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Is this the real life?

Is this just fantasy?
Caught in a landslide
No escape from reality

[Freddie Mercury, Bohemian Rhaposdy)
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Abstract

Shallow rapidly moving landslides, triggered by rainfall infiltration, cause many
fatalities and much destruction worldwide.

Understanding the hydrological control on shallow landslide triggering, is fun-
damental in landslide risk mitigation, at least for two reasons.

The first reason is that landslide early warning systems require information on
the link between rainfall and landslide occurrence. The second reason is that knowl-
edge of the hydrologic conditions that trigger landslides in a spatially-distributed
fashion allows to map return period of landslide triggering within a landslide-prone
region. This is one of the fundamental steps for production of hazard and risk maps
that may be effectively used as an aid for urban and landslide mitigation planning.

In the dissertation, a Monte Carlo approach, that combines stochastic and
deterministic modeling approaches, is used to analyze the hydrological control on
shallow landslide triggering.

In particular an integrated stochastic rainfall and deterministic landslide simu-
lator has been developed for the purpose.

The simulator is composed by the following components: (i) a seasonal Neyman-
Scott Rectangular Pulses (NRSP) model to generate synthetic hourly point rainfall
data; (ii) a module for rainfall event identification and separation from dry intervals;
(iii) the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability
(TRIGRS) model, version 2 (Baum et al., 2008, 2010) to simulate landslide trig-
gering by rainfall infiltration, combined with a water table recession (WTR) model
that computes the initial water table height to consider in simulating rainfall events
with TRIGRS.

The Monte Carlo simulator has been applied to the Loco catchment in the
Peloritani Mountains in northeastern Sicily of Italy, an area with high landslide
risk, as recently demonstrated by the regional debris-flow event that occurred on
18tOctober 2009, which caused 37 casualties and millions of euros of damage.

The NRSP model resulted capable of capturing the most important and many
other stochastic features of rainfall observed nearby the study case area; model
validation, carried out by testing the reproduction of rainfall event characteristics
important with respect to landslide triggering such as event intensity and duration,
has given satisfactory results.

Suitability for modeling the triggering of landslides in the investigated area
of the TRIGRS - WTR model has been tested by applying it to the three-event
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sequence that provoked landslides on 15t October 2009. Model performance has
been assessed by comparing mapped slides for the 15t Qctober 2009 event with
model output, also in terms of ROC-based (Receiver Operating Characteristic)
indices. Model performs at least as well as other known applications of the TRIGRS
model to other study cases areas (ROC-accuracy and precision are respectively
greater than 0.80 and 0.30).

The Monte Carlo approach has been applied for estimation of return periods
of shallow landslide triggering and for the evaluation of the most commonly-used
types of empirical rainfall threshold.

Use of the Monte Carlo approach for estimation of the return period of land-
sling, represents an advance to approaches based on rainfall Intensity-Duration-
Frequency (IDF) curves, applied by several different researchers, for two reasons.
Firstly because the response of an hillslope to hyetographs of rectangular (or
any other predifined) shape may be significantly different from that to a real-like
stochastically variable hyetograph. Secondly, and more importantly, the use of the
Monte Carlo approach, in which water table depths at the beginning of each rain-
fall event are determined in response to antecedent rainfall time history, allows to
avoid the drawback of assuming an arbitrary initial water table depth (for instance
equal to zero), which has a probability to occur that should be taken into account
in estimating the return period. In fact, IDF-based return period estimation is in
principle flawed by the fact that in estimating return period the conditional prob-
ability of the rainfall event, given the assumed initial water table height, should be
considered.

Monte Carlo simulations have allowed to map return period of landslide trig-
gering (i.e. a factor of safety F'S < 1) on the case-study catchment.

Simulation results have been analyzed to evaluate from a theoretical perspective
the Intensity-Duration empirical model paradigm, i.e. to understand if the stochas-
tic nature of rainfall combined with the physical processes of soil-water movement
provide a theoretical justification to this most widely used empirical model. In fact,
in spite of its consolidated use, no particular theoretical justification for the use
of the Intensity-Duration empirical model exists. The paradigm is that a rainfall
threshold for landslide triggering assumes a straight line in a bi-logarithmic rainfall
(mean) Intensity - Duration plane.

The obtained results allow to state that, actually, stochastic structure of real
rainfall events combined with the infiltration response reveal in a certain sense a
theoretical justification to the I - D relationship. Iso-pore-pressure points, in the
bi-logarithmic rainfall (mean) Intensity - Duration plane, lay, with relatively low
scattering, around a straight line, in the cases that initial water table height is
negligible.

This means that the I-D model represents a valid model to interpret data in
the case that memory of pore pressures is negligible. This holds true basically
when the hydraulic conductivity of the soil is relatively high, in relation to rain-
fall characteristics (relatively isolated rainfall events) and hillslope position in the
catchment (low values of upslope contributing area).

In other, most, likely, cases, the I-D model should be coupled with an antecedent



rainfall model.

The iso-pore-pressure scatter plots derived from the Monte Carlo simulations
have been also compared with iso-pore-pressure curves that result in response to
a rectangular hyetograph of same (mean) intensity and duration (assuming in this
case an initial water table depth of zero), in order to study the influence of rain-
fall intensity stochastic variability on landslide triggering . This analysis has been
conducted considering separately the simulation points relative to a negligible ini-
tial water table height from the ones relative to a not negligible initial water table
height.

Comparison in the former case reveal that for regular rainfall event durations,
say D < 12 h, a real variable-intensity hyetograph may produce a pore-pressure
respouse less than the one induced by a rectangular hyetograph of the same (mean)
intensity and duration, while the opposite occurs for high durations. From the
comparison relative to the latter case, it can be stated that in dependence of the
initial water table depth (i.e. rainfall time history preceding the event) even rainfall
events of low intensity and duration may trigger landslides.
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Chapter 1

Introduction

1.1 Overview

Debris flows and other shallow rapidly moving landslides triggered by rainfall
infiltration cause many fatalities and heavy economical damages worldwide (cf.,
e.g, Highland and Bobrowsky, 2008). Like most natural hazards, it is largely rec-
ognized that the most devastating impacts can be significantly reduced, provided
appropriate mitigation measures are implemented.

Landslide risk mitigation measures are distinguished in structural and non
structural. The former may consist in debris flow basins, retaining walls, check
dams, techniques of slope stabilization, etc.; the latter consist in landslide early
warning, insurance against landslide damage and urban planning restrictions. Non
structural measures do not prevent or attenuate landslide occurrence, but in prin-
ciple cost drastically less than structural measures for the same extent of protected
area.

Knowledge of the hydrological control on shallow landslide triggering, i.e. the
rainfall conditions that trigger landslides, is important in landslide risk mitigation,
for at least two reasons. First of all it represents a prerequisite to develop early
warning models able to promptly warn about the potential triggering of a landslide
in an area. Furthermore, knowledge of the hydrological control in a spatially-
distributed fashion, enables the mapping of landslide hazard at the catchment
scale (cf., e.g. Montgomery and Dietrich, 1994; Rosso et al., 2006; Salciarini et al.,
2008). Such a mapping can find useful application both for urban planning, as well
as to rank priorities for the construction of landslide mitigation structures.

Models for determining the rainfall conditions that trigger landslides can be
broadly divided into two catagories, namely empirical and physically-based.

In the first case, rainfall triggering threshold is determined by the analysis of
observed data of rainfall that (or did not) resulted in landslides. Generally this is
carried out by empirically analyzing the link between rainfall events characteristics
(for instance duration and mean intensity) and landslide occurrence. A rainfall
threshold is then identified with some method, usually consisting in tracing a lower-
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bound curve. The most widely-used curve (Guzzetti et al., 2007) assumes the form
I = aD?, where D is rainfall duration (measured from the beginning of the event
to the instant of incipient slope failure) and I = H/D is mean rainfall intensity (H
is cumulative rainfall observed on time interval D).

In the second case, landslide occurrence is investigated by means of equations
attempting to physically describe the processes governing slope failure (Iverson,
2000). Hence they are composed by an hydrological model of unsaturated and
saturated groundwater flow, coupled with a geomechanical slope-failure model. To
this end, frequently infinite slope stability analysis is applied. These models are
usually applied in a spatially-distributed fashion at an area that may have the
extension of one or more drainage basins.

Empirical models may be advantageous for the little information on hillslope
hydraulic and geotechnical properties that they in principle require, and for their
simplicity of application. The performance of the early warning system based on
such models, obviously will depend on the reliability and completeness of the data
used, and on the plausibility of the form of equation chosen to draw the threshold.
However, at best they can warn about the presence of conditions that in the past
have led to landslides over a large area, and therefore their predictive ability requires
the assumption of stationarity of the landslide triggering mechanisms. Moreover,
empirical methods do not generally provide information on the magnitude, the
location of the landslide event triggered, and in fact do not allow to produce detailed
maps of landslide hazard.

Physically-based models on the other hand are in principle capable to assessing
both long and short term landslide risk not just with reference to a large area but
also to a specific basin. Although they are more data and computational demanding
since they require more knowledge of physical properties for their application, yet
they are potentially able to take into account the influence of changes in land use
and in climate forcing, as well as to provide a probabilistic assessment of landslide
risk.

1.2 Aim of the research

The aim of the dissertation is to contribute to an improved understanding of
the hydrologic control on shallow landslides.

In particular, the general objective is to develop a Monte Carlo simulation
framework in order to take into account the stochastic nature of the rainfall forc-
ing on landslide triggering. The proposed methodology is based on coupling a
stochastic point rainfall model and a physically-based infiltration and slope stabil-
ity model in order to take into account the stochastic nature of rainfall forcing on
landslide triggering mechanisms. The Monte Carlo procedure has been developed
in order to pursue the following specific objectives:

e to investigate the link between rainfall event characteristics and landslide oc-
currence in order to provide insights for the development of rainfall thresholds
for landslide triggering;
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e to compare the effect of time variability of precipitation on landslide triggering
potential with that induced by rectangular hyetographs (constant intensity);

e to estimate return period of landslide occurrences thus providing a tool for
landslide risk mapping.

The direct link between rainfall event characteristics and landslide occurrence
has been investigated by several researchers using the Intensity-Duration model
I = aDP equation to interpret simultaneous observations of rainfall and landslides
and determine empirical rainfall thresholds of landslide triggering.

In spite of its consolidated use, no particular theoretical justification for the use
of that equation exists (Guzzetti et al., 2007). Thus, the aim of the dissertation
on this issue is to evaluate from a theoretical perspective empirical models, i.e. to
understand if the stochastic nature of rainfall combined with the physical processes
of soil-water moviment provide, in a certain measure, a theoretical justification to
the most widely used empirical models, such as the I-D model.

Estimation of the return period of landslide occurrence has been carried out by
several researchers based on Rainfall Intensity-Duration-Frequency (IDF) curves
and rectangular or predifined-shape hyetographs (cf., e.g., D’Odorico et al., 1995;
Rosso et al., 2006; Salciarini et al., 2008). In fact, when the IDF curves are utilized,
an hypothesis on initial water table depth has to be made. The pitfall in assuming
an arbitrary value for the initial water table height (such as zero), is that this has
a certain probability to occur, which should be accounted for in return period esti-
mation. The Monte Carlo approach, in which water table depths at the beginning
of each rainfall event are determined in response to antecedent rainfall time history,
such as the one utilized in this dissertation, allow to avoid the above-mentioned
pitfall.

1.3 Research methodology

The Monte Carlo simulation technique developed in this dissertation is based on
the combination of a stochastic rainfall model with a spatially-distributed physically-
based hydrological model.

In particular, the Neyman-Scott Rectangular Pulses (NSRP) model is utilized
to generate hourly rainfall at a point. NSRP model is chosen because it represents
a compromise between flexibility and complexity (only five parameters per season)
and numerous applications corroborate its validity (cf., e.g. Rodriguez-Iturbe et al.,
1987b; Cowpertwait et al., 1996; Calenda and Napolitano, 1999).

The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability
model (TRIGRS), version 2 (Baum et al., 2008, 2010), developed by a research
group of the United States Gelogical Survey, is utilized for the spatially-distributed
physically-based hydrological model. The unsaturated version of the model is con-
sidered, which solves the 1-D (vertical) Richards’ equation particularized for the
exponential Soil Water Retention Curve proposed by Gardner (1958). This formu-
lation is chosen for its computational efficiency, being analytical solutions available
for this case, after Srivastava and Yeh (1991).
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As TRIGRS assumes vertical infiltration, it is an event — based model, because
lateral pore pressure diffusion becomes important in the dry time intervals from
one storm to another (storm interarrivals).

Hence, initial conditions for each event, represented by the initial water table
depth at each cell of the analyzed domain, have to be specified, and are very
important to correctly simulate response to rainfall events (Baum et al., 2008).

In order to overcome this problem, in this study the TRIGRS model is inte-
grated with a simple drainage model, that is applied with reference to dry periods
to compute, from the final output of each event, the initial conditions to the fol-
lowing event. This drainage, or Water Table Recession (WTR) model, is based
on model by Rosso et al. (2006) applied to the storm interarrivals, and may be
interpreted as a linear-reservoir drainage model where the constant is expressed as
a function of the hydraulic properties of the soil.

In the Monte Carlo simulation framework the above-described modeling mod-
ules are combined together. A specific rainfall event separation algorithm is devel-
oped in order to univocally identify rainfall events (and dry periods) to simulate
soil water content either by TRIGRS or by the WTR model. Furthermore this
enable to more correctly interpret the simulation outputs.

The methodology is applied to a real case study. In particular the Loco catch-
ment in the Peloritani Mountains in Sicily, Ttaly, located upslope of the urban area
of Giampilieri (ME), is considered. This catchment is prone to shallow landslides
that evolve in debris flows, and it is among the ones involved by the 1 October
2009 regional debris-flow event that has caused 37 casualties and tens of millions
of euros of damage (Foti et al., 2012).

The simulator is applied with reference to a single cell with properties valid for
the case study. Due to the fact that TRIGRS is a vertical model, single cell results
can be applied to each cell to map results in a spatially-distributed fashion with
a reasonable simulation time. Drainage model introduces interaction among cells,
that however may be easily accounted for simulating for a range of cell upslope
contributing areas A.

The results of simulations are utilized to derive return period of cell geome-
chanical failure, corresponding to a factor of safety less than 1.

Instants at which F'S = 1 provide landslide triggering instants, that are used
to compute rainfall quantities, such as mean intensity I and duration D, and to
investigate on the direct relation of those quantities with landslide triggering. This
allows to evaluate, from a stochastic physically-based perspective, the widely-used
I — D empirical model.

1.4 Outline of the dissertation

This dissertation is divided in eight chapters including the present introduction.

In chapter 2 literature on landslide triggering by rainfall is reviewed.

Chapter 3 presents the application of empirical models for determination of
rainfall thresholds for landslide early warning, with reference to the Peloritani
Mountains area, in northeastern Sicily. In particular, the FLaIR model (Sirangelo
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and Versace, 1992), an empirical model that has found several applications to other
case studies in Italy, has been applied to that area. A separate empirical methodol-
ogy is then developed and applied to the same areas. This methodology represents
an advance over numerous empirical approaches as it addresses the problem of
determining the rainfall thresholds also considering the non-triggering events, and
accounts for false, missed, correct alarms and correct non alarms in its calibration
procedure. Another advantage of the procedure is that it uses the most compre-
hensive databases of Italy and hence it has in principle the possibility of being
applied as a general procedure for identifying landslide early warning thresholds
for prone regions of Italy. Although this chapter fits fully in the subject under
study, it can be considered as independent from the rest of the work. This chapter
is a summary of three publications (Peres and Cancelliere, 2011, 2012) to which
readers are referred for further details.

In chapter 4 the Monte Carlo simulation methodology is illustrated in detail.

Chapter 5 illustrates the adopted stochastic Neyman-Scott Rectangular Pulses
point rainfall model.

Chapter 6 describes the physically based model. In this chapter the TRIGRS
v.2 model is summarized at a certain level of detail, but this description cannot
certainly substitute reading of the manual of the program (Baum et al., 2008) and
the related journal article (Baum et al., 2010).

In chapter 7 applications carried out with reference to the Loco case-study
catchment are illustrated.

Conclusions of the research are delineated in chapter 8.
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Chapter 2

Landslide triggering by rainfall

2.1 Landslide phenomena and risk mitigation

Landslides cause a lot of damage and deaths in many countries. Worldwide,
landslides occur and cause thousands of casualties and billions in monetary losses
annually (Highland and Bobrowsky, 2008). Being both related to intense or pro-
longed precipitation, landsliding and flooding are closely allied, and it is conse-
quently difficult to carry out separate quantifications of damage.

Guzzetti et al. (2005) compiled databases on landslide and flood occurrence
and damage in Italy. In particular, analysis of the database indicates that more
than 50593 people died, went missing, or were injured in 2580 flood and landslide
events, in the 724-year period from AD 1279 to 2002. At least 733000 people
were evacuated in that same period. An analysis by Kahn (2005) on the the role
of income, geography, and institutions on the death toll from natural disasters,
revealed that though richer nations do not experience fewer natural disasters than
poorer nations, richer nations do suffer less death from disaster, and consequently
that economic development provides implicit insurance against nature’s shocks.

Landslide risk mitigation starts from understanding the types of landslide that
threaten the area under study, because this knowledge determines many fundamen-
tal aspects that are important to plan and adopt appropriate mitigative action,
such as the potential speed of movement, likely volume of displacement, distance
of run-out, as well as the possible effects of the landslide.

A landslide may be defined as a downslope movement of rock or soil, or both,
occurring on the surface of rupture in which much of the material often moves as
a coherent or semi-coherent mass with little internal deformation (Highland and
Bobrowsky, 2008).

