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A METHOD TO DEVELOP A COMPUTER-VISION BASED SYSTEM FOR THE 

AUTOMATIC DAIRY COW IDENTIFICATION AND BEHAVIOUR 

DETECTION IN FREE STALL BARNS 
 

ABSTRACT 
In this thesis, a method to develop a computer-vision based system 

(CVBS) for the automatic dairy cow identification and behaviour detection in free 
stall barns is proposed. Two different methodologies based on digital image 
processing were proposed in order to achieve dairy cow identification and 
behaviour detection, respectively. Suitable algorithms among that used in 
computer vision science were chosen and adapted to the specific characteristics of 
the breeding environment under study.  

The trial was carried out during the years 2011 and 2012 in a dairy cow 
free-stall barn located in the municipality of Vittoria in the province of Ragusa. A 
multi-camera video-recording system was designed in order to obtain sequences 
of panoramic top-view images coming from the multi-camera video-recording 
system. The two methodologies proposed in order to achieve dairy cow 
identification and behaviour detection, were implemented in a software 
component of the CVBS and tested.  

Finally, the CVBS was validated by comparing the detection and 
identification results with those generated by an operator through visual 
recognition of cows in sequences of panoramic top-view images. This comparison 
allowed the computation of accuracy indices. The detection of the dairy cow 
behavioural activities in the barn provided a Cow Detection Percentage (CDP) 
index greater than 86% and a Quality Percentage (QP) index greater than 75%. 
With regard to cow identification the CVBS provided a CDP > 90% and a QP > 
85%.  

 

 

Keywords: cow behavioural activity, precision livestock farming, dairy 
farming, object recognition, computer vision techniques, digital images. 
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1 INTRODUCTION 

1.1 Preface 

The optimization of the overall life quality of animals housed in intensive 
farming systems, both in terms of comfort and productivity, involves the analysis 
of several responses that an animal produces to adapt to the environment, such as 
behavioural modifications and physiological mechanisms that could affect animal 
health status and growth. 

As concerns the intensive farming of dairy cows, animal health can be 
investigated by the analysis of four categories of indicators: behavioural 
indicators, physiological indicators, pathological indicators, and productivity 
indicators (Smidt, 1983). 

In research works aiming at assessing cow welfare, a growing attention to 
the analysis of cow behaviour has been paid by the scientific community since it 
is considered an essential indicator for both the evaluation of cow health status in 
different types of housing systems and the development of farming systems that 
make it possible to combine high production levels and animal welfare.  

In literature, the most frequently analyzed behavioural activities of dairy 
cows are the following: ‘feeding’, which refers to the cow standing still in the 
feeding alley with the head in the feed barrier; ‘standing’, which describes the 
standing still in the alleys and the walking; ‘lying’, which is related to all the 
possible lying postures of the cow in the stall; and ‘perching’, which is associated 
to a standing still behaviour characterized by the cow hind limbs placed in the 
service alley and the cow forelimbs placed in the stall.  

In some research studies the lying behaviour of dairy cows was analysed to 
determine its effect on the level of milk production and the foetal development 
during the pregnancy (Nishida, Hosoda, Matsuyama, & Ishida, 2004; Rulquin & 
Caudal, 1992). The daily incidence of lying and standing behaviours was also 
examined both to improve oestrus detection (Firk, Stamer, Junge, & Krieter, 
2002) and perform early diagnosis of lameness (Pastell, Tiusanen, Hakojärvi, & 
Hänninen, 2009). The monitoring of feeding behaviour was carried out with the 
aim to both optimize intake under different feeding managements (DeVries, Von 
Keyserlingk, Weary, & Beauchemin, 2003b; Halachmi et al., 1998; O'Driscoll, 
Boyle, & Hanlon, 2009) and improve barn building characteristics in terms of 
layouts and building materials (DeVries & Von Keyserlingk, 2006; Fregonesi, 
Tucker, Weary, Flower, & Vittie, 2004; Fregonesi, Veira, Von Keyserlingk, & 
Weary, 2007). 

Traditionally, dairy cow behaviour is assessed by skilled operators, such as 
veterinaries, who carry out the direct observation of the herd in field or inside 
animal houses. These operators also verify the adequacy of the breeding 
environment, which affects dairy cow behaviour, apply protocols to determine the 
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presence of diseases, and control production data. When information is gathered 
in situ the use of check lists is generally adopted to investigate animal behaviours. 

However, studies based on the direct observation of animal behaviour 
could suffer from a common problem related to the presence of the observer, 
which may affect and thus modify animal behaviour. Moreover, the direct 
observation usually involves many hours of specialized operators’ work used for 
the visual recognition of behavioural activities and, if more than one operator 
carries out the detection work, it could be also subject to discordant interpretation. 

Another technique involves the observation of animal behaviour by means 
of the visual analysis of digital images obtained from time-lapse video recordings. 
This technique allows the operator to perform a more adequate planning of the 
monitoring activities. Furthermore, video recording facilitates the collection of 
more frequent data over longer time periods and assures a safe and secure record 
for future analysis. 

With regard to dairy cows, the visual recognition of cow behaviours from 
continuous recordings provides precise data about the time and the duration of the 
considered behaviour. This data can be used for carrying out statistical analyses 
and computing behavioural indices (Provolo & Riva, 2009), such as the cow lying 
index (CLI), the cow standing index (CSI), and the cow feeding index (CFI). The 
computation of these indices requires only the knowledge of cow behaviour 
whereas cow identification and tracking are needed when studying behavioural 
patterns and activities with the aim to perform an estimation of missed operations 
(e.g., milking), and to automatically observe individual animals. 

Concerning large breeding environment, the visual recognition of cow 
behaviour in digital images coming from time-lapse video recordings can be 
carried out by using one or more cameras to frame all the functional areas where 
cow behaviours are likely to occur. Among the possible views of a barn that can 
be obtained from multi-camera systems, a panoramic top view of the barn is of 
crucial importance to detect animal positions within the barn as well as to obtain 
the real shape and dimensions of the body of the animals.  

To obtain a panoramic top-view image of a large breeding environment, 
the careful design and installation of a multi-camera video-recording system is 
required. However, methods for the automatic detection of cows in panoramic 
top-view images acquired by means of multi-camera systems have not been 
applied yet.  

The automation of both the visual recognition of cow behaviours in digital 
images and the individual cow identification may represent a suitable alternative 
to the traditional observation techniques adopted to investigate cow behaviours 
since it is comparatively less expensive and not invasive for animals. The design 
and the implementation of a computer-vision based system (CVBS) is 
recommended to automate cow behaviour detection and cow identification.  
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Though in literature several systems have been proposed in order to detect 
cow behaviour in digital images, few research work has been aimed at identifying 
each animal of the herd by using image processing techniques. Whereas, animal 
identification is generally obtained by using several sensors such as wireless 
pedometers, or collars equipped with RFID tags. The integration of these sensors 
within a CVBS implemented in order to detect animal behaviour would increase 
the overall cost of the recognition activity. Furthermore, even though the sensors 
themselves are apparently harmless, they may interfere with animal behaviour. 

An inexpensive solution for the identification of animals is marking them 
with natural paints or hair dye. However, in literature this animal identification 
technique was not used within CVBS implemented in order to detect animal 
behaviour. 

1.2 Objective of the study 

On the basis of the issues arising from the preface, the overall objective of 
the thesis work is to put forward a method to develop a computer-vision based 
system (CVBS) for the automatic dairy cow identification and behaviour detection 
in free stall barns. Two different methodologies based on digital image processing 
are proposed in order to achieve cow behaviour detection and cow identification, 
respectively. Suitable algorithms among that used in computer vision science are 
chosen and adapted to the specific characteristics of the breeding environment 
under study. The method is applied to a case study, i.e., the detection of cow 
behavioural activities and the identification of each cow bred in a free-stall barn 
located in the municipality of Vittoria in the province of Ragusa. 

The use of the proposed CVBS could avoid the interference in the cow 
behaviour due to the presence of the operator in the barn and could reduce the 
time-consuming operations needed to perform the visual examination of digital 
images in order to recognize cow behaviours and perform cow identification. 

A sub-objective of the study is the design of a multi-camera video-
recording system. The achievement of this aim is crucial in order to obtain 
sequences of panoramic top-view images coming from the multi-camera video-
recording system. The panoramic top-view images make it possible to relate the 
position of the cow in the image with the real position of the cow in the barn. The 
achievement of these aims is relevant to verify if irregular behaviours occur, e.g., 
idle standing in the stall, perching, alternate occupancy of the stall, standing still 
for long time in an area of the barn, and lying in the alleys.  

The overall objective of this thesis falls within the research boundaries of 
the precision livestock farming (PLF). Together with precision farming (PF), 
which has been assisting plant production for quite a long time, PLF has been 
developed more recently in the field of stock-breeding. PLF consists of 
monitoring, collecting and evaluation of data acquired by on-going processes 
related to the animals, modelling these data to select useful information, and then 
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applying these models in real-time for monitoring and control purposes. 
Collection of data from animals and their environment, by innovative techniques, 
is followed by evaluation of the data by using knowledge-based computer models. 
Currently, considerable PLF research is directed toward the development and the 
validation of various techniques for data measuring and registration in livestock 
farms (monitoring feeding times, feed intake, and performance parameters, real-
time analysis of sounds and images, live weight assessment, body condition 
scoring, etc.). The final aim of PLF is to achieve information on the main 
parameters of animal health, animal behaviour and animal performance on a 
continuous basis. As farmer routinely gather visual, auditory, and olfactory 
information from their animals to evaluate health, welfare and productivity, new 
technologies can be useful to perform this task, even with large herds, thanks to 
the evolution in sensors and sensing techniques (Frost et al., 1997). The advantage 
of these monitoring systems is that much information can be automatically 
collected without the stress of animal disturbance or handling (Provolo & Riva, 
2009). 

1.3 Work organization 

The second section of this thesis contains a review of the methods used to 
observe animal behaviour. A number of research works are described in order to 
highlight the methods used to achieve the animal behaviour detection and animal 
identification. Both traditional methods and those based on the automated image 
analysis are described.  

The third section of this thesis describes the materials and methods of the 
research. In detail, it describes the method proposed for the design of a multi-
camera system that makes it possible to obtain a panoramic top-view image of 
large breeding environments; it gives a comprehensive look at the image 
processing algorithm used in the two methodologies proposed in order to achieve 
cow behaviour detection and cow identification, respectively. This section of the 
thesis, illustrates also the case study. In detail, a description of the free-stall barn 
is provided as well as the materials and methods used to develop the multi-camera 
system and the two methodologies. 

The fourth and the fifth sections of this thesis describe the results of the 
application of the two methodologies to the case study. The potential applications 
of the CVBS are illustrated as well as its further improvements. 
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2 STATE OF THE ART 

2.1 The observation of animal behaviour 

The study of animal behaviour is based on the consideration that animals 
do not behave randomly. A species of animal that lives in natural environmental 
conditions is able to express behavioural activities that can be considered as 
“normal”, i.e., characterized by movements highly coordinated in both time and 
space. The sequences of these movements can be patterned. Each pattern is 
characterized by the fact that the shape of animal body does not vary and that the 
time intervals, at which the specific sequence of movements is expressed, are 
constant. These patterned sequences of movements are the fundamental units in 
the study of animal behaviour and they can be measured just as surely as other 
physiological parameters, e.g., weight, length, and height.  

Some people erroneously refer to behavioural observations as subjective, 
contrasting them with physiological measurements that are said to be objective. 
What distinguishes behaviour and physiology for some people, however, is that 
they believe that behavioural measurements are less reliable than physiological 
ones, e.g., it is less easy for two people to agree what, say, an aggressive 
behaviour is than what a level of a given hormone is. The variability of 
behaviour, both between individuals of the same species and also within the same 
individual at different times is often thought to make it difficult to come up with 
reliable, repeatable measures that can be used in the same way by different 
observers (Rushen, 1991). 

Whatever the truth of those arguments, the fact remains that the reliability 
of both behavioural and physiological measures needs to be checked or validated 
from time to time. This is particularly true when more than one observer is 
engaged in a single study, but it also applies when there is just one observer 
whose criteria for different behaviours may slip as a study proceeds. 

The precise and detailed list of all the observed behaviour patterns of a 
species is known as the “ethogram”. A period of unstructured observations that 
allow for a systematic data collection should be used in order to build an 
ethogram. Furthermore, reading what has been already published on the specific 
animal species under study may also help the construction of the ethogram. Each 
behavioural pattern of the ethogram should be clearly defined by means of 
drawings, photographs and video. Whether observations are recorded on paper or 
video, electronic support, or other means of recording, each observation should 
be labelled by date, time, location, and other details that are important such as 
weather information, total number of animals visible, etc. If paper is used, a 
waterproof notebook, or data sheets on a clipboard are useful and it often helps to 
print out maps and sheets with slots for all the information to be recorded 
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beforehand in order to avoid missing something. If video is used, it is still 
necessary to record on paper the details of when and where the video recordings 
are being made. By keeping good records of any actions that were done, 
including departures from the planned protocol is an essential part of good 
research. 

The use of the appropriate tools for defining the ethogram should allow 
the sharing of the observations among other people in order to explain the 
outcomes of a specific research. Moreover, it should be useful to train other 
observers who may be assisting the researcher in the phase of data collection.  

There are several kinds of questions that can be asked about animal 
behaviour and there are several ways in which observation can contribute to all of 
them. The right question determines both the kind of data to collect, for example 
data collected over the whole lifetime of the animals or at just selected moments 
in time, and the type of information to be recorded, how often, how long for, and 
how many animals to watch to get valid results. It will determine the required 
equipments, whether any breaks of the observations are periodically required, or 
otherwise whether continuous observations are needed. It will determine whether 
it is important to know the investigated animals as individuals or can treat them 
as herd. 

2.1.1 The selective observation 
To study a specific behaviour of a single animal the following activities 

should be required: 

- to record each behavioural pattern, e.g., the movements of its head, body, 
and limbs; 

- to record the behavioural patterns of all the other animals around it; 
- to record where the animal is in relation to other animals; 
- to record where the animal is in relation to the building characteristics of 

the breeding environment: 
- to record which animals are interacting with it. 

Since the development of the above mentioned activities is not possible to 
be achieved in practice for all the possible behaviours, a selective observation is 
required. In detail, it is important to define: 

- the behavioural patterns to be recorded; 
- the suitable length of time to spend observing the animal in relation to the 

chosen behavioural patterns, i.e. from seconds to weeks or years; 
- the appropriate observation level, i.e. from an individual to the whole herd; 
- the suitable sampling regime, i.e. what, for how long, and how often you 

record. 

When making certain hypotheses, these should be first validated by 
considering the suitable selection of behavioural patterns, e.g., lying, feeding, 
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standing. Even if observations are made by using video-recordings, videos should 
be watched or analyzed with some hypotheses in mind. It is not the amount of 
data derived from the results of automatic recording devices that makes the 
behavioural analysis exhaustive, but databases still have to be interrogated on the 
basis of selected and defined hypotheses since they can only provide answers to 
specific questions. For example, lying and standing behaviours should be 
analyzed if a hypothesis predicts that a particular species of animal is more likely 
to sit down in cool weather than in hotter weather whereas other behaviours could 
be discarded, e.g., grooming itself or plying with other animals, in order to test 
this hypothesis.  

The choice of observing individual animal behaviour or collective 
behaviour of the whole group of animals, characterizes the levels of observation. 
In a broad sense, when individuals, through local interactions, do something 
together is defined as collective behaviour. Examples of this behaviour are the 
following: bird flocks or fish schools moving coherently in the same direction, 
ants feeding from the same food source, cockroaches aggregating under the same 
shelter, etc. (Sumpter, 2006). 

To clarify the concept of level of observation, let suppose that the 
hypothesis to be tested predicts that animals should be found in larger groups 
rather than being isolated. To test this, it would be necessary to record the size of 
the groups to be observed, but it might not be necessary to record the behaviour of 
each individual animal. Conversely, if the hypothesis predicts that the animals 
would seek food far from the place where they were, it would be necessary to 
observe individually where each animal eats.  

To identify animals individually, it could be done in two ways: to catch the 
animals before the beginning of the observations and mark them in some way, 
such as with wing tags, leg bands, or collars; to recognize them from 
characteristics that make many animals naturally individually distinct. Particular 
attention should be paid to the first way of identifying animals because even when 
the tags themselves are apparently harmless, they may interfere with animal 
behaviour. In fact, a series of experiments on zebras (Burley, 1988) showed that 
the coloured leg bands which were used to identify individual male zebra finches 
affected not only their attractiveness to females but also their success as fathers. 
The females seemed to confuse the red leg bands with the red beaks that males 
have naturally as a sexual signal.  

After having performed the selection of behavioural patterns to be 
recorded (e.g., preening, feeding, standing, and lying) and levels of observation, 
there is the problem of how many different focal animals are needed and what 
sampling method to use. 

As regards the problem of defining the number of animals to observe, if 
research involves behavioural activities that are very simple to observe, it is useful 
to consider all the animals in the group. If, instead, the study aims at analyzing 
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some specific behaviour, then it might be convenient to focus the attention to one 
animal at a time, which in this case takes the name of Focal animal sampling, 
whereas when the behaviour to be analyzed involves simultaneously more than 
one subject, can be observed a group of animals is to be observed and it is defined 
as Focal group sampling (Albertini et al., 2008; Martin & Bateson, 2007). For 
both methods of focal sampling it is required to record all the activities performed 
by the selected animals over a set period of time. On the data collected during the 
observation period, some summary statistic, such as the mean number of times the 
focal animal looked up, is extracted from the record and becomes one data point 
in a whole series of observations. Since the focal animal is taken as representative 
of that whole group, a particular care in deciding which of a group of animals is 
chosen to be the focus of the observations should be taken. To avoid invalidating 
the results, the focal animal is randomly chosen since choosing the cutest or the 
most active could bias the results. 

As regards the problem of choosing the type of measurement, i.e., how 
much of what observed is actually recorded, the use of continuous recording 
provides precise information about when the considered behaviour starts and 
stops. This technique provides very good quality data, known as interval 
measurements (Siegel & Castellan Jr., 1988), and can be used for all sorts of 
statistical analyses. If the animal behaves relatively slowly, as cattle tend to, it will 
probably be possible to carry out direct observation, by noting the times of any 
change in behaviour, but if the animal keeps changing behaviour rapidly, this may 
not be possible or track of the animal may be lost in the effort to write everything 
down. Therefore, video-recordings are a more simple way of obtaining 
information about the durations of behaviours but the additional support of a 
notebook and a stopwatch is still advisable. 

The type of measurement called “zero/one” or “yes-no” sampling is used 
when a continuous record is not, in fact, absolutely necessary to reach the 
objectives of a research, and it may be sufficient to record less about each 
behaviour in order to test a hypothesis as effectively as with continuous recording. 
Video-recording just whether or not the behaviour occurred at all during a 
predetermined time period might be enough to some purposes. This type of 
measurement makes it much easier to write down what it is observed or recorded 
from a video and allows keeping up with the animal’s behaviour in real-time. In 
particular, the focal animal is observed for the same amount of time as for 
continuous sampling, but only information related to whether an animal did a 
behavioural activity, is written down. This is defined as categorical measurements 
(Siegel & Castellan Jr., 1988) which are absolutely valid but can only be used in 
certain types of statistical tests. 

A third category of measurements, very commonly used in behavioural 
research, constitute a compromise between the interval measurements, which 
provide data with a high completeness, and the categorical measurements, which 
give more sparse data. This kind of measurements, called ordered or ranked 
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measurements (Siegel & Castellan Jr., 1988), can be very useful when an animal 
does more of something than another, but not possible to say exactly how much 
more. Therefore, instead of trying to record all the individual behaviour patterns, 
the behaviour could simply be divided into categories. Ordered or rank 
measurements have to be analysed with non-parametric statistical tests, which are 
very easy to carry out and make few assumptions about the data. 

When it is not possible to watch all animals continuously, but to watch all 
of them for some of the time, Scan sampling is used. This method of recording 
behaviour and is the easiest and quickest to do. Usually it is carried out by doing a 
quick scan of the whole group of animals, which would provide a snapshot of 
what animals were all doing at one moment in time, and, sometime later, another 
scan is done in order to capture another frozen moment in time. The elapsed time 
between two snapshot should be small to allow a realistic estimate of the 
percentage of time that the animals used in the various activities, but reducing as 
much as possible the amount of energy for observation (Mitlohner, Morrow-
Tesch, Wilson, Dailey, & Mcglone, 2001). 

When it is not possible to make the systematic observations ideally 
required by the research aims, other methods of sampling could be used. 
Behaviour sampling is used if the behaviour at all is observed and recorded and ad 
libitum sampling is used if anything the animal is doing at all is observed and 
recorded (Altmann, 1974). Both methods are particularly suitable for rare 
behaviour or rare species. 

2.1.2 Some open issues on animal behaviour observation 
Studies based on the observation of animal behaviour could suffer from a 

common problem related to the fact that the animals may be observing the 
observer, and they may be afraid of observer and run away, or they may be so 
interested in observer that they spend all their time investigating him, like dairy 
cattle often do. This problem could be solved by using a multi-camera video 
recording system (DeVries, Von Keyserlingk, & Weary, 2004; DeVries et al., 
2003b; Kaihilahti, Suokannas, & Raussi, 2007; Mattachini, Riva, & Provolo, 
2011; Overton, Sischo, Temple, & Moore, 2002; Provolo & Riva, 2009). 

