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Abstract

In this thesis we study the energy transport models of the charge carriers in the semiconductors, in

the unipolar and one-dimensional case. These are macroscopic models, that are useful to describe

the thermal effects in the semiconductor devices. Usually the set of equations are given by the

balance equations for density and energy of the charge carriers, coupled to the Poisson equation

for the electric potential. Two energy transport models, with and without crystal heating, are

presented with different approaches. The first energy transport model is the Chen model, in which

the temperature lattice is assumed constant. We find some particular solutions and we discuss

them behavior depending on physical parameters, as example for the silicon.

The second energy transport model includes as variable the lattice temperature. A symmetry

analysis approach to this model is performed. We determine the group classification of the model

equations, collecting them into equivalence classes and find the functional forms of the constitutive

functions appearing in the equations. In some cases the reduced system solutions are found.
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Chapter 1

Introduction

In the last years, the improvement of technology and design about semiconductor devices has been

coupled to the development of mathematical models, to describe several phenomena in the perfor-

mance of semiconductor devices. The miniaturization of the devices is more and more progressing

and the transport equations, describing the charge carriers flow through a semiconductor device,

depend on the device structure. The main transport phenomena may be very different, caused by

diffusion, drift, scattering, or quantum-mechanical effects. Generally, we can classify kinetic and

fluid-dynamical models.

At the kinetic level, in the semiconductors the charges transport is described by the semiclassical

Boltzmann equation for the charge carriers, coupled to the Poisson equation for the electric poten-

tial. The semiconductor Boltzmann equation (BTE) gives quite accurate simulation results, but

the numerical methods to solve this equation (for example Monte-Carlo method) are too expensive.

The main fluid-dynamical models are macroscopic semiconductor models, as the drift-diffusion,

the hydrodynamic and the energy transport. In the literature, the drift-diffusion model is the

simplest model and popular ones, since the efficient numerical algorithms are known and improved.

Nevertheless it loses validity in the field of submicron-devices, owing to the rapidly changing electric

fields and temperature effects.
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The hydrodynamic and energy transport models are obtained from the semiclassical Boltzmann

equation by the moments method [35]. In this way, we can simplify the BTE to a set of macroscopic

transport equations. The zeroth to third-order moment equations can be generated from following

moment variables: unity, the carrier velocity v, the carrier energy E and the carrier energy flow

Ev. The corresponding macroscopic moment quantities are defined, as charge density n (or p),

electric current density (carrier flux) J, energy W and energy flux S. The different assumptions,

formulations and the closure relations lead to different macroscopic models.

In this thesis, we focus our attention the energy-transport models. The energy-transport models,

first presented by Stratton in 1962 [50], are derived from hydrodynamic models usually by neglecting

certain convection terms. Generally, for these models the equations set is given by the continuity

equation, balance equation for the electron energy and balance equation for the electron energy

flux, including the phenomenological constitutive equations for the particle flux and energy flux.

According to the moments method, the closure relations of these models can be based on the

Maximum Entropy Principle (MEP) [3], [42].

Several and different kinds of energy transport models are proposed in [11], [44], [43], [13] et al.,

they are derived under various hypotheses on scattering terms, the semiconductor band structure

and degeneracy. The energy-transport models describe the thermal effects related to the charge

carriers flow through the crystal and to the lattice temperature. In some simpler models the tem-

perature of lattice is constant. At characteristic micron/nano size features, thermal modeling of

semiconductor devices are required. Due to the collision of the charge carriers with the crystal

lattice, the increasing lattice temperature is described by heat equation, derived from thermody-

namic principle. Therefore, we can obtain the energy transport models in which the thermal effects

depend on the variance of the crystal lattice temperature. The scattering mechanisms, as scattering

of electrons with acoustic and non-polar phonons and with impurities, are included, but we neglect

electron-electron scatterings. This last assumption has validity, for example, for the low electron
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density and in some semiconductors as the silicon. The scattering phenomena are included in the

balance equation for the electron energy flux.

In this work we put our attention on two kinds of energy-transport model:

• the energy-transport model, proposed by Chen et al. in [13], where the lattice temperature

is assumed constant;

• the energy-transport model with crystal heating.

In the first considered model, we have the continuity equation, the balance energy equation

coupled with Poisson equation and two closure relations for the current density and flux energy.

These closure relations depend on some physical parameters as mobility, thermal voltage, the

characteristic length and relaxation time. Given a constant solution, we analyze the behavior of a

stationary solution, which obtained as perturbation of constant solution. Using physical parameters

of silicon semiconductor, we show how the amplitude of perturbation is related to the charge density

and to the characteristic length of semiconductor device. Then, we study the asymptotic stability

for a particular solution.

In the second part of the thesis, we present an energy-transport model, including the thermal

effects depending on the lattice temperature. These results have been extracted by the preprint

- Ruscica M., Traciná R., Group classification of an energy transport model for semiconductors

with crystal heating (submitted)

and have been presented in the

- 16th International Conference on Modern Group Analysis, Ufa, Russia: October 28- November

2, 2013.

We introduce a closure relation for the heat equation. This equation, introduced in [54], takes

into account the physical parameters of semiconductor, as thermal conductivity and specific heat,
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and the physical phenomena that depend on the scattering, on energy bands structure of lattice

and on the environment temperature. The electron and lattice thermal conductivity as well as the

electron energy and lattice thermal relaxation times are functions depending on the electron and

lattice temperature, while other variables as charge density, electric field, electron temperature and

lattice temperature are functions of space and time, finally the doping depends on only space.

For this last model we use an approach based on transformation method, a powerful tool in

the field of nonlinear partial differential equations. We refer to the Lie point symmetries approach,

which leaves the equations invariant [21], [37], [38]. Some applications in models for semiconductors

can be found, as example, in [39], [45], [46], [47].

In several problems of mathematical physics, as in this case, the equations contain parameters

or functions, that play the role of arbitrary elements. Due the presence of these arbitrary elements

the search of Lie symmetries is more difficult. In these cases, we can classify all Lie symmetries

depending on the forms of the arbitrary elements. By a Lie group classification, we can look for

Lie symmetries for the specific pdes.

In many physical models some parameters can not be determined by a physical law, but only

experimentally. The importance of the classification lies in the fact that we find the form of those

quantities, as functions of the variables that appear in the equations of the model. By these results,

we look for particular solutions for the equations model.

The plan of this work is as follows. In the next chapter we give a description of the main

characteristics of semiconductors, we recall some fundamental concepts of the solid state physics,

through mathematical means, as lattice, primitive cell, Bravais lattice, the first Brillouin zone,

finally reciprocal lattice. Under assumption that the crystal lattice has a periodic structure, by

the classical Hamiltonian function and Bloch’s theorem, we introduce the energy bands model and

describe those physical phenomena that influence the charge carriers transport through the crystal

lattice, as doping and scattering.
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In the chapter 3, we introduce classical Kinetic Transport Models and in particular the Boltzmann

transport equation, describing characteristics and properties of collision operator.

In the chapter 4, by the moments method, we define those variables involved in the mathematical

models, that are presented in this work. Then we give a general description of drift-diffusion model,

hydrodynamic model and energy-transport model, explaining and underlying applicability range

and weaknesses. The results about proposed energy-transport model are presented in the chapter

5, where we describe also some examples of solutions for this model.

After a short introduction on analysis of symmetries given in chapter 6, in the last chapter we

compute the group classification for an energy-transport model with crystal heating. In some cases

we solve the corresponding reduced system and obtain some exact solutions.
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Chapter 2

Basic concepts about crystals with

some mathematical details

In this chapter we present a summary about the physics and main properties of semiconductors.

At the first, we give a description of the state of art of semiconductor solid physics, through ma-

thematical means, introducing some fundamental concepts as lattice, primitive cell and reciprocal

lattice. Then, we introduce an energy bands model for semiconductors and describe those physical

phenomena, as doping and scattering, that play a fundamental role in the transport of the charges

through the crystal lattice.

2.1 Crystals

The most important properties of semiconductors depend on the crystalline structure and on the

transport of charge in crystal lattice, that is essentially influenced by regular periodic atomic order.

The crystals structure is composed of a pattern, a set of large number of atoms, and a lattice

exhibiting long-range order and symmetry, so that their properties are those of a ideal crystal and

the surface effects influence these physical properties only near the edges. On the other hand,

10



today it is possible to fabricate and to study “nano-crystals” of very small dimensions, where the

translational symmetry is completely lost, but we still call them crystals as long as the positions

of their atoms are those predicted by the regular arrangement of the corresponding ideal crystal.

There are, of course, intermediate cases, nowadays very frequent and important, where some of

the bulk properties of the crystal can still be used, but the finite dimensions of the system play a

important role [22]. An ideal crystal is constructed by the infinite repetition of identical groups of

atoms, called the basis. The set of mathematical points to which the basis is attached is called the

lattice, that in three dimensions is given by

L =
{

la1 +ma2 + na3, (l,m, n) ∈ Z
3
}

. (2.1)

The vector a1 ,a2, a3, called primitive vectors, are the basis vectors, so the lattice may be defined

by three translation vectors a1 ,a2, a3, such that the arrangement of atoms in the crystal looks the

same when viewed from the point r as when viewed from every point r∗ translated [27]

r∗ = r+ la1 +ma2 + na3.

There is no cell of smaller volume than | a1 · (a2 × a3) |, that represents a building block for the

crystal structure. Introducing the primitive translation vectors, we define the crystal axes, which

form three adjacent edges of the primitive parallelepiped. This primitive cell, defined by primitive

axes a1 ,a2, a3, is called primitive cell and the basis associated with a primitive cell is called a

primitive basis. No basis contains fewer atoms than a primitive basis contains.

Definition 1 Primitive cell

A primitive cell is a connected subset D ⊆ R
3, that contains a unique elemental of L (usually

the origin) and that its translated is a partition of R3.

Besides translations, others symmetry operations bring the crystal over itself: rotations, reflec-

tions, rotary-reflections, and inversions. The total set of symmetry operations of a crystal is its
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space group. The group of operations obtained by a space group setting to zero all translations is

the point group of the crystal. Group theory indicates how to use the symmetry of the crystal, and

in general of a physical system, to classify the eigenstates, evaluate degeneracies, selection rules,

etc. For more details see [52].

Figure 2.1: Cubic lattices. In the simple cubic (sc), lattice points are situated at the corners of the cube. In the body

centered cubic (bcc), lattice points are situated at the corners and at the center of the cube. In the face centered cubic (fcc),

lattice points are situated at the corners of the cube and at the centers of the faces of the cube.

In Fig.2.1, the three possible cubic lattices are shown. The simple cubic (sc), the body-centered

cubic (bcc) and the face-centered cubic (fcc). A primitive cell of the (sc) lattice coincides with the

cube. As any primitive cell, it contains, inside the cube, only one atom, more precisely 1
8 of atom

at each of the 8 corners. In the (bcc) lattice, the cube is not a primitive cell. It contains, besides

the eight eighths of atom at the corners, a second atom at the center of the cube. A primitive cell

of the (bcc) lattice is shown in Fig.2.2. The three primitive elementary translations link an atom

at a center of the cube with three atoms at three nonadjacent corners. In the (fcc) lattice, the

cube contains four atoms: eight eighths at the corners and six halves at the centers of the faces. A

primitive unit cell, shown in Fig.2.2, is formed with elementary translations linking an atom at a

corner of the cube with three atoms at the centers of three faces. Both the (bcc) and (fcc) primitive

cells are formed by rhombohedrons where atoms are located at the eight corners and shared by

eight primitive cells, as for the (sc) primitive cells [22].
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Figure 2.2: Primitive cells of body-centered and face-centered cubic lattices. For the simple cubic, the cubic cell shown in

Fig.2.1 is also a primitive cell.

In the description of crystalline solid, a fundamental concept is the Bravais lattice, which specifies

the periodic array, in which the repeated units of the crystal, are arranged. These units may be

atoms, groups of atoms, molecules, ions. The Bravais lattice summarizes only geometry of the

underlying periodic structure, without to specify the characteristic of units.

Definition 2 Bravais Lattice

A Bravais lattice is an infinity array of discrete points with an arrangement and orientation that

appears exactly the same, from whichever of the points the array is viewed.

The Bravais lattice is supposed with an infinite extension, but this is only a very useful idealiza-

tion, because the crystal lattice is finite, of course. We must think of the crystal as filling up only a

finite portion of the ideal Bravais lattice. For any given Bravais lattice the set of primitive vectors

is not unique, consequently there are many non equivalent choices and it is not heavily need to

rely on a definition that emphasizes a particular choice; usually we choose a basis with vectors of

minimum length [5]. The conventional unit cell is generally chosen to be bigger than the primitive

cell and to have satisfy the required symmetry.

Definition 3 Primitive unit cell

A primitive unit cell is a primitive cell with the basis vectors of minimal length, that is a region

that just fills space without any overlapping when translated through some subset of the vectors of
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a Bravais lattice.

A primitive cell may also be chosen following this procedure: draw lines to connect a lattice

point to all nearby lattice points, draw the perpendicular bisectors of lines. The smallest volume

enclosed in this way is the Wigner-Seitz primitive cell.

Definition 4 Wigner - Seitz primitive cell

The Wigner - Seitz primitive cell is the region of space, called DWS, that is closer to that point

than to any other point of lattice point, given by

DWS =
{

x ∈ R
3 : |x| ≤ |x+ l|, ∀l ∈ L

}

.

Wigner-Seitz cell is most compact, highest symmetry primitive cell possible.

Figure 2.3: The Wigner-Seitz primitive cell of a lattice is formed by all points closer to one of the lattice points than to

any other.

2.1.1 Lattice planes and Miller indices

In a crystal the points are identified by their coordinates in the crystallographic axes in units of

the lattice vectors. For example, the point (1/4, 1/4, 1/2) is the point given by

1

4
a1 +

1

4
a2 +

1

2
a3 (2.2)

14



where a1 ,a2, a3 are the conventional unit translations, not necessarily coincident with the primitive

translations. The direction of an oriented straight line is indicated by the smallest integers propor-

tional to the components, along the crystallographic axes, of a vector oriented in the considered

direction. They are usually given inside square brackets: [n1, n2, n3]. A negative component is

indicated by a minus sign above the index: [n1, n̄2, n3]. If all directions equivalent by symmetry are

to be indicated, they are usually put in angular brackets: 〈n1, n2, n3〉. In a crystal the orientation

of a plane is specified by its Miller indices. To find the Miller indices of a plane we determine the

intercepts of the plane on crystal axes, i.e. x1, x2, and x3, in terms of fundamental vectors a1,a2, a3,

we take the reciprocal of these numbers in order and reduce them to three smallest integers having

the same ratio. The Miller indices are usually given inside round brackets: (i, j, k). The inverse are

used to avoid infinities if a plane is parallel to a crystallographic direction. If all plane orientations

equivalent by symmetry are to be indicated, they are often put in curly brackets {i, j, k}[5],[22].

Miller indices of some important planes of cubic lattices are shown in the Fig. 2.4.

Figure 2.4: Miller indices of some important planes of cubic lattices
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Figure 2.5: Diamond (a) and zincblende (b) structures. Not all atoms and bonds of the structures are shown in the figure

to make more evident the tetrahedral structure of the bonds.

2.1.2 Diamond and Zincblende structures

Every crystal is characterized by its lattice and basis. The two-dimensional example in Fig.2.5 (in

part (a)) shows the diamond structure, common to carbon (diamond), silicon, germanium, and gray

tin. It is formed by a (fcc) lattice with a basis formed by two identical atoms, one at the corners

of the cube and a second one along the diagonal of the cube at 1/4 of its length. In the cubic

crystallographic axes, the coordinates of the atoms of the basis are (0, 0, 0) and (1/4, 1/4, 1/4)

then, the crystal is formed by two (fcc) interpenetrated structures at the distance of one fourth of

the diagonal of the cube. The zincblende (ZnS) structure is common to many III-V semiconductors

[22]. Its structure is similar to that of diamond, but in the zincblende structure the two atoms of

the basis are different. This structure is shown in part (b) of Fig.2.5.

In Table 2.1, the crystal structures and lattice constants of some important semiconductors are

given.
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Material Structure Cube side at 300 K (Å)

Silicon (Si) Diamond 5.431

Germanium (Ge) Diamond 5.646

Aluminum arsenide (AlAs) Zincblende 5.661

Gallium arsenide (GaAs) Zincblende 5.653

Gallium phosphide (GaP) Zincblende 5.451

Indium arsenide (InAs) Zincblende 6.058

Indium phosphide (InP) Zincblende 5.869

Table 2.1: Crystallographic data of some semiconductors

2.2 Crystal bonding

There are different types of bonding of atoms and molecules in a crystals, due to the electron charge

distribution around the nuclei, in particular due to the electrons that contribute to the binding are

in the most external states, or valence states. The cohesive forces that hold together the atoms in a

crystalline structure can have very different intensity. In many cases, these are real bonds, ionic or

covalent, in other cases atoms or molecules interact through Van der Waals forces. Depending on

the nature of cohesion forces, one identify some classes of solids, each characterized by a chemical

and physical behavior and determined from the nature of the link: ionic, covalent bonding and

other bonding.

