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Abstract

Until the second half of twenty century, the connection between Biology and

Computer Science was not so strict and the data were usually collected on

perishable materials such as paper and then stored up in filing cabinets.

This situation changed thanks to the Bioinformatics, a relatively novel

field that aims to deal with biological problems by making use of computa-

tional approaches. This interdisciplinary science has two particular fields of

action: on the one hand, the construction of biological databases in order to

store in a rational way the huge amount of data, and, on the other hand, the

development and application of algorithms also approximate for extracting

predicting patterns from such kind of data.

This thesis will present novel results on both of the above aspects. It

will introduce three new database called miRandola, miReditar and VIRGO,

respectively. All of them have been developed as open sources and equipped

with user-friendly web interfaces.

Then some results concerning the application of stochastic approaches on

microRNA targeting and RNA A-to-I interference will be introduced.

xviii





Preface

In this thesis, I will present the results of the research carried out during

the three-years of the PhD program in Computer Science at University of

Catania. My research has been focused mainly on algorithms and systems

on Bioinformatics.

The thesis consists of four parts: Introduction, Biological Databases, HMMs

and their Application to miRNA Targeting, andMotif Discovery in the A-to-I

RNA Editing.

Part I: Introduction

The first section introduces the basic knowledge needed to deal with the

research topics treated through the thesis.

The first chapter presents the basic concepts related to bioinformatics

and gives an in depth survey on all the research field. We start by describing

the wealth of biological data then we move to the construction of biological

databases and last we highlight all the data mining approaches that have

been developed and are needed to extract predictive patterns from this very

rich source of knowledge.

xx
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In the second chapter we will sketch key concepts on Biostatistics giv-

ing special emphasis on Hidden Markov Models. We describe the outcome

of predicting algorithms as probability distribution looking always at the

reliability of results measured in terms of biological soundness.Then I will

introduce a new class of estimators called Centroid Estimators which are ca-

pable to overcome the limits of Maximum Likelihood for high dimensional

space problems.The so called γ-centroid estimators will be then introduces

stressing their capability to tune the ratio between positive predicted values

against sensitivity.

The last chapter, that concludes the first part dedicated to the theoretical

introduction to various arguments, consists of two sub-session. In the first

one, we will analyze the biogenesis of microRNA(miRNAs), a large class of

small non-coding RNAs of about 21-25 nucleotides, that negatively regulate

the gene expression. Next we will introduce the RNA editing phenomenon,

the process in which the nucleotide sequence of RNA is altered from the

genomic code. The editing is related to the insertion/deletion of nucleotides,

or the base modification. Its peculiarity is that the result of RNA editing

is a change in the diversity and/or abundance of proteins expressed in the

proteomes of organisms.

Part II: Biological Databases

The second part of my thesis is focused on the presentation and analysis of

biological databases that I have been developed in collaboration with few

colleagues. As a results of my effort, I will show miRandola, miR-EdiTar,
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and VIRGO.

I will introduce miRandola, a database of extracellular/circulating miRNA.

The database provides the users with a variety of information including the

associated diseases, the samples, the methods used to isolate the miRNAs,

and the description of the experiment. The information about the targets of

miRNAs and their records are provided through links to miRò, “the miRNA

knowledge base”. miRò integrates data from different sources to allow the

identification of associations among genes, processes, functions, and diseases

through validated and predicted targets of miRNAs. MiRandola is the first

database about circulating miRNAs, where all the data are collected and

maintained up-to-date in a MySQL database.

The article, submitted on August 2012, was accepted on October of the

same year and published on Plos one.

Then, I will present miR-EdiTar, a database of predicted A-to-I edited

miRNA binding sites. The database contains predicted miRNA binding sites

that could be affected by A-to-I editing and that could become miRNA bind-

ing sites as a result of A-to-I editing. The importance of miR-EdiTar is that

it contains a collection of predicted human miRNA binding sites in A-to-I

edited 3’ UTR sequences. The ones contained in the database can be either

“current” sites, when they are predicted to be miRNA binding sites but that

might be affected by A-to-I editing, or “novel” sites, when they are not pre-

dicted to be miRNA binding sites but they could become miRNA binding

sites as a result of A-to-I editing. Furthermore, as in miRandola, miR-EdiTar

is connected to miRò, a web environment that provides users with miRNA
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functional annotations inferred through their validated and predicted targets.

The article, submitted on July 2012, was accepted on September of the

same year and published on Bioinformatics.

Finally, I will focus on VIRGO, a web-based tool that maps A-to-G mis-

matches between genomic and EST sequences as candidate A-to-I editing

sites. It is built on top of a knowledge-base integrating information of genes

from UCSC, EST of NCBI, SNPs, DARNED, and Next Generations Sequenc-

ing data. The tool is equipped with a user-friendly interface allowing users to

analyze genomic sequences in order to identify candidate A-to-I editing sites.

VIRGO is a powerful tool allowing a systematic identification of putative A-

to-I editing sites in genomic sequences. The integration of NGS data allows

the computation of p-values and adjusted p-values to measure the mapped

editing sites confidence. The whole knowledge base is available for download

and its central purpose is to provide users with a periodically updated sys-

tem storing high quality candidate editing sites. This will allow people to

quickly and easily identify whether their genomic sequences are subject to

A-to-I RNA Editing or not.

The article related to VIRGO was published on April 2012, on the journal

BMC Bioinformatics.



PREFACE xxiv

Part III: HMMs and their Application to miRNA

Targeting

In the fifth chapter, it is presented the application of profile HMMs to mi-

croRNA targeting. While the first applications of profile HMMs to the mi-

croRNA targeting problem. We will introduce a conditioned profile HMM

properly designed to deal with this problem.

I will describe the different components that characterize our profile

HMM, starting from the formalization of both Forward and Backward al-

gorithms, subsequently integrated in the Baum-Welch algorithm for the pa-

rameter estimation. In this phase to guarantee the reliability of the results,

the MiRecoord database has been used as training set. It contains experi-

mental validated alignments between miRNAs and mRNAs. Finally, I will

show the implementation of the decoding algorithm in order to find the most

likely hidden states that determine the pairwise alignment between the two

molecules. Few decoding approaches such as Viterbi, Stochastic Backtrace

and γ-centroid will be introduced.

Part IV: Motif Discovery in RNA Editing Phe-

nomenon

Despite the enormous efforts made in the last two decades, the real biological

function of the RNA editing as well as the features of the substrates of the

ADAR still remain unknown. I will present a preliminary methodological
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workflow for the identification of predicting RNA-Editing structural motifs.

The aim is to discover potential sequence signals appearing only in genomic

regions subject to editing. It is well-known that A-to-I editing in human often

occurs in repetitive regions, which makes motif discovery very challenging. In

order to eliminate contamination of the motif by the Alu consensus we focus

in non-repetitive flanking regions of the editing sites that could distinguish

the A-to-I RNA editing.

In order to ensure the trustworthiness of the results, experimental val-

idated (EV ) editing sites have been collected by using the literature, and

then divided into two categories: true-positive (TP) editing sites, and false-

positive editing sites. For each edited gene containing EV editing sites, a

sample of true-positive editing site has been selected. Among this sample

set of editing sites, non-repetitive flanking regions, which consist of 2, 000

nucleotides downstream and upstream of sample editing site, were extracted.

To discovery some motifs in the selected edited regions we used the well

known MEME (Multiple EM for Motif Elicitation) suite to find both 50

palindromic and 50 non-palindromic motifs.





Part I

Introduction
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Chapter 1
Bioinformatics and the new era of

DNA Sequencing

It is like a voyage of discovery

into unknown lands, seeking not

for new territory but for new

knowledge. It should appeal to

those with a good sense of

adventure.

Frederick Sanger

Nobel Price in Chemistry

(1958,1980)

The word Bioinformatics comes from the juxtaposition of two words:

“bios”, the Greek word for life, and “informatics”, the area of computer sci-

ence. Thus, the main object of Bioinformatics is the management and the

analysis of biomedical information through computers. Its main activities

2
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relate to the construction and maintenance of a variety of databases; the

development of algorithms for the alignment of sequences of DNA (deoxyri-

bonucleic acid), RNA (ribonucleic acid) and proteins; the identification of

genes and the assembling of genomes; the prediction of both, the structure

and the interactions of nucleic acids and proteins; and, finally, the reconstruc-

tion and analysis of biological networks. The part of Bioinformatics that has

a particular focus on statistical/mathematical assessing and model building,

rather than on information management, is also called Computational Biol-

ogy.

Information management is perhaps the primary activity of Bioinformat-

ics, and it is certainly the most widely used and appreciated by the scientific

community. The aim is first of all to collect the biological information in

databases, then write it down, connecting it to a variety of additional infor-

mation, and eventually to develop the services needed to access and use the

data. Usually, the data and the analysis softwares may be used freely, except

for the commercial databases (its consultation has a cost), and some of those

industrial ones (its access is restricted). The best way to become familiar

with the bioinformatic world and easily explore the huge amount of biologi-

cal data is to enter the bioinformatics’ portals, which host the databases and

offer a variety of analytical tools and links to other sites.

1.1 History of the Bioinformatics

Bioinformatics was born in the late seventies, together with both the de-

velopment of recombinant DNA technology and the publication of the first
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sequences of nucleic acids. The DNA in a organism consists of very long se-

quences from an alphabet of four letters that corrispond to the four possible

nucleotides (see Figure 1.1): A for Adenine, G for Guanine, C for Cytosine,

and T for Thymine.

Figure 1.1: Molecular structure of the nucleotides.

These sequences are copied from generation to generation, and undergo

changes within any population over the course of many generations, so this

is the reason why random mutations arise and become fixed in the popula-

tion. Therefore, it was immediately clear that it was impossible to decode

encrypted messages in the sequences of DNA, RNA or proteins, through the

implementation of descriptive algorithms of biological rules without the help

of the computer technology.

Considering that it is difficult to provide an exact date that marks the

beginning of the era of Bioinformatics, it might be more useful to outline the

important events, distinguishing them, in particular, into two main areas,

biological databases and bio-computational methodologies. Regarding the first

point, although currently the core is formed from the databanks of DNA and
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RNA, the first biological database hailed from the times of Margaret Dayhoff,

an American physical chemist. In 1966, on the basis of Pauling’s theories

of molecular evolution, she made studies based on the analysis of protein

sequences: the results were collected in an atlas on the basis of groups of

homologous proteins [1]. In the seventies, it was modified into the electronic

version of the database NBRF (National Biomedical Research Foundation).

In the early eighties, the EMBL (European Molecular Biology Laboratory) in

Heidelberg supported the construction of the EMBL datalibrary, a database

of sequences of DNA and RNA [2]. The first release was in December 1981

and contained 519 entries relating to likewise nucleotide sequences, published

and stored in an electronic document. In 1982, Walter Goad worked on

the creation of a new database, from which it originated the GenBank , a

storage similar to the European one, but produced in America [3]. In 1986

it was created the DDBJ , the Japanese database [4]. Later there was an

international cooperation among EMBL datalibrary, GenBank and DDBJ.

It is clearly useful to have good systems for the selection and the mining

of specific information collected in the biological databases. Among those

systems, called retrieval systems, the most important are:

• The Entrez system, developed at the National Center for Biotechnol-

ogy Information of the NIH (National Institutes of Health). In the

Figure 1.21 there are the principal databases associated with Entrez:

• The SRS system, developed by Thure Etzold [5].

The cornerstones of bio-computational methodologies should be associ-
1Source: http://www.ncbi.nlm.nih.gov/Database/index.html

http://www.ncbi.nlm.nih.gov/Database/index.html
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Figure 1.2: Some databases associated with Entrez.

ated with procedures for the comperison of biosequences to search for regions

of similarity. In 1970 Needleman and Wunsch published the algorithm to

search for the best global alignment between two sequences [6], and in the

meantime Gibbs and McIntyre published a method based on dot-plot matrix,

that allowed to display regions of similarity more or less strict and that was

also used in many comparative analysis algorithms [7]. In 1981 Waterman

and Smith published the algorithm for finding the best local allignment be-

tween the two sequences [8], while in 1983 Wilbur and Lipmann published an

algorithm to search for the similarity inside the databases [9]. FASTA was

published in 1985 [10] and BLAST in 1990 [11]. Simultaneously, numerous

methods for the research of motifs and for the characterization of genomic

sequences in protein coding regions were developed, such as, for example, the

algorithms of Fickett and Gribskow [12, 13]. In the field of molecular evo-
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lution, the publication in 1965 of Zuckerkandl and Pauling concerning the

molecular clock hypothesis was a landmark [14]. This was followed by several

studies by Dayhoff, the publication in 1966 [15] of the method of Maximum

Parsimony analysis (then extended in 1977 by Walter Fitch [16] in the anal-

ysis of nucleotide sequences), the publication of the methods of Jukes and

Cantor in 1969 [17], and in 1980 the calculation of phylogenetic distances

along with the methods for the construction of phylogenetic trees by Kimura

[18]. As regards the methods for structural predictions, noteworthy are the

method of Zuker for the prediction of DNA structures[19, 20] and the method

of Chou and Fasman for protein secondary structures [21, 22, 23].

1.2 Public Biological Databases

The NCBI (National Center for Biotechnology Information) was created in

1988 in the United States by the National Library of Medicine (NLM of the

NIH, and mantains the largest bioinformatics portal in the world2. Currently,

it hosts more than thirty databases (bibliographies, genomes, sequences of

nucleotides and amino acids, protein structures, and so on), that can be

easily consult with the text search engine Entrez.

Founded in 1992, the EBI (European Bioinformatics Institute) is the

main European center for research and bioinformatics services and mantains

nucleic acids databases, proteins, macromolecular structures and biological

pathways3.

GenomeNet , created in 1991, is a Japanese network for data and bio-
2For more information visit the website: http://www.ncbi.nlm.nih.gov/.
3For more information visit the website: http://www.ebi.ac.uk/about/background.

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/about/background
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computational services. It contains the portal KEGG (Kyoto Encyclopedia

of Genes and Genomes which includes genes and proteins databases (KEGG

genes), databases of chemical components (KEGG ligand), databases of

molecular and biochemical reaction networks (KEGG pathway) [24]. In the

Figure 1.3 is shown the scheme of the databases linked each other4:

Figure 1.3: Scheme of the databases within GenomeNet.

ExPASy (Expert Protein Analysis System) proteomics, created in 1993

in Switzerland, offers a variety of tools for the analysis of data on proteins

[25]. There are sequence databases, domains and protein families, proteomic

data, models of protein structures and metabolic pathways.

The main public biological databases in the field of genomes are: En-

sembl , in Great Britain, created in 1999 by the EBI and WTSI (Wellcome

Trust Sanger Institute) [26, 27], and UCSC Genome Browser , in the
4Source: http://www.genome.jp/linkdb/

http://www.genome.jp/linkdb/
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United States, created in 2000 by the University of California, Santa Cruz

[28].

The most important laboratories and scientific journals have developed

their own portals, providing information on particular biological aspects and

tools to explore them. For example, Genes to Cognition Online (G2C ),

created in 2009 by Cold Spring Harbor Laboratory, is a neuroscience portal,

focusing not only on cognitive processes, but also on their related diseases and

research approaches. The Nature publishing group contains “Omics gateway”

for biology on a genomic level, while The signaling gateway is focused on

signal transduction. The journal Science has developed “Science signaling”,

focused on regulation and cell signaling.

1.2.1 Genes

As seen before, GenBank was one of the first nucleotide sequence database.

It contains the nucleotide sequences obtained from people who deposit them

there. It is part of the consortium INSDC (International Nucleotide Se-

quence Database Collaboration) along with the other two large databases:

EMBL and DDBJ, where each archive contains over 100 million sequences.

In these databases the annotations are very limited, and there may be

multiple entries for the same genes. If the genomic sequence encodes a pro-

tein, at first, the conceptual translation, called coding sequence (CDS ), is

shown, then, it receives a place in the protein database of NCBI.

The database UniProt (Universal Protein resource), managed together

by the EBI , the SIB (Swiss Institute of Bioinformatics [29] and the PIR
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(Protein Information Resource) [30], contains these sequences in theTrEMBL

section (Translated EMBL nucleotide sequence data library). The NCBI’s

RefSeq database (Reference Sequence) is, instead, a collection of more re-

stricted but also more accurate sequences. It chooses the best information

available and sometimes its sequences are automatically imported from other

databases. Moreover, RefSeq has about 10,000 organisms, while GenBank

has sequences obtained by approximately 250,000 different organisms. When

the authors publish new evidences, the TPA database (Third Party Anno-

tation) gives them the possibility to annotate the sequences in the INSDC

databeses (International Nucleotide Sequence Database Collaboration) [31].

The miRBase database (microRNA database) is the central storage for

the genomic of microRNAs, small non- coding RNA sequences of about 21 nu-

cleotides that has a central role in the genes regulation [32, 33]. MicroRNAs

control the translation of numerous mRNAs (messenger RNAs) into proteins

and have a prominent part in the differentiating and cell proliferation, in

the plasticity of both the synapses of nervous system and various diseases,

including cancer. miRBase hosts more than 30, 000 miRNAs sequences from

206 different species5, takes care their nomenclature and annotation, and

provides programs for the prediction of the target mRNAs.

1.2.2 Sequences and protein structures

UniProtKB (UniProt KnowledgeBase) [34], consisting of two sections called

Swiss-Prot and TrEMBL, is the most complete information source on se-
5At the time of the writing of the Ph.D. thesis, the Release of miRBase is 20:

ftp://mirbase.org/pub/mirbase/.



1.2. PUBLIC BIOLOGICAL DATABASES 11

quences and protein functions. Swiss-Prot is manually curated and has a

very specific annotated; TrEMBL is automatically curated and contains the

conceptual translation of the nucleic acid sequences that are in the databases,

with little modifications.

The sequences stay provisionally in TrEMBL, waiting for a manual anno-

tation to be transferred to SwissProt. UniRef (UniProt Reference Clusters)

gathers together those sequences which are strictly connected in a single doc-

ument, to speed the researches up [35]. UniParc (UniProt archive) contains,

instead, both the protein sequences and all the available data).

PDB (Protein Data Bank), run by RCSB (Research Collaboratory for

Structural Bioinformatics), hosts the structures of proteins and other biolog-

ical macromolecules, and provides also a variety of resources for the study of

their sequences, functions, and their possible pathological effect [36].

1.2.3 Vocabulary of the genes

Biologists use a great variety of terms to refer to genes and proteins and this

variability is a restriction for an effective searching. The project GO (Gene

Ontology) is the answer to the need of an unvarying terminology [37, 38].

Gene Ontology has developed an ontology, available through a database,

that assigns three attributes to the product of each gene:

a) the biological process in which it participates, such as signal trans-

mission, pyrimidine metabolism, etc.;

b) the molecular function , as, for example, catalytic activity, binding

capacity, binding to a receptor;
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c) the cellular component , indicating its location inside the cell, such

as endoplasmatic reticulum, nucleus, and ribosome.

A single gene product might have more than one molecular or biological

function, and more than one location. The GO terminology facilitates the

researches done by the various databases.

1.2.4 Genomes

The genomic data of individual organisms are annotated in various special-

ized databases, reached through the Ensembl and UCSC Genome Browser

portals. Since the research focuses on the analysis of genomes, the graphical

presentation of the sequences is very important. The genomic portals devel-

oped navigation tools, providing a quick view of any portion of genomes at

any scale, with elaborate formatting options.

The aim of the ENCODE project (Encyclopedia of DNA Elements),

launched in 2003, is to identify all the functional elements in the human

genome sequence. It had an initial pilot phase, focused on a portion of the

genome, and the results were published in June 20076; after this, the goal

was to compose the encyclopedia of the entire genome [39].

1.2.5 Gene expression

The huge amount of data obtained with the high-throughput technologies

caused the need of databases that are able to retain them and make them

accessible. In particular, the DNA microarray technology7 (commonly known
6The ENCODE project consortium 2007: https://genome.ucsc.edu/encode/.
7A DNA microarray is a collection of microscopic DNA spots attached to a solid surface.

https://genome.ucsc.edu/encode/
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as DNA chip or biochip)), or DNA GeneChips®8, was used to generate thou-

sands of global gene expression profiles, obtained by measuring the amount

of mRNA of a large number of genes in various conditions.

GEO (Gene Expression Omnibus) at NCBI [40, 41] and ArrayExpress

at EBI [42] are the largest public deposits of such experiments. Both of

them store the data in the standard format MIAME (Minimum Infor-

mation About a Microarray Experiment) [43] and have exploration tools

on line. They host not only many transcriptomics experiments, but also

data about the microRNA expression, the genomic hybridization, SNP (Sin-

gle Nucleotide Polymorphism), ChIP (chromatin immunoprecipitation) [44],

and profiles of peptides.

The Allen Brain Atlas contains the three-dimensional map (see an exam-

ple in Figure 1.4), on genomic scale, of the expression of thousands of genes

in all the areas of the brain both of an adult human [45] and of an adult

mouse and during its development, until the cellular level [46].

1.3 Comparison of Sequences

To get an idea of the possible meaning of new sequences, both nucleic acid

or proteins, it might be very useful to compare them to other sequences with

that have been already studied.

Aligning is the most effective method for comparing two sequences. This

is done through algorithms that, first automatically analyze the correspon-

dence between nucleotides or amino acids of different sequences, and then, at-
8To more information consult the website: www.affymetrix.com.
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Figure 1.4: Allen Brain Atlas 3-D Brain Explorer Application.

tribute a score that reflects the degree of similarity. The softwares use graph-

ical tools to view the alignments. These alignments can be global, if they

include all the characters of each sequence (Needleman–Wunsch algorithm

[6]), or local, if they include only the most similar regions (Smith–Waterman

algorithm [8]).

The BLAST programs (Basic Local Alignment Search Tool), developed

in 1990 at the NIH, are the most efficient tools for sequence comparison [11].

They offer a big variety of choices, depending on the type of sequence to

examine, as also the purpose of the research and the database that queries.

The BLAST programs, which highlight those regions of local alignment, di-

vide both the sequence which queries the database (called “query sequence”)

and the sequences contained in it in fragments called words ; then, BLAST
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starts searching for their matches. The initial search is made for a word of

lengthW that has a score at least T 9 compared to the query. The words that

are identified, called hits, are stretched in both directions, in an attempt to

create an array with a score greater than a threshold value S.

1.3.1 Statistical significance

Considering that the databases contain a large quantity of sequences, there

may be completely random cases of good similarity. By assigning to each

alignment a statistical value, as the P-value or the E-value (Expectation

value), it is possible to valuate how significative an alignment is. The pa-

rameter P is a number between 0 and 1 that indicates the probability that

the alignment between the query sequence and a particular sequence of the

database is the result of the case. A P-value of 0, 05 indicates that there is

a 5% chance that the alignment is meaningless. The E-value indicates the

number of alignments having equal or better scores than the one observed,

that might occur by chance.

Therefore, much smaller is P or E, the more significant is the alignment.

P and E are related by E = P ×S, where S here is the size of the database.

Moreover, the P-value and E-value are not always enough to give a bi-

ological meaning to an alignment, and it is often an appropriate critical

evaluation criteria with common sense. The low complexity regions, such as

those with repeated sequences are a frequent problem, because the similarity
9The parameter T determines the computational speed and the sensitivity of the search,

in particular more the parameter is high, then higher the similarity request, more research
is fast, but increase the risk that you leave out similarity that are not strong, which may
have biological significance.
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based on that type of sequences is unreliable.

1.3.2 Functional Motifs

The main function of a database is to identify, among a huge number of

sequences of genes and proteins, some characteristics that indicate a specific

function. It was confirmed that genes or proteins that play a similar function

have a similarity in some regions of their sequence. Thus, genes and proteins

belonging to the same functional family should contain in their sequence a

recurring motif that characterizes the family and distinguishes them from

the others. One of the most useful things that can be obtained from the

comparison of sequences is the identification of short areas that indicate a

particular structure or function.