Another issue regards the localization of the animal, i.e. where the specific 
animal behaviour occurs. Tracking devices based, for instance, on radio frequency 
or GPS, could be used to collect huge amounts of data. A basic technique of 
recording where animals are with respect to their environment is to make a 
number of photocopies of the map of the area the animals are occupying and use 
one copy for each scan sample, noting the positions of animals or groups on each 
scan in relation to specific previously defined landmarks. Since the recording of 
the animal positions in each scan is a burdensome activity, it is possible to subset 
the map into areas and to count the numbers of animals in each of them. 

Another quick and coarse but useful method of recording the location of 
animals with respect to each other, is to select a focal animal and then count the 
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number of animals within one, two, or more body lengths of it. The main 
advantage of using the animal’s own body length rather than real measurements is 
that the distance between animals can be measured, regardless of their actual 
distance from the observer. Moreover, there are no parallax problems since 
though the animals will appear to be smaller when they are further away, a body 
length will also be correspondingly smaller too. Also in video-recordings analysis 
this suggestion could be useful, because effects of camera distortion or the size of 
animals in different parts of the screen could be not considered if the apparent 
body length of the animal in the considered area of the screen was used. 

Another issue regards the choice of the most appropriate system to record 
the data, e.g., a notebook and stopwatch, a small portable computer, or a video-
camera. 

Since a safe and secure record for future analysis is obtained, there are 
sometimes clear advantages in using a video-camera system and there are now 
various software packages available to extract information. These include 
Observer XT (Schmied, Waiblinger, Scharl, Leisch, & Boivin, 2008) and 
Jwatcher (Blumstein & Janice, 2007). Nevertheless, while there are some projects 
where video or other automatic recording is essential, i.e. day long observations 
that cannot be recorded directly, direct observation should also be considered as 
the simplest of recording methods which may have advantages in some situations. 
On the other hand, technology is also opening up new possibilities in the field of 
animal behaviour observation and recording methods. 

2.2 Observation of dairy cow behaviour  

2.2.1 Traditional methods 

2.2.1.1 Check	lists	compiled	in	field		

From the literature it came out that often dairy cow behaviour is assessed 
by skilled operators and veterinaries who carry out the direct observation of the 
herd in field or animal house in order to compile check lists suitable to verify the 
adequacy of the breeding environment, apply protocols to determine the presence 
of diseases (e.g., lameness), control data production and dairy cow health status. 
Often, daily scan sampling intervals of a few hours are applied.  

The direct observation of the herd was used in a number of studies in order 
to assess dairy cow behaviour and welfare. 

In 2001, two experiments were conducted to detect differences in animal 
responses between strawyard and cubicle systems (Fregonesi & Leaver, 2001). 
The welfare of the lactating dairy cows was assessed by means of behaviour, 
performance and health indicators. The direct observation of the herd was used in 
order to obtain the data for the computation of the indicators. In detail, 
measurements were made by a team of operators that, through direct observation 
of herd activities in the barn, recorded the investigated behaviours (i.e., lying 
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down, ruminating on bed, and standing on passage and feeding) by using check 
lists. In the first trial the herd was observed for two weeks and, for each day, data 
were recorded by using 5-minute scan sampling techniques. In the second trial the 
herd was observed for four weeks and data were recorder by using the same scan 
sample. The activity related to direct observation involved the drawing up of 4032 
and 8064 check-lists in the first and in the second trial respectively. 

Check lists were also used to estimate the detrimental effects of lameness 
on calving-to-conception interval and hazard of dying or being culled in lactating 
Holstein cows (Bicalho, Vokey, & Guard, 2007). Trained veterinarians assigned a 
visual locomotion score (VLS) to 1799 lactating dairy cows present in 5 dairy 
farms. The VLS could take a 5-point scale ranging from 1 = normal, 2 = presence 
of a slightly asymmetric gait, 3 = the cow clearly favored 1 or more limbs 
(moderately lame), 4 = severely lame, to 5 = extremely lame (nonweight-bearing 
lame). The VLS was done every 14 days, and each cow received at least 2 scores 
and a maximum of 7 scores. 

Firstly, the observers entered the cow identification number and the 
assigned VLS into a digital voice recorder and subsequently the data were entered 
in a spreadsheet. Successive analysis demonstrated a significant increase in days 
from calving to conception for cows detected as lame when compared with those 
considered nonlame during the first 70 days in milk (DIM). 

2.2.1.2 Analysis	of	digital	images	from	time‐lapse	video	recordings	

The analysis of digital images from time-lapse video-recordings represents 
an effective tool for studying livestock behaviours in different environmental 
conditions. It is relatively cheap, non-invasive and facilitates the collection of 
more frequent data over longer time periods (Cangar et al., 2008). In this section a 
review of the most relevant research on the analysis of dairy cow behaviour by 
analyzing digital images was carried out. 

Time-lapse video recordings were used to document dairy cow 
behavioural patterns, examine factors affecting lying behaviour, and develop 
guidelines for visual assessment of free-stall usage during summer conditions in a 
high producing dairy (Overton et al., 2002). The Authors used a multi-camera 
video-recordings system constituted of four video cameras placed in a free-stall 
pen containing 144 stalls and 129 high producing cows. The four cameras were 
placed about 5 m above the pen floor to allow more complete visualization of the 
pen. The video recordings were recorded over a 6-day period in July 1999. 
Operators carried out the visual interpretation of the video recordings. In detail, 
each daily video recording was reviewed using 60-minute scan sampling 
techniques, so cows were counted as lying, standing in alley without eating, 
standing in free-stalls, or eating in each of the four sections of the pen. As a result, 
19 hourly observations were recorded for each day of the study. Therefore, the 
activity related to direct observation of video recordings involved the visual 
interpretation of 456 frames. 
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The analysis of video recordings was also used to validate the data 
generated by GrowSafe, an electronic system designed to allow for passive 
monitoring of feeding behaviour of individual cows housed in a free-stall barn 
(DeVries et al., 2003b). Two groups of six lactating cows were monitored for 24 
hours using both the GrowSafe system and time-lapse video recordings. The cows 
were housed in two different adjacent pens in a free-stall. One video camera was 
positioned approximately 6 m above the feeding alley of each experimental pen. 
The output from the cameras was recorded with a time-lapse video recorder and a 
digital video multiplexer. Cows were individually identified with symbols on both 
sides of their body using hair dye. Also in this experimental trial, operators carried 
out the visual recognition of the cows within the video-recordings. In detail, raw 
data were summarized for each cow and for each minute of the day. Therefore 
2880 video recordings were analyzed. 

Another original study (DeVries et al., 2004) made use of digital image 
coming from video recordings with the aim to determine whether doubling the 
amount of feeding space from 0.5 to 1.0 m per cow leads to increased spacing 
between cows at the feeder, fewer aggressive social interactions among cows, and 
ultimately increased feeding activity. Two adjacent pens, each having a total of 6 
m of accessible feeding alley space, were observed by using a video recording 
system. In detail, the animals were videotaped using one video camera per pen, a 
time-lapse videocassette recorder, and a video multiplexer. The video cameras 
were located 6 m above the feeding alley, and red lights were used to facilitate 
recording at night. Within the two 90-minute post feeding periods, an operator 
labelled the inter-cow distances and the number of animals present at the feeding 
alley by using a 5-minute scan sampling. During the two post feeding periods, 
four groups of cows of 6 cows each were observed for 7 days. Therefore a total 
amount of 1008 frames were analyzed by the operator. 

The effects of two different feed barrier systems on feeding and social 
behaviour of dairy cows were assessed by analysing digital images coming from 
video recordings (Endres, DeVries, Von Keyserlingk, & Weary, 2005). Forty-
eight cows were housed in 4 pens in a free-stall barn. Feeding and social 
behaviour data were collected using one video camera per pen, a time-lapse 
videocassette recorder, and a video multiplexer. The video cameras were located 
at 6 m above the feed bunk of each pen. Red lights, hung adjacent to the cameras, 
were used to facilitate recording at night. An operator observed the analyzed cow 
behaviour from continuous 24-hours video recordings by using 10-minute scan 
sampling. The number of displacements from the feed bunk per day were 
collected by continuous observation of 24-hours videos for the last 3 days of 
recording (6 days data collection) for each treatment condition (treatment of 4 
groups of cows). Therefore a total amount of 1728 frames were analyzed by the 
operator. 

Another research (Munksgaard, Jensen, Pedersen, Hansen, & Matthews, 
2005) quantified the relative priorities between lying, eating and social behaviour 
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of dairy cows in different stages of lactation by analyzing cow responses to time 
constraints in two experiments. In the first experiment, the behaviour of individual 
cows was recorded on videotapes (time lapse, two frames per second) on three 
days of the treatment, when cows were in their resource pen. In the second 
experiment, the behaviour of individual cows was recorded on videotapes for 24 
hours a day on the last four days of the experimental period. For both the 
experiments, an operator quantified the behaviour of all animals. The position of 
the head of the animal was used to assess position in the pen. Activity of the 
animal was classified as eating (the animal has food in the mouth and/or chews 
when standing in front of the feed trough), lying (body resting on floor or 
mattress) and other patterns (performing a behaviour other than eating or lying). 
Whenever a cow changed position or started doing a new activity, the time was 
recorded; thus both frequency and duration could be calculated. Interruptions of 
less than 60 s were not recorded.  

The qualitative assessment of dairy cows’ social behaviour on farm was 
assessed with regard to its inter-and intra-observer reliability and its correlation to 
quantitative ethogram-based assessment (Rousing & Wemelsfelder, 2006). Five 
farms were object of the experimental trials. The social interaction of cows around 
a drinker was recorded with a digital camera. The camera was mounted on a pole 
out of cow reach to ensure undisturbed recording of social activities. Recording 
took place on three successive days for 2-3 hours in the morning, starting 
approximately 1 hour after the morning feeding, and 2-3 hours in the afternoon 
before and after afternoon milking. From this video footage, 25 clips of 
approximately 1 minute duration were selected. This selection was designed to be 
a representative sample of the variation of social interactions observed at the 
drinkers on the different farms, including agonistic and non-agonistic interactions. 
The 25 video clips included 25 social events of a total of 66 cows: 14 video clips 
of two cows, eight video clips of three cows, two video clips of four cows and one 
video clip of six cows. These 25 clips were then edited on to two VHS tapes at a 
professional studio. Qualitative assessment of these video tapes was provided by 
12 observers, five of whom were researchers of animal science, five were Ph.D. 
students of animal science, and two were stockmen familiar with daily routines in 
dairy herds. All observers had practical experience in handling cows and 
observing cow behaviour. These observers were gathered at the start of the study, 
and given detailed instructions about free choice profiling experimental 
procedures. Observers were divided into two groups, with each group seated in 
front of a wide screen TV monitor to watch the recorded video tapes. A week later 
this procedure was repeated by showing observers the same 25 video clips in 
reversed order on Tape 2. Observers were informed that the clips were the same, 
to avoid speculation and to encourage them to get on with the task at hand. 

Carreira et. al. 2009 (Carreira, Fernández, & Mariño, 2009) estimated the 
variation of stall occupancy by means of an apposite indicator. Three farms were 
object of the experimental trials. On each farm, cow behaviour and stall use were 
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time-lapse recorded uninterruptedly for 24 h by using a video camera connected to 
a timer that recorded at preset time intervals. Individual 17-second intervals were 
recorded, followed by a disconnection time of 3 min and 30 s. By using this 
system, 380 observations were recorded over 24 h. The recordings were 
simultaneous in every three farms and were made during winter months. To 
analyze stall occupancy, the number of observations in which stalls were occupied 
(over the 380 observations) was quantified. 

In a recent study (Mattachini et al., 2011) the values of different 
behavioural indices at different scan-sampling frequencies were compared in 
order to evaluate the different methods of data aggregation that are used to obtain 
daily behavioural indices. The lying, standing, feeding and drinking behaviours of 
69 cows in a free-stall barn were recorded over 7 days using continuous video 
recording. Two black-and-white closed-circuit video cameras were installed in the 
barn. The two cameras were placed about 5 m above the pen floor to allow for the 
complete visualization of the pen. A 7 day video sequence pattern over a long-
term (one year) recording period was used. An operator carried out the visual 
analysis of the video recordings and counted the number of dairy cows occupied 
in different behavioural activities (i.e., eating, lying, and standing). Standing was 
considered to be an upright posture (i.e., motionless or walking), while the lying 
category included only cows that were observed in total lateral or sternal 

Table 1 - Review of the most relevant research on the analysis of dairy cow behaviour by 
analyzing digital images 

Authors 
Observed 
behaviour 

Scan 
sampling 

Observation 
period 

Human 
resources 

N. of 
cameras 

N. of observed 
frames 

N. of check lists 
compiled in field 

Fregonesi & 
Leaver, 2001 

Lying down, 
ruminating on 

bed, and 
standing on 
passage and 

feeding 

5-min 6-weeks 
A team of 
observers 

- - 12096 

Overton et al., 
2002 

Lying, standing 
in alley without 
eating, standing 

in free stalls, 
eating  

60-min 6-days 
A team of 
observers 

4 456 - 

DeVries et al., 
2003b 

Feeding 1-min 24-hours 
Not 

specified 
2 2880 - 

DeVries et al., 
2004 

Feeding 5-min 
2×90-minutes
(post feeding 

period) 
One operator 2 1080 - 

Endres et al., 
2005 

Feeding and 
social 

interaction 
10-min 3-days One operator 4 1728 - 

Munksgaard et 
al., 2005 

Lying, eating 
and social 
behaviour 

2-sec 3-days One operator 2 Not specified  

Rousing et al., 
2006 

social behaviour 1-sec 3-days 
A team of 
observer 

5 
25 video clips of 
1 min duration 

- 

Carreira et al., 
2009 

Lying, feeding, 
and standing  

120-sec 3-days One operator 2 
1140 video clips 

of 17 sec 
duration 

 

Mattachini et 
al., 2011 

Lying, standing, 
feeding and 

drinking 
10-min 7-days One operator 2 1848 - 
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recumbency within the confines of a stall. Eating was defined as actively 
ingesting feed or water, or standing within 0.6 m of the feed bunk and oriented 
toward the feed. Behavioural activities were analysed at different scan intervals of 
10, 20, 30, 60 and 120 min. The entire video observation period covered 154 
hourly time periods and, therefore 1848 frames were examined. 

2.2.2 Automated image analysis-based methods  
Since the visual recognition of cow behaviour is generally time consuming 

and, if more than one operator carries out the detection work, it could be also 
subject to discordant interpretation (Müller & Schrader, 2003), a number of 
studies proposed different methods to automate image analysis of animals in their 
breeding environment. 

In 2008 a study was carried out in order to develop a fully automatic image 
analysis system to identify some locomotion and posture behaviours of cows prior 
to calving in a continuous and automated way (Cangar et al., 2008). In the 
research, eight individual cows representing a range of calving events from 
normal to difficult were selected for analysis. In order to identify posture and 
locomotion behaviour patterns, five individual pens with a straw-bedded surface 
of 4.6 m × 3.3 m were instrumented with cameras and recording equipment. Two 
cameras were used on each pen. The first one was an overhead camera which 
generated a top view of the animal. The images were used to develop the 
automatic real-time posture and locomotion monitoring tool based on an active 
shape model (Cootes, Taylor, Cooper, & Graham, 1995). The second one was a 
side view camera which generated a side view of the animal as seen by the 
stockperson. These video surveillances were used for visual interpretation on a 
computer screen by ethologists. The top view camera was placed 5-m high, above 
the centre of each pen. A group of operators observed the side views generate by 
the five side view cameras. These views were used for visual interpretation on a 
computer screen by ethologists. They labelled the images of cows approaching 
parturition at 10-second intervals over the last 24 hours prior to calving. Particular 
behaviours such as position in pen, orientation, lying or standing, type of lying, 
eating or drinking and calving details were recorded. However the above 
experiments were done in pig chambers in a research laboratory. In commercial 
livestock houses, image analysis for behaviour classification becomes more 
complicated. 

A number of studies were carried out in order to detect lameness in dairy 
cows. A first study was carried out in 2008 with the aim to build an automatic 
system for continuous on-farm detection and prediction of lameness in the farm 
by using vision techniques (Song et al., 2008). This research proved that vision 
techniques have great potential to be used for continuous quantification of 
lameness in cows. A digital camera was fixed on a tripod 6 m far from the side of 
a corridor to record on video the entire body of each cow and its movement. The 
locomotion of all the 15 cows was scored by four trained observers. They scored 
cows individually as cows passed through the alley during the image acquisition.  
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Side-view images were recorded when cows passed an experimental set-up 
freely. Digital image processing such as background subtraction, binary image 
operations, calibration and hoof separation, were executed to obtain the trackway 
information containing hoof location. The accuracy of automatically captured 
results was checked by comparing with the output from manually labeled hoof 
locations. The above experiments were done in a research farm. 

A further study (Poursaberi, Bahr, Pluk, Van Nuffel, & Berckmans, 2010) 
aimed at developing an automatic real-time algorithm suitable to on farm 
detection of lameness in dairy cattle. In particular, back posture analysis as a 
potential variable for lameness detection was investigated. Video-recordings data 
of 28 lactating Holstein cows were acquired on farm by a camera located 1.5 m 
high above the ground, centred and 8 m away from a concrete corridor (1.2-m 
wide and 6-m long) which takes from the barn to the pasture ground. The video-
recordings were taken during the scoring procedure carried out by several 
observers. Scores were given when one or more of the following “lameness 
indicators” derived from literature were observed: tenderness, arched back, 
reduced speed, irregular gait in time or place, reduced tracking up, increased 
abduction and head bobbing. Observers gave score “1” when the cow did not 
show any of the ‘lameness indicators’, score “2” when the presence of one 
“lameness indicator” was observed, and score “3” when a severe “lameness 
indicator” or multiple “lameness indicators” were found. 

Finally, a recent research (Pluk et al., 2012) described a synchronized 
measurement system, useful for lameness detection in dairy cattle, which 
combines image and pressure data to automatically record the angle of the 
metacarpus and metatarsus bones of the cow with respect to a vertical line.  

A pressure-sensitive mat, having an active surface 0.61 m wide and 4.88 m 
long, was used to record the timing and position of hoof placement and release of 
each cow. The video-recordings were acquired by a camera installed at 2.5 m 
above the ground and at a distance of 3.5 m from the pressure mat which made it 
possible to cover the whole measurement area. The pressure mat data and the 
camera images were synchronized by using the timing information, stored in text 
files. The camera image, together with the position information, allowed 
automatic computation of the touch angle by using image processing. 

A trained observer visually scored locomotion of the cows from the video-
recordings. In two weeks of experiments carried out in September and October 
2009, 400 measurements were considered. In the group analysis, the kinematic 
data of the sound cows were compared with the data from the groups of cows with 
a higher degree of lameness to assess differences in gait. 

2.3 ICT applications for animal localization and identification 

The research works reported in the previous section allowed cow 
localization in the breeding environment by using vision techniques. The 
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identification, or more specifically automatic or machine-readable identification, 
is the key to the realization of effective precision livestock farming (Banhazi et 
al., 2012). The identification of the cow within the herd besides allowing the 
tracking of the animal, which is useful to study particular behavioural activities of 
the animal individually in comparison to those of the whole herd, may be utilized 
when the isolation of individual animals is required due to the risk of infections or 
the welfare of each animal have to be assessed taking into account the time spent 
in a number of specific behaviours. 

Usually in outdoor the position of animals on wild animal habitats is 
obtained by developing systems based on the GPS technology, e.g. GPS-collar 
receivers (Barbari et al., 2006). This technology allows location data with a 
precision of about 1 m but it is not feasible for indoor applications. 

The increasing improvement of wireless technologies has favoured the 
development of automated localization systems utilized to detect and track motion 
of animals inside farm buildings. A number of studies proposed different methods 
to automate identification of animals in their indoor breeding environment.  

In 2007 a study (Gygaxa, Neisen, & Bollhalder, 2007) was carried out in 
order to set-up a local position measurement system based on radar technology to 
be used to track cows and analyze how they use the different areas of the barn. In 
addition, authors tested the system suitability for monitoring and quantifying 
social interactions. A data set of measurements at fixed positions and on dynamic 
circular showed that estimates of the location of a transponder were obtained with 
an error within 0.5 m. To validate the automatic positioning system was used to 
identify dairy cows at the feed rack. Data recorded by the LPM were compared to 
those collected by operator’s works which identified the dairy cows inside digital 
images of the feed rack acquired for 9 hours with a sample rate of 10 min. Results 
of comparison showed that animal positioning can reliably be obtained with a 
precision of about 0.5 m. 

Another research (Huhtala, Suhonen, Mäkelä, Hakojärvi, & Ahokas, 2007) 
aimed at developing an automatic tracking system based on WLAN suitable for 
cow tracking inside a building. The system was installed in a cowshed with a 
special section for 10 cows milked with a milking robot. The tags were installed 
first in the precise places to get accurate coordinates and subsequently, for the 
validation of the system, the tags were placed on top in a cow’s neckband and also 
on a cow’s back with a special band. Data recorded by the tracking system were 
compared to those collected by operator’s works which identified the dairy cows 
inside digital images provided by a web camera installed above the room. In 
undisturbed conditions (no moving cows, clear sights between antennas and tags, 
etc.) the result of the manufacturer’s analysis was 30% inside 65 cm, 70% inside 
100 cm and 90% inside 200 cm. Instead when a tag was fastened on the cow and 
all the 10 cows were in the section, the results were not so good; especially when 
a cow was lying, the stability was very poor. 
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In 2009 a number of experiments (Simonini, 2009) conducted in different 
breeding environments have shown that active RFID systems based on the use of 
position markers can detect the presence of animals equipped with active tags 
within areas bounded by inductive loops. However, from these experiences, a 
number of disadvantages, mainly attributable to the cost of the position markers 
and the complexity of the installation of its inductive loop in the breeding 
environment, have emerged.  

