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Abstract

Distributed Power Generation Systems (PGSs) are believed to be the most promising 

sustainable power generation solutions in the near future. It has obvious economic, 

environmental, and technical benefits increasingly attract governments and policy makers. 

Due to the technology development in the last two decades, distributed PGSs based on 

Hybrid Renewable Energy (HRE) became the most competitive in this field; its environmental 

friendly characteristics and resources inexhaustibility obviously dominate other alternatives in 

the long term. Among different configurations, hybrid Photovoltaic - Wind turbine (PV-WT) 

grid connected PGSs are the most adopted for their energy resources global distribution 

availability and good performance. However, the system design is characterized by significant 

complexity; where PV and WT power generation technologies suffer from intermittency and 

variability respectively. Thus, optimal balance between these two energy sources requires 

particular attention to achieve a good engineering solution.

Previous literature is full of contributions where suitable approaches were developed for 

defining optimal size and combination of hybrid PGSs. Different techniques and algorithms have 

been used to develop these approaches such as Particle Swarm Optimization, genetic algorithm,

deterministic methods, iterative techniques, simple numeric algorithms, linear programming,

analytic hierarchy processes, and other contributions focusing on optimizing hybrid PGS 

technical performance; the main goal of such methods is the reduction of system total costs 

applying economic-environment or techno-economic optimization. All of these approaches focus 

on optimizing a single criterion, mostly the total costs.

However, in real life applications, different criteria with conflicting performance are 

important in defining the optimal solution, and these criteria are not in the dimension (unit) or

same importance to be directly summed in a single objective function. Moreover, social 

evaluation criteria are almost missing and not considered in previous approaches.

This research deals with the problem of optimal sizing and combination of PV-WT grid 

connected PGSs, where a Multi Criteria Decision Making (MCDM) approach has been 

developed for this purpose. Different MCDM algorithms were considered in building a suitable 

optimization approach; Weighted Sum Method (WSM), the Technique for Order Preference by 

Similarity to Ideal Solution method (TOPSIS), Preference Ranking Organization METHod for 

Enrichment Evaluation (PROMETHEE II), and Multi Objective Genetic Algorithm (MOGA)

algorithms have been used. 

The developed approach takes into consideration technical, environmental, economic, 

and social criteria to define the optimal solution. The social criteria were modeled and 

implemented using fuzzy logic. Moreover, the proposed approach enables the user to include
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different importance values to the considered criteria. It has been comprehensively tested with 

different real solar, wind, and load demand profiles. In addition, its robustness has been proved 

by implementing input data sensitivity and stochastic uncertainty tests. At the end, it could be 

assumed as a powerful tool for designers, decision makers, analysts, and policy makers in 

designing PV-WT PGSs that enhance energy sustainable development.
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Chapter One

Introduction

1.1 Introduction

Energy is deeply interrelated with humanity civilization and continuous development. It 

enters all aspects of humans life, including essential ones for existence such as agricultural,

transportation, and medical, and also luxury ones such as tourism. All humans activities are 

related in somehow with one or more types of energy.

However, according to recent global population growth estimations, current global 

population is 6.7 billion and predicted to be 9.6 billion in 2050. As a result, energy demands are 

increasing rapidly, and, power generation is also increasing. Projections till 2030 shows that 

power generation will almost duplicate, moreover, renewable energy share will increase in order 

to compensate reduction in oil share. Figure -1.1- shows these projections. [1-3]

Figure -1.1-: World power generation projections and share by fuel type (1990-2030). [4]
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Basically, energy global challenges are clear and well defined, but unfortunately hard to 

solve. From one side, it comes mainly as a result of modern civilization heavy dependence on

fossil fuels resources, where it’s estimated that it fulfill about 84% of present global demand, and 

predicted to be like that till 2030. Moreover, fossil fuels reserves are limited and continually 

decreasing, where resources/production estimated ratios are 40, 60, and 120 for oil, gas, and coal 

respectively [2, 3, 5]. Humans living standards are directly affected by energy resources 

availability and consumption. Developing and undeveloped countries governments are ambitious 

to raise their living standards similar to developed countries, but if every human on the earth will 

use energy and resources the same way as in developed countries, at least three more earths are 

required, but unfortunately, there is only one [6, 7]. In addition to the depletion challenge, fossil 

fuels prices are fluctuating, unpredictable, and on average increasing due to political, 

technological, and availability factors [2].

In the last decades, global attention has been focused on energy consumption and its related 

consequences; environmental problems such as global warming, ozone depletion, and pre-

mentioned consumption availability challenges are worldwide concerns for both of governments 

and scientific communities [1, 3, 6]. This led to unanimity of opinions that good energy 

management and planning practices are essential for civilization existence and continuous 

development. 

However, managing and planning energy issues has its own privacy due to its high 

complexity, large number of variables, and in most situations, analysis and planning should be 

implemented under uncertain conditions [8-11]. To overcome these challenges, effective 

sustainable energy development (SED) models should be developed to improve the process of 

analyzing, managing and planning current and future energy systems [6].

1.2 Sustainable Energy Development (SED)

The term sustainable development (SD) began to gain wide acceptance in the late 1980s. It 

has many definitions; the most common one is ‘’the development that meets the needs of the 

present without compromising the ability of future generations to meet their own needs’’. It 

helps decision makers to think in a more comprehensive way through linking available 

technology with environment, economy, and society present and future issues [6, 12, 13].
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From general point of view, SD aims to manage, plan, and take decisions after analyzing the 

interactions between environment, economy, and society. In this way, it can be assured that 

achieved advantages will not be unjustified because of some hidden disadvantages [6]. However, 

when applying SD on energy systems, some more focus is required, where the goal becomes to 

manage, plan, and take decisions after analysing the interactions between environment, energy,

and socio-economy. In this context, more attention has been given to the energy issues, without 

losing the interactions between economic and social sectors [7, 11]. Figure -1.2- shows the 

definition of SD from both of general and energy point views.

General point view Energy point view

Figure 1.2: SD definitions illustration from general and energy point views

Adopting and applying SD models has many environmental, economic, and social 

advantages, these advantages are shown per SD sector bases in Table 1.1.

Table 1.1: Advantages of adopting and applying SD models.

Energy Environment Socio-economy

• Ensure more comprehensive, 

precise, and easier planning 

practices [8-10]. 

• Helps in building and 

assessing policies [1, 14]. 

• Encourage energy efficiency 

improvement efforts [b]. 

• Encourage global efforts in 

finding renewable 

alternatives [5].  

• Manage, protect, and repair 

global environment [6, 7, 

11].

• Enhance quality of life. 

• Avoid future conflicts. 

• Protect future generation 

rights. 

• Enhance national and 

international level planning. 

• Enhance international 

convention and corporation. 

• Support economic growth 

[6]. 

Environment

EconomySociety

Environment

Energy
Socio-

economy
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1.3Problem Definition and Objective

Renewable energy (RE) sources are the most promising power generation solutions for the 

future. Among different sources, solar and wind are believed to have the highest potential. Its 

availability, global distribution, and zero emissions characteristics are attractive for facing global 

warming and conventional resources depletion challenges. However, solar energy suffers from 

intermittency while wind energy from variability, and both technologies still has its economic 

and social challenges. 

Recently, grid connected distributed power generation systems based on RE sources became 

a well known solution. Designing hybrid solar-wind grid connected power generation system 

requires attention to be given for both of the system size and sources combination. Basically, 

available designing methods are devoted to optimize system total costs while fulfilling some 

technical requirements. Although these methods are practical, well defined, and feasible, in most 

cases, it does not take into consideration environmental and social issues efficiently. So, these 

methods suffer by not taking SED issues into consideration in the system designing process. In 

addition, previous methods does not support the analysis of multi conflicting criteria with 

different importance value, instead, a single global objective function is normally developed, and 

it aims to find the optimal solution based on minimizing costs or maximizing revenues for this 

objective function.

1.4State of the Art

Technical literature is rich in contributions proposing methods able to achieve the optimal 

sizing of hybrid power generation systems. Different approaches use optimization algorithms 

such as Particle Swarm Optimization [15-19], genetic algorithms [20-25], mixed integer 

nonlinear programming [26], hybrid simulated annealing Tabu search algorithm [27], fuzzy logic 

[28], HOMER optimization software [29], and other contributions focusing on optimizing hybrid 

PGS costs, maintaining specific technical performance [30-47]. The main goal of the presented 

methods is the reduction of system costs applying economic-environment and/or techno-

economic optimization algorithms. Basically, a single objective function to be minimized is 

considered; mainly, this function is represented by the total system cost; the other technical-

environmental requirements can be included in the optimization sizing process by following two 
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approaches: the first way is to consider such requirements as additional constraints, while the 

other approach is based on the conversion of the additional requirements units into costs to 

ensure unit consistency, and then add such variables to the objective function. The latter methods 

are not always practical since some of the system variables might not be easily unified into a 

single unit. Moreover, in both approaches it is assumed that all system requirements/variables 

have the same importance with respect to the final decision.

More insightful approaches have been presented in [48,49] where, by using a multi objective 

PSO or genetic algorithms, they are able to simultaneously optimize more objective functions 

(environment, economic, and technical) in order to find the Pareto set, which is considered the 

optimal solution set; hence, these methods provide different PV-WT configurations candidate as 

the best one, leaving the final decision to the decision maker preferences, which might not be a 

simple task; moreover, also in this case the same importance is assigned to all criteria.

Basically, most of the already proposed solutions could not be able to extract the best 

combination of PV-WT system, which is best compromise among different nature criteria, 

yielding to a suboptimal solution.

1.5Main Contribution

In this thesis, a MCDM approach has been developed for optimizing the size and sources 

combination of a hybrid solar-wind grid connected power generation system (PGS). In which, 

the user will be able to optimize the design of PV-WT PGSs taking into consideration multi 

conflicting criteria in a parallel manner, where each criteria has a specific importance in defining 

the optimal design. Different technical, environment, economic, and also social criteria (which is 

missing most of the time in previous contributions) have been considered in the applied case 

studies, in this way, the designed approach will enhance design process ability to move toward 

strategic SED solutions. In comparison to previous contributions in the same field, this approach 

is more realistic where the user can include all crucial evaluation criteria in the design process

simultaneously, at the same time, each criteria has a specific weight in the process to meet 

designers preferences and main goals. 

For this purpose, specific analysis strategies have been proposed to check the validity of 

these algorithms in such an application. Real photovoltaic cells (PV) and wind turbines (WTs) 
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commercial data have been used in the analysis. Also, different sensitivity analysis strategies 

have been proposed based on changing the importance factor for analysis criteria in order to 

define the risk behind implementing a specific solution from different analysis criteria point of 

view. Moreover, comprehensive stochastic analysis strategy has been proposed, its objective is to 

allow implementing uncertainty analysis for system main weather input data which are solar 

radiation profile, wind speed profile, and electric load profile. In this way, a comprehensive 

SED point of view has been considered by including technical, environmental, economic, and 

social criteria instead of assuming only economic feasibility. 

To sum up, the proposed approach helps designers to have a deep understanding of their 

systems behavior under specific uncertainty and sensitivity scenarios. It helps to define and 

estimates advantages and drawbacks of their PGSs under different performance criteria 

consideration, and different sensitivity and uncertainty scenarios.

1.6 Thesis Outlines

The remaining parts of the thesis have been organized as follows:

Chapter two explains hybrid renewable energy PGSs with theoretical review regarding 

PV and WT technology.

Chapter three provides a comprehensive review of MCDM applied algorithms.

Chapter four illustrates the theory of fuzzy sets with a summary of previous contributions 

in evaluating social criteria using fuzzy logic.

Chapter five presents results of applying TOPSIS-MCDM algorithm to define the optimal 

combination between PV-WT grid connected PGS, in addition, an analytical strategy for 

testing the validity of the results has been proposed in this chapter.

Chapter six shows the results of applying different MCDM algorithms(WSM, TOPSIS, 

and PROMETHEE II), basically, in this chapter a MCDM based approach strategies to 

define the optimal size and combination of a PV-WT grid connected PGS has been 

proposed, in which the user defines nominated alternatives covering all possible PV-WT 

combinations. It has been tested with different sensitivity analysis scenarios based on 

changing considered criteria importance values. This approach is powerful and reliable 
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when assuming relatively small PGS when only PV-WT size and combination are the 

input variables. 

Chapter seven presents the results of applying a comprehensive MCDM algorithm based 

on MOGA and PROMETHEE II methods, it has been tested under sensitivity and 

uncertainty analysis strategies to define the optimal size and combination of a PV-WT 

grid connected PGS, the main basic idea of this chapter that the developed approach first 

generates alternatives using Pareto Set principle, then it is analyzed using PROMETHEE 

II algorithm to define the best solution among Pareto Set. Although this approach 

requires more calculations than previous one (chapter six), it allows considering more 

input variables in the optimization process, moreover, it is more reliable when assuming 

relatively large PGSs. 
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Chapter Two

Power Generation Systems

2.1Introduction

As mentioned before, energy is essential for both of an industrialized and developing 

society continues development. There are many different types of energy such as kinetic and 

potential, and a lot of examples like mechanical, electrical, thermal (heat), chemical, magnetic, 

nuclear, biological, tidal, geothermal, and so on. In reality, there are only four generalized 

interactions (forces between particles) in the universe which are nuclear, electromagnetic, weak, 

and gravitational. All the different types of energy in the universe can be traced back to one of 

these four interactions. In this chapter, RE PV-WT grid connected PGSs are described.

2.2Renewable Energy 

RE resources are promising solutions for the future. All RE sources refer in somehow to 

the sun. Due to facts that the sun is available in the future, it is harmonic with the global 

environment and does not generate negative impacts, RE generated by the sun helps in 

enhancing SED.

Solar energy is referred to as renewable or sustainable energy because it will be available 

as long as the sun continues to shine. Estimates for the remaining life of the main stage of the sun 

are another 4 to 5 billion years. The energy from the sun, electromagnetic radiation, is referred to 

as insolation. The other main REs are wind, bio-energy, geothermal, hydro, tides, and waves. 

Wind energy is derived from the uneven heating of the surface of the earth due to more heat 

input at the equator with the accompanying transfer of water and thermal energy by evaporation 

and precipitation. 

In contrast, fossil fuels are assumed as stored solar energy from past geological ages. 

Even though the quantities of oil, natural gas, and coal are large, they are finite, and for the long 

term of hundreds of years, they are not assumed as renewable or sustainable.
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2.3Advantages vs. Disadvantages of Renewable Energy Sources

The advantages of RE sources are: it is sustainable (non-depletable), ubiquitous (found 

everywhere across the world, in contrast to fossil fuels and minerals), and essentially non-

polluting. Moreover, wind turbines and photovoltaic panels do not need water for the generation 

of electricity, which is not the case of steam plants fired by fossil fuels and nuclear power.

In contrast, disadvantages of RE are intermittency, variability, and low density, which in 

general results in higher initial cost. For different forms of RE, other disadvantages or perceived 

problems are visual pollution, odor from biomass, avian and bat mortality with wind turbines, 

and brine from geothermal energy. Wherever a large renewable facility is to be located, there 

will be perceived and real problems to the local people. For conventional power plants using 

fossil fuels, nuclear energy, and even RE, there is the problem of “not in my backyard.”

2.4Economics of Using Renewable Energy Sources

Generally, economic feasibility of PGSs always plays an important role in the decision 

making process, there is always an argument says “We cannot have a clean environment because 

it is uneconomical.” The thought here is that RE is not economical in comparison to conventional 

energy sources, coal, oil, and natural gas. 

The different types of economics to consider are pecuniary, social, and physical. 

Pecuniary is what everybody thinks of as economics, money. On that note, decisions should be 

based on life-cycle costs rather than ordinary way of doing business such as low initial costs. 

Life-cycle costs refer to all costs over the lifetime of the system. Social economics are those 

borne by everybody, and many businesses want the general public to pay for their environmental 

costs. 

Physical economics are energy cost and efficiency of the process. There are fundamental 

limitations in nature due to physical laws. Energetics, which is the energy input versus energy in 

the final product for any source, should be positive. In other words, from economic feasibility 

point of view, applying RE solutions is still challenging [50].
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2.5Electric Power Generation

The role of electric power generation plants is to supply electric loads with adequate 

quantities of electric power. Therefore, it can be defined as ‘’The large-scale production of 

electric power for industrial, residential, and rural use, generally in stationary plants designed for 

that purpose’’ [51].

Recently, these systems are shifting from centralized structure which is known as 

yesterday PGSs to distributed structure which is known as tomorrow PGs. Figure -2.1- below.

Figure 2.1: Central (yesterday) vs. distributed (tomorrow) power generation systems

2.6Distributed Generation

Power Distributed Generation (DG) plants are defined as ‘’small power plants at or near 

loads and scattered throughout the service area’’ [52]. It represents an alternative paradigm of 

generating electricity (and heat) at or close to the point of demand. The size range of DG 

technologies varies from few watts to approximately 50 MWe. It includes and not limited to fuel 

cells, micro-turbines, photovoltaic (PV), wind turbine (WT), and energy storage technologies. 



11

Potential DG advantages include higher efficiency and lower cost through waste heat 

recovery and avoidance of transmission and distribution, reduced global and local air pollutants, 

enhanced flexibility of electricity grids, reduced investment uncertainty through modular 

increments of new capacity, and greater system and infrastructure reliability and security. In 

contrast, potential DG disadvantages include higher costs through loss of economies of scale, 

higher local air pollution near areas of population, and increased reliance on natural gas.

