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Abstract

Mechanical harvest and post-harvest handling induce numerous mechanical
impacts on vegetables. These impacts may cause damage such as black-spot
bruise, resulting in severe economic losses.

Impact forces and accelerations arising from collisions, are among the
main indices taken into account when studying the damage of fruit and veg-
etables during post-harvest activities. A miniaturised Acceleration Measuring
Unit (AMU) has been recently developed at the Institut für Agrartechnik,
Potsdam-Bornim (ATB): when implanted into a real product like a potato
tuber, it is able to measure the accelerations at the centre of the fruit deriving
from a impact.

This PhD Thesis represents a first contribution on the study of mechanical
impacts of vegetables (potato tubers), arising from mechanical harvest and
post-harvest handling, by means of simulations based on the Finite Element
Method (FEM) approach. Simulations were developed by using the Linux dis-
tribution CAElinux2011, that contains several technical-engineering software,
among which stand out Salome-Meca and Code-Aster. Salome-Meca was
used for modelling, meshing and post-processing activities, while Code-Aster
was used for processing models.

The work has been developed in collaboration with the Institut für Agrar-
technik, Potsdam-Bornim (ATB), Germany, where they were conducted lab-
oratory tests (drop tests to measure impact forces and texture analyses to
measure modulus of Young) with two spherical artificial fruits.

After the development of several preliminary simple models to gain fa-
miliarity with the computational software Salome-Meca and Code-Aster and
to acquire an acceptable agreement between simulated and experimental
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tests, it was carried out an extensive set of drop test simulations with a
spherical artificial fruit aimed at evaluating the effects of drop height, size
of the fruit, density and modulus of Young of the material, on the impact
indices (maximum impact force and maximum acceleration at the centre of
the fruit). Simulated material parameters were chosen to approach potato
tubers properties.

All the factors examined (drop height, sphere diameter, modulus of Young
and density of the material, mass of the fruit) affected the maximum impact
force and the maximum acceleration at the centre of the sphere. Their increase
always caused an increase in the maximum impact force, whereas the maxi-
mum acceleration at the centre of the sphere decreased vs sphere diameter,
material density and mass, and increased vs drop height and modulus of
Young. The decreasing trends are due to the cushioning effect produced by
the sphere material itself.

Moreover, the maximum impact forces reported in the experimental re-
sults by Geyer et al. (2009), referring to drop tests of potato tubers onto steel
plates, are in good agreement with the values of impact forces provided by
the simulations. Instead, simulations provided acceleration values about
twice as many those measured in the experimental results with the AMU
device. This difference could be due to the implantation system of the AMU
inside the tuber. In fact, comparing the measured impact force and the force
computed by means the second law of Newton (F = m · a), Geyer et al. in
the cited work report that the computed force was approximately half the
measured one, meaning an under-estimation of the acceleration provided by
the AMU.

Ultimately, the concordance between measured and simulated impact
forces confirmed the validity of FEM approach, although the limitations
owing to the simplicity of the model developed in this work.
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Foreword

This PhD Thesis represents a first contribution on the study of mechanical
impacts on vegetables (potato tubers) arising from mechanical harvest and
post-harvest handling.

The impacts may cause damage such as black spot bruise, resulting in
severe economic losses. Besides the direct effect of fruit bruising on vegetables
quality, and, hence, the visual quality appreciation by the consumer, an
important indirect effect can be identified as damaged tissue, a good avenue
for entrance of decay organisms, which decrease the shelf-life of the fruit
drastically.

A computer simulation technique, named Finite Element Method (FEM),
was applied to get insight in the mechanical impact. FEM is essentially a
numerical method to find approximate solution of problems in engineer-
ing. FEM is best understood from its practical application, known as Finite
Element Analysis (FEA).

Finite element analysis is the modelling of products and systems in a
virtual environment, for the purpose of finding and solving potential (or
existing) structural or performance issues. FEA is used by engineers and
scientists to mathematically model and numerically solve very complex struc-
tural, fluid, and multi-physics problems. FEA software can be utilised in a
wide range of industries, but it is most commonly used in the aeronautical,
biomechanical and automotive industries.

The assessment of impact damage of vegetables by means of FEM is the
aim of this Thesis, that has been developed in collaboration with the Institut
für Agrartechnik, Potsdam-Bornim (ATB), Germany. I spent a part of my
doctorate in Potsdam under the supervision of the Prof. Dr. Ing. Klaus-Günter
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FOREWORD

Gottschalk, Senior scientist of Postharvest Technology Department.
The Thesis is structured in a first part relating to theoretical notions about

the post-harvest and the FEM approach, whereas the latter end is focused on
the experimental activity.

The first chapter focuses on the impact damage of potato tubers and on
the development of potato-shaped instrumented devices to locate bruising
risk zones and to prevent quality losses of commodity.

