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Abstract

In the last three decades the scienti�c community has been attracted by
the possibility of controlling quantum system, for example for quantum
computing or quantum simulators. Initially this idea was exploited only in
microscopic quantum system as atoms and molecules. However these sys-
tems present di�culties on the large scale application due to the extreme
laboratory condition that they need, for example ultra low temperature
T ∼ 1µK. On the other hand, great progress has been made with super-
conducting nanodevices, that can be more easily scaled. One of the most
important problems that arise in quantum control is decoherence. We will
study quantum control for coherent superconducting nanodevices. This de-
vices are a�ected by a Broad Band Colored and Structured (BBCS) noise,
which is qualitatively di�erent to what encountered in atomic physics, since
it is chatacterized by a strong non-Markovian low-frequency component
with a characteristic power spectrum S(ω) ∝ 1

ω
. In this thesis we will

present a roundup of physical situations, inolving both undriven and ex-
ternally driven open quantum systems, which need to be analyzed in the
perspective of quantum control. Promising applications to superconducting
nanodevices, as the implementation of Λ systems, possibly allowing control
of microwawe photons, are discussed in detail.

The thesis is structured as follows. Chapter 1 is an overview of the
theoretical background of quantum control and quantum computation. In
chapter 2 an archetypical problem for driven quantum systems, namely the
Rabi problem, is studied in the presence of BBCS low-frequency noise1,
which is not accounted for in standard Master Equation treatments based
on the Markovian assumption. In chapter 3 a protocol named STImulated
Raman Adiabatic passage (STIRAP) is studied in the presence of BBCS
noise, in view of its implementation in a class of superconducting nanode-
vices named Cooper Pair Box2. This is done in chapter where Design and
control requirements to achieve large e�ciency are discussed, and a new �g-
ure of merit is introduced to characterize the tradeo� between e�cient cou-
pling of the control and noise. Actually selection rules due to charge-parity
simmetry make impossible operate STIRAP in these device in the regime
of maximum protection from noise. Therefore in chapter 5 we propose1 a
new implementation of STIRAP with superconductive device that allows us
to circumvent selection rules, based on three-photon coherent processes and
suitable crafted pulses compensating the Stark shifts. In chapter 6 we will
study the problem of the tunneling of a quantum particle with strongly cou-
pled environment in a bistable pontential3. Finally in chapter 7 the study
of the motion of a chiral quasiparticle in graphene a�ected by white noise
will be presented4−6.
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Introduction

One of the biggest challenge for the scienti�c community nowadays is to
achieve the controlled dynamics of quantum systems. This would have
astonishing implication from the technological point of view. For example,
achieving control of a su�ciently complex systems could pave the way to
quantum simulators (hundreds of quantum bits) and quantum computer
(thousand of quantum bits). A quantum control protocol can be performed
only if the coherence time of the systems to be controlled is longer than the
duration of the protocol.

Motivation: the superconducting nanodevices.

There are several class of systems that have been proposed for the imple-
mentation of quantum control protocols. Amongst them superconducting
quantum devices[1] may o�er advantages since fabrication techniques allow
for scalability (at least in principle) to a large number of coupled qubits. In
addition the possibility to apply the protocols used in the quantum optic
realm[2, 3] for the photonics in the range of hundreds of GHz regime sug-
gest the possibility of manipulating single photons in a completely di�erent
regime (∼ 10GHz) than optical(see for an example[4]).

Part of the work described in this thesis concern the study of the im-
plementation of some quantum manipulation protocol in superconducting
nanocircuit. As in all the systems proposed for control of quantum dynam-
ics, the main source of decoherence (loss of coherence) is the noise[1].

The Broad Band Colored Structured (BBCS) noise

In particular superconducting nanodevice are subject to noise that extends
over seberal decades with a power spectrum often of the kind S(f) ∼ 1/f ,
which has a strong low-frequency component[5]. The origin of this spec-
trum is far to be completely understood. For example it may come from
charged impurities in the so called �charge-based� superconducting device,
but also pinned �ux tubes in the totally di�erent class of ��ux-based� de-
vice show the same behavior. Several standard approaches, studied in the
context of atomic and nuclear magnetic resonance systems, used to explain
e�ects of noise are based on perturbative (Born approximation) schemes
suited for Markovian noise. These approach can be used also in the case
of superconducting nanodevices dynamics when studying the e�ects of the
high-frequency part of the noise spectrum[3]. However they generally fail
for the low frequency part of the noise spectra, which is not important in
atomic systems but paramount in superconducting devices. Several stud-
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ies had been made to tackle the problem of nonperturbative noise[6]. One
of the pourposes of this thesis is to apply a sistematic procedure to take
in account the e�ect of the whole spectrum of the broadband noise in the
implementation of quantum control in superconducting devices.

The model: multistage approach.

It is well known that the noise can be modeled using an environment inter-
acting with the system to be manipulated or controlled[6]. In this frame-
work we will apply sistematically a multistage approach [7, 5], consist in
integrating the separate treatment of di�erent parts of the noise spectrum.
The �rst step consist in accounting the fast part of the noise spectrum with
an appropriate master equation approach, that give us a �rst extimate of
the purely exponential part of the decay of the coherences and of the re-
laxation of the quantum populations. The second step consists in applying
the average over all the realization of the dynamics of the slow degrees of
freedom of the environment. In particular it has been demostrated that in
solid state physics the zero order sampling of the stochastic process (the ap-
proximation of the di�erent realization of stochastic processes with a single
stochastic variable) despite its simplicity shows a very good agreement with
experiments [5, 8]. We will refer to this approximation as the Static Path
Approximation (SPA).

First step toward quantum control: Rabi oscillation.

Several control and computational protocol are based on the possibility to
drive a quantum system with an AC �eld with appropriate frequency, that,
if resonant with an energy splitting of the system, can generate the so called
Rabi oscillation. The Rabi oscillations are a purely coherent e�ect that is
cancelled by the noise. We calculated the limitation, due to broadband
noise, of observing this phenomenon in superconducting devices, showing
when they can be observed. Our results show a good agreement with the
experimental results [7, 8].

Stimulated Raman adiabatic passage

A process that attracted a great interest in the last years is the so called
STImulated Raman Adiabatic Passage process (STIRAP) [9]. This protocol
allows to transfer population between two quantum levels using coupling
with a third level that remains empty during the whole dynamics. More
in detail, STIRAP consists in addressing a deeply anharmonic three level
system (|0⟩ , |1⟩ , |2⟩) prepared in the |0⟩ state with two AC gassian pulses,
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called Stokes (in resonance with the |1⟩ ↔ |2⟩ transition) and the Pump (in
resonance with the |0⟩ ↔ |2⟩ transition). For the success and the stability
of the protocol two condition have to be �lled:

Adiabaticity of the pulses the pulses have to have a slow modulation to
guarantee the adiabaticity evolution of the dressed states

Counterintuitive sequence the pump pulse have to be switched on when
the intensity of the Stokes pulse begin to decrease.

Under this condition during the process a trapped state (Dark state) be-
longing the subspace |0⟩ , |1⟩ is created. The Dark state evolve adiabatically
from the state |0⟩ to the state |1⟩. In general the criticity of this protocol is
related with the adiabaticity (which absence would populate the interme-
diate level |2⟩ subject to decay) and to the perfect resonance of the drving
pulses with the respective transition that is not fully guaranteed from the
presence of low frequency (adiabatic) noise. The dynamics become more
adiabatic increasing the peak amplitude of the driving pulses.

STIRAP in superconducting quantum devices.

In superconducting device the symmetry that allows to de�ne the most
protected working point from noise is also the symmetry that cancel the
coupling of the system with the pump pulse [10]. A problem addressed in
this thesis is to �nd a compromise between noise protection and e�ciency
of coupling with the driving pulse. In particular we found a speci�c design
and a speci�c setup for a class of superconducting nanodevices that should
be capable to perform the STIRAP [10].

Toward the implementation of STIRAP at the optimal working
point.

The possibility of generating Rabi oscillation in a multilevel system using a
two photon coupling of two level via a dispersive coupling with a third level
has been experimentally demonstrated in superconducting devices [11, 12].
This opens the possibility of seeking the implementation of STIRAP with
an improved scheme using a two-photon pump pulse allowing us to oper-
ate at an optimal working point minimizing the decoherence, even if the
direct coupling is prevented by parity selection rules. We showed that this
idea is be applicable to obtain the transfer using the STIRAP. However
some compensation is needed in order to cancel the Stark shift generated
from the two photon pump coupling in the system and then maintaining
the correct condition of detuning[7]. We found that this is obtained by a
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frequency modulation of the Stokes pulse pro�le. Using some optimal con-
trol theory tools,as in particular the so called Average Hamiltonian theory
[13], we found an analitical form of pulses required. On the other hand the
STIRAP process, especially in this con�guration, need some care also to
guarantee that the driving pulses satisfy the resonant condition only with
the wonted level in order to evitate that the population go to level out from
the computational space.

Dynamics of metastable states.

An other problem studied in the optics of quantum control in this thesis
is a numerical study of the generalized master equation that describe the
dynamics of a quantum particle in a tilted bistable potential[14]. We showed
that, in agreement with the Zeno e�ect, the noise suppress the tunneling,
generating a delay on the decay of metastable state populations.

Coherent dynamics of graphene quasi-particle.

In the last years several condensed matter systems, as for example graphene,
showed interesteing characteristic that can in principle be used in quantum
computation and quantum control. Graphene has been isolated for the
�rst time in 2004 [15]. The quasi-particle in graphene shows a peculiar
behaviour related to the particular form of their Hamiltonian. The Hamil-
tonian of quasi-particle in graphene infact is reminescent of the Hamilto-
nian of the zero mass Dirac Fermion[16]. This quasiparticle are caracterized
by a momentum and a pseudospin. As in the case of zero mass relativis-
tic fermion they are chiral i.e. the momentum and pseudospin operator
do not commute each other. This fact imply that the coherence in pseu-
dospin spaces re�ect in peculiar phenomena in the position dynamics as
for example the zitterbewegung, that in principle have, in this context, a
mesoscopic amplitude[17]. Also, the chirality suggest the possibility that
the control over the pseudospin degree of freedom re�ect in a control of the
quasi-particle current[18]. For this reason we performed the calculation of
the e�ect of the noise on the dynamics of wave packet and in particular
on the zitterbewegung, shwing that this phenomenon have also in this case
mesoscopic amplitude, though partially suppressed.
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Quantum Dynamics, Control and

Noise
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2 CHAPTER 1. QUANTUM DYNAMICS, CONTROL, NOISE

This chapter contains a general description of the theoretical tools nec-
essary to address problems of quantum dynamics and quantum control. It
also contains a description of some superconducting nanodevices and some
material that are used, or are strong candidate, for the implementation of
quantum control and quantum computation protocols.
In section 1.1 the mathematical structures used to describe the quantum
systems and theirs dynamics will be brie�y discussed. Here I will focus on
the density matrix description of quantum dynamics [1, 2]. The density
matrix description allows to study the open quantum system ny introducing
the concept of reduced density matrix that is used to take in account deco-
herence [3, 4, 5].
In section 1.2 some physical systems that show coherent behaviour are de-
scribed. This systems are strong candidate for quantum control. In partic-
ular we will focus on the implementation of arti�cial atoms with supercon-
ducting nanodevices [6].
Section 1.3 describe a framework used to study the e�ect of noise on coher-
ent dynamics that take in account the e�ect of broadband noise in a simple
way [6, 7].

1.1 Representation and Dynamics

Quantum networks [3] are systems S, modeled as a collection of nodes sµ,
coupled by mutual interactions. Quantum nodes are n-state system, pure
states being vectors |ψ⟩ of a n−dimensional Hilbert space H, whose basis
are denoted by {|i⟩ ; i = 0, . . . , n − 1}. The associated operators form also
an Hilbert vector space, called the Liouville space L.

This description of S may be convenient in physical situations where
the interaction between nodes is weak or can be switched o�. Localized
(nuclear or electronic) spins in molecular and condensed-matter systems,
or con�ned electrons in complex nanostructures can be naturally viewed
as quantum networks. Quantum computers, where the interaction between
nodes should be switchable and the dynamics should involve only few nodes
at once, are another example.

The advantage of this description is that the general structure of the
Hamiltonian, which includes control �elds and external environment, and
the algebraic structure of the time evolution can be formulated in a very
e�ective way.
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1.1.1 Representation of quantum systems

States

We consider a quantum node, the basis {|i⟩ ; i = 1, . . . , n} spanning H.
For a quantum node representing a nanodevice with Hamiltonian H0 the
associated eigenstates form a convenient reference basis, which we call �local
basis�[6]. In this basis an arbitrary state is decomposed as

|ψ⟩ =
n∑

i=1

ci |i⟩

Operators

The set L of all linear operators on H is a vector space on the complex
�eld, isomorphic to Cn×n, the set of all n × n matrices [3]. This Liouville
space has therefore dimension dim(L) = n2, as it can also seen directly, by
noticing that that the n2 transition operators [3, �2.2.1]

Qk ≡ Pij = |i⟩ ⟨j| (1.1)

are linearly independent and form a basis of L. We denote the generic basis
of L by {Ql : l = 0, . . . , s}, where s = n2 − 1.

Density matrix

In order to deal with partial coherence of physical states the formalism of
QM has to be extended. First of all Quantum Mechanics can be entirely
reformulated in terms of statistical mixtures as stated by a theorem due to
von Neumann (1927) and Wigner (1932), associating each state |ψ⟩ of the
projective space H to a density operator ρ = |ψ⟩ ⟨ψ| [4, 8, 1, 2]. Physical
systems1 are more in general statistical mixtures represented by

ρ =
∑
α

pα |ϕα⟩ ⟨ϕα| , pα ≥ 0 &
∑
α

pα = 1

where {|ϕα⟩} is an arbitrary set of states. From the density operator it is
possible to de�ne a density matrix as

ρij = ⟨i| ρ̂ |j⟩ (1.2)

where {|n⟩} is a basis for the Hilbert space H. Then it is possible to repre-
sent the density operator using the transition operators

ρ̂ =
∑
ij

Pijρij (1.3)

1Actually ensembles S of physical systems of the same kind.
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The expectation values of Hermitian operators, in density matrix formalism
have the simple form

⟨Â⟩ = Tr[Âρ̂] (1.4)

Inner product and orthonormal basis An inner product in the Liou-
ville space is de�ned via the trace

(A|B) = Tr(A†B) (1.5)

showing that L has the structure of an Hilbert space. In particular the
norm is the Hilbert-Schmidt norm [9] of the operator, ||A|| =

√
Tr(A†A).

Graham-Schmidt lemma allows orthonormalization yielding an orthonormal
operator basis for L [3]{

Ql ; l = 0, . . . , s ; s = n2 − 1
}

; (Ql|Qk) = δlk (1.6)

Since (Pij|Pmn) = Tr(PjiPmn) = δimδjn transition operators form an or-
thonormal basis.

Operator Decomposition (OD) Any A ∈ L can be decomposed as [3]

A =
s∑

k=0

akQk ; ak = Tr(Q†
kA) (1.7)

which is veri�ed by left multiplying Q†
k and taking the trace. In particular

the OD for the density matrix (DM) reads

ρ =
s∑

k=0

Tr(Q†
kρ)Qk ; Tr(Q†

kρ) = ⟨Qk⟩∗ (1.8)

showing that the state of the system is fully speci�ed by the averages of all
basis operators.

Operator basis

Transistion operators As already noticed transition operators Eq.(1.1)
form an orthonormal basis of L. The OD Eq.(1.7) of any A ∈ L in this
basis is the standard decomposition of operators in QM, expressed by matrix
elements in a basis of H

Tr
(
P †
ijA

)
= ⟨i|A |j⟩ −→ A =

n∑
ij=1

⟨i|A |j⟩ |i⟩ ⟨j| (1.9)
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For instance a static Hamiltonian, in the eigenbasis readsH0 =
∑

iEi |i⟩ ⟨i| =∑
iEi Pii.
Operators Pii =: Pi are the projection operators, Pi |ψ⟩ = ci |i⟩. O�

diagonal operators produce transitions Pij |ψ⟩ = cj |i⟩. From the de�nition
the following property holds

P †
ij = Pji (1.10)

therefore Pi are Hermitian, while o� diagonal Pij are not. Notice that all
pairs of conjugate operators appear in the basis.

Pauli Matrices It is sometimes convenient to choose di�erent basis sets.
For instance for two-state-nodes (TSN) one often uses Pauli matrices, which
greatly simplify the OD, since they are Hermitian, unitary and traceless.
Their standard form gives the matrix representation in the local basis

σ1 = P01 + P10 =

[
0 1
1 0

]
σ2 = −i(P01 − P10) =

[
0 −i
i 0

]
σ3 = P00 − P11 =

[
1 0
0 −1

]
And the orthonormal basis is given by 1√

2
(1, σ1, , σ2, , σ3). Another conve-

nient basis is formed by the operators ( 1√
2
, σ3√

2
, P01, P10).

Unitary operator basis for multistate nodes For n > 2 basis with all
the properties of Pauli matrices do not exist [3]. There are choices of basis
for multistate nodes whose elements exhibit at least some of the properties
of the Pauli matrices [3]. For several purposes it is useful to consider a
unitary generalization of Pauli matrices and introduce the generalized spin
matrices [3]. The generalized Pauli matrices are de�ned by the relations

Ûab |j⟩ = ωjb |(j + a) mod n⟩ (1.11)

where
ω = 1

1
N = e

2πi
N

The representation of such operator in terms of transition operator is

Ûab =
N−1∑
l=0

ωlbP̂(l+a) mod N,l (1.12)

It is possible to prove that these operator are unitary

Û †
abÛab = 1 (1.13)

and orthogonal
Tr[ÛabÛ

†
cd] = nδacδbd (1.14)
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Properties of SU(N) representation In Hermitian basis all the opera-
tors are Hermitian. Then the decomposition of any Hermitian operator has
real components [3]. Indeed Tr(Q†

k A)
∗ = Tr(Qk A

†), and it is real if both
Qk and A are Hermitian. In such a basis both H and ρ have real com-
ponents. A widely used Hermitian basis is formed by the identity and the
generators of SU(n). From the unitarity condition of the operator belong-
ing the SU(N) and from Hermiticity condition of the generators we know
that the generators are s = N2 − 1. These generators {λ̂i} are de�ned by
the relations

[λ̂i, λ̂j] = 2i
∑s

k=1 fijkλ̂k

Tr[λ̂i] = 0 (1.15)

Tr[λ̂iλ̂j] = 2δij

where fijk is the antisymmetric tensor in n2−1 dimensions. These equations
may be satis�ed by the operators

λ̂ = {û16i<j6N , v̂16i<j6N , ŵ16i<N} (1.16)

such that

ûij = P̂i + P̂j

v̂ij = i(P̂i − P̂j) (1.17)

ŵl = −

√
2

l(l + 1)
(

l∑
k=1

P̂ll − lP̂l+1,l+1)

Notice that for n > 2 the SU(n) generators are not unitary.
Using the basis

Q̂0 =
1√
N
1

Q̂i =
1√
2
λ̂i (1.18)

where λ̂ is de�ned in (eqs.1.17,1.16) we can express both H and ρ can be
associated to s-dimensional vectors of a real space

A =
1

n
A01+

1

2

N−1∑
k=1

Akλ̂k. (1.19)

Indeed the component l = 0 is irrelevant both for the Hamiltonian, since
we can choose Tr(H) = 0, and for for the DM, since Trρ = 1 is �xed. The
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similarity transformation de�ned by operators of the form

U(ϕ) = eiϕQ̂i

U †(ϕ)AU(ϕ) (1.20)

implement a rotation in s-dimensional space around the i − th axes. For
TSN's the s = 3-dimensional space is the Bloch-Poincaré space. In the
Bloch Poincarré space it is possible perform the 3D rotation using eq.1.20

U(ϕ) = eiϕ�σ (1.21)

1.1.2 Time evolution

Schrödinger Equation

In the Schrödinger picture time evolution is codi�ed in the pure state2[4],
|Ψ(t)⟩. The dynamics is fully determined once preparation of the system is
speci�ed |Ψ(t0)⟩ = |ψ0⟩. For instance averages of time-independent opera-
tors

⟨Â(t)⟩ = ⟨Ψ(t)| Â |Ψ(t)⟩ (1.22)

The state vector solves the Schrödinger equation (~ = 1).

i∂t |Ψ(t)⟩ = H(t) |Ψ(t)⟩ initial condition |Ψ(t0)⟩ = |ψ0⟩ (1.23)

where the Hamiltonian Ĥ(t) is a linear hermitian operator.

Evolution operator

Since the dynamics as described by Eq.(1.23) is a linear mapping [4] |Ψ(t0)⟩ →
|Ψ(t)⟩, it can be represented by the two-times evolution operator (or propa-
gator) U(t, t0)

|Ψ(t)⟩ = U(t, t0)|Ψ(t0)⟩ , U(t, t) = 1 (1.24)

which must be linear. Uniqueness of the solution of Eq.(1.23) for given initial
conditions means that the mapping is injective and implies that U(t, t0) does
not depend on the initial state.

2Hereafter it is intended that all state vectors are normalized.
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Properties of the propagator The Eq.(1.23) imply a similar equation
for the evolution operator

i~
∂

∂t
U(t, t0) = H(t)U(t, t0) (1.25)

Indeed Eq.(1.23) can be written as i∂tUs(t, t0) |ψ0⟩ = Ĥ(t)Us(t, t0) |ψ0⟩ and
the equality is valid for arbitrary |ψ0⟩. From the initial condition follows
U(t0, t0) = 1 that imply an integral equation of the form

U(t, t0) = 1− i

~

∫ t

t0

H(t′)U(t′, t0). (1.26)

Considering the parameter t0 that appear in U(t, t0) as a variable t
′ the time

evolution from t′ to t is

|Ψ(t)⟩ = U(t, t′) |Ψ(t′)⟩ (1.27)

But also
|Ψ(t′)⟩ = U(t′, t0) |Ψ(t0)⟩ (1.28)

Then the composition properties follows

U(t, t0) = U(t, t′)U(t′, t0) (1.29)

that is the composition rule for elements of a semigroup [4, 2]. Substituting
in Eq.1.29 t = t0 follows

1 = U(t0, t)U(t, t0) (1.30)

Multiplying Eq.1.25 by U †(t, t0) and its complex conjugate by U(t, t0)

−iU(t, t0)∂tU †(t, t0) = U(t, t0)H(t)U †(t, t0)

iU(t, t0)
†∂tU(t, t0) = U †(t, t0)H(t)U(t, t0) (1.31)

and di�erentiating term by term we obtain

∂tU
†(t, t0)U(t, t0) = 0 → U †(t, t0)U(t, t0) = c (1.32)

that with the initial condition imply that U(t, t0) is also unitary

U(t, t0) = U †(t0, t) (1.33)

A consequence of the properties listed above is that two-times propagator
can be expressed in terms of the single time propagator U(t) := U(t, 0) as

U(t, t0) = U(t, 0)U(0, t0) = U(t)U †(t0) (1.34)
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Dynamic equation and formal solution The dynamics is solved once
U(t, t0) is found.

From Eq. 1.25 follows that the solution is immediate if Ĥ is time-
independent

U(t, t0) = e−iĤ·(t−t0) (1.35)

as it can be veri�ed by substitution. This structure can be extended to
special problems called superadiabatic [4], such that [Ĥ(t), Ĥ(t′)] = 0, ∀t, t′
and yielding

U(t, t0) = e
−i

∫ t
t0
ds Ĥ(s)

(1.36)

However when H(t) does not commute at di�erent times Eq.(1.35) is not
a solution as it can be veri�ed by considering the derivative of its series
expansion [4]. In general time ordering of the operators is essential and the
solution can be obtained in the form of the Dyson series which is symbolically
reexponentiated using the time ordering operator T [4]

U(t, t0) =

{
T e

−i
∫ t
t0
ds Ĥ(s)

for t < t0

T e
−i

∫ t
t0
ds Ĥ(s)

for t > t0
(1.37)

This symbolic way of writing only means that the solution is written by
�rst expanding the exponential as it were a number, and then acting term
by term with the time-ordering (antiordering) operator.

Liouville-Neumann Equation

Under the action of H(t) the density operator of a closed system evolves in
time according to

ρ(t) = U(t)W (0)U †(t)

and it is easy to verify that it solves the von Neumann-Liouville equation
[3, 4]

dρ(t)

dt
= −i [H(t), ρ(t)] (1.38)

Since the r.h.s. is a linear form of the entries of the ensity matrix, we can
rewrite the equation as

dρ(t)

dt
= L(t) ρ(t) (1.39)

where now ρ is a n2 dimensional vector and the superoperator L(t) called
Liouvillian is a n2 × n2 matrix, i.e. an operator of L. This allows to write
the formal solution for the dynamics of the density matrix in an exponential
form convenient for approximations. For instance for a time-independent
problem we write

ρ(t) = eLtρ(0)
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1.1.3 Transformations and picture for the dynamics

The freedom in the choice of the reference basis (frame) of H can be used
to simplify the equations for the probability amplitudes. Transformation to
the rotating frame or to the Dirac (interaction) are relevant examples. The
transformed equations may allow to recognize the �relevant� dynamics, and
to discard the rest or treat as as a perturbation.

The physical problem posed in the laboratory frame, corresponds to the
Schrödinger picture (�1.1.2).

Time-dependent unitary transformations

The dynamics of a time dependent quantum system, as those concerning
quantum control, is very hard to determine due to the presence of the time
ordering operator in the expression for the propagator Eq.1.37. Despite
this fact often it is possible to use unitary time dependent transformation
to simplify the structure of the dynamics [4]. Starting from the Schrodinger
equation

i∂t |Ψ(t)⟩ = H(t) |Ψ(t)⟩
we can de�ne a new state vector related to the state vector in the Schrödinger
picture by

|Ψ(t)⟩ = Ux(t) |Ψ(t)⟩x (1.40)

where Ux(t) is unitary i.e. Ux(T )U
†
x(t) = I substituting this expression in

the Schrödinger equation follows

i∂t[Ux(t)] |Ψ(t)⟩x + iUx(t)∂t |Ψ(t)⟩x = H(t)Ux(t) |Ψ(t)⟩x
multiplying both sides of this equation on the left by U †

x(t) and using the
unitarity property of Ux(t) we obtain

i∂t |Ψ(t)⟩x = [U †
x(t)H(t)Ux(t)− iU †

x(t)∂tUx(t)] |Ψ(t)⟩x = H̃(t) |Ψ(t)⟩x .
(1.41)

With this prescriptions we achieved a new e�ective Hamiltonian in a di�er-
ent dynamical reference frame. These consideration can be used for exemple
to write an Hamiltonian in another reference frame or to obtain the Dirac
(or interaction) picture, in fact if we start with an Hamiltonian of the form

H(t) = H0 + λHI(t)

using the unitary transformation U0(t) = e−iH0t we obtain an e�ective
Hamiltonian of the form

i∂t |Ψ(t)⟩I = H̃i(t) |Ψ(t)⟩I ;
|Ψ(t)⟩S = U0(t) |Ψ(t)⟩I ;
H̃i = U †

0(t)Hi(t)U0(t) (1.42)
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Phase transformation

Phase transformation [4] corresponds to unitary operator of the form

Ux(t) := Urf (t) = e−i
∑

m ζm(t)Pmm (1.43)

Where Pmm, already de�ned in Eq.1.1 are the projection operator on states
|m⟩ that are eigenstates of the Hamiltonian H0. The index stays for rotating
frame. In particular, since [Urf (t), H0] = 0, the transformation is a simmetry
for H0, it behaves as a �rotation� of the state around the �direction� of H0.
For a two level system this picture has an immediate visualization on the
Bloch space.