Generally, DG has been considered and studied in the context of niche applications, as 

emergency back-up power, or as limited to a small portion of grid-connected electricity supply. 

In many countries, the economies of scale of centralized generation, the low price of coal as a 

fuel for electricity generation, and regulatory barriers or disincentives to on-site generation have 

prevent the widespread adoption of DG. These institutional barriers have included lack of 

interconnection protocols, low electricity buy-back tariffs, and little consideration of the 

system’s benefits of distributed resources.

However, changes in the relative economics of centralized versus distributed energy, the 

increasing use of natural gas, restrictions on new electricity transmission lines, recognition of the 

environmental benefits, and improved DG control technologies have resulted in the 

reconsideration of the widespread use of DG. 

In this research, PVs and WTs technologies have been assumed. Each one has its strength 

and weakness points when using in DG systems. Strengths of PVs and WTs are relatively low 

maintenance cost, fuel free, and no emissions. Weaknesses for PVs are intermittency and for 

WTs are power output variability and visual impacts, in addition, both PVs and WTs require 

high initial cost [53].

2.7Power Generators

A power generator is defined as ‘’a device for producing electric energy, such as an 

ordinary electric generator or a magneto-hydrodynamic, thermo-ionic, or thermoelectric power 

generator’’ [51]. In this research, two RE power generators have been considered in the analysis, 

which are PVs and WTs.
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2.7.1 Photovoltaic Cells

The word ‘photovoltaic’ consists of the two words, photo which stands for the Greek 

word means light and Volta (Italian physicist, 1745–1827) is the unit of the electrical voltage. 

Generally, PVs could be assumed as energy converters, it converts energy contained in sunlight 

directly into electricity [54, 55].

A PV or solar electric system is made up of several PV solar cells. An individual PV cell 

is usually small and typically producing about 1 or 2 watts of power. To increase PVs output 

power, they are connected together to form larger units called modules. Then, for larger outputs 

power, modules can be connected to form even larger units called arrays, which in turn, can be 

interconnected to produce more power, and so on. In this way, PV systems can be built to meet 

almost any electric power need, small or large. Figure -2.2- shows a solar cell, PV module, and 

PV array from left to right.

Figure 2.2: Solar cell, PV module, and PV array.

By themselves, modules or arrays do not represent an entire PV system. Normally, 

systems also include converters, structures to point them toward the sun, batteries …etc. [56]

Due to many reasons, PV technology is believed to be the most promising RE in the 

future, extensive research activities over the past 25 years have led to significant cost reduction 

and efficiency improvement. With the current available technology, efficiency has reached as 

much as 14% in the most advanced prototype systems. However, although PVs cost has fallen 

down during recent decades, it is still four to six times the cost of power generation from fossil 

fuels [54, 55].
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Some of the very attractive characteristics of PV technology are [54]:

1. Direct conversion of solar radiation into electricity.

2. No mechanical moving parts and no noise.

3. No high temperatures.

4. No pollution.

5. PV modules are very robust and have a long life.

6. The energy source (sun) is free and inexhaustible.

7. PV energy is a very flexible source; its power ranges from microwatts to megawatts.

Because of the PVs high costs and respectively low efficiency, Successful applications 

depend mainly on cost reduction of their power-generating systems. It is still not practical for 

large-scale power generation. With current available technology, about 10 m
2

of PVs are 

required to generate 1 kW of electricity in bright sunlight. Currently, problems for researchers in 

PVs technology are making it more reasonable in price and more efficient. Despite of the PV 

economic challenge, its applications are so wide, it could be small like powering a water pump, 

medium like meeting appliances and lights demands for isolated or grid connected home/s, 

where the distance from plants tends to cause a voltage reduction which is costly to fix, or large 

like meeting the demand of all electrical requirements of a community [54, 56].

2.7.1.1 General Description of Photovoltaic Cell

Basically, PV cell consists of a junction between two thin layers (positive, p, and 

negative, n) of dissimilar semiconducting materials such as Silicon. When a photon of light 

strikes the PV surface, it is absorbed by a valance electron of an atom; as a result, the energy of 

the electron is increased by the amount of energy of the photon. If the energy of the photon is 

equal to or more than the band gap of the semiconductor, the electron with the excess energy will 

jump into the conduction band where it can move freely, while if the electron does not have 

sufficient energy to jump into the conduction band, the excess energy of the electron is converted 

to excess kinetic energy of the electron, which appears as an increase in temperature. In contrast, 

if the absorbed photon has more energy than the band gap, the excess energy over the band gap 
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simply increases the kinetic energy of the electron. It is important to mention that one photon can 

free up only one electron even if the photon energy is greater than the gap band. Figure -2.3-

shows a simple PV module schematic. 

As free electrons are generated in the n layer by the photon action, they can either pass 

through an external circuit or recombine with positive holes in the lateral direction, or move 

toward the p-type semiconductor. However, the negative charges in the p-type semiconductor at 

the p-n junction restrict their movement in that direction. If the n-type semiconductor is made 

extremely thin, the movement of electrons and their probability of recombination within the n-

type semiconductor are greatly reduced unless the external circuit is open. In this case the 

electrons recombine with the holes and an increase in the PV temperature is observed.

Figure -2.3-: Simple PV cell and resistive load

Figure -2.4- Solar cell structure and front view of a Crystalline Silicon solar cell
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Although many semiconductor materials can be used in manufacturing PV cells, they are 

usually manufactured from silicon. Basically, n-type semiconductors are made of crystalline 

silicon that has been “doped” with tiny quantities of an impurity (usually phosphorous) in such a 

way that the doped material possesses a surplus of free electrons. Oppositely, p-type 

semiconductors are also made from crystalline silicon, but they are doped with very small 

amounts of a different impurity (usually boron) which causes the material to have a deficit of 

free electrons. Combination of these two dissimilar semiconductors produces an n-p junction, 

which sets up an electric field in the region of the junction (Fig. 2.4). This set up will cause 

negatively (positively) charged particles to move in one direction (in the opposite direction) [54].

2.7.1.2 Electrical Description of Solar cells

In order to describe a simple equivalent circuit for a PV cell, it is important to define first 

the solar Irradiation, which is the amount of solar radiation, both direct and diffuse, received at 

any location. [57] Typically, a non-irradiated solar cell has nearly the same behavior as a diode. 

Therefore, a simple diode can describe the equivalent circuit. 

The equation (2.1) of the cell current I depends on the cell voltage (here V = VD where VD

is the diode voltage) with the saturation current IS and the diode factor m:

= = 1 (2.1)

The thermal voltage VT at a temperature of 25°C equals to 25.7 mV. The magnitude of 

the saturation current IS is of the order of 10
–10

to 10
–5

A. The diode factor m of an ideal diode is 

equal to 1; however, a diode factor between 1 and 5 allows a better description of the solar cell 

characteristics. A current source connected in parallel to the diode completes the simple 

equivalent circuit of an irradiated solar cell. The current source generates the photocurrent IPh,

which depends on the irradiance E and the coefficient c0 is calculated by (2.2):

= (2.2)

Kirchhoff’s first law provides the current–voltage (I-V) characteristics of the simple PV 

cell equivalent circuit illustrated in Figure -2.5- and Figure -2.6- shows the I-V characteristic 

curves at different irradiances, and the cell current can be estimated using (2.3):
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= = 1 (2.3)

Figure 2.5: Simple equivalent circuit of a solar cell

Figure 2.6: Influence of the Irradiance E on the I-V Characteristics of a Solar Cell

2.7.1.3 Maximum Power Point (MPP)

When assuming a short-circuited solar cell, the voltage is equal to zero, in which case, the 

short circuit current ISC approximately equals the photocurrent IPh, and since the IPh is 

proportional to the irradiance E, the ISC also depends on the E as shown in (2.4):

= (2.4)

Also, if assuming open circuit analysis, the cell current I is equal to zero. The cell voltage 

becomes the open circuit voltage VOC. And it can be calculated using (2.5):

= ln + 1 (2.5)

Since the short circuit current ISC is proportional to the irradiance E, the open circuit 

voltage dependence is:

~ ln( )
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Figure -2.7- shows the I–V as well as the power–voltage characteristic. It shows that the 

power curve has a point of maximal power which is called the maximum power point (MPP).

The voltage at the MPP, VMPP, is less than the open circuit voltage VOC, and the current 

IMPP is lower than the short circuit current ISC. The MPP current and voltage have the same 

relation to irradiance and temperature as the short circuit current and open circuit voltage. So, the 

maximum power PMPP is calculated using (2.6):

= < (2.6)

Figure -2.7- I-V and P-V Solar Cell Characteristics with Maximum Power Point (MPP)

2.7.1.4 Electrical Description of Photovoltaic Modules

Solar cells are normally not operated individually due to their low voltage. In 

photovoltaic modules, cells are mostly connected in series. A connection of these modules in 

series, parallel or series–parallel combinations builds up the photovoltaic system. Figure -2.8-

shows structure and electrical description of possible connections.
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Series connection

Parallel Connection

Figure -2.8-: PV cells series and parallel connections

In a series connection, according to Kirchhof’s law , the current Ii through all cells i of n

cells is identical. The cell voltages Vi are added to obtain the overall module voltage V. 

Equations (2.7) and (2.8):

= = = = (2.7)

= (2.8)

Given that all cells are identical and experience the same irradiance and temperature, the 

total voltage is given as in (2.9):

= V (2.9)

In a parallel connection, solar cells have the same voltage V, and the cell currents Ii are 

added to obtain the overall current I. Equations (2.10) and (2.11).

= = = = (2.10)

= (2.11)
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2.7.2 Wind Turbines

Wind energy is an indirect form of solar energy. Solar irradiation causes temperature 

differences on Earth and these are the origin of winds. Wind can reach much higher power 

densities than solar irradiance: 10 kW/m
2

during a violent storm and over 25 kW/m
2

during a 

hurricane, compared with the maximum terrestrial solar irradiance of about 1 kW/m2. However, 

a gentle breeze of 5 m/s has a power density of only 0.075 kW/m
2
.

The history of wind power goes back many centuries. It was used for irrigation systems 

3000 years ago. Historical sources give evidence for the use of wind power for grain milling in 

Afghanistan in the 7th century. In Europe, it became important from the 12
th

century onwards. In 

contrast to the mechanical wind power systems of past centuries, modern wind converters almost 

exclusively generate electricity. State of the art wind generators have reached a high technical 

standard and now have powers exceeding 4 MW.  The high growth rate of the wind power 

industry indicates that it will reach a significant share of the electricity supply within the next 

two decades. 

Some environmental organizations protest against new WTs installations. Their reasons 

are conservation nature or noise protection; indeed, some of their arguments are justifiable. On 

the other hand, wind power is one of the most important technologies for stopping global 

warming. 

The discussions of wind power make clear that a social consensus about future energy 

policy does not exist. This leads to give more attention on raising social consensus or searching 

for compromised solutions with local communities before installing new WTs.

2.7.2.1 Influence of Height

Wind speed is usually recorded at a height of 10 m. The wind speed increases with the 

height from ground because the wind is slowed down by the roughness of the ground. WTs

usually have hub heights of more than 10 m. For the estimation of the wind potential, additional 

wind speed measurements at other heights are necessary. However, if the type of ground cover is 

known, the wind speed at other heights can be estimated using (2.12).
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( )

( )
= (2.12)

Where v(h2) is the wind speed at height h2, v(h1) is the wind speed at height h1, a is the 

power law coefficient which equals 1/7 for open areas.

2.7.2.2 Utilization of Wind Energy

The power content of a mass of air with density (varies with the air pressure and 

temperature) flows through an area A with speed v is calculated by (2.13):

= (2.13)

For the utilization of wind power, a technical system such as a WT should take as much 

power from the wind as possible. This turbine slows the wind from speed v1 to speed v2 and uses 

the corresponding power difference. In other words, the turbine has an efficiency which called in 

this case the coefficient of performance Cp. In 1926, Betz has calculated the maximum Cp

possible, which is called the ideal or Betz power coefficient and equals to 0.593. Practically, real 

wind generators do not reach this theoretical optimum; however, good systems have power 

coefficients Cp between 0.4 and 0.5 [55, 56]. Therefore, power output from wind turbines can be 

estimated by (2.14):

= (2.14)

It is usually considered that there are four distinct wind speed regions of operation as 

shown in figure 2.9, these four regions affects the power output from the WT, hence, WT power 

output can be estimated using 2.15:

)t(vv

v)t(vvP

v)t(vvP

v)t(v

P
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racimax.WT

ci

out.WT

0

0

  (2.15)

where PWT.max and PWT.out are the maximum available output WT power and the actual 

output power respectively. vci, vra, and vco are, respectively, the cut in, the rated, and the cut out 

wind speed [58].
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Figure 2.9: Wind turbine operating regions and power performance.

2.7.2.3 Types of Wind Turbines

WTs are mainly classified into two types, vertical and horizontal axis as shown in figure -

2.10- below.

Figure -2.10- WTs main classifications on axis type bases

Advantages of vertical axis WT are simple design that includes the possibility of housing 

mechanical and electrical components, gearbox and generator at ground level, and there is no 
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yaw system. This is countered by disadvantages such as its low tip-speed ratio, its inability to 

self-start and not being able to control power output or speed by pitching the rotor blades.

However, horizontal axis wind turbines still have its undisputed superiority to date. In 

propeller designs, rotor speed and power output can be controlled by pitching the rotor blades 

about their longitudinal axis (blade pitch control). Moreover, rotor blade pitching is the most 

effective protection against over speed and extreme wind speeds, especially in large WTs. In 

addition, the rotor blade shape can be aerodynamically optimized [55, 56].
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Chapter Three

Multi Criteria Decision Making

3.1Introduction

Energy planning using multi-criteria analysis has attracted the attention of decision 

makers for a long time. It can provide solutions to complex energy management problems. 

Multi-criteria decision making (MCDM) methods deal with the process of making decisions in 

the presence of multiple objectives. A decision-maker is required to choose among multiple 

criteria. The objectives are usually conflicting and therefore, the solution is highly dependent on 

the preferences of the decision-maker and must be a compromise. 

MCDM is a well known class of operations research. This class is further divided into 

multi objective decision making (MODM) and multi-attribute decision making (MADM).

These methodologies share common characteristics of conflict among criteria, 

incomparable units, and difficulties in selection of alternatives. In MODM, the alternatives are 

not predetermined but instead a set of objective functions is optimized subject to a set of 

constraints. The most satisfactory and efficient solution is sought. In this identified efficient 

solution it is not possible to improve the performance of any objective without degrading the 

performance of at least one other objective. However, in MADM a small number of alternatives 

are to be evaluated against a set of attributes which are often hard to quantify. The best 

alternative is usually selected by making comparisons between alternatives with respect to each 

attribute [59].

3.2Multi-attribute Decision Making 

MADM methods perform the comparison of two or more alternatives against two or 

more criteria, where each criterion has a defined importance (weight) in the final decision. The 

problem can be formulated as in (3.1):
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=  [               …       ]           
=  [              …       ]         

=  =  

…
…

…
×

(3.1)

where Ai are the alternatives, X is the performance matrix with Xij expressing the 

performance of the i-th alternative against the j-th criteria, n is the number of criteria and m is 

the number of alternatives. In this research, Xij are determined through simulation of the different

alternatives.

Basically, MADM methods are divided into three categories [59]: elementary methods, 

methods in unique synthesizing criteria and outranking methods. In this research, one algorithm 

from each category has been applied. The weighted Sum Method (WSM) from the elementary 

methods, the The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

from the unique synthesizing criteria methods, and the Preference Ranking Organization Method 

for Enrichment Evaluation (PROMETHEE) from the outranking methods have been considered 

in this research.

3.2.1 Criteria Weighting Methods (WMs)

One of the most important characteristics of MCDM algorithms that it is possible to 

define specific weight for each criteria to distinguish the importance between analysis criteria.

WMs are classified into subjective, objective, and Combined Weighting (CW) methods [59]. In 

this study, an additional synthesis combination of SMARTER [60] (subjective) and Entropy [61]

(objective) weighting methods is applied to increase the credibility of the criteria weights.

3.2.1.1 SMARTER

SMARTER is a Multi-Attribute Choice scoring model technique depending on the 

judgment of decision makers, by which a consultant or group of consultants define the criteria 

importance according to their experience and preference. Each consultant associates a position to 

the considered criteria, thus defining a criteria ranking (1 is associated to the most important 
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criterion). Then, all consultants scores are summed up, and in the resultant criteria ranking, the 

lowest score (indicated with 1) means the most important criteria, while the least important 

criterion is indicated with n, where n is the number of criteria.

According to such a ranking, the weight of the criterion ranked to be i-th is calculated 

using (3.1):

= (3.1)

where wis is the criterion weight, and k is the final score of each criterion according to the 

consultants judgment.

3.2.1.2 Entropy

Entropy is a measure of uncertainty in the information formulated using probability theory. It 

indicates that a broad distribution represents more uncertainty than does a sharply peaked one. It 

is an objective weighting method depending only on the decision matrix, where the importance 

of each criterion is related to the variation between alternative values. Entropy method can be 

applied using the following steps:

i. Calculation of the index Pij using (3.2), where i = 1, 2…m, and j = 1, 2…n:

= (3.2)

Xij being the performance of the ith alternative with respect to the jth criteria.

ii. Calculation of the output entropy Ej of index j using (3.3)-(3.4):

= ln( ) (3.3)

=
( )

(3.4)

ij

0 P ln(P ) ln (m)

j

iii. Calculation of the entropy variation dj for the index j using (3.5):
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= 1 (3.5)

Calculation of the Entropy weight wei of index j using (3.6):

= (3.6)

3.2.1.3 Combined weighting methods

The two aforementioned weighting methods (SMARTER and Entropy) can be suitable 

combined by using two different approaches: the Additive Synthesis Combination Weighting 

Method ASCWM and the Multiplication Synthesis Combination Weighting Method MSCWM. 