In a later search carried out in the 2011 (Porto et al., 2012) an automatic 
detection system (ADS) was developed. The ADS defined a configuration of an 
active RFID system alternative to that making use of position markers for the 
automatic detection of tags. The ADS was initially tested in the laboratory and 
then applied to a group of pigs housed in a pen consisting of a built and 
completely roofed resting area and an enclosed open-air area. Reference tags were 
properly placed in the pen and a specifically developed software was executed to 
elaborate RFID data. The work highlighted the possibility of using active RFID 
tags to detect the pigs resting in the indoor area, thus avoiding the cost of the 
position markers and the onerousness of the induction loops installation. 
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3 MATERIALS AND METHODS 
With regards to the automatic detection of dairy cows housed in free-stall 

barns, the reliability of the image processing methods described in section 2.2.2 
could be threatened by a number of conditions, i.e., clean and dirty straw bedding; 
dry and wet sand bedding; rubber mats; rubber flooring; slurry in the alleys; 
higher variability of floor brightness near the openings; and higher sunlight 
reflection of wet floors. 

Therefore, the need to adapt the described methods and to assess the 
effectiveness of their results arises when coping with these specific conditions. 

Another issue is the need to obtain a panoramic top-view image of the 
free-stall barn under study. This is crucial in order to detect animal positions 
within the barn as well as to obtain the real shape and dimensions of the body of 
the cows. To obtain such a panoramic top-view image, a careful design of a multi-
camera video-recording system is required because of the large dimensions of the 
breeding environment to be monitored. A literature review revealed that methods 
for the detection of animals in panoramic top-view images acquired by means of 
multi-camera systems have not been yet applied to the field of precision livestock 
farming.  

As a consequence of the above considerations, the present study puts 
forward a novel approach for the design of a computer vision-based system 
(CVBS) for: 

- The automatic detection of a number of cow behavioural 
activities in free stall barns (objective 1); 

- The automatic identification of dairy cows in free-stall barns 
(objective 2). 

To acquire the images which are utilized in the CVBS, a method for the 
design of the multi-camera video-recording system is proposed and described in 
section 3.1. 

Concerning the objective 1, a first methodology proposed in the present 
research aimed at detecting the following cow behavioural activities: feeding, 
lying, walking/standing still, and perching. With regard to some of these, more 
precise information is required for the comprehension of the proposed 
methodology. In this work, the behavioural activity feeding is referred, as in 
previous studies (DeVries, Von Keyserlingk, Weary, & Beauchemin, 2003a; 
Wilson, 2005), only to animal having its head through the feed barrier. The 
behavioural activity lying is referred to cow resting in the stall in one of its natural 
postures, i.e., long, short, narrow or wide.  

The selection of these behavioural activities among all those possible is 
justified by the growing attention for their analysis as it is considered that their 
modifications, caused by social and physical problems as consequence of the 
breeding environment, could be associated with changes in the health status and 
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reproductive efficiency of dairy cows. Some studies analysed the permanence of 
dairy cows lying down in the stalls because it affects the level of milk production 
and the foetal development during the pregnancy (Nishida et al., 2004; Rulquin & 
Caudal, 1992). Other studies focused on the daily incidence of lying and standing 
behaviours for oestrus detection (Firk et al., 2002) and early diagnosis of lameness 
(Pastell et al., 2009). It has been observed (Galindo, Broom, & Jackson, 2000) 
that standing still and perching predispose cows to lameness. The detection of 
these behavioural activities along with the analysis of the walking posture 
(Maertens et al., 2011), could be applied to obtain an early diagnosis of lameness. 

Other research focused on the monitoring and analysis of feeding 
behaviour with the aim to optimize intake under different feeding managements 
(DeVries et al., 2003b; Halachmi et al., 1998; O'Driscoll et al., 2009) and some 
other studies analyzed the influence of barn building characteristics on the social 
and feeding behaviour of dairy cows (DeVries & Von Keyserlingk, 2006; 
Fregonesi et al., 2004; Fregonesi et al., 2007). 

With regard to the objective 1, in section 3.2 the main characteristics of the 
cow detection methodology, that includes an algorithm originally proposed by 
Viola and Jones (Viola & Jones, 2001, 2004) for the human face detection and 
applied only in few cases for the animal detection (Burghardt, 2004; Burghardt & 
Càlìc, 2006), is described. From literature, it resulted that the robustness of this 
algorithm could provide accurate classifications also when significant brightness 
and background variations occur in the sequence of the analyzed images. 

Concerning the objective 2, an improvement of the CVBS functionalities 
was achieved by putting forward a second methodology for the identification and 
consequent positioning of each cow in the functional areas of the barn. Such 
improvement is required when: 

- models of animal behaviours must be developed on the basis of 
continuous behavioural observations;  

- the isolation of individual animals is required due to risk of infection;  
- the welfare of each animal have to be assessed taking into account the 

time spent in a number of specific behaviours (Huhtala et al., 2007). 

Though several systems could be used for animal identification, e.g., RFID 
tags and position markers (Barbari, Conti, & Simonini, 2008) and wireless 
technology (Huhtala et al., 2007), their integration within the proposed CVBS is 
not recommended because of the increasing of the overall cost.  

Therefore, section 3.3 describes the main characteristics of an 
identification methodology based on the contours extraction in digital images and 
the normalized product scalar method for contours matching. 
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3.1 The multi-camera video-recording system 

Among the possible views obtainable from a video-recording system, 
those providing plan views of the barn are the most suitable for the recognition of 
the cow behavioural activities analysed in this study. In particular, plan views of 
the barn make it possible to distinguish each cow from the others and to determine 
the real position of each cow within the barn. These potentials are relevant to 
verify if irregular behaviours occur, e.g., idle standing in the stall, perching, 
alternate occupancy of the stall, standing still for long time in an area of the barn, 
and lying in the alleys.  

To obtain a broad coverage of the barn from above, a multi-camera video-
recording system has to be designed. This kind of system must provide 
synchronized and rectified camera images and also panoramic rectified top-view 
images of the barn. Both rectified plan views are needed to obtain real dimensions 
of cows, physical spaces, and equipments. This characteristic of rectified plan 
views allows the selection of homogeneous training samples to be used by the 
classifiers in terms of cow body proportions showed in the video recordings. 

3.1.1 Computation of the number of cameras to be installed in the barn 
The exact number of cameras must be established by following the steps 

described below: 

a) Direct metric survey to produce the plan and two or more sections of the 
barn. This phase is required to determine the installation height of the 
cameras above the floor of the barn (hcam) as well as the height above the 
floor of the foreground plan (hforg) that is the height of the animal body, 
measured at the withers, when it is standing (h’

forg) or lying (h”forg) (Figure 1).  

b) Camera model selection. The difficulty of installation that could occur, 
primarily due to the geometric and dimensional characteristics of the barn, as 
well as the need to contain the costs of the CVBS, favour the selection of 
network camera models powered on Ethernet, that does not require power 

 
Figure 1 – A schematic representation of the section of the functional areas of barn to be 
monitored by means of a multi-camera system. 
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supply and prevent the barn from being subject to the installation of power 
cables. Moreover, the selected camera model has to be equipped with the 
hypertext transfer protocol (HTTP) based interface which provides the 
functionality suitable to request a single image (snapshot), to control camera 
functions and to get and set values of the camera parameters. The HTTP-
based interface is required to obtain camera image synchronization, which 
will be described in the next section.  

c) Camera image calibration. The images acquired from the cameras have to be 
subject to an image calibration process to remove lens radial distortion, which 
is the source of the ‘fish-eye’ or ‘barrel’ effect, and lens tangential distortion, 
produced by manufacturing defects consisting in lens not exactly parallel to 
the plane of the scene. For each camera, calibration is carried by using the 
Zhang’s calibration method (Z. Zhang, 2000) that requires the use of a planar 
chessboard to be placed on planes with different inclination in front of each 
camera to be calibrated. In details the method calculates for each camera the 
distortion matrix and the camera matrix which characterize the process of 
transformation between the filmed reality and the images generated by the 
camera. A set of equations are defined by matching the known Cartesian 
coordinates of square corners in a chessboard, with the corresponding 
coordinates of points automatically identified in a distorted image. The 
solution of the defined equation are collected to build the required distortion 
matrix and the camera matrix.  

e) Evaluation of the maximum horizontal and the maximum vertical view angles 
after the calibration process. This phase is required to establish the exact 
dimensions of the viewable region (π) that will be acquired by the cameras. 
Camera view angles have been evaluated by means of laboratory tests. The 
horizontal view angle (α) is the angle defined by the midpoint of left edge of 
the viewable region, the camera location, and the midpoint of the right edge 
(Figure 2). Likewise, the vertical view angle (β) is the angle defined by the 
midpoint of the top edge, the camera location, and the midpoint of the bottom 
edge.  

 

 

 
Figure 2 -Representations of the horizontal and vertical view angles of a camera. 
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To monitor a rectangular plan area of length l and width w, the total 
number N of cameras to be installed in the direction of l, or in the direction of w, 
can be determined by computing the value of n as: 

 

 2 tan
2 cam forg

d
n

h h



   
 

  (1) 

where d is equal to the length l or to the width w, γ is equal to the view angle α or 
to the view angle β. The number N is equal to the next whole integer of n. Once 
fixed the value of d, the selection of the γ value should minimize the number N. 

The resulting length, or width, D of the rectangular plan area monitored by 
the N cameras computed by means of the equation (1) is greater than d. This 
makes it possible to obtain the rectified plan view of objects having height equal 
to hforg and located near the perimeter of the area. 

3.1.2 Image synchronization and mosaicing 
Video acquisition from the multi-camera system must be synchronized 

because the N camera images characterized by the same acquisition time must be 
used to compose a panoramic top-view image of the barn. If camera images are 
not synchronized among them the image matching of the cow activities in the 
overlapping region of two adjacent camera images would not be assured.  

By making use of the HTTP based interface, an algorithm that allows for 
the synchronization of snapshots coming from the cameras must be designed and 
implemented in a software tool. Firstly the algorithm has to make an 
asynchronous request to each camera to download one snapshot, and then each 
camera web server returns the most up-to-date snapshot in JPEG format. The 
algorithm must wait until all the snapshots are available before making the 
subsequent request, and thus the accumulation of delay times in the video 
sequences is avoided. 

Image mosaicing refers to the combination of two or more camera images into a 
single composite one. This phase is required to detect cows which leave one 
camera scene and enter another one. In this way one single frame which will be 
the input of the algorithm used to detect cow behavioural activities is obtained, 
and the selection of the samples that will be used for the training of the classifiers 
is facilitated. Many algorithms today are able to take overlapping regions of 
camera scenes and autostitch them together to create a panoramic top-view image. 
However, such algorithms have to satisfy a number of requirements to obtain 
good results (Mills & Dudek, 2009): limited camera translations, limited lighting 
variation, similar exposure settings of camera images, and limited motion of 
objects in the scenes. Attempts have been made to autostitch images containing a 
number of moving objects with the objective of identifying and separating them, 
and assuring that they were fully included or excluded from the optimal image 
seam (Mills & Dudek, 2009). Yet results are not straight forwardly applicable. 
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Autostitch methods cannot be used within the CVBS proposed in this 
study because they require a running time higher than that expected for the 
detection model. Furthermore, also the registration process, which is the first step 
of the autostitch process (Gledhill, Tian, Taylor, & Clarke, 2003), represents a 
limit to the aim of this study because it may cause that unsuitable pixels are used 
when rotating and/or translating images of each camera scene, producing cow 
image duplication in the image seam or other undesired effects. Therefore, the 
methodology proposed in this study suggests a hand-made image registration 
process that produces the panoramic top-view image of the barn by matching, for 
each pair of image scenes, a number of foreground pixels of the image seam 
belonging to the body of the animals. This choice would assure that duplications 
of animal bodies do not occur in the panoramic top-view image and body shapes 
of the animals are maintained in the image seams (Figure 3). 

 

 
Figure 3 - Hand-made image registration process that produces the mosaicing of two cameras 
images.  

The hand-made registration process requires that an operator who carries 
out, by using an image processing software, a number of image geometric 
transformations, i.e., rotation and translation, on a group of n image scenes having 
the same acquisition time. Since this step has to be executed only once for only 
one group of camera scenes, it is not a time-consuming operation. The parameters 
characterizing such transformations for each calibrated camera image, i.e., 
rotation angles, scale factors, and displacement, have to be stored and then used to 
automate the image mosaicing for all the acquisitions, by encoding them in a 
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software tool. Since the proposed methodology does not require the merging and 
the blending of the camera images to obtain the plan view of the barn, the 
visualization of the whole area at a low number of frames per seconds is allowed. 
If required, this characteristic assures the utilization of the system for real-time 
analyses.  
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3.2 Object recognition in digital images with the Viola & Jones 
algorithm 

3.2.1 Main concepts of the Viola & Jones Algorithm 
A classifier for object detection in an image or a video sequence based on 

the use of the algorithm proposed by Viola & Jones (2001; 2004) is capable of 
processing images extremely rapidly and achieving high detection rates. The 
classifier used by Viola & Jones for human face detection on 384 × 288 pixels 
images was 15 times quicker than any technique at the time of release with 95% 
accuracy at around 17 fps. In general, a classifier based on the methodology 
proposed by Viola & Jones is a “view - based object detector” which must 
determine whether a sub window of an image belongs to the set of the object 
images to be detected. 

The algorithm proposed by Viola & Jones relies on the use of simple Haar 
features (Papageorgiou, Oren, & Poggio, 1998) that are evaluated quickly through 
the use of integral images. A modified version of AdaBoost algorithm is used to 
find a number of best features within a large comprehensive set. Finally, the speed 
of detection is achieved by building a cascade of stages which are strong 
classifiers obtained by the combination of weaker classifiers.  

The Viola & Jones algorithm is based on the following four concepts: 

- Rectangular Haar features 
- Integral Image  
- The AdaBoost machine-learning method 
- A cascaded classifier 

3.2.1.1 Haar	features	

The Viola & Jones algorithm classifies images based on the value of 
simple features called Haar-like because of their similarity to Haar-basis 
functions. 

A Haar-like feature is a real-valued function of a matrix containing the 
intensity values of the pixels of an image. The Haar-like features are composed of 
black and white regions having the same size and shape and are horizontally or 
vertically adjacent. A Haar-like feature value is the sum of the levels of brightness 
of the pixels in the white regions subtracted from the sum of the levels of 
brightness in the remaining black regions. 

There are many reasons for using Haar-like features rather than the pixels 
directly. The most common reason is that these features can act to encode ad-hoc 
domain knowledge that is difficult to achieve using a finite quantity of training 
data. For this system there is also a second critical motivation for features: the 
feature-based system operates much faster than a pixel-based system. 

A weak classifier utilizes only one feature to classify the information 
contained in a region of the image within an image. Within the overall set of 
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Haar-like features prototype Viola & Jones chose four them, the first with a 
vertical division, the second with a horizontal one, the third containing two 
vertical divisions and the last containing both the horizontal and the vertical 
divisions (Figure 4a).  

Lienhart & Maydit (Lienhart & Maydt, 2002) introduced an extended set 
of Haar-like features starting from the standard Haar-like features that have been 
twisted by 45 degrees (Figure 4b). These twisted Haar-like features can also be 
fast and efficiently calculated using an integral image that has been twisted 45 
degrees. 

 

 

Figure 4 - a) The set of Haar-like feature prototypes used by Viola & Jones; b) The set of 
extended Haar-like feature prototypes. 

3.2.1.2 Integral	image	

The Viola & Jones algorithm does not use the original input image of w×h 
pixels but computes a new image representation, the integral image, by making 
the level of brightness of each pixel equal to the entire sum of the level of 
brightness of the pixels above and at the left of the considered pixel of the original 
image. The use of such integral image allows for a very fast Haar-like features 
evaluation and consequently a faster object detection than that achievable by 
using other sets of features. 

The brightness level of a pixel of the integral image at location (x, y) is:  

 ' , '

( , ) ( ', ') 0 ; 0 ;
x x y y

ii x y i x y x w y h
 

    
 (2) 



 
 
 
 
 

SECTION 3 – MATERIAL AND METHODS 

39 

 

 

 

where ( , )ii x y  contains the level of brightness of the pixel at location (x, y) of the 
integral image and ( ', ')i x y  contains the level of brightness of the pixels at location 
(x’, y’) of the original image (Figure 6). 

Defining the cumulative row sum  ,  s x y  by using the following formulas: 

 
     
 

,    ,    1    ,  

, 1   0
0 ; 0 ;

s x y s x y i x y

s
x

x
w y h

   
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 



 (3) 

the integral image can be computed in one pass over the original image by using 

the formulas: 

 
     
 
 ,       1,    ,  

1,   0

ii x y ii x y s x y

ii y

  
 





  (4) 

Given a rectangular sub-window D (Figure 5), defined by means of the 
four coordinates (x1,y1), (x2,y2), (x3,y3), (x4,y4) in an image, the sum of the level 
of brightness of the pixels within rectangle D is computed by means of the four 
reference values computed in the integral image reported below:  

ii(1) = Area(A); 

ii(2) =Area(A) + Area(B); 

ii(3) =Area(A) + Area(C) 

ii(4) = area(A) + area(B) + area(C) + area(D) 

where:  

Area (A) = sum of the brightness level of the pixels in rectangle A 

Area (B) = sum of the brightness level of the pixels in rectangle B 

Area (C) = sum of the brightness level of the pixels in rectangle C 

Area (D) = sum of the brightness level of the pixels in rectangle D 

Consequently, 

the sum of the brightness level of the pixels in rectangle D can be computed as: 

Area(D)= ii(4)+ii(1)−(ii(2)+ii(3)) 
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Figure 5 - A sub window D and the three sub windows A, B, and C considered for the calculation 
of the sum of the level of brightness of the pixels in rectangle D by using integral image. 

For example, the sum of the brightness level of the pixels within the dark 
area of i(x,y) in Figure 6 can be computed by considering the highlighted values 
of ii(x,y) as: 

36 + 6 – (19+9) = 14 

 

i(x,y) s(x,y) ii(x,y) 

4 2 4 5 4 6 10 15 4 6 10 15 

2 2 5 1 2 4 9 10 6 10 19 25 

2 3 5 1 2 5 10 11 8 15 29 36 

1 4 2 4 1 5 7 11 9 20 36 47 

3 4 3 4 3 7 10 14 12 27 46 61 

4 5 3 4 4 9 12 16 16 36 58 77 

(a) (b) (c) 
 

Figure 6 – Example of an integral image computation by considering: a) level of pixel brightness 
of the input image; b) level of pixel brightness of cumulative row sum calculated on the input 
image; c) level of pixel brightness of the integral image. 

The computation of the integral image is useful when some basic 
arithmetical operations, i.e., sums and differences of the level of the pixel 
brightness within rectangular areas, are to be carried out in the original image. In 
fact, any sum of the level of pixel brightness inside any rectangular area in the 
original image can be computed by means of four values of the integral image. 
Whereas, the difference of the sums of the pixel brightness of two different 
rectangular areas can be computed by knowing eight values of the integral image.  

Since the Haar-like features defined by Viola & Jones are constituted by 
adjacent rectangles, their computation can be carried by using six, eight or nine 
values of the integral image in relation to the type of the considered Haar-like 
features (Figure 4). 
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3.2.1.3 The	AdaBoost	machine‐learning	method	

In practical applications the use of only one weak classifier, i.e., one 
feature, is unsuitable to allow the classification of the information contained in an 
image. Therefore, the building of a strong classifier composed of a combination of 
weak classifiers is needed.  

The number n of Haar-like features obtainable in a rectangular sub-window of w 
× h pixels can be computed by means of the following relation:  

  2

4

117941

24
n w h     (5) 

where 117941 is the number of all possible sizes and positions of the of Haar-like 
features obtainable in a rectangular sub-window of 24 × 24 pixels (Lienhart & 
Maydt, 2002). 

By considering for example a rectangular sub-window of 30 × 40 pixels, 
the amount of possible Haar-like features (approximately 0.5 × 106) greatly 
exceeds the number of pixels in the sub-window, i.e. 1200 pixels. Even though 
each feature can be computed very efficiently, computing the complete set is 
prohibitively time-consuming. However, the experience of Viola & Jones showed 
a very small number of these Haar-like features can be combined to form an 
effective classifier. Infact, among all the Haar-like features obtainable within a 
rectangular sub-window of fixed size (Figure 7), only a few of them are expected 
to give the highest values when they overlap the object to be detected.  

 
Figure 7 - Localization of Haar-like features within a rectangular sub-window of fixed size. 

Therefore Viola & Jones proposed a modified version of the AdaBoost 
algorithm (Freund & Schapire, 1997) to find weak classifiers, using only 
significant Haar-like features, and to build a strong classifier as a combination of 
them. AdaBoost is a machine learning boosting algorithm capable of constructing 
a strong classifier through a weighted combination of weak classifiers. To match 
this terminology to the presented theory each Haar-like feature is considered to be 
a potential weak classifier. A weak classifier is mathematically described as: 

 

 
1 if ( )

( , , , )
0 otherwise

pf x p
h x f p


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  (6) 
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Where x is a w × h pixel rectangular sub-window, f is the applied feature, 
p the polarity and θ the threshold that decides whether x should be classified as a 
positive or a negative value. Since only a small amount of the possible Haa-like 
feature values are expected to be potential weak classifiers, the AdaBoost 
algoritrhm is modified to select only the best features. The pseudo code contained 
in Figure 8 describes the modified AdaBoost algorithm. It takes a Haar-like 
feature set and a training set of positive and negative images, and finds T weak 
classifiers, each of them using a single Haar-like feature. The final strong 
classifier is a weighted linear combination of the T weak classifiers where the 
weights are inversely proportional to the training errors. 
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Figure 8 - The pseudo code of the modified AdaBoost algorithm. 
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3.2.1.4 The	cascade	of	strong	classifiers	

The reduced set of Haar-like features identified through the use of the 
modified version of AdaBoost is not sufficient to reduce the large amount of 
computation in the detection process. In fact, the final shape of the classifier 
proposed by Viola & Jones is a ‘cascade’ of ‘stages’ (Quinlan, 1986) which are 
strong classifiers. 

