µ = 5, w = 3

Add the following set of blocks to a KS(13, 4) on Z13: {(i, 1 + i,∞1) −
(2 + i), (i, 2 + i,∞2) − (1 + i), (i, 3 + i,∞3) − (1 + i), (∞1, i, 4 + i) −∞2 :
i ∈ Z13} ∪ {(∞2, 5, 11)−4, (∞2, 7, 0)−6, (∞1,∞3,∞2)−10, (∞1,∞3,∞2)−
1, (∞1,∞3,∞2)−2, (∞1,∞3,∞2)−3, (∞1,∞3,∞2)−9, (∞3, 0, 5)−12, (∞3, 1, 6)−
12, (∞3, 2, 7) − 1, (∞3, 3, 8) − 2, (∞3, 4, 9) − 3, (∞3, 5, 10) − 4, (∞3, 11, 6) −
∞2, (∞3, 7, 12)−∞2, (∞3, 0, 8)−∞2, (∞3, 9, 1)−8, (∞3, 10, 2)−9, (∞3, 11, 3)−
10, (∞3, 12, 4)−∞2}.
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13. λ = 4, u = 21, µ = 5, w = 3

Add the following set of blocks to a KS(21, 4) on Z21: {(i, 1+ i, 3+ i)− (7+
i), (1+i, 6+i,∞1)−i, (1+i, 7+i,∞2)−i, (i, 8+i,∞3)−(1+i), (∞1, i, 9+i)−
∞3, (∞2, i, 10+ i)−∞3 : i ∈ Z21}. Now replace the tails {∞1, i}, 0 ≤ i ≤ 5,
and {∞2, i}, i = 0, 1, 6, by the tails {∞1,∞2}, {∞1,∞3}, {∞2,∞3}, three
times repeated. Finally, add the following set of kites: {(7+i, 14+i, i)−∞1 :
0 ≤ i ≤ 5} ∪ {(13, 20, 6)−∞2, (∞1,∞3,∞2)− 1, (∞1,∞3,∞2)− 0}.

14. λ = 4, u = 6, µ = 5, w = 2

Add the following blocks to a KS(6, 4) on Z6: (0,∞1,∞2)−3, (1,∞1,∞2)−3,
(2,∞1,∞2)−4, (3,∞2,∞1)−5, (4,∞1,∞2)−2, (0, 1,∞1)−5, (0, 2,∞1)−5,
(0, 3,∞1) − 5, (0, 4,∞1) − 5, (0, 5,∞2) − 2, (1, 2,∞1) − 4, (1, 3,∞1) − 4,
(1, 4,∞2) − 2, (1, 5,∞2) − 0, (2, 3,∞1) − 1, (2, 4,∞1) − 3, (2, 5,∞2) − 1,
(3, 4,∞2)− 0, (3, 5,∞2)− 0, (4, 5,∞2)− 1.

15. λ = 4, u = 14, µ = 5, w = 2

Add the following blocks to a KS(14, 4) on Z14: (i, 7 + i,∞1) − ∞2 for
i = 0, 1, 2, 3, 4; (∞1, 4 + 4i, 3 + 4i)− (2 + 4i), (4 + 4i, 5 + 4i,∞1)− (2 + 4i),
and (5 + 4i, 6 + 4i,∞1) − (3 + 4i) for i = 0, 1, 2; (∞1, 2 + i, i) − (3 + i),
(i, 4 + i,∞2)− (1 + i) and (∞2, 5 + i, i)− (6 + i), for i ∈ Z14; (5, 12,∞1)−
0, (6, 13,∞1)− 1, (∞1, 2, 1)− 0.

16. λ = 4, u = 22, µ = 5, w = 2

Add the following blocks to a KS(22, 4) on Z22: (i, 11 + i,∞1) − ∞2 for
i = 0, 1, 2, 3, 4; (∞1, 8 + 4i, 7 + 4i)− (6 + 4i), (9 + 4i, 8 + 4i,∞1)− (6 + 4i)
and (9 + 4i, 10 + 4i,∞1)− (7 + 4i) for i = 0, 1, 2, 3; (3 + i, 5 + i, i)− (4 + i),
(∞1, 6+i, i)−(7+i), (i, 8+i,∞2)−(1+i) and (∞2, 9+i, i)−(10+i) for i ∈ Z22;
(5, 16,∞1)−0, (6, 17,∞1)−1, (∞1, 2, 1)−0, (7, 18,∞1)−2, (8, 19,∞1)−3,
(∞1, 4, 3)− 2, (9, 20,∞1)− 4, (10, 21,∞1)− 5, (∞1, 6, 5)− 4.
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Chapter 7

