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Synopsis

One of the most interesting aspects of complexity is that it occurs at dif-

ferent levels. It may occur at the level of interactions among the agents

that compose a complex network: despite the relatively simple behavior

of each single unit, the whole network may exhibit holistic collective dy-

namics, such self-organization, synchronization, robustness to failure,

and so on; and it may occur, in the form of an aperiodic irregular be-

havior, at the level of a system described by a low-order set of ordinary

differential equations, three, for instance, in the case of continuous-time

systems. This thesis focuses on both levels of complexity.

The first part, in particular, deals with complexity at the level of a

single dynamical system. The main contributions of the work summa-

rized in this thesis refer to the use of a new electronic component for

the design of chaotic circuits. This new component, the memristor, is at

the same time a memory element and a nonlinear element and for this

reason has been regarded in literature as an effective block to reduce

the minimum number of components needed to build a chaotic circuit.

The original aspect of this thesis is the focus on a realistic model of
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memristor, that is a model derived starting from the analysis of the real

memristor device discovered in the HP laboratories. The use of such

approach introduces constraints in the design that are not considered in

idealized models such as piece-wise linear ones. The main results were:

i) the introduction of a configuration of two memristors in antiparallel

which has been used as the fundamental block to design a gallery of

autonomous and non-autonomous nonlinear circuits exhibiting a rich

dynamics, including chaos; ii) the design of a hybrid circuit which takes

from the characterization methodology of real memristors the idea of

using a simple digital linear control circuitry which allows chaos to be

observed with the driving of a single memristor.

The second part of the thesis focuses on synchronization on com-

plex networks. In particular, the onset of a new form of synchronization,

named remote synchronization, in complex networks has been investi-

gated. Remote synchronization appears in star-like networks of coupled

Stuart-Landau oscillators, where the hub node is characterized by an

oscillation frequency different from that of the leaves, as a regime in

which the peripheral nodes are synchronized each other but not with

the hub. In this thesis we have investigated if similar conditions can be

observed in more general frameworks. We have found that networks of

not homogeneous nodes may display many pairs of nodes that, despite

the fact that are not directly connected nor connected through chains

of synchronized nodes, are phase synchronized. We have introduced

measures to characterize this phenomenon and found that it is com-

mon both in scale-free and Erdos-Renyi networks. Furthermore, this is
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an important mechanism to form clusters of synchronized nodes in a

network. Finally, we have linked the appearance of pairs of remotely

synchronized nodes to a topological condition of inhibition of direct

paths or paths through chains of synchronized nodes, thus elucidating

a mechanism which has lead to the definition of a series of topologies

where remote synchronization is found.

Finally, we have explored the use of memristor as a synapse for com-

plex networks. Also in this case, we have used a configuration of two

HP memristors and shown that such configuration provides an adap-

tation rule for the links of a complex network, enabling the emergence

of a set of weights leading to synchronization.
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Part I

Memristors





1

The memristor

In this chapter a brief overview on memristor models will be

given. The properties of the memristor, from the mathemati-

cal model introduced by L. Chua, to the device realized in the

HP laboratories, will be introduced and the use of the mem-

ristor as nonlinear element in the design of chaotic circuits

will be discussed.

1.1 The memristor: the theoretical postulation

First theoretically postulated in 1971 by Leon O. Chua [1], a memris-

tor, crasis for memory-resistor, is the fourth basic circuital element. It

can be defined as a dynamical resistor in which the resistance R(w)

is a function of the internal state variable w or, equivalently, in which

there is a relationship between charge and magnetic flux linkage. The

memristor fundamental equation is a generalization of the Ohm’s law

v = M(q)i, where the memristance M(q), unlike constant resistances,

is function of the quantity of charge that has passed through the device.
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Unlike the resistor, where the voltage is proportional to the current and

the v− i characteristic is a straight line of slope R, in a memristor the

relation is nonlinear and the v − i characteristic is a curve where the

slope varies point by point. The curve takes a form of an hysteresis

loop pinched in the origin, in fact whenever the voltage is zero, so is

the current. In this curve the same voltage can yield to two different

current values.

An important property of memristors is that the v− i characteristic

depends on the frequency and the pinched hysteresis loop shrinks when

the frequency increases. In the theoretical limit of infinity frequency,

the memristor acts as a linear resistor.

The memristor is a nonlinear element with memory. For this reason,

memristors are gaining an increasing interest in the scientific commu-

nity for their possible applications, e.g. high–speed low–power proces-

sors or new biological models for associative memories. Due to the

intrinsic nonlinear characteristic of memristive devices, it is also possi-

ble to use them in the design of new dynamical circuits able to show

complex behavior, like chaos, which is the main interest of the use of

memristor in this thesis.

In its seminal paper, Leon O. Chua [1] followed arguments based on

the symmetry between the four fundamental circuital variables, current

i, voltage v, charge q and magnetic flux ϕ, and the corresponding three

basic circuital components, resistor, capacitor and inductor. Chua pre-

dicted the existence of a further basic element modeling a relationship

ϕ = ϕ(q) between flux and charge (charge-controlled model) or a rela-
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tionship q = q(ϕ) between charge and flux (flux-controlled model). The

notable property of memristor is that, if its constitutive relationship is

represented in terms of the voltage across its terminal (which is the in-

tegral of the flux) and the current (i.e., the integral of the charge), one

obtains a nonlinear relationship which depends on an internal variable

(the charge or the flux), i.e., it acts as a nonlinear resistor (or a nonlin-

ear conductance) with memory. In this way the fourth basic circuital

element can be defined as a dynamical resistor in which its resistance

R(w) is a function of the internal state variable w, that is a relation

between charge and magnetic flux.

In terms of the v − i relationship a memristor can be conveniently

defined following [1]. This passive two–terminal circuital element is

described by:

v = M(q)i, or i = W (ϕ)v, (1.1)

where v, i, q, and ϕ are the voltage, the current, the charge and the

flux associated to the device, M(q) is the memristance and W (ϕ) is

the memductance defined as:

M(q) =
dϕ(q)

dq
, (1.2)

and

W (ϕ) =
dq(ϕ)

dϕ
. (1.3)
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Hence, the constitutive relations ϕ(q) and q(ϕ) define the behavior

of the charge–controlled and flux–controlled memristor, respectively.

The concept of memristor was then generalized (again by Chua) in

[2],introducing the class of memristive system defined as:

vM = R(x)iM

ẋ = f(x, iM)
(1.4)

where R(x) is the memristance and f(x, iM) the internal state function

of the memristor.

The memristive device has a state variable, w, describing the phys-

ical properties of the device in any time, and characterized by the two

Eq. (1.4). In the first equation current and voltage are related through

the memristance, and in the second equation the state variable varying

as function of itself and the current flowing into the device. As results of

this extension, any electronic circuit element whose resistance depends

on the internal state of the system and the relation between current and

voltage is a pinched hysteresis loop, could be modeled by the Eq. (1.4).

The knowledge of the dependence of the state variable on the current

or on the voltage is important to describe the dynamical behavior of

the device. Following this generalization the memristor is a particular

case of the memristive systems.

Furthermore, in [3], it was shown that the concept of memory de-

vice is not related only to the resistance, but it can be generalized to

capacitive and inductive systems; the authors have introduced two new

classes of memory devices, the memcapacitative systems and the me-

minducitve systems. The first class (charge-controlled memcapacitor)
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is defined by a relationship between charge and voltage:

q(t) = C(x, vc, t)vc

ẋ = f(x, vc, t)
(1.5)

where q is the charge on the capacitor, C the memcapacitance, func-

tion of the internal state of the system, and vc the voltage across the

capacitor. In the plane q − vc the system shows a pinched hysteresis

loop passing through the origin. The memcapacitor changes its behav-

ior depending on the frequency, in fact acts as linear capacitor at high

frequency, as nonlinear capacitor at low frequency.

The meminductor systems (flux-controlled) are defined by the fol-

lowing equations:

ϕ(t) = L(x, Il, t)Il

ẋ = f(x, Il, t)
(1.6)

where ϕ is the flux of the meminductor, L the meminductance, and

Il the current flowing in the meminductor. Also in this case, when a

sinusoidal signal is applied to the terminal of the device, a pinched loop

in the flux-current plane appears; increasing the frequency the memory

effect decreases and the loop disappears.

1.2 The memristor: the discovery in

Hewlett-Packard labs

For many years the memristor was considered just as a mere theoretical

curiosity, until the first physical realization of a two–terminal memris-
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tive integrated device that has been reported in the seminal paper by

the researchers of HP labs [4]. After this first device based on a TiO2

thin film, several other memristive devices based on the same principle

of the TiO2 memristor have been fabricated with different materials

and techniques (see for instance [5, 6, 7, 8, 9]). In these memristors the

state depends on the oxygen vacancies that, under the effect of external

bias, move from one layer to the other one, changing the resistance and

the state of the device.

Memristors based on other mechanisms have been also introduced.

For instance, in spin-based memristive systems [10] the memristive be-

havior depends on the degree of freedom in the electron spin. In these

devices the level of the electron spin polarization changes by the in-

fluence of an external control parameter. As result, there is a mag-

netic domain wall, i.e. a boundary between two states, that moves as

a function of the external control parameter. The memristive behavior

is found in a semiconductor/half-metal junction where a flow of only

spin-up electrons may form, since spin-down electrons cannot enter the

half-metal and form a cloud of spin-down electrons. Attention has been

also devoted to develop spintronic memristors [11, 12]. In this type of

device there are two ferromagnetic layers (one is the reference layer,

the other one is the free layer). The free layer is divided in two parts

magnetized with opposite directions creating a domain wall. The resis-

tance of the device is determined by the position of the barrier between

the two layers with opposite electron spin directions which in turns is

controlled by the external control parameter.
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The HP memristor is a TiO2 thin film, of thickness D, doped with

oxygen vacancies and sandwiched between two metal (Platinum) con-

tacts as schematically represented in Fig. 1.1. The width of the doped

region is indicated as w and changes as a function of the current in-

jected in the device.

Fig. 1.1. Schematic representation of the T iO2 memristor.

The doped region and the undoped one have different resistivity val-

ues (the doped region has a typical low value, while the undoped one an

high value). When the width of the doped region is equal to the whole

thickness (i.e., w = D), the memristor has a resistance equal to RON ,

while, in the opposite case, when the undoped region covers the whole

thickness of the device (i.e., w = 0), the memristor has a resistance

equal to ROFF . In all the other intermediate cases, the HP memris-

tor is modelled as the series of two resistances, one corresponding to

the region with a high concentration of dopants (of value w
D
RON) and

the other to the region with a low concentration of dopants (of value

(1 − w
D
)ROFF ). In summary, the HP memristor is modelled in terms
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of a dynamical resistor whose value of resistance R(w) is a function of

the internal state variable w.

The width w of the doped region changes under the application of

an external bias i(t) in the device: when a positive current is applied,

the oxygen vacancies in the doped region move towards the undoped

region, in this way the boundary between the two layer moves, causing

an increase of the width of the conducting layer and decreasing the

resistance of the device. When a negative current is applied, the oxygen

vacancies move out from the undoped region increasing the resistance

of the device. When the current is turned-off the boundary between

doped and undoped region stays in its new position.

The relation between voltage and current of the HP memristor is

described by the following equation:

v(t) =


RON

w(t)

D
+ROFF (1−

w(t)

D
)


i(t) (1.7)

The variable w(t) is limited to values between zero and D and is

linked to the charge q by:

w(t) = η
µvRON

D
q(t) (1.8)

or equivalently to the current i by:

ẇ(t) = η
µvRON

D
i(t) (1.9)

where the parameter η characterizes the polarity of the memristor,

η = 1 if the doped region in memristor is expanding, η = −1 otherwise.

This is known as the linear drift model.
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However, according to what experimentally observed in the HP

memristor, a few volts causes a large electric field in the nano-scale

device, thus producing a high nonlinearity in the ionic-drift trans-

port. This nonlinearity becomes more evident at the boundaries, where

w → 0 or w → D. To include this into the model, an additional term,

called window function F (w), has to be inserted in the right side of the

equation (1.8):

w(t) = η
µvRON

D
F (

w(t)

D
)q(t) (1.10)

or

ẇ(t) = η
µvRON

D
F (

w(t)

D
)i(t) (1.11)

In [4] the proposed window function depends only on the state vari-

able and it is defined as:

FS(x) = x(1− x)/D2 (1.12)

where FS(0) = 0 and FS(D) = 1−D
D

≈ 0, so that it takes into account

the boundary conditions and x = w/D is the normalized state variable..

When the memristor reaches one of the boundary, x = 0 or x = D,

dw
dt

= 0 and no external field can change the state. This window function

approximates the nonlinear behavior in the active layer of the device.

Joglekar and Wolf [13] proposed the following window function:

FJ(x, p) = 1− (2x− 1)2p (1.13)

where p is a positive integer which controls the nonlinearity. The func-

tion F (x) is equal to zero at the boundaries, and reaches its maximum

value at x = 0.5, as it can be observed in Fig. 1.2.
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Fig. 1.2. Two examples of memristor window function: (a) FJ(x, p) = 1− (2x− 1)2p for

p = 1, 5 and p = 10; (b) FB(x, p) = 1− (x− stp(i))2p for p = 1, 5 and p = 10.

The problem at the terminal state remains and, when the state

variable reaches one of the edges, its value remains unchanged for any

external signal. To overcome this drawback, Biolek and colleagues [14]

introduced another window function, displayed in Fig. 1.2(b), that also

depends on the sign of the memristor current i:

FB(x, i, p) = 1− (x− stp(−i))2p (1.14)

where stp(i) = 1 when i >= 0, and stp(i) = 0 when i < 0. With this

window function when x = 0, the function FB(0) = 1, and when x = D,

the function FB(D) = 0. Changing the current direction, the function

immediately switches its value, FB(D) = 1 and, when x decreases to

0, the function also FB(0) = 0.

Where not differently specified, all the simulations in this thesis have

been done by assuming a window function as in Eq. (1.14) with p = 1,
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and the value of the technological parameters as in [4] (D = 10nm,

µv = 10−14cm2s−1v−1, ROFF

RON
= 100).

The way in which a two–terminal circuital element is shown to be

memristive is to test if its v − i characteristic exhibits a pinched hys-

teresis loop [1, 4]. This can be tested by applying an external bias

(a sinusoidal voltage v(t)) across the device terminals and monitor-

ing the current flowing into it (Fig. 1.3). We considered as in [14]

ROFF/RON = 100 and used as in [4] normalized time units τ = t/t0

where t0 = D2/µv0 and v0 = 1V .

The behavior of the memristor depends on the frequency of the

applied signal. If the frequency is comparable to the time scale of the

memristor dynamics, the v−i characteristic is a symmetrical hysteresis

loop pinched at the origin as shown in Fig. 1.4(a). If the frequency of

the applied voltage input is larger, the pinched hysteresis shrinks into

a straight line as shown in Fig. 1.4(b). However, if the frequency is

smaller with respect to the time scale of the memristor dynamics, the

internal state variable w may saturate to its boundary values. If such

input is applied to the HP memristor, then a characteristic which is not

symmetrical with respect to the applied input appears as in Fig. 1.4(c)

- 1.4(d), since for w = 0 the memristor shows a resistance equal to

ROFF , while for w = D the memristor shows a resistance equal to

RON . At the same time, this is the most interesting behavior for chaotic

circuit design, since it represents a highly nonlinear behavior that can

be exploited to generate chaotic dynamics.
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Fig. 1.3. Schematic of the circuit used to test the pinched hysteresis behavior of a single

HP memristor.

1.3 Memristive device models

In the model proposed in [4] and briefly recalled in Section 1.2, the

memristor properties have been attributed to the motion of oxygen

vacancies activated by current flow in a TiO2 thin film device. This

model assumes that the device is constituted by two regions with dif-

ferent concentrations of dopants, represented by two resistors in series.

The linear drift model satisfies the characteristic of a memristive sys-

tem but, even in the presence of the window function, does not fully

capture the real nonlinear behavior of memristor devices.