ASCWM is calculated using (3.7):

))1(()( b

j

s

j wqwqASCWM
(3.7)

For calculating MSCWM, equation (3.8) is used:

n

j

b
j

s
j

b
j

s
j

w.w

w.w
MSCWM

1 (3.8)

Where 
s
jw

and 
b
jw

are the subjective and objective weights for criteria j respectively, q (0 < q < 

1) is a linear combination coefficient defining the importance of the subjective weights in 

determining the ASCWM combined weights [59].

3.2.2 Weighted Sum Method (WSM) 

WSM is the most commonly used MADM method in energy systems, it has been 

considered in different energy engineering sustainable development applications previous 

contributions [62-65]. In order to apply WSM, the performance matrix needs to be normalized to 

convert it into a dimensionless matrix and overcome the scaling unit effect; this task is achieved 

by applying (3.9):
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where rij is the generic element of the normalized performance matrix, J is the 

performance evaluation vector where the criteria is considered a benefit (the higher value, the 

better performance) and J’ is the performance evaluation vector where the criteria is considered a 

cost (the lower value, the better performance). In our analysis J consists of C1 and C3, while J’ is 

composed by only C2.

After that, WSM scores are calculated using (3.10):

n

j
ijjscore r.wWSM

1 (3.10)

where wj is the weight of criteria j. WSMscore equals the final score for the alternative i;

the higher score alternative means the better one.

3.2.3 Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS) Method

TOPSIS method was developed by Hwang and Yoon (1981). This method is based on the 

concept that the chosen alternative should have the shortest Euclidean distance from the ideal 

solution, and the farthest from the negative ideal solution. The ideal solution is hypothetical for 

which all attribute values correspond to the maximum performance attribute values in the 

database comprising the satisfying solutions; the negative ideal solution is the hypothetical 

solution for which all attribute values correspond to the minimum performance attribute values 

in the database. TOPSIS thus gives a solution that is not only closest to the hypothetically best, 

that is also the farthest from the hypothetically worst. TOPSIS has been applied in various 

energy engineering applications previous contributions such as [66, 67].

First step to apply TOPSIS is the normalization of performance components of X by

using (3.11):
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where rij is the generic element of the normalized performance matrix. The second step is 

to obtain weighted normalized decision matrix by using (3.12):

ijjij r.wv
(3.12)

where vij is the generic element of the weighted normalized performance matrix and wj is 

the combined weights vector. The third step is the calculation of the positive ideal solution A
+

and the negative ideal solution A
-
by using (3.13) and (3.14):
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(3.14)

where vj
+

and vj
-

are the positive ideal and negative ideal criteria performance among all 

alternatives.

The positive distance si
+

and the negative distance si
-

between alternative Ai and positive 

and negative ideal solutions A
+

and A
-
are calculated by (3.15) and (3.16) as follows:

n
j jiji )Av(s 1

2

(3.15)

n
j jiji )Av(s 1

2

(3.16)

where Ai
+

is the ideal performance of the jth criteria, Ai
-

is the worst performance of the 

jth criteria. Finally, relative closeness degree of alternative Ai to A
+

TOPSISscore is calculated by 

(3.17):

)ss(sTOPSIS iiiscore (3.17)

The best alternative has the maximum closeness degree among all alternatives, meaning 

the shortest distance from the ideal solution and the longest distance from the nadir solution. 
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3.2.4 Preference Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE) Method

A different MCDA method is the complete outranking PROMETHEE II, where 

alternatives are compared against each other in a pair wise approach according to preference 

function. PROMETHEE methods have been used in different sustainable energy application [69-

73]. PROMETHEE II scores are calculated using the following steps:

Performance differences between each single alternative and all other alternatives are 

calculated in pair wise bases using (3.18):

Ab,axxb,ad bjajj (3.18)

where dj(a, b) is the difference between alternatives a and b with respect to criteria j.

After that, preference value Pj is calculated using (3.19):

'
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(3.19)

where Fj is the preference function; in the following, a  V-shape criterion preference 

function is applied as shown in (3.20) and Fig. 3.1:
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Fig. 3.1 V-shape criterion preference function
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where p is the threshold of strict preference; different values of p can be applied for each 

criteria, defining a vector Pvalue:

jvalue p...pppp 321

Then aggregated preference indices are calculated using (3.21) and (3.22):

n

j
jj w).b,a(P)b,a(

1 (3.21)

n

j
jj w).a,b(P)a,b(

1 (3.22)

a,b) represents the preference degree of alternative a with respect the b one; 

b,a).

The outranking flow can be calculated now using (3.23) and (3.24):
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(3.23)
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(3.24)

where 
+

and 
-

are the positive and negative outranking flows respectively; (m-1) is the 

number of possible alternatives facing in a pair wise comparison with alternative a. Finally the 

complete ranking for each alternative is calculated using (3.25):

)a()a(PROM score (3.25)

where PROMscore is the complete ranking for alternative a. The latter quantity is the 

balance between the positive and the negative outranking flows. The higher the net flow means 

better alternative. When PROMscore is positive, alternative a is more outranking all other

alternatives on all the criteria, and when PROMscore is negative, alternative a is more outranked

by other alternatives.
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3.3Multi Objective Decision Making (MODM)

In recent years, some complex engineering optimization methods that are conceptually 

different from the traditional mathematical programming techniques have been developed. These 

methods are labeled as modern or nontraditional methods of optimization. Multi objective 

optimization algorithms are among these methods. In this research, a multi objective genetic 

algorithm (MOGA) optimization method has been applied.

3.3.1 Genetic algorithm (GA)

GA is a probabilistic search technique that has been inspired by Darwin theory regarding 

survival and fitness. The beginning of GAs is credited to John Holland, who developed the basic 

ideas in the late 1960s and early 1970s. Since its conception, GAs have been used widely as a 

tool in computer programming and artificial intelligence, optimization, neural network training, 

and many other areas [73, 74].

Many practical optimum design problems are characterized by mixed continuous discrete 

variables, and discontinuous and non-convex design spaces. If standard non-linear programming 

techniques are used for this type of problem they will be inefficient, computationally expensive, 

and, in most cases, find a relative optimum that is closest to the starting point. GA is well suited 

for solving such problems, and in most cases they can find the global optimum solution with a 

high probability. 

As mentioned before, GA is based on Darwin natural selection theory.  The basic 

elements of natural genetics reproduction, crossover, and mutation are used in the genetic search 

procedure. GA differs from the traditional methods of optimization in the following respects:

1. A population of points (trial design vectors) is used for starting the procedure instead of a 

single design point.

2. GA uses only the values of the objective function. The derivatives are not used in the 

search procedure.

3. In GA, the design variables are represented as strings of binary variables that correspond 

to the chromosomes in natural genetics. Thus the search method is naturally applicable 
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for solving discrete and integer programming problems. For continuous design variables, 

the string length can be varied to achieve any desired resolution.

4.

natural genetics.

5. In every new generation, a new set of strings is produced by using randomized parents 

selection and crossover from the old generation (old set of strings) [75].

3.3.2 Representation of Design Variables

In GA, the design variables are represented as strings of binary numbers, 0 and 1. If each 

design variable xi ,  i = 1, 2,...,n is coded in a string of length q , a design vector is represented 

using a string of total length nq.

3.3.3 Representation of Objective Function and Constraints

suitable for solving unconstrained maximization p F(X), can be 

taken to be same as the objective function f(X) of an unconstrained maximization problem so that 

F(X) = f(X). A minimization problem can be transformed into a maximization problem before 

transformation to convert an unconstrained minimization 

by (3.26)

( ) =
( )

(3.26)

It can be seen that Eq. (3.26) does not alter the location of the minimum of f(X) but 

converts the minimization problem into an equivalent maximization problem. A general 

constrained minimization problem can be stated as (3.27 – 3.29):

 ( ) (3.27)

Subject to

( ) 0, = 1, 2, , (3.28)
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And

( ) = 0, = 1, 2, , (3.29)

Where gi(X) and hi(X) are inequalities and equalities constraints respectively.

3.3.4 Genetic Operators

GA optimization algorithm starts with the selection of an initial population of random 

strings denoting several (population of) design vectors. The population size (n) is usually fixed. 

Each string (or design vector) is evaluated 

operated by three operators — reproduction, crossover, and mutation — to produce a new 

and tested for the convergence of the process. One cycle of reproduction, crossover, and 

erators 

and the resulting new pop-

terminated. The details of the three operations of GAs are given below. [75]

The algorithm can be summarized as [73, 74]:

1. Set generation number k = 0; and form initial population Pop(0);

2. Evaluate objective function (fitness value) for Pop(k) elements;

3. If stopping criterion satisfied, then stop;

4. Else, set k = k+1, form Pop(k) using reproduction, mutation, and crossover operators;

5. Go to step 2.

These steps are described in figure 3.2.
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Figure 3.2: Steps of applying genetic algorithm optimization technique

3.3.5 Multi Objective Optimization

In practical applications, not only one but several features or performance criteria are 

typically important in the optimal decision making process. In power systems, the efficiency, 

emissions, and costs are common quantities that are of interest. Thus, any of these could be 

chosen individually as the objective function, though interest clearly lies in dealing with more 

than one objective function, in this case the optimization problem becomes a multi objective one. 

A common approach to multiple objective functions is to combine them to yield a single 

objective function that is minimized or maximized. However, the various quantities that compose 

the objective function should be scaled and normalized in order to include it in one objective 

function. Equal or different weights can similarly be used to increase or decrease the importance 

of a given criteria compared to the others. Although this approach can lead to good solutions in 

different applications, it is not guaranteed to achieve a good compromise between all objectives 
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of interest, instead, the optimizer deals with all objectives included in the fitness function as a 

single value.

Another approach, which has gained interest in recent years, is that of multi objective 

optimization. In this case, two or more objective functions that are of interest in a given problem 

are considered and a strategy is developed to solve the conflict between these objective 

functions.

A multi objective optimization problem with inequality and equality constraints can be 

stated as (3.30-9.32):

 =  (3.30)

Which minimizes f1(X), f2(X), …., fk(X)

Subject to

( ) 0, = 1, 2, , (3.31)

And

( ) = 0, = 1, 2, , (3.32)

Where gi(X) and hi(X) are inequalities and equalities constraints respectively. k denotes 

the number of objective functions to be minimized. Any or all of the functions fi(X) and gj(X)

may be nonlinear.

In general, no solution vector X exists that minimizes all the k objective functions 

simultaneously. Hence, a new concept, known as the Pareto optimum solution is introduced. A 

feasible solution X is called Pareto optimal if there exists no other feasible solution Y such that 

fi i(X) for i = 1, 2, . . . , k with fj(Y) < fi(X) for at least one j . In other words, a feasible 

vector X is called Pareto optimal if there is no other feasible solution Y that would reduce some 

objective function without causing a simultaneous increase in at least one other objective 

function [73, 76].
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In this research, Multi Objective Genetic Algorithm (MOGA) optimization method has 

been applied using Matlab program, where this algorithm provides the Pareto Set of equal value 

optimal solutions.
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Chapter Four

Theory of Fuzzy Sets

4.1 Introduction

In the conventional sets theory, an element is either belongs or does not belong to a set. 

However, this essential concept does not take into account common and simple real life 

situations when an element is partially belongs to a set. To deal with these situations, the concept 

of a fuzzy set was created. Its theory is based on the concept of partial membership: each element 

belongs partially or gradually to the fuzzy sets that have been defined. The boundaries of each 

fuzzy set are not “crisp”, but “fuzzy” or “gradual”. In this research, fuzzy sets have been used to 

model and evaluate social performance criteria. 

Modeling and evaluating energy systems social performance criteria have been proposed 

in previous contributions. [77] and [78] proposed social acceptability criteria for evaluating wind 

energy plants in an Italian island and comparing different power generation plants respectively,

while [79] performed sustainability assessment for the Croatian co-generation sector future 

development.

Other researchers included social benefits as a social criteria in their analysis, [80]

applied it to evaluate domestic solar water heating in comparison to other water heating 

alternatives. [81] applied fuzzy sets programming approach to perform solar water heating 

systems comparison for various applications, in which social benefits was included as a social 

criteria. 

Land use also has been included as a crucial social criteria, [82] and [83] performed fuzzy 

multi-criteria decision making and improved grey incidence approach respectively for selecting 

and evaluating tri-generation systems where land use was one of the applied social criteria. [63]

and [78] compared different power generation plants taking into consideration the land use as an 

important social criteria to enhance sustainability. Also, [84] used land use social indicator in 

evaluating several combined heat and power CHP systems.
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Moreover, job creation which is the number of job opportunities will be established by 

applying specific alternative has also been included as a social criteria, [71] applied this criteria 

for evaluating geothermal energy projects. [85] used it in performing Electre MADM approach 

to assess an action plan for the diffusion of renewable energy technologies at regional scale. [86]

presented a fuzzy multi-criteria decision making approach using linguistic variables to assist 

policy makers in formulating sustainable technological energy priorities taking new direct and 

indirect employment opportunities as one of the social analysis criteria. [87] proposed group 

decision-making framework for assisting with multi-criteria analysis in evaluating renewable 

energy projects where job creation has been taken into consideration. [64] included job creation 

as a social criteria in analysing hydrogen energy systems using multi-criteria assessment. [88]

assumed workers hours as a social indicator in analysing different power generation systems 

using multi-criteria sustainability assessment.

Other social criteria has been also included in previous studies, [77] performed fuzzy 

based visual impact, acoustic noise in (dB), and fuzzy based impact on eco-systems where birds 

could collide with rotor blades. Accident fatalities depends on global statistics between 1970-

1992 were performed in [78]. In [79], health social indicator was defined as the cost of the health 

care due to the specific impact of the cogeneration plants nitrogen oxides emissions. [85]

performed qualitative based market maturity and compatibility with political, legislative and 

administrative situation social criteria. [86] included linguistic based contribution to regional 

development indicators in his social criteria, in this context, fuzzy logic has been used to perform 

the analysis.

4.2 Membership functions

A fuzzy set is defined by its “membership function” which corresponds to the concept of 

a “characteristic function” in classical logic. In the conventional set theory, the degree of 

membership of an element to a set is ruled by strict values [0; 1]. Figure 4.1 show the difference 

between a characteristic and membership functions, in the characteristic function, X1 and X2 are 

the boundaries of the set, if Xn < X1 it is not a member even if the difference is very small, and 

the same if Xn > X2. In real life applications this is not practical. In contrast, the membership 
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function is able to solve this problem efficiently where the degree of membership varies between 

[0; 1].

Degree of membership µ 

VariableX1 X2

Characteristic Function

1

0
Variable

Degree of membership µ 

Membership Function

1

0

Figure 4.1: Characteristic function vs. membership function.

A number of fuzzy sets can be defined on the same variable to meet practical needs, for 

example the sets “high”, “medium” and “low”.

Moreover, membership functions can assume any shape. However they are often defined 

by straight segments. Benefits of using such a membership functions are its simplicity, and that 

they contain points allowing definition of areas where the variable belongs to the fuzzy set and 

areas where it does not, thereby simplifying the analysis.

4.3 Fuzzy Process

Fuzzy process consists of three main steps, fuzzification, inference, and defuzzification. 

Figure 4.2 illustrate the relation between it.

Fuzzification is the process of converting a real variable value into a fuzzy one. It 

consists of determining the degree of membership of a value to a fuzzy set. In this way, 

qualitative information such as expertise can be modeled and analyzed.

Fuzzy rules which are applied in the inference phase are classed in the field of artificial 

intelligence because its general purpose is to formalize and implement a human being’s method 

of reasoning, and normally it is derived from human expertise. The most commonly used 

inference mechanism is the “Mamdani” one. A fuzzy rule is of the type:

IF “statement/s” THEN “conclusion”.
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Where a statement/s can be a combination of AND, OR, NOT operators.

Fuzzification Inferences Defuzzification

Inputs Outputs

Figure 4.2: fuzzy process description.

At the end of inference, the output fuzzy set is determined, but cannot be directly used. 

Defuzzification step is needed to move from the “fuzzy world” to the “real world”. A number of 

defuzzification methods can be used, the most common of which is calculation of the “centre of 

gravity” [89, 90].
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FiveChapter 

Optimal combination of PV-WT grid connected PGS

5.1 Introduction

This chapter proposes a simple MCDM approach based on TOPSIS method to define the 

optimal combination between PV-WT grid connected PGS for a specific predefined installed 

power, in the following case study, it equals the average load plus one standard deviation.

However, real commercial data for PV-WT equipment have been used in the analysis, where two 

PV modules (150 W and 250 W) and three WTs (10 kW, 30 kW, and 50 kW) have been 

considered. For the number of installed WTs, a simple algorithm has been developed to choose 

suitable equipment capacity and number among available ones, where installed power of WTs 

should be equal or a little bit more than required WT capacity share, taking into account that the 

lower the number of installed WT equipment is better from social criteria point of view.   

For PV modules, it is not common in PV-PGSs to use different modules in the same PGS,

however, each PV module (150 W and 250 W) has been assumed in a separate configuration.

In other words, this chapter presents the analysis results of two assumed configurations, 

where in both, installed WTs numbers and technical specifications are identical and the only 

difference is in the PV module, one configuration considers the 150 W PV modules while the 

other considers the 250 W PV modules. The required power to install has been assumed to be 

fixed (average load + 1 standard deviation), and the proposed algorithm aims to find the best 

combination between PV and WTs to fulfill the required power for each configuration.