Thanks to their biological significance, these regions show high conserva-

tion in their sequences. The presence of these “signatures” is extremely useful

to assign a new sequence to a specific family of genes or proteins, to be able

to make assumptions about its function. In the computer language such sig-

natures are called motifs, and can be described as short text strings, called

patterns, or as numeric arrays. The patterns are located in a small region of

high homology, while the profiles also consider long sequences. Patterns and

profiles can be found in databases as PROSITE [47] or JASPAR [48].

PROSITE is a database of proteins’ domains, families and functional

sites, integrated with computer tools to identify sequence motifs . It con-

tains specific signatures for more than 1, 500 families or protein domains

and extensive documentation on their structure and function. It is possible
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to quickly identify to which known protein family a given protein sequence

belongs to, thanks to those sequence motifs, which represent transcription

factors of DNA binding preferential sites, taken from the scientific literature.

The database JASPAR deals with the promoters, the DNA sequences

regulating the expression of genes . They are located immediately before the

gene transcription’s starting point and tie a variety of regulatory proteins,

called transcription factors. The particular combination of factors related to

the promoter determines whether the gene will be turned on, or off. JASPAR

174 contains sequence motifs, which represent transcription factors of DNA

binding preferential sites, taken from the scientific literature. They can be

used for scanning genomic sequences.

1.4 Data Mining

The data represents a resource of great intrinsic wealth, todata only partially

exploited. Technological progress has made the digitalization and storage of

huge amounts of heterogeneous data possible. This exponential growth has

given rise systems able to analyze in a semi-automatic way these data in

order to classify, synthesize, extrapolate trends, identify anomalies, and so

on. Data mining, also known as KDD (the analysis step of the Knowledge

Discovery in the Databases process), is one of the most interesting areas of

research in the community of databases. It consists of an automatic extrac-

tion of patterns representing knowledge implicity present in large databank

systems (databases, data warehouses, web, etcetera). This area collects sci-

entific contributions by researchers from different fields, such as statistics,
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artificial intelligence, machine learning and visualization.

The data mining finds wide application in Bioinformatics, for exam-

ple in the classification and analysis of biological data as, for example, se-

quences, networks and expression profiles. In particular, the frontier of re-

search in Bioinformatics disponing of technologies such as deep sequencing

(eg RNASeq) in the coming years will be the core of a strong innovation

that will focus on development of new algorithms and methods of learning.

1.4.1 The data mining process

The main purpose of data mining is not to give an explanation of a phe-

nomenon but to discover the knowledge and to predict. This means to iden-

tify hidden structures in the data that make it possible to extract useful infor-

mation and to make accurate predictions on the evolution of a phenomenon.

This process typically follows several steps, and according to CRISP-DM

(Cross Industry Standard Process for Data Mining) it can be define in six

phases:

1. Problem definition : the first phase consists in the understanding of

the area problem, where the goal of the project is translated into a

data mining problem definition. In this step data mining tools are not

required.

2. Data exploration : once finished the first phase, the data are collected,

described and explored. Quality problems of the data are identified,

and data analysis toos are used in order to explore the data.
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3. Data preparation : the data model are built for the modelling process.

In particular, the data are cleansed and formatted so as to be able to

apply some mining functions.

4. Modelling : various mining functions are selected and applied based

on the type of data mining problem. The mining experts can repeated

this phase several times, changing parameters from time to time until

optimal values are achieved.

5. Evaluation : the model is evaluated. If mining experts valuate that the

model does not satisfy their expectations, the modelling step is applied

again and they rebuild a new model, by changing its parameters, in

order to reach optimum values. It’s clear that the modelling step and

evaluation step are closely related.

6. Deployment : when the data mining results are obtained, they will be

exported in a specif format or into database tables so as to be easily

consulted.

1.4.2 Supervisioned Vs. Non-Supervisioned learning

It is important to distinguish between learning with or without supervision:

in the second case, in fact, no a priori assumption on how to split the data

is done, and the learning process occurs without specific knowledge of the

content analyzed. In Bioinformatics, methods of unsupervised learning are

used especially in the data exploration phase, to find in the data some not

easily visible data structure.
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Unsupervised learning allows to perform operations of data segmentation,

that is, to identify instances exhibiting an inner regularity which is able to

characterize them. Then, it can be used to partition the data in clusters

(subsets) so that istances in each subset share some common features.

The supervised learning is usually fast and accurate and it can be applied

to cases with a particular classification already known in a training set. The

aim is to create a model that predicts this classification in new data.

1.4.3 Cluster Analysis

The expression “cluster analysis” indicates a number of unsupervised learn-

ing algorithms that distribute objects into groups according to similarity

criteria. The number of groups may be determined automatically or cho-

sen by the user. The similarity between objects is mathematically evaluated

through a distance measure: less the objects are far from each other, the

more similar and more easily part of the same group they will be. There

are several measures of distance, such as the Euclidean distance, which is

simply the geometric distance in the multidimensional space of the data, or

Pearson’s correlation coefficient (technically called the Pearson Product Mo-

ment Correlation or PPMC ) that shows the linear relationship between two

variables.

Cluster analysis is applicable to a large variety of problems. In Bioinfor-

matics, for example, it is very common for the examination of gene expression

data on a large scale, obtained through microarrays. The most natural way

to organize this data is to put in the same group those genes that have a
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similar expression, because likely they will have good chance to participate

in the same biological process. This does not imply that there is a direct in-

teraction between the genes, since they can be co-expressed genes, separated

by one or more intermediaries. It is better to use the correlation coefficient

as the measure of distance between a pair of genes, which is more in line with

the intuitive idea of co-expressed genes.

Hierarchical clustering for gene expression data

The most common approach for gene expression data is the hierarchical

grouping, or tree grouping, which represents the relations between the genes

by a sort of tree, where the proximity of the branches reflects the degree of

similarity. First, the algorithms of hierarchical grouping consider each object

as unconnected, and then, step by step, the objects are closer grouped to-

gether. Thus, gradually, larger and larger groups of objects more dissimilar

are connected. Finally, all objects are linked together in a large tree (den-

drogram). The number of groups, or clusters, is determined automatically

by the algorithm.

K-means clustering in Bioinformatics

Sometimes it is more convenient to choose the number of groups to split up

the objects in our choice and then, using the K- means technique, divide

N objects in a k a number of groups, with k < N , on the basis of their

attributes, and so that they are as distinct as possible.

The attributes of the objects are represented as vectors and each cluster is

identified by a midpoint called centroid. The algorithm follows an iterative
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procedure. Initially, the algorithm creates k groups, whose elements are

randomly selected or in an empirical manner, and calculates the centroid of

each group. Then it moves the objects between the groups with the aim to

minimize the variability within them and to maximize it between one group

and another. Thus, it creates a new subdivision, associating each point to

the group whose centroid is closest to, then the algorithm recalculates the

centroids for the new groups and so on, until it finds a stable solution.

The gene expression profiles of people with a particular disease may have

their own signature which can be a powerful tool for accurate diagnosis and

prognosis, as well as the choice of the best cure. However, it is necessary to

improve the bioinformatics methods to recognize the signatures in a secure

manner.

1.4.4 Hidden Markov models

A common way to recognize patterns is to use probabilistic models such as

HMM (Hidden Markov Models) [49]. In Bioinformatics, such models are

widely used to identify homologies or to predict both the coding regions in

the genome sequence and the mode of folding proteins. They take their name

from the Markov chain, a sequence of states in which the transition from a

present state to a future one occurs with a probability that depends only,

or nearly so, from the present state, and not from the process or its past.

This means that the present state of the system allows to predict the future

behavior, while the previous history has little influence.

The most common example is the flip of a coin: here the result is heads
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or tails with equal probability, independently of previous flips. The theory

of Markov processes are often used to predict the succession of weather, to

estimate macroeconomic dynamic, or to give an Internet rank. For example,

Google uses PageRank, an algorithm that assigns a numerical score to the

web pages, in order to measure their relative importance. The algorithm is

based especially on the concept of popularity, that is the frequency a page

is visited. HMMs are more complicated, because in this case the states of

the system we want to analyze are not directly visible, but it is possible to

observe only the events related with a certain probability.

The main aim of HMM is not only to determine hidden states from the

observable events but also to identify the parameters of the model, that is

the transition probabilities from one state to the next. Once the model is

drawn, this may be used for further analysis and predictions on new events.

1.4.5 Networks

Progressively it becomes more and more necessary to integrate the biomolec-

ular information to the higher level of the biological function of cells, tissues

and whole organisms. Complex networks of biological elements interacting

with each other (such as genes, metabolites, proteins) regulate the operation

of living cells. These huge networks are organized into subnetwoks and each

of them takes care of a particular aspect of the function of cell, such as cell

cycle, the signal transmission and so on. These subnets, consisting of many

elements interacting together to implement an activity of the cell, are called

functional modules.
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The reconstruction of the architecture of networks and modules, which

in the past required a long collection of many experimental data, is now

faster. This is possible thanks to the technologies that allow to quickly

detect the expression of the genes and proteins and their changes in various

conditions on a genomic range: microarrays, the deep sequencing, proteomic

technologies, SNP (Single Nucleotide Polymorphism) analysis, comparative

analysis of genomes, the ChIP on chip, the epigenomics. Bioinformatics and

Systems Biology focus their research on the inference of the structure and

the control mechanisms for various types of networks.

Commonly, the networks are inferred in a supervised way starting from

very safe interactions, derived from data on proteins or gene expression. The

networks are represented as graphs, in which the nodes are the genes or

proteins and the arcs are the interactions. Cytoscape [50], CellDesigner

[51] and MIM (Molecular Interaction Maps) [52] are only a few example of

the tools available for drawing and view the diagrams.

Computational models are fundamental to understand the way a network

regulates a biological function. A good network model allows to simulate cell

behavior under a variety of stimuli and to facilitate the design of new drugs.

1.4.6 The regulatory sequences of the genes

It is possible to combine the information inside the genes in various ways to

implement different activities. After studying the genomes, it has been clear

that their length and the number of gene they contain are much less impor-

tant than the way the genes are regulated and combined. For example, the
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grain has a genome larger than the one of a man and contains approximately

the same number of genes, but it is impossible to say that it is more evolved.

Deciphering the control mechanisms of the gene expression is essential to

analyze the behavior of networks. This, together with the large amount of

gene expression data on large scale, has motivated the research for methods

for the analysis of DNA sequences that regulate the expression of genes.

The algorithms for the identification of regulatory regions of genes have been

unreliable due to a too high number of false positives that tends to make the

vast majority of predictions futile. That’s the reason why the researchers are

developing new methods to make the predictions faster and less uncertain,

although it remains necessary to verify in the laboratory.

The DNA sequence controlling the gene expression, the promoter, is lo-

cated near the gene, usually at the extremity 5′. The promoter binds together

a series of regulative proteins that allows, or not, the access to the gene of

the machineries that produces the mRNA.

1.4.7 Prediction of functional binding sites

After the identification of a promoter, it is important to understand which

transcription factors (TF ) bind to it, to regulate it. Usually, the transcrip-

tion factors prefer specific sequences, which can be captured in the form of

sequence motifs. The sequence motifs, then, may help to predict the possible

binding sites for a given transcription factor in the genomic sequences.

The motifs of binding to transcription factors are collected in theTRANS-

FAC [53] and JASPAR [48] databases, which also give the chance to iden-
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tify the sites capable of binding transcription factors in any DNA sequence.

The only problem is that the identified sites are able to bind transcription

factors in vitro, but it is not guaranteed that it happens within the cell. The

reason is that the structure of chromatin nearby the promoter strongly influ-

ences the ability of a transcription factor to bind its target sequence. More-

over, in models based on motifs of sequence, it is usually assumed that the

binding of a transcription factor to a promoter is not influenced by adjacent

sequences and the proximity of other proteins. But this is wrong, because

the combinatorial interactions between various factors linked to multiple sites

are essential for the gene expression. The result is that only a small part of

the binding sites in vitro are also in vivo, so it is impossible for JASPAR

and TRANSFAC to distinguish those sites with a functional role from those

without. The relationship between false and true positives can be so high

that it can frustrate any assumption.

To improve the predictions of the binding sites, the sequence motifs can

be combined with phylogenetic footprints, as in the algorithm Consite [54].

Some algorithms capture also the cooperative interactions among transcrip-

tion factors, binding to groups of sites within a promoter. These methods

allow to reduce the number of false positives of an order of magnitude, that,

however, is still not enough to improve the performance of the prediction.

The creation of bioinformatics algorithms is important to better represent

the mechanisms that regulate the transcription of genes. For example, it

is possible to identify regions containing significative combinations of tran-

scription factors, biologically related. There are various methods, such as

MSCAN [55], MCAST (Motif Cluster Alignment and Search Tool) [56]
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and ModuleScanner [57], which use a variety of statistics and data mining

techniques, as the Bayesian networks. The task of identifying precisely the

functional binding sites is facilitated by the use of technologies as ChIP on

chip and ChIPSeq, which reveal the genomic sites actually linked to a factor

of transcription within a cell.

The problem of the abundant presence of false positives also affects the

numerous programs, trying to predict microRNA target genes, such as Tar-

getScan [58], Diana-microT [59], PicTar [60] and others. These pro-

grams seek regions at the untranslated 3’ of mRNA with a complementarity

sequence with miRNAs. There are various sequences potentially capable of

binding a single microRNA, considering, not only that generally the sequence

complementarity between microRNA and mRNA target is not absolute, but

also the brevity of the sequence of microRNAs. The programs use empirical

rules to give a score to the various alignments, and use of phylogenetic prints

and also the presence or absence of more binding sites within the mRNA.

However, even if they can provide useful guidance, their results are not sat-

isfactory.

1.4.8 The model of networks

The goal of genetics is to explain the relationship between genes and the

behavior of a cell or an organism. This connection is based on complex reg-

ulatory networks, having a modular structure. This means that the network

is formed by a set of sub-networks of various forms, and each of them has a

function which is distinct but also simpler than the one of the network as a
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whole. The modular structure facilitates the modeling because it allows to

consider separately the individual modules, which, although quite complex,

are less complex than the global network. The events that take place in these

networks can be thought of as logical elementary functions, bringing the cell

from one state to another.

The networks modeling reproduces on a computer the implementation of

these logic functions. The abundance of gene expression data, now avail-

able, makes it possible to decode complex gene networks through the reverse

engineering. It is used to identify the interactions between the genes, and

thus discover the way a biological network works, through the analysis of

experimental data connected to its components (usually they are the data of

expression of the mRNA).

Network and model databases

The analysis of the structure and the behavior of the genetic networks re-

quires not only new theories and algorithms, but also databases capable

of storing and displaying information interactions. COXPRESdb (CO-

eXPRESsed gene database) provides reports of coexpressed genes in mam-

mals, obtained from expression profiles measured by microarrays [61]. It

allows to create not only networks of coexpressed genes in the same tissue,

but also genes with the same GO annotation and genes expressed in a similar

way in humans and mice. The networks are displayed using the coefficients

of correlation as criterion of proximity and are shown through Google Maps

API.

The protein interaction data are collected in various databases, including
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MINT (The molecular InterAction database) [62]. GeneNetwork 10 col-

lects gene interactions known in humans, obtained from both other databases,

such as HPRD11 (Human Protein Reference Database) [63], BIND (the

Biomolecular Interaction Network Database) [64], Reactome [65], KEGG [24],

and GO) [37, 38] and new experimental data. In addition, it generates pre-

dictions about possible new interactions.

JWS Online (Java Web Simulation) [66], BioModels [67] and DO-

QCS (Database Of Quantitative Cellular Signaling) [68] are examples of

databases of the models published on scientific journals.

The cellular signaling pathways not only have a great scientific interest,

but are also considered a possible therapeutic target for many diseases.

1.4.9 Where you can find the algorithms?

The statistical and mathematical techniques useful for the exploration of bi-

ological data can be found using various commercial packages. Among them,

MATLAB®12 (MATrix LABoratory) has a section dedicated to Bioinfor-

matics, and allows the users to analyze and view genomic and proteomic

data, and to build models of biological systems.

Another possibility for a good analysis of biological data is to use open

sources, such as R. It is an open software environment for free access, where

it is possible to implement a variety of statistical and graphical techniques,

such as linear and nonlinear modeling, statistical tests, time series analy-

sis, classification and clustering algorithms, and so on. The basic version
10Website: http://www.genenetwork.org/
11Website: http://www.hprd.org
12For more information visit the website: http://www.mathworks.it/

http://www.genenetwork.org/
http://www.hprd.org
http://www.mathworks.it/
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can be easily expanded through specialized software that can be obtained

through CRAN 13 (Comprehensive R Archive Network). Bioconductor 14

is a project associated with R and focused on Bioinformatics applications,

which provides tools for the analysis of genomic data.

1.5 New era of DNA sequencing

DNA sequencing is a method that used to line up the nucleotides that make

up the DNA molecule, so it can be properly red and analyzed. The DNA

sequence contains all the inherited genetic information that is the basis for

the development of all living organisms. Within this sequence genes of every

living organism are encoded, as well as instructions on how to express them in

time and in space (regulation of gene expression). Determining the sequence

is therefore useful in the research of why and how organisms live. There

are portions of DNA whose functions we already know. Once sequenced,

the DNA fragment analysis can compare the sequences already stored in the

database cataloged online, even if a substantial part of the human genome

remains unknown.

The knowledge of the genome is therefore useful in any field of biology

and the advent of methods for DNA sequencing has significantly accelerated

the research. In medicine, for example, the sequencing is used to identify

and diagnose genetic diseases and to develop new treatments. In a similar

manner, the genome of the pathogenic agents may lead to the development

of medicines against contagious diseases. The speed of the process of se-
13For more information visit the website: http://cran.r-project.org/
14Website: http://www.bioconductor.org/

http://cran.r-project.org/
http://www.bioconductor.org/
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quencing today is a great help to the large-scale sequencing of the human

genome. Similarly, the sequencing of the genome of various plant and animal

organisms, as well as of many microorganisms has been completed .

In these last years the DNA sequencing methods are constantly evolving.

On the one hand the researchers want to improve the speed of execution, try-

ing to lower the cost, on the other hand they attempt to get more accuracy.

The determination of DNA sequences is also useful in different application

fields and DNA sequencing may be used to determine the sequence of indi-

vidual genes, larger genetic regions, full chromosome or entire genomes.

Figure 1.5: Electropherogram of a small portion of the DNA sequence.

1.5.1 Basic Methods

Several strategies have been devised to obtain the nucleotide sequence of the

DNA. The first methods, including one developed by Allan Maxam and Wal-

ter Gilbert in 1973 [69], were quite complicated. A turning point came in 1975

with the first publication of a enzymatic strategy still widespread, developed

by Frederick Sanger and coworkers (the so-called chain terminator methods,

or the Sanger method, as seen in Figure 1.6) [70, 71]. This strategy soon be-

came the method of choice, thanks to its relative ease and consistency. The

Sanger method used fewer toxic chemicals and lower amounts of radioactivity
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and for this reason it was the most widely method used in the first generation

of DNA sequencers.

Figure 1.6: An example of the results of automated chain- termination DNA
sequencing.

Another strategy, initially very popular, was developed by Maxam and

Gilbert in 1977 and is known under the name of “the method of Maxam and

Gilbert” [72]. This method allowed purified samples of double-stranded DNA

to be used without cloning, even if the use of radioactive labeling and its

technical complexity did not allow a real launch, unlike the Sanger method.

Later in 1980, Walter Gilbert and Frederick Sanger shared half of the

chemistry prize “for their contributions concerning the determination of base

sequences in nucleic acids15”.
15The Noble Prize in Chemistry 1980:

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1980/.

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1980/
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1.5.2 Second generation HT-NGS

More recently, due to the increasing demand for low cost sequencing, new

methods have been developed. They are characterized by the ability to se-

quence many DNA fragments simultaneously (although with lower efficiency

in terms of number of bases sequenced per fragment) opening a new era of

sequencing. These methods, that parallelize the sequencing process, are able

to produce hundreds of millions of bases of raw sequence (Roche2) and they

can generate up to billions of bases in a single run (Illumina, SOLiD). Among

the most important method belonging to the second generation of HT-NGS

there are [73, 74]:

• Massively parallel signature sequencing (MPSS): this method was de-

veloped in the 1990s and it was the first of the next-generation sequenc-

ing technologies, but it was so complex to use.

• Polony sequencing : developed in the laboratory of George M. Church

at Harvard, it was among the first next- generation sequencing system.

This method was used to sequence a full genome in 2005 [75].

• 454 pyrosequencing : a parallelized version of pyrosequencing was de-

veloped by 454 Life Sciences [76].

• Illumina (Solexa) sequencing : in this method DNA molecules and

primers are first attached on a slide and amplified with polymerase

so that local clonal DNA colonies, later coined "DNA clusters", are

formed. To determine the sequence, four types of reversible termina-

tor bases (RT-bases) are added and non-incorporated nucleotides are
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washed away. A camera takes images of the fluorescently labeled nu-

cleotides, then the dye along with the terminal 3’ blocker is chemically

removed from the DNA, allowing the next cycle. Unlike pyrosequenc-

ing, the DNA chains are extended one nucleotide at a time and image

acquisition can be performed at a delayed moment, allowing for very

large arrays of DNA colonies to be captured by sequential images taken

from a single camera [77].

• SOLiD sequencing : in this method before sequencing, the DNA is am-

plified by emulsion PCR. The resulting beads, each containing single

copies of DNA molecule, are deposited on a glass slide [78].

In the Figure 1.7 it can seen the technological features of the principal

methods of the second generation sequencing [79]:

In the following figure is shown a comparison of the principal DNA se-

quencers of the first and second generation [80, 81]. If we want more accuracy

the cost of sequencing will increase (as shown in Table 1.1); furthermore if

we need a greater amount of sequenced DNA, we will lose in accuracy despite

the price of sequencing is lowered.
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Figure 1.7: Advanced technological features of three leading second genera-
tion HT-NGS platforms.

Single molecule Ion Pyrosequencing Sequencing Sequincing Chain
Method real time semiconductor (454) by synthesis by ligation termination

sequencing (Illumina) (SOLiD (Sanger
sequencing) sequencing)

Read length 2, 900 bp 200 bp 700 bp 50 to 250 bp 50 + 35 or 400 to
average 50 + 50 900 bp

Accuracy 87% to 90% 98% 99.9% 98% 99.9% 99.9%

Read per run 35− 75 up to 5 1 million up to 3 1.2 to 1.4 N/A
thousand million billion billion

Time per run 30 minutes to 2 24 1 to 1 to 20 minutes
2 hours hours hours 10 days 2 weeks to 3 hours

Cost per 1 $2 $1 $10 $0.05 to $0.15 $0.13 2, 400$
million bases

Advantages Longest read Less expensive Long read size. Potential for high Low cost Long individual
length. Fast. equipment. Fast. sequence yield, per base reads. Useful

Fast depending upon for many
sequencer model application

and desired
application

Disadvantages Low yield Homopolymer Runs are Equipment can Slower than More expensive
at high errors expensive. be very other and impractical

Homopolymer expensive methods. for larger
errors. sequencing

projects.

Table 1.1: Comparison of next-generation sequencing methods.
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1.5.3 Third generation HT-NGS

“Although the PCR amplification has revolutionized DNA analysis, but in

some instances it may introduce base sequence errors or favor of certain

sequences over others, thus changing the relative frequency and abundance

of various DNA fragments that existed before amplification. To overcome

this, the ultimate miniaturization into the nanoscale and the minimal use of

biochemicals, would be achievable if the sequence could be determined directly

from a single DNA molecule, without the need for PCR amplification and its

potential for distortion of abundance levels. This sequencing from a single

DNA molecule is now called as the third generation of HT-NGS technology”

[79]. Here is a list of the principle methods belonging to the third generation

of HT-NGS we have, even if we do not go into the details of each individual

method:

• HeliscopeTM single molecule sequencer ;

• Single molecule real time (SMRTtm) sequencer ;

• Single molecule real time (RNAP) sequencer ;

• Nanopore DNA sequencer ;

• Real time single molecule DNA sequencer platform developed by Visi-

Gen Biotechnologies ;

• Multiplex polony technology ;

• The Ion Torrent sequencing technology ;
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In the Figure 1.8 we can see the technological features of the principal

methods of the third generation sequencing [79]:

Figure 1.8: Advanced technological features of three leading third generation
HT-NGS platforms.
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1.5.4 Application of sequencing technologies on human

genome research

As said above, there are many applications of the sequencing technologies

especially in the field of research and medical care. Recently, a large quanti-

tative of studies done by the use of the HT-NGS have emerged, particularly:

• Epigenetics ;

• ChiP-Seq ;

• Genome wide structural variation in human population;

• Detection of inherited disorders ;

• Complex human disease;

• Cancer research;

• RNA sequencing ;

• Personal genomics ;

• Sequencing of mitochondrial genome.

