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INTRODUCTION 
 

The targets of the thesis are road safety analysis based on 

crash event and road features for the benefit cost analysis where a 

treatment has to be applied. 

There is a growing attention to road safety in Europe. New 

regulations applied on TERN network push Agencies to introduce 

new methodological approaches to Road Safety, monitoring the 

treatment and controlling the level of safety on the managed road 

network.  

A crash is defined  as a set of events that result in injury or 

fatality, due to the collision involving  one motorized vehicle or a 

motor vehicle and another motorized vehicle, a bicyclist, a 

pedestrian or an object. The terms “crash”, “collision” and 

“accident” are typically used interchangeably. 

“Crash frequency” is defined as the number of crashes 

occurring at a particular site, in a reference time period. 

“Crash rate” is the number of crashes that occurs at a given 

site during a certain time period in relation to a particular measure 

of exposure (e.g., per million vehicle miles of travel for a roadway 

segment or per million entering vehicles for an intersection). Crash 
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rates may be interpreted as the probability (based on past events) 

of being involved in an accident per unit of the exposure measure. 

Accidents count observed at a site (road segment, 

intersection, interchange) is commonly used as a fundamental 

indicator of safety performing road safety analysis methods. 

Because crashes are random events, crash frequencies 

naturally fluctuate over time at any given site. The randomness of 

accident occurrence indicates that short term crash frequencies 

alone are not a reliable estimator of long-term crash frequency. If a 

three-year period of crashes were used as the sample to estimate 

crash frequency, it would be difficult to know if this three-year 

period represents a high, average, or low crash frequency at the 

site. 

This year-to-year variability in crash frequencies adversely 

affects crash estimation based on crash data collected over short 

periods. The short-term average crash frequency may vary 

significantly from the long-term average crash frequency. This 

effect is magnified at study locations with low crash frequencies 

where changes due to variability in crash frequencies represent an 

even larger fluctuation relative to the expected average crash 

frequency. 

The crash fluctuation over time makes it difficult to 

determine whether changes in the observed crash frequency are 

due to changes in site conditions or are due to natural fluctuations. 

When a period with a comparatively high crash frequency is 
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observed, it is statistically probable that the following period will be 

followed by a comparatively low crash frequency. This tendency is 

known as regression-to-the-mean (RTM), and also is evident when 

a low crash frequency period is followed by a higher crash 

frequency period. 

Failure to account for the effects of RTM introduces the 

potential for “RTM bias”, also known as “selection bias”. Selection 

bias occurs when sites are selected for treatment based on short-

term trends in observed crash frequency. 

RTM bias can also result in the overestimation of the 

effectiveness of a treatment (i.e., the change in expected average 

crash frequency). Without accounting for RTM bias, it is not 

possible to know if an observed reduction in crashes is due to the 

treatment or if it would have occurred without the modification. 

Another key analytical issue arises when accident rates are 

used in evaluating safety performance to, e.g., flag locations for 

safety investigation during the network screening process. AADTs 

are used directly in the computation of this measure, i.e., accident 

rate = accident frequency/AADT (or some scalar multiple of this). If 

accident rates are based on the observed counts, then the 

regression-to-the-mean difficulty discussed above will still apply. In 

addition, there is an additional problem that renders this method of 

screening dubious. The problem is that the relationship between 

accident frequency and AADT is not linear.  
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Specifically, comparing accident rates of two entities at 

different traffic levels to judge their relative safety may lead to 

erroneous conclusions and saying that when two rates are equal 

they indicate equivalent levels of hazard may be completely false if 

different AADT levels are involved. 

 
Figure I.1 – Relationship between crash frequency and AADT 

 

See Figure I.1 where two different curves (Curve1 and 

Curve2) are plotted to give an example. The two curves show the 

non linear relationship between entering AADT and the expected 

crash frequency, potentially for two different groups of 

intersections. It is clear that, in terms of crash rate (the slopes 

corresponding to each point of the curves), considering accident 

rates of points A and B, as well as A and C, to judge their relative 

safety, the comparison may lead to erroneous conclusions because 
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points B or C could be considered by far safer than point A. 

Moreover, considering points B and C, the two corresponding rates 

are equal indicating equivalent levels of hazard, but this appears to 

be completely false because different AADT levels are involved. 

 The upshot of all this is that the use of accident rate to 

compare sites in regard to their safety levels is potentially 

problematic. When the slope of the accidents/AADT relationship is 

decreasing with increasing traffic volume levels, as is often the 

case, network screening by accident rates will tend to identify low 

AADT sites for further investigation. The most valid basis of 

comparison using accident rates is for the relatively rare cases 

when the traffic volume levels are the same or when the 

relationship between accidents and AADT is linear. 

Conventional procedures for identifying sites for safety 

investigation tend to select sites with high accident counts and/or 

accident rates. However, accident counts could be high or low in a 

given period solely due to random fluctuations, leading to many 

sites either incorrectly identified or overlooked and, 

correspondingly, to an inefficient allocation of safety improvement 

resources. In addition, selection on the basis of accident rates tends 

to wrongly identify sites with low volumes. Empirical Bayes 

approaches have been proposed of late to overcome these 

difficulties.  
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The Highway Safety Manual (HSM) in its first edition (2010) 

introduced a new common approach to the modeling of crash 

analysis with the aims to standardize the methodology.  

In its Part C the HSM provides a predictive method for 

estimating expected average crash frequency (including by crash 

severity and collision types) of a network, facility, or individual site. 

The estimate can be made for existing conditions,  alternatives to 

existing conditions (e.g., proposed upgrades or treatments), or  

proposed new roadways. The predictive method is applied to a 

given time period, traffic volume, and constant geometric design 

characteristics of the roadway. The predictive method provides a 

quantitative measure of expected average crash frequency under 

both existing conditions and conditions which have not yet 

occurred. This allows proposed roadway conditions to be 

quantitatively assessed along with other considerations such as 

community needs, capacity, delay, cost, right-of-way, and 

environmental considerations. The predictive method can be used 

for evaluating and comparing the expected average crash 

frequency of situations like: 

• Existing facilities under past or future traffic volumes; 

• Alternative designs for an existing facility under past or future 

traffic volumes; 

• Designs for a new facility under future (forecast) traffic volumes; 

• The estimated effectiveness of countermeasures after a period 

of implementation; 
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• The estimated effectiveness of proposed countermeasures on an 

existing facility (prior to implementation). 

Each chapter in Part C of HSM provides the detailed steps of 

the predictive method and the predictive models required to 

estimate the expected average crash frequency for a specific facility 

type like: 

• Rural Two-Lane Two-Way Roads 

• Rural Multilane Highways 

• Urban and Suburban Arterials 

However the application of the HSM doesn’t always provide 

adequate results in Europe (Cafiso et al. in 2012 applied the HSM 

methodology using data of a motorways in Italy in a study 

published on Procedia Elsevier - Social and Behavioral Sciences, 

titled “Application of Highway Safety Manual to Italian Divided 

Multilane Highways”, and Sacchi et al. in 2011 studied the 

transferability of the HSM models for intersection in Italy in a paper 

published on TRB titled “Assessing international transferability of 

the Highway Safety Manual crash prediction algorithm and its 

components”). The problem related to transferability of the Safety 

Performance Functions (SPFs) is a clear example of how the model 

developed in other Countries are not always able to catch the 

safety level of different infrastructures. The key point is that 

quantification of the expected reduction of crashes related to 

different treatments, can affect choices and plays a fundamental 

role in the decision making process. The transferability in HSM is 
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assessed using a factor of calibration to local condition. In this way 

using equation calibrated on “standard condition” and reported on 

the Manual, the application of the models in the whole North 

America is assessed. However many Authors have tried to apply 

HSM in Europe with poor results.  

Together with SPFs the Highway Safety Manual introduced 

the “Crash Modification Factor” (CMF).  A Crash Modification Factor 

is a multiplicative factor used to compute the expected number of 

crashes after implementing a given countermeasure at a specific 

site. The CMF is multiplied by the expected crash frequency without 

treatment. A CMF greater than 1.0 indicates an expected increase 

in crashes, while a value less than 1.0 indicates an expected 

reduction in crashes after implementation of a given 

countermeasure. 

The best methodology of estimation of CMFs is well known 

to be based on stochastic approach. The problem of regression to 

the mean and the selection bias can be controlled using a 

sophisticated probabilistic approach reported in the “Observational 

Before/After Studies in Road Safety - Estimating the Effect of 

Highway and Traffic Engineering Measures on Road Safety” by 

Hauer in 1997 and developed by various author in the last 2 

decades.  

The new methodologies developed for the calibration of the Safety 

Performance Functions are pushing the Authors (See Persaud et al. 

“Comparison of empirical Bayes and full Bayes approaches for 
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before–after road safety evaluations” Published on Accident 

Analysis and Prevention in 2009) to find new advanced 

methodology able to address the problem of time trend and spatial 

correlation of data and to use more complicated model form and 

different distribution of outcomes in the calibration of CMFs. 

Despite the efforts on the calibration of CMFs to improve reliability, 

evaluation of safety benefits of applying a treatment continue to be 

performed using a deterministic approach. However in the HSM 

there is not a methodology to assess the CMFs transferability, and 

their stochastic nature doesn’t allow a perfect reliability also if they 

are applied in the same Country. Some Authors are developing 

different methodology to assess the transferability of the CMFs, 

and they should be applied when a CMF has to be used in a benefit 

cost analysis. The traditional techniques for the evaluation of the 

benefits of a treatment don’t take into account the statistical 

distribution of the CMFs and their stochastic nature.  

Objectives of this Thesis and Overview of the Contents 

The regression to the mean effect as well as the functional 

relationship between crashes and exposure factors don’t allow a 

reliable estimation of the effect of a treatment. Have a high 

reliability in the estimation of the effects of a countermeasures may 

be one of the most important issue in a Benefit-Cost analysis. The 

identification of hazardous location together with the evaluation of 

the alternatives to fix safety problem, are based on the reliability of 

the model used for the evaluation. For those reason the research 
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work provide a wide discussion on the main step for a reliable 

benefit-cost analysis starting from different methodology able to 

address the problem of regression to the mean and time trend 

effects and able to optimize the goodness of fit of the models 

varying the segmentation approach and the variables considered in 

the calibration of the models. The second step is to consider a new 

methodology for the evaluation of the variance of the CMFs. 

Particularly if a cross site variance is considered together with the 

variance of the CMF, as an indicator of the distribution of the CMF 

in different site, the perspective of considering the effect of a 

treatment can change drastically. The main objective of the present 

research work is to develop a methodology to perform Benefit-Cost 

analysis taking into account a cross site variability of the CMFs and 

their variance.  

To do that an overview on the modeling approach is 

reported as well as a calibration of a Crash Modification Factor for 

safety barrier in Italy. At the end the proposed methodology for the 

stochastic benefit cost analysis is detailed described in comparison 

with the deterministic approach.   

In the first Chapter an overview about SPFs is reported, with 

a wide literature review on the topic. In the second Chapter a 

methodology to address the time trend effects in the calibration of 

SPFs is applied using data on a motorways in Italy, the A18 Messina 

- Catania. Particularly the second Chapter focus on the problem of 
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time trend, generally presents when a long period of analysis is 

taken into account. 

The third Chapter focuses on one of the possible method to 

optimize the model goodness of fit when roadway segment are 

analyzed. Particularly the segmentation approach was investigated 

and tested with the more common goodness of fit evaluation 

method. At the end of the Chapter a ranking was performed 

comparing the EB methodology to observed number of crashes and 

a methodology for the identification of hazardous location was 

applied.  

In the fourth Chapter various methodologies to estimate a 

CMF are reported. As a case study an application of the empirical 

Babyes methodology is reported for the estimation of a CMF for 

road safety barrier. In the second part of the Chapter a Function 

was calibrated considering the functional relationship between the 

barrier direct related categories of crashes (ran-off-road crashes) 

and curvature using the same data of the presented case study. 

The finals 5th and 6th Chapters deal with the benefit-cost 

analysis. The cross site variance was evaluated for the CMF 

calibrated in Chapter 4 and used in the stochastic benefit-cost 

analysis. A comparison on the traditional approach and a stochastic 

approach was performed for new and existing infrastructures. At 

the end of the Chapter a methodology to combine more CMFs in 

the same segment was described. 

 





 
 

 

 
 
 

CHAPTER 1 
 

SAFETY PERFORMANCE FUNCTIONs (SPFs): 

A GENERAL OVERVIEW  
 

1.1. Introduction  
Road crash events are the object of many studies because of 

their potentially severe consequences. Thus, it is not a surprising 

that particular attention is given to the development of models able 

to identify features related to accidents and to forecast accident 

frequency. 

Many researchers have developed accident prediction 

models also known as safety performance functions (SPFs) 

calibration. The high number of factors and the correspondingly 

high combinations of these factors related to accident event 

occurrence created need to develop different models for different 

circumstances. Models were developed specifically for urban and 

rural roads, for road segments and intersections; models account 

for different types of roads and intersections or even for different 

accident types and severity. Moreover, for the same safety 

performance function, the variables considered significantly related 
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to safety, as well as the statistical regression approaches adopted 

can vary considerably. 

The statistical methodologies mainly adopted for calibration 

of safety performance functions, are the conventional linear 

regression and the generalized linear regression techniques. Since 

the mid-eighties, many research works highlighted the limitations 

of the conventional linear regression approach, which is why, 

nowadays the generalized linear regression technique (GLM) is the 

most common statistical regression methodology used. 

Nevertheless in the last two decades new techniques of calibration 

were carried out. One is the full Bayes methodology of calibration, 

which is able to account for the effect of regression to the mean 

and the Generalized Estimating Equation (GEE) able to account for 

the time correlation more extensive described in the Chapter 2. In 

the Present Chapter 1, a wide description of the model approach is 

reported with a literature review and the key points of the GLM 

methodology are explored, with particular attention to the 

reliability of the models. 

1.2. Literature overview 
Following, in chronological order, is a wide literature review 

regarding the statistical approaches adopted and results achieved 

by various studies and researchers.  The literature overview starts 

from the early nineties and discusses in more depth the latest 

works dealing with the generalized linear modeling statistical 

regression technique. In general, the reviews merely summarize the 
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papers, including not only the approach and findings but also 

verbatim expressions of the authors’ opinions and beliefs and their 

own review of related work.   

Review of Persaud and Dzbik (1993) [1.1]  

These authors proposed a freeway accident modeling 

approach with the aim to overcome limitations of previous models. 

In the authors’ opinion, the first difficulty with existing 

models is that they tend to be macroscopic in nature since they 

relate accident occurrence to average daily traffic (ADT) rather than 

to the specific flow at the time of accidents. Second, some 

modelers assume, a priori, that accidents are proportional to traffic 

volume and go on to use accident rate (accident per unit of traffic) 

as the dependent variable. There is much research to suggest that 

this assumption is not only incorrect but can also lead to 

paradoxical conclusions [1.2]. Third, conventional regression 

modeling assumes that the dependent variable has a normal error 

structure. For accident counts, which are discrete and nonnegative, 

this is clearly not the case; in fact, a negative binomial error 

structure has been shown to be more appropriate [1.3]. Finally, it is 

impossible for regression models to account for all of the factors 

that affect accident occurrence. 

The need to overcome these difficulties was fundamental to 

the modeling approach adopted in the authors’ work. To this end, 

the authors adopted a generalized linear modeling statistical 

approach that allows the flexibility of a nonlinear accident-traffic 
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relationship and the possibility to choose a more appropriate error-

structure for the dependent variable. The approach was applied to 

both microscopic data (hourly accidents and hourly traffic) and 

macroscopic data (yearly accident data and average daily traffic). 

Generalized linear modeling using the GLM computer 

package was used to obtain a regression model for estimating P, 

the accident potential per kilometer per unit of time, given a 

freeway section’s physical characteristics, the volume (T) per unit of 

time, and a set of variables that describe operating conditions 

during the time period. The model form used was: 

E(P) = a·Tb               (1.1) 

where a and b are model parameters estimated by GLM. 

 The macroscopic models were calibrated using data 

obtained from the Ontario Ministry of Transportation. For 

approximately 500 freeway sections, the accident count for the 

years 1988 and 1989 were used as an estimate of the dependant 

variable, and traffic data as an independent variable. To account for 

varying section lengths, the term log (section length) was specified 

as an “offset”, thus, in effect, models were estimated for prediction 

of the number of accidents per kilometer per year. 

 The microscopic models were calibrated using data 

pertaining to a 25-km segment of Highway 401 in Toronto, Canada. 

Part of this freeway, actually, has a Traffic Management System 

(FTMS) which provided detailed traffic data for short time periods. 

The sections, which range in length from 0.7 to 3.0 km, are 
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separated by interchanges, and all have express and collector 

roadways typically with three lanes each per direction. 

 It was decided to disaggregate each day into 24 periods of 1 

hour each and to derive data for each hour, for express and 

collector lane separately, and for day and night. For the accident 

data this task was straightforward. For the traffic data, it was 

necessary to derive hourly and seasonal variation factors and 

collector/express lane distribution factors and apply these factors 

to the average daily traffic. To maintain a reasonable level of 

homogeneity, only data pertaining to weekdays were used for the 

model calibration. After preliminary data analysis, it was decided to 

build the regression models using, for each section, only data for 

off-peak hours for which that section tended to be uncongested. 

Figure 1.1 shows plots of the microscopic model regression 

prediction per kilometer per hour for two accident types (severe 

and total) and for express and collector roadways.  

It is important to note that, for these regression lines, the 

slope is decreasing as hourly volume increases, perhaps capturing 

the influence of decreasing speed. 

This is in contrast to the macroscopic plot in Figure 1.2, 

which all show increasing slopes. It is possible that the macroscopic 

plots are reflecting the increasing probability of risky maneuvers, 

such as passing and changing lanes, with higher ADT levels. 
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Figure 1.1. Microscopic regression model prediction 

 

Figure 1.2. Macroscopic regression model prediction 
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Review of Mountain, Fawaz and Jarrett (1996) [1.4]  

These researchers developed and validated a method for 

predicting expected accidents on main roads with minor junctions 

where traffic counts on the minor approaches are not available. 

The authors recognize that accidents at junctions are ideally 

modeled separately and that junction models do not normally 

assume a linear relationship between accidents and conflicting 

flows [1.5][1.6][1.7][1.8][1.9]. However, problems can arise because 

the application of such models requires, at a minimum, a 

knowledge of entry flows. 

The data used for the study comprised details of highway 

characteristics, accidents and traffic flows in networks of main 

roads in seven UK counties for periods between 5 and 15 years. The 

networks represented a total of some 3800 km of highway. The 

road networks were restricted to UK A and B roads outside major 

conurbations. In addition to road type, the network roads were 

categorized according to carriageway type (single or dual) and 

speed limit (<40 mph (urban) and 40> mph (rural)). Junction 

accidents were defined as accidents occurring within 20 m of the 

extended kerblines of the junction. 

The regression models were developed using the 

generalized linear modeling technique. This approach allowed a 

model form in which accidents are not linearly proportional related 

to traffic and the assumption of a negative binomial error structure 

for the dependent variable. 



Chapter 1 

 

 
24 

Results were compared with the COBA model (a basic model 

used in the U.K. for use in the cost benefit analysis), in which 

dependent variable is assumed to be proportional to the link length 

and traffic flow. It was clear that the proportional model used in 

COBA increasingly tended to overestimate the annual accidents as 

traffic volume increase. The non-linear model form showed that the 

linear model, as used in COBA, is inappropriate. 

Review of Abdel-Aty and Radwan (2000) [1.10] 

These authors argued that two major factors usually play an 

important role in traffic accident occurrence. The first is related to 

the driver, and the second is related to the roadway design. 

Actually, as Abdel Aty et al. note, different researchers have 

attempted three approaches to relate accidents to geometric 

characteristics and traffic related explanatory variables: Multiple 

Linear regression, Poisson regression and Negative Binomial 

regression. However, recent research shows that multiple linear 

regression suffers some undesirable statistical properties when 

applied to accident analysis. To overcome the problems associated 

with multiple linear regression models, researchers proposed 

Poisson regression for modeling accident frequencies. They argued 

that Poisson regression is a superior alternative to conventional 

linear regression for applications related to highway safety. In 

addition, it could be used with generally smaller sample sizes than 

linear regression. Using the Poisson model necessitates that the 

mean and variance of the accident frequency variable (the 
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dependent variable) be equal. In most accident data, the variance 

of the accident frequency exceeds the mean and, in such case, the 

data would be over dispersed. Because of the over dispersion 

difficulties, the authors suggested the use of a more general 

probability distribution such as the Negative Binomial.  

The primary objective of the Abdel-Aty and Radwan 

research was to develop a mathematical model that explains the 

relationship between the frequency of accidents and highway 

geometric and traffic characteristics. Other objectives include 

developing models of accident involvement for different gender 

and age groups using the Negative Binomial regression technique, 

based on previous research that showed significant differences in 

accident involvement between different gender and age groups 

[1.11][1.12][1.13].  

In order to develop a mathematical model that correlates 

accident frequencies to the roadway geometric and traffic 

characteristics, Abdel Aty et al. argue that one needs to select a 

roadway that possess a wide variety of geometric and traffic 

characteristics. The goal of their data collection exercise was to 

divide the selected roadways into segments with homogenous 

characteristics. After reviewing several roadways in Central Florida, 

the authors decided that State Road 50 (SR 50) was most 

appropriate for this task. Information included geometric 

characteristics such as horizontal curves, shoulder widths, median 

widths, and traffic characteristics such as traffic volumes and speed 
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limits. SR 50 was divided into 566 highway segments defined by any 

change in the geometric and/or roadway variables. The data 

included the following variables: AADT, degree of horizontal 

curvature, shoulder type, divided/undivided, rural/urban 

classification, posted speed limit, number of lanes, road surface and 

shoulder types, and lane, median, and shoulder widths. Accident 

data were obtained from an electronic accident database for three 

years from 1992 to 1994. 

The Poisson regression methodology was initially 

attempted. However, the Poisson distribution was rejected because 

the mean and variance of the dependent variables are different, 

indicating substantial over dispersion in the data. Such over 

dispersion suggested a Negative Binomial model to the authors 

who note that the Negative Binomial modeling approach is an 

extension of the Poisson regression methodology and allows the 

variance of the process to differ from the mean. The Negative 

Binomial model arises from the Poisson model by specifying: 

lnli = bxi + e   (1.2) 

Where, li is the expected mean number of accidents on 

highway section i; b is the vector representing parameters to be 

estimated; xi is the vector representing the explanatory variables on 

highway segment i; e is the error term, where exp(e) has a gamma 

distribution with mean 1 and variance a2. The Negative Binomial 

model is calibrated by standard maximum likelihood methods. The 
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likelihood function is maximized to obtain coefficient estimates for 

a and b. The choice between the Negative Binomial model and 

the Poisson model can largely be determined by the statistical 

significance of the estimated coefficient a. If a is not significantly 

different from zero (as measured by t-statistics) the Negative 

Binomial model simply reduces to a Poisson regression. 

In order to decide which subset of independent variables 

should be included in an accident estimation model, AIC (Akaike’s 

information criterion) was used by Abdel Aty et al. AIC identifies the 

best approximating model among a class of competing models with 

different numbers of parameters. AIC is defined as AIC=-2∙ML+2∙p, 

where ML is the maximum value of the log-likelihood function and 

p is the number of the variables in the model. The smaller the value 

of AIC, the better the model. 

Two exposure variables were found to be significant. The 

first is the section’s length. The longer the length of the roadway 

section, the more likely accidents would occur on these sections. A 

similar conclusion was reached for the log of the AADT per lane. 

Moreover, the sharpness of the horizontal curve has a positive 

effect on the likelihood of accidents. Accidents increase with 

increasing degree of curve. An increase in shoulder width and 

median width was associated with a reduced frequency of 

accidents. There was an interaction effect between the lane width 

and the number of lanes. When the lane width increases, and at the 

same time the number of lanes decreases, the frequency of 
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accidents decline. Vertical alignment did not enter the model, 

possibly because Florida has relatively flat topography (i.e. little 

variation in slopes). Finally, the significance of the over dispersion 

parameter (a) indicates that the Negative Binomial formulation is 

preferred to the more restrictive Poisson formulation. 

From the male and female accident involvement models, it 

could be concluded that female drivers experience higher 

probability of accidents than male drivers during heavy traffic 

volume and with reduced median width. Moreover, narrow lane 

width and larger number of lanes have more effect on accident 

involvement for female drivers than male drivers. Male drivers have 

greater tendency to be involved in accidents while speeding. 

Young and older drivers have a larger possibility of accident 

involvement than middle aged drivers when experiencing heavy 

traffic volume. There is no effect of horizontal curve on older 

drivers’ accident involvement. Older age drivers, however, have a 

greater tendency to accident occurrence than middle and young 

drivers for reduced shoulder width and median widths. Decreasing 

lane width and increasing number of lanes creates more problems 

for older drivers and younger drivers than middle age drivers. Older 

drivers experience fewer accidents if the shoulder is paved. Also, 

the likelihood of younger drivers’ accident involvement increases 

with speeding. 
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Review of Garber and Ehrhart (2000) [1.14] 

This study identified the speed, flow, and geometric 

characteristics that significantly affect crash rate and developed 

mathematical relationships to describe the combined effect of 

these factors on the crash rate for two-lane highways.  

The authors noted that previous research of crash rates and 

hourly traffic volume revealed a U-shaped relationship, indicating 

that higher crash rates are observed during the early-morning and 

late-day hours when the traffic volume is low [1.15][1.16]. This has 

been further extrapolated to conclude that, as the number of 

vehicles on the highway increases, the variation between vehicle 

speeds decreases and that it is the speed variance that affects the 

crash rate [1.17][1.18][1.19]. The type of crash also has been shown 

to be a function of the traffic volume. The percentage of multiple-

vehicle crashes decreases as the traffic volume decreases, and the 

percentage of single-vehicle crashes increases with a decrease in 

volume [1.20]. 

Garber et al. cited research showing that a U-shaped 

relationship exists between the probability of a vehicle being 

involved in a crash and the deviation of the vehicle’s speed from 

the mean speed of the traffic. This relationship indicates that the 

greater a vehicle speed deviates from the mean speed, the greater 

is the probability of that vehicle being involved in a crash [1.20]. 

This implies that driving both slower and faster than the mean 
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speed increases the likelihood of being involved in a crash, 

according to Garber et al. 

The review by Garber et al. found that the main geometric 

characteristics that have been found to influence safety for two-

lane roads are lane width and shoulder width. The results obtained 

from these studies have tended to be inconsistent. A few studies 

also have investigated the effect of grade on crashes for two-lane 

highways. Although it is generally accepted that grades of 4 percent 

or lower have an insignificant effect on crashes, the results of these 

studies also have been contradictory. 

In the actual Garber and Ehrhart (2000) research, data 

collection consisted of obtaining speed, flow, and crash data for the 

road segments selected for the study and defining roadway 

characteristics, such as the number of lanes, for the segments. 

Lengths of the roadway segments were identified between traffic 

monitoring stations, positioned on major intersections, to ensure 

homogeneous traffic and flow characteristics. 

The modeling process began with the use of the 

independent variables mean speed (MEAN), standard deviation of 

speed (SD), flow per lane (FPL), lane width (LW), and shoulder 

width (SW), and with crash rate (CRASHRATE) as the dependent 

variable. Two deterministic modeling procedures (multiple linear 

regression and multivariate ratio of polynomials) were applied to 

the data in search of an adequate fit, but in the end, multivariate 
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ratio of polynomial models seemed to better described the 

relationship between the dependent and independent variables. 

The authors recognized that once models have been 

constructed, a suitable measurement of quality must be applied to 

select the model that best fits the observed data. Two such 

measurements were applied in this research: the coefficient of 

determination (R2) and Akaike’s information criterion (AIC). 

The R2 value is a popular measure used to judge the 

adequacy of a regression model. Defined as a ratio, the R2 value is a 

proportion that represents the variability of the dependent variable 

that is explained by the model. In symbolic form: 
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i                      (1.3) 

where:  
 
ŷ:  model estimates, 
y :  mean of the observations 

yi:  actual observations 

An R2 value near zero indicates that there is no linear 

relationship between the dependent and independent variables, 

while a value near 1 indicates a linear fit. The authors note that the 

R2 value should be used with caution to ensure its correct 

interpretation, and it always should be accompanied by an 

examination of the residual scatter plots; also, that the R2 value is 

not an appropriate measure for nonlinear regression because its 

purpose is to measure the strength of the linear component of the 
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model. Therefore, another method must be introduced to compare 

the multivariate models. The method chosen was the AIC, which 

was developed as a means to predict the fit of a model based on 

the expected log likelihood. 

The results of this research established that the crash rate is 

not linearly related to speed, flow, and geometric characteristics. Of 

all of the independent variables considered in this study, the 

standard deviation of speed (SD) seemed to have the greatest 

impact on the crash rates for two-lane highways. 

Review of Pardillo and Llamas (2003) [1.21] 

These researchers developed a set of multivariate 

regression models to estimate crash rates for two-lane rural roads, 

using information on accident experience, traffic and infrastructure 

characteristics. The research includes identifying relevant variables, 

model calibration and precision analysis of the method for accident 

rate prediction and for assessment of road safety improvement 

projects effectiveness. In the development of accident prediction 

models two key questions have to be solved, as the authors note: 

functional model form choice and independent variable selection. 

The authors felt that in recent years, there was a consensus 

among researchers in favor of modelling accidents as discrete, rare, 

independent events, usually  as generalized linear Poisson models 

in which the frequency of crashes that occurs in a given road 

section is treated as a random variable that takes discrete integer 

non-negative values. A characteristic feature of the distribution is 
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that the variance of the variable is equal to its mean. The mean 

number of accidents is assumed to be an exponential applied to a 

suitable linear combination of road variables. The resulting models 

are generalized linear models (GLIM), in which the exponential 

function guarantees that the mean is positive. The authors cited 

Maher and Summersgill [1.22] who developed a comprehensive 

methodology to fit predictive accident models applying this 

approach. 

In 1994 Miaou [1.23] introduced negative binomial models, 

a generalization of the Poisson form that allows the variance to be 

over-dispersed and equal to the mean plus a quadratic term in this 

mean whose coefficient is called the overdispersion parameter. 

When this parameter is zero, a Poisson model results. 

Vogts and Bared [1.24] developed a series of Poisson and 

Negative Binomial multivariate regression models to predict 

accident frequencies in 2-lane rural roads and intersections. 

Prediction variables in non-intersection models include traffic 

volume, commercial vehicles percentage, lane and shoulder width, 

horizontal and vertical alignment, road side condition and driveway 

density. 

Independent variable selection for accident prediction 

models remains a complicated problem. Krammes et al. [1.25] and 

Lamm et al. [1.26] have both shown with their works the 

importance of taking into account design consistency when 

considering safety effects of highway characteristics on crash risk. 
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A sample 3450 km of two-lane rural roads was used in this 

research. Crash data was obtained and analyzed in two periods: 

1993-97 and 1998-99. The first period was used in model 

calibrations, while the second period was reserved to assess model 

accuracy. Traffic and roadway characteristics dataset contains one 

record every 10 m of roadway including the following data: 

• AADT (veh/day) 

• Curvature(m-1) 

• Longitudinal grade (%) 

• Roadway width (m) 

• Right shoulder width (m) 

• Left shoulder width (m) 

• Sight distance (m) 

• Access points 

• Posted speed limit (km/h) 

• No passing zones 

• Safety barriers 

Dividing the sample in homogeneous sections in which all 

the characteristics of the highway were constant resulted in 

segments with of an average length of less than 400 m. Previously, 

in 1997, Resende and Benekohal [1.27] had reached the conclusion 

that to get reliable accident prediction models crash rates should 

be computed from 0.8 km or longer sections. It was decided that 

the average length of homogeneous sections was too short to allow 

for a meaningful analysis of the effect of potential roadway 
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improvements on safety. For that reason, the study was conducted 

in parallel for two types of sections. For the first one the 3450 km 

sample was divided in 1 km fixed length segments. For the second, 

the same sample was divided into 236 highway sectors or sections 

of variable length limited by major intersections and/or built-up 

areas within which traffic volumes and characteristics could be 

assumed to be constant. The length of these highway sectors 

ranged between 3 km and 25 km, with an average of 14.6 km. 

The variables that were considered in the analysis for the 1 

km long segments were: 

• Access density (access points/km) 

• Average roadway width (m) 

• Minimum sight distance (m) 

• Minimum curvature (1/m) 

• Minimum speed limit (km/h) 

• Maximum grade in absolute value (%) 

• Minimum design speed (km/h) 

• Design speed reduction from the adjacent 1 km 

segments (km/h) 

The variables that were considered in the analysis for the 

highway sectors or sections of variable length were: 

• Access density (access points /km ) 

• Average roadway width (m) 

• Average sight distance (m) 

• Average curvature (1/m) 



Chapter 1 

 

 
36 

• Standard deviation of curvature (1/m) 

• Average speed limit (km/h) 

• Maximum longitudinal grade (%) 

• Average of the absolute values of grade (%) 

• Average design speed (km/h) 

• Standard deviation of design speed values (km/h) 

• Average design speed variation between the 1 km long 

adjacent segments included in the sector (km/h) 

• Proportion of no passing zones 

Independent variable selection was performed with the 

objective of identifying those variables that show higher degree of 

association with crash rates. Traffic volume was found to be the 

variable with the highest correlation with crash frequencies. 

