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Preface

Decision has inspired reflection of many thinkers since the ancient times.
Often decision is strongly related to the comparison of different points of
view, some in favor and some against a certain decision. This means that
decision is intrinsically related to a plurality of points of view, which tech-
nically are defined criteria. Contrary to this very natural observation, for
many years the only way to state a decision problem was considered to be
the definition of a single criterion, which amalgamates the multidimensional
aspects of the decision situation into a single scale of measure. For exam-
ple, even today this approach can be found in any textbooks of Operations
Research. This is a very reductive, and in some sense also unnatural, way
to look at a decision problem. Thus, for at least thirty years, a new way
to look at decision problems has more and more gained the attention of
researchers and practitioners. This approach explicitly takes into account
the pros and the cons of a plurality of points of view, in other words the
domain of Multiple Criteria Decision Analysis (MCDA). Therefore, MCDA
intuition is closely related to the way humans have always been making de-
cisions. Consequently, despite the diversity of MCDA approaches, methods

and techniques, the basic ingredients of MCDA are very simple: a finite or



infinite set of actions (alternatives, solutions, courses of action, ...), at least
two criteria, and, obviously, at least one decision-maker (DM). Given these
basic elements, MCDA is an activity which helps making decisions mainly in
terms of choosing, ranking or sorting the actions.

MCDA is not just a collection of theories, methodologies, and techniques, but
a specific perspective to deal with decision problems. Losing this perspective,
even the most rigorous theoretical developments and applications of the most
refined methodologies are at risk of being meaningless, because they miss an
adequate consideration of the aims and of the role of MCDA. A fundamen-
tal problem of MCDA is the representation of preferences. Classically, for
example in economics, it is supposed that preference can be represented by
a utility function assigning a numerical value to each action such that the
more preferable an action, the larger its numerical value. Moreover, it is very
often assumed that the comprehensive evaluation of an action can be seen as
the sum of its numerical values for the considered criteria. Let us call this
the classical model. It is very simple but not too realistic. Indeed, there is
a lot of research studying under which conditions the classical model holds.
These conditions are very often quite strict and it is not reasonable to assume
that they are satisfied in all real world situations. In the last years many
non-classical approaches have been proposed in MCDA. This thesis focuses
on MCDA methods based on fuzzy integrals. These methods are known in
MCDA for the last two decades. In very simple words this methodology
permits a flexible modeling of the importance of criteria. Indeed, fuzzy in-
tegrals are based on a capacity which assigns an importance to each subset

of criteria and not only to each single criterion. Thus, the importance of a



given set of criteria is not necessarily equal to the sum of the importance of
the criteria from the considered subset. Consequently, if the importance of
the whole subset of criteria is smaller than the sum of the importances of its
individual criteria, then we observe an average redundancy between criteria,
which in some way represents overlapping points of view. On the other hand,
if the importance of the whole subset of criteria is larger than the sum of the
importances of its members, then we observe an average synergy between
criteria, the evaluations of which reinforce one another. On the basis of the
importance of criteria measured by means of a capacity, the criteria are ag-
gregated by means of specific fuzzy integrals, the most important of which
are the Choquet integral (for cardinal evaluations) and the Sugeno integral
(for ordinal evaluations).

The proposal and the axiomatization of new fuzzy integrals has a central
role in modern MCDA. In this thesis we propose some generalizations of well
known fuzzy integrals (Choquet, Shilkret and Sugeno). This thesis is thought
to make each chapter independent of the others, so they can be read in any
order or selected to suit different interests. No general conclusion are given
since any chapter contains proper conclusions.

Chapter 1 is a brief survey of the methodology based on fuzzy integrals in
MCDA. In chapter 2 we propose and characterize bipolar fuzzy integrals,
which are generalization of the most famous fuzzy integrals to the case of
bipolar scale, i.e. those symmetric scale where it is possible for each value to
find the opposite. Cardinal bipolar scales are intervals [-a,a], | — oo, +00][,
while an example of an ordinal bipolar scale is: very bad, bad, neutral, good,

very good. In chapter 3 we deal with the generalization of the concept of



universal integral (recently proposed to generalize several fuzzy integrals) to
the case of bipolar scales. We also provide the characterization of the bipo-
lar universal integral with respect to a level dependent bi-capacity. Finally,
in chapter 4 we consider the problem to adapt classical definitions of fuzzy
integrals to the case of imprecise interval evaluations. More precisely, stan-
dard fuzzy integrals used in MCDA request that the starting evaluations of
a choice on various criteria must be expressed in terms of exact-evaluations.
In this last chapter we present the robust Choquet, Shilkret and Sugeno
integrals, computed with respect to an interval capacity. These are quite
natural generalizations of the Choquet, Shilkret and Sugeno integrals, useful
to aggregate interval-evaluations of choice alternatives into a single over-
all evaluation. We show that, when the interval-evaluations collapse into
exact-evaluations, our definitions of robust integrals collapse into the previ-
ous definitions. We also provide an axiomatic characterization of the robust
Choquet integral. The approach of robust integral promises interesting de-
velopments for future researches, this further improvement is based to the
generalization of the concept of interval to h—interval. We shall close the

thesis by briefly discussing this last approach.
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Chapter 1

Fuzzy measures and integrals in

MCDA

Grabisch and Labreuche have exhaustively discussed the use of fuzzy
measures and integrals in MCDA in literature [16, 17], to which we refer for
this chapter.

The aim of MCDA is to model the preferences of a Decision Maker (DM) over

a set of possible alternatives X = {x,y, z,...} described by several points of

view, called criteria N = {1,2,...,n}. Thus, an alternative x is characterized
by an evaluation z; € X;, ¢ =1,...,n (not necessarily numerical) w.r.t. each
point of view and can be identified with a score vector @ = (x1,...,2,). We

denote by > the preference relation of the DM over alternatives, then x > y
means that the DM prefers the alternative & to y. In order to come up
with the knowledge of > on X x X, some informations must be elicited from
the DM. This elicitation process should request a relatively small amount

of questions asked to the DM. The DM provides informations by means of



examples of comparisons between alternatives, as well as more qualitative
judgments. A numerical representation [33] of the preference > is obtained

whenever there exists a function v : X — R such that

Ve, yeX, x>y iff u(z)>u(y). (1.1)

We focus on a special model of (1.1) called decomposable [29] given by:

u(x) = F(ui(x1),...,un(zy)), (1.2)

where the u; are the utility functions and F': R® - R is an aggregation func-
tion. Krantz et al. [33] (see also [23]) gave the axioms that characterize the
representation of > by (1.2). The weighted sums F'(uy,...,u,) = X7 oyu; are
the most classical functions used to aggregate the criteria. These family of
aggregation operators are characterized by an independence axiom [29, 49].
This property implies some limitations in the way the weighted sum can
model typical decision behaviors. To make this more precise, we shall provide
an example. The construction of the utility functions and the determination
of the parameters of the aggregation function are often carried out in two
separate steps.