To account for this, in [5] the authors have proposed to model the

relationship between current and voltage as:

i = w(t)nβsinh(αv(t)) + χ[eγv(t) − 1] (1.15)

where n is a parameter that regulates the influence of the state variable

on the current, the other are fitting parameters. When w = 1 the device
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Fig. 1.4. Behavior in the v − i plane of a single HP memristor subjected to a sinusoidal

input of amplitude A = 10V and frequency ω: (a) ω = 1; (b) ω = 15; (c) ω = 0.5; (d)

ω = 0.1.

is in ON state and the main contribution to the current is given only by

the first term in the Eq.(1.15). Otherwise in the OFF state, the current

is due to the second term and w = 0.

A more detailed model has been proposed in [15] where a nonlinear

and asymmetric switching behavior is adopted. A schematic view of

the physical model is reported in Fig. 1.5.
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Fig. 1.5. Schematic representation of the switching model proposed in [15].

The electroforming process, that is the application of an high voltage

or current producing a significant change of electronic conductivity

in the TiO2 structure, creates a conducting channel and a tunneling

gap between this channel and one of the electrodes. In Fig: 1.5 w is

the tunneling barrier width and Rs the resistance of the electroformed

channel. The width of this gap w represents the state variable of the

system, that is modulated when a voltage signal is applied to the device,

inducing a motion of the oxygen vacancies. The current i that flows into

the device can be modeled with Simmons tunneling equation [16]and

taking into account a channel resistor, Rs, in series.

Defining as v the voltage across the whole device, vg the voltage

of the tunnel barrier, and vR the voltage across the resistance of the

channel, the relationship between the voltage v and the current i in the

device is given by:

i = j0A
∆w2 [ϕIe

−BϕI
1/2 − (ϕI + evg)e

−B(ϕI+evg1/2 ]

vg = v − vR = v − iRS

(1.16)
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where j0 = e/(2πh), ∆w = w2 − w1, w1 = 1.2λw
ϕ0

, w2 = w1 + w(1 −
9.2λ

3ϕ0+4λ−2e|vg |). ϕI , B and λ are function of w,w1, w2, and ϕ0 is the

barrier height in electron volts.

The oxygen vacancy drift velocity is represented by the following

nonlinear functions of i and w:

dw
dt

=

foffsinh(
i

ioff
)exp[−exp(

w−aoff
wc

− |i|
b
)− w

wc
] i > 0

fonsinh(
i

ion
)exp[−exp(−w−aon

wc
− |i|

b
)− w

wc
] i < 0

(1.17)

where all the parameters in the equations are fitting parameters. Exper-

iments on memristive devices have shown that ON and OFF switching

speed are different and dependent on the polarity and on the amplitude

of the applied voltage, with the OFF switching being slower. Following

this model a positive voltage applied to the device produces an increase

of the tunneling gap w, due to the fact that positive charged oxygen

vacancies are repelled towards the conducting channel. This model pro-

vides a physical explanation for the ionic transport and the switching

dynamics of the TiO2 memristive devices.

This model is very accurate but of not simple use due to the expo-

nential dependance of the movement of the ionized dopants and to the

presence of many fitting parameters.

1.4 Memristors and flexible electronics

Recently there has been a considerable increase in the interest towards

the study of chaotic circuits, thanks to the growing number of possible
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fields of application in which they can be used especially for the im-

provement of already existing technologies which can benefit from the

peculiarities of chaos and results in improved performance.

Most of the phenomena occurring in nature, but also some human

behaviors, do not proceed with rhythms that are repeated, but suddenly

show bifurcations, critical points turbulence and emergent behaviors.

This is a phenomenon that gives rise to so-called strange attractors. In

nature there are few linear phenomena, while almost all the existing

systems are nonlinear. There are some common natural phenomena

such as the variation of weather and the formation of clouds that are

chaotic, the heartbeat is also chaotic, an healthy heart has a chaotic

rhythm, whereas in a diseased heart the rhythm is more regular. These

phenomena which are the subject of of chaos theory, belong to complex

nonlinear dynamical systems and share some peculiar characteristics:

• sensitivity to initial conditions;

• unpredictability;

• evolution of the system characterized by many orbits that remain

confined within a finite space, called attractor.

One of the most interesting aspects of the study of the dynamics

of nonlinear systems is the organization that emerges spontaneously

from the interaction of many elementary components. Complex sys-

tems respond to the changes of the external environment, reorganizing

themselves to exhibit novel properties. Self-organization is not imposed
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from the external but naturally emerges from the evolution of the sys-

tem as a function of its dynamics.

Many physical systems exhibit chaotic behavior. One of the most

important is the Lorenz system obtained by discretization of Navier-

Stokes fluid dynamics equations [17]. Chaos appear also in electronic

chaotic circuits, either as an undesired behavior or as the result of

an intentional design. The first circuit exhibiting chaos was the Chua’s

circuit built in 1983. The implementations of integrated chaotic circuits

are in a limited number, despite the significant benefits arising from

the availability of integrated chaotic circuits. Until a few years ago

the production of integrated circuits was based only on silicon devices.

The processes used to create these ICs are not cheap. To address these

issues, the tendency was to miniaturize the devices even more, so that

they can integrate a larger number of transistors on a single wafer.

For about a decade, an alternative and efficient answer to the re-

quest a low-cost technology has been searched for. In this context the

use of organic materials for the manufacturing of electronic devices

has been recently proposed. The devices using organic semiconductors

as the active element are no longer an inorganic semiconductor like

silicon or gallium arsenide, but a series of molecular materials such

as conjugated polymers or small molecules. The organic electronics is

economically advantageous because the active substances, based on or-

ganic compounds of carbon, have important properties, including those

to be flexible and easy to deposit over large areas. This can be done
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at lower cost, both in liquid solution as inks or through evaporation

processes.

Methods typical of the printing industry, such as screen printing or

ink jet printing for the manufacture of electronic components can be

therefore used for the realization of these devices. The ability to create

devices through simple and low cost realization processes is one of the

unique aspects of organic electronics. Another important advantage is

the possibility to produce large-area devices with consequent reduction

of production costs and reducing time. Despite the significant benefits

of organic electronics, the science in this field still faces problems such

as low mobility of charge carriers, which in turn requires a too high

operating voltage, and the strong interaction of these materials with the

environment (moisture, oxygen, light) which alters the basic properties.

In the context of organic electronics, it is interesting to explore the

possibility to design circuits able to generate chaos. Organic chaotic

circuits in fact could be applied to the production of food packaging,

which will have the opportunity to include in the package, instead of

labels with a bar code or in addition to the standard bar code tag,

active labels that can monitor the status of the product by controlling

volatile organic compounds (odors) present in the box, typical of a

certain food. If over time the product were modified (so for example if

the smell would change because of the deterioration of the product),

the circuit would respond immediately by signaling the event [18]. The

organic chaotic circuits, thanks to the characteristics of chaos, in such

labels could provide a secure key to prevent product counterfeits.
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Organic chaotic circuit can be used in the product identification step

for product traceability. The instruments most used in practice are al-

phanumerical labels, bar codes and radiofrequency identification tags

(RFID). Actually, products are mostly identified through bar codes

which also allow to reconstruct the history of the product and its lo-

calization in order to trace the product itself.

The idea is to integrate the techniques based on traditional tools for

product identification with organic circuits that show chaotic dynamics

when activated by an external generator. Such circuits have intrinsic

safe identificability properties, since only a copy of this circuit is able

to identify it. Therefore, the information encoded in this chaotic tag

can be decoded only in the presence of a circuit which can be synchro-

nized to it. In this way, a chaotic key to make safe the identification

procedure can be added. In particular, several possibilities arise for the

development of chaotic circuits in organic technology and some of them

are currently being explored.

As memristors in organic, or more generally in flexible, electronics

have been already fabricated, the basic idea of this thesis is to exploit

the nonlinearity plus memory capabilities of such devices for designing

chaotic circuits in organic/flexible electronics. For this reason in the

next two Chapters we will focus on electronic oscillators where the

source of nonlinearity is provided by memristors.





2

Chaotic circuits based on HP memristor

In this Chapter the design of chaotic circuits based on mem-

ristors modelled with the nonlinear drift model is dealt with.

This physical model, being representative of real devices, in-

troduces constraints in the design that reduce the gap to the

final implementation of the circuit. We propose a configura-

tion based on two memristors in antiparallel as the nonlinear

element for chaotic oscillators and discuss a series of nonlin-

ear, autonomous and non-autonomous, circuits derived from

existing topologies of chaotic circuits by replacing the nonlin-

earity with such configuration.

2.1 Introduction

The availability of memristive devices, being nonlinear elements, is use-

ful to design circuits able to show complex dynamics like chaos. In

particular, if we consider the Chua’s circuit, the first example of elec-

tronic circuit able to show chaos [19], the memristor can be used as
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a two–terminal nonlinear element substituting the usual nonlinearity

implemented by the Chua’s diode.

The same consideration hold for the canonical Chua’s oscillator: in

particular in [20], the Chua’s diode in the canonical Chua’s oscilla-

tor is replaced assuming for the memristor a piecewise-linear (PWL)

function:

ϕ(q) = bq +
1

2
(a− b)(|q + 1| − |q − 1|), (2.1)

or

q(ϕ) = dϕ+
1

2
(c− d)(|ϕ+ 1| − |ϕ− 1|). (2.2)

If at least one of the two slopes of the constitutive relations, a and b

for the charge–controlled memristor (or c and d for the flux–controlled

memristor), is negative then the memristor is active. Otherwise, the

memristor is passive. In this case, a negative resistance in parallel with

the memristor is needed to guarantee that at least one active device is

in the circuit, that is a well-known necessary condition for the onset of

chaotic dynamics.

There are other examples of memristor-based chaotic circuits that

assume an ideal characteristic for the memristor, in [21] it is shown that

a chaotic circuit can be obtained with only three elements: a capacitor,

an inductor and an active memristive system, whose memristance is

defined as R(x) = β(x2 − 1), while in [22] a memristor with a cubic

q − ϕ characteristic is considered.
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Concerning circuital implementations of memristor-based oscilla-

tors, several approaches based on the use of discrete-component circuits

mimicking ideal memristor features have been introduced. To this aim,

mutators [1], multipliers [22], micro-controllers [23] or Cellular Nonlin-

ear Networks [24] have been used.

Most of the memristor-based oscillators, assume ideal characteris-

tics of the memristor such as, for instance, cubic or PWL nonlinearities.

Here, we introduce a different approach. We start from the model of

the HP memristor ([4]) and not considered in the papers mentioned

above, and introduce a gallery of chaotic circuits exploiting this device

model. The HP memristor is a passive non-symmetrical element having

a nonlinearity different from that more frequently investigated (often

symmetrical), so that its use for chaotic circuit design is not trivial.

We show that using two HP memristors in antiparallel a symmetri-

cal nonlinearity can be recovered and suitably adapted to become the

nonlinear element of canonical topologies for chaos generation. We dis-

cuss such topologies and show the chaotic attractors obtained and the

bifurcation scenarios with respect to some constitutive parameters of

the memristor. The analysis of the i− v characteristics of the two HP

memristors in antiparallel is carried out by using the so-called Biolek’s

window function.
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2.2 The fundamental brick: two HP memristors in

antiparallel

We have already shown that, when the period of the input signal, ap-

plied to the memristor, is large with respect to the time scale of the

memristor dynamics, the internal state variable w may saturate to its

boundary values. If such input is applied to the HP memristor, then

a characteristic which is not symmetrical with respect to the applied

input appears, since for w = 0 the memristor shows a resistance equal

to ROFF , while for w = D the memristor shows a resistance equal to

RON . At the same time, this is the regime to which we are interested

to, since it represents a highly nonlinear behavior that can be exploited

to generate chaotic dynamics.

We now show that a symmetrical characteristic can be recovered by

connecting two memristors in antiparallel, i.e., with the two terminals

shortened but with opposite polarities (Fig. 2.1). In such configuration

the voltage across each memristor is equal to the voltage of the resulting

two-terminal device, v = vM1 = vM2, while the current is the sum of the

current through each memristor i = iM1 + iM2. Fig. 2.2 illustrates the

behavior of this configuration (we assume as in [14] ROFF/RON = 100

and use as in [4] normalized time units τ = t/t0 where t0 = D2/µv0 and

v0 = 1V ). A sinusoidal voltage input is applied to the HP memristor

model. The amplitude A = 10V and the frequency ω = 0.1rad/s are

such that the state variable w oscillates between its boundary values.

Fig. 2.2(a) shows the resistance of memristor 1, clearly exhibiting a
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non-symmetrical behavior. Fig. 2.2(b) shows the trend of the state

variables w1 and w2 associated to the two memristors (they oscillate at

opposite phases). A symmetrical behavior is obtained in the equivalent

resistance (Re =


1
R1(w1)

+ 1
R2(w2)

−1

), as shown in Fig. 2.2(c). The

same behavior can be observed in terms of pinched hysteresis. The

hysteresis curve of each of the two memristors is not symmetrical, but

when they are considered together the symmetry is recovered.

Fig. 2.3 shows the pinched hysteresis at different values of ω.

Fig. 2.3(a) represents the case when the input period is comparable

to the time scale of the memristor dynamics. If the frequency of the

applied voltage input increases, also in this case, the pinched hystere-

sis shrinks into a straight line as shown in Fig. 2.3(b). Figs. 2.3(c)

and 2.3(d) represent the case when the input period is larger with re-

spect to the time scale of the memristor dynamics. In particular, when

ω = 0.1 an highly nonlinear behavior is obtained, since the internal

state variable w saturates to its boundary values (zero and D). This is

clearly the most interesting case for the design of chaotic circuits. It is

worth noticing that in this latter case, even if the pinched hysteresis of

each memristor is not symmetrical, as shown in Fig. 1.4(d), when the

two HP memristors are considered together the symmetry is recovered.

This configuration will be used to design a series of nonlinear circuits

able to generate chaos starting from Chua’s oscillators and replacing

the Chua’s diode with two HP memristors in antiparallel. For this rea-

son it will be considered as the fundamental brick for the design of

chaotic circuits based on HP memristors.
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Fig. 2.1. Two memristors connected in antiparallel.
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Fig. 2.2. Behavior of two memristors in antiparallel when a sinusoidal input v(τ) =

10sin(0.1τ) is applied: (a) trend of R1/RON ; (b) trend of w1 (dashed line) and w2 (con-

tinuous line); (c) trend of Re/RON .
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Fig. 2.3. Behavior in the v−i plane of a configuration of two HP memristors in antiparallel

subjected to a sinusoidal input of amplitude A = 10V and frequency ω: (a) ω = 1; (b)

ω = 15; (c) ω = 0.5; (d) ω = 0.1.

2.3 The HP memristor-based Chua’s oscillator

In this section the chaotic oscillator, obtained starting from the Chua’s

oscillator by replacing the Chua’s diode with the parallel between a

negative conductance and the two HP memristors connected in the

configuration introduced in section 2.2, is described. The circuit, shown

in Fig 2.4, consists of eight elements, namely one inductor, two capaci-
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Fig. 2.4. HP memristor-based Chua’s oscillator.

tors, two resistors, a negative conductance and the two HP memristors

in antiparallel.

The circuit dynamics is described by the following set of differential

equations:



dvC1

dt
= 1

C1
(
vC2

−vC1

R
+GvC1 −

vC1

R1(w1)
− vC1

R2(w2)
)

dvC2

dt
= 1

C2
(
vC1

−vC2

R
− iL)

diL
dt

= 1
L
(vC2 − riL)

dw1

dt
= η1µRON

D
F (w1

D
)

vC1

R1(w1)

dw2

dt
= η2µRON

D
F (w2

D
)

vC1

R2(w2)

(2.3)

where

Ri(wi) = RON
wi

D
+ROFF (1−

wi

D
) (2.4)

and η1 = −η2 = 1.