In 1 km segments, the highest correlation coefficients with 

the average accident rate for the study period were: 

• Access density (access points/km) 

• Design speed reduction from adjacent segments (km/h) 

• Speed limit (km/h) 

• Average sight distance 

When longer sections were considered, the highest 

correlation coefficients with the average accident rate were: 

• Access density (access points/km) 

• Average speed limit (km/h) 

• Average sight distance (m) 

• Proportion of no-passing zones 
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From the results of the research performed by Pardillo and 

Llamas, the following conclusions were obtained: 

• A key step to develop accident prediction models is to 

select a set of independent variables that capture as 

much of the interaction between roadway 

characteristics and driver safety performance as 

possible. To do this a univariate correlation analysis can 

be conducted prior to the calibration of multivariate 

models. 

• The highway variables that have the highest correlation 

with crash rates in Spain´s two-lane rural roads are: 

Access density, average sight distance, average speed 

limit and the proportion of no-passing zones. Access 

density is the variable that influences most the rate of 

head-on and lateral collisions, while in run-off the road 

and single vehicle crashes sight distance is decisive. 

• High access density has a negative effect on safety. 

Therefore preventive safety improvements should 

include access management and control measures. 

• To measure the influence of geometric design on crash 

rates it is necessary to use variables that measure the 

variation of characteristics between adjacent alignment 

elements or along a highway section. This confirms the 

importance of achieving highway design consistency to 

improve safety. 
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Review of Ng and Sayed (2004) [1.28] 

The objectives of this study were to investigate and quantify 

the relationship between design consistency and road safety. 

Design consistency is the conformance of geometry of a 

highway with driver expectancy, and its importance and significant 

contribution to road safety is justified by understanding the driver–

vehicle–roadway interaction. When an inconsistency exists that 

violates driver’s expectation, the driver may adopt an inappropriate 

speed or inappropriate maneuver, potentially leading to accidents. 

In contrast, when design consistency is ensured, all abrupt changes 

in geometric features for continuous highway elements are 

eliminated, preventing critical driving maneuvers and minimizing 

accident risk (Fitzpatrick and Collins 2000) [1.29]. 

Currently, several measures of design consistency have been 

identified in the literature and models have been developed to 

estimate these measures. These measures can be classified into 

four main categories: operating speed, vehicle stability, alignment 

indices, and driver workload. 

Operating speed is a common and simple measure of design 

consistency. Operating speed is defined as the speed selected by 

the drivers when not restricted by other users, i.e., under free flow 

conditions, and it is normally represented by the 85th percentile 

speed, denoted as V85 (Poe et al. 1996) [1.30]. The difference 

between operating speed and design speed (V85-Vd) is a good 

indicator of the inconsistency at one single element, while the 
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speed reduction between two successive elements (ΔV85) indicates 

the inconsistency experienced by drivers when traveling from one 

element to the next. Lamm et al. (1999) [1.31] have established 

consistency evaluation criteria for these measures. 

Many models have been developed to determine operating 

speed in terms of alignment parameters. Morrall and Talarico 

(1994) [1.32] have related V85 (kilometers per hour) on horizontal 

curves to the degree of curve DC using data on two-lane rural 

highways in Alberta. 

Lamm et al. (1999) have suggested that another measure 

that can account for more variability of operating speed on curves 

is the curvature change rate CCRs because it takes transition curves 

into consideration, as shown below 

 

                    (1.4) 

 

where CCRs is measured in gon per kilometers (gon is a designation 

of the angular unit (1 gon = 0.9°)), Lcr is the length of circular curve 

(meters), Lcl1 and Lcl2 are the lengths of spirals preceding and 

succeeding the circular curve (meters), and L = Lcr + Lcl1 + Lcl2 is the 

total length of curve and spirals (meters). 

Operating speed on tangents connecting horizontal curves 

of an alignment is also important for design consistency evaluation. 

Tangent length is one of the factors that determines the necessary 
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speed reduction when entering a horizontal curve and forms the 

basis of the definitions of dependent and independent tangents. An 

independent tangent is a tangent that is long enough to allow 

drivers to reach their desired operating speed, and consequently a 

speed reduction of greater than 20 km/h is required when they 

enter the following curve (Lamm et al. 1999). In contrast, a 

nonindependent tangent is one that is not long enough, and 

therefore a speed reduction that is greater than 20 km/h is not 

required. Speed on nonindependent tangents is less complex to 

model than that on independent tangents that generally depend on 

a whole array of roadway character. Some research has been 

undertaken to model operating speed on independent tangents, 

but the results are considered preliminary (Polus et al. 2000) [1.33]. 

Alignment indices are defined as quantitative measures of 

the general character of an alignment. They reveal geometric 

inconsistencies when the general characteristics of the alignment 

change significantly. While speed reduction and vehicle stability are 

good measures of design consistency, they are symptoms rather 

than causes. It is the geometric design itself, or specifically, the 

geometric characteristics and the combinations of tangents and 

horizontal curves that create inconsistencies. One of the indicators 

of geometric inconsistency is a large difference between the value 

of an alignment index of an individual feature and the average 

value of the alignment. The ratio of the radius of an individual 

horizontal curve to the average radius of the alignment (roadway 
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section), denoted by CRR, is adopted in Ng and Sayed research 

work. 

Driver workload can be defined as the time rate at which 

drivers must perform the driving task that changes continuously 

until it is completed (Messer 1980) [1.34]. Conceptually, driver 

workload can be a more appealing approach for identifying 

inconsistencies than operating speed because it represents the 

demands placed on the driver by the roadway, while operating 

speed is only one of the observable outputs of the driving task. 

However, the use of driver workload is much more limited than 

operating speed because of its subjective nature (Krammes and 

Glascock 1992) [1.35]. 

Two measures have been proposed in the literature to 

measure driver workload, namely sight distance and visual demand. 

Limited sight distance increases driver workload as the driver needs 

to update his information more frequently and process it more 

quickly. However, little research has been conducted to investigate 

the relationship between driver workload and sight distance. In 

contrast, a number of studies have been carried out to examine the 

potential of visual demand as a measure of driver workload. Visual 

demand is defined as the amount of visual information needed by 

the driver to maintain an acceptable path on the roadway 

(Wooldridge et al. 2000) [1.36]. 

The models developed to estimate visual demand of 

unfamiliar drivers (VDLU) and visual demand of familiar drivers 
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(VDLF) were found to be inversely proportional to horizontal radius, 

meaning that driver workload increases with a decrease in radius 

[1.37]. 

The study conducted by Ng and Sayed uses geometric 

design, accident, and traffic volume data recorded on a two-lane 

rural highway. Specifically, accidents that occurred within 50 m of 

signalized intersections or within 20 m of all other types of 

intersections were eliminated. The design consistency measures 

mentioned previously, namely V85-Vd, ΔV85, CRR, VDLU, and VDLF, 

were computed for each section. The data included 319 horizontal 

curves and 511 tangents. 

The methodology used in this study is based on the 

development of Accident Prediction Models incorporating design 

consistency measures. The models are developed using the 

generalized linear regression modeling (GLM) approach. The 

following model form was adopted: 

                        (1.5) 

where E(Λ) is the expected accident frequency; L is the 

section length; V is the annual average daily traffic (AADT); xj is any 

of the m variables in addition to L and V; and a0, a1, a2, and bj are 

model parameters. The error structure of the models is assumed to 

follow the negative binomial distribution. 
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Models developed showed accident frequency to be 

positively correlated to V85-Vd, ΔV85, VDLU, and VDLF, and is 

negatively correlated CRR. 

A qualitative comparison was also made to compare 

accident prediction models that explicitly consider design 

consistency with those that rely on geometric design characteristics 

for predicting accident occurrence. The comparison, while limited 

to fictitious alignments and not real data, shows that the first type 

may be superior as it can potentially locate more inconsistencies 

and reflect the resulting effect on accident potential more 

accurately than the second. The prediction accuracy of accident 

prediction models is limited by the quality of their independent 

variables. As such, the models developed in this study depend 

heavily on the design consistency measures used. 

Review of Zhang and Ivan (2005) [1.38]  

These researchers used Negative Binomial (NB) Generalized 

Linear Models (GLIM) to evaluate the effects of roadway geometric 

features on the incidence of head-on crashes on two-lane rural 

roads in Connecticut. 

 Many previous studies have applied NB GLIM in highway 

crash analysis under different circumstances. Wang and Nihan 

(2004) [1.39] used NB GLIM to estimate bicycle-motor vehicle 

(BMV) crashes at intersections in the Tokyo metropolitan area. 

Shankar et al. (1995) [1.40] also adopted NB GLIM in modeling the 

effects of roadway geometric and environmental features on 
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freeway safety. Miaou (1994) [1.41] evaluated the performance of 

negative binomial regression models in establishing the relationship 

between truck crash and geometry design of road segments. 

For Zhang and Ivan research, six hundred fifty-five segments, each 

with a uniform length of one kilometer, were selected from fifty 

Connecticut state-maintained two-lane rural highways. The 

selection was based on the land use pattern, permitting only minor 

intersections (without signal or stop control on the major 

approaches) and driveways along the segments. Information 

concerning speed limit, clear roadway width, number of driveways 

and minor intersections, and geometric characteristics such as the 

horizontal curvature and the vertical grade were collected. The 

definitions of the selected variables are shown in Table 1.1.  

Table 1.1. Definition of Site Characteristic Variables (Zhang and 

Ivan, 2005) 
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The Akaike's Information Criterion (AIC) [1.42][1.43] was 

used for selecting the best of the models and to highlight variables 

significantly related to safety. Four of the site variables were found 

to be significant at 95 percent confidence for predicting the head-

on crash count: SACRH, SACRV, MAXD, and SpeedLT (speed limit). 

Moreover, the authors found that the coefficient for the natural log 

of AADT is significantly different from 0, rejecting the hypothesis 

that the rate of head-on crashes is constant with volume. This 

coefficient is actually negative, suggesting a decreasing trend for 

head-on crash rate with AADT. This was not expected, since head-

on crashes are expected to occur more often at higher volumes 

than at lower volumes, as drivers would have more opportunities to 

conflict with vehicles approaching from the opposite direction. 

Nevertheless, since head-on collisions are so rare, this relationship 

may be relatively weak. Also, drivers may pay more attention to 

safety when they see more traffic coming from the opposite 

direction, thus reducing the rate of head-on crashes at high traffic 

volumes. 

Consistency of geometric design can be approached in two 

ways. Some studies have analyzed lengths of road, to address the 

possibility that accidents may not occur at “the most inconsistent” 

element (curve or tangent) of the alignment but somewhere within 

a road section of poor consistency. The more usual approach is to 

analyze individual elements (curves and tangents) of the alignment. 

This provides a more specific level of analysis.  
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Review of Bird and Hashim (2006) [1.44] 

A similar approach to Zhang and Ivan was adopted in this 

research in which authors aimed to find whether relationships 

could be found between accident locations and various consistency 

measures at element level. Many consistency variables were 

defined for this study, some have been used before in other 

studies, and some were new ones defined by the authors for this 

particular study. These variables can be alignment indices (ratio of 

curve radius to average curve radius) or speed indices (difference 

between operating speed on an element and speed limit). 

Other research has been carried out to develop accident 

prediction models that are based on a range of alignment 

consistency measures. Anderson (1999) [1.45] developed several 

regression models to relate the accident frequency to 5 different 

consistency measures separately. These measures include 

operating speed reduction, average radius, ratio of an individual 

radius to average radius and average rate of vertical curvature. His 

data set consisted of 5287 horizontal curves in 6 states in USA. His 

final conclusion stated these four consistency measures appeared 

suitable for assessing the safety of highways. The fifth measure, 

ratio of maximum to minimum radius on a roadway section, was 

found not to be as sensitive to predicted accident frequency, and 

was therefore not recommended as a design consistency measure. 

Other work on Canadian roads, recently reported by Hassan et al. 

(2005) [1.46], found that operating speed consistency provided 



Safety Performance Functions (SPFs): a general overview 

 

 
47 

superior models in relation to collision frequency than design-speed 

margin consistency. 

The research proposed by Bird and Hashim (2006), was 

based on a sample of 380 km of rural single carriageways (two lane 

undivided highways). Sections in built up areas (villages or towns) 

or near (within 20 meters of) junctions with other A or B class roads 

were excluded. The study required geometric details of each 

element of the alignment of the road, thus alignment 

characteristics (e.g. length of element, radius, deflection angle and 

degree of curve) were collected. The final sample contained 620 

curves and 594 tangents. The study considers only personal injury 

accidents (PIA) because in the U. K., only personal injury accidents 

must, by law, be reported to the police. The time period for the 

accident data was 2000-2004. Accident records were allocated to 

the correct elements (e.g. curve or tangent) using the easting and 

northing coordinates of each accident and element. 

One of the variables used in calculating some of the 

consistency measures is operating (85th percentile) speed. The 

design speed was also used as part of some consistency indices. 

So as already highlighted previously, the technique of 

Generalized Linear Modelling (GLM) offers a suitable and sound 

approach for developing accident prediction models. The general 

form of the accident prediction model is therefore: 
 

           (1.6) 



Chapter 1 

 

 
48 

where:  

m =   estimated accident frequency 

L =  section length 

AADT =  section average annual daily traffic, 

Xj =   any additional variables 

β0, and βj =  the regression parameters 

 

The usual test for goodness of fit for standard regression 

analysis is the R2 value. However this has shortcomings when used 

in accident analysis as stated by Miaou (1995) [1.47]. Many other 

measures have been suggested by Miaou and other authors 

[1.48][1.49][1.50]. Miaou suggested using the negative binomial 

overdispersion parameter k to determine how well the variance of 

data is explained in a relative sense. This is expressed as: 

k
kRk

max2 1−=
 
              (1.7) 

where  

k =  estimated overdispersion parameter for the chosen  
             model 
kmax=  the estimated overdispersion parameter for a model 

with only an intercept term. 
 
Two other measures can be also used, the mean scaled 

deviance and the mean Pearson χ2. 
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Taking up Bird and Hashim study again, before accident 

prediction models were created, it was necessary to define the 

individual variables to use in the analysis. Two main exposure 

variables were used, the length of the element, and the traffic flow 

on it. Other variables fell into two groups, direct geometric 

variables, and speed and consistency indices. 

The first stage of the study involved the development of 

models for groups of accidents, for curves, tangents and then for 

the combined dataset. For all the models calibrated, side access 

density (direct variable) and the absolute difference between the 

speed limit and element operating speed (consistency variable), 

was found to be statistically significant. 

Review of Polus and Mattar-Habib (2004) [2.51]  

These authors utilized operating speed profiles on nine two-

lane rural roads segments having lengths ranging from 3 to 10 km 

each in northern Israel. Two measures of consistency were 

developed for these segments. The first measure was the 

normalized relative area (per unit length), bounded between the 

speed profile and the average speed line. The average operating 

speed, Vavg, was computed as the average weighted speed, by 

length, along the entire segment. If the areas bounded between the 

speed profile and the average operating speed line are denoted by 

ai, as shown in Figure 1.3, then the first consistency measure is 

given as:      



Chapter 1 

 

 
50 

 

         (1.8) 

   

Where Ra is the relative area (m/s) measure of consistency; 

∑ai is the sum of areas bounded between the speed profile and the 

average operating speed (m2/s); and L is the entire segment length. 

The second measure of consistency was the standard 

deviation of speed (s) along the road segment. The standard 

deviation is the most appropriate statistical measure of data 

distribution around the mean value. It was necessary to use this 

additional measure to complement the first measure because the 

Ra measure by itself provided similar result for somewhat different 

geometric characteristics in a few cases, though this was rare. 

 
Figure 1.3. (a) Example of road section and (b) example of speed 

profile 
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The standard deviation of the operating speed was defined 

as: 

s = [(Vi – Vavg)2/n]0.5 (1.9) 

where s is the standard deviation of the operating speeds (km/h); 

Vi is the operating speed along the ith geometric element (tangent 

or curve) (km/h); Vavg is the average weighted (by length) operating 

speed along a road segment (km/h); and n is the number of 

geometric elements along a section (km/h). 

These two measures of consistency provide an independent 

assessment of the resemblance (i.e., consistency) of speed 

performance along the entire road segment under study. Their 

main advantage is that they consider the consistency of the overall 

longitudinal segments, not just individual speed differentials 

between two successive elements. 

As the relative weighted area bounded by the speed profile 

and the average weighted operating speed increases, so does the 

inconsistency of speeds. The standard deviation of operating speed 

also increases as the distribution becomes more dispersed. These 

two measures were found, opportunely combined in a road safety 

evaluation model developed by authors, significantly related to 

safety.  
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1.2.1. Key points 

On the basis of the literature review presented so far, some 

key points need to be emphasized regarding statistical accident 

modelling for motorways, the focus of this thesis.  

First, the generalized linear modelling technique (GLM) is 

appropriate for safety performance function calibration. This 

approach overcomes the limitations of conventional linear 

regression in accident frequency modeling, and allows a Poisson or 

Negative Binomial error structure, distributions that are more 

pertinent to accident frequency modelling, to be assumed. 

Together with this, new techniques of calibration can be used.  

Second, the model form adopted has to account for the 

nonlinear relationship between accident frequency estimate and 

traffic volume variable; moreover it has to allow for the dependent 

variable to logically equal  zero as the exposure variables goes to 

zero.  

Third the independent variable definition and selection must 

account for road geometric features as well as consistency 

measures and road context-related characteristics.  

Fourth, in parallel with the independent variable choice 

issue, the state of the art analysis revealed research focusing also 

on providing guidelines or suggestions to define and obtain 

homogeneous segments [1.10][1.14][1.21][1.38][1.51]. Cafiso et al. 

[1.52] also presented a detailed methodology purposely set up for 



Safety Performance Functions (SPFs): a general overview 

 

 
53 

dividing the entire path into segments characterized by 

homogeneous highway features related to safety. 

On the basis of the literature review, and in order to 

organize the concepts relevant to this thesis, following is  

summarizes descriptions of the statistical regression technique 

used for safety performance function calibration, the choice of 

model form, and the most frequently used goodness of fit 

measures for safety performance function evaluation. 

1.3. Regression Technique, Model Form and 
Goodness of Fit Evaluation 
In the first instance a note on terminology is needed to 

clarify some terms used in the following chapters. The term 

accident prediction models, often used to indicate safety 

performance functions, usually denotes a multivariate model fitted 

to accident data in order to estimate the statistical relationship 

between the number of accidents and factors that are believed to 

be related to accident occurrence. The term “predictive” is 

somewhat misleading; “explanatory” would be a better term. 

Prediction refers to attempts to forecast events that are yet to 

occur, whereas accident prediction models are always fitted to 

historical data and can thus only describe, and perhaps explain, 

past events [1.53]. 

Moreover, the choice of the explanatory variables 

potentially affecting the safety performance of a site ought to be 

based on theory [1.54]. A theoretical basis for choosing explanatory 
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variables might take the form of, for example, a causal model 

[1.55]. In practice, a theoretical basis for identifying explanatory 

variables is rarely stated explicitly [1.56]. The usual basis for 

choosing explanatory variables appears to be simply data 

availability. It is obvious that any analysis will be constrained by 

data availability. Nevertheless, the choice of explanatory variables 

should ideally not be based on data availability exclusively. 

Explanatory variables should include variables that: 

• Have been focused in previous studies to exert a major 
influence on the number of accident; 

• Can be measured in a valid and reliable way; 

• Are not endogeneous, that is dependent on other 
explanatory variables included or on the dependent 
variable in the model.   

Historically, two statistical modeling methods have been 

used to develop collision prediction models: conventional linear 

regression and generalized linear regression [1.57]. Recently 

however, generalized linear regression modeling (GLM) has been 

used almost exclusively for the development of collision prediction 

models. Several researchers (e.g. Jovanis and Chang 1986, Hauer et 

al. 1988, Miaou and Lum 1993) [1.58][1.9][1.59] have 

demonstrated the inappropriateness of conventional linear 

regression for modeling discrete, non-negative, and rare events 

such as traffic collisions. These researchers demonstrated that the 

standard conditions under which conventional linear regression is 

appropriate (Normal model errors, constant error variance, and the 
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existence of a linear relationship between the response and 

explanatory variables) cannot be assumed to exist when modeling 

the occurrence of traffic collisions. 

The GLM approach has the advantage of overcoming the 

limitations of conventional linear regression in accident frequency 

modeling. In particular, it allows also a Poisson or Negative 

Binomial error structure, distributions that are more pertinent to 

accident frequency modelling, to be assumed. The GLIM approach 

is described in the following [1.9][1.60][1.61]. 

Suppose Yi is a random variable that describes the number 

of crashes at a given location i in a given period of time. Then Yi is 

assumed to possess Poisson distribution and can be expressed as: 

!
)(

i

y
i

ii y
e

yYP
ii λλ −⋅

==              (1.10) 

where P(Yi=yi) is the probability of occurring y crashes on the 

roadway section i in a given period of time and li is the expected 

number of crashes on section i (i.e. E(yi)). In addition, the mean or 

expected value of Yi is assumed to be equal to its variance. That is: 

iii YVarYE λ== )()(             (1.11) 

where, E(Yi) is the expected number of crashes on section i and 

Var(Yi) is the variance of observed number of crashes. For a given 

set of explanatory variables (highway geometrics, traffic and other 

data), li can be estimated using the formulation: 
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ii Xβλ =)ln(             (1.12) 

where, X is a vector of explanatory variables and b is a vector of 

parameters to be estimated. 

However, in some cases this method has limitations when 

applied to real world data due to the assumption of equal mean 

and variance. When the data are overdispersed or underdispersed 

(i.e. mean is note equal to the variance), use of this method would 

overestimate or underestimate the parameters. Many previous 

studies have found that crash data tend to be overdispersed in 

many situations with the variance being significantly higher than 

the mean. In such cases, any inferences made based on Poisson 

model estimations may lead to wrong conclusions. As a result of 

this, many researchers recommend using alternative methods in 

analyzing crash data, especially when the data is overdispersed. 

One such method is to utilize Negative Binomial (NB) distribution 

because it does not require the equal mean and variance 

assumption. In this method, the mean or expected value itself is 

assumed to be a random variable, which can be described by 

Negative Binomial distribution. In this case, li can be now written 

as: 

iii X εβλ +=)ln(             (1.13) 

where ei is the unobservable error term with a gamma distribution. 

The variance of this distribution can be expressed as:    
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[ ] 2
iii kYVar µµ +=             (1.14) 

where mi is the expected number of crashes on section i and k is 

called the Negative Binomial dispersion parameter. The 

overdispersion occurs when the value of k is greater than 1 and 

when its value is zero, NB distribution reduces to Poisson 

distribution with which the variance is equal to the mean. The 

corresponding probability distribution under the NB assumption is 

given by: 
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where, G(.) is the gamma function. The Negative Binomial 

model can be estimated using a maximum likelihood method to 

obtain the model parameters or b values and the dispersion 

parameter k. This can be carried out through maximization of the 

likelihood function (L), where, N is the total number of sections: 
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The general form of the accident prediction model adopted is: 
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where: 
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E(Y) = 
expected accident frequency (accidents/time 
period); 

L = length of the segment under consideration (km); 

AADT = Average Annual Daily Traffic (AADT) (veh/day); 

xj = Any of m- additional variables; 
a0, a1, and bj = model coefficients; 

This model form was selected because it is generally 

accepted as the form that better describes the accident 

phenomenon [1.10][1.21][1.38][1.51].  

In particular, it logically estimates zero accidents if one of 

the two exposure variables (AADT or L) is equal to zero and it allows 

the non-linear relationship between traffic volume and accident 

frequency by means of a suitable calibration of the traffic volume 

coefficient. 

Several measurements are usually used to assess the 

goodness-of-fit of the model and the significance of the model 

parameters [1.62]. These are the t-ratio for the model parameters, 

the scaled deviance (SD) and the Pearson χ2 statistics for the model 

overall. The SD, defined as the likelihood ratio test statistic, 

estimated as twice the difference between the log likelihoods of 

the studied model and the full or saturated model where the full 

model has as many parameters as the observations, so that the 

model fits the data perfectly. Therefore, the full model, which 

possesses the maximum log likelihood achievable under the given 

data, provides a baseline for assessing the goodness-of-fit of an 

intermediate model with specified parameters. McCullagh and 



Safety Performance Functions (SPFs): a general overview 

 

 
59 

Nelder [1.63] showed that for negative binomial error structure the 

scaled deviance is as follows: 

        (1.18) 

where: 

 SD = scaled deviance; 
 yi = observed number of accidents of the ith segment; 

(yi) = predicted number of accidents of the ith segment; 
k = negative binomial dispersion parameter; 
n = number of the observations in the sample. 

The Pearson χ2 can be calculated by means of the following 

formula: 
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where: 

Var(yi) = variance of the ith segment. 

In order to verify the goodness-of-fit of the model, these 

two measures must be compared with the value obtained from the 

χ2 distribution with the model’s degrees of freedom and for a given 

level of significance. The model can be considered significant, if 

both measurements are less than the χ2 critical value. 

The Akaike’s Information Criterion (AIC) was also used as 

goodness of fit measure [1.10][1.38][1.64]. The AIC value is 

calculated as follows: 
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AIC=-2∙logL+2∙p            (1.20) 

where: 

logL = maximum log-likelihood of the fitted model; 

p = number of parameters in the model. 

The smaller the value of AIC, the better the model data fit. 

Therefore AIC can be used also to compare and rank different 

models calibrated on the same dataset. 

Another measure of goodness of fit is R2
k. This measure was 

calculated as follows [1.48]: 

k
kRk

02 1−=              (1.21) 

where: 

k0 = the overdispersion parameter estimated in the negative 

binomial model with only a constant term; 

k = the negative Binomial overdispersion parameter estimated in 

the full model. 

R2
k is simple to calculate, and it yields a value between 0 and 

1. Since it is based explicitly on the overdispersion parameter, it is 

especially applicable in evaluating negative binomial models. The 

higher the R2
k value, the better is the fit.  

An adjusted R2
k is a modification of R2

k that adjusts for the 

number of explanatory terms in a model:  
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where 

n = total number of observations in the sample; 

p = total number of the parameters in the model (not counting the 

     constant term). 

A tool that can be adopted for the evaluation of the 

appropriateness of the model form chosen, is the cumulative 

residual analysis [1.56][1.65][1.66]. The residual for each data 

observation of the sample is equal to the difference between the 

observed and estimated values of the dependent variable. A 

standardized residual for the ith observation, e.g., road segment,  

(SRi) is computed from the following equation: 
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where: 

yi = observed number of accidents of the ith segment; 

ŷi = estimated number of accidents of the ith segment; 

k = dispersion parameter      
   

The cumulative standardized residual value for the jth 

element is obtained as follow: 

∑
=

=
j

i
ij SRCSR
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            (1.24) 
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for j = 1, ,…, m and with m equal to the total number of the 

observation. 

Cumulative standardized residuals analysis is carried out by 

plotting CSRi versus exposure values, computed as the product of 

AADT and the length for each homogeneous section. The more the 

points of the CSR curve stay close to the x-axis, avoiding significant 

increase or decrease of the shape, the closer the estimates are to 

the observations and the more limited is the over/under-estimation 

phenomenon. Moreover, a CSR curve contained into the 2 standard 

deviation interval (e.g. 2s), indicates the appropriateness of the 

model form chosen [1.67]. 

1.4. Empirical Bayes Estimation and the Role of the 
NB Dispersion Parameter 

Ultimately, a safety performance function gives an estimate 

of the expected number of accidents for a roadway element that 

has a certain combination of traits. In most models, these include 

traffic volume and characteristics of highway geometry. Most safety 

performance functions will not include all factors that produce 

systematic variation in accident counts. Hence, estimates of the 

expected number of accidents derived from a safety performance 

function represent mean values for sites which have a given 

combination of traits. The expected number of accidents for a 

specific site will normally differ from the mean value for units which 

have similar general traits. 
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What is the best estimate of the long term expected number 

of accidents for a given roadway element, given the fact that some, 

but not all the factors affecting accident occurrence, are known? 

According to the empirical Bayesian method [1.68], the best 

estimate of safety is obtained by combining two sources of 

information: 

1. The accident record for a given site; 

2. A safety performance function showing how and how much 

various factors affect accident occurrence. 

Let O be the observed number of accidents and E the 

normal, expected number of accidents estimated by a safety 

performance function. The best estimate (empirical Bayes estimate) 

EB of the expected number of accidents for a given site is given as 

follow: 

OwEwEB ⋅−+⋅= )1(            (1.25) 

The parameter (empirical Bayes calculation weight) w 

determines the weight given to the estimated normal number of 

accidents for similar sites when combining it with the observed 

number of accidents in order to estimate the expected number of 

accidents for a particular site. Usually w is estimated as follow: 

E
EVar

w
)(1
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=             (1.26) 
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where Var(E) is the variance of the expected number of accidents E 

estimated by a safety performance function and is given as: 

2)( EkEEVar ⋅+=             (1.27) 

where k is the value of the dispersion parameter characterizing the 

safety performance function and estimated as the “shape-

parameter” of the negative binomial distribution adopted for 

calibration in the regression model. 

There is no doubt that the development of safety 

performance functions, or what we may term “modern” accident 

prediction models, during the past 15 years represents a major step 

forward in road safety research. Road safety research is now rapidly 

becoming a mature scientific discipline [1.69], a discipline that can 

be taught in universities and that provides basis for a rational 

approach to road safety management. 

Development in the field of accident modelling has been so 

rapid, that some models that were considered as state of the art 

only ten years ago, look somewhat primitive today. But today there 

is a danger, as pointed out by Lord, Washington and Ivan (2005) 

[1.70], of moving too far in the direction of mathematical 

sophistication and perfect fitting of models. Accidents are very 

complex phenomenon; hence models also need to be complex in 

order to faithfully reproduce the main features of reality. Yet, the 

art of model building is, and will always be, the art of making the 

right simplifications. A good model is not necessarily an immensely 

complex model that perfectly fits the data in every detail. A good 
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model is rather the simplest possible model that adequately fits the 

data, and that contains relationships that may be presumed to hold 

in general. 

So as previously emphasized, safety performance functions 

(SPFs) are commonly calibrated using negative binomial regression 

in which a dispersion parameter that represents extra-Poisson 

variation is estimated. The negative binomial error structure is 

preferred to the conventional normal distributed structure 

assumed in conventional regression modeling because crash data 

are non-negative counts. The Poisson distribution is a special case 

of the negative binomial but is only applicable when all entities with 

identical values of the independent variables can be assumed to 

have identical means, a near impossibility because of the practical 

difficulty of accounting for all effects in crash prediction models. 

Indeed, the size of the calibrated dispersion parameter is a measure 

of how well a model represents the data and can be thus used to 

compare competing models for the same data. 

Actually the primary use of the dispersion parameter is not 

in assessing goodness of fit, but in empirical Bayes (EB) estimation 

[1.71] in which the posterior mean of an entity with a known crash 

history is estimated as a weighted average of the crash counts and 

an SPF prediction. The dispersion parameter is used to calculate the 

relative weights for each component and is such that the smaller 

the parameter, the better the model is and the greater the weight 

assigned to it, relative to that assigned to the crash counts.  
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These EB estimates are used in safety management 

applications in such modern application tools as the Highway Safety 

Manual [1.71] and SafetyAnalyst [1.72], for which the two primary 

uses are:  

1. To estimate the safety of sites for network screening 

to prioritize them for safety investigation; 

2. The treatment evaluation to estimate the expected 

safety of a site had it not been treated.   

It stands to reason, therefore, that the importance of 

precise estimation of the dispersion parameter should be 

established. This need is complicated by findings in a recent flurry 

of research papers that suggest that the dispersion parameter, 

contrary to earlier research, is not constant for a given data set but 

actually varies from site to site, depending on site characteristics 

such as segment length. Therefore the real question is: Does it 

matter that the dispersion parameter varies and, if so, does it 

matter how it varies? The question is especially topical since 

dispersion parameters in the Highway Safety Manual (HSM) and 

SafetyAnalyst either are constant or have a very simple form. 

The varying form in the HSM and SafetyAnalyst is such that 

the dispersion parameter for certain classes of road segments is 

inversely proportional to segment length, as first suggested by 

Hauer [1.73] who argued logically that shorter segments have a 

higher accident frequency variance and consequently should have a 

higher dispersion parameter than longer segments, and that this 
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variation should influence the long-term estimate of a segment’s 

safety. Since this argument does not apply to intersection models, it 

is not surprising that dispersion parameters for these SPFs are 

constant in the HSM and SafetyAnalyst. However, others 

[1.74][1.75][1.76][1.77] have suggested that other variables can 

affect the dispersion parameter, and thus this parameter may also 

vary for entities such as intersections and rail-highway crossings. 