2.2.1 Ionic crystals

The ionic bond is a chemical bond based on the electrostatic attraction forces between ions having

opposite charge, for example between metal and non-metal ions. The metal gives one or more

electrons, forming a positively charged ion. These electrons are transferred to non metal, that
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becomes a negatively charged ion. Because the interaction between charges, given by Coulomb’s

law, is the same in all directions, ionic compounds do not form molecules. Instead, periodic lattices

with many ions form, in which each ion is surrounded by many ions of opposite charge. If the

ions get too close to each other electronic wavefunctions tend to overlap. According to Pauli

exclusion principle, this overlap generates a repulsive force. The stable structure is determined by

the minimum free energy due to competitive actions of these force [22]. Therefore, ionic compounds

are almost always solids at room temperature. Typical ionic crystals are the salts formed by an

element of the first group and one of the seventh group, such as NaCl.

2.2.2 Covalent crystal

When the atoms of a crystal are the same kind, the crystal binding can not be of ionic nature. For

example, about the elements of group IV, the binding interaction results by sharing of electrons

between two adjacent atoms. As for the hydrogen molecule, we have a covalent bond when two

electrons of opposite spins have wavefunctions that overlap in the region between the atoms. This

bonding state corresponds to a higher charge density in the region of low potential energy between

the two atomic cores. Then, for III-V semiconductors, such as GaAs, the bond is partially ionic

and partially covalent [22].

2.2.3 Other types of bonds

There are other types of crystal bonds, but these are less important for semiconductors. In the

crystals, compound by elements noble-gas, the electronic shells are completely filled. In the solid

atoms are alike isolated atoms and, in a static picture, no electrostatic force acting between them.

However, there are Van der Waals forces, due to fluctuations of dipole that hold the crystal with

small cohesive energy [5]. In metal crystals, the electrons in the outer shell of the atoms leave

the parent atom and move freely inside the solid. This electron gas interacts electrostatically with
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the positive ions of the lattice and this interaction determines the metallic bond of the crystal

[17]. Another type of bond, especially important in organic crystals and ice, is the hydrogen bond.

When a hydrogen atom is near a strongly electronegative atom, it transfers its electron to this

atom, forming two bonded ions of opposite signs, as in ionic crystals [5], [27].

2.3 Reciprocal lattice

Let L be a set of a Bravais lattices and plane wave eikl, with k, l ∈ L. The plane wave will have

the periodicity of the Bravais lattice only for the some special choices of wave vector k. The set of

all wave vectors k that yields plane waves with periodicity of a given Bravais lattice is known as

its reciprocal lattice. The vector k belongs to the reciprocal lattice of a Bravais lattice of points of

L, provided that the relationship eik(l+r) = eikl ∀r, l ∈ L is true. The reciprocal lattice L∗ is the

set of wave vectors k satisfying eikl = 1 ∀l ∈ L and it is itself a Bravais lattice

L∗ =
{

lb1 +mb2 + nb3, (l,m, n) ∈ Z
3
}

,

where

b1 = 2π
a2 × a3

| a1 · (a2 × a3) |
, b2 = 2π

a3 × a1

| a1 · (a2 × a3) |
, b3 = 2π

a1 × a2

| a1 · (a2 × a3) |
.

The reciprocal lattice of any Bravais lattice is still a Bravais lattice. Then, if |DL| is the volume

of the primitive cell DL of L and |D∗L| is the volume of the primitive cell D∗L of reciprocal lattice

L∗, we have

|D∗L| =
(2π)3

|DL|
.

Definition 5 The First Brillouin zone

The Wigner - Seitz primitive cell of reciprocal lattice is known as the first Brillouin zone:

B =
{

k ∈ R
3 : |k| ≤ |k+ l∗|, ∀l∗ ∈ L∗

}

.
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It is the set of the points in R
3 that are closest to the origin than to any other element of the inverse

lattice L∗.

2.4 Energy levels in a periodic potential and Bloch’s theorem

In the previous section we introduced the semiconductor solid by its crystalline structure and in this

chapter we explain as this periodic structure influences the dynamic of a particle. By the classical

Hamiltonian function and the Bloch’s theorem, we explain and define the energy band model, that

is useful and important to describe the features of semiconductors and the transport of charges in

crystal lattice.

We define momentum the vector p = mv of an elementary particle of mass m, charge q and

velocity v. The phase space is the space of all states (x,p) ∈ R
3 × R

3 , so that the path x = x (t)

identifies a curve (x,p) = (x (t) ,mẋ). Then, to each path there is associated the total energy of the

particle and, in particular, to each curve in this space is related a total energy. We can introduce

the classical Hamiltonian function

H (x,p) =
| p2 |
2m

− qφ (x) (2.3)

where φ is the electric potential. Using the Hamiltonian function, we can write the equation of

motion for the charge q (with different expression from classical mechanics)

ẋ = ∇pH ṗ = −∇xH. (2.4)

We can associate an energy E (t) to each path x (t) through the relationship H (x,p) = E (t). In

the quantum mechanical model an elementary charge is considered as a wave which is associated a

vector k and pulse wave ω, that is related by De Broglie relation

p = ℏk, (2.5)
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where ℏ is reduced Planck constant, and by Planck - Einstein relation

E = ℏω. (2.6)

Generally the dynamics of an elementary particle is described by a complex wave-function ψ (x, t),

linked to the probability of finding the particle in the position x at time t. If we consider a free

elementary charge under the action of constant potential φ0, a most simple wave function is a plane

wave

ψ (x, t) = exp i (kx− ωt). (2.7)

Then, from eq. (2.7),

∂ψ

∂t
= −iωψ ∆xψ = −|k|2ψ. (2.8)

Using (2.5) and (2.6), we have

iℏ
∂ψ

∂t
= Eψ (2.9)

− ℏ
2

2m
∆xψ − qφ0ψ = H (x,p)ψ. (2.10)

The last equation can be rewritten as following

Hψ = H (x,p)ψ (2.11)

where the quantum operator H = − ℏ
2

2m
∆x − qφ0 is obtained from Hamiltonian H substituting

x→ x and p→ −iℏ∇x. Since E (t) = H (x (t) ,p (t)), from eq. (2.10), we have

iℏ
∂ψ

∂t
= Hψ. (2.12)

This equation, known as Schrödinger equation, is postulated to be valid to describe the behavior

of matter at the atoms scale or lower. Because the distance of two points in the crystal is of the

same order of a typical electron de Broglie wavelengths (∼ 10−8cm ), a single electron dynamics
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can be explained by

iℏ
∂ψ

∂t
= − ℏ

2

2m
∆ψ − qφ (x, t)ψ, x ∈ R

3, t > 0 (2.13)

with initial condition ψ (x, 0) = ψ0 (x), x ∈ R
3.

If the atoms are located at the points of the lattice L, the potential φL will be a periodic with

the same lattice periodicity, it is will be invariant with respect to a translation for each element of

L

φL (x+ y) = φL (x) ∀x ∈ R
3,y ∈ L. (2.14)

In a physical system, as in a solid, electrons occupy stationary energy levels which are solutions

of the stationary Schrödinger equation. Bloch waves are special solutions of Schrdinger’s equation

with a periodic real potential.

Theorem 1 Bloch Theorem

The bounded eigenstates of Hψ = Eψ, with the periodic above Hamiltonian, have the form

ψk (x) = exp (ik · x)uk (x) , k ∈ R
3 (2.15)

and

uk (x+ y) = uk (x) , ∀y ∈ L (2.16)

This theorem claims that the eigenstates of H can be chosen, so that to each ψ there is associated

a wavevector k satisfying [5], [27]

ψk (x+ y) = ψk (x) exp (ik · y) , x ∈ R
3,y ∈ L. (2.17)

By replacing the eq. (2.15) in the eq.(2.12), one obtains a second order self-adjoint elliptic problem

posed on a primitive cell of the crystal lattice L. It is possible to prove [5] the existence of an
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infinite sequence of eigenpairs (energy-wave function) (ψ, E). The eigenfunctions ψ and E (k) are

periodic with respect to reciprocal lattice L∗, in fact we have

ψk+l∗ = ψk, Ek+l∗ = Ek ∀l∗ ∈ L∗,

that is the set of eigenfunctions ψ and the E (k) are identical for any two wave-vectors which differ

by a reciprocal lattice vector. Therefore one can constrain the wave vector k to the Brillouin zone

B. As a consequence, for any k ∈ B we have a sequence of eigenfunctions ψmk with associated

eigenvalues Em (k), m ∈ N0.

The relation between ψk and ψ is given by

ψk (x) =
∑

l∈L

exp (−ik · l)ψ (x+ l) .

We can also write ψmk as distorted waves

ψmk = umk (x) exp (ik · x) . (2.18)

with umk (x) periodic function in L, called Bloch waves

umk (x) =
∑

l∈L

exp (−ik · (x+ l))ψ (x+ l) .

Then, we obtain an infinite sequence of eigenpairs Em (k), umk (x). Here ℏk is called crystal mo-

mentum, it is not general momentum of the electron, but it reduces to this last in the case of the

free space (φL = 0). The function Em = Em (k), called the dispersion relation, depends on the

wave-vector k and describes energy bands for each integer value of m. These energy bands repre-

sent the bands structure of the material. Whenever there is no overlapping between energy bands

with different indices m there are energy ranges with no stationary values. In the classic crystalline

semiconductors, electrons can have energies only within certain bands (i.e. ranges of levels of en-

ergy), so that the crystal is characterized by many different, spaced discrete energy levels, called

quantum states of the electrons. In fact according to Pauli exclusion principle, in a given system,
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two electrons can not occupy the same quantum state and each allowed electron energy level has

a different energy. Each of the original quantized levels of the isolated atom is split many times

and each resulting group of energy levels contains one level for each atom in the system. Some

properties of semiconductors depend on the distribution of allowed energy levels and on the energy

gap, that contains no available states. The total extension of the energy band is of the order of a

few eV, the discrete different energy levels within each band is smaller than the thermal energy of

an electron at room temperature, so that the electron can easily move between levels. The allowed

energy levels are so close together that they are sometimes considered as being continuous. This

is a useful and reasonable approximation in some calculations, but they are composed of a finite

number of very closely spaced electron energy levels. The lower energy band is called the valence

band, since it contains all the valence electrons, while the upper energy band is called conduction

band, since excitation of electrons into this band is principal responsible for electrical conduction.

The energy gap is the difference between the highest (in energy) filled band and the minimum of

the lowest empty band

Eg = min
k∈B

Ec (k)−max
k∈B

Ev (k) = Ec − Ev > 0. (2.19)

The behaviour of electrons in the bands determines the electronic properties of a given material

and it is a fundamental feature differentiating conductors, insulators and semiconductors. If the

allowed energy bands are partially full, the crystal is a metal. In the presence of electric field

the electrons near the top of the filled zone of the band can easily move into those empty states

and become free electrons, carried through the lattice, and the conductivity is high, while in the

insulators the allowed energy band is completely full or empty, all electrons do not move from band

to another one. In semiconductor a certain set of bands is completely filled while the remaining

ones are empty.

At absolute zero insulators and semiconductors have a similar band structure, the valence band

of a semiconductor is completely full and conduction band is empty, so that at this temperature
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the semiconductor behavior is the same of an insulator material. The only difference lies in the size

of energy gap, which is smaller in semiconductors, generally of order of 1 eV, while in insulator it

is generally of order of 5 eV. The energy gaps of some common semiconductors are shown in Table

2.2.

Material Symbol Energy gap (eV )

Silicon (Si) 1.12

Germanium (Ge) 0.67

Gallium arsenide (GaAl) Zincblende 1.42

Aluminum gallium arsenide (Al0.3Ga0.7As) 1.80

Gallium phosphide (GaP ) 2.20

Table 2.2: Energy gaps of some semiconductors [5],[32]

A small energy gap allows electrons to be excited across the forbidden gap, from filled valence

band into the empty conduction band by thermal excitation at room temperature, leaving behind

an empty bond. A positive charge is associated to vacant bond, called hole. Physically, a hole is

a vacant orbital in an otherwise filled (valence) band. Then, the current flow in a semiconductor

is given by the flow of electrons in the conduction band and the flow of holes in the valence band.

At higher temperature the number of free electrons increases, the bottom of the conduction band

is populated by electrons, while the top of the valence band by holes.

The existence of a band gap explains some characteristics of semiconductor [48],[51]:

• the conductivity increases with temperature, because with thermal excitation the number of

free carriers is higher in the conduction band;

• the transparency of semiconductor to infrared radiation, in fact photons with energy hν < Eg

can not be absorbed, as the electron can not reach a final state within the band gap. If hν > Eg
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electrons can be excited into the conduction band by absorbing photons. This phenomena

explains the photo-conductivity in semiconductors.

2.5 Doping

We said that at absolute zero a pure semiconductor behaves like a perfect insulator, instead,

at higher temperatures, thermal energy breaks some covalent bonds releasing a free electron,

that leaves behind an empty bond. The semiconductor electrical resistivity lies in the range of

10−2 − 109Ωcm, the conductivity is small compared with the conductivity of metals, because a

small number of electrons and holes are involved, it is nonetheless sufficiently large for practi-

cal application in the semiconductor devices. Doping of semiconductors is the process of locally

manipulating their charge carrier density and conductivity and it represents a key technology for

semiconductor-based electronic devices [51].

Semiconductors occur in many different chemical compositions with a large variety of crystal

structures. The best-know class is the group IV semiconductors (C, Si, Ge), that have been studied

intensively for many applications in semiconductor devices. The fourth group semiconductors

crystallizes in a structure known as the diamond structure, in which each atom is surrounded

by four nearest neighbor atoms and has covalent bonds with them. Another important group of

semiconductor is the groups III - V compounds, that contains two elements, one from third and

other from the fifth column of the periodic table. In this structure, eight valence electrons are shared

amongst neighbouring atoms; the bonding is not entirely covalent bond, but it is partially ionic too:

three valence electrons are supplied by trivalent atom and five electrons by the pentavalent atom.

Consequently, the valence electrons are bond with the atoms more strongly than the corresponding

group IV semiconductor.

A semiconductor is defined as intrinsic, if the number of electrons n in the conduction band is
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precisely equal to the number of holes p left behind in the valence band. Conventional doping is usu-

ally achieved through the bombardment of semiconductors with energetic ions followed by thermal

annealing. This process, called ion implantation, allows external impurity atoms (dopants) with

appropriate properties to be incorporated into the host lattice of the semiconductor. Depending

on their number of valence electrons, the dopants (as donors) can either donate excess electrons

as negative free charge carriers to the semiconductor conduction band at moderate temperature

(n-type doping), or they (as acceptors) can accept additional electrons from surrounding atoms to

complete the covalent chemical bonding, leaving positively charged and the holes as charge car-

riers in the semiconductor valence band (p-type doping). The density of donors (atoms cm−3) is

generally indicated with Nd, while the density of acceptors with Na. For example, we consider the

silicon (Si), which is a semiconductor with a band gap of about 1.1 eV. If a phosphorus (P) atom

replaces one of the Si atoms in the lattice, a P atom can be thought as a Si atom plus an extra

proton and an extra electron. Since the valence band is already filled this additional electron must

go into the conduction band. The P atom is known as a donor (or electron donor) or an n-dopant.

Analogously, if we can consider aluminum, the aluminum dopant provides one fewer electron than

Si, so there will be one missing electron from the valence band. In this case Al is known as an

electron acceptor, or equivalently as a p-dopant.

Figure 2.6: The donor levels created by substituting Si by P lie just below the bottom of the conduction band.

Semiconductors, in which the conduction depends primarily from carriers contributed by impu-

rity atoms, are called extrinsic semiconductors. We observe that in metals the doping decreases

the conductivity, because there are more scattering with lattice, but in the semiconductors the
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Figure 2.7: The acceptor levels created by substituting Si by Al lie just below the top of the valence band.

conductivity increases, because the donor atoms provide free electrons that did not exist in pure

semiconductor. The intrinsic conductivity depends on the relationship Eg/kBT , where Eg is gap

band energy and T is the temperature. If this ratio is great, the density of intrinsic ionized carriers

will be low. When doping is low, the atoms of impurity do not interact with each other and not

alter the structure of the bands of the crystal. If the density of doping is about 5 × 1015cm−3,

that is an atom for each 107 silicon atoms, increasing the density, the atomic structure can be

modified, because the range of gap band decrease. Finally, with high doping, the atomic structure

is modified, because the energy levels are not separate and the bands of impurity may overlap to

near valence bands and conduction bands.

2.6 Effective mass

In the semiclassical theory, the motion of electron in an applied electric field is described by a packet

of Bloch waves centered on k = k0, that is built by introducing other neighboring states belonging

to the same band m. Therefore, the electrons in a conduction band are essentially located in the

neighborhoods of the lowest energy local minima, the so-called valleys. Fixed a wave number k,

the group velocity is given by definition

vn (k) =
1

ℏ
∇kEk. (2.20)
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Differentiating with respect to time, we have

∂vn
∂t

=
d2En
dk2

∂k

∂t
=

1

ℏ

d2En
dk2 F, (2.21)

where F is the force of the electric field.