We now consider the following scaling:

X = vC1/v0, Y = vC2/v0, Z = iL/i0,

W1 = w1/D, W2 = w2/D, τ = t/t0
(2.5)
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with

v0 = 1V, i0 = v0/RON , t0 = D2/µv0

C0 =
D2

µv0RON
, L0 =

D2RON

µv0

(2.6)

so that Eqs. (2.3) become:



dX
dτ

= C0

C1
(RON

R
Y − RON

R
X +GRONX − X

R̂1(W1)
− X

R̂2(W2)
)

dY
dτ

= C0

C2
(RON

R
X − RON

R
Y − Z)

dZ
dτ

= L0

L
(X − r

RON
Z)

dW1

dτ
= η1F (W1)

X

R̂1(W1)

dW2

dτ
= η2F (W2)

X

R̂2(W2)

(2.7)

where R̂i(Wi) = Wi +
ROFF

RON
(1−Wi).

We have taken into account the following typical values for the HP

memristor parameters: RON = 100Ω, ROFF/RON = 100, D = 10nm

and µ = 10−14cm2s−1v−1. This leads to i0 = 10mA and t0 = 10ms.

For such parameters, if we set C1

C0
= 0.2564, C2

C0
= 0.75, L

L0
= 0.2,

GRON = 0.6, R
RON

= 2.7 and r
RON

= 0.01, the circuit exhibits the

chaotic attractor shown in Fig. 2.5.

As it can be noticed in the rescaled Eqs. (2.7), the technological

parameters of the memristor (such as RON or µ) only affect the nor-

malization of the circuit components, with the unique exception of the

technological parameter β, defined as β = ROFF/RON . Hence, the dy-

namical behavior of the HP memristor-based Chua’s oscillator is now

studied with respect to this parameter. The bifurcation diagram with

respect to β and the corresponding Lyapunov spectrum are reported in
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Fig. 2.5. Chaotic attractor of the HP memristor-based Chua’s oscillator: (a) X − Y −Z,

and (b) Y − Z −W1 phase space.

Fig. 2.6. The bifurcation diagram has been obtained by plotting the lo-

cal maxima of the state variable Y . It can be observed that the chaotic

behavior of the circuit is preserved for a wide range of values of β.
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Fig. 2.6. (a) Bifurcation diagram and (b) Lyapunov spectrum of the HP memristor-based

Chua’s oscillator with respect to β. For sake of clarity the first three Lyapunov exponents

λ1 (in blue), λ2 (in green) and λ3 (in red) are only reported.
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The circuit exhibits a rich dynamical repertoire also when the other

circuital parameters (C1, C2, L or G) are changed. As an example of

the different dynamical behaviors generated by the circuit, we restrict

our analysis to changes in the parameter C2

C0
. The bifurcation diagram

and the corresponding Lyapunov spectrum with respect to this param-

eter are shown in Fig. 2.7. Windows of chaotic behaviors and periodic

behaviors appear in the bifurcation diagram as it is also evident from

the analysis of the Lyapunov spectrum.
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Fig. 2.7. (a) Bifurcation diagram and (b) Lyapunov spectrum of the HP memristor-based

Chua’s oscillator with respect to C2
C0

. For sake of clarity, the first three Lyapunov exponents

λ1 (in blue), λ2 (in green) and λ3 (in red) are only reported.

Following the approach described in [25], a realization of the HP

memristor-based Chua’s oscillator without inductor is obtained by ex-

ploiting the well-known Wien bridge configuration. The circuit, re-

ported in Fig. 2.8, consists of a resistor, a capacitor, a Wien bridge

circuit, and the nonlinear active element realized through a negative
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Fig. 2.8. A realization of the HP memristor-based Chua’s oscillator based on Wien bridge

configuration.

conductance in parallel to the two HP memristors. Applying the Kirch-

hoff’s laws to the circuit, we obtain the following set of differential

equations:



dvC1

dt
= 1

C1
(
vC2

−vC1

R
+GvC1 − vC1

R1(w1)
− vC1

R2(w2)
)

dvC2

dt
= 1

C2
(−vC3

R1
+ ( R3

R4R1
− 1

R2
)vC2 −

vC2
−vC1

R
)

dvC3

dt
= 1

C3
(−vC3

R1
+ R3

R4R1
vC2)

dw1

dt
= η1µRON

D
F (w1

D
)

vC1

R1(w1)

dw2

dt
= η2µRON

D
F (w2

D
)

vC1

R2(w2)

(2.8)

By applying the same scaling reported in Eqs.(2.5), Eqs. (2.8) can

be scaled as follows:



dX
dτ

= C0

C3
(RON

R
Y − RON

R
X +GRONX − X

R̂1(W1)
− X

R̂2(W2)
)

dY
dτ

= C0

C2
(−RON

R1
Z + (RONR3

R4R1
− RON

R2
)Y − RON

R
Y + RON

R
X)

dZ
dτ

= C0

C1
(−RON

R1
Z + RONR3

R4R1
Y )

dW1

dτ
= η1F (W1)

X

R̂1(W1)

dW2

dτ
= η2F (W2)

X

R̂2(W2)

(2.9)
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Fig. 2.9. HP memristor-based canonical Chua’s oscillator.

where we have assumed that the parameters have the same value of the

circuit in Fig. 2.4. The behavior of this circuit is perfectly analogous to

the HP memristor-based Chua’s oscillator, but the circuit avoids the

use of inductors.

2.4 The HP memristor-based canonical Chua’s

oscillator

The second nonlinear circuit presented in this thesis is derived from the

canonical Chua’s oscillator by replacing the nonlinear resistor with a

negative conductance in parallel to the two HP memristors. The circuit

is shown in Fig. 2.9 and is governed by the following equations:
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dvC1

dt
= 1

C1
(iL − vC1

R1(w1)
− vC1

R2(w2)
)

diL
dt

= 1
L
(vC2 − vC1)

dvC2

dt
= 1

C2
(GvC2 − iL)

dw1

dt
= η1µRON

D
F (w1

D
)

vC1

R1(w1)

dw2

dt
= η2µRON

D
F (w2

D
)

vC1

R2(w2)

(2.10)

By applying the scaling as in Eqs. (2.5), the following dimensionless

equations are obtained:



dX
dτ

= C0

C1
(Y − X

R̂1(W1)
− X

R̂2(W2)
)

dY
dτ

= L0

L
(Z −X)

dZ
dτ

= C0

C2
(−Y +GRONZ)

dW1

dτ
= η1F (W1)

X

R̂1(W1)

dW2

dτ
= η2F (W2)

X

R̂2(W2)

(2.11)

Also in this case, we have observed that the circuit is able to gener-

ate chaotic behavior for a wide range of the parameters. For instance, if

here the parameters of the HP memristor are chosen as in the previous

section and C1

C0
= 0.25, C2

C0
= 1/3, L

L0
= 1.6, GRON = 0.14, the chaotic

attractor shown in Fig. 2.10 is obtained. The behavior of the circuit

with respect to the technological parameter β is illustrated in Fig. 2.11.

Both the bifurcation diagram and the corresponding Lyapunov spec-

trum clearly indicate that the onset of chaos can be observed even in

presence of large variations of β from the value assumed in our simu-

lations.

Fig. 2.12 reports an example of the behavior of the circuit with re-

spect to one of the other circuit elements. In particular, the parameter
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Fig. 2.10. Chaotic attractor of the HP memristor-based canonical Chua’s oscillator: (a)

X − Y − Z, and (b) Y − Z −W1 phase space.
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Fig. 2.11. (a) Bifurcation diagram and (b) Lyapunov spectrum of the HP memristor-

based canonical Chua’s oscillator with respect to β. The first three Lyapunov exponents

λ1 (in blue), λ2 (in green) and λ3 (in red) are reported.

C1

C0
has been varied. The analysis of the bifurcation diagram, in accor-

dance with the corresponding Lyapunov spectrum, allows to assess the

presence of several windows of chaotic behavior and of limit cycles of

different periodicity.
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It is also interesting to note that the circuit shows a multistable

behavior in several regions of the parameter space, which is not evident

in the bifurcation diagram of Fig. 2.12, obtained for a fixed set of

initial conditions. To illustrate this, we have calculated the trajectory

of the system for different initial conditions. In particular, we restricted

our analysis to the hyperplane with Z(0) = 0.2, W1(0) = 0.1 and

W2(0) = 0.9, while we varied X(0) and Y (0). The result of this analysis

is summarized in the map shown in Fig. 2.13, where each point of

the color-coded map represents the number of different local maxima

found for the state variable Y calculated at the corresponding pair of

initial conditionX(0) and Y (0). Four distinct attractors coexist for this

set of parameters: the large green area indicates the chaotic attractor

reported in Fig. 2.10, while the areas in the different blue tones indicate

two limit cycle attractors (one of period-2 and one of period-3) and a

stable equilibrium point

0 0 0 0.09 0.97


.

2.5 The HP memristor-based hyperchaotic Chua’s

oscillator

The third example of HP memristor-based oscillators is derived by in-

troducing an additional inductor, indicated as L2, in the HP memristor-

based canonical Chua’s oscillator discussed in Section 2.4. L2 is intro-

duced in parallel to the negative conductance G, so that the circuit

shown in Fig. 2.14 is obtained.

The equations governing the circuit are the following:
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based canonical Chua’s oscillator with respect to C1
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Fig. 2.13. Color-coded map of the HP memristor-based canonical Chua’s circuit with

respect to different initial conditions X(0) and Y (0) (with Z(0) = 0.2, W1(0) = 0.1 and

W2(0) = 0.9), illustrating one example of multistability in the circuit.
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Fig. 2.14. HP memristor-based hyperchaotic Chua’s oscillator.



dvC1

dt
= 1

C1
(iL1 −

vC1

R1(w1)
− vC1

R2(w2)
)

dvC2

dt
= 1

C2
(GvC2 − iL1 − iL2)

diL1

dt
= 1

L1
(−vC1 + vC2 −RiL1)

diL2

dt
= 1

L2
vC2

dw1

dt
= η1µRON

D
F (w1

D
)

vC1

R1(w1)

dw2

dt
= η2µRON

D
F (w2

D
)

vC1

R2(w2)

(2.12)

Eqs. (2.12) can be scaled according to the scaling reported in

Eqs.(2.5), with the additional dimensionless variable Ω = iL2/i0, as

follows:



dX
dτ

= C0

C1
(Z − X

R̂1(W1)
− X

R̂2(W2)
)

dY
dτ

= C0

C2
(GRONY − Z −Ω)

dZ
dτ

= L0

L1
(−X + Y − R

RON
Z)

dΩ
dτ

= L0

L2
Y

dW1

dτ
= η1F (W1)

X

R̂1(W1)

dW2

dτ
= η2F (W2)

X

R̂2(W2)

(2.13)
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We notice that system (2.12) is able to show a transition from torus

to chaos and, then, to hyperchaos when the bifurcation parameter is L2

L0
.

In fact, for the parameter values reported in Fig. 2.15, different attrac-

tors can be observed for increasing values of L2

L0
: a torus (Figs. 2.15(a)

and 2.15(b)); a chaotic attractor (Fig. 2.15(c)) and an hyperchaotic

attractor (2.15(d)). The complete scenario with respect to changes in

the parameter L2

L0
is illustrated in Fig. 2.16, which allows to detect the

transition from torus to chaos occurring approximately at L2

L0
≃ 1.9 and

that from chaos to hyperchaos at L2

L0
≃ 3.2.

The analysis of the behavior of the system when the technological

parameter β is varied has been carried out by considering the circuit

in the hyperchaotic region (i.e. L2

L0
= 3.6). The bifurcation diagram and

the Lyapunov spectrum shown in Fig. 2.17 allow to conclude that the

hyperchaos can be obtained in the interval β ∈ [88 ÷ 194], whereas

outside this interval either chaos or periodic behavior appears.

2.6 The driven HP memristor based chaotic circuit

The circuit proposed by Murali, Lakshmanan and Chua [26], in the fol-

lowing referred to as the MLC circuit, is a dissipative non-autonomous

circuit, made by an inductor, a capacitor, a resistor and a Chua’s diode.

In this circuit the nonlinearity is modeled with a three-segment charac-

teristic. The circuit is driven by an external sinusoidal signal of ampli-

tude A and frequency ω. By varying the amplitude of the forcing signal,

the circuit exhibits a variety of dynamical behaviors, from limit cycle
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Fig. 2.15. Attractors of the HP memristor-based hyperchaotic Chua’s oscillator in the

Y − Z − Ω phase space. Parameter values are C1
C0

= 0.25, C2
C0

= 1/3, L1
L0

= 1.6, GRON =

0.192, and (a) L2
L0

= 1.3 (torus), (b) L2
L0

= 2.8 (torus), (c) L2
L0

= 3.2 (chaos), and (d)

L2
L0

= 3.6 (hyperchaos).

to chaotic attractors. A memristive MLC circuit built by substituting

the Chua’s diode with a PWL flux controlled memristor has been pro-

posed in [27] and, recently, this system has been modeled as a piecewise

smooth system of second order with two discontinuous boundaries and

deeply numerically studied by Ishaq Ahamed and Lakshmanan [28],

who have shown that it exhibits a wide range of chaotic behaviors in-
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Fig. 2.16. (a) Bifurcation diagram and (b) Lyapunov spectrum with respect to L2
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. For

sake of clarity the first three Lyapunov exponents λ1 (in blue), λ2 (in green) and λ3 (in
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Fig. 2.17. (a) Bifurcation diagram and (b) Lyapunov spectrum of the HP memristor-

based hyperchaotic canonical Chua’s oscillator with respect to β. For sake of clarity the

first four Lyapunov exponents λ1 (in blue), λ2 (in green), λ3 (in red) and λ4 (in cyan) are

only reported.
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cluding transient hyperchaos and hyperchaotic beats. In this work we

want to realize a non-autonomous chaotic circuit using a different model

for the memristor, that is, a model adopted to mimic the behavior of

the real memristor realized in the HP laboratories.

Starting from the MLC topology, we show how a new driven mem-

ristive chaotic circuit can be obtained by replacing the Chua’s diode

with our fundamental brick in parallel with a negative resistor. The

proposed chaotic circuit is shown in Fig. 2.18.

Fig. 2.18. The non-autonomous memristive chaotic circuit.

The circuit dynamics is described by the following set of differential

equations:



dvC
dt

= 1
C
(iL − vC

R1(w1)
− vC

R2(w2)
+GvC)

diL
dt

= 1
L
(−riL − vC + A sinωt)

dw1

dt
= η1µRON

D
F (w1

D
) vC
R1(w1)

dw2

dt
= η2µRON

D
F (w2

D
) vC
R2(w2)

(2.14)

where A and ω are the amplitude and the frequency of the external

signal.
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A dimensionless form of Eqs. (2.14) is derived by considering the

same scaling proposed for the previous circuits:



dX
dτ

= C0

C
(Y − X

R̂1(W1)
− X

R̂2(W2)
+GRONX)

dY
dτ

L0

L
(− R

RON
Y −X + A sinωt)

dW1

dτ
= η1F (W1)

X

R̂1(W1)

dW2

dτ
= η2F (W2)

X

R̂2(W2)

(2.15)

Eqs. (2.15) have been widely investigated through numerical simu-

lations with different values of the parameters. Chaos is obtained for

different sets of parameters. Two examples of chaotic attractors are

reported in Fig. 2.19, showing the projection of the attractors on the

X−Y plane, obtained fixing the following set of parameters: C
C0

= 0.8,

L
L0

= 0.44, GRON = 0.7, R
RON

= 1.8, and changing the value of the

amplitude A and of the frequency ω of the input signal.

A more comprehensive picture of the behavior of the circuit as a

function of the parameters of the input signal is shown in Fig. 2.20.