Sayed et al. [1.74], for example, in essence allowed the variation in 

the dispersion parameter for urban arterials to be accounted for by 

estimating the variance of the prediction as a function with a form 

similar to that used to estimate the mean. The dispersion 

parameter is then estimated as the square of the model prediction 

divided by the variance estimate. Although this approach does 

provide substantial flexibility in estimating the variation in the 

dispersion parameter, the model form for the variance is somewhat 

arbitrary and the logic of including terms other than length has not 

been established. Sayed et al. found that the varying dispersion 

parameter effectively increased the goodness of fit to the data by 

allowing for more modeling variability. However, in terms of model 

application to the identification and ranking of accident-prone 

locations, there were small or limited differences compared to 

using a constant dispersion parameter. 

1.5. Chapter summary 

The use of a reliable modeling approach is the first step to 

conduct reliable safety analysis.  
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In the present Chapter 1 a wide literature review on the 

Safety Performance Function is reported together with the state of 

the art methodology to address the regression to the mean effects. 

Meaningful review on modeling approach of  different Authors are 

reported in the Chapter with their own comment on the related 

studies. 

Various methodologies for the evaluation of the goodness of  

fit are described in the Chapter and their peculiarity and reliability.  
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CHAPTER 2 
 

HOW TO ADDRESS THE TIME TREND 

EFFECTS IN THE CALIBRATION OF SPFs 
 

2.1. Introduction  
Safety Performance Functions (SPFs) are useful tools for 

estimating the expected number of crashes over a road network 

which are typically used in the screening of sites with promise for 

safety improvements. In the present Chapter 2 a procedure of 

analysis for motorways network offering a comparison between the 

conventional analytical techniques based on GLM (Generalized 

Linear Model) largely described in Chapter 1 and a different 

approach based on General Estimating Equation (GEE) is reported. 

The GEE model, incorporating the time trend, is compared in terms 

of results and reliability in the estimation with conventional models 

(GLM) that do not take into account the temporal correlation of 

accident data [2.1]. The analysis reported later in the Chapter, as 

well as the great part of the references are based on a study of 

Cafiso and D’Agostino presented at 5th SIIV International 

Conference in 2012 in Rome and published on Procedia Elsevier - 

Social and Behavioral Sciences,  [2.2]. As it will be clear later, the 
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time trend effect in the reliability of SPFs, and in the evaluation of 

the effects of a treatment as well, plays a fundamental role above 

all when Motorways are analyzed where the crash rate is generally 

low and more years of analysis need to have an adequate reliability. 

2.2. The time correlation effects in the SPF 
Accident counts observed at a site (road  segment,  

intersection,  interchange) are commonly used as a  fundamental 

indicator of safety performing road safety analysis methods. 

Because crashes are random events, crash frequencies naturally 

fluctuate over time at any given site. The randomness of accident 

occurrence indicates that short term crash frequencies alone are 

not a reliable estimator of long-term crash frequency. This year-to-

year variability in crash frequencies adversely affects crash 

estimation based on crash data collected over short periods. The 

short-term average crash frequency may vary significantly from the 

long-term average crash frequency. This effect is magnified at study  

locations with low crash frequencies where changes due to 

variability in crash frequencies represent an even larger fluctuation 

relative to the expected average crash frequency. When a period 

with a comparatively high crash frequency is observed, it is 

statistically probable that the following period will be followed by a 

comparatively low crash frequency. This tendency is known as 

regression-to-the-mean (RTM), and also is evident when a low 

crash frequency period is followed by a higher crash frequency 

period.  
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Failure to account for the effects of RTM introduces the 

potential for “RTM bias”, also known as “selection bias”. Selection 

bias occurs when sites are selected for treatment based on short-

term trends in observed crash frequency. RTM bias can also result 

in the overestimation of the effectiveness of a treatment (i.e., the 

change in expected average crash frequency). Without accounting 

for RTM bias, it is not possible to know if an observed reduction in 

crashes is due to the treatment or if it would have occurred without 

the modification. In light of what has been said the safety level of a 

site can not be simply defined by its accidents history. Generalizing 

it can be said that the safety of an element of a road must be 

defined by the average expected number of accidents in a long 

period of time. To this aim, the use of longer periods of observation 

would be more appropriate. In general, this period of analysis 

depends on the availability of both traffic and crash data, but in 

literature numerous studies have shown that periods longer than 5 

years of investigation could reduce the accuracy in the estimation 

of the Safety Performance Function as they introduce the natural 

time trend that with the traditional analysis technique using 

generalized linear models (GLM) can not be taken into account. This 

phenomenon is very pronounced in the motorway sector, as 

accident rate is very low if compared to the urban or rural highways 

and a typical period of analysis that is enough on other contexts is 

not sufficient. If several years of analysis are available it is possible 

to take into account the annual variation or trend in the calibration 

of SPFs due to the influence of factors which change over time 
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using the General Estimating Equation (GEE) that incorporates time 

trend [2.2]. In order to assess this variation, the number of 

accidents of each year is treated as a single observation. 

Unfortunately, this procedure generates the disaggregation of data 

by creating a temporal correlation that can not be identified with 

conventional procedures of model calibration using GLM 

[2.3][2.4][2.5]. 

Basing on the previous considerations, the objective of this 

study is to illustrate the application of the GEE procedure to traffic-

safety studies when several years of data are available and when it 

is desirable to incorporate trend. The application is for a segment of 

a Motorway in Sicily, Italy, using data for the years 2003 through 

2009. The GEE models with trend are compared with GLM that do 

not account for temporal correlation in the accident count data. It 

is necessary, first, to provide some background on accident 

modeling before introducing the GEE concept. 

2.3. The Generalized Estimating Equation (GEE) 
methodology of calibration 
Crash observed at a site i in the year t (Yi,t) are typical time 

series data across years and can, therefore, be represented by the 

following simplified model structure: 

Yi,t = trend + regression term + random effects + local factors  (2.1)  

where “trend” refers to a long-term movement due to a 

change in the risk factors with time, the “regression term” is of the 

same form as the Safety Performance Functions (SPF), “random 
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effects” accounts for latent variables across the sites, and the “local 

factors” refers to the dispersion between the normal safety level 

for similar locations and the safety level for the specific site. This 

last term indicates the effects of local risk factors and also general 

factors that are not included in the safety performance function. 

Random effects and local factors both contribute to the dispersion 

of crash counts as compared to the mean value estimated by the 

regression term. 

The use of the Negative Binomial (NB) distribution to 

represent the distribution of crash counts is commonly accepted. 

Therefore, excluding trend effects (i.e. the phenomenon is 

stationary) GLMs are especially useful in the context of traffic 

safety, for which the distribution of accident counts in a population 

often follows the negative binomial distributions [2.6][2.7]. 

The important property of the GLM is the flexibility in 

specifying the probability distribution for the random component 

[2.8][2.9][2.10]. 

Many model forms exist for SPFs, but one of the most 

common ones is the following: 

{ } βακ FE =  (2.1) 

or the linear version: 

{ } FE lnlnln βακ +=  (2.2) 

where:  



Chapter 2 

 

 
86 

• { }κE : The expected number of accidents per unit of time; 

• F: Traffic flows (e.g., vehicles/day, vehicles/hour); and 

• βα , : Coefficients to be estimated. 

These coefficients are estimated by the maximum-likelihood 

procedure using a variant of the Newton-Raphson method [2.11]. 

The conventional application of GLMs to estimate SPFs 

without trend is well developed and for traffic-safety applications, 

it is desirable to estimate different coefficients for each year for 

which data is available. For logical reasons, it is usually assumed 

that the β’s are constant from year to year, and it is therefore only 

necessary to estimate the different α’s for each year. In the 

estimation of these α’s, each annual accident count is an 

observation, which creates difficulty because these counts are 

correlated. 

To appreciate the difficulty caused by temporal correlation, 

consider a simple example in which the model defined by Equation 

2.1 is to be developed for longitudinal data for which accidents and 

traffic flows are available for different time periods (t) at 

intersections identified from i = 1 to I. The model is given by the 

following equation: 

{ } βακ tt FE =  (2.3) 

where:  

• { }tE κ : The expected number of accidents per time period t;  

• F: Traffic flows for Year t (e.g., vehicles/day, vehicles/hour); and 



How to address the time trend effects in the SPFs calibration 

 

 
87 

•  βα , :Coefficients to be estimated 

The GLM estimate of coefficients for Equation 2.3 is the 

solution to the following estimating equation: 

0)(
1

1' =−∑
=

−
I

i
iiii YVD µ

 (2.4)
 

where:  

• iµ = )(1 βiXg−
;  

• β = βα , , coefficients of the model to be estimated  
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 In Equation 2.5, I is the ni × ni identity matrix, J is the 

ni × ni matrix all of whose elements are 1, and ρ is the correlation 

coefficient between any two measurements at the same link i. Note 

that the data in this example are assumed to be uniformly 

correlated, but the reader should be aware that other types of 

temporal correlation also exist. See Diggle et al. [2.12]. 

The variance of the GLM estimate of β then becomes: 
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(2.7)  

In Equation 5, if the observation is positively correlated (ρ > 

0), which often occurs when the repeated accident counts for the 
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same link are used, the variance of α and β will be increased by a 

factor ρ. 

Thus, the variance will be underestimated if this correlation 

is ignored. More importantly, ignoring the temporal correlation also 

could have an impact on the proper selection of coefficients 

because some coefficients may be wrongly accepted as significant 

because of the underestimated variance. For example, one might 

conclude that the year-to-year differences in α are significant when 

they are not. 

The coefficients of the GLM incorporating trend in 

temporally correlated data still may be estimated using the 

traditional maximum likelihood methods. However, the likelihood 

function is very complicated to define and solve. For instance, 

additional assumptions are routinely needed to specify the 

likelihood function of non-Gaussian data. And, even if these 

assumptions are valid, the likelihood often involves numerous 

nuisance parameters that must be estimated in addition to the 

explanatory variables. To overcome this difficulty, an alternative 

method known as the GEE procedure was proposed by Liang and 

Zeger [2.13] and Zeger and Liang [2.14].    

The GEE procedure is classified as a multinomial analogue of 

a quasi-likelihood function. The estimate of the coefficients can be 

found with the same previous Equation 2.7, but the temporal 

correlation in repeated observations is described by a ni × ni matrix 

R(λ), where λ represents the type of correlation with λ = [λ1 , . . . ,λ 
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n − 1 ] and λi = cor (Yit , Yik ) for t, k = 1, . . . , n−1, t ≠ k, and ni is the 

number of subjects. 

Therefore, the new covariance matrix now becomes: 

( ) iiii ARAV ⋅⋅= λ  (2.8) 

where Ai is an ni × ni matrix with diag [V(µi1 ), . . . V(µiTi )]. 

The covariance matrix is given by 2.10: 
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 (2.9) 

One can find the solution by simultaneously solving 

Equations 2.9 and 2.10 with the iterative reweighted least-squares 

method [2.15]. This method is required because the estimates of 

both β and λ need to be found. 

To solve the GEE correctly, every element of the correlation 

matrix Ri has to be known. However, in many instances, it is not 

possible to know the proper correlation type for the repeated 

measurements. To overcome this drawback, Liang and Zeger [2.13] 

proposed the use of a “working” matrixV̂ of the correlation matrix 

Vi which is based on the correlation matrix iR̂ . The estimate of the 

coefficients is found with the following equation: 
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The covariance matrix of Equation 2.9 is given by: 
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The proposed methodology in Equations 2.10 and 2.11 

possesses one very useful property in that β̂  nearly always 

provides consistent estimates of β even if the matrix Vi has been 

estimated improperly. Thus, the confidence interval for β will be 

correct even when the covariance matrix is specified incorrectly. 

Therefore, it is not necessary to, a priori, examine the type of 

temporal correlation (e.g., independent, dependent). Techniques 

on how to analyze and interpret autocorrelation can be found in 

books on time-series analysis such as those by Box and Jenkins 

[2.15] and Diggle [2.16]. One important drawback, however, comes 

with this property. To assume that β̂ is the proper estimate of β, it 

is required that the observation for each subject be known and 

available. If missing values exist, the estimate of the coefficients 

may be biased. The extent of the bias is influenced by the type of 

missing values (e.g. random or informative). Note that, in the case 

of ii VV =ˆ , Equation 2.11 becomes the covariance matrix of Equation 

2.9. 

2.4. Comparison between models with and without 
trend: a case study 

In the following a case study about the comparison of 

models with and without trend is reported. The analysis reported 

below, as well as the great part of the references are based on a 
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study presented at 5th SIIV International Conference in 2012 in 

Rome and published on Procedia - Social and Behavioral Sciences 

[2.2] 

2.4.1, Data description and Models calibration 

The SPFs proposed in this work are basically of two types. 

The first are based on the application of a model which the only 

explanatory variables are the Annual Average Daily Traffic (AADT) 

and the segment length (L) (exposure variables), while the second 

class of models in which in addition to the exposure variable there 

are a series of other variable depending to the physical 

characteristic of the road segment (multivariable models). Both 

classes of models will be analyzed using both Generalized Linear 

Model (GLM) and Generalized Estimating Equation (GEE). With the 

use of the latter finally the data is analyzed by incorporating in the 

model time trend.  

The general form of SPF is shown in equation 2.12: 

( )
∑
=×××=

m

i
ii xb

a eAADTLeYE 11α
 (2.12) 

where: 

• xi= generic additional variable, 

• m= number of generic additional variable, 

• α, a1, bi= m +2 regression parameters. 

The estimate will be zero if only at least one of the exposure 

variables (L and AADT) assumes a zero value. With regard to the 
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model depending only on the traffic shall be considered null the 

additional xi and it is taken into account only the length of segment 

and AADT. The application of the proposed safety performance 

function is performed on segments of the A18 CT-ME from the 

years 2003 to 2009 excluding 2004 because during year 2004 the 

Agency had adequate safety barriers in different parts of 

infrastructure changing the homogeneity of the segments within 

the year of analysis. The whole dataset consists of 652 segments of 

variable length and more than 70 m. Accident taken into account 

are fatal and injury, for a total of 451 accident in six years of 

analysis.  Segmentation was carried out to maintain all the variables 

constant within each segment. The choice (of the threshold of 70 

m) to have segment longer than 70 m comes out from a balance 

between the number of residual accidents, after the elimination of 

shorter segment and the problem related to an appropriate 

statistical inference.  

In the case of multivariable models the SPF assumes the 

form: 

( ) dqaRSHaViadaRilaGdaCurvaaa eAADTLeYE t ⋅+⋅+⋅+⋅+⋅+⋅+ ×××= 76543210 α
 (2.13) 

where: 

• Curv, Gd, Ril, Viad, RSH dq= additional variable, 

• αt= the additional factor which take into account time trend, 

• a0, a1, a2, …, a7= 8 regression parameters. 
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To each of them are associated all the information 

necessary for the application of the multivariable models that are: 

• The Roadside Hazard (RSH), which assumes 6 possible values 

(from 1 to 6, in increasing order of potential hazard), defined as 

follows: first, we consider only the conditions of the outer 

margin, assigning 1 to the trench, 2 embankment with 

appropriate barriers, 3 to the viaduct with adequate lateral 

barrier, 4 embankment with the side dam is not adequate, 5 to 

the viaduct with adequate lateral barrier, and then this value is 

the sum 1 in the case in which the median barrier is not to 

norm. This parameter is variable over time, due to 

maintenance and replacement of the barriers made by the 

Agency. In particular, it is changed from 2004 onwards in 

viaduct; 

• The slope of the grade downhill (Gd), this variable is significant 

in that it influences the speed of heavy  vehicles and therefore 

determines the average speed of flows. It assumes the value 

zero in the uphill and assumes the value of the slope of the 

segment when it is down; 

• The lack of cross slope of the sections analyzed (dq), 

analytically defined as the difference between the cross slope 

required according to the new Italian standard taking into 

account the radius of curvature and the type of road and what 

detected in situ; 
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• The variables related to the type of section (RIL and VIAD), are 

variables of type exclusive. They report the status of the 

homogeneous section. Those that were statistically significant 

are embankment and viaduct is instead discarded the trench. 

Therefore the variables described above assume the value 1 in 

the sections where it is embankment or viaduct and 0 in other 

segments; 

• The variable relating to the curvature of the homogeneous 

road element (Curv) defined as the actual curvature of each 

element. 

 
2.4.2. Results and model validation 

The application of the models leads to the results shown in 

Table 2.1, Table 2.2 and Table 2.3. These coefficients were 

estimated using the SAS software package [2.17] linearizing the 

equation and reporting for each estimated coefficient the standard 

error and for each model the relative dispersion parameter. The 

dispersion parameter represents the error in the construction of 

the model and is estimated by an iterative procedure using SAS 

software package [2.17]. The models are all over 6. The first two 

were calibrated using the GLM in particular the multivariate model 

is the model 1 and the second (model 2) is the basic model in which 

the only independent variable are AADT and L. The model 3 and 4 

were calibrated with GEE taking into account the time trend. In 

particular, model 3 is the multivariate and model 4 depends only of 
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AADT and L. Finally, models 5 and 6 were calibrated using the GEE 

but not considering the time trend. Comparing the results obtained 

by evaluating the standard error and the value of the coefficients of 

the regression is shown as the model 1 and model 2 have identical 

coefficients respectively to the models 5 and 6. This is due to the 

fact that the dataset used to calibrate is identical for all models. 

What varies is the value of the standard error of coefficients which 

is generally greater in models calibrated with GEE. Underestimating 

the standard could have an impact on the proper selection of 

coefficients because some coefficients may be wrongly accepted as 

significant because of the underestimated variance. 

Table 2.1. Estimates of the coefficients , (Standard Error) and [p-

value] for the GLM Models (1-2) 

  GLM 

    Multi (1) Mono (2) 

a0 Interc. -23.2595 (1.7521) [<.0001] -20.1118 (1.5198) [<.0001] 

a1 AADT 1.6738 (0.1812) [<.0001] 1.3312 (0.1560) [<.0001] 

a2 Curv 0.6044 (0.1550) [<.0001] -- 
a3 Gd 15.2622 (4.6726) [<.0011] -- 
a4 Ril 0.5548 (0.2765) [.0448] -- 
a5 Viad 0.4192 (0.2201) [.0500] -- 
a6 RSH -0.1846 (0.0916) [.0440] -- 
a7 dq -16.0828 (5.1129) [.0017] -- 

 Disp. 0.7068 (0.2240) 0.8315 (0.2406) 

 

On the other hand if dispersion parameter is considered, it is 

noted that for the classes of models calibrated not considering the 

time trend both they are calibrated using the GLM than the GEE it is 
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identical. This again depends on the fact that the database used is 

the same.  

Table 2.2. Estimates of the coefficients , (Standard Error) and [p-

value] for the GEE Models with Trend (3-4) 

GEE With Trend 

  
 Multi (3) Mono (4) 

a0 Interc. -23.3331 (1.7560) [<.0001] -20.1725 (1.5270) [<.0001] 
a1 AADT 1.6733 (0.1815) [<.0001] 1.3285 (0.1563) [<.0001] 
a2 Curv 0.6051 (0.1555) [.0004] -- 
a3 Gd 15.1352 (4.6792) [.0018] -- 
a4 Ril 0.5600 (0.2761) [.0031] -- 
a5 Viad 0.4195 (0.2192) [.0050] -- 
a6 RSH -0.1858 (0.0914)[.0036] -- 
a7 dq -16.1112 (5.1164) [.0032] -- 

αt 

2003 0.1247 (0.1785) 0.1062 (0.1799) 
2005 -0.0300 (0.1820) -0.0205 (0.1832) 
2006 0.0788 (0.1772) 0.0914 (0.1784) 
2007 0.2495 (0.1706) 0.2676 (0.1719) 
2008 0.0354 (0.1788) 0.0472 (0.1801) 
2009 0.0000 (0.0000) 0.0000 (0.0000) 

  Disp. 0.7012 (0.2230) 0.8269 (0.2397) 
 

If the models with the time trend calibrated with GEE 

(models 3 and 4) are compared, with those that do not take into 

account time correlation it is evident that the time trend also 

intervene on the value of the coefficients of all variables in the 

model. This is explained by the fact that the database used for the 

calibration while being identical, it is interpreted by the GEE model 

as a repetition of the various segments for each year of analysis and 

that it varies in both the traffic that some of the considered 

parameters.  
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In general, the models which do not consider time trend 

analysis used the database as a whole do not taking into account 

the repetition of the segment in different years, therefore, 

considering a larger sample than model with time trend of t times 

where t is the number of years of analysis. This is the reason for the 

lower value of dispersion parameter in models that incorporate 

temporal trends than the other. In practical terms, analyzing the 

results reported in Table 2.1 through Table 2.3, it is possible to say 

that with the traditional models (models 1, 2, 5, 6) that incorporate 

temporal trends would underestimate the expected number of 

accidents in the years 2003, 2006 and 2007 while we overestimated 

the value of the 2005 expected number of accidents, all related to 

last year of analysis. Referring to the dispersion parameter, has to 

be noted that difference in the estimation of the dispersion 

parameter can produce different results when the Empirical Bayes 

procedure is applied [2.18]. 

The goodness of fit of the models generated was 

investigated using the method of cumulate residuals (CURE), i.e. the 

sum of the differences between the number of accident observed 

at a site and the expected value at the same site in the same year. 

As the residuals of all models are normally distributed with 

expected value equal to 0 and variance equal to σ [2.19], it is 

possible to calculate the variance of the expected value of such site 

as the square of the cumulate residuals. The purpose is to evaluate 

the variance of the system and the trend of the variation of AADT 

residuals in order to identify any abnormal deviations of the SPF 
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used and evaluate how it fits to the dataset. The following figures 

show the cumulate residuals for the proposed models (Figure 2.1 

through Figure 2.6).  

Table 2.3. Estimates of the coefficients , (Standard Error) and [p-

value] for the GEE Models without Trend (4-5) 

 GEE Without Trend 

    Multi (5) Mono (6) 

a0 Interc. -23.2595 (1.7703) [<.0001] -20.1118 (1.611) [<.0001] 
a1 AADT 1.6738 (0.1821) [<.0001] 1.3312 (0.1651) [<.0001] 
a2 Curv 0.6044 (0.1718) [.0004] -- 
a3 Gd -15.2622 (4.8868) [.0018] -- 
a4 Ril 0.5548 (0.2599) [.0328] -- 
a5 Viad 0.4192 (0.2197) [.0500] -- 
a6 RSH 0.1846 (0.0887) [.0375] -- 
a7 dq -16.0828 (5.4573) [.0032] -- 

 Disp. 0.7068 (0.2240) 0.8315 (0.2406) 
 

The advantage of the method CURE is that it is independent 

from the number of observations, which is the case with other 

methods on the goodness of fit of models [2.19][2.20]. Analyzing 

the graphs it can be concluded that, as expected, the multivariable 

models (1, 3, 5), even if it is plotted respect only AADT oscillates 

much more close to zero and tend to exceed the limits of 2σ only in 

the proximity of the ends. Further consideration should be made on 

the peaks of cumulate residuals for multivariable models. Indeed, in 

the multinomial model that consider temporal trends (3) both the 

positive and negative peaks of the cumulate residuals are generally 

smaller than in multi models that not incorporate temporal trends 

(1 and 5) showing a better fit of the model to the dataset. Finally 
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also the lower amplitude of the oscillation of the residuals around 

the axis of abscissas indicates a lower dispersion of the residues to 

vary AADTs for multivariable models. 

In practical terms, what just said for multivariable models 

translates into a best estimate of the expected number of accidents 

of the models that consider time trend with respect to the dataset 

used and therefore a better adaptation to reality. For the models in 

which the only explanatory variables is AADT (2, 4 and 6) there are 

no significant difference. It could be explained by the fact that 

AADT have only moderate variations in the analysis period.    

In the present study were six different SPFs have been 

analyzed, two of which incorporate temporal trends in the 

calibration of models with the use of GEE. The remaining four SPFs 

were calibrated using basic and multivariable models by the way of 

classical GLM and GEE without trend.  

The data used are relative to a section of motorway A18 for 

a total of 652 segments and considering a period of analysis from 

2003 to 2009 with the exclusion of 2004. The purpose of the 

present study was to investigate the accuracy of different models 

that incorporate temporal trends respect to the classical models 

which do not take into account the temporal correlation of crash 

data. The time trend models were calibrated with the use of SAS 

software for which a script was created ad hoc by which it was 

possible to generate models that have a different constant value 

depending on the year of analysis. In this way it is possible capture 
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the variations in the expected number of accidents of sites 

investigated, due to the time correlation, compared to a year of 

analysis included in the time period analyzed. By analyzing the 

results it can be stated that the time correction generates a better 

goodness of fit of models that incorporate temporal trends. It also 

corrects over-underestimation of the standard errors of the 

regression coefficients and of the dispersion parameter obtained by 

the more traditional GLIM approach. This results, even if derived by 

the example application on an Italian Motorway, are consistent 

with other studies [2.1] [2.21]. Improving accuracy in the calibration 

of regression parameters and standard errors improve the quality 

of the SPMs and lead to more refined results when the EB approach 

is used to control the phenomenon of regression to the mean.  

Another advantage is related to the possibility of using a broader 

period of analysis. In fact, GEE that incorporate temporal trends are 

not affected by the extension of the period of analysis for two 

reasons. The first is that the data are analyzed as repetitions of the 

variables in different years and therefore although this reduces the 

size of the sample, makes sure that the analyst can use more years 

of analysis. The second is that the temporal correlation that is 

generated between the sites in different years does not generate 

errors related to the type and size of the correlation matrix used in 

the calibration of the model and this allows to take into account 

longer analysis period. This characteristic is useful especially when 

long periods of observations are needed to increase the sample size 

or to carry out before/after studies. In contrast, the calibration of 
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the models with GEE is critical in the case of missing values and 

therefore requires quality and detail of data greater than the 

traditional techniques [2.1][2.2]. 

 

 Figure 2.1. CURE Plots with ± 2σ for GLM model Multivariable (1) 

 

 

Figure 2.2. CURE Plots with ± 2σ for GLM model Monovariable (2) 
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Figure 2.3. CURE Plots with ± 2σ for GEE model with trend 
Multivariable (3) 

 

 

Figure 2.4. CURE Plots with ± 2σ for GEE model with trend 
Monovariable (4)  
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Figure 2.5. CURE Plots with ± 2σ for GEE model without trend 
Multivariable (3) 

 

Figure 2.6. CURE Plots with ± 2σ for GEE model without trend 
Monovariable (6) 

2.5. Chapter summary 

Time trend effects play a fundamental role above all when 
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others rural infrastructures means that to have reliable model 

longer period of analysis have to be taken into account.  

A study presented  at 5th SIIV International Conference in 

2012 in Rome and published on Procedia Elsevier - Social and 

Behavioral Sciences [2.2] is reported on the topic. In that study a 

comparison between the traditional GLM approach and the GEE 

methodology of calibration was performed, analyzing the goodness 

of fit of the estimated models.  

A higher reliability of the models which incorporate time 

trend and a general higher goodness of fit of the models which 

incorporates more variables is the conclusion of the Study. 
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 CHAPTER 3 
 

OPTIMIZATION OF THE GOF OF THE 

MODELS, VARYING THE SEGMENTATION 

APPROACH,  FOR ROAD SAFETY SITE 

RANKING 
 

3.1. Introduction  
With the new European regulation on Road Safety, (96/2008 

CE) and the Italian 35/2011, the transposition of the European 

code, the ranking of the hazardous location is central in the activity.  

To have a reliable ranking of segment with high 

concentration of crashes, need to have a reliable SPF from a 

goodness of fit point of view, and a good methodology of 

calibration, able to correct the regression to the mean and time 

trend effects.  

As shown in the previous Chapters Safety Performance 

Functions (SPFs) are crucial to science-based road safety 

management. Success in developing and applying SPFs depends 

fundamentally on two key factors: the validity of the statistical 

inferences for the available data and on how well the data can be 

organized into distinct homogenous entities. The latter aspect plays 
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a key role in the identification and treatment of road sections or 

corridors with problems related to safety. Indeed, the 

segmentation of a road network could be especially critical in the 

development of SPFs that could be used in safety management for 

roadway types, such as motorways (freeways in North America), 

that have a large number of variables that could result in very short 

segments if these are desired to be homogeneous.  

This consequence, from an analytical point of view, can be a 

problem when the location of crashes is not precise and when 

there is an over abundance of segments with zero crashes.  

Lengthening the segments for developing and applying SPFs 

can mitigate this problem, but at a sacrifice of homogeneity. As it 

will be clear later the best results were obtained for the 

segmentation based on two curves and two tangents within a 

segment and the segmentation with fixed length. The segmentation 

characterized by a constant value of all original variables inside 

each segment was the poorest approach by all measures.  

The great part of the elaboration related to the 

segmentation approach in the present Chapter 3 are based on a 

paper by Cafiso et al. [3.1] published on 92nd TRB annual meeting as 

well as the great part of the references which contributing in the 

Chapter.  

At the end of the Chapter a ranking analysis is performed 

and compared with the Potential for Safety Improvement Index.  
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3.2. Methodological approach and literature review  
Safety performance functions (SPFs) are crucial to science-

based road safety management using, e.g., the methods prescribed 

in the Highway Safety Manual [3.2]. These functions are statistical 

models used to estimate the expected crash frequency for a facility 

[3.3] based on its characteristics, mainly traffic volume, which 

accounts for the majority of the variability in crash frequency, and 

geometric variables. These functions are developed from data for a 

number of similar sites. Success in development or application of an 

SPF for road segments depends strongly on how well the data can 

be organized into distinct homogenous entities, i.e., on the 

approach to segmentation.  

Segmentation, when based on multiple variables, may lead 

to very short homogeneous segments [3.4]. For example, when 

using the segmentation approach proposed by the HSM, the 

presence of very short segments does not allow proper statistical 

inference for several reasons. The most important are the non-

perfect identification of the location of crashes, which is often 

taken from police reports, [3.5], and the fact that crashes are rare 

events resulting in a great number of segments with zero crashes. 

Lengthening segments to avoid these issues will sacrifice 

homogeneity. 

In the literature there are a number of different approaches 

to segmentation. Miaou and Lum suggested that short sections, less 

than or equal to 80 m could create bias in the estimation of linear 

models, but not when using Poisson models [3.6]. Similarly, Ogle et 
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al. demonstrated that short segment lengths, less than 160 m, 

cause uncertain results in crash analysis [3.7]. Cafiso et al. [3.8] 

showed that to increase performance in identifying correct 

positives as black spots, segment length should be related to AADT 

with lower AADT values requiring longer segment lengths. Qin et al. 

studied the relationship between segmentation and safety 

screening analysis [3.5] using different lengths of sliding windows to 

identify hazardous sites, and concluded that short segments as well 

as those that are too long create a bias in the identification of sites 

with safety problem.    

Some studies focused on the relationship between crashes 

and road geometry in addressing segmentation. For example, 

Cenek et al. [3.9], who investigated this relationship, for rural roads 

data, used a fixed segment length of 200 m. A similar study was 

made by Cafiso et al. [3.10] using homogeneous section with 

different lengths on a sample of Italian two lane rural roads, 

aggregating variable related to curvature and roadside hazard and 

concluding that model that contains geometry and design 

consistency variables are more reliable than others.  Other studies 

suggested different ways to aggregate segment data to avoid 

lengths that are too short. For example, Koorey proposed the 

aggregation of curves and tangents when the radius of curves 

exceeds a predetermined threshold value [3.11].   

The Highway Safety Manual (HSM) [3.1] recommends the 

use of homogeneous freeway segments with respect to AADT, 

number of lanes, curvature, presence of ramp at the interchange, 
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lane width, outside and inside shoulder widths, median width and 

clear zone width. There is no prescribed minimum segment length 

for application of the predictive models for freeways, but there is a 

suggestion of a segment length not less than 0.10 miles.  

Given the variety of approaches and the fact that there is no 

apparent preferred one, this study seeks to investigate alternative 

methodologies for segmentation, including the HSM procedures, 

using sample data from Italian motorways. All but one of these 

methods aggregate and redefine variables over longer segments 

while seeking to retain the geometric and exposure characteristics 

of the segment as best as possible. SPFs calibrated for different 

segmentations are compared in terms of goodness of fit and the 

variables captured. Stepwise regression was used for each of five 

different segmentation concepts to select the best combination of 

variables. In addition, for each segmentation concept, two simpler 

models were estimated and compared, a base model and 

curvature-based model that is described later. 