Using the Newton’s law

F =
∂p

∂t
= m∗

∂vn
∂t

(2.22)

where p is the momentum and m∗ is the effective mass, we obtain

1

m∗
=

1

ℏ2

d2En
dk2 . (2.23)

The term d2En/dk2 is a 3×3 matrix, then also the term m∗ represents a matrix of the same order.If

we evaluate the Hessian of En near a local minimum, i.e. ∇kEn(k0) = 0, we obtain a symmetric

positive matrix, which can be diagonalized and that has the positive diagonal elements



















1

m∗xx
0 0

0
1

m∗yy
0

0 0
1

m∗zz



















=
1

ℏ2

d2En
dk2 (k0)

Under assumption that the energy value are shifted, so the energy vanishes at the local minimum

(k0). For wave vector k “close”to k0, we have from Taylor’s formula and we have

En (k) = En (k0) +∇kEn (k0) · k+
1

2
k⊤

d2En
dk2 (k0)k+O

(

|k− k0|3
)

=
ℏ
2

2

(

k2x
m∗x

+
k2y
m∗y

+
k2z
m∗z

)

+O
(

|k− k0|3
)

where k = (kx, ky, kz)
⊤. If the effective mass is isotropic, we can neglect higher - order terms and

the dispersion relation can be rewritten as

En (k) =
ℏ
2

2m∗
|k|2. (2.24)
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We remark that the energy of an electron, near a band minimum, is equal to energy of a free

electron in vacuum, where the mass of the particle is replaced by the effective mass. Moreover,

the effects of the crystal potential are represented by the effective mass. The (2.24) is referred to

the parabolic band approximation, but taking into account the non - parabolic effect, we have to

introduce a factor of non parabolicity α > 0. In this case we use an approximation of Kane for

dispersion relation

En (1 + αEn) =
ℏ
2

2m∗
|k|2. (2.25)

Assuming value of the effective mass near a band maximum, we find that the Hessian of En is a

negative definite, which would lead to a negative effective mass. For a positive charge, the hole,

the effective mass is positive.

2.7 Physics of equilibrium of semiconductors and Fermi-Energy

In this section we determine the equation of state for the density of electrons and holes number in

the conduction band and in the valence band, respectively.

In a semiconductor, the statistical distribution of particles (electrons and holes) can be described

by the concept of Fermi Energy. The three thermodynamics quantities, taken into account, are the

density of number of particles, the temperature and the chemical potential. The chemical potential

represents the energy required to increase by one the number of particles, when the temperature

and volume are both constant. When the energy E is equal to the chemical potential, obviously the

distribuition function is equal to 1/2, this value for the energy is called Energy Fermi. According

Pauli exclusion principle, electrons in solids follow Fermi - Dirac statistics, which describes that

probability fD (E) that a state at energy E is filled by an electron, at the thermal equilibrium. This
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statistical function is given by

fD (E) = 1

1 + exp [(E − EF ) /kBT ]
(2.26)

where EF is a reference energy Fermi energy or Fermi level. Some properties of Fermi Dirac function

are as follows

• at T → 0 K the distribution function has a simple rectangular as shown in Fig. 2.8. All states

above EF are empty and all state below EF are filled with electrons, that is for E > EF =⇒

fD (E)→ 0, while for E < EF =⇒ fD (E)→ 1.

• at temperature T > 0 K, we observe that the fD (E) is a decreasing function of temperature,

that is at higher energies (E > EF ) the state has a lesser probability of being occupied by an

electron. On the other hand, for E < EF , at lower energies, it has a small probability of being

empty.

• it can be shown that the probability of a state at an energy ∆E above EF being occupied

is exactly the same of a state at an energy ∆E below EF being vacant. In other words the

function fD (E) is symmetrical about EF at all temperatures. A filled state in the conduction

band indicates the presence of an electron in the conduction band and an empty state in the

valence band, occupied by an hole.

Figure 2.8: Fermi-Dirac Distribution for some temperatures.

The Fermi function represents only a probability of occupancy, it does not give information about
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the states and charge at a given energy; but applying quantum physics we can obtain information

about the density of available states as a function, that depends on energy. The number of possible

states within all energy bands per unit of volume (2π)3 is given by

g (E) = 2

(2π)3

∑

ν

∫

B

δ (E − Eν (k)) dk. (2.27)

The function g (E) is called density of states.

The factor 2 comes from the two possible states of the spin of an electron, B is the Brillouin

zone and the function δ distribution is defined by

∫ +∞

−∞

δ (E0 − E)ϕ (E) dE = ϕ (E0) (2.28)

of all continuous function ϕ.

Using the (2.28), we can express the electron concentration in the conduction band

nc =
1

4π3

∑

ν

∫

B

∫ +∞

−∞

δ (E − Eν (k)) fD (E) dE

nc =

∫

∞

Ec

g (E) fD (E) dE

with Ec is the minimum of the conduction band Ec (k). Similarly we can express the holes concen-

tration in the valence band

pv =

∫

Ev

−∞

g (E) (1− fD (E)) dE (2.29)

The distribution function fD (E) can be approximated by Maxwell - Boltzmann distribution if

Ec−EF ≫ kBT for any energy level E in the conduction band and if EF −Ev ≫ kBT in the valence

band

fM (E) = exp

(

−E − EF
kBT

)

∀E < Ec (for electrons)

fM (E) = exp

(

−EF − E
kBT

)

∀E < Ev (for holes) .
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These hypothesis might be not valid if semiconductor is very heavily doped (degenerate case).

Using these approximations the carrier concentration, respectively, in the conduction band and

valence one is

nc = Nc (T ) exp

(

−Ec − EF
kBT

)

pv = Nv (T ) exp

(

−EF − Ev
kBT

)

(2.30)

with

Nc (T ) =

∫

∞

Ec

gc (E) exp
(

−E − Ec
kBT

)

dE (2.31)

Nv (T ) =

∫

Ev

E−∞

gv (E) exp
(

−Ev − E
kBT

)

dE . (2.32)

If in the conduction and valence bands the densities of states are equal (intrinsic semiconductor),

the Fermi level is exactly at the middle of the band gap and we have the law of mass action

ncpv = n2i (2.33)

where ni is the intrinsic concentration that, in this case, depends only on the temperature and that

is given by

n2i = NcNv exp

(

−Ec − Ev
kBT

)

= NcNv exp

(

− Eg
kBT

)

(2.34)

ni (T ) =
√

NcNv exp

(

− Eg
2kBT

)

. (2.35)

Using (2.30) it is possible to determine the chemical potential (Fermi-level) depending of tempera-

ture

Nc (T ) exp

(

−Ec − EF
kBT

)

= Nv (T ) exp

(

−EF − Ev
kBT

)

. (2.36)

Hence, we have

EF = EF,i (T ) =
1

2
(Ec − Ev) +

1

2
kBT ln

(

Nv (T )

Nc (T )

)

. (2.37)
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To analyze non-equilibrium case, we must define quasi-Fermi levels so that the relationship between

the intrinsic carrier ni and the electron and hole densities is expressed at thermal equilibrium in

the equations (2.30). If we replace the Fermi-level EF with EF,c for the electron in conduction band

and with EF,v for holes in valence band, we obtain

nc = Nc (T ) exp

(

−Ec − EF,c
kBT

)

, pv = Nv (T ) exp

(

−EF,v − Ev
kBT

)

(2.38)

with

Nc (T ) = ni exp

(

−Ec − EF,i
kBT

)

, Nv (T ) = ni exp

(

−EF,i − Ev
kBT

)

. (2.39)

Using (2.39) equations, we can rewrite (2.38) as

nc = ni exp

(

−EF,c − EF,i
kBT

)

, pv = ni exp

(

−EF,i − EF,v
kBT

)

. (2.40)

From the above expressions, we obtain

EF,c = EF,i + kBT ln
nc
ni
, EF,v = EF,i + kBT ln

pv
ni
. (2.41)

Under non-equilibrium condition np 6= n2i , but np can be expressed as function of the two

quasi-Fermi levels. From (2.39) and (2.40) we can derive

np = n2i exp

(EF,c − EF,v
kBT

)

. (2.42)

The difference between the two quasi-Fermi levels is a measure of deviation from thermal equilibrium

of the semiconductor free-carrier density and it is zero at thermal equilibrium.

It is interesting to know the carrier concentration or the position the Fermi energy level when

the semiconductor is highly doped. We can use a simple approximation nc = ND and pv = NA,

where ND is the donor concentration in n-type semiconductor and NA is the acceptor concentration

in p-type semiconductor. Let us Ed and Ea the energy level of a donor electron and an acceptor
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hole, respectively. The energies Ec−Ed and Ea−Ev are small with respect to kBT , this means that

additional particles contribute at room temperature to the electrons and holes density.

The Fig. (2.9) shows the electron concentration depending on temperature for a n-type semi-

conductor. At low temperatures the electron concentration is low, because complete ionization has

not taken place. Increasing the temperature, the degree of ionization of the donors increases and

consequently also the electron concentration. Then, it remains nearly constant over a range of

temperature, because the ionization is complete. In this range of temperature the semiconductor is

strongly extrinsic. Finally at higher temperatures, ni increases and when the thermally generated

electron and hole concentration becomes comparable to the dopant concentration, the material

have a nearly intrinsic behavior.

Figure 2.9: Temperature dependence of n in a doped semiconductor.

2.8 Mobility, drift velocity, diffusion current

We described the concentrations of carriers in a semiconductor, now we turn our attention to the

dynamics of the carriers in presence of electric fields and of density gradients. We said that electrons

(and holes) in semiconductors are free-particles, then they are not associated with any particular

lattice site. On the other hand, the effective mass, that differs somewhat from the free-electron

mass, points out the influence of crystal force. According to the laws of statistical mechanics, we can

claim that the electrons and the holes have a thermal energy associated with classical free-particles.
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In not stationary conditions, the charge carriers are in random motion through the lattice, colliding

among themselves and with lattice, with average kinetic energy proportional to kBT . If vth is the

mean-square thermal velocity [51], we have

1

2
m∗nv

2
th =

3

2
kBT.

At thermal equilibrium the motion of the electrons ensemble is completely random so that the

semiconductor is in electrostatic equilibrium and the net current is zero. Collisions with the lattice

produce an energy transfer between the electrons and the atomic cores of the lattice.

If we apply a small electric field, the electrons are accelerated along the same direction of field

during collisions. When they collide with the lattice and drop toward their thermal-equilibrium

position, the energy exchanged is small and the crystal lattice is not enough heated by passage of

current, because the electric field is small and the lost energy in each collision is much less the mean

thermal energy of an electron. The net carrier velocity in presence of an electric field is called drift

velocity vd, it can be found by equating the impulse applied to an electron, between two collision,

with the momentum gained by electron in the same period of time. We have this equality when all

momentum gained between collisions is lost to the crystal lattice in the collisions. Thus from the

condition −qEτc = m∗nvd, we obtain

vd = −
qEτc
m∗n

. (2.43)

This equation points out that the drift velocity vd is proportional to the electric field and it depends

on the mean scattering time and the effective mass. The proportionally factor is called mobility

and it is designed by the symbol µn:

µn =
qτn
m∗n

. (2.44)

From (2.43), we can assume the current density flowing in the direction of the applied electric field
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in this way

Jn = −
n

∑

i=1

qvi = −nqvd = nqµnE. (2.45)

Similarly for holes, if µp is the holes mobility, we can write

Jp = pqµpE. (2.46)

As a consequence the total current density is

J = Jn + Jp = (nqµn + pqµp)E.

Let us σ = nqµn + pqµp, we obtain J = σE, where σ is the conductivity.

2.8.1 Diffusion current and Einstein Relation

The term diffusion current is used for the electric current due to a density gradient of charge.

The lower conductivity and nonuniform density of carriers produce often diffusion and important

process involving current flow in semiconductors. For example, we consider a n-type semiconductor,

with a gradient of charge concentration n (x). Let us l the mean free path between two subsequent

collisions, so that l = vthτc, the diffusion current can be written as following

Jn = qlvth
dn

dx
, (2.47)

that is proportional to the spatial derivative of the electron density; if the electron density increases

then the gradient is positive, like diffusion current. Using the theorem of the equipartition of energy

to this one dimensional case, we can rewrite the (2.47) in the following form known as Einstein

relation

Jn = qDn
dn

dx
(2.48)

where Dn =
kBT

q
µn is called diffusion coefficient .
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Finally, we can assert that in presence of electric field, we must take into account the drift and

diffusion current

Jn = qµnnE + qDn
dn

dx
. (2.49)

We can obtain a similar expression for the holes, so that the total hole current is:

Jp = qµpnE − qDp
dp

dx
. (2.50)

2.9 Scattering mechanisms in a lattice

Taking into account an ideal and perfect lattice, the carriers scattering with crystal is neglected

and the electrons do not interchange energy with (stationary), perfect lattice. Nevertheless, at any

temperature above T = 0 K the atoms of lattice vibrate. These vibrations alter the periodicity and

the energy is exchanged between the carriers and the lattice. This interaction is known as collisions

with energetic particles, called phonons. The scattering phenomena lead to heating of semicon-

ductor, the dissipation of this heat is often a limiting factor in the size of semiconductor devices.

From the electron scattering, we can have an absorption or emission of a phonon, that may be an

acoustic or an optical phonon. The interaction mechanism may also be electrostatic, as we have

for polar optical or piezoelectric acoustic phonons in compound semiconductors, or it can be due

to the variation of the band edge produced by the deformation of the lattice. In these cases we talk

of polar interaction, piezoelectric interaction, and deformation-potential interaction, respectively.

In many mathematical models, it is useful the assumption that the optical phonon scattering is

anelastic, while acoustic phonons carry a very small amount of energy, and the scattering can be

considered elastic at room temperature.

In the doped semiconductors, if the impurities are ionized, they interact with electrons through

a long-range Coulomb field, but if they are neutral impurities, the interaction occurs with a short-

range interaction and with much weaker effect in bulk transport properties. Owing to the large
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mass of the impurities, this kind of scattering can be always considered elastic. The effect of the

impurities becomes more important at lower temperatures, when phonons become less effective.

The scattering between electrons is type of Coulomb interaction, that depends on the probability

of an electron to scatter with another electron with a given momentum. Therefore, it depends on

the electron distribution function (see chapter 4). In a collision between two electrons, the total

momentum and the total energy of the electrons do not change. This type of interaction is not

dissipative, but the shape of the distribution function changes and, as a consequence, this collision

influences the effect of the other scattering mechanisms. Its effect is relevant at high electron

concentrations
(

≥ 1017 − 1018cm−3
)

.

An other important factor is the relationship between the mobility and the doping, because also

impurities cause local distortions in the lattice and scatter with the free carriers. About phonon

scattering, this scattering is less significant at higher temperatures, in fact the carriers move faster

and remain near the impurity atom for a shorter time; consequently, when impurity scattering is

dominant, the mobility increases if the temperature increases. At high electric fields, the energy of

hot electrons reaches a critical value, in this case there is an other important scattering phenomena

(collisions with high energy optical phonons) and the mobility decreases from its low-field value.

In this case the carriers can not gain significant additional energy and reach a limiting value of

velocity, called velocity of saturation vsat at high field.
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Chapter 3

Classical Kinetic Transport Models

This chapter deals with the classical kinetic transport equations, modeling the flow of charge

carriers in the semiconductors, as the Liouville, Vlasov, and Boltzmann equation [35]. According

to a probabilistic approach, the charge carriers are specified by a distribution function depending

on the phase space variable and on the time.

At the first we introduce the classical Liouville equation, which describes the evolution distribu-

tion function of a single particles, neglecting interference from the environment. Then, this equation

is rewritten for a particle ensemble. Including the quantum effects of the semiconductor lattice via

the band-diagram of the material, the semiclassical Liouville equation is needed.

The Vlasov equation is presented in the semiclassical formulation. This equation has the form of

Liouville equation, but supplemented by an effective field equation, which depends on the position

space number density of the particles. The effective field equation represents the average effect of

the many-body physics.

Finally, we focus on the description of the semiclassical Boltzmann equation and in particular

on the collisional operator and its features. This equation describes the short interactions of the

particles with each other and with lattice. The specific form of the kernel of the collisional operator

are shown.

40



3.1 The Liouville equation

In the classical models the description of the motion of particle ensembles is based on Newton’s

second law. A probabilistic reformulation of these canonical equations of motion is given by the

classical Liouville equation. Let us fI = fI (x,v) the joint probability density of the initial position

and velocity associated to an elementary particle (an electron, for example)[35]. Assume that

fI = fI (x,v) ≥ 0,

∫∫

fI (x,v) dxdv = 1 (3.1)

then

∫∫

B

fI (x,v) dxdv (3.2)

is the probability to find the particle ensemble in the subset B of the (x,v)−space at time t = 0.

Given f = f (x,v, t) the probability density of the electron at time t, we postulate that this function

does not change along the trajectories w = w (t;x,v)

f (w (t;x,v) , t) = fI (x,v) ∀x,v t ≥ 0. (3.3)

Differentiating (3.3) with respect to time, we have

∂f

∂t
+
dx

dt
· ∇xf +

dv

dt
· ∇vf = 0. (3.4)

In the presence of electric field, we obtain

∂f

∂t
+ v · ∇xf −

q

m
E · ∇vf = 0, t > 0. (3.5)

This equation is the Liouville equation governing the evolution of the position-velocity probability

density f = f (x,v, t) of the electron in the electric field E under the hypothesis that the electron

moves according to the laws of classical mechanics, without to interact with crystal lattice. If we

consider a particle ensemble (electrons), the classical Lioville becomes

∂f

∂t
+ v · ∇xf +

F

m
· ∇vf = 0 (3.6)
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where x ∈ R
3M , v ∈ R

3M and f = f (x,v, t) represents the joint position–velocity probability

density of the M–particle ensemble at time t. In the following, we assume that the electric field

force F is divergence–free with respect to the velocity, so that

divvF = 0 x ∈ R
3M v ∈ R

3M t ≥ 0.

