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To my parents



“... Cosa c’era prima e che ci sarà poi

quello che è importante è che ci siamo noi

adesso, qui, esattamente ora

il tempo qui s’accende e lo spazio si colora. . . .

. . . cercare l’uno nel molteplice ed il molteplice nell’uno

trovare il suono nel silenzio ed il silenzio dentro al suono

chiedo perdono, il botto è stato forte ed io non so chi sono. . . ”

Lorenzo Cherubini – Big Bang (Parte 1: Parole) - 1997
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Introduction

The work presented in this thesis belongs to the Nuclear Astrophysics

researches performed by the ASFIN group at University of Catania and

INFN Laboratori Nazionali del Sud. It is focused on the experimental

study of the two deuterium burning channels 2H(d, p)3H and 2H(d, n)3He

in the Big Bang Nucleosynthesis (BBN) astrophysical scenario.

In the first chapter is presented this phase of the early universe (first

minutes after the bang), when all the light elements have been synthesized

at a temperature of 0.1-10 GK. Their abundances after BBN are called

primordial, and can be inferred from the actual abundances observed

(going back in their evolution through galaxies and stars) or calculated

by the rates of the BBN reactions. For this reason, the BBN model is

still fine tuned with new results coming from observations and laboratory

measurements. Moreover, this model (if BBN is considered standard) can

be adjusted such to have only a free parameter, the baryon to photon

ratio of the universe η at a certain time. Also the WMAP satellite results

have been of great help to fix η (and then all the others BBN numbers),

but still persist some discrepancies, as for the lithium primordial abun-
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Introduction

dances, between what is predicted theoretically and what is observed.

The deuterium (and reactions in which is involved) plays a key role in

the evaluation of η, thus for all BBN, so that is called the best baryometer.

In the second chapter is explained why the need of new cross sec-

tions (and then reaction rates) measurements for astrophysics can not

be satisfied because of the problems given by their measurements in the

laboratory. Indeed astrophysical scenarios have typical temperatures cor-

responding to center-of-mass energy smaller than the Coulomb barrier

between the two colliding nuclei, that is why these reactions between

charged particles happen mainly for the tunnel effect. This means that,

when measured in the laboratory, cross sections show an exponential

decrease in the investigated energy range, that imply very few events de-

tected (comparable with the background noise) and the error bars make

results not good for the astrophysical purposes.

In general one of the most used solution is to parameterize cross sec-

tions as astrophysical factors S(E) (that show an almost constant trend

with energy if no resonances are present) and then extrapolate them

from energies higher than the Coulomb barrier, where it is easier to

have precise measurements. Notwithstanding, this technique is suscep-

tible to many potential uncertainties, such as the presence of unknown

subthreshold resonances or the electron screening. This effect is very

important in all the astrophysical energy range of interest, because it en-

2



Introduction

hances the cross section at ultra low energies, exactly where more precise

data are needed. To estimate the screening effects in the laboratory, a

bare-nucleus (meaning devoid of electrons shielding) is needed, in order

to substitute it with the screening effects in plasmas. This latter is the

one corresponding to the astrophysical case, that is indeed different by

the laboratory one. At present direct cross sections can reach very low

energies (supposing that no systematic errors are present in these long

and complicated measurements), but no bare-nucleus cross sections are

available.

For all these reasons the present measurements have been performed

through the Trojan Horse Method (THM), an indirect method that allow

to have a bare-nucleus cross section of the two-body reaction of astrophys-

ical interest that is free of the Coulomb suppression. This is accomplished

via the selection of the quasi-free mechanism in an appropriate three-

body reaction, whose center-of-mass energy is greater than the Coulomb

barrier. The resulting cross section is in arbitrary units, thus it needs

to be normalized to the direct measurement results at higher energies,

so THM is complementary (and not alternate) to direct results. In the

present case, the three-body reactions 2H(3He, pt)H and 2H(3He, n3He)H

have been induced by a 3He beam impinging on a CD2 target to have

informations about the two channels 2H(d, p)3H and 2H(d, n)3He.

In the third chapter is explained how these experiments have been
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Introduction

planned and performed. Two experimental runs have been carried out

at the Nuclear Physics Institute of the Academy of Science of Czech Re-

public, in Rez (Prague). In the first one, with a 17 MeV 3He beam (in

which only 2H(d, p)3H has been measured), the presence of quasi-free

mechanism events has been ascertained. The result obtained is fair but

not good enough for the error reduction needed for astrophysics. Instead,

to optimize the result in the energy region relevant for astrophysics, a

second run (where the 3He beam energy was 18 MeV) has been per-

formed. In particular for the first time the technique of measuring one

of the two-body reactions participant ejectile and the spectator particle,

in this case a proton, instead of both the ejectiles. This has also allowed

the measure of the 2H(d,n)3He reaction without the complexity of the

neutron detection, so with a very good precision. All the off-line anal-

ysis done until the S-factor extraction is detailed explained, including

the Modified Plane Wave Born Approximation analysis by Dr. S. Typel.

This analysis allows to have a fit that considers s− and p−wave for the

S-factors, avoiding the common but not exact approximation to consider

only the presence of l = 0 at low energy. Moreover, the screening po-

tential have been evaluated, and it is also presented a pole invariance

validity test, comparing present 2H(d, p)3H results with the same coming

from a previous experimental run, where has been used the 6Li break-up.

In the final chapter the reaction rates, evaluated using Fortran rou-
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tines by prof. Bertulani, are presented, for the two deuterium burning

channel and for the TH measurements of 3He(d,p)4He and 7Li(p,α)4He.

These rates have been inserted as input of the BBN123 code by prof.

Bertulani, that is presented in its general features, to obtain the primor-

dial abundances.
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Chapter 1

Big Bang Nucleosynthesis

The Big Bang model, that is currently the prevailing cosmological

model since decades, tries to describe the universe from its early ages

making predictions on its possible evolution. The Big Bang theory main-

tains that universe is coming from a very hot and dense state, from which

is emerging since ∼13.7 Gy [1].

In this first chapter, the main assumptions of the model together with

the corresponding observational evidences will be briefly discussed, focus-

ing on the light element nucleosynthesis, with emphasis to the deuterium

problem.

1.1 The Big Bang standard theory

The Big Bang Standard theory founds its basis in the Cosmological

Principle1, the Standard Model for Particle Physics and General Relativ-

1This states that universe is homogeneous and isotropic on a big enough scale; it
was implicitly told by Einstein, in his General Relativity Theory; its most important
proof is the homogeneity of the CMB maps [2].
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1.1 The Big Bang standard theory

ity theories, and its cornerstones in the light elements cosmic abundances2

(predicted by Big Bang Nucleosynthesis, BBN hereafter) [3], the linear

recession of the galaxies3 and the planckian spectrum of the Cosmic Mi-

crowave Background (CMB4, at T ∼ 2.7 K), predicted by Gamow and

discovered by Penzias and Wilson in 1964.

For the model being standard it is important that: the baryon-to-

photon ratio η = nB

nγ
is uniform in space and time5; the neutrinos fam-

ilies Nν are three (with very little or null mass and chemical potential

µe null or almost zero), as predicted by the Standard Model for Particle

Physics, and no other particle is present in remarkable abundance ex-

cept of neutrinos ν (and antineutrinos ν̄), positron-electron pairs (e+e−)

and nucleons (with their respective antinucleons) [5]; the half life of the

neutron τn has a value of 885.7± 0.8 sec6, important to define the weak

2For a generic element X the abundance is the quantity NX that exist in the

universe with respect to the hydrogen, is yX =
NX

NH
. They are called primordial

abundances when one is referring to the quantities of BBN produced nuclei, different
from those ones measurable today, because of the universe evolution.

3Galaxies recede from each other, following the Hubble law (1929), with recession
speed

vrec = d ·H0, (1.1)

with d distance between galaxies and H0 called Hubble parameter.
4The Cosmic Microwave Background (CMB) began to propagate when the tem-

perature was about 3 ·103 K and so the energy about 0.3 eV [4]. Its spectrum, widely
studied with the WMAP satellite, is showing light anisotropies, probably created in
very first epochs of the universe for the competition of the gravitation potential and
gradient of pressure.

5The η uniformity with time must be limited only to the Big Bang Nucleosynthesis
period, because this ratio is a function of time.

6This value is not the most recent but is the one indicated as world average [6], on
which are based many of the citations of the present and further chapters; one of the
newers and most important measurement of τn has been given by Mathews in 2005
[7].
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1.2 The first second of the universe - from Planck time to the BBN

interaction rate and the reaction rates of light elements synthesis and

destruction reactions (see par. 1.6).

The standard model of cosmology follows the isotropic and homoge-

neous solution of the Einstein field equations (thanks to Cosmological

Principle), given by Friedmann-Lemâıtre-Robertson-Walker metrics [8],

where different values of the space-time curvature k lead to a possible

euclidean, elliptic and hyperbolic space respectively, as shown in fig. 1.1.

Figure 1.1: The space curvature of the universe respectively for k = 1,−1, 0.

1.2 The first second of the universe - from

Planck time to the BBN

It is widely accepted that the first step in the universe history, as

can be seen in fig. 1.2, is the so-called Planck time, equal to 10−43 s.

Indeed what has happened before this time is still unknown, because the

very high temperatures caused quantum-gravity effects that are not fully

understood up to now.

The Grand Unification Era occurred from T = 1030 to 1027 K (that

8



1.2 The first second of the universe - from Planck time to the BBN

Figure 1.2: Schematic evolution of the universe from Big Bang up to now.
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1.2 The first second of the universe - from Planck time to the BBN

is for t = 10−43 to 10−35 s), i.e. the period in which electromagnetic,

strong and weak nuclear interactions are unified in a super force, while

gravity parted already at Planck time [9]. Later the universe undergoes

the inflation era, in which expanded exponentially. The idea of inflation

was born to justify why universe is so flat, homogeneous and isotropic. It

seems otherwise impossible to explain why so distant parts in the CMB

maps have so small difference in temperature, like if they had time to

thermalize together in the past [10].

After this epoch the electroweak force separates by the strong nuclear

force, while the period between 10−32 to 10−9 s is characterized by the

separation of electroweak in electromagnetic and weak nuclear force.

Following the most popular models, at a temperature T ≈ 1012 K

(t = 10−5 s) a further symmetry breaking confines quarks in nucleons

and antinucleons thanks to strong nuclear force, so this period is called

baryogenesis. Once the temperature fell to 1010 K and until t= 102 s,

the high temperature still ensures thermodynamic equilibrium between

all the relativistic particles, thanks to the reactions

e+ + e− ↔ γ + γ (1.2)

e+ + e− ↔ νl + ν̄l, (1.3)

where l is the leptonic family. Thus, assuming a null chemical potential

for neutrinos (as provided by the standard scenario), it results

T ≈ Tγ ≈ Te ≈ Tν ≈ TN . (1.4)
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1.2 The first second of the universe - from Planck time to the BBN

where N are the nucleons. At that time the energy of the universe7 falls

from 100 to 0.1 MeV. When the universe has an energy of 20 MeV all

antiprotons and antineutrons are annihilated, and protons and neutrons

are no more relativistic.

In this era the weak interaction regulates the amount of protons and

neutrons by the occurrence of the reactions [11]:

p+ e− ↔ n+ νe (1.5)

n+ e+ ↔ p+ ν̄e (1.6)

n↔ p+ e− + ν̄e. (1.7)

Up to that moment, these reactions are faster than the expansion rate,

so the ratio between the number of neutrons and protons is

n

p
≈ exp(

−∆m

T
) ≈ 1 (1.8)

in which ∆m = mn −mp = 1.29 MeV.

As it is shown in fig. 1.3, when the expansion rate will be larger than

the weak interaction one, at energies about 0.7 MeV, this ratio will freeze

out at 1
6
, and then will go down to 1

7
just before nucleosyntesis, because

of neutron decoupling.

From the Friedmann equation it is found that, since the bang, the

time is inversely proportional to the square of temperature, through the

7Henceforth the energy of the universe will mean the energy of the photons bath
in which particles swim.
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1.2 The first second of the universe - from Planck time to the BBN

Figure 1.3: The ratio nn

np
as a function of temperature [9].

relation

t =
0.301 ∗mPlanck√

g∗T 2
, (1.9)

with mPlanck the Planck mass, related to the fundamental constants h, c

andG, and g∗ effective number of degrees of freedom. The proportionality

constant depends on g∗, because it changes its value if e+e− couples are

annihilated or not (annihilation starts when energy is less than mec
2 =

0.511 MeV) [9] [11]: before annihilation g∗ = 10.75.

At 1 MeV (for νµ and ντ ) energy and density are low enough to

stop the neutrinos interaction with the rest of the matter, they decouple

from the rest of the universe. The same happens for νe at 0.7 MeV, later

respect to the other families because they are still involved in the reaction

of neutron decay, until neutron freeze out; neutrinos remain until today

with a certain temperature Tν , while the rest of the universe is at Tγ; their

12



1.3 The Big Bang Nucleosynthesis

ratio Tν

Tγ
= ( 4

11
)
1
3 is still the same because of the entropy conservation,

and because now Tγ = 2.725 K, it’s supposed that neutrinos temperature

is almost 2 K [11].

After this stage the universe is 1 s old, with a temperature T = 1010

K, or an energy of ∼ 0.8 MeV, enough protons and neutrons are present

to start nucleosynthesis of light elements.

1.3 The Big Bang Nucleosynthesis

After the baryogenesis the very light elements (2H,3He,4He and 7Li)

were synthesized.

The nuclei abundances, relative to the hydrogen one, are fixed by

nuclear statistic equilibrium (NSE), through the mass fractions. For a

nuclear specie with mass number A the mass fraction is

XA ∝ (
kT

mNc2
)
3(A−1)

2
)ηA−1 exp

BA
kBT (1.10)

where BA is the binding energy of this species and mN is the nucleon

mass, while η is the only free parameter for BBN, described in par. 1.6.

While BA helps nuclei formation, the entropic factor ηA−1 is very small

(because of the great number of photons with respect to the baryons)

and disadvantage it.

So it is possible to define approximately the temperature at which

nuclei starts to be favored with respect to nucleons and it is when [12]

kT ∼
BA

A−1

ln(η−1) + 1.5 ln(mnc2

kBT
)
∼ 0.3MeV, (1.11)
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1.3 The Big Bang Nucleosynthesis

that is that nuclei do not become thermodynamically favored until kBT is

about a factor of 30 smaller than the binding energy per nucleon, because

of the high probability of the nuclei photodisintegration (low value of η).

At an energy of 0.511 MeV (equal to electron mass at rest, when e−e+

pairs can no longer be created by energetic photons) the proportionality

constant for time-temperature relation (eqn. 1.9) changes, because g∗

goes down to 3.36. This change leads to a delay in the beginning of

deuterium formation, and more neutrons have time to decay: this will

affect all light elements abundances; the remaining neutrons go in 4He

formation, almost suddenly when BBN starts.

The first nucleus forming is the simplest, the deuterium, through the

reaction

n+ p→ d+ γ, (1.12)

when energy is ∼0.3 MeV.

But BBN is not yet started, because all the deuterium formed is

photodisintegrated by the photons bath (that will later be released in

the CMB) in which it swims. Production rate is proportional to nB,

while the photodisintegration rate to nγ exp(−B
T
), and because there are

so many photons with respect to nucleons ( nγ

nB
> 109), the long high

energy tail of the planckian spectrum (with E > 2.2 MeV, the deuterium

binding energy), photodisintegration is bigger than production.

This avoids formation of heavier elements, that is why this phe-

14



1.3 The Big Bang Nucleosynthesis

nomenon is called deuterium bottleneck ; it stops only when E = 0.086

MeV is reached (η ∼ 10−9, t ∼ 3
′
), when number of photons with energy

greater than 2.2 MeV is equal to number of baryons: here is when BBN

really starts, as can be seen in fig. 1.4.

Figure 1.4: Evolution of the ratio D/H with time and temperature. The curves are
marked by the respective value of η10 [13].

All BBN elements start forming when the thermal energy of the uni-

verse goes below their binding energy. Indeed 4He should form before

all the others (Bd ∼28 MeV), but it could not, because deuterium bot-

tleneck stopped it. After about 180 seconds from the bang and in about

20 minutes, the reactions discussed in par. 1.6 formed 2H, 3He, 4He and

7Li 8, that quickly, with an efficiency of 99.99%, burned in 4He, because

among them it is the nuclide with the greater binding energy, therefore

8Also other elements are produced, but in negligible quantities.
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1.3 The Big Bang Nucleosynthesis

more stable. The abundance of 4He is at this point the 25% of the mass

of the universe, in very good agreement with observational results.

Meanwhile, expanding and cooling, the universe has reached an en-

ergy of about 30 keV (after 103 s) and an age approximately equal to the

neutron lifetime, the thermal energy of the colliding nuclei have no longer

a high probability to overcome the Coulomb barrier; this, together with

the absence of stable nuclei with mass numbers A=5 and A=8, does not

allow for BBN the synthesis of elements beyond the 7Li in not negligible

quantities9.

This undermines the theory of Gamow, who in 1946 proposed that

all the chemical elements were generated in the BBN for neutron capture

and beta decay, while already in 1957 in a paper by Burbidge, Burbidge,

Fowler and Hoyle (B2FH) [14] (and, independently, in one by Cameron

[15]) is suggested that the elements heavier than A=8 were generated in

the stars.

BBN thus finishes. The produced nuclear abundances depend on the

competition between the expansion rate (quantified by the Hubble con-

stant H ) and weak interaction (which establishes the ratio n
p
) and nuclear

interaction rates (which determines the same BBN reactions rate); the

last two depend on η and on the cross sections of reactions involved. For

9In fact are produced also tritium, that soon decay in 3He because of its instability,
and 7Be that is converted into 7Li very quickly (its half-life is around 50 days but the
very high electron density make the conversion happen with very high probability).
The other elements that might be produced had negligible abundances, according to
the standard model of BBN.
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1.4 How to handle BBN

this reason these abundances can act as baryometer (that is good for an

evaluation of η) and timing of the early universe. In the end this BBN

era has occurred between approximately 180 s and 15 minutes from the

bang, in a range of temperature from 109 to 108 K (which correspond to

an energy of 0.08 to 0.03 MeV). A summary of the nuclei abundances

evolution is shown in fig. 1.5, as calculated in [16].