It is simple verify that [Pmm, Pll] = 0, then it is possible write Urf (t) as
a product of single transformation Urf (t) =

∏
m e−iζmPmm . The e�ect on the

states is

e−iζmPmm |j⟩ = e−iζmδmj |j⟩ =
{

e−iζm |m⟩ j = m
|j⟩ j ̸= m

then eiζmPmm |j⟩ ⟨j| e−iζmPmm = |j⟩ ⟨j|. Consequentely U †
rf |j⟩ ⟨j| Urf =

|j⟩ ⟨j|. More in general these transformations leave invariate all the di-
agonal operators in the H0 eigenstates basis. The o� diagonal operators
pick a phase from these transformation

U †
rf |m⟩ ⟨n| Urf = eiζmPmm |m⟩ ⟨n| e−iζnPnn = ei(ζm−ζn) |m⟩ ⟨n|

We now apply these results to determine the e�ective Hamiltonian corre-
sponding to H0 +H1(t) =

∑
mEm |m⟩ ⟨m|+

∑
mn Vmn(t) |m⟩ ⟨m|

H0 +H1 → H̃ = U †
rf [H0 +H1]Urf − iU †

rf ∂tUrf

= H0 +
∑
mn

Vmn e
i(ζm−ζj) |m⟩ ⟨n| − U †

rf [
∑
m

ζ̇m |m⟩ ⟨m|]Urf

=
∑
m

(Em − ζ̇m) |m⟩ ⟨m|+
∑
mn

Vmn(t) e
i(ζm(t)−ζn(t)) |m⟩ ⟨n|

These transformations are very useful in the case of a system driven with
AC pulses. Their cancel part of all the time dependence from H1(t), and
part of the energy on the time independent part, thus greatly simplifying
the problem.

Transformation to adiabatic frame. We now de�ne a unitary trans-
formation as

Uad(t) =
∑
i

|ϕi(t)⟩ ⟨i| , |ψ⟩ = Uad(t) |ψad⟩
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where, |ϕi(t)⟩ are the instantaneous eigenstates of a generic Hamiltonian
Ht(t) and |i⟩ is a time-independent basis [4]. In this basis the unitary
operator elements are [Uad]ij = |i⟩Uad(t) ⟨j| = ⟨i|ϕj(t)⟩. In this context we
will refer to this reference frame as adiabatic frame.

Dynamics in adiabatic frame. The e�ective Hamiltonian in adiabatic
frame [4] is given by the Eq. 1.41) where Ux(t) = Uad(t). It is convenient
distiguish to contribution writing

H̃t = H̃ad(t) + δH̃(t)

where

H̃ad(t) =U
†
ad(t)H̃Uad(t) =

∑
i

ϵi(t) |i⟩ ⟨i| (1.44a)

δH̃(t) =− iU †
ad(t)∂tUad(t) =:

∑
i,j

|i⟩ δH̃ij(t) ⟨j| (1.44b)

The term δH̃ij(t) gives the non adiabatic e�ect. His matrix elements de-
scribe transitions between adiabatic states. The matrix δH̃(t) is called
non-adiabatic coupling matrix. His elements are

δH̃ij = −i ⟨i|U †
ad(t)

[
∂tUad(t) |j⟩

]
= −i ⟨ϕi(t)|∂tϕj(t)⟩ (1.45)

This equation allows to write the non-adiabatic coupling matrix in many
cases.

1.1.4 Quantum Computation and Advanced Control

Quantum dynamics has attracted large interest since the advent of NMR
and Laser physics and is nowadays a still growing subject of investigation
having been boosted in the last decade by e�orts towards the implemen-
tation of quantum state processors [8]. This has greatly broadened the
scope of the research which now involves new physical systems, as �arti�cial
atoms�[6], and new tasks as advanced control which are the subject of this
thesis. Arti�cial atoms are solid-state nanodevices which are expected to
exhibit dynamical behavior similar to atoms. However direct detection of
quantum coherence as superpositions of states, proposed of Caldeira and
Leggett [10, 11] at the beginning of the eightieees, has been a for almost
twenty years an elusive experimental challenge, only achieved in 1999 by
Nakamura et al. [12]. Advanced control aims at controlled manipulations of
quantum states. Examples in atomic and molecular systems are the faithful
and selective transfer of populations and wavepackets in in di�erent physical
locations [13].
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Computation

In the last years the scienti�c community is attracted by the possibility to
manipulate quantum information. Quantum computation consist in achiev-
ing preparation (write), manipulation and measurement (read) of a set of
quantum variables Q̂i, this set de�ning the so called computational basis
|{qi}⟩ [6]. The manipulation consist on the possibility of desining a Hamil-
tonian to control the quantum state

|Ψ(t)⟩ =
∑
q1···qn

cq1···qn(t) |q1 · · · qn⟩ (1.46)

implementing the unitary trasformations related to speci�c quantum gates
of a given system. Coherence means that there is a well de�ned realtion
between the cq1,··· ,qN (t) coe�cients in Eq.1.46 [6]. However the Hilbert space
of a superconducting nanodevice is much larger than the computational
subspace and this causes decoherence. In other word the system interacts
with the environment (determined by all the degree of freedom needed to
complete the Hilbert space), that destroy the phase relation between c{qi}(t).

Control

An important problem that arises in the manipulation of solid state co-
herent nanostructures (as those based on superconductors with respect to
microscopic system as atoms) is the loss of coherence due to noise. One of
the most important aims of quantum control is to �nd strategy to manip-
ulate a quantum system to achieve a given target state limiting the loss of
coherence. The manipulation is performed tuning the Hamiltonian (using
for example laser or microwave �eld). The typical Hamiltonian to be stuied
in control problem depends from several tunable parameters q(t)3

H(t) = H[q(t)]. (1.47)

Being the working point de�ned by speci�c values of these parameters q0,
the problem reduced to study an Hamiltonian of the form

H[q(t)] = H[q0 + δq(t)] ≃ H[q0] + δq(t) �∇qH[q0] = H0 + δq(t)Q̂ (1.48)

In the next chapters we will use singole-port control models, in these case
the structure of the Hamiltonian is

H[q(t)] = H0 + δq(t)Q̂ where Q̂ =
dĤ

dq
[q0] (1.49)

3Here the boldface indicate vectorial quantity
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1.2 Quantum hardware

1.2.1 Atoms, molecules, photons

The �rst attempt to implement quantum control and quantum computation
has been performed with typical �microscopic� quantum system as atoms
and molecules. In such system the electrons have a discrete energy spec-
trum. With su�ciently high intensity laser it is possible to control the
dynamics of such electrons. In particular, under suitable conditions of reso-
nance and intensity it is possible to make relevant for this dynamics only few
level (for example in quantum computation two levels or more in STIRAP
processes depending in which speci�c realization of the process).

1.2.2 Arti�cial atoms

Nanodevices behaving as arti�cial atoms have allowed the demonstration
on a mesoscopic scale of coherent phenomena proper of the microscopic
realm. Advances in fabrication o�er the possibility of exploring several
di�erent designs of quantum bits based on semiconductors and supercon-
ductors [14, 15, 16]. In these latter mechanisms and typical features of
decoherence [16, 6] are now well understood and several strategies to mini-
mize them have been tested. This has allowed fabrication of more complex
architectures which in particular have demonstrated quantum-optics on a
chip [17] and to stimulate the exploration of new designs beyond atomic
analogues. To proceed in this direction quantum control of coherence in
driven superconducting multilevel open nanostructures is to be achieved.
A key step is the understanding of how peculiar signatures of interference,
as those exhibited in driven multilevel systems [14], are sensitive to the
presence of environments unconventional for atomic physics.

Example: the Cooper Pair Box

An elementary unit for superconducting coherent nanodevices is the Cooper
Pair Box (CPB) [6], whose basic design is described in �g. 1.1. It is de-
scribed by the Hamiltonian

HBOX = 4EC(q̂ − qg)
2 + VJ(φ̂) (1.50)

where q̂ is the operator of the number of Cooper pair in excess in the super-
conducting island The charging energy EC = e2

2C
is �xed by the geometry,

whereas the other parameters are tunable, allowing external control. The
gate voltage �xes the gate charge, 2eqg = CgVx and improvement of basic
design as the subtitution of the Josephson junction with a SQUID allows
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to control also EJ(Φx). In the basis |q⟩ of the eigenstates of the charge in
the island the phase acts as e±iφ̂ |q⟩ = |q ± 1⟩. Therefore the Josephson
term changes the number of Cooper pairs in units and the Cooper pair box
Hamiltonian read

H0 = EC

∑
q

(q − qg)
2 |q⟩ ⟨q| − EJ

2
(|q⟩ ⟨q + 1|+ h.c.) (1.51)

A time-dependent voltage re�ects in a time dependent gate charge. Substi-
tuting in eq. 1.51 qg → qg0 + qc(t) the Hamiltonian read

H(t) = H0 +Hc(t)

H0 = EC

∑
q

(q − qg)
2 |q⟩ ⟨q| − EJ

2
(|q⟩ ⟨q + 1|+ h.c.) (1.52)

Hc(t) = −2qc(t)
∑

q |q⟩ ⟨q|

Generally the control is performed on eigenstates of H0 then it is usefull
write the complete Hamiltonian as

H(t) =
∑

EiPii − 2ECqijPij (1.53)

where Pij = |i⟩ ⟨j| are the transitions operators de�ned in eq.1.9, {|i⟩} are
the eigenstates of H0 and qij = ⟨i| q̂ |j⟩.

Mesoscopic conductors

Graphene Graphene is a recently isolated material [19]. It is constituted
by carbon atoms arranged in a 2D honeycomb lattice Fig.1.2. The Hon-
eycomb lattice can be view as a biatomic lattice. It has been proven that
the dynamics of the quasi-particle in this material follows an Hamiltonian
of the form

H = vF (σxpx + σypy) = vFσṗ (1.54)

reminescent of the Hamiltonian of Dirac-Weyl fermions. Here vF = 106ms−1

is the Fermi velocity and the eigenstates of σz represent excitation on each
sublattice. In principle, in this material, it is possible to achieve the control
of the pseudospin (σ) degree of freedom [20].

Topological states of condensed matter An other interesting perspec-
tive for the quantum computation is open by the existance of topological
phase in some condensed matter system [21]. Topological (invariant) states
are collective states with great correlation lenght as for example Laughlin
states. The topological invariance guarantee a very good protection of this
states from noise.



16 CHAPTER 1. QUANTUM DYNAMICS, CONTROL, NOISE

Figure 1.1: (a) Basic design of the Cooper pair box. It is a superconducting
island storing the variable q and connected to a circuit via a Josephson
junction and a capacitor Cg.Control is operated via Vx.Sunstituting the
junction by a SQUID it is possible to tune also EJ(Φx) by changing the
magnetic �ux.(b) Spectrum of the box for �xed EJ

EC
= 0.44 (solid lines,

corre-spondig to the NEC qubit [12].In charge qubits the spectrum is very
sensitive to uctuations of qx. Instead for EJ

EC
> 1 dashed lines, EJ

EC
= 5.04,

correspond to the Quantronium [18] the splitting Ω is less sensitive to charge
uctations. (c) The Bloch sphere and the qubit Hamil-tonian. The dominant
decoherence mechanism, charge noise in charge qubits, couples to σz.

Figure 1.2: Graphene is a 2D honeycomb lattice of carbon atoms. To write
the low energy e�ective Hamiltonian. Since the honeycomb lattice is not
a Bravais lattice it is convenient consider this lattice as constituted by two
sublattices indicated with letters A and B.

Discussion

One of the main di�erences with usual atoms is tunability. Actually if q is
a sort of electric �eld and also atoms may be tunable via a strong static
electric �eld, but the dipole moment is small. On the contrary 2ECqij is
not that smaller than

Arti�cial atoms [22] are di�erent from their natural counterpart in many
respects. Indeed their properties can be engineered and they are easily tun-
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able. The impact on one of the major issues for coherent dynamics, namely
resilience to noise, is large and has been exploited in a twofold way. First
of all devices can be tuned to optimal bias points where symmetries enforce
protection from decoherence [18, 23, 24]. On the other hand the possibility
of manipulating various external knobs allows to extract valuable infor-
mation on the sources of decoherence. In recent years environment spec-
troscopy techniques which use as meters both undriven and driven (pulsed
or continuously) coherent nanodevices have been developed [25, 26, 24].
Nanodevices o�er the possibility of designing couplings, with external �elds
or between subunits, which are much stronger than what is found in atomic
systems [17] . Therefore they may allow for faster operation, but on the
other hand also noise may be large determining smaller decoherence times.

1.2.3 Driven arti�cial atoms

Starting from the Hamiltonian for arti�cial atoms subject to external drives,
here we outline the structure of an e�ective Hamiltonian capturing the
essence of the dynamics, and allowing for further analytical steps to be
performed. The derivation is based on the assumption that the drive can
be separated in a slow and a fast part and that their main contribution to
the dynamics can be accounted for separately, i.e. we assume a separation of
time scales. This allows to introduce in a clear way further approximations,
e.g. a slow drive can be treated in the adiabatic approximation.

Although we do not give a rigorous derivation of the e�ective Hamilto-
nian, approximations we use are standard together with the assumption of
scale separation. It is worth noticing that corrections can be estimated in
various ways4, although a general way to handle them systematically is not
available.

1.3 Open quantum system

1.3.1 System-environment Hamiltonian

The most important characteristic needed to perform quantum control is
coherence. As we said above the loss of coherence is due to the interaction
of the system to be controlled with an environment.

Therefore we should consider a system+environment Hamiltonian of the

4For instance disentangling the evoultion operator and using the Average Hamiltonian
Theory (App. B) to approximate leading corrections.
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form
H(t) = H0 + A(t)Q̂+

∑
i

X̂iQ̂i +Hr[X̂] (1.55)

where H0(t) describe the controlled system isolated, Hfn describes the envi-

ronment not coupled to the degree of freedom of the system and Q̂i are the
degrees of freedom of the system that couple with the degrees of freedom
X̂i of the environment.

Here we assumed that the system is driven by classical �elds, since this
is the case for most nanodevices. In a more general treatment classical �elds
can be, of course, quantized.

Reduced Density Matrix and reduced dynamics

As seen in previous section, to address the problem of quantum control, it
is necessary to consider a system coupled with an environment. This open
system structure prevents the possibility of describing the dynamics in the
computational state with pure quantum states. The goal is then to study
the dynamics of the reduced density matrix (RDM) obtained performing a
partial trace of the total density matrix of the system plus environment.

ρ(t) = TrEρS+E(t) =
∑
i

⟨ri| ρS+E(t) |ri⟩ (1.56)

where {|ri⟩} is a basis of the Hilbert space of the environment. Formally
we can write an equation for the reduced dynamics de�ning a projection
operator P that projects the total density operator to the Hilbert space
of the relevant system ρ(t) = PρS+E. For discrete systems this is the
Nakajima-Zwanzig equation

i∂tρ(t) = PLρ(t) +
∫ t

0

dt′PL exp[(1− P )Lt′](1− P )Lρ(t− t′) +

PL exp[(1− P )Lt](1− P )ρS+E(0) (1.57)

where L is the Liouvillian operator de�ned in eq.1.39.

Ab initio and phenomenological approaches

In principle we could derive an e�ective Hamiltonian ab initio, i.e. starting
from Eq.(1.55). This would require detailed knowledge of both system and
environment, an information which in practice is not available [6]. Since in
any case we expect that most of the microscopic details of the environment
play no role in the system reduced dynamics, it is convenient to explore
a less demanding strategy. An approach is to invoke weak coupling ap-
proximations which indirectly �erase� information on the environment, as
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in Bloch-Red�eld-Wangness Master Equation[27, 28, 29, 30], Lax Master
Equation [31, 32, 33, 14] or Generalized Optical Bloch Master Equation[27,
28, 29, 30, 34]. Another point of wiew is to write pure phenomenological
Master Equations (ME) (as Bloch ME or Optical Bloch ME)[27] whose gen-
eral structure when noise is Markovian is �xed by Lindblad-Kossakowski-
Gorini-Sudarshan (LKGS) theorem[35, 36, 33, 3].

The two approaches are complementary in many respects, and in several
practical cases a weak coupling ME reduces to the LKGS structure. It
is also worth noticing that they have the same regime of validity, which
roughly requires vτc/~ ≪ 1, where v is the coupling between system and
environment and τc is the correlation time of the reservoir.

This latter restriction is not met for many of the noise sources present
in the solid state.

Solid state noise is broadband, i.e. the low frequency part of the spec-
trum of the noise cannot be treated with perturbation theory.
Multistage procedure, for eliminating parts of the environment producing
qualitatively di�erent e�ects on the dynamics of the system [6], was pro-
posed. The idea is that such a procedure could be carried out from the
bottom-up point of view, and the result is that di�erent e�ects of the pres-
ence of noise come in a hyerarchy. In particular in most nanodevices oper-
ating at low temperature and in the presence of large low-frequency noise,
leading e�ects are the following: (a) the so called �rigid line-breadth� due
to very slow modes of the environment, beahaving essentially as a classical
noise source; and (b) spontaneuos emission (and the induced secular de-
phasing) triggered by to quantum noise due to environmental modes quasi
resonant with the Bohr frequencies of the arti�cial atom.

In this thesis we will adopt instead the top-down point of view, i.e. we
directly use the phenomenological approach to build an e�ective Hamil-
tonian with a �ctious environment producing the same leading e�ects of
low-frequency and quantum noise on the reduced dynamics of the system.

1.3.2 A roadmap to Broadband noise

We start from the macroscopic Hamiltonian of the device, H0 = H0(q),
which is an operator onto a n-dimensional Hilbert space H. It depends on
the parameter q �xing the bias (operating) point. The �local� basis of H is
composed by the eigenstates {|ϕi(q)⟩ : i = 1, . . . , n} of H0(q) [6]. In this
�laboratory frame� the Hamiltonian is

H0 =
n∑

i=1

Ei(q) |ϕi(q)⟩ ⟨ϕj(q)| (1.58)
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External control is described by a time-dependent term. In a one-port
design the driving �eld A(t) couples to a single time-independent system
operator Q̂

Hc(t) = A(t) Q̂ (1.59)

which is Hermitian and traceless. In general control is operated via the
same port, i.e. by allowing the bias in H0(q) depend on time. We let q →
q(t) + qc(t) splitting in a slow q(t) which includes static bias, and the fast
control parameter qc(t). Accordingly we split

HS = H0[q(t) + qc(t)] := H0[q(t)] +Hc(t) (1.60)

where Hc(t) describes (fast) control; in relevant situations it can be lin-
earized in qc(t), yielding the structure of Eq.(1.59). Notice that while Q̂
is an observable and does not depend on the local basis, its matrix repre-
sentation does. The physical consequence is that the e�ectiveness of the
fast control qc(t) in triggering transitions depends also on the slow q(t), a
feature of arti�cial atoms re�ecting their ease of tunability.

The interaction with the complicated environment of microscopic de-
grees of freedom in the solid state can be modeled by a phenomenological
Hamiltonian. We �rst consider classical noise, and assume that it also acts
through the same control port, therefore it can be modeled by adding a
stochastic component x(t) to the drive. Again we split slow and fast noise,
x(t) → x(t)+xf (t), and include the slow part in H0. The same steps leading
to Eq.(1.60) yield the noisy Hamiltonian

H = H0[q(t) + x(t)] + A(t) Q̂+Hnf (1.61)

where Hnf describes Markovian high-frequency classical noise [7]. �Quanti-

zation� of this term,Hnf (t) → X̂ Q̂+HR, yields the �nal system-environment

Hamiltonian. Here X̂ operates on the environment and HR is its Hamilto-
nian, plus possibly suitable counterterms.

From the physical point of view the phenomenological Hamiltonian treats
on di�erent footings environmental modes exchanging energy with the sys-
tem which are treated quantum mechanically whereas slow modes respon-
sible for pure dephasing are accounted for classically. Results of measure-
ments involve both quantum and classical ensemble averaging. From the
technical point of view e�ects of markovian noise alone are studied by weak
coupling quantum optical Master Equations (ME). This approach fails for
low-frequency nose (e.g. 1/f) which is large in solid-state systems. To over-
come this problem a multistage approach has been proposed [37] for un-
driven systems subject to broadband noise which quantitatively explains de-
coherence observed in superconducting qubits of di�erent nature [25, 26, 24].
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In these cases the leading contribution of low-frequency noise was captured
by a Static-Path Approximation (SPA) i.e. approximating x(t) by a suit-
ably distributed random variable x [37, 25]. Despite of its simplicity, this
approximation provides a powerful framework for applications to more com-
plex architectures. Recently, it has been used to propose a design of optimal
tuning of multiqubit systems [23, 24] and extended to the analysis of a Λ
system [38]

An important feature of superconducting nanodevices is that the Hamil-
tonianH0(q) can be tuned in a way such that parity simmetries are enforced,
where Ai = ∂Ei/∂q = 0 and selection rules hold a�ecting matrix elements
Qij in the local basis. In these parity symmetry points the device is well
protected against noise.

In this work we will study AC driven nanodevices addressing the e�ects
of low-frequency noise in the SPA. We will focus on the single-port scheme
where control, noise and environmental modes all couple to the same op-
erator Q̂. Now, it is apparent that di�erent channels for decoherence will
be strongly correlated: this has consequences for quantum control. The
single-port scheme provides the simplest model displaying these features,
and at the same time it describes experimentally relevant devices a�ected
by a dominant source of decoherence. A more general multiport scheme
would exhibit an even richer behavior of correlation, whose essence stems
from the non-markovianity of noise.

1.3.3 Adiabatic noise and the SPA

Since the adiabatic component of the environment does not produce transi-
tion in the system their can be treated performing a classical average over
the realization for the stochastic process x(t)

ρ(t) =

∫
D[x(t)]P [x(t)]ρ[t|x(t)] (1.62)

To perform this integral we need the expression of P [x(t)] that in principle
can be obtained from the n+1 point joint probability P (xt, t; xN−1, tN−1 · · · , x0, 0)
of x(t). The non-Markovian nature of stochastic processes of interest, does
not allow to handle explicit expressions of P [x(t)]. However a systematic
approximation scheme can be used to obtain results with the desired accu-
racy , by sampling better and better the interval [0, t] with a �nite number
of mesh points. Since any speci�c protocol samples di�erent properties of
the stochastic problem, it is often possible to �nd results by considering
the appropriate leading term. The lowest approximation consists on sam-
pling all the realizations of the stochastic process with constants x with a
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probability distribution P (x). This is the so called Static Path approxima-
tion (SPA). Despite its simplicity the SPA showed a beatiful estimate of
experimental results for free dynamics of qubits[39] and for Rabi oscillation
[26].

1.3.4 Quantum noise and the Master Equation

Secular Master Equation

For a weakly coupled environment the trace of environmental degrees of
freedom can be calculated in several ways at the second order in interaction.
A standard approach leads to the secular master equation in the basis of
the eigenstates of HS

ρ̇ij(t) = −iωijρ(t) +
∑
kl

Rijklρkl(t) (1.63)

where ωij is the di�erence in energy of eigenvalues. The relaxation tensor
Rijkl is a combination of quantities of the kind

∫∞
0
dtC≷

ijkl(t) and may be
calculated if the Green's function of the environment G>(t) = ⟨E(t)E(0)⟩E
or its Fourier trasform 2S(ω)

1+eβω
are known. The correlators C≷

ijkl(t) are de�ned
by

C>
ijkl(t) = TrE[ρE(0) ⟨i| eiHEtHinte

−iHEt] |j⟩ ⟨k|Hint |l⟩
C<

ijkl(t) = TrE[ρE(0) ⟨i|Hint |j⟩ ⟨k| eiHEtHinte
−iHEt |l⟩ . (1.64)

Lindblad Master Equation

A phenomenological approach is based on the Gorini Kossakowski theorem
[35]. This theorem asserts that the most general from for Markovian master
equation is[36, 33]

ρ̇(t) = L̂ρ(t) (1.65)

here

L̂ρ = − i

~
[Ĥ, ρ̂] +

1

2

s∑
i,j=1

Aij([L̂i, ρ̂L̂
†
j] + [L̂j, ρ̂L̂

†
i ]) (1.66)

where (i, j = 1, 2, · · ·n2 − 1)

Tr[L̂i] = 0 Tr[L̂iL̂
†
j] = δij (1.67)

The L̂j are the environment operator: they describe the in�uence of the

environment on the system. The L̂i togheter with the unit operator 1 may
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be taken normalized, in this case they form a basis in SU(N) space. The
parameter matrix Aij is Hermitian e positive semide�nite:

Aii ≥ 0 |Aik|2 ≤ AiiAkk. (1.68)

The L̂ is also known as the Lindblad operator.

Bloch Master equation

An other phenomenological approach is the Bloch Master Equation. The
�rst formulation due to Bloch [27] is for the study of relaxation in nuclear
magnetic resonance. He proposed the di�erential equations

Ṁ = γM×B(t)− Mx

T2
x̂− My

T2
ŷ − Mz −M eq

z

T1
ẑ (1.69)

where M is the polarization vector and B(t) is a time dependent magnetic
�eld. The relaxation times T1,2 was taken from experimental results. For
an AC magnetic �eld

Hz = H0 Hx = H1 cos(ωt) Hy = H1 sin(ωt) (1.70)

with the substitutions

Mx = u cos(ωt)− v sin(ωt)

My = u sin(ωt) + v cos(ωt) (1.71)

the equations take the form ˙̂u
˙̂v
˙̂
Mz

 =

 − 1
T2

−δ 0

δ − 1
T2

−γH1

0 γH1 − 1
T1

 û
v̂

M̂z

+

 0
0
M0

T1

 (1.72)

Generalized Bloch Master Equation

It has proven that in case of saturation regime the Bloch equation fails
[27, 28]. To avoid this problem a generalized version of the Bloch equation
has been introduced [29, 34]. The Generalized Bloch Equation in term of
polarization vector is ˙̂σx

˙̂σy
˙̂σz

 =

 −Γx −δ Γxz

δ Γy −2ΩR

Γzx 2ΩR −Γz

 σ̂x
σ̂y
σ̂z

+

 γx
0
γz

 (1.73)

here δ = ϵ−ω where ϵ is the splitting of the two level system and ω is the fre-
quency of the driving �eld. In this equation the relaxation rates depend on
the frequency and the amplitude of the driving �eld. Here Γx,Γy,Γz,Γxz,Γzx

depend on the drive characteristics. The relaxation rates di�er for σx and
σy (Γx ̸= Γy).
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Bloch equation in the form of Lindblad Master Equation A mul-
tistate version of Bloch equation in term of density matrix is

λ̇i −
s∑

j=1

Ωijλj =
s∑

j=1

ξijλj + ηi (1.74)

here λi = Tr[ρλ̂i] being λ̂i de�ned in 1.15. This is an other form of the
Lindblad master equation projected on the λ̂i component[3].

Generalized Master Equation (GME)

When the coupling between system and environmen is strong, the standard
master equation approach fail. In these cases it is necessary generalize the
master equation approach. The most general form is the Eq.1.57 that is
nonlocal in time. An equation of this form will be described in chapter
6 for the study of the dynamics of the populations in a quantum bistable
potential in the strong coupling limit.

1.3.5 Multistage elimination

Generally coherent superconducting devices are coupled with an environ-
ment whose operator coupled with the system have a dynamics with a power
spectrum S(ω) ∝ 1

ω
. Then we provide a technique to study the interplay of

the fast and slow (adiabatic) component by a two stage elimination [6]. We
�rst decompose X̂(t) → X̂f (t) + x(t). Here x(t) represent the slow compo-
nent that can be treated as classical stochastic process (do not produce any
decay or transition in the system). The component X̂f have a purely quan-
tum e�ect on the system but is weak coupled with the system. Multistage
approach for broadband noise consists in the equation

ρ(t) =

∫
D[x(t)]P [x(t)]ρQf [t|x(t)] (1.75)

where ρQf is the master equation obtained treating only the fast mode of
the environment with a master equation approach. This expression become
simpler if we use the SPA

ρ(t) =

∫
dxP (x)ρQf [t|x] (1.76)

1.4 Summary and general formalism

We stress that the relation between tunability and resilience to noise has
a special signi�cance for solid-state nanodevices because of the central role
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played by low-frequency noise in determining dephasing [37, 6] Indeed the
sensitivity of qubit performances both to fabrication parameters, whose �uc-
tuations represent a major issue for scalability of the architectures, and to
external bias, whose �uctuations act as stray parameters during the opera-
tions, is well known.