Embedding of paths systems
into kite systems

7.1 Basic lemmas

The embedding of path systems into kite systems for µ = λ = 1 are studied in
[26, 68]. In this chapter we solve the embedding problem of a Pk(u, λ) into a
KS(u, µ), with k = 3 (Section 7.2), k = 2, 4 (Section 7.3). We will prove the
following

Main theorem: There exists a KS(u, µ) which embeds an Pk(u, λ) if and only
if u, λ, µ are admissible and µ ≥ ⌈ 4

k−1⌉λ for k = 2, 3, 4. When µ = ⌈ 4
k−1⌉λ the

embedding is exact.

To obtain our results we will make use of the two following lemmas:

Lemma 7.1.1. [55] Let u and k be integers such that u > 8k. Then there exists
a cyclic partial kite system of order u, whose base blocks contains every difference
d ∈ {1, 2, . . . , 4k} exactly once.

Lemma 7.1.2. [56] Let u and k be integers such that u > 4k. Then there exists
a cyclic partial kite system of order u, whose base blocks contains every difference
d ∈ {1, 2, . . . , 2k} exactly twice.

7.2 P3-designs

Proposition 7.2.1. For every u = 8k + h, with h = 0, 1, 4, 5, u ≥ 4, there exists
a KS(u, 2) which embeds a P3(u, 1).
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Proof For every u = 8k + h, with h = 0, 1, 4, 5, u ≥ 4, construct a KS(u, 2)
(U,B) as follows.
Case h = 0. Set U = Z8k−1 ∪{∞} and place in B the translates of the base blocks
(2+i, 4k−1−i, 0)−(4k+1+2i), for i = 0, 1, . . . , 2k−2, and (1, ∞, 0)−(4k−1).
Case h = 1. Set U = Z8k+1 and place in B the translates of the base blocks
(1 + i, 4k − i, 0)− (4k + 1 + 2i), for i = 0, 1, . . . , 2k − 1.
Case h = 4. Set U = Z8k+3 ∪{∞} and place in B the translates of the base blocks
(2+i, 4k+1−i, 0)−(4k+3+2i), for i = 0, 1, . . . , 2k−1, and (1, ∞, 0)−(4k+1).
Case h = 5. Set U = Z8k+5 and place in B the translates of the base blocks
(1 + i, 4k + 2− i, 0)− (4k + 3 + 2i), for i = 0, 1, . . . , 2k.
For every h = 0, 1, 4, 5, (U, C), where C is the collection of copies of P3 obtained
by considering the laterals of each kite in B, is a P3(u, 1) embedded into (U,B).2

Proposition 7.2.2. For every u = 8k + h, with h = 2, 3, 6, 7, u ≥ 4, there exists
a KS(u, 4) which embeds a P3(u, 2).

Proof For every u = 8k + h, with h = 0, 1, 4, 5, u ≥ 4, construct a KS(u, 4)
(U,B) as follows.
Case h = 2. Set U = Z8k+1 ∪ {∞} and place in B the translates of the base
blocks (0, 4k − 1− 2i, 4k − i)− (4k + 4 + i), for i = 0, 1, . . . , 2k − 2 (twice), and
(0, 1, 2k + 1)− (2k + 3), (0, 1, 2k + 1)−∞, (0, 2, ∞)− 1.
Case h = 3. Set U = Z8k+3 and place in B the translates of the base blocks
(0, 4k − 1 − 2i, 4k + 1 − i) − (4k + 2 + i), for i = 0, 1, . . . , 2k − 1 (twice), and
(0, 4k + 2, 2k + 1)− (6k + 2).
Case h = 6. Set U = Z8k+5 ∪{∞} and place in B the translates of the base blocks
(0, 4k − 1 − 2i, 4k + 1 − i) − (4k + 5 + i), for i = 0, 1, . . . , 2k − 1 (twice), and
(0, 4k + 1, 4k + 2)− (4k + 4), (0, 4k + 1, 4k + 2)−∞, (0, 2, ∞)− 1.
Case h = 7. Set U = Z8k+7 and place in B the translates of the base blocks
(0, 4k + 2 − 2i, 4k + 3 − i) − (4k + 4 + i), for i = 0, 1, . . . , 2k (twice), and
(0, 4k + 4, 2k + 2)− (6k + 5).
For every h = 2, 3, 6, 7, (U, C), where C is the collection of copies of P3 obtained
by considering the laterals of each kite in B, is a P3(u, 2) embedded into (U,B).2

Theorem 7.2.3. There exists a KS(u, µ) which embeds an P3(u, λ) if and only
if u, λ, µ are admissible and µ ≥ 2λ.