For this reason, it comes the need to improve more and more speed,

accuracy and price of the sequencing technologies. This is the challenge

many laboratories are trying to overcome.
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1.5.5 Alignment tools

Unlike Sanger sequencing, the new generation technologies of DNA sequenc-

ing produce a very large quantity of small (from 50 to 300 nucleotides) DNA

fragments (from hundreds of thousands to billions sequences). One of the

problems once obtained these data, is not only their storage, but also the

mapping of each of them in the reference genome. In the Figure 1.9 we can

see an example of how the reads are mapped in the genome:

Figure 1.9: Alignment of the reads in the genomic reference.

There is a large number of tools for aligning reads to a genome:

• Bowtie (http://bowtie-bio.sourceforge.net/);

• BWA (http://maq.sourceforge.net/);

• Eland (http://bioinfo.cgrb.oregonstate.edu/docs/solexa/);

http://bowtie-bio.sourceforge.net/
http://maq.sourceforge.net/
http://bioinfo.cgrb.oregonstate.edu/docs/solexa/
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• MAQ (http://sourceforge.net/projects/maq/).

Each of them uses different scoring methods, including quality (Q) score

of the reads. The most popular tool is Bowtie [82]. It uses the Burrows-

Wheeler transformation in order to index the genome, which increases the

speed of the alignment. Once it builds the index for the genome, the latter is

used to identify potential matches to read. Furthermore, it allows mismatches

and the user can control the number of matches in the first part of read.

Because the sequenced read are small, the mapping of them could be

misleading, in particular when the read fall into a repetitive region. A typical

approach to overcome this kind of problem is to ignore reads mapped into

repetitive regions. Another problem consists in the fact that a single read

can be aligned in several regions of the reference genome, and in this case

just one mapped region is typically randomly chosen.

http://sourceforge.net/projects/maq/


Chapter 2
Biostatistics algorithms and Markovian

models

Those who ignore Statistics are

condemned to reinvent it.

Bradley Efron

Stanford University

2.1 What is Biostatistics?

The word Biostatistics comes from the juxtaposition of two words: bios, the

Greek word for life, and statistics, a field of mathematics dealing with the

collection, analysis, interpretation of masses of numerical data1. Thus, the

main object of Biostatistics is to use procedures and analysis of statistics in

studying and practicing biology. Biostatistics is that branch of statistics with

the specific aim to read and understand scientific data generated in the biol-
1The Merriam-Webster’s Collegiate Dictionary

41
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ogy, public health and other health sciences (as, for example, the biomedical

sciences). It can be considered as a broad discipline focusing on the applica-

tion of statistical theory to real and daily problems, the practice of designing

and conducting biomedical experiments and clinical trials, the study of re-

lated computational algorithms and display of data, and the development of

mathematical statistical theory.

2.2 Steps to get to reliable results

According to the previous definition of Statistics, there are several steps to

follow to get to trustworthy results:

• Collection of data : this is the real first stage in the investigation and

it is necessary for the data to be reliable and accurate.

• Organization of data : first of all the data need to be edited for

completeness, inconsistencies, homogeneity, accuracy, reliability. They

are, then, classified, which means that they are arranged following a

certain common characteristic. Finally, they are often tabulated, that

is presented in rows and columns to be clearer.

• Analysis of data : they are done through the observation and the

application of statistical techniques (i.e. measures of central tendency,

variation, and so on), as well as the creation and the use of mathe-

matical models to mine the data in order to discovery some unknown

information.
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• Interpretation : this last step refers to the conclusion the scientists get

to. While, obviously, wrong interpretation lead to unreliable conclu-

sions and decisions, correct interpretation will take to good decisions.

The characteristic of these fields is that patients, mice, cells, etc. show

a clear variation in their response to stimuli. This may be due either to the

different treatment or to chance, measurement error, or even to other char-

acteristics of the single subjects. Biostatistics tries not only to distinguish

between correlation and causation, but also to make inferences from known

samples about the populations2 from which they were drawn. That is why

to drive biology experiments, data is gathered and analyzed before, during,

and after a biology experiment, with the purpose to get to logical solutions.

As Biostatistics represents the link between theory and practice, some ex-

periment can also be entirely mathematical and expressed only in numerical

terms. Furthermore, there are two types of data: qualitative (they are non

numeric and in a written form, as, for example, the description of events,

the transcription of an interview, written documents etc.), and quantitative

(they are numerical).

2.3 Application fields

There are several fields where Biostatistics can be applied, such as biology,

clinical medicine, public health policy, physiology and anatomy, epidemi-

ology, genetics, health economics, proteomics, genomics. Moreover, it is
2In Biostatistics the word “population” is used with the meaning of “set of measure-

ments”.
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usually used in large-scale efforts, such as drug testing and environmental

model-building, as it happens for the trials for new pharmaceuticals, where

Biostatistics tracks and gives an interpretation about data. In Medicine,

Biostaticians are important also in the evaluation of the spread of a disease,

analyzing the information given by the scientists (such as the samples of peo-

ple who have contracted a disease, life history, and social conditions of others

who live in the same area), in order to see why some people got a disease and

others did not. In genetic research, Biostatistics helps in finding a cure for

deadly diseases, and causes for genetic condition. Thanks to the combina-

tion of Biostatistics and probability theory, it is possible to determine with a

given set of data the likelihood of a disease to hit populations, drugs to cure

it, and the reaction of the population to those drugs.

Of course, even if the importance of Biostatistics is not questioned, it is

honest to identify some limitations to this science. First of all if the samples

used in a statistical test are not adequately representative of the population,

the results can have little relevance to the data it come from. Moreover,

unlike physical sciences, the laws of Statistics are not perfect, but related to

probability, which means that its conclusions are true only on an average.

2.4 Deterministic and Stochastic models

As seen above, after the organization phase, the data are ready for the mod-

elling phase. In this step, it is possible both to extract from the data some

unknown information, able to describe the system considered, and to study

the effects of different components so as to make predictions about the be-
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haviour.

A mathematical model can be composed of a set both of variables and

relationships. The variables are abstractions of interest of the system, that

can be quantified, while relationships can be rapresent by operators (such

as functions, algebric operators, and so on) which my act with or without

variables. Based on variables and relationships is decided whether to apply

a deterministic or a stochastic model. In a deterministic model there

are not stochastic elements and the set of variable states is uniquely deter-

mined by parameters in the model and by sets of previous states of these

variables. Therefore, deterministic models perform the same way for a given

set of initial conditions. Contrariwise, a stochastic model has one or more

stochastic elements and then variable states are not described by unique val-

ues, but rather by probability distributions. Examples of stochastic models

are Poisson processes, Gaussian processes, Markov processes, hidden Markov

processes, and so on.

2.5 Markov models

As said above, Markov models are stochastic models that can be listed as

following:

• When the system is autonomous :

– Markov chains : they are the simplest Markov models, in which

states of the system are modelled by random variables that change

over time. Futhermore, the distribution of the random variables
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depend only on the distribution of the previous states.

– Hidden Markov models (HMMs): they are Marvov chains where

states are partially observables. In fact, there is a sequence of

observable states that is emitted by a sequence of internal hidden

states3. In general, the transition from one hidden state to another

one has the form of a fist-order Markov chain.

• When the system is controlled :

– Markov decision processes (MDPs): they are similar to Markov

chains where transitions of the states depend on the current state

and the control of a decision maker.

– Partially observable Markov decision processes (POMDPs): they

are Markov decision processes where, similarly to the HMMs, the

states are partially observed.

To follow will be given a formalization of Markov chains and hidden

Markov models

2.6 Markov chains

A discrete-time stochastic process X = {Xn : n ∈ I}, where I = {0, 1, 2, . . .},

with finite or countable state space4 Xn ∈ {0, 1, 2, . . .} is a Markov chain if

it has the Markov property (Property 1), also known as “memoryless” prop-
3Hidden states can not be observed directly.
4In this formalization the state space is a countable set.
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erty5 (In Figure 2.1 is shown an example of a two-state Markov chain).

Property 1. (Markov proprerty)

For any z, s0, . . . , sn−1 ∈ S and any n ≥ 1,

P r(Xn = z | Xn−1 = sn−1, . . . , X0 = s0) = Pr(Xn = z | Xn−1 = sn−1).
(2.1)

Figure 2.1: A simple two-state Markov chain.

It has just been defined a first order Markov chain in which the probability

that an event occurs at the time n is conditionally dependent on the event

that occurred at the previous instant.

In general, considering an integer k > 1 it is possible to define a Markov

chain of order k as following:
5In words, the Markov property says given the present state of the stochastic process,

the past is conditionally independent of the future.
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Definition 1. (Kth order Markov chain)

Pr(Xn = sn | Xn−1 = sn−1, Xn−2 = sn−2, . . . , X0 = s0)

= Pr(Xn = sn | Xn−1 = sn−1, Xn−2 = sn−2, . . . , Xn−k = sn−k) for n > k.
(2.2)

In the case ofKth order Markov chain the probability that an event occurs

only depends on the values of the previously k states.

Finally, considering a sequence of n states Π = (π1, π2, . . . , πn) of first

order Markov chain, we have:

• the value of πi is only conditionally dependent on πi−1 (as seen in

Property 1),

• in particula for each i, we have that:

Pr(πi | pii−1) = aπi−1,πi , (2.3)

where aπi−1,πi is defined as transition probability. Then, given the sequence

of states Π, the probability of the sequence, Pr(Π) = Pr(π1, . . . , πn), can be

calculated as follows:
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Pr(π1, . . . , πn−1, πn) = Pr(πn | π1, . . . , πn−1)Pr(πn−1 | π1, . . . , πn−2) · . . . · Pr(p2 | p1)

= Pr(πn | πn−1)Pr(πn−1 | πn−2) · . . . · Pr(p2 | p1)

= Pr(π1)
n∏
i=2

aπi−1,πi .
(2.4)

For nucleotide sequences, the Markov chain model has four states, {A,C,G, T},

and to define the transition probabilities of 4× 4 = 16. We can also add an

extra begin state to the model by defining x0 = B. Then the probability of

the first letter in the sequence is

Pr(x1 = z) = aBs. (2.5)

2.7 Hidden Markov models

In the scientific literature there are several methods of classification, e.g.

simple methods as decisional trees, k-Nearest Neighbor, Bayesian networks,

or more complicated as Support Vector Machines. Each of them requires a

priori knowledge that is not always possible to obtain, as also the fact that

often there is the need to define a larger number of variables. The stochastic

approach of the hidden Markov models, unlike other classification methods,

gives the possibility to efficiently and effectively carry out this task.

Once, the topology of the model and its variables are defined, it is possible

to solve three kinds of problems:
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• Evaluation problem : Given the observation sequence O and a model

θ we can find Pr(O | θ);

• Decoding problem : Given the observation O and the model θ we

can find the corresponding state sequence ! which is optimal in some

meaningful sense;

• Training problem : Find the model parameter θ in order to maximize

Pr(O | θ).

2.7.1 Formalization of Hidden Markov models

An HMM is characterized by the following parameters:

• M , the number of observation symbols per state. If it is considered

an experiment with coin tosses, the alphabet of observations consists

in two possible symbols, H and T ; instead, if there is an experiment

of rolls of dice, there will be six distinct symbols (1, 2, 3, 4, 5 and 6);

while, in the case of a DNA sequence, four possible symbols, A, T, G

and C, will be taken into consideration.

• N , the number of states in the model. In the case of the experiment

of the occasionally dishonest casino there will be two possible hidden

states, when the croupier use a fair die (the state F ) and when he use

a loaded die (the state L). In the case of CpG islands6, there will be

two different states “+” (in a CpG island) and “-” (outside of a CpG

island).
6CpG islands are genomic regions with a high frequency of CG sites
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• The transition probabilities that we can be indicated as follows

akl = Pr(πi = l | πi−1 = k), 1 ≤ k, l ≤ N . (2.6)

• The emission probabilities in state k,

ek(bj) = Pr(xi = bj | πi = k), 1 ≤ j ≤M and 1 ≤ k ≤ N . (2.7)

• The initial state distribution is

a0k = Pr(π1 = k | π0), 1 ≤ k ≤ N . (2.8)

In this case the transition probability from the begin state (this state

is an silent state where Pr(π0 = 1)) to state k can be thought as the

probability of starting in state k.

2.7.2 The forward algorithm

The forward algorithm is able to solve the evaluation problem and then calcu-

late the probability of the observation sequence of length n,x = x1, x2, · · · , xn,

given the model: the transition probabilities, the emission probabilities and

the initial state distribution.

Because many different state paths can give rise to the same sequence

x, we must add the probabilities for all possible paths to obtain the full

probability of x. Then,



2.7. HIDDEN MARKOV MODELS 52

Pr(x) =
∑
n

Pr(x, π)

=
∑
π0

∑
π1

· · ·
∑
πn

Pr(x1, . . . , xn, π1, . . . , πn, π0)

=
∑
πn

· · ·
∑
π1

∑
π0

Pr(xn|πn)Pr(πn|πn−1) · . . . ·

Pr(x2|π2)Pr(π2|π1)Pr(x1|π1)Pr(π1|π0)Pr(π0),

(2.9)

reordering the terms, it will be,

Pr(x) =
∑
πn

Pr(xn|πn)
∑
πn−1

Pr(πn|πn−1)Pr(xn−1|πn−1) · · ·

∑
π1

Pr(π2|π1)Pr(x1|π1)
∑
π0

Pr(π1|π0)Pr(π0),

(2.10)

where Pr(π0 = 1) then,

Pr(π1|π0)Pr(π0) = Pr(π1, π0), (2.11)

and,

∑
π0

Pr(π1, π0) = Pr(π1) = a0k. (2.12)

Finally,
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Pr(x) =
∑
πn

Pr(xn|πn)
∑
πn−1

Pr(πn|πn−1)Pr(xn−1|πn−1) · · ·
∑
π1

Pr(π2|π1)Pr(x1|π1)Pr(π1),

(2.13)

then,

Pr(x) =
∑
πn

Pr(xn|πn)
∑
πn−1

Pr(πn|πn−1)Pr(xn−1|πn−1) · · ·

∑
π2

Pr(π3|π2)Pr(x2|π2)
∑
π1

Pr(π2|π1)Pr(π1, x1),

(2.14)

where,

Pr(π2 | π1)Pr(x1, π1) = Pr(π2 | π1, x1)Pr(π1, x1) = Pr(π2, π1, x1), (2.15)

and then,

∑
π1

Pr(π2, π1, x1) = Pr(π2, x1). (2.16)

Substituting Expression 2.16 in 2.14 the result will be,

Pr(x) =
∑
πn

Pr(xn|πn)
∑
πn−1

Pr(πn|πn−1)Pr(xn−1|πn−1) · · ·
∑
π2

Pr(π3|π2)Pr(x2|π2)Pr(π2, x1).

(2.17)

And so on for the other terms, until obtaining the following expression:
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Pr(x) =
∑
πn

Pr(xn|πn)
∑
πn−1

Pr(πn|πn−1)Pr(πn−1, x1, . . . , xn−1). (2.18)

The number of all possible paths π increase exponentially with the length

of the sequence, so brute force procedure to calculate Pr(x) considering all

paths is not practical, then it is possible to use a dynamic programming

procedure in order to calculate the probability of the observation sequence,

P (x). This procedure is called forward algorithm. Considering the scheme

in Figure 2.2:

Figure 2.2: (HMM) Scheme of transition from the state πi−1 to the state πi.

The forward algorithm computes the probability Pr(πi = l, x1:i), where

x1:i = (x1, . . . , xi):

fl(i) = Pr(πi = l, x1:i) =
∑
πi−1

Pr(πi = l, πi−1, x1:i), for 1 ≤ l ≤ N . (2.19)

In order to use known parameters of the model, for 1 ≤ l ≤ N , the

expression can be write in the following way,
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fl(i) = Pr(πi = l, x1:i)

=
∑
πi−1

Pr(xi | πi = l, πi−1, x1:i−1)Pr(πi = l | πi−1, x1:i−1)Pr(πi−1, x1:i−1).
(2.20)

In particular, xi is conditional independent on xi−1 and x1:i−1 given πi,

then,

Pr(xi | πi = l, πi−1, x1:i−1) = Pr(xi | πi = l), for 1 ≤ k, l ≤ N , (2.21)

where Pr(xi | πi) is the emission probability, a known parameter of the

model. Furthermore, πi is conditional independent on x1:i−1 given πi−1, and

then

Pr(πi = l | πi−1 = k, x1:i−1) = Pr(πi = l | πi−1 = k), for 1 ≤ k, l ≤ N ,

(2.22)

where Pr(πi | πi−1) is the transition probability, a known parameter of

the model.

Substituting the Expressions 2.21 and 2.22 the result will be,

Pr(πi = l, x1:i) =
∑
πi−1

Pr(xi | πi = l)Pr(πi = l | πi−1)Pr(πi−1, x1:i−1) (2.23)

where Pr(πi−1, x1:i−1) = fk(i − 1). Then, the recursion equation can be
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written as follows,

fl(i) =
∑
πi−1

Pr(xi | πi = l)Pr(πi = l | πi−1)fk(i− 1)

= Pr(xi | πi = l)
∑
πi−1

fk(i− 1), for 1 ≤ k, l ≤ Nand for i = 2, . . . , n.
(2.24)

For i = 1, the expression will become:

fl(1) = Pr(π1 = k, x1) = Pr(x1 | π1 = k)Pr(π1 = k), for 1 ≤ l ≤ N . (2.25)

where Pr(π1 = k) is the initial probability that is a known parameter of

the model.

Finally, when all forward variables are computed, fl(i), it is possible to

calculate:

Pr(x) =
N∑
k=1

fk(n). (2.26)
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Pseudo-Code of the forward algorithm

input : M,X = (x1, . . . , xn)

output: p(x)

Initialization;

for i = 1 to k do

f1(i) = P (p1 = i) · ei(x1);

end

// Calculating of forward probabilities;

for t = 1 to n− 1 do

for j = 1 to k do

sum← 0;

for i = 1 to k do

sum← sum + ft(i) · a(i, j);

// adding contributions of transition

probabilities with ft(i)

end

ft+1(j) = sum · ej(xt+1);

end

end

// Calculating of p(x);

p← 0;

for i = 1 to k do

p← p+ ft+1(i);

end

Algorithm 1: Forward Algorithm
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2.7.3 The backward algorithm

The backward algorithm for HMM is very similar to the forward algorithm,

and it is able to solve the evaluation problem. For the forward algorithm is

computed the fl(1), fl(2), . . . , fl(n), for 1 ≤ l ≤ N , while for the backward

algorithm the values will be computed from the end to the start of the

sequence, in an opposite direction to one of the forward algorithm.

As previous algorithm, the backward algorithm calculates the probability

of the observation sequence of length n,x = x1, x2, . . . , xn, given the model,

so the transition probabilities, the emission probabilities and the initial state

distribution are known. In order to explain this algorithm the Figure 2.3 will

be taken into consideration:

Figure 2.3: (HMM) Scheme of transition from the state πi to the state πi+2.

The backward algorithm computes the probability Pr(xi+1:n | πi = k),

where xi+1:n = (i+ 1, . . . , n). For 1 ≤ k ≤ N .
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bk(i) = Pr(xi+1:n | πi = k)

=
∑
πi+1

Pr(xi+1:n, πi+1 | πi = k)

=
∑
πi+1

Pr(xi+2:n | πi+1, πi = k, xi+1)Pr(xi+1 | πi+1, πi=k)Pr(πi+1 | πi = k).

(2.27)

Looking at the schema in Figure 2.3, it can say that xi+2:n is conditionally

independent on πi and xi+1 given πi+1, then

Pr(xi+2:n | πi+1 = l, πi = k, xi+1) = Pr(xi+2:n | πi+1 = l), for 1 ≤ k, l ≤ N ,

(2.28)

where Pr(xi+2:n | πi+1) = bl(i + 1). Furhtermore, xi+1 is conditionally

independent on πi = k given πi+1, then

Pr(xi+1 | πi+ 1 = l, πi = k) = Pr(xi+1 | πi+1 = l), for 1 ≤ k, l ≤ N , (2.29)

in which Pr(xi+1 | πi+ 1 = l) is the emission probability that we know,

and we also know the last term of bk(i), Pr(πi+1 | πi) = k, in fact it is the

transition probability.

Finally, for 1 ≤ k ≤ N and for i = n − 1, . . . , 1, the recursion equation

can be written as follows,
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bk(i) =
∑
πi+1

Pr(πi+1 | πi = k)Pr(xi+1 | πi+1 = l)bl(i+ 1). (2.30)

For i = n, the expression will become:

bk(n) = 1, for 1 ≤ k ≤ N . (2.31)

When all backward variables are computed, bk(i), it is possible to calcu-

late:

Pr(x) =
N∑
l=1

Pr(π1 = l)Pr(x1 | π1 = l)bk(1). (2.32)
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Pseudo-Code of the backward algorithm

input : M,X = (x1, . . . , xn)

output: p(x)

Initialization;

for i = 1 to k do

bn(i) = 1;

end

// Calculating of backward probabilities;

for t = n− 1 to 1 do

for i = 1 to k do

sum← 0;

for j = 1 to k do

sum← sum + bt+1(i) · a(i, j) · ej(xt+1);

// adding contributions of transition

probabilities with bt+1(i);

end

bt(i) = sum;

end

end

// Calculating of p(x);

p← 0;

for i = 1 to k do

p← p+ b1(i);

end

Algorithm 2: Backward Algorithm
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2.7.4 The Viterbi algorithm

The Viterbi algorithm is able to solve the decoding problem, then it can be

used to find the path of state, π∗, with the highest probability considering

an observation sequence of length n,x = x1, x2, . . . , xn and given the model,

therefore the transition probabilities, the emission probabilities and the initial

state distribution are known:

π∗ = argmax
π

Pr(π, x)

= argmax
π0:n

Pr(π0, π1:n, x1:n)

= argmax
πn

Pr(xn | πn)argmax
πn−1

Pr(πn | πn−1)Pr(xn−1 | πn−1) · · ·

argmax
π1

Pr(π2 | π1)Pr(x1 | π1)argmax
π0

Pr(π1 | π0)Pr(π0),

(2.33)

where arg max
π0

Pr(π1 | π0)Pr(π0) can be considered as the first most likely

state, π̂1, of the sequence π1:n.

arg max
π0

Pr(π1 | π0)Pr(π0) = Pr(π1). (2.34)

Then,

π∗ = argmax
πn

Pr(xn | πn)argmax
πn−1

Pr(πn | πn−1)Pr(xn−1 | πn−1) · · ·

argmax
π1

Pr(π2 | π1)Pr(x1 | π1)Pr(π1).
(2.35)

At the same time, the probability of the most likely path π∗ can be found,
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Pr(π∗, x) = max
πn

Pr(xn | πn)max
πn−1

Pr(πn | πn−1)Pr(xn−1 | πn−1) · · ·

max
πn−1

Pr(π2 | π1)Pr(x1 | π1)Pr(π1).
(2.36)

In order to explain this algorithm, the Figure 2.4 will be taken into con-

sideration:

Figure 2.4: (HMM) Scheme of transition from the state πi−2 to the state πi.