It was also found that even if an image contained one or more searched 
objects, there is a large amount of evaluated sub-windows that would not contain 
objects. Starting from this consideration, the problem of finding objects within an 
image can be reformulated as follows: instead of finding objects, the classifier 
must discard the “non-objects”, so at the end of the process the “not discarded” 
sub-windows contain the objects to be recognized. 

A cascade of stages suited well to solve the above problem. The job of 
each stage is to determine whether a given sub-window is definitely not “an object 
to be recognized” or maybe “an object to be recognized”. When a sub-window is 
classified to be a non-object by one of the stages, it is immediately discarded. 
Conversely a sub-window classified as a maybe-object is passed to the next stage 
in the cascade. It follows that the higher is the number of the stages a given sub-
window passes, the higher the chance the sub-window actually contains the object 
to be recognized. Furthermore, the first stages of the cascade are very simple 
(using a few features) and are used to reject the majority of negative sub-
windows, then more complex classifiers are used to refine the search by 
eliminating gradually the remaining negative sub windows and allowing only 
positive sub-windows to continue the path of detection until the end of the 
cascade. The flowchart illustrated in Figure 9 describes the algorithm that builds a 
cascade of classifiers, which constitutes the final classifier used to scan all sub-
windows of the image. 

3.2.2 Modelling and execution of the Viola & Jones classifier 
The classifier based on the use of the algorithm proposed by Viola & Jones 

must be modelled by means of a training phase. In this phase, an operator must 
prepare a set of training data, and must set the training parameters. Subsequently 
the training algorithm, described in Figure 9, can be executed. The training 
process produces as output a series of summary results that will be analyzed by an 
operator to determine whether to accept the trained detector or restart the training 
by changing the set of training data or the values of the training parameters. The 
data set preparation may take several hours, whereas the execution of the training 
process may take from a few hours to several days on a conventional computer, 
e.g. 2.66 GHz Intel Dual Core.  

In the execution phase, the trained detector searches for objects to be 
recognized in images which are provided by the user or come from a system of 
automatic image acquisition.  
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Figure 9 - Flowchart of the algorithm suitable to build the Viola & Jones classifier. 
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The execution of the detector produces for each image the description of a 
set of sub-windows surrounding each detected object. The execution of the 
detection process must be done in real-time, i.e., at least ten images of size 
640×480 pixels must be processed in one second on a conventional computer. 

3.2.2.1 Training	

In the training phase, the classifier requires positive image samples and 
negative image samples, both having a size of w × h pixels. A positive image is 
defined as an image which contains the object to be recognized, whereas a 
negative image contains only other elements which constitute the image 
background. To obtain the image samples, an operator must extract a set of 
positive images having a size of W×H pixels and a set of negative images having 
a size of W’×H’ pixels, from the frames acquired by the cameras. In the extraction 
process, all the positive images must maintain the same aspect ratio w/h. The sizes 
of the negative images, instead, should not be lower than those of the largest 
positive image. 

The positive image sample is obtained by the algorithm reducing all the 
positive images selected by the operator to the size w × h pixels. The negative 
image sample, instead, is generated by the algorithm through the automatic 
execution of multiple scans on the negative images selected by the operator. In 
detail, a first scan is performed by using a sliding window of w × h pixels. For 
each row of the image, the algorithm puts the top left corner of the sliding window 
in each pixel of the considered row, starting from the first pixel on the left. At 
each new location of the sliding window, obtained by moving the window corner 
of one pixel to the right, the algorithm executes the extraction of the part of the 
image contained in the window. 

Therefore, the number of negative images obtained by the first scan is 
given by the following relation:  

    ’ ’
n

i i
i=1

N = W - w+1 × H - h+1   (7) 

in which n is the number of negative images selected by the operator, and W’i and 
H’i represent the width and the height of each of them, respectively. At each next 
scan, the sizes w and h of the window are increased by a scale factor z. The 
process ends when one of the sizes of the sliding window becomes higher than the 
corresponding size of the negative image analyzed. 

During the training process, the algorithm classifies a negative image as 
“false positive” if it has wrongly recognized the target object in the image. 
Likewise, the algorithm classifies a positive image as “true positive” if it has 
correctly recognized the target object in the image. Therefore, besides the 
maximum number of stages (ns) which compose the cascade, the training phase 
requires the definition of the maximum value for the false positive rate 
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(MaxFPR), and the minimum value for the true positive rate (MinTPR). The fixed 
values of MaxFPR e MinTPR must be equal for all the stages. The parameter 
MinTPR is obtained from the relation: 

   /ns

casMinTPR = TPR
1   (8) 

by fixing the minimum value of the true positive rate that the cascade must 
produce (TPRcas), and the value of ns. 

During the training phase, the positive image sample is the same for every 
stage, whereas the negative image sample for an intermediate stage is made by all 
the negative images which contain false positives deriving from the previous 
stages and from other negative images that were not yet classified in the previous 
stages. At the end of the training process, when all the stages of the cascade have 
been built, the minimum false positive rate of the cascade (FPRcas) is obtained. If 
it is of the order of magnitude 10-6 (Viola & Jones, 2001; Viola & Jones, 2004), 
then it shows that the classifier has a good ability to distinguish the background 
from the object to be detected.  

3.2.2.2 Execution		

In the execution phase, the algorithm of Viola & Jones utilizes a scanning 
process and a sliding window similar to those used in the training phase. Each 
stage of the cascade establishes if the area of the image contained within the 
sliding window has to be classified as “not an object” or as “probably an object” 
(Figure 10). If one of the stages establishes the content is classified as “not an 
object” that part of the image is definitively discarded and classified as 
background, otherwise the next stage will analyze the content. The higher the 
number of stages which evaluate the content of the sliding window, the higher the 
possibility that it actually would contain the object to be detected. 

 

 
Figure 10 - Classification process of an area of the image. 

 

The classifier analyzes the image at multiples scales. In fact, at each next 
scan, the sizes w and h of the sliding window are increased by a scale factor z. The 
process ends when one of the sizes of the sliding window becomes higher than the 
corresponding size of the analyzed image. 
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The resizing of the sliding window, rather than resizing the analyzed 
image, allows the computation of Haar-like features resized by a scale factor z 
without increasing the computational cost. 

The effect of the sliding window is obtained by shifting the sub-window of 
a number z × Δ pixels, where Δ is a parameter of the algorithm.  

The choice of z and Δ affects both the speed of the classifier as well as the 
classification accuracy. Viola & Jones proposed a scale factor z = 1,25 and Δ = 1,5 
to allow significant speedup and good detection results. 
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3.3 Recognition of object contours in digital images with the 
normalized product scalar method 

The search for an object image in a database can be done by comparing 
certain features extracted from the image with the corresponding features 
extracted from known images and stored in a database. An important visual 
feature used to describe an object within the image is the shape of the object. The 
automatic search of object shapes in digital images and the comparison between 
the shapes identified with those stored in a database has involved a great deal of 
scientific works (D. Zhang & Lu, 2004). 

Before discussing the details of the proposed methodology, it is 
appropriate to distinguish three types of image processing on digital images 
(Gonzales & Woods, 2002): low level processing, mid level processing, and 
higher level processing. 

Low level processing is characterized by the fact that both inputs and 
outputs are images and involves primitive operations such as image preprocessing 
to reduce noise, contrast enhancement, and image sharpening.  

Mid level processing is characterized by the fact that inputs generally are 
images, but outputs are attributes extracted from those images, e.g., edges, 
contours, and involves tasks such as segmentation, i.e., partitioning an image into 
regions or objects, description of those objects to reduce them to a form suitable 
for computer processing, and classification, i.e., recognition of individual objects. 

Finally, higher level processing involves the implementation of cognitive 
functions that allow the assignment of a meaning to the scene in the image. 

3.3.1 Main concepts of object contour detection 

3.3.1.1 Image	segmentation	

The interpretation of the contents of an image through the digital image 
processing is based on human interpretation that considers an image as an 
arrangement of regions and objects (Malik, Belongie, Leung, & Shi, 2001). 
Human visual grouping was studied extensively by the Gestalt psychologists in 
the early part of the 20th century (Wertheimer, 1938). They identified several 
factors that lead to human perceptual grouping: similarity, proximity, continuity, 
symmetry, parallelism, closure and familiarity.  

In computer vision, the image segmentation is the process of grouping 
pixels having similar visual shapes, and separating them from the background. 
The segmentation process first produces elementary graphical elements, e.g. areas, 
lines, curves, edges, that belong to or surround real objects found in the image, 
and afterwards uses them to obtain the shape of each object in the image. 

The methods used for the automatic search for shapes can be grouped into 
three categories (Bradsky & Kaehler, 2008): pixel based methods only use the 
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gray values of the individual pixels and do not even consider the local 
neighbourhood; region based methods analyze the gray values in larger areas in 
order to find homogeneous regions; contour based methods detect edges and then 
try to follow them by looking only for discontinuities.  

The contour based method for the automatic search for shapes was used in 
this study because it best suits to the case study described later in section 3.4 
where shape characteristics of cows are required.  

3.3.1.2 Edge	detection	and	contour	findings		

Edge detection is a low-level image processing tool which identifies edges, 
i.e. pixels in which the pixel brightness presents substantial local variations of 
intensity. Edges typically occur on the boundary between two different regions of 
the image. The process of edge detection consists of four steps: smoothing, 
enhancement, detection, and localization. Smoothing suppresses as much noise as 
possible, without destroying the true edges. Enhancement enhances the quality of 
the edges in the image increasing the contrast between each pixel and its 
neighbours. Detection determines which edge pixels should be discarded as noise 
and which should be maintained. It involves convolving the image with filters, 
which are constructed to be sensitive to local changes of intensity in the image 
whereas they return zero values in uniform regions. Localization estimates the 
edge that best fits the identified edge pixels. 

The algorithm used in this work to find for edges in images is the Canny 
edge detector (Canny, 1986) which is widely considered as the optimal edge 
detector (Gonzales & Woods, 2002). The algorithm is not fully described in this 
thesis, however, as other edge detectors, it requires a greyscale input image, and 
provides as output a binary image which consists only of detected edges that 
separate different areas in the image. Finally, the binary image provided by the 
edge detection process is used within a well consolidated algorithm (Suzuki, 
1985) that analyzes the topological structure of a binary image by following the 
edges in the image. For each edge detected, the Suzuki’s algorithm produces as 
output a descriptor also known with the name of “contours”, i.e., a sequence of 
coordinates in the image that delimits the object from the background. 

3.3.1.3 Contour	representation		

All operations discussed in the previous paragraph extract objects contour 
from images and describe them through an ordinate sequence of points. Since 
similar objects may appear different if they are framed at different distances or if 
they are rotated, the scientific community has focused the search on contour 
representations that make it possible to obtain scale and rotation invariant features 
of the contours (D. Zhang & Lu, 2004). Various representations of contours and 
relative based contour descriptors have been developed: chain codes, 
autoregressive models, wavelet descriptors, curvature scale space, moment, and 
Fourier descriptors (Yadav, Nishchal, Gupta, & Rastogi, 2007). 
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In this work the contours representation elaborated by Zahn and Roskies 
(Zahn & Roskies, 1972) was used. These Authors elaborated a Fourier 
descriptors-based technique for contour matching. In this technique is assumed 
that the contour of an object is represented by a closed polyline which does not 
have self intersections. A set of L points representing the contour of the object 
obtained by sampling contour pixels in clockwise or anticlockwise way, is 
available in the form of Cartesian image coordinates: 

 ( ) : ( ( ), ( )) 0,1,..., 1c t x t y t t L    (9) 

A complex coordinate function z(t) is obtained calculating the offsets on x 
axis and y axis between two consecutive points: 

 
( ( 1) ( )) ( ( 1) ( )) 0... 2

( ) ( ) ( )
( (0) ( 1)) ( (0) ( 1)) 1

x t x t j y t y t t L
z t u t jv t

x x L j y y L t L

      
          

 (10) 

where the symbol of the imaginary unit is denoted with j. 
It is also valid to extend z(t) domain to values greater than L-1 by putting:

 ( ) Lz t z t   

and, therefore, z(t) is a complex periodic function of L period . 
 

Figure 11 shows the exemplification of the z(t) function, related to the 
highlighted contour, as a result of the conversion of Cartesian image coordinates 
in complex coordinates. 

 

 
Figure 11 - Examples of a graphical contour constituted by 13 points and its representation with 
complex coordinates. 

The representation of the contours by using the function z(t) has some 
common properties when considering geometrical transformations of the shapes 
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in the Cartesian space (Li & Lee, 2005). In particular z(t) is translation invariant 
along x and y axis, i.e., if c(t) is moved of Δx in the x direction and Δy in the y 
direction, then z(t) takes the same values. Furthermore, a geometrical rotation of 
c(t) in the Cartesian space around any point (also different from the centroid 
point) corresponds to a number of cycle displacements of the elements of the 
vector function z(t). Finally, zoom in or zoom out of the shape in Cartesian space 
with s scale factor corresponds to an arithmetical multiplication or division of 
each element of the vector function z(t) by the factor s. 

3.3.1.4 The	proposed	contours	matching	methodology		

In this study the matching between the contour representations obtained in 
the analyzed images and those contained in the database were achieved by 
applying the normalized scalar product method (Sivic & Zisserman, 2009).  

The representation of the contours through the complex function z(t) is 
used to obtain a synthetic index that indicates the level of similarity between two 
contours. The index used for contours matching refers to the definition of the 
scalar product between two vectors of complex numbers. It reaches its maximum 
value when correspondent elements of the two vectors are aligned (Sivic & 
Zisserman, 2009). 

Let consider z1(t) and z2(t) as representations of two contours having the 
same number L of boundary points and obtained by sampling their contour pixels 
in the same way, i.e., clockwise or anticlockwise: 

 
   
   

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

( ) (0), (1), ..., ( 1) ( (0) (0)), ( (1) (1)), ..., ( ( 1) ( 1))

( ) (0), (1), ..., ( 1) ( (0) (0)), ( (1) (1)), ..., ( ( 1) ( 1))

z t z z z L u jv u jy u L jv L

z t z z z L u jv u jv u L jv L

       

       





 (11) 

 
The Like index is a complex number defined as follows: 

     
    

   

1

1 2
0

1 2

1 2

;

,

L

i

z i z i

Like
z t z t

z t z t






  (12) 

where     1 2;  z i z i is the Euclidean inner product of complex numbers z1(t) and 

z2(t): 

            1 2 1 2 1 1 2 2; = ( ) ( ) ( ) ( )z i z i z i z i x i jy i x i jy i     (13) 

Where    1 2 and  z t z t are the norms of the two vectors of complex 

numbers z1(t) and z2(t), and  2z i  is the complex conjugate of the complex 

number z2(t). 

For instance the norm of z1(t) is written as follows: 
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        

 

          

 

  

The Like index has the following invariance properties: 

1.    2 2Re ImLike Like Like   is moving invariant, rotation invariant, 

and resizing invariant, i.e., if in the Cartesian space z1(t) or z2(t) are 
independently moved, or if z1(t) or z2(t) are independently rotated around 

any point, or if z1(t) or z2(t) are independently resized then Like  index is 

the same.  
 

2. If z1(t) and z2(t) are two representations of the contour of the same object, 
which can be moved, resized or rotated in the two representations then it is 

1Like  , which is the maximum obtainable value. If, instead, z1(t) and 

z2(t) are two representations of the contours of two different objects, it 

results that   an0 01, dLike Like  , at increasing of the diversity 

between the shapes of the two objects. 
 

3. If z1(t) and z2(t) are two representations of the contour of the same object 
and z1(t) or z2(t) is rotated by an angle α around any point then is: 
 

 Re( )Like Cos   

However, the invariance properties of the Like index calculated for two 
contour representations z1(t) and z2(t) of the same object are valid only if the 
starting points of the two contours, z1(0) and z2(0), correspond to the same part of 
the object. This is unlikely to occur because only one contour is known. This 
problem is solved by calculating the Like function L times between z1(t) and other 
L functions Z2k(t); k=0…L-1 obtained through L cycle displacements of Z2(t). 

E.g.:  
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The contour  2k
Z t  that maximizes     1 2,  ; 0, , 1kLike Z t Z t k L   

is used for the comparison with z1(t). The Like index is therefore modified as 
follows: 

 
          
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


  (14) 

The eLik  index has the same invariance properties as the Like index and 
can be used for any choice of the starting points for the contours z1(t) and z2(t). 

 

3.3.2 Modelling and execution of the proposed contour matching algorithm 
The contour classifier based on the use of the complex function z(t) for the 

contour representations and the normalized product scalar method for contours 
matching involves three different phases:  

- Definition of the classes of the objects to be detected; 
- Construction of a database of known contours related to the object classes; 
- Execution phase in which the contour classifier searches for each unknown 

contour among the known contours stored in the database and associates it 
to the appropriate object class. 

First of all some parameters must be defined: the direction of movement 
used for the search of contour of objects (clockwise or anticlockwise), the number 
L of points which constitute the contour of the objects, and the geometric 
constraints for the contours, e.g., minimum and maximum values for perimeter 
and area. These parameters are used for both the processing of images used for the 
construction of the database and the processing of unknown images in the 
execution phase. 

3.3.2.1 Construction	of	a	database	of	known	contours	

In this phase an operator must collect an input data set of images that 
contains the objects to be recognized. Multiple images are required because the 
object could be framed with different perspectives. It is possible to insert also 
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images that contain only some portion of the object with the aim to recognize it 
whenever it is partially visible in the image.  

Each image in the input dataset is processed as described in Figure 12 by 
implementing a software tool that allows for the automatic extraction of contours 
and the next operator visual check required in order to associate among the 
extracted contours that corresponding to the object to be recognized. In detail, the 
operator must assign to the selected contour a unique label that associates it to the 
object. The results of this check must be stored in a database. 

The data set preparation may take several hours, and it does not depend on 
computer speed, but on operator’s ability to select meaningful images that contain 
objects or symbols to be recognized. The population of the database ends when it 
is not possible to add new contours because the index of similarity eLik computed 
between the extracted contour and those already stored in the database was lower 
than a pre-established threshold. 
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Figure 12 – Process used to extract different object contours in an image. 

3.3.2.2 Execution		

In the execution phase, the known contours stored in the database are used 
for object identifications in images which were provided by the operator or came 
from a system of automatic image acquisition. For each image to be analyzed and 
for each object to be detected, an automatic tool, which must be implemented, 
executes the activities described below: 

1. Finds a set of unknown contours (SC) by processing the input image as 
described above (Figure 12); 
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2. Removes from SC those contours that do not meet the geometric 
constraints; 

3. For each unknown contour in SC compares it with the known contours 
stored in database by using the eLik index; 

4. Associates each unknown contour to the right object class if the eLik

index is greater than a pre-established threshold Like
Th . 

The definition of the value of the threshold Like
Th is crucial to obtain a 

good level of contour detection rate and, at the same time, obtain low the false 
positives rates.  

3.4 The case study 

3.4.1 The area of the barn under study 
The objective of the activities described in this paragraph which refers to 

the application of the above described methodologies to a case study, was to 
demonstrate the effectiveness of the proposed CVBS for the automatic detection 
of dairy cow behavioural activities in free-stall barns and for the automatic 
identification of dairy cows in free-stall barns.  

The trial was carried out during the years 2011 and 2012 in a dairy cow 
free-stall barn located in the municipality of Vittoria in the province of Ragusa. 

First of all, a direct metric survey of the barn was carried out to obtain the 
plan and two sections of the building. The barn was characterized by a rectangular 
plan of about 55.6 m × 20.7 m with three sides completely open, i.e. without 
outside walls (Figure 13). The roof was symmetric and covered by fibro-cement 
sheets supported by a bearing structure made of steel trusses and purlins. The 
feeding alley of about 55.75 m × 3.50 m was adjacent to the resting area that was 
arranged with two rows of 64 stalls faced head-to-head and filled with sand. 
Service alleys allowed the easy access of the cows from the feeding alley to the 
service alley for the second row of stalls. The side of the barn at the back of the 
second row of stalls was completely open.  

An interview with the breeder and the direct observation of the breeding 
environment allowed the knowledge of the management activities carried out in 
the barn. Feed was delivered to the cows once a day at approximately 06:30 a.m. 
and was moved closer to the feed barrier later in the day at 4:30 p.m.. Milking 
occurred twice a day at 06:00 a.m. and 05:00 p.m. Furthermore, in the alleys there 
is presence of slurry accumulation as the cleaning is not automated but it is carried 
out 1-2 times a day by a scraper. 

Within the barn a reduced but complete breeding area of about 15.40 m × 
11.50 m was considered for the experimental trial (Figure 14). In this area a group 
of 15 Holstein dairy cows was housed. The breeding environment was composed 
of a resting area of about 10.40 m × 4.30 m with two rows of stalls arranged head-
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to-head and sand beds, a feeding alley of about 15.40 m × 3.50 m adjacent to the 
resting area, a service passage and two service alleys. 