Proof The necessity is trivial. Now we prove the sufficiency. Let µ = 2λ. For
u ≡ 0, 1 (mod 4), use λ copies of the KS(u, 2) of Proposition 7.2.1. For u ≡ 2, 3
(mod 4), use λ/2 copies of the KS(u, 4) of Proposition 7.2.2. Let now µ > 2λ; it
is sufficient to embed a P3(u, λ) into a KS(u, 2λ) and the resulting KS(u, 2λ) into
a KS(u, µ) by adding the blocks of a KS(u, µ− 2λ) on the same vertex set. 2
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7.3 P4−designs and P2-designs

Here we will study the embedding of a P4(u, λ) into a KS(u, µ). In order to
describe a KS(u, µ) (V,B) embedding a P4(u, λ) (U, C) we always denote by Be the
subcollection of B such that f(C) = Be, where f : C → B is the injective function
defined by f([a, b, c, d]) = (a, b, c) − d. Note that when Be = B, the embedding is
exact.

Proposition 7.3.1. For every u ≥ 4 and l ≥ 1 there exists a KS(u, 4l) which
embeds a P4(u, 3l).

Proof It is sufficient to prove the assertion for l = 1. If u = 2k + 1, on Z2k+1

consider the base kites (2k− 1− i, 2+ i, 0)− (2k− 2− 2i), i = 0, 1, . . . , k− 2, and
(1, 2, 0)−2k, except for the case k ≡ 2 (mod 3), where (2k−1−i, 2+i, 0)−(2k−
2− 2i), for i = 2k−4

3 , and (1, 2, 0)− 2k are replaced by (4k+1
3 , 2k+2

3 , 0)− 2k and

(1, 2, 0)− 4k+1
3 . If u = 2k, then on Z2k−1∪{∞} consider the following base kites:

for k = 2, (2, ∞, 0)−1 and (∞, 0, 1)−2; for k ≥ 3, (2k−4−i, 3+i, 0)−(2k−6−2i),
for i = 0, 1, . . . , k − 4, (2k − 2, 1, 0)−∞, (2k − 3, 2, 0)−∞, and (∞, 3, 0)− 1,
except for the case k ≡ 0 (mod 3), where (2k− 4− i, 3+ i, 0)− (2k− 6− 2i),, for
i = 2k−9

3 , and (∞, 3, 0)− 1 are replaced by (4k−33 , 2k
3 , 0)− 1 and (∞, 3, 0)−

2k
3 .

Corollary 7.3.2. There exists a KS(u, µ) which embeds a P2(u, λ) if and only if
u, λ, µ are admissible and µ ≥ 4λ.

Proof The necessity is trivial. Now we prove the sufficiency. P2 is the comple-
mentary graph of P4 respect to the kite and so by Proposition 7.3.1 we deduce
the existence of a P2(u, λ) exactly embedded into a KS(u, 4λ) for every λ ≥ 1. By
adding the blocks of a KS(u, µ− 4λ) we obtain the thesis. 2

Proposition 7.3.3. For every u = 12k + h, with h = 0, 1, 4, 9 and u ≥ 4, there
exists a KS(u, 4l + 2) which embeds a P4(u, 3l + 1).