Figure 1.5: Nuclear abundance as a function of T9 (T9 = T/109, measured in GK),
all given as the abundance relative to hydrogen, except for 4He, whose is
shown the mass fraction [16].

1.4 How to handle BBN

BBN model can be improved (or disproved) by:

1. observations measuring light elements abundances, or CMB anisotropies;

17



1.4 How to handle BBN

2. experiments measuring cross sections of the involved reactions to

get their reaction rate, and measuring cosmological parameter val-

ues (often so small to be extremely difficult to measure) [17];

3. better defining the theoretical BBN model, complicated also by the

numerical difficulties in computational codes.

The common element of these three ways is η, from which is possible

to get all the other predictions; in general, playing on the fine tuning of

η and the other parameters, cross sections and observations, is possible

to improve the confidence level of BBN Standard model.

Thus one of the methods that can make model improving is for sure to

relate η to the observed D, 4He and 7Li primordial abundances. The re-

maining element, 3He, has a dependence from η similar to the deuterium

one, but it can not help much because of its very conflicting values for

abundance.

In order to have a complete overview, in the following section the ob-

servational situation for the light elements will be discussed and summa-

rized (see par. 1.5), while the experimental difficulties will be discussed

in chap. 2, for the d + d reaction case in particular in chap. 3; in the

final chap. 4 will be calculated the impact of this new measurement.

18



1.5 Light elements primordial abundances

1.5 Light elements primordial abundances

Informations on the abundance of a certain element in a celestial ob-

ject are extracted, with few exceptions, from the analysis of the spectral

lines characteristics (given by electronic transitions between atomic lev-

els) of its spectrum, i.e. its distribution of energy emitted as a function

of wavelength. From this analysis, it is possible to obtain temperature,

pressure, density and chemical composition observed.

1.5.1 Deuterium abundance observations

The strong peculiarity of the deuterium nucleus is its low binding

energy (equal to 2.2 MeV) that makes it impossible to produce in any

astrophysical sites and very easy to destroy in the stars, in particular

during Pre Main Sequence phase of the stellar evolution.

This makes relatively simple its post-BBN evolution, and gives a cer-

tain advantage in extrapolating to the primordial abundance observed:

if all deuterium is burned into heavier elements in stars, it follows that

the observed deuterium, anywhere and any time, is a lower limit to its

primordial abundance.

The abundance of deuterium can be estimated with the analysis, in

radiosources spectra of its spin flip transition line, that produces a radi-

ation of wavelength equal to 92 cm (for e.g. [18]).

The primary method used, instead, is based on the analysis of the

19



1.5 Light elements primordial abundances

Lyman series of spectra, that for hydrogen lie between 912 and 1216 Å,

so it is measured in the far ultraviolet, and can be seen from Earth for

redshift10 values z > 2.5. The wavelength λobs observed in the spectra

lines are shifted to higher values from the redshift zabs of the observing

site (typically an interstellar or extragalactic cloud) according to the

relation

λobs = λrest(1 + z), (1.13)

where λrest is the wavelength observed in the frame of celestial object.

The wavelengths of the Lyman series for hydrogen are obtained from

energy released by an electron, when it jumps from one quantized level

n2 (with n2 > 2) to n1 = 1, as

1

λ
=

−13.6eV

hc
(
1

n2
2

− 1), (1.14)

where RH = −13.6eV
hc

is the Rydberg constant for hydrogen. A positive

result means the wavelength emission of a photon (n2 > n1), on the

contrary that the photon has been absorbed (n2 < n1).

The same relation holds for deuterium, but the Rydberg constant

contains the mass of deuteron rather than the single proton one. It

follows that the Lyman series for deuterium is located at wavelengths

10The cosmological redshift z is the physical phenomenon for which wavelengths
emitted by a source and detected by an observer are different because of the universe
expansion. The quantity 1 + z is the ratio between the detected wavelength and the
emitted one.
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shifted by an amount

λH − λD = (R−1
H −R−1

D )(
1

n2
2

− 1

n2
1

) (1.15)

with respect to hydrogen.

For the study of the abundance of deuterium, in particular, is used

Lyman-α line, given by the transition between the first and second levels

of the deuterium atom. The measurement sites are divided into three

classes, depending on the columnar density11 NHI [19]:

• systems with a forest of Lyman-α lines, with NHI < 1017.2cm−2;

• systems called Lyman Limit System (LLS), with 1017.2cm−2 <

NHI < 1020.3cm−2;

• systems in which the Lyman-α line is damped, withNHI > 1020.3cm−2,

corresponding to galaxies.

For the lines be observable, a columnar density in excess of 1017 is

needed, then belonging to the last two classes above.

Many sites show saturated absorption lines (all the photons are ab-

sorbed and NHI can not be well estimated) or just the line α of the

Lyman series, and this creates considerable uncertainties to the abun-

dances, giving a useless measure. Conversely in other cases the intensity

of the deuterium lines can be very low. This leads to a very stringent

11The columnar density is the number of atoms per cm2 along the line of sight of
an astrophysical site.
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selection of measurement sites [19] (only 2% of the QSOs (see later) with

a redshift z = 3 have the absorption lines set simple enough to show

deuterium).

An overview of sites and measurements of deuterium abundance is

given in table 1.1.

For the measurements in the Solar System, Jupiter is the chosen site,

because this planet has increased its mass mainly in the gas phase of the

system itself, and has probably not suffered many impacts with asteroids

that could have altered the abundance of deuterium, unlike for example

Uranus and Neptune. Measurements on Jupiter might, therefore, lead

to the value of pre-solar abundance of deuterium. The value obtained is

D/H=2.6±0.7 · 10−5 [20], and recently D/H=2.25±0.35 · 10−5[21]. An-

other estimate was obtained by the abundance of 3He in the solar wind,

assuming that it has melted all the pre-existing deuterium [22], and cor-

recting this value for all other reactions involving 3He, obtaining D/H=

2.1±0.5 · 10−5, later corrected to D/H=1.9±0.536 · 10−5 [23].

A matter of concern is the Galactic D/H abundance, which turns out

to be more complex than the high redshift Universe measurements [24].

FUSE (Far Ultraviolet Spectroscopic Explorer) satellite has provided a

lot of new data confirming literature values [25] [26]. A new measurement

of the deuterium hyperfine transition toward Galactic anticenter region

of 2.3+1.5
−1.3 · 10−5 is also consistent with the high D/H values in the solar
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neighborhood [18].

The value obtained from the interstellar medium is smaller than the

pre-solar one, in fact it should be taken in account how much deuterium

has been destroyed by galactic evolution. The first data came from the

interstellar medium by the Copernicus satellite [27], subsequently con-

firmed by more precise spectra of the Hubble Space Telescope, and the

result was D/H=1.4±0.2 ·10−5. The search was extended by Linsky [28],

and came to a most probable value of the local ISM (i.e. within 20 pc

from the Solar System) of D/H=1.6±0.1 · 10−5. Since then, various mea-

surements and assumptions were necessary to explain the differences of

the data in different sites with the interstellar medium. Recently several

new satellites and radiotelescopes are trying to improve the quality of

the measures in stars, gas clouds and the interstellar medium.

However, these measurements in the pre-solar ISM could only give a

lower limit, because the deuterium in these sites is probably already been

destroyed in stellar interiors, but it is not known; this destruction factor

is equal to 10 for Audouze [29], or is much lower (at least in our Galaxy)

according to Tosi [30].

It was Adams [31], in 1976, suggesting for the first time the possi-

bility to observe the abundance of deuterium in the Lyman series lines

in absorption in the low-metallicity systems (e.g. gas clouds) that come

in between Earth and a quasar at high redshift. This gas in the outer
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regions of the Galaxy or in the intergalactic medium is not connected

with the quasars, but photons coming from the latter cause the observed

Lyman transitions in the gas clouds.

Accurate observations of these sites are started, however, only with

the HIRES spectrograph mounted on one of the Keck telescopes. Results

are higher than other sites, since these QSOALS12 have high redshift, so

low metallicity13, and abundances are near to the primordial value.

Unfortunately, reliable measures of D/H are difficult to obtain in these

environments, because of the rare combination of cases with 1017.2cm−2 <

NHI < 1020.3cm−2, low metallicity and low internal velocity dispersion14.

Thus just less than 10 sites of these have been considered.

The measures of abundance in gas clouds in front of quasars are di-

vided into those which produce a lower D/H ratio, less than 10−4, and

those that produce a higher ratio [32] [33].

Fig. 1.6 show how also for the only case of high redshift QSOALS

the dispersion of measures exceeds reported errors. In this figure the red

star refers to the new measurement reported in [35]. The horizontal lines

12Quasi Stellar Objects Absorption Lines Systems.
13The metallicity of an object, in general, is the mass fraction (dimensionless) of

all the metal elements, as defined in astronomy (that is anyone other than hydrogen
and helium). One way to parameterize them is with the ratio [Fe / H], defined as the
logarithm of the ratio between the abundance of iron in the star (relative to hydrogen)
and the same in the Sun, or as

[Fe/H] = log(
[Fe/H]∗
[Fe/H]⊙

) (1.16)

14A low internal velocity dispersion of the absorbing atoms allows the deuterium
lines to be shifted by only 81.6 km·s−1, in order to be well separated and resolved.
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Figure 1.6: Measures of deuterium abundance in high redshift QSO absorbers. The
red star refers to the new measurement reported in [35], with error smaller
than the symbol size. The horizontal lines show the weighted mean value
of logD

H and its error. The yellow shaded area shows the range in Ωb,0h
2

from WMAP [36].
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Site of measurement (D/H)·10−5 Reference
Solar System (Jupiter) 2.25± 0.35 [21]

ISM 1.6± 0.1 [28]
QSO (high D/H) < 35 [32]
QSO (low D/H) 2.6± 0.4 [13]

3.4± 0.5 [34]

Table 1.1: Main sites of measurement of abundance of deuterium and their values
produced.

show the weighted mean value of logD
H

and its error. The yellow shaded

area shows the range in Ωb,0h
2 from WMAP [36].

According to Kirkman [37] only five QSOALS should be used in

the estimation of abundance, and they are sufficient to reduce to 10%

uncertainty on the mean value abundance derived, which amounts to

D/H= 2.6± 0.4 · 10−5 [13].

Anyway the cause of this observed scatter is not understood com-

pletely. One of the hypotheses [19] is that measures that lead to a low

D/H are more reliable, while those with a high ratio are probably affected

by systematic errors. It seems unlikely the hypothesis of a depletion of

deuterium in such sites.

1.5.2 3He abundance observations

The ionized helium 3HeII emission line is observed both in galactic

HII regions15 with radiotelescopes (for its spin flip transition, similar

to the 21 cm line of hydrogen) and in the ultraviolet region through the

15These regions are so-called because of the large amount of atomic ionized hydro-
gen they contain.
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Lyman series. Its post-BBN evolution is complex, since it is produced and

destroyed in stellar interiors and the uncertainties on the cross section of

the reaction 2H(p, γ)3He make its primordial abundance values, shown in

fig. 1.7, widely conflicting. Its lines in the spectra are very close to those

of 4He, that is why it is really difficult to extrapolate its abundance from

spectra. One of the most recent estimates, derived from the observation

of an HII region in the external part of the Galaxy, that is the less evolved

part, gives y3 ≡ 105(3He/H) = 1.1± 0.2 [38].

1.5.3 4He abundance observations

With simple considerations 4He mass fraction can be defined as [9]

[13]

YP =
4He mass

all nuclei mass
. (1.17)

4He has four nucleons, thus (neglecting its binding energy) mHe ≈ 4 ·mN ,

and because two of them are neutrons, its numerical density nHe = nn

2

considering that all neutrons end up in this nucleus, as it is already been

said. This is a good approximation because the next most abundant

nucleus, deuterium, has a primordial abundance at least four orders of

magnitude smaller. In the end, considering that mN ≈ mn ≈ mp ≈ 0.94

GeV and n
p
≈ 1

7
for BBN (for what it has been said in par. 1.3),

YP =
4mN

nn

2

mN(nn + np)
≈

2 · n
p

1 + n
p

≈ 0.23. (1.18)

The abundance of 4HeII and 4HeIII is derived from recombination
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Figure 1.7: Abundance of 3He relative to hydrogen in HII regions of the Galaxy as a
function of distance R from the galactic center. The solar symbol indicates
the value in the pre-solar nebula, while the dashed lines the values adopted
by Bania [38] as the upper limit.
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Figure 1.8: Evolution of the abundance of 4He, (Y ≡ 4y
1+4y, with y ≡ nHe

nH
), according

to the standard model, with time and temperature. The different curves
show how Y varies with the potential value of η10.

lines compared with those of the HI in metal poor galaxies. Observed

value is always bigger than BBN one, because 4He has been continuously

produced in stars. Extrapolation of YP to zero metallicity (although

observations could be affected by systematic errors, as the presence of

plasmas or stellar absorption) gives YP = 0.2561± 0.0108 [39] [40], fairly

near the rough approximation result above. The potential curves of YP

as a function of time and temperature and the variation of η are shown

in fig. 1.8).

1.5.4 7Li abundance observations

The 7Li is observed in various astrophysical sites, including halo stars

of the Galaxy, where it is expected that the observed value is very close
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to the primordial one. The relative abundance of 7Li/H in such stars,

plotted as a function of effective temperature16 or its metallicity, shows a

plateau, called Spite plateau [41], useful to extrapolate primordial value

as the zero metallicity one.

Data observed for 7Li are really discordant for all the observation

sites, but it is a crucial element for BBN constraints, or better still it

turns out to be the only element not in agreement with standard BBN

predictions, that is why many BBN studies focus on it. One of the most

recent gives 7Li/H= 1.23+0.34
−0.16 · 10−10[42] [43].

Figure 1.9: Lithium abundance observed in objects where one expects a value very
close to the primordial one. The values of 7Li observed [44], [45], indicated
by gray dots, were then extrapolated to the primordial value shown by the
arrow [45]. Also the observations of 7Li/H globular cluster with [Fe/H=-
2] [46], [47] are shown. The horizontal bar represents the value of ΩBh

2

within 1σ from the WMAP satellite and the Standard BBN.

16The Teff of a star is the temperature that would have a black body of radius
and luminosity equal to those ones of the star.
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1.6 BBN uncertainties, parameters and re-

actions

1.6.1 Uncertainties and parameters

In past decades a wide literature production has focused on BBN,

defining that the uncertainties on primordial nucleosynthesis depend on:

1. difficulties in evaluating light elements abundances by observations

and in their extrapolation to primordial value, with possible sys-

tematic errors, as just said in par. 1.5;

2. experimental difficulties for cross sections measurements of nuclear

reactions at the very low energies involved in BBN (about 102 keV)

(which will be discussed in chap. 2);

3. uncertainties on the model constants or functions, that mostly af-

fect computational codes and then all the predictions (see chap.

4).

Concerning the last aspect, it is worth adding that the number of

free parameters is going to decrease with time, for example number of

neutrinos families is now determined from Z0 width measurement by LEP

experiments at CERN (with the result of Nν = 2.9840± 0.0082 [48]) and

new experiments have reduced the neutron lifetime uncertainties, that

enters weak reaction rate calculations.
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One of the most important constants is the actual value of the Hubble

constant H0, whose value ranges between 40 and 100 km
Mpc·s ; the most

reliable value is 72 km
Mpc·s [49], in complete agreement with the results of

the CMB 73+4
−3

km
Mpc·s [50].

The Hubble constant is related to the expansion rate H of the uni-

verse, that is a function of H0 and, in first few minutes dominated by

radiation, of the relativistic particles energy density ρR = g⋆
π2k4

30(~c)3T
4,

where g⋆ is the number of degrees of freedom. So H depends on other

constants and a precise determination of temperature for important mo-

ments in the early universe timeline, but mostly on g∗, that is also ques-

tionable, because it is related to which particles are relativistic at some

point of the first 100 seconds history.

The η parameter

The most important parameter for BBN is certainly the dimensionless

ratio η, the ratio nB

nγ
, with n numeric baryonic and photonic densities (the

latter proportional to the cube of the temperature). It decreases its value

over time, thus this is a meaningless parameter if it is not specified the

time at which is derived; nevertheless it keeps constant after e+e− pairs

annihilation, so it is now the same of BBN epoch.

The η value is proportional to the baryon-antibaryon asymmetry

A ≡ nB−n̄B

nB
, and it can be found that A ≈ 6η. Standard Model of

Particle Physics and Standard Model of Cosmology contain all ingredi-
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ents needed to create it dynamically from an initially symmetric universe,

like baryon number, charge and charge-parity violating interactions, and

departures from thermal equilibrium [51]; however, these ingredients are

in insufficient amount to account for an asymmetry η ∼ 10−10 [9] (indeed

it is preferred to use η10 = η · 1010), so it has still an unknown origin.

The η value can be obtained from the CMB anisotropies, considering

that it is simply related to ΩB
17 through the relation [52]

η10 = η · 1010 = 273.45Ωbh
2

1− 0.007YP
·

2.725K

T0

3

·

6.708 · 10−45MeV−2

G


,

(1.19)

where h is value of Hubble constant in units of 100 km
Mpc·sec , G is the

gravitational constant, YP is the 4He mass fraction and T0 the photon

temperature today. Since the temperature of the cosmic background

radiation, and therefore nγ, are known with good precision (TCMB =

2.725± 0.001 K [53]), the relation between ρB and η is direct, and is [12]

ρB = 6.84 · 10−22 g

cm3
η. (1.20)

TheWMAP result after seven years of observations [54] gives now ΩBh
2 =

0.02249 ± 0.00056 and, because η can also be expressed in terms of ΩB

and h2 (in particular as ΩBh
2 = 3.65 · 107η, thus, in principle, also this

last free parameter has been fixed η = 6.16± 0.15 · 10−10 [54]).

Nevertheless this value still lead to some inconsistency in BBN model

predictions, like 7Li abundance. This is why it is still crucial to constrain

17ΩB ≡ ρB

ρc
is the ratio of the baryon density ρB on the critical one ρc =

3H2

8πG .
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it with other kinds of evaluation, above all the ones that come from

observations and nuclear experiments.