Each point of the bifurcation map is a color coded representation of the

number of different local maxima for the state variableX corresponding

to a pair of values (A, ω). The map allows to visualize periodic behavior

along with their periodicity and chaotic behavior which corresponds to

points with a high number of different local maxima. In the map, colors

towards red correspond to higher values of this number, thus coding for

chaotic behavior. Simulations have been performed by considering fixed

initial conditions (X(0) = 0.1, Y (0) = 0.4,W1(0) = 0.1,W2(0) = 0.2)

for each pair of values (A, ω).
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Fig. 2.19. Chaotic behavior of the non-autonomous memristive circuit driven by a sinu-

soidal signal with different parameters: (a-b) ω = 0.4, A = 2.4,(c-d) ω = 0.86, A = 3.3.

(a,c) Projection of the attractor on the X − Y plane. (b,d) Trend of the state variable

X(t). The other parameters of the circuit are fixed to C
C0

= 0.8, L
L0

= 0.44, GRON = 0.7,

R
RON

= 1.8.

Different windows of chaotic behaviors appears as one of the pa-

rameters (either A or ω) is fixed and the other is changed. To better

illustrate an example of this, we considered a section of the map ob-

tained for ω = 0.54 and reported in Fig. 2.21 the bifurcation diagram
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with respect to the parameter A. Windows of chaotic behaviors alter-

nated to windows of periodic behaviors can be observed.

We also carried out an analysis of the behavior of the circuit when

the other parameters (C,L,G,R) are changed. From the bifurcation

diagrams with respect to these parameters, we found that different

chaotic regions can be obtained, eventually by tuning the values of the

amplitude and frequency of the input signal.

ω

A

0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

4

5

Fig. 2.20. Color-coded map of the driven memristive circuit with respect to the two

parameters A and ω.

In this Chapter, we have considered the problem of designing

memristor-based chaotic circuits under the assumption that the dy-

namics of the memristor is given by the physical model introduced in

[4]. This model has been successfully used to capture the characteristics

of the TiO2 memristor fabricated in the HP laboratories, but is quite

different from other ideal curves often used in memristor-based oscil-

lators. We demonstrated that, if two such memristors are used in an
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Fig. 2.21. Bifurcation diagram with respect to the amplitude A of the applied input

signal.

antiparallel configuration, a symmetrical nonlinearity can be obtained

and suitably used in chaotic circuit topologies such as the Chua’s os-

cillator and the canonical Chua’s oscillator.

We presented a gallery of nonlinear circuits derived from Chua’s

oscillators, including the MLC circuit, by replacing Chua’s diodes with

two HP memristors in antiparallel.

All the topologies investigated have a rich dynamic behavior as

shown by the examples of attractors reported and by the numerical

bifurcation diagrams and maps presented. Furthermore, an important

analysis has been carried out with respect to one constitutive parameter

of the memristor, β, in view of implementations based on real devices

which may have parameters different from process to process. The con-

clusion is that very often the chaotic behavior is preserved when this

parameter is varied. The results also demonstrate that the topologies

investigated are paradigmatic not only in the sense that they can be
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used to generate a wide spectrum of chaotic attractors and nonlinear

behaviors, but also because the Chua’s diode can be easily substituted

by physical models of real devices.





3

Experimental characterization of

memristors

The memristor performance is influenced by the fabrication

technique and by the materials used, for the electrodes and

the switching layer, both important to create a cost-effective

device. For this reason new materials and techniques for mem-

ristor are currently explored. In this chapter the steps process

in the fabrication of the memristor, and the characterization

of the devices, will be discussed.

3.1 Introduction

The typical memristor has a simple structure, consisting of a switching

layer interposed between two electrodes. The important characteristic

of the device is the hysteretic behavior that has been attributed to the

movement of the oxygen vacancies.

After the first physical realization of the memristor in HP labs, the

titanium dioxide, TiO2 has become the most used switching material

for the fabrication of the memristors. Due to the variety of applications
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and to the great interest raised by these new generation devices, other

materials and methods for its fabrication have been explored.

Currently, there are few known methods for the fabrication of the

memristor. The most widely used are the nano-imprint lithography

(NIL) and atomic layer deposition (ALD), both of these processes re-

quire annealing step at high temperature, and are very expensive. Re-

cently new methods, typical of the printing industry, such as screen

printing or ink-jet printing, have been investigated for the realization

of these devices. In the memristive device proposed in [5] the plat-

inum electrodes were deposited by electron-beam evaporation at room

temperature and the TiO2 films were fabricated either by sputter de-

position or atomic layer deposition (ALD) methods.

In [29] the fabrication of memristor device (Ag/T iO2/Cu) is re-

ported, the electrodes, bottom and top, and the active layer, were pat-

terned using the electrohydrodynamic (EHD) printing technique. EHD

jet printing is a method of creates patterns directly to the surface of

a substrate without lithography, using electric field energy to eject the

liquid from the nozzle.

A breakthrough in the memristors manufacturing was the fabrica-

tion of a device by spinning a titanium isopropoxide solution on the

flexible plastic substrate [30]. This process is less expensive, in fact it

requires no annealing to form the active layer and the deposition of

the electrodes is made by thermal evaporation through shadow mask.

Choi et al. in [31] proposed the fabrication of memristive device with

a zinc oxide layer between two silver electrodes, using EHD printing
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technology for electrodes deposition and spin coating for the active

layer.

Other switching materials have been used as active layer for the

memristors. For example tantalum oxide TaOx memristors have demon-

strated superior endurance with respect to other nanoscale devices in

terms of write/erase switching cycles and high switching speed [32].

Different behaviors have been obtained also by changing the thickness

or the materials for the electrodes fabrication, for example by using

silver, aluminium or copper instead of platinum used in the HP mem-

ristor [33], or by using glass and ITO-glass as substrate for the device

[34].

In this chapter the results of the characterization of two different

types of memristor will be presented. The first device is a printed mem-

ristor, that has been realized within the framework of the FP7 APOS-

TILLE project. The second memristor is a drop-coated Al−TiO2−Al

memristor realized at University of West England, Bristol.

3.2 Printed memristors

The aim of this Section is to illustrate the study and the issues re-

lated to the realization of an organic memristive device with a printed

technology, in particular the results obtained in collaboration with the

Faculty of Technical Sciences (FTS) of Novi Sad, Serbia.

Initial attempts were performed in order to analyze the suitable sub-

strates, materials and the methods for the characterization of the mem-
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ristive device. Three different types of substrate have been analyzed:

glass, ITO-glass and Kapton foil, cleaned by absolute ethanol. For the

electrodes the silver ink, ink-jet printed by using a piezoelectric, drop

on demand, ink-jet printer, has been used. The substrate used for the

first experiments was a square of Kapton with a thickness of 50µm. De-

position and patterning were performed with ink-jet Fujifilm Dimatix

DMP 3000 (Fig. 3.1(a)), a fluid deposition system for printing different

functional fluids. A cartridge of 16 nozzle printhead with a capacity of

1.5mL has been used. The printhead and the substrate were placed on

the platen and, after that, the software initialization was performed.

By a pattern editor the user can create or modify the drop pattern for

printing. In our case simple patterns were created, usually square or

rectangular patterns of different dimensions.

Before each printing session, depending on the result of the drop

watcher testing (Fig. 3.1(b)), some cleaning cycles were run, for exam-

ple purge cycle, to force air out of the fluid path and to clear several

clogged nozzles, blot cycle, to remove excess fluid from the nozzles plate

bringing an absorbent medium in close proximity of the nozzles plate,

or a flush cycle, similar to the purge but with longer duration. The sub-

strate temperature was maintained constant during the ink-jet printing

process resulting in better surface properties and film uniformity. Ink-

jetting conditions were optimized to obtain a highly conductive layer

by controlling the waveform voltage, the cartridge temperature, the ink

drop velocity and the fire frequency considering silver ink properties.

The drop formation characteristics of the ink were studied by means
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of built-in stroboscopic camera and interaction with substrate was ob-

served by an optical microscope. During the preliminary testing period

the optimal printing conditions were defined. With the drop watcher

camera system the users can view directly the jetting nozzles, in par-

ticular the jetting of the fluid. In this way the users can turn off the

blocked nozzles, the jetting of the fluid is controlled by adjusting the

voltage of the single nozzle (deforming the piezoelectric actuator) in

order to change the drop velocity.

The drop watcher also allows to have images with drops frozen in

flight, so that the voltage amplitude, firing frequency and waveforms

may be selected to optimize the printing quality. Meniscus pressure

control, the low level vacuum which is applied to the ink reservoir

to prevent ink from flowing out of the cartridge nozzle, could also be

changed depending on the properties of the used ink. The voltage wave-

form can be changed by the user by setting some parameters such as

the slew rate, the pulse amplitude or the pulse duration to reach the

best performance.

The number of activated nozzles influences the duration of the print-

ing process. The duration of the printing process is also influenced by

the position and the form of the pattern to be printed, because the

printhead moves only in vertical direction during printing, so vertically

lines would be printed more rapidly and more accurately than horizon-

tal ones.

A SunTronic U5603 ink, which has a silver content of 20wt%, was

used. This ink is especially designed for piezoelectric ink-jet print-
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(a) (b)

Fig. 3.1. (a) The ink-jet Fujifilm Dimatix DMP 3000, and (b) an image from the drop

watcher .

ing. The average diameter of the silver nanoparticles is approximately

20nm. The silver ink were loaded into a syringe and after that the car-

tridge was filled, without filtering. The silver ink was printed with a

drop velocity of about 7m/s and a drop spacing (from center to center)

of 25µm. These two parameters determine thickness and width of the

silver electrodes. After the gate electrode was printed, the substrate

was annealed at 200◦C for 30 min in a convection oven. The material

used for the fabrication of the active layer of the memristor is titanium

dioxide. Titanium dioxide (TiO2) is a semiconductor, and in its pure

state it is highly resistive. The Degussa P25 titania is bought in form of

nanopowder. From these powders there is not yet standard technique

to create an ink suitable for Dimatix printing. Aqueous TiO2 colloid

prepared by the hydrolysis of titanium butoxide was used. A colloid

containing 60g/L TiO2 solid was obtained. The TiO2 colloidal ink was
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finally formed by dissolving 1.8%(w/w) of carbowax into the above

TiO2 colloid [35].

An important parameter that must be selected is the concentration

of the TiO2 ink. A too high TiO2 concentration blocks the printer

nozzle easily and may lead to the aggregation of TiO2 nanoparticles.

The realized ink was then tested and the distribution of the particle

size was measured.

A major problem of the TiO2 powders is the big size of the parti-

cles. The presence of the big particles may cause two problems: they

can clog up the nozzles, because these particles don’t pass through the

nozzles; even not blocked nozzles act as a filter for the big particles,

thus resulting in an ink with a lower real concentration. The problem

can be resolved using a filter before filling the cartridge. Suspensions

containing different volumes of titanium dioxide powder dispersed in

distilled water were prepared, only the one containing a 60g/L of TiO2

was suitable for printing. During the first printing of titanium dioxide

an ink with too low concentration was produced, the printed region

showed that the particles are not well dissolved in the solution. Print-

ing was repeated up to 4 times to obtain different thicknesses of the

resulting TiO2 layers. The TiO2 ink has a pH equal to 7; after a week

the same ink previously analyzed was more stable.

The titanium dioxide layer after deposition was heated in vacuum

at temperature of 300◦C, with a pressure of 1.2mbar for an hour. This

process could create a layer with a different concentration of oxygen

vacancy. After this process the TiO2 layer became brown. Another layer
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of TiO2 was then printed on top of the previous one. The device was

let about 30 minutes to oxygen in air. The second silver electrode was

then deposited on the titanium layer and heated following the same

procedure of the first electrode.

Different devices were created with the same procedure, by chang-

ing the area of the electrodes or the time and the temperature of the

heating process. The characterization of these devices have shown no

memristive properties, due to the fact that the active layer was prob-

ably formed without the desired gradient of oxygen vacancy. To over-

come the problem occurred in the creation of the active layer the final

device was fabricated at LTP/EPFL, where the TiO2 was heated under

controlled conditions.

The memristor consists of three layers as shown in Fig. 3.2: a sub-

strate (ITO glass), an active layer (thin TiO2 film) and a top silver

electrode.

Memristors have been fabricated using the Fujifilm Dimatix DMP

3000 ink-jet printer on commercial indium tin oxide coated glass sub-

strate (703184 Sigma-Aldrich) with surface resistivity of 30-60 Ω/sq.

For the active layer a TiO2 ink is used, synthesized at LTP/EPFL labs.

The layer of TiO2 ink was deposited with printing frequency of 1kHz,

piezoelement actuation amplitude of 26V and drop spacing resolution

of 20µm, with the Fujifilm Dimatix DMP 3000 ink-jet printer at room

temperature. Reduced layer containing oxygen vacancies was created

by heating TiO2 layer in nitrogen atmosphere for 6h with maximum

temperature of 200◦C . Afterwards top Ag electrode (SunTronic U5603
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ink) was printed with 25µm drop spacing resolution and platen tem-

perature of 60◦C in order to avoid unwanted spreading of silver layer

and sintered for 45min at 200◦C for degradation of organic coating over

silver nanoparticles. A detailed discussion on the device fabrication and

physical characterization is reported in [36] [37].

Fig. 3.2. Scheme of the T iO2 printed memristor.

3.3 Drop-coated memristor

The second type of memristive device was realized at the University of

the West of England, Bristol, in the group of Prof. Adamatzky and Dr.

Gale, and the details of the fabrication process are reported in [33]. The

memristor has a structure of Al − TiO2 − Al, the sol-gel preparation

is based on [30], and the aluminium electrodes were sputter-coated on

PET substrate.

Despite other more expensive techniques for the fabrication of the

active layer, the drop coated memristor was created with simple steps,
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and without the forming step. In fact, the drop coated memristor nat-

urally has a region with oxygen vacancies.

The area of the resulting device is 16mm2, and the electrodes of

width of 4mm are crossed at 90◦C each other. The top and bottom

electrodes were realized by sputtering aluminium on plastic substrate

via a mask; the sol-gel solution was spun at 33r/s for 60s and left for

an hour to hydrolyze, before the deposition of the second electrode.

Three different types of memristor have been realized, by changing

the material used for the electrodes: in particular those with bottom

and top electrodes made with gold, those with the bottom electrode

of aluminium and the top made of gold, and those with aluminium for

both electrodes. The memristors have been labeled as R series if were

left in clean room to hydrolyze, V series if they were put in vacuum, D

series if were hydrolyzed under vacuum and the size of the top electrode

is varied from 1mm to 5mm.

The memristors with gold electrodes, instead of aluminium, have

shown ohmic low resistance, the mixed one, when gold is the anode

or when aluminium is the anode. In both cases they have shown bad

memristive properties. So that the aluminium electrodes are important

for the memristive behavior, also in terms of repeatability and stability

of the memristive behavior. All the memristor devices can be grouped

based on their behavior and on their current range, into two groups,

type A or curved, and type B or triangular i− v profiles.
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In the following Section the characterization of the two types of

memristor, the printed memristor and the drop coated memristor with

aluminium electrodes is discussed.

3.4 Experimental characterization

The characterization of the memristive devices has been performed in

two different ways, by measuring the current with the Keithley 2602

sourcemeter, or by using the circuital scheme reported in Fig. 3.3.

For the measurement of the v − i characteristic of the device with

the circuital scheme in Fig. 3.3, a sine waveform with low frequency,

in the order of magnitude of Hz, and an amplitude of 1V was applied

to the device; the value of the resistor used for the measurement of the

current flowing through the device was varied from 1Ω to 1kΩ.

Fig. 3.3. Circuit for the measurement of the v − i characteristics of the memristor.

For a more systematic analysis the sourcemeter has been used. It

was set in order to run a voltage sweep from 0V to V + (the higher
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value of the voltage applied on the device), from V + to 0V , from 0V

to V − (the lower value of the voltage applied) and from V − to 0V .

For the tests, we have acquired from 20 to 50 points (typically 50) in

each of the four curves; the amplitude of the voltage applied is different

for all the devices analyzed, usually in the range [-1,1], or [-2.5,2.5].

Only in a specific case we have tested the memristor with V + = 9.5

and V − = −9.5.