Proof By Proposition 7.3.1, it is sufficient to prove the assertion for l = 0. For
each u = 12k+h, h ∈ {0, 1, 4, 9}, construct a KS(u, 2) (U,B) where B is partitioned
into the subcollections Be and B

′ as follows.
Case h = 0. Set U = Z12k−1 ∪ {∞}; place in Be the translates of the base blocks
(6k−1−i, 2+i, 0)−(6k−2−2i), for i = 0, 1, . . . , 2k−2, and (∞, 1, 0)−(6k−1),
and obtain B′ by applying Lemma 7.1.1.
Case h = 1. Set U = Z12k+1; place in Be the translates of the base blocks
(6k−1−i, 2+i, 0)−(6k−2−2i), for i = 0, 1, . . . , 2k−2, and (6k, 1, 0)−(6k+1),
and obtain B′ by applying Lemma 7.1.1.
Case h = 4. Set U = Z12k+4 and place in Be the translates of the base blocks
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(3k − 1− i, 2 + i, 0)− (3k − 2− 2i), for i = 0, 1, . . . , k − 2,
(9k + 2− i, 3k + 2 + i, 0)− (6k + 1− 2i), for i = 0, 1, . . . , k − 1,
(3k, 1, 0)− (9k + 4),

along with the kites (6k + 2 + i, 9k + 3 + i, 3k + 1 + i)− i and (3k + 1 + i, 6k +
2 + i, i) − (9k + 3 + i), for i = 0, 1, . . . , 3k. Finally, place in B′ the translates
of (6k + 1 − i, 4k + 2 + i, 0) − (2k − 2i), for i = 0, 1, . . . , k − 1, and the kites
(i, 6k + 2 + i, 9k + 3 + i)− (3k + 1 + i), for i = 0, 1, . . . , 3k.
Case h = 9. Set U = Z12k+8 ∪ {∞} and place in Be the translates of the base
blocks

(3k + 1− i, 1 + i, 0)− (3k − 1− 2i), for i = 0, 1, . . . , k − 1,
(9k + 5− i, 3k + 3 + i, 0)− (6k + 1− 2i), for i = 0, 1, . . . , k − 1,
(∞, 0, 3k + 1)− (9k + 4),

along with the kites (6k + 4 + i, 9k + 6 + i, 3k + 2 + i)− i and (3k + 2 + i, 6k +
4+ i, i)− (9k+6+ i), for i = 0, 1, . . . , 3k+1. Finally, place in B′ the translates of
(6k+2−i, 4k+3+i, 0)−(2k−2i), for i = 0, 1, . . . , k−3, (5k+4, 5k−1, 0)−(2k+1),
and (5k+ 3, 5k, 0)− (6k+ 3), along with the kites (4i, 4 + 4i, 2 + 4i)− (6 + 4i),
(1 + 4i, 5 + 4i, 3 + 4i) − (7 + 4i), (0, 6k + 4 + i, 9k + 6 + i) − (3k + 2 + i), for
i = 0, 1, . . . , 3k + 1. 2

Proposition 7.3.4. For every u = 24k+h, with h = 0, 1, 9, 16, u ≥ 9, there exists
a KS(u, 4l + 3) which embeds a P4(u, 3l + 2).

Proof By Proposition 7.3.1, it is sufficient to prove the assertion for l = 0.
For each u = 24k + h, h ∈ {0, 1, 9, 16}, construct a KS(u, 3) (U,B) where B is
partitioned into the subcollections Be and B

′ as follows.
Case h = 0. Set U = Z24k−1 ∪ {∞}; place in Be the translates of the base blocks
(12k − 2− i, 1 + i, 0)− (12k − 4− 2i), for i = 0, 1, . . . , 4k − 2, (4k + 1+ i, 12k −
2 − i, 0) − (8k − 2 − 2i), for i = 0, 1, . . . , 4k − 3, (8k − 1, 8k, 0) − (12k − 1),
(0, 12k + 1, 12k − 1) − 4k, and (12k − 1, 0, ∞) − 1, and obtain B′ by applying
Lemma 7.1.1.
Case h = 1. Set U = Z24k+1; place in Be the translates of the base blocks (4k+1+
i, 12k−i, 0)−(8k−2i), for i = 0, 1, . . . , 4k−1, (12k−1−i, 2+i, 0)−(12k−2−2i),
for i = 0, 1, . . . , 4k − 2, and (12k, 1, 0) − (12k + 1), and obtain B′ by applying
Lemma 7.1.1.
Case h = 9. Set U = Z24k+9; place in Be the translates of the base blocks
(12k+2− i, 2+ i, 0)− (12k+1− 2i), (4k+2+ i, 12k+3− i, 0)− (8k+2− 2i),
for i = 0, 1, . . . , 4k−1, (12k+3, 1, 0)− (12k+6), (12k+5, 0, 12k+4)− (4k+1),
along with the kites (3i, 1+3i, 2+3i)− (3+3i) and (3i, 2+3i, 4+3i)− (6+3i), for
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i = 0, 1, . . . , 4k+2, and place in B′ the translates of (4k−i, 2k+1+i, 0)−(2k−2i),
for i = 0, 1, . . . , k− 3, (3k− 1, 3k+2, 0)− 3k, and (12k+3, 4k+1, 0)− (3k+1),
along with the kites (2 + 3i, 6 + 3i, 4 + 3i)− (8 + 3i), for i = 0, 1, . . . , 4k + 2.
Case h = 16. Set U = Z24k+15∪{∞}; place in Be the translates of the base blocks
(12k+5− i, 2+ i, 0)− (12k+4− 2i), (4k+3+ i, 12k+6− i, 0)− (8k+4− 2i),
for i = 0, 1, . . . , 4k, (8k + 4, 8k + 5, 0) − (12k + 7), (12k + 7, 2, 0) − (12k + 9),
(12k+ 6, ∞, 0)− (12k+ 7), along with the kites (3i, 1 + 3i, 2 + 3i)− (3 + 3i), for
i = 0, 1, . . . , 4k+4, and place in B′ the translates of (4k−i, 2k+1+i, 0)−(2k−2i),
for i = 0, 1, . . . , k−3, (3k−1, 3k+2, 0)− (4k+1), and (3k, 3k+1, 0)− (4k+2),
along with the kites (2+3i, 6+3i, 4+3i)− (8+3i) and (3i, 4+3i, ∞)− (2+3i),
for i = 0, 1, . . . , 4k + 4. 2