To have η from observations, instead, it should be considered that the

abundances of 2H, 3He and 7Li, being limited by the involved reactions

rate, are possible baryometers, depending on the competition between η

and expansion rate, because their production will stop when the expan-

sion will increase volume until new synthesis will not be allowed anymore;

the exception is 4He, that turns out to be an excellent primordial timer

for early universe [11], because has been synthesized so rapidly that it is

not dependent on this competition, but on the time at which n
p
is frozen,

because it depends on the availability of neutrons. However it has an

extra dependence, although logarithmic, on baryonic abundance, since a

larger number of nucleons leads to a break in less time of the deuterium

bottleneck, thus a greater production of 4He. So the higher η, before

nucleosynthesis begins and then burn all the nucleons in 4He, and its

primordial abundance YP will be greater, while those of deuterium and

3He decrease to compensate.

Thus, in order to reduce the uncertainty of η, light elements cur-

rent abundances are measured, and lead back to the primordial (when

metallicity is considerable low), correcting them through computer codes

that simulate galactic and stellar evolution. Just one of these primor-

dial abundances is needed to have η through codes, and in practice it is
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used almost only deuterium, as it will be said later, while the other three

nuclei serve as tests of the theory.

Also the vice versa is possible, that is to derive primordial abundances

from η, again with computer programs that require as input the values

reaction rates of BBN involved reactions, with the smallest possible un-

certainty. There is therefore a circle: both with nuclear reactions in the

laboratory experiments and with observations, it is possible to reduce

the uncertainties of the whole model.

In the Standard BBN case, inferring the η10 from the different element

abundances should lead to the same value: η10 = ηD = ηHe = ηLi [55].

SBBN works for deuterium (and predicts a value for 3He abundance in

excellent agreement with the one inferred from the study of Galactic HII

regions[38]), but not for 7Li and not properly for 4He: this can lead to

possible consideration on deviations from the SBBN. Indeed any time

that all the BBN parameters, as well as fundamental constants, differ

from the standard model ones, BBN predictions change significantly, so

it is very important to determine accurately these values.

The most famous non standard case, the so-called Inhomogeneous

BBN [56], concerns the case of a not homogeneous η in every part of

the early universe, before and during BBN. In this case there have been

some neutron rich parts and other proton rich parts in the universe,

where many elements typical of the CNO cycle could have been pro-
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duced. For these heavier elements is particularly difficult to infer pri-

mordial abundance observationally, because their post-BBN evolution is

extremely complicated, being widely produced e destroyed in most of the

stars. It is not better in nuclear reaction rate evaluation from experiments

(cross section measurements) because of experimental complications at

astrophysical energies (see chap. 2), particularly for unstable nuclei, like

tritium or 10Be.

Anyway, considering only the Standard scenario [55], are found the

relations:

• 4He that vary roughly logarithmically with η in the range adopted,

YP ∝ ln η. They can be linearly related as YP = 0.2384+0.0016η10,

committing an error inside the observational one. It can be intro-

duced now ηHe = 625(YP − 0.2384± 0.0006);

• also 7Li abundance is well described by a power law:

yLi =
η210
8.5

(1.21)

and also here error is inside the observational one; it is found ηLi =

(8.5(1± 0.1)yLi)
1/2.

• deuterium abundance (now indicated as yD
18) dependence by η is

simply the power law

yD = 46.5η−1.6
10 , (1.22)

18The abundance of deuterium is often indicated as yD ≡ D
H · 105.
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with an error of 1% in the considered range for η; then one can

define ηD = (46.5(1±0.03)
yD

)1/1.6.

From the last relation it follows that an uncertainty of 10% of yD

gives an uncertainty of η of 6%. Together with the agreement between

these predictions and the observation results, this is why it is considered

to be the best baryometer. Already in 1973, Reeves, Audouze, Fowler

and Schramm explained that the rapid decrease in the production of

the first isotope of hydrogen with the baryon density ρB (more precisely

proportional to 1
ρB1.6

) puts an upper bound to the same ρB, which means

that the universe can not be closed by baryons [57].

In fig. 1.10, to summarize the BBN model situation, the theoretically

predicted abundances provided by the standard model of BBN are shown

as a function of η. The yellow boxes indicate the statistical errors (2σ)

of the abundances measured observationally, while the dotted box (±2σ)

includes possible systematic errors. The vertical band indicates the value

suggested by the CMB for η, which is in agreement with those suggested

by the Standard BBN [58], in particular for deuterium and with the

exception of 7Li.

A similar situation can be seen in fig. 1.11 by [59], where the blue

regions from theory (BBN+CMB) are compared with the observations

(yellow regions) and is evident the best agreement for the deuterium

case. In both figures 3He observational results are not plotted, because
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Figure 1.10: Theoretical abundance curves of 4He, D, 3He and 7Li predicted by the
standard model of BBN. The yellow boxes indicate the statistical er-
rors (2σ) of the abundances measured observationally, while dotted box
(±2σ) includes systematic errors. The vertical band shows CMB result,
in agreement with those suggested by the Standard BBN model [58].
Observational results for 3He are not shown (see text).
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its observational scenario is still a matter of concern among astronomers

[58].

Figure 1.11: Comparison between light elements primordial abundances predicted by
BBN and the CMB (blue regions) and those obtained from observations
[59]: yellow region for deuterium is D/H=(2.78+0.44

−0.38) × 10−5 [34], while

the dashed line shows D/H=(2.49+0.20
−0.18) × 10−5 [37]; no observational

data for the 3He are plotted (see text); for 4He the dotted line indicates
the value YP = 0.244 ± 0.002 ± 0.005 [60], while yellow region is YP =
0.238± 0.002± 0.005 [61]; for 7Li/H the dashed line indicates the value
(2.19+0.46

−0.38)× 10−10 [47], while the yellow area 1.23+0.34
−0.16 × 10−10 [45].
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1.6.2 The BBN reaction network

The Standard BBN network is made by almost 60 reactions [62]. In

principle also CNO cycle nuclei are produced, but in negligible quantities

(in the Standard model) from 10−16 to 10−10 relative to the hydrogen

one [63]. In particular 12 are very important (fig. 1.12), because light

elements abundances are very sensitive to their reaction rates [59]:

n ↔ p+ e− + ν̄e (1.23)

H (n, γ) 2H (1.24)

2H (p, γ) 3He (1.25)

2H (d, n) 3He (1.26)

2H (d, p) 3H (1.27)

3He (n, p) 3H (1.28)

3H (d, n) 4He (1.29)

3He (d, p) 4He (1.30)

3He (α, γ) 7Be (1.31)

3H (α, γ) 7Li (1.32)

7Be (n, p) 7Li (1.33)

7Li (p, α) 4He (1.34)

The experimental study of the 1.27 and 1.28 reactions is the main

argument of this thesis, because of the fundamental role of their rates in

the BBN model. The next chapter will focus on experimental difficulties
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in performing these cross section measurements at energies relevant for

astrophysics. In particular the Trojan Horse Method analysis will be

discussed, focusing on the extraction of the d+ d reaction rates.

Figure 1.12: The 12 fundamental reactions of BBN.
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Chapter 2

Cross section measurements
at astrophysical energies via
the Trojan Horse Method

In astrophysical environments, particles interact with a kinetic energy

that is typically given by the thermal motion, that for a non-degenerate

and non-relativistic system is described by a Maxwell Boltzmann dis-

tribution, so that the thermal energy is E ∼ kBT , with kB Boltzmann

constant. The temperature range T ∼ 106÷ 109 K corresponds to an en-

ergy range of astrophysical interest, namely of about 0.1÷ 100 keV and

therefore laboratory experiments should reach these energies in order to

achieve a more accurate understanding in nuclear astrophysics problems.

In this chapter the discussion will be limited to the case of non res-

onant charged particle nuclear reactions, to focus on the d + d reaction

case, that is the topic of this thesis.
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2.1 Nuclear reactions between charged par-

ticles and the tunnel effect

Classically, two nuclei a and A can interact if their relative energy

is at least equal to the maximum value of the Coulomb barrier in the

nuclear radius Rn, as in fig. 2.1, given by:

EC(Rn) =
1.44 · ZaZA

Rn

, (2.1)

with Za and ZA atomic number of the involved nuclei, EC considered in

MeV and the nuclear radius Rn in fm. EC has a value larger than the

energy associated with thermal motion in astrophysical plasmas: classi-

cally, therefore, the two nuclei can not get closer than RC , corresponding

to the distance of closest approach (see fig. 2.1). For example, for the

p+p scattering the Coulomb barrier is about T = 6.4 · 109 K, i.e. 550

keV.

The solution has been found in quantum mechanics, according to

which there is a non-zero probability that a particle pass through the

Coulomb barrier even if its energy is not enough to overcome it. It is

called tunnel effect [65], and explains the presence of nuclear reactions in

non explosive astrophysical environments [66], [67].

In quantum mechanics |φ(r)|2dV gives the probability of finding the

particle around a position r. The probability Tl to cross the Coulomb

barrier is then [68]

Tl =
|φ(Rn)|2

|φ(RC)|2
. (2.2)
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Figure 2.1: Nucleus-nucleus interaction potential as a function of their relative dis-
tance. At nuclear separation larger than the sum of the nuclear radii, the
interaction is essentially described by the Coulomb potential. At smaller
distances, the nuclear interaction is dominant [64].

This probability is given in first approximation, for l = 0 and energies

E ≪ EC , by the Gamow factor (see later in this chapter):

Pl=0 =


EC

E
exp(−2πη), (2.3)

where η is the Sommerfeld parameter

η =
ZaZAe

2

hv
, (2.4)

with v relative velocity of the two interacting particles.

2.1.1 Reaction rate

A major purpose of nuclear astrophysics is the determination of the

reaction rates, setting the temporal evolution of nucleosynthesis and the

energy generation rate. The reaction rate then is the number of reactions

per unit of time and volume between two given nuclei. If na and nA are
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the number densities of target and projectile nuclei respectively, reaction

rate raA is expressed as

raA =
1

1 + δaA
nanA < σ(v)v >, (2.5)

where δaA is the Kronecker symbol, so that the factor 1
1+δaA

takes into

account the case of a reaction between identical particles (i.e. a = A).

The average value of the product < σ(v)v > is obtained by convoluting

the cross section with the Maxwell Boltzmann velocity distribution φ(v)

(valid for a non-degenerate and non-relativistic particle gas), that is given

by

φ(v) = 4πv2


m

2πkBT

 3
2

exp


− mv2

2kBT


; (2.6)

if φ(v)dv is the probability that a couple a − A has a relative velocity

between v and v + dv, the reaction rate is obtained integrating over all

possible velocities:

raA =
1

1 + δaA
nanA

 ∞

0

φ(v)vσ(v)dv =
nanA

1 + δaA
< σ(v)v >aA, (2.7)

where < σ(v)v >aA can be rewritten in terms of relative energy E as

< σ(v)v >aA=


8

πµ
(kBT )

− 3
2

 ∞

0

σ(E)E exp(− E

kBT
)dE, (2.8)

where µ is the reduced mass of a and A.

For a nuclear species A the time evolution of the rate for the reactions

induced by the nucleus a, if it is known the value of < σv >aA, is given

by:

dNA

dt
= −NaNA < σ(v)v >aA, (2.9)
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2.2 Non-resonant charged-particle reactions and the Gamow peak

the minus sign accounting for the decrease in the abundance of A after

the interaction with a.

Among the many possible reaction mechanisms, two extreme cases

are the resonant and the direct mechanisms. Only the second case will

be discussed.

2.2 Non-resonant charged-particle reactions

and the Gamow peak

Reactions occur in a time lapse comparable to the time the projectile

takes to traverse the target nucleus (t ∼ 10−24 − 10−22 s). Therefore,

no intermediate equilibrated nuclear systems are formed and the cross

section is a smooth function of the energy [69].

The cross section can always be expressed as [68]

σ(E) =
1

E
S(E) exp(−2πη), (2.10)

where the exponential factor takes into account the penetration through

the Coulomb barrier, while the geometrical factor 1
E
the quantum nature

of the reaction and S(E) is called astrophysical factor. It is particularly

important in nuclear astrophysics and for non resonant reactions it is a

smoothly varying function of the energy [64], as it can be seen in fig. 2.2

and 2.3.

Introducing equation 2.10 in 2.8 one obtains

< σ(v)v >aA=
8

πµ
(kBT )

− 3
2

 ∞

0

S(E)exp(− E

kBT
− b

E1/2
)dE, (2.11)
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2.2 Non-resonant charged-particle reactions and the Gamow peak

Figure 2.2: If a constant S-factor is assumed (lower panel), the cross section expo-
nentially drops at low energies (upper panel), making extrapolation more
uncertain (dashed line) [68].
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2.2 Non-resonant charged-particle reactions and the Gamow peak

where b = 0.989ZaZAµ
1/2MeV1/2.

From the dependence of the rate on the nuclear charges it is clear

that, at different stages of star evolution nuclear species with the smallest

nuclear charge are burned first (if no other parameters have changed).

Figure 2.3: Energy dependence of the cross section (upper panel) and of the astro-
physical factor (lower panel) of the 3He(3He,2p)4He reaction. The solid
line was obtained by a fit the experimental data [68].

By taking the first derivative of the integrand in eqn. 2.11, the maxi-

mum of this function E0 is obtained. This is depending on the convolution

of Maxwell Boltzmann distribution and tunneling through the Coulomb

barrier, as it is shown in fig. 2.4, and can be calculated as

E0 = 1.22(Z2
aZ

2
AµT

2
9 )

1
3MeV; (2.12)
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2.2 Non-resonant charged-particle reactions and the Gamow peak

the energy region around E0 is called the Gamow peak and has a width,

called Gamow window:

∆ = 0.2368(Z2
1Z

2
2µT

5
6 )

1
6MeV. (2.13)

Thus, the Gamow peak around E0 represents the relatively narrow

energy range over which the most of a specific nuclear reaction occur in

an astrophysical plasma [70].

Figure 2.4: The Gamow peak is generated by the interplay between the Coulomb
penetration factor, dominating the reaction probability, and the Maxwell
Boltzmann distribution, setting the relative energy distribution. As a
result, the energy at which the reaction probability is maximum (Gamow
energy) is larger than the thermal energy for a given temperature kBT
[68].
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2.3 Extrapolation to the astrophysical energies

2.3 Extrapolation to the astrophysical en-

ergies

It is very difficult, impossible at present, to perform measurements

of cross sections at energies of astrophysical interest in the laboratory,

because in these intervals they exponentially decrease to values of order

of 10−9 barn: hence the need of extrapolation to the Gamow peak. A

better accuracy is obtained extrapolating the astrophysical factor S(E)

rather than the cross section, since it maintains a nearly constant trend

as a function of energy for non resonant reactions. This characteristic

allows one to describe its behavior for varying energies using a Taylor

series expansion [68] around zero energy:

S(E) = S(0) + Ṡ(0)E +
1

2
S̈(0)E2 + ... (2.14)

where Ṡ(0) and S̈(0) are the first and second derivative of S with respect

to energy. Appropriate fits to the experimental data provide the value of

the coefficients of eqn. 2.14.

The colored zone in fig. 2.5 indicates the region where typically can

be found the Gamow peak, where the extrapolation may be source of

systematic errors due to the electron screening effect or to the presence

of unexpected or poorly known resonances or subthreshold states, whose

high-energy tail can contribute in the astrophysical region. The cross

section is given by the common Breit-Wigner formula, and the extrapo-

lation of S(E) using non-resonant reaction criteria will be a valid value
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2.4 Electron Screening

Figure 2.5: Astrophysical factor as a function of the energy. In the area marked in
red, where typically the Gamow peak is present, is shown the influence of
the possible presence of a high-energy tail of a subthreshold resonance.

only as a lower limit.

2.4 Electron Screening

In the previous discussion nuclei were considered bare, namely fully

stripped of their electrons, thus with a Coulomb potential which ex-

tends to infinity. Since target and projectile are in the form of atoms

or molecules and ions, respectively, electron clouds can not be neglected,

leading to a decrease of the Coulomb potential that equals zero at dis-

tances larger than the atomic radius Ra, as shown in fig. 2.6.

Using a very simplified model [68], the Coulomb potential between

the interacting nuclei takes the form

Eeff =
Z1Z2e

2

Rn

− Z1Z2e
2

Ra

, (2.15)

valid for Rn < Ra, where the first term is the Coulomb barrier and the
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2.4 Electron Screening

second the effect of the electron cloud, which attenuates it. Thus the

reaction cross section increases by the so-called enhancement factor in

the laboratory conditions:

flab =
σs(E)

σb(E)
=
Ss(E)

Sb(E)
=

E

E + Ue

exp(
πηUe

E
), (2.16)

where σs is the cross section for screened nuclei and σb the bare-nucleus

cross section. The amount Ue, referred to as electron screening potential,

is the sole parameter needed to parameterize the enhancement factor. It

can be expressed, using the simple approximation reported in [64], [71],

[72] as:

Ue =
ZaZAe

2

Ra

. (2.17)

If the incident energy has values close to the Coulomb barrier (i.e. if

E
Ue
> 103), the difference between bare-nucleus and shielded cross sections

is negligible, while it becomes significant for energies much smaller than

this (i.e. for E
Ue
< 102) [73], as shown in fig. 2.7, 2.8, 2.9 and 2.10.

The theoretical models that describe the electron screening can be

extremed, for simplicity, in models that use the sudden approximation,

which assumes that nuclear interaction time is much shorter then the

time the electron clouds take to reach a new stable configuration , and

in models using the adiabatic approximation, where it is assumed that

the interaction time is so long that, at any instant, electrons readjust

themselves around a two-nuclei system [74]. At present there is a strong

discrepancy between the theoretically predicted values for Ue and those

52



2.4 Electron Screening

Figure 2.6: Effect of electronic screening on the Coulomb potential of a positive ion,
which is reduced (up to zero) for distances greater than the atomic radius
Ra.

deduced from experimental data [71] [75].

At energies of astrophysical interest, i.e. where the extrapolation

from higher energies is needed, the screening effect becomes important;

however, it is impossible to reproduce in the laboratory the astrophysical

environments, where electrons are not bound to nuclei, but form a sea

around bare nuclei.