The most widely used classification of landslides is the one by Cruden and
Varnes (1996) (modified from Varnes (1978)). According to that classification,
landslides may be classified on the basis of the type of movement and the type
of material involved. The former may be: fall, topple, slide or flow, while the
latter may be either rock or soil (or both). Soil can then be classified as earth if
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mainly composed of sand-sized or fine particles and debris if composed by coarser
fragments. Figure 2.1 illustrates the most common types of landslides that may be
observed in nature. It is not uncommon that a landslide may change from one type
to another while it occurs. Many debris flows are generated as a subsequent phase
of slides. Pore pressure increase as a consequence of slope saturation by water, is
a primary cause of landslides. Slope saturation may be induced by intense rainfall,
snowmelt, changes in groundwater levels, and water level changes along coastlines,
earth dams, and the banks of lakes, reservoirs, canals, and rivers.

Landslide risk mitigation measures can be categorized into two classes: struc-
tural and non-structural. The former consist in structures aimed to slope stabiliza-
tion and debris retaining, and thus they prevent landslide from occurring or travel
into urbanized areas, while the latter may consist in actions that may involve little
structure construction.

Structural measures are generally more effective, but have an high cost per unit
of protected area, so actually only areas that have been threatened by devastating
landslides are interested by these measures.

The most important non-structural measure is landslide early warning.

Landslide early warning may lessen damage and victims, but usually do not
prevent landslide occurrence. Yet it has a low cost per unit of protected area,
when compared to structural measures.

Landslide early warning systems are based on the identification of rainfall
thresholds of landslide triggering (Yano and Senoo, 1985; Keefer et al., 1987; Cap-
parelli and Tiranti, 2010; Fathani et al., 2009; Takara and Apip Bagiawan, 2009;
Baum and Godt, 2010). Thus understanding the timing and the location of land-
slide triggering is important from a scientific and practical perspective.

Based on the time scales of triggering and speed of the sliding mass, trigger-
ing to be coupled (in relation to the characteristic time scale of the phenomena)
with meteorological forecasts (cf. Capparelli and Versace, 2011), that may include
also stochastic quantitative now-casting of rainfall (Sirangelo et al., 2007; Versace
et al., 2009), since the forecasts usually do not provide rainfall at a fine temporal
resolution, as required for the early warning.

Models for determining the rainfall conditions that trigger landslides are cate-
gorized in two classes:

o Empirical: a triggering threshold is determined by the analysis of observed
data of rainfall and knowledge of landslide events. The statistical dependence
is analyzed between characteristic quantities of rainfall events and landslide
occurrence (or not occurrence). A threshold is then identified with some
method, that commonly consists in drawing a lower bound line/curve, i.e.
all points that triggered landslides have observed precipitation with charac-
teristics that exceed the line/curve. Sometimes more than one thresholds is
drawn, to correspond to various levels/states of warning (such as attention,
alert, alarm) or the range of observed rainfall within landslides have been
observed are given (i.e. both the lower and the upper bound are drawn).

e Physically-based: landslide occurrence is investigated by mean of equations
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Surface rupture

Rotational landslide Translational landslide Block slide

Rockfall Debris flow

Fence out of alignment

Debris avalanche Earthflow

Lateral spread

Figure 2.1: Landslide types (after Highland and Bobrowsky, 2008)
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that describe the processes governing slope failure. Typically, this models
treat the case of rain infiltration-induced landslides. They are then composed
by subsurface-oriented hydrological model and a slope failure model. Most
of the models are GRID-based, and investigate an area that may have the
extension of one or more watersheds. In some cases behavior of individual
slopes is investigated, making use of more accurate description and numerical
modeling than the GRID based ones, for which the same modeling may be
prohibitively time consuming (cf. e.g. Capparelli and Versace, 2011).

2.2 Empirical approaches

Studies from Campbell (1975) and Caine (1980) are among the first ones related
to determination of rainfall thresholds of landslide triggering.

Campbell (1975) found an empirical association between soil slips and rainfall,
based on the analysis of detailed data on landslides and simultaneous rainfall events
for the Santa Monica Mountains in Southern California. He observed that in all
cases in which soil slip failure has been observed, the rainfall intensity exceeded
0.20 inch/h (5 mm/h) per hour, and nearly all exceeded 0.25 inch/h (6.4 mm/h)
per hour. This latter value has been interpreted to be the minimum rate at which
surface infiltration exceeds subsoil drainage for most of the colluvial soils of the
area. Moreover, cumulative rainfall at the triggering of the observed landslides
have exceeded 10 inches (250 mm), value that Campbell indicated as a threshold
and as the value of antecedent rainfall required to bring most of the colluvial soil
of the area to field capacity.

Based on the analysis of 73 landslide events that resulted into shallow landslides
or debris flows Caine (1980) obtained a lower bound line given by the formula:

I =14.82D7039 (2.1)

best defined for rainfall durations between 10 minutes and 10 days. The so-called
Intensity — Duration model (ID) introduced by Caine has become the most com-
mon type of threshold used in the literature, whose general form is (Guzzetti et al.,
2007):

I=c+aD™? (2.2)

Since Caine (1980) formula has been published, plenty of studies have focused on
the determination of landslide thresholds, most of them site-specific, i.e. relative
to a small landslide-prone region, sometimes resulting in just a slight modification
of the coefficient and exponent of equation 2.1, (cf., e.g. Guzzetti et al., 2007).

A bibliographic review by the Italian National Council of Research, Institute
of Research for Hydro-geological Protection (CNR-IRPI) (Guzzetti et al., 2007)
yielded a list of 125 rainfall thresholds, which is also available at the website http:
//rainfallthresholds.irpi.cnr.it/. Among the 125 thresholds, 54 are relative
to areas within Italy.
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According to the study of Guzzetti et al. (2007), empirical thresholds in the
collection can be distinguished in four sub-categories:

e intensity-duration thresholds;

e thresholds based on the total event rainfall;
e rainfall event-duration thresholds;

e rainfall event-intensity thresholds.

Also, investigators normalize the rainfall intensity values using empirical measures
of the local climate, in order to obtain comparable rainfall thresholds prepared
for different areas or regions (normalized ID thresholds). Typically, normalization
is obtained dividing the event rainfall intensity by the mean annual precipitation
(MAP) (e.g. Cannon, 1988; Aleotti, 2004). A few authors have attempted to estab-
lish thresholds for the initiation of landslides based on the total amount of precip-
itation during the landslide triggering event (thresholds based on measurements of
the event precipitation), and some of these thresholds are defined as percentages of
the MAP. Other methods consider other characteristic quantities of rainfall events,
such as antecedent precipitation indexes (Glade et al., 2000).

Perhaps the main justification for the empirical approach lies on the fact that
practical difficulties in understanding the rainfall triggering mechanism from a
deterministic standpoint generally arise due to the lack of estimates of spatially
distributed hydraulic and mechanical parameters, and to complexities of ground
conditions on susceptible slopes. Moreover, its simplicity and easy understanding
by the operators of early warning systems, which may not always be highly spe-
cialized to run sophisticated physically-based models, has perhaps determined the
spreading of this approach. Yet drawbacks of the approach include:

e high dependence of the threshold on the characteristic quantities chosen for
the formulation of the model and on the the form of the empirical relationship
used;

e high uncertainty in the definition of the triggering time instant, and hence of
rainfall duration (used in most of the empirical models);

e reliable data often is not available;

e impossibility of have information about the magnitude, the location of the
landslide event triggered;

e when only the triggering rainfall events are considered in the statistical anal-
ysis, the case of false positives is not accounted for (false alarms);

e role of antecedent precipitation is not fully understood.

An attempt to generalize empirical models has been conducted by Sirangelo
and Versace (1992), that have proposed the FLalR (Forecasting of Landslides
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Induced by Rainfall) model. FLaIR model has found several applications in Italy,
in particular: to the Calabria region (Sirangelo et al., 1996; Sirangelo and Versace,
1996; FLA), to Sarno in the Campania region (Sirangelo and Braca, 2004) and to
the Lanzo area in Piedmont, where an experimental early warning system based
on FLalR is active (Capparelli and Tiranti, 2010).

In FLalIR model the definition of the warning threshold is based on the compu-
tation of a mobility function, that is the convolution between a rainfall time series
at a representative location and a parametric impulse response distribution, which
characterizes the area with respect to its behavior to landslides. Calibration of the
parametric function is carried out through the use of historical rainfall series and
landslide events.

More in detail, given a rainfall time series I(t), the mobility function Y'(¢) is
given by the convolution integral of I(t) with a filter function 1 (t):

Y(t) = L (it —1)I(T)dr (2.3)

FLalR model is based on the concept that the whole time history of the rainfall
input affects the probability of slope failure in a given area of interest, for which
the model itself is calibrated. As shown in Capparelli and Versace (2011), through
the use of an appropriate filter function form equation 3.1 reproduces the Intensity-
Duration model (v. equ 2.2)

In fact, the mobility function is not known on a physical basis; hence it is
assumed to be parametric and of a chosen form. The parametric distribution that
has been mostly used in applications is the gamma distribution, which contains
two parameters.

Once the set of parameters, and hence the mobility function, is univocally de-
termined, early warning of landslides may be based on comparison of the mobility
function with a critical value, usually assumed as the minimum value of the cali-
brated mobility function for which landslide triggering has been observed.

Performances of early warning systems based on the FLalR model, implemented
in the Calabria region (Italy), have been investigated recently in terms of indicators
based on the number of correct alarms C'A, missed alarms M A and false alarms F'A.
Hit rate HR = FA/(CA + FA) and False Positive Rate FPR = FA/(CA + FA)
varied in the range 0.14 - 0.66 and 0.34 - 0.86, respectively (Versace et al., 2012).

2.3 Physically-based models

These approaches are based on the computation of a factor of safety F.S with
respect to slope stability. The region of analysis usually consists in a catchment,
which is subdivided in elements or cells, on a spatially-distributed GRID or contour
basis.

The factor of safety explicitly depends on the soil water pressure. Thus an hy-
drological model, focused mainly on subsurface water dynamics, that allows com-
putation of pore pressures from rainfall input, is a fundamental part of these type
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of models. The slope stability model is usually expressed as one formula for the
safety factor, and unstable cells are identified as the ones for which F'S < 1.

In the following sections, the principal slope stability and hillslope hydrology
models used by researchers are reviewed. The determination of return period of
landslides is then focused.

Slope stability analysis

In many of the modeling approaches, it is assumed that the potential failure surface
lies at a depth dz below the surface that is small if compared with the length of
the slope, so that the edging effects are negligible. This allows one to use the
infinite-slope stability analysis (Haefeli, 1948; Taylor, 1948). In this case, the
factor of safety is determined from the analysis of a slice of material of unit width
and thickness (see figure 2.2).
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Figure 2.2: Scheme for infinite slope equilibrium analysis (adapted from Rosso
et al., 2006). On the left, the coordinate system used by Iverson (2000)

Factory of safety is in general defined as the ratio between shear strength 7
and shear stress 7:

-1
ps =L, (2.4)

According to the principle of effective stress, the shear strength may be expressed
as:

7 =c + (0 — 1) tand (2.5)

with ¢’ denoting soil cohesion, o the normal total stress, 1 the pore water pressure,
d the slope angle and ¢’ the angle of shearing resistance of the soil mantle.
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If v represents the average bulk unit weight of soil above the groundwater
level and 44t the saturated unit weight of soil under the groundwater level, the
expressions or o, 7 and 1 are:

o = [(1—w)y+wysatldrz cos? 6
T = [(1—-w)y+ wyset]drzsindcosd (2.6)
Y = wdpzve cos?

where w = h/dpz as shown in 2.2, and represents the wetness factor.
Substitution of the above formulas in 2.5 and 2.4 yields the following expression
for the safety factor, used in the model by Rosso et al. (2006):

4+ [(1 —w)y + wy']dLz cos? § tan ¢/
[(1 —w)y + wYsat]drz sin d cos &

FS = (2.7)
Montgomery and Dietrich (1994) used the a simplified version of this formula,
which considers a cohesionless soil mantle (¢ = 0) and v = Yy
— Wy tan ¢’

FS = Vsat )
Vsat tan ¢

(2.8)

A more general expression than equation 2.7, that has been used within models
that provide the pore pressure distribution also in the unsaturated zone (e.g. Baum
et al., 2010; Capparelli and Versace, 2011) accounts for the degree of saturation in
the unsaturated zone by multiplying pore pressure for the approximation given by
Vanapalli and Fredlund (2000) of the Bishop’s Bishop effective stress parameter
x = (0—105)/(0s —0,), being 6 = V,,/V; the actual soil water content (volume of
water V,, per unit volume of soil V;).

The infinite slope scheme tendentiously leads to underestimation of the actual
factor of safety, being the edging effects neglected. Actually, heterogeneities in
the soil characteristics may add a degree of uncertainty that may lead also to
overestimations of F'S, due for example to overestimation of the soil mechanical
properties ¢’ and ¢'.

Baum et al. (2012) used also a factor of safety based on a finite 3-D slope
scheme, obtaining better results than with the 1-D slope, with the same pore
pressure distribution calculated with the vertical infiltration model TRIGRS v. 2.0
(Baum et al., 2008), described after.

Hillslope hydrology

Early models are based on mass conservation of groundwater in the scheme like
the one of figure 2.3, where a impermeable bed is at depth dz. Mass-conservation
equation may be expressed as the following (Rosso et al., 2006):

ds
Ap—qg=—, for h<dpz (2.9)
dt
and
Ap—q—r =0, for h>drz (2.10)
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where t is measured from the beginning of the storm, S the water storage in the
element, and r the overland flow discharge occurring when soil is saturated (i.e.
Sy =1).

“'/Catchment
| boundary
[~

Figure 2.3: Scheme of contour-based models (adapted from Rosso et al., 2006)

Rosso et al. (2006) expressed water storage as S = V,,(¢t)—V,,(0) = w‘/} =

7% (1— S,)Ah, hence considering a non-null initial degree of saturation S,.
The Darcy law then provides the seepage flow in the groundwater table as:

q = (Bhcosd)Kstan§ = BhKsin 4, (2.11)

being K the saturated hydraulic conductivity of the soil and tan§ head gradient,
assumed to be parallel to the local ground slope.
Integration of the differential equation 2.9 yields to:

p 1 t 1 t P
h="Ld |1—exp(——p*—— )|+ hiexp (——p*— ), for 2 <1
p* [ o ( A" dLZ)] e < 4" dLZ) o

(2.12)
where h; = h(0) is the initial water table height, A; = 5. (1-5,) and p* = TsBAS””S
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is the saturation precipitation rate (75 = Kz denotes hydraulic transmissivity of
the soil mantle).

If net rainfall exceeds the saturation precipitation rate p*, one obtains satura-
tion of the soil mantle after a certain time t*:

| egn. 212 if ¢ <t¥
h = { dLZ if t>t* (213)
and .
: 02
t* = —A;—log o (2.14)
top

A previous, and simpler, model by Montgomery and Dietrich (1994), considered

the steady state case, i.e. the previous equation with the time-dependent term
% = 0, and factory of safety F'S given by equation 2.8, which yields the following

failure criterion, in terms of "critical" wetness:

Vsat tand
= 1-— 2.1
YOR T, [ tan @5’] ’ (2.15)
which implies that topographic elements where
A/B = (Ts/p) sin 8 (Ysat/Yw)[1 — tan §/ tan ¢'] (2.16)

are predicted to be unstable.

As observed by the same authors, the elements within a catchment may be
distinguished in four stability classes: wunconditionally unstable, unstable, stable,
and unconditionally stable. Unconditionally unstable elements are those predicted
to be unstable even when dry (this may be equivalent of saying that bedrock
outcropping corresponds to these elements). Potentially unstable elements are then
classified by a model as stable or unstable if the failure criterion is satisfied or not,
respectively (e.g. equation 2.16). Unconditionally stable elements are those that
are stable even at the maximum possible pore pressures, that generally correspond
to saturation of the entire soil mantle.

If soil properties are constant in space, Montgomery and Dietrich (1994) model
simulates the topographic control on the location of shallow landsliding. The suc-
cessive enhancement to this model by Rosso et al. (2006) is capable to account
for the combined effect of storm duration and intensity, i.e. to simulate hydrologic
control on shallow landsliding.

Iverson (2000) provided an insight of physical mechanism underlying landslide
triggering by rainfall, based on the solution of particular cases of the Richards’
equation.

Iverson (2000) argued that self-contradictory results are yielded by utilizing ap-
proaches based on slope parallel flow and mass conservation of groundwater in a
scheme of flow domain bounded by an impermeable bed at depth dyz, such as the
models just illustrated. Thus Iverson (2000) points out that vertical infiltration,
modeled by Richards’ equation may be appropriate for understanding short-term
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response of the hillslope to transient rainfall, in order to assess hydrological condi-
tions that trigger landslides.

According to Iverson2000’s Iverson2000 analysis the following three time scales,
on which physical process governing landslides operates, may be distinguished:

e A/Dy as the minimum time scale necessary for establishment of steady back-
ground water pressures that develop at (z,y, H) in response to rainfall av-
eraged over periods that commonly range from days to decades (long-term
response). These steady groundwater pressures influence the propensity for
landsliding at (z,y, H) but they do not trigger slope failure.

e H?/Dy as a characteristic time associated with transient pore pressure trans-
mission during and following storms (short-term response). Failure results
form rainfall over this time scale, that commonly ranges from minutes to
months.

° m as the timescale on which post-failure landslide motion occurs, an
another important aspect of landslide related research (cf., e.g. Iverson, 1997;
O’Brien et al., 1993; Armanini et al., 2009).

With reference to the coordinate system (x,y, z) illustrated in figures 2.2 and
2.3, Richards (1931) equation may be written as (cf., e.g. Bras, 1990) :

w2 - Al (&) (3)-
a% [KZ(¢) (‘Z — cos >] , (2.17)

in which 1 is groundwater pressure head, € is soil volumetric water content, ¢ is
time and J is the slope angle, 0 < § < 90. Iverson (2000) then defines the ratio €
between pressure diffusion timescales H?/Dg and A/Dy:

e [H2Do _ H (2.18)
ADy VA’ |

This ratio plays a key role in analyzing pressure head responses to rainfall on
slopes, and Iverson (2000) made simplifications of the Richards’ equation based on
the hypothesis that ¢ « 1.