The determination of the utility function is also concerned with commen-
surateness between criteria, i.e. the possibility to compare any element of
one point of view with any element of any other point of view. This is

inter-criteria comparability:

For z; € X; and z; € X;, we have u;(x;) > u;(z;) iff z; is considered



at least as good as x; by the DM.

This assumption is very strong. By the way of an example, assuming as
criteria to buy a car consumption and maximal speed, the DM should be
able to say if she prefers a consumption of 5 liters/100km to a maximum
speed of 200 km/h. This does not generally make sense to the DM, so that

he or she is not generally able to make this comparison directly.

1.1 Notion of Interaction — A Motivating Ex-
ample

In [16] the authors provide the following example to explain the importance
of interaction of criteria and to show some flaws of the weighted sum. The
director of a university decides on students who are applying for graduate
studies in management where some prerequisites from school are required.
Students are indeed evaluated according to mathematics, statistics and lan-
guage skills. All the marks with respect to the scores are given on the same
scale from 0 to 20. These three criteria serve as a basis for a preselection
of the candidates. The applicants have generally speaking a strong scientific
background so that mathematics and statistics have a big importance to the
director. However, he does not wish to favor too much students that have
a scientific profile with some flaws in languages. Besides, mathematics and
statistics are in some sense redundant, since, usually, students good at math-
ematics are also good at statistics. As a consequence, for students good in

mathematics, the director prefers a student good at languages to one good
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at statistics. Consider the following four students

Mathematics Statistics Language

student A 16 13 7
student B 16 11 9
student C 6 13 7
student D 6 11 9

Student A is highly penalized by his performance in languages. Henceforth,
the director would prefer the student B which has the same mark in mathe-
matics but is a little bit better in languages even if he is a little bit worse in
statistics. Consider now students C' and D. Both of them have a weakness in
mathematics. In this case, since the applicants are supposed to have strong
scientific skills, the student C' which is good in statistics is now preferred
to the student D, good in languages. The director preferences, B > A and

C > D, lead to the following requirement
F(16,13,7) < F(16,11,9) and F(6,13,7) > F(6,11,9).

No weighted sum can model such preferences, since the preference of B over
A implies that languages is more important than statistics whereas the pref-

erence of C' over D tells exactly the contrary.

1.2 Capacities and Choquet Integral

The above example suggests that to explain the director preferences we

should assign weights not only to the single criteria, but also to the coalitions
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(i.e. groups, subsets) of criteria. This can be achieved by introducing partic-
ular functions on P(N), called fuzzy measures [47] or capacities [43]. A fuzzy
measure or capacity is a set function p : 2V — R such that u(@) =0, u(N) =1
and satisfying the monotonicity condition: if A € B, then u(A) < u(B), for
all A, B € P(N). The capacity is said to be additive if u(AuB) = u(A)+u(B),
whenever An B = @. The Choquet integral [7] of = (x1,...,2,) e R* w.r.t.

a capacity p has the following expression :

Ch(z, 1) = [i[,u{i |25 >t} — 1]dt + fom uli | 2>t (1.3)

Note that when the capacity is additive, the Choquet integral reduces to
a weighted sum. The preference of the DM are modeled via the Choquet

integral if
Ve,yeX, xxzy iff Ch(z p)>Ch(y,p). (1.4)

Obviously in the (1.4) and according with the (1.2) we have supposed that
the component z; of the vector & are expressed n terms of utility. It is easy
to see that the use of the (1.4) applied to the above example of student evalu-
ation allows for a simple explanation. Indeed, the preferences of the director
correspond to 2u(Mat,Sta)> pu(Mat) + 1 and 2u(Stat) > u(Stat,Lang). There
is no contradiction between previous two inequalities, hence the Choquet
integral can model the preferences of the DM. For other properties and char-
acterizations of the Choquet integral, we refer the reader to survey papers

[35].
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1.3 Conclusions

In the last thirty years several non-additive fuzzy integrals have been
developed in MCDA. We recall the Choquet and Shilkret integral (for the
cardinal case) and the Sugeno integral (for the ordinal case) among others.
In this chapter we have described the Choquet integral in order to show its
potentiality in the context of MCDA. In the next chapters we shall present
other fuzzy integrals together with their relevant, old and new, generaliza-

tions.
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Chapter 2

Bipolar Fuzzy Integrals

2.1 Introduction

The basic reference for this chapter is [25]. In decision analysis and espe-
cially in multiple criteria decision analysis, several non additive integrals have
been introduced in the last sixty years [8, 10, 16]. Among them, we remember
the Choquet integral [7], the Shilkret integral [45] and the Sugeno integral
[47]. Recently the bipolar Choquet integral [14, 15, 22] has been proposed
for the case in which the underlying scale is bipolar. A further generalization
is that of level dependent integrals, which has lead to the definition of the
level dependent Choquet integral [21], the level dependent Shilkret integral
[4], the level dependent Sugeno integral [37] and the bipolar level dependent
Choquet integral [21]. Very recently, on the basis of a minimal set of axioms,
one concept of universal integral giving a common framework to many of the
above integrals have been proposed [32]. In this chapter we aim to provide a

general framework for the case of bipolar fuzzy integrals, i.e. those integrals
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whose underlying scale is bipolar. For this purpose we propose the definition
of bipolar Shilkret integral and bipolar Sugeno integral. Then, in order to
provide a mathematical characterization of the three mentioned bipolar inte-
grals, we give necessary and sufficient conditions for an aggregation function
to be the bipolar Choquet integral or the bipolar Shilkret integral or the
bipolar Sugeno integral. As we said, the bipolar fuzzy integrals admit a fur-
ther generalization if the fuzzy measure (capacity) with respect to which the
integrals are calculated can change from a level to another [21, 20]. For the
sake of clarity, we shall remind the characterization of the bipolar Shilkret
and Sugeno integral with respect to a level dependent capacity in a forth-
coming paper (we wish to remember as such results have just been presented
in [20]). The chapter is organized as follows. In section 2.2 we give the
preliminaries and list some properties of an aggregation function useful to
the characterization of the bipolar fuzzy integrals we shall propose in this
chapter. In section 2.3 we review the definitions and characterizations of
the classical Choquet integral, Shilkret integral, Sugeno integral and some
of their symmetric extensions on a bipolar scale. In section 2.4 we give our
main results: first we propose the bipolar version of the Shilkret integral and
of the Sugeno integral; next we characterize the bipolar Choquet, Shilkret
and Sugeno integrals. All the proofs are presented in section 2.5. Section 2.6

contains conclusions.
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2.2 Preliminaries

Let us consider a set of criteria N = {1,...,n} and let us suppose that
the range of evaluation of given criteria is a real numbers interval Z. We
denote o =inf7Z and f =supZ. An alternative can be identified with a score
vector @ = (x1,...,2,) € I", being x; the evaluation of such an alternative x
with respect to the it" criterion. An alternative  dominates another y if on
each criterion the evaluation of  is not smaller than the evaluation of y, i.e.
for all i € N, x; > y; and in this case we simply write & > y. The indicator
function of any A € N is the function which attains 1 on A and 0 on N\ A
and can be identified with the vector 1, whose ** component is equal to 1
if i € A and 0 otherwise.