3.4.1 Characterization of the printed memristors

In order to investigate the behavior of the printed memristors different

experiments have been done. For each device a set of v−imeasurements

has been performed, in particular by varying the amplitude of the volt-

age applied across the device, the number of acquired points, and the

settling time, that is, the delay period after which the measurement is

made.

Some of the devices analyzed have been found to be short circuited,

other ones instead of the pinched hysteresis loop exhibited a very low

current and a straight line profile. For the samples with memristive

behavior, the amplitude of the voltage was set to V + = 1 and V − = −1,

the settling time was varied from 0.01s to 2s, the number of points in

each sweep was varied from 20 to 50 (from 80 to 200 points for each

hysteresis loop).

For all measurements the test script builder, an application to com-

municate with Keithley products, has been used.
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Fig. 3.4. (a) A photo of an array of eight T iO2 printed memristor on glass, labeled as

2.1, 2.2, . . . , 2.8, and (b) two pinched hysteresis loops of the device 2.1.

In Fig. 3.4 the device and the v−i characteristics of one of the mem-

ristor analyzed are reported. The same device shows different pinched

hysteresis loops (Fig. 3.4(b)), the memristor changes its state during

the measurements.

The second group of memristors, reported in Fig. 3.5(a), was tested

with a voltage sweep with V + = 9.5V and V − = −9.5V . An example of

the resulting characteristics is reported in Fig. 3.5, obtained at different

times with the same memristor.

3.4.2 Characterization of the drop coated memristors

The drop coated memristors have been characterized by using the same

protocol of the printed memristors. In Fig. 3.6 two pinched hysteresis

loops of the R32 memristor are reported. This device has been char-

acterized with V + = 2.5 and V − = −2.5. The behavior of another

memristor, R37, is reported in Fig. 3.7.
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Fig. 3.5. (a) A photo of an array of four T iO2 printed memristors on ITO-glass, labeled

as device 3.1, 3.2, 3.3, 3.4; (b) two pinched hysteresis loops of the 3.1 memristor.
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Fig. 3.6. An example of v − i characteristic for the drop coated memristor R32.
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Fig. 3.7. The v − i characteristic for the drop coated memristor R37.
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3.5 A data driven model of T iO2 printed

memristors

After the fabrication of several devices showing memristive switching

behavior, recently a growing interest to the realization of dynamical

nonlinear circuits based on memristors has been manifested. Currently,

many memristor circuits have been mostly conceived on the basis of

theoretical memristor models. However, in order to analyze the dy-

namical behavior of memristor circuits with real components and to

implement them, the characteristics of the fabricated devices have to

be included in the models used. To this aim, we have proposed a com-

pact data-driven model. The model is based on neural networks and is

derived starting from experimental measurements performed on printed

TiO2 memristors.

For the applications of memristors currently under investigations,

the availability of models of the device behaviors and CAD tools is

fundamental, since many properties of memristors-based systems, ar-

chitectures and solutions have to be tuned taking into account the

peculiarities of these new devices. Given the variety of techniques and

materials employed for their fabrication, the number of models devel-

oped is also large. The basic model explaining memristive behavior

is the linear drift model [4], already discussed in details in Chapter 1.

The model has been then extended to include nonlinear drift in [13, 14].

However, a fully detailed description of the physical effects that con-

trol memristor switching requires more complex models including the
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types of transport and dynamics occurring in the device. To this aim

the physics based models described in Section 1.3 were developed [15].

Starting from the analysis of the printed memristors (see Section

3.2), a neural networks based model, able to reproduce the i− v char-

acteristics experimentally observed, is proposed. The model is derived

starting from an experimental campaign of measurements and using

the data to train a neural network. The methodology is however inde-

pendent of the fabrication technology.

3.5.1 Analysis and results

The device was tested by using a Keithley 2602 programmable sourceme-

ter. The measurements used for the model were performed by applying

a voltage sweep from −9.5V to 9.5V , and viceversa, with step size of

0.2V and a settling time equal to 0.1s to the terminals of the device,

and recording the current through the device. After that, the i − v

curve is plotted. The method allows to recover the main feature of the

memristive behavior, that is, an hysteresis pinched loop in the i − v

plane.

Fig. 3.8 reports three hysteresis cycles, obtained at different times

but under the same nominal working conditions. Despite the qualita-

tively similar behavior, the area of the hysteresis is different in the three

cases and in one of them a large peak in the response is observed.

Furthermore, a significant variability of the device response which

may be due to the technology used for memristor fabrication, still at
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Fig. 3.8. Experimental results. Three different pinched hysteresis loops under nominally

equal initial conditions are shown in (a), (b) and (c).

an early stage, and that our neural networks based model is able to

capture, has been observed.

The tests have been repeated several times (up to 20-30 different

trials) on the same device and on different devices. The same behav-

ior has been found for all the trials and devices tested. We also note

that peaks in the response of memristors have been recorded in other

independent experiments [39].
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We have first compared the results of our experimental characteriza-

tion with a model fit based on the nonlinear drift model proposed in [4],

including different window functions [14, 13], but we have found that

these models do not accurately describe the i− v characteristics of our

memristor, and, in particular, the great variability of the experimental

behavior under nominally identical conditions. For this reason, we have

developed a simple data-driven model based on neural networks.
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Fig. 3.9. Data used for training: (a) input (waveform of the voltage applied to the mem-

ristor); (b) output (waveform of the memristor current).

Due to the characteristics of the memristors, the most appropri-

ate assumption for the model is to consider a NARMAX (nonlinear

autoregressive moving average with exogenous inputs) model. Consid-

ering the applied voltage on the memristor as the input, u(t) ∈ R, and

the current as the output, y(t) ∈ R, and indicating as n the system

order, the NARMAX model is described by:
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y(tk) = f(y(tk−1), ..., y(tk−n), u(tk), ..., u(tk−n)) (3.1)

where tk− tk−1 = ∆T is the sampling time. The NARMAX model con-

sidered here is based on one hidden layer multilayer perceptron trained

by using the Levenberg-Marquardt algorithm with early stopping strat-

egy to avoid overlearning [40].

The first phase in model derivation dealt with the acquisition of the

appropriate measures for learning and validating the model. We run

a campaign of measurements devoted to acquire the response of the

memristor to the input waveform shown in Fig. 3.9(a). The response of

the memristor to this waveform is also shown in Fig. 3.9(b). Additional

data (used for validation) are the hysteresis pinched loops reported in

Fig. 3.8. All data used for model derivation have been normalized to

be in the range of [−1, 1].

The data have been divided into data for learning, for test and for

validation. The data reported in Fig. 3.9 have been used for the training

phase (70% for learning, 15% for testing and 15% for validation). Data

have been first shuffled so that their order is randomized.

Based on the a priori knowledge on the memristor dynamics and

previously reported models, the system order was fixed as n = 1, while

the number of units in the hidden layer was determined by using a trial

and error strategy. After this, a structure with 5 hidden neurons has

been selected as the one showing the best results.

After training, a further validation was carried out on the set of data,

most significant from the point of view of memristor analysis, that is,

the series of pinched hysteresis loops of Fig. 3.8(a)-3.8(c). The main re-
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sults of this validation step are shown in Fig. 3.10, which demonstrates

how the obtained neural network is able to reproduce the variability

in the hysteresis loop of the device. In particular, the neural network

based model is able to fit the hysteresis loops in Fig. 3.10(a)-3.10(c)

which correspond to the experimental data reported in Fig. 3.8(a)-

3.8(c). This shows how the variability can be explained by taking into

account the different initial condition of the memristor internal state.
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Fig. 3.10. Pinched hysteresis loop obtained by the neural networks based model.



3.6 An hybrid chaotic circuit based on memristor 69

3.6 An hybrid chaotic circuit based on memristor

The circuits discussed in Chapter 2 are all based on a configuration

of two memristors in antiparallel. The idea, illustrated here and orig-

inating from the experimental approach for characterization discussed

in the previous Sections, is to realize a chaotic system exploiting the

nonlinearity of only one memristor with a very simple experimental

setup.

As previously mentioned the characterization is performed by us-

ing a Keithley 2602 programmable sourcemeter. Measurements are

performed by applying a voltage waveform and recording the current

through the device (usually, a sinusoidal input to recover the hysteresis

pinched loop in the i − v plane, or pulse functions to investigate the

time response of the memristor). Looking more in detail at the voltage

waveform applied to the memristor through the sourcemeter, this is

a sweep of steps of programmable amplitude and duration. The mea-

surement is then made at each step after a specified delay period (the

sampling time ∆T ). We used steps with fixed duration, so that the ap-

plied waveform is a continuous-time signal generated by the conversion

of a discrete-time signal through a zero-order hold.

We have investigated the effect of establishing a relationship between

the measured current and the next sample of the applied voltage signal,

that is, we drive the memristor on the basis of the current flowing

through it. This is particularly simple to realize since it only requires

a memristor and a programmable sourcemeter.
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Fig. 3.11. The memristor based hybrid circuit.

The scheme adopted is illustrated in Fig. 3.11, where v(t) indicates

the voltage applied to the memristor, that is, an ADC converted signal.

The current of the memristor, indicated with i(t), is sampled into a

sequence of samples ih. Each sample ih is used to generate the next

voltage sample vh+1 through the relation:

vh+1 = 1− kih (3.2)

where k is a constant parameter. The sequence of samples vh is con-

verted into the analog signal v(t) through the zero-order hold (ZOH),

so that:

v(t) = vh, th ≤ t < th+1 (3.3)

with th = h∆T . The sampling of i(t) occurs immediately before the

sweep of the voltage from vh to vh+1, that is, ih = i(t)|t=t−h+1
. The

sampler, the processor implementing Eq. (3.2) and the ZOH are all
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implemented in the sourcemeter. We notice that Eq. (3.2) are linear,

so that the only nonlinearity in the system is given by the memristor.

We first discuss numerical results, obtained by substituting the

memristor with its constitutive equations according to the model in

Eqs. (1.7). The resulting scheme is shown in Fig. 3.12.

Fig. 3.12. Scheme used for numerical analysis of the memristor based hybrid circuit.

We have analyzed the system with respect to the parameters k and β

and we have found that there are several regions in the parameter space

for which chaotic behavior arises. An example is reported in Fig. 3.13

where the time evolution of the variables v(t), w(t) and i(t) are shown

for k = 10 and β = 100. In Fig. 3.14 the bifurcation diagram with

respect to k (for β = 100) is illustrated, it shows alternating regions of

periodic behavior and chaos. The bifurcation diagram with respect to

β is reported in Fig. 3.15 (for k = 10), showing how chaos is preserved

for a wide range of values of the constitutive parameter β. Since β

may vary in real memristors due to technology, fabrication process and
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device characteristics, the robustness with respect to this parameter is

particularly significant.
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Fig. 3.13. Trend of voltage, current and doped region width of the memristor based

hybrid system for k = 10 and β = 100.

Fig. 3.14. Bifurcation diagram of the memristor based hybrid system with respect to k

(β = 100).

Experimental results have been obtained by using the scheme of

Fig. 3.11 and the printed TiO2. The time evolution of i(t) and v(t) for

k = 3000 is reported in Fig. 3.16.
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Fig. 3.15. Bifurcation diagram of the memristor based hybrid system with respect to β

(k = 10).

We observe that the numerical results have been obtained with a

rescaled set of equations, so that, during experimental tests the value of

k has been rescaled. We notice that experiments confirm the irregularity

of the behavior of the hybrid circuit and therefore the suitability of

this simple approach to generate chaos. However, the appearance in

the experiments of peaks not observed in simulations indicates that

the simplified mathematical model of Eqs. (1.7) is able to capture the

general behavior of the system, but not the details of the waveforms

observed in the experiments.
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Fig. 3.16. Experimental results: time evolution of current and voltage in the memristor

based hybrid circuit for k = 3000.
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Complex networks





4

Remote synchronization

In the second part of the thesis we have focused on complex

networks and, in particular, on the study of remote synchro-

nization in complex networks. Remote synchronization is a

new kind of synchronization that was found in star-like mo-

tifs of coupled periodic oscillators, where the central hub is

characterized by a frequency mismatch with the peripheral

nodes of the network. In such network a regime, in which the

peripheral nodes are synchronized while the hub is not, has

been numerically and experimentally observed. We show here

that remote synchronization is quite common in Erdős-Rényi

and scale-free networks. Although a straightforward general-

ization of the remote synchronization appearing in star-like

networks can be observed in networks having a structure

where star-like motifs are abundant, the phenomenon is more

general as RS links commonly appear in networks with arbi-

trary structures. In such more general cases we have found

either a single node that remotely synchronizes with another
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node or an entire community of synchronized nodes that re-

motely synchronizes with another community of synchronized

nodes. Furthermore, the passage of information needed for

remote synchronization occurs either through hubs or low-

degree nodes.

4.1 Introduction

Synchronization constitutes one of the most paradigmatic examples of

emergence of collective behavior in natural, social and man-made sys-

tems [41, 42, 43]. Its ubiquity relies on the general framework in which

it occurs: the interaction between two or more nonidentical dynamical

units that, as a consequence, adjust a given property of their motion.

As coupling between units increases, synchronization shows up as a

collective state in which the units behave in a coordinated way. Syn-

chronization phenomena span across many life scales, ranging from the

development of cognitive tasks in neural systems [44] to the onset of

social consensus in human societies [45].

The ubiquity of synchronization in real systems together with the

recent discovery [46, 47, 48, 49, 50] of their real architecture of interac-

tions has motivated its study when units are embedded in a complex

network [51]. In this way, each unit is represented as a node of a net-

work while it only interacts with those adjacent units, i.e. those directly

coupled via an edge. In the last decade many studies have unveiled the
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impact that diverse interaction topologies have on the onset of syn-

chrony [52, 53, 54, 55, 56] and its stability [57, 58, 59, 60].

The former studies mainly rely on the study of coupled phase oscil-

lators, such as the Kuramoto model [61, 62], which produces globally

synchronized systems as a result of the direct interaction of pairs of

adjacent units. However, it has been recently found [63] that, for more

general oscillator models (in which both amplitude and phase are dy-

namical variables) such as the Stuart-Landau (SL) model [42], two

oscillators, that are not directly linked but are both connected to a

third unit, can become synchronized even if the third oscillator does

not synchronize with them. This novel phenomenon, termed remote

synchronization (RS), relies on the modulation of the amplitude pa-

rameter of an intermediary node allowing the passage of information

between two of its neighbors for their synchronization, even when the

former is not synchronized with them.

Remote synchronization has been found to occur in very specific

and simple topologies such as star-like networks in which the central

node has a natural frequency different from that of the leaves. Within

this particular setting it was numerically and experimentally shown

[63] that leaves become mutually synchronized without the need of the

synchronization of the central node. In this Chapter, we briefly recall

the main features of RS in star-like networks, discuss the role of am-

plitude in the onset of RS in these networks, and, then, show that RS

is not limited to the particular configuration of a star-like motif or a

tight specification of the node frequencies. To this end, we introduce



80 4 Remote synchronization

a general procedure for detecting remote synchronization in arbitrary

networks and then discuss the results of our analysis on arbitrary com-

plex networks.

4.2 Remote synchronization in star-like networks

We first consider a star-like network of N coupled Stuart-Landau os-

cillators [42]. The dynamics of each node i is governed by the following

equations:

ẋi = (α− x2
i − y2i )xi − ωiyi +

λ
ki

N
j=1 aij(xj − xi)

ẏi = ωixi + (α− x2
i − y2i )yi +

λ
ki

N
j=1 aij(yj − yi)

(4.1)

where
√
α and ωi are respectively the amplitude and the (natural)

frequency of oscillator i when uncoupled. The last term on the right

accounts for the coupling of the dynamics of node i with its ki neigh-

bors. The strength of the coupling is controlled by λ (λ = 0 in the

uncoupled limit) while A = {aij} represents the adjacency matrix of

the network defined as: (i) for i ̸= j, aij = 1 when nodes i and j are

connected while aij = 0 otherwise, and (ii) aii = 0. In this Section, we

restrict the analysis to star-like networks, that is, we define node 1 as

the hub and nodes i = 1, . . . , N as the leaves. So, aij = 1 only if i = 1

or j = 1.