5.2 PV-WT Power Generation Systems Modeling

A schematic diagram of the basic hybrid PV-WT PGS used in this chapter is shown in 

Figure 5.1. The energy management strategy works as follows: PV and WT power plants work 

together to satisfy the load demand. When energy sources (solar and wind energy) are abundant,

after satisfying the load demand, the extra generated power is provided to the grid, in this case, 

extra generated power will be sold and profit will be gained. On the contrary, with reduced 
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energy sources any energy shortage is supplied by the grid, and in this case, extra costs of buying 

required energy will be added.

PV

WT

Grid

Load

Figure 5.1: Basic configuration of a PV-WT generation system.

5.2.1 PV System Model

The mathematical representation of the PV system is given by (5.1)-(5.4), where the 

output power PPV delivered by the PV plant at the instant t is calculated through the global solar 

radiation on the PV module surface, the PV module temperature, and the PV array power [91]:

(5.1)

(5.2)

( ) = . + ( ( ) 25) (5.3)

( ) = ( ) ( ) (5.4)

Where PPV is the output power under standard test conditions (STC), NPV is the number 

of PV modules, G(t) is the global irradiance, TA(t) is the ambient temperature, TC(t) is the cell 

operating temperature, ISC is the short-circuit current, ISC.STC is the short-circuit current under 

STC, VOC is the open-circuit voltage, VOC.STC is the open-circuit voltage under STC, KI is the 

short-circuit current coefficient, KV is the open-circuit voltage coefficient, and PVInv. is the power 

inverter efficiency, FF is the fill factor. Some of the previous values can be determined from the 

parameters of the PV module which is provided by the manufacturer sheet.
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5.2.2 Wind Turbine System Model

The power output of a WT is determined from the wind speed distribution has been 

calculated using equations 2.12 and 2.14, the only difference that equation 2.14 has been 

modified to include conversion efficiency as shown in 5.5 [58]:

(5.5)

where is the air density, A is the swept area of the rotor, is the wind speed, Cp is the 

efficiency of the wind turbine, Inv. is the power inverter efficiency, and Mech is the efficiency of 

the mechanical components. Power calculation achieved by (5.5) must take into account also the 

wind speed range operability of the turbine.

The aforementioned PV and WT mathematical models are used to predict and simulate 

the PV-WT electrical power production associated to different PV-WT share combinations 

(defined in the following as alternatives).

5.3 Analysis Criteria Adopted in the Proposed Approach

The proposed optimization approach aims to enhance SED in hybrid PGSs, including 

technical, environmental, economic, and social criteria.

The technical evaluation criteria used in this paper are the Loss in Power Generation 

Possibility (LPGP) and the Capacity Factor CF. LPGP measures the possibility that the hybrid 

system will not be able to cover the required demand and the shortage will be compensated by 

the grid [40]. LPGP is calculated as:

(5.6)

where T is equal to the one year operating time of the plants, while the failure time is 

equal to the time in which the hybrid PV-WT system is not able to fulfill the demand and the 

shortage will be covered by the grid.

The CF shows the average utilized power from the rated power installed and is calculated 

using (5.7) [50]:

..
3

max )(
2

1
)( MechInvPWT CtAtP

T

t
TtimefailureLPGP

0
_



44

(5.7)

where Poutput is the total produced power from the hybrid PV-WT system per year, and 

Prated is the installed PV-WT rated power.

The environmental evaluation criteria chosen in the proposed analysis are kilograms [kg] 

of reduced emissions and the renewable energy share. This indicator has become more and more 

important for governments and policy makers in the last decade. Emissions reduction is 

calculated through (5.8):

(5.8)

where Emissions is kg of emissions not released to environment, NOx-kWh, CO2-kWh, and 

SO2-kWh are kg of emissions generated by producing one kWh from the grid using fossil fuel, 

Egen. is kWh generated by the hybrid system at time t.

RE share is calculated by dividing the number of kWh generated from the hybrid PV/WT 

system over the total demand required during a specified period of time T. RE is calculated using 

(5.9):

(5.9)

where DemandkWh is the required energy in kWh at time t.

For economic criteria, the initial investment calculated directly from the number of the 

adopted PV modules and WTs, and the cost of the required land has been chosen as economic 

evaluation criteria. The initial investments calculated using (5.10):

(5.10)

where CInv. is the total investment cost, NPV and NWT are the numbers of installed PV 

modules and WTs, PVRP and WTRP are the entire rated power respectively to the PV and WTs 

power systems, PVkW.cost and WTkW.cost are the costs of one kW power installed from PV modules 

and WTs, LPV and LWT are the required lands for PV modules and WT, and CL is the cost of one 
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square meter of land. Another economic evaluation criterion is the maintenance cost which is 

calculated by (5.11):

(5.11)

where Camain (y) is the maintenance cost of the y-th year and f is the inflation rate [23]. 

The maintenance costs are calculated for 20 years lifetime of the project. The last economic cost 

assumed is the running cost of the grid. As aforementioned, power generation shortage of the 

PV-WT systems implies that energy is bought from the grid, while extra energy exceeding the 

demand allows us to sell such energy to the grid. This economic criteria is calculated by (5.12):

(5.12)

where CGrid is the grid cost, EB is the amount of energy required from the grid in order to 

compensate the hybrid system production shortage, kWhB.price is the cost of buying one kWh from 

the grid, ES is the amount of extra energy sold to the grid, kWhS.price is the revenue of selling one 

kWh to the grid.

Finally, social evaluation criteria Land Use (LU) and Social Acceptability (SA) are 

considered. LU and SA of the alternatives are evaluated by using a fuzzy logic approach. In 

particular, LU is calculated directly from the required area of the PV modules and WTs, where it 

is expected that local community will show resistance against occupying large area for installing 

the PGS especially if we are talking about limited available area, while SA takes into 

consideration the social resistance against using WTs. Obviously, a high number of installed 

WTs leads to a lower SA value due to local community resistance against negative WTs impacts 

such as acoustic noise, ecological disturbance, shading effects…etc.

In particular, no fuzzy logic model can be designed to fit social criteria performance 

evaluation in all areas, this system should be designed specifically for the area of study, local 

community response against HRE PGSs varies a lot if the area is natural reserve, historical, 

agricultural, rural, or urban.  For the analysis of this chapter, a simple model has been proposed 

assuming that the available land for installing the required PGS is natural one, so local 

community will show obvious resistance against disturbing the view.
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In both criteria, Gaussian curve Membership Functions (MFs) are applied, considering 

six LU which are acceptable, almost acceptable, neutral, almost rejected, and rejected MFs and 

three SA levels which are acceptable, neutral, and rejected MFs. Figures 5.2 and 5.3 show fuzzy

surfaces for both LU and SA criteria respectively, while tables 5.1 and 5.2 show applied fuzzy 

rules for LU and SA criteria respectively.

Figure 5.2: Fuzzy surface for LU social criteria

Figure 5.3: fuzzy surface for SA social criteria
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Table 5.1: Applied fuzzy rules for LU social criteria

PVarea

aareWT
Accepted

Almost 

accepted
neutral

Almost 

rejected
rejected

Accepted Accepted Accepted
Almost 

accepted

Almost 

rejected
Rejected

Almost 

accepted
Accepted

Almost 

accepted

Almost 

accepted
neutral Rejected

neutral
Almost 

accepted

Almost 

accepted
Neutral

Almost 

rejected
Rejected

Almost 

rejected
neutral neutral

Almost 

rejected

Almost 

rejected

Almost 

rejected

rejected Rejected Rejected Rejected Rejected Rejected

Table 5.2: Applied fuzzy rules for SA social criteria

WTshare

WTnumber
Low Moderate High

Low Accepted Accepted Accepted

Moderate Fair Fair Resist

High Resist Resist Resist

The output of the LU is an indicator (LU) measured as percent that show the resistance 

against the PGS, while the output of the SA criteria is a percent scale indicator (SA) that 

estimates the social acceptance of installing a HRE PGS.  

5.4 Proposed optimization approach to a Case Study

In this chapter, the proposed approach exploits the applicability of MCDM algorithms for 

optimizing PV-WT PGS combinations. It allows users to systematically simulate different 

combinations of grid-connected PV-WT power systems to fulfill energy demand for a specific 

area and at the same time to satisfy the several technical, environmental, economic, and social 

aforementioned conflicting design criteria by defining the best compromise.

Application of the proposed optimal sizing approach can be summarized as in Fig. 5.4,

where decision criteria and environmental conditions are given as inputs; the PV-WT models are 

exploited to generate and simulate different alternatives, which are evaluated by means of 
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TOPSIS MCDA method in order to achieve the optimal one. Criteria importance weights were 

calculated using ASMCW (equation 3.7) where q = 0.7 factor has been applied, meaning that 

30% of importance has been given to Entropy weights in forming ASMCW. 

Solar radiation (t)

Wind speed (t)

Demand (t)

Start

Simulation Model

Performance Matrix X

Analysis criteria

SMARTER

Entropy

Combined

Weights

TOPSIS MCDM

Optimal

End

Yes

No

 

Fig. 5.4. Flowchart of the proposed optimal sizing method.

The optimal sizing approach has been applied to a real case. In particular, the hybrid 

power system is assumed to be located close to Messina (Italy) harbor, with the goal to satisfy 

part of the user load profile depicted in figure 5.5; solar radiation and wind speed profiles 

measured in that area are also indicated in the same figure. 
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Figure 5.5: Messina harbor solar radiation, wind speed and load profiles per year.

PV modules, WTs specifications and technical characteristics are shown in Table 5.3.

Grid-related and environmental data used in the following analysis are presented in Table 5.4.

Table 5.3: WTs and PV modules technical specifications

Wind Turbines

Specifications 10 kW 30 kW 50 kW

Prated 10kW 30kW 50kW

Pmaximum 15kW 45kW 75kW

Rotor blade diameter 8m 10m 12m

Cp 0.42 0.42 0.42

Tower height 12m 18m 18m

Inv 0.97 0.97 0.97

Mech 0.94 0.94 0.94

PV modules

Specifications PV 150 W PV 250 W

Pmax 150 W 250 W

Voc 43.5 V 37.6 V

Vpm 34.5 V 30.3 V

Isc 4.75 A 8.9 A

Ipm 4.35 A 8.26 A

NOCT 47
o
C 47.5

o
C

Temp. coefficient (Voc) -0.0016 / 
o
C -0.00351 / 

o
C

Temp. coefficient (Isc) 0.00065 / 
o
C 0.0053 / 

o
C

PV.Inv 0.94 0.94
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Table 5.4: Environmental and economic data

The simulation model calculates the required PGS power to be installed as average power 

demand or average power demand plus/minus specific number of standard deviations. However,

in the following analysis +1 standard deviation is assumed with respect to the mean demand

value. Moreover, alternatives have been generated by assuming in the first alternative that all 

required installed power will be fulfilled by PVs and it has been indicated as PV100WT0 

alternative which means 100% of the required installed power will be fulfilled with PV modules 

and 0.0% with WTs, in the next alternative, the PV-WT combination has been changed by 

assuming a step size, where the second alternative PV modules share equals to (100% - step size) 

and the WTs share equals (0.0% + step size). The model continue in the same procedure until 

generating the last alternative which is PV0WT100 (0.0% of required installed power will be 

covered by PVs and 100% by WTs). In this chapter, a step size of 10% is used to generate 

different alternatives of PV and WTs systems.

In addition, two possible configurations are considered which are:

G1: The hybrid system is built with 250 W PV modules and combining 10, 30, and 50 

kW WTs.

G2: The hybrid system is built with 150 W PV modules and combining 10, 30, and 50 

kW WTs.

The reason behind defining and analyzing two configurations is to test the approach 

reliability. In MCDM field, no one knows the optimal answer in advance; it depends strongly on 

the analysis criteria and its weights. The two PV modules have been simulated separately, and it 

was clear that the 250 W modules have better performance and lower cost (due to less area 

required) than the 150 W. So, it should be expected that under the same environmental and 

Buy kWh Sell kWh PV cost WT cost

0.2 euro 0.3 euro 4350 euro/kW 1250 euro/kW

PV maint. WT maint. Inflation rate NOx g/kWh

10 euro/kW 32 euro/ kW 1.5 % 1.34

CO2 g/kWh SO2 g/kWh Land Cost

632 2.74 10 euro/ m
2
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economic conditions, reliable results will show that in configuration G1, the optimal alternative 

will contain higher PV modules share. 

Table (5.5) shows the number of required PV modules and WTs for each alternative and 

configuration.

Table 5.5: PV modules and WTs required for each alternative and configuration

G1 G2 G1 & G2

Alternative PV 250W PV 150W WT 50 kW WT 30 kW WT 10 kW

A PV100WT0 632 1053 0 0 0

B PV90WT10 569 948 0 0 2

C PV80WT20 506 842 0 1 1

D PV70WT30 443 737 0 1 2

E PV60WT40 379 632 1 0 2

F PV50WT50 316 527 1 1 0

G PV40WT60 253 421 1 1 2

H PV30WT70 190 316 2 0 2

I PV20WT80 127 211 2 1 0

J PV10WT90 64 106 2 1 2

K PV0WT100 0 0 3 0 1

For each configuration, the simulation results of the generated alternatives are used to 

formulate the Performance matrix X (equation 3.1) shown in Table 5.6 for G1 and Table 5.7 for 

G2, while the applied SMARTER weights are shown in Table 5.8.

TABLE –5.6-: Performance matrices associated to G1 configuration

G1 LPGP 

%

CF % Emissions 

× 10
3

RE % Int. Inv. 

× 10
3

Maint. 

× 10
3

GridCost 

× 10
3

LU % SA %

A 89,4 15,0 132 23,7 711 37 129 45 87

B 89,0 17,2 156 27,9 678 48 122 30 75

C 87,5 17,3 161 28,8 636 60 121 34 75

D 86,5 18,5 166 29,7 584 64 120 42 63

E 85,9 18,5 170 30,4 541 75 118 45 62

F 85,4 19,7 175 31,3 489 79 117 44 53

G 85,8 19,7 180 32,2 447 90 115 39 50

H 85,9 19,7 184 32,9 405 101 113 33 43

I 85,7 20,9 189 33,8 353 105 110 76 27

J 85,2 20,9 194 34,7 311 116 108 88 19

K 86,2 20,1 179 32,1 250 120 113 84 28
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TABLE –5.7-: Performance matrices associated to G2 configuration

G2 LPGP 

%

CF % Emissions 

× 10
3

RE % Int. Inv. 

× 10
3

Maint. 

× 10
3

GridCost 

× 10
3

LU % SA %

A 89,7 14,4 127 22,8 1176 37 132 92 87

B 89,3 16,7 151 27,1 1096 48 124 87 75

C 87,7 16,9 156 28,0 1006 60 123 61 75

D 86,7 18,1 162 29,0 908 64 121 56 63

E 86,0 18,1 166 29,8 820 75 120 52 62

F 85,7 19,4 172 30,9 722 79 118 53 53

G 86,3 19,5 177 31,8 632 90 115 50 50

H 86,2 19,5 182 32,6 545 101 113 47 43

I 85,8 20,8 188 33,6 446 105 111 75 27

J 85,2 20,9 193 34,6 358 116 108 88 19

K 86,2 20,1 179 32,1 250 120 113 84 28

TABLE -5.8-: Smarter criteria weights used in the analysis

The economic criterion is a key point to decide about the optimal alternative. In this 

study, three economic criteria are included C5, C6 and C7, whose sum is shown in Fig. 5.6 for 

each alternative and configuration.

Fig. 5.6:- Economic criteria simulation results
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Configuration 2

Configuration 1

Criteria C1: PLPG C2: CF C3: Emissions C4: RE%

Weight 9 4 1 7

Criteria C5: Ini. Inv. C6: Maint. Cost C7: Grid cost C8: LU C9: SA

Weight 3 2 5 8 6
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Applying TOPSIS MCDA, the optimal combination of PV/WT power generation system 

in G1 is given by the alternative B (PV90WT10), while in G2, the optimal alternative is F 

(PV50WT50) as shown in Fig. 5.7.

The results of Tables 5.6 and 5.7, Figure 5.6 and Figure 5.7 highlight that the optimal 

alternatives not always the cheapest one, instead, it is the best compromise among the different 

criteria.

Comparing the results of Tables 5.6 and 5.7, it is possible to observe that the 

configuration adopting PV250 W modules allows us to achieve superior performances than using 

PV 150 W modules. In fact, according to the alternative A (PV100WT0), where only the 

PhotoVoltaic system is used, it can be noted that configuration G1 is better than configuration G2

in almost all criteria (except maintenance and SA that are the same). Due to this consideration, it 

is expected that in configuration G2 the optimal alternative will include more wind energy share, 

and this is confirmed in Figure 5.7, giving a good indication about the validity and reliability of 

the proposed approach.