In most of these environments matter is in the form of plasma, made

up of ions (or bare-nuclei, depending on Z and on temperature) and

free electrons; that is why, in order to solve the problem of the electron

screening, it is used the Debye-Hückel theory for plasmas. If the elec-

tron thermal energy kBT is greater than the Coulomb energy between

nuclei and electrons, a plasma can be approximated as quasi perfect gas,
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2.4 Electron Screening

with electrons forming a cloud around nuclei of size equal to the Debye-

Hückel radius RDH , within which the internal Coulomb potential is to-

tally screened [68]:

RDH =


kBT

4πe2ρNAξ
, (2.18)

with ξ =


i(Z
2
i + Zi)

Xi

A
(the sum is extended to all the positive ions)

and Xi is the mass fraction of the ions with charge Zi. The particles

density and RDH are, as it is obvious, inversely proportional.

In astrophysical plasmas there is an amplification of the cross section,

and in this case the factor flab is replaced by fpl, that differs from it only

for a different screening potential, called Upl. This potential in a plasma

is radically different from the one obtained in the laboratory, as it is

operated by free electrons. Therefore, to reproduce the astrophysical

plasma the enhancement factor flab is replaced by a plasma enhancement

factor fpl.

For a given reaction, the electron screening potential Ue can be ex-

perimentally determined by comparing the trend of the screened cross

section (or astrophysical factor) with the one of the bare-nucleus cross

section. This is obtained by extrapolating the cross section (or the astro-

physical factor) from high energies, where the effect of electron screening

is negligible, down to astrophysical energies where electron screening is

strongly affecting the measured cross section.

An alternative approach to determine the bare-nucleus S(E)-factor is
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2.5 Difficulties in experimental nuclear astrophysics and indirect
methods

provided by indirect methods, such as the Trojan Horse Method, that

will be the subject of par. 2.6. This will make possible to obtain an

estimate of the screening potential without the uncertainties generated

by extrapolation: the obtained bare-nucleus data will then be multiplied

by the screening enhancement in the plasma, calculated using the Debye-

Hückel theory, to assess the correct reaction rate.

Figure 2.7: Astrophysical factor S(E) of the reaction 3He(d,p)4He as a function of
center-of-mass energy. Note the influence of electron screening at low
energies, which increases the value of the astrophysical factor compared
to the case of bare-nuclei, shown by the solid line [76].

2.5 Difficulties in experimental nuclear as-

trophysics and indirect methods

As seen so far, the energy range of astrophysical interest is given by

the Gamow peak (see par. 2.1.1), which depends on the interacting par-

ticles and on the temperature of the astrophysical site. In general, the
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2.5 Difficulties in experimental nuclear astrophysics and indirect
methods

Figure 2.8: Astrophysical factor for the reaction 9Be(p,d)8Be. Experimental data
show an increase with decreasing energy due to electronic screening, and
the solid line is the extrapolated S-factor, devoid of electron screening
enhancement [62].

Figure 2.9: Astrophysical factor of the reaction 11B(p,α)8Be (data fit) and bare-
nucleus astrophysical factor obtained by extrapolation, indicated by the
solid line [62] .
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2.5 Difficulties in experimental nuclear astrophysics and indirect
methods

Figure 2.10: Astrophysical factor of the 2H(d,p)3H reaction [77]. The experimental
points are taken from Greife [78] and renormalized by Barker; the solid
line is the best fit including the enhancement factor, the dotted line is
the extrapolated bare-nucleus astrophysical factor.
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2.5 Difficulties in experimental nuclear astrophysics and indirect
methods

Gamow energy is always smaller than the Coulomb barrier EC between

the interacting nuclei, thus cross sections at energies of astrophysical in-

terest (E ∼ 1 − 100 keV) are generally lower than 10−9 barn. Because

of these low values, measurements are very challenging as usually back-

ground is overwhelming.

Figure 2.11: Situation in experimental cross section measurements. Experimental
limits to the increase of the reaction yield (the number of incident par-
ticles per unit time Ni, the thickness of the target τ , the solid angle
∆Ω) and possible sources of noise (natural radioactivity in the detection
chamber, cosmic rays and electronic noise) are shown.

Defining NR as the number of detected particles per units of time,

NR ∝ σNiτ∆Ω, (2.19)

whereNi is the number of incident particles on the target per units of time

and area, σ is the cross section, τ the number of target nuclei and ∆Ω

the solid angle subtended by the detector, as shown in fig. 2.11. Then,

called Nbg the number of background events due to various sources, if
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2.5 Difficulties in experimental nuclear astrophysics and indirect
methods

NR ∼ Nbg, as in the case described above, cross section measurements

are subject to great uncertainties that could make them meaningless.

Attempts to raise NR, increasing Ni, τ and ∆Ω, should take into

account target degradation, reduction of the energy resolution (if it is

used of a thicker target) and the theoretical limit of 4π for the solid

angle.

In some cases is possible to reduce the background due to cosmic rays

measuring in underground laboratories (as it is done for example in the

Gran Sasso Laboratory by LUNA - Laboratory for Underground Nuclear

Astrophysics) [72]. In general, one can try to reduce natural radioactivity

present in each material, using those with less spontaneous activity, and

to reduce the noise coming from the electronic chain of the experimental

data acquisition system. However, even if it could be possible to perform

a measurement at very low energy (near E0), extrapolation is still needed

because of the effects of the electron screening, unless indirect methods

are applied.

Indirects methods have been developed to overcome the experimen-

tal limitations of direct experiments. Among them, the most powerful

and used are Coulomb dissociation (CD), asymptotic normalization co-

efficients (ANC) and Trojan Horse method (THM).

The THM, which is well suited in case of nuclear reactions between

charged particles, allows one to derive the energy dependence of the exci-
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2.6 The Trojan Horse Method

tation function (in relative units) at astrophysical energies. The absolute

value is obtained after normalizing to direct data at higher energy.

2.6 The Trojan Horse Method

The basic idea of THM [79] is to extract the cross section of a two-

body reaction of astrophysical interest

a+ x→ C + c (2.20)

through the study of a two- to three-particle reaction

a+ A→ C + c+ s (2.21)

in quasi-free kinematics (that will be defined later), with nucleus A de-

scribed in terms of two clusters x and s. If an incident energy higher

than the Coulomb barrier between the nuclei a and A is chosen, after

the break-up of A the interaction between a and x will take place inside

the nuclear field of nucleus a: then the cross section will not suffer from

Coulomb suppression and electron screening effects. This is the reason

why A is called Trojan Horse nucleus.

According to the original idea by Baur [79], if A is the target1, the

Fermi motion of x inside A can compensate, at least in part, the velocity

(and thus the energy) of projectile a, in order to reach very low center-of-

mass energies. This idea is very difficult to be worked out experimentally,

1All the following discussion is valid also if the Trojan Horse nucleus is the pro-
jectile.
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2.7 Sequential and break-up mechanisms

because of the required high values of the momentum of the third particle

(the one that plays the role of spectator), which populate the tail of its

momentum distribution, a region where it is difficult to separate quasi-

free events from others.

The THM makes use of the binding energy EB of x inside A to com-

pensate for the beam energy and to reach the astrophysical energies, so

that [80] [81] [82]

(Ecm)
qf = Ebeam − EB ∼ E0, (2.22)

for Es = 0, where (Ecm)
qf is the energy in the center-of-mass of the

two-body reaction in the quasi-free condition (thus it is Eax), Ebeam is

the beam energy calculated in the x − a center-of-mass system and EB

is the binding energy of the TH nucleus. This relation is valid only if

the quasi-free break-up takes place in the target, that is at rest in the

laboratory system and for a l = 0 relative motion between x and s.

2.7 Sequential and break-up mechanisms

Reactions between nuclei can be divided into the extreme classes:

compound nucleus and direct reactions. For these ones, interaction be-

tween colliding nuclei lasts about 10−22 s, about the transit time of the

projectile through the target [83]. Break-up processes are direct reac-

tions, as in these processes a nucleus A separates into its constituents

[84].
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2.7 Sequential and break-up mechanisms

Figure 2.12: Diagram of the break-up mechanism of A into x and s, and the reaction
of cluster x with a, leading to the production of c+C in the exit channel.

If a is the nucleus interacting with A, and x and s two clusters making

up A (therefore one can write A = x⊕s) the break-up of A is called quasi-

free when, in the interaction between A and a, s is emitted with the same

momentum it had inside A. Under these assumptions s is called spectator

to the virtual process a+ x→ c+ C [83] .

Thus the process a+A→ C + c+ s can be described by the diagram

in fig. 2.12, with one vertexes and a pole (then the name of pole graph);

the pole is given by the virtual x particle, that is transferred to the lower

vertex. According to this:

• A undergoes break-up into its constituents x and s, as shown in

the upper vertex;

• while s continues undisturbed, the reaction a + x → C + c takes

place in the lower vertex.

The pole approximation, that is one of the bases of the method, is
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2.7 Sequential and break-up mechanisms

Figure 2.13: Diagram of a reaction proceeding through a sequential mechanism: al-
though the reaction products (s, c and C) are equal to the case of fig.
2.12, the mechanism proceeds in two steps, i.e. the decay of nucleus B
(in s and D) and of D (in c and C).

applicable only for small spectator momenta ps, and in particular the

following relation must be valid [85]:

0 ≤ p2s ≤ 2mxbEB, (2.23)

where EB is the binding energy of s in A. This condition is necessary

to make poles negligible in the pole graph, like the one in fig. 2.12 [85].

The THM uses the process of quasi-free (QF) break-up: this mech-

anism is disentangled from all other reaction mechanisms, in particular

the sequential ones, proceeding through the formation of an intermediate

compound state, as shown in fig. 2.13.

Their contribution must be eliminated in the off-line analysis, if the

selection of appropriate angular and energy conditions for the experiment

did not prevent their presence.

Particles c and C, produced in the reaction a(x, c)C, are detected
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2.8 The Trojan Horse cross section

in coincidence at angles (θc, θC), called quasi free angles, where the con-

tribution of the quasi-free process can be measured with the highest

probability.

If the relative motion of x and s inside nucleus A takes place with

l = 0, the momentum distribution φ(p⃗s) will have a maximum around

the value |p⃗s| = 0 . The quantities Ea, Ec, EC , Es and pa, pc, pC , ps are

the energies and momenta of the involved particles respectively, and the

energy and momentum conservation laws lead to the equations

Ea +Q = Ec + EC + Es (2.24)

p⃗a = p⃗c + p⃗C + p⃗s; (2.25)

imposing p⃗s = 0 in the equations above, one obtains

Ea +Q = Ec + EC (2.26)

pa = pccosθc + pCcosθC (2.27)

0 = pcsinθc + pCsinθC , (2.28)

in four variables, EC , Ec, θc and θC . Thus, fixed one of the two angles,

the other, belonging to the quasi-free pair, is uniquely determined.

2.8 The Trojan Horse cross section

In order to write a general TH cross section expression2, one can

start from the analysis of QF scattering in the framework of the Impulse

2All the considerations in the present chapter are done regardless of the parti-
cles spins. This does not give less validity to the treatment and make formulas less
complicated, though corrections are usually small.
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2.8 The Trojan Horse cross section

Approximation (IA). This approximation means that [86]:

1. the incident particle never interacts with the two clusters of the

target at the same time. This implies that the average distance

between the two clusters must be large compared with the incident

particle wavelenght;

2. the interaction between a and x is the same as if x would be a

free particle, that is s does not affect the interaction (hypothesis of

transparency);

3. the binding energy of s ⊕ x is negligible compared with the beam

energy in the a − A center-of-mass system: the name of Impulse

Approximation derives from this hypothesis, as in classical dynam-

ics when a force is very intense on a short timescale and other forces

can be neglected during this interval.

The same holds in the case of QF reactions, changing the beam en-

ergy with the transferred momentum and the binding energy with the

spectator momentum range [81] [82] [87] [88].

Plane Wave Impulse Approximation

In the Plane Wave Impulse Approximation (PWIA) cross section for

quasi-free reactions can be factorized into a term describing the upper

vertex of fig. 2.12, that in PWIA is the square of the Fourier transform

of the intercluster-motion wave function, and a term for the other vertex,
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2.8 The Trojan Horse cross section

that is the half-off-energy-shell (HOES) cross section of the virtual binary

reaction. Such cross section is denoted as HOES because the reaction

products c+C are on-shell, while x is virtual, thus the entrance channel

is off-shell.

It is assumed that the wave function for the target nucleus A can be

written as ψA = ψx · ψs · ψ(r⃗x − r⃗s), where ψs and ψx are the internal

wave functions of the clusters in the ground state, and ψ(r⃗x− r⃗s) express

their relative motion. Defining for any particle or cluster pi, ki, qi, the

momentum, the wave number3 and the A center-of-mass system momen-

tum, respectively, in the laboratory system the recoil momentum of s is

equal to that one it had inside the target A, then p⃗s = q⃗s = −k⃗. In this

way, the wave function of A is ⟨q⃗x, q⃗s|A⟩ = φ(k⃗)δ(q⃗x + q⃗s), where q⃗x, q⃗s

are the momenta inside the target. The quantity k⃗ = msq⃗x−mxq⃗s
mA

is the

relative momentum of the clusters x and s inside the target, and it is

canonically conjugated to the relative coordinates r⃗x − r⃗s. So φ(k) is the

Fourier transform of the wave function ψ(r⃗x − r⃗s) in momentum space;

the Kronecker symbol, instead, takes into account that the target is at

rest in the laboratory system, then q⃗x + q⃗s = 0, and q⃗x = −⃗qs = k⃗.

The initial- and final-state plane waves are |i⟩ = |p⃗a, A⟩ and |f⟩ =

|p⃗c, p⃗C , p⃗s⟩. The transition T-matrix element Tfi contains all the essential

information relevant to the scattering process, and has to be calculated

in a suitable approximation that allows one to find a connection to the

3If ~ = 1, pi = ki.
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cross section of the astrophysical relevant reaction. For the three-body

interaction it is

Tfi = ⟨f |T |i⟩ = ⟨p⃗c, p⃗C , p⃗s|T 3b|p⃗a, A⟩. (2.29)

With the assumption p⃗s = q⃗s = −k⃗, it is possible to replace the operator

T 3b with T 2b (i.e. neglecting the multiple scattering between c − s and

C − s and the final-state interaction between the spectator and the final

products) that describes the two body interaction. Then one gets:

Tfi = ⟨p⃗c, p⃗C , p⃗s|T 2b|p⃗a, A⟩ =

d3q⃗x⟨p⃗c, p⃗C , p⃗s|T 2b|p⃗a⟩|q⃗x⟩⟨q⃗x, p⃗s|A⟩

(2.30)

and because ⟨q⃗x, p⃗s|A⟩ = φ(msq⃗x−mxq⃗s
mA

)δ(q⃗x + q⃗s) = φ(−⃗ps), then

T 2b
fi = ⟨p⃗c, p⃗C |T 2b|p⃗a, −⃗ps⟩ (2.31)

where both |pa| and |ps| are observable. Thus, if T 3b
fi = δ(p⃗a − p⃗s − p⃗c −

p⃗C)t
3b
fi, and similarly for the two body case, tfi is factorizable as:

t3bfi = φ(−⃗ps)t2bfi. (2.32)

The differential cross section for a three-particle final-state in the mo-

mentum space, integrated over the spectator momentum, and using the

formulas above, can be finally written as:

dσ =
(2π)4

|vrel|
d3p⃗sd

3p⃗cd
3p⃗Cδ(ki − kf )δ(Ei − Ef )|t3bfi|2 (2.33)

with vrel =
pa
Ea
, ki−kf = pa−ps−pc−pC ; integrating over the momenta,

using the above equation and the proportionality |t2bfi|2 ∝ ( dσ
dΩ
)HOES
Cc , the
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three-body cross section becomes:

d3σ

dΩcdΩCdEC

= KF |φ(−p⃗s)|2

dσ

dΩ

HOES

Cc

. (2.34)

The two-body cross section is denoted as HOES, meaning that the ef-

fects of the virtual decay of A are neglected. This equation contains the

spectator momentum distribution |φ(−ps)|2 and the kinematical factor,

that for the laboratory system can be written as:

KF =
µAamCpCp

3
c

(2π)5~7pAa


p⃗Bs

µBs

− p⃗cC
mc


· p⃗c
p− c

−1

, (2.35)

where B = c+ C.

The THM allows one to overcome the Coulomb barrier in the inter-

action, and this is one of the strongest features of the method. In order

to have a cross section comparable with the direct data, the

dσ
dΩ

HOES

in eqn. 2.34 must be multiplied by the transmission coefficient through

the Coulomb barrier:
dσ

dΩ

THM

=

l

Tl


dσl
dΩ

HOES

(2.36)

(where Tl is the transmission coefficient for the l wave) and then normal-

ized to the direct data result. Thus the HOES and OES cross sections

are proportional and coincide only in the limit Ecm
beam ≫ Bxb.

Such a simple expression for the cross section (eqn. 2.34) has been

obtained using the plane wave approximation for the relative motion of

the initial A + a and the final B + s channels. This approximation is
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2.8 The Trojan Horse cross section

not a limit to the Trojan Horse validity, because it mostly affects the

absolute magnitude of the cross section, but the energy dependence of

the two-body cross section can be obtained. Nevertheless, the TH data

can be normalized above the Coulomb barrier to the directly measured

data, in order to be compared with them.

Modified Plane Wave Born Approximation

PWIA has proved very successful in extracting the astrophysical fac-

tor in a number of experiments (e.g. [89]). In the last years, a different

theoretical approach to THM has been attempted to pin down the even-

tual systematic errors introduced by models used to deduce astrophysical

factors in the THM framework. In particular, for non resonant reactions,

the Modified Plane Wave Born Approximation (MPWBA) [90], [91] has

been used for the TH data analysis of chap. 3. This is obtained from the

Distorted Wave Born Approximation (DWBA) introducing some reason-

able assumptions to achieve a cross section factorization similar to eq.

2.34.