3.1.1 The conservation property

We integrate (3.6) over R3M×R
3M , assume that solution decays to zero sufficiently fast as |x| → ∞,

|v| → ∞ and obtain

1

m

∫

R3M

F · ∇vfdv = − 1

m

∫

R3M

fdivvFdv = 0

and

d

dt

∫

R3M

∫

R3M

f (x,v, t) dvdx = 0

that is, the integral of f over the whole position−velocity space is conserved in time

∫

R3M

∫

R3M

f (x,v, t) dvdx =

∫

R3M

∫

R3M

fI (x,v) dvdx = 1, t ≥ 0. (3.7)

3.1.2 Zeroth and first order moments

In this subsection we introduce the concepts of moment to define the density and current density

and to obtain the continuity equation.

We define moment of order zero

n (x, t) =

∫

R3M

f (x,v, t) dv (3.8)

and the first order moment

J (x, t) = −q
∫

R3M

vf (x,v, t) dv. (3.9)
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The function n = n (x, t) is the position probability density of the particle ensemble, known as clas-

sical microscopic particle position density, while J (x, t) represents a flux density, called microscopic

particle current density. The conservation property (3.7) can be rewritten as

∫

R3M

n (x, t) dx =

∫

R3M

nI (x) dx, t ≥ 0 (3.10)

with nI (x) =
∫

R3M fI (x,v, t) dv. By formally integrating the Liouville equation (3.6) over R3M we

obtain the conservation law

q∂tn− divxJ = 0 (3.11)

which is referred to as macroscopic particle continuity equation.

3.1.3 The semiclassical Liouville equation

We described the energy band model taking into account a semiclassical theory, in which the

electrons are subjected to periodic potential of lattice. For this reason we introduce the semiclassical

Liouville equation, that takes in account the quantum effects of the crystal lattice. Consider the

phase space with seven coordinates: x = (x1, x2, x3)
⊤ (spatial coordinates), k = (k1, k2, k3)

⊤ (wave

vector associated to momentum of lattice), and time t > 0, the semi-classical Liouville equation is

∂f

∂t
+ v(k) · ∇xf +

1

ℏ
F · ∇kf = 0 t ≥ 0 (3.12)

where x ∈ R
3M , k = (k1, k2, · · · kM ) ∈ B for i = 1, 2, · · ·M . As the Brillouin zone is a bounded

subset, we have to impose boundary conditions for k. We choose the periodic boundary conditions

f (x, k1, k2 · · · ki · · · kM , t) = f (x, k1, k2 · · · − ki · · · kM , t) , ki ∈ ∂B.

The definition of the electron ensemble position density (3.8) and of the electron ensemble current

density (3.9) have to be modified

nB =

∫

BM

f (x,k, t) dk, (3.13)
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JB = −q
∫

BM

v(k)f (x,k, t) dk. (3.14)

The periodicity of f in ki and the point-symmetry of the Brillouin zone B involve that the con-

servation property (3.10) and the conservation law (3.11) are hold for the semi-classical Liouville

equation.

3.2 The semiclassical Vlasov Equation

Assuming that the electrons move in a vacuum, the scattering is neglected, the force field F acting on

the ensemble is independent of the velocity vector (in particular magnetic field effects are neglected)

and the motion is governed by an external electric field and by two particles interaction force. The

semiclassical Vlasov equation is given by

∂f

∂t
+ v(k) · ∇xf −

e

~
E · ∇kf = 0 t ≥ 0. (3.15)

The Vlasov equation is a kinetic equation describing the motion of a weakly interacting large

particle ensemble. However, when the time scale is enough large, the motion of particles is more

influenced by strong short range force, that is we must consider the scattering phenomena between

the particles and the lattice, for example. The Vlasov equation describes the electrons motion

in an ideal perfectly periodic lattice, but this is only approximation, because the periodicity of

the lattice is impaired some features as crystal dislocation, defects of lines or plane missing atoms

(called vacancy), interstitials defects, mechanical stresses, doping, thermal vibration of the ions of

their equilibrium position in the lattice.

3.2.1 The semiclassical Boltzmann equation

Since the crystal is not perfectly periodic (ideal crystal), it can be think as a perturbative way

and the weak deviations from periodicity are treated as small perturbations of the background
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periodic potential and they are described quantum mechanically as scattering with quasi-particles

(phonons) representing the thermal lattice vibrations. Formally these effects are taken into account

by introducing a non zero right hand side in the semiclassical Vlasov equation. In this way we obtain

the Boltzmann equation

∂f

∂t
+
dx

dt
· ∇xf −

eE

ℏ
· ∇kf =

(

∂f

∂t

)

Coll

(3.16)

where E is external electric field [35], [12], the term

(

∂f

∂t

)

Coll

represents the scattering due to the

lattice vibrations (phonons), internal force, and to internal localized crystal features like impurity

atoms or ions, vacancies. In semiconductor crystals, there are three main classes of scattering

mechanisms: electron-phonon scattering, ionized impurity scattering, electron-electron scattering.

At finite temperature, the crystal ions vibrate around the equilibrium position represented by the

point of the ideal Bravais lattice. These lattice vibrations are quantized and the quantum of lattice

vibrations are the phonons. The interaction with the phonons produces a change in the energy

and momentum of the electrons. The exchange of energy can leave the electron in the same band

(intraband transition) or pull it into another band (interband transition), e.g for holes. In the

conduction bands, the electrons are essentially located in the valleys. After a collision the electron

can remain in the same valley (intravalley scattering) or be drawn in another valley (intervalley

scattering).

3.3 The collision operator

Let us that the scattering interactions are confined in a limited space with respect to total space

and they are instantaneous. We define the Transition Rate S
(

k,k′
)

as the density probability

per unit time of an electron transition from state with wave number k into an empty state with

wave number k′. Let us suppose that the particle variation rate P
(

t,x,k′ → k,
)

is proportional to

occupation probability f
(

t,x,k′
)

of state (x,k) at time t and to probability that the state (x,k)
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is not occupied, that can be expressed by 1 − f (t,x,k) in agreement with of the Pauli exclusion

principle. As a consequence we have

P
(

t,x,k′ → k,
)

= S
(

k,k′
)

f
(

t,x,k′
)

(1− f (t,x,k)) (3.17)

and

(

∂f

∂t

)

Coll

=

∫

B

[

P
(

t,x,k′ → k,
)

− P
(

t,x,k→ k′
)]

d3k′. (3.18)

The first term of the right side of (3.18) represents the gain and the second one the loss. Let us

Q (f) =

(

∂f

∂t

)

Coll

, we can rewrite the collision operator

Q (f) (t,x,k) =

∫

B

[

S
(

k′,k
)

f ′ (1− f)− S
(

k,k′
)

f
(

1− f ′
)]

d3k′ (3.19)

with f = f (t,x,k), f ′ = f
(

t,x,k′
)

.

By these assumptions, the semiclassical Boltzmann equation assumes a form of an integral-

differential equation

∂f

∂t
+
dx

dt
· ∇xf −

eE

ℏ
· ∇kf = Q (f) . (3.20)

If we integrate the (3.19) we obtain

∫

B

Q (f) d3k′ = 0 (3.21)

as required to satisfy the law of conservation of mass. It is shown that the balance distribution

functions, where Q (f) = 0, have the following expression

f =
1

exp

(

−E − µ
kBTL

)

+ 1

(3.22)

where E = E (k), µ = EF and TL is temperature of lattice. As a consequence, at equilibrium the

electron distribution must obey the Fermi-Dirac statistics. However this hypothesis is not satisfied

by some scattering mechanism (as with phonons, etc.). The problem of determining the null space
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for the physical electron-phonon operator was tackled and solved in [33] where it is proved that the

equilibrium solutions form an infinite sequence of functions of the kind

f =
1

h (E) exp
( E
kBTL

)

+ 1

where h (E) = h (E + ℏωq) is a periodic function of period ℏωq/n with n ∈ N . This property implies

a numerable set of collisional invariants and hence of conservation laws. The physical meaning is

that the density of electrons whose energy E differs from a given value u by a multiple of ℏωq/n is

constant.

In many applications we suppose 0 ≤ f (t,x,k) ≪ 1, then the quadratic terms of the collision

operator can be neglected (the non-degenerate case) and the collision operator can be repalce by

QL (f) =

∫

B

[

S
(

k′,k
)

f ′ − S
(

k,k′
)

f
]

d3k′

where the balance distribution functions, with QL (f) = 0, are the Maxwellian approximation

f ≃ const e
−

E

kBTL . (3.23)

The collisional operator (3.20) is given by the sum of each operator collisional related to different

scattering mechanisms. We describe in the following subsection the expression about “transition

rate” S
(

k,k′
)

for the scattering mechanisms, for more details see [23], [53].

3.3.1 Scattering electron-phonon

We said that at nonzero temperature, the atoms in the crystal lattice vibrate around their fixed

equilibrium and we defined these as quantized vibrations and the quantum of lattice vibrations as

phonon. We can distinguish so-called acoustic phonons and optical phonons. Acoustic phonons

arise from displacements of lattice atoms in the same direction such as sound waves, while optical

phonons describe displacements in the wave vector and they are able to interact strongly with
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light. The phonon occupation number depends on thermic energy and it is given by Bose - Einstein

distribution

NB =
1

exp

(

ℏω

kBTL

)

− 1

(3.24)

where ℏω is the energy phonon. The Bose - Einstein statistics has to be used for the particles,

that do not obey the Pauli exclusion principle and therefore also for phonons, so two phonons can

occupied tha same quantum state. In the electron-phonon scattering, we can have two effects: an

absorption or emission of a phonon. In the first case, a phonon with energy ℏω and wave-vector ξ

is absorbed by an electron with energy Ec (k) and we have:

k′ = k+ ξ + l Ec
(

k′
)

= Ec (k) + ℏω

where l is a vector of the reciprocal lattice, so that also k′ ∈ B. This means that these interactions

conserve energy or momentum. While, if there is an emission of a phonon, we have:

k′ = k− ξ + l Ec
(

k′
)

= Ec (k)− ℏω.

The transition rate [32] can be written usually as

Sph
(

k,k′
)

= φph
(

k,k′
) [

(NB + 1)δ
(

E ′ − E + ℏω
)

+NBδ
(

E ′ − E − ℏω
)]

where the terms E = E (k), E ′ = E
(

k′
)

are the energy before and after collision, respectively, while

δ is the delta distribution. The first delta distribution contributes when an energy of ℏω has been

absorbed, whereas the second term contributes when an energy of ℏω has been emitted. The factors

1+NB and NB come from the eigenvalues of the so-called creation and annihilation operators. The

function φph
(

k,k′
)

depends on the kind of phonon interaction, with acoustic phonons or optical

ones. For this reason, we consider this function as follow

φph
(

k,k′
)

= φ0ph
(

k,k′
)

G
(

k,k′
)

(3.25)
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where φ0ph
(

k,k′
)

depends on kind of electron-phonon scattering and G
(

k,k′
)

is the overlap factor.

Let us uk (x) the periodic factor of Bloch function and u∗
k′
(x) the complex conjugate, we define

the overlap factor

G
(

k,k′
)

=

∣

∣

∣

∣

∫

B

u∗
k′
(x)uk (x) d

3x

∣

∣

∣

∣

2

(3.26)

that depends on energy band structure and on the kind of interaction. This function satisfies the

symmetry condition

G
(

k,k′
)

= G
(

k′,k
)

, G
(

k,k′
)

≥ 0.

In the conduction band, the overlap factor can be approximate to a constant value, in particular

we can assume G
(

k,k′
)

= 1, while in the valence band a useful and good approximation it is given

by

G
(

k,k′
)

=
1

4

(

1 + 3cos2θ
)

(3.27)

where θ is the angle between k and k′ [23].

The allowed electron-phonon scattering in the conduction bands can be summarized as follows:

• intravalley acoustic phonon scattering (approximately elastic);

• intervalley acoustic phonons scattering (inelastic);

• non polar optical phonons scattering (inelastic).

Generally, the phonon energy ℏω can be considered as a function that depends on the wave vectors

k and k′ before and after a scattering event only [8]. For optical (nonpolar) phonon scattering,

this dependency is weak such that ωop can be considered to be constant. On the other hand,

the energy of acoustic phonons is rather small compared to the kinetic energy of a carrier and it

can be neglected near room temperature, ℏωac ≈ 0. At high temperature the scattering could be
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considered an elastic collision

Sph
(

k,k′
)

≃ φ0ph
(

k,k′
)

(1 + 2NB) δ
(

E ′ − E
)

. (3.28)

Under these assumption, the transition rate, regarding to the electron-acoustic phonon collision, is

expressed by

S
(

k,k′
)

= Kacδ
(

E − E ′
)

(3.29)

with φ0ph
(

k,k′
)

= Kac, where the physical parameter Kac is defined by

kac =
kBTLΞ

2
d

4π2ℏρ0v2s

with Ξd the acoustic - phonon deformation potential, ρ0 the mass density and vs the sound velocity

of the longitudinal acoustic mode. For inelastic scatterings between electron and non polar optical

phonons, we have

S
(

k,k′
)

= Knp

[

(N
(np)
B + 1)δ

(

E ′ − E + ℏω
)

+N
(np)
B δ

(

E ′ − E − ℏω
)

]

(3.30)

with φ0ph
(

k,k′
)

= Knp and

Knp = Zf
(DtK)

8π2ρω

where Zf is the number of final equivalent valleys in the intervalley scattering, DtK is the defor-

mation potential for optical phonons. The factors (3.30) and (3.31) contain physical parameters

that depend on kind of semiconductor. In the following Table 3.1 we report some value of these

physical parameters about the silicon.

3.3.2 Scattering mechanisms with ionized impurity

These interactions are elastic collisions, as a consequence the electron energy E
(

k′
)

after the col-

lision is equal to the energy E (k) before of interaction and the transition rate for the scattering
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me mass of electron 9.1095× 10−28 g

m∗ effective mass of electron 0.32 me

TL lattice temperature 300 K

ρ0 density 2330 g/cm3

vs sound velocity 9.18× 105cm/sec

α non parabolicity factor 0.5 1/eV

εs Silicon relative dielectric constant 11.7

ε vacuum dielectric constant 8.85× 10−18 C/V µm

Table 3.1: Physical parameters and constants about Si

with impurities is

Simp
(

k,k′
)

=
Kimp

[

|k− k′|2 + β2
]2 δ

(

E ′ − E
)

with φ0ph
(

k,k′
)

= Kimp. The term β is the inverse Debye length

β =

[

q2NI

ǫ
kBTL

]
1
2

(3.31)

and the term kimp depends on some physical parameters

Kimp =
NIZ

2q4

4πℏǫ2

with NI doping concentration.

If the carrier concentration is high, then it would take into account the electron-electron collision,

in fact when an electron is near another electron, it will feel the Coulomb potential generated from

the other as a perturbation of the periodic potential of the lattice. In this case, unlike the scattering

with impurities, both electrons are subjected to the scattering and this is not in agreement with

the use of the linearized operator. The collisional operator for the scattering electron-electron has
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this expression [23], [35]:

Qee (f) (k) =

∫

B

∫

B

∫

B

[

f ′f ′1 (1− f) (1− f1)− ff1
(

1− f ′
) (

1− f ′1
)]

φee
(

k,k′
)

δ
(

E ′ + E ′1 − E − E1
)

δp
(

k′ + k′1 − k− k1

)

d3k1d
3k′d3k′1

where k and k1 are the wave vectors of electrons before of scattering, while k
′ and k′1 after scattering

and the function φee
(

k,k′
)

is

φee
(

k,k′
)

=
e4

4π4ǫ2ℏ2
1

[

|k− k′|2 + β2
]2 .

The distribution δ (E ′ + E ′1 − E − E1) ensures the energy conservation, while by δp
(

k′ + k′1 − k− k1

)

it follow that the moment is conserved to less than a factor of reciprocal lattice

k+ k1 = k′ + k′1 + g g ∈ L∗

If the vector g is not zero, the collision is called umklapp [27],[5]. (Umklapp processes, discovered

by Peierls, occur when the pseudo-wave vector of an electron or phonon interacting with other

particles leaves the Brillouin zone and it is brought back to this zone by adding a reciprocal lattice

vector). Generally the collision electron-electron can be neglected because it is small compared to

collision electron-photon. For low electron density, the intensity of the electron-electron interaction

is proportional to the density, but at higher densities the combined effects of shielding and the prin-

ciple of Pauli make the frequency of collisions decreasing with increasing density. Regarding to the

collision electron-electron, the maximum of the collision frequency is obtained for an intermediate

value of the electron density, which depends on the material.
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3.4 The Poisson equation

The Maxwell equations for the electrostatic field are

∇×E = 0 (3.32)

∇ ·E =
ρ

ǫ0
. (3.33)

Since the electric field depends on electrostatic potential φ (x) through the relation E = −∇xφ (x),

the (3.33) can be written as

∇2φ = − ρ

ǫ0ǫr
(3.34)

which is known as Poisson equation. For a semiconductor, in Poisson equation, we have to consider

the density due to electrons and that one to holes, finally the ionized impurities

∇2φ (x) = − q

ǫ0ǫs
[p− n−Na +Nd] . (3.35)

The Boltzmann equation coupled Poisson equation is known as Boltzmann-Poisson system. In the

unipolar case only one carrier is involved in current transport, so the Poisson equation is:

∇2φ (x) = − q

ǫ0ǫs
[Nd −Na − n] (3.36)

3.5 The recombination and generation processes in the bipolar

semiconductor devices

As it has been shown in subsection 2.5, through the doping it is possible to change the concentration

of charge in a semiconductor device or in some of its parts. A semiconductor device is unipolar

device if the semiconductor is doped with a prevalence of one type of charge carriers, electrons or

holes, called majority carriers, and the current due to the remaining minority carriers is negligible.