To analyze long-term behavior equation of Richards’ may be written in terms of
the dimensionless time ¢* = %t. In the case of ¢ « 1, Richards’ equation simplifies

to:
0 « [ OY* B

where ¢* = ¢/H, 2* = z/H, 2* = 2/y/A and y* = y/+/A are normalized variables.
Frequently in applications, the long-term average infiltration rate in the z di-
rection at ground surface (I.)rr is specified by a constant flux boundary condition

+
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(I)Lr = —K,(0h/0z) and the soil is assumed homogeneous (Iverson, 2000). In
the case that infiltration is sufficiently slow that (I,/K.)rr « cosd the previous
equation describes slope-parallel groundwater flow:

Y = (z — dy) cos 0, (2.20)

where d,, is the water table depth measured normal to the ground surface.

The short-term approximation, may be derived expressing Richards’ equation
2.17 in terms of the short-term dimensionless time t* = %t. For € « 1, in this
case equation reduces to the standard Richards’ equation for vertical infiltration in
a hillslope of slope §:

C)oy* 1 0 [ (0WF
Cy ot  cos?é 0Z* [KZ <az* a 1)] (221)

where C(v) = df/dy and Cj the minimum value of C'(v), typically observed when
the soil is saturated, and K¥ = K, (v)/Ks.

Equation 2.21 is still a non-linear, and, in general, requires numerical methods
for its integration, and the superimposition of solutions is not possibile, which
makes of difficult calculation responses to real rainfall sequences. In the case of
wet initial conditions, one may assume K, ~ K, and (¢) = df/dy ~ Cp, and derive
the following linear equation:

o _ Do 0%
ot cos28 072

(2.22)

In the case of a infinite basal boundary depth and a constant hyetograph of
intensiy Iz and duration T, 2.22 has the following solution:

Y

72t <T) = B0 = d/2) + 2 [R()] (2.23)
,l/} I ES *
Z(Z.t>T) = 5(1—-d/Z) + K—ZZ[R(t ) — R(t* — T+)] (2.24)

in which
R(t*) = A/(t*/7) exp(—1/t*) — erfe(1/v/t*) (2.25)

is a pressure head response function, which depends only on normahzed time t* =
t/(Z%/D), T* = T/(Z%/D) is a normalized duration, D = 4Dg/ cos? § is an effective
hydraulic diffusivity, erfc is the complementary error function and (3 = cos?§) in
the case of slope-parallel groundwater flow.

Baum et al. (2002) extended Iverson (2000) solution (equations 2.23—2.25) for
the case of a finite basal boundary, producing and distributing related software to
apply this model on a regional scale and GRID-basis, named TRIGRS (Transient
Rainfall Infiltration and Grid-based Regional Slope-Stability Model), version 1.0.
This model also considers instantaneous runoff routing, that occurs when rainfall
intensity exceeds infiltration capacity of soil. This routing is accounted in the model
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only on the fact that the runoff from one cell may totally or partially infiltrate in
downslope cells.

A later model by the same authors (Baum et al., 2008, 2010, 2011), has been
based on the analytical solution of Richards’ equation 2.21 with the exponential
soil-water retention curve of Gardner (1958), for which a closed form solution to the
resulting linearized equation is available, provided by Srivastava and Yeh (1991).

The TRIGRS, version 2.0 model is described in its details in chapter 6, being
this model used in the research developed in this thesis.

One advantage of the physically-based approach is that it allows, at least in
principle, to account for anthropogenic action, land use and climate change.

Wu and Sidle (1995) is one of the first works that analyzed the role of root
strength and harvesting on shallow landslides triggering. Other works investigate
on the role of anthropogenic action, such as roads and wildfire (Istanbulluoglu
et al., 2004; Rulli and Rosso, 2005; Rulli et al., 2006; Parise and Cannon, 2012)

It has to be noticed that, in principle, every hydrological model that allows
effective estimation of groundwater pore pressures is in principle suitable for land-
slide analysis if the triggering mechanism is due to rain infiltration (cf., e.g. Simoni
et al., 2008).

Deterministic rainfall thresholds and return period of landsliding

Physically-based models described in the previous section, enable to determine
deterministic triggering thresholds in terms of topographic, hydraulic and geome-
chanical parameters. For the Montgomery and Dietrich (1994) model, the threshold
results in terms of a steady state rainfall rate:

per = [Tsind(vs/vw)(A/B)][1 — tand/ tan ¢)] (2.26)

Yet this result does not allow to assess the return period of landslide triggering,
because the return period of precipitation depends both on storm intensity and
duration (D’Odorico et al., 1995). The probabilistic models that allow estimation
of return period of precipitation, i.e. the well-known and commonly used Intensity-
Duration-Frequency (IDF) curves, require both rain intensity and duration. (cf.
Stedinger et al., 1993; Burlando and Rosso, 1996)

The result of Rosso et al. (2006), accounts for transient precipitation, and hence
for rainfall rate pcr and duration ¢, and the following deterministic threshold is
yielded:

tan §
B . (Gotesy)(1-225)) s e T.Being
T, sind — higxp (= T.Bsind,
A l+efe(175’,,.)(17 tan & ) z e—eS, Az

tan ¢/

-~ _ 1+e T.Bsiné ’
1 exp( e—eS, Az t)

pcr(t) = (2.27)

For short durations, this relationship is practically linear in a log(D) — log(I) plot
, then it starts departing from it reaching quite rapidly the horizontal asymptote
worp®, being wep critical wetness for the Rosso et al. (2006) model. Salciarini
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et al. (2008) has made an analogous investigation of Rosso et al. (2006), using the
TRIGRS v.1 model (Baum et al., 2002).

D’Odorico et al. (1995) used Montgomery and Dietrich (1994) model to express
the long-term solution of Iverson (2000) and analyzed the effects of hyetograph char-
acteristics on potential for landsliding, using hyetographs shaped as beta-functions,
instead of rectangular (i.e. of constant intensity) hyetographs. They concluded that
for a given rainfall depth, hyetographs with a peak near the end of the storm pro-
duce peak pressure heads higher than uniform hyetographs, thus decreasing the
return period of rainfall events causing landsliding.

In fact return period depends, in general, on the whole time history of rainfall,
which determine also the initial conditions, that should not be neglected or be
arbitrarly assumed, as occurs in the above cited studies.
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Chapter 3

Empirical rainfall thresholds
for the Peloritani Mountains
area, Italy

3.1 Prelimary remarks

This chapter focuses on empirical model of rainfall thresholds that may be used for
landslide early warning. Analyses are focused on the case study area of Peloritani
Mountains, described in following section 3.2.

In particular, firstly the FLaIR model (Sirangelo and Versace, 1992) is applied.

Then a new method is proposed and applied. It enables computation of a
threshold in terms of cumulative rain on a moving time window of duration d. The
method is particularly suitable for Italy, since it is based on the use of the data
that cover the longest historical period, and that are of most easy availability: the
sub-daily rainfall annual maxima series and the landslide information from AVI
database (Archivio Aree Vulnerate Italiane) of CNR - IRPI (Consiglio Nazionale
delle Ricerche, Istituto per la Ricerca sulla Protezione Idrogeologica) (Guzzetti
et al., 1994; Guzzetti and Tonelli, 2004). Thesholds are determined via the maxi-
mization of an objective function that approximates the benefits of early warning,
as it accounts for the both rainfall events that resulted and did not resulted in
landslides.

3.2 The Peloritani Mountains case study area

The Peloritani are a mountain range of north-eastern Sicily, in southern Ttaly,
extending for about 65 km along the Ionian coastline. The range is made up
by a long series of peaks, with an average height of 800-1000 m.The topography
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determines small catchments, with impulsive flash-flood response. The complex
orography of the area affects induces high spatial variability of rainfall. The regolith
strata, composed by loamy sands often with an high gravel percentage, is likely to
slide and evolve as fast and devastating debris flows.

Many landslide events of significant magnitude have interested this area during
the last decade. In particular landslides have been observed on the following dates:
15 September 2006, 25 October 2007, 23 September 2009, 1 October 2009, 1 March
2011 and 23 November 2011.

Among these events, the most damaging has been the one that occurred on 1
October 2009. In that date, about 250 mm of rainfall fell in 9 hours, and triggered
more than 600 landslides, in an area of 50 km?, mostly evolving into devastating
debris flows (see figures 3.1 and 3.2). This event caused the death of at least 37
persons, about 100 casualties, and about 1700 evacuated people (Foti et al., 2012).

e el |
EVENTO DEL 1°OTTOBRE 2009
CART/ ISSESTI

agiom naio 2010

[ ———

i T— s

P,

Figure 3.1: Map of landslides triggered on 1 October 2009 in the Peloritani area

Improper land use and urbanization exacerbated the magnitude of damage
caused by the debris flows.
Return period of the single rainfall event, measured by the rain gauges in the
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Figure 3.2: Some photographs showing destruction caused by debris flows occurred
on 1 October 2009 in the Peloritani Mountains area, southern-eastern Sicily, Italy
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area (see figure 3.3) of 1 October 2009, has been estimated to be of the order
of hundreds of years (Foti et al., 2012). However, the exceptional magnitude of
the landslide event may be related also to an high 15 days antecedent cumulative
precipitation, which is greater than 100 mm in the nearest rain gauge of S. Stefano
di Briga (see figure 3.4). In fact, just seven days before, a significant rainfall event
has hit the nearby southern part of the Peloritani area. As shown in figure 3.4 rain
gauges in that southern part have measured cumulative rainfall amounts greater
than the 1 October event. Landslide have been triggered in the southern area,
but had a smaller magnitude, perhaps for less proneness of the area in addition to
different antecedent precipitation conditions.

Following the event, the area has been interested by a campaign of structural
mitigative measures. Although these structural measures have demonstrated their
effectiveness in mitigating debris flow risk in recent occasions (Foti et al., 2012),
there is interest in the implementation of a landslide early warning system, and
hence on the identification of landslide triggering thresholds.

3.3 Application of FLalIR model

3.3.1 Method

In FLalR model the definition of the warning threshold is based on the computation
of a mobility function, that is the convolution between a rainfall time series at a
representative location and a impulse response distribution, which characterizes the
area with respect to its behavior to landslides. The model is calibrated through
the use of historical rainfall series and landslide events observed simultaneously.

More in detail, given a rainfall time series I(t), the mobility function Y (t) is
given by the convolution integral of I(t) with a filter function ¢(t):

V() - L W(t — D) I(F)dr (3.1)

Authors give the possibility to use instead of precipitation an pre-processed variable
that may resemble infiltration such as I(u) = ep(u) if p(u) < po; and I(u) =
cpo, if p(u) > pog, where py may represent infiltration capacity and ¢ a soil-
dependent capacity (Sirangelo and Versace, 1996); however, in applications the
rainfall time series is used directly.

The mobility function resembles the formula for calculation of discharge in
a river basin by means of the Instantaneous Unit Hydrograph. Being the latter
founded on the hypothesis of linear and time-invariant behavior of the watershed,
the FLaIR model implicitly makes this assumption. FLaIR model is based on the
concept that the whole time history of the rainfall input affects the probability of
slope failure in a given area of interest, for which the model itself is calibrated.
Moreover, as shown in Capparelli and Versace (2011), through the use of an ap-
propriate filter function, FLalR model is able to reproduce the Intensity-Duration
model (cf. equation 2.2).
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Figure 3.3: Map showing location of the Peloritani area and location of rain gauges
of interest
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Figure 3.4: Cumulative rainfall path that yielded debris flows in the Peloritani
Mountains on 1 October 2009, in rain gauges located nearby the area
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Figure 3.5: Sketch relative to calibration of FLaIR model (cf. Sirangelo and Versace,

1996)
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The mobility function is assumed to be of a chosen parametric form. The
parametric distribution that has been mostly used in applications is the gamma
distribution, which is governed by two parameters a and b:

T

W(t:a,b) = b“Fl(a) 9L exp (7) (3.2)

where I'(a) = 3—00 e *2%"1dz is the well-known gamma function.

Other families of distributions suggested (cf., e.g., Sirangelo et al., 1996; Cap-
parelli and Tiranti, 2010) include the single-parameter exponential distribution (in
fact, a particular case of the gamma, obtained letting a = 1), a mixture of two
exponentials (2 parameters) and the beta one (4 parameters).

Two methods of calibration of the FLalR model have been proposed: the
ranking method and the crossing method (Sirangelo et al., 1996). The ranking
method seems to be the most used in the applications (cf. Sirangelo et al., 1996;
Sirangelo and Versace, 1996; Capparelli and Tiranti, 2010). According to this cri-
terion, see scheme of figure 3.5, a given set of parameters is admissible when the
K highest values of the mobility function occur within all the K time intervals Ay
that each include the instant of incipient of a slope failure. In fact, more precisely,
for of those K time intervals, only the maximum value within each of the intervals
Ay is considered for the ranking. Typically, for a given form for the ¢ distribution,
more than one set of parameters is compatible with the above described criterion.
Hence, a region of admissible parameters may result. Within this region, an up-
per limit function Fyy and a lower limit function F, are defined. The upper limit
function represents the minimum of the K maxima of Y within the intervals Ay,
while the lower limit function represents the maximum of the mobility function
not associated with landslides, i.e. outside the maximum of Y outside the ; time
intervals. The j should delimit values of the mobility function that have significant
statistical dependence (clusters).

Although in a probabilistic approach to overcome the not-univocal identifica-
tion of parameters was proposed by the model Authors (cf., e.g. Sirangelo et al.,
1996; Sirangelo and Versace, 1996), perhaps the most practical way to univocally
determine the best parameters within the admissibility region, is to choose the one
that maximizes the difference between the upper limit and the lower limit function.

Once the parameters, and hence the mobility function, are determined, early
warning of landslides may be based on comparison of the mobility function with a
critical value Y., determined as the upper limit function value corresponding to the
parameters (alternatively, and more conservatively, the lower limit function value
may be chosen; even though this may yield to an increase of the false alarm rate).

In particular, according to the structure of early warning of the Italian Civil
Protection Agency, various levels of protection may be activated as proportions &
of the critical value, Y,,.. For instance, Versace and Capparelli (2008) used a value
of £ =04 ,& = 0.6 and £ = 0.8 for the watch, the alert and the alarm levels,
respectively.

Performances of early warning systems based on the FLaIR model, implemented
in the Calabria region (Italy), have been investigated recently in terms of indicators



32 Empirical rainfall thresholds for the Peloritani Mountains area, Italy

based on the number of correct alarms C'A, missed alarms M A and false alarms F'A.
Hit rate HR = FA/(CA + FA) and False Positive Rate FPR = FA/(CA+ FA)
varied in the range 0.14—0.66 and 0.34—0.86, respectively (Versace et al., 2012).

3.3.2 Data

For the implementation of the FLalR model, the hourly series of rain gauge of
Fiumedinisi (440 m a.s.l.) managed by STAS (Servizio Informativo Agrometeo-
rologico Siciliano, http://www.sias.regione.sicilia.it/ has been used (figure
3.3.

Within the period covered by such series (21 February 2002 - 9 February 2011),
four landslide events occurred in several locations in the investigated area: (I) 15
September 2006 (11:00), (IT) 25 October 2007 (14:00), (IIT) 23 September 2009
(23:00) and (IV) 1 October 2009 (19:00). The time of occurrence in brackets has
been determined analyzing various documents available. The uncertainty of this
time occurrence has lead to the choice of intervals d; equal to 7 hours, i.e. 3 h after
+ 3 h before + the hour indicated above.

Calibration is carried out on the landslides events (I), (II) and (IV), while the
event of 23 September 2009 was discarded and used for validation.

3.3.3 Results and discussion

Among the possible choices, the gamma distribution was chosen.

In figure 3.5 the admissible region for the parameters of the gamma impulse
response function is shown, together with the values of the difference Fy — Fy in a
colorscale. The best pair of parameters is a = 17.615 and b = 0.115, as those values
correspond to the maximum difference F, — Fy;. The filter function corresponding
to the calibrated parameters is shown in 3.7.

The critical value of the mobility function, i.e. the lowest value for which a
landslide was triggered, resulted Y., = 46.93. Monitoring and eventually fore-
casting of rainfall and thus of the mobility function for the calibrated parameters,
and comparison of this function with its critical value Y, can be the basis of the
implementation of an early warning system in the case-study area.

Comparison of the mobility function with the watch, alert and alarm levels
(fixed respectively at £ =Y /Y., = 0.4,0.6,0.8) is shown in 3.8.

From such a comparison it can be noticed that the watch level has been reached
in 5 dates (4 September 2003, 22 October 2005, 28 October 2008, 2 November 2010
and 16 September 2009) while the alert in two cases (22November and 13 October)
and the alarm in all the four dates corresponding to four landslide dates, including
23 September 2009, which was not accounted for in calibration.
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3.4 Method based on annual maxima rainfall data

3.4.1 Method

The annual maximum of rainfall hgd) for a given duration d is the maximum of
cumulative rainfall of duration d that was observed within the ¢ — th year, i =
1,2,...,n.

These data are typically used for calculation of IDF curves that allow estimation
of design hyetograph of fixed return period.

If the starting dates tgd) corresponding to the maxima hgd), are known, these
data may be used, in combination with landslide occurrence information (i.e. date
of landslide occurrence), to derive thresholds in terms of rainfall cumulated over
duration d.

If more durations are available, one can try with different durations d;, with j =
1,2,...nq and get the most performing threshold.

The method does not consider the incipient instant of triggering, and just de-
termines thresholds that may be used for landslide early warning because of the
correlation with the occurrence of landslides.

With reference to a given duration d, the proposed method consists in the
following steps:

1. Identification of the rain gauges of pertinence for the investigated area.

2. Retrieval of the data of annual maxima (date of start and cumulative rain
value) of precipitation at the given duration d, for the all the rain gauges of
step 1.