In DWBA approach the c+C system can be seen as an excited state

of B in the continuum, so the exact T-matrix element in the post-form

representation is:

Tfi(k
f
Cc, k

f
Bs; k

i
Aa) = ⟨φf

0(Bs)φBφs|VBs|Ψ(+)(Aa)⟩, (2.37)

where Ψ(+)(Aa) is the exact scattering wave function for the initial-state,

φf
0 is the outgoing plane wave for the relative motion B − s, and φi the
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2.8 The Trojan Horse cross section

internal wave function of the i-th nucleus. This equation can be rewritten

as the sum of two contributions, through the Gell-Mann and Goldberger

relation [92], introducing the optical potentials UAa and UBb. Defining:

Vi = (VAa − UAa) + UAa;Wi = VAa − UAa;Ui = UAa (2.38)

and similarly for Vf , replacing Aa with Bs, in the end the exact form of

eqn. 2.37 is

Tfi(k
f
Cc, k

f
Bb; k

i
Aa) = ⟨χ(−)φBφb|VAa − (VBb − UBb)|φ0(Aa)φAφa⟩

+ ⟨χ(−)φBφb|VBb − UBb|Ψ(+)(Aa)⟩,
(2.39)

but it can be demonstrated that the first term can be neglected. In the

DWBA Ψ(+)(Aa) is substituted with the distorted wave χ
(+)
Aa ; moreover a

new approximation for the interaction potential can be introduced [93]:

VBs − UBs = VCs + Vcs − UBs = VAs + Vxs − UBs ∼ Vxs, (2.40)

assuming that the transferred nucleus x is small and the optical potential

fits elastic scattering of s by the nucleus B, and neglecting the difference

VAs−UBs that introduces uncertainties of the same order of DWBA [94].

Because φB is a scattering wave function and not a bound state for the

C + c system, φB = Ψ
(−)
Cc , finally it is obtained:

TDWBA
fi (kfCc, k

f
Bb; k

i
Aa) = ⟨χ(−)(Bs)Ψ

(−)
Cc φs|Vxs|χ(+)(Aa)φAφa⟩, (2.41)

where the internal wave functions of nuclei A, a and s are denoted by

φA, φa and φs respectively, while the distorted waves χ
(+)
Aa and χ

(−)
Bs de-

scribe the relative motion in the initial and final channel.
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2.8 The Trojan Horse cross section

At this point the form of the matrix element has been determined

by means of the DWBA. Leaving from this one to reach MPWBA, it is

necessary to introduce another approximation, the surface approximation

[95]. It implies that nuclear processes take place only on the surface

of nuclei, and then only peripheral reactions contribute to the matrix

element, assuming an intense absorption at short distances only [75];

therefore, it is possible to use the asymptotic form of the wave function

Ψ
(−)
Cc in the final channel, outside the cut-off radius R in the radial wave

function. Then a direct relation between Tfi and the S-matrix element

of the two-body reaction is found.

This approximation, together with the assumption that χi can be

replaced by plane waves, lead to the so-called MPWBA:

dσTHM

dΩAx

(Cc→ Ax) =
1

4k2Cc

|

l

(2l+1)Pl(Q̂Aa· ˆkCc)[SlJ
(+)
l −δ(Ax)(Cc)J

−1
l ]|2

(2.42)

where Sl is the total S-matrix element (nuclear + Coulomb) for the re-

action C + c→ A+ x and δ(Ax)(Cc) the Kronecker symbol.

The cut-off radius R is usually chosen as the sum of the radii of nuclei

A and x. The argument of the Legendre polynomials Pl is the cosine of

the center-of-mass scattering angle of the two-body reaction. eqn. 2.42

has the form of a usual two body cross section except for the functions

J±
l = kAxQAa

 ∞

R

rjl(QAar)u
±
l (kAxr)dr, (2.43)

where the spherical Bessel functions jl and Coulomb wave functions u±l =
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2.8 The Trojan Horse cross section

exp[∓iσl(Gl ± iFl)] appear. This integrals reflect the HOES behavior of

the two body process, because the ul energy dependence compensates by

the exponential decrease of the cross section due to the Coulomb barrier

[96].

In the MPWBA, off-shell effects enter both the momentum distribu-

tion and the two-body cross section. Since the Coulomb interaction is

fully taken into account, it is possible to extract the low energy behavior

of the three-body cross section due to the Coulomb barrier by studying

the behavior of the integrals J±
l [90] [91].

Comparing the PWIA three-body cross section

d3σ

dECcdΩCcdΩBs

= KF |φa(k
f
Bs)|

2


dσ

dΩ

HOES

Ax→Cc

(2.44)

and the MPWBA one

d3σ

dECcdΩCcdΩBs

= KF ′|W (QBs)|2|tfi(kfCc, k
f
Bs, k

i
Aa)|2, (2.45)

with QBs = kfBs − kiAa
ms

mx+ms
, it is possible to note that they have similar

expressions: they both contain a kinematic factor, a second term that is a

momentum distribution and a third term given by the transition matrix

element.

The second term in eqn. 2.45 includes also the interaction between

x and s, that is equal to the second term of 2.44 only for l = 0, when

the argument of W has a peak around zero, so that kfBs ∼ kiAa
ms

mx+ms
.

The third term in eqn. 2.45 contains also the off-shell effects and the

Coulomb barrier penetration.
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2.8 The Trojan Horse cross section

It is worth noticing that in both approaches the momentum distribu-

tion function, used to extract the two-body cross section, is the experi-

mental one, as it will be better explained in par. 2.8.2 and par. 3.4.2.

2.8.1 Reaching the ultra low energy region

By means of eqn. 2.45 the cross section for the binary reaction a +

x → c + C can be extracted, as a function of the relative energy Eax,

given by Eax = ECc − Q2b (where Q2b is the Q value of the binary

reaction) from energy conservation. The relative momentum of the final

particles C and c, which are on-shell, is related to their kinetic energy by

kCc =
√
2µCcECc, while the relative momentum of the entrance channel

particles a and x, due to the off-shell character of x, is related to their

relative kinetic energy by the more complicated expression, that for psx =

0 (that is in quasi-free kinematics), is

Eax =
p2ax
2µax

−Bsx (2.46)

with Bsx = ms + mx − ma. The transferred particle x is virtual and

pax ̸= kax =
√
2µaxEAx, where kax is the on-shell momentum, that in the

laboratory system is

k⃗ax =
mxk⃗a −map⃗x
mx +ma

=
mx

mx +ma

k⃗a, (2.47)

for px = 0 in QF kinematics [97]. Then it results

Eax =
mx

mx +ma

Ea −Bsx, (2.48)
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2.8 The Trojan Horse cross section

that explains how the binary reaction can be induced at very low energies,

compensating the interaction energy using the TH binding energy.

To investigate the energy range around the Gamow peak with a single

beam energy, small deviations from QF conditions should be allowed for.

Therefore, eqn. 2.48 transforms into the following:

Eax =
mx

mx +ma

Ea −
p2s
2µxs

+
k⃗s · k⃗a
mx +ma

−Bsx. (2.49)

Varying ps and/or the emission angle of the spectator in the laboratory

system, it is then possible to scan all (or most of) the astrophysical

relevant energy range.

2.8.2 Momentum Distribution

The shape of the momentum distribution |G(p⃗s)|2 in eqn. 2.44 and

eqn. 2.45 is described by analytic functions for l = 0, like the Eckart

function [98], that can be written as

|φ(p⃗s)|2 ∝


1

a2(1 + p2s
a2
)
− 1

b2(1 + p2s
b2
)
3
2

2

, (2.50)

where a and b are constant to be determined by fitting the experimental

distribution. This expression well reproduces the experimental results

for a s−wave internal motion of the spectator, inside a ±2σ error [99].

In all the approaches to THM, including PWIA, the fit to the ex-

perimental momentum distribution is used to extract the two-body cross

section. This is because in many years of TH experiments analysis [100],

it has been noticed that distortions can alter the absolute value and the
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2.8 The Trojan Horse cross section

shape of the momentum distribution. The former is recovered from the

normalization to the direct data (the TH cross sections are extracted in

arbitrary units). The latter concerns most of all the full width at half

maximum of this functions, that tends to be smaller than the predicted

values as the transferred momentum decreases [81] [82] [101].

This feature has been observed also in the experiments discussed in

this thesis, as it will be shown in par 3.4.2.

2.8.3 TH experimental features

To perform a Trojan Horse measurement it is necessary to choose

a Trojan Horse nucleus A, dominantly composed of two clusters, the

participant to the binary reaction and the spectator, and to select the

kinematic conditions for which the quasi-free mechanism is most likely.

An incident beam energy has to be chosen such that very low energies

can be reached using the formulas above.

It is it clear that one of the advantages of the THM is simplicity of

the experimental set-up: no wide angular regions covering or complex

timing are needed.

In the next chapter, the experimental application of the THM to the

reactions 2H(d,p)3H and 2H(d,n)3He will be discussed.

75



Chapter 3

Study of the d + d reaction

The study of a nuclear reaction between charged particles via the

THM requires a series of steps to be followed both before and after the

experiment. The most important ones are described below, in the anal-

ysis of the two 2H(d,p)3H and 2H(d,n)3He reaction channels.

3.1 Preparation of the experiment

3.1.1 The Trojan Horse nucleus

As it has been shown in chap. 2, to study a reaction of astrophysical

interest a + x → c + C via a three-body reaction a + A → c + C + s,

the first issue is to select an appropriate nucleus A, the so-called Trojan

Horse nucleus, which is described in terms of two clusters x ⊕ s (x will

be the participant and s the spectator).

There may be several nuclei described in terms of the same cluster par-

ticipant x and a different spectator s (e.g. if the cluster x is a deuteron,

A can be chosen among 6Li, 3He or 3H, all described with a certain
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3.1 Preparation of the experiment

probability as a deuteron plus an α particle, a proton or a neutron), re-

spectively; usually x⊕s is selected as the nucleus with the lowest binding

energy. This is because the probability of having a quasi-free contribu-

tion with the same incident energy is higher if the binding energy Bxs

is lower. Many years of TH experiments have shown that, changing TH

nucleus, therefore the spectator particle, one obtains the same two-body

cross section, meaning that the s cluster is not interacting with the other

particles and really acts as a spectator. This phenomenon is called pole

invariance, and it has been successfully demonstrated for the reaction

7Li(p,α)4He (measured using 7Li(d,αα)n and 7Li(3He,αα)2H) [102] and

for the 6Li(d, α)4He (measured through the 6Li(3He, pα)4He and through

the 6Li(6Li, αα)4He) [89], obtaining the same trend for the cross sections.

Moreover, as already mentioned in par. 2.7, A must be selected such

that the possible sequential mechanisms can be discriminated by the

quasi-free in the off-line analysis.

In the case of the present work, the choice of the Trojan Horse nucleus

has been suggested by a previous TH experiment in which the reaction

2H(d,p)3H has been studied through the THM, using the cluster structure

d ⊕ α of the 6Li in the quasi-free 2H(6Li,pt)4He reaction. This choice

was motivated by the low binding energy of the d cluster in the 6Li

(Bdα = 1.47 MeV) (fig. 3.1) .

Although the quasi-free reaction mechanism was present with a sig-
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3.1 Preparation of the experiment

nificant cross section, the analyzed events were found to be in very

small quantity compared to those resulting from the competing sequen-

tial mechanisms. In order to avoid these strong sequential contributions

the Trojan horse nucleus 6Li has been replaced by 3He, that can be de-

scribed as 3He = d ⊕ p. The relative motion of d and p inside 3He is in

l = 0; this implies that the p − d momentum distribution shows a peak

at ps = 0 MeV/c, as predicted from theoretical calculations.

Figure 3.1: Pole diagram for the first Trojan Horse experiment to measure the
2H(d,p)3H [103].

In the present experiments the participant cluster is the deuteron,

while the spectator is the proton for both channels. Thus, the 2H(d, p)3H

and 2H(d, n)3He reactions have been studied by means of the

2H(3He, pt)H, (3.1)

and

2H(3He, n3He)H, (3.2)
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3.1 Preparation of the experiment

(fig. 3.2), detecting in coincidence the participant proton and the 3H

in the first run performed and the spectator proton and 3H and 3He in

the second one.

This is the first time in the application of the THM that the particle

which acts as spectator has been detected, namely the proton. In reaction

3.2 this has allowed to overcome all the experimental problems usually

connected with the detection of neutrons, such as the limited detection

efficiency and the poor energy and angle resolutions.

3.1.2 Requirements on the beam energy

The measurement of the excitation function for the d + d reaction

channels is of particular interest in the nuclear dynamics field and in ap-

plied physics, in studies relevant for the energy production using nuclear

fusion plants at energies from 0 to about 30 keV [104], while its energy

of interest for astrophysics ranges from 0 to 350 keV approximately. In

particular, the d+d has an important role both in the Pre Main Sequence

(PMS) phase of the stellar evolution and for the primordial nucleosyn-

thesis (see chap. 1).

The calculation of the energy corresponding to the Gamow peak for

these two astrophysical scenarios (see par. 2.1.1) yields the following

results:

1. since the temperature that characterized the phase of primordial

nucleosynthesis is of the order of 108 ÷ 109 K, the range of interest
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(a) 2H(d,n)3He

(b) 2H(d,p)3H

Figure 3.2: Pole diagrams for the reactions studied in the present work.
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for BBN is 50-350 keV;

2. in PMS protostars the inner temperature is of the order of 106 ÷

2 · 106 K, then it follows that the range of interest is 0-10 keV.

In this thesis the goal is to measure the d+d cross section in the BBN

energy range, but also the nuclear energy and PMS phase energy regions

will be covered.

This quantity has been measured directly down to a two-body center-

of-mass energy Edd equal to ∼2 keV [78], [105] (see par. 3.4.3), but these

measurements are affected by large uncertainties, and most of all by

electron screening enhancement.

The energy of the incident particle is chosen such that the input

channel energy EaA exceeds the Coulomb barrier between a and A. This

ensures that, after the TH nucleus break-up, the interaction between the

participant cluster and the other nucleus takes place in the nuclear region

of that nucleus. The energy EaA is thus compensated for by the binding

energy of the two clusters in the TH nucleus. This makes it possible that

the relative energy for A and x, EAx, is as close as possible to the energy

corresponding to the Gamow peak E0. The reference equation providing

EAx, usually called Ecm, is:

Ecm = E2−body − EB ∼ E0, (3.3)

where E2−body is the beam energy in the two-body center-of-mass system

and EB the binding energy of the TH nucleus. In the case of the present
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experiments the 3He beam energy in the laboratory system was of 17 and

18 MeV for two different runs performed.

In the case of 17 MeV beam energy the aim was to measure the cross

section in the ultra low energy region for the 2H(d,p)3H channel, and to

test a consistent presence of the quasi-free mechanism yield, sufficient to

be selected by the other reaction mechanisms. Indeed the 18 MeV en-

ergy beam run has been focused on the optimization of the experimental

conditions, as it will be extensively discussed in the next graphs. As

an example, Elab
beam=18 MeV corresponds to an energy in the two-body

center-of-mass of

Edd =
md

md ·md

·Ecm
beam =

md

md ·md

· mproj

mtarg +mproj

·Elab
beam = 5.4MeV, (3.4)

that is very near to the binding energy of the d ⊕ p in the 3He. Thus,

based on eqn. 3.3, E0 is around zero. Moreover, as it is requested for

the validity of THM prescriptions (see par. 2.6), the 3He Ebeam in the

center-of-mass system is larger than the Coulomb barrier between the

same projectile and the target d (∼ 0.77 MeV).

The energy reached in this way is not unique: the relative motion

(Fermi motion) of the two clusters inside the TH nucleus allows the pos-

sibility to span a wide energy slice. This will be experimentally seen

in the fact that the spectator particle has not a single value (namely 0

MeV/c for the l = 0 case), but rather a momentum distribution. Select-

ing a part of this distribution, it is possible to populate a wide region of
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the two-body center-of-mass energy spectrum (see par. 3.4.3).

The investigated energy range then goes from Edd = 0 keV up to 1

MeV for 17 MeV run and up to 1.5 MeV for the 18 MeV run; reminding

that in post collision prescription:

Eqf
cm = Edd = E12 −Q2−body, (3.5)

in the present case the center-of-mass energies will be calculated as:

Ecm = Ep3H − 4.03MeV (3.6)

Ecm = En3He − 3.27MeV. (3.7)

In this energy range the possible presence of sequential contributions

(coming from three-body 2H(3He,pt)H and 2H(3He,n3He)H reactions) is

given by fusion of 3He and d, followed by the formation of a proton and

an α particle, that can decay in a proton and a tritium (or a neutron and

a 3He), as can be seen in fig. 3.3.

This possibility will be excluded by looking at the relative energies

2D-plots and through the selection of the quasi-free events, coming from

the 3He decay and not from the 3He+d fusion. The choice of the 18 MeV

beam energy was also made taking into account the optimization of the

kinematic conditions (see figures of the paragraph below).

3.1.3 Experimental detection conditions

In planning the best possible experimental set-up for these measure-

ments many things have been taken into account, starting from the an-
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Figure 3.3: The possible sequential mechanism for this measurement: the formation
of a 5Li that after decays in a proton and an α particle, subsequently
decaying in a p-3H or a n-3He particles couple.

gular regions correlated in fig. 3.4 for the particles to be detected.

It is worth noticing that in order to measure the quasi-projectile pro-

ton, a good efficiency for the reactions is possible only placing the de-

tectors at very forward angles. An example of quasi-free angle pairs is

shown in fig. 3.4 and 3.5, calculated for |ps| < 40 MeV/c (where the

probability to find the quasi-free mechanism is the highest). In the red

boxes the detector positions for the two runs are shown. It has been

also taken into account that the kinematical quasi-free region obtained

by the detection of the spectator proton must not overlap the case of

the non spectator proton detection: this has been checked through the

result of a Monte Carlo simulation, as in fig. 3.6. In this figure it can
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Figure 3.4: Quasi-free kinematics regime angle pairs, calculated by a Monte Carlo
simulation for |ps| < 40 MeV/c. The range within red boxes shows where
the detectors have been placed for 17 MeV beam energy run.
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Figure 3.5: Quasi-free kinematics regime angle pairs, calculated by a Monte Carlo
simulation for |ps| < 40 MeV/c. The range within red boxes shows where
the detectors have been placed for the 18 MeV beam energy run.
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Figure 3.6: Quasi-free kinematical locus (obtained considering |ps| < 40 MeV/c and
Ecm > 0) detecting the spectator proton (red dots) and the participant
one (black dots). The two cases are clearly separated.
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Figure 3.7: Yield for the center-of-mass energy as expected by the Monte Carlo sim-
ulation, considering the strict quasi-free regime: ps < 20 MeV/c for the
17 MeV beam energy run, devoted to the p-3H channel measurement.

also be seen how the number of quasi-free events is much higher for the

spectator detection case.