While, if the both charge carriers contribute to electrical conduction, a device is a bipolar device and
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in this case it is necessary to take into consideration the effects of the electron-hole interaction. We

define the generation of an electron-hole the process in which an electron moves from the valence

band to the conduction band, leaving a hole behind it in the valence band. For example, in silicon,

the electron has to overcome the energy gap, which is of the order of 1eV . On the other hand,

the thermal energy of an electron is only of the order of kBT ≈ 0.026eV at room temperature.

Therefore, a lot of absorption energy is necessary for such processes. In the inverse process, called

the recombination of an electron-hole pair , an electron moves from the conduction to the valence

band, occupying an empty state, with emission of energy.

Figure 3.1: Recombination (left) and generation (right) of an electron-hole pair.

From a microscopic point of view, the equations (3.16), (3.36) represent a Boltzmann-Poisson

system for a unipolar device, while about the bipolar device, we have

∂fe
∂t

+ ve (k) · ∇xfe −
eE

ℏ
· ∇kfe = Qe (fe) + Ie (fnfp) (3.37)

∂fh
∂t

+ vh (k) · ∇xfh +
eE

ℏ
· ∇kfh = Qh (fe) + Ih (fnfp) , (3.38)

coupled with (3.35) Poisson equation. The collisional operators Qe (fe) and Qh (fe) have been de-

scribed in the above subsection, while Ie (fnfp) and Ih (fnfp) represents the generation-recombination

mechanism

Ie (fnfp) =

∫

B

[

g
(

x,k′,k
)

(1− fn)
(

1− f ′p
)

− r
(

x,k′,k
)

fnf
′
p

]

d3k′ (3.39)
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Ih (fnfp) =

∫

B

[

g
(

x,k,k′
) (

1− f ′n
)

(1− fp)− r
(

x,k,k′
)

f ′nfp
]

d3k′. (3.40)

We consider these terms as a balance coefficient, which is given by a contribute of generation

term, increasing the concentration of the charge, and an other of recombination one, decreasing the

concentration of the charge. The term g
(

x,k,k′
)

is the generation rate of an electron in the state

(x,k) and a hole in the state
(

x,k′
)

and r
(

x,k,k′
)

is the recombination rate. The recombination

and generation rates are related by the equation

r
(

x,k,k′
)

= exp

(

En (k)− Ep
(

k′
)

kBT

)

g
(

x,k′,k
)

, (3.41)

which can be derived assuming Maxwell-Boltzmann statistics.

In the generation-recombination processes the basic mechanisms are:

• Auger/impact ionization generation-recombination,

• radiative generation-recombination,

• thermal generation-recombination.

An Auger process is defined as an electron-hole recombination followed by a transfer of energy to a

free carrier which is then excited to a higher energy state. The inverse Auger process, in which an

electron-hole pair is generated, is called impact ionization. The energy for the pair generation comes

from the collision of a high-energy free carrier with the lattice or from electron-electron or hole-hole

collision. In a radiative recombination, an electron from the conduction band recombines with a

hole from the valence band emitting a photon. The energy, that is lost by the electron, is equal to

the energy gap of the material, and a photon is produced with same band energy gap. Radiative

generation occurs when a photon with energy larger than or equal to the gap energy is absorbed.

These processes are important in narrow-gap semiconductors. Finally, thermal recombination or

generation come from lattice vibrations or phonons and arise from phonon emission or absorption,

respectively.
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Chapter 4

From Kinetic to Fluid Dynamical

models

4.1 Introduction to macroscopic models

In modern semiconductor devices, characterized by small size, a thermal effects play an impor-

tant role together to strongly inhomogeneous distributions of electric field, drift velocity, carrier

concentration, carrier energy, etc. Under these conditions, the carriers transport is significantly

different from transport in bulk materials and in sub-micrometer devices. Since the simulation

of sub-micron devices by directly integrating the semi-classical electron transport equation (semi-

classical BTE) presents many computational difficulties and the numerical methods to solve this

equation (for instance with Monte-Carlo methods [23]) are still computationally expensive, others

macroscopic models have been proposed for the description of charge transport in semiconductors.

The main classes of macroscopic semiconductor models are the drift-diffusion, energy-transport and

hydrodynamic equations [35],[49]. The simplest model and the most popular ones is the set of the

drift-diffusion equations, first proposed in 1950 by Van Roosbroeck [40] and for which very efficient

numerical algorithms are available [24].

56



The drift-diffusion equations give satisfactory results for semiconductor devices with a typical

size of a few microns and moderately applied voltage, whereas energy-transport models can also

be used for certain submicron devices [15]. The hydrodynamic equations have been introduced by

Bløtekjaer [9] and subsequently thoroughly investigated by Baccarani and Wordeman [6]. They can

be derived from the Boltzmann equation by using the moments method. This yields usually a set

of equations for the carrier density, momentum and energy, and it is not in closed form. To obtain a

closed set of equations, often, as example, the Fourier law for the heat flux is taken into account[9].

For many details on different approaches of the derivation of the hydrodynamic equations and a

discussion of the closing problem, we refer to [4], [19] and [25]. In the moments method, the BTE

is multiplied by a number of linearly independent functions of velocity and integrated over velocity

space. In some cases not all integrations can be carried out explicitly and these terms are usually

replaced by phenomenological models. The ET models, first presented by Stratton in 1962 [50], are

derived from hydrodynamic models usually by neglecting certain convection terms, but include the

carrier energy (or temperature). These models improve the standard drift-diffusion model, based

only on the balance equation of density and upon the condition (violated in the sub-micron devices)

of thermal equilibrium. As a consequence the ET models include two balance equations, for density

and energy flux. A systematic approach can be obtained using the Principle of Maximum Entropy

in the context of extended thermodynamics and the theory of moments of Levermore [29] in the

case of parabolic approximation for the energy bands of electrons. Nevertheless, the parabolic band

is too poor for realistic simulations and models with a more complex energy bands are guaranteed.

The energy-transport equations can be also obtained from the Boltzmann equation by means of the

Hilbert expansion method [8], so-called spherical harmonic expansion model (SHE). This model is

derived from the Boltzmann equation in the diffusion limit, under the strong and rather unphysical

assumption that the dominant scattering mechanism is the electron-electron interaction [26], [35].

The advantage of this approach lies in the fact that it is can be performed under quite weak
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assumptions on the semiconductor band structure and that we can obtain explicit expressions for

the diffusion coefficients and for the energy relaxation term [15].

4.2 Method of Moments

Macroscopic models for charge transport can obtained of the Boltzmann equation by moments

method. This method transforms the BTE into an equivalent, infinite set of equations. An ap-

proximation of this set is the truncation to a finite number of equations (normally three or four).

The equation of highest order contains the moment of the next order, which has to be suitably

approximated using available information, typically the lower order moments. Furthermore, the set

of equations has more unknowns than equations, for this reason the closure relations are required.

As in gas - dynamics, multiplying the Boltzmann equation by a number of linearly independent

functions we obtain the macroscopic physical quantities as moments of the distribution function, re-

spect to the weight functions. At the first we introduce the Drift-Diffusion model and subsequently

the hydrodynamic models and its derivation and extension models.

Multiplying the Boltzmann equation by a sufficiently regular function ψ (k) and integrating over

B, we obtain the generic moment equation

∂Mψ

∂t
+

∫

B

ψ (k) vi (k)
∂f

∂xi
d3k− e

ℏ
Ej

∫

B

ψ (k)
∂f

∂kj
d3k =

∫

B

ψ (k)C[f ]d3k (4.1)

where

Mψ =

∫

ψ (k) fd3k

is the moment related to the weight function ψ.

Since

∫

B

ψ (k)
∂f

∂kj
d3k =

∫

∂B

ψ (k) fnjdσ −
∫

B

f
∂ψ (k)

∂kj
d3k (4.2)
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with nj is j-th component of n̂ outward unit on the boundary ∂B of the domain B and dσ surface

element of ∂B, the equation (4.1) becomes

∂Mψ

∂t
+

∂

∂xi

∫

B

fψ (k) vi (k) d3k− e

ℏ
Ej

[∫

∂B

ψ (k) fnjdσ −
∫

B

f
∂ψ (k)

∂kj
d3k

]

=

∫

B

ψ (k)C[f ]d3k.

(4.3)

The term
∫

∂B
ψ (k) f n̂σ is zero when B is expanded to R

3, as in the parabolic and Kane approxi-

mation, because in order to guarantee the integrability condition the function f must tend to zero

sufficiently fast as k →∞ and when B is compact and ψ (k) is periodic and continuos on ∂B. This

latter condition is a consequence of the periodicity of f on B and the symmetry of B with respect

to the origin. Under these assumptions, with the term
∫

∂B
ψ (k) f n̂σ is zero, the (4.3) becomes

∂Mψ

∂t
+

∂

∂xi

∫

B

fψ (k) vi (k) d3k+
e

ℏ
Ej

∫

B

f
∂ψ (k)

∂kj
d3k =

∫

B

ψ (k)C[f ]d3k. (4.4)

The different models employ different expression of the weight functions set ψ (k) and number

of moments. We write the moment equations with weight functions (1, ℏk, E (k)) to obtain the law

of mass conservation and laws of impulse and energy balance

∂n

∂t
+
∂
(

nV i
)

∂xi
= 0 (4.5)

∂
(

nP i
)

∂t
+

(

nU ij
)

∂xj
+ neEi = nCiP (4.6)

∂ (nW )

∂t
+
∂
(

nSi
)

∂xj
+ neVkE

k = nCW (4.7)
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with

n =

∫

B

fd3k (4.8)

V i =
1

n

∫

B

fvid3k (4.9)

W =
1

n

∫

B

fE (k) d3k (4.10)

Si =
1

n

∫

B

fviE (k) d3k (4.11)

P i =
1

n

∫

B

fℏkid3k (4.12)

U ij =
1

n
=

∫

B

fviℏkjd3k (4.13)

where n is the electron density, W is the average electron velocity, Si is the flux of energy, P i is the

average crystal momentum and U ij is the flux of crystal momentum. The collisional terms have

the following expression

CiP =
1

n

∫

B

C [f ] ℏkid3k (4.14)

CW =
1

n

∫

B

C [f ] E (k) d3k (4.15)

and they represent the production of the crystal momentum balance equation and the production

of the energy balance equation, respectively.

We can choice a new set of weight functions (1,v (k) , E (k)), but under parabolic band approxi-

mation both of sets are equivalent.

For time-dependent simulation, a convenient choice of the set (1, ℏk, E (k) , E (k)v (k)) [41],

from which one obtain the balance equation for the crystal momentum, the balance equation

for the electron energy and the balance equation for the electron energy flux and the continu-

ity equation. In this last equation on the right-hand side it should appear a term due to the

generation-recombination mechanism, but this effects is relevant for times of order 10−9 that in

most applications can be neglected because the characteristic times are the order of a fraction of
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picoseconds. The set of balance equations reads as:

∂n

∂t
+
∂
(

nV i
)

∂xi
= 0 (4.16)

∂
(

nP i
)

∂t
+

(

nU ij
)

∂xj
+ neEi = nCiP (4.17)

∂ (nW )

∂t
+
∂
(

nSi
)

∂xj
+ neVkE

k = nCW (4.18)
(

nSi
)

∂t
+

(

nF ij
)

∂xj
+ neEjG

ij = nCiW (4.19)

with

F ij =
1

n

∫

B

fvivjE (k) d3k (4.20)

Gij =
1

n
=

∫

B

1

ℏ
f
∂

∂kj
(Evi) d3k (4.21)

CiW =
1

n

∫

B

C[f ]E (k) d3k (4.22)

where F ij is the flux of energy, CiW is the energy production.

For example, the continuity equation (4.16) can be obtained from (4.3), assuming ψ (k) = 1. In

fact, it follows that:

∫

B

∂f

∂t
d3k+

∫

B

∂

∂xi
f (k) vi (k) d3k = 0

∂

∂t

∫

B

fd3k+
∂

∂xi

∫

B

f (k) vi (k) d3k = 0

because

∫

B

f
∂(1)

∂k
dk = 0

∫

B

C[f ]dk = 0. (4.23)

Then,

∂n (x, t)

∂t
+

∂

∂xi
(n (x, t)V (x, t)) = 0 (4.24)

where V (x, t) is the macroscopic velocity.
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4.2.1 The Drift-Diffusion equations

In this subsection we introduce a derivation of DD model from Boltzmann transport equation by

the method of moments [49]. This model is introduced from merely macroscopic considerations

regarding to the gradient of the electric potential and the gradient of the density, as a consequence

we take into account the first order and the second order moments (4.5) and (4.6). Assuming that

if the external electric field is zero, we have the relaxation of the system to equilibrium and, in the

(4.6) equation, the production of the crystal momentum balance can be approximated to

nCip ≃ −
nPi

τp
(4.25)

where τp > 0 is the impulse relaxation time. Then the (4.6) equation can be rewrite

∂
(

nP i
)

∂t
+

∂

∂xj
+ neEi = −nPi

τp
. (4.26)

Under assumption of the parabolic band, we have

nP i =

∫

B

fℏkid3k = m∗
∫

B

fvid3k = m∗V i, nU ij =

∫

B

fviℏkjd3k =

∫

B

ℏ
2k

ikj

m∗
fd3k. (4.27)

From (4.27), we have

tr (nU) =

∫

B

ℏ
2k2

m∗
fd3k = 2nW. (4.28)

Let us the closure relation

enU ij = nPδij with nP = nkBTL. (4.29)

The ideal gas law can be used under condition of the parabolic band approximation and the low

electron densities. From (4.28) and (4.29) equations, we obtain

W =
3

2
kBTL. (4.30)
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This means that in these approximations only the internal energy contributes to the total energy

of the electrons. Since the DD model is valid for the macroscopic time scale, we can assume

|∂nP
i

∂t
| ≪ nP i

τp
, (4.31)

so that the term
∂nP i

∂t
can be neglected. Under previous conditions, the (4.6) becomes

kBTL
∂n

∂xi
+ neEi = −nPi

τp
. (4.32)

Moreover nP i = m∗nV i = −m∗J in, the current density is given by

J in =
kBTLτp
m∗

∂n

∂xi
+
eτp
m∗

nEi. (4.33)

Let us µn =
eτp
m∗

e Dn =
kBTLτp
m∗

, we obtain

J in = µnnE
i +Dn

∂n

∂xi
. (4.34)

For a unipolar n-type semiconductor device, the DD equations are given by

∂n

∂t
−∇xJn = 0 (4.35)

Jn = µnnE+Dn∇xn (4.36)

∇2φ (x) = − e

ǫ0ǫs
[Nd (x)−Na (x)− n (x, t)] . (4.37)

While for the bipolar semiconductor device, the DD equations are given by

∂n

∂t
−∇xJn = Gn −Rn (4.38)

∂p

∂t
−∇xJp = Gp −Rp (4.39)

Jn = µnnE+Dn∇xn (4.40)

Jp = −µppE+Dp∇xp (4.41)

∇2φ (x) = − e

ǫ0ǫs
[p (x, t)− n (x, t)−Na (x) +Nd (x)] (4.42)

where Gn, Rn, Gp and Rp are the terms of generation and recombination, respectively for the

electrons and holes.
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We remark that at the sub-micrometer regime, some assumptions of the DD model lost their

validity. At small length scales, the increasing and rapidly change of the electric field inside the de-

vices give non-local and hot-carrier effects, which dominate device performance. For these reasons,

the modern industrial applications must take into account these phenomena in the miniaturize of

semiconductor devices. To overcome some of the limitations of the DD model, an extensions have

been proposed which basically add an additional balance equation for the average carrier energy

[50], [9]. Since in the DD model the electron gas has been assumed to be in equilibrium with the

lattice temperature, in its extensions an additional driving term is added to the current relation,

which will be proportional to the gradient of the carrier temperature. In fact, if the electric field

rapidly increases, the average energy lags behind the electric field, and the assumption of local equi-

librium becomes invalid. Due to this lag, that the maximum energy could be considerably smaller

than the one predicted by the local energy balance equation. In some cases, the lag of the average

energy gives rise to an overshoot in the carrier velocity. The velocity overshoot is risen because the

mobility depends, to first order, on the average energy and it does not on the electric field. Since

the mobility has not yet been reduced by the increased energy, but the electric field is already large,

in the velocity an overshoot is observed until the carrier energy comes into equilibrium with the

electric field again [19].