3. Retrieval of the historical landslides events occurred in the area (date of
occurrence, and if available type of landslide)
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4. Classification of the rainfall events in (1) raw positives, i.e. rainfall events
having the same start date of a landslide and raw negatives, i.e. rainfall
events whose starting date is not the same of a landslide date. This "raw"
classification is then refined by keeping only one rainfall event per date, if
more than one gauges has the corresponding annual maxima in the same
date. In the case that accurate information on the location of landslide is
not available, the maximum among the gauges may be a reasonable choice.
For raw negatives, this same choice may be reasonable too. At the end a
set of Positives P (indipendent rainfall amounts associated with landslide
occurrence) and Negatives N (indipendent rainfall amounts not associated
with landslide occurrence) results, of size Np and Ny respectively.

5. Determination of the threshold, by maximization of an objective function
B that measures the performances of an hypothetical early warning system
based on threshold z"). This objective function may be based on the con-
fusion matriz (in certain contexts denominated contingency matriz), shown
in tab:confusionmatrix. According to that table, a general objective function
may be:

B(z™) = wrpNrp — wpnNpy + wrny Ney — wepNpp (3.3)

where wxy, X = False, True,Y = False, True are weights given to the cor-
responding cases of table, for example to account for the different disadvan-
tages associated with a false positive rather than to a false negative (usually
the last are greater than the first ones) . A particularly reasonable choice
may be wrp = wpy = wp and wry = wpp = wy and w = wy/wp < 1.
That choice is such that the advantage of a true positive is that it avoids
a false negative to occur, and that the same holds when comparing a false
positive with a true negative. In this way one may resolve the quantification
of the costs of life, because advantage is not quantified in terms of money
but in terms of avoided disadvantage, that may include injury and death.
The w < 1 condition expresses the fact that the damage induced by a false
negative (i.e. missed alarm) usually does not exceed the damage induced by
a false positive (i.e. false alarm). These choice yield to the following form of
the objective function:

B(z™) = (Nrp — Npn) + w(Npy — Nrp) (3.4)

3.4.2 Data

Annuall maxima rainfall data of durations 1, 3, 6, 12 and 24 hours of all the
rain gauge stations in figure 3.3 , excluded Fiumedinisi are utilized. The period
of observation for these stations varies from few years to about 70 for the ones
that were installed first, around the 1920s. Averaged, 50 rainfall event dates are
available per station (annual maxima in a same station for a same years in general
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Table 3.I: Confusion matrix

Actual
Landslide (P) No landslide (N)
Landslide: hl(d) > z(@ True Positive, TP False positive, FP

Predicted (d)
No Landslide: h; "’ < (@ False Negative, FN  True Negative, TN

do have different starting date, even though it is quite common that the 5 annual
maxima of different durations have the same starting date).

Information on landslides are retrieved from the AVI database, which has been
consulted from the SICI (Sistema Informativo sulle Catastrofi Idrogeologiche, In-
formative System on Hydro-geological Disasters) website http://sici.irpi.cnr.
it/ (7). This database is updated to 2001. It was firstly queried for the Messina
province, then a selection of landslides occurred in the Peloritani Mountains was
made, yielding 59 landslide events for the period 1924 (7)- 2001.

It was made an attempt to distinguish among the various types of landslides that
occurred, in order to understand if more than one type of threshold were necessary,
but information of this type was seldom available, at least for this investigated area.
Hence I relied on the fact that in the area is mostly homogeneous with respect to
landslide types observed (shallow landslides, debris-flows).

Slightly anticipating the results of applications, 3.9 shows the plot in time of
the number of landslides in the AVI database and the number of dates for which
also an annual maxima was observed, in at least one of the selected stations, and
for at least one duration among 1 — 24 hours.

In total the proportion of these rainfall data to the landslide data is of 25/59 =
42%. This percentage this occurs mainly because landslides may had occurred for
dates for which rainfall amount did not result to be an annual maximum at any
duration. Yet, the database of landslides is far from being complete, and this is
more true the more one goes back in time, as demonstrated by the drastic decrease
of landslide information (very strong in the period 1997-2001, i.e. the last 5 years).
However, this may be the effect of excessive land use and/or of climate change, of
difficult quantification.

With the aim of updating the available data, information was searched from
various sources, such as newspapers and Civil protection Bulletins. For calibration
of the model the following events were added to the AVI database information, the
Messina 01/10/2009 (rainfall data available from S. Stefano di Briga station);

Moreover, in order to somehow validate the results of the methodology, we
use the 10 minutes rainfall time series of the automatic rain gauge of Fiumedin-
isi, managed by SIAS, Servizio Informativo Agrometeorologico Siciliano (Sicilian
AgroMeteorological Information Service). Data from this station used here cover
the period from 21/02/2002 to 2009. Validation has been carried out applying the
derived threshold to the d-hours rainfall time series, computed form the 10 minutes
series, and the landslide events of the dates: 15 September 2006, 25 October 2007,
24-September-2009 and 1 October 2009. The inclusion in the validation of dates



3.4 Method based on annual maxima rainfall data 37

60~

—&— Landslide info in AVI
—— Rainfall data also available

50+

40l

201

10+

Count of Landslides / Rainfall Data Available
()
o

30 1943 1957 1971 1984 1998
Figure 3.9: Time plot of number of landslides from the AVI database and simulta-
neous rainfall data availability

already considered in model calibration has been considered possible, because the
rain gauges considered in the calibration do not include Fiumedinisi.

3.4.3 Results and discussion

Plot of figure 3.10 shows the results of the match of landslide and rainfall infor-
mation. The plot shows results for all the durations 1, 2, 3, 6, 12, and 24 hours
considered. Cumultative rainfall amounts of the same stations and same date are
joined with a line. This is not the plot of event’s cumulative rainfall time history,
because annual maxima are computed starting from a different time instant in gen-
eral, but may give an idea of that time history. However this is not important for
application of the methodology, since it is aimed to determine a threshold to apply
to a given d hours duration cumulative rainfall series, updated instant per instant.

Red lines in figure 3.10 denote that the rainfall amounts are associated with
landslides (as mentioned before, these sum to 25 events), while in green are repre-
sented the rain data that did are associated with landslides. Being seldom available
accurate information on the location of landslides, the greatest value of rainfall was
chosen for each duration. In fact a slightly modified criterion was applied, i.e. the
rainfall event that produced the maximum rainfall at the maximum duration avail-
able (in most of the cases 24 hours) was considered.

From the plot one notices a wide scattering of the data, both in the cases of
association and not association of landslides. There is also a noticeable superim-
position of these two cases, yet a significant difference between the corresponding
minimum values of rainfall can be observed.

Surely this behavior is a consequence of the significant degree of and to the
simplicity of the model, but it puts into evidence that presumably threshold based
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on the triggering events only are of questionable reliability, and may lead to a
great number of False Alarms. This is in concordance with the findings of other
researches (7, cf., e.g.), relatively to the I-D thresholds.

Maximization of the objective function 3.4, for different values of w (1, fand})
yield the thresholds shown in the same figure 3.10. Results are also shown, for sake
of clarity, in 3.IT , together with the results of the validation.

Validation, carried out only for the w = 0.5 case, show that the performances of
the threshold vary with duration. Best results were obtained for the duration of 3
hours, for which threshold was exceeded only for all the 4 observed landslide events.
Thus, a good threshold for the Peloritani Mountains area may be: 2() = 100 mm.

Table 3.1I: Thesholds maximizing the objective function, at various cumulative rain
durations a w values. Results of validation of the thresholds

Duration d Threshold [mm] Model validation
[h] w=1 w=05 w=025 landslide dates
1 90 90 90 ii
3 120 99 99 1, i iv
6 174 119 119 1,ii
12 190 167 130 1, il
24 204 175 155 i, il

3.5 Conclusive remarks

This chapter has focused on empirical methodologies for the determination of rain-
fall thresholds for landslide early warning.

Results related to the application of two approaches for determining rainfall
thresholds have been illustrated, with reference to the case-study area of the Pelori-
tani Mountains.

Firstly, FLalR model application has been carried out. Results seem to indicate
the suitability of this model for early warning in the area, even though a longer
series than the one available (9 years long) may be desiderable, in order to better
calibrate and validate the model. A point related to this issue is that FLalR model
may be sensitive to completeness of knowledge of historical landslide dates. In
fact, the more long the series is, the more likely is to have incomplete landslide
information. As a consequence, the model may erroneously result "incongruent"
(FLA) and hence not suitable.

Secondly, and approach that derives rainfall thresholds by combining annual
maximum precipitation for fixed duration data with landslide occurrences observed
in the past has been proposed and applied. The main advantage of this approach
is the use of a large dataset of rainfall data (about 80 years long) available for the
entire Italian territory, also in order to better exploit the AVI collection of landslide
events, that covers all the past century. The method accounts for both triggering
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and not triggering rainfall events. This method may not account sufficiently for
antecedent precipitation, which however seems to be more important for deeper
slides than the ones observed in the investigated area.

The final conclusion is that empirical model may give an easy and practical so-
lution to the problem of determining rainfall thresholds for regional landslide early
warning, yet the quality of data controls quality and reliability of the threshold.
Accounting for the rainfall events that have not triggered landslides, and not only
the ones that did, may be an easy way to assess model’s reliability and soundness.
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Chapter 4

Monte Carlo physically-based
simulation methodology

4.1 Preliminary remarks

This chapter illustrates the Monte Carlo simulation method used in this work to
study the hydrologic control on shallow landslide triggering.

The methodology consists in the coupling a stochastic rainfall generator and a
physically-based model for infiltration and slope stability analysis.

Monte Carlo method allows the generation of a statistically ideal dataset, in
which rainfall, pore pressure and factor of safety are known continuously for an
unlimited period. Simultaneous observations of rainfall and landslides, are in most
of the cases available only for few years and are not of comparable detail.

Potentiality of the the Monte Carlo method has been put in light by Metropolis
and Ulam (1949). Uncountable are the technical and research applications of this
method in hydrology.

Some applications in the research field of landslides do exist.

In particular, some studies focus on sensitivity analysis of slope-stability hy-
drologic physically-based models to geotechnical properties (e.g. Zhou et al., 2003;
Frattini et al., 2009). Other researches investigated issues related to debris-flow
run-out (cf., e.g. Luna et al., 2012). Calvo and Savi (2009) utilized the Neyman-
Scott Rectangular Pulses model in combination with empirical models of landslide
triggering and the FLO-2D debris-flow run-out model (O’Brien et al., 1993) to
assess debris-flow risk.

A similar methodology to the one utilized here, has been applied to flood-
flood risk assessment by Rulli and Rosso (2002), in which a Generalized Neyman-
Scott Rectangular Pulses rainfall model (Cowpertwait, 1994; Cowpertwait and
O’Connell, 1997) is coupled with a spatially distributed physically-based rainfall-
runoff model.
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4.2 Simulation scheme

Figure 4.1 illustrates schematically the Monte Carlo simulation methodology
applied in this work.

A rainfall time series is used to calibrate and validate a stochastic rainfall model.
In particular, the Neyman-Scott Rectangular Pulses (NSRP) model is utilized to
generate hourly rainfall at a point. NSRP model is chosen because it represents a
compromise between flexibility and complexity (only five parameters per season).
Numerous applications corroborate its validity, so that NSRP represent a classical
choice that its worthwhile to investigate.

The synthetic rainfall time series is then preprocessed to separate rainfall events
from dry time intervals (event interarrivals). This event separation is important
for two reasons: firstly, to properly use the physically-based hydrological model, as
described below, and, secondly, to univocally define input and output quantities to
be analyzed.

The result of rainfall preprocessing is then used as input to the physically-based
hydrological and slope stability model.

In particular, the TRIGRS v.2 model (Baum et al., 2008) is used to simulate
transient infiltration and slope stability within rainfall events. Then the final input
of TRIGRS, represented in figure 4.1 as 1;(ty) is used in input to a water-table
recession (WTR) model to estimate the initial water table depth d;(0) at the be-
ginning of event ¢ + 1, that is simulated with TRIGRS. The binary signal at the
bottom of figure, represent the running times of TRIGRS and WTR models. Pro-
cedure may be started with an arbitrary value of the initial water table depth d;(0)
for the first simulation (in that case first years of simulation are discarded), or with
a known/plausible value.

The simulations are applied to a single cell of the analyzed domain. Cell prop-
erties are varied to meet all values in the domain, at a sufficient discetization.
Results are then applied to the whole domain, in a spatially-distributed fashion,
by interpolation (cf. section 7.4.1).

The NSRP model and the TRIGRS-WTR model are described in detail in
chapters 5 and 6, respectively. The methods for rainfall event identification and of
simulation output analysis are described in the following two sections.

4.3 Identification of rainfall events

Rainfall events within a continuous (observed or synthetic) time series, aggre-
gated at a fixed time scale, are in this work defined by means of the following
parameters, applied in sequence:

1. A threshold of minimum rainfall Ah,,;,. Rainfall at the fixed aggregation
time is neglected if it is less than Ah,,;,. This threshold may be useful to
remove very low values of precipitation in the synthetic time series. In par-
ticular, application of the Ah,,;, threshold is particularly useful to validate
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4.3 Identification of rainfall events
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Monte Carlo physically-based simulation methodology

Rainfall

the stochastic rainfall model, because observed series do have this threshold,
related to the sensitivity of the rain gauge. For instance, in an observed
hourly rainfall time series, sensitivity may be of 0.2 mm.

. A minimum interarrival time At,,;», for event separation. If the time interval

covered by a run of zeros in the series At; ;11 is not greater than At,,;, then
the successive sequence of non-zero precipitation is joined to the previous
one. Otherwise two separate rainfall events are considered. For example, in
figure 7.2.3 the first rainfall event is the result of two wet spells; its total
volume (cumulative rainfall) and duration are Wy = w; + we and Dy =
Aty + Aty 2 + Ata. Aty may be assumed to be of a couple of hours, in
relation to climate and hydraulic properties of the simulated area (cf. section
6.2).

. A minimum volume W,;, threshold. This is applied only for computational

convenience, i.e. It is assumed that if W < W,,;,, the response (in terms
of pore pressure or factor of safety) is negligible.The use of this threshold
is shown in figure 4.1: simulation is not carried out for the rainfall event in
between @ and @, because its cumulative rain is less than W,,,;,,. Application
of Winin drastically reduces the computation time, because no simulation
is carried out for seasons of low precipitation (e.g., summer months in the
Mediterranean area)

. An after-rain time parameter At,. The TRIGRS event-based continues run-

ning for At, hours after the end of the event. This is done because the peak of
pore pressure may occur after the rainfall event, especially for short durations
(cf., e.g. Iverson, 2000; D’Odorico et al., 1995).

At Aty B At,, B At,, At At Aty
| [ (R | L)
‘At1 ‘ At, At At] At ‘ |At6 ‘At, ‘Ats
" W, ' Wy
ﬂJ—H—IJ_L 2 ’_HL% W, ﬁn_’l» H—‘ws 'HL Hlﬁ
— — ‘ > time
D, D, D, D,
W1 W2 W3 W4

Figure 4.2: Definition of total duration, volume and interarrival time of rainfall
events

4.4 Methodology of analysis of simulation

The output of simulations is utilized in this work to analyze:
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e The return period of landslide triggering (or, more generally, of a given pore
pressure or factor of safety);

e The direct relationship between rainfall events and slope stability (rainfall
threshold).

4.4.1 Return period

Return period is defined as the expected value of the inter-arrival time of a
given event, of interest.

In the case of landslide modeling, main interest is on the determination of the
return period of F'S < 1. Equivalently, the event F'S < 1 may be expressed as
1 > ¢, where 1., is the pore pressure at which corresponds an F'S = 1.

Pore pressures are generated at the same temporal resolution of the input rain-
fall series (hourly).

Statistical auto-dependence occurs within such a series, because the generic
initial water table depth d;(0) is the result of antecedent rainfall.

Yet this statistical dependence is in many cases limited to the hydrological year.
For instance, in the Mediterranean area, the summer season is usually dry and long
enough to bring to zero the surficial water table height at the beginning of the rainy
season (September).

This allows to consider annual maxima of pore pressure statistically indepen-
dent, and to compute the return period of ., pore pressure, with the formula:

1

TR = T )

(4.1)

where F'(t.,) is the non-exceedance probability of t... Because simulations are
carried out for a large number of years, no parametric distribution is assumed for
Yo and the empirical cumulative frequency distribuition is are directly used for

F(er).

4.4.2 Rainfall-Landslide occurrence relationship

As discussed in section 2.2, several empirical models have been proposed for as-
sessing rainfall thresholds of landslide triggering, that try to relate directly rainfall
and landslide occurrence.

The Monte Carlo approach is utilized in this work to investigate on the rela-
tionship between rainfall and landslide occurrence, i.e. to evaluate the effect of
the stochastic nature of rainfall (randomly variable rainfall intensity) on landslide
triggering thresholds.

The relationship between rainfall intensity and duration and landslide occur-
rence is investigated in this work, because it is perhaps the most interesting case,
considering its widespread and consolidated use in determination of empirical thresh-
olds.
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Intensity I and duration D to landsliding, are defined according to the usual
empirical reference scheme (see, e.g., Aleotti, 2004), as shown in figure 4.3. In
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Figure 4.3: Definition of rainfall duration D and (mean) intensity I to landsliding

particular, antecedent rainfall induces the presence of an initial water table height,
that is, a initial pore pressure v;,. Then pore pressure increases in response to
rainfall, and the critical pore pressure = 1.,., with subsequent slope failure, may be
reached. Figure 4.3 also puts in evidence that pore pressure cannot exceed the one
corresponding to a water table at the ground surface g4, i.e. a fully saturated
soil.

Simulations yield to a large dataset of intensities and durations corresponding
to landsliding. Confrontation of simulation results with an empirical models equa-
tion, allows to evaluate from a stochastic physically-based perspective the empirical
model itself. In an ideal situation, the pore pressure (equivalently, the factor of
safety) may be constant for curves that are represented by the empirical model’s
equation. For instance, for the I-D empirical model, iso-v simulation points should
lay on a straight line in the log D -log I plane.