3.3. Data gathering and treatment  
The data used for this investigation are based on an Italian 

rural motorway, the “A18” Messina-Catania, which is approximately 

76 km (47.2 miles) long. The cross section is made up from 4 lanes, 

2 in each direction, divided by a median with barriers. The analysis 

period is for the 8 yeas from 2002 until 2009, during which 887 

severe (fatal plus injury) crashes according to the official statistics 

on motor vehicle collisions provided by the Italian National Institute 

of Statistics (ISTAT) [3.12].  Table 3.1 shows basic statistics for the 
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dataset used for analysis. In this study, only the road segments 

were analyzed; interchange data and the part of segment directly 

influenced by the presence of intersection were discarded. Every 

segment contiguous to an intersection starts from a distance of 50 

m (164 ft) from the bevel for the insertion of the service lanes for 

exit from, and entry into the main flow. The data available, in 

addition to AADT (Figure 3.1), were: radius of curvature, vertical 

gradient, type of section, and roadside features (presence and 

typology of the lateral and median barriers). It was necessary to 

adapt segment data according to the various segmentations to 

make the variables significant. 

Table 3.1. Details of the database used to estimate models. 

Year Range AADT Crash (Fatal + Injury) Length (km) 
2002 8696 – 24904 94 

145.08 

(two directions) 

2003 9082 -26123 95 
2004 9423 – 26947 100 
2005 10944 – 26882 104 
2006 7792 – 26414 113 
2007 7917 – 27001 119 
2008 7651 – 26783 113 
2009 9066 – 26743 93 

Total Crash 831   
 

In order to divide the sample into homogeneous segments, 

it was necessary to combine all the variables into a usable form, 

paying attention to the final form of the equation used for 

developing the SPFs for each segmentation approach [3.12].  
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Figure 3.1. Details of annual traffic (millions of vehicles) during the 
analysis period. 

The Average Annual Daily Traffic (AADT), which describes 

the exposure to crash risk, was not constant across some segments 

for two segmentation concepts; a length-weighted AADT was used 

as an approximation when this situation occurred. This 

approximation is more appropriate where a linear relationship 

between the dependent variable and AADT exists. (For the SPFs 

developed in this study, the crash-AADT relationship was 

approximately linear.) Other variables were similarly aggregated 

over segments in which they may not be constant for one or more 

segmentation approaches. The variables taken into account, apart 

from AADT, are related to geometry.  The original data were: 

curvature, gradient of each segment and barrier condition. The 

aggregation of these data is described below:  
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• Curvature treated as curvature change rate (CCR) [3.13] of 

the segment, calculated as follows: 

 (3.1) 

where γi is the deflection angle for a contiguous element 

(curve or tangent) i within a section of length L; 

• Slope Change Rate (SCR) for the vertical profile of the road 

segment, which represents the variation of the slope inside 

a single segment, calculated as follows: 

 (3.2) 

where δi is the deflection angle for a slope related to the 

horizontal alignment within a section of length L; 

• I, defined as the weighted average of the vertical gradient 

(up and down) with the reference length within each 

segment; 

• Id, defined as the weighted average of the vertical gradient 

(down) with the reference length within each segment. 

• Roadside Hazard (RSH) along a motorway, which is based 

both on type of section (trench, embankment, viaduct) and 

on the type of barrier with reference to the European 

standard EN 1317-1 1998) [3.14] [3.15] [3.16] [3.17]. RSH 

assumes 6 possible values (from 1 to 6, in increasing order 

of potential hazard), defined as follows: first, we considered 

only the conditions of the outer margin, assigning 1 to the 

]/[ mgon
L

CCR i
i∑

=

γ

]/[ mgon
L

SCR i
i∑

=

δ
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trench, 2 to embankment with appropriate barriers 

(complying with EN 1317-1), 3 to the viaduct with adequate 

lateral barrier, 4 to embankment where the side dam is not 

adequate, 5 to the viaduct with inadequate lateral barrier. A 

value of 1 was added if the median barrier is not adequate 

(Table 3.2). For this variable, the percentage of the length of 

a segment in which the RSH value was 6 (RSH6) or 5 and 6 

(RSH56) was used; 

• TUN, which indicates the percentage of the length of 

segment that is a tunnel; 

Table 3.2. Value of RSH by type of section and condition of lateral 
and median barriers (LA and MA indicate adequate lateral and 
median barriers; LN and MN indicate inadequate lateral and 
median barriers. 

 
RSH for 
Lateral 
Barrier 

only  

RSH for 
Median 

Barrier only  

RSH for Lateral and Median Barrier 
combinations 

 LA  LN  MA  MN LA MA LA MN LN MA LN MN 

Trench 1 1 
0 1 

1 2 1 2 
Enban. 2 4 2 3 4 5 
Viad. 3 5 3 4 5 6 

Tunnel 4  4 

 
3.4. Analysis and results 

In order to assess the influence of the organization of the 

data into segments on the goodness of fit of an SPF, five different 

segmentation approaches are assessed in this research, taking as 
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reference the traffic (AADT) and the curvature. Specifically, these 

are:  

• Segmentation 1: Homogeneous segments with respect to 

AADT and curvature, as suggested by HSM, using AADT and 

curvature as explanatory variables;  

• Segmentation 2: Data organized to have within each 

segment 2 curves and 2 tangents, avoiding having short 

segments when using a single curve;  

• Segmentation 3: Segments have constant AADT; other 

variables may not be constant.  

• Segmentation 4: Segments have a constant length. 

Specifically, a length of 650 m was chosen, coinciding with 

the maximum length of an interchange area, and selected to 

be just longer than the longest horizontal curve. This length 

was chosen to minimize the problem of incorrect location of 

crashes on Italian motorways. 

• Segmentation 5: All the variables used in the stepwise 

procedure are constant within each segment with their 

original value. 

For the segmentation based on curvature and AADT, very 

short segments were eliminated in order to have segments with 

length more than 100 m. Using different segmentation approaches 

also changes the range of variation of the variables used to 

estimate the model. Table 3.3 and Table 3.4 show the range of the 

variables used for each segmentation approach. For Segmentation 
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5, characterized by the value of the original data constant inside 

each segment, it is not possible to use an aggregated variable for 

RSH and TUN, so these are used as categorical variables with their 

original value.  

Table 3.3. Range (min-max) of variables for segmentation 
approaches 1,2 and 3. 

  Seg_1  
(Curve Based) 

Seg_2  
(2 Curves, 2 Tangents) 

Seg_3  
(AADT Based) 

Length (m) 100.1 – 1563.4 234.7 – 3307.6 4882.3 – 21856.3 
SCR (gon/m) 0 – 0.31 0 – 0.10 0.036 – 0.086 
CCR (gon/m) 0 – 0.031 0 – 0.014 0.034 – 0.068 

RSH6 (%) 0 – 70.23 0 – 55 0 – 10.61 
RSH56 (%) 0 – 100 0 – 100 0 – 12.03 

RSH - - - 
TUN (%) 0 – 100 0 – 75.4 0 – 49.1 
I (Gon) -0.042 – 0.045 -0.031 – 0.031 -0.0086 – 0.0088 

Id (Gon) 0 – 0.043 0 – 0.031 0.0023 – 0.014 

 

Table 3.4. Range (min-max) of variables for segmentation 
approaches 4 and 5. 

  Seg_4  
(Fixed Length) Seg_5 (Homogeneous) 

Length (m) 650.0 12 – 979.1 

SCR (gon/m) 0 – 0.28 0 – 0.35 

CCR (gon/m) 0 – 0.024 0 – 0. 33 

RSH6 (%) 0 – 66.03 - 

RSH56 (%) 0 – 100 - 

RSH - 1 - 6 

TUN (%) 0 – 100 0 - 1 

I (Gon) -0.038 – 0.038 -0.042 – 0.045 

Id (Gon) 0 – 0.038 0 – 0.043 
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The Generalized Estimating Equation (GEE) [3.18] method 

was used to estimate model coefficients, using the Statistical 

Analysis System (SAS) software package. The GEE procedure is 

classified as a multinomial analogue of a quasi-likelihood function, 

which allows the consideration of time trend in the models. 

Consistent with the state of research in developing these models, 

the negative binomial error distribution was assumed for the count 

of observed crashes [3.3]. 

The analysis of the road network using the predictive 

models includes the choice of a period of analysis. In general, this 

period of analysis depends on the availability of both traffic and 

crash data, but, in the literature, numerous studies have shown 

that periods longer than 5 years could introduce bias into the 

mathematical model for the variables linked to any physical 

changes of the network, or to the natural time trend, which, 

without the use of GEE, cannot be taken into account. The GEE 

procedure incorporates time trend, so is well suited to modeling 

data for long time periods. Specifically, it accounts for the temporal 

correlation that results when data for long periods are 

disaggregated into separate observations for each year.  

To evaluate the goodness of fit (g.o.f.) of the models, two 

different methodologies were applied: the Quasilikelihood under 

the Independence model Criterion (QIC) [3.19] [3.20] and the 

Cumulative Residuals (CURE) plot [3.21]. The QIC statistic is 

analogous to Akaike’s Information Criterion (AIC) statistic used for 

comparing models fit with likelihood-based methods. Since the 
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generalized estimating equations (GEE) method is not a likelihood-

based method, the AIC statistic is not applicable. The QIC has the 

following form: 

 (3.3) 

 
where I represents the independent covariance structure 

used to calculate the quasi-likelihood and  where  is 

the inverse of link function. 

When using QIC to compare two structures or two models, 

the model with the smaller statistic is preferred [3.19] [3.20] 

[3.22].The smaller the value of QIC, the better is fit of the model to 

the data. Therefore QIC can be used to compare and rank different 

models.  

For the present study, another advantage of QIC is that the 

g.o.f. of models with different numbers of parameters can be 

compared.  

The CURE method to evaluate the goodness of fit is based 

on the study of residuals, i.e., the difference between the number 

of crashes observed at a site and the expected value at the same 

site and in the same year. Assuming that residuals are normally 

distributed with expected value equal to 0 and a variance equal to σ 

(20), it is possible to calculate the variance of the expected value as 

the square of the cumulate residuals. The trend in the residuals 

with respect to AADT (or other variables) can be evaluated relative 

to the variance to qualitatively assess goodness of fit. The CURE 

method, is used to the examination of residuals after the 

( )IQQIC ;ˆ2 µ−=

)ˆ(ˆ 1 βµ xg −= ()1−g
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estimation of the SPFs. Usually it can be used to examine whether 

the chosen functional form indeed fits the explanatory variable 

along the entire range of its values represented in the data. The 

plot of cumulative residuals should oscillate around 0, end close to 

0, and not exceed the ±2σ* bounds. An upward/downward drift is a 

sign that the model consistently predicts fewer/more accidents 

than were counted.  When the plot of residuals does not show any 

systematic drift, by examining the cumulative residuals, it can be 

assumed a good fitting of SPF to data. 

The selection of the explanatory variables to be included in 

the model was made using a stepwise methodology inserting at 

first all the variables available, and testing for each of the five 

segmentations in order to keep only the variables that were 

significant. This method was applied using different set of variables, 

and avoiding problems due to correlation of variables. In the end, 

one model was calibrated with different combinations of variables 

for each segmentation approach (Model form A). Two other models 

were calibrated, one using only curvature (CCR) and AADT (Model 

form B), and one as base model for each approach, using AADT 

(Model form B) as the only explanatory variable. For all the models 

the segment length is included as an offset variable. In Table 3.5 the 

estimated models are presented with the value of QIC, and 

standard error and level of significance of variables.  Models A, B 

and C assume, respectively, the following form:  

Model A: ( )
iS

n

iS
StSS

Var
eAADTLeYE

*
1110
∑
=×××= +
β

ααα
 (3.4) 
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Model B: ( )
CCR

n

iS
StSS eAADTLeYE

*
1110
∑
=×××= +
β

ααα
 (3.5) 

Model C: ( ) StSS AADTLeYE 10 ααα ××= +
 (3.6) 

where: 

• E (Y): expected annual crash frequency of random variable 

Y; 

• L: length of road segment [m]; 

• AADT: average annual daily traffic [veh/day]; 

• α0S αtS: exponent of constant term of the model, and time 

trend, where the subscript S indicates the segmentation 

approach number;  

• α1S: exponent of AADT, where the subscript S indicates the 

segmentation approach number; 

• βiS: set of parameters of the regression for different set of 

variables, with S indicating the segmentation approach 

number, and i (1=1, 2,…7) the variable; 

• VariS: set of variables resulting from the stepwise 

procedure, for each segmentation approach (S); 

• CCR: Curvature change rate [gon/m].  

The model calibration results are presented in Table 3.5, 

while the plots of the cumulative residuals are presented in Figures 

3.2-3.4. As is evident from Table 3.5, Segmentation 4, with constant 

length of segments, allows a greater number of variables to be fit 

than the others segmentations for the primary Model form (A). The 

segmentation based only on AADT (Segmentation 3), allows the 
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estimation of a model with five of eight variables considered in the 

stepwise procedure. Similarly, for the model estimated for 

Segmentation 2, made up inserting 2 curves and 2 tangents in each 

segment, five variables were also significant, but the value of QIC is 

lower than for the Segmentation 3 model. The segmentation that 

gives the worst results in term of number of variables that could be 

included in the model is Segmentation 5 in which all variables are 

constant within each segment. Besides, the model for 

Segmentation 5 has the highest value of QIC.  

For Segmentation 3, which is based on AADT, the variables 

selected with the stepwise procedure have in general greater 

standard errors than those selected for other segmentation 

approaches. This is likely because, in motorways, AADT changes 

only at interchanges, so the segmentation approach can yield very 

long segments, with considerable within-segment variation in the 

other variables that cannot adequately be modeled.  

Results reported in Table 3.5, Figure 3.6 and Figure 3.7  

show not only differences in the g.o.f. and number of explanatory 

variables, but also, sometimes, differences in the sign of the 

coefficients. This indicates, depending on the segmentation, an 

opposite influence of the variable on the expected number of 

crashes estimated by the SPF. 

 In general, Segmentation 2 gives the best results for the 

primary model form, based on both QIC and the CURE plots. The 

cumulative residual curves in Figure 3.2 through Figure 3.16  
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oscillate closer to the value of zero than for the other 

segmentations.  

Table 3.5. Value of regression parameters, (p-value) and [Standard 
error] for different segmentations (1, 2, 3, 4, 5) and Model form A. 

 
Seg_1  
(Curve 
Based) 

Seg_2  
(2 Curves, 2 
Tangents) 

Seg_3  
(AADT 
Based) 

Seg_4  
(Fixed 

Length) 

Seg_5 
(Homogeneo

us) 
 Multiple variable models from stepwise procedure (Model form A) 

Interc. 
(α0S+α

tS) 

-20.4439 
(<.0001) 
[1.0820] 

-21.7516 
(<.0001) 
[1.4295] 

-13.8951 
(0.0003) 
[3.8420] 

-20.1429 
(<.0001) 
[1.3529] 

-20.7288 
(<.0001) 
[1.2874] 

AADT 
(α1S) 

1.3652 
(<.0001) 
[0.1124] 

1.4797 
(<.0001) 
[0.1417] 

0.8279 
(0.0143) 
[0.3381] 

1.3475 
(<.0001) 
[0.1358] 

1.4273 
(<.0001) 
[0.1307] 

CCR 
(βiS) 

2508.331 
(0.0054) 
[9.0223] 

484.9824 
(0.0042) 

[169.5507] 

-2931.75 
(0.0273) 

[1328.017] 

262.6808 
(0.0066) 

[96.7806] 

0.2111 
(0.0003) 
[0.0585] 

I 
(βiS) - - 

11.8788 
(0.0172) 
[4.9868] 

-14.3209 
(<.0001) 
[3.5159] 

-6.0280 
(0.0500) 
[3.1112] 

id  
(βiS) 

5.1423 
(0.0010) 
[1.5671] 

- - 
-16.2616  
(0.0050) 
[5.7890] 

- 

Tun(βiS
) 

(Categ)  

0.0058 
(0.0015) 
[0.0018] 

0.0050 
(0.0087)  
[0.0019] 

0.0258 
(<.0001) 
[0.0050] 

0.0046  
(0.0097) 
[0.0018] 

-0.4540  
(<.0001) 
[0.0981] 

RSH6 
(βiS) - 

-0.0263 
(0.0001) 
 [0.0069] 

-0.0634 
(0.0004) 
[0.0178] 

- - 

RSH56 
(βiS) 

-0.0031 
(<.0001) 
[0.0008] 

- - 
-0.0037 
(<.0001) 
[0.0009] 

- 

SCR 
(βiS) - 

-2.3927 
(<.0001)  
[0.2561] 

- 
8.4648 

(<.0001) 
[2.10570] 

- 

QIC 3322.00 1081.65 1761.16 2706.95 4510.73 

 

For model form B, in terms of the CURE plots, the best 

model is estimated from Segmentation 3, and shown in Figure 2.3. 
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For model form (C), based only on AADT, the model that oscillates 

closest to the value of zero is based on Segmentation 4. Only one 

model exceeds the ±2σ boundary -- the AADT-based model for 

Segmentation 3 (Figure 4 for the value of AADT close to 15,000 

veh/day). Segmentation 5, characterized by constant value of 

variables inside each segment, gives the poorest results, similar to 

the earlier conclusion based on QIC. 

Table 3.6. Value of regression parameters, (p-value) and [Standard 
error] for different segmentations (1, 2, 3, 4, 5) and Model form B. 

 Model with AADT and CCR (Model form B) 

 
Seg_1  
(Curve 
Based) 

Seg_2  
(2 Curves, 2 
Tangents) 

Seg_3  
(AADT 
Based) 

Seg_4  
(Fixed 

Length) 

Seg_5 
(Homogeneo

us) 
Interc. 
(α0S+α

tS) 

-18.9141 
(<.0001) 
[1.3226] 

-20.7128 
(<.0001) 
[1.6767] 

-26.3161 
(<.0001) 
[3.4852] 

-20.3723 
(<.0001) 
[1.6194] 

-19.7873 
(<.0001) 
[1.3327] 

AADT 
(α1S) 

1.2075 
(<.0001) 
[0.1364] 

1.3713 
(<.0001)  
[0.1667] 

1.8705 
(<.0001) 
[0.3207] 

1.3476  
(<.0001) 
[0.1613] 

1.2891  
(<.0001) 
[0.1358] 

CCR 
(βiS) 

23.7961 
(0.0021) 
[7.7267] 

489.8783 
(0.0031) 

[165.8877] 

2250.728 
(0.005) 

[820.6121] 

291.9741  
(0.0020) 

[94.3059] 

0.2022  
(0.0006) 
[0.0588] 

QIC 3325.57 1109.89 1462.87 2593.60 4580.81 

 

In general, for all models, the CURE plots reveal that the 

models tend to underestimate the number of crashes for low 

values of AADT, and to overestimate crashes for higher values of 

AADT.   

The purpose of this study was to investigate the influence of 

segmentation on the performance of safety performance functions 

(SPFs), in terms of goodness of fit and the variables that could be 

modeled. To do this it was necessary to sometimes aggregate 
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variables into a usable form, to have a constant value of each 

modeled variable in each segment.  

Table 3.7. Value of regression parameters, (p-value) and [Standard 
error] for different segmentations (1, 2, 3, 4, 5) and Model form C. 

 Base Model (Model form C) 

 
Seg_1  
(Curve 
Based) 

Seg_2  
(2 Curves, 2 
Tangents) 

Seg_3  
(AADT 
Based) 

Seg_4  
(Fixed 

Length) 

Seg_5 
(Homogeneo

us) 
Interc. 
(α0S+α

tS) 

-19.1467 
(<.0001) 
[1.3216] 

-18.8182 
(<.0001) 
[1.3281] 

-18.2944 
(<.0001) 
[1.1776] 

-19.1993 
(<.0001) 
[1.3039] 

-18.9870 
(<.0001) 
[1.2908] 

AADT 
(α1S) 

1.2358 
(<.0001) 
[0.1353] 

1.2000 
(<.0001)  
[0.1363] 

1.1515 
(<.0001) 
[0.1208] 

1.2403 
(<.0001) 
[0.1328] 

1.2163 
(<.0001) 
[0.1321] 

QIC 2947.62 1103.22 1363.27 2583.40 4410.09 

 

 

Figure 3.2. CURE Plots with ± 2σ for model form A for 
segmentation 1.  
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Figure 3.3. CURE Plots with ± 2σ for model form A for 
segmentation 2.  

 

Figure 3.4. CURE Plots with ± 2σ for model form A for 
segmentation 3.  
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Figure 3.5. CURE Plots with ± 2σ for model form A for 
segmentation 4.  

 

Figure 3.6. CURE Plots with ± 2σ for model form A for 
segmentation 5.  
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Figure 3.7. CURE Plots with ± 2σ for model form B for 
segmentation 1.  

 

Figure 3.8. CURE Plots with ± 2σ for model form B for 
segmentation 2.  
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Figure 3.9. CURE Plots with ± 2σ for model form B for 
segmentation 3.  

 

Figure 3.10. CURE Plots with ± 2σ for model form B for 
segmentation 4.  
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Figure 3.11. CURE Plots with ± 2σ for model form B for 
segmentation 5.  

 

Figure 3.12. CURE Plots with ± 2σ for model form C for 
segmentation 1.  
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Figure 3.13. CURE Plots with ± 2σ for model form C for 
segmentation 2.  

 

Figure 3.14. CURE Plots with ± 2σ for model form C for 
segmentation 3.  
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Figure 3.15. CURE Plots with ± 2σ for model form C for 
segmentation 4.  

 

Figure 3.16. CURE Plots with ± 2σ for model form C for 
segmentation 5.  
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has a fixed length of each segment, and one has all the variables 

constant within each segment relative to their original value.  

One model was calibrated with different combinations of 

variables for each segmentation approach. Two other models were 

calibrated for each approach, one using only curvature and AADT, 

and one a base model, using AADT as the only explanatory variable. 

The models were estimated for a sample of rural motorways 

segments in Italy, using data for the years 2002 through 2009. The 

Generalized Estimating Equation (GEE) procedure was applied to 

develop the SPFs, which were evaluated using cumulative residual 

(CURE) plots and the Quasilikelihood under the Independence 

model Criterion (QIC) value.  

The best results were obtained for the segmentation based 

on two curves and two tangents (Segmentation 2) and the 

segmentation with fixed length (Segmentation 4). Segmentation 5, 

characterized by a constant value of all original variables inside 

each segment, was the poorest approach by all measures. This is 

likely because it yields very short segments, resulting in non-perfect 

identification of the location of crashes and in a large number of 

segments with zero crashes. Both factors create difficulties in 

making sound statistical inference. 

Fixed length segmentation may be the most flexible in 

practical applications. This is because the segment length can be 

determined by data availability and quality, and other factors to 

optimize the SPF calibration. The length chosen for this research 

was based on pragmatic reasoning. Given the promise shown by 
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the results, further research can explore alternative considerations 

for determining the length of fixed length segments used for SPF 

development. Similarly, the segmentation approach (Segmentation 

2) based on two curves and two tangents in each segment, which 

also showed promise, could be further explored by considering 

different numbers of curves and tangents in a segment. 

3.5. Ranking of the road network 
Identification of hazardous locations is the starting point of 

the process by which locations are selected for safety 

improvement. Typically, the safety record of a location, along with 

other information, is used to identify and rank sites that should be 

investigated for safety deficiencies and possible treatment of these 

deficiencies. The process is sometimes known as “blackspot 

identification”. More recently, the term “identification of sites with 

promise” has been used. 

All the effort in the development of the techniques for the 

SPF calibration and to improve their goodness of fit have the target 

to make the identification of hazardous location as realistic as 

possible. In the European regulation (96/2008 CE) on Road Safety as 

well as the Italian transposition of the Code, ranking the sites based 

on their safety level is a central element in the task required to the 

Agencies.   

3.5.1. Empirical Bayes Ranking  

The empirical Bayes analysis introduced by Hauer [3.3] (cfr. 

Chapter 1) reduce drastically the RTM bias, and represents the 
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state of the art for reliability when the hazardous sites has to be 

identified. Unfortunately the analysis conducted earlier in the 

Chapter don’t allow the application of the EB correction. Indeed the 

general estimating equation is a quasi-likelihood method of 

calibration, and the method doesn’t provide parameter able to 

describe the overdispersion of the data. To overcome this problem 

the same model were calibrating using a GLM approach and the 

overdispersion parameter was used to apply the EB correction.  

The ranking is performed using the constant length 

segmentation to avoid that the functional relationship between the 

overdispersion parameter and the length of segment could 

influence the estimation [3.23] [3.24]. Moreover using two different 

techniques, the GEE for the calibration of the SPF, and the GLM to 

investigate the overdispersion the constant length segmentation 

can reduce the potential bias in the estimation. 

The period of analysis chosen for the ranking are the last 

three years  used in the previous elaboration (2007, 2008 and 

2009). This is why longer period can introduce bias due to some 

changes or treatment applied by the Agency. The multi-variable 

model form (Model form A) was chosen with the same meaning of 

symbols: 

( ) SCRRSHTunIICCR dt eAADTLeYE *56***** 65432110 ββββββααα ++++++ ×××=  (3.7) 

The total number of segments are 226 on the two directions 

and in Table 2.8 about the 10% is reported. As is it clear from Table 
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2.8 an heterogeneous value of traffic is present in top ten and the 

first site of the rank has not the higher value of the predicted 

crashes.  

Moreover comparing the observed reported in the first 

column of the Table 3.8 with the expected is evident that the 

observed number of crashes cannot be able to identify sites with 

safety problem.  

Table 3.8. Ranking (10 % of the total segment analyzed) on fixed 
length segmentation using the empirical Bayes crashes 
estimation. 

Observed Predicted Expected 
(EB) 

AADT 
(Veh/day) w Milepost 

(Starting) 
8 3,06 5,70 8696,43 0,47 75.40 R 
7 3,79 5,68 12499,85 0,41 40.95 R 
6 3,60 4,98 24904,36 0,43 71.50 L 
7 2,64 4,81 8696,43 0,50 74.10 R 
7 2,36 4,54 19579,09 0,53 63.70 L 
5 3,25 4,21 24904,36 0,45 72.15 L 
5 2,99 4,05 19579,09 0,47 66.95 L 
4 3,61 3,83 8696,43 0,43 74.75 R 
4 3,07 3,57 24904,36 0,47 73.45 L 
5 2,21 3,48 19717,02 0,55 66.95 R 
6 1,70 3,38 15034,70 0,72 69.15 R 
4 2,65 3,32 19717,02 0,55 68.90 R 
5 1,96 3,25 19579,09 0,56 62.40 L 
4 2,52 3,24 24904,36 0,50 70.85 L 
3 3,25 3,11 8696,43 0,47 70.20 L 
3 3,19 3,09 24904,36 0,58 76.05 L 
8 1,07 3,06 10496,21 0,57 18.85 L 
8 1,05 3,00 10288,58 0,76 37.75 L 
4 2,07 2,92 12499,85 0,71 39.65 R 
4 2,05 2,89 19717,02 0,63 67.60 R 
4 1,99 2,85 14947,66 0,66 52.00 L 
2 3,53 2,66 24904,36 0,51 74.75 L 
2 3,40 2,62 8696,43 0,57 76.05 R 

k= 0.3744 - Segment Length = 650 m 
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3.5.2. Potential for Safety Improvement (PSI) analysis 

Persaud et al. [3.25], among others, have proposed that 

sites be ranked according to their potential for safety improvement 

(S), to be estimated as the difference between  the expected 

number of crashes (m) and what is normal for similar sites,  

S = (m - P)  (3.8) 

Where P is an estimate of the predicted (by an SPF) annual 

number of crashes and m the expected number of crashes 

(Empirical Bayes Correction). In particularly m is estimated inserting 

in the model all the significant variable, P is related to the base 

model (only AADT). 

The basis of this index was first suggested by McGuigan 

[3.26], who called it the potential accident reduction, and by 

Jorgensen [3.27]. However, they had suggested using the accident 

count instead of m in Equation 2.8, an application that would create 

difficulties due to random fluctuation in counts where, as is often 

the case, a relatively short accident history is used. More recently, 

Tarko et al. [3.28] sought to overcome this difficulty by using the 

concept of the confidence level for which the above-norm number 

of crashes is larger than zero. 

A validation of the potential-for-safety-improvement 

concept [3.25] showed that the method is not only conceptually 

sound but is also comparatively efficient. 
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However Persaud et al [3.29] suggested an update 

methodology for the application of the PSI. In particularly two 

practical options are suggested: 

Option 1  

S = (m – PT)  (3.9) 

Here m is still calculated by the best possible regression 

models, incorporating available variables that may contribute to 

unsafety, and PT is based on a model that includes traffic volume 

but no treatable variables. 

Option 2 

S = (m – PB)  (3.10) 

Here the difference is that PB is for a base condition, 

reflecting the fact that what is normal can be found in the 

predominant values of the treatable variables. The idea is that 

roads are usually built to some desirable standard from a safety 

point of view and that the standard values will predominate in a 

data set and will reflect a desirable or achievable level of safety.  

The results of the application of the method are reported in 

Table 3.9 calculated using the option 1 and the model form of 

Equation 2.7 for m while P is calculated with the base model.  

As it clear from Table 3.9, the ranking based on PSI gives 

different results than the expected. The differences are due to the 

combination of the predicted and the expected in  the computation 

of the index. Considering “normal” for sites with similar 
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characteristic the expected any drift due to the multi-variable 

model could be identified by the PSI index. As such it represent one 

of the most reliable index for the identification of hazardous 

location.  

Table 3.9. Ranking (10 % of the total segment analyzed) on fixed 
length segmentation using the Potential for Safety Improvement 
Index (PSI). 

Observed Predicted Expected 
(EB) 

AADT 
(Veh/day) PSI Milepost 

(Starting) 
7 0,54 5,68 12499,85 5,14 40.95 R 
8 1,23 5,70 8696,43 4,47 75.40 R 
6 1,26 4,98 24904,36 3,72 71.50 L 
7 1,23 4,81 8696,43 3,58 74.10 R 
7 0,97 4,54 19579,09 3,57 63.70 L 
5 0,97 4,05 19579,09 3,08 66.95 L 
5 1,26 4,21 24904,36 2,95 72.15 L 
6 0,69 3,38 15034,70 2,69 59.15 R 
8 0,43 3,06 10496,21 2,63 18,85 L 
4 1,23 3,83 8696,43 2,60 66.95 R 
8 0,13 3,00 10288,58 2,59 37.75 L 
5 0,29 3,48 19717,02 2,52 66.95 R 
4 0,16 2,92 12499,85 2,37 39.65 R 
4 0,29 3,32 19717,02 2,37 68.90R 
4 0,38 3,57 24904,36 2,31 73.45 D 
5 0,28 3,25 19579,09 2,28 62.40L 
4 0,20 2,85 14947,66 2,15 52.00 L 
8 0,13 2,53 10338,63 2,12 37.75 R 
6 0,13 2,47 10338,63 2,06 27.95 R 
4 0,13 2,46 10496,21 2,03 13.00 L 
5 0,17 2,57 13209,75 2,00 48.10 L 
4 0,38 3,24 24904,36 1,98 70.85 L 
4 0,29 2,89 19717,02 1,94 67.60 R 

k= 0.3744 - Segment Length = 650 m 
 

 In Table 3.10 a comparison of the two methodology is 

reported. In order to evaluate the performance of ranking of both 
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the EB and the PSI, based on this latter a rank on the first 10% of 

hazardous sites is reported indicating with A the EB approach and 

with B the PSI index. In the second and third column of the Table 

3.10 the ranking position for criteria A and B is reported 

respectively. Considering the 10% of the entire analyzed path inly 3 

segments on 23 are not identify as hazardous by the EB 

methodology while are included in the PSI index ranking.   

Table 3.10. Comparison of the two ranking performed (PSI and EB) 
with reference on the PSI index. 

Observed PSI - Rank EB - Rank PSI Expected (EB) Milepost (Starting) 
7 1B 2A 5,14 5,68 40.95 R 
8 2B 1A 4,47 5,70 75.40 R 
6 3B 3A 3,72 4,98 71.50 L 
7 4B 4A 3,58 4,81 74.10 R 
7 5B 5A 3,57 4,54 63.70 L 
5 6B 7A 3,08 4,05 66.95 L 
5 7B 6A 2,95 4,21 72.15 L 
6 8B 11A 2,69 3,38 59.15 R 
8 9B 17A 2,63 3,06 18,85 L 
4 10B 8A 2,60 3,83 66.95 R 
8 11B 18A 2,59 3,00 37.75 L 
5 12B 10A 2,52 3,48 66.95 R 
4 13B 19A 2,37 2,92 39.65 R 
4 14B 12A 2,37 3,32 68.90R 
4 15B 9A 2,31 3,57 73.45 D 
5 16B 13A 2,28 3,25 62.40L 
4 17B 21A 2,15 2,85 52.00 L 
8 18B - 2,12 - 37.75 R 
6 19B - 2,06 - 27.95 R 
4 20B - 2,03 - 13.00 L 
5 21B - 2,00 - 48.10 L 
4 22B 14A 1,98 3,24 70.85 L 
4 23B 20A 1,94 2,89 67.60 R 

k= 0.3744 - Segment Length = 650 m 
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3.6. Chapter summary 

In the present Chapter 3 a methodology for the optimization 

of the  goodness of fit of the model, varying the segmentation 

approach is reported based on a study by Cafiso et al. presented at 

the 92nd Transportation Research Board in 2012 [3.1]. Five different 

segmentation approach were tested on three different model form, 

with the results that longer segments give the best performance in 

term of reliability. The QIC, together with the CURE plot 

methodology were the gof measure used in the analysis. 