Proposition 7.3.5. For every u = 6k + h, with h = 0, 1, 3, 4, u ≥ 4, there exists
a KS(u, 4l + 4) which embeds a P4(u, 3l + 1).

Proof By Proposition 7.3.1, it is sufficient to prove the assertion for l = 0. For
each u = 6k+h, h ∈ {0, 1, 3, 4}, construct a KS(u, 4) (U,B) where B is partitioned
into the subcollections Be and B

′ as follows.
Case h = 0. Set U = Z6k−1 ∪ {∞}. Place in Be the translates of the base blocks
(3k−1−i, 2+i, 0)−(3k−2−2i), for i = 0, 1, . . . , k−2, and (∞, 1, 0)−(3k−1). To
obtain B′ duplicate Be and apply Lemma 7.1.2 to settle the remaining differences.
Case h = 1. Set U = Z6k+1. Place in Be the translates of the base blocks
(3k−1−i, 2+i, 0)−(3k−2−2i), for i = 0, 1, . . . , k−2, and (3k, 1, 0)−(3k+1). To
obtain B′ duplicate Be and apply Lemma 7.1.2 to settle the remaining differences.
Case h = 3. Set U = Z6k+3. Place in Be the translates of the base blocks
(3k + 2 − i, 2 + i, 0) − (3k + 1 − 2i), for i = 0, 1, . . . , k − 1, along with the kites
(3i, 1 + 3i, 2 + 3i)− (3 + 3i), i = 0, 1, . . . , 2k, and place in B′ the translates of the
base blocks (3k+1− i, 3+ i, 0)− (3k− 1− 2i), (2k− i, 2+ i, 0)− (4k+4+ 2i),
for i = 0, 1, . . . , k− 2, (2k+1, 2k+2, 0)− 3k, and (2k, 4k+1, 0)− (k+1), along
with the kites (1+ 3i, 2+ 3i, 3+ 3i)− (4+ 3i) and (2+ 3i, 3+ 3i, 4+ 3i)− (5+ 3i),
i = 0, 1, . . . , 2k.
Case h = 4. Set U = Z6k+3 ∪ {∞}. Place in Be the translates of the base blocks
(3k + 2 − i, 2 + i, 0) − (3k + 1 − 2i), for i = 0, 1, . . . , k − 1, along with the kites
(2+ 3i,∞, 3i)− (1+ 3i) and (3+ 3i, 2+ 3i, 1+ 3i)−∞, i = 0, 1, . . . , 2k, and place
in B′ the translates of the base blocks (3k + 1 − i, 3 + i, 0) − (3k − 1 − 2i), for
i = 0, 1, . . . , k − 2, (2k + 1, 2k + 2, 0)− 3k, and (∞, 2k + 1, 0)− (2k + 2), along
with the kites (2 + 3i, 4 + 3i,∞) − 3i, i = 0, 1, . . . , 2k, and finally apply Lemma
7.1.2 to settle the remaining differences. 2