4.5 Software

Computer programs where developed and used to apply the Monte Carlo method-
ology described in this chapter.

In particular, for the NSRP rainfall model, all codes were specifically devel-
oped for the application herein, in MATLAB®. The developed programs allowed
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to calibrate, validate and then simulate rainfall at the desired aggregation time.
Minimization of the objective function for NSRP parameter estimation 5.20, has
been carried out by optimization algorithms implemented in MATLAB optimiza-
tion toolbox® | which is based on Nelder-Mead simplex method (Nelder and Mead,
1965), that was successfully used for the scope by other researchers (cf. e.g. Favre
et al., 2004)

The TRIGRS FORTRAN program, version 2.0 model physically-based model
for simulating landslide triggering is available to interested users at the website
http://pubs.usgs.gov/of/2008/1159/. The source code of this program is also
available for customization. Manual (Baum et al., 2008) that describes the the-
oretical basis and operation of the program, is available from the same website.
It is worthwhile to say that a previous version of the model (Baum et al., 2002),
version 1.0, is available from another website. This model is a spatially-distributed
extension of the Iverson (2000) model, coupled with a diffusive model for . The
version 2.0 used here is still a vertical-infiltration-based model, but it is based on
less restrictive assumptions than the model of Iverson (2000) (see chapter 6).

No internal modification of the FORTRAN program was carried out, and the
executable files of TRIGRS were directly used, as distribuited on the website men-
tioned above. Externally-operating codes have been developed to allow interaction
between the NSRP, the TRIGRS and the WTR models, that involves what is de-
scribed in this chapter (rainfall separation algorithm, and analysis of simulation
output). These codes are dedicated to automatically write the input text files
for TRIGRS (stochastically generated rainfall events), collect the output of multi-
ple simulations, and finally perform the analysis briefly described in the previous
section.
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Chapter 5

Neyman-Scott Rectangular
Pulses rainfall model

5.1 Preliminary remarks

In many hydrological problems and related hazard and risks analysis, the length
of historical records of the hydrological variable of interest may be insufficient to
enable reliable statistical analysis of data. Such is often the case of landslides, and
also of many other natural hazards.

Synthetic generation of time series of the variable of interest via stochastic
models, such as precipitation, has been used by many researchers in order to per-
form Monte Carlo simulations aimed to characterize probabilistically the output of
interest.

Stochastic models of rainfall have been used to generate rainfall data for use
in a variety of situations, such as reservoir design (at a time scale from daily to
monthly), flood studies (at a time scale from hourly to daily) and design of sewerage
systems (at a sub-hourly time scale)

In the present chapter the Neyman-Scott Rectangular Pulses (NSRP) model of
rainfall is exploited to generate hourly rainfall at a point, based on the calibration
on a station of interest. Cluster models, like the NSRP, are appealing for rainfall
time series simulation, as they have built into their structure the capability of
representing rain cells (Cowpertwait, 1991), which are known to exist in actual
rainfall events (Amo). Also the NSRP is able to preserver rainfall statistics over a
range of time scales (Rodriguez-Iturbe et al., 1987b) as it may be able to match the
statistical properties of temporal rainfall at different scales of aggregation which go
from 1-24 hours (Rodriguez-Iturbe et al., 1987b). Hence, one may be able to infer
the statistical properties at a finer time scale than the one at which rainfall was
observed, which may be useful in many practical situations. In other words the
model would statistically match simultaneously the 1-, 6-, 12-, and 24-hour past
history.

Although various improvements of the NSRP model have been suggested by
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researchers (see section 5.2), this model is here chosen because it represents a
compromise between flexibility and complexity (only five parameters per season)
and numerous applications corroborate its validity.

5.2 Process

A brief introduction to point process modelling is given in Salas (1993). A distinc-
tion is made between simple point processes and cluster processes. In the first case
only one precipitation burst, i.e. a random a rainfall amount (e.g. Poisson White
Noise process, PWN) or pulse (e.g. Poisson Rectangular Pulse model process,
PRP), is associated with a storm. In the second case for each storm more than one
precipitation bursts are in general associated with each storm, in terms of random
rainfall amounts (e.g. Neyman-Scott White Noise process, NSWN) or pulses (e.g.
Neyman-Scott Rectangular Pulses process, NSRP).

More precisely, the NSRP process may be described with reference to the sketch
of figure 5.1, as follows:

e Storm-generating mechanisms (systems), or simply storms or origins, arrive
governed by a Poisson process of parameter At. It follows that , the interar-
rival times t; between storms are exponential distribuited with parameter A,
namely with cdf (Mood et al., 2001):

Fr(t) =1— e M. (5.1)

e For each origin a random number C of precipitation bursts (or rain cells)
are generated, typically according to a geometric or Poisson distribution. In
particular, in the first case it is assumed that the variable C' = C' — 1 follows
a geometric distribution of mean v — 1, i.e. the mass probability function

(pmf) of C” is |
po(e) = 2 (1 - 1)C . (5.2

14 14

with ¢ = 0,1,2,... (which implies ¢ = 1,2,...). In the second case s
assumed Poisson distributed with mean v — 1, i.e. pmf is

VC/

n_ Y —v
porld) = Lre (53)

The Poisson assumption may be advantageous for calibration, because the dry
spells probabilities and dry-dry and wet-wet transition probabilities are also
available as a function of parameters after Cowpertwait (1991), as described
below.

e Each cell has origin at time 7 ; with j = 1,2,...,¢; from ¢;, according to an
exponential random variable of parameter [3:

F(r) =1—Be "7, (5.4)
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e With each rain cell, a rectangular pulse of duration d;; and intensity z; ;
is associated. Pulses typically are assumed to have duration D exponential
distributed with parameter n: Fp(d) = 1 —ne~"?. Intensities X are typically
extracted from a exponential distribution of parameter £. Also the Weibull
is suitable for the pulse intensities, which has cdf

Fx(z) =1—e & (5.5)

In this case, typically only & participates to the calibration procedure and an
0 < b < 1is fixed (typically b = 0.6 — 0.9). This may lead to better fits in
the extreme value distribution of data (cf., e.g., Cowpertwait et al., 1996).

e Finally, the total intensity at any point in time is the sum of the intensities
of all active cells at that point: if Y'(¢) is the total intensity at time t given
by the NSRP model and X;_,(u) is the intensity at time ¢ owing to a cell
with origin at t — u, then

u=+00
Y(t)= J Xi—u(w)dN(t — u) (5.6)
u=0
where:
| 1 if there is a cell origin at ¢ —u
AN (8 —u) = { 0 otherwise (5.7)
and ( )
_ | X with probability exp(—nu
Xiu(u) = { 0 with probability 1 — exp(—nu) (5-8)

Various improvements of the NSRP model have been suggested by researchers.

Rectangular pulses may be of low physical meaning; Rodriguez-Iturbe et al.
(1987b), suggested by that an improvement may be achieved by assuming a trian-
gular or gammar-like shape for the pulses, because it may describe better the rain
intensity of a cell through its life cycle.

Another point is that the NSRP model assumes independence between cell
intensity and duration, which may be unrealistic; this issue was addressed by Evin
and Favre (2008) by means of a copula approach aimed to model dependence
between cell depth and duration.

Furthermore, from a physical perspective, the NSRP model only allows for
the existence of one type of rectangular pulse, i.e. one type of rain cell. It is well
known that commonly different types of cells are responsible for rainfall observed at
a point. Therefore, it may be argued that the parameter estimates for the intensity
and duration of the cells in the NSRP model are likely to be average values over
the various types of precipitation that can occur in the same precipitation field.
To overcome this shortcoming Cowpertwait (1994); Cowpertwait and O’Connell
(1997) developed a Generalized version of the NSRP process, that allows existence
of more than one type of cell (typically two types: one that mimics stratiform cells
and another convective cells). Furthermore Cowpertwait (2004) proposed another
model where rainfall is generated by the superimposition of two independent NSRP
processes.
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Storms origins arrive according to a Poisson Process
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Figure 5.1: Sketch of the Neyman-Scott Rectangular Pulses process (adapted from
Cowpertwait et al. (1996) and Salas (1993))
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5.3 Properties of the NSRP process

Of main interest are the properties of the NSRP process aggregated at a time
scale h, because rainfall data are usually only available in that form, e.g. as his-
torical records of hourly- or daily-aggregated totals.

Let }Q(h) be the aggregated rainfall depth in the ith time interval of length h so
that:

ih
VAR =L . Y (t)dt (5.9)

Thus, if h is measured in hours, the series {Yi(h) 21 =1,2,..} is a rainfall time
series at the h-hour level of aggregation, i.e. an h-hourly rainfall time series.

Second-order properties of Yi(h) were derived by Rodriguez-Iturbe et al. (1987a)
as follows:

hAE[C]E[X]

u(h) = B[YM] = ;

(5.10)

A(nh — 14 e ™) (2E[C]E[X?] + E[C? — C|E?[X]B?) N

(B2 —n*)n?
_ —Bh 2 2
. MBh—1+ eﬁ(w)f[ncz*> ClEZ[X] (5.11)

vy = Var[yV] =

A1 — e~")2e=n(=Dh(B[C|E[X?] + LE[C? — C|E?[X]B)

h h
y(h1) = COU[Yi( )aYi(H)] = (B2 = n)n? t
A1 — —Bh\2 75(l71)hE 2 E2 X
Ay [0® - C1E°[X] 1)

26(8% —n?)

where [ > 1 denoting the time lag.

Expression for the expectations that appear in equations 5.10 — 5.12, may be
derived from well-known properties of the expected value and variance. In the case
that a Poisson distribution is chosen to model the number of rain cells C = C' + 1:

E[C] E[C"+1]=E[C'|+1=v
E[C?*-C] = E[C*]-E[C]=
= (Var[C] + E*[C) — v =
= Var[C' + 1] + E*[C] — v = Var[C'] + E*[C] = v* — 1(5.13)

Expression of expectations for the intensity X, in the general case that it is modeled
by a Weibull distribution, are (in the case that an exponential distribution is used,
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expression are obtained letting b = 1):

s - ()

Var[X] + E?*[X] = <2)

1\ 2 1 [(1\?' 1
- (5) F(l*'b> [52 <£) 1F<1*‘b>

Use of equations 5.10 — 5.12 at two different time scales has been the usual
procedure for estimating parameters of the NSRP through the method of moments
(Calenda and Napolitano, 1999), as described after. In particular autocorrelation
p(h,1) = ~(h,1)/v(h), typically at lag [ = 1, is used in place of covariance.

In the case the it is assumed that C' — 1 follows a Poisson distribution with
mean v — 1, the following expression for the probability that an arbitrary interval
of length h is dry was derived by Cowpertwait (1991):

BN

IS
g
I

¢(h) = P[Y;(h) = 0] = exp <)\h + )\1 —exp[l — v+ (v —1) exp(—Sh)] +

Blv—1)
0 (5.15)
A e
0
where
—Bt __ —nt
_ ne Be
pu(t) = [e Blerh) gL —
n(t) -
—Bt _ o—nt
X exp {(1 - V)ﬁenf; —w=1e P+ (v- 1)eﬁ(t+h)} (5.16)
The transition probabilities, P[Y,/") > 0]Y;" > 0] and P[Y;") = 0]y, = 0],

denoted as ¢ww (h) and ¢pp(h), respectively, can be expressed in terms of ¢(h)
and follow as (Cowpertwait, 1991):

¢pp(h) = ¢(2h)/¢(h) (5.17)
¢(h) = dpp(R)(h) + {1 — dww (M) {1 — ¢(h)} (5.18)

so that:
dww (h) = {1 —2¢(h) + ¢(2h)/{1 — ¢(h)} (5.19)

5.4 Calibration

Calibration of the NSRP model can be carried out by exploiting the properties of
the NSRP process, shown above. In particular, the method of moments is generally
employed for its simplicity (Calenda and Napolitano, 1999).

(3o oe )] ()

(5.14)
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In particular, model parameters (A, v, 8,7 and £) may be estimated using as
many moments as the parameters of the model (five), usually considering vari-
ous properties (moments) at various time scales h; (typically, i = 2: for instance,
h1 =1h and he = 24 h), and solving the related equation system, where the theo-
retical expressions, containing the parameters, are equated to the sample moments.
Early applications considered the following choice: p(h1),v(h1),7v(h2),p(h1,1) and
p(h27 1)

Because the equation system that is obtained is non linear, it must be solved by
numerical minimization of an objective function S, that measures the global error
between theoretical and sample moments. In fact, more than the strictly necessary
moments can be exploited to match more properties. Commonly the following

objective function is utilized:

np P 2
S(Aal/767na§) = Zwi (fszz> (520)
i=1

i

where n, > 5 is the number of properties considered for NSRP calibration, fl are
sample estimates of the properties, f;(\, v, 8,7,&) are the theoretical values of the
properties and w; are weights that can be eventually assigned to the moments in
order to give them more or less importance. Optimization has to be constrained
to A, 8,17, >0and v > 1.

Estimation of sample properties may be carried out via the following formulas:

e Sample mean i (h):

~ h
fe(h) = —5 25 D Vi (5.21)

e Sample variance:

. h .
(k) = —g— 25 2 (V0 = () (5.22)
N S
e Sample lag 1 covariance:
1 nl(ch)fl
~ h A h .
1) = —ar——— 37 >, (V5 = )L e (R)
”(”k -1)-1;3 j=1

(5.23)
Covariance for [ > 1 is estimated analogously.

e Probability of a dry is given by

ng(h) =k (h) (5'24)
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e Transition probabilities may be estimated after Cancelliere and Salas (2004)

(00)
2 g (h)
PP(h) = nffo)(hﬁ ) (5.25)
and ()
W () = () (5.26)

n{™ (k) + 0l (h)

where k is a season index (for example, if a NSRP is caibrated separately for each

and all of the months of the year, k = 1,2,...,12), Yz(?)k is the jth h-hourly rainfall

(h)

total in year ¢ for season k, n;,~ is the number of h-hourly totals in season k, n s

the number of years of record, while nECAB)( h) =37, Z (h)" ! 2‘]4],3) where Il(jf)
is an indicator function defined as

7(A4B) _ 1 if sign[Yl(J )k] A and sign[Yl(]J)rl wl =B
bk 0 otherwise
with A =0,1 and B = 0,1, and sign is the signum function.

Further details on parameter estimation of the NSRP model, and in general of
other temporal rainfall models, are given in Obeysekera et al. (1987).
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Chapter 6

Landslide triggering
physically-based modeling

6.1 The TRIGRS model

6.1.1 Overview

The TRIGRS model (Baum et al., 2008, 2010) is an event-based spatially-distributed
model for transient, unsaturated infiltration and slope stability analysis.

TRIGRS program computes transient pore-pressure changes, and attendant
changes in the factor of safety, due to rainfall infiltration. The TRIGRS program
uses a simple infinite-slope model to compute factor of safety on a cell-by-cell basis.
Horizontal heterogeneity is accounted for by allowing material properties, rainfall,
and other input values to vary from cell to cell.

TRIGRS is based on analytical solutions for Richards’ partial differential equa-
tion that represent one-dimensional, vertical flow in vertically-isotropic and homo-
geneous materials.

As put in evidence by Iverson (2000), vertical infiltration models represent a
good approximation of 3-D models, if ratio € = H/\/Z « 1.

Version 1.0 of the program (Baum et al., 2002), was based on the model of
Iverson (2000), and its extension for a finite basal boundary depth by (Savage
et al., 2003, 2004). Several applications of this version of the program exist (e.g.
Salciarini et al., 2006, 2008; Kim et al., 2010).

Version 2.0, which is used here, is based on hypotheses less restrictive than the
previous version. Reference scheme for a simulated hillslope cell is shown in 6.1.

In particular, the Richard’s vertical infiltration equation is used with a Soil
Water Retention Curve (SWRC) of the exponential type proposed by Gardner
(1958). Better approximations of field measurements may be attained by more so-
phisticated SWRCs, such as the well-known van Genuchten - Mualem model (van
Genuchten, 1980). However in that case numerical integration is required to solve
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the Richards’ equation, while for an exponential SWRC analytical solutions were
provided by Srivastava and Yeh (1991). This drastically decreases the simulation
time, which may be prohibitively high for a numerical model applied to a wide
area. This stands true especially if one want to use high-resolution Digital Ele-
vation Models (DEM) nowadays easily obtained via airborne laser swath mapping
(ALSM), that yield to grid spacings on the order of a few meters. Baum et al.
(2010) tested model computational performances by comparing it with numeri-
cal models HYDRUS1-D (Simunek et al., 2008) and VS2DI (Lappala et al., 1987;
Hsieh et al., 2000), and obtained that TRIGRS may be 30-70 times faster than the
numerical models, when applied at the catchment scale.

TRIGRS unsaturated layer computations yield, in addition to pore pressures
¥(Z,t) and F'S(Z,t), the flux at the base of the unsaturated zone, which is used for
computations in the saturated zone. In particular a mass-conservation equation,
that includes a leakage term, is used to estimate water table rise. Then the weight
as measured by the computed water table rise is applied at the initial top of the
saturated zone and pressure heads are computed using formulas adapted from
analogous heat-flow problems (Carslaw and Jaeger, 1959).

For a complete description of the TRIGRS model and program the reader is
referenced to Baum et al. (2008). The TRIGRS v.2 model can be freely downloaded
from website pubs.usgs.gov/of/2008/1159. Applications and further details are
reported in Baum et al. (2010). Hereafter, equations of the model and main details
on the program are given, for the case of finite basal boundary depth d .

I
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surface A2 \
|y .
Water table

(Pressure head = 0)
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Basal
boundary

(Leakage)

VZ

Figure 6.1: Shallow groundwater conditions in hillside soils. Adapted from Baum
et al. (2010)
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6.1.2 Governing equations

The one-dimensional form of the Richards equation describing infiltration at the
ground surface and vertical flow through the unsaturated zone, in the case that the
ground surface is tilted (cf., e.g. Freeze and Cherry, 1979) is:

e

where Z is the vertical downward coordinate, t is time 6(Z, t) is soil water content,
¥(Z,t) is pore pressure, K () is hydraulic conductivity (this function represents
the SWRC) and ¢ is ground surface slope.