4.2.2 Hydrodynamical models

Bløtekjaer [9] derived conservation equations by taking into account the moments of the BTE

using the weight functions one, ℏ, E . As shown in previous section, these weight functions define
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the moments of zeroth, first, and second order. Under following assumptions

Cn = 0 (4.43)

Cp = −
P

τp
(4.44)

CW = −W −W0

τW
(4.45)

with τp and τW the momentum and energy relaxation times, respectively, the moment equations

(4.16), (4.18) and (4.19) can be written as follows

∂n

∂t
+
∂
(

nV i
)

∂xi
= 0 (4.46)

∂
(

nP i
)

∂t
+

(

nU ij
)

∂xj
+ neEi = −nC

i
P

τp
(4.47)

∂ (nW )

∂t
+
∂
(

nSi
)

∂xj
+ neVkE

k = −W −W0

τW
. (4.48)

This equations set is not closed, but it contains more unknowns than equations. Closure relations

have to be found to express the equations in terms of the unknowns n, V and W . Assuming the

approximation of the parabolic band and that the term ℏk can be separated into a random part

m∗c and the mean value m∗V [9], [6]

ℏk = m∗ (V+ c) (4.49)

where V is given by (4.10) and

∫

B

fcid3k = 0. (4.50)

From the equation (4.13), the tensor U ij can be expressed by

nU ij =
1

m∗

∫

B

fℏkiℏkjd3k

= m∗nV iV j +m∗
∫

B

fcicjd3k.

Let us θij =
1

n

∫

B
fcicjd3k, expressed by

θij =
1

3
θkkδ

ij + θ<ij> (4.51)
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where θkk =
1

n

∫

B
fc2d3k, with c =| c |. Then we have

nU ij = m∗nV iV j +
1

3
m∗θkkδ

ij +m∗nθ<ij>. (4.52)

Neglecting anisotropic tensor θ<ij>, we obtain

nW =
1

2
tr (nU) =

1

2

(

m∗nV 2 +m∗nθkk

)

. (4.53)

Supposed that the energy band is parabolic, it is reasonable to assume that the electrons tempera-

ture T and lattice one are different, so that the energy is given by

nW =
1

2
m∗nV 2 +

3

2
nkBT. (4.54)

By comparing (4.53) and (4.54)

nθkk =
3nkBT

m∗
and nθij =

nkBT

m∗
δij . (4.55)

the balance impulse equation becomes

∂nV i

∂t
+

∂

∂xj

[

nV iV j +
nkBT

m∗
δij

]

+
neEi

m∗
= −nV

i

τp
. (4.56)

Furthermore, using the condition (4.50) a suitable approximation for the energy flux density is

given by

nSi =

∫

B

fviEkd3k =

∫

B

f
ℏki

m∗
ℏ
2k2

2m∗
d3k

=
m∗

2

∫

B

f
[

V iV 2 + 2V iV jcj + V ic2 + ciV 2 + 2ciV jcj + cic2
]

d3k

=
m∗

2

[

nV iV 2 + nV iθkk + 2V j

(

1

3
nθkkδ

ij

)

+

∫

B

fcic2d3k

]

=

(

1

2
nm∗V 2 +

5

2
nkBT

)

V i +
m∗

2

∫

B

fcic2d3k.

We define the heat flux

nqi =
m∗

2

∫

B

fcic2d3k (4.57)

66



and using (4.54), the energy flux density can be approximated to

nSi =

(

1

2
nm∗V 2 +

5

2
nkBT

)

V i + nqi = (nW + nkBT )V
i + nqi. (4.58)

Bløtekjaer used as closure relation the heat flux by Fourier ’s law

nqi = −κ ∂T
∂xi

, (4.59)

where κ is thermal conductivity, that is given by the Wiedemann-Franz law as

κ =

(

5

2
− p

)(

kB
e

)2

neµnT

with p is a correction factor. With previous approximations, the HD model equations can be

rewritten as follow

∂n

∂t
+
∂
(

nV i
)

∂xi
= 0 (4.60)

∂
(

nV i
)

∂t
+

∂

∂xj

(

nV iV j +
nkBT

m∗
δij

)

+
neEi

m∗
= −nV

i

τp
(4.61)

∂ (nW )

∂t
+

∂

∂xj

[

(nW + nkBT )V
j − κ ∂T

∂xi

]

+ neVkE
k = −nW − nW0

τW
(4.62)

nW =
1

2
m∗nV 2 +

3

2
nkBT (4.63)

∇2φ (x) = − e

ǫ0ǫs
[Nd (x)−Na (x)− n (x, t)] . (4.64)

The energy balance equation is frequently simplified by the assumption that the time derivative of

the mean electron energy
∂W

∂t
is small compared to the other terms and that the kinetic part in

W can also be neglected

W ≈ 3

2
kBT. (4.65)

This non-degenerate approximation is justified for the low electron densities in the every region of

the simulation, where velocity overshoot can be observed. The velocity overshoot in hydrodynamic

models depends on the choice of the energy relaxation time. The energy relaxation times are

parameters which depend on material, device geometry and doping, so their determination ahead
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of time is not possible. To avoid the best choice of the energy relaxation times, an useful and

important method is a direct solution of the BTE, using the Monte Carlo.

4.2.3 The Energy Transport models

The Energy-Transport models are now widely used in practical and industrial applications. These

models are based on a general assumption about the distribution function is isotropic and, in partic-

ular, normally a Maxwellian distribution. The model equations are given by the phenomenological

constitutive equations for the particle flux and energy flux and the closure relation of this model is

based on the Maximum Entropy Principle (MEP). This model takes into account all the relevant

scattering mechanisms, i.e. scattering of electrons with acoustic and non-polar phonons and with

impurities, and has been formulated also for non-parabolic bands [3]. For example, for the sili-

con semiconductors, the scattering mechanisms regard to those of electrons with non-polar optical

phonons, acoustic phonons and impurities of the crystal. Instead the electron-electron scatterings

as well as the degeneration effects may be neglected, but the thermal effects related to the electron

flow through the crystal are not neglected. The MEP-ET model is represented, except the Poisson

equation for the electric potential, by a hyperbolic quasilinear system of balance law.

To obtain the ET model, we assume that the following scaling holds

t = O

(

1

δ2

)

, xi = O

(

1

δ

)

V = O (δ) , S = O (δ) , τW = O

(

1

δ2

)

. (4.66)

Relation (4.66)1 means a long time scaling, while the (4.66)2 indicates a diffusion approximation.

The assumptions (4.66)3 and (4.66)4 are consistent with the small anisotropy condition in the

derivation of the fM , while the relation (4.66)5 means that the energy must relax to equilibrium

slower than the velocity and energy flux.

The set of equation is given by

∂n

∂t
+ div (nV) = 0 (4.67)

68



∂(nW )

∂t
+ div (nS)− qnV∇φ = nCW (4.68)

h2△φ = q (n− c) (4.69)

with E = −∇φ and c the doping profile that is a given function of the position.

Some special cases considered in the literature are

• the Chen model et al [13]:

CW = −3

2
kB

(T − TL)
τW

nV = −µ0kBTL
q

(

∇n− qn

kBT
∇φ

)

nS = −3

2

µ0kBTL
q

[∇ (kBnT )− qn∇φ]

• the Lyumkis model et al [31]:

CW = − 2√
π

(T − TL)
τWT

1
2

nV = −2µ0√
π

[

∇
(

nT
1
2

)

− n

T
1
2

∇φ
]

nS = −4µ0√
π

[

∇
(

nT
3
2

)

− nT 1
2∇φ

]

where µ0 is the low-field mobility and τ0 is the energy relaxation time, usually taken as a constant.

We observed that in the standard DD model

∂n

∂t
+ div (nV) = 0 (4.70)

J = −Dn∇n+ µ0nE, (4.71)

consequently, we have the following relationship J = nV.
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Chapter 5

Energy-transport model equations

with constant lattice temperature

In this chapter we consider an energy-transport model, in the case of homogeneous silicon semicon-

ductor, and find some particular constant solutions. If let us a constant solution as a solution of an

initial value problem, we can study the perturbation which will be amplified by a factor depending

on device length, with physical parameters fixed [34].

We consider the ET equations (4.67),(4.68),(4.69), (according to Chen model) in the one-dimensional

case, under condition of a low electric field

∂n

∂t
+
∂J

∂x
= 0 (5.1)

∂(nW )

∂t
+
∂(nS)

∂x
− qJ ∂φ

∂x
= nCW (5.2)

h2
∂2φ

∂x2
= q (n− c (x)) (5.3)
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with

J = −µ0kBTL
q

(

∂n

∂x
− qn

kBT

∂φ

∂x

)

(5.4)

nS = −3

2

µ0kBTL
q

[

∂(kBnT )

∂x
− qn∂φ

∂x

]

(5.5)

CW = −3

2
kB

(T − TL)
τW

. (5.6)

The scaled variables have been obtained from the original ones by the transformations

n = ñc∗ t = t̃t∗ x = x̃l∗ φ = UT φ̃ W = W̃W ∗ J = J̃J∗ (5.7)

withW ∗ = kBTL, l
∗, c∗, t∗ are typical values of the energy, characteristic length, doping density and

time respectively, UT =
kBT

q
is the thermal voltage and J∗ = −µ0UT

l∗5
is the characteristic electron

momentum density.

We can rewritten the set of equations. The (5.1) equation becomes

∂(ñc∗)

∂
(

t̃t∗
) − µ0UT

∂

∂x

(

∂c∗ñ

∂l∗x̃
− qc∗

kBTL

ñ

T̃

UT
l∗
∂φ̃

∂x̃

)

= 0

from which we get

l∗−3

t∗
∂ñ

∂t̃
− µ0UT

l∗5
∂

∂x̃

[

∂ñ

∂x̃
+
ñ

T̃
Ẽ

]

= 0. (5.8)

In order to write the (5.2) equation, taking in account the (5.7) and using (5.4), (5.5) e (5.6), we

have

c∗W ∗

t∗
∂(ñW̃ )

∂t̃
− 3

2
µ0UT

W ∗c∗

l∗2
∂

∂x̃

[

∂(ñT̃ )

∂x̃
+ ñẼ

]

− qJ̃J∗UT
l∗
∂φ̃

∂x̃
= nCW = −3

2

c∗

t∗
ñ

(

kBTLT̃ − kBTL
)

τ̃W
.

Then the second equation reads

l∗−3kBTL
t∗

∂(ñW̃ )

∂t̃
− 3

2

µ0UTkBTLl
∗−3

l∗2
∂

∂x̃

[

∂(ñT̃ )

∂x̃
+ ñẼ

]

− kBTLl
∗−3µ0UT

l∗2
J̃Ẽ = −3

2

l∗−3kBTL
t∗

ñ
(T̃ − 1)

˜τW

that, simplified, becomes

1

t∗
∂(ñW̃ )

∂t̃
− 3

2

µ0UT

l∗2
∂

∂x̃

[

∂(ñT̃ )

∂x̃
+ ñẼ

]

− µ0UT

l∗2
J̃Ẽ = −3

2

1

t∗
ñ
(T̃ − 1)

˜τW
(5.9)
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Now, the Poisson equation is given by

−h
2UT l

∗

q

∂Ẽ

∂x̃
= ñ− c̃

from which, we have

∂Ẽ

∂x̃
= −h̃ (ñ− c̃) . (5.10)

with h̃ = − q

UTh2l∗
.

5.1 Analysis of steady-state solution

Using the new variables, we want to find a stationary solution. Then, we consider the following set

of equations

− µ0UT

l∗5
∂

∂x̃

[

∂ñ

∂x̃
+
ñẼ

T̃

]

= 0 (5.11)

− 3

2

µ0UT

l∗2
∂

∂x̃

[

∂(ñT̃ )

∂x̃
+ ñẼ

]

+
µ0UT

l∗2
J̃Ẽ = −3

2

ñ

t∗
(T̃ − 1)

˜τW
(5.12)

− h2UT l
∗

q

∂Ẽ

∂x̃
= ñ− c̃, (5.13)

which becomes

∂

∂x̃

[

∂ñ

∂x̃
+
ñẼ

T̃

]

= 0 (5.14)

∂

∂x̃

[

∂(ñT̃ )

∂x̃
+ ñẼ

]

+
2

3
J̃Ẽ =

l∗2

µ0UT t∗
ñ
(T̃ − 1)

˜τW
(5.15)

∂Ẽ

∂x̃
= −h̃ (ñ− c̃) . (5.16)

Now, we determine a constant solution and choose as variables the charge concentration n, the

current density J and temperature T . Under condition of constant concentration we have that

n0 = c, while from (5.14) we obtain J0, that is expressed by

n0E0

T0
= J0. (5.17)
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Finally from (5.15), we find the expression for temperature T as

2

3
J0E0 = An0 (T0 − 1)

with A =
l∗2

t∗µ0UT τW
. Hence, replacing (5.17) in the last expression, we have

T0 =
3A±

√

9A2 + 24AE2
0

6A
.

Summarizing, the constant solution is given by

n0 = c

n0E0

T0
= J0

T0 =
3A+

√

9A2 + 24AE2
0

6A

Let us linearize the equations to analyses the behavior near the constant solution. We consider

ñ = n0 + δñ

T̃ = T0 + δT̃

Ẽ = E0 + δẼ

Then, the set of equations (5.14), (5.15) and (5.16) becomes

∂δñ

∂x̃
+
n0E0

T0
+
E0

T0
δñ+

n0
T0
δẼ − n0E0

T0
∗
δT̃ = J0 (5.18)

n0
∂2(δT̃ )

∂x̃2
+ J0

∂(δT̃ )

∂x̃
+

2

3
J0E0 +

2

3
J0δẼ = A

(

n0 (T0 − 1) + δñ (T0 − 1) + n0δT̃
)

(5.19)

∂(δẼ)

∂x̃
= −h̃ (n0 + δñ− c) . (5.20)

We write the characteristic equation, so we assume

δñ = k1e
λx (5.21)

δT̃ = k2e
λx (5.22)

δẼ = k3e
λx. (5.23)
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Replacing the (5.21), (5.22) and (5.23) in the set of equations, we have:

[

k1λe
λx +

n0E0

T0
+
n0
T0
k3e

λx +
E0

T0
k1e

λx − n0E0

T0
2 k2e

λx

]

= J0 (5.24)

n0λ
2k2e

λx + J0λk2e
λx +

2

3
J0E0 +

2

3
J0k3e

λx = A
[

n0 (T0 − 1) + k1e
λx (T0 − 1) + n0k2e

λx
]

(5.25)

λk3e
λx = −h̃

(

n0 + k1e
λx − c

)

. (5.26)

Hence, we can obtain the characteristic equation























λ+
E0

T0
−n0E0

T0
2

n0
T0

−A (T0 − 1) n0λ
2 + J0λ−An0

2

3
J0

h̃ 0 λ























= 0.
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Let us study the dependence on charge density of the real part of the term λl∗, where λ are

eigenvalues [34]. These results are obtained numerically from the characteristic equations for typical

values of silicon parameters, that are shown in table.

Parameter Physical meaning Numerical value

q elementary charge 1.6× 10−19 C

UT thermal voltage at T0 = 300 K 0.026 V

µ0 mobility constant (low field) 0.145µm2/V ps

l∗ length of device 0.1− 1µm

c∗ doping concentration 1µm−3

kB the Boltzmann constant 1.38× 10−23 J/K

τW energy relaxation time 0.4 ps

n concentration of charge 102-104 µm−3

εs Silicon relative dielectric constant 11.7

ε vacuum dielectric constant 8.85× 10−18 C/V µm

Table 5.1: Physical parameters (Si)

The Re(λl∗) are plotted against the longitudinal mean electric field for several values of charge

density n and characteristic length l∗. Let be the applied electric field between 0.1V/µm and

0.5V/µm, the charge density n between 10µm−3 and 103µm−3 and characteristic length l∗ between

0.1µm and 0.8µm. In some cases we note how two branches collapse into one when the terms λl∗

become complex.

These plots point out the dependence critically of the characteristic length. For small fixed value

of n and l∗, in particular n = 10µm−3, l∗ = 0.1µm or l∗ = 0.2µm, the Re(λl∗) is rather small in

absolute value. Then the stationary solution of the system has value near constant solution. At
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Figure 5.1: n = 10µm−3 l∗ = 0.1µm
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Figure 5.2: n = 10µm−3 l∗ = 0.2µm
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Figure 5.3: n = 10µm−3 l∗ = 0.4µm
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Figure 5.4: n = 10µm−3 l∗ = 0.8µm

the same charge density, with increasing of l∗, for example l∗ = 0.8µm, some Re(λl∗) become large

in absolute value and the gap between steady-state and constant solutions increases.

If let us the charge density is n = 102µm−3 and l∗ = 0.1µm or l∗ = 0.2µm, some Re(λl∗) are

small, while others assume value rather large in absolute value. Same results are obtained for

n = 103µm−3.
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Figure 5.5: n = 102µm−3 l∗ = 0.1µm
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Figure 5.6: n = 102µm−3 l∗ = 0.2µm

0 1 2 3 4 5
−15

−10

−5

0

5

10

15

E

λ
 l
*

Figure 5.7: n = 102µm−3 l∗ = 0.4µm
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Figure 5.8: n = 102µm−3 l∗ = 0.8µm
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Figure 5.9: n = 103µm−3 l∗ = 0.1µm
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Figure 5.10: n = 103µm−3 l∗ = 0.2µm
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Figure 5.11: n = 103µm−3 l∗ = 0.4µm
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Figure 5.12: n = 103µm−3 l∗ = 0.8µm
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5.2 A stable solution of energy-transport model

In this section we study the stability of a particular solution. We consider a perturbation, around

constant solution, depending on the space and on the time. In this case we choose as variables

n, nW, φ and rewrite the scaling equations of the mathematical model. As a consequence, we obtain

a new set of ET equations (with the Chen model), in one-dimensional case. The equation (5.1)

becomes

∂(ñc∗)

∂
(

t̃t∗
) − µ0UT

l∗2
∂

∂x̃

(

c∗
∂ñ

∂x̃
− 3

2

qc∗2ñ2

c∗W̃W ∗
UT

∂φ̃

∂x̃

)

= 0

from which we have

∂ñ

∂t̃
− µ0UT t

∗

l∗2
∂

∂x̃

(

∂ñ

∂x̃
− ñ2

W̃

∂φ̃

∂x̃

)

= 0.