This method can be considered a powerful guide for decision makers, by which they can 

define the optimal or other compatible alternatives, such as A and C in G1, and G in G2; in fact, 

according to the criteria weights, even if alternative A in G1 allows to achieve a higher SA 

degree and reduced maintenance cost, this advantage is paid in terms of all other criteria. Similar 

consideration can be made for alternative C in G1 and G in G2. The alternative K in G2 has a 

compatible index compared to the optimal one because this solution allows to achieve very high 

performance in almost all criteria except to social criteria and maintenance costs, where very low 

performance are provided.
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Fig. 5.7-: Final score of alternatives using TOPSIS method

In general, the decision maker can refer to Tables 5.6 and 5.7 in order to focus with more 

details on the differences between compatible alternatives and decide the best solution. Another 

more efficient way to show detailed results and how the MCDM algorithms define the optimal 

compromise is to use the statistical percentile principle. With respect to each performance 

criteria, alternatives are sorted from the worst performance to the best one, then, each alternative 

position is divided on the total number of alternatives, as an example, the worst alternatives 

which position equals to one is divided on the total number of alternatives which is eleven, the 

result is 9%, this number means that 9% of the alternatives are with equal performance or lower 

than this alternative, while for the best alternative which has position number eleven in the 

sorting process,  dividing eleven by eleven which is the total number of alternatives results 

100%, this value means that 100% of the alternatives performance with respect to this criteria are 

with equal performance or lower than this alternative (the best one). Applying this principle to 

Table 5.6 G1 configuration and Table 5.7 G2 configuration data, results are shown in figures 5.8 

and 5.9 respectively.
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Figure -5.8-: Percentile analysis results for G1 configuration.

Figure -5.9-: Percentile analysis results for G2 configuration.

Looking at figure 5.8, alternative B which the optimal in this configuration (G1) achieved 

the best possible performance C2, C3, C4, C7, and C8, in addition, its performance in C6 and C9 

are higher than or equal to 90% of all other alternatives, while C5 performance is one among the 

worst. However, looking at C5 performance in all alternatives presented in figure 5.8, it is 

obvious that this criteria improves when shifting to use more wind power in the alternatives, 

where all other criteria performances decrease. Figure 5.9 presents the same results but for G2 

configuration, in this case, it can be noticed that alternative F which is the optimal in this 
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configuration did not scores 100% percentile on all its criteria, instead, it provides a very good 

compromise among all criteria. 

5.5 Chapter Conclusion

Combination optimization of PV-WT grid connected PGSs can be solved using MCDA 

methods. The advantage of the proposed approach is that it enables users to apply different 

conflicting criteria with different weights, thus leading to more realistic and practical solutions of 

the problem. 

The proposed model is reliable and simple to be adapted according to user needs while 

guaranteeing the dynamic behavior of PV/WT systems and keeping into account the effects of 

the environment variable nature. However, this model is valid only when the amount of required 

power to install is fixed and predefined, more comprehensive approach is still required to 

optimize both of the size and sources combination of PV-WT grid connected PGSs.
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SixChapter 

MADM Optimal Sizing and Combination of PV-WT

grid connected Systems

6.1 Introduction

This chapter deals with the optimal sizing and combination of grid connected PV-WT

PGSs by considering different Multi Attribute Decision Making (MADM) optimization methods,

which are WSM, TOPSIS, and PROMETHEE II.

The main differences between the developed approach in this chapter in comparison to 

the previous one presented in chapter five are: installed power of the required PGS is not fixed 

and or predefined, instead, it is determined through a specific power generation constraint.

Moreover, three MADM algorithms have been considered, results were compared, and 

sensitivity analysis has been performed.

Sensitivity analysis have been performed by considering different weighting criteria 

techniques and vectors, with different fluctuation scenarios of wind speed and solar radiation 

profiles. 

The proposed approach could be assumed as a powerful roadmap for decision makers, 

analysts, and policy makers. It can be applied either during the design of a new hybrid PGS or 

during the evaluation of different expansion alternatives of an already existing system. 

6.2 System Modeling and Design Constraints

Here, the main goal of PGS is in part to satisfy the load demand and enhance a SED.

When HRE sources are abundant, the extra generated power, after having satisfied the load 

demand, is dumped (dump load), or on other words, no economic value will be added as an 

income from selling extra energy. On the contrary, when energy sources are poor, the energy 

shortage is fulfilled by the grid. Hence, load demand profile is an important input to be taken into 

consideration in formulating the problem, and is considered as known data of the system. A

simple schematic diagram for the PGS is shown in figure 6.1.
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Figure 6.1: Basic configuration of a PV-WT generation system.

To simulate power output from PV and WTs, the same mathematical models described in 

sections 5.2.1 and 5.2.2 have been applied. 

6.3 Design Criteria

In this chapter, different design criteria have been chosen to be optimized. Instead of 

using nine criteria as proposed in chapter five, the design criteria number have been reduced to 

three, it reflect environmental, economic, and social performance of the proposed PGS. In 

addition, one technical constraint has been considered to restrict the dump load annual quantity. 

Environmental criteria – emissions reduction (C1): 

The atmospheric pollutants such as sulpher dioxide (SO2) and nitrogen oxides (NOx)

emissions reduction as a result of using HRE sources to fulfill the load instead of fossil-fueled 

thermal units is estimated in ton/h emission using (6.1) [48]:

(6.1)

Where , , and are the coefficients approximating the generator emission 

characteristics, T is the analyzed period which equals 8760 hours (one year).
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Economic criteria – estimated costs (C2): 

This design criteria is calculated as the sum of initial investment, operational and 

maintenance, and energy bought from the grid costs minus the salvage value of the PVs and 

WTs. Calculation of this performance criteria, labeled in the following as EC, is achieved by 

using (6.2)-(6.10) [48]:

CPCP.inv WTWTPVPVI (6.2)

PVN
SVPP_PV )(PVPVSV

1

1

(6.3)
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where Iint is the initial investment., PVC and WTC are the investment costs of 1 kW power 

installed of PV modules and wind turbines respectively, SVPV_P, SVWT_P, SVPGS_P are the salvage 

present values of PV, WT and PSG; OMPV_P, OMWT_P, OMPGS_P are the operation and 

maintenance costs present value related to PV, WT and PGS, and Cgrid is the cost of the required 

grid energy. PVP is the PV installed power, PVSV is the PV salvage value for each kW, PVOM is 

the PV operation and maintenance costs for each kW, WTP is the WT installed power, WTSV is 

the WT salvage value for each kW, and WTOM is the WT operation and maintenance costs for 

NPV, NWT,

and NP are lifespan for PV, WT, and PGS project respectively. 
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Social criteria – social acceptance (C3): 

Social acceptability (SA) is included as social performance evaluation criteria in order to 

take into consideration the social resistance as a result of estimated negative social effects related 

to the installation of hybrid PV-WT PGS. In this context, land use and visual impact have been 

included as social negative effects. Birds and bats fatality, electromagnetic interferences,

acoustic noise, shadow flicker, and eco-system disturbance impact have been included as 

environmental negative impacts that create social resistance [92].

In this chapter, the social criteria is performed by using a fuzzy logic algorithm, where 

the land used area of PGS and the number of required WT are the input variables; hence, number 

of WTs takes into consideration the expected social and environmental negative impacts social 

resistance. The output of this algorithm is a social acceptance indicator measured as percentage 

(%), where the higher value means better performance of the PGS.

Membership functions applied to input and output system and the fuzzy surface are 

shown in Fig. 6.2 and Fig. 6.3 respectively, while applied fuzzy rules are shown in Tab. 6.1.

Higher priority is given to PGS installation with the minimum number of WTs fitting the 

required power. 
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Fig. 6.2: Applied membership functions for Social Acceptance (SA).
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Figure 6.3: Social criteria fuzzy logic surface

Tab. 6.1: Applied rules for Social Acceptance (SA).

Rule If (Land use) And (WT number) Then (SA)

1 Accepted Accepted Accepted

2 Almost rejected Accepted Neutral

3 Rejected Accepted Rejected

4 Accepted Rejected Neutral

5 Almost rejected Rejected Rejected

6 Rejected Rejected Rejected

The profiles displayed in Fig. 6.2 have been used in the proposed case study, where the 

maximum allowable installed WT power has been imposed to be equal to 200 kW; moreover, it 

is assumed to take into consideration wind turbine power systems whose power rated sizes are 

10, 30, and 50 kW; as for all alternatives it is imposed the minimum number of WTs, the 

combination of the three wind turbine sizes with the maximum allowable installed WT power

allows a maximum possible number of WTs equal to 5 (three 50 kW and two 10 kW WTs). For 

the land use calculation, it has been assumed that one kW of installed PV power requires 10 m2 

[54]. For WTs, as a rule of thumb, turbines in wind farms are usually spaced somewhere between 

5 and 9 rotor diameters apart in the prevailing wind direction, and between 3 and 5 diameters 

apart in the direction perpendicular to the prevailing winds [93]. In this paper, due to relatively 

low number of installed WTs, it has been assumed that all turbines will be installed a line, thus, 7

rotor diameter has been considered between turbines, and 3 rotor diameter from each side of the 
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WT in the direction perpendicular to the prevailing winds. Total area required for the PGS is the 

sum of PV and WT required area. 

However, social criteria analysis models will vary from site to site, and also from local 

community to another, the local community acceptance or resistance is different if the site is 

natural reserve, historic area, touristic site, urban, or rural. [92]. Thus, in this research, a simple 

social criteria model has been developed as an example of developing such models. 

Design Constraint

The total energy lost due to extra power generation from HRE system is minimized by 

imposing that such a quantity should not exceed a specific threshold THR over a defined 

analyzed period T, which is assumed here to be 8760 hours (1 year). Equations (6.11) and (6.12)

impose this constraint:

else,

)t(E)t(LDif)),t(LD)t(E(
TEL

T

t
PGSPGS

0
1

(6.11)

THRTEL0 (6.12)

where TEL is the total energy lost due to extra generated power (dump load), which is 

provided to the grid free of charge according to the adopted system energy management strategy. 

Therefore, the proposed optimization approach deals with extra power as unjustified additional 

costs which also cause social acceptance penalty because of extra equipment installed, and so, it 

should be minimized.  EPGS is the energy generated by PGS, and LD is the load demand. Fig. 6.4

shows the graphical representation of TEL, where it is clearly visible the advantage of minimize 

TEL in order to reduce energy losses. The value of THR is strongly dependent on the PGS 

energy production and it has been considered in this study equal to 0.5% of EPGS.
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6.4 Multi Criteria Decision Making M

In this chapter, different MADM methods have been considered, WSM, TOPSIS, and 

PROMETHEE II algorithms were implemented through the proposed approach. In addition, 

SMARTER, Entropy, MSCWM, and ASCWM weighting techniques were used. All these 

algorithms mathematical formulation were described in section 3.2.

6.5 Proposed Optimal Sizing PV-WT grid connected PGSs Approach

The proposed approach allows to systematically evaluate different alternatives of grid-

connected PV-WT PGSs in order to achieve the optimal design, satisfying as best as possible all 

criteria. 

After having defined criteria and constraints that must be considered, solar radiation and 

wind speed, load demand and technical data regarding PV and WT power systems are needed. 

Alternatives are generated, basing on a fixed step size variation of the shared power 

between PV and WT systems. Basically, PV-WT combinations sweep from the complete use of 

PV system till reaching 100% of the installed WT power system; starting from 100% dependence 

on PV system, the next alternative is generated by adding a certain step size to the WT power 

system and subtracting the same amount from PV plant, continuing on this procedure until 

reaching 100% dependence on WT technology. The step size value is chosen in order to achieve 

a suitable number of alternatives.
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The next step of the design procedure is to detect the best power level associated to each 

PV-WT share (alternative); in fact, depending on the sharing factor, EPGS profile able to better fit 

LD curve is different, since EPGS is equal to the sum of the energy produced by the two 

generation plants. The initial installed power levels for each PV-WT share is assumed to be 

coincident to the average value of the annual load demand profile; after that, other power levels 

are determined considering fixed step size Z increments and decrements with respect to the initial 

power level. According to each power level, a simulation of the system is performed in order to 

determine the design constraint EPGS and all criteria. Power level able to minimize TEL 

constraint, also satisfying the condition TEL<THR, is chosen as the optimal one for that PV-WT 

share. This operation is performed for each PV-WT share alternative and the results of these 

elaborations are transferred to the performance matrix X.

Starting from X, different weighting vectors can be defined to highlight the consistency of 

the optimal sizing PV-WT design solution.

In addition to SMARTER and ENTROPY weighting methods, the procedure can take 

into account also weighting vectors with one dominant criteria.

Known weighting vectors and performance matrix X, MCDA algorithms are applied in 

order to detect the optimal sizing PV-WT design configuration. The proposed procedure exploits 

the aforementioned MCDA algorithms in order to achieve higher confidence level of the optimal 

design solution.

Final step is the evaluation of the output results achieved by applying MCDA methods. 

Depending on the considered weighting method, different PV-WT alternatives could be 

candidate as the best one according to the decision makers preferences. Fig. 6.5 presents the 

flowchart of applying the proposed approach.
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Fig. 6.5. Flowchart of the proposed optimal sizing method.

6.6 Results of Applying the Proposed Approach to Case Study

The proposed optimal sizing approach has been applied to real data. Wind speed, solar 

radiation, temperature, load demand profiles and technical data are shown in Table 6.2 and Fig. 

6.6. The total annual electrical energy demand is equal to 932.5MWh. PV modules and WT 

technical specifications are shown in Table 6.3, while other environmental and economic data 

used in the following study are presented in Table 6.4.
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From solar radiation and wind speed profiles, it is also possible to calculate the capacity 

factor associated to PV modules and WTs. Capacity factor is determined by simulating the single 

equipment subjected to the input environmental profiles. In this case study, the capacity factor 

associated to PV modules is 12.6%, while that related to 10 kW, 30 kW and 50 kW WTs are 

31%, 23%, and 20% respectively.

Table 6.2: Input data descriptive information

Load Profile
Peak load base Load Load factor

200 kW 48 kW 55%

Weather Data Peak value Average value

Wind speed 24 m/s 4.47 m/s

Solar Radiation 955 W/m
2

149.4 W/m
2
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Fig. 6.6. Wind speed, solar radiation, temperature, and load demand profiles.
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TABLE 6.3 WT and PV module Technical specifications

Wind Turbines

Prated [kW] 10 30 50

Pmaximum [kW] 15 45 75

Rotor diameter [m] 8 10 12

Cp 0.42 0.42 0.42

Tower height [m] 12 18 18

PV modules

Pmax [W] 250

Voc [V] 37.6

Vpm [V] 30.3

Isc [A] 8.9

Ipm [A] 8.26

NOCT [
o
C] 47.5

KV [1/
o
C] -0.00351

KI [1/
o
C] 0.0053

TABLE 6.4 Technical, environmental and economic data

Grid kWh price 0.12

PV kW cost 3000

WT kW cost 2500

PV maintenance cost per kW 10

WT maintenance cost per kW 30

Inflation rate 9%

Interest rate 12%

Escalation rate 12%

Salvage value from initial investment 10%

4.091

-5.554

6.49

Inv 0.97

Mech 0.94

Note: all costs included in this table are in Euro.

Eleven alternatives have been identified as indicated in Tab. 6.5; this number depends on 

the chosen step size to guarantee an acceptable resolution of the results; on the other hand, it has 

been experienced that a high number of alternatives could negatively affect the accuracy results,

though, three MADM methods have been considered to help in detecting any inconsistency due 

to this phenomena.
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After defining the PV-WT combinations, optimal power levels have been identified for 

each alternative, by simulating the PV-WT analytical models and considering a step size 

variations equal to 10% of the load standard deviation (32kW).

TABLE 6.5 - Installed power of each PV-WT combinations and TEL.

Alternative PV-WT kW TEL kWh
EPGS

MWh/year
NPV

Number of WT

50 30 10

A PV100WT0 200 144 258.2 800 0 0 0

B PV90WT10 200 497 289.6 720 0 0 2

C PV80WT20 200 677 292.1 640 0 1 1

D PV70WT30 170 203 237.8 476 1 0 0

E PV60WT40 140 1046 220.5 336 1 0 1

F PV50WT50 80 0,4 137.7 160 0 1 1

G PV40WT60 80 188 125.4 128 1 0 0

H PV30WT70 55 0,4 105.5 60 0 1 1

I PV20WT80 50 0,4 99 40 0 1 1

J PV10WT90 55 188 90.5 20 1 0 0

K PV0WT100 50 188 84.1 0 1 0 0

Results of these simulations are transferred to the performance matrix X shown in Table 

6.6. In particular, the terms listed below the column C3 indicate the social acceptance degree, 

while the other two columns report the emission reduction C1 and PGS costs C2.

It is interesting to note that comparing alternative A and alternative G, a considerable 

variation of the energy produced from the two different configurations is observed in Tab. 6.5; in 

fact, alternative A is able to produce almost double the annual energy of alternative G. Despite 

this advantage of alternative A, which will strongly improve its performance with respect to 

criteria C1 (table 6.6), note that G is still a nominated optimal solution due to its better 

performance with respect to C2 and C3. Hence, the optimal PV-WT combination can be strongly 

affected by criteria far from production interests, such as the social criteria.

The next step is to define the weighting vector. Choosing a suitable weighting vector is a 

critical issue due to its obvious effects on the optimal decision. In order to analyze the 

importance of weighting methods in the determination of the optimal solution, different 

weighting methods have been considered in this study and show in Table 6.7.
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Table 6.6 - Performance matrix X.

Alternative C1 C2 C3 

A 240 124872 35

B 312 119523 26

C 331 116789 26

D 228 114970 31

E 203 110673 26

F 79 109005 46

G 70 109326 76

H 48 107384 48

I 43 107059 52

J 39 107575 89

K 34 107251 89

TABLE 6.7 - Weighting methods adopted in the case study.