Particularly the fixed length segmentation approach give the best 

results in term of number of variables could be included in the 

model and goodness of fit performance together with the 

segmentation which includes 2 curves and two tangents inside each 

segment. The goodness of fit of the model is one of the main issue 

where the models are used for the identification of hazardous 

location.  

For the safety site ranking the EB methodology was applied 

on the fixed length segmentation. To estimate the overdispersion 

parameter the model was recalibrated using the GLM approach. 

The top 10% of total number of segment was reported showing 

that the ranking based on the observed number of crashes gives 

different results. The ranking analysis was then compared with the 

Potential for Safety Improvement Index showing that the two 

methodology give almost the same results. Particularly on a total 

amount of 23 segments (about the 10% of the total), based on the 
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PSI ranking, only 4 segments are not identified as hazardous by the 

EB ranking methodology.    
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CHAPTER 4 
 

CRASH MODIFICATION FACTOR AND 

FUNCTION 
 

4.1. Introduction  
There is a growing attention to road safety, in Europe and 

Italy as well. New regulations applied on TERN network (motorways 

in Italy) push Agencies to introduce new methodological 

approaches to Road Safety, monitoring the treatment and 

controlling the level of safety on the managed road network. The 

application of the HSM doesn’t always provide adequate results. 

The problem related to transferability of the SPFs is a clear example 

of how the model developed in other Countries are not always able 

to catch the safety level of different infrastructures. The key point is 

that quantification of the expected reduction of crashes related to 

different treatments, can affect choices and plays a fundamental 

role in the decision making process.   

Together with SPFs the Highway Safety Manual [4.1] 

introduced the “Crash Modification Factor” (CMF).   

A Crash Modification Factor is a multiplicative factor used to 

compute the expected number of crashes after implementing a 
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given countermeasure at a specific site. The CMF is multiplied by 

the expected crash frequency without treatment. A CMF greater 

than 1.0 indicates an expected increase in crashes, while a value 

less than 1.0 indicates an expected reduction in crashes after 

implementation of a given countermeasure. 

CMFs provide a general idea of the safety effects of a 

countermeasure, indeed, they could improve the accuracy of the 

choices introducing the new concept through each treatment has a 

different impact on safety above all on the crash category directly 

related to the treatment. 

To calibrate CMFs, it is necessary to know how many 

crashes are expected without countermeasures. Specifically, the 

annual expected number of crashes without treatment is multiplied 

by the CMF to estimate the expected number of crashes with 

treatment. Estimating the expected crashes without treatment is 

not a trivial task; it is not simply the number of observed crashes 

before treatment, since this value could be higher or lower than 

expected due to regression-to-the-mean. Also, changes in traffic 

volume will cause changes in expected crashes. 

To develop a CMF, fundamentally, two ways are preferred. 

It is possible to estimate the CMF from the coefficient of the model, 

or as a constant value from an analysis of comparison made with a 

controlled experiments or observational before-after studies or 

with a cross sectional analysis where the latter is not feasible [4.1] 

[4.2]. The basic idea is to identify, in the most reliable way, the 
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safety performance of the treatment and quantify the reduction in 

frequency and/or severity of crashes.  

However it is not always reasonable to assume a uniform 

safety effect for all sites with different characteristics (e.g., safety 

benefits may be greater for sites with high traffic volumes) [4.3]. A 

countermeasure may also have several levels or potential values, 

for this reason HSM, and others studies are developing Crash 

Modification Function.  A CMF is a formula used to compute the 

CMF for a specific site based on its characteristics. A crash 

modification function allows the CMF to change over the range of a 

variable or combination of variables. 

In the present chapter the techniques of calibration of  

Crash Modification Factors are described. At the end of the chapter 

a CMF for new European Standard of barriers is reported as a case 

study using the before-after empirical Bayes methodology. That 

study, by Cafiso et al. [4.5] is in press in the TRB 93rd Annual 

Meeting and a great part of the references which contributing in 

the Chapter. As integration of that study a validation of the dataset 

used for the elaboration is performed and a Crash Modification 

Function is calibrated varying the curvature for the ran-off-road 

crashes.   

4.2. Methodology  
It is important to note that a CMF represents the long-term 

expected change in crash frequency. Also, a CMF may be based on 

the crash experience at a limited number of study sites. As such, 
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the actual change in crashes observed after treatment will vary by 

location and by year. 

Usually the data used in the study designs can typically be 

classified as either before-after or cross-sectional. 

Before-after designs include a treatment at some period in 

time and a comparison of the safety performance before and after 

treatment for a site or group of sites. Cross-sectional designs 

compare the safety performance of a site or group of sites with the 

treatment of interest to similar sites without the treatment at a 

single point in time. Both before-after and cross-sectional study 

designs have issues that need to be considered in the development 

and application of CMFs that are discussed in more detail later. 

The knowledge and great part of the reference, related to 

the method of CMF calibration are taken from a document titled “A 

guide to developing quality Crash Modification Factor” of Federal 

Highway Administration and sponsorship by the U.S. Department of 

Transportation [4.3], in which together with the cross sectional and 

before-after analysis, reported below, are present others less used 

techniques for CMF calibration. Together with the method of 

calibration some significant studies are reported.   

CMFs derived from before-after data are based on the 

change in safety performance due to the implementation of some 

treatment. There are two fundamental issues with deriving quality 

CMFs from before-after designs. 



Crash Modification Factor and Function 

 

 
153 

1) Sample Size: The required sample size depends on the 

magnitude of the treatment effect and the uncertainty of the 

estimate (i.e., the standard error). Generally, the standard 

error decreases as the sample size increases. As such, one can 

reduce the uncertainty of an estimate by increasing the sample 

size. 

2) Potential Bias: The observed change in crash experience at 

treated sites between the periods before and after treatment 

may be due not only to the countermeasure, but to other 

factors as well. Other factors include: 

a. Traffic volume changes. 

b. Changes in reported crash experience. 

c. Regression-to-the-mean. 

Simple before-after comparisons, also known as naïve 

before-after studies [4.4], do not account for these changes. As a 

result, CMFs derived from such studies are usually considered 

unreliable and rated as being of poor quality. In the before after 

studies, as mentioned above, the main issue is to find the expected 

crash frequency in the treated sites if the treatment would not 

been applied. Based on the method of investigation of this 

frequency the before-after study can be divided in: 

• Before-after studies with comparison group; 

• Before-after empirical Bayes analysis; 

• Before-after Full Bayes analysis. 
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The methodology for calibrating the CMF is the same in the 

methods listed above, what really change is the methodology of 

estimation of the expected crashes in the after period if the 

treatment would not have been applied.  

For that reason only the Before-after empirical Bayes 

analysis is described in detail below, the other methods only pro 

and cons are reported. Moreover, at the end of the paragraph 

some study design of particular interest are presented. 

4.2.1. Before-after with comparison group analysis 

A before-after with comparison group study uses an 

untreated comparison group of sites similar to the treated ones to 

account for changes in crashes unrelated to the treatment such as 

time and traffic volume trends. The comparison group is used to 

calculate the ratio of observed crash frequency in the after period 

to that in the before period. The observed crash frequency in the 

before period at a treatment site group is multiplied by this 

comparison ratio to provide an estimate of expected crashes at the 

treatment group had no treatment been applied. This is then 

compared to the observed crashes in the after period at the 

treatment site group to estimate the safety effects of the 

treatment. 

Ideally, the comparison group should be drawn from the 

same jurisdiction as the treatment group and be similar to the 

treatment group in terms of geometric and operational 

characteristics. The difficulty is that the pool available for the 
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comparison group could be too small if most or all sites are treated 

or at least affected by the treatment.  

This method will not account for regression-to-the-mean 

unless treatment and comparison sites are also matched on the 

basis of the observed crash frequency in the before period. 

Specifically, a control site would need to be matched to each 

treated site based on the annual crashes in the before period. 

There are immense practical difficulties in achieving an ideal 

comparison group to account for regression-to-the-mean (i.e., 

matching on the basis of crash occurrence) as illustrated in 

Pendleton et al. [4.6] . In addition, the necessary assumption that 

the comparison group is unaffected by the treatment is difficult to 

test and can be an unreasonable assumption in some situations. 

Where there is no regression-to-the-mean and where a 

suitable comparison group is available, the comparison group 

methodology can be a simple alternative to the more complex 

empirical Bayes approach. This may be true in cases where 1) crash 

frequency is not considered in selecting a site for safety treatment, 

2) the safety evaluation is strictly related to a change implemented 

for operational reasons, or 3) a blanket treatment is applied to all 

sites of a given type. In practice, except for blanket treatments, it is 

difficult to ascertain that there is no regression-to-the-mean and 

only a truly random selection of sites for treatment will ensure that 

there is no selection bias. 
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A suitable comparison group is one where the ratios of 

expected crash counts in the after period to the expected crash 

counts in the before period are equal for the comparison group and 

the treatment group, had no treatment been applied. For example, 

if the expected crash count at treated sites were to increase by 10 

percent in the after period without treatment then a perfect 

comparison group should also show this expected increase of 10 

percent. Naturally, it is difficult to achieve a perfect comparison 

group, since the change in crashes at the treatment sites without 

treatment cannot be known (since there is treatment). 

The suitability of a comparison group can be determined by 

performing a test of comparability for the treatment group and 

potential comparison groups that was implemented by Hauer [4.3]. 

The test of comparability compares a time series of target crashes 

for a treatment group and a candidate comparison group during a 

period before the treatment is implemented. If a candidate 

reference group is a good one, then the yearly trends in accident 

frequencies track each other well over time. As mentioned above, 

Hauer [4.4] proposes calculating a sequence of sample odds ratios 

using 1 year of “before” data and the following year as the “after” 

data, starting with years 1 and 2 and incrementally increasing by 1 

year. From this sequence of ratios, the sample mean and standard 

error is determined. If this sample mean is not sufficiently close to 

1.0, and the 95% level of confidence doesn’t include 1, then the 

candidate reference group is unsuitable.  
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If the sums of the observed and the expected (Greek letter)  

for the before period are K and κ for the treatment group; M and μ 

for the reference group and for the after period L and λ for the 

treatment group; N and ν for the reference group and are rc= ν/ μ 

and rt= π/κ respectively the ratio of the expected accident counts 

for the reference and the treatment group and π indicates the sums 

of expected crashes in the treatment group in the before period if 

the treatment not be implemented, the ratio: 

 
t

c

r
r

=ω
 

(4.1) 

Is define as the (ω )“odds ratio”. The best estimator of ω  is 

given by: 

o=(KN)/(LM)/(1+1/L+1/M) (4.2) 

At the same way it is possible to estimate the variance of ω 

as: 

VAR{ω }=s2-(1/K+1/L+1/M+1/N) (4.3) 

Where s2 is the sample variance of o. 

An application of the comparison analysis for the reference 

group is showed below where a Crash Modification Factor is 

calibrated for different barriers typology.  

Additional requirements of a suitable comparison group, as 

outlined by Hauer [4.4] include: 

1) The before and after periods for the treatment and comparison 

group should be the same. 
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2) There should be reason to believe that the change in factors 

other than the treatment under study (e.g., traffic volume 

changes), which influence safety are the same in the treatment 

and comparison groups. 

3) The crash counts must be sufficiently large.  

Indeed in a comparison group before-after safety 

evaluation, it is vital to ensure that enough crashes are included 

such that the expected change in safety can be statistically 

detected. Recall that a statistically significant CMF means that one 

can say with a given level of significance that the confidence 

interval for the CMF does not include 1.0. 

The four variables that impact whether or not a sample is 

sufficiently large are: 

1) The size of the treatment group, in terms of the number of 

crashes in the before period. 

2) The relative duration of the before and after periods. 

3) The likely (postulated) CMF value. 

4) The size of the comparison group in terms of the number of 

crashes in the before and after periods. 

It is challenging to assess the adequacy of a sample before 

collecting data because it is necessary to estimate the number of 

crashes in the sample that is yet to be collected and develop an 

intelligent guess about the magnitude of the CMF. These variables 

impact the precision (standard error) with which the CMF is 
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estimated. A detailed explanation of sample size considerations, as 

well as estimation methods, are reported by Hauer [4.4]. 

In the method of comparison group before-after analysis if x 

is the observed number of crashes in the before period for the 

treatment group and c is the comparison ratio, or better the ratio 

between the observed in the reference group in the after (d) and 

before (p) period, the expected number of crashes for the 

treatment group that would have occurred in the after period 

without treatment (B) is estimated from the following equation: 

cx
p
dxB ⋅=⋅=

 
(4.4) 

If the comparison group is suitable, that is, if the crash 

trends in that group and the treatment group are similar as 

determined by the test for comparability, the variance of B is 

estimated approximately the following equation: 

{ } )111(2

dpx
BBVar ++⋅=

 
(4.5) 

This estimate is only an approximation since it applies to an 

ideal comparison group with yearly trends identical to the 

treatment group, a situation that is practically impossible. A more 

precise estimate can be obtained by applying a modification, which 

is typically minor, as derived in Hauer [4.4]. Estimating this 

modification is not trivial, so it is recommended to estimate the 

variance assuming an ideal comparison group and recognize that 

this estimate is a conservatively low approximation. In the ideal 
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case, the CMF and its variance are estimated from Equation 3.7 and 

3.8 considering A as the crash count in the after period: 

{ }





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(4.7) 

4.2.2. Empirical Bayes before-after analysis 

The Empirical Bayes (EB) method is considered the state of 

the art evaluation procedure developed to perform a before after 

analysis with the aim to calibrate a CMF. This approach can address 

the regression-to-the-mean phenomena and properly account for 

changes in traffic volumes and other variables expressly controlled. 

The EB method uses two clues in order to estimate the crash count 

of an entity without treatment: 

• the crash records of that entity; and 

• the crash frequency expected at similar entities. 

In the EB method, a safety performance function is used to 

estimate the expected crash frequency at the treated locations had 

modifications not been made. The method has been pioneered by 

Hauer [4.4] and used by many others in recent evaluations [4.7] 

[4.8] [4.9] [4.10] [4.11]. The observed counts and the expected 

counts are combined to produce an improved estimate of the crash 

frequency in the after period. A simple representation of the 
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technique is shown in Figure 4.1 [4.8]. The modeled or expected 

crash frequency is combined with the observed crash frequency to 

produce the adjusted estimate. The weight given to each value is 

dependent on the years of data used and the overdispersion 

parameter estimate from the regression models. The more years of 

data in the observed crash counts the more “weight” that 

observation is given in combining the two results.  

The objective of the empirical Bayes methodology is to more 

precisely estimate the number of crashes (Previously denoted as B) 

that would have occurred at an individual treated site in the after 

period had a treatment not been implemented. Similar to the 

comparison group method, the effect of the safety treatment is 

estimated by comparing the sum of the estimates of B for all 

treated sites with the number of crashes actually recorded after 

treatment.  

 
Figure 4.1. Representation of EB Estimate. 
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The advantage of the empirical Bayes approach is that it 

correctly accounts for observed changes in crash frequencies 

before and after a treatment that may be due to regression-to-the-

mean. In doing so, it also facilitates a better approach than the 

comparison group method for accounting for changes in safety due 

to traffic volumes and time trends. 

As mentioned above in the empirical Bayes evaluation of the 

effect of a treatment, the change in safety for a given crash type, 

with the same meaning of symbols, is given by: 

B – A (4.8) 

Because of changes in safety that may result from changes 

in traffic volume, from regression-to-the-mean, and from trends in 

crash reporting and other factors, the count of crashes before a 

treatment by itself is not a good estimate of B [4.12] a reality that 

has now gained common acceptance. Instead, B is estimated from 

an empirical Bayes (EB) procedure  in which a safety performance 

function (SPF) is used to first estimate the number of crashes that 

would be expected in each year of the “before” period at locations 

with traffic volumes and other characteristics similar to a treatment 

site being analyzed. The sum of these annual SPF estimates (P) is 

then combined with the count of crashes (x) in the before period at 

the treatment site to obtain an estimate of the expected number of 

crashes (m) before the treatment. This estimate of m is 

m = w1(x) + w2(P) (4.9) 

The weights w1 and w2 are estimated as 
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where k is the dispersion parameter of the negative 

binomial distribution that is assumed for the crash counts used in 

estimating the SPF. The value of k is estimated from the SPF 

calibration process with the use of a maximum likelihood 

procedure. 

The comparison ratio is then applied to m from Eq. (4.9) to 

account for the length of the after period as well as differences in 

traffic volumes and general trends in crash risk due to factors such 

as weather, reporting practices and the other safety 

countermeasures between the before and after periods. The result, 

after applying this factor, is an estimate of B. The procedure also 

produces an estimate of the variance of B, the expected number of 

crashes that would have occurred in the after period without the 

treatment. 

The estimate of B is then summed over all road sections in a 

treatment group of interest (to obtain Bsum) and compared with the 

count of crashes during the after period in that group (Asum). Taking 

into account that the significance of the difference (B-A) is 

established from this estimate of the variance of B, calculated as 

follow: 

Var(Bsum)=C∙m∙w2 (4.12) 
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and assuming, on the basis of a Poisson distribution of 

counts, that { } AAVar = . The variance of B is also summed over all 

sections in the group of interest. 

The CMF called also index of safety effectiveness (θ) is 

estimated as: 
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(4.13) 

The standard deviation of θ is given by:  
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(4.14) 

When an empirical Bayes before-after safety evaluation 

have to be implemented, it is vital to ensure that enough data are 

included such that the expected change in safety can be statistically 

detected. Currently, there is no formal method for determining 

required sample sizes for the empirical Bayes before-after 

approach. The method presented in Hauer [4.3] pertains to the 

comparison group method and can be used to approximate the 

sample size required for an empirical Bayes study. The sample size 

estimates could be considered conservative in that the empirical 

Bayes approach reduces uncertainty in the estimate of expected 

crashes. 

The observed change in crash experience at treated sites 

between the periods before and after treatment may be due not 

only to the countermeasure, but to other factors as well. If these 
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factors are not properly accounted for, there is the potential to bias 

the results. These other factors include: 

1. Traffic volume changes due to general trends or to the 

countermeasure itself. 

2. Changes in reported crash experience due to changes in crash 

reporting practice, weather, driver behavior, effects of safety 

programs, etc. 

3. Regression-to-the-mean is problematic because safety is 

expected to change even in the absence of a treatment. A 

comparison group study will not account for regression-to-the-

mean unless treatment and comparison sites are matched on 

the basis of crash occurrence.  

In both the comparison group and empirical Bayes before-

after methods, untreated sites are used to account for time trends 

and changes in other factors such as traffic volumes and crash 

reporting. As such, it is desirable to conduct a test of comparability 

to evaluate the suitability of the untreated group. 

In literature different studies were carried out using the  

Empirical Bayesian before after analysis.  

4.2.3. Full Bayes before-after analysis 

Full Bayes is not a type of evaluation study on its own. 

Rather, it is a modeling approach that can be used in the same way 

as the more common generalized linear modeling approach, 
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typically employed in the empirical Bayes method for before-after 

studies or in the development of cross-sectional models. 

In the empirical Bayes approach, the prior information 

comes from using a reference group of sites similar to those under 

evaluation to calculate a sample mean and variance, or from a 

calibrated 

safety performance function that relates the crash 

frequency of the reference sites to their characteristics. The point 

estimates of the expected mean and the variance are then 

combined with the site-specific crash count to obtain an improved 

estimate of a site’s long-term expected crash frequency. 

In the full Bayes approach, the prior information again 

comes from a model of a reference population but in this case, 

instead of a point estimate of the expected mean and its variance, a 

distribution of likely values is generated. This distribution of likely 

values is then combined with the site-specific accident frequency to 

obtain the estimate of long-term expected crash frequency. 

Through the use of a prior distribution instead of a point estimate 

the variance can be calculated more accurately. 

Full Bayes models offer a number of potential advantages: 

• The application of an integrated procedure to obtain 

outcomes. 

• The small sample properties of FB models may allow the 

estimation of valid crash models with smaller sample sizes. 
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• The ability to include prior knowledge on the values of the 

coefficients in the modeling along with the data collected. 

• The ability to consider spatial correlation between sites in 

the model formulation. 

• The ability to specify very complex model forms. 

• The ability to provide the posterior distributions of 

outcomes. 

Regarding the last bulleted point, the FB method can 

accommodate distributions such as the hierarchical Poisson-

Gamma distribution and the Poisson-LogNormal distribution, while 

the EB approach relies on the assumption of a negative binomial 

(NB) distribution of crash counts in using the NB dispersion 

parameter directly in the estimation process [4.12]. 

The principle issue with the full Bayes method is the 

complexity of its application as it may require a very high level of 

statistical training. Moreover, while it has been possible to develop 

software for application of the empirical Bayes method (e.g., Safety 

Analyst [4.14], this seems to be very difficult for the full Bayes 

method. Whether the benefits of the full Bayes method outweigh 

the increased complexity remains an open question. 

Limited research to date suggests that the empirical Bayes 

approach will produce equally reliable results as the full Bayes 

method where sufficient sites are available to estimate robust 

safety performance functions for the empirical Bayes approach. 
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4.2.4. Cross sectional studies 

Cross-sectional studies look at the crash experience of 

locations with and without some feature and then attribute the 

difference in safety to that feature. In its most basic application, the 

CMF is estimated as the ratio of the average crash frequency for 

sites with and without the feature. For this approach to be reliable 

it is important that all locations are similar to each other in all other 

factors affecting crash risk. In practice this requirement is difficult 

to meet.Cross-sectional studies are particularly useful for 

estimating CMFs where there are insufficient instances where the 

treatment was applied to conduct a before-after study. For 

example, there may be few or no projects where the shoulder is 

widened from, say, four feet to six feet. However, there would be 

many road segments with four foot shoulders and many with six 

foot shoulders. The reason that before-after studies are impractical 

in such cases is that there are often not enough before-after 

situations to allow for credible results.  

In practice, it is difficult to collect data for enough locations 

that are alike in all factors affecting crash risk. 

Hence, cross-sectional analyses are often accomplished 

through multiple variable regression models. In these models an 

attempt is made to account for all variables that affect safety. If 

such attempts are successful, the models can be used to estimate 

the change in crashes that results from a unit change in a specific 

variable. The CMF is derived from the model parameters. 
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The regression approach for estimating a CMF is consistent 

with the belief that the CMF is a function of the traits of the treated 

unit. A cross-sectional approach can be used to develop a 

CMFunction, and is preferable if the cause-effect relationship with 

crashes can be determined with confidence. 

Bonneson et al. [4.2] developed a CMF using a set of cross 

sectional data to study the influence of curve radius in a rural two 

lane highways in Texas because in that case the execution of 

experiments and before-after studies were not practical or feasible 

although these latter give the best results. The CMF was developed 

as a function of the curvature radius, using a multivariate 

regression analysis, finding a different model form for the CMF 

developed by Harwood et al. [4.8] and reported in HSM. 

        c
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(4.15) 

where, 

• CMFcr = horizontal curve radius accident modification factor; 

• Lc = length of horizontal curve (= Ic Rc / 5280 / 57.3), mi; 

• Ic = curve deflection angle, degrees; 

• IS = spiral transition curve presence (= 1.0 if spiral present, 

0.0 if not present); and 

• Rc = curve radius, ft. 

Three different datasets were used in the elaboration, 

performing a Matched Pairs procedures for road segment. Hauer  
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[4.4] discusses the issues and challenges of using matched pairs in 

cross-section studies. A “Segment pair” dataset was carried out in 

which the segment pairs were identical, except that they had 

exhibit some variation in the input variables associated with the 

subject CMF. The segment-pair (SP) database was restructured to 

form two additional databases. The first database was used for 

regression model calibration. It was referred to as the “SP 

regression” database. In this database, each individual segment 

represents one observation. Thus, if there are n segment pairs, 

there would be 2n observations in the SP regression database. The 

second database is used for CMF calibration. It was referred to as 

the “SP group” database. In this database, the number of 

observations (or groups) is equal to the number of unique 

combinations of the “before” and “after” values for the geometric 

element of interest.  

In this specific case the pairs are made up by  the curves, 

that are investigated, and the adjacent tangent with an offset 

between the two element called “buffer zone” to avoid possible 

spatial correlation in the two element. This latter dataset contained 

the “After” condition, the tangent, and the “Before” condition, the 

curves.  

All total, 3514 segments (1757 curved and 1757 tangent) 

were identified for the segment-pair database. They represent a 

total of 335.4 rural two-lane highway miles. Also, 1382 segments 

(691 curved and 691 tangent) were identified for the SP regression 

database as a subset of the segment-pair database. The smaller 
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number of segments in the SP regression database is due to the use 

of the minimum exposure criterion for the selection of the element 

to be included in the analysis. These segments represent a total of 

152.2 miles for three years of analysis from 1999 to 2001. 

The segments in the SP regression database were associated 

with 566 crashes, of which 257 occurred on the tangent segments 

and 309 occurred on the curved segments. The segments in the 

segment-pair database were associated with 822 crashes, of which 

349 occurred on the tangent segments and 473 occurred on the 

curved segments. 

A regression analysis with an Empirical Bayesian correction 

was then applied on the SP regression dataset and used as “After” 

period. In this way the general model form for the CMF is the 

following: 

             [ ] crcr CMFXNyEcX
tan0=   (4.16) 

A second regression analysis on the segment pair dataset 

was used to estimate the regression parameter of the CMFunction 

on equation 3.16 considering the Harwood model form CMF for 

Curves. In this case a Nonlinear Regression procedure (NLIN) in the 

SAS software was used to estimate the calibration model 

coefficients: 
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where,  

• di = calibration coefficients (i = 1, 2, 3,...);  
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• d0= calibration coefficient corresponding to different region. 

The goodness of fit of the regression models were validated 

using the Pearson χ2 statistic, the root mean square error se useful 

for describing the precision of the model estimate, the coefficient 

of determination R2 and the dispersion-parameter-based coefficient 

of determination Rk
2 developed by Miao [4.15]. 

The results of regression analysis are shown in the following 

equation: 
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A sensitive analysis was then conducted on the CMF in 

comparison with the Harwood one. The revised CMF model is 

shown in Figure 3.2 for a range of radii. The values obtained from 

the revised model are shown with a solid trend line. The values 

obtained from the Harwood model form are shown using two 

dashed lines. This equation is sensitive to curve length; however, it 

was converted to include a sensitivity to curve deflection angle Ic 

instead by using the relationship between curve length and 

deflection angle provided in the variable definitions associated with 

the Harwood model form. This conversion was performed to 

facilitate a more equitable presentation of Harwood model form for 

the range of radii shown in Figure 3.2. 
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Figure 4.2. Relationship between Radius and CMF Value 

The Authors concluded that, the results is consistent with 

another curve CMF previously derived using data from Washington. 

However, the application of cross sectional studies is challenging 

because it is not always possible to find a sufficient number of 

“identical” segments while maintaining the minimum sample size 

needed for statistical significance and that further research is 

needed to determine if there are any statistical implications (e.g., 

bias, loss of power) associated with the CMF estimate due to the 

use of the same data to calibrate the multivariate model and the 

CMF calibration model. 
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4.3. Application of the Before-After EB to estimate a 

CMF for safety barrier meeting a new EU 

Standard: a case study 

A new EU regulation for safety barriers, which is based on 

performance, has encouraged agencies to perform an upgrade of 

the old barriers with the expectation that there will be safety 

benefits at the treated sites. The new class of barriers was designed 

and installed in compliance with the EN 1317 standards for Road 

Restraint Systems created in 1998 which lays down common 

requirements for the testing and certification of road restraint 

systems in all countries of the  European Committee for 

Standardization, (CEN). Both the older and the new barriers are 

made of steel and are installed in a way to avoid vehicle intrusion, 

but the older ones are thought to be only effective at low speeds 

and low angles of impact. The new standard seeks to remedy this 

by providing better protection at higher speeds. The calibration of 

the CMF seeks to quantify the effect on the frequency of crashes 

(fatal+injuries) of retrofitting motorways with barriers meeting the 

new standards. 

The new class of EU barriers are designed and installed in 

compliance with the European Norm (EN) 1317 standards. The EN 

1317 for Road Restraint Systems was created in 1998 and lays down 

common requirements for the testing and certification of road 

restraint systems in all countries of the European Committee for 

Standardization (CEN), i.e. the 27 member states of the European 
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Union as well as Croatia, Iceland, Norway, Switzerland and Turkey. 

The EN1317 standard contains 5 parts relevant to roadside design 

guidelines: 

• Part 1: Terminology and general criteria for test 

methods; 

• Part 2: Performance classes, impact test acceptance 

criteria and test methods for safety barriers and vehicle 

parapets; 

• Part 3: Performance classes, impact test acceptance 

criteria and test methods for crash cushions; 

• Part 4: Performance classes, impact test acceptance 

criteria and test methods for terminals and transitions of 

safety barriers; 

• Part 5: Product requirements and evaluation of 

conformity for vehicle restraint systems. 

By comparison, the US standards, as outlined in NCHRP 

report 350 [4.16], have a similar approach to defining test levels by 

applying standard tests involving different vehicle types, impact 

speeds and impact angles. The impact speeds for heavy vehicles 

used in the European barrier tests are not as high as in the US tests, 

but this is compensated for by using heavier vehicles. Additionally, 

the European standard provides a vehicle occupant safety 

indication (impact severity levels) and working width (dynamic 

deflection) for each tested barrier. Impact severity levels relate to 

the degree of physical strain on the passengers depending on the 
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values measured by Acceleration Severity Index (ASI) and 

Theoretical Head Impact Velocity (THIV). The evaluation factors 

taken into account by the US Standard are the following: 

• Structural adequacy; 

• Occupant risk; 

• Vehicle trajectory. 

For each of the evaluation factor there are a series of tests 

to be applied to establish the category of the barrier. 

From 1998, EN1317 standards have been continuously 

reviewed and subjected to change. This study refers to road safety 

barriers placed in 2005 complying with the EN1317.2 in force from 

2004, which is not substantially different from the present 2010 

edition. The old barriers that were replaced in 2005 were not 

classified by any standard because they were placed during the A18 

motorway construction in the years 1965 – 1971. Figure 4.3 

provides examples of the old barrier on embankment (a) and on a 

bridge (b) and new barriers on embankment (c) and bridge (d).   

The two barrier types can be compared based on the 

maximum containment level (CLmax): 

CL = ½ M∙( V∙sin Θ)2  (4.19) 

where: 

• M: vehicle weight impact speed [kg]; 

• Θ: impact angle; and 

• V: impact speed [m/s]. 
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(a)    (b) 

 

       
  (c)  (d) 

 

Figure 4.3. Pictures of the old barriers on embankment (a) and on 

a bridge (b) and the new ones on embankment (c) and on a bridge 

(d) installed on a motorway in Italy. 

The containment level establishes the strength of the 

system, essentially specifying the maximum capacity for redirecting 

a vehicle. Higher containment levels produce stronger restraint 

systems. In Table 4.1 CLmax for old (Before) and new (After) 

barriers are reported highlighting the notable increase in the 

containment capacity of the new barriers placed in 2005. 

Table 4.1. Values of the maximum containment level for old and 
new barrier for embankment and bridge sections 

 CLmax (Before) 
[kJ] 

CLmax (After) 
[kJ] Typology (After)* 

Embankment 80 460 H3 (H4 median) 

Bridge 150 570 H4a 
* according to UNI EN 1317-2 2000 (EN 1317-2:1998) 
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An investigation of the relationship between crashes and 

median barrier was carried out by Fitzpatrick et al. [4.17] [4.18] 

who developed a CMF from the coefficient of a regression model 

for Texas freeways that related crashes to the presence of a barrier 

and its offset from the edge of the carriageway. The results 

suggested a safety benefit for ran-off-road crashes, while, for the 

total number of crashes the impact on safety was negligible; for, 

small offsets, the results actually suggested an increase in the total 

number of crashes. Fitzpatrick, indeed, concluded that the CMF for 

rural freeway, based on data from Texas in which about 458 mi 

with barrier segment and 436 mi or rural area without barrier 

segment, give a real benefits in term of safety for the related 

crashes, while, for the total number of crashes this influence is 

negligible, or, for very small value of offset, give an increment of 

the total number of crashes. Elvik et al. in the “Handbook of road 

safety measures” summarized the results of different studies on the 

effect on running-off-the-road accidents of setting up guardrails 

along the roadside [4.19]. This meta analysis indicated strong 

reductions of 44% and 47% for fatal and injury crashes, respectively 

(Table 4.2).  

Based on several studies, the CMF proposed in the HSM 

[4.1] suggests a reduction in the number of injury run-off-road 

accidents for changing the type of roadside barrier along an 

embankment to a less rigid type. Conversely, more rigid barriers 
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(e.g. concrete or steel versus wire or cable) produce an increase in 

ran-off-road crashes of up to 40%, according to the HSM.  