The exponential hydraulic model of Gardner (1958) can be used to linearize
equation 6.1 and provide an analytic solution for transient infiltration through the
unsaturated zone. Unsaturated conductivity model of (Gardner, 1958), considered
appropriate for coarse-grained soils, in represented by the following equations:

K (1) = K e=0) (6.2)
0 =0, + (0 — 0,)ex VW0 (6.3)

where Kg is the saturated hydraulic conductivity, « is a parameter that may be
obtained by fitting equation 6.3 to measured data, —i)9 = 1/« coincides with the
vertical height of the capillary fringe above the water table (cf. figure 6.1), 6, is
the residual water content and 6, is the water content at saturation.

Substitution of equations 6.2 and 6.3 in into the one-dimensional version of the
Richards’ equation, leads to a linear partial differential equation in K (Z,t)

a0, —0,) PK PK K
K., o022 o7z "oz

(6.4)

where a; = acos?§. Closed-form solution to this equation has been derived by
Srivastava and Yeh (1991).

6.1.3 Unsaturated zone

The response to a given rainfall time series Iz(t) is considered. The series is a
sequence of rectangular pulses of intensity I, z, each starting at instant t,, n =
1,2,..., N and finishing at instant ¢,1, and can be expressed as Iz(t) = H(t —
tn) — H(t —t,41) for t, <t <tp41, where H(t) is the Heaviside step-function:

1, if t=0
H<t)={ 0 if t<0 (6.5)

In general, also a long-term (steady-state) Iz surface is taken into account.
Iz can be approximated by the average precipitation in recent weeks or months
that is needed to maintain the initial conditions. Due to its minor relevance, in the
present work this it is let Iz = 0.
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Pore-pressure response in the unsaturated zone ¢ (Z,t), 0 < Z < d,, (cf. figure
6.1) follows from equation 6.2 solved for v:

Wzt = <%0 [K([ft)] + . (6.6)

(€3] s

Solving equation 6.4 yields the hydraulic conductivity K (Z,t) needed in the above
equation 6.6.
In particular, the initial condition is:

K(Z,0) = Izpr — (Izpr — Ke®V0)e 1 (du=2); (6.7)

while for ¢ > 0:
N
Z (t —to)Ri(Z,t —tn) — H(t — tni1)Ri(Z,t —tny1),  (6.8)

in which Ry is the hydraulic conductivity profile produced by a rectangular hyeto-
graph Iz(t) =1z,t>0:

RK(Z, t) = IZ - [IZ - KS exp(alwo) exp(—oq(du - Z)) - 4(IZ - IZLT)

Z Dyt & sin[Amai(dy, — Z)]sin(Apondsy,
exp [al ] exp [_ Y ] Z sin[ al(ﬂ 2 )] 52111( aidy)
4 1+ 2 4 242 aqd,

5 (6.9)

exp(—A7, Dyt),

m=1

In the previous equation Dy = 3 1K95 is a decay constant, while the values of
A,,, are the positive roots of the followmg pseudo-periodic characteristic equation:

tan(Aaidy,) + 2A, (6.10)

which is numerically solved in TRIGRS.
As rain infiltrates, a flux ¢ at the base of the unsaturated zone (Z = d,) is
produced. This flux is given by:

q(du,t) = Z (t —tn)Ry(t —tn) — H(t — tni1)Ry(t — tni1), (6.11)

where R, is the flux produced by a rectangular hyetograph Iz(t) = Iz:

a1dy Dyt
q(dy,t) = Iz —4(Iz — Izp7) exp [ 12 ] exp [f]

m Sin(Apardy) 5
—A2 Dyt) .
Z{14—‘“‘“+2A2a1d < (A w)}

(6.12)

Formulas based on Fourier series of equations 6.9 and 6.12 converge poorly for
early times (Dyt > 0.05). In this case TRIGRS uses more simple formulas (see
Baum et al., 2010, Appendix A).
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6.1.4 Saturated zone

Flux ¢ given by equation determines water-table rise, if the amount of infiltrating
water reaching the water table exceeds the maximum amount that can be drained
by gravity at the top of the saturated zone.

TRIGRS computes maximum rate of drainage, ¢zmaz, as

q9Zmax = Ks(ﬁ - 1) (613)

Excess flux, gze,, is determined by the following formulas:

Oa f duvt < mam_I
(Zex _{ if q( ) < calqz ZLT) (6.14)

q(du,t) — ca(qzmaz — Izrr) i q(du,t) > ci(qzmaz — IzLT)

where the flux exiting from the base of the unsaturated zone ¢(d,,t) is given by
equation 6.11 and approximately equals the flux reaching the water table. To note
that ¢zmae — Iz 7 is used in equation 6.14 because it is excluded from computation
of the transient flux, g(dy,t).

The model assumes:

g = { 1, for the infinite depth case (6.15)

0.1 for the finite depth case

To be noted that cq = 0is consistent with a no-flow boundary (all basal drainage
is prevented), but a value of ¢4 = 0.1 is assumed because natural basal boundaries
are usually leaky. In cases where the saturated hydraulic conductivities of the
colluvium and underlying bedrock are known, their ratio could be substituted for
cq- It is anticipated that, because this information is not available in the model
application presented next, it is let ¢4 = 0.1.

To compute the water-table rise in TRIGRS, the excess flux accumulating at
the top of the capillary fringe is compared to the available pore space directly above
the water table or capillary fringe (see figure 6.2).

The excess flux arriving at the water table given in equation 6.14 is integrated
numerically from time 0 to ¢ to compute the volume of water (per plan-view unit
area) accumulating at the base of the unsaturated zone, V4 (?).

The volume of available (fillable) pore space is computed as a function of height
above the water-table or capillary fringe, V¢(Z,t), by integrating the remaining air
space, 0, = (05 — 0), from the initial top of the capillary fringe, d,, up to various
equally spaced heights above the water table, such as Zy and Zjy; in figure 6.2.
By subtracting equation 6.3 from 6, using equation 6.2 to eliminate e®(¥=%0) and
integrating, the result is

Vi(Z,t) = (0, — 0,)[du — Z + T(Z,1)], (6.16)

with P
1
T(Z,t) = —f K(Z,t)dZ. (6.17)
K, Jg,
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Figure 6.2: Vertical soil-water-content profiles from the ground surface down to an

arbitrary depth, Z, showing the water-table-rise as a result of infiltration (after
Baum et al., 2010)

In figure 6.2, the roughly triangular areas between the water-content curve labeled
t1, the dashed vertical line labeled 6, and the dashed horizontal lines labeled Zj
or Zy41 represent the volume Vy(Z,t) in equation 6.16.

Formulas for T'(Z,0) and T'(Z, t) are obtained by integrating K (Z,0) from equa-
tion 6.7, and K(Z,t)/Kg from equation 6.8 with respect to Z, from d,, to Z (for
explicit formulas the reader may refer to (Baum et al., 2010)).

The water-table rise is first bracketed between the two nearest depths, Z; and
Zi+1, at which the available volume has been computed, such that Vi(Zg,t) >
Va(t) = V§(Zi41,t) and then estimated by linear interpolation between Zj and
Z+1 (figure 6.2). Because of the slope of the water content curve, the method
outlined may slightly overestimate the actual rise of the water table, Ah. The
error can be reduced by reducing the depth increment, Zy1 — Z.

Once the water-table rise h,, is computed at a grid cell for time increment n, its

weight is applied at the initial top of the saturated zone to compute the pressure
head:

N
V(Zw,t) = Z 7vZ’hn[I{(t*tn)Rw(Zwatftn)*H(t*tn-i-l)Rw(Zw775*trz-~-1)]a (6.18)
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in which:

4 1 . [_ (2m — 1)27T2D1t]
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Rw(Zwvt) = whn {1 -

cos [;(2771 ~1) (df:w - 1)]

In the last equation 1)y, is the pressure head at depth of initial water table at the
nth time step and dLZw = dLZ —d.

(6.19)

6.1.5 Infiltration, Runoff, and Flow Routing

Infiltration at each cell, I, is computed as the sum of the precipitation rate P
plus any runoff from upslope cells, R,; with the limitation that infiltration cannot
exceed Kg:

I=P+R, if P+R,<Kg or (6.20)
I=Kg, if P+R,>Kg (6.21)

At each cell where P+ R, exceeds K the excess is considered runoff, R4, and is
diverted to adjacent downslope cells. Distribution among downslope grid cells can
be accomplished using several weighting factors for runoff distribution (see Baum
et al., 2008):

R;=P+R,—Kg, if P+R,—Kg=>=0 or (6.22)

R;=0, if P+R,—Kgs<0 (6.23)

In TRIGRS overland flow between adjacent cells is assumed to occur instanta-
neously and overland flow rate is not modeled. Hence, individual storm periods
should be long enough to flow to adjacent cells.

6.1.6 Slope stability

Factor of safety is finally computed with the following formula (cf. section 2.3):

_tan¢’ ¢ —(Z, 1)y, tan ¢’

FS(2,) = tané vsZsindcosd (6.24)

where symbols are as in section 2.3.

In the case of finite basal boundary depth (the one considered in this study),
the minimum factor of safety (i.e. maximum pore-pressure) is at Z = drz. Con-
sequently, the outputs of interest for most of the studies may be ¥ (dpz,t) and
FS(dpz,t).



64 Landslide triggering physically-based modeling

6.2 Integration of TRIGRS with a water table re-
cession model

The initial water table depth is required as an initial condition to simulate infiltra-
tion and slope stability with the TRIGRS model.

In order to estimate such initial condition, the TRIGRS model is integrated
with a Water Table Recession (WTR) model, that it is applied in the dry periods
in between storms, as described in chapter 4.

The adopted WTR model is based on the one by Rosso et al. (2006), described in
2.3. For dry periods, i.e. when the precipitation rate p = 0, the mass- conservation
equation 2.9 simplifies as follows:

BhKgsing = —Aes%. (6.25)

where here ¢ = 0 at the end of the storm.
This equation has the following solution:

Mt> _ (6.26)

h(t) = h(0)exp <— A9,

The initial condition for the WTR model h(0) may is taken from TRIGRS. If
Y (drz,ty) is the pore pressure at basal boundary at the end of the storm event sim-
ulated with TRIGRS, the water table height is computed as h(0) = ¥(drz,t5)/5,
where 3 = cos? 6, if slope parallel flow is assumed (Izr7 = 0), (cf. Iverson, 2000).
The initial condition for TRIGRS for the successive storm is then given by equation
6.26, by letting t = At;, where At is the interarrival time between rainfall event i
and the next one. Moreover, operating on a cell-basis, B equals the grid cell size
and the upslope contributing area results A = B2Ng,, where Ny is the number of
cells draining in the one local one (Tarboton, 1997). Flow accumulation map, that
may be easily derived from GIS software applied to a DEM, provides Ny for each
cell of a drainage basin.

With these assumptions, equation 6.26 becomes:

QZJ(sz,tf) ox < KSSIH(;t).

h(t) = cos? d "~ BN,0,

(6.27)
Equation is plotted in figure 6.3, assuming a slope § = 40° and hydraulic prop-

erties for the Loco catchment in table 7.1V, for different values of upslope draining
cells Ny and B = 2m.

6.3 Model performance assessment
Model simulation for one or more rainfall events that triggered landslides, allows,

by confrontation of predicted unstable cells and map of observed landslides, to
assess model’s performance (cf., e.g. Rosso et al., 2006; Baum et al., 2010).
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Figure 6.3: Plot of equation 6.2 assuming a slope d = 40° and hydraulic properties
for the Loco catchment in table 7.1V, for different values of upslope draining cells
Ny

Signal detection theory concepts (cf., e.g. Macmillan and Creelman, 2004) pro-
vide perhaps the most correct way to do such a confrontation. Cells may belong
to one of the four classes of table 6.1.

Table 6.1: Confusion matrix for spatial output of an hydrologic model

Actual
Landslide (P) No landslide (N)
True Positive, TP (rightly False  positive FP
/ b) b)
Unstable (P') simulated unstable cells) (wrongly simulated

Model unstable cells)

False  Negative, FN True  Negative, TN
(wrongly simulated (rightly simulated unsta-
stable cells) ble cells)

Stable (N')

Most used performance indexes calculated on the basis of table 6.1 are:

e True Positive Rate

TP TP
TPR= — = —————; .
R P TP+ FN’ (6.28)
e False Positive Rate 7p 7p
FPR=— = ————; 2
R N FP+TN’ (6.29)
e Accuracy
TP+ TN
AcC = (6.30)

P+N '’
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e Precision

TP

PRE = ———.
R TP+ FP

(6.31)

Furthermore, the Receiver Operating Characteristic (ROC) plot, may allow
to compare several models, or to analyze how model performance varies with a
parameter that is not completely known. ROC plot consists in the abscissa the
FPR and in ordinate the TPR. An ideal model has FPR =0 and TPR =1, i.e.
model is represented by a point in the upper left corner of the ROC space. On
the contrary, a completely random guess is characherized by FPR = TPR, i.e. a
model point that lays on the diagonal line from the left bottom to the top right
corners of the ROC space.
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Chapter 7

Application to Loco catchment
in the Peloritani Mountains,
Italy

7.1 Preliminary remarks

In this chapter application of the Monte Carlo methodology, illustrated in chapter
4 is carried out with reference to the Loco catchment in the Peloritani Mountains,
Italy.

Firstly, the application of the stochastic rainfall model is illustrated. Calibration
and validation of the NSRP model is carried out for the Fiumedinisi STAS rain
gauge, utilizing 10-minutes precipitation series.

Successively the TRIGRS-WTR model is applied to simulate the 1 October
2009 landslide event triggering, for which maps of occurred slides are available.

Model performance is assessed by comparing the predicted unstable areas with
the map of observed landslides. This analysis is carried out by model simulation
for the rainfall sequence that starts at the first rainfall event of the hydrological
year to the one on 1 October 2009, in order to compute, through the combined
use of TRIGRS and the WTR model, the initial conditions required to simulate
correctly the mainly triggering rainfall event of 1 October 2009. In fact, two sig-
nificative rainfall events occurred before that date, that determined an increase on
the probability of landslide occurrence.

Finally, the Monte Carlo approach is applied. Return period of cell slope fail-

ure is estimated, and the direct link between rainfall and landslide occurrence is
analyzed in terms of rainfall intensity and duration.
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7.2 Calibration and validation of the NSRP rainfall
model

7.2.1 Analysis of Fiumedinisi rainfall data

Data from the Fiumedinisi rain gauge are available, at a temporal resolution of 10-
minutes, for the almost 9 years-long period 21 February 2002 — 9 February 2011.
Within this period several landslides have been experienced in the Peloritani area
(see section 3.2).

Statistics that useful for calibration and validation of the NSRP model are
shown in table 7.1, relatively to the hourly series. Seasonality of the series has been
mainly investigated on the basis of the seasonality of these statistics, represented
in the plot of figure 7.1. Similarly to other researchers (cf., e.g., Cowpertwait et al.,
1996; Obeysekera et al., 1987), this investigation was carried out on a month-per-
month basis.

u(1) (1)
0.4 6
4
0.2
2
\/\
0
12 3 45 6 7 8 9 101112 12 3 45 6 7 8 9 101112
p(1.1) o(1)
1 1
0.9 .
0.5
0.8
0 0.7
12 3 45 6 7 8 9 101112 12 3 456 7 8 9101112
PG By
1/’\ 1
0.9 : :
0.5
0.8
0.7 0
12 3 45 6 7 8 9101112 12 3 456 7 8 9101112

Figure 7.1: Moments for each month for Fiumedinisi STAS rainfall data

Based on the plot of figure 7.1 one can state that:
e The series exhibits seasonality; in particular 6 seasons seem to exist:

1. September and October;



69

7.2 Calibration and validation of the NSRP rainfall model

¥69°0 G€9°0 8L9°0 09%°0 €E€¥'0 8GY'0 L99°0 ¢SS0 GE€9'0 L690 GP9'0 8L90 MAMp
€660 8460 €960 G960 6860 <660 L8660 ¢80 ¥I60 LG6'0 F¥6'0 S¥6°0 ade
€¢8°0 868°0 9680 9¢6'0 ¢860 9860 €L6°0 ¥960 O0I60 0880 ¥980 €80 ¢
109°0  €L9°0 9660 €¢S0 €8I0 06680 PIS0 C¢v0 6¢90 9990 ¢L90 6290 (1)d
007’ T 299°T 089'€ @8F¥ LIVO T60°0 SgI'0 8910 6820 T68°0 LVF0O 86L0 [;uw]o
L6¢°0 6810 ¢cc’'0 802’0 %00 6100 9¢0°0 9¥0°'0 6600 GLT'0 ¥»ST'0 €020 [woru]rd
88 06 06 06 06 06 06 68 08 08 98 06 [4] A7
29( AON 190 ideog  Sny  p ung Aepy  ady RN goq uef

'YRp [[Rjurel A[INOY QYIS Surpawni jo ajduwes oy} Jo sO1IS13e1S ' 9[qeL



70 Application to Loco catchment in the Peloritani Mountains, Italy

November;

December;

January, February and March;
April;

S ook N

May-August;

e The last two seasons listed above have low precipitation, i.e. the probability
of a landslide triggering event is reasonably very low.

Based on these considerations, separate sets of parameters of the NSRP model
are determined for each one of the seasons listed above (in total 20 parameter val-
ues). The last two seasons have been considered of negligible rainfall, with reference
to potential for landslide triggering; this means that in the Monte Carlo simulations
null precipitation has been assumed for the months from April to August.

7.2.2 Model Calibration

A preliminary analysis relative to calibration of the NSRP model consisted in trying
different sets of moments at various time scales ranging in the interval of 10min-
24 h in order to best calibrate the NSRP model. The plot of the six moments
w(h),y(h), p(h,1),¢(h),¢pp(h) and éww(h) versus scale of aggregation h has
been considered as a reference for assessment of the goodness of fit, besides the
value of the objective function (weights were assumed all equal to one).