The equation (5.2) is given by

c∗W ∗

t∗
∂W̃

∂t̃
+

∂

∂x̃

[

−µ0UT
(

c∗W ∗

l∗
∂W̃

∂x̃
− 3

2
qUT

c∗ñ

l∗
∂φ̃

∂x̃

)]

− qJ∗J̃ UT
l∗
∂φ̃

∂x̃
= −c

∗W ∗

t∗

(

W̃ − 1
)

˜τW

that can be simplified

∂W̃

∂t̃
− µ0UT t

∗

l∗2
∂

∂x̃

[

∂W̃

∂x̃
− ñ∂φ̃

∂x̃

]

+
2

3

µ0UT t
∗

l∗2
J̃
∂φ̃

∂x̃
= −c

∗W ∗

t∗

(

W̃ − 1
)

˜τW
.

At the least, we rewritten the Poisson equation

h2
UT

l∗2
∂2φ̃

∂x̃2
= q (c∗ñ− c∗c̃)

∂2φ̃

∂x̃2
= h (ñ− c̃ (x)) with h =

qc∗l∗2

h2UT
.

The set of equations is

∂ñ

∂t̃
− µ0UT t

∗

l∗2
∂

∂x̃

(

∂ñ

∂x̃
− ñ2

W̃

∂φ̃

∂x̃

)

= 0 (5.27)

∂W̃

∂t̃
− µ0UT t

∗

l∗2
∂

∂x̃

[

∂W̃

∂x̃
− ñ∂φ̃

∂x̃

]

+
2

3

µ0UT t
∗

l∗2
J̃
∂φ̃

∂x̃
= −c

∗W ∗

t∗

(

W̃ − 1
)

˜τW
(5.28)

∂2φ̃

∂x̃2
= h (ñ− c̃ (x)) . (5.29)
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Let us linearize the equations and study the behavior near the constant solution, then we consider

ñ (x, t) = n0 + δñ (x, t) (5.30)

W̃ (x, t) =W0 + δW̃ (x, t) (5.31)

φ̃ (x, t) = φ0 + δφ̃ (x, t) (5.32)

Then the set of equations can be rewritten as follow

∂(δñ)

∂t̃
− µ0UT t

∗

l∗2
∂

∂x̃

[

∂(δñ)

∂x̃
− n20
W0

∂(δφ̃)

∂x̃

]

= 0 (5.33)

∂(δW̃ )

∂t̃
− µ0UT t

∗

l∗2

[

∂2(δW̃ )

∂x̃2
− n0

∂2(δφ̃)

∂x̃2

]

+
2

3

µ0UT t
∗

l∗2
J̃
∂(δφ̃)

∂x̃
= −W0 + δW̃ − 1

˜τW
(5.34)

∂2(δφ̃)

∂x̃2
= h (n0 + δñ− c0 − δc̃ (x)) (5.35)

The characteristic equation

We search solutions ñ (x, t), W̃ (x, t) and φ̃ (x, t) in which

δñ (x, t) = c1e
i(kx−ωt)

δW̃ (x, t) = c2e
i(kx−ωt)

δφ̃ (x, t) = c3e
i(kx−ωt)

To study the stability, we must take into account the characteristic equation. For this reason

we assume that the family of functions (5.30), (5.31) and (5.32) are solutions of the set of given

equations (5.33), (5.34), (5.35) and we write the characteristic equation. If we consider the first

equation (5.33), we have

−c1iωei(kx−ωt) −A
[

−c1k2ei(kx−ωt) +
n20
W0

k2c3e
i(kx−ωt)

]

= 0. (5.36)

From the (5.34) equation, we obtain

−ic2ωei(kx−ωt) −A
[

−c2k2ei(kx−ωt) + n0k
2c3e

i(kx−ωt)
]

+ i
2

3
AJkc3e

i(kx−ωt) = −W0 + c2e
i(kx−ωt) − 1

˜τW
,

(5.37)
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and from the (5.35) Poisson equation, we have

−k2c3ei(kx−ωt) = h
(

n0 + c1e
i(kx−ωt) − c0

)

. (5.38)

So, we can obtain the characteristic equation by the determinant of the following matrix























−iω +Ak2 0
−An20
W0

k2

0 −iω +Ak2 +
1

˜τW
−An0k2 + i

2

3
AJk

−h 0 −k2























= 0.

We obtain:

iω = Ak2 +
1

˜τW
; iω = Ak2 +

hAn20
W0

. (5.39)

We find the eigenvectors b1 and b2 solving the follow systems

• if iω = AK2 +
1

˜τW


























































−c1
(

AK2 +
1

˜τW

)

−A
(

−c1k2 +
n20
W0

k2c3

)

= 0

−c2AK2 +
1

˜τW
−A

(

−c2k2 + n0k
2c3

)

+ i
2

3
AJkc3 +

c2
˜τW

= 0

−k2c3 = hc1

b1 = (0, c2, 0)

• If iω = Ak2 +
hAn20
W0
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









































−c1
(

hAn20
W0

+Ak2
)

−A
(

−c1k2 +
n20k

2

W0
c3

)

= 0

−c2
(

hAn20
W0

+Ak2
)

−A
(

−c2k2 + n0k
2c3

)

+ i
2

3
AJkc3 +

c2
˜τW

= 0

−k2c3 = hc1

b2 =









c3
k2

h
,−

(

An0k
2 − i2

3
AJk

)

(

1

τ̃0
− hAn20

W0

) c3, c3









.

We have the solution

(n,W, φ) = (n0,W0, φ0) + b1e
i(kx−ωt) + b2e

i(kx−ωt) (5.40)

Since k ∈ C, we find

• k2 = 1

A

(

iω − 1

˜τW

)

, from which we find

kn =
4

√

ω2 ˜τW
2 + 1

A2 ˜τW
2 eiθn , n = 0, 1 (5.41)

with θ0 =
arctan (−ωτ0) + π

2
and θ1 = θ0 + π,

• k2 = iω

A
− hn20
W0

, from which we find

kn =
4

√

(w

A

)2
+

(

hn20
W0

)2

eiθn , n = 0, 1 (5.42)

with θ0 =
1

2
arctan

(

− ωW0

Ahn20

)

and θ1 = θ0 + π.

We can conclude that (5.40) is an asymptotic stable solution for a unlimited domain.
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Chapter 6

The symmetry analysis of differential

equations

The symmetry analysis of differential equations was introduced by Sophus Lie in latter part of 19th

century, and it played an important role in the theory of continuous groups. These groups, known

as Lie’s Groups, have had a fundamental impact on all areas of mathematics, pure and applied, as

algebraic topology, differential geometry, invariant theory, bifurcation theory, numerical analysis,

classic and quantum mechanics and so on.

Lie’s theory represents an efficient and powerful tool to solve complicated problems, that involve

ordinary and partial differential equations. It is useful as example to determine invariant solutions

of initial and boundary value problems, to study conservation laws, to construct relations between

different differential equations that turn out be equivalent. The symmetry analysis is a completely

algorithmic procedure and, in the last years, a several symbolic manipulation computer programs

have been developed for this task, because it involves a lot of cumbersome and many calculations.

A symmetry group of a system of differential equations is a group that transforms solutions of

the system to the other solutions of the same system. The non-linear conditions of invariance of
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the system under group transformations could, in the case of a continuous group, be replaced by

equivalent, but simpler, linear conditions, reflecting a form of infinitesimal invariance of system

under generators of the group.

We can use the symmetry groups to make a classification of families of differential equations,

depending on arbitrary functions or parameters. Another, we can start from a known solution

and find a means of classifying different families of symmetry solutions, in fact two solutions are

equivalent if one can be transformed into the other by some group element. Lie’s fundamental

theorems show that symmetry groups are characterized by their infinitesimal generators. Lie groups

and hence their infinitesimal generators, can be naturally extended or ”prolonged” to act on the

space of independent variables, dependent variables and derivatives of the dependent variables up

to any finite order. As a consequence, the seemingly intractable non-linear conditions of group

invariance of a given system of differential equations reduce to linear equations determining the

infinitesimal generators of the group. Since these determining equations form an overdetermined

system of linear partial differential equations, one can usually determine the infinitesimal generators

in closed form. Given a system of differential equations, Lie groups transformations are useful to

lower the order or eventually reduce order of the equations, to determine particular solutions, called

invariant solution or generate new solutions, once a special solution is known. If a system of partial

differential equations is invariant under a Lie group of point transformations, the invariant solutions

are invariant under some subgroup of the full group admitted by the system. These solutions result

from solving a reduced system of differential equations with fewer independent variables.

6.1 Basic theory of Lie Groups of transformation

In this subsection, we introduce the basic ideas of Lie Groups of transformations necessary to study

invariance properties of differential equations.
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Definition 6 One-parameter group of transformations.

Let us consider a domain D ⊆ R
n and a subset S ⊆ R. The set of transformations

x∗ = Z (x, a) Z : D × S → D (6.1)

defined for each x ∈ D and depending on the parameter a ∈ S, with µ(ε, δ) defining a law of

composition of parameters a and δ in S, forms a one-parameter group of transformations on D if:

(i) for each value of a ∈ S the transformations are one-to-one onto D;

(ii) S, with the law of composition µ, forms a group G with identity a0;

(iii) Z (x, a0) = x, ∀x ∈ D ;

(iv) Z (Z (x, a) , δ) = Z (x, µ (a, δ)), ∀x ∈ D, ∀a, δ ∈ D

Definition 7 Lie Group transformation

A set of transformations (6.1) defines a one-parameter Lie group of transformations if, in addi-

tion to satisfying axiom (i)− (iv) of the previous definition, satisfies these properties:

(v) a is a continuos parameter, i.e. S is an interval in R;

(vi) Z ∈ C∞ with respect to x ∈ D and it is an analytic function of a ∈ S;

(vii) µ (a, δ) is an analytic function of a and δ, ∀a, δ ∈ S.

We can always re-parametrize a given group in terms of a parameter a such that for parameter

a1 e a2 the law of composition becomes φ (a1, a2) = a1 + a2.

6.1.1 Infinitesimal Transformations

We consider a one-parameter (a) Lie group of transformations

x∗ = Z (x, a) (6.2)
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with identity a = 0 and law of composition µ. Let us the function Z (x, a) into the Mc Laurin series

respect to the parameter a in the neighbourhood of a = 0

x∗ = x+ a

(

∂Z (x; a)

∂a

∣

∣

∣

a=0

)

+
a2

2

(

∂2Z (x; a)

∂a2

∣

∣

∣

a=0

)

+ ... = x+ a

(

∂Z (x; a)

∂a

∣

∣

∣

a=0

)

+O
(

a2
)

.

(6.3)

Let us

ζ (x) =
∂Z (x; a)

∂a

∣

∣

∣

a=0
, (6.4)

the transformation x + aζ (x) is called the infinitesimal transformation of the Lie group of trans-

formations (6.2) and the components of ζ (x) are called the infinitesimal of (6.2).

The following theorem ensures that the infinitesimal transformations contain the essential infor-

mation to characterize a one-parameter Lie group of transformations.

Theorem 2 First fundamental Theorem of Lie

There exists a parametrization τ(a) such that the Lie group of transformations (6.2) is equivalent

to the solution of the initial value problem for the system of first order differential equations

dx∗

da
= ζ (x∗) with x∗ = x, τ = 0. (6.5)

For a given differential equation we must know the admitted infinitesimal generators.

Definition 8 Infinitesimal generators

The infinitesimal generator of the one-parameter Lie group of transformations (6.2) is

X = ζ (x) · ∇ =

n
∑

i=1

ζi (x)
∂

∂xi
(6.6)

where ∇ is the gradient operator

∇ =

(

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)

.
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and for any differential function F (x) = F (x1, x2, ..., xn), we have

XF (x) = ζ (x) · ∇F (x) =
n
∑

i=1

ζi (x)
∂F (x)

∂xi
. (6.7)

As a consequence a one-parameter Lie group of transformations, which is “equivalent” to its in-

finitesimal transformation, is also equivalent to its infinitesimal generator.

Now, we can introduce the concept of invariance of a function with respect to a Lie group of

transformations and give the relative corresponding invariance criterion.

Definition 9 Invariants.

An infinitely differentiable function F (x) is an invariant function (or, simply, an invariant) of the

Lie group of transformations (6.2) if, for any group transformation (6.2),

F (x∗) ≡ F (x).

The invariance of a function is characterized in a simple way by means of the infinitesimal generator

of the group, as the following theorem shows.

Theorem 3 F (x) is invariant under a Lie group of transformations (6.2) if and only if

XF (x) = 0.

Given an invariant F (x), any function Φ(F (x)) is also invariant.

We can also define the invariance of a surface with respect to a Lie group.

Definition 10 Invariant surfaces.

A surface F (x) = 0 is an invariant surface with respect to the Lie group of transformations (6.2)

if F (x∗) = 0 when F (x) = 0.

This theorem immediately follows.
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Theorem 4 A surface F (x) = 0 is invariant under a Lie group of transformations (6.2) if and

only if

XF (x) = 0 when F (x) = 0.

6.1.2 Lie Groups of differential equations

In this section we describe the analytical method for calculation of infinitesimal generators of dif-

ferential equations. We consider a system Σ of q differential equations of order s, with independent

variables x ∈ R
n and m dependent variables u ∈ R

m. The space (x,u) of independent and depen-

dent variables will be called the base space of the differential equations. It is useful to introduce

an adapted notation

u(1) ≡
(

∂u1

∂x1
, ...,

∂u1

∂xn
, ...,

∂um

∂x1
, ...,

∂um

∂xn

)

(6.8)

and, in general, u(s) indicates the set of all sth- order partial derivatives of u with respect to x.

Let us a system Σ

F(x,u,u(1), ...,u(s)) = 0 (6.9)

with F = (F1, F2, ..., Fq) and

u = θ (x) ≡
(

θ1 (x) , θ2 (x) , ..., θm (x)
)

(6.10)

an its solution.

Definition 11 A one parameter Lie group of point transformations admitted by a system Σ is a

group of transformations of the form

x̂ = X(x,u, a), û = U(x,u, a) (6.11)

acting on the base space Rn+m of the independent and dependent variables that satisfies the following

two equivalent properties
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1. a transformation of the group maps any solution u = θ (x) of Σ into another solution of Σ;

2. a transformation of the group leaves Σ invariant, in the sense that the form of Σ is unchanged

in terms of the transformed variables for any solution u = θ(x) of Σ.

A Lie group of transformations admitted by a differential equation corresponds to a mapping of

each of its solutions to another solution of the same differential equation.

The transformations (6.11) of the base space determine suitable transformations for the deriva-

tives of the dependent variables u with respect to the independent variables x.

The transformations of the derivatives of the dependent variables lead to natural extensions

(prolongations) of the one-parameter Lie group of transformations (6.11). The one-parameter Lie

group of transformations (6.11) acts on the space (x,u), while the extended group acts, more in

general, on the space (x,u,u(1), . . . ,u(s)).

Definition 12 The one parameter Lie group of point transformations (6.11) leaves invariant the

system (6.9), i.e. is a point symmetry admitted by system (6.9), if its sth extension, leaves invariant

the surfaces

F(x,u,u(1), . . . ,u(s)) = 0.

All the information about the one-parameter Lie group of transformations (6.11) is contained in

its infinitesimal generator (6.6) that, for system under consideration, is written in the form

X =

n
∑

i=1

ξi(x,u)
∂

∂xi
+

m
∑

i=k

ηk(x,u)
∂

∂uk
. (6.12)

About the extended group we take in account its extended infinitesimal generator.

We write recursively the sth extension of generator (6.12). We start with the first order prolon-

gation

X(1) = X +
m
∑

k=1

n
∑

i=1

ηki
∂

∂uki
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where uki =
∂uk

∂xi
and

ηki = Diη
k −

n
∑

j=1

ukj Diξj

with Di the total derivatives with respect to xi.

Then the general sth extension of generator (6.12) (s > 1) recursively defined by

X(s) = Xs−1 +
m
∑

k=1

n
∑

i1=1

· · ·
n
∑

is=1

ηki1...is
∂

∂uki1...is

where uki1...is =
∂suk

∂xi1 . . . xis
and

ηki1...is = Disη
k
i1...is−1

−
n
∑

j=1

uki1...is−1j
Disξj . (6.13)

Theorem 5 Infinitesimal criterion for differential equations.

Let

X =
n
∑

i=1

ξi(x,u)
∂

∂xi
+

m
∑

k=1

ηk(x,u)
∂

∂uk
,

be the infinitesimal generator of the Lie group of point transformation (6.11) and let X(s) be its sth

extension. Then the one-parameter Lie group of point transformations (6.11) is admitted by system

(6.9), i.e. it is a point symmetry of system (6.9), if and only if

X(s)F(x,u,u(1), . . . ,u(s)) = 0 when F(x,u,u(1), . . . ,u(s)) = 0.