The system is externally driven, using controls, both local (acting on
an sµ only) and nonlocal. Moreover S interacts with an environment R of
uncontrollable degrees of freedom, the coupling being again local or non-
local. On the other hand interactions, controls and coupling to environments
are limited by the structure of the nodes, and often related to each others.
An e�cient classi�cation of the Hamiltonian is achieved by specifying its
structure in the Liouville space L, which is the collection of linear operators
A acting on the states of H.
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Many protocols of quantum computation consist in manipulating quan-
tum systems [1] (in our case coherent superconductiing nanodevices) ad-
dressing them with AC pulses. Quantum systems subject to a near-resonant
AC �eld show the so called Rabi oscillations between population. The fact
that Rabi oscillation have been demonstrated for many superconducting
qubits [2, 3, 4, 5, 6] opened the way for implementing examples of quantum
protocol [7, 8]. In the last years measurement of Rabi oscillation had been
used for spectroscopy [9, 10, 11, 12, 13, 14, 15] and for noise spectroscopy
[16].
In this chapter we will brie�y discuss the structure of the Rabi problem
(sec.2.1). Then we will study the e�ect of the broadband noise on the Rabi
oscillation implemented on Cooper Pair Box (CPB) (sec.2.3.1). The result
described here are collected in an paper published on Physica Scripta [17].
Many studies have been performed on the e�ect of quantum noise on Rabi
oscillation [18, 19] for standard Markovian noise, generalizing the Optical
Bloch Equations. Here we address the e�ect of low-frequency adiabatic
noise, which is non Markovian and �nd analytic results in the using the
Static Path Approximation (SPA).

2.1 The Rabi problem

The Rabi problem is de�ned by the Hamiltonian

H(t) = −1

2
εσ3 + Ω0 cos(ωt)σz. (2.1)

The Hamiltonian in this form refers to two di�erent bases in the Hilbert
space and consequently in the Liouville space. The �rst is formed by the
eigenstates of σ3. Typically in the language of quantum computation it is
called compuational basis. The second is that of the eigenstates of σz, the
pointer basis. The relations that allow to switch from one basis to the other
in the Liouville space are

σ3 = cos θσz + sin θσx
σ1 = − sin θσz + cos θσx
σ2 = σy


σz = cos θσ3 − sin θσ1
σx = sin θσ1 + cos θσ3
σy = σ2

Generally the analysis of the Rabi problem is made in the rotating frame
de�ned by the unitary transformation

|Ψ(t)⟩ = Urf (t) |Ψ(t)⟩rf ; Urf (t) = e
i
2
ϕ(t)σ3 (2.2)

Substituting the state in the Schrödinger equation

i∂t |Ψ⟩ = H(t) |Ψ⟩ ; i∂tUrf (t) |Ψ(t)⟩rf = H(t)Urf (t) |Ψ(t)⟩rf
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Figure 2.1: Graphical representation of the spin operator that appear in the
Rabi Hamiltonian in the Bloch sphere.

with a little algebra the Hamiltonian in the rotating frame become

H̃ = U(t)H(t)U †(t)− iU(t)∂tU
†(t)

= −1

2
[δ − 2Ω0 cos θ cosωt]σ3 + sin θΩ0 cos(ωt)(e

−iωtσ+ + eiωtσ−).(2.3)

2.1.1 Quasi resonant and transvers approximation (TR).

The only �eld's component that generate transitions between the eigenstates
of σ3 are the quasi resonant terms that appear as the o�-diagonal term of
the Hamiltonian in the representation of the eigenstates of σ3 (transversal
terms). Then it is su�cient to retain only the quasi-resonant transversal
terms.

2.1.2 Rotating Wave Approximation (RWA).

It is possible to simplify Hc(t), using another approximation. This consists
in considering only the circularly corotant polarized terms. We can obtain
this approximation by writing the cosine in exponential form as cosx =
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1
2
(eix + e−ix). The term proportional to e−2iϕp(t), oscillate rapidly (in the

rotating frame) and averaging them on a su�ciently small time interval ∆t.
This is the so called coarse graining procedure. Then in a coarse-grained
dynamics they may be neglected. With the RWA and retaining only the
transversal terms the Hamiltonian is

H̃ = −1

2
δσ3 +

1

2
ΩRσ1. (2.4)

2.1.3 Density matrix in the rotating frame.

The transformation to the rotating frame does not a�ect the expectation
value of the operator σ3. Indeed the unitary transformation Urf (t) does not
change the σ3 operator. We have

⟨σ3⟩ = Tr[σ3ρ̃(t)] = Tr[σ3Urf (t)ρ(t)U
†
rf (t)] = Tr[σ3ρ(t)] (2.5)

where in the last step we used the cyclic properties of the trace.

2.1.4 Dynamics of Rabi oscillation

From eq.2.4 the dynamics of the Rabi oscillation is obtained

ρ10(t) =
ΩR

Ωf

e−iΩf t (2.6)

were Ωf =
√
Ω2

R + δ2
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Figure 2.2: a) The dynamics of Rabi oscillations is showed for di�erent
choise of detuning δ in fuction of the time. the time units varies for di�erent
curve since Ωf =

√
Ω2

R + δ2. Black line (δ = 0), blue line (δ = 1), red line
(δ = 2). b)Dependence of the amplitude of Rabi oscillations on detuning.
c)Dependence of the frequency of Rabi oscillations on detuning.
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2.2 Rabi oscillation in Cooper pair box

The main aim of this chapter is the anlysis of the broadband noise e�ect on
the dynamics of Rabi oscillation. We focus on the implementation of Rabi
oscillation with a charge qubit.

The standard Hamiltonian for superconducting nanodevices is

HC [qg(t)] = EC

∑
q

(q− qg(t))
2|q⟩⟨q| − EJ

2

∑
q

(|q⟩⟨q+1|+ |q+1⟩⟨q|) (2.7)

where EC = e2

2C
is the charging energy, EJ is the Josephson energy and |q⟩

are charge states. In particular, in a Cooper Pair Box and in general in the
qubits that work in a charge regime varying the gate voltage of the device,
we can control the charge of the superconducting island via qg. Then we
consider in our model

qg → qg + qc(t) + x(t) (2.8)

where qg is the bias of the CPB and determines the working point, qc(t)
is the control signal of the system and x(t) is, in principle, a quantum
stochastic process. Following the approach described in (sec.1.3.5), we write
the Hamiltonian of the driven CPB in the form

H = H0[qg + x(t)] + A(t)Q̂+Hfn (2.9)

in this speci�c case

H0[qg + x(t)] = EC

∑
q

(q − 2qg − 2x(t))q |q⟩ ⟨q|

+
EJ

2

∑
q

(|q⟩ ⟨q + 1|+ h.c.) (2.10)

A(t)Q̂ = −2ECqc(t)
∑
q

q |q⟩ ⟨q|

Hfn = Q̂X̂ (2.11)

where we separated the purely quantum part of the noise and the slow part
that can be treated as a classical stochastic process as x̂ → X̂f + x(t).
Projecting this Hamiltonian on the �rst two charge states we obtain

H0[qg + x(t)] = −1

2
Ω[x(t)]σ′

3 (2.12)

A(t)Q̂ = A0 cos(ωt)σz (2.13)

Hfn = X̂Q̂+HR; X̂ = −2ECX̂f (2.14)
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here

σz = |0⟩ ⟨0| − |1⟩ ⟨1| (2.15)

σx = |1⟩ ⟨0|+ |0⟩ ⟨1| (2.16)

Ω[x(t)] =
√
E2

C(1− 2qg − 2x(t))2 + E2
J (2.17)

σ′
3 = σ3 = cos{θ[x(t)]}σz + sin{θ[x(t)]}σx (2.18)

(2.19)

the apex on σ3 means that it depends on x(t) via the angle

θ[x(t)] = arctan
EJ

EC(1− 2qg0 − 2x(t))
(2.20)

and qg0 is the �xed gate.

2.3 Multistage elimination

To study the e�ect of broadband noise on the dynamics of the Rabi oscilla-
tion in the framework of the multistage elimination we have to trace away
the bath quantum degree of freedom and then treat the slow component
with the SPA. There are many studies in the literature on the e�ect of
quantum noise on Rabi oscillations [18, 19], based on the master equation
approach in the Bloch form and its tcrgeneralization. We account for the
e�ects of the quantum noise on the Rabi oscillation dynamics with an ex-
ponential decay factor of the form e

γ
2
t. We will integrate these results with

the analysis of adiabatic noise in the framework of SPA [20]. As we said
in 1.3.3 the SPA consist in treating the realizations of the slow stochastic
process as random variable. Then we model a nanodevice in an external
AC �eld by the Hamiltonian

H(t|x) = H0(qg + x) + A(t) Q̂ (2.21)

where A(t) = A cosϕ(t) is the control �eld with carrier frequency ω. The
device is nominally biased at qg with a random additive component x dis-
tributed with a zero average P(x). We consider H0(qg+x) and for each x we
de�ne (dependence on qg is omitted hereafter) the �x-basis� {|ϕi(x)⟩} of its
eigenstates and the conditional (Schrödinger or laboratory frame) propaga-
tor US(t|x) corresponding to H(t|x). Usual protocols in nanodevices start
with an imperfect (x-dependent) initialization in the lowest energy state,
ρ(0) =

∫
dxP(x) |ϕ0(x)⟩ ⟨ϕ0(x)|. Then the system evolves conditionally to
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x as ρ(t|x) = US(t|x) |ϕ0(x)⟩ ⟨ϕ0(x)| U †
S(t|x). Finally populations of the

x-dependent eigenstates are measured, yielding

Pi(t) =

∫
dxP(x) ⟨ϕi(x)| ρ(t|x) |ϕi(x)⟩ (2.22)

i.e. the simple ensemble average of conditional population histories. Averag-
ing defocuses the coherent signal, which appears to be suppressed in time.
Alternative preparations and readout of di�erent observables may lead to
further suppression of the signal, which however does not accumulate in time
and in these cases Eq.(2.22) is not exact but is still a good approximation.

We now derive US(t|x) in the Rotating Wave (RW) approximation. To
this end we represent in the x-basis, Hc(t) = A(t) Q̂ =

∑
ij A(t)Qij(x)

and approximate this control Hamiltonian by retaining only o�-diagonal
quasi resonant entries, Qij such that |Ei − Ej| ∼ ω, and by neglecting the
counterrotating part of the �eld. If only the lowest doublet is addressed this
yields

HRW (t|x) = A
2
e−iϕ(t)Q10(x) P̂10(x) + h.c.

where P̂ij(x) = |ϕi(x)⟩ ⟨ϕj(x)| are the transition operators. Physically the
RW approximation keeps only control entries �e�ective� in triggering tran-
sitions between di�erent states. Notice this e�ective part of the control
depends on the random variable x. Terms we neglect produce a small shift
in the frequencies and a small fast modulation of the signal.

2.3.1 Adiabatic noise e�ect

To study the adiabatic noise e�ect we perform a transformation to the
rotating frame in RWA and the transverse approximation of the Hamiltonian
2.12 The relevant dynamics is described by the Hamiltonian

H̃(t|x) =
[

0 Ω∗
R(x)/2

ΩR(x)/2 δ(t|x)

]
(2.23)

Here, ΩR(x) = AQ10(x) is the peak Rabi frequency and δ(x) = E1(x) −
ω is the detuning for a monochromatic �eld ϕ̇(t) = ω (we let E0 = 0).
Notice that the e�ect of low-frequency noise in arti�cial atoms, which is due
to their internal �uctuations, is conveniently recast in terms of sensitivity
to imperfections (both in phase and amplitude) of a �ctitious drive. The
corresponding populations are readily found, e.g. P1(t|x) = ΩR/(2Ωfl) [1−
cos(Ωflt)] where the �opping frequency for Rabi oscillations is Ωfl(x) =√
δ2(x) + Ω2

R(x). The average, Eq.(2.22), yields

P1(t) = P̄1 − P̄1Re⟨e−iΩfl(x)t⟩
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where we neglect �uctuations of the amplitude, allowing to approximate

P̄1 ≈ ΩR0/
√
δ20 + Ω2

R0

by values at x = 0 (but still depending on the bias q). This requires that
�uctuations of the Rabi couplings and of the level splitting induced by
�uctuations of x are small. Under the same condition we can calculate the
average by expanding to second order Ωfl(x) ≈ Ωfl(0) + Ax + 1

2
Bx2, and

assuming that P(x) is a Gaussian with variance σx, obtaining

⟨e−iΩfl(x)t⟩ = e−iΩfl(0)t e−iΦ(t) (2.24)

e−iΦ(t) =
1√

1 + iBσ2
x t

exp
[
− A2σ2

x t
2

2(1 + iBσ2
xt)

]
(2.25)

This equation describes di�erent regimes for the decay of Rabi oscillations,
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Figure 2.3: Here the dynamics of Rabi oscillation in CPB with broadband
noise are shown for di�erent working point and detuning values (blue lines).
These are compared with the Rabi oscillations for same parameters without
noise (grey lines), and with the decay factor due only to the fast part of
the noise (red lines). a) Resonant signal at optimal working point δ = 0,
qg = 0.5. b) Resonant signal far from optimal working pointδ = 0, qg = 0.45.
a) Non-resonant signal at optimal working point δ = −2, qg = 0.5. a) Non-
resonant signal far from optimal working point δ = −2, qg = 0.45.

namely a Gaussian time decay |e−iΦ(t)| ∼ e−
1
2
A2σ2

x t2 when the linear term
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in the expansion dominates, and power-law behavior ∼ 1/(σx
√
Bt) when

A → 0. In this regime Eq.(2.25) describes the initial suppression of the
signal since for physical systems decay turns to simple exponential at later
times, ∼ |e−iΦ(t)| eγt/2, where γ is the spontaneous decay rate not accounted
for in the SPA. Manipulating the eq.2.25 it is possible to individuate two
other characteristic term. A frequency shift that is present only if the drive
is operated out of optimal working point qg =

1
2
→ A(qg) = 0

δΩf (t) =
1

2

σ4
xA(qg)

2B(qg)t
2

1 + σ4
xB(qg)2t2

(2.26)

and a phase shift

δϕ(t) =
1

2
arctan(σ2

xB(qg)t) (2.27)

The decay law Eq. (2.25) depends on the spectrum via the series ex-
pansion of Ωfl(x). We de�ne the derivatives of the spectrum Ai = ∂Ei/∂q
and Bi = ∂2Ei/∂q

2 and the coe�cents aR = (∂Q10/∂q)/Q10 and bR =
(∂2Q10/∂q

2)/Q10 and expand

δ(q + x) ≈ δ0 + A1(q)x+
1
2
B1(q)x

2

ΩR(q + x) ≈ ΩR0

[
1 + aR(q) x+

1
2
bR(q)x

2
]

This makes explicit the dependence on the parameters (q,ΩR0, δ0) which are
taken as independent. We also de�ne (AR, BR) = ΩRO(aR, bR) which scale
with ΩRO; notice that (A1, B1) scale with the much larger Bohr splitting.
With this notation, the coe�cients entering Eq.(2.25) read

A(q,ΩR0, δ0) = [δ0A1 + ΩR0AR]/Ωfl

B(q,ΩR0, δ0) = [A2
1 + A2

R − A2 + δ0B1 + ΩR0BR]/Ωfl

At the resonance they reduce to A = AR and B = A2
1/ΩR0+BR which would

imply a Gaussian time decay if �uctuations ofQ10 were important, otherwise
the decay has essentially power-law behavior. In the dispersive regime we
would have A ≈ A1, i.e. when energy �uctuations are linear we recover the
Gaussian decay law of coherent oscillations, and B ≈ (B1 + A2

R)/Ωfl.
Notice that even if Eq.(2.25) describes the same regimes of the SPA for

coherent oscillations of undriven systems [20], the situation is now di�erent.
In particular Eq.(2.25) quantitatively accounts for the fact that AC driving
greatly reduces decoherence compared to undriven systems. This common
statement is based on the intuitive expectation that an AC �eld may average
e�ects of noise and is corroborated by experiments [11]. To be more speci�c,
let us neglect, for the moment, �uctuations of Qij. At resonance, δ0 =
0, nonvanishing linear �uctuations of the spectrum, A1 ̸= 0, determine
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Figure 2.4: a) Decay time TR of Rabi oscillations as a function of the nominal
detuning δ, obtained from ImΦ(T ) = −1 for a CPB in charge regime.
The curve q = 0.5 refers to the symmetry point, whereas the others q =
0.48, 0.46, 0.45 refer to the devices biased o�-symmetry. The constant line
TR = γ/2 is an added simple exponential decay accounting for spontaneous
emission. b) Contour plot of decay time in function of the gate charge and
of the detuning.

quadratic �uctuations of Ωfl(x). Therefore A = 0 and Rabi oscillations
undergo power-law decay, whereas in the absence of drive they determine
the much stronger Gaussian decay ∼ e−

1
2
A2

1σ
2
x t2 of coherent oscillations. In

this regime measurements of Rabi oscillations [16] have been used to probe
the environment 1 of a �ux qubit. At symmetry points, where A1 = 0,
coherent oscillations decay with a power law, whereas Rabi oscillation are
practically una�ected by low-frequency noise, and in physical systems they
decay only due to spontaneous emission.

Exploiting the dependence on the detuning we �nd that for non-vanishing
δ0 the decay laws are the same as for coherent oscillations. In particular
at symmetry points low-frequency noise determines an initial decoherence
which takes over spontaneous decay. An even stronger suppression of coher-
ence occurs o�-symmetry. Therefore for increasing δ0 we expect dephasing
to interpolate between the behavior of AC driven and undriven systems, all
the phenomenology depending on the single noise �gure σx.

The above picture is applicable to many physical situations, since �uc-
tuations of Qij are small. Indeed they correspond to a fraction of ΩR ̸= 0,
whereas δ(x) �uctuates on the scale of the Bohr splitting E1 − E0 ≫ ΩR

and may be particularly relevant for δ0 = 0. However the dependence Qij(q)

1In this case noise source and drive were not referring to the same port, results of this
work can be easily extended to devices with many noise ports.
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may lead to consequences in multilevel systems.
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The coherent dynamics of electrons in many level atoms plays a funda-
mental role for understanding quantum mechanics. It shows clearly inter-
ference phenomena [1], and many other e�ect as the dynamical formation of
the Autler-Townes splitting (AT) of the spectrum or the Electromagnetically
Induced Transparency, that allows to modify the dielectric constant of an ac-
tive material using an incident laser with a appropriate frequency [1, 2]. In
this chapter, that mainly follows the logic of a review paper of Vitanov [2],
two phenomena will be described: coherent population trapping in a �dark
state�. and the Stimulated Raman Adiabatic Passage (STIRAP) [3, 4, 5].
This material is propedeutical for the next two chapters, where new results
are presented.

In the last years it was proposed that these coherent e�ects could be ob-
served also in arti�cial atoms [6, 7, 8, 9, 10, 11]. This would imply important
evolution in the application on the �eld of microwave manipulation ultra-
fast switch device for microwave photons [12] and wavepacket transfer [13].
Other interesting applications could be the possibility to build quantum
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state in nanomechanical resonator [10], electromagnetic resonators [14] and
the possibility of manipulating solid state qubits [15].

3.1 Three level system

3.1.1 Scheme for a three level system in an external
�eld

Often in atomic and molecular physics, due to selection rules, it happens
that the possible transitions in a three level system involve only two couple of
states. This implies that the transitions induced by external �elds resonant
with the Bohr's frequency could give three con�guration: Lambda, Vee,
Ladder con�gurations Fig.3.1 [5].

Figure 3.1: Schemi Lambda, Vee e Ladder per sistema a tre livelli

In the Lambda con�guration, the external �eld couple the highest energy
level |2⟩ with the other two |0⟩ e |1⟩; in other word |2⟩ is the linkage between
the two state |0⟩ and |1⟩ in the two photon Raman process. In the Ladder
con�guration, the levels involved in the Raman process have increasing en-
ergy. In the Vee con�guration, the intermediate state is the one with lowest
energy.

3.1.2 General Hamiltonian

We start with the single control-port Hamiltonian

H(t) = H0 +Hc(t) ; Hc(t) = A(t)Q̂ (3.1)
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where H0 =
∑2

i=0Ei |i⟩ ⟨i| describes the three isolated and stationary quan-
tum levels, Hc(t) represent the e�ect of the external �eld. We make the
asumption that the external control �eld is coupled to the system only via
the operator Q̂. Generally, in atomic physics Q̂ is the dipole moment oper-
ator and A(t) is a classical electric �eld.

Projecting the control Hamiltonian Hc(t), on the eigenstates basis of H0,
we obtain

Hc(t) = A(t)
2∑

i,j=0

⟨i| Q̂ |i⟩Pij

where ⟨i| Q̂ |i⟩ are the matrix element of Q̂, in the eigenstates of H0. To ob-
tain the Hamiltonian for the con�guration discussed in (�3.1.1), we consider
a two-tone control �eld A(t)

A(t) =Ap(t) cosϕp(t) +As(t) cosϕs(t)

ϕk(t) = ωkt+ ϕk0 per k = p, s
(3.2)

The two �elds are called Pump and Stokes and have angular frequency quasi-
resonant to corrisponding transition. For example choosing ωp ≃ E2 − E0

and ωs ≃ E2 − E1 we obtain the Lambda con�guration.

3.1.3 E�ective Hamiltonian and RWA

Under the condition for the implementation of the STIRAP (δp ≃ E2 − E0

and ωs ≃ E2−E1 in Lambda con�guration) it is possible to obtain an approx-
imate form of the Hamiltonian, that allows to calculate analitically most of
the physical features of the dynamics. Now we discuss the approximations
in the case of Lambda con�guration.

Quasi-resonant and transversal approximation The signals produce
transition only between quasiresonant levels, i.e. p = 0 → 2 and s = 1 → 2,
then it is reasonable retain only the transversal quasi- resonant terms

Hc(t) ≃ Q02Ap(t) cosϕp(t)P02 +Q01As(t)P01 cosϕs(t) + h.c. (3.3)

Rotating Wave Approximation (RWA) In the same spirit of (RWA)
used for Rabi oscillation it is possible write the driving �elds retaining only
the circularly corotant polarized terms

Hc(t) ≃ HRWA
c (t) =

1

2
[Q02Ap(t)e

iϕp(t)P02 +Q01As(t)e
iϕp(t)P01 + h.c.] (3.4)
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Figure 3.2: Three level energetic spectra and detuning

E�ective Hamiltonian in the rotating frame. Using the approxima-
tions described above we can recast the problem in a simpler form in the
rotating frame Following the prescription of sec.1.1.3 we de�ne an unitary
transformation Urf (t).

Urf (t) = ei[ϕp(t)−ϕp0]P00 ei[ϕs(t)−ϕs0]P11 , |ψ⟩S = Urf |ψ⟩ (3.5)

Then the state |ψ(t)⟩ satis�es an equation with the same structure of the
Schrödinger equation for |ψ⟩S, but with a new e�ective Hamiltonian

i∂t |ψ(t)⟩ = H̃(t) |ψ(t)⟩ ; H̃(t) = U †
rf (t)HUrf (t)− iU †

rf (t) ∂tUrf (t)
(3.6)

In the rotating frame, the Hamiltonian H0 +HRWA(t) is

H0 +HRWA(t) −→ H̃ =U †
rf [H0 +HRWA(t)]Urf − iU †

rf∂tUrf

=[H0 − iU †
rf∂tUrf ] + U †

rfHRWA(t)Urf

The transformation cancels the time dependence of the Hamiltonian. In
the diagonal term are subtracted the frequency. De�ning the detuning of
the �elds δp, δs, and the two photon detuning δ = δp − δs as

δp(t) = E2 − ϕ̇p; δs(t) = E2 − E1 − ϕ̇s; δ(t) = E1 − (ϕ̇p − ϕ̇s)

we obtain (sec. 1.1.3)

H(t) = δ(t)P11 + δp(t)P22+

+
1

2
[Ap(t)e

iϕp0Q02P02 +As(t)e
iϕs0Q12P12 + h.c.]

(3.7)
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The e�ective Hamiltonian may be written in matrix form as:

H̃(t) =

 0 0 1
2
Ω∗

p(t)
0 δ(t) 1

2
Ω∗

s(t)
1
2
Ωp(t)

1
2
Ωs(t) δp(t)

 (3.8)

where we de�ned the Rabi angular frequency

Ωp(t) = e−iϕp(0)Q20Ap(t); Ωs(t) = e−iϕs(0)Q21As(t)

In the case of two monocromatic �eld component the detunings do not
depend on time and are

δp = E2−E0−ωp; δs = E2−E1−ωs; δ = δp− δs = E1−E0− (ωp−ωs)

In what follows we will consider two Gaussian shaped pulse

As(t) = As0 e
−(t+τ)2/T 2

; ; Ap(t) = Ap0 e
−(t−τ)2/T 2

; (3.9)

that describe the pulses of duration ∝ T , with a peak value at t = ±τ .

3.2 Coherent trapping and STIRAP

3.2.1 Coherent trapping in a Dark state

Hamiltonian in an AC �eld

We consider the Hamiltonian Eq.3.8 in the RWA in the case of AC pulse
(δk(t) = δk), Ωk(t) = Ωk. An important case is that of two photon reso-
nance, δ = 0, for which we have

H̃ =

 0 0 1
2
Ω∗

p

0 0 1
2
Ω∗

s
1
2
Ωp

1
2
Ωs δp


The stationary states are obtained solving the eigenvalues problem.

Eigenvalues. The eigenvalues are

ϵD = 0; ϵ± =
δp
2
± 1

2

√
δ2p + Ω2, where Ω =

√
|Ωp|2 + |Ωs|2

Where Ω is the e�ective value of the external angular frequency. The energy
spectra will be formed by a null eigenvalue and two eigenvalues named
Autler-Townes (AT). They are seprated by the (AT) splitting

ΩAT =
√
δ2p + Ω2

This structure of the spectra of a three level system under the e�ect of AC
�eld is named AT e�ect.
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Eigenstates. The eigenvalues are named dressed states. The basis {|i⟩} of
eigenstates without �eld is named of bare states. The Dark State or Trapped
State corresponding to the null eigenvalues, is given by

|D⟩ = Ωs

Ω
|0⟩ − Ωp

Ω
|1⟩ (3.10)

and the AT eigenstates are

|+⟩ = Ω∗
p

Ω
sinΦ |0⟩+ Ω∗

s

Ω
sinΦ |1⟩+ cosΦ |2⟩

|−⟩ = Ω∗
p

Ω
cosΦ |0⟩+ Ω∗

s

Ω
cosΦ |1⟩ − sinΦ |2⟩

dove tan 2Φ =
Ω

δp
(3.11)

A crucial point is the fact that they could be written using the Bright state

|B⟩ =
Ω∗

p

Ω
|0⟩ − Ω∗

s

Ω
|1⟩

then
|+⟩ = sinΦ |B⟩+ cosΦ |2⟩
|−⟩ = cosΦ |B⟩ − sinΦ |2⟩

|D⟩ and |B⟩ represent an ortogonal basis for the subspace span{|0⟩ , |1⟩}.
In quantum optics the name Dark State is re�erred to a particular state

of an electron in atoms or molecules, for which it is not possible to have
absorption or emission of photon. The trapping of a population in a speci�c
state is an interference phenomena[2]. The Dark state is decoupled by
the laser. It is formed by a linear combination of the initial state and
�nal state and does not have any component along |2⟩. In fact, despite
the coupling between the state |0⟩ and |1⟩ and the states |2⟩ this process
interferes destructively maintaining the population on |2⟩ null.