With reference to the situation in which only two different times scales are
considered accross the moments used, according to results obtained by Calenda
and Napolitano (1999), the choice of two distant time scales rather than two close
ones, seemed to lead to better results. Moreover, that choice seemed to lead to a
quite good reproduction of moments for the times scales in between the ones used
for calibration.

Among the tentatives done, the following set of moments resulted most suitable:
7(1)7 ¢(1)7 ¢DD(1)3 ¢WW(1)7 M(24)a 7(24)3 ¢(24)

To be noticed that accounting for ¢(1),¢pp(1), pww (1) is redundant, being
them related by equation 5.18. As observed by (Cowpertwait et al., 1996) this is
the same to give some extra weight to match the dry spell sequences.

Results of the calibration are shown in tables 7.IT and 7.III. The Weibull dis-
tribution was chosen to model rainfall intensities, with a fixed value of b = 0.6,
which seemed to be the most appropriate, after an exponential distribution (which
corresponds to b = 1) resulted unable to model peaks exhibited by the observed
series.

Relatively high values were obtained for the v parameter. From a physical
standpoint, the number of rain cells per storm may be bounded to a lower value
of the one obtained (cf., e.g., Cowpertwait et al., 1996, utilized the bound v < 20).
However, other researchers have obtained from calibration even higher values for
this parameter (cf., e.g. Obeysekera et al., 1987).
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Calibration performances, as measured by the objective function, are worse for
the one-month season of December and best for the months of September and
October; this may be somehow related to the fact that the same value of the b
parameter was adopted for all seasons in conjunction with the fact that December
is more rainy but with less accentuated peaks.The lower performances for the three-
months season January-March, may be quite expected for the obvious reason that
more months, that may include more heterogeneity of data characteristics, are
modeled with just one set of parameters.

From the table it can also be noticed how the parameters relative to the season
September-October are significantly different form the other three seasons among
which significant differences exist but are not so accentuated. In fact, rainfall in
September and October seems to have distinct extreme characteristics, being these
months the only ones for which landslides were observed in the last years (except
for one date: 1 March 2011).

Figures 7.2 to 7.5 the moments vs. aggregation time scale plot used for best
calibration, as mentioned before. Also a verification of the correct simulation of
the model by the developed software is demonstrated by those figures, by the
superimposition of the same plots relative to theoretical moments computed by
formulas 5.10 - 5.19 and relative to a 200-years long synthetic rainfall series.

Good reproduction, at all time scales, of the three most important statistics,
1,y and ¢ can be noticed from those plots. Also the lag-1 autocorrelation is
quite well reproduced, even though it has not been accounted for. This may be
due to the presence of zeros that mainly controls the autocorrelation, and thus
that good modeling of ¢ implies good modeling for p(h,1). Yet, p(h,1) together
with transition probabilities ¢ww have a trend that departs upward from the
plots relative to the observed series (this occurs in less measure for the September-
October season). This kind of trend in autocorrelation has however been observed
in real time series (cf., e.g. Calenda and Napolitano, 1999, fig.13, where p(h,1)
increases when going from a 10 to a 20 hours aggregation scale), and thus does not
represent a physically unrealistic behavior. This is also true relatively to ¢ww, for
which the increasing trend is present sometimes also in the Fiumedinisi rain series

(cf. 7.5)

Table 7.I1: Results of NSRP calibration

Parameter  Jan,Feb,Mar Sept,Oct Nov Dec
AT 0.002295 0.021195  0.001485  0.003185
v 44.28 1.57 42.41 42.61
Bh™'] 0.010161 2.1179  0.0059551  0.0098760
nh™ 0.72113  0.83999 0.94053 0.67735
¢[hb /mm?) 1.13441  0.46260 0.69261 1.03521

S 0.0137 0.0018 0.0037 0.0166
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Table 7.I1I: Comparison between sample and theoretical moments (sample, theoretical and relative error in percentage)

Model YOmm?] (1) ¢pp(1) oww(l) p4)[mm] ~(24)[mm?]  ¢(24)
Jan,Feb, Mar 072 087 0.95 0.67 423 9139  0.49
075  0.83 0.94 0.73 4.12 8844  0.49

(-4.14)  (4.56)  (0.44)  (-9.07) (2.45) (3.23)  (-0.15)

Sept,Oct 404 091 0.96 0.63 5.18 289.82  0.58
405 095 0.98 0.63 5.17 289.72  0.58

(-0.09) (-3.85) (-1.60)  (-0.51) (0.11) (0.04)  (0.56)

Nov 157 0.90 0.96 0.63 4.57 14315  0.54
165  0.89 0.95 0.63 4.46 140.90  0.54

(-5.14)  (0.71)  (0.32)  (1.29) (2.42) (1.57)  (0.67)

Dec 140  0.82 0.93 0.69 7.15 180.96  0.37
146 0.77 0.92 0.75 6.83 176.73  0.37

(-4.25)  (6.93)  (0.91)  (-8.60) (4.44) (2.34)  (-0.19)
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7.2.3 Model validation

In addition to the plots of figures 7.2 - 7.5, which also represent a validation test
for the model, model performance was tested against the capability to reproduce
characteristics that are important with respect to the potential of rainfall events
to trigger landslides.

In particular, reproduction of total event cumulative rainfall W;,; and total
event duration Dy, was investigated (see definitions of these variables in figure ).
It may be worthwhile to notice that those cumulative rainfall and duration are,
obviously, different from the ones relative to the instant of incipient failure, i.e. the
ones plotted, for instance, to develop and empirical I — D model.

For the analysis the following parameters of rainfall event separation (see section
for definitions) values have been assumed: Ahpm = 0.2 mm, At,,;, = 24 h,
Winin = 35 mm, At, = 6 h. These event separation was applied to both the
simulated and the observed series. Moreover for the observed series, the almost-
dry seasons (months from April to August) have been assumed of zero precipitation.
Hourly rainfall has been considered for these analyses.

The 1000-years long synthetic series, used in the Monte Carlo simulation, has
been used to test these kind of performances, by comparing the behavior of 9-years
long series excerpted from the 1000-years synthetic series (total of 111 series) with
the observed Fiumedinisi data, of almost 9-years length too. In particular, the
following analyses have been conducted on Wy, and Dygy:

e Comparison of the empirical cumulative frequency marginal distributions (fig-
ures 7.6 and 7.7);

e Comparison of linear correlation between the logarithms of I;o: = Wiot/Diot
and Dy, and of the intercept and slope of linear regression between these
two variables 7.8.

In figures 7.6 and 7.7 the colored and continuous lines represent cumulative fre-
quencies of the 111 simulated 9-year series. Good results were obtained for the
cumulative event rainfall I;,:: the plot for the sample (black dotted line) is entirely
within the region spanned by the curves relative to the synthetic series. Worse
results were obtained for the duration: the sample has a lower dispersion of all
the synthetically-generated curves, short durations are more probable and long
durations are less probable. However, the result seems to be acceptable.

In figure 7.8, the box plots for the results of the 111 series are compared with
the observed series (represented by the blue circle in each plot). Moreover, in the
figure each green point is representative of one 9-year long simulation.

Trend of correlation is well reproduced as demonstrated by the regression in-
tercept and slope plots, though the linear - correlation is significantly higher in
magnitude (negative values) for the modeled series in comparison to the observed
series, about —0.75 against about —0.90. This may be expected in a certain sense,
due to the fact the reality (observed series) is more complicated than model-process.

In conclusion, the model, although improvable, seems suitable for rainfall sim-
ulation within the context of the illustrated Monte Carlo approach for the analysis
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of the hydrologic control on shallow landslides.

7.3 Application of the physically-based model

7.3.1 Data and preliminary analyses
Rainfall data

Rainfall of the Santo Stefano di Briga rain gauge (see figure 3.3), distant about 2
km from Loco catchment, is utilized for simulating the 1 October 2009 debris-flow
event. This rain gauge is nearer to the Loco catchment than Fiumedinisi, but its
length is of about four years instead of nine (this is the reason why for calibration
of the NSRP model use of Fiumedinisi station was preffered at S.Stefano di Briga).

The input considered for simulating the 1 October 2009 event is shown in figure
7.9, and consists of the following sequence:

o IStSeptember: total duration and rainfall of the event are of 11 h and 49.7
mm respectively. This was also the first significant rainfall event of the hy-
drological year, following the almost completely dry summer season.

° 23rd—24thSeptember event, in which 44.9 mm fell in 10 h. This event occurred
182 h after the end of the previous one.

e 15tQOctober. This event of 226.4 mm in 15 h provoked debris-flow-evolving-
landslides. It occurred 168 h after the end of the 24thSeptember event.
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Figure 7.9: Sequence of rainfall events considered for simulation of the 15tQctober
2009 debris-flow event

Few millimeters of rainfall fell in between of the events of the sequence, but they
were neglected in the successively illustrated simulation, because of they very mod-
est entity. This is also consistent with the event separation parameters adopted,
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and in particular with the W,,,;, = 35 mm threshold and 24 h minimum interarrival
time (see sections 7.2.3 and 7.2.3).

Topographic data

The Loco catchment, is represented in figure 7.10. Figure reports also location of
the catchment and of the slides triggered on 15t October 2009, and the representa-
tion of the DEM used in the applications. This DEM has been derived few months
before 15 October 2009 event, from airborne laser swath mapping (ALSM) at an
high resolution (2 x 2 m).

GRID maps of interest for model application are shown in figure 7.11, and in
particular: slope 0 , depth to basal boundary dy,z, flow accumulation map (number
of upslope draining cells N,) and ¢ = d,z cos? §/v/A.Slopes was derived from the
DEM.

Depth dr 7z of the erodible strata, mainly composed of loamy sands with an high
proportion of gravel, has been measured to be ranging from 4 m to 2 m, on points of
slope varying from 30° to 40°. Following other researchers (DeRose, 1996; Salciarini
et al., 2006, 2008; Baum et al., 2010) a negative exponential relationship between
depth dpz and slope has been assumed. In particular, the relationship dpz =
32exp(—0.074) has been adopted, which gives dpz(30) = 4 m and dpz(40) = 2
m. Bedrock outcropping has been considered in areas with slope & > 50, while
an upper bound of d;,z = 5 m has been imposed. Map of depth drz obtained is
shown in 7.11.

Flow accumulation map, that expresses the of draining cells Ny, and hence
upslope contributing area A has been computed using D-o0 method (Tarboton,
1997).

The map of the ratio ¢ = H/v/A was calculated to check the suitability of
vertical infiltration models, such as the one used, which requires that the ratio
€ « 1 (Iverson, 2000). From the map it can be noticed that for most of the
potentially unstable areas ¢ is in the range 0.1 — 0.5, which is acceptably less than
one. Ratio is less than 0.1 in the drainage network. A small proportion of the
catchments has a ratio in the range 0.5 — 1, and few cells have a ratio greater than
0.5 (maximum value is 2.5). Globally it can be stated that the condition ¢ « 1 is
acceptable satisfied.

Hydrological and geotechnical parameters

The hydrological parameters required by the model are: the saturated hydraulic
conductivity Kg, saturated hydraulic diffusivity Dy, residual water content 6,.,
saturated hydraulic content or porosity 65 and the a parameter of the Gardner
SWR model (equation 6.2). Geotechnical parameters required are soil and water
unit weights v and 7, = 9800N/ mg, soil friction angle for effective stress ¢’ and
.

For some of these parameters direct measurements were available.

In particular, measurements of soil strength parameters by direct shear test were
available for some points in the catchment. Averaged values ¢’ = 390 and ¢ = 4
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kPa have been assumed. Unit weight of soil has been measured to be vy, = 19000
kN/m®. An averaged value of measurements for hydraulic content at saturation
(porosity), 8s = 0.35 has been used.

No direct measurements of the remaining hydraulic parameters Kg, Dy, 0,, «
were available.

Indirect methods allow estimation of parameters of the SWR models soil prop-
erties from other more available, easily, routinely, or cheaply measured properties
(cf. Leij et al., 1978). The program ROSETTA (Schaap et al., 2001), was used to
compute those missing parameters starting from soil grain size distribution mea-
sured in the area.

The ROSETTA program allows estimation of the parameters of the van Genuchten-
Mualem SWRC. Soil hydraulic conductivity resulted of Kg = 2 x 107> m/s.
A best fit between the van Genuchten-Mualem SWR and the Gardner model,
yielded a value of o = 3.5 m~!. Soil hydraulic diffusivity, has been assumed
Dy = 5 x 107° m?/s, considering that typical values for the specific storage
Ss = Kg/Dy = 0.005 — 0.5 m ~! for surficial strata in similar landslide-prone
areas (Baum et al., 2010).

Table 7.IV summarizes data utilized in the application.

Table 7.IV: Material strength and hydraulic properties for surficial strata of Loco
catchment

(b/ C, Vs 9 K S 0 [0 DO

O] [kPal N/w?l [ [ [ [mY [ml/
39 4 19000 035 2x107° 0.045 3.5 5x107°

[¢]

Data determine distribution of factors of safety for dry (wetness w = (dpz —
d)/drz = 0) and fully saturated (w = 1) conditions. These can expressed as a
function of slope, because of the univocal relationship with depth to basal boundary,
as shown in figure 7.12.Cells result unconditionally stable for slope less than §,s =
23°.87. Data also the critical wetness is determined for all cells of the catchment,
as shown in figure 7.13. Critical wetness decreases from 1 to a minimum value of
about 0.3 going from &, to about 46°. Values of critical wetness can be converted
into critical pore pressure, by multiplying them for dyz cos?d. The values ¢, =
2.14,0.99,0.42,0.19 and 0.14 m result, for slopes § = 30°,35° 40°,45° and 50°
respectively.

7.3.2 Results

Starting with a initial water table height of zero everywhere in the catchment for
the 16 September rain event, simulation of slope stability for the two rainfall events
preceding the 1 October rain event was conducted alternating the TRIGRS model
(applied within the storm + 6 hours after) and the WTR model (applied within
the interarrival of the TRIGRS simulations), according to the rainfall sequence
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Figure 7.13: Critical wetness for cells of the Loco catchment
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described in section 7.3.1.

Simulating for the antecedent rainfall sequence yielded to the distribution of wa-
ter table depths shown in figure7.14 in terms of wetness w for better representation.
A significant increase in water table levels resulted.

Sparse cells, summing to 83 (0.24% of basin area), result unstable after the
two-event sequence (cf. figure fig:timeseriesloco). These cells are however parts of
the drainage network (high memory Ny > 25), where unstabilization and sediment
transport occur at a very short time scale.

Results of the simulation for the last and main event of the rainfall sequence
and the derived water table initial condition of figure 7.14, are shown in figures
7.16 to 7.17.

Figure 7.15 shows the temporal evolution of synthetic quantities, in terms of
spatial mean pore pressure at the base of the pervious layer (at Z = drz) and
number of unstable cells. Triggering of cells starts after 2 h from the start of the
event and about 80 mm of rainfall. From that instant, the number of unstable cells
increases almost linearly at a rate of about 500 cells per hour, through 6 hours after.
Then this rate decreases and a maximum is reached at after 8 hours. Pore pressures
have a similar behavior, yet, after 16 hours in some parts of the catchment pore
pressures still continue increasing until 20 hours from event start, but no increase
occurs in the number of unstable cells, because this increase in pore pressure is
relative to cells of low slope, that have an high ..

Model performance may be assessed by comparison of cells that result unsta-
ble according to model simulation and cells that have been actually observed as
unstable, using methods described in 6.3.

Map of figure 7.16 shows this comparison. Even though differences do exist
between the model output and actual slides, reproduction of the location of slides
is satisfactory.

In figure 7.17, various results are compared in the Receiver Operating Char-
acteristic (ROC) space and table 7.V shows results in terms of the ROC indices,
accuracy ACC = Tﬁi%N and precision PRE = % Results obtained indicate,
firstly, that performance obtained herein are comparable with the ones obtained by
(Baum et al., 2010) for the Mulikteo study case, near Seattle, WA, United States,

with the TRIGRS model.

Results obtained with other models, relatively to another case study (Met-
mann Ridge catchment), retrieved from Rosso et al. (2006), confirm that mass-
conservation based models may be more conservative than vertical infiltration
models such as TRIGRS (cf. Baum et al., 2010). In fact, the increase of the False-
positive rate seems not balanced by increase of the True-positive rate observed for
these models, as results from the precision indicator, shown in table 7.V, which is
significantly lower than the ones obtained with both TRIGRS v. 2 applications.
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Figure 7.14: Initial wetness grid for the 15¢October 2009 event simulation
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Table 7.V: Comparison of model performance with results of literature

Model ACC PRE
TRIGRS + WTR, Loco 0.84 0.34
TRIGRS, Mulikteo (Baum et al., 2010) 0.83  0.33
Rosso et al. (2006), Mettman Ridge 0.78  0.04
Montgomery and Dietrich (1994), Mettman Ridge 0.83  0.05
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Figure 7.15: Time series of pore pressures and number of unstable cells for

15t October 2009 event
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Figure 7.16: Comparison of actual slides on 15t October 2009 event and model
output
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7.4 Applications of the Monte Carlo physically-based
approach

One-thousand years of simulation were performed, for a discretization of slopes §
(to which correspond unique values of depth djz) and number of drained cells Ny
(or equivalently upslope contributing areas A = 4Ny m?). In particular, the slope
was discretized with a interval of 5, § = 30°,35°,40°,45° and 50, while the values
Ny = 5,10,25 (which correspond to A = 20,40 and 100 m?) were considered. To
cover the range of values present in the catchment results were then interpolated
and extrapolated as later described.

7.4.1 Return period estimation

The Monte Carlo methodology allows to determine return period of maximum pore
pressure and of minimum factor of safety.