In general, an aggregation function is a function G : 7" - 7 such that
1. G(a,...,a)=aif «eZ and lim, o+ G(z,...,z) = a if a ¢ T;
2. G(B,....,p)=p it feZ and lim,3- G(z,...,x)=Fif B¢T;
3. for all ¢,y € Z" such that = >y, G(x) > G(y).

In this chapter we often denote the maximum and the minimum of a set
X respectively with \V X and A X. For any two alternatives x,y € Z", the

following definitions hold

e x Ay is the vector whose i component is (z Ay), = A{x;,y;} for all
i=1,...,n (in case y = (h,...,h) is a constant, then we can write

x Ah);
e = vy is the vector whose it component is (zvy), = V{z;,y;} for all

16



i=1,...,n (in case y = (h,...,h) is a constant, then we can write

x Vh);

e z and y are comonotone (or comonotonic) if (z; —x;)(y; —y;) > 0 for

all i,j € N;

e z and y are bipolar comonotone if (|z;|-|z;])(|y:|-|y;|) > 0 and z;y; > 0,

for all i,7 € N.

The following properties of an aggregation function G : I - 7 are useful to

characterize several integrals:
e idempotency: for all a € Z" such that a = (a,...,a), G(a) = a;

e homogeneity: for all € Z" and ¢ > 0 such that ¢-x € Z", G(c-x) =

c-G(=);

e stability w.r.t. the minimum: for all € 7" and v € Z, G(x A7) =
MG(x),7};

e additivity: for all ¢,y € Z" such that x+y € I", G(x+y) = G(x)+G(y);
e maxitivity: for all ,y € Z", with a >0, G(z vy) = V{G(x),G(y)};

e minitivity: for all ¢,y € Z", with <0, G(x Ary) = A{G(x),G(y)};

e comonotonic additivity: for all comonotone z,y € I, G(x + y)

G(z) +G(y);

e comonotonic maxitivity: for all comonotone x,y € I", G(z v y)

V{G(z),G(y)};

17



e comonotonic minitivity: for all comonotone x,y € I", G(x A y) =

MG(=), G(y)};

2.3 Fuzzy integrals

In this section we briefly review the three most famous fuzzy integrals,
i.e. the Choquet, Shilkret and Sugeno integrals and some of their symmetric
extensions. For each of them we shall discuss the restrictions to be imposed

on the scale 7.

2.3.1 The Choquet integral

Definition 1. A capacity (or fuzzy measure) is function p : 2V — [0,1]

satisfying the following properties:

1. (@) =0, p(N) =1,

2. for all Ac BS N, u(A) < u(B).

Definition 2. The Choquet integral [7] of a vector = (x1,...,x,) € I™ C

[0, +00 [ with respect to the capacity p is given by

Ch(a, ) = fo“’u({z’eN:xi > 1)) dt. (2.1)

Schmeidler [43] extended the above definition to negative values too, more-
over he characterized the Choquet integral in terms of comonotonic additivity

and idempotency.
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Definition 3. [43] The Choquet integral of a vector = (x1,...,x,) € I™ with

respect to the capacity p is given by

Ch(m,u):[:(u({ieN:xi2t})—1)dt+f0°o/¢({z'e]\7:xizt})dt. (2.2)

Alternatively (2.2) can be written as [21]

max; &;

Chw, )= [

min; x;

p({ieN:z;>t})dt + minz;. (2.3)
Another formulation of (2.2) can be obtained, by using the summation, as

Ch(iL‘,/L) = Z; (ZL’U(i) - l‘g(i,l)) -u ({j eN: T; 2 xa(i)}) + To(1), (24)

being o : N = N any permutation of indexes such that z,¢) <... <x,().

Theorem 1. [43] An aggregation function G : I — T is idempotent and
comonotone additive if and only if there exists a capacity p such that, for all
xelm,

G(x) = Ch(z, ).

The Sipos integral [46] (or symmetric Choquet integral) of € T with respect

to the capacity u is defined by
Ch (z,p) = Ch(x v 0, 1) — Ch(~(z A 0), ). (2.5)

More in general, a functional L : 7" — 7 is a rank and sign-dependent func-

19



tional [39] if there exist two fuzzy measures u* and p~ such that for all & € 7"

L(z)=Ch(xv0,u") - Ch(—(z A0),pu").

This functional is used in the cumulative prospect theory [48]. Clearly when
ut = p~, the rank and sign-dependent functional L is exactly the symmet-
ric Choquet integral. For further details on the rank and sign-dependent
functional and its use in cumulative prospect theory, we refer the reader to
[48, 39]. We wish also to remember that Choquet integral is generalized and

characterized in [2, 3.

2.3.2 The Shilkret integral

Definition 4. The Shilkret integral [45] of a vector ® = (x1,...,x,) € I C

[0, +00 [ with respect to the capacity p is given by

Sh(a,p) = \/ {ei-u({j € N iy > 2,))} (2.6)

€N

A generalization of the Shilkret integral is introduced and characterized in
[2, 3]. From the cited papers we can get a characterization of the Shilkret
integral in terms of idempotency, comonotonic maxitivity and homogeneity.
For the sake of completeness we report the proof of such a characterization

(Theorem 2) in section 2.5.

Theorem 2. Suppose that a = infZ > 0, then an aggregation function G :

In - 1T is idempotent, comonotone mazitive and homogeneous if and only if

20



there exists a capacity u on N such that, for all xe 1",

G(x) = Sh(z, p).

Although in [45] the Shilkret integral was formulated for nonnegative func-
tions, however (2.6) works also for a generic € Z® € R". But, in our opinion,
if we allow for negative values too, the essence of the Shilkret integral is lost.
Let us stress this point with some examples. Suppose that an alternative
is strongly negatively evaluated on each criterion except on the last, where
it has a low nonnegative evaluation, e.g. « = (-100,-100,-100,1). By ap-
plying (2.6), Sh(x,pu) = p({4}), for every capacity p. Thus, the negative
evaluations and the weights that the capacity assigns to the relative criteria
with respect to which these negative evaluations are given, are ininfluent on
the evaluation of . In general, if for a given alternative £ we have simulta-
neously negative and positive evaluations on the various criteria, the negative
ones are ininfluent and the Shilkret integral of & coincides with the Shilkret
integral of v 0. In the case of & € ] —00,0[" it is straightforward noting
that Sh(z,u) = (maxsen ;) - p({j € N | x; > max;ey ;}). Again, we note
how for all capacities only the maximum evaluation of * matters. For vec-
tors with non-positive evaluation on each criterion, the logic of the Shilkret
integral can be recovered if in the (2.6) we substitute the maximum with the

minimum and > with <.