3.2.2 Population transfer

The possibility of selective and e�cient transfer of population from a state
to another in a quantum system is essential for application in chemistry,
physics, laser spectroscopy, quantum optics and quantum information pro-
cessing. The previously described phenomena, (�3.1), is the basis of the
process named Stimulated Raman Adiabatic Passage (STIRAP), that allows
the e�cient and selective transfer, thanks to quantum coherence properties.
Considering a three level system in the Lambda con�guration addressed
by two time dependent external monocromatic �eld, Pump and Stokes,
Ωs = Ωs(t) and Ωp = Ωp(t). Operating the two �eld in sequence it is
possible obtain a population transfer |0⟩ → |1⟩. This could happen in two
ways:
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Intuitive sequence (SEP)

The �rst techniques, the Stimulated Emission Pumping (SEP), is build by
addressing the system by pump and Stokes �eld in the intuitive sequence.
In this technique we address the system before with the Pump to transfer
population from state |0⟩ to the state |2⟩ and then acting with the Stokes
to transfer the population in the �nal state |1⟩. This technique is typical for
application that study the collision dynamics or in spectroscopy. It su�ers
of the problems related to intrinsic decay from the state |2⟩. Then the
e�ciency of this techniques is near to 10%.

Counter intuitive sequence

When the Pump-Stokes pulse are addressed in the so called counter intuitive
(before the Stokes pulse and then the Pump pulse) if the system is trapped in
the Dark State it evolves adiabatically to the target, |1⟩. This process is the
STIRAP process. The adiabatic evolution of the �eld amplitude guarantee
e�ciency near 100% if the state |2⟩ remain quite unpopulated during the
time evolution. There exist various generalizations of the STIRAP that
guarantee high e�ciency in many level system. The problem of e�cient
transfer of population is one of the most important problem studied in the
Optimal control theory (OCT).

3.2.3 Coherent transfer and STIRAP

We now examin in detail the ideal STIRAP process. If we consider for
simplicity monocromatic �elds with real envelop Ωp and Ωs �lling the two
photon resonant condition (δ = 0)

H̃(t) =

 0 0 1
2
Ωp(t)

0 0 1
2
Ωs(t)

1
2
Ωp(t)

1
2
Ωs(t) δp

 (3.12)

Adiabatic reference frame. If the Hamiltonian written in the rotating
frame present a slow dependence on time, the dynamics of the system can be
described using the Adiabatic approximation. The istantaneous eigenstate
of the system will depend on time and will be linear combination of bare
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states, for δ = 0 are Eqs.(3.10),(3.11) [2]

|D⟩ = cos
χ(t)

2
|0⟩ − sin

χ(t)

2
|1⟩

|+⟩ = sinΦ(t)(sin
χ(t)

2
|0⟩+ cos

χ(t)

2
|1⟩) + cosΦ(t) |2⟩

|−⟩ = cosΦ(t)(sin
χ(t)

2
|0⟩+ cos

χ(t)

2
|1⟩)− sinΦ(t) |2⟩

(3.13)

where

χ(t) = 2 arctan
Ωp(t)

Ωs(t)
, tan 2Φ(t) =

Ω(t)

δp

The relation between the single adiabatic state and the bare state will
change as a function of the mixing angle χ(t) and Φ(t). In function of
the t variation will give the base that de�ne the adiabatic representation.
The instantaneous eigenstates and the bare states coincide at the beginning
and at the ending in the STIRAP protocol. If the evolution is adiabatic
(�3.3) we can neglect the transition between instantaneous eigenstates, the
population of which remain unchanged. For this we need of smooth pulse
and long interaction time T and high Rabi peak frequency Ωmax

k .

Adiabatic evolution of the Dark state The STIRAP process consist
on the adiabatic evolution of the Dark state generated by a counter intuitive
pulse sequence.

• At the beginning the sistem is prepared in the ground state |0⟩ =
|D(0)⟩.

• It evolve adiabatically |D(0)⟩ → |D(t)⟩. When only the Stokes pulse
is switched on χ = 0; Switching on the Pump pulse then switching o�
the Stokes pulse switched o� we will have that χ = π and |D(t)⟩ ≈ |1⟩.

• At the end the Pump pulse is switched o� |D(tf )⟩ = |1⟩.

The adiabatic evolution with the counter intuitive sequence produce then a
complete population transfer |0⟩ → |1⟩.

Adiabatic evolution of AT states The other parameter Φ(t) enter only
on the AT states |±⟩, It varies cyclically during the STIRAP Φ(0) = Φ(tf ) =
0, and does not have e�ect on the ideal process. In fact in this case the AT
states are not populated.
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3.3 Adiabaticity condition for STIRAP

The precedent conclusions are based on the validity of the adiabatic ap-
proximation that we are going to describe.

3.3.1 STIRAP on adiabatic representation

De�nition The adiabatic representation for the STIRAP is de�ned by the
instantaneous eigenstates for δ = 0. It is possible to write down explicitly
the matrix Uad(t).

Uad(t) =

 cos χ
2

− sin χ
2

0
cosΦ sin χ

2
cosΦ cos χ

2
− sin χ

2

sinΦ sin χ
2

sinΦ cos χ
2

cos χ
2


The e�ective Hamiltonian corresponding to Eq.3.12, in the adiabatic repre-
sentation is found applying Eq.1.44

H̃t =

 0 − i
2
cosΦ χ̇ − i

2
sinΦ χ̇

i
2
cosΦ χ̇ ϵ− −iΦ̇

i
2
sinΦ χ̇ iΦ̇ ϵ+

 (3.14)

The new term δH̃ in the Hamiltonian, due to the time dependent part of
the transformation that represents the non adiabatic correction, is given by
the non-diagonal part of H̃.

3.3.2 Adiabaticity: global and local criteria

The adiabatic approximation for STIRAP[2] at δ = 0 is valid if in Eq.3.14
we can neglect the nondiagonal terms. The non adiabatic transition from
the Dark state are negligible if the elements of non adiabatic matrix are
smaller then the AT splittings

| ⟨D|∂t±⟩ | ≪ |ϵ± − ϵ0| (3.15)

This shows that the adiabaticity is guaranteed in the regime with strong
laser and with ϵ± ∼ Ω large enough.

Local criteria With δ = 0 it is possible to write the previous condition
Eq.(3.15), as ∣∣∣χ̇(t) cos2 Φ

sinΦ

∣∣∣ ≪ Ω(t) ; ∀t
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When δp = 0 we have Φ = π/4, and the inequality take the simpler form

|χ̇| ≪
√
2Ω

It is convenient rewrite the equation in term of the Rabi frequencies

Ω̇pΩs − ΩpΩ̇s√
2Ω3

≪ 1 (3.16)

it shows that a large value of Ω grows up the adiabaticity.

Global criteria When the shape's pulses is smooth, it is convenient to
refer to the global adiabaticity criteria. We have that χ̇ ̸= 0 when both
pulses are switched on, i.e. in a time interval ∆t ∝ T . In this interval we
have χ̇ → ⟨χ̇⟩ ≈ π/(∆t). This is small when ⟨χ̇⟩ ≪ Ω0 where Ω0 represent
the scale factor relative to the peak Rabi frequencies. Then the criteria is

Ω0T > 10 (3.17)

where the l.h.s. is proportional to the pulse area and the value of the r.h.s.
is obtained from evaluation of results of numerical calculation.

3.3.3 General Hamiltonian

We now consider the general Hamiltonian with a �nite δ. It is convenient
write H̃ = H̃0 + δ |1⟩ ⟨1|. Then the transformed Hamiltonian has an addi-
tional term given by

δU †
ad |1⟩ ⟨1|Uad = δ cos

χ

2

2

 tan2 χ
2

− tan χ
2
cosΦ − tan χ

2
sinΦ

tan χ
2
cosΦ cos2 Φ cosΦ sinΦ

tan χ
2
sinΦ − cosΦ sinΦ sin2 Φ



3.4 Phenomena involved in the STIRAP

The population transfer with the STIRAP protocol is operated preparing
the system in the state |0⟩S, with the �elds o� (Ωp = 0 and Ωs = 0). This
corresponds to |D(0)⟩ = |0⟩. Despite the mathematical formulation of the
problem is quite simple it is important to notice that to achieve the success
of the protocol di�erent phenomena related with the quantum coherence
occur. To emphasize this, generally, the STIRAP process is described as
divided in �ve di�erent steges [2] (vedi �g 3.3):
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Stokes-induced AT phase Switching on the Stokes pulse (the pump pulse
is o�) an AT splitting is generated. The mixing angle is χ(t) = 0.
During this phase Φ = Φ(t) and the AT states would have component
along the states |1⟩ and |2⟩. During this phase the adiabaticity of the
system prevents bad projection errors, in other words, it prevents that
the system prepared in |0⟩ have component belonging to |±⟩, that
would evolve in an undesired way.

Stokes-induced EIT phase During this stage the Stokes pulse is at the
maximum intensity and the Pump pulse is switched on. The χ(t) angle
begin to grow up but the system remains in |ψ(t)⟩ = |D(t)⟩ ≈ |0⟩. The
Stokes induced AT splitting cancel coherently the transition |0⟩ → |2⟩
that the non null Pump pulse wold produce. This e�ect is called
Electromagnetic Induced Trasparency (EIT): the Pump pulse is not
absorbed due to the strong Stokes �eld;

Adiabatic passage Switching o� the Stokes pulse and incrementing the
Pump pulse the mixing angle χ grow. During this phase |ϕ(t)⟩ =
|D(t)⟩, and at the end |ϕ(t2)⟩ = |D(t2)⟩ → |1⟩;

Pump-induced EIT phase During this phase the Pump pulse have the
maximum intensity and the Stokes pulse is adiabatically switched o�,
This guarantee that χ = π and then |ψ(t)⟩ = |D(t)⟩ ≈ |1⟩. Now the
Pump induced AT splitting cancels coherently the transition |0⟩ → |1⟩
that could be induced by the Stokes pulse;

Pump-induced AT phase In this step the Stokes pulse intensity is null
and the AT splitting decrease with the Pump pulse. The Dark state
is belong the target state |tf⟩ = |D(tf )⟩ = |1⟩.

The �ve stages are represented in �g.3.3

3.5 Resilience to parameters

The e�ciency of the STIRAP process depends from many parameters: the
time delay of the pulses τ , the shape of the pulses, the ratio κ = Ωs/Ωp

between their peak amplitude, the signal detunings δ and δp. The anal-
ysis of e�ciency dependence from these parameter is fundamental for the
evaluation of optimal working condition. An important result is that STI-
RAP is robust against variation of all the parameters, except for a critical
dependence from the two photon detuning δ.
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Figure 3.3: In the top �gure the Stokes and Pump �eld are showed in coun-
terintuitive sequence. The central �gure shows the evolution of adiabatic
eigenstates. The bottom �gure shows the population evolution. The Roman
number sign the �ve stages.

3.5.1 Resilience to delay

The adiabaticity is a necessary condition for the validity of the applied
approximations.

The optimal value of delay τ is obtained by maximizing the adiabaticity
and by imposing a smooth variation in time of χ(t) that makes the non
adiabatic terms negligible. The optimal value does not depend only on the
shape of the pulses and is related to the width of the pulses (2τ ∼ T ). A
quantitative study for gaussian pulses is shown in Fig. 3.4, for δ = 0 e
δp = 0.
The lines refer to di�erent values of Ω0T . There are two main regimes. For
τ < 0, i.e. counter intuitive sequence, it is possible to have a great transfer
e�ciency P1(tf ) ≃ 1, here we can observe plateaus of e�ciency near 100%.
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For τ > 0 in the dynamics Rabi oscillation are present. In this region the
�nal population is very sensitive to small deviations of τ . The presence

Figure 3.4: Dependence of transfer e�ciency, P1(tf ), from deley τ , for dif-
ferent value of Ω0T = 10, 15, 20, 40. (a) In absence of decay; (b) In presence
of strong decay of intermediate state γ2 = 2/T .

of decay could reduce the adiabaticity and force to use pulses with larger
intensity to obtain an large e�ciency.

3.5.2 Symmetry of external �eld

It is well known that the STIRAP e�ciency is larger with simmetric pulse,
i.e. with the same value of peak Rabi frequencies (Ωs ≈ Ωp) and the
same width T , under these condition bad projection error are prevented
[16, pag.94]. In �g. 3.5 is reported an analysis that shows that for su�cient
adiabaticity (Ω0 big), the maximum e�ciency is obtained for simmetric
pulse κ = 1 where κ is the ratio between the peak amplitude of the pulses

κ =
Ωs

Ωp

From �g. 3.5 we can see that for big pulses area and with null detuning
δ = 0 and δp = 0, the κ are irrilevant for the STIRAP e�ciency and that
(κ≫ 1) could diminish e�ciency.
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Figure 3.5: The transfer e�ciency dependence on the peak Rabi frequencies
for τ/T = 0.6 and di�erent values of Ω0T

We will see that these conclusion have to be revisited for δ ̸= 0 (non ideal
STIRAP). In this case the possibility to vary the intensity of the pulses is
useful to correct "dynamically" the loss of e�ciency in non ideal protocol.

3.5.3 Resilience to detuning

The use of resonant �eld (δ = δp = 0) favor the STIRAP e�ciency. However
often it is impossible to address the system with exactly resonant pulse.
To caracterize the STIRAP it is possible to performe an analisys on the
dependence of the e�ciency from the detuning P1(tf |δ, δp) (Figg. 3.6 3.7).
Generally two sections, called linewidths, are analized. We are interested in
two case:

Single-Photon pro�le P1(tf |0, δp) Are varied the one-photon detunings
mantaining constant the two-photon detunig δ.
In this case the destructive impact on the e�ciency is not too strong
because a single photon detuning does not prejudice the existence of
the dark state, but make more stringent the local adiabaticity condi-
tion.

Two-Photon pro�le P1(tf |δ, 0) The frequency of the �eld vary such thaqt
vary also the two-photon detuning δ.
In this case the impact on the e�ciency is strong because δ ̸= 0 il dark
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state is not more an instantaneous state and the population transfer
isn't done with the process described for now.

This behaviour is shown in Figs. 3.6 and 3.7. In the �rst are reported di�er-
ent linewidth parametrized by ΩT . We have a small increasing in e�ciency
for growing up pulse area. It is important noitce in Fig. 3.6 the di�erence
of the scale on δ and δp axis.
In Fig. 3.7 are shown for di�erent parameter values the level curve for e�-
ciency of 90%. This curves allows to individue the optimal working region.

3.5.4 Correlaated detunings = P (tf |δ, aδ)

Figure 3.6: E�ciency in function of detunings. For small values of |δ| < Ω0,
instead the protocol is stable for greater values of δp. (a) Contour plot of
P1(tf |δ, δp); the dashed line δp = −25δ correspond to correlated �uctuation
of detunings. This situation presents generally for coherent nanodevices.
(b)-(e) Section for di�erent values of ΩT = 10, 15, 20, 40; The width of the
stability region grows with ΩT , that guarantee the adiabaticity.

The fact that the STIRAP protocol is sensible to values δ ̸= 0 giustify
the fact that correlation between δs and δp such that reduce �uctuations of
δ = δp − δs don't reduce the e�ciency of protocol.
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Figure 3.7: Contour plot of P1(tf |δ, δp) (a) for di�erent values of ΩT : ampli-
tude of stability region grow up with ΩT , that correct especially the e�ects
of δp ̸= 0. (b) for di�erent values of κ: the e�ciency "plateau" grows up in
asimmetric way. (c) For di�erent value of τ/T : the maximum width of the
stability regions is for τ ∼ 0.6T .

3.6 Conclusion

In this chapter the STIRAP process was studied in general. We have seen
that, in principle, a speci�c procedure of control performed via AC with
an adiabatic modulation of the amplitude allows to perform a population
transfer from a given state to a target state |0⟩ → |1⟩. This protocol present
reduced sensitivity to the parameters. In the next chapter we will study
the implementation of the STIRAP protocol in the superconductive device
present some di�culties due to some selection rule that make impossible a
direct pump coupling at the optimal working point.
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In this chapter we propose a way to analyze the STIRAP process in
presence of broadband noise. In particular we will focus on the possibility
of implementing the STIRAP in the Quantronium, showing that optimiz-
ing the tradeo� between e�cient coupling and protection against noise may
allow to observe coherent population transfer in this nanodevice. An im-
portant result is the de�nition of a simple �gure of merit which describes
the relevant tradeo� between coupling and noise, and can serve as a �rst
tool for optimized design and biasing of superconducting charge and �ux
devices. The mainly results described in this chapter are collected in a
preprint submitted to Physical Review B [1].

4.1 Introduction

With the rapid technological progress in quantum-state engineering in su-
perconducting devices there is an increasing demand for techniques of quan-
tum control. The Stimulated Raman Adiabatic Passage (STIRAP) [2, 3],
that as we have seen in the previous chapter, is a powerful method in quan-
tum optics has remained largely unknown to solid-state physicists. Using
AC �elds in Λ con�guration (see Fig. 4.1.a) a quantumM > 2-state system
is trapped into a subspace spanned by the two longest lived states. Con-
trol in this trapping subspace can be achieved by adiabatic time evolution
induced by properly crafted external �elds, allowing for instance to prepare
a given target state [4, 5]. Adiabatic passage used in STIRAP guarantees
highly e�cient and selective population transfer in atomic and molecular
systems [2, 6].

In the last few years it has been proposed that multilevel quantum co-
herent e�ects [5] could be observed in superconducting nanodevices, as ob-
serving Electromagnetically Induced Transparency (EIT) [7] or selective
population transfer by STIRAP [8, 9, 10, 11]. This would be important
also from a fundamental point of view, since coherent dynamics in mul-
tilevel atoms clearly displays beautiful interference phenomena [5]. Very
recently few experiments have demonstrated features of multilevel coher-
ence in such devices, as the Autler-Townes (AT) splitting [12, 13], EIT [14],
preparation and measurement of three-state superpositions [15], dynamical
AT control [16] and coherent population trapping [17].

In all the above experiments, except for the latter, the multilevel system
was driven in the Ladder con�guration [5]. Indeed in order to implement a
Λ con�guration the device Hamiltonian should not be symmetric under par-
ity transformations, which is achieved by a proper external bias [9, 11, 18]
otherwise selection rules prevent to drive e�ciently the Pump transition.
However the longest decoherence times in quantum bits are achieved by
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biasing the devices at (or near) symmetry points therefore di�culties in op-
erating coherent superconducting nanodevices in Λ con�guration come from
fundamental design issues. Indeed low-frequency noise which is known to
determine the performances of nanodevices operated as quantum bits [19]
plays a crucial role also for the e�ciency of STIRAP. So far the e�ect of
decoherence in multilevel arti�cial atoms has been studied with markovian
phenomenological master equations. In this chapter we address decoherence
e�ects due to a solid-state environment where also a strong non-markovian
noise component is present in addition to markovian quantum noise. From
the exquisite sensitivity of coherence to operating conditions, and design pa-
rameters of the device realistic prescriptions are determined for the demon-
stration of a Λ scheme in superconducting nanocircuits,

We tackle this problem by a quantitative analysis of the class of su-
perconducting nanocircuits based on the Cooper Pair Box (CPB [20], see
Fig. A.1). This is an important case-study encompassing several di�erent
coherent nanodevices which have already successfully implemented quan-
tum bits [21, 22, 23, 24, 25] and moreover the emerging physical picture
holds rather in general for nanodevices in the presence of low-frequency
noise.

The main message of this chapter is twofold. First we �nd that ob-
servation of STIRAP should be possible with devices fabricable at present
days, but only if operating conditions and suitable design optimize the con-
�icting requirements of e�cient coupling of states with (approximately) the
same parity and protection from low-frequency noise. Second, despite to the
complications of the multilevel structure and the multidimensional space of
parameters, the e�ciency for STIRAP depends essentially on noise chan-
nels involving the trapping subspace (fully characterized by operating the
nanodevice as a qubit). This allows to determine a simple criterion to �nd
design presciptions of the device favoring the observation of STIRAP.

4.2 STIRAP in the Cooper Pair Box.

4.2.1 Implementation of the Λ system

The CPB [20] is a superconducting loop interrupted by two adjacent small
Josephson junctions (energyEJ/2) de�ning a superconducting island (Fig. A.1).
The total capacitance C gives the charging energy EC = (2e)2/2C. The
electrostatic energy is modulated by a gate voltage Vg, connected to the
island via a capacitance Cg ≪ C. The Hamiltonian reads

H0(qg) =
∑
n

EC(q − qg)
2 |q⟩⟨q| − EJ

2
(|q⟩⟨q + 1|+ h.c.) (4.1)
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Figure 4.1: (a) Three-level system driven with AC �elds in Λ con�guration.
(b) The counterintuitive sequence: the Stokes �eld is switched on before
the pump �eld (here Ω0T = 20, τ = 0.6T ). (c) Instantaneous eigenvalues
{ϵ0(t), ϵ±(t)}, for δ = 0, δp = −0.2Ω0 and κ = 1. (d) Population histo-
ries ρii(t) = |⟨i|ψ(t)⟩|2 for ideal STIRAP (δ = 0): the system prepared in
|0⟩ follows the Hamiltonian along the ϵ0 adiabatic path yielding complete
population transfer to |1⟩.

where {|q⟩ , q ∈] − ∞,∞[} are eigenstates of the number operator q̂ of
extra Cooper pairs in the island. We have de�ned the reduced gate charge
qg = CgVg/(2e) polarizing the island. The spectrum can be modi�ed by
choosing a speci�c bias qg (Fig. 4.3).

The parametric dependence of H0 on qg de�nes a port allowing for
external control of the system: by adding an ac microwave component
qg → qg+ qc(t) shaped in suitable pulses arbitrary rotations of the quantum
state of a CPB have been demonstrated [26]. In the basis of the eigenvectors
{|ϕi(qg)⟩, i = 0, 1, 2} of H0(qg) the driven Hamiltonian reads (cf. Eq.1.48)

H(t) =
∑
i

Ei|ϕi⟩⟨ϕi|+ A(t)
∑
ij

qij |ϕi⟩⟨ϕj| (4.2)

where qij = ⟨ϕi|q̂|ϕj⟩ and the control �eld is A(t) = −2EC qc(t). For STI-
RAP we let A(t) = As(t) cosωst + Ap(t) cosωpt. We then transform the
Hamiltonian to the doubly rotated frame, and retain only slowly varying
terms, which yields the RWA (sec. 3.1.3). By projecting onto the three
lowest levels, i, j = 0, 1, 2, we �nally obtain an e�ective Hamiltonian H̃
implementing the Λ con�guration of Eq.(3.7), with the de�nitions

Ωp = q02 Ap ; Ωs = q12 As. (4.3)
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Figure 4.2: In CPB design the state of the superconducting island is rep-
resented as superpositions of states with well de�ned number q of extra
Cooper pairs contained. The operating point of the device is biased by the
gate voltage Vg; control is operated by an ac component of Vg. Charge
�uctuations are modeled by equivalent voltage �uctuations δVx. The e�ec-
tive Josephson energy can be tuned via the �ux Φg of the magnetic �eld
threading the loop, EJ = EJ(Φg).

Therefore q̂ enters the peak Rabi angular frequencies, as the electric dipole
does in atoms. Notice however that in the CPB Hamiltonian the parametric
dependence on qg (see Eq.4.2) a�ects �diabatic states� and energies, and also
matrix elements of q̂ (see Fig. 4.3). Therefore also detunings and peak Rabi
frequencies in H̃ will depend on qg.

Several superconducting qubits are based on the CPB, which di�er from
the theoretical point of view for the values of the parameter J = EJ/EC .
As a consequence computational states, which are eigenstates of H0, are
superpositions of a number of �charge states� |q⟩, increasing with J , and
these devices have very di�erent energy spectra. Coherent dynamics has
been observed in the charge regime [21, 23] J ≪ 1, in the charge-phase
regime [22, 24] J ∼ 1 and in the phase regime [25] J ≫ 1 (from several
tens up to several hundreds). From the physical point of view these sys-
tems di�er substantially both in the design (size, on-chip readout scheme),
and in crucial properties as the ease of coupling to control �elds and the
resilience to noise. Therefore the CPB allows for a through discussion of
design requirements to observe STIRAP for a wide class of nanodevices.

4.3 Symmetries, decoherence, selection rules

4.3.1 Symmetries

Charge parity is a possible symmetry of wavefunctions in charge space which
is notrivial because of the discrete nature of the momentum. Formally one
may introduce operators Rq =

∑
q |n− q⟩ ⟨q|, which implement a re�ection

followed by a translation in the charge space. If the parameter n is integer
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Figure 4.3: (a) Energy spectrum Ei of a charge-phase CPB (for J = 1.32
correspondinf to the Quantronium [22]), relative to the ground state E0 = 0,
as a function of the bias qg. (b) Matrix elements of q̂ involved in the Λ
scheme as a function of qg for J = 1.32; the element q02 vanishes at the
symmetry point qg = 1/2; (c) Matrix elements as a function of J = EJ/EC

for qg = 0.48; element q02 is much smaller than others (it vanishes at qg =
1/2) and it has nonmonotonous behavior with J .

they onto the same Hilbert state of discrete charges. It is easy to see that

Π−1
n

[∑
q

(q − qg)
2 |q⟩ ⟨q|

]
Πn =

∑
q

(q − n+ qg)
2 |q⟩ ⟨q|

whereas
Π−1

n

[∑
q

|q⟩ ⟨q ± 1|
]
Πn =

∑
q

|q⟩ ⟨q ∓ 1|

Therefore one can seek for the invariance of the family of Hamiltonians
(4.1). Symmetry points are found for qg = q/2, where H0(qg) is invariant
with respect to th respect to Π2qg . Since Π2

n = 1 one may conclude that
for symmetric H0 eigenvalues can be chosen with a well de�ned charge
parity Π2qg |ϕj(qg)⟩ = (−1)j |ϕj(qg)⟩ and parity selection rules hold such
that charge matrix elements ⟨ϕj| q |ϕi⟩ = 0 for states of di�erent parity.

4.3.2 Decoherence

Tunability with qg has been exploited to �nd optimal points where qubit
operations are well protected from low-frequency noise. For instance for
qg = 1/2 the Hamiltonian (4.1) is symmetric for parity transformations
in the charge space , and due to this the system is well protected against
external noise. This has allowed to obtain experimental dephasing times of
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several hundreds of nanoseconds in charge-phase devices [22, 27] and ranging
from T ∗

2 > 2µs J ∼ 50 in the phase regime [25] up to T ∗
2 ∼ 0.1ms recently

reported [28]. At the same time symmetry enforces a parity selection rule,
which prevents transitions between states enumerated with the same parity.
In particular q02 vanishes at qg = 1/2 (see Fig. 4.3b) therefore it is not
possible to implement a Hamiltonian in Λ con�guration, as Eq.(3.8), since
Ωp = 0. In Refs. [10, 11] it has been proposed to overcome this problem by
working slightly o�-symmetry (see Fig. 4.3b,c), and it has been shown that
the full multilevel structure of a CPB with EJ = EC allows for coherent
population transfer for qg ≈ 0.47, in the presence of Markovian noise.

We stress the fact that protection from noise and selection rules are con-
nected because they stem from the same symmetry, namely charge parity.
Another important property of these devices is how increasing J enforces
the (approximate) selection rule in a larger and larger region close to the
symmetry point qg = 1/2, since it makes less e�ective the symmetry break-
ing charging energy contribution. For instance Fig. 4.3c shows that q02 at
qg = 0.48 eventually decreases for increasing J .
An important ingredient allowing selective addressing of speci�c transitions
in CPB is the nonlinear nature of the Josephson junction making the sis-
tem anharmonic. Larger J tends to suppress anharmonicity and it is also
detrimental for STIRAP. However we point out that the fundamental prob-
lem is the enforcing of parity symmetry. Loss of anharmonicity is indeed
related to one further symmetry of the Hamiltonian coming into play for
J → ∞, which charge matrix elements by the suppression of all but the
ladder-type entries qi,i±1. This makes very easy to work with AC �elds in
ladder con�guration (see q01 and q12 at qg = 1/2 in Fig. 4.3c).