To study the synchronization properties of system (4.1) we work

with the phase variable of each oscillator, defined as θi = tan−1 (yi/xi).

Then, we measure the degree of synchronization of a pair of oscillators

by means of the time averaged order parameter:
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rij = |⟨eι[θi(t)−θj(t)]⟩t| , (4.2)

where ⟨·⟩t means an average over a large enough time interval and

ι =
√
−1. To monitor the onset of RS, two parameters have been

defined in [63]: the coherence of the peripheral cluster is measured

through

rindirect =
1

(N − 1)(N − 2)

N
n=2

rnm (4.3)

and that of the hub with the rest of the network through

rdirect =
1

(N − 1)

N
n=2

r1n (4.4)

Fig. 4.1 reports the evolution of the two parameters rindirect and

rdirect for a star-like network of N = 5 nodes when the coupling coeffi-

cient λ is varied from 0 to 1.5. In Fig. 4.1(a) α = 1 has been considered,

while in Fig. 4.1(b) α = 100. In the first case, for intermediate values

of the coupling coefficient the synchronization level among the leaves

(measured with rindirect) is higher than that between the hub and the

leaves (measured with rdirect), thus revealing the onset of RS. In the

second case, the transition in rindirect and rdirect occurs at the same

value of λ.

In fact, when α >> 1 the SL model transforms into a network of

Kuramoto oscillators, so that the amplitude of the oscillators become

decoupled and stationary. Under these conditions the amplitude of the

hub cannot anymore transmit the information needed by the leaves to
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Fig. 4.1. Evolution of rindirect and rdirect for a star-like network of N = 5 nodes. The

natural oscillation frequencies are fixed as ω1 = 2.5, ω2 = ... ...., and α as α = 1 (a) and

α = 100 (b). For α = 1 and for intermediate values of the coupling coefficient the synchro-

nization level among the leaves (measured with rindirect) is higher than that between the

hub and the leaves (measured with rdirect), thus revealing RS which, however, disappear

for α = 100.

synchronize, thus inhibiting the mechanism underlying RS. We consider

Eqs. (4.1) in polar coordinates:

ρ̇i = αρi − ρ3i +
λ
ki

N
j=1 aij(ρj cos(θj − θi)− ρi)

θ̇i = ωi +
λ
ki

N
j=1

ρj
ρi
aij sin(θj − θi)

(4.5)

where ρie
ιθi = xi+ ιyi. Defining Ri =

ρi√
α
, where

√
α is the value of the

amplitude at the equilibrium, Eqs.(4.5) can be rewritten as follows:

Ṙi = αRi − αR3
i +

λ
ki

N
j=1 aij(Rj cos(θj − θi)−Ri)

θ̇i = ωi +
λ
ki

N
j=1

Rj

Ri
aij sin(θj − θi)

(4.6)

In the first equation we can rescale time according to dT = αdt

(while the second equation remains unchanged).
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dRi

dT
= Ri −R3

i +
λ

αki

N
j=1 aij(Rj cos(θj − θi)−Ri)

θ̇i = ωi +
λ
ki

N
j=1

Rj

Ri
aij sin(θj − θi)

(4.7)

Now as α → ∞ the coupling term in the amplitude equation van-

ishes, and from the analysis of the first equation we derive that Ri → 1

for all i (in fact Ri = 1 is the only equilibrium and the dynamics evolve

very fast as dT = αdt and α is large). In the second equation Ri → 1

leads to Ri

Rj
= 1 and thus the second equation becomes:

θ̇i = ωi +
λ

ki

N
j=1

aij sin(θj − θi) (4.8)

Therefore, as α → ∞, we recover the model of Kuramoto purely

phase oscillators coupled into a network. In this limit, we observe that

the amplitude equation plays no role. In this case (Fig. 4.1(b)) RS

disappears (we note that for α = 100 the network of Stuart-Landau os-

cillators is already a good approximation of the network of Kuramoto

purely phase oscillators). The inhibition of the modulation of amplitude

of the hub in the case of α = 100 is evident in the bifurcation diagram

reported in Fig. 4.2, where the local maxima of the normalized ampli-

tude variable A =


x2
1+y21
α

are reported. When α = 1, the amplitude

of the hub is modulated until the leaves become synchronized, while

when α = 100 the amplitude is constant and RS is not possible. The

onset of RS can be thus monitored through the variance of parameter

A, that is σ2(A). For example, Fig. 4.3 shows, for a network of N = 5
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nodes σ2(A) as a function of λ and α, revealing the region where RS

appears.

0 0.5 1 1.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

λ

A
m

ax

(a)

0 0.5 1 1.5
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

λ

A
m

ax
(b)

Fig. 4.2. Bifurcation diagram of the amplitude of the hub with respect to the coupling

parameter for α = 1 (a) and α = 100 (b) for a star-like network of N = 5 nodes with

frequency distribution as in Fig. 4.1.
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Fig. 4.3. Bifurcation diagram of σ2(A) with respect to λ and α for a star-like network of

N = 5 nodes with frequency distribution as in Fig. 4.1.
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4.3 Measures of remote synchronization in

complex networks

In Section 4.2, where star motifs were dealt with, RS is detected by

monitoring rindirect and rdirect. Such measures are not applicable to

the general case of arbitrary topologies, since they are based on an a

priori analysis of the network structure which allows one to establish

which nodes can remotely synchronize. Therefore, in this Section we

introduce a general procedure for detecting remote synchronization in

arbitrary networks and then show ubiquity and robustness of remote

synchronization in the general case of complex networks.

To this end, we now consider in Eqs. (4.1) a generic topology A. We

measure the degree of synchronization of any connected or not pair of

oscillators by rij and consider two nodes as synchronized when rij > δ,

where δ is a constant threshold that we fix to δ = 0.8.

Once two nodes i and j are classified as mutually synchronized we

label their relationship according to the following three situations: (i)

i and j are directly connected (aij = aji = 1), (ii) there is a path of

mutually synchronized nodes between them, and (iii) neither of the

former two situations hold. While the first two cases are similar, as

both are examples of synchronization through physical links, the third

case is analogous to the observed remote synchronization in a star-like

network, but in the more general context of a complex network. Thus,

we define that two nodes i and j are remotely synchronized (RS) when
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they are synchronized (rij > δ) and they are not connected by either a

direct link or a path of synchronized nodes.

To quantify systematically the extent of remote synchronization we

count the number of RS nodes, defined as the numberNRS of nodes that

appear RS with at least another node in the network. This allows us to

introduce the following order parameter: nRS = NRS/N , representing

the normalized number of RS nodes with respect to the total number

of nodes N .

Finally, to quantify the importance that remote synchronization has

on the dynamics of the system we also measure the global level of

synchronization through the usual Kuramoto-like order parameter:

r =
1

N2

N
i,j=1

rij . (4.9)

Note that r takes into account the contribution of both synchronized

(rij > δ) and not synchronized (rij ≤ δ) nodes.

4.4 Results

As two well-known paradigmatic network topologies we have analyzed

both Erdős-Rényi (ER) and Scale-free (SF) graphs. The former type

of networks is characterized by a Poisson distribution P (k) for the

probability of finding a node with k contacts while SF graphs show a

power-law distribution, P (k) ∼ k−γ. Thus, while in ER graphs most of

the nodes are close to the mean connectivity ⟨k⟩, SF networks display a

large heterogeneity in the number of contacts per node as revealed from
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the existence of hubs having ki ≫ ⟨k⟩. For their construction we have

made use of the model introduced in [64] that allows one to control the

mean connectivity of both networks in order to be exactly the same.

In the analyzed networks the size and mean connectivity are fixed to

N = 100 and ⟨k⟩ = 2 respectively. The SF networks generated with

this model have γ = 3.

We have considered a bimodal distribution for the natural frequen-

cies of the oscillators so that nodes with high degree (those analogous

to the central nodes in a star graph) present a larger frequency, ωh,

than that, ωl, of less connected (the ones playing the role of leaves in

the star topology). In particular, we labeled as hubs those nodes having

ki > k∗ (the value of k∗ is set so that the percentage of hubs is around

the 20% of the total number of nodes in the network) and assigned

them ωi = ωh + ξiωh while, for the rest of nodes ωi = ωl + ξiωl. In

the former expressions ξi is a random variable uniformly distributed

between -0.025 and 0.025.

In Fig. 4.4 we show the emergence of remote synchronization as a

function of the two relevant parameters: the coupling strength λ and the

frequency mismatch of the network hubs∆ω = ωh−ωl. In particular, we

report the behavior of the global synchronization, r, [panels 4.4(a) and

4.4(c)] and the fraction of RS nodes, nRS, [panels 4.4(b) and 4.4(d)] for

SF (top) and ER (bottom) networks. The results are averaged over 50

different network instances and, for each network we average the results

over 10 different realizations of the distribution of natural frequencies.
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Fig. 4.4. Evolution of the degree of global synchronization r [panels (a) and (c)] and the

number of remotely synchronized nodes nRS [panels (b) and (d)] for SF (upper panels) and

ER (bottom panels) networks as a function of the coupling strength λ and the frequency

mismatch ∆ω. In both cases the networks have N = 100 and < k >= 2. The other relevant

parameters are fixed to α = 1, ωl = 1. Remote synchronization (high values of nRS) is

found for strong frequency mismatch ∆ω and moderate coupling λ, while, for low values

of the coupling parameter, nodes cannot synchronize (r and nRS have low values), and,

for large values of λ, the network is fully synchronized (r ≃ 1).
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We find that remote synchronization occurs in both types of net-

works in a region of parameters characterized by a strong frequency

mismatch ∆ω and moderate coupling λ. In fact, for low values of the

coupling parameter, nodes cannot synchronize (either in a direct or

remote way) as observed from the low values of r and nRS. On the con-

trary, for large values of λ the network is fully synchronized (r ≃ 1) and,

accordingly, nRS assumes values close to zero since all the nodes are

mutually synchronized with their neighbors. As panels 4.4(a) and 4.4(c)

reveal, the onset of full synchronization requires greater values of the

coupling as the frequency mismatch increases. In fact, a large frequency

mismatch together with values of coupling under the threshold for com-

plete synchronization favors the onset of remote synchronization, as

observed from the behavior of nRS in panels 4.4(b) and 4.4(d).

Compared to SF networks, the values of nRS in ER networks are

greater, thus indicating that remote synchronization in ER networks

involves a larger number of nodes. Moreover, in ER networks the onset

of remote synchronization occurs for lower values of λ. ER and SF

networks also show qualitative differences in the appearance of remote

synchronization: by keeping fixed ∆ω and increasing the value of λ, we

find that nRS in SF networks show two peaks, while for ER networks

it shows a rise-and-fall behavior.

In both (ER and SF) cases remote synchronization appears as an in-

termediary state before full synchronization is achieved. However, from

the analysis of panels 4.4(a) and 4.4(c) one observes that the behavior

of r vs. λ for a fixed value of ∆ω is qualitatively different in SF and ER
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Fig. 4.5. Evolution of the average oscillation frequency of each oscillator and nRS as

a function of λ for SF (a) and ER (b) networks. The mismatch of natural frequencies

is ∆ω = 1.5 while the rest of parameters are the same as in Fig. 4.4. The average os-

cillation frequencies, which for λ = 0 start from a bimodal distribution as dictated by

the configuration for the natural frequencies, as λ is increased tend towards a common

value, characterizing full synchronization. The strong reorganization of the frequencies

(characterized by a spread of the oscillation frequencies between the two extreme values)

corresponds to the values of coupling for which nRS is peaked.

networks. In particular, in ER networks (panel 4.4(c)) a large plateau

around r ≃ 0.5 is set in the region where remote synchronization shows

up. In this region, the increase of λ does not contribute to the overall

synchronization level, but to a redistribution of the average oscillation

frequencies of the network nodes.

This is evident in Fig. 4.5, where the average values (over the sim-

ulation time T ) of the instantaneous frequency of each oscillator are

reported along with the parameter nRS. The results are obtained by

increasing λ adiabatically from λ = 0 so that the system starts from

a bimodal distribution as dictated by the configuration for the natural



4.4 Results 91

oscillations. As λ increases, the gap between the two main frequency

values of the bimodal distribution decreases until the network reaches

full synchronization and the nodes oscillate at a common frequency.

The readjustment of frequencies reveals that, for some values of the

coupling, the system undergoes a strong reorganization, as shown by

the spread of the oscillation frequencies between the two extreme val-

ues. This readjustment coincides with the peaks displayed by nRS in

both SF and ER networks. However, the readjustment seems to occur

faster in SF networks for which the plateau of r is not observed.
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Fig. 4.6. Evolution of the fraction of RS links, fRS , in SF (a) and ER (b) networks

as a function of the coupling strength λ, and for different values of ∆ω. The remaining

parameters are set as in Fig. 4.4. The fraction of RS links first increased as λ is increased,

with one (in ER networks) or two peaks (in SF networks) as observed for the evolution of

nRS , and then falls as networks recruit physical (instead of RS) links to get synchronized.

To gain more insight into the relation between the regime of remote

synchronization and the onset of global synchrony we now consider
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the analysis of all synchronized pairs and its partition into those cor-

responding to remote synchronization and those for which a synchro-

nized physical connection (either a direct link or a path of synchronized

nodes) exists. To this aim, we define ηij = 1 if nodes i and j are con-

nected either by a physical link or by a path of synchronized nodes and

ηij = 0, otherwise. We then introduce the following quantities:

fP =

N
i,j=1 ηijH(rij − δ)N
i,j=1 H(rij − δ)

, (4.10)

and

fRS =

N
i,j=1 (1− ηij)H(rij − δ)N

i,j=1 H(rij − δ)
, (4.11)

where H(x) is the Heaviside function. Thus, fP and fRS represent the

fraction of synchronized links due to a physical or remote connection,

respectively. Obviously, as fP + fRS = 1, it is enough to report the

behavior of fRS.

In Fig. 4.6 we show the evolution of fRS vs. λ for several values of

∆ω. The presence of two peaks in the evolution of fRS in SF networks

reveals a similar behavior to that found for nRS. As ∆ω increases, the

percentage of RS links increases and the two peaks shift towards in-

creasing values of λ. On the other hand, for ER networks the percentage

of RS links is higher than in SF networks and fRS shows, as in the case

of nRS, a rise-and-fall trend. The fall in the number of RS links points

out that the network is able to recruit physical links to get synchro-

nized and thus those regions that appeared as RS become merged into

a single component made of physically synchronized links.
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To visualize the progressive substitution of RS links by physical ones

in the path towards full synchronization we show in Fig. 4.7 for an ER

network (with ∆ω = 2.8) snapshots of both remotely and physically

synchronized links for two values of the coupling λ. In Figs. 4.7(a) and

4.7(c) we plot two networks corresponding to physically and remotely

synchronized links respectively when λ = 1.65. In this case the network

is divided into several clusters of physically synchronized nodes (the

color of the nodes corresponds to the cluster of physically synchronized

links they belong to) and some nodes of these clusters appear remotely

synchronized with nodes belonging to different clusters [as shown in

Fig.4.7(c)]. When λ is increased to λ = 1.70, two of these clusters

merge together [Fig. 4.7(b)] through two physically synchronized links

that connect each cluster to a new node synchronized to each of them.

Thus, at λ = 1.70 two communities, that were remotely synchronized

at λ = 1.65, fuse into a single one and, as a consequence, those RS

links between the nodes of the two communities reported for λ = 1.65

in Fig. 4.7(c) disappear at λ = 1.70 [Fig. 4.7(d)]. We note that the

choice of the threshold δ may impact on which nodes are assigned to

which groups, although we have observed qualitatively similar results

when the threshold is changed. In fact, the evolution of communities

remains the same, although the value of λ at which they merge may

be slightly different.