Definition 5. The negative Shilkret integral of a vector x = (x1,...,2,) €
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Inc]-00,0]" with respect to the capacity u is given by

Sh(m,p) = N\ A{zi-p({j e N:aj<zi})} =

€N
-V {2 p({j e N:-2; > -2;})} = -Sh(-z, ). (2.7)
€N
Obviously, from theorem 2, the characterization of the negative Shilkret in-

tegral is in terms of idempotency, comonotonic minitivity and homogeneity.

Corollary 1. Suppose that  =supZ <0, then an aggregation function G :
I" - T is idempotent, comonotone minitive and homogeneous if and only if

there exists a capacity u on N such that, for all xe 1",

G(x) = Sh™(z, ).

So far, we have a Shilkret integral for alternatives with all non-negative
evaluations and one for alternatives with all non-positive evaluations. To
obtain a suitable definition of the Shilkret integral for the mixed case we
propose two different approaches. In the first approach we define a symmetric

Shilkret integral by applying a logic a la Sipos [46], i.e. for all z € T

Sh(z,p) =Sh(zv0,u)+Sh (A0, p1). (2.8)

Note that the (2.8) is called symmetric since Sh(x,pu) = -Sh(-z, ). A
second, more general, approach will be to define a bipolar Shilkret integral

(see next section). This would be used directly for the bipolar scale, while
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restricted on R* and on R~ it would coincide respectively with the Shilkret

integral and the negative Shilkret integral.

2.3.3 The Sugeno integral

Definition 6. A measure on N with a scale T is any function v : 2N - T

such that:
1. v(@)=a=infZ, v(N)=05=supZ,
2. forall Ac BS N, v(A)<v(B).

Definition 7. The Sugeno integral [47] of a vector = (x1,...,x,) € I with

respect to the measure v on N with scale T is given by

Su(@,v) =V N{zi,v({j e N | z;>:})}. (2.9)

ieN

Alternatively the Sugeno integral can be written as

Su(z,v) = \/ /\{D(A), /\x} (2.10)

AcN €A

Next theorem gives necessary and sufficient conditions for an aggregation

function to be the Sugeno integral.

Theorem 3. [36] An aggregation function G : " — T is idempotent, comono-

tone maxitive and stable with respect to the minimum if and only if there
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exists a measure v on N with a scale I such that, for all xeI™,

G(x) = Su(z,v).

Let us observe that the definition of the Sugeno integral only imposes that

the z; and the v(A) are measured on the same (possible only ordinal) scale

Z. For further generalization and characterization of the Sugeno integral see

2, 3].

Let us consider the symmetric scale [-1,1]. The symmetric mazimum of two

elements a,b € [-1,1] - introduced and discussed in [11, 12] - is defined by

the following binary operation:

—(la] v |b|) if b# —a and either |a| v |b] = —a or =-b
a@b=4 0 itb=-a

la| v |b] else.

Alternatively the symmetric maximum can be written as

a @ b=sign(a+b)(|a| v |b]).

The symmetric minimum of two elements [11, 12] is defined as:

= (la| A 1b]) if sign(b) + sign(a)
a®b=
la| A |b] else.

Alternatively the symmetric minimum of a,b € R can be written as

24



a®b=sign(a-b)(|a| A|b]).

Suppose that g : 2V — [0,1] is a capacity and = € [-1,1]" is a vector
evaluated on each criterion on the symmetric scale [-1,1]. The symmetric

Sugeno integral [11] of @ is defined as

Su(z, 1) = (Su(z v0,u1) @ (~Su((-x) v0,u)). (2.11)

In (2.11), as before in (2.8), symmetric means that Su (x, ) = =Su (-x, 11).
Clearly if z; > 0 for all i € N, Su (2, 1) = Su(zx, 1), while if z; <0 for all i € N,

Su(z,p) = AV {2 ({j e N | 2;<a,})). (2.12)

eN

(2.12) can be considered as a definition of a negative Sugeno integral, for the
case in which x is negatively evaluated on each criterion.

In [41] the notion of symmetric Sugeno integral has been extended.

Definition 8. A functional L : [-1,1]" —» [-1,1] is a fuzzy rank and sign-
dependent functional if there exist two fuzzy measures p* and p~ such that

for all ze [-1,1]"

L(x) = (Su(xv0,u")) @ (-Su((-x) v0,u7)). (2.13)

Clearly when pu* = p=, the fuzzy rank and sign-dependent functional L is
exactly the symmetric Sugeno integral. For further details on the fuzzy rank

and sign-dependent functional and on the symmetric Sugeno integral we refer
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the reader to [11, 41].
In the next section we shall propose a more general approach, defining a bipo-

lar Sugeno integral, which restricted on R* and on R~ coincides respectively

with the (7) and the (2.12).

2.4 Bipolar fuzzy integrals on the scale [-1,1]

The present work is devoted to the study of bipolar fuzzy integrals, i.e.
those integrals useful when the scale underlying the alternatives evaluation
is bipolar. For the sake of simplicity, trough this section we shall adopt the
bipolar scale [-1,1] to present our results. However, without loss of the gen-
erality, they can be extended to every other symmetric interval of R, i.e. any
of [~a,a],] - a,af, |- oo, +oo[, where a € R*.

Let us consider the set Q = {(A, B) €2V x2N : An B =@z} of all disjoint
pairs of subsets of N. With respect to the binary relation (A, B) 3 (C, D) iff
AcC and B2 D, Q is a lattice, i.e. a partial ordered set in which any two
elements have a unique supremum, (A, B)v (C,D) =(AuC,Bn D), and a
unique infimum, (A, B)A(C,D) =(AnC,BuD). Forall (A,B),(C,D)eQ
if AcC and B c D, we simply write (A, B) ¢ (C, D). For all (A, B) € Q the
indicator function 1¢4 gy : N - {-1,0,1} is the function which attains 1 on
A, -1 on B and 0 on (AuB)‘. Such a function can be identified with the
vector 1¢4 gy whose i component is equal to 1 if i € A, is equal to -1 if i € B
and is equal to 0 otherwise.

In [38] it has been shown that the symmetric maximum @ : [-1,1]x[-1,1] —

[-1,1] coincides with two recent symmetric extensions of the Choquet inte-
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gral, the balancing Choquet integral and the fusion Choquet integral, when
they are computed with respect to the strongest capacity (i.e. the capac-
ity v : 2V — [0,1] which attains zero on the empty set and one elsewhere).
However, the symmetric maximum of a set X cannot be defined, being ©
non associative; e.g, suppose that X = {3,-3,2}, then (3@ -3) @2 =2 or
3@ (-3®2) =0, depending on the order. Several possible extensions of the
symmetric maximum for dimension n,n > 2 have been proposed (see [12, 18]
and also the related discussion in [38]). One of these extensions is based on
the splitting rule applied to the maximum and to the minimum as described
in the following. Given X = {z1,...,z,,} € R, the bipolar mazimum of X,

shortly V° X, is defined as:

\V'X = \7% - (\%) ) ( 7\3:) . (2.14)

The following definitions are closely related to the above discussion.