4.3.3 Model for charge noise

In principle each port of the device also allows injection of noise and pro-
vides a channel for decoherence. The control port associated to qg couples
to charge noise. Here we focus on this channel, which is the main source of
low-frequency noise in the CPB for the regimes in which STIRAP could be
observed. The structure of the coupling to noise can be obtained by allowing
for �uctuations the gate charge in the Hamiltonian (Eq.4.1). Their physi-
cal origin, besides voltage �uctuations of the circuit have been recognized
as the e�ect of switching impurities [29] located in the oxides and in the
substrate close to the device. We let qg → qg + x, where x describes stray
electrical polarization of the island, and write the resulting Hamiltonian as
H = H0(qg)+HRW (t)+δH, where HRW (t) is the control Hamiltonian in the
RWA and δH = −2EC x q̂ describes �uctuations. On a phenomenological
level the structure of coupling to a quantum environment is obtained by
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�quantizing� noise, i.e. by letting δH = X̂ q̂ +HR, where X̂ is an environ-
ment operator and HR describes the environment alone, possibly containing
suitable counterterms [30]. In this framework Markovian noise can be stud-
ied by deriving a weak coupling quantum optical Master Equation (ME).
However noise in the solid state has a large low-frequency components inval-
idating the ME. A multistage approach has been proposed [31] where high
and low-frequency noise are separated, the latter being approximated by a
classical �eld. Formally X̂ → X̂f − 2EC x(t) where X̂f describes fast envi-
ronmental degrees of freedom and x(t) is a slow classical stochastic process.
If we let qx(t) = qg + x(t) the Hamiltonian is written as

H = H0[qx(t)] +HRW (t) + X̂ q̂ +Henv (4.4)

In many cases low-frequency noise has 1/f spectrum and the leading con-
tribution of the slow dynamics of x(t) is captured by a Static-Path Ap-
proximation (SPA) i.e. approximating the stochastic process by a suitably
distributed random variable [31, 27] x. In this simpler scenario one should
�rst calculate the reduced density matrix ρ̂(t|x) for a given stray bias x
obtained by tracing out high-frequency (quantum) noise, and then average
over the distribution P (x). In particular population histories are given by
Pi(t) =

∫
dxP (x) ρii(t|x); notice that for each realization x of the random

variable the system is prepared and measured in the eigenbasis ofH0(qg+x),
which is then conveniently used to represent ρii.

In the case of many weakly coupled noise sources x is Gaussian dis-
tributed with width σx. The e�ect of low-frequency noise is quanti�ed by
the scale σ of the corresponding energy �uctuations. This point of view
provides a simple argument explaining why the symmetry point qg = 1/2
is well protected. Indeed since at this working point the energy splitting
E1 depends only quadratically on the �uctuations x, energy �uctuations are
suppressed, and superpositions of the two lowest energy levels keep coherent
yielding a only a power law suppression of the signal [31, 27], and longer
dephasing time.

This approach has quantitatively explained the power law decoherence
observed in the Quantronium [27], in �ux qubits [32] and to look for optimal
operating point in ultrafast driven phase qubits [33]. Recently it has been
used to propose a design of optimal tuning of multiqubit systems [34]. The
present extension to a Λ system of the approach of Ref. [31] enlightens
the role of correlations between detunings, and provides a tool for optimal
device design.
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4.3.4 E�ective model for low-frequency noise in Λ con-
�guration

In order to study STIRAP the Hamiltonian (4.4) is projected onto the
the subspace spanned by the three lowest energy adiabatic eigenvectors of
H0[qx(t)]. In doing so we assume the adiabaticity of the dynamics induced
by x(t), which allows to neglect e�ects of the time-dependence of the eigen-
vectors. Of course in the SPA adiabaticity of noise is automatically veri�ed.
The e�ective Hamiltonian is obtained starting from Eq.(2.21) and retaining
in the control part only quasi resonant entries in the RW approximation

HRW (t|x) =
1

2

[
Ap e

−iϕp(t)Q20(x) P̂20(x)

+As e
−iϕs(t)Q21(x) P̂21(x)

]
+ h.c. (4.5)

Then we de�ne a doubly RF by the transformation Urf (t|x) = ei[ϕp(t)P̂00(x)+ϕs(t)P̂11(x)]

and project onto the lowest three-level (x-dependent) subspace, obtaining

H̃(t|x) =

 0 0 Ω∗
p(t)/2

0 δ(x) Ω∗
s(t)/2

Ωp(t)/2 Ωs(t)/2 δp(x)

 (4.6)

where δ(x) = E1(x)−(ωp−ωs) is the two-photon detuning, δp(x) = E2(x)−
ωp is the pump pulse detuning and Ωi(t) are pulses of width T and peak
Rabi frequency Ωp = Q02Ap and Ωs = Q12As, respectively. Fluctuations of
the eigenenergies translate in �uctuations of the detunings (we let E0 = 0).
In the SPA we have

δ(x) = E1(qg + x)− ωp + ωs ; δp(x) = E2(qg + x)− ωp (4.7)

It is worth stressing that also the e�ective drive �uctuates, via the charge
matrix element, and for instance Ωp = q02(qg + x)Ap. Thus the e�ect of
low-frequency noise in solid-state devices, is conveniently recast in terms of
sensitivity of the protocol to imperfections (in both phase and amplitude)
of a �ctitious drive. This allows to apply to solid state devices several
results from the quantum optics realm. For instance the known critical
sensitivity to two-photon detuning, translates in the fact that the main
�gure to be minimized in order to achieve e�cient population transfer in
nanodevices are �uctuations of the lowest energy splitting, a quantity which
is well characterized from the qubit dynamics [27, 32, 33, 35].
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Figure 4.4: Left panel: typical LZ patterns with one crossing in the Stokes-
AT phase, one crossing in the pump-AT phase, and two crossings. Right
panel: e�ciency diagram P1(tf ) vs. the detunings. The con�gurations
(δ, δp) determines the typical LZ pattern as indicated in the regions of the
phase diagram. By increasing the Stokes �eld amplitude (increasing κ) the
e�ciency in the region (a) increases, minimizing the e�ect of the corre-
sponding avoided crossing.

4.4 Typical pattern of adiabatic eigenstate

Before to proceed with the procedure for studying the broadband noise e�ect
on STIRAP we focus on the e�ect of the most critical parameter for the
STIRAP process, the two photon detuning δ(x) [36]. The mapping of energy
�uctuations onto δ(x) allows to translate to solid state devices several results
from the quantum optics realm. Non-zero δ modify the whole adiabatic
picture of STIRAP [3] since the dark state is not anymore an instantaneous
eigenstate and there is no adiabatic connection from the initial to the target
state. However non-ideal STIRAP may still take place via non-adiabatic
transitions between adiabatic states. For small values of δ, narrow avoided
crossings between instantaneous eigenvalues occur and the population is
transferred by Landau-Zener (LZ) tunneling [3, 2] (see Fig. 4.4). Increasing
δ reduces the transfer e�ciency and in general the excited state |ϕ2⟩ is
populated during the protocol.

Nonadiabatic LZ patterns for STIRAP can be classi�ed in three cate-
gories, namely: (a) a single (avoided) crossing is present at the beginning
(Stokes-AT phase) of the protocol; (b) one crossing at the end (pump-AT
phase); (c) two crossings, one in each phase (see Fig. 4.4, left panel). Each
category corresponds to a speci�c relations between the detunings, e.g. pat-
tern (b) is obtained for anticorrelated detunings sign(δ) = −sign(δp), as
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illustrated in (see Fig. 4.4b). This correspondence can be understood by
inspection of the eigenvalues in the AT phases. For instance during the
pump-AT phase Ωs = 0, the energy δ of |ϕ1⟩ is constant whereas Ωp ̸= 0
determines the further splitting (AT e�ect) between |ϕ0⟩ and |ϕ2⟩ which
disappears at the end of the protocol.

This classi�cation �nds a physical counterpart when �uctuations in nan-
odevices are concerned. In this case stray δ and δp are not independent, since
the corresponding energy �uctuations re�ect the behavior of the spectrum
as a function of the bias parameter q. For instance in CPB's charge noise
determines anticorrelated �uctuations of detunings, and LZ pattern (b),
whereas �uctuations of the Josephson energy would determine correlated
detunings, and LZ patterns (a).

Now, since e�cient STIRAP requires large LZ tunneling, a way to min-
imize the e�ect of stray detunings is to use, if possible, �elds with larger
amplitude closing the gap between avoided crossings. In particular a larger
Ωs increases the e�ciency for patterns (a) and a larger Ωp for patterns (b).
In Fig. 4.4 (right panel) it is shown how a larger Ωs, which is not sup-
pressed by selection rules, may widen the stability region against correlated
�uctuations (a) of the detunings.

More in general speci�c strategy to increase the e�ciency depend on
properties of the band structure, as correlations of the parametric �uctua-
tions of the splittings. From a di�erent point of view this result suggests
that proper band structure may be engineered where e�ects of noise can be
dynamically minimized by available control. It is worth stressing that all
this picture relies on correlations enforced by the nonmarkovianity of noise.
Indeed pure dephasing due to Markovian processes determines a loss of ef-
�ciency which does not depend on the external �elds and therefore cannot
be dynamically suppressed [37].

4.5 Broadband noise in the CPB

In this section we apply the above analysis to discuss the observability of
STIRAP in a CPB in the charge-phase regime EJ ∼ EC , whose spectral
properties are given in Fig. 4.3. An important point is that while dephasing
is minimized by operating at the symmetry point qg = 1/2 the selection
rule q02 = 0 apparently prevents to implement STIRAP. Therefore it has
been proposed to operate slightly o� the symmetry point [11, 9]. On the
other hand it is known that at these values of the bias decoherence due
to low-frequency noise increases [27, 38]. This opens the question of the
tradeo� between e�cient coupling of the driving �elds and dephasing due
to slow excitations in the solid-state.
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Since it is convenient to work with the largest possible pump Rabi peak
frequency Ω0, we will consider its value �xed. It can be estimated as Ω0 =
(q02/q01) ΩR where ΩR is the maximal angular frequency for Rabi oscillations
between the lowest doublet. We will use frequencies corresponding to νR =
600MHz which are in principle achievable even if there may be technical
problems in speci�c devices. For the Quantronium at qg = 0.48 it would
yield a maximum νp = 55MHz.

In the vicinity of the symmetry point coupling of the �eld with the
Stokes transition is larger therefore we may choose κ = νs/νp ∼ q12/q02 ≫ 1.
However using larger νs does not improve the transfer e�ciency in CPB's [3,
39] therefore we will let κ = 1 hereafter.

4.6 E�ects of low-frequency noise

Low-frequency �uctuations σx of the stray gate charge x determine non-
exponential dephasing in qubits [31]. They have been well characterized in
the Quantronium (see Figs.A.1,4.3) by Ramsey interferometry at di�erent
bias points qg ∈ [0.4, 0.5] [27]. Charge noise is converted in charging energy
�uctuations σE = 2ECσx ∼ 0.01E1(1/2), which are independent on the bias
point. The corresponding �gure for charge noise σx = σE/(2EC) ≈ 6 · 10−3,
is the integrated spectral density of the environment [31]. For 1/f noise
σx also depends on details of the protocol as the total measurement time.
Even if this dependence is only logarithmic one can take advantage from
the fact that measuring the �nal population in STIRAP requires a lower
statistics than Ramsey fringes. Therefore for our purposes lower values of
σx are reasonable and hereafter we use σx = 0.004 as a realistic �gure for
CPB-based devices.

We consider STIRAP for the best conditions of nominal single and two-
photon resonance, δ = δp = 0. According to Eq.(4.7) �uctuations x deter-
mine a distribution of stray detunings. For small σx we can approximate

δ(x) ≈ A1 x+
1

2
B1 x

2

where A1 = (∂E1/∂qg) = EC a1(qg, J) and B1 = (∂2E1/∂q
2
g) = EC b1(qg, J).

It is worth stressing that arbitrary small �uctuations determine δ(x) ̸= 0,
therefore STIRAP may occur only via non-adiabatic patterns. In the same
way also δp(x) depends on the derivatives (∂nE2/∂q

n
g ). Notice that since the

detunings are functions of the single random variable x, their �uctuations
are not independent. For CPB's they are anticorrelated, due to the shape of
the spectrum (Fig. 4.3.a). This implies that non-ideal STIRAP may occur
only via typical LZ patterns [36] shown in Fig. 4.4.
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Figure 4.5: Population histories in the Quantronium at qg = 0.475, averaged
over �uctuations with σx = 0.004. Charge �uctuations determine anticor-
related stray detunings, δp = −23.5 δ. Drives are symmetrized κ = 1, by
using a lower amplitude As.

Fluctuations of the gate charge determine in addition �uctuations of the
o�-diagonal elements. They can be estimated from the plots in Fig. 4.3.b.
Far enough from the symmetry point, they are small. For instance for J ∼ 1
and qg < 0.49 we can estimate �uctuations of the amplitude of the pump
pulse as σp ∼ a02 σxΩ0 ≪ Ω0, where a02 = ∂n02/∂qg. The transfer e�ciency
is then calculated by averaging population histories over the distribution of
correlated detunings. Fig. 4.5 shows that in a Quantronium working slightly
o�-symmetry low-energy �uctuations are responsible for ∼ 20% e�ciency
loss, despite of the greatly reduced noise protection. Moreover the average
population of the intermediate level is very small during the whole proce-
dure, ful�lling the requirements for coherent population transfer. Notice
on passing that in the regime where �uctuations of the o�-diagonal matrix
element are negligible �uctuations of the detunings are well accounted for
by the linear expansion (B1 = B2 = 0).

4.6.1 E�ect of high-frequency noise

High-frequency noise is studied by solving the quantum-optical master equa-
tion in the rotating frame [40] ρ̇ = i

~ [ρ, H̃]−Dρ, where ρ is the density matrix

and H̃ is the Hamiltonian (3.7). The structure of the dissipator Dρ in the
basis of the diabatic states {|ϕi⟩} reads [11]

(Dρ)ij =
γi + γj

2
ρij − δij

∑
k ̸=i

ρkkγik + (1− δij)γ̃ijρij (4.8)

The �rst two terms describe emission and absorpion of energy and the as-
sociated secular dephasing: γij = γj→i are transition rates between diabatic
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states, and γi =
∑

k ̸=i γki are the total decay rates of states |ϕi⟩. At low
temperature in an undriven system only rates corresponding to spontaneous
emission between diabatic states are non negligible. In AC driven systems
rates describing environment-assisted absorption are also nonzero, when the
corresponding �eld is switched on. Finally the dissipator may include pure
dephasing rates γ̃ij = γ̃ji.

In quantum optical systems STIRAP connects two ground states, γ01 =
γ10 = 0. Therefore as long as population in |ϕ2⟩ is small all the transition
rates act on depopulated states, and they practically do not a�ect popu-
lation transfer. Instead in superconducting nanocircuits the decay channel
γ01 is active therefore it is expected to be the main source of e�ciency loss
due to processes involving energy exchange with the environment. This is
indeed the qualitative conclusion to which we pervent, as it is shown in
Fig. 4.6.

In order to simplify the physical picture in Fig. 4.6 we study separately
the impact of the decay channels. First we consider only spontaneous decay
in the �rst doublet. We take γ01/Ω0 = 1 (it is a rather large value that
we use for emphasize the e�ect) and we study population histories (solid
lines ρii). This channel determines a loss of population which is obviously
due to decay since ρ11(t) ≈ P1(t) e

−γ01(t−ti), where P1(t) is the population
in absence of noise. It also determines a nonvanishing population ρ22 ̸= 0
which is due to loss of coherence and detrapping from the dark state.

Adding all the other decay channels (dashed lines) produces minor mod-
i�cations of this picture (left panel, for �elds at resonance). Notice that
for nonvanishing detunings, as those produced by low-frequency �uctua-
tions, decay γ01 does not determine population of |ϕ2⟩ and the additional
channels have no e�ect. For the other decay channels we consider rates
which should overestimate unwanted processes, namely γ12 = 2 γ01, whereas
γ02 = 0.2 γ01 (accounting for the suppression by selection rules). Notice
that these emission rates become smaller when the drive amplitudes Ωk(t)
are large enough, which we do not take into account. At the same time
in the weak damping Rabi regime (TΩk(t) ≫ 1 and δk ≪ Ωk(t)) �eld-
induced absorption sets in even at low temperatures. We take into account
this channel phenomenologically, by using the behavior of the rates ob-
tained from the generalized (Bloch-Red�eld) master equation [41] for AC
driven systems undergoing Rabi oscillations. In particular we let γ21(t) =
γ12/4 [1 − δs/(

√
δ2s + Ω2

s(t))]
2 g[Ωs(t)T ], where g(x) ≈ 1 only for x ≫ 1

accounts for the requirement that �eld induced processes set in for under-
damped Rabi oscillations. We used a similar expression for γ20(t).

Notice that the above results take into account secular dephasing but
did not include pure dephasing rates, γ̃ij = 0. Indeed we argue that the
main contribution to pure dephasing comes from low-frequency noise, which
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Figure 4.6: E�ect of high-frequency noise on the populations ρii(t) for δ =
δp = 0 and κ = 1. Here Ω0 = 2.8x108rad/s would be the peak pump Rabi
frequency for a Quantronium operating at qg = 0.48 for a drive producing
Rabi oscillations with νR = 500MHz at the optimal point. We use values
Ω0T = 20, therefore T ∼ 70 ns and the whole protocol takes ∼ 420 ns.
Black curves are in absence of noise. Curves coulored courves (blue, red,
magenta) are obtained accounting for relaxation 1 → 0 only, γ01 = 1/T1,
and the associated secular dephasing; we use the experimental value [27]
T1 = 500 ns. In dashed curves other secular decay rates γij are included, as
speci�ed in the text.

is accounted for by classical �uctuations of x. In the next section we will
study the combined e�ect of high and low-frequency noise. We will come
back to pure dephasing in Sec. 4.8.

4.6.2 STIRAP in the Quantronium

For the CPB we take the value which has been measured in the Quantronium
at at qg = 1/2, and does not change substantially with the bias [27].

The main conclusion of the last two sections can be summarized by
stating that the leading e�ects reducing coherent population transfer in
nanodevices mainly involve decoherence of the �rst doublet. On the other
hand due to parity selection rules coupling to the pump pulse may be too
weak. With this in mind we consider the Quantronium as a case-study and
investigate the e�ect of �uctuations, for qg ≤ 1/2.

Concerning low-frequency noise, from the dependence of E10 and n02

on qg we expect that su�ciently far from the symmetry point only linear
�uctuations of the detunings matter. Fig. 4.7 shows that indeed di�erent
approximations of �uctuations yield the same result for qg . 0.485, whereas
by approaching qg = 1/2, both quadratic �uctuations of detunings and
�uctuations of q02 come together into play. In this latter regime �uctuations
alone would lead to a non trivial behavior of the e�ciency, however the e�ect
of high-frequency noise is here dominant and leads to the suppression of the
e�ciency. Instead for qg . 0.49 e�ects of low-frequency noise dominate, and
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in this regime it would be possible to observe ∼ 70% of population transfer
in the Quantronium.

We now discuss more in detail e�ects of �uctuations near qg = 1/2.
Quadratic �uctuations of detunings alone would determine nonmonotonic
behavior of the e�ciency on approaching the simmetry point. Indeed for
0.49 . qg . 0.495 �uctuations for x > 0 yield smaller stray detuning
δ(qg + x) than in the linear approximation, and the e�ciency increases;
however su�cently close to the simmetry point ⟨|δ|⟩ exceeds the linewidth
δ 1

2
, (which scales with Ω0, see next section): since limqg→ 1

2
⟨|δ|⟩/Ω0 → ∞

the e�ciency should eventually vanish. Fluctuations of n02 (which are also
correlated to �uctuations of the detunings) spoil the above picture. Indeed,
for 0.49 . qg . 0.495 smaller values of Ωp(qg + x) for x > 0 compensate the
e�ect of smaller δ(qg + x); moreover on approaching the symmetry point
slow �uctuations of n02 provide a nonvanishing coupling which is enough
to yield a nonzero e�ciency. Notice that this is true even at the nominal
bias qg = 1/2, where the selection rule is exact, since limqg→ 1

2
⟨|δ/n02|⟩ is

�nite. However in this regime e�ciency is suppressed by quantum noise, in
primis by spontaneous decay |ϕ⟩1 → |ϕ0⟩. Indeed the adiabaticity condition
Ωs(qg + x)T > 15, requires for qg → 1/2 longer and longer T : when it
exceeds T1 relaxation suppresses the e�ciency. This observation explains
why the loss of e�ciency due to high-frequency noise strongly depends on
qg even if we neglected the (weak) dependence of the rates γij on the bias.

4.7 Optimal design of the device

E�ciency of population transfer may be improved by optimizing the pa-
rameters of the protocol. In the last section we have shown that due to
the combined e�ect of the approximate symmetry and of spontaneous de-
cay, e�ciency is large enough if the device is biased slightly away from the
symmetry point. In this section we argue that in this regime one should
mainly optimize the tradeo� between coupling of the pump pulse and en-
ergy �uctuations of the lowest doublet of the device, due to low-frequency
noise. Indeed the relevant �gure of merit turns out to be

2EC⟨n02⟩
σδ

∝
Ωmax

p

σδ
(4.9)

σδ =
√
A2

1σ
2
x +

1
2
B2

1σ
4
x being the �uctuations of the stray two-photon de-

tuning δ(x). E�cient population transfer requires large enough values of
the quantity in Eq.(4.9), which depends on qg and EJ/EC , via ⟨n02⟩ and
(A1, B1). This can be obtained by suitably choosing design and operating
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Figure 4.7: E�ects of low-frequency and broadband noise for STIRAP in the

Quantronium. Here EJ/EC = 1.32, σx = 0.004, and we �x Ω0T = 15 and

ν01 = 600MHz. Points represent the �nal population P1(tf ) for di�erent ap-

proximations of low-frequency noise, where only �uctuations of detunings, linear

(red) and quadratic (blue) are accounted for, and where �uctuations of n02 are
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Figure 4.8: The �gure of merit Ωp/σδ is plotted in the (qg, EJ/EC) express-
ing the tradeo� between coupling and low-frequency noise. For the plot
we have chosen σx = 0.004 and Ω0 produced by an external �eld which
would determine Rabi oscillations with νR = 600MHz in the �rst doublet.
The estimate is valid far enough from the symmetry point, where e�ciency
is suppressed due to selection rules. Dashed lines correspond to values of
EJ/EC checked in this paper.
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conditions (see Fig.4.8). The criterion Eq.(4.9), which is clear from heuris-
tic grounds, can be justi�ed starting from an argument given by Vitanov
et al. [3] to estimate the linewidth of population transfer for �nite δ. In
this case the adiabatic basis {|D⟩ , |±⟩} is not anymore formed by instanta-
neous eigenstates. Since still |D⟩ provides a connection between the diabatic
states |ϕ0⟩ and |ϕ1⟩, it is argued that e�ciency loss depends on processes
triggering transitions from |D⟩ to |±⟩. These are due to non vanishing o�
diagonal entries of the Hamiltonian in the adiabatic basis, being propor-
tional to δ, therefore if δ ≫ min |ϵ±| population transfer does not occur.
This implies that for δp = 0 the linewidth scales linearly with amplitude of

the lasers [3], δ 1
2
= d(τ)

√
(Ωmax

p )2 + (Ωmax
s )2. In our case stray detunings

δ(x) and δp(x) ̸= 0 are anticorrelated, therefore leakage from |D⟩ occurs
when only the pump pulse is on (see Fig. 4.4.a) and it is substantial only
when δp > 2Ω0. By imposing that δ 1

2
= |ϵ−| we obtain an equation whose

solution can be written as δ 1
2
≈ d′(τ, κ) Ωmax

p . Asking that �uctuations of δ
does not destroy the e�ciency means that we need σδ ≪ δ 1

2
, therefore we

need large values of the parameter δ 1
2
/σδ ∝ Ωmax

p /σδ which justi�es the �g-

ure of merid de�ned in Eq.(4.9). Our derivation does not take into account
�uctuations of the matrix elements, which are negligible in the regime where
STIRAP could work. We check the optimization suggested by Fig.4.8 by
looking at STIRAP for di�erent values of EJ/EC . It is seen that proper
design allows to obtain larger e�ciency as for EJ/EC = 0.7 (Fig.4.9a) and
EJ/EC = 1 (Fig.4.9b). Instead for larger EJ/EC , as in the Transmon de-
sign, which would guarantee best protection agains noise the coupling is
insu�cient. Indeed Ω0T1 is too small, then even if the device is well pro-
tected against low-frequency charge noise coherent population transfer is
limited from spontaneous decay of the �rst doublet (Fig.4.9c). In the op-
posite regime (charge qubits EJ/EC ≪ 1) the e�ciency is also small even
if large couplings could be achieved far o� symmetry, due to large noise.

4.8 Comparison of di�erent mechanisms of de-

phasing

Introducing a speci�c model for low-frequency noise in nanodevices is re-
quired by the fact that in quantum bits it gives quantitative account of
striking experimental features as the peculiar non-exponential initial de-
coherence. Moreover this approach it provides relations between e�ects of
noise for di�erent bias point [27, 32, 33] and di�erent device design uniquely
explained by the parametric dependence of the energy spectrum, and this
is possible only for non-markovian noise. Therefore this work complements
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Figure 4.9: P1(tf ) vs qg ∈ [0.48, 0.5[ for J = 0.7, 1, 2. Here Ω0 corresponds
to νR = 600Mhz and σx = 0.004.

previous studies in the quantum optics realm where typically the markovian
master equation approach is used. Focusing on pure dephasing one consid-
ers the the dissipator Eq.4.8 with nonvanishing dephasing rates γ̃01 instead
of static �uctuations. This approach was pursues by Ivanov et al. [37] who
derived the adiabatic solution of the Liouville equation, which interpolates
between the coherent and the incoherent limit, and predicts striking behav-
iors as a function of the control parameters. They derived several analytic
results, which have been numerically checked, and in particular for Gaussian
pulses populations at the end of the protocol they found

ρ11(∞) =
1

3
+

2

3
e−

3γ̃01T
2

8τ

ρ00(∞) =
1

3
− 1

3
e−

3γ̃01T
2

8τ (4.10)

Notice that the e�ciency is determined by the dephasing rate of the low-
est doublet γ̃01. The conclusion that the other dephasing channel are less
relevant (for γ̃12, γ̃02 ≫ γ̃01 some dependence appears in the numerical so-
lutions of the master equation) agrees qualitatively with what we observed
for the static �uctuator model. On the other hand the the other striking
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Figure 4.10: Here the e�ciency vs Ω0T is calculated numerically for STI-
RAP a�ected by low frequency noise for J = 1.32 qg = 0.48 and σx = 0.004.
P1(tf is the dark blue line, P0(tf ) is the dark red line and P2(tf ) is the dark
green line. This plot is compared with the numerical result obtained using
the Lindblad equation for T2 = 57 ns ρ00(tf ) is the light blue line, ρ11(tf ) is
the light red line, ρ22(tf ) is the light green line,

feature of Eq.4.10, namely that losses due to dephasing are independent on
the peak Rabi frequencies does not hold if low-frequency noise is taken into
account. We plot in Fig. 4.10 the population ρii(∞) obtained by numerical
solution of the master equation having chosen T = T ∗

2 = 1
γ̃01

for increasing

pulse amplitude Ω0 compared with Pi(∞) for equivalent linear �uctuations

of the detunings obtained by choosing σx =
√
2

A1T ∗
2
It is seen that in this lat-

ter case e�ciency depends on Ω0 and improves for increasing values. The
dependence on Ω0 is natural consequence of non-ideal STIRAP via LZ pat-
terns which occurs when low-frequency noise components are present, and
which can-not be obtained accounting only for markovian noise. The sit-
uation is reminiscent of dynamical decoupling with strong AC continuous
�elds which is e�ective in eliminating dephasing due to noise of su�ciently
low fre-quency. Another di�erence between markovian and non-markovian
dephasing is that in this latter while decreas-ing transfer e�ciency slightly
populates the intermediate level |ϕ2⟩.This is another indication of the re-
duced sensitivity of the protocol to low-frequency noise. On the other hand
for markovian noise ρ22 would give direct information on γ̃22 (see eq.4.10)
This observation is reminiscent of the proposal of Ref [8] of using EIT on a
SQUID-based nanodevice to probe decoherence of the corresponding phase
qubit. Having in mind realistic noise spectra it is likely that the contribu-
tion of intermediate frequencies may determine e�ects similar to markovian
dephasing therefore it could be interesting to cross check measurement of
decoherence in two and three-level dynamics. Finally another implication of
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the nonmarkovian character of noise is that correlations between the detun-
ings exist, entirely determined by the parametric dependence of the energy
spectrum. E�ects of time-correlated (Ornstein Uhlembeck) phase noise in
optical systems were studied by Monte Carlo simulations, where the regime
of partially correlated δp and δs was addressed Instead for nanodevices we
have in the simplest cases strongly anticorrelated (or correlated) detunings
δ and δp and it would be interesting to investigate dynamic di�usion of
phases at intermediate frequencies due to 1

fα noise.