Table 4.2. Meta analysis on guardrail retrofitting from the 
“Handbook of Road Safety measures” 

Accident 
Severity 

Percentage change in the number of accidents 
Types of accident 

affected 
Best 

estimate 
95% confidence 

interval 
New guardrail along embankment 

Fatal accidents Running-off-the-road -44 (-54, -32) 
Injury 

accidents Running-off-the-road -47 (-52, -41) 

Unspecified Running-off-the-road -7 (-35, +33) 
Changing to softer guardrail 

Fatal accidents Running-off-the-road -41 (-66, +2) 
Injury 

accidents Running-off-the-road -32 (-42, -20) 

 
A study by Scully et al. [4.20] in Australia indicated a 42.2% 

reduction in all casualty crashes, but, based on a literature review, 

Austroads (Table 4.3) [4.21] suggests that the installation of safety 

barriers results in an average reduction of 40% but only for run-off-

road crashes. 

Zegeer et al. [4.22] studied the effect of the distance of 

safety barriers from the edge of the travelled way (defined as clear 

zone) for two lane undivided rural roads. The results show 

reductions in ran off road crashes ranging from 13% for 1.5 m of 

clear zone to 44% for 6 m of clear zone.  

In the Crash Modification Clearinghouse managed by FHWA 

[4.23], which contains over 3,000 CMF estimates for a wide range 

of safety countermeasures under a variety of conditions, 25 CMFs 



Chapter 4 

 

 
180 

for “Countermeasure: Improve guardrail” are reported, with an 

average value of 0.82 (min=0.50; max=0.95) for all crash types and 

0.75 for run off road and fixed object crash types (min=0.68; 

max=0.82).  

The reference for these CMFs is a study of Gan et al. 

published in 2005 [4.24]. 

Table 4.3. Summary of studies on margin protection from 
AustRoads 

Study year Country Environment Reduction 

Zegeer et al. 1987 USA 
2-lane 

undivided rural 
road 

Reduction in 
run-off-road 
crashes with 
how many 
meters of 
clear zone 
13% at 1.5 
21% at 2.4 
25% at 3.3 
29% at 3.6 
35% at 4.5 
44% at 6 

Beca Ltd 1998 NZ Median barriers 75% reduction 

Elvik and Vaa 2004 Netherlands Gurdrail along 
embankment 

-7% run-off-
road crashes 

      
Gurdrail on 

median 
+24% run-off-
road crashes 

Scully et al. 2006 Australia Gurdrail 
installation 

42.2% casualty 
crashes 

 

In summary, despite differences in the absolute value of 

CMF, all the above studies indicate that road guardrails are 
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effective in reducing target crashes, but they can have also negative 

effects on other types of crashes.  

The safety effectiveness of the barrier is also related to the 

barrier type and positioning. However, these CMFs may not be 

appropriate for the scenario under consideration in this study. For 

example, the only ones in the CMF clearinghouse related to an 

improvement of guardrail, are not specific to motorways, and in 

particular not to motorway barriers meeting the new EU standard. 

4.3.1. Segmentation approach and data treatment 

For the elaboration an empirical Bayes Before/After analysis 

was chosen to address the problem related to the regression to the 

mean effects. The data described in the chapter one, as well as the 

segmentation approach used for the CMF calibration are reported 

below.  

The segmentation approach chosen in this study, was 

carried out in a way to use the barrier typology as the only 

homogenous variable. In other terms all the segment are 

homogeneous respect to barriers typology, in this way the presence 

of old or new barriers is implicit considered in the models. 

The advantage of using homogeneous segment respect to a 

dummy variable in the regression model is that they do not impose 

any preconceived functional relationship on the estimates obtained 

from the model. If a functional relationship is used in the regression 

model, then this relationship could be reflected in the expected 

values used to calibrate the CMF. It follows that, if a functional 
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relationship is used in the model, then it could indirectly bias the 

CMF calibration. The use of homogeneous segment respect of the 

variable investigated minimizes the potential for this type of bias 

because it does not require the specification of a function for the 

subject CMF input variable.  

The other variable consider in the models, the curvature, 

was treated to adapt it to the segmentation approach chosen. This 

happened because it is a continuous variables. 

In particular it was treated as curvature change rate (CCR) 

[4.25] of the segment, calculated as follows: 

  (4.20) 

where γi is the deflection angle for a contiguous element 

(curve or tangent) i within a section of length L; 

The segments are homogeneous, excluding the barrier 

typology, respect to the cross section typology, in this case viaduct 

Embankment and Trench. So each segment was characterized with 

the typology of cross section. This was made possible because in 

the segmentation approach based on barrier typology because 

each segment was characterized by a unique value of cross section 

typology.  

The data used for this investigation are based on an Italian 

rural motorway, the “A18” Messina-Catania, which is approximately 

76 km (47.2 miles) long. The cross section is made up of four 3.75 m 

]/[ mgon
L

CCR i
i∑

=

γ



Crash Modification Factor and Function 

 

 
183 

lanes, 2 in each direction, 3.75 m plus an emergency lane that is 

3.00 m wide. Carriageways are divided by a median with barriers.  

 The analysis period is for the 12 years from 2000 until 2004 

for the before period and form the 2006 through 2012 for the after 

period within which 418 severe (fatal plus injury) crashes according 

to the official statistics on motor vehicle collisions provided by the 

Italian National Institute of Statistics (ISTAT) [4.25]. For the 

elaboration all the data were divided into three different database. 

The first database represent the group of segment used as 

reference, in which the treatment was not present both in the 

before and after period, called reference group dataset, Table 3.4 

reports the traffic and crashes statistic over the years of analysis for 

the total crashes.  

In Figure 4.4 and 4.5 the traffic distribution is reported, for 

the before period (a) and the after period of analysis (b).  

The others groups were made up by the segment in which 

the barriers were changed in the 2005, and are related to the 

before and the after period. The dataset related to the before and 

after period of the treatment contain segment which the median, 

the lateral or both were changed. Table 4.5 and 4.6 report the basic 

information about the before and after dataset used in the 

elaboration.  
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Table 4.4. AADT and crash data related to the total number of 
crashes (RG=Reference Group, TG=Treated Group) 

  Year Range AADT 
Injury 

Crashes 

Injury 
Crashes/(Millio

n veh*km) 

Total 
Length 

(km) 
TG RG TG RG TG RG 

To
ta

l 

2000 10577 – 32998 16 40 0.29 0.1 

16 58 

2001 10662 – 35799 17 35 0,36 0.12 
2002 8696 – 24904 7 37 0.31 0.11 
2003 9082 -26123 10 49 0.23 0.11 
2004 9423 – 26947 11 46 0.24 0.09 

2006 7792 – 26414 5 43 0.03 0.08 
2007 7917 – 27001 12 37 0.19 0.10 
2008 7651 – 26783 6 30 0.13 0.10 
2009 9066 – 26743 3 31 0.09 0.2 
2010 10622 – 37052 13 26 0.20 0.13 
2011 10262 – 36375 9 24 0.16 0.12 
2012 9294 – 34174 12 20 0.18 0.13 

Total 121 418 0.17 0.11 
 

It is evident that there was a treatment site selection bias, in 

that sites with higher crash rates tended to be selected for 

treatment. This would result in regression to the mean and 

necessitates the use of the empirical Bayes methodology used in 

this study to account for this bias.  

The analysis were conducted on the total number of 

crashes, the direct related category of crashes, ran-off-road 

crashes, and the non-ran-off-road crashes. The ran-off-road crashes 

are the direct related crashes to the roadside condition, and in this 
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study to the barrier typology. Table 4.5 and 4.6 reports the traffic 

and crash data distribution for these category of crashes  

 

 
Figure 4.4. traffic distribution for the before period 

 
Figure 4.5. traffic distribution for the after period. 

In this study, only the road segments were analyzed; 

interchange data and the part of segment directly influenced by the 
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presence of intersection were discarded. Every segment contiguous 

to an intersection starts from a distance of 50 m (164 ft) from the 

bevel for the insertion of the service lanes for exit from, and entry 

into the main flow. The data available, in addition to AADT , were: 

radius of curvature, vertical gradient, type of section, and roadside 

features (presence and typology of the lateral and median barriers), 

although only curvature (CCR) was used in the calibration of CMF. 

Table 4.5. AADT and crash data related to the ran-off-road crashes 
(RG=Reference Group, TG=Treated Group) 

  Year Range AADT 
Injury 

Crashes 

Injury 
Crashes/(Millio

n veh*km) 

Total 
Length 
(km) 

TG RG TG RG TG RG 

Ra
n 

of
f r

oa
d 

2000 10577 – 32998 14 20 0.27 0.06 

16 57 

2001 10662 – 35799 10 13 0.20 0.04 
2002 8696 – 24904 5 17 0.3 0.05 
2003 9082 -26123 3 24 0.05 0.03 
2004 9423 – 26947 8 21 0.18 0.05 

2006 7792 – 26414 2 23 0.01 0.04 
2007 7917 – 27001 8 21 0.01 0.07 
2008 7651 – 26783 2 15 0.04 0.07 
2009 9066 – 26743 2 16 0.03 0.13 
2010 10622 – 37052 4 20 0.05 0.15 
2011 10262 – 36375 2 13 0.03 0.12 
2012 9294 – 34174 2 11 0.02 0.11 

Total 62 214 0.1 0.06 
 

The traffic distribution in the two travel directions were 

analyzed to avoid problem related to consider large difference in 

the exposure factor among the segments.  
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Figure 4.6 shows the traffic distribution in the period of 

analysis for the before period (a) and the after period (b). There are 

not significant differences between the traffic distribution in the 

two directions.   

As earlier in the Chapter, the EB analysis requires the use of 

a safety performance function (SPF).  

The Generalized Linear Modeling (GLM) [4.28] [4.29] 

approach was used to estimate the SPFs, using the Statistical 

Analysis System (SAS) [4.30] software package. 

Table 4.6. AADT and crash data related to the non-ran-off-road 
crashes (RG=Reference Group, TG=Treated Group) 

  Year Range AADT 
Injury 

Crashes 

Injury 
Crashes/(Millio

n veh*km) 

Total 
Length 
(km) 

TG RG TG RG TG RG 

N
on

-R
an

 o
ff 

ro
ad

 

2000 10577 – 32998 2 20 0.01 0.05 

16 57 

2001 10662 – 35799 7 22 0.02 0.06 
2002 8696 – 24904 2 20 0.01 0.06 
2003 9082 -26123 7 25 0.18 0.08 
2004 9423 – 26947 3 25 0.06 0.04 

2006 7792 – 26414 3 20 0.02 0.04 
2007 7917 – 27001 4 16 0.18 0.03 
2008 7651 – 26783 4 15 0.09 0.03 
2009 9066 – 26743 1 15 0.06 0.07 
2010 10622 – 37052 9 16 0.05 0.03 
2011 10262 – 36375 7 24 0.04 0.05 
2012 9294 – 34174 10 9 0.06 0.06 

Total 59 227 0.09 0.05 
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                                                             (a) 

 
                                                             (b) 

Figure 4.6. Traffic distribution among the two travel direction for 

the before period (a) and for the after period (b). 

4.3.2. Analysis and results 

The first step in the analysis was to validate the reference 

group using the methodology developed by Hauer [4.3], and 

described above for the suitability of the dataset. The results are 
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shown in Tables 4.7 to 4.9 for the total number of crashes, the ran-

off-road and the non-ran-off-road respectively.  

The conditions requested by the test were that mean has to 

be close to one and the 95% confidence interval have to include 1.  

The analysis of the results of the test on the three categories 

of crashes lead to the conclusion that the reference group is 

suitable for the total crashes and for the ran-off-road crashes.  

Different considerations have to be done for the non-ran-off 

road crashes.  

The 95% interval confidence doesn’t include 1 and the mean 

is not so close to 1.  

On the other hand the upper value of the interval is close to 

1 and the test is only suggested for the empirical Bayes analysis, 

while is fundamental for the before-after analysis with comparison 

group described earlier in the Chapter.  

As such, the results of the test have to be seen as a 

validation of the Reference Group in term of regression to the 

mean effect and selection bias.  To consider time trend in the 

calibration of CMF, a post SPF calibration procedure was applied. 

The SPF was calibrated considering an average AADT value for the 

whole period of analysis (12 years) and the sums of crashes for 

each segment. The estimation obtained for each year was than 

corrected with a multiplier given by the ratio of the sums of yearly 

observed crashes and the SPF estimates for the reference sites.   
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Table 4.7. Results obtained from the test of comparability on the 
reference Group for the total crashes. 

Total 

Year Treatment Group Reference Group o 

2000 16 40 - 
2001 17 35 0.75 
2002 7 37 2.19 
2003 10 49 0.82 
2004 11 46 0.76 
2006 5 43 1.68 
2007 12 37 0.32 
2008 6 30 1.35 
2009 3 31 1.51 
2010 13 26 0.17 
2011 9 24 1.15 
2012 12 20 0.55 

  Mean 0.93 
s2 0.34 

Var(ω) tot 0.08 
Var(ω) 0.21 
95% confidence interval 

1.09 0.76 
 

Consistent with the state of research in developing these 

models, the negative binomial error distribution was assumed for 

the count of observed crashes [4.4]. For the empirical Bayes 

evaluation, the negative binomial dispersion parameter was 

estimated from the calibration of the SPF using a maximum 

likelihood methodology.  
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Table 4.8. Results obtained from the test of comparability on the 
reference Group for the ran-off-road crashes. 

Ran-off-road 

Year Treatment Group Reference 
Group o 

2000 14 20 - 
2001 10 13 0.79 
2002 5 17 2.04 
2003 3 24 1.69 
2004 8 21 0.28 
2006 2 23 2.83 
2007 8 21 0.19 
2008 2 15 1.8 
2009 2 16 0.68 
2010 4 20 0.47 
2011 2 13 0.83 
2012 2 11 0.53 

  Mean 1.04 
s2 0.66 

Var(ω) tot 0.11 
Var(ω) 0.41 
95% confidence interval 

1.26 0.82 
 

Some recent studies [4.31] [4.32] [4.33], suggested that the 

dispersion parameter, contrary to earlier research, is not constant 

for a given data set but actually varies from site to site depending 

on the length of a roadway segment. The varying form in 

applications such as the Highway Safety Manual [4.1] is such that 

the dispersion parameter for certain classes of road segments is 

inversely proportional to segment length.  
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Table 4.9. Results obtained from the test of comparability on the 

reference Group for the non- ran-off-road crashes. 

non-Ran-off-road 

Year Treatment 
Group 

Reference 
Group o 

2000 2 20 - 
2001 7 22 0.26 
2002 2 20 2.05 
2003 7 25 0.29 
2004 3 25 1.69 
2006 3 20 0.58 
2007 4 16 0.46 
2008 4 15 0.71 
2009 1 15 1.93 
2010 9 16 0.10 
2011 7 24 1.60 
2012 10 9 0.22 

  Mean 0.85 
s2 0.57 

Var(ω) tot 0.04 
Var(ω) 0.31 

95% confidence interval 
0.99 0.76 

 

This form was first suggested by Hauer [4.34], who argued 

logically that shorter segments have a higher accident frequency 

variance and, consequently, should have a higher dispersion 

parameter than longer segments, and that this variation should 

influence the long-term estimate of a segment’s safety. For this 

study, following Cafiso et al. [4.35], proportionality  was not, a 

priori, assumed. Instead, the chosen equation for the calibration of 

the variable dispersion parameter was the following (Equation 4.21) 
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γα Lk ⋅=  (4.21) 

where α and γ are regression terms.  

Models based on the dispersion parameter varying with 

length were calibrated with a modified negative binomial 

regression technique, in which the dispersion parameter in the log-

likelihood function was considered to vary according to the 

previously established exponential form (Equation 4.21).  

The maximization of the log-likelihood function required an 

iterative process to calibrate both the SPF coefficients and the two 

coefficients for the exponential function for k [4.35]. To this end, an 

iterative calculation algorithm was developed and implemented. 

The results of the model calibration for the three crash types are 

shown in Table 4.10, based on the SPF model form shown in 

Equation 4.22, while Figures 4.6 to 4.8 report a measure of the 

goodness of fit of the models. 

( ) xCCR
i xeAADTLeyYE 1ββα ×××=  (4.22) 

where: 

• E (Y): expected annual (fatal plus injury) crash frequency 

of random variable Y; 

• L: length of road segment [m]; 

• AADT: average annual daily traffic [veh/day]; 

• α, β and β1 are regression terms; 

• yi is the time trend coefficient in the year i 

To evaluate the goodness of fit (g.o.f.) of the models, the 

Cumulative Residuals (CURE) plot [4.36] method was applied.  



Chapter 4 

 

 
194 

The CURE method is based on the study of residuals, i.e., the 

difference between the number of crashes observed at a site and 

the expected value at the same site and in the same year.  

Table 4.10. Value of regression parameters, (p-value) and 

[Standard error] for the SPFs calibrated. 

  

Total Ran off road Non -Ran off 
road 

Intercept -14.1368 (2.153) 
[<.0001] 

-13.3460 (2.444) 
[<.0001] 

-16.377 (2.5830) 
[<.0001] 

AADT 0.9631 (0.224) 
[<.0001] 

0.7862 (0.254) 
[0.002] 

1.1416 (0.268) 
[<.0001] 

CCR 2.281 (0.004) 
[<.0001] 

2.486 (0.0236) 
[<.0001] 

2.623 (0.006) 
[<.0001] 

Years  

2000 1.05 1.33 0.88 
2001 0.91 0.85 0.95 
2002 1.00 1.15 0.90 
2003 1.27 1.58 1.07 
2004 1.16 1.35 1.04 
2006 1.08 1.47 0.82 
2007 0.82 1.07 0.65 
2008 0.75 0.95 0.61 
2009 0.79 1.03 0.62 
2010 0.91 1.29 0.67 
2011 0.72 0.85 1.00 
2012 0.55 0.76 0.42 

k 5.6xL-0,8 6.1xL-0,85 5.5xL-0,375 
 

Assuming that residuals are normally distributed with 

expected value equal to 0 it is possible to calculate the variance σ of 

the expected value as the square of the cumulate residuals [4.36]. 

Table 4.11 reports the Crash Modification Factors calibrated on the 

data for the total, ran-off-road and non-ran off road crashes. 
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The plot of cumulative residuals should oscillate around 0, 

and not exceed the ±2σ* bounds.  

As is evident from Figures from 4.6 through 4.8, the 

cumulative residuals plots show a reasonable good fits of the model 

to the datasets. The estimates indicate a strong enough safety 

benefit for ran-off road crashes, without any change in non-ran-off 

road crashes.  

        
 Figure 4.6 CURE Plots with ± 2σ for the total crashes. 
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Figure 4.7 CURE Plots with ± 2σ for the ran-off-road crashes. 

 
Figure 4.8 CURE Plots with ± 2σ for the non-ran-off-road crashes. 

 

Table 4.11. CMFs estimation results for fatal plus injury crashes. 

  Total Ran off road Non-Ran 
off road 

Comp. Ratio (av. value) 0.93 0.87 1.05 
Var (Bsum) 24.85 31.95 5.68 

Bsum 96.78 76.40 47.52 
Asum 69 22 47 

CMF 0.71 0.28 0.98 

Stdev 0.09 0.065 0.152 
95% interval 0.52 0.79 0.16 0.41 0.68 1.28 
 

The reduction found in the total crashes is due to the higher 

percentage of ran-off-road crashes in comparison with the other 

crash categories. If the whole period of analysis is taken into 

account the ran-off-road crashes in the reference group are about 

the 52% of the total crashes.  
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The percentage in the before period is about the 45% and 

55% in the after period for the reference group. In the treated sites 

the percentage are 65% and 35% in the before and after period 

respectively. The standard deviation associated to the CMF 

indicates a strong benefit for the ran-off-road crashes and for the 

total crashes with both the upper limit of the 95% confidence 

interval smaller than one. The CMF calibrated on the ran-off-road 

crashes give the best results in term of standard deviation too, with 

the lower value, that indicates a good size of the sample. On the 

contrary the large standard deviation of the CMF calibrated on the 

non-ran-off-road crashes indicates that the sample of treated sites 

is not yet large enough to estimate a robust CMF with sufficient 

statistical significance for that categories of crashes.   

4.4. Crash Modification Function 
If the cross section distribution of the CMF is considered, the 

effects of the CMF could be related to one or more road feature 

present in the segments, and in particularly to those which from an 

engineering point of view should have a functional relationship with 

the treatment investigated.  

In this case, speaking about lateral protection, and taking 

into account the available variable the curvature change rate was 

considered.  

Calculating the value of the CMF in the treated sites, 

according to the segmentation chosen, considering for each of 

them the expected value and the variance it was possible to make a 
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regression analysis on the dataset finding a relationship between 

the CMFs and the curvature change rate value.  

The curvature change rate give an idea of the deflection of 

the segment on its length. Shorter segment with the same curves 

(length and radius) of longer one have a higher value of CCR, so its 

value is strongly influenced by the segmentation approach. In the 

specific case of a segmentation based on barrier typology the CCR 

results independent from others variable and it is the only way to 

avoid short segment due to a segmentation approach based both 

on barriers and curvature.  

The problem of short segment is not only related to the 

goodness of fit of the model to the dataset, but also to the 

calibration of the cross site CMFs. In the mathematical expression 

indeed, the observed crashes in the after period are used to make a 

comparison with the expected crashes in the after period, in the 

same sites, if the treatment had not been applied. From an 

operative point of view it is impossible to calculate the CMF in a site 

if no crashes have occurred in the after analysis period or better if 

data have a high reliability and there is not regression to the mean 

bias the CMF produces a 100% of reduction of crashes without 

variance. By the way the random nature of crashes and the effect 

of the RTM bias can easily disprove this statement.  

To overcome that problem a cluster analysis is performed. In 

the following the description of the methodology used in the 

elaboration and the results. 
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4.4.1. Cluster analysis 

Cluster analysis or clustering is the task of grouping a set of 

objects in such a way that objects in the same group (called a 

cluster) are more similar (in some sense or another) to each other 

than to those in other groups (clusters). It is a main task of 

exploratory data mining, and a common technique for statistical 

data analysis, used in many fields, including machine learning, 

pattern recognition, image analysis, information retrieval, and 

bioinformatics. 

Cluster analysis itself is not one specific algorithm, but the 

general task to be solved. It can be achieved by various algorithms 

that differ significantly in their notion of what constitutes a cluster 

and how to efficiently find them. Popular notions of clusters include 

groups with small distances among the cluster members, dense 

areas of the data space, intervals or particular statistical 

distributions. Clustering can therefore be formulated as a multi-

objective optimization problem. The appropriate clustering 

algorithm and parameter settings (including values such as the 

distance function to use, a density threshold or the number of 

expected clusters) depend on the individual data set and intended 

use of the results. Cluster analysis as such is not an automatic task, 

but an iterative process of knowledge discovery or interactive 

multi-objective optimization that involves trial and failure. It will 

often be necessary to modify data preprocessing and model 

parameters until the result achieves the desired properties. 
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Besides the term clustering, there are a number of terms 

with similar meanings, including automatic classification, numerical 

taxonomy, botryology (from Greek βότρυς "grape") and typological 

analysis. The subtle differences are often in the usage of the 

results: while in data mining, the resulting groups are the matter of 

interest, in automatic classification primarily their discriminative 

power is of interest. This often leads to misunderstandings between 

researchers coming from the fields of data mining and machine 

learning, since they use the same terms and often the same 

algorithms, but have different goals. 

Cluster analysis was originated in anthropology by Driver 

and Kroeber in 1932 and introduced to psychology by Zubin in 1938 

and Tryon in 1939 [4.38] and famously used by Cattell beginning in 

1943 [4.39] for trait theory classification in personality psychology. 

According to Vladimir Estivill-Castro, the notion of a 

"cluster" cannot be precisely defined, which is one of the reasons 

why there are so many clustering algorithms [4.40]. There is a 

common denominator: a group of data objects. However, different 

researchers employ different cluster models, and for each of these 

cluster models again different algorithms can be given. The notion 

of a cluster, as found by different algorithms, varies significantly in 

its properties. Understanding these "cluster models" is key to 

understanding the differences between the various algorithms 

[4.41]. Typical cluster models include: 
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• Connectivity models: for example hierarchical clustering builds 

models based on distance connectivity. 

• Centroid models: for example the k-means algorithm 

represents each cluster by a single mean vector. 

• Distribution models: clusters are modeled using statistical 

distributions, such as multivariate normal distributions used by 

the Expectation-maximization algorithm. 

• Density models: for example DBSCAN and OPTICS defines 

clusters as connected dense regions in the data space. 

• Subspace models: in Biclustering (also known as Co-clustering 

or two-mode-clustering), clusters are modeled with both 

cluster members and relevant attributes. 

• Group models: some algorithms do not provide a refined 

model for their results and just provide the grouping 

information. 

• Graph-based models: a clique, i.e., a subset of nodes in a graph 

such that every two nodes in the subset are connected by an 

edge can be considered as a prototypical form of cluster. 

Relaxations of the complete connectivity requirement (a 

fraction of the edges can be missing) are known as quasi-

cliques. 

A "clustering" is essentially a set of such clusters, usually 

containing all objects in the data set. Additionally, it may specify the 

relationship of the clusters to each other, for example a hierarchy 
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of clusters embedded in each other. Clusterings can be roughly 

distinguished as: 

• hard clustering: each object belongs to a cluster or not 

• soft clustering (also: fuzzy clustering): each object belongs to 

each cluster to a certain degree (e.g. a likelihood of belonging 

to the cluster) 

There are also finer distinctions possible, for example: 

• strict partitioning clustering: here each object belongs to 

exactly one cluster 

• strict partitioning clustering with outliers: objects can also 

belong to no cluster, and are considered outliers. 

• overlapping clustering (also: alternative clustering, multi-view 

clustering): while usually a hard clustering, objects may belong 

to more than one cluster. 

• hierarchical clustering: objects that belong to a child cluster 

also belong to the parent cluster 

• subspace clustering: while an overlapping clustering, within a 

uniquely defined subspace, clusters are not expected to 

overlap. 

In the elaboration the algorithm used for the clustering is 

the median. The distance between the elements in the cluster and 

the median is calculated as an Euclid distance. 
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Table 4.12. Clustering of the dataset respect to CCR for the total 

and ran-off-road crashes. 

Total 
Cluster Median Length (m) Observed Cluster 

1.1082 2823.495 4 1 
27.3214 7798.79 23 2 
58.7093 2991.85 28 3 
80.6199 3079.73 8 4 
125.456 484.41 0 5 

Ran-off-Road 
Cluster Median Length (m) Observed Cluster 

1.1082 2823.495 1 1 
27.3214 7798.79 10 2 
58.7093 2991.85 4 3 
80.6199 3079.73 2 4 
125.456 484.41 0 5 
 

In the analysis 68 segments are used for the clustering, each 

of them is pair with his own value of CCR. The clustering analysis is 

performed on the value of CCR. The results are shown in Table 4.12 

for the total crashes and the ran-off-road crashes. The elaboration 

was performed using the Statgraphics software package [4.42].  

As it is clear from table 4.12 the cluster number 5 is 

relatively small in term of length. To avoid problem due to the 

quality of data (i.e. localization of crashes) or RTM effects on the 

observed data the 4th and 5th cluster were merged. The new 

centroid was assumed equal to the median of the sample using the 

same criteria of the software was used to do this. In the table 4.13 

are shown the results. In the next Paragraph a regression analysis 

on the cluster is performed to the aim to calibrate a function. 
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Table 4.13. Clustering of the data respect CCR merging the 4th and 

5th clusters for the total and ran-off-road crashes. 

Total 
Cluster Median Length (m) Observed Cluster 

1.1082 2823.495 4 1 
27.3214 7798.79 23 2 
58.7093 2991.85 28 3 
103.038 3564.14 8 4 - 5 

Ran-off-Road 
Cluster Median Length (m) Observed Cluster 

1.1082 2823.495 1 1 
27.3214 7798.79 10 2 
58.7093 2991.85 4 3 
103.038 3564.14 2 4 - 5 
 

4.4.2. Crash Modification Function calibration 

Using the results of the clustering a regression analysis was 

performed on the CMFs calibrated for each cluster.  

The advantage of having a function lies in the fact that it is 

not always reasonable to assume a uniform safety effect for all sites 

with different characteristics [4.3]. A countermeasure may also 

have several levels or potential values, for this reason developing 

Crash Modification Functions give the best fit to reality when an 

analysis on the effect of a treatment has to be investigated. A crash 

modification function allows the CMF to change over the range of a 

variable or combination of variables. 

If the protection of margin is investigated the direct related 

typology of crashes are the ran-off-road. In general that crash 

typology is expressed as a loose of control of the vehicle that try to 
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abandon the carriageway. As such the curvature plays a 

fundamental role in the causation of the crash events. 

In Table 4.15 the length of segment is reported together 

with the cross site calibration of the CMF, the observed number of 

crashes and the curvature change rate value and the variance of the 

CMF for the total crashes for the total and ran-off-road crashes.  

The CCR values reported on Table 4.15 is related to the 

median of the class used in the cluster analysis.  

Using the CMFs, calibrated on each site, and CCR values a 

regression analysis was performed considering the variation of the 

CMF together with the variation of the CCR. The results are shown 

in the Figures 4.9 for a exponential regression on the total crashes 

and in Figure 4.10 and 4.11 for the linear regression and 

exponential regression, respectively, for the ran-off-road crashes. 

The coefficient of determination (R2) was used to assess the 

goodness of fit of the regression. The coefficient of determination, 

denoted R2, indicates how well data points fit a line or curve. R2 is a 

statistic that will provide some information about the goodness of 

fit of a model.  

In regression, the R2 coefficient of determination is a 

statistical measure of how well the regression line approximates 

the real data points. The R2 value is a popular measure used to 

judge the adequacy of a regression model. Defined as a ratio, the R2 

value is a proportion that represents the variability of the 
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dependent variable that is explained by the model. In symbolic 

form: 
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(4.23) 

where:  
 
ŷ:  model estimates, 
y :  mean of the observations 

yi:  actual observations 
An R2 value near zero indicates that there is no linear 

relationship between the dependent and independent variables, 

while a value near 1 indicates a linear fit. 

Table 4.15. CMFs calibration results on cluster analysis for the 

total and ran-off-road crashes. 

Total   
Cluster (CCR) Length (m) Observed CMF Cluster 

1.1082 2823.495 10 0.65 1 
27.3214 7798.79 23 0.49 2 
58.7093 2991.85 28 1.28 3 
103.038 3079.73 8 0.56 4 - 5 

Ran-off-Road   
Cluster (CCR) Length (m) Observed CMF Cluster 

1.1082 2823.495 6 0.33 1 
27.3214 7798.79 10 0.32 2 
58.7093 2991.85 4 0.26 3 
103.038 3079.73 2 0.14 4 - 5 
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Figure 4.9. Exponential regression on the cross site distribution of 

the CMF on total crashes.  

 

 
Figure 4.10. Linear regression on the cross site distribution of the 

CMF on ran-off-road crashes.  
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Figure 4.11. Exponential regression on the cross site distribution 

of the CMF on ran-off-road crashes.  

 

From the analysis of the regression performance shown in 

the Figures 4.9 through 4.10 both the exponential regression and 

the linear one have a good goodness of fit to the cross site CMFs for 

the ran-off-road crashes. The exponential regression has the 

following expression: 

3353.00004.010 24 +⋅−⋅−= − CCRCCRCMF  (4.24) 

While the linear regression has the equation: 

3551.00019.0 +⋅−= CCRCMF  (4.25) 

 From the analysis of the R2 value, the exponential 

relationship gives the best results with a closer value to one.  

Different consideration have to be made on the total 

crashes. The value of R2, indeed, indicates that the performance of 

the regression is not enough to say that a relationship exist 
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between CCR and the reduction of crashes due to the retrofitting 

motorways with barriers meeting the EU standard. It is due to the 

influence of the Non ran-off-road crashes on the total crashes. The 

ran-off-road are mainly single vehicle crashes, and the influence of 

the curvature is determinant in the causation of the crash event.   

Generally the Crash Modification Functions are not provided 

with a variance and a standard deviation. In Bonneson et al. [4.2], in 

the HSM [4.1] and in the web based database for CMF, or rather in 

the Crash Modification Clearinghouse managed by FHWA [4.42], 

which contains over 3,000 CMF estimates for a wide range of safety 

countermeasures under a variety of conditions, the variance is not 

taken into account when CMFunction are reported or calibrated. 

By the way for the analysis reported in the next Chapter 4 

the variance of the Crash Modification Factor play a fundamental 

role in the Benefit/Cost Analysis, even if a Function, or a cross site 

distribution of the CMFs, is considered.  

For this reason the value of the variance needs to be 

estimated for the cross site distribution of the CMF. 