Definition 9. Given X = {x1,...,2,} € R, the positive bipolar maximum
of X, shortly V"' X, is the element with the greatest absolute value, with
the convention that, in the case of two different opposite elements with this

property, we choose the non-negative.

Definition 10. Given X = {x1,..., 2z} € R, the negative bipolar maximum
of X, shortly V" X, is the element with the greatest absolute value, with
the convention that, in the case of two different opposite elements with this
property, we choose the non-positive.

Following these definitions, if X = {9,-9,7,-3} thus, V*X =0, V* X =9 and

VY X = -9. Clearly the three operators just defined are linked by means of
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the relation: V*X =V {V" X,Vv" X}.

Given the vectors ', ..., z% ¢ [-1.1]" with K ={1,...,k}, \/Ib(cc] is the vector
whose " component is \/*{z},..., 2} for all i=1,... n. ]

The following properties of an aggregation function G': [-1,1]" — [-1,1] are

useful to characterize several bipolar integrals.

e bipolar comonotonic additivity: for all bipolar comonotone x, y €
[_17 1]TL’

G(z +y)=G(z) +G(y);

e bipolar stability of the sign: for all r,s€]0,1] and for all (A, B) € Q,
G(r1a5)G(s1ap) >0 or G(rlap)=G(slap) =0,

i.e., in simple words, G(r1(4 py) and G(s1(4 p)) have the same sign;

e bipolar stability with respect to the minimum: for all r,s €]0,1] such
that r > s, and for all (A,B) € Q, |G(r1(a,p))| > |G(s1(a,p))| and,

moreover,

if ’G(rl(A,B)N > ‘G(Sl(A,B))’ then |G(S].(A7B))| =S.

2.4.1 A specific property: bipolar comonotone maxi-
tivity
With a slight abuse of notation we extend the relation of set inclusion

to Q, by defining (A, B) ¢ (C, D) if and only if A < C and B < D, for all
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(A,B),(C,D) € Q. Let us suppose to have k different levels [, ..., [, € R with

0<ly<ly<...<ly<1andasequence {(A4;,B;)},., , suchthat (4;,B;)eQ

for all i = 1,...,k and (A1, Bis1) € (A;, B;) for all i = 1,...,k— 1. The
vectors l; - 14, B,), ¢ = 1,...,k are bipolar comonotonic and, moreover, by
ordering them with respect to the level [;, then in the vector l; - 1(4, p,), for

each component the elements under the level /; are the opposite of that under

the level —[;. See for example the four vectors

x=(7,-7,0, 0)
y=(5,-55, 0)
w=(3,-3, 3,-3)
2=(2,-2, 2,-2).

An aggregation function G is said to be bipolar comonotone maxitive if it
is maxitive on such a type of bipolar comonotonic bi-constants, i.e. if fixed

K ={1,...,k} it holds:

G(\/bli-l(AhBi)) =\V'G(li-1ean). (2.15)

e K 1eK

G is said to be right bipolar comonotone maxitive if

G(\/“zi&mh&)) -\ G (- my)- (2.16)

e K e K

G is said to be left bipolar comonotone maxitive if

G(\/b_li : 1(Ai,Bi)) = V"G (L 18 (2.17)

e K e K
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Clearly, due to bipolar comonotonicity, in equations (2.15)-(2.17):

b bt b™
Vi) =V li- Yy =V i Las,)-
e ieK ieK

2.4.2 The bipolar Choquet integral
Definition 11. A function ju, : Q - [-1,1] is a bi-capacity [14, 15, 22] on
N if

o 1(2,2)=0, u(N,2) =1 and (2, N) = -1;

o 11s(A, B) < 1y(C, D) V (A, B),(C,D) € Q such that (A, B) 5 (C, D).

Definition 12. The bipolar Choquet integral of © = (x1,...,x,) € [-1,1]"

with respect to the bi-capacity py, is given by [14, 15, 22, 21]:

Chy(, 113 = fom (i€ N iz > 1), {i € N 2y < —1))dt. (2.18)

The bipolar Choquet integral of = (xy,...,2,) € [-1,1]" with respect to

the bi-capacity p, can be rewritten as

Chifa. ) = 3 (17|~ o) (47 33 2 ol G | 235 leoo ),
i (2.19)
being o : N - N any permutation of index such that 0 = |z,(o)| < |[z,1)| < ... <
|Zs(ny|- Note that to ensure that the pair ({j € N:a; >|t[},{j e N :x; <-[t|})

is an element of Q for all t € R, we adopt the convention - which will be
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maintained trough all the chapter - that in the case of t = 0 the inequality
x; <0 is to be understood as x; < 0. The formulation (2.19) will be useful in

proving some results, like that exposed in the next representation theorem.

Theorem 4. [22] An aggregation function G : [-1,1]" — [-1,1] is idempotent
and bipolar comonotonic additive if and only if there exists a bi-capacity

such that, for all ze[-1,1]",

G(ZII) = Chb(az, ,ub).

Remark 1. Although the bipolar Choquet integral is trivially homogeneous,
this condition does not appear in the theorem, since an aggregation function
which is idempotent and bipolar comonotone additive is also homogeneous.

Observe also that we could relax idempotency with the conditions G(1(ng)) =

1 and G(1(g,n)) = 1.

2.4.3 The bipolar Shilkret integral

Definition 13. The bipolar Shilkret integral of © = (z1,...,x,) € [-1,1]"

with respect to the bi-capacity py is given by:

Sho(@, 1) = N/ {lal - € N ey 2 [}, (e Ny < —lal))) . (2.20)

ieN

Definition 14. The right bipolar Shilkret integral of

x=(21,...,0,)€[-1,1]"
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with respect to the bi-capacity py is given by:

Shi (@ m) = V" (il - p({G € N iy 2 il G e N iy < —Jmil})} . (2:21)

€N

Definition 15. The left bipolar Shilkret integral of x= (x1,...,1,) € [-1,1]"

with respect to the bi-capacity py is given by:

Shy (1) = /7 {Jzal - (L € N2y > |l {j € N oy < Jil})} . (222)

ieN

Clearly the three definitions are linked via the

Shi(x, ) = \/" {Shy (@, 1), Shy (2, ) }

The condition Shy(x, ) = 0 is equivalent to the Shi(x, ) = -Sh; (x, 1)
and, in this case, either the three integrals are all zero or they give three
different results, one zero, one positive and one negative. We can think
about them in terms of a neutral, an optimistic and a pessimistic aggregate
evaluation of x. The condition Shy(x, ;) # 0 implies that Sh;(x, ) =
Shy (x, ) = Shy(x, ).

The following theorems characterize the bipolar Shilkret integral.

Theorem 5. An aggregation function G : [-1,1]" - [-1,1] is idempotent,

bipolar comonotone mazitive and homogeneous if and only if there exists a

n
)

bi-capacity py, on N such that, for all x€[-1,1]

G(iB) = Shb($, [Lb)
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Remark 2. Let us note that theorem 5 implies, as corollary, theorem 2
since bipolar comonotone mazitivity restricted on R* implies comonotone

maxitivity.