Criteria C1 C2 C3

Smarter 0.61 0.11 0.28

Entropy 0,73 0,00 0,27

ASCWM (q = 0.5) 0,67 0,06 0,27

MSCWM 0.86 0,00 0.14

Equal weights 0,33 0,33 0,33

C1 50% 0,50 0,25 0,25

C2 50% 0,25 0,50 0,25

C3 50% 0,25 0,25 0,50

It can be noticed that under some conditions where X has criteria with high performance 

variation  and other criteria with relatively low variation, weights achieved for the later one by 

using Entropy might be almost equal to zero, like C2. This condition also affects the results 

achieved by applying combination weighting methods as MSCWM.

Different weighting methods of Tab. 6.7 have been purposely exploited by the MCDA 

algorithms treated in previous sections and the results of these elaborations are reported in Figs. 

6.7 and 6.8. In particular, Fig. 6.7 shows the scores achieved applying the first four weighting 

methods listed in Tab. 6.7, where PROMETHEE II makes use of Pvalue=[20000, 1000, 25].

From Fig. 6.7, the optimal alternative related to this four weighting vectors is C whenever 

MCDA algorithm is used, while alternatives A and B can be assumed as good solutions. Looking 
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at Tab. 6.7, it can be noticed that in all of the four weighting vectors, C1 is the most important 

criteria, very far from C2 and C3. Hence, Smarter and Entropy algorithms have given more 

importance to emission reduction, almost nullifying the influence of cost investment. This 

happen because investment cost variations among all alternatives is very limited compared to the 

other criteria, as clearly evident in Tab. 6.6.

Also weighting methods achieved as combination of the previous ones provide the same 

results.
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Fig. 6.7: Analysis results – subjective, objective, and combined weights.

Different results can be achieved when different weighting vectors are purposely 

considered in the MCDA algorithms. In particular, when higher variability weighting vectors, 

listed in the last four rows of Tab. 6.7 are adopted, the results of MCDA are that shown in Fig. 

6.8; in this case, MCDA algorithms have been applied to X by assigning equally importance to 

all criteria and also considering the cases where in turn a weight of 50% is assigned to one 

criteria and the weights of the other two criteria is 25%. In this way, it is possible to highlight 

which alternatives are more affected by each selected criteria.
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In this purposely created scenarios PROMETHEE and WSM provide different results 

compared to TOPSIS. In particular, when equal weights condition and PROMETHEE/or WSM 

are applied, alternatives G, J, and K can be considered as good candidate for the optimal design 

solution, while alternative C is the optimal PV-WT share only when weighting configuration is 

C1 (50%), while it is relatively weak with respect to economic and social criteria performance, as 

shown in C2 (50%) and C3 (50%) scenarios. 

When investment cost is considered more relevant compared to the other criteria, the 

optimal PV-WT design solution achieved by WSM and PROMETHEE moves toward alternative 

K, as this is the combination minimizing PGS cost. The same alternative can be also considered 

the optimal one when C3 (50%) scenario is taken into consideration. In fact, PROMETHEE 

provides as good candidates alternative G, J and K, whose score is very close. Hence, comparing 

the two MCDA algorithms results, alternative K can be considered the best solution of scenario 

C3 (50%). Differently than WSM and PROMETHEE, TOPSIS continues to provide alternatives 

C as best PV-WT design configuration except when C3 (50%) is considered, showing less 

sensitivity to weighting coefficient variations. In the latter scenario, TOPSIS provides as best 

alternatives J and K, like the other two MCDA algorithms.
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The latter analysis can be considered as a powerful tool giving important information to 

the decision makers regarding how much benefits/sacrifice is gained/lost with respect to each 

criteria when choosing the final decision.

Finally, sensitivity analysis regarding input data has been performed by considering the 

effects of measured wind speed and solar radiation profiles variations; in particular, the profiles 

averages have been shifted by ±10% assuming different weather input data combinations, as 

indicated in Tab. 6.8.

Tab. 6.8 - Variation of wind speed and solar radiation profiles.

Scenario SR WS

SH SR + 10% WS

SL SR – 10% WS

WH SR WS + 10%

WL SR WS – 10%

SH-WL SR + 10% WS – 10%

SL-WH SR – 10% WS + 10%

The results of this sensitivity analysis are shown in Fig. 6.9, considering the weighting 

method ASCWM. Note that, independently on MCDA algorithms and considered input data 

profile variations, alternative C is the best one, confirming the robustness of the solution to input 

data variations.
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Fig. 6.9: Sensitivity analysis to wind speed and solar radiation profile variations.

6.7 Chapter Conclusions

Optimal sizing and combination (energy sources share) of PV-WT grid connected PGSs 

can be achieved by performing the proposed analysis, where different MADM algorithms 

exploiting different weighting methods have been applied. The proposed procedure gives 

decision maker flexibility to include any interesting criteria, and to test the effect of this criteria 

on the optimal solution under different weighting vectors and input data sensitivity scenarios. If 

an optimal design of hybrid power generation systems is required, it can be considered as a

powerful guidance for the decision makers also to correctly justify the choice to the public 

opinion. Due to the simple algorithm used in defining nominated alternatives, this approach is 

simple, reliable, and valid for relatively small size PV-WT grid connected PGSs. However, if the 

PGS of interest needs to be designed with relatively higher installed power levels, or with higher 

number of input variable such as adding storage devices or diesel generators, a more 

comprehensive approach is required; which is proposed in chapter number seven. 
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SevenChapter 

MCDM Optimal Sizing and Combination of PV-WT

grid connected Systems

7.1 Introduction

This chapter deals with the optimal sizing and combination of grid connected PV-WT

PGSs by considering a comprehensive Multi Criteria Decision Making (MCDM) optimization 

approach, in which Multi Objective Genetic Algorithm (MOGA) is used to define nominated 

alternatives by defining the Pareto set, then, PROMETHEE II method is applied to solve the 

conflict between design criteria and define the optimal solution taking into consideration 

decision maker preferences.

The main differences between the developed approach in this chapter in comparison to 

the previous one presented in chapter six are: nominated alternatives have been defined by 

applying Pareto Frontier principle, which is a superior method in comparison of the previous one 

in chapter six, especially when dealing with relatively large PGSs. In this case, there is no need 

to give attention to the step size or the amount of power above or below average load to be 

installed in the same time satisfying total energy loss constraint.

Two weather and load profiles input data scenarios have been considered, in each 

scenario, different solar radiation and wind speed profile were used, and for the load demand 

profile, in scenario number one it has been scaled to be with 200 kW maximum demand, while in 

scenario number two, the same load demand profile has been scaled up to be with 400 kW 

maximum demand. The main idea of applying two scenarios is to test proposed approach validity 

with relatively larger PGSs in comparison to all previous proposed case studies in chapter five 

and six. Another main advantage of the proposed approach in this chapter in comparison to the 

previous one is when higher number of input variables to be optimized (>2), the mechanism of 

generating feasible solutions space more reliable, in chapter six, the input data to generate the 

feasible solutions are the PV and WT installed power, and it is very complicated to assume 

another variable such as storage devices, fuel cells, or even diesel generators. In this chapter, the 

feasible solutions are generated through Genetic algorithm searching mechanism, and it is easy 

to include more variable to the process of generating feasible solutions in addition to from PVs 
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and WTs, such as more power generation sources, or even more technical details with respect to 

the size of the power electronics equipment between the PGS and the grid.

Sensitivity analysis of MADM algorithms have been performed by considering different 

weighting criteria techniques with different fluctuation scenarios of wind speed and solar 

radiation profiles, in addition, uncertainty has been examined by applying stochastic analysis to 

the input weather and load profile data, thus highlighting advantages and drawbacks of the 

proposed optimal sizing approaches. 

Similar to the previous approach, it could be assumed as a powerful roadmap for decision 

makers, analysts, and policy makers. It can be applied either during the design of a new hybrid 

PGS or during the evaluation of different expansion alternatives of an already existing system. 

7.2 Problem Formulation

In order to success in defining the optimal sizing and combination of PV-WT PGS, a

detailed and accurate problem formulation is required, where PGS configuration must be 

provided as well as PV-WT analytical models, design criteria and technical constraints. 

7.2.1 Analyzed PGS configuration

Optimal sizing of Grid connected PGS needs to define the general power management 

strategy. In the following analysis, the same PGS configuration presented in section 6.2 has been 

assumed, where all generated power from PV-WT PGS is delivered to the grid in order to 

partially satisfy the daily average local load profile, and shortage will be covered from the grid. 

Whenever the energy produced from PV-WT is abundant with respect to that required from the 

load profile, extra generated energy is considered lost or with no economic value. The main goal 

of the design procedure is thus to fit, as much as possible the local energy load requirements.
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7.2.2 Load Model

In the following analysis, typical small community load profile has been assumed. It 

contains peak during the day and a global peak during summer. This load profile will be 

presented later with detailed information regarding stochastic uncertainty analysis applied on it.

7.2.3 PV System Mathematical Model

To simulate power output from PV modules, the same mathematical model described in 

section 5.2.1 has been used. 

7.2.4 Wind Turbine System Mathematical Model

To simulate power output from WTs, the same mathematical model described in section 

5.2.2 has been used. 

7.2.5 Design Criteria Objective Functions

The aforementioned models are exploited to simulate different PV-WT share 

combinations, indicated in the following as alternatives, starting from local historical data on 

solar radiation, wind speed and electrical load profiles; the selection of alternatives candidate to 

be the most favourable sizing solution is based on the evaluation of three objective functions

which are emissions reduction, total estimated costs, and social acceptance, and it needs to be 

optimized simultaneously by the optimal PV-WT sharing combination. These objective functions 

are the same as the one described in section 6.3 before, the only difference is with the social 

acceptance criteria, where in this chapter, two scenarios were applied with load demand profile 

maximum power level equal to 200 and 400 kW, when applying the 200 kW maximum point 

load profile, the same social acceptance model described in section 6.3 has been used, while 

when considering the 400 kW maximum value load profile, the social acceptance model input 

variables range have been doubled to fit the case study in this scenario.
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7.2.6 Design constraint

Similar to chapter six energy management strategy, abundant power generated from PV-

WT PGS is considered uneconomic; therefore, this quantity should be minimized. This technical 

constraint is included in the following analysis by limiting the total energy lost during the period 

T (8760 hours) under a specific threshold THR. This constraint is the same as described in 

section 6.3.

7.3 Proposed Optimal Sizing of PV-WT grid connected PGSs Approach

As mentioned before in chapter three, MCDM algorithms deals with decision making 

problems under the presence of a number of criteria. In this chapter, Multi Objective Genetic 

Algorithm (MOGA) and Multi Criteria Decision Making (MCDM) optimization algorithms have 

been considered in defining the PV-WT PGS optimization approach.

Basically, MOGA provides feasible PV-WT sizes and combinations that fits design 

constraints, indicated in the following with the vector A, consisting of two variables: installed PV 

power and installed WT power; this vector consists of PV-WT alternatives minimizing some 

objective functions simultaneously; in the following analysis, the goal is to maximize the amount 

of reduced polluted emissions, minimize estimated costs and maximize social acceptance 

simultaneously, satisfying the aforementioned design criteria TEL. Hence, the vector of objective 

function is given by (7.1):

)SA,EC,E(OF .mss (7.1)

These functions must be optimized simultaneously under constraints related to the energy 

losses (7.2) and PV-WT power limits (7.3)-(7.5):

THRTEL0 (7.2)

PGSmax.inst.instPGSmin PWTPVP (7.3)

PVmax.instPVmin PPVP (7.4)

WTmax.instWTmin PWTP (7.5)
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In general, the elements of vector A cannot minimize all the objective functions 

simultaneously in order to reach its global optimal value. So, the concept of Pareto optimum 

solution is used (section 3.3.5).

A feasible solution Ai is called Pareto optimal if there exists no other feasible solution Aj

such that OF(Aj i) with OF(Aj) < OF(Ai) for at least one objective function. In other 

words, a feasible vector Ai is called Pareto optimal when there is no other feasible solution Aj that 

would reduce one or more objective functions without causing a simultaneous increase in at least 

one other objective function. 

The tracking of the optimal Pareto set is practically achieved in this study by means of 

MOGA, where the optimization problem starts with a random generated population of PV-WT 

combinations. Each nominated solution Ai in the population is evaluated by means of the 

objective functions. The reproduction, crossover, and mutation processes are iterated in order to 

evaluate a wide area of alternatives Ai. The procedure continues through several generations until 

the convergence criterion is satisfied and Pareto set is defined. 

This algorithm usually provides a restricted number of feasible candidates to the optimal 

sizing and sharing PV-WT alternative, but all of them are considered with the same value.

The proposed approach can be summarized by the flowchart of Fig. 7.1, where the 

research of solar radiation, wind speed and load historical data is performed in the first step. The 

previous data can be also modified in this step in order to perform uncertainty analysis of the 

results. Moreover, objective functions, constraints, and system analytical model are developed, 

also including technical specifications of PV and WT PGSs.

The next step to follow is the determination of the Pareto set by means of the MOGA 

algorithm; here, the system model is iteratively simulated in order to identify all alternatives 

considered valid candidate to become the optimal PV-WT PGS under the defined constraints.

The last step is to analyze the Pareto set with objective functions preference weights 

(sensitivity analysis) by using PROMETHEE MCDM algorithm (section 3.2); the scores 

achieved by applying this PROMETHEE method will help decision makers to establish which 

solution among Pareto set is the best one fulfilling all requirements.
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Fig. 7.1 Flowchart of the proposed optimal sizing method.

7.4 Results of Applying the Proposed Approach to Case Studies

The proposed optimal sizing approach has been applied to two different scenarios. In 

both scenarios PV modules and WTs technical specifications are the same used in previous 

chapter (Tab. 6.3), while environmental and economic data are presented in (Tab. 6.4). Solar 

radiation, wind speed and load profiles according to both scenarios are displayed in Fig. 7.2;

Moreover, as these profiles are yearly variable quantities, it could be advisable to carry out 

uncertainty analysis. In this work uncertainty analysis is performed by considering three 

additional profile sets, created by modifying the historical data through a stochastic approach; in 

this way, the new data set keeps the same trend (mean value and seasonality characteristics).
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Fig. 7.2 Solar radiation, wind speed, load historical measurement & stochastically generated 

profiles.
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Such disturbance terms are superimposed to the initial historical data set by applying a 

random generating number function based on Gauss probability distribution in case of the solar 

radiation and load profiles, while a random generating number function based on Rayleigh 

probability distribution is applied to the wind speed profile. A zoomed sample of the new 

profiles are also shown on the right hand side of Fig. 7.2, where HP is the historical measured 

profiles and St.1, St.2, and St,3 are the stochastic built profiles.

As previously stated, MOGA is used to select alternatives PV-WT maximizing the 

amount of reduced polluted emissions and social acceptance, minimizing estimated costs, and 

satisfying the design criteria TEL. This searching algorithm is here assumed to be subjected to 

the following constraints:

kWhTEL 5000 (7.6)

kWmax.inst.instkWmin PGSWTPVPGS (7.7)

kWmax.instkWmin PVPVPV (7.8)

kWmax.instkWmin WTWTWT (7.9)

where PGSminkW and PGSmaxkW are the minimum and maximum limits of installed PGS 

capacity respectively, PVminkW and PVmaxkW are the minimum and maximum limits of installed 

power of PVs; WTminkW and WTmaxkW are the minimum and maximum limits of installed power 

of WTs.  Vector (PGSminkW, PGSmaxkW,  PVminkW, PVmaxkW, WTminkW , WTmaxkW) is equals to (30, 

200, 0, 200, 0, 200) in case of the first scenario, while coincides with (60, 400, 0, 400, 0, 400) for 

the second scenario.

Relationships (7.6)-(7.9) establish the maximum energy losses and installed power range 

for PV and WT PGSs. Such limits are established by the decision makers on the basis of 

maximum investment costs and profitability. MOGA is parameterized as indicated in Tab. 7.1.

Results of the proposed procedure are presented hereafter for both scenarios. Uncertainty 

analysis has been carried out by considering the stochastic profiles variations indicated in 

Fig.7.2; in addition, a new set of solar radiation and wind speed profiles are considered, where 

the average values of the profiles reported in HP are modified.
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Tab 7.1. Parameterization used in MOOGA.

7.4.1 Scenario one:

The results carried out from MOGA are shown in Fig. 7.3, where the upper chart presents 

the Pareto sets achieved by considering the input data that indicated in Fig.7.2, HP indicates the 

solar radiation, wind speed, and load demand measured historical data, St.1, St.2, and St.3

indicate the stochastic uncertainty analysis, while the lower one shows Pareto sets when 

increments of 10% and decrements of 10% of the average values of solar radiation and wind 

speed historical data sets are included. According to Pareto optimality principle, the PV-WT 

solutions related to data sets are represented in the objective functions (design criteria) space. In 

other words, Fig. 7.3 displays all possible alternatives using MOGA for each data set of the 

aforementioned input data. However, comparing alternatives performances with respect to design 

criteria, it could be noticed that PV-WT nominated solutions are placed in a restricted areas

which are the frontiers of the feasible solutions spaces.

According to the proposed approach, PV-WT alternatives achieved through MOGA must 

now be submitted to PROMETHEE MCDM algorithm in order to define the best alternative 

among each Pareto set. Tab. 7.2 summarizes the results obtained by MOGA for the first data set 

HP. It shows the ration between installed PV power to WT power as a ration, and the total 

expected energy output from each alternative during one year operation. MCDM will be applied 

to the performance matrix X consisting of the last three columns of Tab. 7.2.

Population Size 20 individuals

algorithm NSGA II

max. number of generations 400

Selection function Tournament (tournament size = 2)

Crossover function Intermediate (ratio = 1)

Mutuation function Adaptive feasible
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Fig. 7.3 Pareto sets, scenario 1.