The methodology used to estimate the variance of the 

CMFunction has been proposed by Hauer et al. [4.37] who used a 

weighted variance of the combination of two CMFs related to the 

same treatment. In Chapter 5 a methodology for calculating a cross 

site variance is applied [4.37] together with a new methodology for 

the Benefit/Cost analysis. 
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4.5. Chapter summary 

In the present Chapter different methodologies to estimate 

a CMF were introduced with a wide literature review. At the end of 

the Chapter study is reported as case study by Cafiso et al in press 

at the next 93rd TRB (January, 2014) [4.4] about the estimation of 

the safety effects of a new class of barriers meeting the EU 

Standard, using data of a motorway in Italy. That study was 

integrated with more data and the calibration of a Crash 

Modification Function. To do this a cluster analysis was performed 

on the Curvature Change Rate. The Crash Modification Function 

give good results for the ran-off-road crashes while for the total 

crashes the R2showed poor results.    
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CHAPTER 5 
 

THE TRADITIONAL TECHNIQUES FOR THE 

BENEFIT-COST ANALYSIS AND THE CROSS 

SITE VARIANCE OF A CMF 
 

5.1. Introduction 

The best methodology of calibration of CMFs is well known   

to be based on stochastic approach. The problem of regression to 

the mean and the selection bias can be controlled using a 

sophisticated probabilistic approach introduced by Hauer [5.1] in 

1997 and developed by various author in the last 2 decades 

[5.2][5.3][5.4][5.5][5.6][5.7][5.8].  

The new methodologies developed for the calibration of the 

Safety Performance Functions are pushing the Authors to find new 

advanced methodology able to address the problem of time trend 

[5.9] and spatial correlation of data and to use more complicated 

model form and different distribution of outcomes [5.10] in the 

calibration of CMFs. 

Despite the efforts on the calibration of CMFs to improve 

reliability, evaluation of safety benefits of applying a treatment 

continue to be performed using a deterministic approach. The 
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traditional techniques for the evaluation of the benefits of a 

treatment don’t take into account the statistical distribution of the 

CMFs and their stochastic nature.  

In the first edition of the Highway Safety Manual [5.11] the 

methodology for the economical evaluation of a treatment was 

standardized. The diagram is reported in Figure 5.1. The main issue 

is the quantification of crash reduction, and the application of the 

traditional methodology for the economical evaluation of the 

alternatives based on the CMFs. 

 
Figure 5.1. Methodology for economical valuation of a 

countermeasure proposed by HSM.  

The new European regulation on Road Safety (96/2008 CE) 

imposes on each Member State a strict control of the treatment 
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both for new projects and for existing roads, with the aims, and the 

new concept, to take into account safety in each phase of the 

design and/or in the construction.  

The safety benefit-cost analysis is becoming determinant in 

the choice of a treatment or of the geometric design of a new road, 

and it is becoming predominant in the choice of alternatives, or in 

the evaluation of the final cost of the entire project. In this period 

of economic trouble the reliability of a countermeasure plays a 

fundamental role in the decision making process. 

In the chapter all the elements that are presented in the 

different phase of a benefit cost analysis are reported together with 

the traditional techniques and a new stochastic approach to the 

problem. 

5.2. The cost of crashes 

As it is clear from figure 4.1, one of the more important 

tasks is to quantify the cost of a crash. It depends on the severity of 

crashes, the geographic location intended as the economic 

condition of the Country in which the crash took place. In the 

Highway Safety Manual the reported cost are based on “Crash Cost 

Estimates by Maximum Police-Reported Injury Severity within 

Selected Crash Geometries” [5.12] in which the cost are evaluated 

for different crash severity (Table 5.1). 

In Italy three level of severity are defined for the crashes 

cost: 

• Fatal; 
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• Serious injury; and 

• Property damage only. 

Table 5.1. Crash cost reported by HSM. 

Collision type Comprehensive Crash Costs 
Fatality (K)  $4,008,900 

Disabling Injury (A) $216,000 
Evident Injury (B) $79,000 

Fatal/Injury (K/A/B)  $158,200 
Possible Injury (C) $44,900 

PDO (O) $7,400 
 

The economical evaluation of those categories is reported 

on Table 5.2 and the source is the “Social crash cost estimation 

(2012)” from the Ministry of Transportation [5.13]. 

Table 5.2. Crash cost reported by Italian Ministry of 

Transportation. 

Collision type Social cost referred to 1 person 
Fatal € 1,503,990.00 

Serious injury € 42,219.00 
Property damage only € 7,686.00 

 

Those cost reported on Table 5.2 are not referred to as 

crashes but as a single person involved in a crash. However often is 

not feasible to know the number of persons involved and, in that 

case the total cost of a crash, have to be used. For this reason the 

percentage of the number of persons involved in a crash is reported 

on table 5.3 in comparison with the number of crashes for road 

categories in Italy.  
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Table 5.3. Percentage of number dead or injured person for road 

categories for crashes. 

Area/Road Fatal./(100 
Crashes) 

Inj./(100 
Crashes) Crash cost (Italy-2002) 

Motorway 5.30% 173.81% € 132.051.74 
Rural 6.97% 159.33% € 151.785.30 
Urban 1.68% 135.53% € 67.708.10 

 

In the “Social crash cost estimation (2012)” from the 

Ministry of Transportation [5.13], is reported a comprehensive cost 

of a crash related to the severity. In table 5.4 the comprehensive 

cost for crash severity is reported. 

Table 5.4. Comprehensive average cost for crash severity reported 

by Italian Ministry of Transportation. 

Severity Comprehensive average cost 
Fatal € 1,642,236.00 
Injury € 309,863.00 

 

Hauer et al. [5.14] used an average freeway crash cost, 

including all the categories for nighttime crashes of $20,000.00 in a 

study extensive reported later in the Chapter. 

5.3. Traditional techniques for the benefit-cost 

analysis 

In the first edition of the Highway Safety Manual [5.11] 

three different methodologies are reported for the benefit-cost 

analysis: 

• Net Present Value (NPV); 
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• Benefit-Cost Ratio (BCR); and 

• Cost-Effectiveness Index. 

In the following the three methodologies are described with a 

detailed explanation of the element or terminology used in the 

elaboration.  

Table 5.4. Data Needs for Calculating Project Benefits reported by 

HSM. 

 

Activity Data Need 
Calculate Monetary Benefit 

Estimate change in crashes by severity Crash history by severity 

 

Current and future Average 
Annual Daily Traffic (AADT) 
volumes 

 
Implementation year for 
expected countermeasure 

 
SPF for current and future site 
conditions (if necessary) 

 
CMFs for all countermeasures 
under consideration 

Convert change in crash frequency to 
annual Monetary value of crashes by 
severity 

monetary value Change in crash 
frequency estimates 
 Service life of the 
countermeasure 

Convert annual monetary value to a 
present value 

Discount rate (minimum rate of 
return) 

Calculate Costs 
Calculate construction and other 
implementation costs 

Subject to standards for the 
jurisdiction 

Convert costs to present value  Service life of the 
countermeasure(s) 

  Project phasing schedule 
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To calculate the benefit of a countermeasure a serious of 

data need before the conversion in monetary value.  

For all the methods described above, some parameters 

need to be estimated to obtain a monetary value of the benefit. In 

Table 5.4 a series of activity and data that need to calculate. The 

information reported in table 5.4 are taken from the HSM.    

5.3.1. The net present value (NPV) 

The net present value (NPV) method is also referred to as 

the net present worth (NPW) method. This method is used to 

express the difference between discounted costs and discounted 

benefits of an individual improvement project in a single amount. 

The term “discount” indicates that the monetary costs and benefits 

are converted to a present value using a discount rate.  

The discount rate is an interest rate that is chosen to reflect 

the time value of money. The discount rate represents the 

minimum rate of return that would be considered by an agency to 

provide an attractive investment. Thus, the minimum attractive 

rate of return is judged in comparison with other opportunities to 

invest public funds wisely to obtain improvements that benefit the 

public. Two basic factors to consider when selecting a discount rate: 

a) The discount rate corresponds to the treatment of inflation 

(i.e., real dollars versus nominal dollars) in the analysis being 

conducted. If benefits and costs are estimated in real 

(uninflated) dollars, then a real discount rate is used. If 
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benefits and costs are estimated in nominal (inflated) 

dollars, then a nominal discount rate is used. 

b) The discount rate reflects the private cost of capital instead 

of the public sector borrowing rate. Reflecting the private 

cost of capital implicitly accounts for the element of risk in 

the investment. Risk in the investment corresponds to the 

potential that the benefits and costs associated with the 

project are not realized within the given service life of the 

project. 

Discount rates are used for the calculation of benefits and 

costs for all improvement projects. Therefore, it is reasonable that 

jurisdictions are familiar with the discount rates commonly used 

and accepted for roadway improvements. Further guidance is 

found in the American Associate of State Highway and 

Transportation Officials (AASHTO) publication entitled A Manual of 

User Benefit Analysis for Highways (also known as the AASHTO 

Redbook) [5.15]. 

The NPV method is used for the two basic functions listed 

below: 

• Determine which countermeasure or set of 

countermeasures provides the most cost-efficient means to 

reduce crashes. Countermeasure(s) are ordered from the 

highest to lowest NPV. 

• Evaluate if an individual project is economically justified. A 

project with a NPV greater than zero indicates a project with 
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benefits that are sufficient enough to justify implementation 

of the countermeasure. 

To apply the methodology of NPV need to estimate the 

crash reduction due to the countermeasure using the specific CMF 

and convert the change in estimated average crash frequency to an 

annual monetary value to representative of the benefits. The 

benefit calculated in this way are referred to the moment of the 

implementation of the countermeasure, and they don’t take into 

account the benefit in the years after, in the whole service life of 

the treatment. 

All improvement projects have a service life. In terms of a 

countermeasure, the service life corresponds to the number of 

years in which the countermeasure is expected to have a noticeable 

and quantifiable effect on the crash occurrence at the site. Some 

countermeasures, such as pavement markings, deteriorate as time 

passes, and need to be renewed. For other countermeasures, other 

roadway design modifications and changes in the surrounding land 

uses that occur as time passes may influence the crash occurrence 

at the site, reducing the effectiveness of the countermeasure. The 

service life of a countermeasure reflects a reasonable time period 

in which roadway characteristics and traffic patterns are expected 

to remain relatively stable.   

When the annual benefits are uniform over the service life 

of the project Equations 5.1 and 5.2 can be used to calculate 

present value of project benefits. 

𝑃𝑉𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑥 (𝑃/𝐴, 𝑖,𝑦) (5.1) 
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where, 

• 𝑃𝑉𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = Present value of the treatment benefits for a 

specific site, v; and 

• (P/A, I, y) = conversion factor for a series of uniform annual 

amounts to present value 

( ) ( )
( )y

y

ii
iyiAP
+⋅

−+
=

1
11,,/

 
(5.2) 

i= Minimum attractive rate of return or discount rate; and 

y= Year in the service life of the countermeasure(s) 

Some countermeasures yield larger changes in expected 

average crash frequency in the first years after implementation 

than in subsequent years. In order to account for this occurrence 

over the service life of the countermeasure, non-uniform annual 

monetary values can be calculated considering separately each 

benefit and summing overall in the year of service life. 

Than is possible to calculate the present value of the benefit 

at the generic year y as follow: 

 

                                                      (5.3) 

 

In the same way the cost of the treatment has to be 

evaluated considering the present value. 

To calculate the Net Present Value the following equation 

has to be applied: 

𝑁𝑃𝑉 = 𝑃𝑉𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 − 𝑃𝑉𝐶𝑜𝑠𝑡𝑠 (5.4) 

∑ = +
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where, 

𝑃𝑉𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠= Present value of the countermeasure benefits; 

and 

𝑃𝑉𝐶𝑜𝑠𝑡𝑠= Present value of the countermeasure costs. 

If the NPV > 0 then the individual treatment is economically 

justified. 

5.3.2. Benefit-Cost Ratio (BCR) 

A benefit-cost ratio is the ratio of the present-value benefits 

of a project to the implementation costs of the project (BCR = 

Benefits/Costs). If the ratio is greater than 1.0, then the project is 

considered economically justified. Countermeasures are ranked 

from highest to lowest BCR. An incremental benefit-cost analysis is 

needed to use the BCR as a tool for comparing project alternatives. 

This method is used to determine the most valuable 

countermeasure(s) for a specific site and is used to evaluate 

economic justification of individual projects. The benefit-cost ratio 

method is not valid for prioritizing multiple projects or multiple  

alternatives for a single project; the methods discussed in Chapter 8 

are valid processes to prioritize multiple projects or multiple 

alternatives.  

To apply the method of the benefit cost ratio need to 

estimate the average crash frequency of the sites, and the present 

value of the costs associated with the safety improvement 

treatment and calculate the ratio: 

𝐵𝐶𝑅 = 𝑃𝑉𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠
𝑃𝑉𝐶𝑜𝑠𝑡𝑠

 (5.5) 
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where, 

BCR = Benefit cost ratio; 

𝑃𝑉𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = Present value of project benefits; and 

𝑃𝑉𝐶𝑜𝑠𝑡 = Present value of project costs. 

If the BCR is greater than 1.0, then the treatment is 

economically justified. 

5.3.3. Cost-Effectiveness Index 

In cost-effectiveness analysis the predicted change in 

average crash frequency are not quantified as monetary values, but 

are compared directly to project costs. The cost-effectiveness of a 

countermeasure implementation project is expressed as the annual 

cost per crash reduced. Both the project cost and the estimated 

average crash frequency reduced must apply to the same time 

period, either on an annual basis or over the entire life of the 

project. This method requires an estimate of the change in crashes 

and cost estimate associated with implementing the 

countermeasure. However, the change in estimated crash 

frequency is not converted to a monetary value. 

This method is used to gain a quantifiable understanding of 

the value of implementing an individual countermeasure or 

multiple countermeasures at an individual site when an agency 

does not support the monetary crash cost values used to convert a 

project’s change in estimated average crash frequency reduction to 

a monetary value. 
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To apply the method of the benefit cost ratio need to 

estimate the change in expected average crash frequency due to 

the safety improvement treatment and calculate the costs 

associated with implementing the treatment and Calculate the 

cost-effectiveness of the safety improvement project at the site by 

dividing the present value of the costs by the estimated change in 

average crash frequency over the life of the countermeasure with 

the following equation: 

𝐶𝑜𝑠𝑡 − 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 = 𝑃𝑉𝐶𝑜𝑠𝑡𝑠
𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

 (5.6) 

where, 

𝑃𝑉𝐶𝑜𝑠𝑡𝑠 = Present value of the treatment cost; 

𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = Predicted crash frequency for year y; and 

𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = Observed crash frequency for year y. 

5.4. The cross site variance of the CMF and 

CMFunction 

Hauer argued logically that two different CMFs calibrated 

for the same treatment, used an appropriate methodology, but in 

different sites or region, have to be different for a reason that can 

be investigated with more research on the topic [5.16]. There is no 

reason to think that one of the CMFs is affected by some bias but at 

the same time the use of the CMF is not univocal, because the 

different values assumed in the different estimations. The same 

happens when a cross site distribution is considered, with the 

difference that the variance of the CMFs calibrated on a single site 
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is larger in comparison with the variance calibrated on the whole 

sample.  

The variance of the CMF estimated using an empirical Bayes 

before after analysis, through the Equation 4.14, is strongly 

influenced by the sample size. It is an indicator of the reliability of 

CMF calibration and of the sample size used for the elaboration. 

The combination of more CMFs related to the same 

treatment proposed by Hauer et al. [5.16], is based on a 

consideration that a CMF calibrated on a sample is an estimate of 

the long term value of the reduction of crashes due to the 

treatment investigated and that this estimation is influenced by a 

factor logically derived by the location in which the CMF is 

estimated or to a common geometric feature present in the sites 

used for the calibration. An extensive discussion about Hauer et al 

[5.14][5.16] researches on the topic is reported below and in the 

next Paragraph, using also some verbatim expression of the 

Authors that can help in the explanation of the methodology. 

The Agencies have to make the decision to implement a 

treatment based on the crash reduction of the treatment itself.   

The comparison is always between the expected target 

crash frequency of the action implemented, denoted by μa, and the 

expected target crash frequency prevailing under identical 

conditions but without the action having been implemented, 

denoted by μb. Research results usually report estimates of the 

ratio μa divided by μb. This ratio is the CMF of implementing a 

instead of b, to be denoted by θ(a;b), or, by θ. Thus 
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𝐶𝑀𝐹 = 𝜃(𝑎; 𝑏) = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 𝑏

= 𝜇𝑎
𝜇𝑏

 (5.7) 

When the implementation of a instead of b reduces the 

expected target crash frequency, then θ(a;b) < 1. The main use of 

the estimate 𝜃�(a;b) of θ(a;b) is to predict what is expected to be the 

safety effect of doing a instead of b in some specific circumstance. 

Transposing the terms in Equation 5.7 and adding the caret to 

signify “estimate” gives: 

( )baba ;ˆˆˆ θµµ ⋅=  (5.8) 

The safety effect of implementing a instead of b is usually 

measured by the expected change in the number of target crashes 

(by severity). The estimate of this expected change is: 

( )[ ]babab ;ˆ1ˆˆˆ θµµµ −⋅=−  (5.9) 

Clearly, 𝜃� (a, b) is needed to predict the safety effect. 

There is no reason to believe that a CMF has the same effect 

on safety everywhere and at all times. The effect may depend on 

the specifics of the treatment, and the feature of the roads, of the 

road users, the traffic volume and so forth. That is, it should not be 

assumed that θ(a;b) is a universal constant that has the same value 

always and everywhere. Rather, θ(a;b) should be viewed as a 

random variable, the value of which depends on a host of factors. 

These factors, taken together, are referred by Hauer at al. [5.16]  as 

the circumstances of implementation. 

Since θ(a;b) is a random variable, it has a probability 

distribution with a mean and a variance. For some actions, the 

θ(a;b) may vary little from one implementation to another, and 
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therefore the variance will be small; for other actions the variance 

may be large.  

Hauer et al. [5.16] [5.17] logically considered the 

distribution of θ(a,b) as a factor influencing the transferability of 

the CMF.  

Thinking of θ as a random variable allows the question of 

transferability to be correctly framed. The issue is: in a cost 

effectiveness or cost–benefit framework, decisions are based on 

expected consequences. This is why, to predict the future safety 

effect with Equation 5.8, 𝜃̅ is used, in other words, the current 

estimate of the expected value of θ based on past research.  

The difference between θ and 𝜃̅ determines whether the 

decision about implementing a treatment is right or wrong. 

Thus, concern about transferability amounts to concern 

about how well the 𝜃̅ based on past implementations predicts the θ 

of a future implementation. When past research indicates that 

whenever a was implemented instead of b approximately the same 

θ was found, the issue of transferability should not arise. 

Transferability concerns are real when the difference between 𝜃̅ 

and θ is frequently large. 

Thus, concern about transferability arises whenever the 

variance of θ is large or when 𝜃̅ is not a good estimate of the mean 

θ; it arises irrespective of whether the future application is in a 

different country, city, project, or time period. 

The setting is that of making a decision about a future action 

that has safety consequences. For that purpose, the θ of that future 
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action will need to be predicted. The assumption is that the future 

will be similar to the past. If so, the θ for the future action will be 

one of the values from the probability distribution of past θs, the 

standard deviation of which is σ{θ}. For decision making, it is best to 

assume that the θ of the future action is the current estimate 𝜃̅ of 

E{θ}, the mean of past experiences. The 𝜃̅ has a standard error to 

be denoted by s{𝜃̅}. The σ{θ} and s{𝜃̅} are two different constructs.  

While σ{θ} is an aspect of reality—namely, how variable the 

CMFs are from one circumstance to another—the s{𝜃̅} measures 

the uncertainty of an estimate and thus, indirectly, the quality of 

data. If s{𝜃̅} and σ{θ} are small, then Equation 5.8 can be 

confidently used to predict the safety effect of implementing a 

instead of b. If s{𝜃̅} or σ{θ} are large, then predictions made with 

Equation 5.8 can be insufficiently accurate. A prediction of θ is 

insufficiently accurate when some likely-to-occur values of θ lead to 

the decision to implement and other likely-to-occur values lead to 

the opposite decision. Decisions based on insufficiently accurate 

predictions are in danger of being wrong. It follows that rational 

decision making about actions that have safety consequences 

requires three estimates: the current estimate 𝜃̅ of E{θ}, its 

standard error s{𝜃̅}, and an estimate of σ{θ}. Whereas the decision 

to implement or not implement is based on 𝜃̅, both s{𝜃̅} and σ{θ} 

are needed to know whether the decision can be made with 

confidence. 

The usual sources of CMFs are the Highway Safety Manual 

[5.11], the Handbook of Road Safety Measures [5.18], and FHWA’s 
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Crash Modification Factor Clearinghouse website [5.19]. These 

publications list 𝜃̅s and sometimes their s{𝜃̅}. None give estimates 

of σ{θ}. 

To estimate 𝜃̅ and Its s{𝜃̅} two methods are preferred, both 

described by Hauer [5.1]. One is a simple estimate of 𝜃̅ and s{𝜃̅} 

with a weighted average of the 𝜃�s using as weight their own 

standard error. Thus 
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(5.11) 

 

A second methodology, if more information is available on 

CMFs is to estimate 𝜃̅, and Its s{𝜃̅} using the Equation 5.13 and the 

5.14 respectively. 

In Chapter 4, the 𝜃̅s and their s{𝜃̅} were estimated using the 

cluster analysis for different sites and for different value of CCR 

using equation 4.13 and 4.14. Table 4.15 reported the results. The 

average weighted value do not need to be estimated because the 

CMF is calibrated on the same data on the same sites. In other 

terms the best estimation of 𝜃̅ in the case of the calibration of a 

CMF, when no other CMFs for the same treatment are available in 
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literature, is θ. The results are shown in the Table 5.11 and are 

related to the CMF (θ) calibrated on the whole sample. 

If it could be assumed that the considered CMF is the same 

in each site, then the variance calculated in that way would 

describe the uncertainty of the CMF. However, such an assumption 

would be unreasonable. The uncertainty about the application of 

that treatment is not only due to 𝜃̅; it is also caused by the question 

of how variable θ is from one site to another. This variability is 

measured by σ{θ}. Thus, the next task is to use the available data to 

estimate σ{θ}. The advantage to considering a cross site distribution 

of the CMF is the possibility to estimate the cross site variance that 

should be used in the benefit/cost analysis. 

To estimate the cross site variance Hauer et al. [5.16] 

consider the law of total variance a law that follows by logic from 

the axioms of probability. With this law, it can be shown that:  

𝑉𝑎𝑟{𝜃} = 𝑉𝑎𝑟�𝜃�� − 𝐸 �𝑉𝑎𝑟�𝜃��𝜃�� (5.12) 

So considering the cross site variance as the difference of 

the variance of the 𝜃� calculated in the Chapter 4 and reported in 

the Table 4.13 minus the covariance of the 𝜃�𝑠 calculated in 

different sites. 

The total variance of the CMF, 𝑉𝑎𝑟∗{𝜃}, is defined as the 

sum of the 𝜃�𝑠 and a factor that describes the variance of the cross 

site CMF.  

Thus: 

𝑉𝑎𝑟∗{𝜃} = 𝑉� + 𝑉𝑎𝑟{𝜃̅} (5.13) 
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Where: 

𝑉� = �
∑ �𝜃�𝑖−𝜃��

2𝑛
𝑖=1

𝑛
− ∑ 𝑠𝑖

2𝑛
𝑖=1
𝑛

𝑖𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.14) 

 

In the first edition of the Highway Safety Manual, 𝑉�  is not 

used to describe the uncertainty about θ . In this illustration, the 

Highway Safety Manual would list a variance that is about one third 

of the correct value [5.16]. 

Thus two main issue arise from the Hauer et al. study [5.16], 

one is the variance of the CMF plays a fundamental role in the 

decision making process when a cross sites distribution of the CMF 

(or a cross CMFs distribution) is considered. The second is that the 

simple variance of the CMFs alone is not able to assess the 

reliability or the transferability of the CMFs themselves but a cross 

site variance (or a cross CMFs variance) need to be estimated to 

implement a reliable decision making process.   

If the procedure proposed by Hauer is applied on the results 

of the cluster analysis reported on Chapter 4, it is possible to 

compute the variance for each cluster and the total cross site 

variance of the CMF. In table 5.5 the variance is reported for the 

total and the ran off road crashes for each cluster. 

Thus through the Equation 5.13 is possible to combine the 

variance of the CMF of each cluster to obtain a single value of the 

cross site variance of the CMF. Using the unbiased mean to 

compute the value of 𝑉� , as suggested by Hauer [5.16] with the 
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Equation 5.14 and considering the Equation 5.13 the results are 

shown below. 

Table 5.5. Cross site variance of the CMF calculated for the cluster 

analysis for the total crashes and the ran-off-road crashes. 

Total 
 Cluster (CCR) Length (m) Observed CMF Variance Cluster 

1.1082 2823.495 10 0.65 0.404 1 
27.3214 7798.79 23 0.49 0.108 2 
58.7093 2991.85 28 1.28 0.210 3 
103.038 3079.73 8 0.56 0.277 4 - 5 

Ran-off-Road 
 Cluster (CCR) Length (m) Observed CMF Variance Cluster 

1.1082 2823.495 6 0.33 0.350 1 
27.3214 7798.79 10 0.32 0.097 2 
58.7093 2991.85 4 0.26 0.100 3 
103.038 3079.73 2 0.14 0.132 4 - 5 

 

𝑉�𝑇𝑜𝑡𝑎𝑙 = 0.018  (5.15)  

𝑉�𝑅𝑎𝑛−𝑜𝑓𝑓−𝑅𝑜𝑎𝑑 = 0.011  (5.16) 

The cross site variance for the considering CMFunctions are 

computed with Equation 4.13 for the total crashes: 

 𝑉𝑎𝑟∗{𝜃} = 𝑉� + 𝑉𝑎𝑟{𝜃̅} = 0.018 + 0.09 = 0.027 (5.17) 

And for the ran-off-road-crashes 

𝑉𝑎𝑟∗{𝜃} = 𝑉� + 𝑉𝑎𝑟{𝜃̅} = 0.011 + 0.04 = 0.016 (5.18) 

As it is clear from the Equations 5.17 and 5.18 the cross site 

variance of the CMF give a contribution to the overall variance that 

is double respect to the simple CMF variance.  

The procedure presented above to evaluate the cross site 

variance has a limitation in this application. The cross site variance 
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has to be able to describe how the CMF varying from a site to 

another. In other terms it should be able to catch the different 

conditions (related e.g. with road feature, traffic composition, 

geometry, etc.) present in different segments. When it is applied on 

the cluster analysis the value of the cross site variance is 

underestimated or overestimated, because the variability related to 

one of the more important variables, which influence the target 

crashes, the curvature in that case, is controlled by the cluster 

analysis.  

Furthermore a great variability form a site to another in this 

case is given by the different lengths of segments. To eliminate the 

influence of the length of segments a fixed length segmentation 

approach is suggested.   

5.5. Chapter summary 

In the Chapter 5 the traditional techniques for the benefit-

cost analysis are reported. The great part of the reference of that 

part is taken by Highway Safety Manual [5.11]. At the end of the 

Chapter a methodology developed by Hauer et al. [5.16] about the 

CMF transferability and the evaluation of the cross site distribution 

of CMF is reported and applied on the results of the cluster analysis 

from the Chapter 4. The methodology developed by Hauer et al. is 

referred to different CMF related to the same treatment, but 

developed in different location. The applied methodology is 

referred to the same treatment as well but on the dataset used to 

the estimation of the Crash Modification Function. Indeed the 
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treatment has different effects in each site, and this variability 

could be used to compute a “cross site variance” of the CMF. In 

other terms, the treatment could be different effect in different site 

for reason that cannot be investigated with the data available. This 

variability could be used to introduce a new approach to the 

benefit cost analysis that will be described later in the Chapter 6. 

Although the methodology applied on the Cluster analysis compute 

on Chapter 4 in general overestimate or underestimate the cross 

site variance, because the CCR variability is mostly controlled by the 

cluster analysis, that variability could be still compute using the 

methodology described in the Chapter.  
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CHAPTER 6 
 

DEVELOPMENT OF A NEW STOCHASTIC 

APPROACH TO THE BENEFIT-COST 

ANALYSIS 
 

6.1. Introduction 

Considering the cross site variance introduced in the 

previous Chapter 5 it is possible to think to the CMF as a random 

variable, with mean the expected value of the CMF and variance 

the cross site variance introduced above. In this way the benefit 

cost analysis is strongly influenced by the variance and the results 

can vary considerably from the deterministic approach. As larger is 

the variance of the CMF the larger is that difference.  

A different methodology is introduced for both existing road 

and new infrastructure. The difference is related to the variables 

considered in the calculation of the Benefit-Cost function. Indeed 

for existing road the EB correction is applied to calculate the 

expected number of crashes before the treatment is applied, in the 

case of new infrastructure that value could be considered as a 

random variable as well with a Gamma distribution. At the end of 

the Chapter a Montecarlo Simulation is performed to consider a 
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combination of two CMFs together with a frequency analysis to 

compute the final distribution. 

6.2. A stochastic approach to the Benefit-Cost 

analysis 

The basic idea is to consider the variance of the CMF in a 

benefit cost analysis, or better as the variance could influence the 

decision making process regarding the chance to implement a 

treatment or a different combination of them. In order to 

accomplish this, the methodology introduced by Hauer et al. 

[6.1][6.2][6.3] was used. Hauer argued logically that not only the 

variance of the CMF is important but the cross site distribution of 

the CMF is important for transferability. The greater the cross site 

variance of a CMF, the higher the probability that the decision to 

implement or to not implement a treatment is wrong. He 

introduced a methodology to combine different CMFs related to 

the same treatment weighing the contribution to the mean to get a 

unique value obtained using their own variance. The results led to 

the conclusion that more research on the CMF field can reduce the 

uncertainty (cfr. Paragraph 5.4).  

The second step of his research took into account the 

quantification of the amount of money that the uncertainty due to 

a large value of the CMF variance can produce, indicating that as an 

expected loss. A possible extension of that research could be to 

consider the expected loss in the decision making process 

introducing the expected benefits together with the expected loss.  
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To do that a more detailed explanation of the methodology 

needs to be done.  

The first step is to be clear about what decisions might be 

improved by taking into account the cross site variance of a CMF. In 

particular the chance to implement a treatment, or to not 

implement it, is investigating in both cases using the “expected” 

benefits and loss that became the targets of the proposed 

methodology. Decisions of this kind should depend on the balance 

between the expected benefit and cost. The decision is 

implemented when: 
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑛𝑒𝑓𝑖𝑡
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡

> 𝑟 (6.1) 

where r is the smallest acceptable benefit–cost ratio and 

reflects the opportunity cost of the capital available for safety 

improvements.  

It is worth to explain the meaning of r and its implication for 

the following elaboration. If a deterministic approach is used in the 

Benefit Cost analysis, the value of r for each treatment and for each 

segment is a priori determined. In this way, the cost of the 

treatment in a unit and the benefit are related to the treatment.  

For road safety actions, the benefit is the annual value of 

accident reduction: 

CMF= μ(1− θ)a (6.2) 

where: 

• μ = expected annual number of target crashes on the 

unit, 

• θ = crash modification factor (or function), and 
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• a = euro value of an average target crash. 

There are no reasons to think that the CMF related to the 

treatment to be applied is not the real value that will occur after 

the implementation if its variance is not taken into account. 

However it is prudent to think of θ as a random variable with 

probability density function (PDF) f(θ), mean E{θ}, and standard 

deviation σ{θ} [6.4] [6.5]. The PDF f(θ) is assumed to be 

approximated by the Gamma PDF: 

( )
( )αβ

θθ α

βϑα

Γ
=

−− /1ef
 

(6.3)
 

where 
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
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θσβ
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2
=
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Of special interest is the θ dividing the implement and the 

do-not-implement decisions, the break-even θ, denoted θBE. When 

θ = θBE, the ratio of benefits and costs equals r. Let c denote the 

annual cost of implementing some action on a unit. From μ(1 − θBE) 

a/c = r, it follows that 

a
rc

BE µ
θ −= 1 =1 − 𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛

𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 (6.6) 

When E{θ} < θBE, the decision is implement; it is the wrong 

decision if θ > θBE. When E{θ} > θBE, the decision is do not 

implement; it is the wrong decision if θ < θBE. 
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The Hauer et al. research [6.6] was finalized to research the 

effect of the treatment and the probability that the treatment 

could not have the expected reduction in the number of target 

crashes and/or in the severity of target crashes in the optic of 

transferability.  

The following is an important index introduced by Hauer 

[6.1][6.2]: 

{ }
{ }θσ
θθ BEE

D
−

=  (6.7) 

The larger that D is, the smaller the probability is that 

decisions will be incorrect. When D is greater than about 2 or 3, this 

probability is quite small.  

That is why D is useful for the identification of research that 

is of little value, irrespective of any other consideration. To 

compute the value of D for some action and unit, one needs to 

have estimates of E{θ}, σ{θ}, and θBE. For D to be large the 

denominator of the Equation 6.7 must be small and the numerator 

must be large. The denominator is small when the safety effect can 

be accurately predicted, and more research about such actions 

serves little purpose. The numerator is large when θBE is either far 

to the left of E{θ}, or far to the right of E{θ}.  