The aim is to find the most probable path, π∗, recursively by using the

Markov properties of the model. Then the following expression can be used.

vl(i) = max
π1:i−1

Pr(π1:i, x1:i) (2.37)

considering the conditional independents, it will be,

vl(i) = max
π1:i−1

Pr(xi | πi = l)Pr(πi = l | πi−1)Pr(π1:i−1, x1:i−1) (2.38)

where here, it can be used the following property,

Property 2. Given two non-negative functions f(a) ≥,∀a ∈ R and g(a, b) ≥
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0,∀a, b ∈ R , then

max
a,b

f(a)g(a, b) = max
a

[f(a)max
b
g(a, b)] (2.39)

Using a = i− 1 and b = 1 : i− 2 and assuming

f(a) = Pr(xi | πi = l)Pr(πi = l | πi−1), (2.40)

and g(a, b) = Pr(π1:i−1, x1:i−1), then

vl(i) = max
πi−1

[Pr(xi | πi = l)Pr(πi | πi−1)max
1:i−2

Pr(π1:i−1, x1:i−1)], (2.41)

where,

vk(i− 1) = max
1:i−2

Pr(π1:i−1, x1:i−1). (2.42)

Therefore, for i = 2, . . . , n,

vl(i) = max
πi−1

Pr(xi | πi = l)Pr(πi = l | πi−1)vk(i− 1)

= Pr(xi | πi = l)max
πi−1

Pr(πi = l | πi−1)vk(i− 1).
(2.43)

For i = 1, the expression will become:

vl(1) = Pr(x1 | π1 = l)max
π0

Pr(π1 = l | π0)vk(0), (2.44)

where setting vk(0) = 1.
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vl(1) = Pr(x1 | π1 = l)Pr(π1 = l | π0). (2.45)

Finally,

Pr(π∗, x) = max
π1:n

vk(n) = max
π1:n

Pr(π1:n, x1:n), (2.46)

Concerning the most likely path, it can be done the same considerations,

and then it is possible to consider the following procedure:

ptri(l) = arg max
πi−1

Pr(πi = l | πi−1)vk(i− 1), fori = 2, . . . , n. (2.47)

The final step will be:

π∗ = arg max
πi−1

vk(n). (2.48)

When the last hidden state is found, it can be used a traceback procedure

in order to have in output the most likely hidden state sequence, π∗, then

π∗i−1 = ptri(π
∗), for i = L, . . . , 1. (2.49)
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Pseudo-Code of the Viterbi algorithm

input : M,X = (x1, . . . , xn)

output: P = {p1, . . . , pn} tale che p(X,P )

Initialization;

for i = 1 to k do

V1(i) = P (p1 = i) · ei(x1);

φ1(i)← 0;

end

for t = 1 to n− 1 do

for j = 1 to k do

max← 0;

φ1(j)← 0;

for i = 1 to k do

if Vt(i) · a(i, j) > max then

max← Vt(i) · a(i, j);

φ1(j)← i;

end

end

Vt+1(j) = max ·ej(xt+1);

end

end

Algorithm 3: Viterbi Algorithm: first part.
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// Calculating of p(X,P ), P ;

P ← 0;

for i = 1 to k do

if Vn(i) > P then

P = Vn(i);

φn(n) = i;

end

end

Algorithm 4: Viterbi Algorithm: final part.

2.7.5 The Baum-Welch algorithm

Given a training set of observed sequences, X = x1, . . . , xJ , each of them of

length n, and the goal is that to construct an HMM with the parameters,

θ = {a0k, ek(·), akl}, to maximize the likelihood of our data,

Pr(x1, . . . , xJ | θ). (2.50)

When the paths of the hidden state are known for the training sequences

the parameters of the model can be estimated using Maximum Likelihood

Estimation. If the sequences are not labeled with the hidden states, as in

this case, an iterative procedure in order to estimate the parameter values

can be used. In particular the Baum-Welch algorithm will be used to do this.

Baum-Welch algorithm is an iterative procedure used to estimate the model

parameters when the state paths of the observed sequences are unknown. It

belongs to the family of Expectation Maximization (EM ) algorithms. Then,
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it works by presuming initial parameter values, then estimating the likelihood

of the data under current parameters. After that, these likelihoods are used

to re-estimate the parameters, iteratively until a local maximum is reached.

Then after the initial parameter values are defined, Baum-Welch algo-

rithm estimates the Akl and Ek(bj) as the expected number of times each

transition or emission is used, by using the current parameter values. After

that, it uses these values to iteratively update the new values of as and es.

This procedure is repeated until some stopping criterion is reached. Here, it

will be considered the following criterion:

l(x1, . . . , xJ | θ̂)− l(x1, . . . , xJ | θ) < ε, for some small ε > 0, (2.51)

where l(x1, . . . , xJ | θ̂) − l(x1, . . . , xJ | θ), and θ represents the current

set of values of the parameters, while θ̂ is the estimated set of values of the

parameters. In particular assuming that the sequences are independent, it

can be written

l(x1, . . . , xJ | θ̂) = logPr(x1, . . . , xJ | θ̂)

=
J∑
j=1

logPr(xj | θ̂)

l(x1, . . . , xJ | θ) = logPr(x1, . . . , xJ | θ)

=
J∑
j=1

logPr(xj | θ),

(2.52)
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then,

[ J∑
j=1

logPr(xj | θ̂)
]
−
[ J∑
j=1

logPr(xj | θ)
]
< ε (2.53)

Definition of variables

Before explaining the step of Baum-Welch algorithm, it is necessary to define

some variables:

Ijv =

 1 if v is observed at time t,

0 otherwise.
(2.54)

Ijv(t) is an indicator variable that is 1 when the tth element of the jth ob-

served sequence is v ∈M , where in the case of nucleotides there would be four

possible symbols, M = {A,C,G, T}, and then four variables: IjA, I
j
C , I

j
G, I

j
T .

Sjt (k) =

 1 if we are k at time t,

0 otherwise.
(2.55)

Sjt (k, l) =

 1 if we move from state k to state l at time t,

0 otherwise.
(2.56)

Sjt (k) is an indicator random variable that is 1 when the state at time t

is k in the jth observed sequence, while Sjt (k, l) is a random variable that is

1 when at time t we are in state k and we move to state l in the jth observed

sequence.
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Expectation step

We define the probability of being in state i at time t, for the generic observed

sequence xj = xj1, x
j
2, · · · , xjn:

Pr(πt = k | xj, θ) =
Pr(xj, πt = k | θ)

Pr(xj | θ)
, (2.57)

where the Bayes’ rule has been applied,

Pr(πt = k | xj, θ) =
Pr(xj1, . . . , x

j
t , x

j
t+1, . . . , x

j
n, πt = k | θ)

Pr(xj | θ)

=
Pr(xj1, . . . , x

j
t , πt = k | θ)Pr(xjt+1, . . . , x

j
n, | πt = k, θ, xj1, . . . , x

j
t)

Pr(xj | θ)
.

Considering that xjt+1, . . . , x
j
n are conditional independent on xj1, . . . , x

j
t

given πt and θ, then,

Pr(πt = k | xj, θ) =
Pr(xj1, . . . , x

j
t , πt = k | θ)Pr(xjt+1, . . . , x

j
n, | πt = k, θ)

Pr(xj | θ)

=
Pr(xj1:t, πt = k | θ)Pr(xjt+1:n, | πt = k, θ)

Pr(xj | θ)
.

Substituting the forward (Expression 2.19) and backward (Expression

2.30) variables, the expression will become:

Pr(πt = k | xj, θ) =
f jk(t)bjk(t)

Pr(xj | θ)
(2.58)

Concerning Pr(xj | θ), it is possible to calculate through the forward

or backward algorithm, furthermore f jk(t) is the forward variable fk(t) de-

fined above calculated for sequence j, while bjk(t) is the equivalent backward

variable.
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The expected number of times that we are in state k and hence the expected

number of transitions away from the state k for xj is defined as:

E [] of transitions from k for xj] = E
[ n∑
t=1

Sjt (k)
]

=
n∑
t=1

E
[
Sjt (k)

]

=
n∑
t=1

Pr(πt = k | xj, θ)

=
n∑
t=1

f jk(t) · bjk(t)
Pr(xj | θ)

, for j = 1, . . . , J.
(2.59)

Now, the probability of being in state k at time t and being in the state

l at time t + 1, for the generic observed sequence xj = xj1, x
j
2, . . . , x

j
n can be

defined as follows:

Pr(πt = k, πt+1 = l | xj, θ) =
Pr(xj, πt = k, πt+1 = l | θ)

Pr(xj | θ)
, (2.60)

where the Bayes’ rule has been applied,

Pr(πt = k, πt+1 = l | xj, θ) =
Pr(xj1, . . . , x

j
t , x

j
t+1, . . . , x

j
n, πt = k, πjt+1 | θ)

Pr(xj | θ)

=
Pr(xj1,...,x

j
t ,πt=k,πt+1=l|θ)Pr(xjt+1,...,x

j
n|πt=k,πt+1=l,xj1,...,x

j
t ,θ)

Pr(xj |θ)

considering that xjt+1, . . . , x
j
n are conditional independent on xj1, . . . , x

j
t

and πt given πt+1, then



2.7. HIDDEN MARKOV MODELS 72

=
Pr(xj1:t, πt = k, πt+1 = l | θ)Pr(xjt+1:n | πt+1 = l, θ)

Pr(xj | θ)

=
Pr(πt+1=l|xj1:t,πt=k,θ)Pr(x

j
1:t,πt=k|θ)Pr(x

j
t+1|πt+1=l,θ)Pr(xjt+2:n|πt+1=l,θ)

Pr(xj |θ)

where πt+1 is conditional independent on xj1:t given πt, then

=
Pr(πt+1=l|πt=k,θ)Pr(xj1:t,πt=k,|θ)Pr(x

j
t+1|πt+1=l,θ)Pr(xjt+2:n|πt+1=l,θ)

Pr(xj |θ) . (2.61)

Here, we have that

Pr(πt+1 = l | πt = k, θ) = akl,

Pr(xj1:t, πt = k | θ) = f jk(t),

Pr(xjt+1 | πt+1 = l, θ) = el(x
j
t+1),

Pr(xjt+2:n | πt+1 = l, θ) = bjl (t+ 1),

(2.62)

then,

Pr(πt = k, πt+1 = l | xj, θ) =
f jk(t) · akl · el(xjt+1) · bjl (t+ 1)

Pr(xj | θ)
. (2.63)

Now, for 1 ≤ k, l ≤ N and j = 1, . . . , J , the expected number of transitions

from state k to state l for the observed sequence xj, it can be obtained as
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follows:

E [] of transitions from k to l for xj] = E
[n−1∑
t=1

Sjt (k, l)
]

=
n−1∑
t=1

E
[
Sjt (k, l)

]

=
n−1∑
t=1

Pr(πt = k, πt+1 = l | xj, θ)

=
n−1∑
t=1

f jk(t) · akl · el(xjt+1) · bjl (t+ 1)

Pr(xj | θ)
(2.64)

Considering all the observed sequences of the training set X, we will

obtain:

Akl = E [] of transitions from k to l for X]

=
J∑
j=1

1

Pr(xj | θ)

n−1∑
t=1

f jk(t) · akl · el(xjt+1) · bjl (t+ 1).

(2.65)

Furthermore, considering the summation over all possible l′ , it will be

∑
all l′

Akl′ =
∑
all l′

J∑
j=1

1

Pr(xj | θ)

n−1∑
t=1

f jk(t) · akl′ · el′ (x
j
t+1) · bj

l
′ (t+ 1)

=
J∑
j=1

1

Pr(xj | θ)

n∑
t=1

f jk(t) · bjk(t).

(2.66)

Equally, the expected number of times that letter v appears in state k:
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Ek(v) = E [] of time in k, when the observation was v for X]

=
J∑
j=1

1

Pr(xj | θ)

n∑
t=1

f jk(t) · bjk(t) · Ijv(t), for 1 ≤ k ≤ N , v ∈M .
(2.67)

The inner sum is only over those positions t for which the symbol emitted

is v.

Finally, the expected number of times in state k at time t = 1 can be

calculated, considering all training set of observed sequences:

Ik = E [] number of times in state k at time t = 1 for X]

=
J∑
j=1

1

Pr(xj | θ)

n∑
t=1

f jk(1) · bjk(1).

(2.68)

Maximization step (MLE)

Based on the probability estimates and the expectations calculated above,

the new model, θ̂ = {â0k, êk(·), âkl}, can be constructed as follows:

• The new initial state distribution:

â0k =
expected number of times in state k at time (t = 1)

] of the observed sequences

=
1

J

J∑
j=1

1

Pr(xj | θ)

n∑
t=1

f jk(1) · bjk(1) =
Ik
J
.

(2.69)
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• The new emission probability distribution:

êk(v) =
expected number of times in state k and observing simbol v

expected number of times in state k

=

∑J
j=1

1

Pr(xj |θ)

∑n
t=1 f

j
k(t)·bjk(t)·Ijv(t)∑J

j=1
1

Pr(xj |θ)

∑n
t=1 f

j
k(t)·bjk(t)

=
Ek(v)∑

all v′ Ek(v
′)
,

(2.70)

where, êk(v) is the expected number of times that the output observations

have been equal to v while in the state k relative to the expected total

number of times in state k.

• The new transition probability distribution:

âkl =
expected number of transitions from state k tp state l

expected number of transitions from state k

=

∑J
j=1

1

Pr(xj |θ)

∑n−1
t=1 f

j
k(t)·akl·el(xjt+1)·bjk(t+1)∑J

j=1
1

Pr(xj |θ)

∑n
t=1 f

j
k(t)·bjk(t)

=
Akl∑

all l′ Akl′
,

(2.71)

where, âkl is the expected number of transitions from state k to state l

relative to the expected total number of transitions away from state k.
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Sometimes when there are insufficient data, it may happen that a state

k is never used in the training set of the sequences, then the estimation

equations are undefined for that state, because both the numerator and de-

nominator will have value zero. In that cases, in order to solve them it is

preferable to add predetermined pseudocounts to the ek(v) and akl, then

Equations 2.70 and 2.71 will become:

êk(v) =
Ek(v) + rkl∑
all v′ Ek(v

′)
,

âkl =
Akl + rk(b)∑

all l′ Akl′
.

(2.72)

The pseudocounts rkl and rk(b) should reflect the prior biases about the

probability values and for that they have a probabilistic interpretation as the

parameters of Bayesian Dirichlet prior distributions (As will see in 2.8).
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Pseudo-Code of the Baum-Welch algorithm

Initialization;

Randomly inizialization of emission and transition matrices (or

according to the knowledge, so that the properties are observed);

Iteraction;

Calculating of the Forward probabilities (f);

Calculating of the Backward probabilities (b);

Calculating of the matrices A, E using (f, b) for each X i;

Calculating of the new parameters atl, et(b);

Calculating of the new log-likelihood P (X i, . . . , Xm);

EXPECTATION-MAXIMIZATION step;

Until the log-likelihood P (X i, . . . , Xm) does not change compared to

the previous value.
Algorithm 5: Baum-Welch algorithm

2.8 The Dirichlet distribution

In Bayesian statistics it is necessary to use distributions over probability

parameters as prior distribution. In those cases certainly the choice falls on

the Dirichlet distribution. The Dirichlet distribution is a family of continuos

multivariate probability distributions parametrized by a vector α:

D(θ | α) = Z−1(α)
K∏
i=1

θαi−1
i δ(

K∑
i=1

θi − 1), (2.73)

where α = α1, · · · , αK , α > 0, and the θi satisfy 0 ≤ θi ≤ 1 and sum to
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1, being indicated by the delta function term δ(
K∑
i=1

θi − 1).

The normalising factor Z in Equation 2.73 can be expressed in term of

gamma function:

Z(α) =

∫ αi−1∏
i=1

δ(
K∑
i=1

θi − 1)dθ =

∏
i Γ(αi)

Γ(
∑
αi)

. (2.74)

When K = 2 (then for two variables) the Dirichlet distribution reduces

to a beta distribution, and in particular, the normalising constant is the beta

function.

A special case of the Dirichlet distribution is when all the elements of

vector α have the same value. This kind of distribution is called symmetric

Dirichlet distribution. When α = 1 then symmetric Dirichlet distribution is

equivalent to a uniform distribution.

2.8.1 Mixtures of Dirichlets

Sometime it is not very easy to express all the prior knowledge about a

problem with a single Dirichlet distribution [83, 84]. In order tosolve that it

is mandatory to use several different Dirichlet distributions, then consider a

mixture of Dirichlet distributions.

A Dirichlet mixture consists of m components, associated respectively

with vectors α1, . . . , αm. A mixture prior wih m components may be written

as:

Pr(θ | α1, . . . , αm) =
∑
k

qkD(θ | αk). (2.75)

Here, qk are called the mixture coefficients. In order for the mixture to be
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a proper probability distribution, the mixture coefficients must be positive

and sum to be one. Finally, it is possible to identify qk as the prior probability

qk = Pr(ak) of each of the mixture coefficients.

The density of a Dirichlet mixture is defined to be a linear combination

of those of its constituent components.

2.9 Estimators for estimation problems in dis-

crete high-dimensional spaces

In the last few years we have seen a huge increase of biological dataset due

to the advent of high-throughput data-acquisition technologies. If on the

one hand the biological data are grown, on the other hand the parameter

estimation is increasingly becoming a difficult problem to overcome.

The Maximum-Likelihood (ML) estimators are very useful to identify

the most probable point in a space of the unknowns and definitely for sev-

eral years they dominated statistical estimation and prediction. Two of the

most import examples of estimators belonging to the family ofmaximum like-

lihood estimators are the minimum “free-energy” structure predictions and

the Viterbi decoding hidden Markov models (as seen in 2.7.4).

They have three principal properties: consistency, asymptotic normality,

and asymptotic efficiency. Although these properties only hold asymptot-

ically, in high-D space they are not reached. In fact, in these cases ML

estimators do not always give us a true estimation, because in the large

sample space the most probable estimator has very low probability.
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2.10 Centroid Estimation

In order to find an estimator which overcomes the limitations of ML estima-

tors, centroid estimators [85, 86] are proposed. They have been proposed in

studies, such as sequence alignment and RNA secondary structure prediction,

that can be formalized in a high-dimensional binary space as follows [87]:

Problem 1. Prediction of secondary structures of RNA sequences

Given an RNA sequence x, predict its secondary structure as a point in S(x),

the space of all the possible secondary structures of x.

Problem 2. Pairwise alignment of two biological sequences

Given a pair of biological sequences (DNA, RNA, protein) x and x′, predict

their alignment as a point in A(x, x′), the space of all the possible alignments

of x and x′.

Here, the predictive space S(x) ⊂ {0, 1}
|x|(|x′|−1)

2 (in Figure 2.5 is shown

an example of a point in predictive space), while A(x, x
′
) ⊂ {0, 1}|x||x′|.

Figure 2.5: (A binary matrix representation of a secondary structure of an
RNA sequence [88]
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Furthermore, these two problems are particular examples of a more gen-

eral problem [87]:

Problem 3. Estimation problem on a binary space

Given a data set D and a predictive space Y (a set of all candidates of a

prediction), which is a subset of n-dimensional binary vectors {0, 1}n, that

is, Y ⊂ {0, 1}n, predict a point y in the predictive space Y .

To find an estimator that is drawn in a high probability region, it is used

a loss function, that increases with the distance from other members of the

ensemble. In particular, the Hamming distance is used as loss function:

H(z, y) =
n∑
i=1

I(zi 6= yi) = n−
n∑
i=1

I(zi = yi), (2.76)

where I is the indicator function,

I(a) =

 1 if a is true,

0 otherwise
(2.77)

and n is the dimension of both z and y.

The posterior risk of the Hamming loss function for some estimator θ̂,

considering the data D, is
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ρH(θ̂(D)) = Eθ|S[H(θ, θ̂(D))]

=
∑
θ∈Θ

H(θ, θ̂(D))Pr(θ | D)

=
∑
θ∈Θ

n∑
i=1

I(θi 6= θ̂i(D))Pr(θ | D)

= n−
∑
θ∈Θ

n∑
i=1

I(θi = θ̂i(D))Pr(θ | D)

= n−
n∑
i=1

Pr(θi = θ̂(D) | D)

(2.78)

In order to minimize the risk, it is possible to apply the posterior marginal

sum maximizer, chosing:

θ̂c(D) = arg max
θ̂∈Θ

n∑
i=1

Pr(θ̂i(D) = θ̂i(D) | D), (2.79)

where θ̂c is defined as centroid estimator.

In the Figure 2.6, it is shown an example of centroid estimation in two

different clusters that are in posterior space. In particular, the green dots

indicate the cluster centroids, the red dot represents the ensemble centroid,

while the blue dot is the minimum free-energy structure.
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Figure 2.6: Multidimensional scaled distribution derived from 1, 000 repre-
sentative samples from Sfold from the secondary structure of Dermocarpa sp.
Ribonuclease P RNA [86].

2.11 Gamma Centroid Estimator

The aim of the estimation is not always to find the exact solution with a very

small probability (as in the case of ML estimator) or to find the solution with

the minimum Hamming loss function (as seen in 2.10), but rather to find the

most accurate estimator. For this reason, the concept of maximum expected

accuracy (MEA) has been adopted in several bioinformatic problems, as in

the case of CONTRAfold [89] for the secondary structure prediction. Unfor-

tunately, the theorical analysis has been shown that this kind of estimators
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sometimes are not robust with respect to accuracy measures, and then the

γ-centroid estimator has been proposed as solution for some specific problem.

The γ-centroid estimator rapresents a generalization fo the centroid esti-

mator, in particular it maximizes the expectation of γ · TP + TN 7.

2.11.1 Evaluation measures defined using TP, TN, FP

and FN

There are different accuracy measures, but certainly standard and traditional

ones are the Sensitivity (SEN ), the positive predictive value (PPV ), and

the Matthew’s correlation coefficient (MCC ) that can be defined by using

TP , FP , TN , FN :

SEN =
TP

TP + FN
,

PPV =
TP

TP + FP
,

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

(2.80)

in which, TP , FP , TN , FN are accuracy measures functions that are

defined as follows:
7TP is the number of the true positives and TN is the number of the true negatives
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TP = TP (θ, y) =
∑
i

I(yi = 1)I(θi = 1),

FP = TP (θ, y) =
∑
i

I(yi = 1)I(θi = 0),

TN = TP (θ, y) =
∑
i

I(yi = 0)I(θi = 1),

TN = TP (θ, y) =
∑
i

I(yi = 0)I(θi = 1).

(2.81)

Here, considering the Problem 1, then θ, y ∈ S(x), where θ is correct (ref-

erence) structure, while y is predicted secondary structure. For this problem

when the sensitivity is equal to 1, the predicted structure contains all the cor-

rect base pairs (it is not excluded that it can also contain some base pairs)

and when PPV is equal to 1, the predicted secondary structure will contain

only the correct base pairs. Then, if both the sensitivity and PPV are equal

to 1 the perfect prediction will be achieved.

2.11.2 Formalization of γ-centroid estimators

In order to design an estimator that optimizes the expected numbers of TP ,

TN , FP and FN with respect to the entire distribution Pr(θ | x), we can

consider a gain function which yields positive scores for the number of true

predictions (TP and TN) and negative scores for those of false predictions

(FP and FN). LetG(θ, y) be is a linear combination fo the accuracy measure

functions (see in Equations 2.81):
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G(θ, y) = α1TP + α2TN − α3FP − α4TN (2.82)

where αk > 0 (k = 1, 2, 3, 4).

By using the identity I(yi = 0)+I(yi = 1) = 1 (by considering theEquations

2.81), it can be written that:

G(θ, y) = C0G
(c)
γ (θ, y) + Cθ, (2.83)

where G(c)
γ (θ, y) = γTP + TN is the gain function of the γ-centroid

estrimators, C0, γ > 0 are constants, and Cθ is a function of θ independent

of y. Then the aim is that to design an estimator that predicts Ŷ that

maximizes the expectation value of G(c)
γ (θ, y) (as said above) with respect to

Pr(θ | x),

Ŷ = arg max
y∈S(x)

Eθ|x[G
(c)
γ (θ, y)] (2.84)

Eθ|x[G
(c)
γ (θ, y)] =

∑
θ∈S(x)

G(c)
γ (θ, y)Pr(θ | x). (2.85)

The γ-centroid parameter is able to adjust the sensitivity and PPV of the

prediction Ŷ . In particular, estimators with larger γ values produce better

sensitivities (and smaller PPVs), while those with smaller γ values produce

better PPVs (smaller sensitivities). Furthermore, the γ-centroid estimator is

equivalent to the centroid estimator when γ = 1.