The infinitesimal criterion for the invariance of a system of partial differential equations leads

directly to an algorithm to determine the infinitesimal generators of the Lie group of point trans-

formations admitted by a given system of partial differential equations.

The equations (6.9) can be splitted with respect to the components of the remaining derivatives

of u, that can be arbitrarily varied. We put on equal to zero the coefficients of these partial

derivatives and obtain a system, called system of the determing equations or simply determining

system, that therefore is often an overdeterminated system of linear defferential equations for the

infinitesimal. The integration of equations of this system leads to the infinitesimal group. The

infinitesimal involves arbitrary constants and in some cases arbitrary functions.
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Invariant solutions of partial differential equations.

The function u = θ (x) with components uA = θA (x) (A = 1, 2, ...,m) is said to be invariant

solution of (6.9) if u = θ (x) is an invariant surface of transformation (6.11), and a solution of

(6.9), i.e. a solution is invariant if and only if

X
(

uA − θA (x)
)

= 0 for uA = θA (x) (A = 1, 2, ...,m) (6.14)

F
(

x,u,u(1), ...,u(s)

)

= 0 (6.15)

The equations (6.14), known as invariant surface conditions, have the form

ξ1 (x,u)
∂uA

∂x1
+ ...+ ξn (x,u)

∂uA

∂xn
= ηA (x,u) (A = 1, 2, ...,m) (6.16)

and can be solved by introducing the corresponding characteristic equations

dx1
ξ1 (x,u)

= ... =
dxn

ξn (x,u)
=

du1

η1 (x,u)
=

dum

ηm (x,u)
. (6.17)

This allows to express the function u = θ (x) as

uA = θA (I1 (x,u) , ..., In−1 (x,u)) (A = 1, 2, ...,m) . (6.18)

By substituting this form of u = θ (x) into (6.15), we obtain a reduced system of differential

equations, that involves (n− 1) independent variables Ik (x,u) , k = 1, 2, ..., n−1, called similarity

variables. The name similarity variables is due to the fact that the scaling invariance, i.e. the

invariance under similarity transformations, was one of the first example where this procedure has

been used. Solutions of the reduced system are the invariant solutions.
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Chapter 7

Thermal lattice effects and Energy

Transport model

The heating of the charge carriers and crystal lattice may strongly influence the behavior of semi-

conductor devices and even lower their performance. For the decreasing feature sizes, a very great

number of basic elements and a careful adjustment of fitting parameter must satisfy the required

accuracy [11]. We explained as in Hydrodynamic model, Bløtekjaer introduced as closure relation

the heat flux by Fourier’s law. This equation has been widely and successfully used in conventional

problems, when the characteristic dimensions of the physical system are much greater than the

mean-free path and the time scale of interest is much longer than the mean-free time of the energy

carriers, but it can not be used to study the heat conduction in micro and nano-scale and ultra-

fast processes. To overcome the drawback of the Fourier ’s law, others constitutive heat transport

equations were proposed for mathematical models. They describe the thermal effects in semicon-

ductor devices, in which at small scales, the thermal transport is explained through the concept of

quantized lattice vibrations. The heat carriers in the crystal lattice are the electrons and phonons,

that have characteristic wavelengths in the order of a few nanometres at room temperature. Non-
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isothermal device models were already considered in the 1970s [50], employing drift-diffusion and

heat flow models for the lattice temperature. A thermodynamic approach to extend the drift-

diffusion equations was developed by Wachutka in [54] and later it was generalized, including also

charge carriers temperature, in [1], using Maximum Entropy Principle.

7.1 An Energy Transport model with crystal heating

Here we introduce a unipolar energy transport model with crystal heating. The equations of this

model involve temperatures of the electrons and the crystal lattice. The temperature of the crystal

lattice is modeled by the heat flux equation. This is given by [11]

ρLcLθt −∇ · (kL∇θ) = H (7.1)

where θ is the lattice temperature, kL is the heat conductivity of the lattice, ρL is the material

density and cL is the heat capacity, while the source term H represents the crystal energy pro-

duction, derived under thermodynamical and phenomenological considerations of energy fluxes. It

generally includes energy relaxation, recombination heat, and radiation effects. In the literature

several expression of term H have been proposed (more details can be find in [49], [18], [11], [54],

[7]). Assuming non degenerate semiconductors, we can supposed that energy bands do not depend

on the space and that the dependency of the energy bands on the lattice temperature is rather

small, so that it is neglected. We assume that the crystal energy production has the following form

H = −nCW − SL (θ − Ten) (7.2)

where the second term is a phenomenological radiation one, depending on the environment tem-

perature Ten and on the transmission coefficient SL. Under assumptions of unipolar device, in the

source term H there are not generation and recombination processes.

The resulting energy transport model involves four equations: the continuity and the energy
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balance equations for the electrons, the thermal diffusion equation for lattice and the Poisson

equation for the electrical potential. These partial differential equations are given by































































∂tn+∇ · J = 0

∂t

(

3

2
nT

)

+∇ ·
(

5

2
TJ − k0∇T

)

= JE − 3

2τ0
n (T − θ)

∂t (ρLcLθ)−∇ · (kLθ) =
3

2τ0
n (T − θ)− 1

τL
(θ − Ten)

−∇E = n−D

(7.3)

with J = n∇φ−∇ (nT ), k0 and kL the electron and lattice thermal conductivities, τ0 and τL the

electron energy and lattice thermal relaxation times. In the heat equation we assumed SL =
1

τL

and Ten constant. The physical parameters k0, kL, τ0 and τL depend on the temperature T and the

lattice temperature θ, while the material density ρL and the heat capacity cL are constant. Finally

the doping D is a function of the position x.

7.2 The symmetry classification in the one-dimensional case

For the model, introduced in the previous section, we perform a symmetry classification by the

infinitesimal Lie method. In one-dimensional case, the system becomes































































nt + Jx = 0

3

2
(ntT + nTt) +

5

2
(TxJ + TJx)− (k0Tx)x = JE − 3

2τ0
n (T − θ)

ρLcLθt − (kLθx)x =
3

2τ0
n (T − θ)− 1

τL
(θ − Ten)

−Ex = n−D(x)

(7.4)

with J = −nE − (nT )x.
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In the follow, when it will be necessary, in order to avoid long formulas, we will use the following

notation

x = (x1, x2) ≡ (t, x), u = (u1, u2, u3, u4) ≡ (n, T, θ, E),

uij =
∂ui
∂xj ,

uijk =
∂2ui
∂xj∂xk

, i = 1, ..., 4, j, k = 1, 2.

Then we look for symmetry operators in the form

X =

2
∑

i=1

ξi (x,u)
∂

∂xi
+

4
∑

i=1

ηi (x,u)
∂

∂ui
, (7.5)

corresponding to the one-parameter Lie group of infinitesimal transformations in the (x,u)-space

given by:

x̃i = xi + εξi (x,u) +O(ε2), i = 1, 2,

ũj = uj + εηj (x,u) +O(ε2), j = 1, 2, 3, 4,

where ε is the group parameter.

Taking into account the structure of system (7.4), we need the following second order prolongation

of the infinitesimal generator (7.5)

X̃ =X +
4
∑

i=1

2
∑

j=1

ζij
∂

∂uij
+

4
∑

i=1

ζi22
∂

∂ui22
(7.6)

where the coefficients ζij and ζ
i
22 (i = 1, ..., 4, j = 1, 2) are given by

ζij = Djη
i − ui1Djξ

1 − ui2Djξ
2, ζi22 = D2ζ

i
2 − ui12D2ξ

1 − ui22D2ξ
2,

and Di represent the total derivatives with respect to xi (i = 1, 2).

The corresponding determining system arises from the following invariance conditions

X̃ (nt + Jx) = 0 (7.7)

X̃

(

3

2
(nt + nTt) +

5

2
(TxJ + TJx)− (k0Tx)x + JE +

3

2τ0
n (T − θ)

)

= 0 (7.8)

X̃

(

ρLcLθt − (kLθx)x −
3

2τ0
n (T − θ) + 1

τL
(θ − Ten)

)

= 0 (7.9)

X̃ (−Ex − n+D) = 0 (7.10)
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under the constraints that the variables n, T , θ and E have to satisfy system (7.4).

We write eq. (7.7)-(7.10) as polinomial in the partial derivates of dependent variables. Since

the coefficients ξ1, ξ2 and ηi do not depend on these variables, the equations of system are satisfied

identically only if all coefficients of the polynomial are equal to zero. We obtain a set of differential

equations, that represents the determining system. The presence of the constitutive functions

k0 (T, θ) ,kL (T, θ), τ0 (T, θ), τL (T, θ) and D(x) makes the equations very complicated to solve.

This system involved many equations, but after a first simplification, taking into account that we

assume k0kLτ0τLD 6= 0, the invariance conditions lead to the following results

ξ1 = −a1t+ a2

ξ2 = xa3 + a0

η1 = a1u1

η2 = u2 (2a3 + a1)

η3 = 2u3 (a1 + a3) + g (t, x)

η4 = u4 (a1 + a3)
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where the constants a0, a1, a2, a3 and the function g must satisfy the following equations

[(kLgxx − ρLcLgt)τL − g − (3a1 + 2a3)Ten + a1u3] τL + (u3 − Ten) (g + 2(a1 + a3)u3) τLu3+

(a1 + 2a3)u2(u3 − Ten)τLu2 = 0,

(2(a1 + a3)u3 + g) (u2 − u3)τ0u3 + (a1 + 2a3)u2(u2 − u3)τ0u2 + (g + a1u2)τ0 = 0,

(2(a3 + a1)u3 + g) k0u3 + (a1 + 2a3)u2k0u2 − 2(a1 + a3)k0 = 0,

(2(a3 + a1)u3 + g) kLu3 + (a1 + 2a3)u2kLu2 − (a1 + 2a3)kL = 0,

kLu2gx = 0,

a1D −Dx (xa3 + a0) = 0.

(7.11)

Solving this system we obtain the complete group classification of system (7.4).

The principal Lie algebra LP is obtained when we consider D, τ0, τL, k0 and kL arbitrary

functions. In this case we get a0 = a1 = a3 = g(t, x) = 0, then LP is one dimensional and it is

spanned by the operator

X1 =
∂

∂x1
≡ ∂

∂t
. (7.12)

Only for some special form of the functions D, τ0, τL, k0 and kL the principal Lie algebra can

be enlarged. Below we list these special cases and the additional generators to (7.12).

Case 1. If

k0 = k0(T, θ), kL = kL(T, θ), τ0 = τ0(T, θ), τL = τL(T, θ), D = D0, (7.13)

with k0, kL, τ0 and τL arbitrary functions of their arguments, with D0 arbitrary constant,

we get a1 = a3 = 0 and g (x, t) = 0 and the following extension of LP

X0 =
∂

∂x
.
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Case 2. If

k0 = k0(T ), kL = kL(T ), τ0 = (T − θ)F1 (T ) , τL =
Ten − θ

F2 (T ) + b0θ
, D = D(x),

(7.14)

with k0, kL, F1, F2 and D arbitrary functions of their arguments, with kLT 6= 0, and b0

arbitrary constant, and we get a0 = a1 = a3 = 0 and g (t, x) = a4e
b0t

ρLcL and the following

extension of LP

X2 = e
b0t

ρLcL
∂

∂θ
.

Case 3. If

k0 = k0(T ), kL = kL, τ0 = (T − θ)F1 (T ) , τL =
Ten − θ

F2 (T ) + b0θ
, D = D(x),

with k0, F1, F2 andD arbitrary functions of their arguments, and b0, kL arbitrary constants,

we get g (x, t) solution the equation ρLcLgt − kLgxx − b0g = 0, a0 = a1 = a3 = 0 and the

following extension of LP

X2 = g(t, x)
∂

∂θ
.

Case 4. If

k0 = G1 (T ) (θ + b0) , kL = G2 (T ) , τ0 =
θ − T
θ + b0

F1 (T ) , τL =
Ten − θ
(θ + b0)

2F2(T ),

D = (x+ c2)
−2 ,

where G1, G2, F1 and F2 are arbitrary functions and b0, c2 constitutive constants, we get

a0 = c2a3, a1 = −2a3, g (x, t) = −2a3 and

X2 = (x+ c2)
∂

∂x
+ 2t

∂

∂t
− 2n

∂

∂n
− 2 (θ + b0)

∂

∂θ
− E ∂

∂E
.
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Case 5. If

k0 = G1 (σ) , kL = TG2 (σ) , τ0 = (θ − T )F1 (σ) , τL = T (Ten − θ)F2 (σ) ,

D = (x+ c2)
−1 ,

where G1, G2, F1 and F2 are arbitrary functions of σ ≡ θ + b0 lnT , with b0 and c2 consti-

tutive constants, we get a0 = −c2a1, a3 = −a1, g(t, x) = b0a1 and

X2 =(x+ c2)
∂

∂x
+ t

∂

∂t
− n ∂

∂n
+ T

∂

∂T
− b0

∂

∂θ
.

Case 6. If

k0 = T
2(c1+1)
c1+2 G1 (σ) , kL = TG2 (σ) ,

τ0 = (T − θ)T−
2(c1+1)
c1+2 F1 (σ) , τL = (Ten − θ)T−

2+3c1
c1+2 F2 (σ) , D (x) = (x+ c2)

c1 ,

where G1, G2, F1 and F2 are arbitrary functions of σ ≡ (θ + b0)T
−

2(c1+1)
c1+2 , and b0, c1, c2

constitutive constants with c1 6= −2, we get g(t, x) = 2b0a3 (1 + c1), a0 = c2a3, a1 = c1a3

and

X2 =(x+ c2)
∂

∂x
− c1t

∂

∂t
+ c1n

∂

∂n
+ (2 + c1)T

∂

∂T
+ 2(c1 + 1)(θ + b0)

∂

∂θ

+ (c1 + 1)E
∂

∂E
.

Case 7. If

k0 = b1T
2(c1+1)
c1+2 , kL = b2T,

τ0 = b3 (T − θ)T−
2(c1+1)
c1+2 , τL =

(Ten − θ)
b4T

2+3c1
c1+2 + b5

, D (x) = (x+ c2)
c1 ,

where bi (i = 1...5), c1, c2 are constitutive constants with c1 6= −2 , we obtain a0 = c2a3,
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a1 = c1a3 and g (t, x) = a4 −
b5a3 (2 + 3c1)

ρLcL
t , with a4 arbitrary constant, and then

X2 =(x+ c2)
∂

∂x
− c1t

∂

∂t
+ c1n

∂

∂n
+ (2 + c1)T

∂

∂T

+

(

2(c1 + 1)θ − (2 + 3c1)
b5
ρLcL

t

)

∂

∂θ
+ (c1 + 1)E

∂

∂E
,

X3 =
∂

∂θ
.

Case 8. If

k0 = b1T, kL = b2T, τ0 =
θ − T
T

b3, τL =
Ten − θ

θ + b4T + b0
, D = D0,

where bi (i = 0...4) and D0 are constitutive constants, we get the following extensions of

LP

X0 =
∂

∂x
,

X2 =x
∂

∂x
+ 2T

∂

∂T
+ 2(θ + b0)

∂

∂θ
+ E

∂

∂E
,

X3 =e
t

ρLcL
∂

∂θ
.

7.3 Reduced system and exact solutions

One of the various applications of the symmetry analysis is to reduce a system in (1+1) dimension

in a system of ordinary differential equations. This reduced system is obtained by using a special

ansatzes determined from symmetry group admitted by the equations under consideration (for

more details see, e.g., [37], [38]).

As example we consider system (7.4) with the doping D constant. This system falls in the case

2 of the previous section and it admits the two-dimensional algebra

X0 =
∂

∂x
, X1 =

∂

∂t
.

We use the generator

X = X1 + λX0 ≡
∂

∂t
+ λ

∂

∂x
,
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where λ is an arbitrary constant. The invariance conditions lead to traveling wave reduction. The

similarity solution

n = v1(z), T = v2(z), θ = v3(z), E = v4(z), with z = x− λt,

are not zero functions solutions of the reduced system

(λv1 + v1v4 + v′1v2 + v1v
′
2)
′ = 0,

3

2
λ(v1v2)

′ +
5

2
(v2v1v4 + v2(v1v2)

′)′ + (k0v
′
2)
′ + v4(v1v4 + (v1v2)

′)− 3v1
2τ0

(v2 − v3) = 0,

ρLcLλv
′
3 + (kLv

′
3)
′ +

3v1
2τ0

(v2 − v3)−
1

τL
(v3 − Ten) = 0,

v1 + v′4 −D = 0,

where the prime denotes differentiation with respect to the only variable z and k0, kL, while τ0 and

τL depend on v2 and v3.

In the case with τ0, τL, k0 and kL are constants, by setting

kL =
2(2λ2 + k0)(λ

2(4 + ρLcLτ2D) + 2k0)

λ2τLD2

and

λ2 = −5k0
12

+
TenD

24
±
√

4k20 − 20k0TenD + T 2
enD

2

24

we obtain the following solutions for the system (7.4)

n =D + 2c4h
2eh(x−λt)

T =c4e
h(x−λt) − λ

h
+

D

2h2

θ =c4e
h(x−λt) − λ

h
+

D

2h2

E =− 2c4he
h(x−λt)

where h = − λD

2(2λ2 + k0)
and c4 is an arbitrary constant.
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