As can be gleaned from the mathematical expression of θBE, 

the larger the cost of implementation of the action is and the 

smaller the cost of the target crashes on the unit (μ × a) is, the 

farther to the left θBE will be.  



Chapter 6 

 

 
250 

Hauer [6.1][6.2] introduced the index D to consider the 

value of the research, or better how much the new research on the 

topic can reduce the uncertainty in the application of CMFs 

considering only the possible loss in the decision of implementing a 

treatment and the possibility of not implementing a treatment as 

well.  

The proposed methodology takes into account the benefit in 

both cases. The benefit and the loss in the two possible conditions 

have to be seen as the Agency perspective. In the case of not 

implementing the treatment the expected loss are considered by 

Hauer as the possible loss of money (in a benefit cost analysis) that 

an Agency could have if the real value of the CMF is smaller than 

the Break-even point. From an analytical point of view the following 

expression represents the expected loss: 

( ) ( ) θθθ
ϑ

dfLlossected
BE

∫= 0
exp

 
(6.8)

 

where L(θ) ( )BEa θθµ −=  (6.9)  

From this point of view the expected benefit, in the do-not-

implement case has to be seen as the right part of the curves (from 

the break-even point to + ∞). The ratio between the two part of the 

curves (left and right of the breakeven point respectively is smaller 

than r indeed.  When the θ is smaller than the break-even point the 

decision should be to implement the treatment. In this case the 

expected loss introduced by Hauer considered the probability that 

the CMF used could be bigger than the expected value.   

The expression used is the following: 
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( ) ( ) θθθ
ϑ

dfLlossected ∫
+∞

=exp
 

(6.10) 

where L(θ) ( )ϑθµ −= BEa  (6.11) 

 

The extension to the methodology proposed by Hauer et al. 

is to consider the whole PDF function of the CMF, accounting 

together with the expected loss the expected benefit due to the 

countermeasure.   

In the following figure (Figure 6.1) an example for the first 

condition (E{θ} < θBE) when the variance of E{θ} is considered as the 

variance of the sample (in the example θ =0.33 and σ(θ) = 0.13). 

The benefits part (B) of the curves in Figure 6.2 is related to 

all the values of θ that are smaller than the E{θ}. The neutral part is 

related to an “acceptable” part. If θ assume a value between E{θ} 

and θBE, it is still a benefit from the θBE point of view, because the 

Agency accepts each value of θ less than θBE, but it is a loss at the 

same time, because the greater value than the expected CMF, for 

this reason it cannot be considered at the same time both as a 

benefit, and as a loss. 

The real loss is evident when the value of θ is bigger than 

θBE. In this cases the decision to implement the treatment is wrong, 

and the loss could be accounted by the area under the curves that 

give the probability that θ is bigger than θBE. This part of the curves 

can be divided into two different parts.  

The first between θBE and 1 still gives some benefits because 

the CMF reduces the number of the expected crashes, also if they 
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are not what is expected from an economical point of view. The 

second part of the curves, called C2 gives a real cost, both in 

economic analysis and in terms of crash reduction, because if θ 

assume a value greater than 1 an increasing number of crashes will 

be expected. 

 

 
 
    
Figure 6.1. The PDF of the f(θ) with the θBE and the E{θ} (the E{θ} is 

the red line) 

To calculate the benefit and the loss respectively, 

considering the real distribution of the CMF the following integrals 

have to be calculate: 
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( ) ( ) θθθ dfLC ∫
+∞

=
1
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(6.14) 

 where the L(θ) is the loss or the benefit function and it has 

the following equation: 
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(6.15) 

The expected loss or benefit is easy to compute by 

numerical integration instead of the calculation of the integral 

reported earlier.  

A more conservative approach to the benefit cost analysis is 

to consider the neutral part as a benefit. In this way the distance 

between θ and θBE does not influence the difference between the 

benefit and the cost but it depends only from the value of the 

break-even point, and as it will be more extensive explained later, it 

depends on the cross site variance of the CMF.  

 6.2.1. Comparison between the deterministic and the  

stochastic Benefit-Cost analysis for existing 

infrastructures 

To validate the methodology described above, and to know 

what the difference is on comparison with a deterministic approach 

it is applied on the before period of the CMFunction calibrated in 

the previous Chapter 5. The treatment is the retrofitting motorways 

with barrier meeting a new European standard.  

For that segment, 68 in total, the Break – Even point is 

calculated using as cost for the treatment €200.000,00 per km and 
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as cost of 1 ran-off-road crashes €400.000,00. The cost of the new 

barrier is taken by the construction cost list of ANAS S.p.A. [6.7], the 

owner of the most important Italian Network and the cost of 

crashes is taken by the “Social crash cost estimation (2012)” from 

the Ministry of Transportation [6.8] combining the percentage of 

fatal and injury crashes. The CMFunction is applied to each segment 

calculated on the value of CCR. As such, each segment has its own 

CMF and break - even point. The value of r chosen is 1, or better it 

is supposed that the Agency applies the treatment when the ratio 

between the benefit and the cost is equal or bigger than 1. 

In this way for each segments the application of treatment is 

suggested if the CMF is smaller then the break – even point, on the 

contrary the treatment is not suggested. Appling the procedure 

described above for 38 segments the treatment is suggested while 

the other 30 segments that were treated, the treatment is not 

economically justified.  

To validate the procedure the index D was used calculating  

using the Equation 6.7. Each segment has a different value of D, 

and the stochastic benefit-cost analysis as well as the deterministic 

one are applied on the segments which have the lowest and the 

higher value of D for the two condition: the treatment is suggested 

and the treatment is not suggested. 

For calculating the cost and the benefit using the 

deterministic approach the difference between the benefit and the 

cost is evaluated, considering the benefit for the first year after the 

installation of the new barriers. This is why the application of the 
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deterministic methods described earlier in the Chapter start from 

the initial cost and take into account the maintenance cost and the 

eventually other cost during the service life of the treatment. That 

cost are the same in the two approach, deterministic and 

stochastic. Moreover when a treatment has no maintenance cost, 

and the service life could not be easily evaluated, like the 

installation of barrier, the analysis on an indefinite service life could 

bring to an overestimation of the benefits. In the elaboration was 

not considered the service life for the treatment as well as the 

benefit. In the analysis the two different stochastic approach 

described earlier in the Chapter are applied to the 4 segments 

chosen for the elaboration. The results are reported for an ideal 

segment which has the characteristic of the segment considered for 

the elaboration but with a length of 1 km. As such it is possible to 

make a comparison of segments with different length. It was 

possible because in the computation of the expected number of 

crashes the length of the segment is considered as an offset and 

the overdispersion of the model is a function of the length.  

In the Table 6.6 the value used in the analysis are reported 

for a standard segment of 1 km. 

To evaluate the benefit and the cost for the stochastic approach the 

Equations from 6.12 to 6.14 are used. In the stochastic conservative 

approach the cost are considered starting from the expected value 

of the CMF. From an operative point of view, in this latter, the cost 

integral reported in the equation 6.13 has as lower limit exactly the 

expected value of the CMF.  
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Table 6.6. Value used for the benefit-cost analysis for the ran-off-

road-crashes. 

θ μ θBE D CCR Std Deviation 
0.3353 0.40 0.336 0.013 0.000 

0.125 0.3353 0.39 0.3326 0.025 0.000 
0.3353 0.28 0.0577 2.605 0.000 
0.3333 6.00 0.9556 5.841 4.352 

r = 1 
c = € 200,000.00 
a = € 400,000.00 

    

As larger is the distance between the expected value of the 

CMF and the break even point the smaller is the probability to be 

wrong and it is reflected on difference between the benefit and the 

cost. Table 6.7 reports the results of the analysis for the 2 different 

approaches. The negative value are related to the higher value of 

the cost for the configuration of that segment.  

Table 6.7. Comparison between the deterministic and Stochastic 

approach to the benefit-cost analysis for the ran-off-road crashes 

for the minimum and maximum value of D both where the 

treatment is suggested and where the treatment is not suggested 

(negative value). 

D Deterministic 
(B-C) Stochastic (B-C) Stochastic Conservative 

(B-C) 
0,014 € 436,66 € 436.73 € 436.73 
0,025 -€ 807.47 -€ 807.40 -€ 807.40 
2,606 -€ 58,911.89 -€ 37.063 -€ 58.912 
5,841 € 2,803,297.72 € 1,778,496 € 2,803,301 
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The difference in the results from the stochastic and 

deterministic approach take into account the perception of the 

benefit and the cost of either the Agency and the Community. In 

general the expected difference between the benefit and the cost is 

lower in the stochastic approach, to take into account that higher 

value than the expected value of the CMF is not really accepted by 

a users perception, while it represents still a benefit for the Agency. 

The small difference between the deterministic approach 

and the stochastic conservative approach is related to the value of 

the variance and the distribution assumed for the CMF.  

In the Gamma distribution, ended, the expected value is 

closer to the upper limit of the curves as much as the value of the 

variance is small. In this case the cross site variance of the CMF is 

relatively small and it is reflected on the shape of the curves and on 

the value of the B-C analysis. As the variance is small so the smaller 

the difference between the stochastic and the determinist 

approach. 

In the Figure 6.2 the Equations from 6.12 to 6.14 are plotted 

for the first segment analyzed (D=0.014).  

The B-C analysis is computed calculating the difference in 

the area described of the curves represented in Figure 6.2 respect 

to the x axis. 
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Figure 6.2. The benefit cost function multiplied to the probability 

function of the CMF.  

6.2.3. Comparison between the deterministic and the 

stochastic Benefit-Cost analysis for new 

infrastructures 

When a benefit-cost analysis has to be performed for a new 

infrastructure, or for an infrastructure in which the observed crash 

data are not available, the expected number of crashes cannot be 

evaluated.  

In these cases both, the deterministic approach and the 

stochastic approach described earlier have not an high reliability 

because is not possible to apply the empirical Bayes correction and 

estimate the expected number of crashes on which the whole 

analysis is based.  
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However it is possible to think that the predicted number of 

crashes at a site, using an SPF calibrated on sites with similar 

characteristics, is a random variable with a mean and a variance.  

Particularly the mean is the estimated value with the SPF 

E(μi), where i is the segment under investigation, and the variance 

is, considering a Negative Binomial error distribution (the expected 

value per site is Gamma distributed):   

𝑉𝑎𝑟[𝐸(𝜇𝑖)] = 𝐸(𝜇𝑖) + 𝐸2(𝜇𝑖) ∙ 𝑘 (6.16) 

 Where k is the overdispersion parameter computed for 

example using the equation from HSM [6.4] or from an SPF 

calibrated on site with similar characteristic when it is considered as 

variable with the length of segments (cfr. Chapter 5) [6.9] [6.10].   

In this way, considering the same benefit or loss function 

described earlier in the Chapter (Equation 6.15) the benefit and 

cost are calculated with the following integral: 

( )∫∫ ⋅⋅=
θµ

θµθµθ
,

);( ddLfFunctionCost
 

(6.17) 

In which L(μ;θ) has to be evaluated. The Equation 6.17 

cannot be solved in the analytical way, but some approximations 

have to be introduced to solve numerically the integral. In the 

following an example with the proposed procedure is reported, 

using invented value for the computation.  

To find a reliable solution of the equation 6.17 a Montecarlo 

simulation was performed using the SAS software package [6.11]. 

Monte Carlo methods (or Monte Carlo experiments) are a 

broad class of computational algorithms that rely on repeated 
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random sampling to obtain numerical results [6.12]; i.e., by running 

simulations many times over in order to calculate those same 

probabilities heuristically just like actually playing and recording  

results in a real casino situation: hence the name. They are often 

used in physical and mathematical problems and are most suited to 

be applied when it is impossible to obtain a closed-form expression 

or infeasible to apply a deterministic algorithm. Monte Carlo 

methods are mainly used in three distinct problems: optimization, 

numerical integration and generation of samples from a probability 

distribution. 

Monte Carlo methods are especially useful for simulating 

systems with many coupled degrees of freedom, such as fluids, 

disordered materials, strongly coupled solids, and cellular 

structures. They are used to model phenomena with significant 

uncertainty in inputs, such as the calculation of risk in business. 

They are widely used in mathematics, for example to evaluate 

multidimensional definite integrals with complicated boundary 

conditions. When Monte Carlo simulations have been applied in 

space exploration and oil exploration, their predictions of failures, 

cost overruns and schedule overruns are routinely better than 

human intuition or alternative "soft" methods [6.13]. 

The modern version of the Monte Carlo method was 

invented in the late 1940s by Stanislaw Ulam, while he was working 

on nuclear weapon projects at the Los Alamos National Laboratory. 

It was named by Nicholas Metropolis, after the Monte Carlo Casino, 

where Ulam's uncle often gambled [6.14]. Immediately after Ulam's 
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breakthrough, John von Neumann understood its importance and 

programmed the ENIAC computer to carry out Monte Carlo 

calculations.  

In the elaboration the Montecarlo simulation was chosen 

because the difficulty in the computation of the Equation 4.35 

considering both f(θ) and L(μ;θ) as random variable each with his 

own distribution. If a sample of f(θ) and L(μ;θ) is simulated n-time 

(thus n is equal to the number of simulation performed), a number 

n of differences between Benefit and Cost (B-C) is obtained. The 

average value of the n B-C value is be considered in this study the 

best estimator of the real B-C for that treatment and for that 

segment. The approximation is to consider the best value the 

average value and not the exact value of the interval chosen for the 

numeric computation of the integral. However if the number of 

simulation is large enough, that interval could be considered 

constant between a simulated value and the successive both for the 

CMF than for the predicted number of crashes.     

In the example carried out below the value of benefit and 

cost for the first year after the implementation of the treatment are 

set as in the B-C analysis performed in the previous paragraph, 

although the treatment, and the segment as well are different. 

 Both the predicted value of crashes in the ideal segment 

and the variance are computed using the equations suggested by 

the HSM [6.4] for the rural multilane Highway in which the SPF for 

the base condition is: 

𝐸(𝜇) = 𝑒𝑎 ∗ 𝐿 ∗ 𝐴𝐴𝐷𝑇𝑏 (6.18) 
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Where, 

𝐸(𝜇)= base number of roadway segment accidents per year; 

AADT = annual average daily traffic (vehicles/day) on 

roadway segment; 

L = length of roadway segment (miles); 

a, b = regression coefficients. 

The value of the overdispersion parameter is determined as 

a function of segment length as: 

𝑘 = 1
𝑒(𝑐+ln(𝐿)) (6.19) 

Where, 

k = overdispersion parameter associated with the roadway 

segment; 

L = length of roadway segment (mi); and 

c = a regression coefficient used to determine the 

overdispersion parameter.    

The value of a, b and c are reported in HSM as well, as 

function of the severity level and are reported below in Table 6.8 . 

Table 6.8. SPF Coefficients for Total and Fatal-and-Injury Crashes 

on Divided Roadway Segments from HSM. 

Severity level a b c 
4-lane total -9.025 1.049 1.549 

4-lane fatal and injury -8.837 0.958 1.687 
4-lane fatal and injury (not poss. injury) -8.505 0.874 1.74 
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For the elaboration a value of AADT of 50.000 vehicle per 

day is chosen on a length of 1 kilometer. Appling the Equations 6.18 

and 6.19 to compute the predicted number of crashes and the 

overdispersion respectively, using the value of a, b and c from table 

6.8 for 4-lane fatal and injury it is possible to calculate the variance 

of the predicted number of crashes using the 6.34. The results are 

shown below: 

𝐸(𝜇) = e−8.837 ∗ 0.6 ∗ 50,0000.958 = 2.76  (6.20) 

 𝑘 = 1
𝑒(1.687+ln(0.6)) = 0.308 (6.21) 

𝑉𝑎𝑟[𝐸(𝜇)] = 2.76 + 2.762 ∙ 0.308 = 5.12 (6.22) 

As it is clear from Equations 6.20 and 6.22 the prediction 

results to be overdispersed (mean lower than the variance). The 

index of effectiveness of the treatment considered in the analysis is 

0.34. The expected reduction of crashes is 66% and the cross site 

variance of the CMF is equal to 0.12. Fixing the cost of the 

treatment equal to €200,000.00 per km and the crash cost equal to 

€400,000.00. The following expression was used for the 

deterministic B-C analysis, with the same meaning of symbols: 

 𝐵 − 𝐶 = 𝐸{𝜇} ∙ 𝑎 ∙ (1 − 𝐸{𝜃}) − 𝑐 ∙ 𝑟 = 2.76 ∙ 400,000 ∙

(1 − 0.34) − 200,000 ∙ 1 = €528,640.00  (6.23) 

The number of crashes calculated above are related to fatal 

and injury and to all the crash categories. The comprehensive cost 

of crashes has to be consistent with the categories of crashes 

expected for the segment under investigation.  
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The simulation was performed to evaluate the following 

expression: 

𝐵 − 𝐶 = �𝜇𝑖 ∙ 𝑎 ∙ �𝜃𝑗 − 𝜃𝐵𝐸�� ∙ 𝑓�𝜃𝑗� ∙ 𝑓(𝜇𝑖) ∙ ∆𝜃 ∙ ∆𝜇 (6.24) 

where: 

𝜇𝑖= is a random value of μ distribution; 

𝜃𝑗= is a random value of θ distribution; 

𝜃𝐵𝐸= is the break-even point for the segment and the 

treatment; 

𝑓�𝜃𝑗�= is the probability value related to the 𝜃𝑗  value, from 

the PDF of θ; 

𝑓(𝜇𝑖)= is the probability value related to the 𝜇𝑖 value, from 

the PDF of μ; 

∆𝜃= average value of the step of variation of θ; and 

∆𝜇= average value of the step of variation of μ. 

If the same approach used for the existing roadway segment 

is used the value of θBE has to be evaluated. Using the Equation 6.1 

setting the value of r equal to 1 the break-even point for the 

treatment and the segment under investigation is 0,82.  

The benefit-cost analysis was performed both with the 

stochastic approach and the conservative stochastic approach. 

Table 6.9 shown the results of the elaboration with 106 simulations. 

Table 6.9. The results of the Benefit-Cost analysis for new 

roadway segments performed using a simulation of 106 value. 

Approach B-C Analysis (€/km) 
Deterministic € 528,640.00 

Stochastic conservative € 258,850.00 
Stochastic € 192,874.00 
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As it is clear from the results on Table 6.9, the deterministic 

approach, which doesn’t take into account the variability of the 

parameter used in the computation, give larger results than the 

both stochastic approach. Also in this case the distance between 

the break-even point and the expected value of the CMF is taken 

into account. Larger is the difference between the break-even point 

and the CMF lower is the value of the stochastic benefit cost 

analysis. Different conclusion arise when the stochastic 

conservative benefit - cost approach is analyzed. This latter is not 

influenced by the break-even point but it is strongly influenced by 

the variance of the CMF and the expected number of crashes. 

Larger are the variance and larger is the difference between the 

deterministic and the stochastic conservative approach.  

6.3. Montecarlo simulation for the Benefit-Cost 

analysis of a combination of CMFs 

The methodology could be extended using a combination of 

two CMFs. In this case the mathematical approach is too 

complicated to be solved using the traditional techniques. A 

Montecarlo simulation can help in the analysis. It is indeed possible 

to simulate the product of different CMFs. The distribution of the 

products could be obtained by a frequency analysis of the results, 

and the area can be calculated discretely summing for each 

frequency class the area under the curves. An approximation in that 

case is introduced, but it could be controlled by the class dimension 

in the frequency analysis. Smaller the class the higher the precision 
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of the calculation of the probability that the product of more CMFs 

assumes the investigating values. With the aim to validate the 

methodology it was applied to the combination of two different 

CMFs. 

The CMFs used for the analysis are one with index of 

effectiveness equal to θ=0.33 and cross site variance σ(θ) = 0.22, 

the other is the CMF studied by Hauer et al. [6.6] about the 

illumination for freeways θ=0.71 with the cross site variance σ(θ) = 

0.06. 

The frequency analysis results are shown below on 

comparison with a sample calculated ad hoc (Figure 6.3), in which a 

simulation with 5000 elements was performed for a single CMF.  

 

 
Figure 6.3. Comparison between the PDF of the f(θ) and the 

curves obtained by using the value of mean and variance from the 

simulation. 
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Using a class of 0.01 dimension the curves is calculated as a 

Gamma distribution with parameter α and β directly calculated 

from the simulated sample considering the same CMF using in the 

example (θ=0.33 and σ(θ) = 0.22) and a break-even point of θBE = 

0.76.  

The frequency analysis for a single CMF doesn’t give good 

results. But it is not a big issue because the distribution of the CMFs 

is well known, and as shown in figure 6.3 the distribution calculated 

on the simulated sample gives adequate results. To corroborate this 

thesis Figure 6.3 shown the difference between the Normal and the 

Gamma distribution calculated using the sample parameter.  

Another interesting result is delivered by the following 

figure (Figure 6.4) which shows a comparison between the curve 

related to the gamma distribution, in which the parameter of the 

distribution are calculated using the output sample of the 

simulation, and the normal distribution. 

As shown in Figure 6.4 the normal distribution presents an 

overestimation of the benefit in comparison with the Gamma 

distribution. Considering the previous CMF, (θ=0,33 and σ(θ) = 

0,22) and the same break-even point than the previous example 

(θBE = 0,76), the ratio of the benefit between the Gamma 

distribution and the Normal distribution is 0.75 (this latter indicates 

an overestimation of 15% of the Normal distribution). On the 

contrary the gamma distribution presents a loss overestimation of 

10% more than a normal one. Thus, the normal distribution is not 

able to describe the product of two CMFs. 
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Despite the differences seen above the combination of more 

CMFs, such as the product of more Gamma distribution, can’t be 

consider as a Gamma distribution as well and a frequency analysis 

is the only way to introduce the cross site variance in the reliability 

of the benefit-cost analysis. Unfortunately not all the studies 

presented in the literature, report the cross site variance of the 

CMF.  

For the two CMFs introduced earlier in the paragraph the 

sample was simulated. 5000 simulations of the product were 

performed together with a frequency analysis. 

 
Figure 6.4. Comparison between the Gamma distribution obtained 

by using the values of mean and variance from the simulation and 

the frequency analysis of the data considering a normal 

distribution. 
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E(θ)=0.13 and  

σ(θ) = 0.12 

in the frequency analysis the area of each element is 

calculated as follow: 

 
1−

⋅

=∆
∑
n

NC
A

ij
i

j
 

(6.24) 

where: 

• ∆Aj =area of the j class, 

• C = class dimension, 

• Nij= number of element presents in the j class, and 

• n= number of element present in the simulated dataset. 

In figure 6.5 a graphic comparison between the frequency 

analysis and the Gamma distribution of the product of the two 

CMFs is reported. 

In this case the frequency analysis shows that the product of 

the two CMFs is still comparable with a gamma distribution with 

the parameter α and β calculated from the sample. Checking time 

by time the distribution of the product of more CMFs or simply 

using the frequency analysis on the simulated dataset it is still 

possible to apply the procedure described earlier to calculate the 

reliability of the CMF for each site using the varying θBE.  
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Figure 6.5. Comparison between the Gamma distribution and the 

frequency analysis on the simulated sample (the red line is the 

expected value of the product of the two CMFs).  

6.4. Chapter summary 

In the present Chapter 6 a second step of Hauer et al. 

research is reported “Value of Research on Safety Effects of 

Actions” [6.1]. Hauer et al. demonstrated that the reduction of the 

cross site variance could bring benefit reducing the possible loss 

due to the different results that applying a CMF in other contest, 

different than the site in which the CMF was calibrated. To do this a 

loss function was introduced which depends on the variance of the 

CMF. Taking a cue from Hauer et al research, extending the concept 

to possible benefit and the possible loss, a procedure was 

introduced either for existing road or new infrastructure. 

Particularly for new road a Montecarlo simulation was performed 

to add the uncertainty due to the predicted number of crashes, 
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while for existing road the Empirical Bayes analysis was used. A 

comparison between the deterministic approach and a stochastic 

approach was performed.  
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SUMMARY AND CONCLUSIONS 
 

The presented work is the results of a PhD cycle deal with 

road safety for motorways (freeways in north America). Particularly 

data used in the elaboration are related to the motorway A18 

Messina-Catania, in Italy. All the aspects related to the statistical 

approach to a safety management system were analyzed. The first 

step was the introducing of Safety Performance Function, which are 

the State of Art in the for the researcher for the identification of 

hazardous location, less, unfortunately for the Agencies in Europe. 

The problem is sometimes related to the lack of a common 

approach to the problem, covered in North America by the Highway 

Safety Manual, or lack of knowledge of the problem itself.  

Different Safety Performance Functions were calibrated 

taking into account the time trend effects and others considering a 

priori lack of time correlation. The results, shown a strong effect of 

time trend when a long period of analysis is taken into account, and 

that the time trend effect has to be addressed when motorways are 

analyzed. The particularly roadway feature of motorways, the high 

speed and the lower crash rate, in comparison with other rural 

infrastructures amplify the time correlation effect which plays a 

fundamental role in the identification of hazardous sites. To do this 

the General Estimating Equation technique of calibration was used 
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on comparison with the traditional Generalized Linear Modelling 

which don’t consider the time trend effect in the estimation of 

model. 

The second step of the present work was the optimization 

of the goodness of fit of the model varying the segmentation 

approach of the roadway segments. Five different segmentations 

were performed inserting different variables related to the road 

features and to the roadside hazard. The five segmentation tested 

were: 

• All variable homogeneous (HSM approach); 

• Two curves and two tangent inside each segment; 

• AADT based; 

• Curvature based; and 

• Fixed length of segments (650 m was chosen because the 

maximum curve extension is 600 m, in this way not 

homogeneous segments are presents respect to the 

curvature). 

The results of the estimation of the SPFs, calibrated using 

the Generalized Estimating Equation to account time trend, were 

tested using the Quasi-likelihood under independence Criterion 

(QIC) and with the CURE plot. In terms of goodness of fit the best 

results are given by the fixed length segmentation and by the 

segmentation which includes two curves and two tangent inside 

each segment. In this step of the research a ranking of the 

hazardous sites was performed using two different methodologies: 
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the Empirical Bayes correction and the Potential for Safety 

Improvement. 

The top 10% hazardous location of the total segments was 

reported using the fixed length segmentation. To address the 

problem of the lack of the overdispersion parameter given by the 

methodology of calibration of the SPF needed for the ranking 

analysis a Generalized Linear Modelling approach was used to 

obtain the dispersion of data. Indeed the Generalized Estimating 

Equation, is a quasi-likelihood methodology and the estimation 

doesn’t provide the dispersion of data. The common approach of 

the great part of the Agencies in Italy is to use the observed crashes 

to rank the managed road network. The performed ranking give 

different results than the observed and even some difference were 

found between the EB and the PSI methods, enforcing that the 

regression to the mean effects are always presents where crash 

events are analyzed and that the simple observed number of 

crashes in a certain period is not a reliable indicator of the real 

safety performance of a site. 

  The third step of the present study deals with the Crash 

Modification Factors. A CMF for a class of barrier meeting the new 

EU standard was reported, investigating the safety benefit on the 

ran-off-road crashes. The roadside safety is one of the main issue in 

Europe above all when motorways, high speed infrastructure, are 

analyzed. The methodology used was the before after empirical 

Bayes analysis, able to address the regression to the mean effect on 
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an ad hoc segmentation, useful to isolating the variable under 

investigation. The segments taken into account were those where 

the new barrier was installed for the lateral, median or both.  

A cluster analysis was introduced grouping the segments 

based on their Curvature change rate. Two different regression 

analysis, the linear and the exponential, were performed on the 

clustering to study the relationship between the CCR and the 

reduction of crashes due to the installation of the new class of 

barrier, evaluating the regression performance with R2 coefficient 

of determination.  

The exponential regression technique give the best results 

in the analysis with the higher value of R2 and assessing a strong 

relationship between the curvature and the ran-off-road crashes. 

The Crash Modification function obtained could be used for the 

ran-off-road crashes and for fatal and injury severity class. For the 

total crashes the regression doesn’t give reliable results with a 

value of R2 lower than 0.5. 

The last step of the analysis deals with the benefit- cost 

analysis. As consequence of the previous research in present 

research work, the evaluation of alternatives have to be assess as 

conclusion of a safety analysis and evaluation of alternatives. The 

approach used is a possible extension of a methodology introduced 

by Hauer et al. in two different studies published on Transportation 

Research Record in 2012. The first of those, titled “Crash 

Modification Factors, Foundational Issues” reported a methodology 
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to investigate the transferability of CMFs when more than one 

study exist in literature on the same treatment, and introduce a 

new concept of variance. Hauer et al, argued logically, that not only 

the variance of the CMF has its importance, but also the variance 

due to the application of the CMF in different site. The combination 

of the two variance is named “cross site variance” in the present 

work.  Using the concept of cross site variance, the variation of the 

results of CMF calibration on the cluster analysis was used to 

calculate the additional term for the variance. 

In the second study titled “Value of Research on Safety 

Effects of Actions” Hauer et al. demonstrated that the reduction of 

the cross site variance could bring benefit reducing the possible loss 

due to the different results that applying a CMF in other contest, 

different than the site in which the CMF was calibrated. To do this a 

loss function was introduced which depends on the variance of the 

CMF. Taking a cue from Hauer et al research, extending the concept 

to possible benefit and the possible loss, a procedure was 

introduced either for existing road or new infrastructure. 

Particularly for new road a Montecarlo simulation was performed 

to add the uncertainty due to the predicted number of crashes, 

while for existing road the Empirical Bayes analysis was used. A 

comparison between the deterministic approach and a stochastic 

approach was performed.  

The results shown a general overestimation of the benefit of 

the deterministic approach, enforcing the idea that considering the 
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variance even in the benefit-cost analysis could bring a more 

reliable results on the evaluation of the different alternatives and 

can play a fundamental role in the decision making process for the 

Agencies.  

Highlights and future work 

The present research work tried to address the problem 

related to the safety analysis for roadway segments focusing on the 

reliability of the benefit-cost analysis for the evaluation of the 

effects of a treatment. The Highlights of the work are listed below: 

• All the variables considered in a traditional benefit-cost 

analysis have a stochastic nature but they are considered in 

a deterministic way; 

• The combination of the cross site variance of the CMFs and 

the variance estimated using the empirical Bayes 

methodology, assesses the variability of the CMF in site with 

different characteristics, and allows a statistical inference on 

the Gamma distribution of the CMF itself; 

• A stochastic approach to the benefit cost-analysis shown a 

general overestimation of either the benefit or the cost then 

the deterministic approach; 

• The introduction of the break-even point gives to the 

Agency the possibility of introduce an important index to 

evaluate the reliability of the treatment; 
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• The stochastic benefit-cost analysis has different 

characteristic when it is applied to new or existing 

infrastructures; 

• When one is dealing with new infrastructure in the 

evaluation of the benefit and cost the target crashes related 

to the treatment have to be considered as a random 

variable as well because the low reliability in their 

computation; 

• The combination of more CMFs can be considered as well in 

a stochastic benefit-cost analysis introducing a Montecarlo 

simulation for the product and computing the results with  a 

frequency analysis.  

Although encouraging results the proposed research work 

needs to be tested on existing project to validate the results and to 

improve the methodology. Furthermore the difficulty in the 

analytical computation of the benefit and cost may be overcome 

introducing an algorithm able to solve the equation automatically 

using calculators. The combination of two CMFs could be 

considered in the stochastic benefit-cost analysis but it is outside of 

the proposed methodology the test of the combination of more 

than 2 CMFs.  

Finally the procedure presented in Chapter 5 to evaluate the 

cross site variance of the estimated CMF has a limitation in this 

application. The cross site variance has to be able to describe how 

the CMF varying from a site to another. In other terms it is able to 
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catch the different conditions (related e.g. with road feature, traffic 

composition, geometry, etc.) present in different segments. When 

it is applied on the cluster analysis the value of the cross site 

variance could be underestimated or overestimated, because the 

variability related to one of the more important variable, which 

influence the target crashes, the curvature in that case, is taken 

into account.  

Furthermore a great variability form a site to another when 

roadway segments are analyzed is given by the different lengths of 

segments. To eliminate the influence of the length of segments a 

fixed length segmentation approach has to be tested.   

Finally the variance of Crash Modification Function need to 

be evaluated if it is used in the benefit-cost analysis. In the 

proposed research work a methodology was developed on the 

cluster analysis, but it underestimates the value of the cross site 

variance and more studies need on the topic.     

A further analysis could be conducted is to evaluate how the 

cross site variance of the CMF can influence the transferability and 

how it can be used to improve the evaluation of the effects of a 

treatment in different site. Further studies needed to assess if 

under certain circumstances the cross site variance can be 

considered as a reliability index for the transferability of the CMF.   

Although, more research needed to address the problem of 

the evaluation of alternatives using a stochastic benefit-cost 
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analysis, the present study may represent a starting point for the 

topic and a motivation for future work.       
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