Theorem 6. An aggregation function G : [-1,1]" - [-1,1] is idempotent,
positive bipolar comonotone maxitive and homogeneous if and only if there

n
)

exists a bi-capacity p, on N such that, for all ze[-1,1]

G(ZI)) = Sh;(m, /va)-

Theorem 7. An aggregation function G : [-1,1]" — [-1,1] is idempotent,
negative bipolar comonotone mazitive and homogeneous if and only if there

n
)

exists a bi-capacity p, on N such that, for all x€[-1,1]

G(x) = Shy (z, ).

Remark 3. Idempotency could be relaxed with the conditions G(1(ng)) = 1
and G(1gny) = -1, in fact from these and from homogeneity idempotency

can be elicited.
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2.4.4 The bipolar Sugeno integral

Definition 16. The bipolar Sugeno integral of a vector x = (x1,...,7,) €
[-1,1]" with respect to the bi-capacity puy on N is given by:

Su(@, ) = \/"{lal © po({j € N 2y > Jail} {j € N ey < |} | (223)

€N
Definition 17. The right bipolar Sugeno integral of x = (1, ...,x,) € [-1,1]"
with respect to the bi-capacity pp, on N is given by:

S () = V' {lil @ ({5 € N sy 2 oal} 4 € N sy < D - (2:24)

Definition 18. The left bipolar Sugeno integral of a vector = (x1,...,x,) €

[-1,1]" with respect to the bi-capacity py on N is given by:

Suy (@, 1) = V" {lid © ({5 € Ny 2 [il}, {5 € Ny <[} ). (2.25)

ieN

Clearly the three definitions are linked via the

Suy(z, ) =\ {Su; (2, ), Sup (2, 1)}

The condition Suy(x, 1) = 0 is equivalent to the Suj (x, ) = —Su; (x, 11p,)
and, in this case, either the three integrals are all zero or they give three
different results, one zero (neutral), one positive (optimistic) and one neg-
ative (pessimistic). The condition Suy(x, 1) # 0 implies that Suj(x, ) =
Suy (2, ) = Sup(, ().

The following theorems characterize the bipolar Sugeno integral.
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Theorem 8. An aggregation function G : [-1,1]" — [-1,1] is idempotent,
bipolar comonotone mazitive, bipolar stable with respect to the sign and bipo-
lar stable with respect to the minimum if and only if there exists a bi-capacity

uy on N such that, for all xe[-1,1]",

G(ZB) = Sub(il,', [Lb)

Theorem 9. An aggregation function G : [-1,1]" — [-1,1] is idempotent,
positive bipolar comonotone mazitive, bipolar stable with respect to the sign
and bipolar stable with respect to the minimum if and only if there exists a

n
)

bi-capacity p, on N such that, for all x€[-1,1]

G(zx) = Suj (x, ).

Theorem 10. An aggregation function G : [-1,1]" - [-1,1] is idempotent,
negative bipolar comonotone mazitive, bipolar stable with respect to the sign
and bipolar stable with respect to the minimum if and only if there exists a

n
)

bi-capacity p, on N such that, for all x€[-1,1]

G(x) = Sup (2. 1).
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2.5 Proofs of theorems

Proof of Theorem 2.
First we prove the necessary part. Let us suppose there exists a capacity
on N such that, for all ® € Z7, G(x) = Sh(x,u). In this case it is trivial
to prove that the Shilkret integral is idempotent, comonotone maxitive and
homogeneous by definition and we leave the proof to the reader. Now we

prove the sufficient part of the theorem. Let us define
w(A)=G(1,), forall Ae2VN. (2.26)

Because G is an idempotent aggregation function, we get () =0, u(N) =1
and p(A) < p(B) whenever A € B. Thus p is a capacity on N. Every

= (x1,...,2,) €I" can be written as

T = \/ To(s)* 1{jeN | 252750}
e

being o : N - N any permutation of index such that z,) < ... < Zy(n).
Because vectors Zo(i) - 1jen | z;2a,,,) ar¢ comonotonic, we get the thesis by
applying comonotonic maxitivity, homogeneity of G and the definition of u

according to (2.26):

G(w) = G(\/ xo'(l) ' 1{]€N | szyc(,(i)}) = \/ G(xo—(l) ' 1{]€N | ijxa(i)}) =

ieN €N

=V 250 G(l{jeN | zjz%m}) = \]/V%u) ({7 e N 25> 200)}) = Sh(z, 1)

ieN [

O
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Proof of Theorem /.

First we prove the necessary part. Let us suppose that there exists a bi-
capacity pp such that, for all z € [-1,1]", G(z) = Chy(x, ). Idempo-
tency of the bipolar Choquet integral follows from definition, because if
A 20, then Chy (N Ly, i) = fo i (N,@)dt = X, while if A < 0, then
Chy (A Lnvgysis) = Jo iw (2, N)dt = A, If 2, y € [-1,1]" are bipolar
comonotone, then there exists a permutation of indexes ¢ : N - N such
that 0 = 2o < 2o <. . <lrom] and 0= |yo)] < [Yo)| < - - < Yo, and

then
Chy (1) = Y. (|2o)] = [Toa-1)|) 1o ({J | 5 > 2o}, {7 | 25 < ~|2oe)[}),
=1
and

Chy (Y, 1) = Y., (o) = [Woti-1)) - 116 (3 | 95 > oy}, {5 | 95 < ~lyoii|})-
=1

Since x and y are absolutely comonotonic an cosigned, for every i =1,...,n
My ({j eN: T 2 |$a(i)|}7 {j eN: T < _|$U(Z)|}) =

o ({7 € N2y 2 o}, € Ny < =lyo}) - (2.27)
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Moreover, again because ¢ and y are absolutely comonotonic and cosigned,

for every i =1,...,n, |To@) + Yo(i)| = [To@)| + [Yoi)| and consequently

0= 2Zo(0) + Yo ()] £ |To(1) + Yoi)l < - < |Tom) + Yo(ny| for every i=1,... n.
(2.28)
By (2.27) and (2.28) we get Chy, (x, itp) + Chy, (y, pp) = Chy ( + y, 11p).