The Equation 2.85 can be rewritten as follows:
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Eθ|x[G
(c)
γ (θ, y)] =

n∑
i=1

[(γ + 1)pi − 1]I(yi = 1) +
n∑
i=1

(1− pi) (2.86)

where,

pi = Pr(θi = 1 | D) =
∑
θ∈Θ

I(θi = 1)Pr(θ | D). (2.87)

Here, pi is the marginalized probability of the distribution for the i-th

dimension of the predictive space. The second term in 2.86 is a constant

which does not depend on y, while the γ-centroid estimator maximizes the

firs term. Furthermore, considering the Theorem 3 in [87], the γ-centroid esti-

mator is equivalent to the estimator that maximizes the sum of marginalized

probabilities pi that are greater than 1
(γ+1)

in the prediction.

Finally, taking into account the Corollary 1 in [87], we have that the

γ-centroid estimator for γ ∈ [0, 1] contains its estimator ŷ = {ŷi}:

ŷ =

 1 if pi > 1
(γ+1)

,

0 if pi ≤ 1
(γ+1)

for i = 1, 2, ..., n. (2.88)



Chapter 3
MicroRNA Biogenesis and RNA

Editing Phenomenon

We will have drugs based on

microRNA, and a lot of novel

diagnostic and prognostic

markers will be developed. It will

be a revolution

Carlo M. Croce

Ohio State University

3.1 microRNA Biogenesis

MicroRNAs (miRNAs) are a large class of small non-coding RNAs of

about 21-25 nucleotides. They negatively regulate the gene expression at

the post-transcriptional level, inducing the degradation of specific messenger

88
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RNA (mRNA), or preventing the translation into protein [90, 91, 92]. In

particular, miRNAs recognise specific mRNA target in order to determine

the degradation or the repression of the translation.

On a functional point of view, not only there are numerous miRNAs ca-

pable of recognizing more than one target, but also many of these targets

can be regulated by different miRNAs. MiRNAs can be considered as small

control elements of more complex regulatory biological pathways, that are

the basis of several fundamental functions. Those functions can be related

both to the cell processes (such as cell cycle regulation, cell proliferation,

and apoptosis), and the ones relating to the entire organism (including em-

bryonic development and its immune response, metabolism and cariogenesis,

development and function of the nervous and immune system) [93, 94].

Even if, thanks to their temporal and spatial expression patterns, miRNAs

perform their task in a physiological way, when their expression is altered,

they may be involved in several complex diseases, including numerous can-

cers. Moreover, the miRNA may have specific expression profiles according

to stage development, tissues and various pathologies. This implies that each

tissue is characterized from a specific set of miRNAs, whose expression profile

is distinctive of that tissue [95].

Recently, numerous studies have demonstrated the involvement of miR-

NAs in different cardiovascular [96] and neurological [97] diseases, but also

in obesity, diabetes [98], and especially in cancer [99].
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3.1.1 Organization of microRNA in Human Genome

As seen in 1.2.1, all miRNAs discovered, either through an experimental ap-

proach or a computational analysis, are stored in miRBase database (miR-

Base 2013), a register of miRNAs, noting all their features [32, 33]. Moreover,

miRBase expresses information about the genomics of miRNAs, that is their

organization on human chromosomes. In fact, the genes that encode miRNAs

are distributed on all chromosomes, except for the Y chromosome, and genes

for different miRNAs are mostly located closer. This creates real clusters,

often related to each other also on a functional point of view, as it happens

in the cluster of miRNAs hsa-let-7a-1, hsa-let-7f-1, and hsa-let-7d in chro-

mosome 9. According to their localization, miRNAs in the genome can be

distinguished in:

• Intergenic MiRNAs ;

• Intronic miRNAs in encoding transcripts ;

• Intronic miRNAs in non-coding transcripts ;

• Esonic MiRNAs in non-coding transcripts.

3.1.2 MicroRNA Biogenesis

MicroRNAs are in plants, in eukaryotes and in some viruses, and are encoded

by different types of genes. Those molecules, that are active in the regulation

of their target mRNAs, are defined “mature” miRNAs. These small RNAs are

between 19 and 22 nucleotides of length and are formed by processing bigger

ribonucleic sequences, encoded by the genome itself. MiRNAs are encoded by
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genes located in genome, individually or in clusters [100]. Generally, about

70% of the genes for miRNAs are in the intergenic regions, while the residual

30% is located in intronic sequences of specific genes, called “guest”. This

means that miRNAs can be located in transcriptional and independent units,

even if a large number of them is generated from transcripts containing either

cluster of miRNAs or intronic sequences of the host gene.

The process to get to the formation of mature miRNAs is complex; it has

its origins in the nucleus and finishes at the cytoplasm level (see Figure 3.1

[101]).

This molecule undergoes two consecutive reactions, catalysed by two en-

donucleases, Drosha and Dicer . Both of them act within protein com-

plexes, containing domains capable of binding together double-stranded RNA

molecules (dsRNA binding domains - dsRBDs). The proteins Drosha and

Dicer both possess the specific conserved catalytic domains RNase type

III (RIIIDa, RRIIDb), which act generating 3’ extremity, protruding for

two nucleotides.

The first reaction occurs in the nucleus thanks to Drosha, which forms a

complex with the Pasha protein (DGCR8 ). The union of Drosha and Pasha

cleaves the pri-miR, and generates a molecule with a hairpin structure of

about 70 nucleotides, called pre-miR. After that, the pre-miR is moved from

the nucleus to the cytoplasm by the Exp5 . Once inside the cytoplasm, the

hairpin precursor is cut by Dicer, forming a small duplex RNA molecule of

a variable size between 21 and 25 nucleotides. This molecule contains both

the filament of the mature miRNA and its complementary strand [101].

In mammals, the Dicer interacts with the proteins Ago1-Ago4 . When
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Figure 3.1: Model for biogenesis and activity of transcriptional repression of
microRNAs.
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combined with the mature miRNA, they form the miRISC complex (mi-

croRNA Induced Silencing Complex ), which has the aim to drive the miRNA

to the recognition of target messenger. The Ago proteins belong to the Arg-

onaute family, which are in all the eukaryotes and also are equipped for

specific motifs: PAZ and MID are the domains for the anchoring of the

target RNA at 3’ and 5’, while PIWI is the domain for cutting.

In the miRISC complex, there are not only Ago proteins, but also pro-

teins belonging to the GW182 family (TNRC6A, TNRC6B, TNRC6C in

mammals). They have an important role in transcriptional repression medi-

ated by miRNA [101] and act as cofactors of the Ago. As soon as the duplex

is formed by the action of Dicer, thermodynamically, the two filaments have

a different stability at the extremity 5’. Although the mature miRNA can

be localized either in a filament or in the other, it is almost always origi-

nates from the filament with a more unstable 5’ extremity, while the other

filament is degraded [102]. It can rarely happen that the two 5’ extremities

have a similar stability, so each of the them can create a mature miRNA with

biological activity with equal probability [90].

The regulation of the biogenesis of miRNAs is very important but not

studied in a complete way. However, there is a significant trend: a surprising

number of miRNA genes are formed under the control of many target that

it regulate. For example, the transcription of miR-7 gene in Drosophila is

repressed by a transcription factor called Yan, whose translation is in turn

repressed by miR-7, resulting in a negative feedback-loop [103]. Another

example is in C. Elegans : here the miRNA let-7 inhibits the translation of

lin-28 which in turn inhibits the transcription of let-7 [104].
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3.1.3 Post-Transcriptional Regulation Mediated by mi-

croRNAs

Once the formation ofmiRISC, which contains themiR-mature, is completed,

it pairs with the mRNA target. Then, miRNAs act as the adapters for the

miRISC complexes to recognize certain target mRNA. miRNA’s binding sites

in animal mRNAs are located in the 3’ UTR and are usually expressed in

multiple copies1 [105]. However, it has been observed in vitro that the recog-

nition miRNA-mRNA might also take place either in the coding regions or

in the 5’ UTR of mRNA, even if these pairing sites would not have enough

silencing capacity and could play only a marginal role [106]. The majority of

animal miRNAs bind together their target with imperfect complementarity,

forming bulges and loops, although a key feature of the target recognition

involves the pairing of nucleotides 2-8 of miRNA, representing the seed re-

gion. On the other side, in most plants miRNAs bind with almost perfect

complementarity to specific sites in the coding region [100].

The level of complementarity between miRNA and target is a key factor

in the regulatory mechanism. While the perfect complementarity allows the

cutting of the mRNA’s filament catalyzed by Ago, the central mismatch of

the duplex miRNA/mRNA excludes the cut and promotes the repression of

the translation.

Several studies on miRNAs of the animals indicate that the repression of

the translation is not followed by the destabilization of the mRNA. However,

for some interactions miRNA-target there is a significant reduction of the
1This is a necessary condition to have an efficient repression of translation
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concentration of the mRNAs due to a increase of the degradation [107, 108]

(see Figure 3.2 [101]). At the moment, it is not clear why this degradation

happens only in some of the targets and not in others. An hipothesys can be

that it is related to the number, the type and the location of the mismatch

of the duplex miRNA/mRNA, playing an important role in determining the

degradation or the arrest of the translation [109].

Figure 3.2: Representation of some of the possible mechanisms of action
of the RISC complex induced by miRNA. The mRNA target can be dead-
enylated and degraded, or its translation may be inhibited in several ways
represented here.

3.1.4 Regulation of microRNA Expression

The regulation of miRNA expression is fundamental to the role that these

molecules play. They are regulated in various levels during their biogenesis:
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• Regulation of transcription;

• Adjusting the processing ;

• Editing ;

• microRNA decay.

The regulation of the transcription is the same as many coding genes,

thanks to the presence of the same regulatory elements (TATA box sequences,

CpC Islands, iniziation elements) at the level of the promoters of miRNAs.

Many transcription factors (TF ) regulate the expression of tissue-specific

or development-specific, such as MYC/MYCN, stimulating the expression

of oncogenic cluster miR-17-5p in lymphoma cells [110], or REST that in-

hibits the expression of miR124 in non-neuronal cells or neuronal progenitors

through histonic de-acetylation and methylation of the promoter [111]. In

turn, miRNAs can regulate the expression of TFs, creating in this way cir-

cuits of positive or negative adjustment. Here, the total control of either

miRNA’s quantity or of TFs determines the final physiological effect.

The regulation of miRNAs processing occurs in several levels: Drosha,

Dicer andt their accessory proteins. For example, some helicases of the rat

and the SMAD proteins act at the Drosha level, controlling the production

of pri-miR [112], while at the pre-miR level, the levels of Dicer are controlled

and stabilized by TRBP, its cofactor [113].

As it will be explained more deeply in 3.2.4, the editing phenomenon

of both the pri-miR and the pre-miR by ADAR proteins2 would alter the
2The ADAR catalyses the conversion of adenosine to inosine.
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secondary structure (and therefore its stability), while the editing of the seed

of mature miRNAs by other proteins would alter the recognition of the target

[112].

Finally, the regulation of the stability and degradation of the mature

miRNA can control the final quantity inside the cell and then the biological

effect. It was observed that miRNAs are generally more stable then second

class messengers and have a half-life, ranging from a few hours to many days.

A complete control of the decay may have a fundamental role in the devel-

opment mechanisms and in the switch on-off response type, as, for example,

in the development of the mice’s retina, where the levels of miR-204 and

miR-211 decrease rapidly in neurons but not in the glia [112].

3.1.5 Bioinformatics Prediction of microRNAs’ Molec-

ular Targets

The discovery of miRNAs introduced a new paradigm in the gene regulation

systems. A primary point in understanding the functional role of miRNAs

and the complex molecular networks at the base of the gene regulation is

the identification of genes regulated by miRNAs themselves. miRNA se-

quences are very short and are characterized by a pairing imperfection with

the molecular target, so this creates a complexity in the identification of the

mRNA targets of the miRNAs. In recent years, the basic principles of this

interaction have been extrapolated from experimental studies, in order to

develop numerous mathematical algorithms for the prediction in silico of the

hypothetical target mRNAs. They include:
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Tool Website References
TargetScan http://www.targetscan.org/ [58]
PicTar http://pictar.mdc-berlin.de/ [60]

DIANA-microT http://www.diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi [59]
miRanda http://www.microrna.org/ [114, 115]
MirTarget2 http://mirdb.org/ [116]
RNAhybrid http://bibiserv.techfak.unizbielefeld.de/rnahybrid/ [117]

Table 3.1: List of some of the most important predictors of miRNA targets.

• Imperfect complementarity between the miRNA and the 3’ UTR of the

target and the strong bond between 6-8 nucleotides of the seed region

at the 5’ than at the 3’.

• Evolutionary conservation among the species of the target sequences

at the 3’ of the target.

• Thermodynamic stability of the duplex miRNA-mRNA.

• Cooperativity between multiple sites in close proximity.

• Multiplicity and cooperativity of the miRNA-target interaction.

• Loss of the secondary structure of the mRNA target at the binding site

for the miRNA.

As seen in 1.4.7, there are several softwares for the prediction of miRNA

targets available online. In the Table 3.1 are listed some of most known pre-

dictors of miRNA targets. Some of the results obtained with these algorithms

have been experimentally validated, and this has allowed to significantly im-

prove the performance for the in silico prediction of miRNA targets.

http://www.targetscan.org/
http://pictar.mdc-berlin.de/
http://www.diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi
http://www.microrna.org/
http://mirdb.org/
http://bibiserv.techfak.unizbielefeld.de/rnahybrid/
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3.1.6 Circulating microRNAs

MicroRNAs are also located in extra-cellular human body fluids such as

serum, plasma, saliva and urine, and this is often associated with various

pathological conditions including cancer. The circulating microRNAs have

been found within vesicles called exosomes. However, most of them are in

plasma and human serum, complexed to the protein Argonaute2 (Ago2 ),

rather than within vesicles. MicroRNAs circulate in the bloodstream in a

extra-cellular highly-stable form, which means that they could be used as

biomarkers for non-invasive diseases such as cancer [118, 119], cardiovascular

diseases [120] and pediatric Crohn’s disease [121].

In the dominant model for the stability of circulating miRNAs, miRNAs

are released by the cells in vesicles constituted by membranes, protecting

them from the Rnase activity in the blood. The vesicles acting as carriers of

circulating miRNAs include exosomes, which are vesicles of 50-90-nm hailing

from multi-vesicular bodies and released by exocytosis [122]. However, it has

been shown that a significant portion of miRNA circulating in human plasma

and serum is associated to Ago2 [123, 124].

Ago2 is the essential component of the complex miRISC. It not only binds

directly miRNAs, but also mediates the repression of the mRNA [125, 126].

Although it has been speculated that the miRNAs that are found in exosomes

are involved in intercellular communication [127, 128], many extra-cellular

miRNAs could be derived from dead cells that remain in the extra-cell space

due to both the high stability of the protein Ago2 and the Ago2-miRNA

complex [124]. These recent results suggest that the analysis of miRNAs as
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biomarkers should include all types of circulating miRNAs found in biological

fluids.

3.2 RNA Editing Phenomenon

3.2.1 The birth of RNA Editing

In 1986, a process that became known as RNA editing was discovered by

the research group of Benne Rob [129]. They found a post-transcriptional

process in which mitochondrial messenger RNAs were altered by the insertion

and deletion of uridine3. This phenomenon is explained by the fact that the

mitochondrial genomes of protozoa encoded a small number of proteins and

many of those genes which either showed disruption of ORF (Open Reading

Frames) or even did not have the start codon of trascription4.

According to what was known by the scientific community about nu-

cleotide modification in RNA and alternative splicing of mRNA, it was im-

possible to explain that mitochondrial mRNA contained insertions of one

or more non-genomically encoded uridines, without any flanking consensus

sequence at the site of insertion.

Even if a the beginning of 1990s the editing was described in diffent

species, the real interest for this phenomenon started around 1994. In fact,

from this year on, several international conferences were organized by Harold
3The uridine is a nucleoside that consists from the pyrimidine base of uracil to which is

attached a ring of ribose. If the uracil is attached to a deoxyribose ring, you get a molecule
of deoxyuridine.

4AUG codon encodes the methionine.
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Smith and Steve Hajduk5, by Glenn Bjork, Ted Maden and Henri Grosjean6,

and by Paul Sloof and Rob Benne7. In 1993 Rob Benne wrote the first text

dedicated to the theme of RNA editing [130]. In 1997, the inaugural Gordon

Research Conference was dedicated to the modification and RNA editing

[131]. This rapid growth has shown how the mechanisms of RNA and DNA

editing are important for the biological phenomena present in the cell.

The Biological Phenomenon of RNA Editing

RNA editing is a process in which the nucleotide sequence of RNA is altered

from the genomic code. The editing is related to the insertion/deletion of

nucleotides, or the base modification. Its peculiarity is that the result of RNA

editing is a change in the diversity and/or abundance of proteins expressed

in the proteomes of organisms, in particular in their tissues or organelles.

The coordination of the activities of the editing is foundamental to other

cellular pathways involving RNA, as, for example, transcription, processing

and translation. There are different factors involved in the recognition of the

RNA substrate and in the catalysis8, such as the single enzymes involved

in both the substrate identification and the catalytic activity, the macro-

molecular complexes containing proteins and small RNA molecules as guides

for the recognition of the substrate, and there are also multiple proteins to

coordinate the activities of editing. When the editosome edites the base of
51994, Albany Conference, Rensselaerville, NY, USA.
61994, EMBO Workshop, Aussois, France.
71996, EMBO Workshop, Maastricht, The Netherlands.
8The catalysis is a chemical phenomenon through which the speed of a chemical reaction

undergoes changes intervesion of substance (or mixture of substances), said catalyst, which
is not consumed by the proceeding of reaction.
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the nucleotides, such as in A-to-I and C-to-U , the editing factor acts in

multiple sites.

In the last years it was discovered that A-to-I RNA editing can regulate

the production of RNA interference (RNAi) and thus it maybe an impor-

tant cellular mechanism in the modulation of the abundance of individual

sequences within the transcriptome.

3.2.2 RNA Editing in Different Organismis

This section will explain briefly how RNA editing occurs in plants, animals

and viruses, for their proper functioning in particular biological processes.

RNA Editing in Plants

Even if it happens rarely, the conversions C-to-U and U-to-C are the only

types of RNA editing happening in mitochondria and plastids of the plants.

In particular, RNA editing sites are found in majority in the coding regions

of the mRNA, introns, and other non-traslated regions [132].

Even if the exact mechanism is yet not known, considering that there

are too many editing sites that needed to be changed in these organelles

for a deaminase, some studies have suggested the involvement of gRNA and

editosome complex.

The importance of RNA editing is seen also in the normal functioning of

both the translation and the respiration activity in the plants [133]. RNA

editing may be able to reactivate the functionality of the tRNAs [134, 135],

as it corrects the base-pairing of these molecules [136]. Moreover, it has been
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connected to the production of RNA- edited proteins, embedded within a

polypeptides complex of the respiration pathway. Furthermore, it is very

probable that the polypeptides synthesized by unedited RNAs would not

work properly and would prevent the activity not only of mitochondria, but

also of plastids.

RNA Editing in Animals

The process of polyadenylation (polyA) that occurs in the mitochondria of

the animals was the first observation of the phenomenon of RNA editing.

The polyadenylation is responsible for the derivation of the final part 3’ in

several mRNAs in animals. This mRNA downstream region is essential to

complete some transcripts and ensures the correct translation of proteins in

the mitochondria of the animals.

RNA Editing in Viruses

The RNA editing in viruses, such as measles, mumps, or parainfluenza, is

used to give stability and to generate various proteins [137].

3.2.3 Editing by Deamination

The deamination is the deletion of an amino group from a molecule, resulting

in a production of a molecule of ammonia9. The enzymes catalyzing this re-

action are called deaminase. Moreover, for the reaction to occur, it requires

a molecule of water. This is the reason why it is also called oxidative deam-
9Ammonia is a compound of nitrogen with the chemical formula NH3. It occurs as a

colorless, toxic gas with the characteristic odor.
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ination, because it oxidizes the carbon where the amino group was linked

to, and replaces it with a carbonyl group. In humans, the deamination takes

place primarily in the brain and in the liver, but it can also occur in the

kidneys. This process allows the removal of the potentially harmful atoms

of nitrogen that are in the amino acids. The process of deamination can

occur both in the bases of deoxyribonucleotides (DNAmolecule) and in those

of ribonucleotides (RNA molecule).

The Deamination Process in the DNA

The process of deamination occurs spontaneously. When happening in DNA

molecules, it can lead to genetic mutations, unless the damage is repaired.

Below are described the main examples of deaminations affecting the DNA.

Deamination of Cytosine The process of spontaneous oxidative deami-

nation of cytosine causes the formation of uracil (see Figure 3.3).

Figure 3.3: Spontaneous oxidative deamination of cytosine.

It can be induced in vitro, in order to distinguish in the double helix of

the DNA the strand with not-methylated cytosine and the one with normal



3.2. RNA EDITING PHENOMENON 105

cytosine. In the other case, if the process occurs in vivo, an uracil will be

inserted in place of cytosine. This mismatch can be recognized and repaired

by the DNA repair systems; if the error is not repaired within the next DNA

replication, the new molecules of synthesized DNA will contain a mutation

that will no longer be repairable.

Deamination of 5-methylcytosine It is possible to find 5-methylcytosine

mainly in prokaryotes. It is formed as the result of the methylation of a cy-

tosine through an enzyme called methyl transferase. The deamination of this

base causes the formation of thymine. In general, the DNA repair systems

are not able to correct this reaction, since it does not recognize the thymine

as incorrect, and so the mutation persists. This defect in the repair mecha-

nisms contributes to the formation of rare CpG sites in eukaryotic genomes10.

But there are also those rare enzymes that are able to both recognize the

mismatch deriving from this phenomenon (T-G) and to replace the thymine

with the cytosine.

Deamination of guanine The result of the deamination of guanine is the

formation of the xanthine molecule11. Instead of with cytosine, xanthine pairs

with thymine. This process creates a mutation of post-replicative transition,

in which the base pair that, at the beginning, was a G-C is now transformed

into an A-T pair base. This kind of mutations can be corrected by the action
10They are regions of DNA in which along the linear sequence of bases occurring suc-

cessions of cytosine followed by guaninte, alternately. The notation is used for CpG to
distinguish dthis linear sequence from the coupling of the base of cytosine with guanine

11Xanthine is a purine base. In nature it exists as methyl derivative on the various
nitrogen atoms
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of the alkyl adenine glycosylase enzyme.

Deamination of adenine The result of the deamination of adenine is the

formation of the hypoxanthine molecule12. Instead of with thymine, the hy-

poxanthine is coupled selectively with cytosine. As it happens in the prevoius

case, this process creates a mutation of post-replicative transition, so that

the initial A-T base pair is transformed into the G-C base pair.

The Deamination Process in the RNA

The RNA editing by deamination is the process of deamination of the RNA.

In the following sections, the main examples of RNA editing produced by

deamination of the ribonucleotides base will be taken into consideration.

Moreover, in the Figure 3.4 the main effects resulting from the RNA editing

process are shown.

C-to-U Editing The editing produced by the cytidine deaminase enzyme

deaminates a base of cytidine and transforms it into a base of uridine. The

apolipoprotein B gene (APO B35 ) in humans is an example of C-to-U edit-

ing. There are two isoforms in the human body: the APO B100, in the liver,

and the APO B48 synthesized exclusively in the small intestine. While the

sequence of the B100 apolipoprotein is CAA, when it is edited in the intes-

tine it becomes UAA, which is a STOP codon. This phenomenon, however,

does not occur in the liver. This concept is expressed in the Figure 3.5.
12The hypoxanthine is a purine derivative that occurs in nature. It is occasionally found

as a component of nucleic acids
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Figure 3.4: Possible effects caused by RNA editing.