Considerable variability of the brightness conditions during the day in the 
analyzed breeding environment was observed. Factors which could make the 
detection of cow behavioural activities and the identification of the cows within 
the stalls more difficult, are: colour variations of the sand beds; high brightness 
variation in areas close to the open side of the barn; high levels of solar radiation 
reflected by sand, wet floors and metal surfaces of the stable cross-bars; lack of 
colour homogeneity; alley surface reflection caused by manure and presence of 
shadows. 

 

 
Figure 13 - Plan of the free-stall barn showing the area object of the experimental trial. 
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Figure 14 - a) Plan of the study area. 

 

3.4.2 Developed software tools  
Several specific software tools have been developed to perform the 

automatic image processing activities required both to obtain the panoramic top-
view images of the barn and to develop and apply the two methodologies 
proposed for cow behavioural activities’ detection and cow identification. All the 
software tools developed in this study were implemented in Visual C++ 2008 
express edition, and Visual C# 2008 express edition within two integrated 
environment of software programming free distributed by Microsoft®, which 
allow the development of applications written in C++ language and C# language 
and the use of all the graphical components of the Microsoft® Windows operating 
system.  

Furthermore, the OpenCV (Open Source Computer Vision Library), an 
open-source BSD-licensed library (Bradsky & Kaehler, 2008) was used because it 
provides the user with a computer vision infrastructure that helps software 
developers to build sophisticated vision applications providing functions for low 
level image processing and mid level image processing. 

3.4.3 The design and installation of the video recording system 
The design and installation of the multi-camera video recording system in 

the free-stall barn were firstly carried out because of their relevance for the 
attainment of the two main objectives of the study, i.e., the automatic detection of 
dairy cow behavioural activities following the first methodology and the 
automatic identification of dairy cows following the second methodology. 
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After the direct metric survey which made it possible to produce the plan 
and the sections of the area under study (Figure 19), the activities reported in the 
following of this section have been carried out to obtain the calibrated camera 
images and the panoramic top-views of the barn in real-time.  

3.4.3.1 Camera	model	selection	

The height of the barn and the bearing structure of the roof have 
constrained the maximum value for the cameras installation height. 

The cameras installation height above the floor of the feeding area (h’cam) 
was about 4.40 m, whereas that above the floor of the resting area (h’’cam) was 
about 4.00 m. The height from the floor of the two foreground plan was (h’forg) 
about 1.40 m and (h’’forg) about 0.70 m (Figure 19). The small values of h’cam and 
h’’cam had prompted the use of a camera model, Vivotek FD7131, equipped with 
wide angle having the maximum horizontal angle of view provided by the 
technical specifications of 105.1°, whereas the maximum vertical one was of 
77.4°. This choice led to reduce the number of the cameras required to obtain the 
plan view of the barn. The network camera model had a maximum resolution of 
640 × 480 dpi, up to 30 fps image-capture capability, and was equipped with 
light-emitting diodes (LEDs) for night illumination and a HTTP based interface 
through which the developed software can read or set various media control 
functions for camera and require a snapshot. 

Though the camera model was provided with a built-in LED illuminator, it 
did not provide sufficient lighting in the barn in the evening and night-time hours. 
Therefore, the panoramic images used in the training phase refer to the time 
interval between 6:00 a.m. and 8:00 p.m. The time interval which was chosen did 
not affect the modelling of the detectors because it included the most significant 
herd management tasks and illumination condition variations. In particular, it 
included the feeding distribution, the two milking operations during which the 
animals left the resting area, the activation of the evaporative cooling devices and 
the direct dripping system which produced a significant variation of the colour of 
the sand beds in the stalls, the cleaning of the feeding alley which determined a 
variation of the appearance of the floor, and light intensity variations in the 
different areas of the breeding environment throughout the day. 

3.4.3.2 Camera	image	calibration	

A specific software component tool was implemented in C++ to perform 
the automatic rectification of distorted camera images. Rectified camera images 
have been available for subsequent processing, e.g., to compose each camera 
images in panoramic top-view images.  

The setting of the calibration process for each camera was firstly carried 
out in laboratory. A drawing of chessboard was placed at a distance of 4 m that 
was about the distance between the camera installation position and the 
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foreground plane in the barn. Fifteen snapshots (Figure 15) per camera were 
obtained filming the chessboard from different angles. 

 

 
 

Figure 15 – A set of chessboard images used for the camera calibration process. 

The software firstly uses the cvFindChessboardCorners function of the 
OpenCV library to find each corner of the chessboard, then the 
cvCalibrateCamera2 function of the OpenCV library is used to generate the set of 
equations, to solve them, and to get the distortion matrix and the camera matrix. 
The matrices are then stored in XML files to be used by the cvInitUndistoryMap 
and cvRemap functions of the OpenCV library to rectify the corresponding 
distorted camera images. 

Calibration software tool was executed for each set of chessboard 
snapshots captured by each camera. The outputs of the tool were the camera 
matrices and the distortion matrices of each camera. Finally, some test were 
performed to verify the goodness of the calibration process: the ceiling of the 
laboratory was filmed by pairs of cameras and the calibrated images were used to 
create manually a panoramic rectified view image of the ceiling. Examples of 
images of the ceiling of the laboratory used for test the calibration process are 
shown in Figure 16. 

3.4.3.3 Evaluation	of	the	maximum	horizontal	and	the	maximum	vertical	
view	angles	after	the	calibration	process	

The calibration process produced for each camera image a decrease of the 
view angles of about 31%. Therefore the horizontal view angle was about 72.5°, 
whereas the vertical one of about 53.4°. 

To obtain the full rectified panoramic top-view (Figure 19) of the two 
selected functional units i.e., the feeding area and the resting area, the installation 
of four cameras above the resting area and of six cameras above the feeding area, 
respectively, has been determined by solving equation (1). 

Two parallel steel beams anchored to the bottom chords of the steel trusses 
were used as supports for the installation of cameras. The distance between these 
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steel beans was 3.86 m and the images of each scene overlap each other in the row 
direction by approximately 37%, and in the direction perpendicular to the row by 
approximately 40%. These overlapping areas were used to obtain the panoramic 
top-view of the two functional units. Figure 17 shows the results of the calibration 
process carried out for one of the cameras installed above the resting area. The ten 
calibrated camera images are subsequently used in the mosaicing process. 

 
Figure 16 - a) Uncalibrated image; b) Calibrated image; c) Composition of calibrated 
images. 

The multi-camera image recordings were carried out by using a desktop 
personal computer with a processor Intel® Core™2 Quad CPU Q6700 at 2.66 
Ghz, 3 Giga bytes of RAM and Windows Vista™ Business operative system. The 
software tools for synchronous cameras images acquisition and camera image 
calibration were installed in the personal computer and were activated when all 
the hardware was connected and turned on (Figure 18). Furthermore, an external 
hard disk was connected to the personal computer to be fully employed for 
transport of acquired images. An ADSL connection allowed the remote control of 
the multi-camera recordings through the Internet. 

3.4.4 Full rectified panoramic top-view image of the area under study 
A specific software component was implemented in C++ language to 

perform the acquisition of digital images from cameras in synchronous mode. 
Firstly the software makes asynchronous and simultaneous requests to all cameras 
HTTP interfaces to download one snapshot; then each camera web server returned 
the most up-to-date snapshot in JPEG format.  
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a) b) 

Figure 17 - a) Uncalibrated image; b) Calibrated image. 

 

 
Figure 18 - Hardware components installed in the free-stall barn and link schema. 
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The software waits until all the snapshots are available so that to avoid the 
accumulation of delay times in the video sequences. 

The panoramic top-view of the two selected functional units was obtained 
by mosaicing the set of calibrated and synchronised images coming from the 10 
cameras. In detail, for each pair of images coming from two contiguous cameras, 
those showing the body of the cow in the image seam were selected and 
overlapped by using pixels belonging to the body of the cow. By means of an 
image processing free-software, an operator carried out a total amount of 25 
image geometric transformations which parameters were stored in order to 
automate the procedure for all the sequence of the video recordings. 

 

Figure 19 - a) Plan of the area of interest showing the plan projection of the 10 cameras and the 
overlapping region of the camera scenes; b) Longitudinal section A-A showing the position of the 
first rows of cameras and the camera vertical view angle; c) Transverse section B-B of the area of 
interest showing the position of the two rows of cameras, their height from the floors, and the 
camera horizontal view angle; d) mosaic images obtained from the 10 camera scene. 
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The execution of the image synchronization and image mosaicing on each 
set of calibrated and synchronised images produced a video sequence 
characterized by frames with resolution of 1044 × 1920 pixels (Figure 19) at 1 
frame every 2 seconds. This value of the frame rate represented a constraint for 
the detection and for the identification phases because the time required for the 
automatic detection of all the cow behavioural activities and for the identification 
of the signed cows, considered in this study, must not be greater than the time 
required for obtaining both the calibrated camera images and the panoramic top-
view of the barn, i.e. 2 seconds. 

3.4.5 First methodology: the automatic detection of cow behavioural 
activities in free-stall barns (objective 1) 
The method involves the simultaneous application of several classifiers to 

panoramic top-view images of the free-stall barn to detect each behavioural 
activities analyzed in this study, i.e., lying, feeding, standing, perching. For the 
automatic construction of the top-view panoramic images, the method assumes 
that a set of synchronized images, collected from the cameras installed in the free-
stall barn, is available, and also an operator has identified a set of geometric 
transformations, i.e., rotation, translation, and resizing, on the group of calibrated 
camera images installed in the free-stall barn that were used to produce the 
panoramic top-view image of the barn. 

The method is constituted by four sequential phases that involve the use of 
the CVBS for the detection of dairy cow behavioural activities in free-stall barns:  

a) Training phase which allows the construction of the classifiers for 
each cow behavioural activity;  

b) Development phase that involves the development of the software 
component of the CVBS used for the detection of the cow 
behavioural activities in the free-stall barn; 

c) Test of classifier functioning for a large image dataset, yet 
without making use of operator’s visual recognitions;  

d) Accuracy assessment procedure that allows the validation of the 
proposed method by comparing the results of the detection 
obtained using the automatic software tool with the detection 
results obtained through an images observation activity performed 
by an operator. 

In the following, the phases of the proposed detection method are 
described in detail. 

3.4.5.1 Training	phase	

A training software tool was developed by implementing the algorithm for 
the building of the Viola & Jones classifier described in paragraph 3.2.1.4. It 
required as input: positive image samples that contain cows behavioural activities, 
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negative image samples, the values w and h of the rectangular sub-window, the 
values of MaxFPR, MinTPR, and ns. 

The positive image samples with behavioural activities were extracted 
manually by an operator from panoramic top-view images by using generic tools 
for image processing, e.g. GIMP (GNU Image Manipulation Program) which is a 
free and open-source software.  

Positive images should be subdivided into behavioural classes. Images 
belonging to the same behavioural class must have the same aspect ratio, i.e. w/h, 
to be resized by the algorithm to w × h without distortions. Each behavioural class 
could be subdivided into more sub-classes in relation to the specific requirements 
of the behavioural activity analysed. The number of the sub-classes mainly 
depends on the positions occupied by the body of the animals within the 
functional units of the free-stall barn, i.e., resting area, service alley, and feeding 
area.  

The following behavioural classes, with their sub-classes, were defined: 

a) ‘Lying’: this class shows cows lying in the stalls. A number of 
sub-classes could be required in relation to the stall layout, i.e., 
head-to-head or back-to-back. This subdivision is required 
because the algorithm is not invariant to the rotation of the body 
of the animal. The sub-windows used for the sample selection 
must coincide with the perimeter of the stall visible in the frame 
(Figure 20a). 

b) ‘Standing’: this class shows cows standing still or walking in the 
barn. Since positive images of ‘standing still’ behavioural activity 
are very similar to ‘walking’ ones the detection method cannot 
distinguish between them. Therefore, walking and standing still 
(bunching) behaviours must be grouped in the same class named 
standing. At runtime, the algorithm could differentiate the two 
behaviours on the basis of the analysis of consecutive frames. 
Since each cow can occupy any position within the service alleys 
at least three sub-classes have to be considered: one sub-class 
shows cows standing toward the direction of the longitudinal axis 
of the barn; the second sub-class shows animals standing at right 
angles to the longitudinal axis of the feeding alley; and the third 
sub-class shows cows oblique to the longitudinal direction. As 
considered for the lying class, this subdivision is required because 
the algorithm is not invariant to the rotation of the body of the 
animal. The sub-windows for the first two sub-classes must 
coincide with rectangles including the body of the animal (Figure 
20b to Figure 20d). The sub-windows of the third sub-class 
should have square aspect ratio (Figure 20c). The head of the cow 
should be excluded from the selection because its inclusion in the 
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sub-windows would enlarge the number of pixels belonging to the 
background, increasing the occurrence of false positives during 
the detection. 

c) ‘Feeding’: this class shows cows having their head through the 
feed barrier. The dimensions of the sub-windows have the same 
characteristics of those described for the second sub-class of the 
standing class (Figure 20e). 

d) ‘Perching’: this class shows cows standing half in the stall and 
half in the service alley or in the feeding alley. Two sub-classes 
were adequate for head-to-head stalls. The sub-windows used for 
sample selection show cows from the head to the tail standing 
half in the stall and half in the alley (Figure 20f). 

Negative images show barn background elements, such as floorings of the 
alleys and the resting area, operators, and equipments. In detail, for lying and 
perching behaviours negative images are sub-windows of the images showing 
empty stalls (Figure 21a); for the other behavioural classes, negative images 
contain details of floorings as well as other equipments (Figure 21c). 

 

 
Figure 20 – Examples of positive images used to train Viola & Jones classifiers for different 
behavioural classes. 
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Figure 21 – Examples of negative images used in the training of the Viola & Jones classifiers. 

The positive image sample regarding lying and standing behaviours were 
systematically extracted from the panoramic top-view images by applying 10-min 
instantaneous scan sampling that previous studies demonstrated to be suitable for 
the analysis of these behaviours (Mattachini et al., 2011). With regards to the 
feeding behaviour, the sampling would be limited to specific hours of the day, 
when the feed was delivered to the animals in the manger. For perching behaviour 
scan sampling interval should be the same as that of the standing behaviour as it 
shows cows standing in a particular area of the barn, i.e., the stall. 

In the proposed methodology the extended set of features prototype was 
used (Figure 4). 

With regard to the values of w and h, they should be chosen taking into 
account that the higher the number of Haar-like features the higher the time 
required for the training and execution of the classifier. Therefore, by considering 
the average performance of the CPUs which are currently installed in personal 
computers (e.g., Intel Core, i3, i5, i7), the number of Haar-like features should not 
exceed 2×106 to obtain a good performance of the CVBS. 

The total number ns to be built during the training phase should be 
obtained by means of a trial-and-error technique where an initial small number of 
stages should be incremented until the desired final values for TPR and FPR were 
achieved. 

For each behavioural class considered, the training tool is executed by 
providing as input the set of positive images belonging to the considered 
behavioural class, the set of negative images and the values of the parameters w, 
h, MaxFPR, MinTPR, and ns. The output of the training is a formal description of 
the cascade of stages each constituted by a combination of weak classifiers. The 
trained classifiers for all considered behavioural class are stored as XML files and 
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are subsequently incorporated in the software component of the CVBS used for 
the detection of cow behavioural activities in the free-stall barn. 

3.4.5.2 Software	tool	for	the	detection	of	dairy	cow	behavioural	activities	
in	free‐stall	barns	

A software component of the CVBS must be developed to allow for the 
simultaneous execution of the modelled classifiers of each considered behavioural 
class and the sub-classes, which makes it possible to detect cow behavioural 
activities in the panoramic top-view images of the barn. 

The input data required for the execution of the software tool are: 

a) one or more set of synchronized images, obtained from the 
cameras installed in the free-stall barn; 

b) a number of geometric transformations, to be applied to the 
calibrated images obtained from the cameras, to produce the 
panoramic top-view image of the barn.  

c) the trained classifiers for each considered behavioural class 
which were obtained in the training phase and stored as XML 
files. 

Once the input data have been provided, the software tool performs the 
image mosaicing, by combining camera images into a single composite panoramic 
top-view. This is the same activity previously performed by the operator but now 
it is executed in an automatic way because the geometric transformations to be 
applied to each camera image and the rules for their placement in the new 
composite image are known. 

Subsequently each trained classifier is executed by using as input the 
panoramic top-view image, as described in the section “execution phase” of the 
paragraph 3.2.2.2.  

When a behavioural class is subdivided into more sub-classes, the outputs 
of the related classifiers are merged by using geometrical considerations. 

Results of the detection process are shown to the CVBS user by 
superimposing on the panoramic top-view image with coloured rectangular sub-
windows surrounding each detected cow (Figure 22).  

Different colours are used to distinguish between the types of cow 
behaviours considered. Furthermore, the software should mainly allow for the 
optimization of the detection process by selecting the regions of interest where 
each behaviour should be detected, e.g., stalls for the lying and perching 
behaviours, feeding alley for the feeding, and feeding and service alleys for 
standing behaviours. 

Finally, the developed software tool must allow the storage of the 
detection results in a database, a statistical analysis for the detection results, the 
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computation of mostly used behavioural indices, such as cow lying index, cow 
standing index, and free-stall utilization index. 

 

3.4.5.3 Test	phase	

The test phase has to be carried out to assess the accuracy of each 
classifier. The panoramic top-view images used in this phase must be different 
from those used for the training and must be selected by following the same 
method adopted for the sample of the training images. For examples, the 
panoramic top-view test images could be extracted from the same video sequence 
used for the training, but staggered of 5 min.  

For each behavioural class, starting from a number of positive images, a 
set of test images must be obtained by overlapping each positive image on pre-
established regions of a group of negative images (Figure 23). This last set of 
images must be chosen with the aim to be significant of the different background 

 
Figure 22 - Results of the detection process obtained by superimposing on the panoramic top-view 
image of the barn the coloured sub-windows that surround each detected cow behaviour. 
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conditions such as, for example, those determined by direct sunlight illumination 
of the breeding environment or other factors that could cause sunlight reflections. 

By means of a software that should be specifically developed for this 
phase, the position of each positive image within the negative one should be 
determined randomly and stored in a text file. To simulate different image noises 
that could occur in the breeding environment, each obtained test image should be 
altered by applying a group of image processing operations (Lefkovits, 2009), i.e., 
smoothing (blur, median, Gaussian), erosion and dilation.  

The software tool for the detection of dairy cow behavioural activities is 
then executed to search for the cow images within each test image. It compared 
the detection outputs with the information contained in the text file and assigned 
the value 1 (hit) to the tested image if the cow image was detected in the right 
position, i.e., present at the feed barrier, standing, lying, and perching, otherwise it 
assigned the value 0 (missed). The hit rate (HR) is defined as the ratio between the 
total number of hit cows and the total number of test images, whereas the miss 
rate (MR) is computed as the ratio between the total number of missed cows and 
the total number of test images. The number of false positives contained in each 
tested image is computed by counting cows that were detected out of the pre-
established regions. The false positive rate (FPR) is obtained by computing the 
ratio between the total number of false positives and the total number of test 
images. 

 
Figure 23 – Example of test images for the test of the feeding classifier. 
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3.4.5.4 The	 validation	 of	 the	CVBS	 for	 the	automatic	detection	 of	dairy	
cow	behavioural	activities	in	free‐stall	barns	

The validation of the CVBS for the automatic detection of dairy cow 
behavioural activities in free-stall barns must be carried out by an accuracy 
assessment procedure composed of four steps. 

The first step of the procedure is the selection of a number of panoramic 
top-view images that were not used for the training and the test of the classifiers. 
More than one day of observations must be considered.  

A specific software tool (Figure 24) is designed to facilitate the work of an 
operator, who indicated the locations of all the visible cows and their behaviours 
through a visual examination of the selected panoramic top-view images. 

The software must provide the operator with the following functionalities:  

1. The selection of one panoramic top-view image at a time; 
2. The display of all the calibrated camera images that constitute 

the selected panoramic top-view image; 
3. The positioning of a graphic element, such as a label, on every 

calibrated camera image to highlight the cow identifier (if the 
cow was marked by a symbol), the location of each cow and the 
corresponding behavioural activity; 

 
Figure 24 - Interface of the software tool that makes it possible for the CVBS operator to highlight 
the cow identifier (if the cow was marked by a symbol), the location of each cow and the 
correspondent behavioural activity. 
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The software stores in a table of a database both the information 
provided by the operator and the Cartesian coordinates related to the 
position of the cow in the panoramic top-view image. 

The second step of the accuracy assessment procedure is the execution of 
the modelled classifiers of each considered behavioural class and related sub-
classes to detect cow behavioural activities in the panoramic top-view images of 
the barn. 

Clearly, the input of the software tool must be composed of the same 
panoramic top-view images examined by the operator in the first step. The outputs 
of the software tool are automatically stored in a database using, for each detected 
cow behavioural activity the following attributes: panoramic top-view image 
number, cow behavioural class, Cartesian coordinates of the corner of the 
rectangular sub-windows surrounding the detected cow. 

Third step of the accuracy assessment procedure is the comparison 
between the results obtained by using the software tool for the automatic cow 
behaviour detection and those produced by the operator. In detail, for each cow 
which was examined by the operator a corresponding cow is searched among the 
outputs of the CVBS.  

A cow behavioural activity that has been recognized by the classifiers as a 
specific behavioural class and has been correctly associated by the operator to the 
same behavioural class constitutes a True Positive (TP). 

A cow behavioural activity that has been recognized by the classifiers as a 
specific behavioural class but that has not been associated by the operator to the 
same class is defined as a False Positive (FP).  

A cow behavioural activity that has not been recognized by the classifiers 
but that has been associated by the operator to a specific behavioural class 
constitutes a False Negative (FN).  