4.9 Conclusions

In this chapter we presented a study on the combined e�ect of low-frequency
and high-frequency charge noise on the coherence of a CPB operated as a
three-level arti�cial atom in Lambda con�guration. Observation of STIRAP
should be possible in devices within present fabrication standards, provided
both design and operating conditions are carefully chosen. We have shown
that e�cent population transfer comes from a tradeo� between large enough
coupling and larger sensitivity to low-frequency noise. It may occurs in a
regime where low-frequency �uctuations of the energy spectrum are linear in
the �uctuations x of the control parameter qg. We have shown that noise is
conveniently analized by mapping it onto �ctitious correlated �uctuations
of the detunings (see Fig. 4.3). Moreover despite of the com-plications
brought by the the multidimensional space of parameters, we have shown
the e�ciency for STIRAP depends essentially on noise channels relative to
the trapped subspace only. These are nowadays fully characterized by oper-
ating the nanodevice as a qubit [27, 32, 33]. We have found that the tradeo�
between coupling and low-frequency noise summarized by a single �gure of
merit Eq.4.9 indicating favorable conditions for observa-tion of STIRAP. Its
remarkable dependence on features of the three-level spectrum of the device
suggests that band structure engineering plays a key role for determining
optimal design solutions. This analysis, and other already available tools,
as improvements in materials and control circuits, a more systematic inves-
tigation of parameters and tailoting of pulses, guarantee room for further
e�ciency improvement. In this work we did not consider other noise sources
(as the redout circuit or critical current noise) which are possibly coupled
to the device in channels �orthogonal� to the drive. This is because in the
regime considerd they lead to minor e�cts in CPB's [27]. They can be easily
accounted for by a slight generalization of our approach, allowing for inde-
pendent noise sources. Notice that each of them would determine its own
correlations of δ and δp. We remark that the physical picture which emerges
from this work applies to the whole class of superconduct-ing nanocircuits
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so far used for implementing quantum bits[42]. Our analysis applies fully
to �ux-qubits [43, 44, 45, 46] where a coordinate-parity selection rule is ac-
tive and a symmetry point exists. A proper description of actua devices
devices should however take into account two orthogonal noise sources [32].
STIRAP in phase-qubits [47] is well described by the regime of linear �uc-
tuations of energies are linear in the �uctuations. In all these devices the
e�ect of low-frequency noise vs. e�cient coupling can be characterized by
a �gure of merit analogous to Eq.4.9.
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In the last chapter we have shown that it is possible to implement a
Lambda con�guartion allowing for STIRAP in a superconducting device as
the CPB biased o�-simmetry in the presence of broadband noise. However
the e�ciency would be strongly limited and noise correlations arising from
the band structure would require for dynamical suppression a larger pump
coupling, which is not available. In this chapter we will propose an imple-
mentation of the Lambda scheme at the simmetry point (optimal working
point) where the energy �uctuation are greatly reduced. Since the pump
�eld cannot be directly coupled to the trasnsition we seek for a two-photon
pump coupling. These result are collected togheter with those on a paper
published on Physica Scripta [1].

5.1 A two photon pump pulse

Before to procede with the strategy for the implementation of the STIRAP
process at the optimal working point in this section is discussed the main
idea that allow this srategy.

5.1.1 Adiabatic elimination

One of the crucial features that suggest the possibility of performing a three-
photon STIRAP process is that Rabi oscillation between a couple of quan-
tum level in a multilevel system may be implemented with an appropriate
multimode signal [2]. This multiphoton Rabi oscillation has been demon-
strated also in superconducting devices [3, 4]. To make it clear it is possible
to study a physical system described by an Hamiltonian in RWA of the form

Ĥ2−ph
Rabi = E1 |ϕ1⟩ ⟨ϕ1|

+E2 |ϕ2⟩ ⟨ϕ2|+
1

2

(
Ω∗

p1
(t) |ϕ1⟩ ⟨ϕ0|+ Ω∗

p2
(t) |ϕ2⟩ ⟨ϕ1|+ h.c.

)
(5.1)

where Ωp1,2(t) = Ωp1,20e
−iϕp1,2 (t), that in the basis {|ϕi⟩} read

H2−ph
Rabi =

 0 1
2
Ω∗

p1
eiϕp1 (t) 0

1
2
Ωp1e

−iϕp1 (t) E1
1
2
Ω∗

p2
eiϕp2 (t)

0 1
2
Ωp2e

−iϕp2 (t) E2

 (5.2)

It will be clear later (this is the scope of this section) that, for the Three-
phton STIRAP process implementation, the crucial regime is determined
by:

• ϕ̇p1 ≪ E1 and ϕ̇p2 ≫ E2−E1 or ϕ̇p1 ≫ E1 and ϕ̇p2 ≪ E2−E1 that are
the condition of deeply dispersive coupling of level E1 with the levels
E0 = 0 and E2
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• δp ≡ E2 − E0 − (ϕ̇p1 − ϕ̇p2) ≈ 0 that is the condition of two-photon
resonance.

The physical features of this Hamiltonian are easy to understand in an
appropriate rotating frame. For this reason an unitary transformation could
be applied

|Ψ(t)⟩ = Urf (t) |Ψ(t)⟩rf ; Urf (t) = ei(ϕp1P11+ϕp2P22) (5.3)

here
Pij = |ϕi⟩ ⟨ϕj|

the e�ective Hamiltonian for |Ψ(t)⟩rf become

H̃p =

 0 1
2
Ω∗

p1
0

1
2
Ωp1 δ2

1
2
Ω∗

p2

0 1
2
Ωp2 δp

 (5.4)

where

δ2 = E1 − ϕ̇p1 (5.5)

δp = E2 − ϕ̇p1 − ϕ̇p2 (5.6)

This scheme of coupling may allow for Rabi oscillations between states |ϕ0⟩
and |ϕ2⟩ which are not directly coupled. We illustrate here a standard way,
named adiabatic elimination to obtain an e�ective Hamiltonian describing
these Rabi oscillation [2]. In fact the Schrödinger equation for the dynamics
of a generic state |Ψ(t)⟩rf = c0(t) |ϕ0⟩+ c1(t)e

−iϕp1 |ϕp1⟩+ c2(t)e
−iϕp1 |ϕ2⟩ is

iċ0(t) =
1
2
Ω∗

p1
c1(t)

iċ1(t) =
1
2
Ωp1c0(t) + δ2c1(t) +

1
2
Ω∗

p2
c2(t)

iċ2(t) =
1
2
Ωp2(t)c1(t) + δpc2(t)

(5.7)

Under the assumptions δ2 >> Ωk=s,p1,p2 (dispersive coupling of the the
subspace {|ϕ0⟩ , |ϕ2⟩} with the level ϕ1) the coarse-grained version of the
second equation of eq. 5.7 with a coarse-graining time such that δ2 ≪ 1

∆t
≪

|Ei − Ej| is

c1(t) = −Ωp1(t)

2δ2
c0(t)−

Ωp2(t)

2δ2
c2(t) (5.8)

Substituting the expression of c1(t) in the other two equation of the system
5.7 the e�ective approximate dynamics for c0 and c2 satisfy the equations{

iċ0(t) = − |Ωp1 |
2

4δ2
c0(t) +

Ω∗
p1

Ωp2

4δ2
c2(t)

iċ2(t) =
Ωp1Ω

∗
p2

4δ2
c0(t) +

|Ωp2 |
∗

4δ2
c2(t)

(5.9)
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then for the dynamics in the subspace spanned by {|ϕ0⟩ , |ϕ2⟩} we write the
e�ective Hamiltonian

H̃ae
Rabi =

[
S1(t)

1
2
Ω∗

p(t)
1
2
Ωp(t) S2(t) + δp

]
(5.10)

where

Ωp = −
Ωp1(t)Ω

∗
p2(t)

2δ2
(5.11)

is the e�ective pump pulse and

S1(t) = − |Ωp1(t)|2

4δ2
; S2(t) = − |Ωp2(t)|2

4δ2
(5.12)

are the Stark shifts. In other word the system described by the Hamiltonian
5.4 could be well approximated, by an Hamiltonian of the form H̃ ≃ H̃ae =
H11 ⊕ H̃02

Rabi where H̃
02
Rabi is the well known Rabi Hamiltonian and H11 =

δ2 |1⟩ ⟨1|. This means that under the condition of dispersive coupling the
two pump pulse behaves as the pump pulse in the traditional STIRAP.
However for the forthcoming application to STIRAP one should specify the
full 3 × 3 structure of H̃ae then is necessary account for the Stark shift
of the intermediate level δHae

11 . The Stark shifts using the second order
perturbation theory (in the limit Ωi ≪ δi) are

δHae
00 =

∑
j=1,2

| ⟨ϕ0|H1 |ϕj⟩ |2

−δ2
= −|Ωp1 |2

4δ2
= S1

δHae
11 =

∑
j=0,2

| ⟨ϕ1|H1 |ϕj⟩ |2

δ2 − E0
j

= −|Ωp1 |2

4δ2

=
|Ωp1 |2

4δ2
+

|Ωp2 |2

4(δ2 − δp)
= S1 + S2 (5.13)

δHae
22 =

∑
j=0,1

| ⟨ϕ2|H1 |ϕj⟩ |2

δp − δ2
= − |Ωp2 |2

4(δp − δ2)
= S2

In the end we can write the e�ective Hamiltonian for the pump pulse terms

H̃ae
Rabi =

 S1 0 1
2
Ω∗

p

0 δ2 − (S1 + S2) 0
1
2
Ωp 0 S2

 . (5.14)

(5.15)
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2
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1S  +S2
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(a)

Figure 5.1: (a) Lambda scheme with a two pump �elds (p1,p2) providing
an e�ective (0, 2) two-photon pump coupling, but producing in addition
Stark shifts (S1,S2) of the undriven levels. (b) O� diagonal matrix element
of a CPB as a function of EJ/EC . Matrix elements Q01 and Q12 (divided
by 5) are large at the symmetry point, therefore the e�ective copupling
∝ Q01Q12/δ2 is large enough and inclreases with EJ/EC . On the contrary
Q02 (here o�-symmetry) is non monotonic.

5.2 Three-photon STIRAP process

In this section is proposed a strategy for the implementation of the STIRAP
process in superconductive device at the optimal working point using a two-
photon pump pulse. To this end we address the three level system by a three-
tone drive described schematically in Fig.5.1 a) A(t) =

∑
k Ak(t) cosϕk(t).

Here k = s labels a component with carrier frequency close to the Stokes
transition whereas k = p1, p2 refers to two drives implementing a two-
photon pump pulse using |ϕ1⟩ as the intermediate level.

5.2.1 Model Hamiltonian

We start from the single-port Hamiltonian introduced in sec.1.1.4

HS(t) = H0[q+ qc(t)] ≃ H0 + qc(t) · [∇qH0]q(t) = H0 + A(t)Q̂ (5.16)

where A(t) is the three-tone control �eld described above. Retaining only
the o�-diagonal quasi resonant term in the RWA the Hamiltonian takes the
form

H(t) = E1P11 + E2P22 +
{[

Ωp1(t)e
iϕp1P10

+
(
Ωp2(t)e

iϕp2P21 + Ωs(t)e
iϕsP21

)
P21

]
+ h.c.

}
(5.17)
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here

H0 |ϕi⟩ = Ei |ϕi⟩ ; Pij = |ϕi⟩ ⟨ϕj|
Qij = ⟨ϕi| Q̂ |ϕj⟩ ; Ωp1(t) = Ap1(t)Q10 (5.18)

Ωp2(t) = Ap2(t)Q21; Ωs(t) = As(t)Q21

5.2.2 Doubly rotating frame

The understanding of the physics described by the Hamiltonian of Eq.5.17
is simpler in a appropriate rotating frame. For this reason we apply an
unitary transformation to the state of the system such that

|Ψ(t)⟩ = Urf (t) |Ψ(t)⟩ ; U(t) =
∏
i

eiζi(t)Pii (5.19)

If we choose ζ0 = 0, ζ1(t) = ϕp1(t) and ζ2(t) = ϕp1(t) + ϕp2(t) with the
de�nition

δ2(t) = E1 − ϕ̇p1(t); δp(t) = E2 − [ϕ̇p1(t) + ϕ̇p2(t)]

δs(t) = E2 − E1 − ϕ̇s(t); δ(t) = δp(t)− δs(t); ϕ̇(t) = δt − δ2(t)

the e�ective Hamiltonian in the new rotating frame is

H̃(t) = U †(t)H(t)U(t)− iU †(t)∂tU(t)
= δ2P11 + δpP22

+
1

2
[Ωp1(t)P10 + (Ωp2(t) + Ωs(t)e

iϕ(t))P21 + h.c.] (5.20)

5.2.3 Stokes pulse optimization

An e�ective Hamiltonian for the three-photon Lambda scheme is obtained
by adding to Eq.(5.4) the Stokes pulse Hamiltonian H̃s. In the same gauge
as before the Stokes term reads H̃s = 1

2

[
Ωs(t) e

−iϕ(t) |2⟩ ⟨1| + h.c.
]
, where

ϕ(t) = ϕs(t) − ϕp2(t); the phase is related to detunings ϕ̇(t) = δ(t) − δ2(t)
therefore it is slowly varying, as well as Ωs(t); the coarse grained version of
this Hamiltonian is obtained by just substituting the nonvanishing entries
of Eq.(5.14) level to those of Eq.(5.2) considering the Stark shift of the
intermediate yielding

H̃ ≈ H̃ave =

 S1(t) 0 Ω∗
p(t)/2

0 δ2 − (S1(t) + S2(t)) Ω∗
s(t) e

iϕ(t)/2
Ωp(t)/2 Ωs(t) e

−iϕ(t)/2 δp + S2(t)


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Figure 5.2: Exact poulation histories for a three-level system subject to a
three-tone external drive (gray curves) are compared with the coarse grained
version (black lines) obtained by Eq.(5.21). The agreement of the aver-
age Hamiltonian approximation is excellent. Top: population histories for
monochromatic pulses at nominal two-photon resonance δ = 0, where stray
Stark shifts prevent e�cient STIRAP. Bottom: population histories with
the phase correctted Stokes �eld (in the inset) which allows for faithful pop-
ulation transfer. Here the peak Rabi frequencies are Ωs = Ωp1 = Ωp2 =: Ω0,
Ω0T = 200 anf δ2 = 5Ω0. The relevant �gure for STIRAP is ∼ ΩpT = 20.

Notice that all the quantities in this equation are (slowly) time-dependent.
It is convenient to perform a unitary transformation gauging away δ2(t) and
�nally

H̃ ′
ave =

 0 0 Ω∗
p(t)/2

0 δ − (2S1(t) + S2(t)) Ω∗
s(t)/2

Ωp(t)/2 Ωs(t)/2 δp(t) + (S2(t)− S1(t))

 (5.21)

The Hamiltonian has now the standard structure of Eq.(4.6) apart for the
Stark shifts Si. Therefore the tree-tone drive could yield successful STIRAP
also at the symmetry point, where the matrix elements Q01 and Q12 needed
for coupling the two pump �eld are large (see Fig.5.1). However the pres-
ence of the Stark shifts requires some care, since they produce large stray
detunings, comparable with amplitudes of the e�ective �elds. In particular
since δ− [2S1(t)+S2(t)] ≥ Ωp(t) coherent population transfer is suppressed
even for δ = 0 (see Fig. 5.2, top panel). This drawback could be avoided
by suitable pulse shaping, a problem to be formulated in the framework
of Optimal Control Theory [5]. The fact that such a solution may exist
is suggested by noticing that kowledge of the structure of the approximate
average Hamiltonian allows to foresee a way to reduce the impact of the
pump-induced shifts by only reshaping the Stokes pulse. In fact perform-
ing another gauge transformation to the Hamiltonian 5.21 with the unitary
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operator

U(t) = eiϕ
′
s(t)P11 (5.22)

ϕ′
s(t) =

∫
dt′(2S1(t) + S2(t)) (5.23)

a new e�ective Hamiltonian is obtained

˜̃H =

 0 0 1
2
Ω∗

p(t)

0 δ 1
2
Ω∗

s(t)e
−iϕ′

s(t)

1
2
Ω∗

p(t)
1
2
Ωs(t)e

iϕ′
s(t) δeffp

 (5.24)

δeffp = δp + S2(t)− S1(t) (5.25)

This new Hamiltonian is exactly the Hamiltonian for the traditional STI-
RAP if the traditional gaussian Stokes pulse is replaced by Ωs(t) → Ωs(t) e

−iϕ′
s(t)

Indeed the dispersive condition means |Ωpi(t)|2/δ2 ≪ δ2 ≪ ωk implying that
the approximations leading to the RWA are still valid and moreover that the
new envelope (inset of Fig. 5.2, bottom) is still slowly varying on the scale
of δ2, allowing to rederive Eq.(5.21). This expectation is con�rmed by the
numerical evaluation of the dynamics determined by the RWA Hamiltonian
H̃p + H̃s with the modulated Stark pulse (Fig 5.2,bottom).

5.2.4 Model Hamiltonian

Summarizing, the precedent calculation allows to write an Hamiltonian in
the rotating frame where a two photon pump coupling is performed.

H(t) =

 0 1
2
Ωp1(t) 0

1
2
Ωp1(t) δ2

1
2
Ωp2e

iδ2t + 1
2
Ωs(t)

0 1
2
Ωp2e

−iδ2t + 1
2
Ω∗

s(t) δ2

 (5.26)

where

Ωp1 = Ω0e
[(t−τ)/T ]2

2 ; Ωp2 = κpΩ0e
[(t−τ)/T ]2

2 ; Ωs = κsΩ0e
{[(t−τ)/T ]2+iϕ(t)}

ϕ(t) = −(k2p + 2)A2
0

√
πT

8δ2

[
erf

(t− τ

T

)
− erf

(−t0 − τ

T

)]
the modulation of the Stokes pulse with the phase ϕ(t) cancel the Stark
shifts produced by the pump pulses. Numerical simulation con�rm our
estimate obtained with the e�ective Hamiltonian (Fig 5.2).
The study was performed for Rabi frequency Ωs = Ωp1 = Ωp2 =: Ω0, Ω0T =
200 e δ2 = 5Ω0, tali da ottenere un prodotto ΩpT ∼ 20. The simulations
show good agreement with the �nal result obtained with the result obtained
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with the e�ective Hamiltonian. The plot on the left is obtained for a Stokes
pulse without the phase correction. As expected the STIRAP process dooes
not have succes. The right plot is obtained for the case of Stokes pulse
corrected by the phase ϕ(t) (Fig 5.2, destra). In the insets are shown the
pulse shape applied.
We stress about the excelent agreement between dynamics calculated with
exact Hamiltonian and dynamics calculated with the e�ective Hamiltonian.

5.3 Sensitivity to parameters

E�ciency vs δ2

The study of resilience is conducted considering

Ω0 = Ωs0 = Ωp1 = 1; kp =
Ωp1

Ωp2

= 1; τ = 0.75T ;

We have low e�ciency for non dispersive regime δ2 . 1, the plateau of
e�ciency near 1 become larger growing T Fig 5.3. Taking into account the

Figure 5.3: E�ciency of populaton transfer vs δ2. The dashed lines sign the
limit ΩpT = 10 for every line. Here κs = 1, κp = 1 and τ/T = 0.75

.

results showed in �g. 5.3 it is clear that with values of δ2 ≃ 3.5 − 4 the
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consideration about the resilience of the parameters for traditional STIRAP

are valid also for the three-photon STIRAP process with Ωp(t) →
Ωp1Ω∗

p2

2δ2
and

Ωs(t) → Ωs(t)e
−iϕ(t).

E�ciency vs τ

Considering Ωs0 = Ωp10 = Ωp20 = 1 and the deley de�ned by

τ

T

Plots are obtained varying ΩpT . The plateau present on the left part of
the plot, become larger at the growing of T . As in the case of traditional
STIRAP protocol, a counterintuitive sequence pulse guarantee an e�cient
transfer of population Fig.5.4.

Figure 5.4: Transfer e�ciency vs τ/T for ΩpT = 10, 15, 20, 40. Here δ2 = 3,
κp = 1, κs = 1 e Ω0 = 1

Resilence analisys vs κp and κs

We de�ned

κs =
Ωp1

Ωs

; kp =
Ωp1

Ωp2

; τ/T = 0.75;

it emerges that an asimmetry on the peak Raby freqeuncy do not imply a
better transfer. In the case of high kp the transfer e�ciency is worst.
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Figure 5.5: Resilience vs κp and vs κs, for δ2 = 3, ΩpT = 20 and τ/T = 0.75

5.4 Toward implementation of three-photon STI-

RAP process in superconductive device

5.4.1 Validity of three level model

Working at the optimal working point guarantees a big suppression of
the low frequency noise e�ect[6], however with a strong e�ective pulse
Ωp ∼ |Ωpi|2/δ2. This perspective result interesting for application to nan-
odevices as CPB and �ux qubits that, for traditional protocol need to work
out from optimal working point due to the selection rule at expense of the
noise immunity, and highest coupling obtained with high value of EJ/EC .
However this behaviour can decrease due to harmonicity that arise for in-
creasing value of EJ/EC . In fact the condition for an AC pulse with fre-
qeuncy ω and amplitude Ω to generate non negligible transition between
levels with energy Ei and Ej is

||Ei − Ej| − ω| . Ω (5.27)

this mean that if the spectrum of the device is near harmonic a given pulse
can generate transition between undesired level. From the physical point
of view working at the symmetry point ensures that decoherence due to
low-frequency noise is strongly suppressed, but still large enough values of
the e�ective Ωp ∼ |Ωpi|2/δ2. The appealing feature for devices as the CPB
and �ux qubits is that both protection from noise and coupling to the drive
improve for increasing EJ/EC , contrary to what happens for conventional
STIRAP at o�-symmetry bias [7] due to the behavior of matrix elements
Qij(EJ/EC) (see Fig. 5.1b). This favorable trend is however expected to
weaken for larger and larger EJ/EC , as proven by Fig.5.6 (black diamonds)
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Figure 5.6: Transfer e�ciency vs J = EJ

EC
for di�erent value of T . The

continous lines are calculated with a 3 level model Hamiltonian with the
transversal approximation and RWA. The black diamonds are calculated
for T = 2000 without approximations.

when the spectrum becomes nearly harmonic and the system may climb the
ladder multilevel structure under the action of the AC drives A.
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A feature which makes a strong di�erence between the behaviour of a
quantum system in respect to a classical one is the quantum tunneling. This
e�ect often occurs in condensed matter physics, such as Josephson junctions
and hetero-nanostructures [1]. In a dissipative quantum system interacting
with a thermal bath, the quantum tunneling can play an important role
on the relaxation time from a metastable state [2]. During the last years
the e�ects of environment on quantum tunneling phenomenon have been
intensively studied [3, 4, 5, 6]. Commonly, environment is modelled as a
number N (usually N → ∞) of harmonic oscillators considered at ther-
mal equilibrium, i.e. thermal bath, interacting with the quantum system
through a bilinear coupling [7, 8, 9, 10, 11]. In this context, symmetric and
asymmetric quantum bistable systems are good enough to analyze super-
conducting quantum bits and decoherence phenomena [12, 9]. Obtaining
longer coherence times in such systems, when they interact with noisy en-
vironment, is one of the major requirements in devising and manufacturing
devices capable of storing quantum bits. In this respect, a main topic is
to know the properties of a particle subject to an external potential, in the
presence of random �uctuations. It can be also useful to study the changes
occurring in the dynamics of a quantum particle a�ected by noisy pertur-
bations, when di�erent shapes of the potential pro�le are used. Potentials
which model the interaction with laser beams have most interesting impli-
cations for quantum systems such as the coherent destruction of tunneling
[13], the e�ect of quantum stochastic resonance [14], and the control and
reduction of decoherence in open quantum systems [15]. In this chapter,
in order to analyze the evolution of a quantum particle subject to time-
independent asymmetric bistable potential and a�ected by environmental
noise, we use the Caldeira-Leggett model [4], which allows to derive a quan-
tum mechanical analogue of the generalized Langevin equation. The study
is performed by using the approach of the Feynman-Vernon functional [16]
in discrete variable representation (DVR) [17]. The results described in this
chapter are published in a paper on the International Journal of Quantum
Information [18].

6.1 The model

Our system consists of a quantum particle with mass M , interacting with
a thermal bath which plays the role of environment. The dynamics of
the particle is investigated by using the Caldeira-Leggett model [4]. In our
analysis q̂ and p̂ are one-dimensional operators for position and momentum,
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respectively. The unperturbed Hamiltonian of the system is

H0 =
p̂2

2M
+ V̂0(q̂) (6.1)

where

V̂ (q̂) =
M2ω4

0

64∆U
q̂4 − Mω4

0

4
q̂2 − ϵq̂ (6.2)

is the asymmetric bistable potential shown in Fig.6.1. Here, ϵ and ∆U are
the asymmetry parameter and the barrier height, respectively, and ω0 is
the natural oscillation frequency. In our study we consider only 8 energy
eigenstates. In Fig. 6.1 these energy eigenvalues are shown on the vertical
axis. In the same �gure, on the horizontal axis we indicate the 8 position
eigenvalues, obtained by using the DVR-state |Qµ⟩. The black circle marks
the initial position of the particle, that is the system at t = 0 is in a state
given by a proper linear combination of the 8 eigenstates |qµ⟩ considered
in our analysis. The curves shown in the �gures are the eigenfunctions
corresponding to the 8 energy eigenvalues. In order to describe the dynam-
ics of the particle interacting with environment, we consider the following
Hamiltonian where

ĤB =
N∑
j=1

1

2

[ p̂2j
mj

+mjω
2
j

(
x̂j −

cj
mjω2

j

q̂
)]

(6.3)

is the Hamiltonian which describes the thermal reservoir and its interaction
with the particle. As usual, the thermal bath is depicted by an ensemble
of N harmonic oscillators with spatial coordinate x̂j, momentum p̂j, mass
mj, and frequency ωj. The coe�cients cj are the coupling constant between
system and thermal bath. We note that, as N → ∞, from Eq. 6.3 a
continuous spectral density is obtained. In our study we use the Ohmic
spectral density characterized by an exponential cut-o� ωc

J(ω) = ηωe−
ω
ωc (6.4)

Here, η = Mγ with γ the strength of the coupling between system and
heat bath. We note also that ωc >> ω0, ωj, γ. Because of the bilinear
coupling between the coordinate q̂ of the system and the coordinate x̂ of
the thermal bath, this model is the quantum analogue of a classical system
a�ected by a constant random force [19]. In the next two subsections we
brie�y summarize the mathematical approach used in this study.