Figure 3.5: Example of C-to-U RNA editing in the Apo B gene of Human.
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A-to-I editing The A-to-I RNA editing is the most studied editing phe-

nomenon in eukaryotes and is induced by the ADAR family13. These enzymes

modify a specific site of adenosine to inosine (that’s why this particular type

of RNA editing takes the name of A-to-I ) in the pre-mRNAs. It seems that

the editing produced by ADAR occurs in all metazoans, and this is essen-

tial for the development of mammalians. The A-to-I RNA editing occurs in

regions of double strand RNA (dsRNA). In the Figure 3.6 it is shown the

action of ADAR in a double-strand region.

Figure 3.6: Example of action of the ADAR in a double-strand region.

The A-to-I editing can be either specific (if a single adenosine is edited

within the dsRNA) or promiscuous (if the adenosines edited are up to 50%).

The specific editing occurs within a short double-strand region (for example,

those editing sites that are formed in a mRNA in which the bases of the

intronic sequences pair in a complementary way to the bases of the exon

sequences), while the promiscuous editing occurs within large duplex regions

(e.g. pre- or pri-miRNAs, duplexes deriving either from transgenes14 or from
13ADAR is an acronym for adenosine deaminases acting on RNA
14The transgene is a gene that is introduced into an organism, and this gene is alien to

the entire genome of the host organism
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viral expressions, and, finally, duplexes resulting by the pairing of repetitive

regions).

The consequences resulting from the A-to-I editing may be different. This

can be related to the fact that the inosine (I ) has the same behavior of

guanosine (G) not only in the process of translation, but also in the formation

of the RNA secondary structure (see both Figure 3.7 and 3.8).

Figure 3.7: Molecular structures of adenine and inosine.

Figure 3.8: Inosine behavior, similar to the Guanosine one.
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Among the effects there are, for example:

• alteration of coding capacity,

• alteration of the set of miRNA and siRNA targets,

• formation of heterocromatina,

• inhibition of the process of miRNA and siRNA,

• splicing alteration.

Those can be illustrated in Figure 3.9.

Figure 3.9: Main effect of the A-to-I RNA editing.
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3.2.4 A-to-I RNA editing analysis

As said before, the A-to- I RNA editing can cause different effects on the

stability of the structure of the RNA and its codification, but it is also able

to affect the correct functioning of adjustment mechanisms, such as miRNAs

and siRNAs. In this section, the history of RNA editing A-to-I, from its

discovery to the present days, will be analyzed.

The origins of A-to-I RNA editing

In 1991 it was discovered an A/G discrepancy between the cDNA (coding

DNA) and the genomic sequences of the GluR-2 subunit15 of mammals due

to a modification of the base at the RNA level [138]. The modification of

this nucleotide of adenosine converted a codon that codified glutamine in a

codon encoding arginine.

Thanks to the discovery of the codification of adenosine caused by the

RNA editing, several other cases in the transcripts of the nervous system

were identified. In each of those cases, the change of a single nucleotide,

causing the substitution of an amino acid, could be connected to the change

in the function of the protein. The simple fact that the variants of both

the edited and the non edited proteins were co-expressed in the same cells,

let the scientists realize that the RNA editing was not only an important

mechanism for the diversity of the genetic information, but that it also had

the ability to increase the complexity of both the eukaryotic trascriptome

and the proteome.
15It is a protein which in humans is encoded by the gene GRIA2. It is a neurotransmitter

receptor in the brain of human and is activated in varied physiological processes



3.2. RNA EDITING PHENOMENON 112

When the editing in the mRNA encoding GluR-2 was discovered, the

processes involved were unknown and two were the explanations given to

the A-to-G change observed in the cloned cDNA. The first was that it was

considered as the result of a process of unknownmodification of the adenosine

that alters the purine into another purine base equivalent to the guanosine

(such as the hypoxanthine); the second explication was that it was caused

by a mechanism involving first the removal of either the base or the entire

nucleotide, and then the introduction of guanosine.

As it was known in the past as well, the adenosine deaminase enzyme

(ADA) converts the adenosine mononucleotides in hypoxanthine nucleotides

(also called inosine) but it is also able to mediate the metabolism of both

the eukaryotes and the prokaryotes nucleotides. The ADA has important

therapeutic marker as the ADA deficiency which leads to various types of

disorders of the immune system [139]. Moreover, the ADA modifies adenosine

mononucleotides using a mechanism of hydrolytic deamination, as explicated

in the Figure 3.10.

Figure 3.10: Transition from adenosine to inosine.
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In addition to the modification of mononucleotides by the ADA, it was

also known the modification of adenosine into inosine genomically encoded

in transfer RNA (tRNA), which is a critical process for the generation of

the genetic code.

Right before the discovery of the editing process changing the adenosine in

the pre-mRNAs, it was discovered a new enzyme activity. It hit the adenosine

incorporated in the double-strand RNA molecules (dsRNA) [140, 141] and

through the analysis of the reaction products, it was verified that the actual

molecular process was to modify adenosine into inosine. Thus, the double-

strand struncture of the RNA was an essential feature for the editing to

occur, even if it was not observed any primary sequence neither upstream

nor downstream the editing. This is the main difference between the inner

working of the A-to-I editing and the C-to-U deamination processes, involving

secondary structure elements as well as a motif of primary sequence, guiding

the RNA modification system.

The protein responsible for all this process was initially called dsRAD,

or Drada, and was later renamed as ADAR1 (in Figure 3.11 the tertiary

structure of the protein ADAR1 is shown).

Figure 3.11: Comparison of ADAR proteins.
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This same protein was previously studied in several laboratories as both

a protein with a potential viral function [142] and as specific A-to-I editing

activity in the dsRNA in mammalian cells [143, 144]. ADAR2 and ADAR3,

together with other similar forms in vertebrates [145], flies [146] and worms

[147], were discovered after the cloning of the first ADAR (ADAR1). In

Figure 3.12 is shonw the various forms of the ADAR protein.

Figure 3.12: Tertiary structure of the ADAR1 protein.

RNA Editing in miRNA molecules

The double-strand RNAs are the possible target not only for the ADAR, but

also for any other protein binding to the dsRNA, such as the components of

the process of RNA silencing. It is easy to realise the connection between the
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processes of RNA editing and its silencing. There may be often a competition

between the editing machinery and the silencing one for the double-strand

molecules. Concerning the RNA, the result may be due to the set of enzymes

that operate in the RNA molecule as first. According to another model, the

RNA editing may be a nuclear event that induces the silencing at the level

of chromatin [148].

Thanks to the discovery of some members of microRNA subject to A-to-I

editing [149, 150, 151, 152], the relationship between editing and silencing

is now more evident. Analyzing the characterization of the secondary struc-

tures of known targets of ADAR enzymes, it can be hypothesized that the

molecules of miRNAs might undergo the RNA editing. As seen above, before-

their maturation miRNAs have a hairpin-shaped molecular structure. Pri-

miRNAs (the pre-mRNA transcripts of miRNAs) have usually a few hundreds

nucleotides length and they are first of all processed in pre-miRNA within

the nucleus. The pre-miRNA, which is composed of approximately 70-90

nucleotides, is exported to the cytoplasm, where a second process generates

a 20 to 22 nucleotides molecule, representing the functional miRNA.

The occurrence of A-to-I RNA editing in a molecule of miRNA has been

described first in miRNA22 of both the humman and the mouse [149]. The

observed editing events were localized both inside and outside the seed of the

miRNA. Depending on where the editing occurs, there can be two different

consequences: either stopping the function of the mature miRNA or allowing

the miRNA to bind to those RNA molecules to which it could not bind before.

In a work by Glen M. Borchert and others, published in September 2009 in

the journal Human Genetics Molecolar, it has been analyzed the deamination
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of adenosine that occurs in the human cDNA [153]. They hypothesized that

there is a relationship between the events of A-to-I editing in the non-coding

regions 3’ (3’ UTR) and the portion of bond mRNA::miRNA. They found

meaningful correlations between the A-to-I editing and the complementarity

modification of the miRNAs. In fact, over 3.000 on 12.723 evaluated editing

sites were found complementary to the seed matches form of a subset of

human miRNAs.

In addition, the group noted in 200 ESTs the editing sites within a motif

of 13 nucleotides long. The deamination of this motif simultaneously creates

the seed matches for three microRNAs, an impossible situation if the editing

had not occurred. According to these results, one of the functions of the

ADAR is to create regulatory sites for miRNAs. This means that many of

them might be identified among the miRNA target sites only through the

examination of expressed sequences.

It has been estimated that between 6% and 10% of all miRNA genes are

subject to the A- to-I modification [152]. Thanks to the identification of

editing events in miRNAs, it has beeb showed that not only the transcripts

of miRNAs are subject to post- transcriptional modification, but also that

the functions of miRNAs might not be fully deductible when their genomic

sequence is analyzed.
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Chapter 4
Biological databases and their analysis:

miRandola, miR-EdiTar and VIRGO

One sometimes finds what one is

not looking for.

Sir Alexander Flamming

Nobel Prize in Physiology

or Medicine (1945)

With the development of the techniques of massive sequencing, the ge-

nomic has gained billion sequences, so that the amount of data to analyze

and manage is huge. Thus, the storage and analysis of biological data re-

quire enormous computing resources and clusters of thousands of proces-

sors. This opens the doors to the inception and the developmen of biological

databases. They can be considered as libraries of life sciences information,

collected from scientific experiments, published literature, high-throughput

118
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experiment technology, and computational analyses.

Biological databases help researchers to understand and explain differ-

ent biological phenomena and give the chance to create a permanent data

platform, where data are easily available but not perishable.

I have been working on the creation of biological databases: miRandola ,

miR-EdiTar , and Virgo. All of them available on line.

• miRandola is an extracellular circulating MicroRNAs Database. It

is connected to miRò, the miRNA knowledge base, allowing users to

infer the potential biological functions of circulating miRNAs and their

connections with phenotypes [154].

• miR-EdiTar is a database of predicted A-to-I edited miRNA binding

sites. The database contains predicted miRNA binding sites that could

be affected by A-to-I editing ("current" sites), and sites that could

become miRNA binding sites as a result of A-to-I editing (“novel” sites).

It has an experimental example of a miRNA binding site created by

editing events. The goal is to facilitate the identification of miRNA

binding sites potentially affected by A-to-I editing as a function of the

number of base pair matchings, the degree of accessibility of the binding

site and the stability of the interaction, and to aid the discovery of new

potential miRNA binding sites that might be created by editing events

[155].

• VIRGO is a web-based tool that maps A-to-G mismatches between

genomic and EST sequences as candidate A-to-I editing sites. VIRGO

is built on top of a knowledge-base integrating information of genes
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from UCSC, EST of NCBI, SNPs, DARNED, and Next Generations

Sequencing data. The tool is equipped with a user-friendly interface

allowing users to analyze genomic sequences in order to identify candi-

date A-to-I editing sites [156].

4.1 miRandola : Extracellular Circulating Mi-

croRNAs Database

Despite a lack in literature, a precise classification among the different forms

of circulating miRNAs is required. Mirandola is a database of extracellu-

lar/circulating miRNA [154]. MiRNAs are classified into four categories,

based on their extracellular form:

• miRNA-Ago2 ;

• miRNA-exosome;

• miRN-HDL;

• circulating miRNA.

The database provides the users with a variety of information includ-

ing the associated diseases, the samples, the methods used to isolate the

miRNAs, and the description of the experiment. The information about the

targets of miRNAs and their records are provided through links to miRò, “the

miRNA knowledge base” [157]. miRò integrates data from different sources

to allow the identification of associations among genes, processes, functions,

and diseases through validated and predicted targets of miRNAs.
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4.1.1 Mirandola BackEnd

Mirandola is a database containing 119 articles, 2276 entries, and 590 unique

mature miRNAs. It was created in MySQL and consists of 6 tables:

• mirnas : this table collects information about miRNAs, such as fam-

ily, mature miRNA, and type of miRNAs with the following fields,

“mirna_ID” (primary key), “Mature_mirna”, “mirna_family”, “mirna_type”,

“sample_ID”, “article_ID”, “experiment_ID”, “Mirbase_accession”, “Last_Version”,

“AC_code” , “potential biomarker”;

• samples : this table contains information about the samples where

miRNAs were found. Its fields are “sample_ID” (primary key), “sam-

ple”, “sample_source”, “sample_name”;

• articles : this table regards the details about the articles used to

extract the information in miRandola. It has the following fields:

“article_ID” (primary key), “author”, “journal”, “title”, “link”, “data”,

“database”;

• experiments : this table provides details about the experiment per-

formed. It has the following fields: “experiment_ID” (primary key),

“organism”, “method”, “description”, “database”, and “link”.

The table miRNAs is linked to the table samples, articles and experiments

respectively via “sample_ID”, “article_ID” and “experiment_ID”. This allows

to know the sample from which it was extracted each miRNA, with a trial

description of the organism, the method used, and the sources of the infor-
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mation, such as paper, article title, author, date of publication and a link find

it. More details are visible in Figure 4.1.

Figure 4.1: Tables of miRandola relative to mirRNAs, samples, articles and
experiments.

• mirna_converter : this table converts any of the mature miRNAs

from the miRBase version 12 to miRBase version 18. It has the fol-

lowing fields: “id” (primary key), “mirbase_accession”, “version_12”,

“version_13”, “version_14”, “version_15”, “version_16”, “version_17”,

“version_18”;

• submission : this table contains the information of those that want

to enter their circulating miRNAs in miRandola. It has the follow-

ing fields: “submission_ID” and “PubMed” (together they are the pri-

mary key), “mature_mirna”, “mirna_type”, “sample”, “sample_name”,



4.1. MIRANDOLA: EXTRACELLULAR CIRCULATING MICRORNAS DATABASE123

“species”, “firstname”, “lastname”, “affiliation”, “email”.

Figure 4.2: Tables of mirna_converter and submission.

miRandola’s frontend was realized by using HTML, PHP, CSS and JQuery.

The website is available at http://atlas.dmi.unict.it/mirandola.

4.1.2 Sections of Mirandola

There are several sections:

Homepage It contains a website description, with the database outline,

the sources used, and small box “News”, showing the latest news1.

Search Here it is possible searching for a miRNA by category2:

• Mature miRNA;

• miRNA Family ;
1Website: http://atlas.dmi.unict.it/mirandola/index.html
2Website: http://atlas.dmi.unict.it/mirandola/browse.php

http://atlas.dmi.unict.it/mirandola
http://atlas.dmi.unict.it/mirandola/index.html
http://atlas.dmi.unict.it/mirandola/browse.php
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Figure 4.3: Homepage of miRandola.
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• miRNA type;

• Sample;

• Disease and Malignant Cell Lines ;

• Potential Biomarker.

For each category, the research can be done either by selecting an entry

from select or typing in the relevant area the element’s name (Figure reffig-

miRandola4). For each research, both the number of results found and an

information sheet to each miRNA are provided. Moreover, the results can

be saved in three different formats, pdf, txt, and csv.

Figure 4.4: Search page in miRandola.
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Figure 4.5: Example of results page.
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Advanced Search In this page, an advanced research can be done, after

choosing between two categories3:

• miRNA family ;

• mature miRNAs

From a select it is possible to select the entry and then filter the research

by miRNA type and samples.

Figure 4.6: Advanced search page in miRandola.

Tools In this page it is possible to convert the nomenclature of a mature

miRNA into a miRBase version 184. The conversion takes place either by

using the select or typing in the textarea a list of miRNAs separated by “,”.
3Website: http://atlas.dmi.unict.it/mirandola/search_ad.php
4Website: http://atlas.dmi.unict.it/mirandola/tools.php

http://atlas.dmi.unict.it/mirandola/search_ad.php
http://atlas.dmi.unict.it/mirandola/tools.php
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Figure 4.7: Tools page in miRandola.

Statistics Here there are some statistics about the database, such as the

number of publications in miRandola, the number of entries, the distribu-

tion of miRNAs in the samples, a wordle of the most present miRNAs, the

most frequent journals in miRandola, and the list of all the articles treated

manually5.

Download / Upload This page allows not only to send a new record to

insert in miRandola, but also to download the data already in the system6.

Help It provides a helpful tutorial in using miRandola7.
5Website: http://atlas.dmi.unict.it/mirandola/statistics.php
6Website: http://atlas.dmi.unict.it/mirandola/down_up.php
7Website: http://atlas.dmi.unict.it/mirandola/help.html

http://atlas.dmi.unict.it/mirandola/statistics.php
http://atlas.dmi.unict.it/mirandola/down_up.php
http://atlas.dmi.unict.it/mirandola/help.html
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FAQ This page contains the answers to the frequently asked questions

about miRandola8.

4.1.3 miRandola - miRò

The function of circulating miRNAs is still largely unknown. According to

some reports, endogenous miRNAs can be carried by high-density lipoprotein

(HDL): in this way they are able to enter inside receiving cells and contribute

to the repression of their targets [158]. Moreover, exosomes appear to play

an important role in the development of metastases. The role of miRNAs

in targeting sites far from the primary organ where they were originated is,

however, still unknown [159].

For all these reasons, and to help formulating hypotheses about the func-

tion of miRNAs, found into the extracellular space, connections between

miRandola and miRò were made. miRò provides the user with informa-

tion about functional annotations through validated and predicted targets of

miRNAs.

Each entry in miRandola provides links to other diseases, processes and

functions in which each miRNA is involved, and the tissues in which it is

expressed.
8Website: http://atlas.dmi.unict.it/mirandola/faq.html

http://atlas.dmi.unict.it/mirandola/faq.html
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Figure 4.8: Link between miRandola and miRò (disease, functions, processes,
tissues).

After clicking on the letter D (in red), the user will be directed to the

page of miRò referred to all the pathologies associated to the specific miRNAs

(e.g. hsa-miR-21 in the Figure 4.9):

Figure 4.9: Page of miRò relative to diseases of has- miR-21.

In Figure 4.9 it is possible to see the result returned by miRò. Each disease
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is associated with one or more targets of miRNAs, validated or predicted by

different prediction programs. If, instead, the user clicks on the letter F (in

blue), he/she will be directed to the page concerning the biological functions

associated with the miRNA (see the Figure 4.10).

Figure 4.10: Page of miRò relative to functions of has-miR-21.

By clicking on the letterP (in green) all the biological processes associated

with the miRNA will be shown (see the Figure 4.11).

Finally, by clicking on the letter T (in black), the user will be able to

view the expression levels of miRNA in different tissues (see the Figure 4.12).
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Figure 4.11: Page of miRò relative to processes of has- miR-21.



4.1. MIRANDOLA: EXTRACELLULAR CIRCULATING MICRORNAS DATABASE133

Figure 4.12: Page of miRò relative to tissues of has- miR-21.
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4.2 miR-EdiTar: A database of predicted A-

to-I edited miRNA target sites

Alterations of A-to-I editing have been associated to several human diseases,

such as infections, neurological diseases and cancer [160, 161, 161]. Moreover,

A-to-I editing can influence micro RNA (miRNA)-mediated gene regulation

[162]. Several cases of A-to-I editing of miRNA precursors have been re-

ported [163, 164]. This phenomenon can suppress processing by Drosha and

Dicer, while the presence of inosines in the mature sequences can alter the

recognition of their target sites [?]. A-to-I editing is most abundant in the

3’ untranslated regions (UTRs) of the human transcriptome [165, 166]. This

could affect the existing miRNA binding sites as well as generate novel bind-

ing sites [167].

The importance of RNA editing in miRNA activity suggests the need for

computational tools to predict and analyze the effects of RNA editing on

miRNA-mediated regulation.

4.2.1 The construction of miR-EdiTar

miR-EdiTar is a database of predicted A-to-I edited miRNA binding sites

[155]. The database contains predicted miRNA binding sites that could be

affected by A-to-I editing and sites that could become miRNA binding sites

as a result of A-to-I editing9.
9miR-EdiTar is freely available online at http://microrna.osumc.edu/mireditar

http://microrna.osumc.edu/mireditar
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Prediction of A-to-I edited miRNA binding sites

The first step of the research is the collection of data. In fact, 1, 139 human 3’

UTR sequences with a total of 10, 571 A-to-I editing sites were gathered to-

gether from the first release of DAtabase of RNa Editing (DARNED) [168].

The computational method miRiam [169] was used to predict miRNA-

target interactions involving the edited sites and exploits binding rules in-

ferred based on experimentally validated miRNA/target pairs and the struc-

tural accessibility of the target sites. This last feature is estimated based

on the local pairing probability computed by RNAplfold of the Vienna RNA

package [170] with the parameters W = 80 (sliding window length), L = 40

(interactions outside the span size of 40 are not allowed) and u = 4 (the

stretch of consecutive bases for which the probability of being unpaired is

computed), as recommended in [171]. In particular, the accessibility is com-

puted as the average probability of stretches of 4 nucleotides to be unpaired

in the predicted binding site. The score of the duplex structure and its free

energy are also computed. In particular, the latter is computed by using the

tool RNAduplex from the Vienna RNA package [172]. For each affected

binding site the accessibility, the duplex structure and the free energy are

computed for both the unedited and the edited version of the duplex, in

order to evaluate the effects of the editing events on the binding.

Predictions were performed on the complete set of 1, 922 human miRNA

sequences, retrieved from miRBase Release 18 [33]. 9, 532 out of 10, 571

(90%) edited adenosines were predicted to fall in at least one miRNA binding

site. 1, 102 UTRs (96.75%) had at least one edited adenosine on an miRNA
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seed binding site, while 771 (67.7%) had all their edited adenosines on at

least one miRNA seed binding site. On the miRNA side, 1, 664 miRNAs

(86.6%) had at least one seed binding site potentially affected by editing.

The duplexes were then classified into two categories, depending on whether

the edited adenosines were located on an miRNA seed binding region or not.

Seed matches were classified as 6mer, 7mer-A1, 7mer-m8 and 8mer, as in

citeBartel2009.

Furthermore, an important aim was to find all the novel miRNA binding

sites potentially generated by A-to-I editing. By changing all the edited

adenosines in guanosines in the set of the 1, 139 human 3’ UTR se-quences

and repeating the above analysis, 1, 076 UTR sequences (94.45%) had at

least one novel binding site created by editing events and 1, 400 miRNAs

(72.8%) had at least one target site potentially created by editing.

The table 4.1 below summarizes the descriptive statistics:

4.2.2 miR-EdiTar contents

miR-EdiTar contains a collection of predicted human miRNA binding sites

in A-to-I edited 3’ UTR sequences. The database contains two kinds of sites:

• “current” sites, that are those sites predicted to be miRNA binding sites

but that could be affected by A-to-I editing;

• “novel” sites are those sites not predicted to be miRNA binding sites but

that could become miRNA binding sites as a result of A-to-I editing.

The web site can be searched by miRNA and/or by target. Given an

miRNA, the list of its predicted targets is shown in a box. When a target is
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Edited sites
Edited sites on the 3’ UTRs 10, 571

Edited sites on a predicted miRNA binding site 9, 532

Targets

3’ UTR sequences affected by editing 1, 139
3’ UTR sequences with at least one edited base 1, 102

in a predicted miRNA binding site
3’ UTR sequences with all their edited bases in 771

a predicted miRNA binding site
3’ UTR sequences with at least one novel predicted 1076

binding site created by editing
miRNAs

miRNAs with predicted sites affected by editing 1, 664
miRNAs with predicted novel sites created by editing 1, 400

Table 4.1: Overall Descriptive Statistics.

selected, the corresponding interaction details are displayed on a table and

available for download in comma separated value (CSV) format. The binding

sites are grouped into two categories based on their type (current sites or

novel sites). Several data elements are provided, such as the position of the

binding site on the UTR, the seed type, the free energy of the duplex, the

structural accessibility degree, the interaction score and the duplex structure.

The edited bases are highlighted in bold characters and the corresponding

alignment pipes are replaced with an X, indicating the potential disruption

of the corresponding bond. In the case of current sites, an entry indicates

whether the edited bases are located in the seed region. Moreover, the values

of seed type, free energy, accessibility, interaction score and duplex structure

are provided for both the edited and unedited forms of the site. Similar

results can be obtained by choosing a target from the list and then selecting



4.2. MIR-EDITAR: A DATABASE OF PREDICTED A-TO-I EDITED MIRNA TARGET SITES138

one of its predicted miRNAs.