Proposition 7.3.6. For every u = 6k + h, with h = 0, 1, 3, 4, u ≥ 4, there exists
a KS(u, 4l + 4) which embeds a P4(u, 3l + 2).
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Proof By Proposition 7.3.1, it is sufficient to prove the assertion for l = 0. For
each u = 6k+h, h ∈ {0, 1, 3, 4}, construct a KS(u, 4) (U,B) where B is partitioned
into the subcollections Be and B

′ as follows.
Case h = 0. Set U = Z6k−1 ∪ {∞}. Place in Be the translates twice repeated of
the base blocks (3k − 1 − i, 2 + i, 0) − (3k − 2 − 2i), for i = 0, 1, . . . , k − 2, and
(∞, 1, 0) − (3k − 1). To obtain B′ apply Lemma 7.1.2 to settle the remaining
differences.
Case h = 1. Set U = Z6k+1. Place in Be the translates twice repeated of the
base blocks (3k − 1 − i, 2 + i, 0) − (3k − 2 − 2i), for i = 0, 1, . . . , k − 2, and
(3k, 1, 0) − (3k + 1). To obtain B′ apply Lemma 7.1.2 to settle the remaining
differences.
Case h = 3. Set U = Z6k+3. Place in Be the translates of the base blocks (3k+2−
i, 2+ i, 0)− (3k+1−2i), for i = 0, 1, . . . , k−1, (3k+1− i, 3+ i, 0)− (3k−1−2i)
for i = 1, 2, . . . , k − 2, (3, 3k + 1, 0) − (3k − 1), (2, 0, 3) − (3k + 3) along with the
kites (3i, 1+3i, 2+3i)−(3+3i), i = 0, 1, . . . , 2k, (1+3i, 2+3i, 3+3i)−(4+3i) and
(2+3i, 3+3i, 4+3i)−(5+3i), i = 0, 1, . . . , 2k. Place in B′ the translates of the base
blocks (2k− i, 2+ i, 0)− (4k+4+2i), for i = 0, 1, . . . , k−4, (4, 0, k−1)− (2k+1),
(1, 0, 2k + 2)− (3k + 2) and (2k, 4k + 1, 0)− (k + 1).
Case h = 4. Set U = Z6k+3 ∪ {∞}. Place in Be the translates of the base
blocks (3k − 1 − i, 2 + i, 0) − (3k − 2 − 2i), for i = 0, 1, . . . , k − 2 (twice),
(6k + 1, 3k, 0)− (3k + 1), (3k,∞, 0)− (3k − 1) along with the kites (3i, 1 + 3i, 2 +
3i) − (3 + 3i), i = 0, 1, . . . , 2k. Place in B′ the translates of the base blocks
(2k−i, 3+i, 0)−(2k−2+2i), for i = 0, 1, . . . , k−3, and (3k+1, k+2, 0)−(k+1),
(3k + 1,∞, 0) − 2k, along with the kites (1 + 3i, 2 + 3i, 3 + 3i) − (4 + 3i) and
(2 + 3i, 3 + 3i, 4 + 3i)− (5 + 3i), i = 0, 1, . . . , 2k. 2

Theorem 7.3.7. There exists an Pk(u, λ), k = 2, 4 embedded into a KS(u, µ) if
and only if u, λ, µ are admissible and µ ≥ 4

k−1λ.

Proof The necessity is trivial. Now we prove the sufficiency. For k = 2, the
proof is in Corollary 7.3.2. Let k = 4. For u ≡ 0, 1 (mod 8), we can apply
Propositions 7.3.1, 7.3.3, 7.3.4. For u ≡ 4, 5 (mod 8), µ is even and so we can
apply Propositions 7.3.1, 7.3.3 if λ ≡ 0, 1 (mod 3) and add, if it is necessary
the blocks of a KS(u, µ − ⌈43λ⌉). If λ = 3l + 2 and so u ≡ 4, 12, 13, 21 (mod 24),
Proposition 7.3.3 implies the existence of an KS(u, 4) which embeds a P4(u, 2) and
so the existence of an KS(u, µ) which embeds a P4(u, λ) for every even µ ≥ 4l+4.
For u ≡ 2, 3 (mod 4), it is µ ≡ 0 (mod 4) and so we can apply Propositions 7.3.1,
7.3.5, 7.3.6. 2
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