Tab. 7.2: Pareto PV-WT results related to the first data set, scenario 1.

A PV

WT50
EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 188 2,1,0 280294 0.27 207970 108845 68

B 180 2,0,2 274251 0.28 201737 107642 56

C 202 2,1,0 285655 0.29 208493 109402 68

D 190 2,0,1 253016 0.30 157044 109902 68

E 210 2,0,2 285472 0.31 202818 108756 56

F 230 2,1,0 296266 0.32 209532 110626 68

G 219 2,0,2 289071 0.32 203165 109299 56

H 245 2,1,0 301870 0.33 210082 111450 68

I 211 2,0,1 261083 0.33 157730 110628 68

J 209 2,0,0 235532 0.33 118217 113101 82

K 231 2,0,1 268704 0.35 158379 111763 68

L 248 2,0,1 274962 0.35 158912 112892 68

M 270 2,0,2 307827 0.36 204980 111893 56

N 299 2,1,0 321909 0.37 212053 113782 68

O 265 2,0,0 256278 0.40 119749 115147 82

P 230 2,0,2 330363 0.42 207171 114251 56

Q 300 2,0,0 269637 0.42 120741 117027 82

R 361 2,0,1 317322 0.46 162549 117472 68

S 364 2,0,0 293420 0.48 122517 119679 82

T 394 2,0,0 304649 0.49 123360 121190 82
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The aim of PROMETHEE algorithm here is to support the choice of preference weights 

associated to the environmental, economic and social criteria; for this purpose, equal weights 

vector EW has been applied as default weighting technique. Moreover, in order to explore how 

sensitive the optimal size and share PV-WT results are to the weights and criteria (objective 

function), other three systematic weighting vectors have been considered. Basically, a weight of 

50% has been assumed to each criteria, while a weight equal to 25% is associated to the 

remaining two criteria. Tab. 7.3 shows the four weight vectors. 

Tab. 7.3: Applied weights according to sensitivity analysis

weighting vector
criteria

Emms. EC SA

EW 0,33 0,33 0,33

Emms. 50% 0,50 0,25 0,25

EC 50% 0,25 0,50 0,25

SA 50% 0,25 0,25 0,50

In order to define the optimal PV-WT solution, PROMETHEE MCDM algorithm has 

been applied to objective functions scores subjected to the preference weighting vectors of Tab. 

7.3.

Results provided by MCDM analyzing the first data set (HP) are displayed in Fig. 7.4;

alternatives A and C give the highest scores with all weighting vectors; in fact, by looking at

Tab. 7.2, it is notable that SA performance is not the maximum for both of A and C, but, it is 

within the average with respect to Pareto set nominated solutions. Moreover, its Emissions and

total estimated costs performances are very high and very close to the best ones. Comparing 

alternatives A and C against each other, it can be noticed from table 7.2 that both alternatives are 

identical from SA point of view and almost identical from reduced emissions and estimated costs 

point of view. Independently on the weighting methods, alternative A consists of 2 wind turbines 

of 50kW, one wind turbine of 30kW,  and 188 PV modules, while alternative C consists of 2 

wind turbines of 50kW, one wind turbine of 30kW,  and 202 PV modules, though, both 

alternatives A and C can be considered an optimal design compromise.
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Fig. 7.4: PROMETHEE  scores according to the first data set (HP), scenario 1.

Now, to accomplish an important goal of the proposed approach which is defining the 

optimal solution under different uncertainty and sensitivity conditions, the same analytical 

procedure has been applied to the remaining data sets: the optimal solution achieved for each 

data set, after applying PROMETHEE algorithm is also indicated. Tables 7.4 – 7.6 show the 

Pareto sets data of applying the same MOGA analysis procedure to St.1, St.2, and St.3 data sets 

which displayed in figure 7.3 upper part, and figures 7.5 – 7.7 show the results of applying 

PROMETHEE MCDM algorithm to the achieved results from St.1, St.2, and St.3 respectively. 
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Tab. 7.4: Pareto PV-WT results related to the second data set (St.1), scenario 1.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 191 2,1,0 281529 0.27 148976 112302 68

B 190 2,0,2 277996 0.29 150483 111159 56

C 210 2,0,1 260703 0.29 149482 113191 68

D 210 2,1,0 288636 0.29 149482 113099 68

E 194 2,0,1 254784 0.31 114673 113160 68

F 201 2,0,1 257450 0.32 114840 113365 68

G 201 2,0,1 257163 0.32 114822 113164 68

H 200 2,0,1 256729 0.32 114795 113031 68

I 209 2,0,0 235593 0.33 83937 115940 82

J 217 2,0,1 263313 0.33 115207 114021 68

K 252 2,0,0 251535 0.37 84791 117883 82

L 256 2,0,0 252846 0.38 84861 117994 82

M 259 2,0,0 254252 0.38 84936 118075 82

N 262 2,0,0 255215 0.39 84988 117915 82

O 338 2,0,2 333434 0.42 154474 117635 56

P 302 2,0,0 270225 0.44 85797 119292 82

Q 348 2,0,1 312461 0.44 118303 120067 68

R 348 2,0,0 287668 0.46 86742 122148 82

S 368 2,0,0 294967 0.47 87138 123080 82

T 418 2,0,0 313788 0.52 88166 124612 82

Fig. 7.5: PROMETHEE  scores according to the second data set (St.1), scenario 1.
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Tab. 7.5: Pareto PV-WT results related to the third data set (St.2), scenario 1.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 92 2,1,0 244365 0.15 213956 103945 68

B 109 2,0,2 247839 0.18 210893 104255 56

C 142 2,1,0 263240 0.22 215562 106186 68

D 152 2,0,1 238961 0.25 163650 108139 68

E 177 2,0,2 273199 0.26 213036 107287 56

F 210 2,0,2 285464 0.30 214076 108816 56

G 199 2,0,1 256640 0.30 164965 110313 68

H 229 2,1,0 295854 0.31 218350 110232 68

I 237 2,0,2 295748 0.32 214950 110199 56

J 210 2,0,0 235961 0.33 122768 112759 82

K 274 2,1,0 312501 0.35 219779 112445 68

L 289 2,0,2 315106 0.37 216600 112480 56

M 299 2,1,0 321995 0.37 220597 113304 68

N 259 2,0,0 254334 0.39 123952 114632 82

O 340 2,0,2 334096 0.42 218225 114033 56

P 306 2,0,0 271592 0.43 125070 116715 82

Q 228 2,0,0 280098 0.46 125623 117513 82

R 370 2,0,1 320665 0.46 169772 117451 68

S 362 2,0,0 292689 0.47 126443 119253 82

T 419 2,0,0 313997 0.52 127837 121377 82

Fig. 7.6: PROMETHEE  scores according to the third data set (St.2), scenario 1.
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Tab. 7.6: Pareto PV-WT results related to the forth data set (St.3), scenario 1.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 172 2,1,0 274532 0.26 142613 111959 68

B 161 2,0,1 242314 0.26 109976 112683 68

C 166 2,0,2 269129 0.26 145616 110337 56

D 212 2,1,0 289191 0.29 143634 114203 68

E 182 2,0,1 250104 0.29 110452 113177 68

F 217 2,1,0 291091 0.30 143766 113991 68

G 196 2,0,1 255443 0.30 110779 114093 68

H 223 2,0,2 290233 0.31 147102 113605 56

I 213 2,0,1 261667 0.34 111160 114119 68

J 212 2,0,0 236628 0.34 80429 116709 82

K 235 2,0,1 270141 0.35 111681 115567 68

L 254 2,0,1 277053 0.37 112106 116126 68

M 269 2,0,1 282721 0.38 112456 117221 68

N 291 2,0,2 315788 0.38 148911 116192 56

O 262 2,0,0 255225 0.39 81402 118597 82

P 333 2,0,2 331484 0.42 150028 118113 56

Q 343 2,0,1 310457 0.43 114174 120683 68

R 346 2,0,0 286728 0.46 83065 122489 82

S 376 2,0,1 322954 0.47 114952 121612 68

T 413 2,0,0 311679 0.52 84393 125022 82

Fig. 7.7: PROMETHEE  scores according to the forth data set (St.3), scenario 1.
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Then, applying the same analytical procedure to the remaining SRH, SRL, WSH, and 

WSL data sets, tables 7.7 – 7.10 show Pareto set data obtained using MOGA algorithm. In 

addition, figures 7.8 – 7.11 show results of applying PROMETHEE MCDM algorithm to the 

Pareto sets results shown in the aforementioned tables 7.6 – 7.9.

Tab. 7.7: Pareto PV-WT results related to the fifth data set (SRH), scenario 1.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 71 2,1,0 236667 0.12 203993 103588 68

B 81 2,1,0 240074 0.13 204356 104253 68

C 175 2,0,2 272467 0.27 202209 107637 56

D 195 2,1,0 282808 0.27 208941 109262 68

E 220 2,0,2 289253 0.31 203994 110101 56

F 234 2,1,0 297646 0.32 210545 110932 68

G 213 2,0,1 261933 0.33 158496 110909 68

H 253 2,1,0 304863 0.33 211327 111704 68

I 213 2,0,0 236749 0.34 118905 113146 82

J 284 2,1,0 316329 0.36 212573 113116 68

K 287 2,0,2 314517 0.37 206696 112930 56

L 297 2,0,2 318093 0.37 207080 113585 56

M 259 2,0,0 254024 0.38 120315 115147 82

N 296 2,0,1 292745 0.40 161404 114630 68

O 336 2,0,2 332613 0.42 208642 114475 56

P 301 2,0,0 269995 0.42 121626 116929 82

Q 339 2,0,0 284257 0.45 122802 118652 82

R 378 2,0,1 323221 0.47 164307 118006 68

S 370 2,0,0 295782 0.48 123757 120021 82

T 417 2,0,0 313525 0.52 125235 121599 82
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Fig. 7.8: PROMETHEE  scores according to the fifth data set (SRH), scenario 1.

Tab. 7.8: Pareto PV-WT results related to the sixth data set (SRL), scenario 1.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 157 2,0,1 240973 0.26 155518 108882 68

B 160 2,0,2 266828 0.26 200440 106517 56

C 162 2,0,2 267466 0.26 200494 106584 56

D 179 2,1,0 277085 0.26 206991 108389 68

E 173 2,0,2 271747 0.27 200863 107162 56

F 205 2,0,2 283585 0.30 201885 109085 56

G 210 2,0,0 235916 0.33 117656 113187 82

H 254 2,0,2 301897 0.34 203470 111416 56

I 239 2,0,1 271427 0.34 157836 112636 68

J 246 2,0,2 298827 0.34 203204 110572 56

K 265 2,0,2 306040 0.35 203830 111994 56

L 287 2,1,0 317447 0.36 210537 113413 68

M 254 2,0,1 277175 0.37 158275 112972 68

N 300 2,1,0 322160 0.37 210954 113862 68

O 265 2,0,1 281155 0.38 158580 113175 68

P 261 2,0,0 254843 0.39 118908 115108 82

Q 343 2,0,0 285515 0.45 120950 119188 82

R 365 2,0,0 293710 0.46 161459 117803 68

S 376 2,0,0 297835 0.48 121776 120307 82

T 420 2,0,0 314589 0.52 122903 121848 82
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Fig. 7.9: PROMETHEE  scores according to the sixth data set (SRL), scenario 1.

Tab. 7.9: Pareto PV-WT results related to the seventh data set (WSH), scenario 1.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 81 2,1,0 240074 0.13 309296 98916 68

B 94 2,0,2 241931 0.16 294998 99191 56

C 148 2,1,0 265180 0.22 312293 101694 68

D 187 2,0,2 276823 0.28 299070 103224 56

E 201 2,1,0 285080 0.28 314679 104208 68

F 203 2,0,1 257909 0.31 235563 105854 68

G 249 2,1,0 303212 0.33 316861 106501 68

H 213 2,0,0 237008 0.34 179447 108900 82

I 264 2,1,0 308698 0.34 317523 107066 68

J 229 2,0,1 267815 0.35 236594 106844 68

K 255 2,0,1 277581 0.36 237612 108609 68

L 300 2,1,0 322442 0.37 319183 108462 68

M 312 2,0,2 323861 0.39 304604 108865 56

N 262 2,0,0 255225 0.39 181103 110725 82

O 290 2,0,0 265715 0.41 182060 112217 82

P 316 2,0,0 275530 0.44 182958 113008 82

Q 339 2,0,0 283941 0.45 183729 114648 82

R 353 2,0,1 314095 0.45 241439 112473 68

S 369 2,0,0 295294 0.47 184773 115861 82

T 407 2,0,0 309551 0.51 186088 117117 82
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Fig. 7.10: PROMETHEE  scores according to the seventh data set (WSH), scenario 1.

Tab. 7.10: Pareto PV-WT results related to the eight data set (WSL), scenario 1.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 81 2,1,0 240074 0.13 122066 109586 68

B 111 2,1,0 251413 0.18 122915 110625 68

C 124 2,0,2 253273 0.20 122829 110816 56

D 142 2,0,2 259925 0.22 123328 111634 56

E 161 2,0,1 242373 0.26 95044 113640 68

F 193 2,0,2 279252 0.28 124786 113935 56

G 179 2,0,1 248965 0.28 95480 114467 68

H 222 2,1,0 292992 0.30 126057 115715 68

I 213 2,0,2 286671 0.31 125348 114551 56

J 236 2,0,2 295169 0.32 125993 115964 56

K 222 2,0,0 240114 0.35 71311 117713 82

L 222 2,0,0 240285 0.35 71320 117702 82

M 260 2,0,0 254363 0.39 72128 119221 82

N 315 2,0,1 300140 0.41 98896 120612 68

O 336 2,0,2 332812 0.42 128871 119704 56

P 303 2,0,0 270505 0.43 73059 121163 82

Q 344 2,0,0 286047 0.45 73962 123429 82

R 377 2,0,1 323050 0.47 100445 122690 68

S 379 2,0,0 299190 0.48 74729 125036 82

T 418 2,0,0 313821 0.52 75588 125919 82
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Fig. 7.11: PROMETHEE  scores according to the eight data set (WSL), scenario 1.

It can be noticed that among all sensitivity and uncertainty data sets, the optimal design 

keeps to contain relatively low PV combined share (below 30%). All scenario one achieved 

optimal results with respect to all data sets are presented in table 7.11. It shows that WTs number 

has not been affected with different data sets uncertainty results, while PVs number has been 

changed significantly; it varies from 71 PV modules (17.75 kW) when considering SRH data set, 

to 217 modules (54.25 kW) when considering St.3 data set. By referring to table 7.2 and tables 

7.4 – 7.10, for all optimal designs presented in table 7.11, SA performance equals to 68%, the 

only differences among all designs are between emissions reduction and estimated costs, where 

higher number of installed PVs increase the amount of reduced emissions but the system will 

cost more, and vise versa.

In this case, the designer could chose any of the optimal designs that meets his 

preference, either the one with the least estimated costs, maximum amount of reduced emissions, 

or a compromise by choosing the optimal design where the number of PVs is very close from the 

average number of PVs of all optimal designs presented in table 7.11, which equals to 149, so, 

alternative C from data set WSH will be the optimal. 
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Table 7.11: Optimal design summary for scenario 1 data sets.

Data set
Optimal design/s description

PV WT50 WT30 WT10 Reference

HP
188 2 1 0 A from Tab. 7.2 and Fig. 7.4

202 2 1 0 C from Tab. 7.2 and Fig. 7.4

St.1
191 2 1 0 A from Tab. 7.4 and Fig. 7.5

210 2 1 0 D from Tab. 7.4 and Fig. 7.5

St.2
92 2 1 0 A from Tab. 7.5 and Fig. 7.6

142 2 1 0 C from Tab. 7.5 and Fig. 7.6

St.3

172 2 1 0 A from Tab. 7.6 and Fig. 7.7

212 2 1 0 D from Tab. 7.6 and Fig. 7.7

217 2 1 0 F from Tab. 7.6 and Fig. 7.7

SRH
71 2 1 0 A from Tab. 7.7 and Fig. 7.8

81 2 1 0 B from Tab. 7.7 and Fig. 7.8

SRL 179 2 1 0 D from Tab. 7.8 and Fig. 7.9

WSH
81 2 1 0 A from Tab. 7.9 and Fig. 7.10

148 2 1 0 C from Tab. 7.9 and Fig. 7.10

WSL
81 2 1 0 A from Tab. 7.10 and Fig. 7.11

111 2 1 0 A from Tab. 7.10 and Fig. 7.11

7.4.2 Scenario two

Here, the same methodology has been applied to a different solar radiation and wind 

speed profiles (figure 7.2 lower part), and by scaling up the load profile to 400 kW. Fig, 7.12

shows the Pareto sets achieved by applying MOGA to all pre-mentioned uncertainty scenarios. 

Similarly to Fig. 7.3, again, from objective functions performances point of views, PV-WT 

candidate solutions are placed in a very restricted area. 
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Fig. 7.12 Pareto sets, scenario 2.

Similarly to scenario number one analysis, PV-WT alternatives achieved through MOGA 

for all data sets presented in figure 7.12 have been submitted to PROMETHEE MCDM 

algorithm. For first data set (HP), the Pareto set and its related information is shown in Tab. 7.12.