Now we prove the sufficient part of the theorem. Let us define
(A, B) =G (1ap)), forall (A B)eQ. (2.29)

Ly, Tepresents a bi-capacity, since by idempotency of G we get that u,(N, @) =
G(]-(N,g)) =1, ,Ub(®7N) = G(]-(Q,N)) = -1, ub(gvg) = G(]-(Q,@)) = 0. More-
over, if (A, B) 5 (A’, B'), being for all i € N, the i*» component of the vector
1(4,p) not greater than the i*" component of the vector 14/ gy and being G

an aggregation function (then monotone), thus u,(A, B) < up(A’, B'). Ob-

serve now that any vector & = (z1,...,x,) € [-1,1]" can be rewritten as
T = Z; (|95a(i)| - |l’a(¢-1)|) LGNyl o 1 eN <20 })? (2.30)

being 0 : N - N any permutation of indexes such that 0 = |z,()| < [zs1)| <
... < |To@m)|- Let us note that for all (A, B), (A’,B’) € Q such that (A4,B) ¢
(A7, B’) and for all a,b € [0,1], vectors a-1¢ap) and b- 14 gy are bipolar
comonotone. Consequently, (2.30) shows that any vector x € [-1,1]" can be
decomposed as a sum of bipolar comonotonic vectors. Remembering that an
aggregation function which is idempotent and bipolar comonotone additive is

also homogeneous, thus to get the thesis it is sufficient to apply, respectively,
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bipolar comonotone additivity, homogeneity of G and definition of bi-capacity

p, according to (2.29):

G(z) = G( (o] = loqi-n)]) - 1({jeN:a:jzxa<i)|},{jezv:xjs—|x(,m})) =

i=1
= Z; (|x0'(l)| - |x0'(i—1)|) ' G (1({jeN:acj2|aca(i)|},{jeN:xjs—|;B[,(i)\})) = Chb(m7 /‘Lb)

(3

Proof of Theorem 5.

First we prove the necessary part. Let us suppose there exists a bi-capacity
wp such that, for all € [-1,1]", G(x) = Shy(x, ). The bipolar Shilkret in-
tegral is, trivially, idempotent and homogeneous and we only need to demon-
strate the bipolar comonotonic maxitivity. Let us consider a set of indexes
K ={1,...,k}, k increasing levels ly,..., [ e R with 0 < [; <ly < ... <[ <
1 and a sequence {(A;, B;)}, 5 such that (A;,B;) € Q and (A;i1,Bis1) C
(A;, B;) for all i € K. The j* component of the vector V% {l; - 1(a, B} is
equal to [; if j € A; N A1, is equal to —[; if j € B; N\ B;;1 and is equal to zero
if j e NN (AjuBy) for all i € K and taking A1 = Byy1 = @. Clearly, such
a vector has a component greater or equal to [; for indexes in A; and has

component smaller or equal to —/; for indexes in B;. Thus, by definition

Shy (\{(b{lz‘ : 1(Ai,Bi)}7Mb) = \{(b{li iy (A3, Bi)) } = \{(b{Shb(li 1,8,y b))} -
(2.31)
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Now we prove the sufficient part of the theorem. Let us define
(A, B) =G (1ap)), forall (A ,B)eQ. (2.32)

iy represents a bi-capacity (see proof of theorem 4). Notice that each x €

[-1,1]" can be rewritten as

b
T = V1wl 1 | wpelolb s | aystodl) (2.33)
ieN
and observe that vectors o] 1({jen | a;5/z,]}.{jeN | 2;<—|z:]})> ¢ = 1 ..., n are bipo-

lar comonotone. Consequently, for any @ € [-1,1]" by bipolar comonotone

maxitivity, homogeneity and definition of bi-capacity u, according to the

(2.32) we get
b
G(z) = G(\J/V 3| - L | g2l (| xjs—mm)

b
= VG (|5l 1 | sl | 2y taal)) =

€N
b
= \{V il - G (L | ayslody s | ayz—leal)))
b . .
=\ Nzl ({5 | 25 > |l} {5 | 25 < =[a]}) = Sho(x, 1)

ieN

Proof of Theorems 6 and 7. They are analogous to the proof of previous

Theorem 5.
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Proof of Theorem 8. First we prove the necessary part. Let us suppose there
exists a bi-capacity pp such that, for all € [-1,1]", G(x) = Sup(x, 11). The
Sugeno integral is idempotent by definition. Bipolar stability with respect
to the sign and with respect to the minimum are trivially verified once we

consider that for all » >0 and for all (A, B) € Q

Sup (7" ) 1(A,B)7Mb) = sign (:ub(A7 B)) /\ {T> |:ub(A7 B)|} :

Let us consider a set of indexes K ={1,...,k}, k increasing levels [, ... I €
R with 0 < l; <ly <... <l <1 and a sequence {(A;, B;)},.;r such that
(A;, B;) € @ and (Aji1, Biy1) € (A;, B;) for all i € K. Thus, by definition

\/ " {sign [ ((Ai, B A {lis i ((As B) [} =

e K

\/ (S (1; - L(a,B:) M) }- (2.34)
e K

Suy, ( VAU 1a,B) ) Mb)

e K

Now we prove the sufficient part of the theorem. Let us define uy(A,B) =
G(l( A,B)) for all (A,B) € Q. puy, represents a bi-capacity (see proof of theo-
rem 4). Let us note that using bipolar stability with respect to the minimum and

idempotency of G we have that for all » >0 and for all (A, B) € Q,

G (r-Lam) = A{r,

G(Lan)l}- (2.35)

The (2.35) is obvious if r=0orr=1. If 0 <7 <1 and ‘G(l(A’B))| > |G (r . 1(A,B))|7

G(r-1(ap))| = r and the (2.35) is

then using stability w.r.t. the minimum,

true again. If ‘G(I(AB))‘ = |G (7"-1(14’3))| observe that by monotonicity and

idempotency of G, G(r- 1(1473))‘ < |G (7“ . 1(N,@))‘ = r, which means that also in

this last case the (2.35) is true. Finally, notice that each = € [-1,1]" can be
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rewritten as

b
T =\ il 1 | ayoleily 4 | 2s<lml)) (2.36)

€N
and observe that vectors [@;| - L((jen | o;sfeil},(jeN | 2;<—|ail})s @ = 1 .-, n are bipolar
comonotone.

Consequently, for any x € [-1,1]" by bipolar comonotone maxitivity

b b
G(z) = G(\/ il 15 | 22l o | xjs|xi|}>) = VUG (2l 145 | applody i | 2y5-lod) =
ieN €N
( by bipolar stability with respect to the sign )

) L/vb {sign [G (L | aysfein i | o< le)) G (il L | aysfein i | ayefen)]} =

- '\]/Vb {sign [ (1 |2y 2 |2il} {5 | 25 <~ DG (el - 15 | wy2lanlyts | ayzmtei))]} =
1€

( by bipolar stability with respect to the minimum )

= \/ " {sign [u ({j | 25 > ol 4 | 2y < il DI {Jil,

€N

G (L | oyl | ase—tea)))|}) =

= /" {sign [ ({5 | 5 2 il 45 | 2 < e DIA Ll Iuo ({5 2 2 feal} {5 | g < |l DI}

€N

that is the Sugeno integral Suy(x, up).