Check boxes can be used to filter the results visualized. In particular,

users can choose to filter the interactions based on the type of predicted site

(current or novel), the fact that the seed region is edited or not, the type

of seed match (6mer, 7mer-A1, 7mer-m8 and 8mer) and the energy of the

duplex.

Finally, similarly in miRandola, miR-EdiTar is connected to miRò, a web

environment that provides users with miRNA functional annotations inferred

through their validated and predicted targets [157].

4.2.3 Database implementation and web interface

All the data are collected and maintained up-to-date in a MySQL database

(v5.1 ) running on an Apache server (v2.2.15 ). The web application was

implemented in Ruby on Rails (v2.3.5 ), a framework based on the MVC

(Model-View-Controller) design pattern, allowing a fast development and

management of the application. The queries that the database allows to per-

form were coded leveraging on the association mechanisms between models

that the framework provides. The interface makes use of the Ajax technol-

ogy to improve theusability through a fast client-side update of selections

and results.

4.2.4 Utility and discussion

The modifications of predicted miRNA binding sites are classified into two

categories, based on whether the editing events occur in the seed region or in
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another part of the duplex. The replacement of adenosines with inosines in

the seed region can change A-U matches into G-U wobbles which are some-

times tolerated, especially in the presence of compensatory matches elsewhere

in the duplex, but which have been reported to weaken the interaction or even

abrogate binding [173]. This process is shown in Figure 4.13.

Figure 4.13: Predicted binding site for miR-511 in the 3’ UTR of CTSS

Editing events that occur outside of the seed binding region could also

influence targeting. They might either reduce the stability of the duplex,

through the introduction of G-U wobbles and mismatches, or increase it by

improving the seed match or by creating new matches outside the seed area,

as specified in Figure 4.14.

Figure 4.14: An edited adenosine in a potential binding site for miR-324-5p
on the 3’ UTR of MRI1 may improve the seed match by adding an extra CG
bond and changing the type from 7mer-A1 to 8mer

The presence of inosines in miRNA binding sites could also alter their
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secondary structure and, as a consequence, increase or reduce the chances

of binding. It has been demonstrated that single nucleotide polymorphisms

(SNPs) can significantly change mRNA secondary structure [174, 175] and

that changes in secondary structure can considerably affect the binding of

miRNAs [176, 177]. Therefore, it is plausible that editing events may yield

similar effects (see Figure 4.15 and 4.16).

Figure 4.15: An example of variation of structural accessibility of predicted
miRNA binding sites affected by A-to-I editing. The estimated structural
accessibility of a predicted binding site for miR-590-3p in the 3’ UTR of the
gene ARHGAP26 decreases by 40% due to editing events. The predicted
interactions are shown along with the secondary structures of the unedited
and edited versions of the binding sites



4.2. MIR-EDITAR: A DATABASE OF PREDICTED A-TO-I EDITED MIRNA TARGET SITES141

Figure 4.16: Example of variation of structural accessibility of predicted
miRNA binding sites affected by A-to-I editing. Two edited adenosines in
a non-seed area of the binding site for let-7a-3p on the 3’ UTR of ZNF529
increase the estimated degree of accessibility 2.15 times. The predicted in-
teractions are shown along with the secondary structures of the un-edited
and edited versions of the binding sites. Structural accessibility is computed
as the average probability of stretches of 4 nucleotides to be unpaired in the
predicted binding sites. Individual probabilities are calculated by the tool
RNAplfold on 40 nt windows. Secondary structures of the targets are shown
as computed by RNAfold on an 80 nt window encompassing the predicted
binding site.

Other than affecting existing miRNA binding sites, A-to-I editing can

generate novel miRNA/target interactions by either changing mature miRNA

sequences or creating new sites on UTRs, as already reported by a few studies

[153, 164]. As a proof of principle one of the predicted novel binding sites,

the gene MDM4, was validated. It is an important negative regulator of the

tumor suppressor p53 (Markey 2011). The 3’ UTR of MDM4 presented a

cluster of 4 edited adenosines generating a novel binding site for miR-500a-

3p. A fragment of the Wild Type (WT ) 3’ UTR of MDM4 gene containing

the predicted binding site was cloned downstream of the luciferase gene on
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a reporter construct. A mutant version of the plasmid (MUT ) mimicking

the editing events was generated by replacing the adenosines reported to be

edited into guanosines (Figure 4.17a,b).

Moreover, H460 cells (non-small cell lung carcinoma) was transfected

with the luciferase reporter construct along with a precursor of miR-500a-3p

or a scramble miRNA as negative control. There were not any significant

difference in the luciferase activity between cells transfected with the WT

plasmid along with either the scramble miRNA or miR-500a-3p precursor.

On the contrary, a 32% reduction in the luciferase activity (P < 0.01) was

observed in cells transfected with MUT and the miR-500a-3p precursor com-

pared to cells transfected with MUT and the scramble miRNA (see Figure

4.17c). This data clearly confirms that the editing process can produce new

binding sites for miRNAs on specific regions of the 3’UTR of a gene.

All these hypotheses and preliminary experiments suggest a new layer of

dynamic regulation in miRNA-mediated gene expression control and encour-

age further investigations.

4.3 VIRGO: Visualization of A-to-I RNA edit-

ing sites in genomic sequences

4.3.1 Datases of RNA Editing sites

Few systems are available on the web. The first web-oriented database for

annotated RNA editing sites was dbRES , but the last update goes back to

2007 and contains only a few dozen of human editing sites [178].
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Figure 4.17: Experimental validation of a novel predicted site for miR-500a-
3p created by editing in the 3’ UTR of MDM4. (a) A 24 nt long frag-
ment of the 3’ UTR sequence of MDM4 with 5 edited adenosines and the
corresponding mutated version mimicking the editing events. (b) The pre-
dicted duplex of the miRNA/target interaction created by the editing events.
(c) Renilla luciferase activity following co-transfection of a negative control
miRNA (SCR) and miR-500a-3p along with the non-edited luciferase re-
porter construct (WT ) and its mutated version (MUT ) into H460 cells. A
32% reduction in the luciferase activity (P < 0.01) is observed in the cells
transfected with MUT and the miR-500a-3p precursor compared to the cells
transfected withMUT and the negative control miRNA. No effect is observed
in the cells transfected with miR-500a-3p/SCR and WT.
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A few years later, Kiran and Baranov createdDARNED [168], a database

of human RNA editing sites providing a centralized access to published

data. RNA editing locations are mapped on the reference human genome.

DARNED is periodically updated and at the time of the writing of the thesis

it contains more than 300, 000 editing sites, but no statistical significance is

provided [179].

In 2011, Picardi et al. presented Expedit [180]. It is a web application

that maps data and, given individual sequence reads as input, executes a

comparative analysis against DARNED editing sites. No statistical signifi-

cance of results is given.

More recently, Ramaswami and Li have created RADAR a rigorously

annotated database of A-to-I RNA editing in human, mouse and drosophila

[181]. RADAR is the the largest dabatabe of human RNA editing which

contains more than 1.4 million of A-to-I editing sites.

4.3.2 The creation of VIRGO

VIRGO10 (Visualization of A-to-I RNA editing sites into GenOmic se-

quences) is a knowledge-base equipped with a web-interface allowing users

to map putative and known A-to-I editing sites into gene regions (including

coding sequences, introns, and UTRs) [156]. In this work is considered as pu-

tative editing sites A-to-G mismatches between genomic and EST sequences,

while known A-to-I editing sites are obtained from DARNED.

VIRGO borrows from literature the basic computational techniques that

are used to identify A-to-G mismatches as putative editing sites. These
10Available on web in http://atlas.dmi.unict.it/virgo/

http://atlas. dmi.unict.it/virgo/
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bioinformatics methods and resources (i.e. alignment between genomic and

EST sequences, clustering, double strand RNA region identification, Next

Generation Sequencing data) are then integrated into a workflow (see Figure

4.18) allowing users to facilitate the analysis of genomic sequences.

In particular, the VIRGO knowledge-base has been created by matching

all the human genes regions obtained from UCSC (hg19 ) to the EST database

using filters and NGS data. The filters allow the selection of candidate editing

events in clusters [182], lying in repeated and double strand regions and not

classified as SNPs. Moreover, VIRGO locally maps all the editing events

stored in DARNED. This feature allows the visualization of all DARNED

editing sites through the VIRGO web interface.

Finally, VIRGO uses the DARNED editing sites for which NGS informa-

tion is available to compute the expected frequencies of A to G substitution

that can happen in a mismatch aligned column. This knowledge is then used

to compute p-values for all VIRGO editing events for which NGS informa-

tion is available. The VIRGO web interface allows annotation of genomic

sequences, provided by users, known editing sites and those sites passing the

filters described above.

4.3.3 Construction and content

VIRGO is a knowledge base that integrates information retrieved from spe-

cialized biological databases. The core of the system has been developed in

C++, while the front-end consists of a web interface developed in PHP.

The data integration process implemented in VIRGO consists of a se-
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quence of steps carried out to identify putative A-to-I editing sites (see Fig-

ure 4.18). The database construction, which has been done offline, includes

six steps. All filters are mandatory, therefore, a site that does not pass one

of such steps is discarded. The last step is applied only when mismatches

align with the NGS reads. The steps are described below.
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Figure 4.18: Sequence of steps to identify putative A-to-I editing sites.
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Step 1: Blasting EST sequences in Human Genoma

In the first phase, the whole set of human genes from UCSC11 has been

downloaded. Then, using BLASTN, all the genes with NCBI EST database

have been aligned. Although this step is very time consuming, it allows

to identify all the potential A-to-I editing sites. VIRGO creates an initial

dataset by selecting the A-G mismatches between the genes and the EST

sequences.

Step 2: Clustering filter

According to [36], editing events usually happen in cluster. After binding the

mRNA, ADAR creates bunches of close editing events. An edited sequence

typically shows editing in many close-by sites. Therefore, it is very unlikely

to observe isolated editing events inside a sequence. The clustering filter

implements the methodology presented in [182] by selecting A-G mismatches

that are followed by at least three mismatches of the same kind, without

gaps or other types of mismatches (see Figure 4.19 for an example).

Step 3: Partitioning of mismatches

VIRGO partitions the selected mismatches in three categories. To achieve

that, the genes as falling in ALU regions (T0 ), in repeat regions (T1 ), and

in non repeat region (T2 ) have been labelled.
11It is available in http://genome.ucsc.edu/buildGRCCh37/hg19

http://genome.ucsc.edu/buildGRCCh37/hg19
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Figure 4.19: Clustering filter : The A-G mismatch in blue color is followed
by three mismatches of the same type (in red color). Furthermore, no gaps
are present. The three mismatches following the initial candidate editing site
are included as putative editing events and are highlighted in the alignment
with ESTs.

Step 4: Double strand filter

VIRGO verifies whether mismatches (from all the classes created above) oc-

cur into double-stranded regions. For this purpose a technique already used

in [6,36] for the prediction of the double strand portion of a RNA secondary

structure has been applied. It creates a short reverse complementary se-

quence centered on each mismatch by retrieving upstream and downstream

flanking nucleotides. Then it searches for the constructed reverse comple-

mentary sequence into the gene where the mismatch has been found. In

particular, when a mismatch occurs into an ALU repetitive region the length

of the short complementary sequence is equal to the length of the ALU re-

gion. Otherwise, the length of the short sequence is equal to 251 nucleotides

including the mismatch.

Next, VIRGO aligns the created sequence with a region with no more

than 4001 nucleotides centered on the A-G mismatch. Since the length of

the reverse complement in ALU and repeat regions is not constant we set the

minimum length for the alignments to be 85% of the length of the sequence
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(i.e. the alignment consists of at least 214 nucleotides over 251). Conse-

quently, in the alignment we look for an identity of at least 85%. VIRGO

annotates that mismatch as occurring into a double-strand region [6,36] (see

Figure 4.20 for an example).

Figure 4.20: Fourth Step of VIRGO. The A-G mismatch in blue color is
followed by three mismatches of the same type (in red color). Furthermore,
no gaps are present. The three mismatches following the initial candidate
editing site are included as putative editing events and are highlighted in the
alignment with ESTs.

Step 5: Filterig of SNPs

VIRGO, uses the database All SNPs(135) contained in UCSC, to filter the

mismatches that are already classified as SNPs.
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Step 6: Calculating of the statistical significance

VIRGO performs an alignment of the genes with a subset of NGS data taken

from the following experiments: SRP002274 -GSE19166 12 and SRP007465 13.

The subset of short reads is constructed as follows. Alignment of human

genome with short reads has been performed by BOWTIE [82]. In order

to reduce noise, only the best alignments with at most two mismatches by

using -a and -v parameters was accepted. By specifying -a, VIRGO instructs

BOWTIE to report all valid alignments, subjected to the alignment policy

-v 2 (at most two mismatches was allowed).

The selected short reads has been mapped on each VIRGO mismatch,

selecting those mismatches occurring into at least five short reads. This

alignment allows to compute, for some of the editing events, p-value and

adjusted p-value yielding the confidence that the candidate mismatch is not

a false positive.

The approach to compute the p-values of candidate sites uses the expected

A/G frequencies in the aligned columns versus the observed one in connection

to a Fisher exact test. To compute these expected frequencies we used all

the DARNED editing sites having an alignment with some NGS reads (it

has been set to five the minimum number of reads aligning the gene region).

In order to calculate the p-value, for each selected mismatch the nucleotides

present in the corresponding alignment columns has been considered. Only

columns containing adenosine and guanosine are taken into account. For
12Available in http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=

SRP002274
13Available in http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=

SRP007465

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP002274
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP002274
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP007465
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP007465
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each editing site reported in DARNED and aligned with the NGS reads

the frequencies of A and G nucleotides in the column corresponding to the

mismatch have been computed. Then, we take the average frequencies of A

and G for all aligned DARNED editing sites. It has considered as observed

frequencies those coming from a mismatch visualized by VIRGO which has an

alignment with NGS reads. These frequencies (expected/observed) was then

used through the Fisher’s Exact Test to compute the putative site p-value

(see Figure 4.21 for an example). The significance of those mismatches for

which it was not possible to compute the p-values was annotated as unknown.

Figure 4.21: Example for the p-value computation.

Finally, p-values have been adjusted applying FDR correction for testing

multiple hypotheses, with α = 0.01. Each p-value is periodically updated by

using new NGS experiments.
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4.3.4 Utility and discussion

VIRGO aims to be an efficient and user-friendly system, providing an inter-

face by which users can analyze and visualize their data, and export results

into xml and txt files.

The central purpose of VIRGO is to provide users with a periodically

updated system storing high quality candidate editing sites. This will al-

low users to quickly and easily identify whether their genomic sequences are

subject to A-to-I RNA Editing or not.

The user can submit an input file containing headers of sequences in a spe-

cific BED-like format. Once the analysis starts, a temporary page containing

a link to the results page is generated (see Figure 4.22).

The left part of the results page shows the sequences that have been ana-

lyzed. Each sequence is partitioned into segments of 80 nucleotides each. All

known mismatches (obtained from DARNED) are identified by blue marks

placed on top of them (see number 1 in Figure 4.22). In Figure 4.23 it is

shown, through a Venn diagram, the number of common sites shared by

VIRGO and DARNED.

Only a small portion of VIRGO editing sites overlaps with those present in

DARNED, for several reasons. First of all, RNA editing is a dynamic event;

this means that the presence of edited adenosines can have, in principle, a

strong variability. For example, a sequenced transcript can have an edited

adenosine in a specific position in an experiment, which is absent in the same

sequenced transcript in a second experiment. This conjecture is supported by

the fact that most of the data included in DARNED come from experiments
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Figure 4.22: VIRGO usage example.
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Figure 4.23: Venn diagram concerning the number of editing sites in common
between VIRGO and DARNED.

in which authors synthesized their own ETSs or NGS transcripts. Within

this context, tools as Virgo are useful to help to investigate. A second reason

relies on the fact that the second phase (clustering filter) of VIRGO hides

those candidate editing events that do not happen in clusters. However,

since editing is rarely an-all-or-nothing mechanism, this dataset, based on

the actual EST sequence reads, gives an accurate measure for the editing

events occurring in vivo.

The sites identified by VIRGO are marked with different colors (yellow,

orange, red, purple) according to the Number of Aligned ESTs (NAEs). The

colors with respect to the NAEs are:

• yellow : 1 6 NAE 6 5;

• orange: 5 < NAE 6 10;

• red : 10 < NAE 6 20;

• fuchsia: NAE 6 20.
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They are placed at the bottom of sequences (see number 2 in Figure

4.22). By clicking on a blue marker, VIRGO shows the following information:

chromosome, genomic position, strand, p-value, tissue/organ (if known), if it

is a SNP and the PUBMED resources.

Markers relative to newly predicted sites will give information on chro-

mosome, genomic position, strand, and p-value. When a mismatch occurs

inside a repeat region, its start/end genomic position, strand, chromosome,

name, class and family will be given. It is given the list of EST sequences in

which the mismatch occurs. For each EST sequence, VIRGO shows the EST

name, tissue and organ (if known), the alignment between the input gene

and EST sequence, and the NCBI information. The list of isoforms where

the mismatch occurs is also provided. For each isoform, information such as

the refSeq ID, chromosome, strand, starting and ending genomic position,

among others, are provided (see number 3, 4 and 5 in Figure 4.22).

Finally, the results of the analysis will be stored into the server for 5 days

and then removed.
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Chapter 5
Profile HMM for microRNA Target

and Design

Nature shows us only the tail of

the lion. But there is no doubt

in my mind that the lion belongs

with it even if he cannot reveal

himself to the eye all at once

because of his huge dimension.

Albert Einstein

Nobel Prize in Physics (1921)

5.1 Introduction to profile HMM for microRNA

target

Since its definition, profile HMM has been implemented in several bioin-

formatics tools [183] in which there is the need of multiple alignment of

158
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sequences.

Profile HMM are particularly powerful since they allow to define family

of conserved sequences (i.e. RFAM [184], PFAM [185]). In the application

of profile HMM to microRNA targeting the problem is different. In this case

we have two sequences as input, the microRNA and the mRNA.

Therefore the parameters of the machine are conditioned with respect to

the nucleotides present in the miRNA. The architecture of the profile HMM

is presented in Figure 5.1:

Figure 5.1: Transition structure of the profile HMM for the microRNA tar-
geting.

Notice that in this model we have a portion of the model that is positional,

that is the one corresponding to the profile, and a portion that is not posi-

tional, in which the nucleotide of mRNA sequence is considered background.

In the Figure 5.1 the nodes in yellow indicate the states of deletions, the ones

in red to indicate the states of insertions, while the ones in blue to indicate

the states of matching between a nucleotide belonging to the mRNA target
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Start
B: Background

L: Leader
T: Trailer

Ii: insertion of microRNA target site position i = 1, 2, . . . , 23
Di: delete of microRNA target site position i = 1, 2, . . . , 24
Si: match of microRNA target site position i = 1, 2, . . . , 24

End

Table 5.1: States of the profile HMM for MicroRNA targeting. Notice that
the description is done assuming that the length of miRNAs is 23 nucleotides.

and a microRNA that acts as the regulator of gene expression.

All states in the schema above are shown in Table 5.1.

In the first phase were designed and implemented Forward and Back-

ward algorithms, which were subsequently integrated in the Baum-Welch

algorithm for the parameter estimation.

In order to be guaranteed the reliability of the results, was used as train-

ing set the MiRecoord database [186], which contains experimental vali-

dated profiles of alignment between miRNAs and mRNAs. In addition, the

decoding algorithm to has been implemented, in which given a set of observ-

able states (in our case represented by the sequence of the microRNA and

mRNA) the aim is that to find the most likely hidden states that determine

the pairwise alignment between the two molecules.

We implemented few algorithms for the targeting through profile HMM.

We started with Viterbi, however we noticed a very poor behavior in the

recovery of experimentally validated binding sites. Then we implanted a

posterior decoding based on γ-centroid and a stochastic backtrace.

Our experiments show that γ-centroid based decoding is the most reliable
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in terms of quality.

5.2 Forward and Backward Algorithms

To implement the forward and backward algorithms we need matrices to

store the probability of both parts of the machine.

We have 3 vectors concerning the non positional part of the machine:

• fB represents the background probability at each sequence position.

• fL represents the leader probability at each sequence position.

• fT represents the trailer probability at each position.

Then, we have the positional part of the machine, composed by 3 matrices.

• fMk
stores the matching probability position across all the microRNA

length.

• fIj stores the insertion probability position across all the microRNA

length but one.

• fDj stores the deletion probability position across all the microRNA

length.

The same number of matrices are used for the backward algorithm.

5.2.1 Forward Algorthm

Let X = x1, . . . , xT be the mRNA, and let Y = Y1, . . . , YN be microRNA.

The following equations refer to the forward algorithm in logspace.
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Initialization (i = 0):

FB(0) = 0, FL(0) = −∞, F T (0) = −∞,

FM
j (0) = −∞∀ j = 1 . . . N,

F I
j (0) = −∞∀ j = 1 . . . N − 1,

FD
j (0) = −∞∀ j = 1 . . . N

Recursion (i = 1, . . . , T , j = 1, . . . , N):
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FB(i) = log(eB(xi)) + log
[
aB,B exp(FB(i− 1))

+aT,B exp(F T (i− 1))
]

FL(i) = log(eL(xi)) + log
[
aL,L exp(FL(i− 1))

+aB,L exp(FB(i− 1)) + aT,L exp(F T (i− 1))
]

F T (i) = log(eT (xi)) + log
[
aT,T exp(F T (i− 1))

+aMN ,T exp(FM
N (i− 1)) + aDN ,T exp(FD

N (i− 1))
]

FM
1 (i) = log(eM1(xi|y1)) + log

[
aL,M1 exp(FL(i− 1))

]
FD

1 (i) = log
[
aL,D1 exp(FL(i− 1))

]
F I

1 (i) = log(eI1(xi)) + log
[
aM1,I1 exp(FM

1 (i− 1))

+aI1,I1 exp(F I
1 (i− 1) + aD1,I1 exp(FD

1 (i− 1))
]

FM
j (i) = log(eMj

(xi|yj)) + log
[
aMj−1,Mj

exp(FM
j−1(i− 1))

+aIj−1,Mj
exp(F I

j−1(i− 1)) + aDj−1,Mj
exp(FD

j−1(i− 1))
]

F I
j (i) = log(eIj(xi)) + log

[
aMj ,Ij exp(FM

j (i− 1))

+aIj ,Ij exp(F I
j (i− 1)) + aDj ,Ij exp(FD

j (i− 1))
]

FD
j (i) = log

[
aMj−1,Dj exp(FM

j−1(i))

+aIj−1,Dj exp(F I
j−1(i)) + aDj−1,Dj exp(FD

j−1(i))
]

Termination:

log (P (X|Y )) = log
[
exp(FB(T )) + exp(F T (T ))

]
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5.2.2 Backward Algorithm

The backward algorithm is implemented in logspace.