Because of the memory present in the system, which is accounted for by the
WTR model, pore pressures and factors of safety have statistical dependence. The
presence of a long summer dry season however allows to consider this statistical
dependence limited to the values within an hydrological year, as it is sufficient to
bring water table heights to zero, event for relatively high values of Ny, for which
the memory is very high. Hence, return periods have been determined considering
annual maxima of the pore pressure 1 or annual minima of F'S at depth dpz (see
section 4.4.1.

Results of such an analysis are shown in figure 7.18, for the all values of § and
N, of the discretization.

Because pore pressures are bounded by the saturation value tsq; = dpz cos? d,
there is a finite probability associated with the value of s, and return period
is upper bounded, as one may notice from the plots of 7.18 (this is more evident
for high slope values and more when also Ny is high). In fact, return period may
approach infinity for 1., in the case of low Ny and high depth dpz. Also, from
the plots of return period of max pore pressure, it can be noticed how slope affects
little return period of a given pore pressure within the range ¥ = 0 — 0.5.

In order to map return period on a cell basis, the results just illustrated have
been interpolated and extrapolated to derive a function Tr(FS = 1) = Tr(9, Ny).

Extrapolation may respect the condition T — oo for § — §,s. At the same
time the function should pass for the points derived directly from simulation.

An homographic function of the type % which has a vertical asymptote
for § — 045, does not provide a good approximaiion of the simulation results (it is
also unable to pass through more than two points).

The following procedure satisfies the expressed desiderata for interpolation -
extrapolation, has been followed:

The quantile functions of pore pressure Qu(d, Ng) : [0 1] — [0 t)sq¢] have
been interpolated linearly within the domain § x Nz = [30° 50°] x [5 25]:
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Qu(6,Na) = wn,, (Na)[ws, (6)Qy (01, Naj) + we, (0)Qy (02, Na)]  (7.1)
+ WNy - (N)[w51 (5)Q¢ (5la Ndﬂ) + ws, (5)Qw (523 Nd,Q)]
where 51 < 6 < 527 Nd,l < Nd < Nd,2: de,l = %7 de,z = ]\]/'\Zi%]\][\(/{;ia

_ 0=4 _ 0=
ws, = 5,—4- and ws, = F="¢.

Quantile functions Qrg for factor of safety F'S can be derived from @ by
transforming the function value with equation 6.24. Extrapolation for slopes in
the § interval [d,s 30°] was conducted considering 6; = d> = 30° in equation
7.2. Extrapolation in the Ny interval [0 5] was carried out considering Ny =
Nd72 = 5, while for Nd > 257 Q#,(ng) = sz(d)lA(1)7 where 1a=1 if p =
l,and 14 =0 otherwise, from which corresponds to Ng2 — 400 (memory is so
high that soil is always fully saturated).

This procedure leads to the curves of figure 7.19. From the curves it can be
noticed that number of Ny of cells significantly affects return period, that drastically
decreases going from Ny = 5 to Ny = 25.

The map of return period of cell failure, resulting from application of the Monte
Carlo method, is shown in figure 7.20.

Combining information from the map and depth dpz map, total volumes as-
sociated with cell failure as a function of return period were derived, in order to
synthetically represent results of the map of figure 7.20. Besides, a curve like this
may be useful for design of mitigative structures, such as debris-flow basins and
retaining walls. Triggered volumes are also expressed as rate of total potentially
unstable volume (that is total basin area minus area of unconditionally stable and
bedrock outcropping total areas). This rate is equal to 0.1,0.18,0.42,0.52 and 0.62
for T = 5,10, 50,100 and 1000 years, respectively.

Based on these results, return period of events of the magnitude of the one
occurred on 15tQctober 2009 at Loco catchment may be of the order of 20 - 50
years, which is significantly less than return periods associated to the rainfall event
via IDF curves, that results of the order of hundreds of years (cf. Foti et al., 2012).

7.4.2 Intensity-Duration model evaluation

The Monte Carlo simulation allows to evaluate, from a stochastic and physically-
based perspective, empirical models. Here the widely-used I — D model is tested.

In an ideal situation, the pore pressure (equivalently, the factor of safety) may
be constant for curves that are represented by the empirical model’s equation.
For instance, for the I — D empirical model, iso—1 curves should be linear in the
log(I) — log(D) plane.

Because of the stochastic nature of rainfall, events with different time history,
that have the same duration and mean intensity (defined as in figure 4.3), may lead
to different pore pressures, or viceversa, the same pore pressure may be determined
by events of different duration and mean intensity.
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Figure 7.19: Return period as a function of slope and number of number of draining
cells for the Loco catchment

This introduces variability in the model output, but may change significantly
the relationship between pore pressure and rainfall characteristics, that may be
finally respect in average by the empirical model.

A comparison with constant intensity hyetographs has also been performed, in
order to investigate the influence of a real-like randomly-variable-intensity hyetographs
on potential to landsliding. For the biunivocal relationship between Intensity-
Duration and rectangular hyetographs (to a given Intensity and Duration a single
rainfall corresponds, and viceversa), iso-pore pressure curves are represented in the
I — D plane by a well-defined curves.

Results relative to 1., are shown in figures 7.22 — 7.25 varying slope § and
number of drained cells Ny, in the log(l) — log(D) space.

Constant hyetograph simulations lead to iso— curves that differ significantly
from the linear relation in the bi-logarithmic I — D plane . Similar results have been
obtained for physically-based models in general (e.g. Rosso et al., 2006; Salciarini
et al., 2008).

One may distinguish four regions in the I — D plane, relatively to the constant
hyetograph results. The first region is the one delimited by the vertical asymptote,
D = D*, presented by the plotted curves. No matter what the intensity is, the
pore pressure does not reach the fixed value if duration is less than D*. This
corresponds to the minimum duration that it is needed to the pore pressures to
build up at the basal boundary and reach the fixed value, and depends on hydraulic
characteristics and depth drz. The second region may be located by the horizontal
asymptote of the plots, I = I*. Intensities below I* are insufficient to build up
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Figure 7.20: Return period of cell failure for Loco catchment



7.4 Applications of the Monte Carlo physically-based approach 95

1 T T

[0}

5 10.2
E
3|3 =

2 el |l =
;i!; 50.5 g
2|3 3
° s 2

o

o

0 n n n PR S | n n n PN S | AAO
10° 10' 10° 10°

Return Period [years]

Figure 7.21: Return period of unstable volume

pore pressures, no matter how prolonged precipitation is. This is related to the
accounting of leakage in the model. The remaining two regions have one boundary
that coincides with the curve relative to ¢ = ¥s.:. I — D points above that curve,
determine 1 = 1)44¢. Pore pressures vary within the range 1 = 0 — 154 in the
remaining region.

Results of the Monte Carlo simulations have to be distinguished into two cat-
egories, when these are compared with the constant-hyetograph simulations. Be-
cause the latter have been determined considering an initial wetness w = 0, com-
parison of their trend with the former may be valid only for cases where this occurs
for simulated events. Hence in the figures 7.22-7.25 simulation points, representing
rainfall events that produced the fixed (critical) pore pressure, are plotted sepa-
rately the two cases w(t = 0) = 0 (plots on the left) and w(t = 0) > 0 (plots on the
right).

Looking at the points of the relative to the case w = 0 one finds that, although
with a non negligible degree of scattering, iso—psi points tend to be sensibly linear-
like.

Things change drastically when one considers the case w > 0. In this case the
scattering is very high and it is very difficult to interpret with a line, nether as an
average curve or a lower envelope curve. This occurs even for the case of Ny =5 -
which is, in fact, the most representative in small steep catchments, cf. figure 7.11
- where pore-pressure memory is less than for the other cases.

This results obtained allow to conclude the following:

e In the case that pore-pressure memory is low, which may be the case of



96

Application to Loco catchment in the Peloritani Mountains, Italy

Mean Intensity [mm/h] Mean Intensity [mm/h]

Mean Intensity [mm/h]

10

10

10

10”

10

10

10

-2

10

10

10

10

10~

10° 10°

Duration [h]

10° 10°

Duration [h]

10° 10°

Duration [h]

Mean Intensity [mm/h] Mean Intensity [mm/h]

Mean Intensity [mm/h]

10

10

10

10°

10

10

10

-2

10

10

10

10

10"

++ T

2

10 10

Duration [h]

10° 10°

Duration [h]

Duration [h]
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hillslopes in small catchments (relatively upslope contributing area A) and
relatively high hydraulic permeability (indicatively Kg > 10~%), and rainfall
events occur sufficiently distant one from each other, so that initial water
table depth is neglegible at the beginning of events, the structure of rain-
fall induce a regolarization of iso-pore-pressure curves (rainfall thresholds for
landslide triggering) with respect to deterministic thresholds based on rect-
angular hyetographs, that may be interpreted with a good degree of accuracy
by a straight line in the log(I) — log(D) plane. Hence, the I — D model
may have a stochastic-physically-based justification, in the cases that pore-
pressure memory is low, i.e. listed above conjectures hold to be true with
good approximation.

Such a regularization is so that for relatively regular rainfall durations, say
D < 12 h, a real hyetograph is more likely to produce a lower pore pressure
than a rectangular hyetograph of the same duration and mean intensity to
landsliding of the real one. For this duration range, rectangular hyetographs
may be a little conservatory for estimating of return periods of landslide trig-
gering, For higher durations, the opposite occurs. This means, that even
neglecting pore-pressure memory, a rectangular hyetograph leads to an over-
estimation of the return period of landslide triggering in the case of high
durations.

In the general case, memory has to be accounted for. The presence of memory
may drastistically decrease the return period of landsliding.

If 4., is high (cf., e.g., 7.22), which may occur for relatively high basal depths
dyz, critical pore pressures can be reached only in response of a sequence of
relatively intense and near events.

Deterministic thresholds, based on the hypothesis of rectangular hyetographs,
suffer the limitations related to the above issues, and in particular that they
are not conservative for rainfall events of long duration. Moreover, estimation
of return period in this case may suffer of arbitrariness of initial conditions
(initial water table depth), when performed via IDF curves. In fact, in this
case analyses are needed to assess the probability of a given hyetograph con-
ditioned to a given initial water table depth. An initial water table depth of
zero, as any other value, is an event that has a given non-exceedance proba-
bility, that has to be accounted for in estimating return periods, and is equal
to one only if pore-pressure memory can be neglected.
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Chapter 8

Conclusions

Understanding the hydrological control on shallow landslide triggering, is a
fundamental step towards an efficient landslide risk mitigation. Indeed, landslide
early warning systems require information on the link between rainfall and land-
slide occurrence. Furthermore knowledge of the hydrologic conditions that trigger
landslides in a spatially-distributed fashion enables to map return period of land-
slide triggering within a landslide-prone region, which combined with appropriate
propagation models allow for the development of hazard and risk maps that may
be effectively used as an aid for urban and landslide mitigation planning.

In this study the hydrological control on shallow landslide triggering has been
analyzed making use of a Monte Carlo methodology, that combines stochastic and
deterministic modeling approaches. The developed methodology comprises the
following components: (i) a seasonal Neyman-Scott Rectangular Pulses (NRSP)
model to generate synthetic point hourly rainfall data; (ii) a module for rainfall
event identification and separation from dry intervals; (iii) the Transient Rainfall
Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) model, version 2
(Baum et al., 2008, 2010) to simulate landslide triggering by rainfall infiltration,
combined with a water table recession (WTR) model that computes the initial
water table height to consider in simulating rainfall events with TRIGRS.

The modeling approach has been applied to the Loco catchment in the Pelori-
tani Mountains in northeastern Sicily of Italy, an area with high landslide risk, as
recently demonstrated by the regional debris-flow event that occurred on 1 October
2009, which caused 37 casualties and millions of euros of damage.

A 9-years-long 10-minutes rainfall time series measured at Fiumedinisi STAS
rain gauge station, has been used to calibrate and validate the stochastic rainfall
model. A Weibull distribution, of shape parameter b = 0.6, has been used to model
the intensity of rectangular pulses and seasonality in the series was reproduced by
calibrating separately the model for the four homogeneous rainy seasons that were
identified on the observed series (total number of parameters equals to twenty).

The NRSP model proved to be capable of preserving several stochastic features
of the observed rainfall time series. Model validation has been carried out by testing
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the reproduction of rainfall event characteristics important with respect to landslide
triggering. In particular, reproduction of total cumulative event rainfall H,; and
duration Dyy, and of the correlation between the mean intensity I = Hyot/Diot
and the duration, were considered for the validation. The results of this test are
globally satisfactory, even though model seems to have a tendency to overestimate
the log I;:-log Dyt linear correlation.

Suitability for modeling the triggering of landslides in the investigated area of
the TRIGRS - WTR model has been tested by applying it to the three-event rainfall
sequence that triggered landslides on 1 October 2009. Model performance has been
assessed by comparing mapped slides for the 1 October 2009 event with model
output, also in terms of ROC-based (Receiver Operating Characteristic) indices.
Model performs at least as well as other known applications of the TRIGRS v.
2 model to other study cases areas (ROC-Accuracy > 0.80 and ROC-Precision
> 0.30). Model performance seems better than more simple models, such as the
ones by Montgomery and Dietrich (1994) and Rosso et al. (2006), which have a
comparable ROC-Accuracy but very low ROC-Precision, being more conservative
than TRIGRS.

The Monte Carlo modeling scheme has been applied to single cells for the range
of slope, basal boundary depth and upslope contributing areas (or, equivalently,
number of drained cells) observed in the case-study catchment. One-thousand-
years-long simulations have been performed for all combination of values. Following
previous studies an univocal relationship between basal boundary depth, which
is in this case also the depth of the potential sliding surface, has been adopted
for analyzing a range of slopes (TRIGRS) and upslope contributing areas (WTR
model).

The Monte Carlo approach has been applied for estimation of return periods
of shallow landslide triggering and for the evaluation of the most commonly-used
types of empirical rainfall threshold.

Simulations of the type described above have been utilized to map return pe-
riod of cell geomechanical failure in a spatially-distributed fashion. Results of
the single cell simulations have been appropriately interpolated for that purpose.
Simulating for single cells and then applying the results to the catchment drasti-
cally increases computational efficiency of the procedure, that may be prohibitively
time-consuming if directly applied to the entire catchment.

In exploiting the simulations for return period estimation, in general there is
statistical dependence among the response variables (and in particular of pore
pressure), because the water table depth at the beginning of a given storm is
determined, in general, by the entire past time history of rainfall. However, for the
arid climate that characterizes the analyzed study case, this statistical dependence
is limited to the hydrological year, because the summer season, which is practically
completely dry, is long enough to allow neglecting initial water table depth (of
the surficial strata interested by landslide phenomena) at the beginning of the
hydrological year (September). This still does not open the possibility to compute
return period of stability failure (i.e. of a factor of safety F'S < 1) as the mean
interarrival time between F'S < 1 occurrences, yet it allows to estimate the return
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period by analyzing the cumulative frequency distribution derived from annual
minimum series of F'S (or, equivalently pore pressure annual maxima series).

On this issue it should be mentioned that return period estimation based on
rainfall IDF curves, common to many studies of other researchers, is in principle
flawed, because of the arbitrariness of the initial condition that is assumed. In fact,
in this case analyses are needed to assess the probability of a given hyetograph
conditioned to a given initial water table depth. An initial water table depth of
zero, as any other value, is an event that has a given non-exceedance probability,
that has to be accounted for in estimating return periods, and it is always equal to
1 only if response memory can be neglected, which is seldom the case.

Relatively to the second issue analyzed in the dissertation (rainfall character-
istics - landslide occurrence relationship), specific analyses have been conducted
on the Intensity-Duration (I-D) model, widely used to interpret observed rainfall-
landslide data: as it is well-known, rainfall thresholds for the initiation of landslide
have been expressed by many different researches as I = aD?, which is obviously
a straight line in a log(/)-log(D) plane. Then, points of equal factor of safety, or
iso-pore-pressure curves, in the log(I)-log(D) plane have to lay on a straight line.

The obtained results allow to state that, actually, stochastic structure of real
rainfall events combined with the infiltration response reveal in a certain sense a
theoretical justification to the I-D relationship. Iso-pore-pressure points, in the
bi-logarithmic rainfall (mean) Intensity - Duration plane, lay, with relatively low
scattering, around a straight line, in the cases that initial water table height is
negligible.

This means that the 7-D model represents a valid model to interpret data in the
case that memory of pore pressures is negligible. This holds true basically when the
hydraulic conductivity of the soil is relatively high (an indicative minimum value
may be 107 — 1073 m/s), depending on rainfall characteristics (relatively isolated
rainfall events) and hillslope position in the catchment (low values of upslope con-
tributing area).

In other, most, likely, cases, the I-D model should be coupled with an antecedent
rainfall model.

The iso-pore-pressure scatter plots derived from the Monte Carlo simulations
have been also compared with iso-pore-pressure curves that result in response to
a rectangular hyetograph of same (mean) intensity and duration (assuming in this
case an initial water table depth of zero), in order to study the influence of rain-
fall intensity stochastic variability on landslide triggering . This analysis has been
conducted considering separately the simulation points relative to a negligible ini-
tial water table height from the ones relative to a not negligible initial water table
height.

Comparison in the former case reveal that for relatively short rainfall event
durations, say D < 12 h, a variable-intensity hyetograph may produce a pore-
pressure response less than the one induced by a rectangular hyetograph of the
same (mean) intensity and duration, while the opposite occurs for high durations.
From the comparison relative to the case of significant water table depth, it can be
stated that in dependence of the initial water table depth (i.e. rainfall time history
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preceding the event) even rainfall events of relatively low intensity and duration
may trigger landslides.

The overall conclusion of the dissertation is that coupling a stochastic rain-
fall generator with physically-based hydrological models within a Monte Carlo ap-
proach can provide useful insight on the hydrologic control on shallow landslides,
since it enables to take into account the variable intensity of precipitation within
an event, as well as the inter-arrival times and the resulting water table recession
between storms. Indeed, both factors can affect significantly potential landslide
triggering and therefore should be properly taken into account both for planning
mitigation measures, as well as for early warning of landslide phenomena.
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