Fourth step of the accuracy assessment procedure involves the use of the 
comparison results, achieved in the previous step, for the computation of the 
indices reported below: 

- Branching factor (BF): defined as the ratio between FP and TP, it provides 
information on the number of FPs generated for every TP. Low values of 
the index show the high capability of the CVBS to distinguish the 
considered cow behaviour from other behaviours and from background 
objects. 

 
FP

BF =
TP

  (15) 

- Miss factor (MF): defined as the ratio between FN and TP, it provides 
information on the number of FNs generated for every TP. Low values of 
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the index show the high capability of the CVBS to detect the considered 
cow behaviour. 

 
FN

MF
TP

   (16) 

- Cow detection percentage (CDP):  

 100
TP

CDP
TP FN

 


  (17) 

 yields the percentage of cow behaviours correctly detected over the whole 
number of the observed ones. It makes it possible to evaluate the ability of 
the CVBS to detect cow behaviours, yet it does not provide information on 
the capability to distinguish cow behaviours from the barn background.  

- Quality percentage (QP): 

 100
TP

QP
TP FN FP

 
 

  (18) 

provides additional information to that of CDP by also considering the 
presence of FPs in the barn background. 
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3.4.6 Second methodology: the automatic identification of dairy cows in 
free-stall barns (objective 2) 
The proposed methodology for cow identification is based on the 

automatic image recognition of a feature that identifies each cow of the herd. The 
method assumes the hypothesis that for every set of calibrated and synchronized 
images coming from the multi-camera system there is at most one cow 
characterized by that feature. Moreover, each feature is represented by the contour 
of a shape. If more than one feature of the same cow are detected an identification 
error occurs. 

The methodology involves five sequential phases: 

a) Selection of the most appropriate feature to adopt for cow 
visual identification;  

b) Building of the database of the contours of the known feature 
shapes; 

c) Development of a software component of the CVBS for the 
execution of both the edge detection algorithm and the 
proposed contour matching;  

d) Functioning test of the identification tool for a large image 
dataset, yet without making use of operator’s visual 
recognitions;  

e) Accuracy assessment procedures that allows for the 
validation of the methodology by comparing the 
identification data obtained from the application of the 
automatic software tool with the identification data obtained 
by an operator. 

3.4.6.1 Cow	visual	identifier	

It is theoretically possible to distinguish each cow from the others by using 
as feature the pattern given by the colour of its coat (Dawkins, 2007). However, 
this method is not always feasible for all cow behavioural activities because such 
a pattern might be not completely visible from the cameras, e.g., during the lying 
activity. Furthermore, the body of some cows might lack of coat pattern, e.g., cow 
having uniform colour of the coat (Figure 28), or might not have highly 
distinguishable coat pattern from that of the other cows. This last case occurs for 
the Holstein dairy cows and, thus, they were marked with hair dye in some 
research works (DeVries & Von Keyserlingk, 2006; DeVries et al., 2004; DeVries 
et al., 2003a).  

Since the cows considered in this case study are Holstein dairy cows 
having very similar coat patterns and the aim of the research is to investigate their 
behavioural activities during daytime, artificial symbols were marked on the coat 
of each animal by using a natural paint. In general, the selection of the kind of 
symbol to be used depends on the number of cows to be monitored. Geometrical 
symbols, e.g., circle, triangle, and square, should be used when a few cows must 
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be identified (Figure 29); otherwise letters or numbers should be adopted (Figure 
28). 

In this case study, geometrical symbols were used and two different 
products were tested in order to mark the coat of the cows, i.e., a pencil RAIDL 
Maxi produced by RAIDEX® and a spray colour produced by Ghislandi & 
Ghislandi s.r.l. for the signature of livestock. 

3.4.6.2 Software	 tool	 for	 the	 automatic	 extraction	 and	 matching	 of	
contours	

A software tool for the automatic extraction and matching of contours was 
developed in order to build the contours database and execute the contour 
classifier. 

Cow identification was carried out by processing the calibrated and 
synchronized images acquired from the multi-camera system. To avoid the scarce 
visibility of the symbols due to the mosaicing of the camera images (cf. 3.1.2), in 
this second methodology the panoramic top-view images were not used. To 
clarify, Figure 25 shows how the union of the two images (panoramic view) 
determines the scarce visibility of the symbols. 

Consequently, the developed software tool allowed for the simultaneous 
execution of the contour extraction and contour matching algorithm separately for 
each camera image acquired by the multi-camera system.  

As mentioned in the paragraph 3.3.1.2 the contours extraction in a digital 
image is done after a number of image processing steps, i.e., smoothing and 
increasing contrast that aims at the enhancement of the image. 

The image smoothing and contrast increasing algorithms are carried out 
several times on the same image acquired by the same camera. The process is 
repeated for each camera of the multi-camera systems. In order to achieve good 
results for the contours extraction, a number of parameters of the algorithms 
should be selected and adopted in relation to the quality of the image being 
processed (Table 2). The search for values of the adjustable parameters described 
in the table is performed through the execution of the following two activities: 

a) Collection of images containing at least one marked cow and 
representing the different quality of the framed image;  

b) For each image, an operator manually changes the three 
parameters reported in the Table 2 until the software tool detects 
the contour of the symbol. For this reason, the software tool for 
contour identification must allow the changing of the values of 
the parameters at runtime as well as display their effects. 

Figure 26 shows two input images and the output binary images obtained 
by applying three different quality improvement processes. 
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This image enhancement process produces an image data set constituted of 
a greater number of images than those acquired by the multi-camera system. This 
involves a slowdown of the identification process, but a better cow identification 
and increased robustness to false positives. 

After creating the image data set, the software tool performs the extraction 
of contours from each image, compares it with the contours stored in the database, 
and associates it with one of the geometrical symbols marking the cows. If the 
software tool identifies several times the same symbol in the image data set, it 
selects the contour that has the highest index of similarity eLik  with a contour 
stored in the database. 

 
Figure 25 - Mosaic of two camera images acquired from Camera 1 and Camera 2. The union of 
the two images (panoramic view) determines the scarce visibility of the symbols.  

As a result of the cow identification process, for each set of synchronized 
images, the software tool displays a labelled graphical window surrounding each 
identified cow. A fully panoramic top-view image shows the composition of the 
set of camera images to provide the operator with a better vision. 

Finally, the software tool for the identification of cows in the barn must 
allow the storage of the identification results in a database. 
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Table 2 - Algorithm parameters used to modify input image in order to improve the process of 
contour detection. 

Parameter Values Description 
Size of the 
Gaussian filter in 
the Canny edge 
detector algorithm 

n × n pixels 
n=3, 5, 7, 9, 11, … 

Smaller values, i.e., n=3, 5, allow detection of small 
edges whereas a larger filter, i.e., n=9, 11, allow 
detection of larger edges. 

Blur ‘Yes’, ‘No’ 
Only if Blur is set to ‘Yes’ then smoothing process is 
performed to reduce the image noise with the 
consequent reduction of the details. 

Histogram 
equalization 

‘Yes’, ‘No’ 

Only if histogram equalization is set to ‘Yes’ then the 
transformation of the gray levels of the image so that 
the histogram of the resulting image is equalized to 
become a constant is performed and as a result the 
overall contrast of the images is increased. 

 

 

 

 

 
Figure 26 -Two input images and output binary images obtained by applying three different 
quality improvement processes. 
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Figure 27 – Results of the identification process obtained by superimposing on each camera image 
the coloured sub-windows that surround the identified cow. In camera 9 a true positive was 
detected, whereas in camera 10 a false positive was detected. 
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3.4.6.3 Construction	 of	 the	 database	 constituted	 by	 known	 contours	 of	
cow	visual	identifier	

A set of positive images, i.e., images where marked cows are present, must 
be collected. Each positive image has to contain one marked cow among those 
considered. In the selection of the positive images, the different behavioural 
activities of the cows during the day, i.e., feeding, lying, perching, standing 
should be considered (Figure 30) because the symbol applied in the coat might 
assume a different shape, or might not be completely visible, at varying of the 
behavioural activity. 

 

 
Figure 28 - Beef cattle marked by using numbers. 

 

 

 

 

 
  

  

Figure 29 - Example of geometrical symbols marked on the coats of the dairy cows monitored in 
the case study.  
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The positive image sample has to be systematically extracted from the 
frames by applying 10-min instantaneous scan sampling that previous studies 
demonstrated to be suitable for the analysis of these behaviours (Mattachini et al., 
2011). With regards to the feeding behaviour, the sampling would be limited to 
specific hours of the day, when the feed was delivered to the animals in the 
manger. For perching behaviour scan sampling interval should be the same as that 
of the standing behaviour since it shows cows standing in a particular area of the 
barn, i.e., the stall.  

The obtained set of positive images must be subdivided into a number of 
classes that corresponds to the number of symbols used to mark the cows. Each 
class may be subdivided into sub-classes because of the different shape assumed 
in the camera images by the marked symbols during the different behavioural 
activities (Figure 30). Subsequently, each positive image is processed by the 
software tool described in section 3.4.6.2 and accordingly to the guidelines 
reported in 3.3.2.1.  

 

 

 

 

 

   

 

Figure 30 – Examples of positive images belonging to the same class. The figure shows the 
different shapes assumed by the adopted symbols in relation to the different behavioural activities. 

The list of Cartesian coordinates obtained from the contour extraction 
(Figure 31) together with a numerical identification code of the class is stored in 
the database. In general, the database could be composed of a simple text file up 
to the most sophisticated DBMS. In the case study, a structured Extensible 
Markup Language (XML) file was used because it is a simple standard database 
that does not require the use of proprietary applications. 
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Figure 31 – Example of contour extraction processing in a positive image 

3.4.6.4 Test	phase	

This phase of the second methodology is analogous to that described in 
section 3.4.5.3. For each cow to be identified, starting from a number of positive 
images, a set of test images was obtained by overlapping each positive image on 
pre-established regions of a group of negative images (Figure 32). This last set of 
images must be chosen with the aim to be representative of the different 
background conditions such as, for example, those determined by direct sunlight 
illumination of the breeding environment or other factors that could cause sunlight 
reflections.  

The test images were processed by using the software for the automatic 
extraction and matching of contours described in section 3.4.6.2. The results of 
this phase were used in order to compute the HR, MR and FPR indices. 
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Figure 32 – Example of test images for testing the cow identification software. 

3.4.6.5 The	 validation	 of	 the	 CVBS	 for	 the	 automatic	 identification	 of	
dairy	cows	in	free‐stall	barns	

In the first step of the accuracy assessment procedure an operator uses the 
software tool described in section 3.4.5.2 with the aim to store information on 
marked cows, i.e., the cow identifier, the location and the behavioural activity. 
With regard to the selection of panoramic top-view images, they must be chosen 
among those not used for the test and for the building of the contour database of 
symbols. More than one day of observations must be considered in the selection 
of the panoramic top-view images.  

The second step of the accuracy assessment procedure is the automatic 
identification of marked cows by using the automatic identification tool described 
in section 3.4.6.2. Obviously, the input of the software tool must be the same 
calibrated camera images used by the operator in the first step. The outputs of the 
software tool are automatically stored in the database by using for each detected 
contour the following attributes: representation of the contour through a sequence 
of Cartesian coordinates and the identifier of the cow to which the contour has 
been assigned. 

Third step of the accuracy assessment procedure is the comparison 
between the results obtained by using the software described in section 3.4.6.2 
and those produced by the operator. 
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In detail, for each cow identified within a panoramic top-view image by 
the operator in the first step of the procedure, a contour C is searched among the 
outputs of the software tool for the automatic cow identification (cf. 3.4.6.2). The 
properties required for C are the following:  

1. The cow identifier associated to C by the software tool must 
correspond to the cow identifier established by the operator; 

2. The Euclidean distance between the centroid of C and the 
position of the cow established by the operator must be 
lower than a fixed threshold. 

The centroid : ( , )x yG G G of a closed contour available in the form of 

Cartesian coordinates ( ) : ( ( ), ( )) 0,1, ..., 1c t x t y t t L   is calculated with the 
following formulas (Yang, Kidiyo, & Rosin, 2008): 
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If a contour with the two mentioned properties is identified then C is 
labelled as a TP otherwise it is noted as not found and, therefore, a FN is obtained 
for the accuracy assessment.  

The contours that were identified by the software for the automatic 
identification but that were not been associated with any cow identified by the 
operator constitute the FPs of the accuracy assessment. 

The fourth step of the accuracy assessment procedure involves the 
computation of the quality indices reported in section 3.4.5.4. 
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4 RESULTS 

4.1 First methodology: the automatic detection of cow behavioural 
activities in free-stall barns (objective 1) 

The availability of top-view panoramic images of the study area allowed 
an operator to perform the manual extraction of positive images that showed the 
cow body shape and negative image samples that showed background elements of 
the barn such as alleys and resting area flooring, operators and equipment. 
Samples have been subdivided into behavioural classes and subclasses to be used 
for training and testing each classifier.  

The building of the classifiers used for the detection of the dairy cow 
behavioural activities was obtained through the execution of the training tool for 
each considered behavioural activity.  

The defined behavioural classes and subclasses have lead to the modelling 
of the following classifiers: 

a) Two classifiers, called classifier 1a and classifier 1b, to detect cow lying 
behaviour; 

b) One classifier, called classifier 2, to detect cow feeding behaviour; 
c) Three classifiers, called classifier 3a, classifier 3b, and classifier 3c, to 

detect cow standing behaviour; 
d) Two classifiers, called classifier 4a, and classifier 4b, to detect cow 

perching behaviour. 
 
In the training phases the same values of MaxFPR, ns, and TPRcas were 

assigned to each classifier. The maximum number of the stages, ns, was fixed to 
30. The value of MaxFPR was set equal to 0.5 because it made it possible to 
obtain a rapid decrease of the FPRcas value as the number of stages increased. 
TPRcas value was set at least equal to 0.90 because it was assumed a maximum 
value of the false negative rate, i.e., percentage of cows that were not detected, 
equal to 0.10. Taking into account these common settings of the training 
parameters, the computation of the MinTPR by means of the relation (8) yielded a 
value of 0.9965 for each stage of the classifiers. The z factor used to increase the 
dimensions of the rectangular sub-window was set to 5%, for each classifier. 

Other specific training parameters were chosen in relation to the specificity 
of the cow behavioural activity to be detected, i.e., the number of positive images, 
the dimensions of the rectangular window used to cut out each cow image from 
the panoramic top-view images, the number of negative images, and the 
dimensions of the sliding window. 

The panoramic images used to train the classifiers were extracted from 
video-recordings acquired between the 1st and the 7th of August, 2011, from the 
6:00 a.m. and the 7:00 p.m. 
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By applying 10-min instantaneous scan sampling, a total amount of 84 
frames were extracted each day for lying, standing, and perching behaviours. For 
feeding behaviour, the sampling regarded only the two hours after the first 
milking and one hour in the first afternoon, when the feed was moved closer to the 
cows. Consequently, for such behaviour 18 frames each day were extracted from 
the video sequence.  

In the test phase of each classifier, panoramic top-view images were 
extracted from video-recordings acquired between the 1st and the 7th of August, 
2011 from 6:00 a.m. to 8:00 p.m., by applying a 10 minutes sampling, as it was 
done in the training phase. However, the instant of acquisition was delayed by 5 
minutes. Furthermore, in order to test the quality of the classifications in different 
conditions of ambient light, the average daily trend of the pixel brightness average 
values in the resting area and in the feeding alley was obtained (Figure 33 and 
Figure 34). The pixel brightness average values in the resting area and in the 
feeding alley were computed every 10 minutes of each day of the considered 
week. The computation was carried out by using the commercial software 
ERDAS Imagine®. 

 

 
Figure 33 - Averages of the pixel brightness values of the feeding alley images computed for each 
acquisition instant of the seven days considered; weekly means of the averages of the pixel 
brightness values; panoramic images selected to produce the sequence of images. 
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Figure 34 - Averages of the pixel brightness values of the images of stall row n. 1 (a) and stall row 
n.2 (b) computed for each acquisition instant of the seven days considered; weekly means of the 
averages of the pixel brightness values; panoramic images selected to produce the sequence of 
images. 
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For the classifiers used to detect the feeding and standing behaviours, i.e., 
2, 3a, 3b, and 3c, a sequence of panoramic top-view images was produced by 
selecting every 10 minutes the panoramic top-view images wich had the pixel 
brightness average value closest to the weekly mean in the feeding alley (Figure 
33). 

Likewise, for the classifiers used to detect the lying and perching 
behaviours, i.e., 1a, 1b, 4a, and 4b, a sequence of panoramic top-view images was 
produced by selecting every 10 minutes the panoramic top-view images having in 
the resting area the pixel brightness average value closest to the weekly mean 
(Figure 34).  

Finally, in the validation phase, the accuracy assessment procedure was 
carried out by using the implemented software tool that executed simultaneously 
the classifiers on a set of selected panoramic top-view images that were not used 
in the training and test phases. In detail, the accuracy assessment procedure was 
carried out by using the video-recordings acquired between the 8th and the 14th of 
August, 2011, from 6:00 a.m. to 8:00 p.m. The panoramic images were selected at 
10-minute sampling intervals. A number of 589 panoramic top-view images were 
analyzed by all the classifiers and by the operator. The results of the training, test, 
and accuracy assessment phases executed for each classifier are described in the 
following paragraphs. 

4.1.1 Lying behaviour classifiers 
In the training phase of the classifiers 1a and 1b, 826 and 319 positive 

images were selected, respectively (Table 3). The positive images were obtained 
by extracting image sub-sets corresponding to all the rectangular areas of 
224×140 pixel that showed stalls occupied by the cows in each panoramic top-
view image (Table 3).  

The number of negative images was equal to 600 for both the classifiers 
and was obtained by extracting areas identifying empty stalls, i.e., unoccupied by 
the cows. 

The sliding window was set to 40×25 pixel in order to maintain the same 
aspect ratio equal to 1.6 of the positive images extracted from the panoramic top-
view images. For both the classifiers the number of the negative image samples 
was equal to 25×107. 

The training of the two classifiers ended at the 27th stage when FPRcas 

values reached the order of magnitude 10-7. The results of the training were 
reported in Table 4. 

In the test phase, , 346 positive images of 224×140 pixels were extracted 
from the obtained panoramic top-view image sequence. In particular, 274 images 
obtained by selecting all the cows lying in the stalls in the first row, were utilized 
to test the classifier 1a. The other 72 images, obtained by selecting all the cows 
lying in the stalls in the second row, were utilized to test classifier 1b.  
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With regards to the number of negative images for each day, two were 
selected at 6:30 a.m. and 6:30 p.m., when the cows were in the milking area, and 
other two images were selected slightly before and just after the cleaning of the 
feeding alley, carried out at approximately 8:00 a.m., when the cows were 
confined within an area which includes the service alley and the second row of 
stalls (Figure 19). 

The image overlay and the alteration operations produced 4384 test images 
for the classifier 1a and 1152 for classifier 1b. The results of the test were 
reported in Table 5. 

In the accuracy assessment phase 2281 images of cows lying in the 
cubicles were present. The overall number of cows correctly detected was 2088 
and, therefore, the number of unclassified cows was 193. The number of false 
positives given by the system was 167. The accuracy indices computed on the 
basis of these values were: BF=0.08; MF=0.09; CDP=0.92; QP=0.85. 

 

Table 3 - Characteristics of the positive and negative images that were selected in order to 
constitute the image samples used in the training phase. 
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Average 

dimensions 
Dimensions 

Positives 
(w×h) 

Negatives 
(w×h) 

n. W×H n. W’×H’ w×h n. n. 

1a 826 224×140 600 230×144 40×25 826 24.84×107 

1b 319 224×140 600 230×144 40×25 319 24.84×107 

 

Table 4 - Characteristics of the trained classifiers 1a 
and 1b. 

Table 5 - Test results of the trained classifiers 1a 
and 1b. 

Results of the training phase Results of the test phase 
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1a 27 15.21×107 0.902 3.09×10-7 1a 4384 3838 546 358 0.88 0.12 0.08 

1b 27 6.31×107 0.920 7.93×10-7 1b 1152 1000 152 92 0.87 0.13 0.08 
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4.1.2 Feeding behaviour classifier 
The training of the classifier 2 required 656 positive images and 384 

negative images (Table 6). The positive images were obtained by extracting the 
image sub-sets corresponding to all the rectangular areas of 227×102 pixel that 
showed single cow at the feeding barrier in each panoramic top-view image. 
Likewise, the negative images were obtained by extracting areas corresponding to 
empty feeding locations, i.e., unoccupied by the cows having dimension equal to 
230×100. 

The sliding window was set to 40×18 pixel in order to maintain the same 
aspect ratio equal to 2.2 of the positive images extracted from the panoramic ones. 
For the feeding classifier 2, 656 positive image samples and about 11×107 
negative image samples of 40×18 pixels were obtained. 

Also the training of the feeding detector terminated at the 27th stage when 
FPRcas values reached the order of magnitude 10-7. The results of the training were 
reported in Table 7. 

In the test phase, from the obtained panoramic top-view image sequence, 
368 positive images of 227×102 pixel were extracted.  

As for the classifiers 1a and 1b, the negative images were selected within 
panoramic top-view images acquired at 6:30 a.m. and 6:30 p.m., when the cows 
were in the milking area, and at 8:00 a.m. when the cows were confined within an 
area which includes the service alley and the second row of stalls (Figure 19).  

The image overlay and the alteration operations involved 5888 test images 
for the classifier 2. The results of the test were reported in Table 8.  

In the accuracy assessment phase 2217 images of cow presence at the feed 
barrier were present. The overall number of cows correctly detected was 1922 
and, therefore, the number of unclassified cows was 295. The number of false 
positives given by the system was 157. The accuracy indices computed on the 
basis of these values were: BF=0.08; MF=0.15; CDP=0.87; QP=0.81. 