6.1.1 The Feynmann-Vernon approach

In order to make our analysis independent on the properties of the heat
bath, we trace out the degrees of freedom of the reservoir by using the
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Figure 6.1: Potential pro�le V0(q) (see Eq.6.2) for ∆U = 3 and ϵ = 5.
Energy level and corresponding eigenstate considered in our analysis are
indicated by horizontal lines and curves,respectively. The enrgy eigenvalues
are E0 = −2.01, E1 = −0.92, E2 = 0.11, E3 = 1.08, E4 = 1.97, E5 = 2.69,
E6 = 2.76, E7 = 3.27. By using the DVR-states |qµ⟩, eigenvalues of the
position operator are obtained and shown on the horizontal axis: q0 =
−4.17, q1 = −1.38, q2 = 1.71, q3 = 3.02, q4 = 4.05, q5 = 4.97, q6 = 5.86,
q7 = 6.81. The initial position is qstart = 0 (black circle).

reduced density operator

ρ(qf , q
′
f ; t) =

∫
dq0

∫
dq′0K(qf , q

′
f , t; q0, q

′
0, t0)ρ(q0, q

′
0; t0) (6.5)

where the propagator K is given by

K(qf , q
′
f , t; q0, q

′
0, t0) =

∫ q(t)=qf

q(t0)=q0

Dq
∫ q′(t)=q′f

q′(t0)=q′0

Dq′A[q]A∗[q′]FFV [q, q
′] (6.6)

and A[q] = ei
SS [q]

} with SS[q] being the classical action functional. In Eq.

6.6, FFV [q, q
′] = e−

ϕFV [q,q′]
} is the Feynman-Vernon in�uence functional with

the phase ϕFV [q, q
′] depending on the bath correlation function [19].
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6.1.2 Discrete Variable Representation

By solving the eigenvalue equation connected with the Hamiltonian Ĥ0 (see
Eq. 6.1), we get the energy eigenstates (see vertical axis in Fig. 6.2).
Within the framework of the discrete variable representation (DVR) [17] it
is possible to obtain the basis |qµ⟩ of eigenstates of the position operator q̂
(see horizontal axis in Fig. 6.2). In this representation, applying the non-
interacting cluster approximation (NICA), [3] we get the following master
equation (ME)

ρµµ(t) =
N∑
ν=1

∫ t

t0

dt′Hµν(t− t′)ρνν(t
′)), µ = 1, · · · , N. (6.7)

where N is the number of eigenstates and the kernel H indicates the cluster
matrix.[3] According to the path integral technique based on the Feynman-
Vernon theory, using ME corresponds to take into account only the paths
connecting diagonal elements of the reduced density matrix of the position
operator q̂ [3]. Within NICA we neglect all intercluster interactions. We
assume furthermore that the characteristic memory time τmem of the ma-
trix elements of H in Eq. 6.7 is the smallest time scale of the problem
(Markovian limit ). By this assumption we obtain the following Markovian
approximated master equation

ρ̇µµ(t) =
N∑
ν=1

Γµν(t)ρνν(t) (6.8)

with the time-dependent rate coe�cients

Γµν(t) =

∫ ∞

0

Hµν(t, t− τ). (6.9)

Since the diagonal elements ρµµ(t) obey Eq. 6.8, the long-time dynamics
is ruled by a single exponential decay. Thus, Eq. 6.8 is a set of coupled
ordinary �rst-order di�erential equations, which can be decoupled via a
diagonalization procedure. The diagonalized rate matrix reads

N∑
k1,k2=1

(S−1)µk1Γk1k2Sk2ν = Λµδµν (6.10)

where Sµν denotes the element of the transformation matrix and Λµ the
eigenvalues of the rate matrix. The general solution of the Markov approx-
imated ME is

ρµµ(t) =
N∑

ν,k=1

Sµν(S
−1)µke

Λν(t−t0)ρkk(t0). (6.11)
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Because of the conservation probability, for the diagonal matrix elements
holds

Γνν(t) = −
∑
k ̸=ν

(t). (6.12)

This condition implies that one eigenvalue equals zero, i.e. Λ1 = 0. There-
fore,

ρµµ(t) = ρ∞µµ +
N∑
ν=2

N∑
k=1

Sµν(S
−1)µke

Λν(t−t0)ρkk(t0) (6.13)

with ρ∞µµ =
∑N

k=1 Sµ,1(S
−1)1,kρkk(t0) being the asymptotic population of the

DVR-state |qµ⟩. The rate which determines the dynamics over the largest
time-scale is the quantum relaxation rate

Γ ≡ min{|R(Λν)|; ν = 2, · · · , N} (6.14)

where Λν 's are the eigenvalues of the rate matrix and |R(Λν))| are the non-
zero absolute values of the real part of Λν . In the next section we focus our
study on the medium-short time behavior of the system, using the largest
Λ−1

ν as timescale to analyze the non-equilibrium dynamics of the quantum
particle in the presence of thermal �uctuations.

6.2 Results

In this section we study the time evolution of our quantum particle taking
into account the 8 energy levels shown in Fig. 6.1. We restrict the study to
the 8 lowest levels of the system, because we are interested in the dynam-
ics of a particle that can not reach energy levels higher than the relative
maximum of the potential. In particular, we intend to analyze the time
behaviour of the populations for di�erent values of the coupling strength,
focusing on the time behaviour of the state |q0⟩ (left side well of the poten-
tial). By using the DVR-state |qµ⟩, as initial condition for the particle we
choose the non-equilibrium position qstart = 0. The corresponding state is
given by

|qstart⟩ = c1 |q1⟩+ c2 |q2⟩ (6.15)

with c1 = 0.745 and c2 = 0.667. By integrating Eq. 6.7 for di�erent values of
the parameter η, which represents the intensity of the environmental noise,
for each eigenstate |qµ⟩ we obtain the time behaviour of the corresponding
population ρqµ ≡ ρµµ (see Fig. 6.2. Moreover, by a simple change of basis,
we calculate the time evolution of the populations also in the energy rep-
resentation (see Fig. 6.3. As one can see from Eqs. 6.8,6.9, for each value
of η there are N relaxation times Λ−1

µ . Here, we consider the maximum of
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Figure 6.2: Time evolution of the populations in position representation for
di�erent values of coupling strenght: a) η = 0.01, b) η = 0.4, c) η = 1 and
d) η = 2.8.

these relaxation times, and note that this time increases rapidly for larger
values of η. Therefore, to describe the time evolution of the system for
di�erent values of η, we choose as time scale τ the largest of the relaxation
times obtained for η = 0.01 and calculate the evolution of the system for a
maximum time t = 600τ . This choice allows to follow the transient dynam-
ics of the system for low and intermediate values of the coupling constant
(see panels a, b, c in Figs. 6.2,6.3). For higher values of η the system can
not reach the regime condition, because of the presence of relaxation times
longer than the maximum time chosen to calculate the numerical solution
(see panel d in Figs. 6.2,6.3). This delay in the system dynamics can be
explained by the quantum Zeno e�ect, responsible for the suppression of the
tunnel e�ect. Moreover, we observe in Fig. 6.2 a nonmonotonic behaviour
of the population ρq0 as a function of the time. Finally, as a consequence
of the quantum Zeno e�ect, the eigenstate |q0⟩ can be maximally populated
at di�erent times varying the coupling strength and, therefore, the value of
η. This could be useful in view of placing a quantum particle in a given
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Figure 6.3: Time evolution of the populations in energy representation for
di�erent values of coupling strenght: a) η = 0.01, b) η = 0.4, c) η = 1 and
d) η = 2.8.

position at a �xed time.

6.3 Conclusions

In this work we analyze the dynamics of a quantum particle sub ject to
an asym-metric bistable potential and interacting with noisy environment.
The study is performed exploiting the approach of the Feynman-Vernon
functional [16] within the framework of the discrete variable representation.
[3, 20] By using the Caldeira-Leggett model [4], we describe the transient
dynamics of the system for di�erent values of the coupling strength between
the particle and the noisy environment, modelled as a thermal bath. Due
to the quantum Zeno e�ect, responsible for the suppression of the tunnel
e�ect, a delayed dynamics of the system is observed for higher values of the
coupling strength. We �nd also that the metastable state inside the left side
well of the potential can be populated at di�erent times varying the value
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of the coupling strength.
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In this chapter, that collect the results of a paper published on Physica
E [1], we study the dynamics of a Weyl quasi-particle coupled linearly to a
bosonic environment. This model describes the dynamics of quasi-particles
in graphene sheets, in the presence of noisy control, simulating external
electromagnetic quantum �eld. Wave packets shows Spin Separation and
Zitterbewegung [2] at mesoscopic scales, which are suppressed in a peculiar
way by quantum �uctuations of the environment. Here we present some
exact result.

7.1 Introduction

The recent discovery that individual graphene sheets can be isolated [3] has
stimulated a renewed interest in carbon-based materials. Indeed graphene
has distinguished mechanical and electrical properties, as the large mobility,
which makes it attractive for applications in nanoelectronics. Graphene is
two-dimensional carbon arranged in a honeycomb lattice. Due to the sym-
metries of the lattice, the (nonrelativistic) "e�ective mass" Hamiltonian for
Quasi-Particles (QP) close to the symmetry (Dirac) points of the Brillouin
zone [4, 5] is formally identical to the relativistic Hamiltonian for Quantum
Electrodynamics in 2 dimensions. In a single valley QP's have a gapless
linear energy-momentum dispersion and their dynamics is described by the
quantum mechanical Weyl Hamiltonian for massles Dirac fermions. For a
graphene sheet lying in the x − y plane, and subject to a uniform electric
�eld in the y direction E = E(t)Ey the Hamiltonian reads

HW = v p̂ · σ + eE(t) ŷ = v
[
p̂− e

c
A(t) ey

]
· σ (7.1)

Figure 7.1: Honeycomb lattice of single graphene sheet in electric �eld
E. The electric �eld simulates a control port, with a deterministic time-
dependent driving part, and a quantum �uctuating part.
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where ŷ is the operator of the y-component of the QP and E(t) = 1
c
∂A
∂t
,

A = A(t)ey being the vector pontential in absence of magnetic �eld. Here
σ is a pseudospin operator, the eigenstates of σz corresponding to the QP
tight-binding wavefunctions on each sublattice of the honeycomb structure
(the physical spin is conserved and we ignore it), and v is the Fermi velocity,
playing the role of the speed of light in the relativistic version. QP's are
chiral due to spin-momentum coupling: the hamiltonian expressed in terms
of the vector potential shows that quantum control of the pseudospin dy-
namics is possible via electric �elds coupling with a QP coordinate. There-
fore phototransport could be in principle modulated using quantum control
protocols tipical of the quantum optics realm [6]. This roadmap naturally
extends to microscopic degrees of freedom one of the most fascinating ex-
perimental breakthroughs of the recent past, namely the observation of
coherent pseudospin dynamics in nanodevices based on superconductors [7]
and semiconductors.

7.1.1 Spin separation and Zitterbewegung

The dynamics of isolated wave-packets of Weyl QP's shows many distinct
features. Contrary to massive non relativistic particles, wave-packets of
Weyl QP's from a single helicity branch experience a very weak breadth, due
to the linear dispersion implying that each component travels at the same
velocity v. On the other hand new phenomena appear for superposition of
states from di�erent branches. Since the direction of the velocity depends
on the helicity such a wave-packet will separate in two opposite moving
components (SS). Interference between them gives rise to ZB. This features
are usually discussed in the Heisenberg picture [2] in which the equation of
motion for the speed operator are:

v̂ = i[r̂, H] = v ˆ⃗σ (7.2)

and for instance ZB is associated to a part rZB(t) of the position operator
oscillating in time with angular frequency Ω(k) = 2v|k|, the energy splitting
of two states |kσk⟩ with the same k and opposite helicity. Instead we use the
Schrödinger picture, which is conveniently generalized to an open system.
For the representation we use the chiral basis of the eigenstates of Eq.(7.1).
The density matrix in the laboratory frame is given by

ζL(t) =
∑

kσk′σ′

|kσk⟩⟨k′σ′
k′| ζLkσk′σ′(0) e−iv(|k|σ−|k′|σ′)t

In order to calculate averages of interest we introduce the operators Pσ =∑
kσ |kσk⟩⟨kσk| projecting on a well de�ned component (σ = ±1) of the
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helicity σk. Any operator Â can be decomposed in "diagonal" parts PσÂPσ

and "o� diagonal" parts PσÂP−σ these latter describing interference. In
particular letting Â = δ(̂r(t) − r) the average of the diagonal parts repre-
sent the probability densities ϱσ(r, t) of two spin-separated wave-packets,
whereas the average of the interference terms yields ϱZB(r, t), which is a
spatial modulation between the two wave-packets above, oscillating with
time. The associated centroid is the average of the oscillating part of the
position operator

⟨rZB(t)⟩ =
∑
kσ

Aσ,−σ(k) ζ
L
k−σ kσ(t)

Here
∑

k →
∫

dk
2π

in the continuum limit (not always speci�ed hereafter).
The connection in k-space associated to the chiral basis appears Aσσ′(k) =
i⟨σk|∇kσ

′
k⟩ = σσ′ tk/(2|k|), where the unitary vector tk is such that {k/|k|, tk, z}

is a left-handed reference frame for the momentum space. Notice that the
density matrix enters with elements diagonal in k and o� diagonal in the
pseudospin index σ.

7.2 Model.

The control of coherent dynamics opens ports to noise. In discussing the
e�ect of the environment we recall that for a massive particle with ohmic
damping [8] the wave-packet breadth grows only logarithmically on time,
re�ecting decoherence due to the environment measuring the particle posi-
tion r, while for �nite temperatures di�usive behavior is found in the long
time limit. We address the problem of noise by coupling Weyl QP's to an
environment. To this end we supplement the Weyl hamiltonian with a part
describing a set of quantum harmonic oscillators coupled linearly to the
coordinate operator ŷ of the QP, as in the Caldeira-Leggett model [9, 10]

δH = −ŷ
∑
α

Cαxα +
∑
α

( p2α
2mα

+
mαω

2
α

2

)
x2α

+ŷ2
∑
α

C2
α

2mαω2
α

(7.3)

The state of the system described by this hamiltonian could be described
by density matrix W (t); We are interested only on the dynamics of quasi-
particle. To this end we consider the Reduced Density Matrix (RDM)
obteined tracing over the environment degree of freedom the total den-
sity matrix: ζ̂L(t) = Trα[W (t)] The relevant information on the envi-
ronment is provided by the spectral density associated to X, given by

JX(ω) = π
∑

α
c2α

2mαωα
δ(ω − ωα)[11, 10].
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7.2.1 Dynamics in the QP-supported frame

In order to study the dynamics we �rst rescale the environment coordinates
and momenta y′α → cαyα/mαω

2
α and p′α → mαω

2
αpα/cα. Then we perform

on the resulting Hamiltonian H′ a (polaron) transformation, represented
by the unitary operator U = exp

(
− iŷ

∑
α p̂α

)
which shifts the positions

to yα, now referred to the QP position. The e�ective Hamiltonian in this
QP-supported frame, reads

H̃(p̂) = U H′ U † = v p · σ̃ − σy v
∑
α

pα +

∑
α

( p2α
2µα

+
1

2
µαω

2
α y

2
α

)
(7.4)

Therefore the coupling of the QP position r with the environmental X̂ in
Eq.(7.3) is gauged away in favor of a spin-boson like coupling of the pseudo-
spin with environmental momenta. The e�ects of the transformation are
fully de�ned by specifying the new spectral density

JP (ω) = π
∑
α

v2

2µαωα

δ(ω − ωα) =
v2

ω2
JX(ω) (7.5)

Notice that the operator p̂, which is still the conjugate of r̂, is physically the
total momentum of the system and it is conserved. Therefore the dynamics
is determined by the set of Hamiltonians HK = H̃(K) depending paramet-
rically on the eigenvalueK of p. Each H̃K acts on a spin-boson system only,
and the problem is mapped in a spin-boson model, with conditional dynam-
ics. The evolution operator determined by the Hamiltonian (7.4) is given by
U(t) =

∑
K |K⟩⟨K| ⊗ e−iHKt and allows to express the simpli�ed dynamics

of the full density matrix W(t) = UT W (t)U †
T in the QP-supported frame.

In view of the simpli�cations brought in by the conditional dynamics it is
convenient to eliminate the microscopic degrees of freedom of the modi�ed
environment, labeled by α̃, to obtain

ζ̂(t) = Trα̃[W(t)] =
∑
Kσ

|KσK⟩ ζ(K,K′)
σσ′ (t) ⟨K′σ′

K′| (7.6)

This RDM describes the dressed QP (polaron). It can be decomposed in a
set of 2× 2 operators ζ(K,K′), each acting in a sector (K,K′), and evolving
independently. They are structurally reminiscent to the RDM of the spin-
boson model, however the parametric dependence on (K,K′) has non trivial
features: for K ̸= K′ the exact dynamics of ζ(K,K′) is deformed [1], and it
is not trace preserving.
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Since the unitary transformation to the QP-supported frame preserves
both the QP coordinate r̂ and the pseudo-spin, averages as the spin re-
solved densities ϱσ(r, t) and ϱZB(r, t) can be calculated directly in the QP-
supported frame. In particular we will evaluate

ϱσ(r, t) =
∑

KK′ Tr[|K⟩ ⟨K′| ζ(K
′,K)

σσ (t) δ(r̂− r)]

=
∑

KK′ ei(k−k′)·r ⟨σK⟩σK′ ζ
(K′,K)
σσ (t)

(7.7)

⟨rZB(t)⟩ = −
∑
K

tK
|K|

ℜ[ζ(K,K)
+− (t)] (7.8)

In order to proceed we de�ne sectors labeled by (K,K′) and projected oper-
ators, for instance Ŵ(K,K′) = ⟨K| Ŵ |K′⟩. Momentum conservation ensures
that they evolve independently, undergoing a deformed dynamics

Ŵ(K,K′)(t) = e−iHKt Ŵ(K,K′)(0) e−iHK′ t

7.2.2 Master equation.

Tracing out the environment one obtains the reduced operators ζ̂(K,K′) of
the pseudo-spin Liouville space, appearing in Eq.(7.6). They solve an exact
equation which can be written in a deformed interaction picture [1] as

ζ̃(KK′)(t+∆t)− ζ̃(KK′)(t) =

−
t+∆t∫
t

dt′
t′∫
t

dt′′ Trα̃

{[
H̃1(t

′),
[
H̃1(t

′′), W̃ (KK′)(t′′)
]′]′}

where∆t is a coarse graining time. Here H̃1(t) (H̃′
1(t)) is the QP-environment

coupling of Eq.(7.4) in the interaction picture relative to the parameter K
(K′). Primed commutator, re�ecting deformation of the dynamics, are de-
�ned as

[H̃1(t), X̃ ]′ = H̃1(t) X̃ − X̃ H̃′
1(t) (7.9)

At this stage an approximate closed equation for ζ̃(KK′)(t) can be obtained
by �rst assuming factorized initial W̃ (KK′)(0) = ζ̃(KK′) ⊗ weq, where weq

is the equilibrium density matrix of the environment, and then following
the same lines leading to the Bloch-Red�eld equation [6], which govern the
dynamics in the sector K = K′.

Deformation of the dynamics implies that, besides the splitting of the
helicity bands ≈ 2v|Q|, where Q = (K +K′)/2, a new energy scale enters
the problem, related to q = K −K′. For a wave-packet with a dispersion
∼ ∆ in in momentum space, the variable q may have values ranging from
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∆ to zero, therefore the associated energy scale may vanish. As a conse-
quence there will always be sectors with non-secular deformed dynamics.
This structure, becomes transparent for noise with white power spectrum
JP (ω) coth(βω/2) → 2Γ. In this limit the problem has an exact solution,
which is very useful to capture the essential consequences of the deformed
dynamics. In this case the exact master equation in the Schrödinger picture
for white noise becomes

∂t ζ
(KK′)(t) = L(Q,q) · ζ̂(KK′)(t)

L(Q,q) ζ̂ = −iv
[
Q · σ̃, ζ̂

]
− iv

2

[
q · σ̃, ζ̂

]
+

−Γ
2
[ζ̂ − σy ζ̂(t) σy]

(7.10)

Notice here the presence of the anticommutator term containing q. This
term disappears for operators in diagonal sectors and Eq.(7.10) reduces to a
standard Lindblad equation for a two-state atom with Bohr splitting 2v|Q|.

7.2.3 One dimensional wavepacket

We perform our calculation of dynamics of wave packets only in the case of
one dimensional wave packets. They are, of the form:

g(k) =
A

(2πσ2
kx
)
1
4

e
−(

kx−kx0
4σ2

kx (7.11)

In order to understand motion of a one-dimensional wave-packet in an ar-
bitrary direction n, we now specify to this case the exact Master Equation
for white noise, Eq.(7.10). A convenient matrix form is obtained using the
decomposition ζ(KK′)(t) = 1

2

∑4
i=0Ri(t) σi, where {σi} = {1, σn, σt, σz} is a

basis of the pseudo-spin Liouville space. For each sector the master equation
reads Ṙ = LR where

L ≡


0 −iv q 0 0

−iv qn −Γ c2 Γ sc 0
0 Γ sc −Γ s2 −2vQ
0 0 2vQ −Γ

 (7.12)

Notice that R0 = Tr[ζ(KK′)] and R1 = Tr[ζ(KK′)σn] enter the spin separated
densities, whereas R2 and R3 determine ϱZB. We concentrate on the explicit
calculation of the dynamics of one dimensional wave packet (Qt, qt = 0). In
this case it is readily veri�ed that for longitudinal noise (ϕn = π/2) the
result agrees with the exact solution of sec. 7.3.1. Indeed noise does not
enter the components R0 and R1: the two imaginary eigenvalues ±ivq of
L lead to SS as for the isolated QP. The other two eigenvalues, given by
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Figure 7.2: Schematic plot of the behavior of the eigenvalues z0,1 for SS (z2,3 for
ZB) as given by Eq.(7.15) as a function of vq (vQ). Imaginary parts (blue) vanish

in the overdamped regime 2vq < Γ (4vQ < Γ) wherea in the opposite limit they

behave as ∼ ±ivq (∼ ±ivQ). In this limit real parts (green) are given by (Γ/2)
whereas in the overdamped limit, ℜz ∼ 0,Γ, the zero value being associated to

the Zeno e�ect.

−Γ ± 2ivQ yield damped ZB oscillations at the band splitting frequency,
decaying at a rate Γ, which agrees with the proper limit of Eq.(7.14).

Instead for generic n all four eigenvalues have a non vanishing real part.
This indicates that both SS and ZB have components ζ̂(K,K′) which are
damped or even overdamped.

7.3 Results

7.3.1 Exact solution for longitudinal noise

If we set initially Kx = 0 the dynamics in each sector (K,K ′) involves the
Hamiltonians of the form HK = HKey . The helicity coincides with σy and
it is conserved, since [HK , σy] = 0. Therefore eigenstates of the helicity are
una�ected by longitudinal noise. Dynamics in each sector is given by

ζ
(KK′)
σσ′ (t) = ⟨σy|Trα̃

[
e−iHK t W(KK′)(0) eiHK′ t

]
|σ′

y⟩

Since it acts on its eigenstates the spin operator σy contained in each Hamil-
tonian can be replaced by a number, HK |σy⟩ = (ivKσ + Hσ) |σy⟩, where
Hσ is the Hamiltonian (7.4) for K = 0 and for σx → σ = ±1. Using the
cyclic property of the partial trace we obtain

ζ
(KK′)
σσ′ (t) = e−i(Kσ−K′σ′)vt·

Trα̃
[
W(KK′)(0) eiHσ′ te−iHσt

] (7.13)

We see that for diagonal elements the e�ect of the environment cancels,
expressing helicity conservation. As a consequence spin resolved probability
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densities ρσ(r, t) evolve as in absence of the environment, fully displaying
spin separation.

Instead o� diagonal elements are a�ected by the presence of the environ-
ment. Assuming factorized initial conditions the partial trace for σ′ = −σ
can be written as

Trα̃
[
·
]
= ζ

(KK′)
σ−σ (0) e−D(t)

whereD(t) is a decay factor describing pure dephasing. Therefore longitudi-
nal noise determines a suppression of interference e�ects in a superpositions
of spin states and of ZB oscillations. For an oscillator environment one �nds
explicitly

D(t) =

∫ ∞

0

dω

π
JP (ω) coth

βω

2

1− cosωt

ω2
(7.14)

for an arbitrary environment spectral density.

7.3.2 Transverse white noise

If noise is transverse to the motion, n ≡ x, the Lindblad operator Eq.(7.12)
is again reducible, the eigenvalues being

z0,1 = −Γ
2
± 1

2

√
Γ2 − (2vq)2

z2,3 = −Γ
2
± 1

2

√
Γ2 − (4vQ)2

(7.15)

where z0,1 enter the SS dynamics and z0,1 determine ZB. The common fea-
ture of both pairs is that for increasing Γ they exhibit a crossover from an
�underdamped� (secular) regime, where ℑzi ̸= 0, to an �overdamped� (non
secular) regime where eigenvalues are real and negative (see Fig.7.2). Notice
that for large Γ two of the four real eigenvalues vanish as z ∝ v2/Γ, and
the corresponding dynamics is �frozen�. This is a manifestation of the Zeno
e�ect determined by the continuous quantum measurement of the particle
by the noisy �eld. The fact that sectors such that ζ̂(K,K′) has Zeno-like
eigenvalues exist, means that there may be overdamped modes of the wave-
packet motion The consequences are apparent in the behavior of SS, shown
in Fig. 7.3, where we consider a gaussian wave-packet with initial width ∆
in the distribution of Kx. Spin-resolved marginal probability densities are
given by the simpli�ed expression

ϱσx(y, t) =

∫
dq

2π
e−

q2

8∆2 χσσ(q, t) e
iqy (7.16)

where the variable Q has been integrated out. Modes corresponding to
q < Γ/(2v) are overdamped, therefore we expect a strong noise regime
(∆ < Γ/v) where all modes are overdamped, whereas only part of them are
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Figure 7.3: Marginal probability density ϱx(x, t) for a 1D-wavepacket of
well de�ned chirality. Here y is expressed in units of the lattice distance a
and per t = 0, 5, 10, 12 in units of 104 a/v. For Γ/∆ = 0.5 (upper panel)
the coherent peak and the incoherent tail are shown. For Γ/∆ = 2 (lower
panel) the incoherent peak is frozen close to the origin (notice the di�erent
spatial scale of the two �gures).
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Figure 7.4: Marginal probability density ϱx(x, t) for t = 5 · 104 a/v, for a
superposition of chirality states. Curves for Γ/∆ = 0, 0.2, 0.5, 1 (blue) show
SS. For Γ/∆ = 2, 5 (green) SS is suppressed.

in the weak noise regime (∆ > Γ/v). The dynamics of a wave-packet pre-
pared in an eigenstate of chirality is illustrated in Fig. 7.3. In the weak noise
regime (upper panel) wave-packets show a coherent component moving with
constant velocity (±v) which disappears in a time t ∼ 1/Γ. They leave be-
hind an inelastic tail, due to the presence of overdamped modes. For larger
Γ the inelastic processes prevail, all the modes are overdamped (Fig. 7.3,
lower panel) and the peak represents an incoherent mixture of both chirality
eigenstates. Wave-packets prepared in a superposition of eigenstates of the
chirality are shown if Fig. 7.4 at a �xed time. In the weak noise regime
they show SS, the two separated coherent peaks keeping their initial width,
independently of Γ. For strong noise spin-separation is suppressed and the
wave-packet shows a single incoherent peak �frozen� at the initial position.
ZB oscillations are derived starting from the eigenvectors corresponding to
the second pair of eigenvalues Eq.(7.15). In particular the ZB part of the
position operator Eq.(7.7) is given, for a gaussian wave-packet and suitable
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Figure 7.5: ZB component of the average position ⟨y(t)⟩ZB vs. time (104 a/v
units) for transverse white noise. Here a superpositon of chirality states
with dispersion ∆ = 10−4/a about K0 = 50∆. Weak noise Γ < ∆ has
no e�ect on the signal (grey curve) whereas for larger values Γ/(4vK0) =
0.025, 0.25, 1 ⟨y(t)⟩ZB decays exponentially (black) and eventually reaches
the overdamped regime (red).

initial conditions, by the simple form

⟨yZB(t)⟩ = e−
Γ
2
t

∫
dK

2K

e−
K2

2∆2

√
2π∆

z3e
iωt − z2e

−iωt

z3 − z2

where ω =
√

Γ2 − (4vK)2 (Fig. 7.5). In the weak damping regime Γ <
4vQ, oscillation disappear only for times t > 2/Γ, more slowly than for
longitudinal noise. Instead small values of |Q| determine overdamped modes
in ZB.