Initialization (i = 0):

BB(T ) = 0, BL(T ) = −∞, BT (T ) = 0,

BM
j (T ) = −∞∀ j = 1 . . . N,

BI
j (T ) = −∞∀ j = 1 . . . N − 1

BD
j (T ) = −∞∀ j = 1 . . . N

Recursion (i = T − 1, . . . , 1, j = N, . . . , 1):

BB(i) = log
[
eB(xi+1)aB,B exp(BB(i+ 1))

+eL(xi+1)aB,L exp(BL(i+ 1))
]

BT (i) = log
[
eT (xi+1)aT,T exp(BT (i+ 1))

+eL(xi+1)aT,L exp(BL(i+ 1)) + eB(xi+1)aT,B exp(BB(i+ 1))
]

BM
N (i) = log

[
eT (xi+1)aMN ,T exp(BT (i+ 1))

]
BD
N (i) = log

[
aDN ,T exp(BT (i+ 1))

]
BM
j (i) = log

[
eMj+1

(xi+1|yj+1)aMj ,Mj+1
exp(BM

j+1(i+ 1))

+eIj(xi+1)aMj ,Ij exp(BI
j (i+ 1)) + aMj ,Dj+1

exp(BD
j+1(i))

]
BI
j (i) = log

[
eMj+1

(xi+1|yj+1)aIj ,Mj+1
exp(BM

j+1(i+ 1))

+eIj(xi+1)aIj ,Ij exp(BI
j (i+ 1)) + aIj ,Dj+1

exp(BD
j+1(i))

]
BD
j (i) = log

[
eMj+1

(xi+1|yj+1)aDj ,Mj+1
exp(BM

j+1(i+ 1))

+eIj(xi+1)aDj ,Ij exp(BI
j (i+ 1)) + aDj ,Dj+1

exp(BD
j+1(i))

]
BL(i) = log

[
eL(xi+1)aL,L exp(BL(i+ 1))

+eM1(xi+1|y1)aL,M1 exp(BM
1 (i+ 1)) + aL,D1 exp(BD

1 (i))
]
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Termination

log (P (X|Y )) = log
[
eB(x1)aB,B exp(BB(0))

]

5.2.3 LogSum Trick

To avoid underflow problems, the sum of log of probabilities is computed

using the following equality. Let x be the max(x, y), we have: log(ex + ey) =

x+ log(1 + ey−x). For the general case, given a vector of log of probabilities

(x1, . . . , xm), let y be the max(xi), the log sum in this case will be:

log

(
m∑
i=1

exi

)
= y + log

(
n∑
i=1

e(xi−y)

)
(5.1)

5.3 Baum-Welch

Forward and Backward probabilities are obtained from logs through exponen-

tiation. Given K pairs of mRNAs and microRNAs {〈X1, Y1〉 , . . . , 〈XK , YK〉},

the expected emission counts for all the sequences in the training set are ob-

tained with the following equations:

EB(a) =
K∑
k=1

1

P (Xk|Yk)
∑
i|xki =a

exp(FB
k [i] +BB

k [i])

EL(a) =
K∑
k=1

1

P (Xk|Yk)
∑
i|xki =a

exp(FL
k [i] +BL

k [i])

ET (a) =
K∑
k=1

1

P (Xk|Yk)
∑
i|xki =a

exp(F T
k [i] +BT

k [i])
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EMj
(a|yj = b) =

K∑
k=1

1

P (Xk|Yk)
∑

i|xki =a,ykj=b

exp(F
Mj

k [i] +B
Mj

k [i])

EIj(a) =
K∑
k=1

1

P (Xk|Yk)
∑
i|xki =a

exp(F
Ij
k [i] +B

Ij
k [i])

The expected transition counts for all the sequences in the training set

are obtained using the following equations:

AB,B =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(FB
k [i])aB,BeB(xi+1) exp(BB

k [i+ 1])

AT,B =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F T
k [i])aT,BeB(xi+1) exp(BB

k [i+ 1])

AB,L =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(FB
k [i])aB,LeL(xi+1) exp(BL

k [i+ 1])

AL,L =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(FL
k [i])aL,LeL(xi+1) exp(BL

k [i+ 1])

AT,L =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F T
k [i])aT,LeL(xi+1) exp(BL

k [i+ 1])

AL,M1 =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(FL
k [i])aL,M1eM1(xi+1|y1) exp(BM1

k [i+ 1])
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AL,D1 =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(FL
k [i])aL,D1 exp(BD1

k [i])

AMj ,Mj+1
=

K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Mj

k [i])aMj ,Mj+1
eMj+1

(xi+1|yj+1) exp(B
Mj+1

k [i+1])

AIj ,Mj+1
=

K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Ij
k [i])aIj ,Mj+1

eMj+1
(xi+1|yj+1) exp(B

Mj+1

k [i+1])

ADj ,Mj+1
=

K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Dj
k [i])aDj ,Mj+1

eMj+1
(xi+1|yj+1) exp(B

Mj+1

k [i+1])

AMN ,T =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(FMN
k [i])aMN ,T eT (xi+1) exp(BT

k [i+ 1])

ADN ,T =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(DMN
k [i])aDN ,T eT (xi+1) exp(BT

k [i+ 1])

AT,T =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F T
k [i])aT,T eT (xi+1) exp(BT

k [i+ 1])

AMj ,Dj+1
=

K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Mj

k [i])aMj ,Dj+1
exp(B

Dj+1

k [i])

AIj ,Dj+1
=

K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Ij
k [i])aIj ,Dj+1

exp(B
Dj+1

k [i])

ADj ,Dj+1
=

K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Dj
k [i])aDj ,Dj+1

exp(B
Dj+1

k [i])
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AMj ,Ij =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Mj

k [i])aMj ,IjeIj(xi+1) exp(B
Ij
k [i+ 1])

AIj ,Ij =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Ij
k [i])aIj ,IjeIj(xi+1) exp(B

Ij
k [i+ 1])

ADj ,Ij =
K∑
k=1

1

P (Xk|Yk)
∑
i

exp(F
Dj
k [i])aDj ,Mj+1

eIj(xi+1) exp(B
Ij
k [i+ 1])

The expected counts of A and E are initialized using the data from the

training set regularized with αs from Dirichlet. The Baum-Welch Algorithm

pseudocode used for the training is given below.

Initialization:

Pick as parameters the counts from training set regularized with the Dirich-

let priors.

Recurrence:

1. Set all A and E variables to their pseudocounts.

2. For each sequence in the training set j = 1, . . . , n.

2.1 Compute forward probability for sequence j.

2.2 Compute backward probability for sequence j.

2.3 Add the contribution of sequence j to A and E

according the the equations above.
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3. Update the model parameters.

4. Compute the new log likelihood.

Termination:

Stop if the change in the likelihood is less than 1e−5, or the number of

iterations exceeds 100.

5.4 Gamma-Centroid Decoding

As in Viterbi we have 3 vectors concerning the non-positional part of the

machine (GB, GL, GT ) and 3 for the profile one (GM , GD, GI) .

Let X = x1, . . . , xT be the mRNA, and let Y = Y1, . . . , YN be microRNA.

Initialization (i = 0):

GB(0) = 0, GL(0) = 0, GT (0) = −∞,

GM
j (0) = −∞∀ j = 1 . . . N,

GI
j (0) = −∞∀ j = 1 . . . N − 1,

GD
j (0) = −∞∀ j = 1 . . . N

Recursion (i = 1, . . . , T , j = 1, . . . , N):

GB(i) = fB(i)·bB(i)
P (X|Y )

+ max
(
GB(i− 1), GT (i− 1)

)
GL(i) = fL(i)·bL(i)

P (X|Y )
+ max

(
GL(i− 1), GB(i− 1), GT (i− 1)

)
GT (i) = fT (i)·bT (i)

P (X|Y )
+ max

(
GT (i− 1), GM

N (i− 1), GD
N(i− 1)

)
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GM
1 (i) = (γ + 1) · fM1

(i)·bM1
(i)

P (X|Y )
− 1 +GL(i− 1)

GD
1 (i) = (γ + 1) · fD1

(i)·bD1
(i)

P (X|Y )
− 1 +GL(i)

GM
j (i) = (γ + 1) · fMj (i)·bMj (i)

P (X|Y )
− 1 + max

(
GM
j−1(i− 1), GI

j−1(i− 1), GD
j−1(i− 1)

)
GI
j (i) = (γ + 1) · fIj (i)·bIj (i)

P (X|Y )
− 1 + max

(
GM
j (i− 1), GI

j (i− 1), GD
j (i− 1)

)
GD
j (i) = (γ + 1) · fDj (i)·bDj (i)

P (X|Y )
− 1 + max

(
GM
j−1(i), GM

j−1(i), GD
j−1(i)

)

5.4.1 microRNA Design

Let X = x1, . . . , xT be the mRNA, then:

P (X = xi) =
∑
M=m

P (M,R = r) (5.2)

P (M∗|R) = argmaxMP (M |R) (5.3)

5.5 Stochastic backtrace procedure

Here, are defined the probabilities that are in the stochastic traceback pro-

cedure in order to determinate the hidden states.

• Backward

P (Bi−1|Bi) =
fB [i−1]×âB,B

fB [i−1]×âB,B+fT [i−1]×âT,B

P (Ti−1|Bi) =
fT [i−1]×âT,B

fB [i−1]×âB,B+fT [i−1]×âT,B
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• Leader

P (Li−1|Li) =
fL[i−1]×âL,L

fL[i−1]×âL,L+fB [i−1]×âB,L+fT [i−1]×âT,L

P (Bi−1|Li) =
fB [i−1]×âB,L

fL[i−1]×âL,L+fB [i−1]×âB,L+fT [i−1]×âT,L

P (Ti−1|Li) =
fT [i−1]×âT,L

fL[i−1]×âL,L+fB [i−1]×âB,L+fT [i−1]×âT,L

• Trailer

P (Ti−1|Ti) =
fT [i−1]×âT,T

fT [i−1]×âT,T+fMN [i−1]×âMN,T+fDN [i−1]×âDN,T

P (MN,i−1|Ti) =
fMN [i−1]×âMN,T

fT [i−1]×âT,T+fMN [i−1]×âMN,T+fDN [i−1]×âDN,T

P (DN,i−1|Ti) =
fDN [i−1]×âDN,T

fT [i−1]×âT,T+fMN [i−1]×âMN,T+fDN [i−1]×âDN,T

P (Li−1|D1,i) =
fL[i]×âL,D1

fL[i]×âL,D1
= 1



5.5. STOCHASTIC BACKTRACE PROCEDURE 172

P (Li−1|M1,i) =
fL[i−1]×âL,M1

fL[i−1]×âL,M1
= 1

• Base case of Insertion State

P (M1,i−1|I1,i) =
fM1

[i−1]×âM1,I1

fM1
[i−1]×âM1,I1

+fD1
[i−1]×âD1,I1

+fI1 [i−1]×âI1,I1

P (D1,i−1|I1,i) =
fD1

[i−1]×âD1,I1

fM1
[i−1]×âM1,I1

+fD1
[i−1]×âD1,I1

+fI1 [i−1]×âI1,I1

P (I1,i−1|I1,i) =
fI1 [i−1]×âI1,I1

fM1
[i−1]×âM1,I1

+fD1
[i−1]×âD1,I1

+fI1 [i−1]×âI1,I1

• Match state

P (Mj−1,i−1|Mj,i) =
fMj−1

[i−1]×âMj−1,Mj

fMj−1
[i−1]×âMj−1,Mj

+fIj−1
[i−1]×âIj−1,Mj

+fDj−1
[i−1]×âDj−1,Mj

P (Dj−1,i−1|Mj,i) =
fDj−1

[i−1]×âDj−1,Mj

fMj−1
[i−1]×âMj−1,Mj

+fIj−1
[i−1]×âIj−1,Mj

+fDj−1
[i−1]×âDj−1,Mj

P (Ij−1,i−1|Mj,i) =
fIj−1

[i−1]×âIj−1,Mj

fMj−1
[i−1]×âMj−1,Mj

+fIj−1
[i−1]×âIj−1,Mj

+fDj−1
[i−1]×âDj−1,Mj

• Deletion state
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P (Mj−1,i|Dj,i) =
fMj−1

[i]×âMj−1,Dj

fMj−1
[i]×âMj−1,Dj

+fIj−1
[i]×âIj−1,Dj

+fDj−1
[i]×âDj−1,Dj

P (Dj−1,i|Dj,i) =
fDj−1

[i]×âDj−1,Dj

fMj−1
[i]×âMj−1,Dj

+fIj−1
[i]×âIj−1,Dj

+fDj−1
[i]×âDj−1,Dj

P (Ij−1,i|Dj,i) =
fIj−1

[i]×âIj−1,Dj

fMj−1
[i]×âMj−1,Dj

+fIj−1
[i]×âIj−1,Dj

+fDj−1
[i]×âDj−1,Dj

• Insertion state

P (Mj,i−1|Ij,i) =
fMj [i−1]×âMj,I1

fMj [i−1]×âMj,Ij+fDj [i−1]×âDj,Ij+fIj [i−1]×âIj ,Ij

P (Dj,i−1|Ij,i) =
fDj [i−1]×âDj,Ij

fMj [i−1]×âMj,Ij+fDj [i−1]×âDj,Ij+fIj [i−1]×âIj ,Ij

P (Ij,i−1|Ij,i) =
fIj [i−1]×âIj ,Ij

fMj [i−1]×âMj,Ij+fDj [i−1]×âDj,Ij+fIj [i−1]×âIj ,Ij

The forward probability is obtained from Log-odds:

F (X) = log

(
P (X)

PR(X)

)

thus,

P (X) = exp(F (X) + log(PR(X))
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PR(X) =
n∏
i=1

qxi

5.6 Results

The HMM has been trained and tested using a dataset of experimentally

validated Human microRNA-gene interaction binding sites.

The data have been downloaded from miRecords1 [186]. The validated

targets component of miRecors hosts a large, high-quality manually curated

database of experimentally validated miRNA–gene interactions with system-

atic documentation of experimental support for each interaction. The exper-

imentally validated human miRNA-gene are 1, 631.

From this dataset we selected only the 102 pairs referring to those data

with experimentally validated binding sites. This 102 pairs consist of 126

binding sites drawn from 59 different microRNAs and 76 different mRNAs.

Two kinds of experiments have been done:

(a) The first one uses the original mRNAs. The flanking sequences, of

10 nucleotides, preceding and succeeding the binding sites are set as

Leader and Trailer states, the rest of the messenger is set as background.

(b) In the second experiment we shuffle the mRNA keeping only the original

binding site. In this case the flanking site length has been set to 1 or

2.

To perform a blind test analysis, the dataset has been randomly par-

titioned into training set (66% - 81 binding sites from 64 miRNA-gene)
1It is available in: http://mirecords.biolead.org/

http://mirecords.biolead.org/
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and testing set (34% - 45 binding sites from 38 miRNA-gene). In the Fig-

ure 5.2, are shown the results as Positive Predicted Values/Sensitivity

(PPV/SEN ) by varying the γ parameter after the training of the model

with 10 iterations of Baum-Welch algorithm with properly provided prior

distribution based on Dirichlet pseudo counts.

Figure 5.2: Comparison PicTar and Profile HMM for miRNA targeting (10
Baum-Welch iterations).

In the Figure 5.3 it is possible to see the convergence of Baum-Welch

algorithm after 70 iterations, considering the second training set.
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Figure 5.3: Convergence of Baum-Welch algorithm.

The HMM has also been tested on a dataset of experimentally validated

false negatives (the training has been done on the training set of the point (a)

above). The data consist of 33 pair of miRNA-gene for which the target gene

expression is unaffected by the presence of the miRNA. These sequences have

been downloaded from TarBase [187]. TarBase hosts detailed information

for each miRNA/gene interaction, ranging from miRNA- and gene-related

facts to information specific to their interaction, the experimental validation

methodologies and their outcomes.
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Chapter 6
A Systematic Method to Find Motifs

Characterizing the A-to-I RNA Editing

A universe with a God would

look quite different from a

universe without one. A physics,

a biology where there is a God is

bound to look different. So the

most basic claims of religion are

scientific. Religion is a scientific

theory.

Richard Dawkins

Oxford University

Despite the enormous efforts made in the last two decades, the real bio-

logical function of the RNA editing as well as the features of the substrates

of the ADAR still remain unknown. This fourth part is dedicated to the

178
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presentation of a preliminary methodological workflow for the identification

of RNA editing structural motifs. The main object of the project is to dis-

cover potential sequence signals that appear only in genomic regions subject

to editing.

If on the one hand the motif discovering is very challenging because the A-

to-I editing in human often occurs in repetitive regions, on the other hand,

if we focus on non-repetitive flanking regions of the editing sites we could

identify not biased signals related to editing.

The A-to-I RNA editing occurs in regions of double strand RNA (dsRNA).

The A-to-I editing can be either specific (if a single adenosine is edited within

the dsRNA) or promiscuous (in the case that the adenosines edited are up

to 50%). The specific editing occurs within a short double-strand region, as

it happens for those editing sites that are formed in a mRNA in which the

bases of the intronic sequences pair in a complementary way to the bases of

the exon sequences. The promiscuous editing, instead, occurs within large

duplex regions.

6.1 Description of the methodology

6.1.1 Preparation of the dataset

The first phase consists in the preparation of the dataset and, to ensure

the reliability of the results, experimental validated (detected by the Sanger

method [71]) editing sites have been collected by using the literature. In

particular, these editing sites were divided into two categories: (I) true-
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positive (TP) and (II) false-positive (FP) editing sites.

After collecting experimental validated editing sites, the flanking regions

of 2, 000 nucleotides downstream and upstream of editing sites were exacted

(see Figure 6.1).

Figure 6.1: Upstream and downstream regions of editing site.

A gene may also contain a few hundreds of sites, as shown in the Table

6.1, where there are some examples of experimental validated editing sites

that occur in 5HT2C gene. For this reason for each gene only one randomly

true-positive editing site was taken into consideration as sample site, together

with its flanking sequences (that we consider sample edited sequences). In

total, we have 30 sample edited sequences.

6.1.2 Searching for motifs in edited sequences

The searching of motifs characterizing the A-to-I RNA editing phenomenon

has been done through MEME (Multiple EM for Motif Elicitation), a soft-

ware able to discover one or more motifs in a collection of DNA or protein

sequences [188]. MEME uses the technique of the expectation maximization

(as it happens in Baum-Welch algorithm, see in 2.7.5), adopted to fit a two-
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Genomic Position (hg19 ) Chr Strand % of editing Region Amino Acid Change Tissue Pubmed ID

114082684 X + 41,78 EC I -> M Cerebellum 19478186, 22912834

114082688 X + 15,12 EC N -> D Cerebellum 19478186, 22912834

114082689 X + 45,87 EC N -> S Cerebellum 19478186, 22912834

114082694 X + 45,87 EC I -> V Cerebellum 19478186, 22912834

Table 6.1: Examples of experimental validated editing sites in 5HT2C gene.
The EC value in Region column indicates that the editing site occurs in a
coding region.

component finite mixture model to the set of the sequences. The algorithm

discovers the number of times a motif takes place in each sequence of the

dataset and it outputs an alignment of the occurrences of the motif.

Then, it has been applied a stand-alone version of MEME program to

search for both 50 palindromic and 50 non-palindromic motifs in our sam-

ple edited sequences. In Figures 6.2 and 6.3, it can be seen the mapping

of palindromic and non-palindromic motifs on sample edited sequences, re-

spectively. In these two figures we can observe that non-palindromic motifs

are significantly more present than palindromic ones on based their combined

p-value.

6.2 Preliminary results

Once obtained palindromic and non-palindromic motifs these have been to

mapped into the genome. In order to do this task, we initially subdivided

each chromosome in regions of 4, 000 nucleotides (in the Table 6.2 is shown

the number of regions for each chromosome).
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Figure 6.2: Mapping of palindromic motifs on sample edited sequences.
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Figure 6.3: Mapping of non-palindromic motifs on sample edited sequences.
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Chromosome # nucleotides # of regions

1 249,250,621 62,314
2 243,199,373 60,800
3 198,022,430 49,506
4 191,154,276 47,789
5 180,915,260 45,229
6 171,115,067 42,779
7 159,138,663 39,785
8 146,364,022 36,592
9 141,213,431 35,304
10 135,534,747 33,884
11 135,006,516 33,884
12 133,851,895 33,463
13 115,169,868 28,793
14 107,349,540 26,838
15 102,531,392 25,633
16 90,354,753 22,589
17 81,195,210 20,299
18 78,077,248 20,299
19 59,128,983 14,783
20 63,025,520 15,757
21 48,129,895 12,033
22 51,304,566 12,827
X 155,270,560 38,818
Y 59,373,566 14,844

Table 6.2: Number of region of 4, 000 nucleotides in each human chromosome.
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For each of these genomic regions, considering both positive and negative

strands, we mapped the discovered motifs by using FIMO tool [189] in order

to identify those with the abundance of motifs. In the case of palindromic

motifs the results did not change between positive and negative strand re-

gions, since a palindromic sequence is the same whether read 5
′ to 3

′ on one

strand or 5
′ to 3

′ . In Figures 6.4 and 6.5 it can be seen the mapping of

non-palindromic motifs in both strands of chromosome 1,

Figure 6.4: Example of mapping of non-palindromic motifs on the positive
strand of the chromosome 1.

Figure 6.5: Example of mapping of non-palindromic motifs on the negative
strand of the chromosome 1.

Similarly, the Figure 6.6 shows the mapping of palindromic motifs but



6.2. PRELIMINARY RESULTS 186

only in positive strand of chromosome 1 (as said above, the result does not

change).

Figure 6.6: Example of mapping of palindromic motifs on the positive strand
of the chromosome 1.

In all three figures it can be noticed a gap between 30, 000 and 35, 000

positions, which is caused by the presence of the centromere that is still not

able to sequence.

Thanks to the mapping of motifs on the genome, some regions can be

identified. There, it is possible to see an overlap between editing sites and

motifs, as shown in Figure 6.7.

Then, in the next step it is necessary to automatically extract those ge-

nomic regions that contain an overlap between presence of motifs and abun-

dance of A-to-I editing sites. This important phase could help us to establish

which of the motifs may actually be correlated with the editing phenomenon.

This preliminary results show the distribution of editing and motifs. Al-

though a global correlation is not present the analysis of local portions of

the list could highlight some correlation between motifs regions and editing

abundance. Such analysis is on going.
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Figure 6.7: An example of overlap between A-to-I editing sites and motifs on
the positive strand in the chromosome 1, at positions 24, 600, 000-24, 200, 000.
The blue line indicates the number of motifs in a given region, while the
orange line expresses the abundance of editing site in a genomic region.
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Chapter 7
Conclusions

In this thesis I have presented three novel biological databases: miRandola,

miReditar, and Virgo.

• MiRandola is the first database of extracellular/circulating miRNA,

able to indicate not only the role of miRNAs as extracellular biomarkers

but also their physiological role and their involvement in diseases. The

article has been published on PlosOne [154].

• MiReditar is the first database containing a collection of predicted hu-

man miRNA binding sites in A-to-I edited 3’ UTR sequences. The

article has been published on Bioinformatics [155].

• VIRGO is a web-based tool that maps A-to-G mismatches between ge-

nomic and EST sequences as candidate A-to-I editing sites. The article

has been published on the journal BMC Bioinformatics [156].
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Then I have presented a novel probabilistic method for the microRNA

targeting, based only on sequence knowledge. Results clearly show that it

performs better than Pictar, another system based on HMMs.

Finally, I focused on the challenging problem consisting in the identifica-

tion of structural predicting motifs for the A-to-I RNA editing problem.

Future directions

Here I will sketch some future research directions on a few of the projects I

have presented. While the current version of miRandola is focused on human

circulating miRNAs, in the future it would be possible to introduce informa-

tion on other species and different types of circulating miRNAs.

Among the future development for VIRGO, there are updates related to

the inclusion of new edited sites, the prediction of the secondary structure of

edited mRNA, and mapping of functional motifs in flanking regions of edited

sequences. Moreover, to create a 2.0 version, it would be important to an-

alyze the editing phenomenon in the whole human genome, extending the

analysis to all the available expressed sequences (EST) belonging to several

species. In this case, the goal is to study the conservation of specific sites

among different species. The availability of editing data produced from or-

ganisms other than man can give a real contribution to the study, for example,

of particular diseases. It might be positive to build the relationships between

the various species, observing, for example, possible sites maintained among

them. A careful analysis has shown the possibility to parallelize the various
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modules that make up the structure of the VIRGO, achieving concrete com-

putational improvements. In fact, it would be useful to parallelize both the

process of alignment of genomic sequences with the ESTs, and the process of

prediction of the secondary structure of RNA. Another important step would

be the integration between the databases VIRGO and OMIM [190] in order

to associate phenotypes to editing events.

Concerning the HMM, the next step will consist in the construction of a

model capable to design artificial microRNAs. In this case the profile HMM

will be not conditioned and the relative math will be properly adapted.

Concerning the motif discovery problems on edited RNA sequences the

the research is more tricky. The editing is a dynamic process, therefore

some false positive could become true positive in a second sequencing. The

goal will be the identification of shared structural motifs conserved in several

species close to editing events. This will allow the identification of conserved

motif which in principle could allow us to clearly understand the biological

mechanism behind this complex phenomenon.
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