Although the original discovery of remote synchronization was re-

stricted to a rather particular setup, a star graph, the analysis carried

out, through the introduction of appropriate indicators, reveals that
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(a) (b)

(c) (d)

Fig. 4.7. Evolution of components of physically (a)-(b) and remotely (c)-(d) synchronized

nodes in an ER network with ∆ω = 2.8, when λ is increased by adiabatic continuation

from λ = 1.65 (a)-(c) to λ = 1.70 (b)-(d). Nodes are colored according to the physically

synchronized component they belong to when λ = 1.65, i.e. in (a). The remaining param-

eters are the same as in Fig 4.4. At λ = 1.70 two communities (the one with blue nodes

and the one with cyan nodes), that were remotely synchronized at λ = 1.65, fuse into a

single one and, as a consequence, the RS links between the two communities existing for

λ = 1.65 disappear at λ = 1.70.

remote synchronization is common in general complex networks such

as Erdős-Rényi and Scale-free graphs of coupled oscillators having am-

plitude and phase as dynamical variables. The addition of amplitude

as a dynamical variable, in contrast with the typical framework of net-

works of coupled phase-oscillators, provides the observation of remote
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synchronization and elucidates an important role played by it. In fact,

we have found that remote synchronization constitutes a mechanism

anticipating synchronization by physical links in networks with hetero-

geneous distribution of natural frequencies. Our results indicate that,

in these networks, communities of nodes synchronized through RS links

appear for values of coupling just lower than those allowing the merg-

ing of these communities through physical links. As synchronization is

ubiquitous in natural and man-made systems, we retain that this can

be an important mechanism to explain the emergence of communities

of synchronized nodes, not connected by physical links.

Remote synchronization appears as a rather robust state prior the

onset of global synchronization since for a wide range of coupling

strengths almost all the nodes are remotely synchronized with, at least,

another one while the level of global synchronization remains small.

Thus, our results open the door for experimental observations of this

novel state in which the existence of a synchronized pair cannot be

associated to a given physical interaction through a single link of the

network and highlight the important difference between the real (i.e.

associated with physical links) and the functional (i.e. emerging from

synchronization) connectivity of a network.





5

Mechanism of remote synchronization

In Chapter 4 we have shown that remote synchronization ap-

pears in complex networks with a heterogeneous distribution

of natural frequencies of the nodes. Here, we further investi-

gate the phenomenon, elucidating the mechanisms underlying

it. We start from the analysis of the same kind of distribu-

tion of frequencies considered in Chapter 4, namely a bimodal

distribution, and extend the analysis to other distributions.

5.1 Networks with a bimodal frequency

distribution

We consider a network of N coupled Stuart-Landau oscillators as in

Eqs. (4.1) and the measures for the study of RS defined in Section 4.3.

To investigate the mechanism underlying the occurrence of RS in com-

plex networks, we introduce an approach inspired to structural robust-

ness analysis of complex networks, where, starting from the original

topology, an increasing fraction of nodes or links is removed and the
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changes of a characteristic parameter are monitored. In our case, we

start from a homogeneous network, that is, we fix ωi = ωl ± 5%, for

all network nodes, ∀i = 1, . . . , N , and change the natural frequency

of a fraction f of nodes so that the resulting network becomes now

heterogeneous with: ωi = ωh ± 5% ∀i = 1, . . . , [fN ], and ωi = ωl ± 5%

∀i = [fN ] + 1, . . . , N . Borrowing the terminology from structural ro-

bustness analysis, we indicate as an attacked node a node whose fre-

quency has been changed from ωl ± 5% to ωh ± 5% (see Fig. 5.1).

Rather than affecting the structure of the network, our attack affects

the natural dynamics of the network nodes.

We define a homogeneous path as a path which contains only nodes

at the same natural frequency and heterogeneous as a path which is not

homogeneous. Then, we say that, when two nodes are connected only by

heterogeneous paths, there is a potential RS link between them. In fact,

attacking a node may lead to the formation of heterogeneous paths. In

this paper, we relate the presence of RS to the existence/formation

in the networks of heterogeneous paths. From another point of view,

our approach is equivalent to the question of how to maximize the RS,

given a network, a bimodal frequency distribution and a fraction f of

attacked nodes.

Analogously to structural robustness analysis, nodes can be removed

according to several topological criteria, e.g., they are removed on the

basis of to their degree, betweenness, or selected into a random order.

In our case, since the idea underlying an attack is to create the max-

imum number of potential RS links or, equivalently, to eliminate the
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Fig. 5.1. Schematic illustration of the birth of a potential RS link when a node of the

network is attacked.

maximum number of homogeneous paths (by transforming them into

heterogeneous ones), we attack nodes on the basis of their betweenness

centrality, that is, nodes with high betweenness centrality have to be

attacked first. As far as an increasing fraction of nodes is attacked, we

monitor the number of RS links, indicated as LRS, and that of potential

RS links, indicated as L̄RS.

We first discuss a toy model, for which we exactly calculate the

number of potential RS links, and then consider the more general case

of ER and SF networks. The toy example is represented by the network

shown in Fig. 5.2 which has fifteen nodes with degree one, three nodes

with degree six, and one node with degree three. For this toy example,

we consider f = 1/N , that is, we attack one node of the network. It

suffices to examine two cases: the case in which node 1 is attacked (that

is, ω1 = ωh ± 5% and ωi = ωl ± 5% for i = 2, . . . , 19) and the case in

which node 2 is attacked (that is, ω2 = ωh ± 5% and ωi = ωl ± 5% for

i = {1, 3, . . . , 19}). Nodes 3 and 4 have exactly the same properties of

node 2, and nodes 5, . . . , 19, having degree one, if attacked do not lead

to any heterogeneous path.
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Fig. 5.2. Toy example used to illustrate the criterion to attack nodes for RS analysis.

For the first case, attacking node 1 leads the network to be split into

three communities (each formed by six nodes) which are connected only

by heterogeneous paths passing through the attacked node (node 1).

Thus, potential RS links are created from each node of one of these

communities to the nodes of the other communities. The number of

potential RS links is given by: L̄RS = 6 · 6 · 3 = 108. In the second case,

attacking node 2 leads to potential RS links among nodes 5, . . . , 9 and

between nodes 5, . . . , 9 and nodes 1, 3, 4, 10, . . ., 19. The number of

potential RS links is given by: L̄RS = 5·4
2
+ 5 · 13 = 75. We notice that
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L̄RS is higher in the first case, which corresponds to an attack to the

node with highest betweenness.

In Fig. 5.3 we show the RS links appearing in the network. Fig. 5.3

refers to the value of λ which maximizes LRS. For case 1 LRS is exactly

equal to L̄RS, while for case 2 LRS < L̄RS. In case 1 (Fig. 5.3(a)), as

expected, three communities form: the nodes within each of these com-

munities (for example, nodes 2, 5-9) are synchronized through physical

links; nodes among the three communities are instead synchronized

through remote links. In case 2 two communities form, one made by

nodes 5-9, and one by nodes 1,3,4,10-19. However, the two communities

are not synchronized each other, and, therefore, remote links appear

only among nodes 5-9 (LRS = 5·4
2

= 10). In fact, remote links do not

appear between the nodes of the two communities, since nodes 5-9 oscil-

late at a frequency equal to 1.24, while nodes 1,3,4,10-19 at a frequency

equal to 1.

In fact, L̄RS is calculated by taking into account the distribution

of the natural oscillation frequencies (that is, the analysis is purely

structural), but the real oscillation frequencies depend on λ. Although

for λ = 0 two nodes have the same oscillation frequency (the natural

one) and thus may form RS links, when λ ̸= 0 the scenario may be

different and the nodes can oscillate at different frequencies. This is the

reason for which the number of RS links is less or equal to the number

of potential RS links. To better illustrate this scenario, we consider the

network in Fig. 5.4 with ω2 ≃ ω3, ω4 ≃ ω5 and ω1 ̸= ω2 ̸= ω4. This

represents an hypothetical distribution of the oscillation frequencies
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Fig. 5.3. RS links when node 1 (a) or node 2 (b) of the toy model is attacked. The

presence of a RS link between i and j is indicated as a white pixel in the i − j matrix.

(a) ω1 = 2.5, ωi = 1 ± 5% ∀i = 2, . . . , 19, λ = 1; (b) ω2 = 2.5 and ωi = 1 ± 5% for

i = {1, 3, . . . , 19}, λ = 0.6.

due to a non zero coupling, in which two pairs of nodes with similar

frequencies have been formed. In this condition only two RS links may

form between the nodes at the same frequency, while nodes 2 and 4,

for instance, cannot be remotely linked since they are at a different

frequency. Furthermore, the two heterogeneous paths connecting the

nodes at the same frequency pass through the same node 1. Compared

to the case in which all the peripheral nodes have the same frequencies

and the information to be transmitted to synchronize them is unique,

here the two RS links require that node 1 is able to transmit two

different information. If this is not the case, it may happen that only

one RS link forms. In fact, Fig. 5.5 shows one example in which two

RS links do form (Fig. 5.5(a)) and one example in which only one RS
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link does (Fig. 5.5(b)). The two examples shown in Fig. 5.5 differ for

the distribution of the natural frequencies.

Fig. 5.4. A network of N = 5 nodes with ω2 ≃ ω3, ω4 ≃ ω5 and ω1 ̸= ω2 ̸= ω4.
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Fig. 5.5. Node oscillation frequencies vs. λ for a network of N = 5 nodes with: (a)

ω1 = 2.5, ω2 = 1.472, ω3 = 1.461,ω4 = 0.981,ω5 = 0.972; (b) ω1 = 2.5, ω2 = 1.498,

ω3 = 1.463,ω4 = 1.021,ω5 = 0.975. The inset shows the RS links appearing for λ = 0.5.

We now discuss the more general case of ER and SF networks.

Fig. 5.6(a) shows the evolution of LRS and L̄RS for an increasing frac-

tion f of attacked nodes. Nodes are attacked according to their value
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of betweenness centrality. For low values of f , due to the presence of

many hubs in SF networks, the number of potential RS links is greater

in SF than in ER. For high values of f the two types of networks show

a similar behavior in terms of L̄RS, since, once a large fraction of nodes

has been attacked, the structural differences between SF and ER be-

come smaller. Furthermore, for SF networks the peak of L̄RS occurs for

a lower value of f with respect to ER networks: this resembles what

is observed in [65] where it is shown that the diameter of SF networks

increases more rapidly than ER networks and the network breaks into

many isolated fragments, when the most connected nodes are removed.

In terms of LRS, for both types of networks, as expected from the

analysis of the toy model, we found that LRS < L̄RS. The values of

f for which the peak of LRS occurs are in good agreement with those

corresponding to the peak of L̄RS. As for L̄RS, the peak of LRS occurs

first for SF networks. In SF networks the number of heterogeneous

paths that do form is larger than in ER networks (as the evolution

of L̄RS shows), but in these networks (having more hubs) the same

node is shared by more heterogeneous paths than in ER networks, a

mechanism that reduces the differences in the maximum of LRS in the

two types of networks.

For comparison, we show in Fig. 5.6(b) the result of a random selec-

tion of the attacked nodes. The strategy used for node selection leads

to the same behavior for both networks and to a much lower level of

RS than in the case of attacks based on betweenness centrality. In fact,

attacking the nodes according to their betweenness centrality allows
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to create more heterogeneous paths than attacking randomly chosen

nodes. When a node is attacked, the network is subjected to structural

changes which depend on both the topology of the network and the

node properties.

The analysis carried out shows an analogy with the error and attack

tolerance properties investigated in [65]. In fact, removing a node from a

network breaks all the paths passing through it. Similarly, changing the

natural frequency of a node breaks all the homogeneous paths passing

through it and may fragment the network into clusters of nodes having

the same oscillation frequency. The number of clusters and their size

are affected by the initial topology of the network and by the choice

of the node removed/attacked: since RS is favored by the presence of

heterogeneous paths, a higher level of RS is observed when the attack

is targeted to most connected nodes and for SF network the fraction

of nodes to be attacked is smaller than in ER networks.

The analysis discussed refers to a specific value of λ. The behavior

with respect to λ has been investigated by repeating the analysis at

different values of the coupling parameter. So, for each value of λ an

increasing fraction of nodes is attacked and LRS is monitored. The bidi-

mensional diagram of LRS with respect to λ and f is shown in Fig. 5.7

for an attack strategy based on node betweenness and in Fig. 5.8 for

an attack strategy based on a random selection of nodes. As expected

for random attacks LRS is smaller than for betweenness based attacks.

Furthermore, in the case of random attacks the differences between SF

and ER networks are almost negligible. The curves shown in Fig. 5.6(a)



106 5 Mechanism of remote synchronization

(Fig. 5.6(b)) corresponds to the value of λ maximizing LRS in Fig. 5.7

(Fig. 5.8).
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Fig. 5.6. LRS (circles) and L̄RS (solid lines) vs. f for SF and ER networks for λ = 0.9.

Results are averages of 10 networks. (a) Target attack. (b) Random attack.
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Fig. 5.7. Target attack: behavior of LRS as a function of λ and f for (a) SF networks

and (b) ER networks. Results are averages of 10 networks.
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Fig. 5.8. Random attack: behavior of LRS as a function of λ and f for (a) SF networks

and (b) ER networks. Results are averages of 10 networks.

5.2 Networks with arbitrary frequency distribution

In this Section we show that RS is not limited to networks with bi-

modal distribution, but also occurs when other frequency distributions

are used. The condition for the appearance of RS in a more general

framework is the extension of the considerations analyzed in Sec. 5.1 for

networks with bimodal distributions. Arbitrary frequency distributions

may be considered provided that they allow the formation of hetero-

geneous paths between network nodes. In particular, we have consid-

ered i) networks with a correlation between frequencies and node de-

grees, and ii) networks with a correlation between frequencies and link

weights. For the first case we have considered two different frameworks:

networks where, fixed the structure, the oscillator natural frequencies

are set according to their degree; and networks where a spontaneous

frequency-degree correlation is the result of the network construction

process, that is, frequency gap-conditioned (FGC) random networks.



108 5 Mechanism of remote synchronization

In the second case, fixed a distribution of the frequency, we consider

weighted networks where the link weight is proportional to the oscilla-

tor natural frequency.

5.2.1 Frequency-degree correlated networks

Frequency-degree correlated networks have been constructed starting

from a given topology and then assigning the oscillator natural fre-

quency on the basis of the network degree distribution, that is:

ωi = ki(1 + ξi) (5.1)

where i = 1, . . . , N and ξi is a random variable uniformly distributed

between -0.025 and 0.025, introduced to generate for each set of nodes

having the same degree an uniform distribution of natural oscillation

frequencies centered around the node degree itself. We have considered

both SF and ER networks with N = 100 nodes and reported in Fig. 5.9

the parameters nRS and LRS. In particular, Figs. 5.9(a) and 5.9(b) refer

to SF networks, while Figs. 5.9(c) and 5.9(d) to ER networks. The

results show that the level of RS is larger in case of SF networks, while

the level is very low for ER networks.

5.2.2 FGC random networks

FGC random networks [66] are built with the following algorithm: given

N oscillators, the natural frequencies ωi are chosen from a given distri-

bution p(ω) (random uniform distribution in the interval [1, 2]). Links
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Fig. 5.9. Remote synchronization in frequency-degree correlated networks: (a) nRS for

SF networks; (b) LRS for SF networks; (c) nRS for ER networks; (d) LRS for ER networks.

Results are averages of 5 networks, each for 5 different distributions of frequencies.

are established in an iterative way until the desired number of links L

is reached, by randomly picking a pair (i, j) of oscillators, and checking

if |ωi−ωj| > γ, where γ is the gap. The procedure may eventually lead

to disconnected networks, that are discarded. The resulting network

has an ER topology with an average degree < k >= 2L
N
.

To investigate remote synchronization in FGC random networks,

we generated three different sets of networks, each one formed by 20
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networks with a fixed value of γ (γ = 0, γ = 0.2 and γ = 0.4), and

monitored the parameters nRS and LRS.