4.1.3 Standing behaviour classifiers 
In the training phase of the classifiers 3a, 3b and 3c, the number of 

positive image was equal to 646, 651 and 430, respectively (Table 9). The 
dimensions of the rectangular areas that showed cows standing in the feeding 
alley in each panoramic top-view image were 100×220 pixel, 220×100 pixel, and 
185×185 pixel for the classifiers 3a, 3b and 3c, respectively. The number of 
negative images was equal to 708 for all the classifiers and was obtained by 
extracting areas identifying empty areas in the feeding alley. 

The sliding windows for the three classifiers were set to 18×40 pixel, 
40×18 pixel, and 40×40 pixel for the classifiers 3a, 3b and 3c, respectively. Such 
dimensions were chosen in order to maintain the aspect ratios equal to 0.45, 2.2, 
and 1 for the classifiers 3a, 3b and 3c, respectively. In all, for the standing 
classifier 3a, 646 positive image samples and about 57×107 negative image 
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samples of 18×40 pixel were obtained; for the standing classifier 3b, 651 positive 
image samples and about 57×107 negative image samples of 40×18 pixels were 
obtained, whereas for the standing classifier 3c, 430 positive image samples and 
about 43×107 negative image samples of 40×40 pixels were obtained. 

The training of the classifiers terminated at the 30th stage when the 
maximum number of stages was reached. The FPRcas values reached the order of 
magnitude 10-5 for all three classifiers. The results of the training were reported in 
Table 10. 

In the test phase, from the obtained panoramic top-view image sequence, 
174 positive images were extracted. In particular, 58 images obtained by selecting 
all the cows standing toward the direction of the longitudinal axis of the barn were 
utilized to test the classifier 4a, 71 images obtained by selecting all the cows 
standing crosswise the direction of the longitudinal axis of the barn were utilized 
to test the classifier 4b, 45 images, obtained by selecting all the cows standing 
oblique to the direction of the longitudinal axis of the barn were utilized to test the 
classifier 4c. 

As for the lying classifiers and the feeding classifier, the negative images 
were selected within panoramic top-view images acquired at 6:30 a.m. and 6:30 
p.m., when the cows were in the milking area, and at 8:00 a.m. when the cows 
were confined within an area which includes the service alley and the second row 
of stalls (Figure 19).  

Table 6 - Characteristics of the positive and negative images that were selected in order to 
constitute the image samples used in the training phase. 

C
la

ss
if

ie
r 

Positive images Negative images 
Sliding 

windows 
Samples  

 Dimensions  
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Positives 
(w×h) 

Negatives 
(w×h) 

n. W×H n. W’×H’ w×h n. n. 

2 656 227×102 384 230×100 40×18 656 10.86×107 

 
Table 7 - Characteristics of the trained classifier 2. Table 8 - Test results of the trained classifiers 2. 

Results of the training phase Results of the test phase 
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2 27 6.05×107 0.925 7.67×10-7 2 5888 5210 678 455 0.88 0.12 0.08 
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Image overlay and the alteration operations involved 928 test images for 
the classifier 3a, 1136 test images for the classifier 3b, and 720 test images for the 
classifier 3c. The results of the test were reported in Table 11. 

In the accuracy assessment phase 1,286 images of cows standing were 
present. The overall number of cows correctly detected was 1,102 and, therefore, 
the number of unclassified cows was 184. The number of false positives given by 
the system was 190. The accuracy indices computed on the basis of these values 
were: BF=0.17; MF=0.17; CDP=0.86; QP=0.75. 

 

Table 9 - Characteristics of the positive and negative images that were selected in order to 
constitute the image samples used in the training phase. 
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Dimensions 

Positives 
(w×h) 

Negatives 
(w×h) 

n. W×H n. W’×H’ w×h n. n. 

3a 646 100×220 708 225×225 18×40 646 57.43×107 

3b 651 220×100 708 225×225 40×18 651 57.43×107 

3c 430 185×185 708 225×225 40×40 430 43.47×107 

 

 

Table 10 - Characteristics of the trained classifiers 3a 
3b and 3c. 

Table 11 - Test results of the trained classifiers 3a 
3b and 3c. 

Results of the training phase Results of the test phase 
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3a 30 8.51×107 0.904 4.70×10-5 3a 928 805 123 98 0.87 0.13 0.11 

3b 30 12.85×107 0.901 3.12×10-5 3b 1136 980 156 101 0.86 0.14 0.09 

3c 30 11.32×107 0.908 1.30×10-5 3c 720 642 78 62 0.89 0.11 0.09 
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4.1.4 Perching behaviour classifiers 
The training phases of the perching classifiers 4a and 4b required 174 and 

80 positive images, respectively (Table 12). The positive images were obtained by 
extracting from each panoramic top-view image all the image sub-sets 
corresponding to the rectangular areas of 308×140 pixel that showed cows 
standing half in the stall and half in the feeding alley, for classifier 4a, and cows 
standing half in the stall and half in the in the service alley, for classifier 4b. 

The number of negative images was equal to 600 for both the classifiers 
and was obtained by extracting areas identifying empty stalls, i.e., unoccupied by 
the cows, and portions of the adjacent alleys (Table 12). 

The sliding window was set to 55×25 pixel in order to maintain the same 
aspect ratio equal to 2.2 of the positive images extracted from the panoramic top-
view images. For both the classifier the number of the negative image samples 
was equal to 33×107 . 

The training of the classifiers terminated at the 30th stage when the 
maximum allowed number of stages was reached. In correspondence the FPRcas 

values reached the order of magnitude 10-6 for both classifiers (Table 13). The 
results of the training are reported in Table 13.  

 

Table 12 - Characteristics of the positive and negative images that were selected in order to 
constitute the image samples used in the training phase. 
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 Dimensions  
Average 

dimensions 
Dimensions 

Positives 
(w×h) 

Negatives 
(w×h) 

n. W×H n. W’×H’ w×h n. n. 

4a 174 308×140 600 310×144 55×25 174 32.62×107 

4b 80 308×140 600 310×144 55×25 80 32.62×107 

 

In the test phase, from the obtained panoramic top-view image sequence, 
62 positive images of 308×140 pixels were extracted. In particular, 31 images 
obtained by selecting all the cows perching in the stalls in the first row were 
utilized to test the classifier 4a. The other 31 images, obtained by selecting all the 
cows perching in the stalls in the second row, were utilized to test classifier 4b.  

As for the other classifiers, the negative images were selected within 
panoramic top-view images acquired at 6:30 a.m. and 6:30 p.m., when the cows 
were in the milking area, and at 8:00 a.m. when the cows were confined within an 
area which includes the service alley and the second row of stalls (Figure 19).  
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The image overlay and the alteration operations involved 496 test images 
for the classifier 4a and 496 for classifier 4b.The results of the test are reported in 
Table 14. 

In the accuracy assessment phase 553 images of cows perching were 
present. The overall number of cows correctly detected was 494 and, therefore, 
the number of unclassified cows was 59. The number of false positives given by 
the system was 49. The accuracy indices computed on the basis of these values 
were: BF=0.10; MF=0.12; CDP=0.89; QP=0.82. 

 

Table 13 - Characteristics of the trained classifiers 4a 
and 4b. 

Table 14 - Test results of the trained classifiers 4a 
and 4b. 

Results of the training phase Results of the test phase 
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 n. n.     n. n. n.    

4a 30 11.04×107 0.903 4.53×10-6 4a 496 438 58 38 0.88 0.12 0.08 

4b 30 10.21×107 0.905 7.72×10-6 4b 496 430 66 43 0.87 0.13 0.09 
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4.2 Second methodology: the automatic identification of dairy cows 
in free-stall barns (objective 2) 

As it has been described in paragraph 3.4.6, the proposed method for the 
automatic identification of dairy cows in free-stall barns requires the marking of 
cows that need to be identified by drawing an artificial symbol in the coat with 
natural paints or hair dye. Since the objective of the study was to verify the 
feasibility of the proposed method of identification only few animals were 
marked. 

In a first trial, a pencil RAIDL Maxi produced by RAIDEX® was used to 
mark three cows with triangle, square and circle shapes (Figure 35a). However, 
after only two days, the marks on the coat of the cows were no longer clearly 
visible. This happened after that the marked cows had used the cooling system 
composed of showers for direct wetting or when they had used the tilting brush 
(Figure 35b). 

 

 
Figure 35 - Images of marked cows in the first trial. 

In the second trial, a spray for the signature of livestock produced by 
Ghislandi & Ghislandi s.r.l. was used. Only one cow was marked by drawing a 
circle on the coat (Figure 36). For four week the symbol on the coat remained 
clearly visible. 

The availability of the synchronized camera images that frame both the 
resting area and the feeding alley allowed the manual extraction of positive 
images that show the cow marked with the circle, to be performed by an operator.  

For this kind of artificial symbol, two contour sub-classes were defined:  
a) The sub-class 1a that contained the contours extracted from images 

framing the cow during the feeding, standing and perching behavioural 
activities; 
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b) The sub-class 1b contained the contours extracted from images framing 
the cow during the laying behavioural activity. 

 

 
Figure 36 - Images of the marked cow in the second trial. 

 
In the trial the definition of two sub-classes was required because when the 

marked cow was in feeding, standing or perching the circular symbol applied in 
the coat was completely visible in the camera images, whereas when the cow was 
lying in a stall the circular symbol was subject to deformations or was only 
partially visible.  

The parameters of the contours detection algorithms were determinated by 
means of the trial and error technique. In details, the number L of points which 
constitute the contour of the objects was fixed to 40, the perimeter of each 
accepted contour was bounded between 150 and 300 pixels for the sub-class 1a 
and between 80 and 200 pixels for the sub-class 1b, whereas the area enclosed by 
the perimeter was bounded between 400 and 600 pixels for the sub-class 1a and 

between 200 and 400 pixels for the sub-class 1b. The threshold value Like
Th was 

set equal to 0.85 for both the sub-classes.  

The parameters’ values of the image enhancement algorithm that were 
tested in order to modify each input camera image with the aim of improving the 
contour detection process, were grouped into 16 different settings reported in 
Table 15. 

 

Table 15 – Parameters settings of the of the image enhancement algorithm 

Settings 
number 

Gaussian 
filter 

Blur 
Histogram 

equalization 
Settings 
number 

Gaussian 
filter 

Blur 
Histogram 

equalization 
1 3×3 ‘No’ ‘No’ 9 11×11 ‘Yes’ ‘Yes’ 
2 3×3 ‘No’ ‘Yes’ 10 13×13 ‘No’ ‘Yes’ 
3 3×3 ‘Yes’ ‘Yes’ 11 15×15 ‘Yes’ ‘Yes’ 
4 5×5 ‘No’ ‘Yes’ 12 21×21 ‘Yes’ ‘Yes’ 
5 5×5 ‘Yes’ ‘Yes’ 13 25×25 ‘Yes’ ‘Yes’ 
6 7×7 ‘No’ ‘Yes’ 14 31×31 ‘Yes’ ‘Yes’ 
7 7×7 ‘Yes’ ‘Yes’ 15 45×45 ‘Yes’ ‘Yes’ 
8 9×9 ‘No’ ‘Yes’ 16 61×61 ‘Yes’ ‘Yes’ 
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The synchronized and calibrated camera images used to build the database 
of the known contours of the circle used to mark the cow were extracted from 
video-recordings acquired between the 26th and the 30th of May, 2012, from the 
7:00 a.m. to the 7:00 p.m. For each day, by applying 10-min instantaneous scan 
sampling, a set of 72 calibrated camera images was obtained where the marked 
cow was present. Therefore, an amount of 360 images were extracted. 

The positive images were obtained by extracting the image sub-sets 
corresponding to the most significant rectangular areas that showed the marked 
cow, from each selected image. 

The records of the contour database were populated by an operator, who 
used the developed software tool for the automatic identification of dairy cows. 
For each positive image and for each parameter’s value used in the image 
enhancement process the tool showed the detected contours. Therefore, the 
operator was able to select the contour related to the circular symbol marked on 
the coat of the cow as well as the sub-class. This contour was stored in the 
database if the values of the index of similarity eLik  computed between the 
extracted contour and those present in the database was lower than 0.95. 

In Table 16 the characteristics of the contour database were reported. 

 

Table 16 – Characteristics of the contour database 

Characteristics of the contour database 

Sub-class Positive images Positive images after the 
enhancement processes 

Contours 
extracted 

 n. n. n. 

1a: Cow marked with circular 
symbol (feeding, standing, 
perching) 

60 960 410 

1b: Cow marked with circular 
symbol (laying) 

45 720 280 

 

In the test phase, camera images were extracted from video-recordings 
acquired between the 26th and the 30th of May, 2012 from 7:00 a.m. to 7:00 p.m., 
by applying a 10 minute sampling, as it was done in the building of the database. 
However, the instant of acquisition was delayed 5 minutes in comparison to that 
employed in the training phase.  

A number of 275 positive images were extracted. In particular, 171 
images, obtained by selecting the marked cow during the feeding, standing and 
perching behaviours, were utilized to test the identification of the contours 
belonging to the sub-class 1a. The other 104 images, obtained by selecting the 
marked cow during the laying behaviour, in the first or in the second stall row, 
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were utilized to test the identification of the contours belonging to the sub-class 
1b.  

With regards to the number of negative images, two sets of synchronized 
camera images were selected at 6:30 a.m. and 6:30 p.m., when the cows were in 
the milking area, and at 8:00 a.m. when the cows were confined within an area 
which includes the service alley and the second row of stalls (Figure 19). Forty 
negative images were selected. Among them 24, i.e., 4 images for each of the 6 
cameras placed above the feeding alley, were used for the building of the test 
images regarding the contours belonging to the sub-class 1a; whereas 16, i.e., 4 
images for each of the 4 cameras placed above the resting area, were used for the 
building of the test images regarding the contours belonging to the sub-class 1b. 
Image overlay and alteration operations involved 16,416 test images for the class 
1a and 6656 for the class 1b. The results of the test were reported in Table 17. 

 

Table 17 - Results of the test of cow identification for 
the two sub-classes. 

S
ub

-c
la

ss
 

N
. o

f 
te

st
 

im
ag

es
 

TP FN FP HR MR FPR 

 n. n. n. n.    

1a 16416 14945 1471 705 0.91 0.09 0.04 

1b 6656 5776 880 495 0.87 0.13 0.07 

 

The accuracy assessment procedure was carried out by using the video-
recordings acquired between the 8th and the 14th of June, 2012, from 7:00 a.m. to 
7:00 p.m. The camera images were selected at 10-minute sampling intervals. For 
each day, by applying 10-min instantaneous scan sampling, 72 calibrated camera 
images were obtained for each of the 10 cameras. Therefore, an amount of 5040 
images were extracted and analyzed by the automatic identification tool and by an 
operator. In these images the presence of the marked cow would be correctly 
detectable by the operator 504 times if it was always in the functional areas 
monitored by the multi-camera system. However, the operator found the cow in 
353 images which constituted about 70% of the real presences. The marked cow 
was in feeding, standing, and perching in 231 images, whereas in lying in the 
remaining images, i.e., 122 images.  
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The software tool found 212 TPs and 19 FNs among the symbol 
appertaining to the contour sub-class 1a; whereas 120 TPs and 13 FNs were found 
among the symbol belonging to the contour sub-class 1b. 

The number of FPs obtained by the software tool was 13 for the sub-class 
1a and 17 for the sub-class 1b. The accuracy indices computed on the basis of 
these values were: BF=0.06; MF=0.09; CDP=0.92; QP=0.87 for the sub-class 1a, 
and BF=0.14; MF=0.11; CDP=0.90; QP=0.80 for the sub-class 1b. 
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5 DISCUSSION 

5.1 Further utilization of the designed multi-camera video recording 
system 

Apart from its crucial role for the development and application of the two 
methodologies proposed in this study, the installation of the multi-camera video 
recording system represented a benefit for the breeder because, during the trial, he 
was able to observe the herd by means of a more sophisticated surveillance 
system than those commonly commercialised. In fact, the multi-camera video 
recording system provided the breeder with real-time synchronized panoramic 
top-view video-recordings that avoided the observation of the herd by using 
different cameras.  

Some commercial multi-camera video-recording systems are composed of 
very expensive hardware required to synchronize the cameras (Liu, Yang, & You, 
2012). However, in literature any description of a multi-camera video recording 
system that produces the synchronized panoramic top-view image sequence of the 
framed environment in real-time was not found.  

Research based on the analysis of digital images from time-lapse video-
recordings (cf. 2.2.1.2 ) could take advantage of the design of a multi-camera 
system carried out by following the steps described in this research (cf. 3.1). In 
fact, the synchronized panoramic top-view image sequence of the breeding 
environment can facilitate the visual recognition of each animal of the herd. 

For further research, the calibrated and synchronized camera images or the 
panoramic top-view images provided by the multi-camera recording system may 
be used to acquire the input for other automatic software tools designed with the 
aim of studying other cow’s behavioural activities or analysing cow’s posture 
and/or locomotion.  

Finally, the multi-camera video-recording system proposed in this study 
could be used to validate other animal identification systems. In this context, 
another research that is still in progress, aims at assessing the accuracy of an 
individual cow location and tracking system based on the Ultra Wide Band 
(UWB) radio transmission technology. This UWB system was installed in the 
same free-stall barn where this research was carried out and is being validated by 
using as reference data the cow top-view images coming from the installed multi-
camera video-recording system. Recent studies carried out in conditions different 
from those characterizing breeding environments, encourage this application 
because UWB characteristics, i.e., low power transmission, multi-path fading 
robustness, ultra-fine time resolution and multiple simultaneous transmissions, are 
suitable to improve object position estimation in outdoor and indoor environments 
(Mucchi, Trippi, & Carpini, 2010; Xiong, Song, Lai, Zhang, & Yi, 2010; Yuechun 
& Ganz, 2005). 
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5.2 First methodology: the automatic detection of cow behavioural 
activities in free-stall barns (objective 1) 

With regards to the application of the first methodology that was aimed at 
the automatic detection of cow behavioural activities in free-stall barns, some 
relevant research findings is discussed in the following of this Section. 

For the training of the 8 classifiers a total amount of 3782 positive images 
and 4308 negative images were used. This result demonstrates that in this research 
a smaller number of both positive and negative images than those utilized by 
Viola & Jones for human face detection made it possible to obtain low FPRcas 

values, about equal to 1.3×10-5 on average, and high values of TPRcas, about equal 
to 0.91 on average. It could be explained, bearing in mind that the classifiers 
modelled in this study were robust with regards to brightness background 
variation which were observed in the breeding environment during daytime hours 
(cf. 4). 

The lowest number of positive images, which amounted to about 7% of the 
overall number of the selected positive images, was required for the training of the 
classifiers 4a and 4b regarding the perching behaviour because of the low 
frequency of this behavioural activity in comparison to the others examined in this 
research. The highest number of positive images, which amounted to about 46%, 
was required for the training of the classifiers 3a, 3b and 3c related to the standing 
behaviour. This fact occurred because of the high variability of the orientation of 
cow withers-to-pinbone axis within the feeding alley. As the Viola & Jones 
algorithm is not invariant to the positive image rotation, a great number of 
positive images were selected in order to provide the algorithm with as many 
examples of possible cow positions as possible. A modest number of positive 
images, which amounted to about 15% of the overall number of selected positive 
images, was required for the training of the feeding behaviour classifier. Contrary 
to what found for the standing behaviour classifiers, that occurred because of the 
very low variability of the position of the cows body when they were standing in 
front of the feed barrier. The same consideration can be done for the training of 
lying behaviour classifiers 1a and 1b which required about 22% and 8% of 
positive images, respectively. 

At the end of the training phase, the classifiers used for the lying and 
feeding behaviours achieved the best final values of TPR and FPR as they resulted 
greater than 0.90 and less than 8×10-7, respectively. Similarly, the classifiers used 
for the perching behaviour achieved good values of TPR as they resulted greater 
than 0.90 though values of FPR lower than 8×10-6 were obtained. These last 
values of FPR demonstrated a good reliability of the lying, feeding and perching 
classifiers in discarding the background since the incidence of false positives 
resulted equal or less than the order of magnitude 10-6. Concerning the standing 
behaviour classifiers, though the TPR values were approximately similar to those 
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obtained for the other classifiers, the FPR final values were of the order of 
magnitude 10-5. 

For all the classifiers the execution of the training tool was quite slow 
since it took approximately 24 hours for each classifier by using an Intel® Core 
(TM) 2 Quad CPU Q6700. 

The test of the classifier produced high values of HR which ranged 
between 0.86 and 0.89. It demonstrated that all the classifiers have a great ability 
to detect cows even when noises in the processed images occurred. For the lying, 
feeding, and perching behaviour classifiers the low value of FPR equal to 0.08 
confirms what happened in the training, i.e., these three classifiers have a good 
capacity to discard the background; whereas for the three standing classifiers FPR 
values were slightly higher and about equal to 0.10. 

With regards to the results obtained from the accuracy assessment 
procedure, Table 18 reports the incidence, in terms of frequency, of false positives 
and false negatives for each classification as well as the values obtained for the 
BF and MF indices which show the omission error, i.e., each classifier does not 
detect a cow behaviour over a number of true positives have been detected, and in 
term of commission error, i.e. the classifier produces a false positive over 
detecting a number of true positives. 