Proof of Theorems 9 and 10. They are analogous to the proof of previous Theorem

8.
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2.6 Concluding remarks

In recent years there has been an increasing interest in development of new
integrals useful in decision analysis process or in modeling engineering problems.
An interesting line of research is that of bipolar fuzzy integrals, that considers
the case in which the underling scale is bipolar. For an exhaustive presentation
of bipolarity and its possible applications, a recent survey is [9]. In this chapter
we have axiomatically characterized the bipolar Choquet integral and defined and
axiomatically characterized the bipolar Shilkret integral and the bipolar Sugeno
integral. Thus, the scenario of bipolar fuzzy integrals appears clearer and richer.
A further direction of research in this field is that of level dependent bipolar fuzzy
integrals. In this case, the fuzzy measure with respect to which the bipolar integrals
are calculated can change from a level to another [21, 20]. Observe also that in [24]
it has been introduced the concept of bipolar universal integral, which generalizes

the Choquet, Shilkret and Sugeno bipolar integrals presented in this chapter.
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Chapter 3

The bipolar universal integral

3.1 Introduction

The basic reference for this chapter is [24]. Recently a concept of universal
integral has been proposed [32]. The universal integral generalizes the Choquet
integral [7], the Sugeno integral [47] and the Shilkret integral [45]. Moreover, in
[30], [31] a formulation of the universal integral with respect to a level dependent
capacity has been proposed, in order to generalize the level-dependent Choquet in-
tegral [21], the level-dependent Shilkret integral [4] and the level-dependent Sugeno
integral [37]. The Choquet, Shilkret and Sugeno integrals admit a bipolar formu-
lation, useful in those situations where the underlying scale is bipolar ([14], [15],
[22], [20]). In this chapter we introduce and characterize the bipolar universal
integral, which generalizes the Choquet, Shilkret and Sugeno bipolar integrals.
The chapter is organized as follows. In section 3.2 we introduce the basic con-
cepts. In section 3.3 we define and characterize the bipolar universal integral. In
section 3.4 we give an illustrative example of a bipolar universal integral which

is neither the Choquet nor Sugeno or Shilkret type. Finally, in section 3.6, we
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present conclusions.

3.2 Basic concepts

Given a set of criteria N = {1,...,n}, an alternative & can be identified with
a score vector € = (x1,...,7,) € [-oo,+00]", being z; the evaluation of & with
respect to the i*? criterion. For the sake of simplicity, without loss of generality,
in the following we consider the bipolar scale [-1,1] to expose our results, so that
x € [-1,1]". Let us consider the set of all disjoint pairs of subsets of N, i.e.
Q = {(A,B) e2Vx2N . AnB-= @}. With respect to the binary relation 5 on
Q defined as (A,B) 35 (C,D) iff Ac C and B 2 D, Q is a lattice, i.e. a partial
ordered set in which any two elements have a unique supremum (A4, B) v (C, D) =
(AuC,Bn D) and a unique infimum (A, B) A (C,D) = (AnC,Bu D). For all
(A, B) € Q the indicator function 14y : N - {-1,0,1} is the function which

attains 1 on A, -1 on B and 0 on (Au B)".

Definition 19. A function uy: Q — [-1,1] is a normalized bi-capacity ([14], [15],

[22]) on N if
i ,U,b(Q,@) =0, ,U/b(N7®) =1 and Mb(gaN) =-1

o (A, B) < uy(C,D) ¥ (A, B),(C,D)eQ : (A, B)x(C,D).
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Definition 20. The bipolar Choquet integral of © = (x1,...,2,) € [-1,1]" with

respect to a bi-capacity uy is given by ([14], [15], [22], [21]):

Chy(@, 1p) = [Oooub({ieN:xi>t},{ieN:x,~<—t})dt. (3.1)

The bipolar Choquet integral of & = (z1,...,2,) € [-1,1]" with respect to the

bi-capacity pp can be rewritten as

Chy(m, ) = i (lro()| = [Zo(ion)]) (G € N 22 2 |20y}, {5 € N 2 < —Jagp)[}),
. (3.2)
being o : N - N any permutation of indexes such that 0 = |[zg)| < |z5(1)l < ... <
|Z4(n)l- Let us note that to ensure that ({j e N:x;>[t[},{je N:x;<-[t|}) € Q
for all t € R, we adopt the convention - which will be maintained trough all the
chapter - that in the case of ¢ = 0 the inequality z; < 0 is to be understood as
x; <0.
In this chapter we use the symbol V to indicate the maximum and A to indicate the
minimum. The symmetric mazximum of two elements - introduced and discussed

in [11], [12] - is defined by the following binary operation:

= (lal v |b]) if b# —a and either |a| v |b] = —a or =-b
a@b=4 0 ifb=-a

la| v |b| else.

Alternatively the symmetric maximum of a,b € R can be written as

a@b=sign(a+b)(|a|v|b]).
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The symmetric minimum of two elements [11, 12] is defined as:

= (la| A b)) if sign(b) # sign(a)
Ob=

la| A 0] else.

Alternatively the symmetric minimum of a,b € R can be written as

a®b = sign(a-b)(laf A [b]).

In [38] it has been showed as on the domain [-1,1] the symmetric maximum coin-
cides with two recent symmetric extensions of the Choquet integral, the balancing
Choquet integral and the fusion Choquet integral, when they are computed with
respect to the strongest capacity (i.e. the capacity which attains zero on the empty
set and one elsewhere). However, the symmetric maximum of a set X cannot be
defined, being @ non associative. Suppose that X = {3,-3,2}, then (3@ -3)@2 =2
or 3@ (-3 ®2) =0, depending on the order. Several possible extensions of the sym-
metric maximum for dimension n,n > 2 have been proposed (see [12], [18] and also
the relative discussion in [38]). One of these extensions is based on the splitting
rule applied to the maximum and to the minimum as described in the following.
Given X = {x1,...,2,} S R, the bipolar mazimum of X, shortly \/* X, is defined

as

VX = (VX))@ (AX). (3.3)

In the same way and for an infinite set X, it is possible to define the concept of
sup X as the symmetric maximum applied to the supremum and the infimum

of X, with the convention that \/* {£o0,l} = 00 and \/* {+00, -0} = 0.

Definition 21. The bipolar Shilkret integral of © = (x1,...,1,) € [-1,1]" with
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respect to a bi-capacity pp is given by [20]:

Shy(@, ) = \/ (il - ({5 € N s > |}, {5 € N sy < |l 1)} (3-4)

ieN

Definition 22. A bipolar measure on N with a scale (-, ), a > 0, is any function

v Q = (—a, ) satisfying the following properties:
1. v(2,2)=0;
2. 1p(N,2) =a, (a,N) = -«;
3. (A, B)<(C,D) Y (A,B),(C,D)eQ : (A B)s(C,D).

Definition 23. The bipolar Sugeno integral of © = (x1,...,2,) € (—a,a)"™ with

respect to the bipolar measure vy, on N with scale (—a, @) is given by [20]:

Sup(@vn) =\ M{sign (0 ({5 € N2y 2 [aul}, (G € N w2y < i)

A N ey > [l G e N eay < -laeD)] i)} (35)
The bipolar Sugeno integral can be written using the symmetric minimum as

Sup(x,vp) = \Z/Vb{|$l| Ovy({jeN:x;>|xl},{jeN:x;< —|xl|})} (3.6)

3.3 The universal integral and the bipolar

universal integral

In order to define the universal integral it is necessary to intr