The three case studies allows to compare networks where a frequency-

degree correlation is established with those where the frequency of a

node does not depend on the degree. In fact, according to the algo-

rithm used for the network construction, a correlation is established

only when γ = 0.4. This is shown in Fig. 5.10 where the node frequency

vs. the node degree is reported for three networks corresponding to the

cases of γ = 0 (Fig. 5.10(a)); γ = 0.2 (Fig. 5.10(b)) and γ = 0.4

(Fig. 5.10(c)).

The parameters nRS and LRS are reported in Fig. 5.11. Remote

synchronization appears for the set of networks generated with γ = 0.4,

that is, networks with a frequency-degree correlation induced by an

high value of γ (γ = 0.4). On the contrary, in networks generated with

γ = 0 or γ = 0.2 the degree is not correlated with the frequency and

remote synchronization does not appear. In fact, for such networks

both the parameters nRS (Fig. 5.11(a)) and LRS (Fig. 5.11(b)) are

significantly lower than in the case of γ = 0.4.

5.2.3 Frequency-weighted networks

In the previous Sections we have shown that remote synchronization

can occurs in different ways by changing the distribution of the natu-

ral frequencies of the oscillators. Also in the case investigated here, a

correlation between the natural frequency and a structural property of

the network is considered, but the new settling differs for the structural
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Fig. 5.10. Correlation between frequency and degree in a FGC network with N = 100

nodes for: (a) γ = 0; (b) γ = 0.2; (c) γ = 0.4.

property considered. Here, weighted networks, where the link weights

are proportional to the absolute value of the natural frequency of the

oscillators, are taken into account. The model is the following:

ẋi = (α− x2
i − y2i )xi − ωiyi +

λ
ki
|ωi|

N
j=1 aij(xj − xi)

ẏi = ωixi + (α− x2
i − y2i )yi +

λ
ki
|ωi|

N
j=1 aij(yj − yi)

(5.2)

This framework was used to demonstrate the onset of explosive syn-

chronization in general complex networks [67]. Following the approach
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Fig. 5.11. Remote synchronization in FGC networks with N = 100 nodes: (a) nRS ; (b)

LRS . Remote synchronization appears for networks generated with γ = 0.4. Results are

averages of 20 networks.

proposed in [67], we start from a symmetric distribution of the natu-

ral frequencies, where, in particular, the frequencies are chosen from a

Gaussian distribution with mean µ = 0 and variance σ2 = 1. In our

analysis we consider the case of SF and ER networks of Stuart-Landau

(SL) oscillators, including the limit case of α → ∞, for which, as dis-

cussed in Chapter 4, we recover the model of Kuramoto oscillators.

The evaluation of the two order parameters nRS and LRS, that is, the

fraction of remotely synchronized nodes and the number of links be-

tween remotely synchronized nodes, shows the appearance of remote

synchronization for α = 1 (SL oscillators), which however disappear

when α → ∞ (Kuramoto oscillators). In this latter case, a first-order

phase transition has been found, so that we have also computed for-

ward and backward continuation in λ of the Kuramoto order parameter

(Eq. 4.9).
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We have simulated SF and ER networks with N = 500 nodes and

different values of the average degree (ranging from ⟨k⟩ = 2 to ⟨k⟩ =

N−1, that is the case of all-to-all networks). In Fig. 5.12 we report the

results for the SF (upper panels) and ER (bottom panels) networks

of SL oscillators with ⟨k⟩ = 4, ⟨k⟩ = 8 and ⟨k⟩ = 32. Figs. 5.12(a)

and 5.12(c) show the behavior of the nRS, while Figs. 5.12(b) and

5.12(d) the behavior of LRS. Remote synchronization is observed for

low values of ⟨k⟩, while it progressively disappears when ⟨k⟩ increases

as the number of homogeneous paths does. Remote synchronization

clearly also disappears when α → ∞ as the amplitude is no more a

free parameter.

The analysis of the Kuramoto order parameter reveals different tran-

sitions for SL or Kuramoto oscillators. For α = 1 the transition is

second-order, for α → ∞ the type of transition depends on ⟨k⟩. For

low values of ⟨k⟩ a second-order transition has been observed, while for

greater values of ⟨k⟩ the transition becomes first-order. This is shown

in Fig. 5.13, where the synchronization diagram is reported.

The same model (Eqs. 5.2) shows both remote and explosive syn-

chronization. The two phenomena appear in different region of the

parameter space: remote synchronization is found for low ⟨k⟩ and α (it

gradually decreases when ⟨k⟩ increases as shown in Fig. 5.14), while

a sharp transition (signature of explosive synchronization) appears for

large α with an hysteresis area increasing with ⟨k⟩ (Fig. 5.14).
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Fig. 5.12. Remote synchronization in a frequency-weighted network of SL oscillators

with ⟨k⟩ = 4, ⟨k⟩ = 8 and ⟨k⟩ = 32: (a) nRS and (b) LRS for SF networks; (c) nRS and

(d) LRS for ER networks. Results are averages of 5 different distributions of frequencies.
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Memristors in complex networks
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The memristor as a synapse for complex

networks

In this Chapter we show the use of memristors as a synapse in

a complex network of chaotic circuits. The memristors allows

to implement an adaptive law driving the network towards

synchronization. At the same time, the complexity of the im-

plementation at the circuit level is kept very low, as only two

memristors are needed to implement the adaptive law.

6.1 The memristor as a synapse

An application of memristors that has gained increasing attention is

their use as synapse in artificial neural networks for neuromorphic pro-

cessing. Due to their intrinsic properties, memristors can be viewed as

resistors in which the internal conductance is modulated by an exter-

nal signal with the possibility to remember the previous state. This

behavior is closely related to the functionality of the synapses, in fact

the synaptic weight modulates how signals are transmitted between

neurons and is adjusted by the ionic flow through the synapse.
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The most difficult step in the implementation of artificial neural

networks is the realization of synapses, which often require a large

number of transistors. In fact, while there are several realizations of

a electronic neurons, synapses are not simple to realize in nanoscale

dimensions. For this reason, the recent demonstration of the memory

effect in memristors suggested a possible realization of synapses with

low power consumption and small size, thereby the idea to implement

a neuromorphic chip with dimensions comparable to the one of the hu-

man brain. An example of an experimental implementation of synaptic

functions in nanoscale silicon-based memristors has been proposed in

[68], where, in particular, the focus is on the possibility of implement-

ing the synaptic time dependent plasticity with a particular circuit in

which the synapses are realized with a nanoscale memristor.

Further exploiting the analogy within a memristor and a synapse led

Pershin and coauthors to formulate a model of amoeba learning based

on a memristor [69]. The electronic circuit proposed in [69] is made only

of passive components, where biological oscillations are simulated with

a LC circuit, the dissipation inside the amoeba is represented by a re-

sistor R, and the mechanism of memory is recovered by using a voltage

controlled memristor. Other examples of bio-inspired networks coupled

with a memristor are reported in [70],[71], where the dynamic behavior

and the synchronization properties of two FitzHugh-Nagumo and two

Hindmarsh-Rose neurons are studied. The main findings of these works

is that memristor dynamics influences the behavior of the networks and

the memristor ability to model the plasticity of a biological synapse.
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In this Chapter we explore the idea of using memristors as a synapse

in a complex network to take advantage of the dynamics introduced by

them. In fact, recently new adaptive strategies for network synchroniza-

tion have been proposed. According to these strategies, and in particu-

lar to those edge-based [72], each pair of coupled oscillators negotiates

the strength of their mutual coupling which is now a time-dependent

variable. If the dynamics of the coupling is made dependent on the dif-

ference between the states of the coupled oscillators, synchronization

emerges as the result of an adaptive process of the network. In this

Chapter we show that this strategy can be implemented at the circuit

level with a pair of HP memristors connected in antiparallel.

6.2 Coupling a pair of nonlinear circuits with

memristors

In this Section we study the dynamic behavior of a pair of Chua’s os-

cillators coupled through the configuration, already discussed in Chap-

ter 2, consisting of two HP memristors in antiparallel. Memristors are

simulated according to Eqs. (1.7), (1.9) and a Biolek’s window (1.14)

with p = 1.

We first consider a pair of Chua’s circuits coupled as in Fig. 6.1. In

terms of dimensionless equations the circuit is described by the follow-

ing equations:
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Fig. 6.1. Scheme of two Chua’s circuits coupled through two memristors in antiparallel.

ẋ1,1 = τ(αCx1,2 − αCh(x1,1) + k(x2,1 − x1,1)(1/M̄12 + 1/M̄21))

ẋ1,2 = τ(x1,1 − x1,2 + x1,3)

ẋ1,3 = τ(−βCx1,2)

ẋ2,1 = τ(αCx2,2 − αCh(x2,1) + k(x1,1 − x2,1)(1/M̄21 + 1/M̄12))

ẋ2,2 = τ(x2,1 − x2,2 + x2,3)

ẋ2,3 = τ(−βCx2,2)

(6.1)

where we have labelled the state variables of the first circuits as x1,1,

x1,2, and x1,3, and, analogously those of the second circuit as x2,1, x2,2,

and x2,3. The nonlinearity is h(xi,1) = (m1+1)xi,1+0.5(m0−m1)(|xi,1+

1|−|xi,1−1|) with i = {1, 2}. The memristances have been indicated as

M12 (the memristor with η = 1) and M21 (the memristor with η = −1)

and with w12 and w21 the corresponding memristor internal variables,

governed by

˙̄w12(t) = F (w̄12(t), i12(t))i12(t)

˙̄w21(t) = F (w̄21(t), i21(t))i21(t)
(6.2)
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with i12(t) = x2,1−x1,1

M12
and i21(t) = x1,1−x2,1

M21
. In Eqs. (6.1) we have

introduced a parameter τ , scaling the time unit of the Chua’s circuit

in order to perform an analysis taking into account that memristors

and Chua’s circuit may have different time scales. More in detail, we

investigate the system behavior with respect to the parameters k, that

is, the coupling coefficient, and τ , by monitoring two parameters. The

first is the synchronization error defined as:

E = ⟨


3

h=1

(x2,h − x1,h)
2

 1
2

⟩t (6.3)

The second parameter is

σ2
T = σ2[w12] + σ2[w21] (6.4)

where σ2[wij] is the variance of wij. σ
2
T allows to track the changes in

w12 and w21, thus monitoring when the internal variables do oscillate

or reach a steady-state. The bifurcation diagram is shown in Fig. 6.2,

where we show the behavior of the synchronization error and the total

variance of the memristor variables.

In Fig. 6.2(a) the white region represents the region of unstability of

the Chua’s circuit, while the blue one synchronization of the network.

When τ increases, synchronization becomes more difficult to achieve as

it requires larger values of k. Fig. 6.2(b) shows how the total variance

of the memristor variables depends on τ and k. From the bifurcation

diagram it appears that the configuration proposed may be used to

implement an adaptive law for the coupling weights so that the val-
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ues of the coupling leading to synchronization can be obtained in an

automatic way.
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Fig. 6.2. Bifurcation diagram with respect to k and τ for a system of two coupled Chua’s

circuits: (a) synchronization error; (b) total variance of the memristor variables.

6.3 Memristor-based synapses in a complex

network of Chua’s circuits

In this Section we investigate the use of the synapse introduced above

in a complex network. The model consists of a network of N Chua’s

circuits coupled through pairs of memristors. Each pair of Chua’s cir-

cuits i and j is connected by two memristors with opposite polarity

(Fig. 6.1), so that in the network there are N(N − 1) memristors. We

indicate the state variables of the memristors connecting node i and j

as wij and wji and the corresponding memristances as Mij = M(wij)

and Mji = M(wji).
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The dimensionless equations of the network are:


ẋi,1 = τ(αCxi,2 − αCh(xi,1) + k

N
j=1 (xj,1 − xi,1)(1/M̄ij + 1/M̄ji))

ẋi,2 = τ(xi,1 − xi,2 + xi,3)

ẋi,3 = τ(−βCxi,2)

(6.5)

for i = 1, . . . , N , and

˙̄wij(t) = F (w̄ij(t), iij(t))iij(t) (6.6)

with iij(t) =
xj,1−xi,1

Mij
.

Numerical results refer to a network of N = 4 Chua’s circuits. Ini-

tial conditions are fixed in a random way for the state variables of the

Chua’s circuits. Zero initial conditions are assumed for the memris-

tor variables wi,j. For k = 0 the circuits are uncoupled and thus not

synchronized; the memristor variables oscillate between their extreme

values, 0 and 1 (Fig. 6.3). For a sufficiently high value of k the Chua’s

circuits are synchronized; correspondingly, the memristor variables con-

verge to a stationary steady-state (Fig. 6.4, k = 70). The steady-state

depends on the value of k: the larger the value of k the smaller is the

excursion of the memristor variables. For small coupling, the network

is not able to synchronize; in particular, the Chua’s circuits become

unstable.

The results suggest the possibility to use a pair of memristors to

implement a synapse with adaptive capabilities. In fact, the memristors

provide a dynamics in the link weight which, in pair of oscillators, can
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drive the link towards a value leading to the synchronization and, in a

network, to a structure supporting synchronization.
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Fig. 6.3. Behavior of four Chua’s circuits coupled through memristors for k = 0 and

τ = 0.1: (a) waveforms of the state variables xi,1; (b) trend of memristor variables wi,j .
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Fig. 6.4. Behavior of four Chua’s circuits coupled through memristors for k = 70 and

τ = 0.1: (a) waveforms of the state variables xi,1; (b) trend of memristors variables wi,j .



7

Concluding remarks

This thesis dealt with two aspects of complexity, the dynamics of a

single unit of a complex network and the interaction among the units.

In particular, our attention focused on the study of the memristor, a

new component able to act as the only nonlinearity of a chaotic circuit

and as connection between two nodes in a network. The memristor, de-

scribed by the so-called nonlinear ionic drift model, has been analyzed

from the theoretical point of view for the implementation of a gallery

of circuits, able to show chaos, based on it. The analysis led to the

conclusion that a suitable configuration for chaotic circuit design is the

antiparallel connection of two memristors. This configuration was used

to derive a series of autonomous and non-autonomous circuits with a

rich dynamical repertoire, including limit cycles of different periods,

chaotic orbits, multistability and different bifurcation scenarios. To fill

the gap, still existing between theoretical approaches and experimental

ones in the research on chaotic circuits based on memristors, an anal-

ysis of memristor devices from a more practical point of view has been

also carried on two different types of memristors. We have shown that
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the use of different materials and of different fabrication techniques in

the realization of memristor reveals different properties and behavior

of the device. On the one hand, this opens the possibility of using the

memristor in various ways, and on the other hand this may require the

development of compact models for the specific device and application.

One possible approach that has been explored is the use of artificial

neural networks. Based on the result of the experimental analysis and

on the actual performance of the examined devices, a hybrid approach

towards the design of chaotic circuits based on memristors was envis-

aged.

In the second part of this PhD thesis the study of the phenomenon

of the so-called remote synchronization in a complex network has been

carried out. After the analysis of remote synchronization in general

complex networks, the mechanism underlying this phenomenon has

been taken into account, revealing that different settlings, such as bi-

modal distributions of natural frequencies, frequency-degree correla-

tions or frequency-weighted structures, may be used to induce or en-

force remote synchronization in complex networks. Furthermore, it was

found that, under certain conditions, the network of Stuart Landau os-

cillators investigated becomes a network of Kuramoto purely phase os-

cillators, where the remote synchronization vanishes and is replaced by

another type of synchronization, characterized by an abrupt transition

to synchronization.

The last part of the thesis aimed at exploring the idea to use the

memristor as the link in a complex network, by using its properties of
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nonlinear and memory element. Also in this case, the key configuration

is provided by the antiparallel connection of two memristors. A synapse

made in this way implements a dynamics in the link weight which,

starting from a configuration where synchronization is not possible, is

able to reconfigure the link weights in such a way that synchronization

is obtained.
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