Moreover these angular pairs have to lead to very small values of

ps as in the figure, for values of Ecm very close to zero (thus Ep3H ∼

4.03 MeV and En3He ∼ 3.27 MeV), as seen in the butterfly graph (for

the 17 MeV run) in fig. 3.9. To definitely see if for these conditions

the expected energy region will be populated with sufficient statistics,

the yield of the center-of-mass energy has been checked, considering the

angular conditions and values of |ps| < 20 MeV/c, as can be seen in

fig. 3.7 and 3.8. From these figures it is clear that yield is higher in the
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Figure 3.8: Yield for the center-of-mass energy as expected by the Monte Carlo sim-
ulation, considering the strict quasi-free regime: ps < 20 MeV/c for the
18 MeV beam energy run, in the case of the p-3H channel measurement.
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Figure 3.9: The two exit channel particles relative energy as a function of the spec-
tator proton momentum, showing how the selection of a ps will affect the
yield efficiency.

spectator detection case.

It is also necessary to pay attention that the region with ps close to

zero, as it has to be selected, is very close to the detection threshold of

the tritons and 3He, as it is highlighted in red in fig. 3.10, that shows

the kinematical locus for the p-3H channel. The beam energy, the choice

of size and thickness of detectors and the angular settings must also take

into account that the particles, to be correctly identified, must not be

stopped in the first silicon detector, but have to reach the detector behind

and stop inside it, otherwise no ∆E − E identification is possible. The

detector characteristics must also be chosen in order to reduce as much
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Figure 3.10: Kinematic locus for the 17 MeV run as provided by a Monte Carlo sim-
ulation for the case that will be analyzed, in black dots. Red dots show
the same for the quasi-free condition (|ps| < 20 MeV/c) that must be
detected for the TH results extraction. It is worth noticing that this is
very close to the tritons detection threshold (blue zone).
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as possible the energy and angular straggling, otherwise a reduction of

the error can not be possible.

These conditions must also match with the necessity of having as few

detectors as possible inside the scattering chamber, avoiding the possibil-

ity of dead detection angles and a signal to noise ratio too high to perform

a precise enough measurement to reduce the cross sections errors.

3.2 The experiments

These experiments have been performed at the Nuclear Physics In-

stitute of the Academy of Sciences of the Czech Republic, in Rez, within

a collaboration between the Nuclear Astrophysics group of LNS and the

Rez Institute.

Fig. 3.11, 3.12 and fig. 3.13 show a scheme of the experimental

apparatuses used: an ion beam of 3He (specifically ions 3He+) of intensity

I ∼ 1.5 pnA, produced by the cyclotron (fig. 3.14), was sent on a target

of deuterated polyethylene (CD2, with a thickness 150 µg/cm2) placed

perpendicularly with respect to the direction of the incident beam.

The detection apparatus of the reaction products consisted of three

telescopes ∆E − E, as shown in fig. 3.11, 3.12 and 3.13. Each of them

was formed by a solid state Position Sensitive Detector (PSD), sensitive

to the position and energy of the charged particles, with a thickness 1000

µm approximately, and by a silicon detector ∆E, with a thickness of 20

µm.

92



3.2 The experiments

These three telescopes have been used for the identification in charge

and mass of the particles, through their energy loss. As represented in

fig. 3.11, for the first run (17 MeV beam energy run) telescopes ∆E1−E1

and ∆E2 − E2 were positioned symmetrically at 25◦ with respect to the

beam axis and the third at 55◦, while for the second symmetrically (fig.

3.12) at 10◦ and the third telescope was placed at 30◦. The size of the

PSD was 5 × 1 cm, so that the solid angle subtended by each of them

was ∆Ω = 12 msr, as summarized in table 3.1.
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3.2 The experiments

In fig. 3.15 a block diagram of the electronic chain used for the

acquisition of data during both the measurements is shown. The energy

and position signals coming out from the PSD and ∆E detectors were

sent to the amplifier and then to the ADC (Analogic to Digital converter),

to be captured and stored by the computer using the acquisition system

developed at the LNS of Catania.
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3.2 The experiments

Figure 3.13: Experimental set-up used in the measurements.
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3.2 The experiments

Figure 3.14: The cyclotron of the Institute of Nuclear Physics of the Academy of
Sciences of the Czech Republic (Rez, Prague).

17 MeV run Central Angle Distance from target Solid angle
detector [deg] [cm] (PSD, ∆E ) covered [msr]
PSD1-∆E1 -25 20, 10 12
PSD2-∆E2 +25 20, 10 12
PSD3-∆E3 +55 20, 10 12

18 MeV run
PSD1-∆E1 -10 20, 10 12
PSD2-∆E2 +10 20, 10 12
PSD3-∆E3 +30 20, 10 12

Table 3.1: Angular positions, distances from the target and solid angles subtended by
the detectors in the experimental chamber, for both runs. The minus sign
means the detector was placed at the left of the beam direction.
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3.3 Detectors calibration

The experiment trigger1 has been implemented for the acquisition of

coincidences between the signals of the detectors 1 and 2 (both in the

case in which the protons arrived on PSD1 and tritons on PSD2 that

in the opposite case) and between those of the detectors 1 and 3. The

window of coincidence was fixed to a time interval of 200 ns.

Each event registered by ADC was formed by ten parameters: energy

and the position of each PSD (6 parameters), energy loss in each ∆E (3

parameters) and the TAC (Time to Amplitude Converter) signal.

3.3 Detectors calibration

The diagram in fig. 3.16 shows the operation mode of a PSD. One

can notice that the position signal P is taken from a resistive electrode

and obtained by charge partition produced by the incident particle. This

partition is also proportional to the kinetic energy E that the particle

releases in the active volume of the detector, and thus:

P ∝ E
x

L
, (3.8)

where L is the length of the detector and x the distance between the

point of incidence of the particle and the charge collector electrode.

The detector thicknesses has been chosen of about 1000 µm, so that

protons, tritons and 3He lose all the energy in the sensitive volume the

detector. The absolute error of the position signal is about±200 µm (that

1According to the common use the trigger is the signal that activates the acqui-
sition system in an experiment.
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3.3 Detectors calibration

Figure 3.16: Scheme of a Position Sensitive Detector.

is the value registered in the detectors data sheets), that will correspond

to a 0.1◦ error on the angle. The relative error of the energy signal

(extracted from the conductive electrode) is experimentally evaluated

of about 1% (by the energy straggling of two-body kinematics in the

calibration runs).

Before the beginning of the experiment few runs for the angular cal-

ibration have been performed, placing in front of each detector a grid

with 16 equally spaced slits, from which the 2D-plot shown in fig. 3.17 is

obtained online. Thanks to a goniometer (with a 0.1◦ accuracy) placed

inside the chamber the angular positions of each slit has been measured.

This preparation stage of the experimental apparatus has the main pur-
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Figure 3.17: Example of position-energy 2D-plot for a PSD detector (from the 18
MeV beam energy run). Position and energy units at this step are still
the ADC channels.

pose of establishing the angular interval between the slits of each grid and

the centers locations of all PSD used (their θ0). This must be done with

an accuracy2 of 0.1◦, because of the importance of the angular uncertainty

in the measurement of relative energy E12 and ps, that is fundamental

for the quasi-free selection.

With the technique described above an energy depending position

signal is therefore extracted. To remove the energy dependence a new

2The quadratic sum of the errors coming from the PSD features and the goniome-
ter gives 0.14◦.
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3.3 Detectors calibration

position variable has been defined as:

x =
P − P0

E − E0

, (3.9)

with P0 and E0 appropriate off-set values, determined by fitting the ex-

perimental data.

The correspondence between the variable xi of the i-th slit and the

angle θi, measured in degrees, is given by:

θi = θ0 + arctan[c1(xi − x0) + c2(xi − x0)
2], (3.10)

where c1, c2 and x0 are constants to be determined by fits.

The correspondence between the energy values in MeV and the chan-

nels of the output signal from the PSD is

EMeV = (a · Echannels + b)(1 + c(θi − θ0) + d(θi − θ0)
2), (3.11)

that take into account possible non-linear effects of the acquisition elec-

tronics.

The constants a, b, c and d are determined by a fit of different cali-

bration points, which were obtained from:

• an α source with two peaks, of energy E1 = 5.49 MeV and E2 =

5.80 MeV;

• the elastic scattering of 3He beam on gold and CD2 (both on carbon

and on deuterium) target.
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3.4 Analysis of the first run @17 MeV

The energy that must be associated with each calibration point (rep-

resented in the 2D-plot in figure 3.17 by an accumulation of events) is

known from kinematical calculations, obtained considering the beam en-

ergy loss in the target thickness, calculated in its center (where it is

assumed that the reaction takes place). Taking into account the energy

loss of ejectiles in the remaining half of the target, the 2D-plot in figure

3.18 is obtained, calibrated both in position and in energy. If detectors

have shown border effects, those angle ranges have been excluded by the

analysis.

There is no evidence of reactions coming from the interaction of ejec-

tiles with the carbon present in the target. Moreover these are not ex-

pected in the kinematic region of interest, as it has been checked with

the Monte Carlo simulation.

3.4 Analysis of the first run @17 MeV

3.4.1 Three-body reaction selection

The first analysis phase has been the 2H(3He,pt)H reaction, through

graphical cuts on the ∆E − E 2D-plots on the protons and tritons loci,

as in the case of fig. 3.19, where is shown the external detector, with

only protons locus visible.

The most favorable detector coincidence has turned to be the one

between PSD1 (where tritons have been detected) and PSD3 (devoted to

the protons detection). The other coincidence could not give sufficient

104



3.4 Analysis of the first run @17 MeV

Figure 3.18: Angle vs. energy 2D-plot after the calibration procedure, where energy
is measured in MeV and angle in degrees. It is possible to identify two-
body kinematics from the beam interaction with 12C and 2H.
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3.4 Analysis of the first run @17 MeV

Figure 3.19: Energy loss vs. measured energy for the PSD3 in the 17 MeV run, show-
ing the protons locus and the beam scattering on target. The graphical
cut on protons is an example of the particle selection, to form kinematical
loci as in the next figure.

statistics because of very low signal to noise ratio.

The selected events (black dots) have formed the kinematical locus

in fig. 3.20, in good agreement with what predicted by Monte Carlo

simulation (red dots). These selected events have also formed the clear

peak in the three-body reaction Q-value spectrum of fig. 3.21, centered

near the theoretical value predicted at -1.46 MeV, indicated by the arrow.

Only events under this peak have been taken into account for further

analysis.
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Figure 3.20: Kinematical locus for the protons and tritons selected from the ∆E −
E 2D-plots with graphical cuts (as in the previous figure), for the 17
MeV run (black dots), in agreement with the Monte Carlo simulation
prediction (red dots).

3.4.2 Quasi-free mechanism selection

The next step of the off-line analysis is to check the presence of the

reaction mechanism of the quasi-free break-up, and if this is found to

be dominant in the kinematic region investigated. In the present case,

sequential decay mechanisms may only be due to the excitation of 4He

levels above 20 MeV of excitation energy that feed the two p+3H and

n+3He exit channels, as it can be seen in fig. 3.22.
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3.4 Analysis of the first run @17 MeV

Figure 3.21: Q-value spectrum clearly shows a peak near the theoretical value (-1.46
MeV) indicated by the arrow.
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3.4 Analysis of the first run @17 MeV
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3.4 Analysis of the first run @17 MeV

However, none of these levels can be seen as resonances, their widths

being of the order of 5 to 10 MeV. Thus, it is possible to verify experi-

mentally their absence by studying the relative energies 2D-plots3 of all

the particles, detected or reconstructed, protons and tritons. The pos-

sibility of having contribution by sequential mechanisms have been thus

excluded looking at these plots (fig. 3.23) by the absence of accumulation

of events in horizontal or vertical loci.

Eqn. 2.45 has been rearranged to obtain the momentum distribu-

tion. Because this is valid only for a constant Ecm trend, only events for

0MeV < Ecm < 1.5MeV and 80◦ < θcm < 105◦ have been considered.

These events have been projected on the spectator momentum spectrum,

and corrected for the efficiency through a Monte Carlo simulation. The

result has been the distribution in fig. 3.24, whose good agreement with

the theoretical prediction (the Eckart function [98], defined in chap. 2,

that is shown as black solid line) for an s−wave spectrum of the proton

in 3He ensures that, within the experimental errors, the selected events

belong to the quasi-free mechanism. Only events with |ps| < 20 MeV/c

have been considered for the further analysis.

3The relative energy, such as E12, is derived by the momentum p12, given by

p⃗12 =
µ12

m1
p⃗1 −

µ12

m2
p⃗2, (3.12)

and is defined by the relation

E12 =
|p12|2

2µ12
. (3.13)
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3.4 Analysis of the first run @17 MeV

Figure 3.23: Relative energies 2D-plots of the detected particles (protons and tritons),
for the coincidence analyzed. Particles involved are tritons, participant
proton and spectator proton, called 1, 2 and 3 respectively. The ab-
sence of accumulation in horizontal or vertical lines allows to exclude
the presence of sequential mechanisms.
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3.4 Analysis of the first run @17 MeV

Figure 3.24: The spectator proton distribution for the 17 MeV run compared with the
Eckart function (black solid line) and the Wood Saxon theoretical curve
(white diamonds); the agreement is not good with the latter because
the low value of transferred momentum cause distortions that shrink
the momentum distribution [100]. The good agreement with the Eckart
function indicates that events under the peak can be considered quasi-
free events; this function parameters will be used to reproduce in the
kinematical factor the experimental distribution here obtained, for the
extraction of the two-body cross section.
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3.4 Analysis of the first run @17 MeV

Figure 3.25: Width (FWHM) for the momentum distribution of the proton inside 3He
as a function of the transferred momentum qt. The solid line represents
an empirical fit described in the text. Red dot is 17 MeV value for p-3H,
green dot for n-3He (next section).

A deep study of distortions of the Trojan Horse intercluster-motion

has been recently carried out, and it has shown the trend of the ex-

perimental FWHM (full width at the half of the maximum) W (qt) as a

function of qt (the transferred momentum from the projectile to the final

particles center-of-mass system B = C + c) [100], where:

q⃗t =


mB

mA

p⃗A −

mA

mB

p⃗B, (3.14)

with A the projectile; in this case A is 3He and B is p+3H, and in the

next paragraph also n+3He.

The result is shown in fig. 3.25, where the width for the momentum

113



3.4 Analysis of the first run @17 MeV

distribution of the proton inside 3He is shown as a function of qt. Values

from the present measurement are also shown in the figure (as red and

green points): they fairly follow the trend shown by the solid line, that

is a fit to all the collected data, given by

W (qt) = f0


1− exp(− qt

q0
)


, (3.15)

where f0 is the asymptotic width value, and in the case of the 3He

f0 = 110 MeV/c and q0 = 270± 20 MeV/c. The agreement of the exper-

imental widths distribution with this theoretical prediction [100] means

that PWIA, or other approaches, can be applied only taking into account

this distortion, otherwise the situation is the one of fig. 3.24, where white

diamonds do not reproduce at all the experimental distribution, because

of the low value of transferred momentum cause distortions that shrink

the momentum distribution; this theoretical momentum distribution was

obtained considering a Wood-Saxon p − d bound state potential [100].

Thus, the smaller FWHM that fits experimental data is used to to extract

the cross section.

3.4.3 Cross section and S-factor extraction

Assuming a constant trend for the two-body cross section (as it is

expected by the simulation and the absence of sequential mechanisms),

it is possible to rearrange eqn. 2.45 to obtain the two-body cross section.

To accomplish this, for the selected events has been used the coinci-
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3.4 Analysis of the first run @17 MeV
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Figure 3.26: Coincidence yield for the 2H(3He,pt)H reaction projected onto the Ecm

relative energy axis, shown as full black dots.
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3.4 Analysis of the first run @17 MeV

dence yield shown in fig. 3.26. The red line is a fit to this yield, used to

extract the two-body cross section by a Monte Carlo simulation, based

on the theoretical approach reported in [90] and [91], that considers the

so-called MPWBA, described in chap. 2.

Therefore, the yield has been divided by the product of appropriate

kinematical factors and the shape of the spectator momentum distri-

bution, so that the two-body cross section is obtained and its energy

dependence is very well represented by their corresponding penetrability

factors [106]. Thus the two-body cross section (integrated over the θcm

range corresponding to the coincidence trigger) entering the fit is:
dσ

dE


d+d→c+C

=
1

Edd


l=0,1

ClP
2
l Tl(kddR) (3.16)

where C+c are the p-3H or n-3He particle pairs, Cl are the scaling factors,

Pl the Legendre polynomials (with argument the cosine of the center-of-

mass scattering angle of the two-body reaction) and Tl are penetrability

factors. The free parameters of these fits are the scaling factors Cl and

the channel radius R (the cut-off radius of the surface approximation,

par. 2.8). The values found are C0

C1
= 1.467 and R = 5.12 ± 0.05 fm,

that is in agreement with the channel radii used in the R-matrix analysis

reported in [106].

The S-factor is extracted inverting eqn. 2.10 and considering for σ(E)

the quantity defined in eqn. 3.16, thus summing the contributions of the

two partial waves. The S-factors obtained is in arbitrary units, so it has
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3.4 Analysis of the first run @17 MeV

been normalized to the direct data from Edd = 1 MeV down to 15 keV,

where the Coulomb suppression and the electron screening effects are still

negligible. Results are shown in fig. 3.27 for the 2H(d,p)3H as black full

dots. The black line is the fit, while the red and blue solid lines show the

single contribution of each partial wave. Applying the error propagation

on the overall procedure, the value of 50 keV has been found for the

energy binning. The statistical and normalization errors on the S-factor

are found to be around 10%.

The status of art, before the experiments object of this thesis, of the

d+d cross section measurements of the two mirror channels4 is reported

in table 3.2.

Direct data from [78], [105], [109], [108], [110],5 are shown in fig.

3.28 as colored symbols for comparison, together with the polynomial R-

matrix fits to direct data, usually taken as reference, shown as blue [59],

green [62] and yellow [106] dashed lines. Anyway none of them correctly

reproduces the slope of the THM S(E)-factor in the entire energy region

investigated.

A value of S0 has been extracted, resulting in agreement with litera-

ture, as it is shown in table 3.3.