Results achieved by applying PROMETHEE to HP are displayed in Fig. 7.13; in this case

alternative A dominates all other alternatives in all cases except when giving 50% importance to 

the social acceptance criteria where alternative C becomes the optimal one. Alternative A 

consists of 5 wind turbine of 50kW, 2 wind turbine of 10kW, and 311 PV modules.
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Tab. 7.12: Pareto PV-WT results related to the first data set (HP), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 311 5,0,2 624305 0.23 1438841 206186 62

B 318 5,0,0 573120 0.24 1181229 209086 74

C 325 5,0,0 574625 0.25 1181583 208967 74

D 322 4,1,0 537281 0.26 1016729 209599 74

E 374 4,1,1 574806 0.28 1136271 210494 68

F 364 4,0,2 534750 0.29 969324 211041 68

G 468 5,0,1 631715 0.31 1314964 215213 68

H 500 5,1,0 676501 0.31 1509522 215798 68

I 524 5,0,2 670100 0.33 1450667 216207 62

J 541 5,0,1 647410 0.34 1318853 218450 68

K 466 4,0,0 503990 0.36 763988 218885 82

L 536 4,1,0 583291 0.37 1026731 219606 74

M 599 5,0,0 633535 0.37 1195374 221972 74

N 570 4,0,2 579040 0.39 978755 220980 68

O 531 4,0,0 517965 0.40 728277 221801 74

P 583 4,0,0 529145 0.42 768746 224092 82

Q 750 4,0,1 591395 0.47 878045 230196 74

R 815 4,0,0 579025 0.51 778151 234465 82

S 810 3,1,1 567596 0.52 645501 236443 82

T 757 3,0,0 465605 0.55 441704 237959 82

Fig. 7.13: PROMETHEE  scores according to the first data set (HP), scenario 2.
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Similar to the previous scenario, the same analytical procedure has been applied to the 

remaining data sets: the optimal solution achieved for each data set, after applying 

PROMETHEE algorithm is also indicated. Tables 7.13 – 7.15 show the Pareto sets data of 

applying the same MOGA analysis procedure to St.1, St.2, and St.3 data sets which displayed in 

figure 7.3 lower part, and figures 7.14 – 7.16 show the results of applying PROMETHEE 

MCDM algorithm to the achieved results from St.1, St.2, and St.3 respectively. 

Tab. 7.13: Pareto PV-WT results related to the second data set (St.1), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 304 5,0,2 622800 0.22 1723283 198544 62

B 315 5,0,0 572475 0.24 1394477 202647 74

C 309 4,1,1 560831 0.25 1356238 201369 68

D 367 5,0,2 636345 0.25 1727109 202178 62

E 427 5,0,1 622900 0.29 1561278 206285 68

F 488 5,1,0 673921 0.31 1789296 208152 68

G 474 5,0,1 633005 0.31 1563999 208791 68

H 468 5,0,1 631715 0.31 1563662 207830 68

I 514 5,0,2 667950 0.33 1736037 208311 62

J 540 5,0,1 647195 0.34 1567819 211515 68

K 558 5,0,0 624720 0.36 1407751 214300 74

L 462 4,0,0 503130 0.36 901112 214416 82

M 465 4,0,0 503775 0.36 901244 214370 82

N 616 5,0,0 637190 0.38 1410892 216354 74

O 808 4,0,0 577520 0.51 916311 229757 82

P 773 3,0,0 469045 0.56 520453 235257 82

Q 823 3,0,0 479795 0.57 522107 237523 82

R 875 3,0,0 490975 0.59 523850 240003 82

S 876 3,0,0 491190 0.59 523899 239994 82

T 876 3,0,0 491190 0.59 523900 239913 82
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Fig. 7.14: PROMETHEE  scores according to the second data set (St.1), scenario 2.

Tab. 7.14: Pareto PV-WT results related to the third data set (St.2), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 184 5,0,0 0.16 544310 1522823 192061 74

B 300 4,1,1 0.24 558896 1506359 196404 68

C 315 4,1,0 0.26 535776 1331693 199458 74

D 362 4,0,2 0.29 534320 1298074 201025 68

E 426 4,1,1 0.30 585986 1513551 202809 68

F 500 5,1,0 0.31 676501 1972653 203083 68

G 521 5,0,2 0.33 669455 1929985 203509 62

H 446 4,0,2 0.34 552380 1302520 204667 68

I 551 5,0,0 0.35 623215 1543846 209338 74

J 450 4,0,0 0.35 500550 987941 210858 82

K 542 4,1,1 0.36 610926 1520151 207819 68

L 562 4,1,0 0.38 588881 1344879 211004 74

M 613 5,0,0 0.38 636545 1547445 211799 74

N 735 4,0,2 0.46 614515 1317821 218002 68

O 700 4,0,0 0.47 554300 999480 221815 82

P 649 3,1,0 0.48 506636 838104 221432 82

Q 817 4,0,0 0.51 579455 1004886 227050 82

R 769 3,0,0 0.56 468185 570160 233205 82

S 848 3,0,0 0.58 485170 572911 236957 82

T 979 3,0,0 0.62 513335 577532 242915 82
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Fig. 7.15: PROMETHEE  scores according to the third data set (St.2), scenario 2.

Tab. 7.15: Pareto PV-WT results related to the forth data set (St.3), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 129 5,0,1 0.11 558830 1855865 183699 68

B 143 5,0,0 0.12 535495 1649414 187623 74

C 275 4,1,0 0.23 527176 1443732 195246 74

D 499 5,1,0 0.31 676286 2141036 199412 68

E 538 5,0,2 0.34 673110 2102750 200181 62

F 457 4,0,0 0.36 502055 1071356 208646 82

G 609 4,1,1 0.39 625331 1657916 207554 68

H 611 4,0,1 0.43 561510 1247587 212061 74

I 573 3,1,1 0.44 516641 1061491 212283 74

J 718 4,0,2 0.45 610860 1434631 214400 68

K 637 3,1,0 0.47 504056 909044 218829 82

L 668 3,0,2 0.49 499160 883812 220162 74

M 788 3,1,0 0.52 536521 915679 225652 82

N 760 3,0,0 0.55 466250 617112 231009 82

O 881 3,1,0 0.55 556516 919781 230032 82

P 906 3,0,2 0.58 550330 894180 230553 74

Q 978 3,0,1 0.61 539465 755045 236969 82

R 915 2,1,1 0.62 489221 611071 237255 82

S 1017 3,0,0 0.64 521505 626482 242057 82

T 1033 2,1,1 0.65 514591 615332 242360 82
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Fig. 7.16: PROMETHEE  scores according to the forth data set (St.3), scenario 2.

Then, applying the same analytical procedure to the remaining SRH, SRL, WSH, and 

WSL data sets, tables 7.16 – 7.19 show Pareto set data obtained using MOGA algorithm. In 

addition, figures 7.17 – 7.20 show results of applying PROMETHEE MCDM algorithm to the 

Pareto sets results shown in the aforementioned tables 7.16 – 7.19.
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Tab. 7.16: Pareto PV-WT results related to the fifth data set (SRH), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 334 5,0,2 629250 0.24 1441966 207189 62

B 334 5,0,0 576560 0.25 1183730 209861 74

C 336 5,0,0 576990 0.26 1183850 209227 74

D 340 4,1,0 541151 0.27 1019216 210853 74

E 337 4,1,0 540506 0.27 1019042 210045 74

F 435 5,0,0 598275 0.30 1189330 214491 74

G 496 5,1,0 675641 0.31 1512190 215664 68

H 389 4,0,2 540125 0.31 972288 211738 68

I 503 5,0,2 665585 0.32 1452360 215507 62

J 492 5,0,1 636875 0.32 1318910 215576 68

K 532 5,0,2 671820 0.33 1454145 216571 62

L 539 5,0,1 646980 0.34 1321661 218529 68

M 466 4,0,0 503990 0.36 765934 218841 82

N 604 5,0,0 634610 0.38 1198751 221790 74

O 590 4,0,2 583340 0.40 982397 221289 68

P 651 4,1,1 634361 0.41 1153249 223361 68

Q 815 4,0,0 579025 0.51 781531 234385 82

R 777 3,0,0 469905 0.56 444749 238502 82

S 910 3,0,0 498500 0.60 449296 244460 82

T 911 3,0,0 498715 0.60 449305 244459 82

Fig. 7.17: PROMETHEE  scores according to the fifth data set (SRH), scenario 2.
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Tab. 7.17: Pareto PV-WT results related to the sixth data set (SRL), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 316 5,0,2 625380 0.23 1437334 206693 62

B 316 5,0,2 625380 0.23 1437353 206567 62

C 317 5,0,1 599250 0.23 1305260 208141 68

D 317 5,0,0 572905 0.24 1179529 208668 74

E 339 4,1,0 540936 0.27 1015917 210351 74

F 475 5,1,0 671126 0.30 1505395 214988 68

G 459 5,0,1 629780 0.31 1312015 214468 68

H 419 4,0,2 546575 0.32 969925 213805 68

I 456 4,0,0 501840 0.36 761736 218595 82

J 523 4,1,0 580496 0.36 1023643 219027 74

K 567 5,0,0 626655 0.36 1190841 220534 74

L 588 5,0,0 631170 0.37 1191775 221453 74

M 797 4,0,0 575155 0.50 774121 233713 82

N 797 3,1,0 538456 0.52 642003 235804 82

O 797 3,0,2 526895 0.54 602945 235634 74

P 759 3,0,0 466035 0.55 439400 238116 82

Q 943 3,0,1 531940 0.59 522885 244373 82

R 969 3,0,1 537530 0.61 523677 245213 82

S 993 3,0,0 516345 0.62 445865 248696 82

T 993 3,0,0 516345 0.62 445865 248696 82

Fig. 7.18: PROMETHEE  scores according to the sixth data set (SRL), scenario 2.
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Tab. 7.18: Pareto PV-WT results related to the seventh data set (WSH), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 308 5,0,2 623660 0.22 1666171 201669 62

B 310 5,0,1 597745 0.23 1514624 202757 68

C 333 5,0,2 629035 0.24 1667687 203251 62

D 301 4,1,0 532766 0.25 1177551 204680 74

E 354 4,0,2 532600 0.28 1121313 207074 68

F 499 5,1,0 676286 0.31 1749524 211364 68

G 507 5,0,2 666445 0.32 1678079 211572 62

H 487 5,0,1 635800 0.32 1524712 211104 68

I 516 5,0,2 668380 0.33 1678593 211535 62

J 410 4,0,1 518295 0.33 1000086 210972 74

K 518 5,0,0 616120 0.34 1381412 214450 74

L 455 4,0,0 501625 0.36 885341 214963 82

M 575 5,0,0 628375 0.36 1384535 217034 74

N 608 5,0,0 635470 0.38 1386347 217811 74

O 627 4,1,1 629201 0.40 1329061 218069 68

P 698 4,0,2 606560 0.44 1138186 222718 68

Q 760 3,1,1 556846 0.50 851821 228243 74

R 755 3,0,1 491520 0.55 600723 231999 82

S 756 3,0,0 465390 0.55 511121 235147 82

T 907 3,0,1 524200 0.59 606177 239051 82

Fig. 7.19: PROMETHEE  scores according to the seventh data set (WSH), scenario 2.
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Tab. 7.19: Pareto PV-WT results related to the eight data set (WSL), scenario 2.

A PV

WT50

EPGS kWh

PPV/PWT

ratio Emss. [kg] EC [Euro] SA [%]WT30

WT10

A 320 5,0,2 0.23 626240 1171792 212103 62

B 326 5,0,0 0.25 574840 959511 214212 74

C 358 5,0,1 0.25 608065 1064646 215296 68

D 340 5,0,0 0.26 577850 923939 214825 68

E 364 4,0,2 0.29 534750 789988 216390 68

F 482 5,0,2 0.31 661070 1179871 219924 62

G 498 5,1,0 0.31 676071 1227671 221228 68

H 527 5,0,2 0.33 670745 1182160 221933 62

I 542 5,0,1 0.34 647625 1073437 224028 68

J 465 4,0,0 0.36 503775 621036 223581 82

K 608 5,0,0 0.38 635470 972288 227393 74

L 606 4,1,1 0.39 624686 935790 226607 68

M 643 4,1,1 0.40 632641 937423 228299 68

N 543 3,1,1 0.42 510191 594780 226415 74

O 692 4,0,2 0.44 605270 803514 230818 68

P 718 4,0,2 0.45 610860 804604 232176 68

Q 742 4,0,0 0.48 563330 631165 235800 82

R 872 3,0,1 0.58 516675 428123 244630 82

S 901 3,0,0 0.60 496565 364158 247927 82

T 901 3,0,0 0.60 496565 364158 247830 82

Fig. 7.20: PROMETHEE  scores according to the eight data set (WSL), scenario 2.
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It can be noticed that among all sensitivity and uncertainty data sets, the optimal design 

keeps to contain relatively low PV combined share (below 31%), which is similar to scenario 

number one, however, it does not mean that the proposed approach always leads to the same 

optimal solution, first of all, even if the optimal solution in both scenarios contains PV share 

equals or below 30%, the size (amount of installed power) of the PGS is different, moreover, 

analysis criteria in both scenarios are the same, and changing the analysis criteria will lead to 

different optimal solutions.

All scenario two achieved optimal results with respect to all data sets are presented in 

table 7.20. It shows that WTs number has been affected with different data sets uncertainty 

results, in all optimal solutions, five 50kW wind turbines were used, either alone or with 

different combinations of 30kW and 10kW WTs, however, the minimum optimal installed power 

in all data sets equals to 250 kW while the maximum equals to 280 kW. For PV modules,

number of installed modules has been changed significantly; it varies from 129 PV modules 

(32.25 kW) when considering St.3 data set, to 499 modules (124.75 kW) when considering WSH

data set. By referring to tables 7.12 – 7.19, for all optimal designs presented in table 7.20, C1, 

C2, and C3 performances are not fixed among all designs, in fact, there is slight variation 

between proposed designs. 

The designer could chose any of the optimal designs that meets his preference, either the 

one with the least estimated costs, maximum amount of reduced emissions, best social 

acceptance index, or a compromise between all criteria. As an example, the designer could chose 

alternative A from HP data set which is the optimal design proposed in table 7.20, in this case, 

number of installed PV modules equals to 311 which is close to average number of all optimal 

designs presented in the aforementioned table which equals to 331, moreover, this solution 

considers installing five 50kW and two 10kW WTs, which is identical to five of the proposed 

optimal designs in table 7.20.
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Table 7.20: Optimal design summary for scenario 2 data sets.

Data set
Optimal design/s description

PV WT50 WT30 WT10 Reference

HP
311 5 0 2 A from Tab. 7.12 and Fig. 7.13

325 5 0 0 C from Tab. 7.12 and Fig. 7.13

St.1
304 5 0 2 A from Tab. 7.13 and Fig. 7.14

488 5 0 1 F from Tab. 7.13 and Fig. 7.14

St.2 184 5 0 0 A from Tab. 7.14 and Fig. 7.15

St.3
129 5 0 1 A from Tab. 7.15 and Fig. 7.16

143 5 0 0 B from Tab. 7.15 and Fig. 7.16

SRH
334 5 0 2 A from Tab. 7.16 and Fig. 7.17

469 5 1 0 G from Tab. 7.16 and Fig. 7.17

SRL
316 5 0 2 B from Tab. 7.17 and Fig. 7.18

475 5 1 0 F from Tab. 7.17 and Fig. 7.18

WSH 499 5 1 0 F from Tab. 7.18 and Fig. 7.19

WSL 320 5 0 2 A from Tab. 7.19 and Fig. 7.20

7.5 Chapter Conclusions

Optimal sizing of PV-WT grid connected PGSs can be achieved by performing the 

proposed analysis, where MCDM algorithm based on MOGA – PROMETHEE methods have 

been applied. In comparison to the previous procedure proposed in chapter six, the new approach 

generates solutions more efficiently applying Pareto set principle, this advantage is necessary 

when the required PGS design is with relatively high installed power. In addition, the new 

procedure has more flexibility, it enable designers to include more input variables such as energy 

storage devices and technical, environmental, economic, and social constraints in a relatively 

easy way in comparison the previous approach. However, the drawback of this approach in 

comparison with the previous one is the required time for making analysis. If the required PGS 

design is quit simple from number of input variables and constraints, the previous approach 

(chapter six) is still valid as a good optimization tool, but if the considered case contains higher 

number of input variables and constraints, the new approach is more powerful and flexible to 

handle it efficiently.
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Conclusions

This research developed a Multi Criteria optimization approach to solve PV-WT PGS 

optimal design sources combination and system size problem. Different case studies have been 

applied, and results show that the MCDM algorithms can handle and solve the problem 

efficiently. The main conclusions of this research can be summarized as:

Applying MCDM algorithms to the PGSs design process enables the designer to 

analyze multi criteria performance evaluation in simultaneously in order to define 

the optimal solution, thus, it is more practical in real life applications where 

different conflict criteria might be important in defining the optimal solution.

It gives the user flexibility to simply interact with the analysis and modify it to 

fulfill his preferences and needs by introducing weighting vectors represents the 

importance of each criteria in defining the optimal solution.

Defining vectors weights (criteria importance) is crucial and needs serious 

attention, in the analyzed case studies; it has been shown how changing these 

values can significantly affect final results.

Sensitivity and uncertainty analysis are essential in the design process of PV-WT 

PGS; it gives deeper understanding of the results and shows the most critical 

parameters and variables.

Larger PV-WT PGS are more sensitive, in which slight changes in any of the 

analysis inputs might change the optimal solution, and thus, more attention should 

be given to sensitivity and uncertainty analysis when carrying out the analysis of 

larger PGS.

Social criteria is an important performance evaluation one. In the presented case 

studies, it has been shown that SA differences among feasible nominated 

alternatives can affect the final optimal solution significantly.
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