For the lying behaviour classifiers (classifiers 1a and 1b), the values 
obtained for the MF indices showed that for every 11 cows correctly detected, one 
omission error occurred. The classifiers for feeding behaviour (classifier 2), 
standing behaviour (classifiers 3a, 3b, and 3c) and perching behaviour (classifiers 
4a and 4b) showed an increase of the MF index. In fact, the one omission error 
occurred one every 7, 6, and 8 true positives correctly detected for the feeding 
behaviour classifiers, the standing behaviour classifiers and the perching 
behaviour classifiers, respectively. 

Regarding the BF index, the best results were obtained for the lying 
behaviour classifiers, feeding behaviour classifier, and perching behaviour 
classifiers that made one commission error every 13, 12, 10 true positive correctly 

Table 18 – Quality indices obtained for the 8 classifiers in the accuracy assessment. Incidence of 
false negatives and false positives in the classifications. 

8-14 August 211 

Group of 
classifiers 

Real cow 
presences 

TP FN FP MF MF BF CDP QP 

False 
negative 

frequency 
(1/MF) 

False 
positive 

frequency 
(1/BF) 

1a, 1b 2,281 2,088 193 167 0.09 0.09 0.08 0.92 0.85 
1 every 11 

TPs 
1 every 13 

TPs 

2 2,217 1,922 295 157 0.15 0.15 0.08 0.87 0.81 
1 every 7 

TPs 
1 every 12 

TPs 

3a, 3b, 3c 1,286 1,102 184 190 0.17 0.17 0.17 0.86 0.75 
1 every 6 

TPs 
1 every 6 

TPs 

4a, 4b 553 494 59 49 0.12 0.12 0.10 0.89 0.82 
1 every 8 

TPs 
1 every 10 

TPs 
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detected, respectively. The worst results were obtained for the standing behaviour 
classifiers that made one commission error every 6 true positives correctly 
detected. 

The ability of the classifiers to recognize the cows is proven by the values 
obtained for the CDP index, which are directly comparable with the HR values 
obtained in the test phase. For lying and perching behaviours, the cow detection 
ability of the modelled classifiers improved compared with the test phase. This 
improvement was not found in the standing behaviour classifiers. This result is 
due to the smaller number of postures assumed by the animals while lying in the 
stalls compared to that found when they are in the feeding alley. In fact, the stalls 
geometrically identify the area where cow presence is possible and thus facilitate 
the selection of positive images which contain the body of just one animal.  

Lastly, by considering that the operations carried out to obtain the plan 
view of the area under study produced sequences of panoramic images with a 
frequency of 0.5 fps and that the time needed to classify the content of a 
panoramic top-view image using by executing all the 8 classifiers on an Intel® 
Core (TM) 2 Quad CPU Q670 processor was approximately 900 milliseconds, the 
automatic detection of cow behavioural activities in free-stall barns can be 
obtained within 2 seconds. Since shape of the body of the animal did not vary 
significantly within time intervals of the order of a few seconds, during the 
behavioural activities considered in this study, the cow detection by means of the 
CVBS can be considered in real-time. 

5.3 Second methodology: the identification of dairy cows in free-stall 
barns (objective 2) 

During the building of the contour database only 105 positive images 
regarding the contours of the symbols used to mark the cows were used. This low 
number of positive images in comparison to the whole number of camera images 
extracted for the building of the database, which amounted to 588 images, made it 
possible to obtain a comprehensive set of contours that was representative of the 
different shapes assumed by the symbol during the different cow behavioural 
activities. This result was due to the operations carried out to enhance the quality 
of the input positive images that increased the number of the contours extracted 
from the 105 positive images which amounted to 690 contours subdivided into the 
sub-class 1a and the sub-class 1b. A low number of contours stored in the 
database made it possible the execution of the contour matching in real-time. 

The building of the database required about three hours for positive image 
extraction and about three hours for contour identification. 

The high values of HR, which was equal to 0.91 for the sub-class 1a and 
equal to 0.87 for the sub-class 1b, obtained during the test of the software tool for 
the automatic extraction and matching of contours, demonstrated that the CVBS 
had a great ability to identify the symbol marked in the coat of the cow also when 
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image noise in the processed images occurred. Furthermore, the very low value of 
FPR, equal to 0.04 for the sub-class 1a and equal to 0.07 for the sub-class 1b, 
highlighted the suitability of the system to discard the contours from the 
background. By comparing the results obtained from the two considered sub-
classes, it is possible to observe that the contour classifier had a great ability to 
detect the contours belonging to the sub-class 1a than those of the sub-class 2a. 
Also the incidence of FPs for the sub-class 2a was twice as much as the incidence 
of FPs for sub-class 1a. This worse performance of the contour classifier in 
recognizing the contours belonging to the sub-class 2a was mainly due to the 
deformation of the symbol that marked the coat of the cow when it was lying in 
the stall as well as to the scarce visibility of the symbol itself. 

With regard to the results of the validation phase, they are summarized in 
Table 19 which reports the incidence of false positive and false negative for each 
classification and the values obtained for BF and MF indices which show the 
omission error, i.e., the contour classifier does not detect the symbol marked on 
the coat of the cow over a number of true positive detected, and in the commission 
error, i.e. contour classifier produces a false positive over a number of true 
positive detected. 

For the contour classifier of sub-class 1a, the value obtained for the MF 
index showed that for every 11 cows correctly identified, one omission error 
occurred; whereas for the contour classifier of sub-class 1b there was an increase 
of the MF index. In fact, one omission error occurred every 9 true positives 
correctly detected. 

Regarding the BF index, the best results were obtained for the 
identification of the contours of the sub-class 1a, where the contour classifier 
made one commission error every 16 true positive correctly detected. The worst 
results were obtained for the identification of the contours of the sub-class 1b, 
where the contour classifier made one commission error every 7 true positive 
correctly detected. 

The ability of the CVBS to identify the marked cow is proven by the 
values obtained for the two CDP indices, which are directly comparable with the 
HR values obtained in the test phase. The values obtained for the two indices 

Table 19 - Quality indices obtained in the accuracy assessment carried out on camera images 
selected at 10-minute scan sampling for the identification of the contours belonging to the two 
sub-classes. Incidence of false negatives and false positives in the identification.  

15 June 2012 

Sub-class 

Real 
marked 

cow 
presences 

TP FN FP MF BF CDP QP 

False 
negative 

frequency 
(1/MF) 

False 
positive 
frequenc
y (1/BF) 

1a 231 212 19 13 0.09 0.06 0.92 0.87 
1 every 11 

TPs 
1 every 
16 TPs 

1b 122 120 13 17 0.11 0.14 0.90 0.80 
1 every 9 

TPs 
1 every 
7 TPs 



 
 
 
 
 

SECTION 5 – DISCUSSION 

106 

 

 

 

demonstrated a high level, approximately equal to 90%, of correct identifications 
of the marked cow. Moreover, by comparing the results obtained during the test 
phase with those achieved during the validation phase, an improvement of the 
identification accuracy was recorder for both the contours belonging to sub-class 
1a (from 0.91 to 0.92) and sub-class 1b (from 0.87 to 0.90). These results were 
due to the high level of alterations applied to the test images that, therefore, 
resulted in a worse quality in comparison to the real images used in the validation 
phase.  

The time required for the identification of the marked cow in each camera 
of the multi-camera system by executing the software tool for the automatic 
identification on an Intel® Core (TM) 2 Quad CPU Q670 processor, was 
approximately 100 milliseconds. On the basis of this result and the availability of 
a sequence of ten synchronized and calibrated camera images having a frequency 
of 0.5 fps achieved by the CVBS, it was proved that the CVBS proposed in this 
study could allow the automatic cow identification of herds constituted by a 
maximum number of 20 marked cows within 2 seconds. Similarly to that 
observed for the first methodology, the cow identification by means of the CVBS 
can be considered a real-time application because of the characteristics of cows’ 
locomotion.  

Finally, the proposed CVBS made it possible the identification of each 
animal of the herd by avoiding the use of sensors such as active and passive RFID 
tags and position markers, (Barbari et al., 2008; Porto et al., 2012) and other 
wireless technology-based instruments (Huhtala et al., 2007). This represents a 
great advantage since the integration of other systems for cow identification 
within the proposed CVBS is not recommended because of the increasing of the 
overall cost of the system. 
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5.4 Potential applications of the CVBS and further improvements 

5.4.1 First methodology: the automatic detection of cow behavioural 
activities in free-stall barns (objective 1) 
The CVBS proposed in this study allows for the detection of some 

behavioural activities of dairy cows housed in free-stall barn. It can be used for 
the computation of a number of indices related to the investigated behaviours and 
the barn utilization (Carreira et al., 2009; Cook, Bennett, & Nordlund, 2005; 
Mattachini et al., 2011; Overton et al., 2002), such as the Cow Lying Index (CLI), 
the Cow Feeding Index (CFI), and the Cow Standing Index (CSI).  

Figure 37 shows the comparison between the values of the CLI index 
computed by means of the visual recognition of cow activities from the panoramic 
top-view images and those obtained by means of the classification results of the 
CVBS. The Pearson’s correlation coefficient between the two datasets was equal 
to 0.98 (p=0.000). This proved that the CVBS is suitable for the computation of 
the CLI index. A slight difference between the two curves was recorded in the 
time interval before the second milking, i.e., before the 7:30 p.m., because of the 
restlessness of the herd, mainly due to the need of the cows to be milked.  

 

 
Figure 37 - Comparison between the CLI values obtained by the CVBS and those achieved by the 
visual recognition of cow activities from the panoramic top-view images of the resting area.  

 

The classification results obtained by the CVBS were used also for the 
computation of the CFI index. Figure 38 illustrates the comparison between the 
values of the CFI index computed by means of the visual recognition of cow 
activities from the panoramic top-view images and those obtained by means of the 
CVBS. The Pearson’s correlation coefficient between the two datasets was equal 
to 0.96 (p=0.000). Also for CFI index, this result proves the adequacy of the 
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CVBS for the computation of this index. A slight difference between the two 
curves was recorded in the early morning, i.e., around 7:00 a.m. when a high 
number of cows was standing in front of the feed barrier. In this situation a higher 
number of false negatives occurred in comparison to that obtained in the other 
periods of the analysed daytime interval. This was due to the fact that sometimes 
the classifier missed the cows when their bodies were in close contact with each 
other during the feeding (Porto, Arcidiacono, Guarnera, & Cascone, 2011). 

Finally, also a comparison between the CSI index values computed by 
means of the visual recognition of cow activities from the panoramic top-view 
images and those obtained by means of the CVBS was carried out (Figure 39). 
The Pearson’s correlation coefficient between the two datasets, though still high 
and equal to 0.91 (p=0.000), was slightly worse than those obtained for CLI index 
and CFI index. Even though the classification errors are uniformly distributed 
during the whole considered daytime interval, the high value of the Pearson’s 
correlation coefficient proves, also in this case, the adequacy of the CVBS for the 
computation of the CSI index. 

 

 
Figure 38 - Comparison between the CFI index values obtained by the CVBS and those achieved 
by the visual recognition of cow activities from the panoramic top-view images of the resting area.  

The results previously described are of relevant importance when the 
analysis of cow behavioural activity is demanded to the computation of the 
indices reported above. 

In general, by using traditional methods for the analysis of digital images 
coming from time-lapse video recordings the computation of such indices is 
highly dependent to the choice of a suitable ‘scan sampling interval’, its amplitude 
is strictly related to the type of behaviour to be analysed (Mattachini et al., 2011). 
The selection of the most adequate scan sampling interval is a crucial issue in 
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order to reduce the time-consuming operations needed for visual image 
interpretation of video-recordings. As concerns the obtained estimate of the 
considered indices, the higher the number of the frames extracted from the video 
sequences, the closer is the estimate to the real value. 

In this context, the application of the CVBS proposed in this study made it 
possible to obtain indices values very close to the real ones because of the 
capability of the CVBS to work in real time. This last characteristic also avoids 
the onerous activity of video-recording storage because the results of the 
detections could be stored in text files. 

 
Figure 39 - Comparison between the CSI index values obtained by using the CVBS and those 
achieved by the visual recognition of the cow activities from the panoramic top-view images of the 
resting area.  

  

5.4.2 Second methodology: the identification of dairy cows in free-stall 
barns (objective 2) 
The automatic identification of the animals obtained by means of the 

proposed CVBS can provide also the position of each cow of the herd within the 
barn. The information on cow position can be used to track each cow marked by a 
symbol. The possibility of tracking each cow of the herd is an important aspect in 
order to examine the behavioural patterns and activities, for health inspection, for 
an estimation of missed operations (for example milking) and for automatic 
isolation of individual animals at risk (Huhtala et al., 2007). 

In the following of this section a potential application of the CVBS for 
tracking the cow marked during the trial is demonstrated. 

The availability of a sequence of synchronized and calibrated camera 
images having a frequency of 0.5 fps as well as the characteristics of cows’ 
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locomotion allowed the definition of a positioning constraint of the marked cow 
within consecutive camera images. The information on the position of the cow 
and the defined constraint made it possible to track the marked cow within the 
study area as well as to improve the quality of the identification process by 
removing those positions that were incompatible with the defined constraint.  

By a visual analysis of the video recordings acquired by the multi-camera 
system, it was possible to observe that when the marked cow was framed by a 
camera at the instant t, it was still framed by the same camera or by an adjacent 
one after 2 seconds. This characteristic was considered a position constraint.  

To demonstrate the potential application of the CVBS for tracking the cow 
marked during the trial a probabilistic tracking model was implemented 
(Burghardt & Càlìc, 2006). This model estimates the probability of the presence 
of the marked cow in each camera of the multi-camera system by using the 
temporal accumulation of the presences of the marked cow in the whole cameras. 
A threshold based on the duration of the cow presence in the images obtained 
from one camera must be defined in order to validate the position of the marked 
cow. 

The model was applied to video-recordings acquired on the 15th of June, 
2012, from 7:00 a.m. to 7:00 p.m. The camera images were selected at 2-second 
sampling intervals. A large number of calibrated camera images, equal to 23253, 
was obtained for each set constituted by the 10 cameras. Therefore, an amount of 
232530 images were extracted and analyzed by the automatic identification tool 
and by operator. The operator found the cow in 17553 images The marked cow 
was in feeding, standing, and perching in 11952 images, whereas in lying in the 
remaining images, i.e., 5601 images.  

The software tool for the automatic identification found 10956 TPs and 
996 FNs among the symbol appertaining to the contour of sub-class 1a; whereas 
found 5030 TPs and 571 FNs among the symbol appertaining to the contour of 
sub-class 1b. 

The number of FPs given by the software tool was 558 for the sub-class 1a 
and 782 for the sub-class 1b. The accuracy indices computed on the basis of these 
values were reported in Table 20 and confirmed what found in the case of 
adopting a 10-minute scan sampling interval (cf. Table 19). It is possible to affirm 
that since the 2-second scan sampling interval does not provide a better 
identification of the marked cow, a reduction of the scan sampling interval is not 
required in the studies concerning behavioural activities that can be analyzed by 
means of 10-minute scan sampling interval. 
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The probabilistic tracking model was applied to the 23253 outputs of the 
identification process, i.e., position of the contour, obtained for each of the ten 
camera images. 

The threshold used to validate the presence of the marked cow within a 
specific camera was set equal to 2, i.e., the cow must be present in the same 
camera image for at least 4 seconds. The value of the threshold was obtained 
empirically taking into account the reduction of FPs and only a slight decrease of 
TPs. 

The values of quality indices obtained in the accuracy assessment carried 
out on camera images selected at 2-second scan sampling by applying the 
probabilistic tracking model to the outputs of the identification of the contours 
belonging to the two sub-classes were reported in Table 21. In this case, a high 
decrease of the false positives of about 59% for the sub-class 1a and of about 65% 
for the sub-class 1b was recorded. However, a slight reduction of the TPs was 
observed for both the two contours sub-classes (about 0.5% for the sub-class 1a 
and 1% for the sub-class 1b).  

This result demonstrated that the CVBS was very suitable for tracking the 
cow marked during the trial. 

The path observed by the operator (dataset A) described by means of x and 
y coordinates and that detected by the identification system (dataset B) were 
reported in Figure 40.  

Table 20 – Quality indices obtained from the accuracy assessment carried out on camera images 
selected at 2-second scan sampling for the identification of the contours belonging to the two sub-
classes. Incidence of false negatives and false positives in the identification process. 

15 June 2012 

Sub-class 

Real 
marked 

cow 
presences 

TP FN FP MF BF CDP QP 

False 
negative 

frequency 
(1/MF) 

False 
positive 

frequency 
(1/BF) 

1a 11952 10956 996 558 0.09 0.05 0.92 0.87 
1 every 11 

TPs 
1 every 20 

TPs 

1b 5601 5030 571 782 0.11 0.16 0.90 0.79 
1 every 9 

TPs 
1 every 6 

TPs 

Table 21 – Quality indices obtained from the accuracy assessment carried out on camera images 
selected at 2-second scan sampling by applying the probabilistic tracking model to the outputs of 
the identification of the contours belonging to the two sub-classes. Incidence of false negatives and 
false positives in the identification process. 

15 June 2012 

Sub-class 

Real 
marked 

cow 
presences 

TP FN FP MF BF CDP QP 

False 
negative 

frequency 
(1/MF) 

False 
positive 

frequency 
(1/BF) 

1a 11952 10910 1042 228 0.10 0.02 0.91 0.90 
1 every 10 

TPs 
1 every 48 

TPs 

1b 5601 4984 617 276 0.12 0.06 0.89 0.85 
1 every 8 

TPs 
1 every 18 

TPs 
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Whereas, the Figure 41 shows the comparison between the dataset A and 
that detected by the identification system which was improved by the probabilistic 
tracking model (dataset C). For both the figures the observation time interval was 
from 09:37 a.m. to 10:47 p.m. of the 14th of June 2012. Moreover, to improve the 
readability of the figures the values of the coordinates x and y were averaged 
every 30 seconds. 

The dataset B had a high correlation (r=0.975 for the x coordinate and 
r=0,988 for the y coordinate) with the dataset A. However, though the fitting of 
the two dataset is high, the presence of false positives can be observed at 09:38 
a.m., 09:47 a.m., 09:58 a.m., and 10:47 a.m. On the oher hand, the dataset C had 
shown a slight higher correlation coefficient (r=0.994 for the x coordinate and 
r=0.999 for the y coordinate) and a substantial reduction of the presence of false 
positives than those recorded by the dataset B. The improvement of the quality of 
the tracking is also demonstrated by comparing the maximum error and the mean 
error that were of 37 pixels and 452 pixels, respectively, for the dataset B and 23 
and 79 pixels, respectively, for the dataset C. 
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(a) 

 

(b) 
 

Figure 40 – a) x coordinates of the positions of the marked cow observed by the operator (dataset 
A) and detected by the identification system (dataset B); b) y coordinates of the positions of the 
marked cow observed by the operator (dataset A) and detected by the identification system 
(dataset B). 
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(a) 

 

(b) 
 

Figure 41 – a) x coordinates of the positions of the marked cow observed by the operator (dataset 
A) and detected by the identification system (dataset C) improved by the probabilistic tracking 
model; b) y coordinates of the positions of the marked cow observed by the operator (dataset A) 
and detected by the identification system improved by the probabilistic tracking model (dataset 
C). 
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6 CONCLUSIONS 
The development and application of the two methodologies for the 

automatic detection of a number of cow behavioural activities and for the 
automatic identification of dairy cows in free stall barns required the design of a 
multi-camera video recording system and its installation in a free-stall barn. For 
the farmer the multi-camera video recording system represented a benefit because 
he was able to observe the herd by means of a sophisticated surveillance system 
which provided him with real-time synchronized panoramic top-view video-
recordings that avoided a direct observation of the herd or the observation of the 
herd by using different cameras.  

The method proposed in order to design the multi-camera video recording 
system can also be utilized in other research based on the analysis of digital 
images to facilitate the visual recognition of each animal of the herd within 
breeding environment of large dimensions. 

The proposed CVBS made it possible to detect of feeding, lying, standing, 
and perching dairy cow behavioural activities in free-stall barns and cow 
identification. The identification of the cow was obtained without increasing the 
overall cost of the system by avoiding the use of sensors such as active and 
passive RFID tags and other wireless technology-based instruments.  

The classifiers modelled in this study to develop the two proposed 
methodologies were robust with regards to brightness background variations 
which were observed in the breeding environment during daytime hours. This 
represents an advance in the state of the art because in literature the use of 
automatic systems for behaviour detection was tested only in laboratory trials. In 
fact, it is widely recognized that in commercial livestock houses the application of 
image analysis for behaviour classification becomes more complicated due to the 
higher noises deriving from the characteristics of the breeding environment. 

The CVBS made it possible to obtain high quality indices Cow detection 
percentage (CDP) and Quality percentage (QP) computed in the real context 
related to the case study provided the following results: the detection of the four 
dairy cow behavioural activities in the free-stall barn provided a CDP > 86% and 
a QP > 75%; marked cow identification had a CDP > 90% and a QP > 79% in the 
case when the probabilistic tracking model was not utilized, and it obtained a CDP 
> 90% with a QP > 85% when using also the probabilistic tracking model which 
required, however, the availability of a 2-second set of camera images. 

The tasks executed by the CVBS to both produce the sequences of 
panoramic top-view images of the area under study and perform the detection of 
cow behavioural activities and the cow identification, took 2 seconds on an Intel® 
Core (TM) 2 Quad CPU Q670. With reference to the behavioural activities 
considered in this study, since the shape of the animal body did not vary 
significantly within 2-seconds time interval, the cow detection by means of the 
CVBS can be considered in real-time. 
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From a scientific point of view, researchers may be interested in making 
use of the methodologies proposed in this thesis work in order to perform 
automatic analyses of animal behaviour, as well as to validate other systems used 
for studying animal behaviours in different environmental conditions. 
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