4The two-channel 2H(d,p)3H and 2H(d,n)3He consist of the same number of nu-
cleons, but the charge is distributed differently between the particles. This results in
a substantial equality of their branching ratios [107] and therefore similar values of
cross section are expected.

5The d + d cross section has been extensively measured in laboratory from the
beginning of nuclear physics in the ’20s, for its interest in few body systems physics
and for astrophysics.
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Figure 3.27: Astrophysical factor for the 17 MeV run in black full dots and black solid
line (fit). Red and blue solid lines are the l = 0 and l = 1 components
respectively.
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3.4 Analysis of the first run @17 MeV

Reference Edd for Error Edd for Error
and year 2H(d,p)3H % 2H(d,n)3He %

[keV] [keV]
Krauss. 2.98-162.5 around 1% 2.63 -49.67 from 1%
et al. statistical to 10%

[105] 1987 (up to 15% statistical
under 6 keV) and 2

and 2 systematic systematic
(6.4% and 5%) (6.4% and 5%)

Schulte et al. 980-3100 total 980-3100 total
[108]1972 3.6-4.8 % 0.25 %
Research 15.3 -150 total 15.3 -150 total
Group 3.6-4.8 % 3.6-4.8 %

[109] 1985
Brown 9.97-58.45 around 1% 9.97-58.45 around 1%
and statistical, except statistical, except

Jarmie the lowest the lowest
[110] point (2.8%) point (5%)
1990 and 1.3% and 1.3 %

systematic systematic
Greife 1.62-128 total from 1 2.4-128 total from 1

et al. [78] to 4% to 4%
1995 except the

lowest point
(15%)

Leonard 56.1-323.05 total 56.1-323.05 total
et al. [111] 4% 4%

2006

Table 3.2: Most relevant measurements of d + d cross section for its two channels
2H(d,p)3H and 2H(d,n)3He with the center-of-mass energies below 1 MeV.
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Figure 3.28: Comparison for the p-3H case between the TH (17 MeV run) result
(black dots and black solid line) and the direct literature data sets (stars
by [78], diamonds by [105], triangles by [108], circles by [109], squares by
[110], crosses by [111]) and the dashed lines literature fits (blue by [59],
green by [62], yellow by [106]).
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3.5 The second run @18 MeV

3.5 The second run @18 MeV

The aim of the first run was a feasibility test of a TH measure for the

reactions considered and a positive result has been obtained. However,

the number of selected events were not enough for a reduction of the error

in the S-factor extraction. This is the reason why in the second run it

has been decided to try the detection of the spectator particle, based on

the Monte Carlo simulation results of par. 3.1.2, as pioneering technique

for the TH measurements, allowing also the measure of the 2H(d,n)3He

channel with a very good resolution for the neutron energy (3He and the

spectator proton have been detected, while the neutron energy is recon-

structed with a very good resolution), overcoming all the experimental

difficulties in the measurements with a neutron to be detected.

3.5.1 Three-body reaction selection

The first step of the analysis is the selection of the three-body reac-

tions 2H(3He,pt)H and 2H(3He,n3He)H. This is accomplished by selecting

protons and tritons (or 3He) loci in the ∆E vs.E 2D-plots, for each de-

tector.

Fig. 3.29 shows the ∆E vs.E plot for telescope 1, where hydrogenoids

and 3He loci are clearly apparent; 3He and 3H have been selected in a

telescope in coincidence with the proton locus in another telescope and

events provide kinematical loci. An example can be found in fig 3.30,

121



3.5 The second run @18 MeV

Figure 3.29: Energy loss vs. the residual energy of the same detector. Letters indicate
the loci for protons, tritons and 3He. The graphical cut indicate the
selection of 3H.
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3.5 The second run @18 MeV

Figure 3.30: Kinematical locus for the reaction 2H(3He,pt)H, obtained with the se-
lected events from the ∆E − E 2D-plots (red dots) and compared with
was expected by a Monte Carlo simulation (black dots). The difference
in the shapes are due to the experimental detection threshold.

where it is shown the energy of the spectator proton vs. the tritons energy

(red dots), and compared with the result of a Monte Carlo simulation

(black dots).

For events corresponding to these kinematic loci, the Q-value for the

three-body reaction is calculated. The spectra obtained are reported in

fig. 3.31; they show peaks very close to the theoretical value (Q3b−p3H

= -1.46 MeV, and Q3b−n3He=-2.22 MeV), establishing that the selected

events are compatible with those related to the reactions 2H(3He,pt)3H

and 2H(3He,n3He)H. For the further analysis only events below these

peaks have been considered.
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3.5 The second run @18 MeV

(a) 2H(d,n)3He

(b) 2H(d,p)3H

Figure 3.31: Experimental Q-value spectra for both the channel, that show a peak
near the theoretical values, indicated by the arrows.
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3.5 The second run @18 MeV

3.5.2 Quasi-free mechanism selection

The same check on the relative energy 2D-plots of par. 3.4.2 has

been done for this run. Again none of the plots (fig. 3.32 for the p-3H

channel) showed accumulation of events in horizontal or vertical lines,

which would have revealed the presence of energy levels populated by

events in sequential mechanisms, corresponding to the nucleus of 4He.

The upper panels of fig. 3.32, marked as A, refer to the events coming

from coincidence of detectors PSD1 and PSD2, while the lower panels,

marked as B, from coincidence of PSD1 and PSD3.

The analysis was then directed to the study of events with energy

Ep3H ≥ 4.03 MeV and En3He ≥ 3.27 MeV, that are the Q-values of the

d+ d decay in a p-3H and a n-3He pair, respectively. The events selected

in this way have been projected onto the axis of the detected specta-

tor proton momentum, ps, and the result is shown the fig. 3.33, that is

the experimental momentum distribution (indicated by black dots) for

the spectator particle compared with the theoretical distribution (black

line), the Eckart function. For comparison, also the Wood-Saxon poten-

tial momentum distribution has been also plotted in fig. 3.33 as white

diamonds.

The agreement with the Eckart function is very good and this result

resemble what obtained for the 17 MeV run (see par. 3.4.2), further

confirming the validity of this spectator detection technique.
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3.5 The second run @18 MeV

Figure 3.32: Relative energy 2D-plots of the detected particles (two protons and tri-
ton) for p-3H case, for the coincidences analyzed, A and B (see text). The
absence of accumulation in horizontal or vertical lines allows to exclude
the presence of sequential mechanisms.
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3.5 The second run @18 MeV

For further analysis only the events corresponding to |ps| < 40 MeV/c

have been selected, considered as quasi-free events, within the experimen-

tal errors.

3.5.3 Cross sections and angular distributions

For the selected events, the coincidence yields are shown in fig. 3.34

for both the reactions and for the two couples of coincidence detectors.

It has been possible to reach Edd up to 1.5 MeV, thanks to the variation

of the spectator momentum (namely considering an interval ∆ps ̸=0).

One should note that the trends for the A case resemble the predicted

trend of fig. 3.8, unlike the B case, in which the asymmetrical angular

cuts changed the excitation function shape.

The red lines are fits to these yields, used to extract the two-body

cross section by a Monte Carlo simulation with the same procedure of

the 17 MeV run case.

The result is obtained considering a cut-off radius, compatible with

the one used in [106], R = 5.25± 0.04 fm for the n-3He, and 6.15± 0.05

fm for the p-3H case, and the ratio C0

C1
is 1.320 for p-3H and 1.146 for

n-3He.
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3.5 The second run @18 MeV

(a) 2H(d,n)3He

(b) 2H(d,p)3H

Figure 3.33: Spectator (proton) momentum distribution for (a) n-3He and (b) p-3H
channels. They result in a very good agreement with the theoretical
expectation of the Eckart function (black line) but not with the theoret-
ical result from the Wood-Saxon potential [100] (white diamonds). This
further confirms what has been found in the 17 MeV run.
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3.5 The second run @18 MeV
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3.5 The second run @18 MeV

As already mentioned, since pole approximation has to be tested

when the two-body cross section is HOES, another validity test has been

performed, comparing indirect angular distributions with direct case, to

check if the same partial waves contribute to the cross section in both

cases. Results, extracted for Edd=20, 130, 980 keV and 1.25 MeV (±30

keV), are shown in fig. 3.35 for 2H(d,n)3He and fig. 3.36 for 2H(d,p)3H

as full dots. The center-of-mass θc.m. in abscissa represents the emission

angle of 3He or 3H in the center-of-mass system as reported in [112] for

the case of projectile quasi-free break-up, and is given by:

θcm = arccos
q⃗ · (v⃗C − v⃗c)

|(q⃗)| · |v⃗C − v⃗c|
(3.17)

with c + C=p+3H or n+3He and q⃗ the momentum of the transferred

particle. This invariant scattering angle in direct measurements is the

angle between the relative momenta of the final and initial particles, while

in the center-of-mass system it is the angle between the momentum of

any of the two fragments and the beam direction.

In fig. 3.35 and 3.36 the solid lines represents fits on the directly

measured on-energy-shell angular distributions available at these energies

[105][108]. Due to the identical boson character in the entrance channel,

those fits have been performed using only even Legendre polynomials

with a maximum order of 4. A good agreement is observed, confirming

that the no distortions are induced by the virtually emitted deuteron,

within experimental errors.
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3.5 The second run @18 MeV

Figure 3.35: THM angular distributions of the n-3He reaction for Ecm= 0.020, 0.130,
0.980 and 1.25 MeV. Solid lines represent available fits on direct data
[105] [108]. Comparison with THM data yields χ2 of 0.25 at 80 keV, 0.25
at 130 keV, 0.29 at 980 keV and 0.33 at 1.25 MeV.
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3.5 The second run @18 MeV

Figure 3.36: THM angular distributions of the p-3H channel, for Ecm=0.020, 0.130,
0.980 and 1.25 MeV. Solid lines represent available fits on direct data
[105] [108]. Comparison with THM data yields χ2 of 0.29 at 20 keV, 0.28
at 130 keV, 0.37 at 980 keV and 0.35 at 1.25 MeV.
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3.5 The second run @18 MeV

3.5.4 The S-factor extraction

Integrating over the θcm and the solid angle ranges covered in the

experiment, the total cross section has been calculated.

The S-factor extraction is made following eqn. 2.10, summing the

contributions of the two partial waves of the two-body cross section as

in eqn. 3.16.

The S-factors obtained are in arbitrary units, so they have been nor-

malized to the direct data from Edd = 1.5 MeV down to 15 keV, where

the Coulomb suppression and the electron screening effects are still neg-

ligible. Results are shown in fig. 3.37 for the 2H(d,n)3He and in fig. 3.38

for the 2H(d,p)3H as a black solid lines and black full dots. The sin-

gle contribution of each partial wave is shown by the red and blue solid

lines. An error calculation for Edd was performed leading to a value of

about 20 keV. The normalization error has resulted to be 1%, and has

been summed in quadrature with the statistical error (5%), giving a total

error on the S-factors of the 5%.

In fig. 3.39 and 3.40 are shown the present measure S-factor compared

with same direct data and fits of the par. 3.4.3, revealing deviations below

15%. In particular, for the n-3He channel a new direct study of the cross

section over a larger energy region might be required and values of the

cross section below 10 keV, that are of particular interest, may require a

further reduction of the error.
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3.5 The second run @18 MeV

The bottom panels show the residual scattering between direct data

(yi) and the TH S-factor curve value (indicated by µ), divided by the

weighted dispersion σ (1.82 keV·b for the p-3H and 4.24 keV·b for the

n-3He channel), that is given by:

σ =

i


yi−µ
σi

2


i
1
σ2
i

; (3.18)

the dashed horizontal lines represent the 1σ error bars.

The THM parameterizations of the S(E) factors lead to new values

of S(0) = 57.4 ± 1.8 keV·b for p-3H and 60.1 ± 1.9 keV·b for n-3He. A

summary of the results and the comparison with the literature values ([59]

[62] [106]), is shown in table 3.3, including the weighted mean presented

in par. 3.6.

It it worth noticing that the S(0) values for the p-3H channel given in

literature are usually larger than those for the n-3He one, in contrast with

the present estimates that provide a ratio of 0.96±0.04. This confirms

the predictions of [113], where this little difference in the S(0) values

is attributed to the different Q-values of the two mirror d + d fusion

channels. The present result is also consistent with the ratio obtained in

[78], using screened data. This indicates that screening effects influence

the p-3H and n-3He data in the same way, thus providing an additional

test of the isotopic invariance in the electron screening.
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3.5 The second run @18 MeV
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Figure 3.37: Bare-nucleus TH S-factor for the present measure of the 2H(d,n)3He
channel, in black dots and black solid line. The red and blue lines are
the singular contribution of the s− and p− waves respectively.
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3.5 The second run @18 MeV
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Figure 3.38: Bare-nucleus TH S-factor for the present measure of the 2H(d,p)3H chan-
nel, in black dots and black solid line. The red and blue lines are the
singular contribution of the s− and p− waves respectively.
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3.5 The second run @18 MeV
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Figure 3.39: Comparison for the n-3He case between the TH result (black dots and
black solid line) and the direct literature data sets (stars by [78], di-
amonds by [105], triangles by [108], circles by [109], squares by [110],
crosses by [111]) and the dashed lines literature fits (blue by [59], green
by [62], yellow by [106]). The bottom panel show the residual scattering
between direct data and TH fit.
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3.5 The second run @18 MeV
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Figure 3.40: Comparison for the p-3H case between the TH result (black dots and
black solid line) and the direct literature data sets (stars by [78], di-
amonds by [105], triangles by [108], circles by [109], squares by [110],
crosses by [111]) and the dashed lines literature fits (blue by [59], green
by [62], yellow by [106]). The bottom panel show the residual scattering
between direct data and TH fit.
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3.5 The second run @18 MeV

Reference S(0) n-3He [keV·b] ∆S(0) [keV·b]
Present TH result 60.2 1.9

[59] 50.67
[62] 53
[106] 52.4 3.5

Reference S(0) p-3H [keV·b] ∆S(0) [keV·b]
Present TH result 58.6 5.8
(17 MeV run)

Present TH result 57.4 1.8
(18 MeV run)

Present TH result 57.6 2.5
(weighted sum)

[59] 51.15
[62] 56
[106] 57.1 1.8

Table 3.3: New TH values for S(0) compared with the literature values for both re-
actions studied.

3.5.5 The electron screening evaluation

A comparison between the THM S(0) factors and the direct data

from [78] at ultra-low energies (see stars in the insets in fig. 3.39 and

3.40) has provided a new evaluation of the electron screening, following

eqn. 2.16.

Concerning the 2H(d,p)3H case, low energy direct data at 14.95 keV

from [78] were first normalized to the THM bare-nucleus S-factor and

then fitted with the screening function, leaving Ue as free parameter:

this provides a value of Ue = 13.2± 1.8 eV, not exceeding the adiabatic

limit (14 eV) for a molecular deuteron target (gas target), but covering

it with its uncertainty.
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3.5 The second run @18 MeV

A tentative estimate of Ue can be derived also for the n-3He chan-

nel, trusting the cross section ratio p-3H/n-3He reported in [78]. Indeed

several technical problems prevented a precise analysis of the n-3He chan-

nel to be carried out in close geometry in the ultra-low energy region.

Nonetheless, as already mentioned, the authors could be able to provide

the cross section ratio between the two channels from 13.1 down to 2.4

keV. Thus, multiplying this ratio by the corresponding low-energy p-3H

direct data (already normalized to the THM S-factor), a normalized n-

3He data set has been obtained that is systematically underestimated by

a factor 1.018 with respect to the higher energy data in far geometry by

the same authors [78]. If the normalization of these low-energy data is

corrected by this factor, the absolute units in the crossing region between

data sets in close and far geometry become consistent.

When fitting these low energy data for the n-3He channel with the

screening function as before, this provides a Ue = 11.7 ± 1.6 eV, in

agreement with the p-3H one within the experimental errors. However,

the obtained results are not in agreement with Ue = 25± 5 eV reported

in [78]. Such a discrepancy may be ascribed to the different bare-nucleus

S(E)-factors used for the normalization and possibly to the excessive

weight given to the lowest energy point in [78]. Further improvements

in the precision of direct low-energy data would help fix this electron

screening potential value.
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3.6 Overall result for 2H(d,p)3H

3.6 Overall result for 2H(d,p)3H

The two runs S-factors of the 2H(d,p)3H channel have been summed

considering their different errors (a weighted sum has been performed),

leading to the S-factor in fig. 3.41 (black dots), that is very similar to

the 18 MeV run case (red line), because of its smaller error. It has been

obtained a reduction of the error of a factor two: now this S-factor has

an error of 2.2%. The S(0) value obtained is in very good agreement

with literature, as can be seen in table 3.3.

3.7 The pole invariance test

It has also been tested for the 2H(d,p)3H reaction the TH nucleus

invariance (par. 3.1.1), using all available experimental data. The S(E)-

factor measured for the 2H(d,p)3H reaction through 3He break-up in the

2H(3He,pt)H (from the 18 MeV run) is compared with the same binary

reaction S-factor obtained through 6Li break-up in the 2H(6Li,pt)4He

process.

In this figure two data sets obtained via THM applied to 6Li ([103]

and [114]) were averaged among themselves and the result is plotted as a

function of the energy (black points). The averaged results are compared

with the THM results for the 2H(d,p)3H reaction derived from 3He break-

up as reported in the present thesis work (18 MeV run) and in [115] (red

symbols).
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3.7 The pole invariance test
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Figure 3.41: Weighted sum for both the runs of the S-factor for the 2H(d,p)3H case
(black dots). The blue solid line is relative to the 17 MeV run, while
the red one is from the 18 MeV run. The sum essentially resemble the
latter, because of its smaller error.
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3.7 The pole invariance test

Figure 3.42: Astrophysical S-factor for the 2H(d,p)3H reaction measured via THM
using 6Li break-up (black full dots, [103] and [114]). They are compared
to the data coming from 3He break-up (18 MeV run, red triangles [115])
clearly showing the Trojan Horse pole invariance.
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3.7 The pole invariance test

The good agreement between the two cases, as can be seen in fig.