We notice that the qualitative e�ect on SS and ZB of transverse and
longitudinal noise is reversed: the former determines strong SS suppression,
while the latter produces stronger dephasing of ZB oscillations. This is a
consequence of the anisotropic coupling of noise in δH, Eq.(7.3). It is re-
lated to the conservation of σz and it is reminiscent to the properties of
certain nanodevices for quantum computation of exhibiting optimal oper-
ating points. On this basis we may argue that the same conclusions hold
for general spectral density JP (ω) of the environment.

Finally, since ZB oscillations are overdamped only if Γ > 2v|Q|, in the
opposite regime 2v|Q| ≫ Γ ∼ ∆ noise will a�ect mainly SS. In these condi-
tions weakly damped ZB oscillations may coexist with overdamped SS, or at
least with a substantial incoherent tail of the wave-packet. This conclusion
depends on the low-frequency behavior of the spectral density, holding for
instance in the ohmic case JP (ω) ∼ ω.
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7.4 Further remarks and conclusions

We have discussed the dynamics of one-dimensional wave-packets in the
presence of noise, however many qualitative conclusions can be extended to
an arbitrary wave-packet with any �nite spread ∆n of Kn. For instance,
since small values of q, corresponding to overdamped modes (except for
longitudinal noise), are always present, SS will show an incoherent tail.

An appealing property of ZB in graphene is that, contrary to the case of
electron-positron superpositions, ZB oscillations of the wave-packet extend
over a mesoscopic distance. For ⟨Q⟩ ≫ ∆ the amplitude of ⟨r(t)⟩ZB scales
as ∼ 1/⟨Q⟩. Although it is suppressed for wave-packets centered in the
vicinity of the Dirac points, ⟨Q⟩ ≪ ∆, for suitable values of ⟨Q⟩ it may be
several hundreds of lattice spacings a large. This is encouraging for possible
experiments aiming at observing ZB in graphene. Our results suggest that
this is still true for wave-packets with ⟨Q⟩ ≪ min[∆,Γ/(4v)], even in the
presence of an incoherent tail.

A general feature of the problem is expressed by the transformation
Eq.(7.5). It shows that the pseudo-spin dynamics is very sensitive to low-
frequency �uctuations of the environment.

We �nally remark that our model shows that the e�ect of noise on the
dynamics of QP's is completely described by the e�ect on the dynamics of
the pseudo-spin. This is also true for controls operated by electromagnetic
�elds. This fact may be used for studying quantum control of photocurrents
in chiral many body system. In this perspective it is worth stressing that
e�ective control of the pseudo-spin dynamics by electromagnetic �elds also
opens ports to noise, which will have strongly anisotropic e�ects on the
QP's motion.
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Many coherent superconductive nanodevice are described by an Hamil-
tonian of the same form.

H = EC

∑
q

(q − qg)
2 |q⟩ ⟨q| − EJ

2

∑
q

(|q⟩ ⟨q + 1|+ |q + 1⟩ ⟨q|) (A.1)

Is said that such device work in charge, charge-phase or phase regime de-
pending to the ratio J = EJ

EC
is respectively J ≪ 1, J ≃ 1, J ≫ 1 from

this ratio in fact depend also the sensibility to control performed via the
charge port qg(t) or the �ux port EJ(Φ). In this appendix we describe two
kind of these device: The transmon caracterized by J ∼ 102 − 103. The
Quantronium with J ∼ 1− 10

A.1 The Quantronium

The qubit demonstrated by the Saclay group [1] is based on a Cooper pair
box implemented by a SQUID geometry (Fig. A.1). The main di�erence
in the design with respect to the charge qubit is the presence of an extra
large Josephson junction in the loop, whose phase ϕt is in principle an extra
dynamical quantum variable, but in practice it behaves classically . This
provides a second control port for the qubit, since a current bias Ix �xes ϕt

and consequently the total phase across the two smaller junctions connecting
the island to the rest of the circuit. The e�ective Hamiltonian is again
Eq.A.1 where VJ(ϕ) = Ej(Φ) cosϕt cos ϕ̂. This two-port design gives the
possibility of using two knobs to tune optimally the device when processing
and moreover it to use the large junction to measure the circulating current
rather than the charge in the island. This allows e�cient manipulation with
AC pulses coupled to the qubit charge. The matrix element of the charge
operator q̂ that couples with the external control are shown in Fig.A.1b
At low temperatures the dynamics is restricted to at most the two lowest
eigenstates |ϕ0⟩ , |ϕ1⟩ and the qubit Hamiltonian is obtained by projecting
Eq.A.1 onto this subspace

HQ = Ω |ϕ1⟩ ⟨ϕ1| = −1

2
Ωσ3 (A.2)

where the pseudospin operator σ3 = |ϕ0⟩ ⟨ϕ0|−|ϕ1⟩ ⟨ϕ1|. The energy split Ω
between the two lowest eigenstates depends on the gate charge qx and the
total phase ϕt. The projection of the charge operator read

P q̂P − 1

2
(q00 + q11) = −1

2
(q11 − q00) + q01σ1 =

1

2
q̄σz (A.3)

where the matrix element qij of q̂ in the eigenbasis can be made real for

proper choice of the phases of the eigenstates. We de�ne q̄ =
√
(q00 − q11)2 + (q01 + q10)2
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Figure A.1: (a) The two-port Cooper pair box implementing the Quantro-
nium. External control is operated via AC pulses Vx(t) during processing
and via step pulses Ix(t) for measurement. (b) Projected matrix elements
of the charge operator. In the Quantronium (dashed lines) the �rst two
eigenstates are less distinguishable by the di�erent average charge than in a
charge qubit (solid lines). Nonvanishing o�-diagonal charge matrix elements
allow coupling with an external AC control �eld Vx(t)

and the pseudo spin operator σ1 = |ϕ0⟩ ⟨ϕ1| + |ϕ1⟩ ⟨ϕ0| Eq.A.3 gives σz =
cos θσ3 − sin θσ1 where tan θ = 2q01

q11−q00
. Due to large EJ charge states are

not good computational state. Instead the convenient choise is to bias the
system at qx = 1

2
, corresponding to θ = π

2
. Then σ3 = σx and the computa-

tional states are eigenstates of the current circulating in the loop, which is
also the measured quantity .

A.2 Transmon

The transmon [2]is a superconducting qubit design with an Hamiltonian of
the same form of the Quantronium and of the Cooper pair box but with
a large value of J = EJ

EC
(J ∼ 103 − 104). It is possible to approximate

the Hamiltonian with a power series to 4-th order of the potential U(ϕ) =
EJ(1 − cosϕ) ≃ −EJ + EJ

2
ϕ2 − EJ

24
ϕ4, then the total Hamiltonian take the

same form of that of the Harmonic oscillator with a quartic term. Writing
this Hamiltonian in term of the ladder operator [3, 4]

H =
√

2EJEC(b̂
†b̂+

1

2
)− EJ

48
(b̂+ b̂†)4

(where a constant term EJ is neglected) it is evident that the quartic term,
in the limit EJ >> EC is perturbative, then the energy spectrum have the
form

En =
√

2EJEC(n+
1

2
)− EJ

16
(2n2 + 2n+ 1) (A.4)
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Figure A.2: Perturbative calculation of the energy splitting.

Figure A.3: Numerical calculation of the energy splitting.

where the last term in EJ guarantees the anarmonicity of the spectrum
necessary for the pourpose of using this device in quantum computation.
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In this appendendix we perform a more formal derivation of the eq.5.24.
We start with the model Hamiltonian for the three-photon realization of the
STIRAP process in RWA and with the resonant approximation.

H(t) =

 0 1
2
Ω∗

p1
(t)eiϕp1 (t) 0

1
2
Ωp1(t)e

iϕp1 (t) E1
1
2
Ω∗

p2
(t)eiϕp2 (t) + 1

2
Ω∗

s(t)e
iϕs(t)

0 1
2
Ωp2(t)e

iϕp2 (t) + 1
2
Ωs(t)e

iϕs(t) E2


(B.1)

B.1 Appropriate reference frame for the model

Hamiltonian

We perform a transformation to a rotating frame using an unitary transfor-
mation

Urf (t) = e−i(ϕp1 (t)P11+ϕp2 (t)P2) (B.2)

where Pij = |i⟩ ⟨j| Then we prevent to the Hamiltonian

Hrf (t) =

 0 1
2
Ω∗

p1
(t) 0

1
2
Ωp1(t) δ2

1
2
Ω∗

p2
(t) + 1

2
Ω∗

s(t)e
iϕ(t)

0 1
2
Ωp2(t) +

1
2
Ωs(t)e

iϕ(t) δp


(B.3)

where ϕ̇(t) = δ(t)− δ2(t) and δ(t) = δp(t)− δs(t). The amplitude envelope
Ωi(t) are adiabatic as in the traditional STIRAP than for the next calcu-
lation we will consider them constant in time. We perform the derivation
with a method de�ned in the Average Hamiltonian theory [1]. To this end
we perform an other unitaru transformation

U(t) = e−i(δ2tP11+δptP22) (B.4)

The e�ective Hamiltonian in this reference frame is

H̃ =
1

2

 0 Ω∗
p1
eiδ2t 0

Ω∗
p1
eiδ2t 0 Ωp2e

i(δp−δ2)t + Ωse
iδst

0 Ωp2e
−i(δp−δ2)t + Ωse

−iδst 0


(B.5)

B.2 Time evolution operator

In quantum mechanics the Hamiltonian is directly correlated to the time
evolution operator. In fact it is possible write a formal relation for the time
evolution operator that make use of the time-ordering

U(t) = T
{
e−i

∫ t
0 H(t)

}
(B.6)
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Despite it's simplicity in this formal expression some problem arise due to
the presence of the time-ordering T . In fact its presence stays for

U(t) = lim
∆ti→0

e−iH(tN∆tN e−iH(tN−1)∆tN−1 · · · e−iH(t2)∆t2e−iH(t1)∆t1 (B.7)

However the Magnus expansion help us to write an approximate form of
such propagator. The Magnus expansion is

eAeB = eC ; C = A+B − 1

2
[A,B] + ..... (B.8)

It's possible apply this relation to two consecutive term of eq.B.7

e−iH(t1)∆t1 + e−iH(t2)∆t2 = e−i(H(t1)∆t1+H(t2)∆t2)+
1
2
[H(t1),H(t2)]∆t1∆t2

and iterating

U(t) = e−i
∑

H(ti)∆ti+
1
2

∑
i,j [H(ti),H(tj)]∆ti∆tj

then performing the limit lim∆ti → 0

U(t) = e−i
∫ t
0 H(t′)dt′− 1

2

∫ t
0 dt′

∫ t′
0 dt′′ [H(t′′), H(t′)] (B.9)

The crucial idea of the average Hamiltonian theory is to approximate the
exponent in the approximate propagator eq. B.9 performing a coarse grain-
ing and making the ansatz that the information on the initial Hamiltonian
are lost due to the fast oscillation. Then it consist in the approximation of
the propagator with

U(t) = e−iHeff t; Heff =

∫ Tcg

0

dt′

Tcg
H(t′)− i

2

∫ Tcg

0

dt′

Tcg

∫ t′

0

[H(t′′), H(t′)]

(B.10)
In our case we choose a coarse graining suche that 1

δs,p
≪ T ≪ 1

δ2
and

T ≪ 1
δ2−δp

. The Stokes term are treated in the term derivating from the

�rst order of the Magnus expansion

HS
eff =

∫ Tcg

0

dt′

Tcg
H(t′) ≃ 1

2

 0 0 0
0 0 Ωse

iδst

0 Ωse
iδst 0

 (B.11)

The rest of the e�ective Hamiltonian is derived from the second order term
of the Magnus expansion

H2
eff =

i

2

∫ Tcg

0

dt′

Tcg

∫ t′

0

[H(t′′), H(t′)] ≃

 S1 0 1
2
Ω̃p

0 δ2 − S1 − S2 0
1
2
Ω̃p 0S2


(B.12)

where Si, Ω̃p are the same obtained from the correction to the adiabatic
elimination in chapter 5.



132APPENDIX B. AVERAGE HAMILTONIAN THEORY FOR THREE PHTON STIRAP

Bibliography

[1] U. Haeberlen and J. S. Waugh. Phys. Rev., 175:453, 1968.



Bibliography

[1] R. Fazio G.Falci. Quantum Computer, Algorithms and Chaos., chap-
ter Quantum computation with Josephson qubits, pages 363�413. B.L.
Altshuler and V. Tognetti IOS Press The Netherlands.

[2] Marlan O. Scully and M. Suhail Zubairy. Cambridge University Press,
1 edition, 1997.

[3] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom-Photon
Interactions. Wiley, 1998.

[4] Jens Siewert, Tobias Brandes, and G. Falci. Phys. Rev. B, 79:024504,
2009.

[5] G. Falci, A. D'Arrigo, A. Mastellone, and E. Paladino. Phys. Rev.
Lett., 94:167002, 2005.

[6] Ulrich Weiss. Quantum Dissipative Systems (Series in Modern Con-
densed Matter Physics). World Scienti�c Publishing Company, 2008.

[7] G Falci, M Berritta, A Russo, A D'Arrigo, and E Paladino. Physica
Scripta, 2012(T151):014020, 2012.

[8] Gustavsson Yan F. Yoshihara F. Harrabi K. Fitch G. Cory D. G.
Nakamura Y. Tsai J. Oliver W. D. Bylander, J. Nat Phys, 7:565,
2011.

[9] N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann. Adv.
Atom. Mol. Opt. Phy., 46:55, 2001.

[10] D'Arrigo A. Paladino E. Berritta M. Falci G. La Cognata, A. submit-
ted to Phys. Rev. B.

[11] S. Saito, T. Meno, M. Ueda, H. Tanaka, K. Semba, and H. Takayanagi.
Phys. Rev. Lett., 96:107001, 2006.

133



134 BIBLIOGRAPHY

[12] A. Lupa³cu, P. Bertet, E. F. C. Driessen, C. J. P. M. Harmans, and
J. E. Mooij. Phys. Rev. B, 80:172506, 2009.

[13] U. Haeberlen and J. S. Waugh. Phys. Rev., 175:453, 1968.

[14] P. Caldara, A. La Cognata, D. Valenti, B. Spagnolo, M. Berritta,
E. Paladino, and G. Falci. International Journal of Quantum Infor-
mation, 09:119, 2011.

[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Science, 306:666,
2004.

[16] Gordon W. Semeno�. Phys. Rev. Lett., 53:2449, 1984.

[17] G. Falci, M. Morello Baganella, M. Berritta, A. D'Arrigo, and E. Pal-
adino. Physica E: Low-dimensional Systems and Nanostructures,
42(3):584, 2010.

[18] S. V. Syzranov, M. V. Fistul, and K. B. Efetov. Phys. Rev. B,
78:045407, 2008.

[19] J. J. Sakurai.Modern Quantum Mechanics (Revised Edition). Addison
Wesley, 1 edition, 1993.

[20] Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe, and Bernard
Dui. Quantum Mechanics (2 vol. set). Wiley-Interscience, 2006.

[21] G. Mahler and V.A. Weberruss. Quantum networks: dynamics of
open nanostructures. Springer, 1995.

[22] G. Falci. Quantum dynamics. Notes for Ph.D. course on Quantum
dynamics at the University of Palermo, 2009-2010.

[23] Wojciech Hubert Zurek. Rev. Mod. Phys., 75:715, 2003.

[24] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information (Cambridge Series on Information and the Nat-
ural Sciences). Cambridge University Press, 1 edition, 2004.

[25] William R. Frensley. Rev. Mod. Phys., 62:745, 1990.

[26] A. O. Caldeira and A. J. Leggett. Phys. Rev. Lett., 46:211, 1981.

[27] A.O Caldeira and A.J Leggett. Annals of Physics, 149(2):374, 1983.

[28] Yu. Pashkin Y. Nakamura and J. S. Tsai. Nature, 398:786, 1999.



BIBLIOGRAPHY 135

[29] K. Bergmann, H. Theuer, and B. W. Shore. Rev. Mod. Phys., 70:1003,
1998.

[30] T. D. Ladd, F. Jelezko, R. La�amme, Y. Nakamura, C. Monroe, and
J. L. O'Brien. Nature, 464:45, 2010.

[31] J. Clarke and F.K. Wilhelm. Nature, 453:1031, 2008.

[32] R. J. Schoelkopf and S. M. Girvin. Nature, 451:664, 2008.

[33] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,
D. Esteve, and M. H. Devoret. Science, 296:886, 2002.

[34] Sankar Das Sarma, Michael Freedman, and Chetan Nayak. Physics
Today, 59:32, 2006.

[35] Nori Franco You, J. Q. Nature, 474:589, 2011.

[36] E. Paladino, A. Mastellone, A. D'Arrigo, and G. Falci. Phys. Rev. B,
81:052502, 2010.

[37] F Chiarello, E Paladino, M G Castellano, C Cosmelli, A D'Arrigo,
G Torrioli, and G Falci. New Journal of Physics, 14:023031, 2012.

[38] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve,
F. Chiarello, A. Shnirman, Y. Makhlin, J. Schrie�, and G. Schön.
Phys. Rev. B, 72:134519, 2005.

[39] F. Bloch. Phys. Rev., 70:460, 1946.

[40] Alfred G. Red�eld. Phys. Rev., 98:1787, 1955.

[41] F. Bloch. Phys. Rev., 105:1206, 1957.

[42] Melvin Lax. Phys. Rev., 129:2342, 1963.

[43] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open
Quantum Systems. Oxford University Press, USA, 2007.

[44] C. W. Gardiner. Quantum Noise: A Handbook of Markovian and Non-
Markovian Quantum Stochastic Methods with Applications to Quan-
tum Optics. Springer Berlin Heidelberg, 2010.

[45] E. Geva and R. Koslo�. Journal of chemical physics, 102:8541, 1995.

[46] Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan. Jour-
nal of Mathematical Physics, 17:821, 1976.



136 BIBLIOGRAPHY

[47] G. Lindblad. Communications in Mathematical Physics, 48:119, 1976.

[48] A. La Cognata, P. Caldara, D. Valenti, B. Spagnolo, A. D'Aarrigo,
E. Paladino, and G. Falci. International Journal of Quantum Infor-
mation, 09:1, 2011.

[49] A. B. Zorin, F.-J. Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V. A.
Krupenin, and S. V. Lotkhov. Phys. Rev. B, 53:13682, 1996.

[50] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. Phys. Rev. Lett.,
87:246601, Nov 2001.

[51] I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij.
Science, 299:1869, 2003.

[52] John M. Martinis, S. Nam, J. Aumentado, and C. Urbina. Phys. Rev.
Lett., 89:117901, 2002.

[53] Yang Yu, Siyuan Han, Xi Chu, Shih-I Chu, and Zhen Wang. Science,
296:889, 2002.

[54] A. J. Ho�man, S. J. Srinivasan, J. M. Gambetta, and A. A. Houck.
Phys. Rev. B, 84:184515, 2011.

[55] Tatsuya Kutsuzawa, Hirotaka Tanaka, Shiro Saito, Hayato Nakano,
Kouichi Semba, and Hideaki Takayanagi. Applied Physics Letters,
87:073501, 2005.

[56] I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans,
and J. E. Mooij. Nature, 431:159, 2004.

[57] Jürgen Lisenfeld, Clemens Müller, Jared H. Cole, Pavel Bushev,
Alexander Lukashenko, Alexander Shnirman, and Alexey V. Ustinov.
Phys. Rev. B, 81:100511, 2010.

[58] V. I. Shnyrkov, D. Born, A. A. Soroka, and W. Krech. Phys. Rev. B,
79:184522, 2009.

[59] A. Fedorov, A. K. Feofanov, P. Macha, P. Forn-D'iaz, C. J. P. M.
Harmans, and J. E. Mooij. Phys. Rev. Lett., 105:060503, 2010.

[60] E. Arimondo. V coherent population trapping in laser spectroscopy.
volume 35 of Progress in Optics, page 257. Elsevier, 1996.

[61] B. W. Shore N. V. Vitanov, T. Halfmann and K. Bergmann. Annu.
Rev. Phys. Chem., 52:763, 2001.



BIBLIOGRAPHY 137

[62] M. H. S. Amin, A. Yu. Smirnov, and Alec Maassen van den Brink.
Phys. Rev. B, 67:100508, 2003.

[63] J. Siewert and T. Brandes. Adv. Solid State Phys., 44:181, 2004.

[64] K. V. R. M. Murali, Z. Dutton, W. D. Oliver, D. S. Crankshaw, and
T. P. Orlando. Phys. Rev. Lett., 93:087003, 2004.

[65] Yu-xi Liu, J. Q. You, L. F. Wei, C. P. Sun, and Franco Nori. Phys.
Rev. Lett., 95:087001, 2005.

[66] M. J. Storcz et al. M. Mariantoni. arXiv:cond-mat/0509737v2, 2005.

[67] Katarina Cicak Fabio Altomare Jae I. Park Raymond W. Simmonds
Mika A. Sillanpää Jian Li, G. S. Paraoanu and Pertti J. Hakonen.
Scienti�c Reports 2, Art. num. 645, 2012. 1038/srep00645.

[68] Ioannis Thanopulos, Petr Král, and Moshe Shapiro. Phys. Rev. Lett.,
92:113003, 2004.

[69] F. Nori J.Q, You. 474:589.

[70] Yury P. Bliokh, Sergey Savel'ev, and Franco Nori. Phys. Rev. Lett.,
100:244803, 2008.

[71] Vitanov. Manipulating Quantum Structures Using Laser Pulses. Cam-
bridge.

[72] T. Brandes J. Siewert and G. Falci. Opt. Comm., 264:435, 2006.

[73] Mika A. Sillanpää, Jian Li, Katarina Cicak, Fabio Altomare, Jae I.
Park, Raymond W. Simmonds, G. S. Paraoanu, and Pertti J. Hako-
nen. Phys. Rev. Lett., 103:193601, 2009.

[74] M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Ste�en,
P. J. Leek, A. Blais, and A. Wallra�. Phys. Rev. Lett., 102:243602,
2009.

[75] A. A. Abdumalikov, O. Asta�ev, A. M. Zagoskin, Yu. A. Pashkin,
Y. Nakamura, and J. S. Tsai. Phys. Rev. Lett., 104:193601, 2010.

[76] R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L. Stef-
fen, M. Boissonneault, A. Blais, and A. Wallra�. Phys. Rev. Lett.,
105:223601, 2010.



138 BIBLIOGRAPHY

[77] William R. Kelly, Zachary Dutton, John Schlafer, Bhaskar Mookerji,
Thomas A. Ohki, Je�rey S. Kline, and David P. Pappas. Phys. Rev.
Lett., 104:163601, 2010.

[78] P. Joyez D. Esteve V. Bouchiat, D. Vion and M. H. Devoret. Physica
Scripta, T 76:165, 1998.

[79] T. Duty, D. Gunnarsson, K. Bladh, and P. Delsing. Phys. Rev. B,
69:140503, 2004.

[80] A. Blais L. Frunzio R.-S. Huang J. Majer S. Kumar S. M. Girvin &
R. J. Schoelkopf A. Wallra�, D. I. Schuster. Nature, 421:162, 2004.

[81] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf. Phys. Rev. A, 76:042319, 2007.

[82] E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion, and D. Esteve.
Phys. Rev. Lett., 93:157005, 2004.

[83] Chad Rigetti, Jay M. Gambetta, Stefano Poletto, B. L. T. Plourde,
Jerry M. Chow, A. D. Córcoles, John A. Smolin, Seth T. Merkel, J. R.
Rozen, George A. Keefe, Mary B. Rothwell, Mark B. Ketchen, and
M. Ste�en. Phys. Rev. B, 86:100506, 2012.

[84] E. Paladino, L. Faoro, G. Falci, and Rosario Fazio. Phys. Rev. Lett.,
88:228304, 2002.

[85] Daniel Sank, R. Barends, Radoslaw C. Bialczak, Yu Chen, J. Kelly,
M. Lenander, E. Lucero, Matteo Mariantoni, A. Megrant, M. Neeley,
P. J. J. O'Malley, A. Vainsencher, H. Wang, J. Wenner, T. C. White,
T. Yamamoto, Yi Yin, A. N. Cleland, and John M. Martinis. Phys.
Rev. Lett., 109:067001, 2012.

[86] P. A. Ivanov, N. V. Vitanov, and K. Bergmann. Phys. Rev. A,
70:063409, 2004.

[87] A. D'Arrigo G. Falci, A. Mastellone and E. Paladino. Phys. Rev. Lett.,
13:323, 2006.

[88] T.�Bondo A.�Kuhn, M.�Hennrich and G. Rempe. Appl. Phys. B, bf
69:373, 1999.

[89] Q. Shi and E. Geva. Journal of chemical physics, 119:11773, 2003.



BIBLIOGRAPHY 139

[90] C. J.P. M. Harmans I. Chiorescu, Y. Nakamura and J. E. Mooij.
Science, 299:1869, 2003.

[91] O. Asta�ev Y. Nakamura T. Yamamoto, Yu.A. Pashkin and J. S. Tsai.
Nature, 425:941, 2003.

[92] A. C.J. ter Haar-C. J.P. M. Harmans J. B. Majer, F. G. Paauw and
J. E. Mooij. Phys. Rev. Lett., 94:090501, 2005.

[93] L. M. K. Vandersypen and I. L. Chuang. Rev. Mod. Phys., 76:1037,
2005.

[94] Heer R. Strasser G. Rakoczy, D. and Smoliner J. Physica E, 16:129,
2003.

[95] M. Hanggi P. Thorwart, M. Grifoni. Annals of physics, 293:15, 2001.

[96] S. Dorsey A. T. Fisher M. Garg A. Leggett, A. J. Chakravarty and
W. Zwerger. Rev. Mod. Phys., 59:1, 1987.

[97] M. Grifoni and P. Hanggi. phys. Rep., 304:229, 1998.

[98] A. J. Leggett. Phys. Rev. B, 30:1208, 1984.

[99] Chung-Hsien Chou, Ting Yu, and B. L. Hu. Phys. Rev. E, 77:011112,
2008.

[100] M. Rosenau da Costa, A. O. Caldeira, S. M. Dutra, and H. Westfahl.
Phys. Rev. A, 61:022107, 2000.

[101] N. V. Prokofev and P. C. E. Stamp. Rep. Prog. Phys., 63:669726,
2000.

[102] Patel V. Chen W. Tolpygo S. K. Friedman, J. R. and J. E. Lukens.
Nature, 406:43, 2000.

[103] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi. Phys. Rev. Lett.,
67:516, 1991.

[104] R. Löfstedt and S. N. Coppersmith. Phys. Rev. Lett., 72:1947, 1994.

[105] Lorenza Viola, Emanuel Knill, and Seth Lloyd. Phys. Rev. Lett.,
82:2417, 1999.

[106] R.P Feynman and F.L Vernon Jr. Annals of Physics, 24:118, 1963.

[107] G. G. Engerholm D. O. Harris and W. D. Gwinn. J. Chem. Phys.,
43:1515, 1965.



140 BIBLIOGRAPHY

[108] David O. Harris, Gail G. Engerholm, and William D. Gwinn. The
Journal of Chemical Physics, 43:1515, 1965.

[109] Walter Greiner. Relativistic Quantum Mechanics. Wave Equations.
Springer, 2000.

[110] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim. Rev. Mod. Phys., 81:109, 2009.

[111] Vincent Hakim and Vinay Ambegaokar. Phys. Rev. A, 32:423, 1985.