3.42 [116], means that the use of a different spectator particle does not

influence the THM reliability, in a new case that confirms what already

observed in [89] and [102] for other reactions of astrophysical interest.
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Chapter 4

Astrophysical results

In the last chapter the analysis of the experimental run for the d+ d

reaction has been shown, to extract the bare-nucleus S-factors and the

screening potential evaluation. In this chapter it is discussed the calcu-

lation of the reaction rates and their future use in a BBN computational

code to study the effects of this new measurement on the BBN, and in

particular on the value of the baryon-to-photon ratio η (see chap. 1).

4.1 Reaction rate extraction

4.1.1 The d+ d rates

The reaction rates, defined in par. 2.1.1, have been obtained with the

S-factors obtained in par. 3.5.4, with the help of the equation [62] [70]:

NA < σv >=
3.7318× 1010

A · T 3
9

 ∞

0

S(E)e
−(0.989Z1Z2

√
A
E
+ 11.605E

T9
)
dE, (4.1)

where the center-of-mass energy E is in units of MeV, the temperature T9

in GK, A is the reduced mass in a.m.u. and Z are the atomic numbers of

the considered nuclei; the resulting reaction rate is given in cm3mol−1s−1.
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4.1 Reaction rate extraction

The percent error on S(E) has resulted in an analogous error on the

rates because eqn. 4.1 is nearly proportional to the S-factor, either at

the Gamow peak or at the position of a strong resonance. The numerical

results are shown in fig. 4.1 and 4.2, with error bands.
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Figure 4.1: The reaction rate for the 2H(d,p)3H measured via the THM is shown by
a red solid line within an error band (dashed red lines), obtained from the
S-factor extracted in chap. 3 from 18 MeV run data.

The Trojan Horse d+d rates tabular version is presented in table 4.6,

for an easy astrophysical use. Moreover, their fit parameters are shown
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4.1 Reaction rate extraction
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Figure 4.2: The reaction rate for the 2H(d,n)3He measured via the THM is shown by
a red solid line within an error band (dashed red lines), obtained from the
S-factor extracted in chap. 3 from 18 MeV run data.

147



4.1 Reaction rate extraction

in table 4.2, for the fitting function:

NA < σv >= exp[a1 + a2 · ln(x) + a3

x
+ a4 · x(−

1
3
) + a5 · x(

1
3
)

+ a6 · x(
2
3
) + a7 · x+ a8 · x(

4
3
) + a9 · x(

5
3
)]. (4.2)

The calculated rates has been compared with the results by the NACRE

[62] and the Smith-Kawano-Malaney (SKM) [117] compilations. Their

percentage differences and their relative errors are shown in fig. 4.3 and

4.4 for 2H(d,p)3H and 2H(d,n)3He, respectively. These results underlines

how these other compilations fitted the S-factors and the rates in a way

that sometimes has resulted to be distant from the point values.

Thus comes the need of a new tool for the rate calculation. It starts

from a very precise fit of the S-factor, and then integrates it numerically

[118] to have the rate. So the result is very precise and reliable. This

new tool, provided by the Fortran routines by prof. Bertulani, allow the

possibility of having the rate in a range from T9 0.001 to 100, without

the cuts provided by these previous tools.

Moreover, in order to perform a good and updated comparison with

the literature data, the same calculation has been performed for the same

reactions with the S-factors resulting from direct measurements. So a

new compilation for both the d+d channels has been created, accurately

selecting the newer and more reliable data sets, taking into account the

possible presence of systematic errors. For 2H(d,p)3H have been chosen

measurements by [78] [105] [107] [108] [109] [110] [111] [119] [120] [121]
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4.1 Reaction rate extraction

T9 log10Rp−t T9 log10Rn−3He

0.001 -18.063 0.001 -18.136
0.134 13.114 0.143 13.296
0.267 14.462 0.276 14.562
0.400 15.107 0.409 15.192
0.534 15.518 0.542 15.596
0.667 15.812 0.676 15.889
0.800 16.038 0.809 16.115
0.934 16.222 0.942 16.300
1.067 16.372 1.075 16.455
1.200 16.496 1.208 16.582
1.334 16.606 1.342 16.695
1.467 16.705 1.475 16.796
1.600 16.791 1.608 16.884
1.734 16.869 1.741 16.964
1.867 16.937 1.874 17.034
2.000 17.001 2.008 17.100
2.134 17.058 2.141 17.162
2.267 17.111 2.274 17.217
2.400 17.158 2.407 17.269
2.534 17.203 2.540 17.315
2.667 17.243 2.674 17.359
2.800 17.281 2.807 17.399
2.934 17.318 2.940 17.437
3.067 17.350 3.073 17.474
3.200 17.382 3.2068 17.507
3.334 17.412 3.340 17.539
3.467 17.439 3.473 17.57
3.600 17.466 3.606 17.597
3.733 17.491 3.739 17.624
3.867 17.514 3.872 17.651
4.000 17.536 4.006 17.674
4.133 17.557 4.139 17.697
4.267 17.576 4.272 17.717
4.400 17.597 4.405 17.737
4.533 17.613 4.538 17.757
4.667 17.631 4.672 17.776
4.800 17.648 4.805 17.793
4.933 17.663 4.938 17.810
5.067 17.678 5.071 17.826
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4.1 Reaction rate extraction

T9 log10Rp−t T9 log10Rn−3He

5.200 17.690 5.204 17.843
5.333 17.705 5.338 17.857
5.4671 17.717 5.471 17.871
5.600 17.729 5.604 17.885
5.733 17.739 5.737 17.896
5.867 17.753 5.870 17.910
6.000 17.762 6.004 17.921
6.133 17.774 6.137 17.931
6.267 17.783 6.270 17.944
6.400 17.793 6.403 17.954
6.533 17.802 6.536 17.963
6.667 17.810 6.670 17.974
6.800 17.819 6.803 17.984
6.933 17.826 6.936 17.991
7.066 17.835 7.069 18.001
7.200 17.842 7.202 18.008
7.333 17.849 7.336 18.017
7.466 17.856 7.469 18.025
7.600 17.862 7.602 18.032
7.733 17.869 7.735 18.039
7.866 17.876 7.868 18.045
8.000 17.881 8.002 18.053
8.133 17.886 8.135 18.058
8.266 17.893 8.268 18.065
8.400 17.898 8.401 18.071
8.533 17.903 8.534 18.077
8.666 17.908 8.668 18.082
8.800 17.911 8.801 18.088
8.933 17.916 8.934 18.092
9.066 17.921 9.067 18.098
9.200 17.926 9.200 18.102
9.300 17.929 9.300 18.106
9.566 17.936 9.567 18.114
9.666 17.939 9.667 18.118
9.800 17.942 9.800 18.122
9.933 17.947 9.933 18.126

Table 4.1: Tabular version of the TH rates for 2H(d,p)3H and 2H(d,n)3He, shown in
fig. 4.1 and fig. 4.2.
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4.1 Reaction rate extraction

(a) NACRE

(b) SKM

Figure 4.3: Percentage difference (blue line with red error bands) for the 2H(d,p)3H
of the TH rate and NACRE result [62] (upper panel) and of TH and SKM
result [117] (lower panel). The Nacre and SKM rates are plotted (black
lines within the black error bands) for comparison.
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4.1 Reaction rate extraction

(a) NACRE

(b) SKM

Figure 4.4: Percentage difference (blue line with red error bands) for the 2H(d,n)3He
of the TH rate and NACRE result [62] (upper panel) and of TH and SKM
result [117] (lower panel). The Nacre and SKM rates are plotted (black
lines within the black error bands) for comparison.

152



4.2 The 3He(d,p)4He and 7Li(p,α)4He rates

2H(d,p)3H TH 2H(d,n)3He TH 2H(d,p)3H direct 2H(d,n)3He direct
a1 16.6124 15.5622 21.3573 10.7059
a2 -1.8641 -2.3014 -0.5216 -6.0287
a3 0.0023 5.0774E-03 2.9796E-04 4.1687E-02
a4 -5.0376 -5.3432 -4.3005 -9.2405
a5 5.1945 6.4616 -3.8254 15.7879
a6 -0.1418 1.027 5.4537 1.4794
a7 -0.3683 -2.0331 -3.3489 -3.2937
a8 0.0136 0.8045 1.0573 1.0255
a9 0.0177 -0.1154 -0.1386 -9.3110E-02

Table 4.2: Table of rate parameters (for eqn. 4.2) for 2H(d,p)3H and 2H(d,n)3He
evaluated from S-factors by TH experiments and compared with the same
resulting by direct measurements.

[122] [123] [124] [125] [126] [127], while for 2H(d,n)3He [78] [105] [107]

[108] [109] [110] [111] [119] [120] [122] [128] [129] [130] [131] [132] [133].

The percentage differences between TH rates and these new compila-

tions is shown in fig. 4.5 and 4.6 for the 2H(d,p)3H and 2H(d,n)3He.

4.2 The 3He(d,p)4He and 7Li(p,α)4He rates

Similar work as above has been done for the extraction of the 3He(d,p)4He

and 7Li(p,α)4He reactions. The TH data are from [134] for 3He(d,p)4He

reaction and [135] for 7Li(p,α)4He reaction. In fig. 4.7 and fig. 4.8 the

blue line show the TH rates within their error bands (12% for 3He(d,p)4He

and 7Li(p,α)4He for 10%, coming from the literature).

The direct data have been updated, and for the 3He(d,p)4He have

been used the data from [71] [105] [136] [137] [138] [139] [140] [141] [142];

instead for the 7Li(p,α)4He have been used [141] [143] [144] [145] [146]
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4.3 Numerical calculations

Figure 4.5: Percentage difference of the TH result for 2H(d,p)3H and the new direct
data compilation.

[147] [148] [149] [150] [151] [152] [153].

The fit parameters are listed in table 4.3.

The percentage differences of TH rates and these new compilations

are shown in fig. 4.9 and fig. 4.10. The impact of new results will be

evaluated through the computational code described in next paragraph.

4.3 Numerical calculations

Primordial nucleosynthesis numerical codes were first developed by

Wagoner and collaborators [154]. Such codes formed the basis for most

subsequently developed codes such as Kawano’s NUC123 code [155],

which became very popular. This code allows the possibility of study
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Figure 4.6: Percentage difference of the TH result for 2H(d,n)3He and the new direct
data compilation.

3He(d,p)4He 7Li(p,α)4He 3He(d,p)4He 7Li(p,α)4He
TH TH direct direct

a1 4.3802 17.9299 12.7870 16.9356
a2 -4.9387 -0.8922 0.4483 -0.8968
a3 3.8148E-03 -1.1284E-03 -3.3837E-02 -1.6763E-03
a4 -8.6055 -8.3070 -3.6721 -8.1817
a5 35.7973 5.6518 24.7012 8.6483
a6 -9.8091 -4.2963 -19.3313 -8.7062
a7 -9.5672 0.8665 1.6052 4.2207
a8 7.5817 0.7602 3.0374 -0.4980
a9 -1.5215 -0.2719 -0.8491 -8.8127E-02

Table 4.3: Table of rate parameters for 3He(d,p)4He and 7Li(p,α)4He from direct
measurement together with the TH results and for the direct data only.

155



4.3 Numerical calculations

9T
­2

10
­1

10 1 10

/(
m

o
l*

s
)]

3
(R

e
a

c
ti

o
n

 r
a

te
) 

[c
m

1
0

lo
g

­5

0

5

10

15

20

Figure 4.7: Reaction rate for the 3He(d,p)4He reaction. The solid blue line is the TH
results, while the are shown as dotted blue lines).
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Figure 4.9: Percentage difference of the TH result for 3He(d,p)4He and the new direct
data compilation.
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Figure 4.10: Percentage difference of the TH result for 7Li(p,α)4He and the new direct
data compilation.

the changes due to many of the BBN parameters, such as the gravita-

tional constant, the neutron half-life, the number of neutrino species, the

baryon-to-photon ratio, the cosmological constant and the neutrino de-

generacy: tuning these values allows one to explore outside the standard

scenario. This code is public and well documented, that is why all follow-

ing implementations are based on it, as an example the Parthenope code

[156], and the BBN123 code [157], that will be used for the astrophysical

analysis of the results coming from the new rates obtained in chap. 2.

All these codes use Fortran77 as the programming language, and their

main structure is the integration of the basic BBN equations through

different kinds of Runge-Kutta, or analogous, algorithms [158]. In the
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case of Kawano’s code, this is done by means of a Runge-Kutta method:

considering a function Y of a variable x, supposedly known at x1, as

Y (x1), it will be propagated as Y (x2) = Y ′(x1)∆x with a second-order

Runge-Kutta method with two stages.

The set of differential equations (with the Boltzmann equations for

the neutrinos species) ruling the primordial nucleosynthesis is the follow-

ing [52][154][159]:

ȧ

a
= H =


ρ
8πGN

3
(4.3)

ṅB

nB

= −3H (4.4)

ρ̇ = −3H(ρ+ p) (4.5)

Ẋi =

j,k,l

Ni


Γkl→ij

XNl
l XNk

k

Nl!Nk!
− Γij→kl

XNi
i X

Nj

j

Ni!Nj!


≡ Γi

(4.6)

nB


j

ZjXj = ne− − ne+ ≡ L
me

T
, φe


≡ T 3L̂

me

T
, φe


, (4.7)

(4.8)

where Xi =
ni

nB
(i indicate the nuclear specie), φe = µe

T
∼ 10−10 (very

small value because of the universe charge neutrality), and ρ and p denote

the total energy density and pressure, and in particular

ρ = ργ + ρe + ρν + ρB (4.9)

p = pγ + pe + pν + pB, (4.10)

with i, j, k denoting the nuclear species, Ni the number of nuclides of type

i entering a given reaction (and similarly for Nj, Nk, Nl), and Γ are the
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reaction rates1; moreover Zi is the charge number of the i-th nuclide. The

baryon density ρB is calculated as ρB = nB


Mu +


i(∆Mi +

3
2
T )Xi


(∆Mi is the mass excess and Mu the atomic mass unit, for the i−th

nuclide), and PB = nBT


iXi. Eqn. 4.4 is the definition of the Hubble

constant H, with a the scale factor of the Friedmann metric, GN the

gravitational constant. Eqn. 4.5 and 4.6 give the total baryon number

and the entropy conservation per comoving volume respectively. The

set of Eqs. 4.6 for each i species describes the density evolution of i,

with Γkl→ij the rate per incoming particles averaged over kinetic energy

equilibrium distribution functions. Finally, eqn. 4.7 states the universe

charge neutrality in terms of the electron chemical potential.

These equations constitute a set of coupled differential equations

which have been implemented in numerical codes since the pioneering

works of Wagoner, Fowler and Hoyle [160] and Kawano [155] [157].

The BBN123 code has been adapted from the Kawano’s code. One

of its main features is the update of the reaction rates, and the update

of the fundamental constants, such as the neutron lifetime [6].

1For a binary collision Ni = Nj = Nk = Nl = 1 and Γij→kl = ⟨σij→klv⟩, meaning
that Γ is the thermal average of the cross section for the reaction i+ j → k+ l times
the relative velocity of i and j; for a decay instead, Ni = 1,Nj = 0 and


Γi→kl is

the inverse lifetime of the nucleus.

161



4.4 Impact on BBN and future perspectives

4.4 Impact on BBN and future perspec-

tives

These new resulting rates have been inserted in the BBN123 code to

evaluate the impact of these changes. The goal for the future will be

the production of a figure like 1.10 that will contain the light elements

primordial abundances and the comparison with the direct measurements

rates and observation results, in case to change or constraints the model.

As a further motivation a recent sensitivity calculation by [63] (where

the η value is fixed at the most recent WMAP result [54]) calculates the

sensitivity of a primordial abundance Y to rates variations. According

to these results, a change in the reaction rates of both 2H(d,p)3He and

2H(d,n)3H processes may imply significant variations in the 2H and 7Li

abundances.

New rates have been inserted in the BBN123 code for both the cases

(TH and new compilations of direct data). Results, for the η value fixed

by WMAP [54], are the produced abundances summarized in fig. 4.11,

where TH results (dashed curves) can not be distinguish by eye from

the direct data results (colored curves) in the logarithmic scale. As an

example, the deuterium abundance difference is of the order of 1%. This

result is coherent with what obtained in fig. 1.5 [16].

The very good agreement of TH results with the BBN model further

constraints the model itself and confirms that THM is a powerful tool
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4.4 Impact on BBN and future perspectives

Figure 4.11: Light element abundances, as predicted by BBN123 code, from new
direct data compilations (colored curves) for 2H(d,p)3H, 2H(d,n)3He,
3He(d,p)4He and 7Li(p,α)4He and from TH resulting rates for the same
reactions (dashed curves).
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for nuclear astrophysics.

It is also worth adding that it will be possible an application of these

new rates obtained for the d + d reactions to the Pre Main Sequence

simulating codes and to the plasma physics, where the electron screen-

ing importance is fundamental and bare-nucleus S-factors are in high

demand.
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The study of the two d+d reaction channels, 2H(d,p)3H and 2H(d,n)3He

at astrophysical energies via the Trojan Horse Method has led to the ex-

traction of new bare-nucleus S-factors. A new pioneering technique for

THM where the spectator particle is detected has been applied. This

has allowed to avoid the problems connected with the use of neutron

detectors and improved statistics, all quasi-free events being focused at

forward angles covered by the experimental set-up. Moreover, the rela-

tive weights of l = 0 and l = 1 waves have been estimated, through a

MPWBA analysis of the three-body cross sections.

Also the screening potential has been evaluated, obtaining a value

of 13.2 ± 1.8 eV for 2H(d,p)3H and 11.7 ± 1.6 eV for 2H(d,n)3He, very

close to the adiabatic limit, as expected. A pole invariance test has been

provided comparing present results with previous TH data, where the

6Li was used as TH nucleus.

Reaction rates from present TH data for the two d + d channels,

and from TH cross section of 3He(d,p)4He and 7Li(p,α)4He have been

calculated. The new rates have been also compared with previous direct
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data compilations and with a new updated one that exclude questionable

data sets. Using these new TH rates as input for the BBN code developed

by prof. Bertulani, with η fixed at the WMAP value [54], the primordial

abundances have been obtained. These results are coherent with the

whole model and will be soon compared with the observational results:

a further analysis will provide stronger constraints on the values and a

reduction of the involved uncertainties.

This result reasserts that THM is a powerful tool for nuclear astro-

physics and gives results in very good agreement with the BBN model.
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