The second chapter presents some basic concept of FEM: what is FEM and
the main steps required to develop a computational model using the FEM
approach.

The third chapter is dedicated to the materials and methods of the research.
In particular, the early paragraphs present the software used to develop the
FEA and the preliminary studies developed to gain familiarity with it, while
the remainder paragraphs show the experimental activity, dealing with the
assessing, by means of drop test simulations of spherical pseudo-fruits, of the
effects of material properties (density, size, modulus of elasticity, mass) and
drop height on some impact indexes (impact force and acceleration).

Final, the last chapter discuss the results of the simulation tests.
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Chapter 1

Post harvest of fruit and vegetables

1.1 General aspects

All fruit and vegetable products are subject to different stress levels both
during harvest and during subsequent post-harvest processing. This stress
sometimes becomes so great to cause damage to the produce, compromising
its preservability (Lewis et al., 2007). Even low levels of damage can bring
about considerable economic loss, jeopardizing storage of the produce due to
the risk of rotting that can then extend to entire batches.

It therefore becomes important, above all, to measure the intensity of
the impacts to the produce during harvest and post-harvest activities and
subsequently to correlate it with the probability of damage to the produce
itself (Hyde et al., 1992; Tennes et al., 1991; Ito et al., 1994; Blandini et al., 2002;
Blandini et al., 2003).

It should also be considered that each product has its own level of resis-
tance to external stresses, which depend on the level of ripeness and other
intrinsic factors, so that it appears fundamental to evaluate the stress thresh-
old under which no damage is produced, in order to obtain products of high
quality and extended storage capacity.
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CHAPTER 1. POST HARVEST OF FRUIT AND VEGETABLES

1.2 Impact damage on potato tubers

Potato (Solanum tuberosum) is one of the mankind’s most valuable food crops.
It is grown in more countries than any other crop with the exception of maize,
and ranks fourth in volume of production. Limitations to its productivity are,
therefore, of widespread economic interest.

The potato tuber is largely parenchymatous, lacking specialised secondary
thickened tissues. As a result, tubers are susceptible to various forms of dam-
age during commercial production, including external and internal defects.
Internal damage, resulting from the effects of impacts on tubers during har-
vesting operations alone, may cause losses exceeding 20% (Storey and Davies,
1992).

Whilst it is a simple matter to grade out tubers showing external damage,
internal damage is not visible until after peeling. The symptoms of internal
damage may or may not include visible tissue fractures, and ensuing colour
development of damaged areas may involve the formation of yellow, red,
brown, blue, grey and black pigmentation to varying degrees (Burton, 1989;
Gray and Hughes, 1978; Storey and Davies, 1992).

Damage sometimes includes the development of floury-white regions in
clear contrast to the cream background of undamaged tissue. Where there is
no visible fracture and colour development proceeds to a black end-product,
the syndrome is usually referred to as internal bruising, though the terms
“black spot” and “blue spot” are also common in the literature (Hiller et al.,
1985).

Common feature of the internal damage is that it almost certainly results
from impact. This may seem obvious, but the fact that external damage has
not occurred, suggests that tuber tissue responds differentially because of
intrinsic differences in the biological properties of different layers and/or
because it has been exposed to different stresses.

For example, damage from impact at higher energy levels is usually visible
as fracture through all external layers, simply because external tissue has
been insufficiently strong to withstand the incident stress. Once this stress
has been concentrated into a crack in the outside layer, then damage proceeds

16



CHAPTER 1. POST HARVEST OF FRUIT AND VEGETABLES

rapidly through deeper layers (McGarry et al., 1995).
For impacts below this level of energy, deformation and distribution

of stress within the tissues create the potential for damage. Physical and
biochemical properties of the tissue determine the internal response to the
impact.

1.3 Relationship between damage and methods of

harvesting

Potatoes play a significant role in the human nutrition in many countries
all over the world. An efficient crop production requires high mechanised
processes in all stages. Therefore, potatoes are handled several times during
harvesting, transport and storage. Each handling operation leads to me-
chanical damage depending on the height of fall and the number of drops
involved.

This damage causes substantial economic losses to the fresh market and
the potato processing industry. One of the most serious defect problem is the
occurrence of “black spots”. A lot of investigations took place in the recent
years to examine the reason for formation of black spots and the susceptibility
of the potato tubers to black spot development from mechanical impacts
(Molema, 1999).

It was established that the black spot development depends, among others
things, on physical, physiological and biochemical properties of the tuber.
Other important influence parameters are genotype, development and envi-
ronment (McGarry et al., 1996).

Although all the interrelations are now better understood, the reduction
of mechanical stress is the best way to avoid black spots. In consideration of
this fact, a gentle handling of potatoes from the harvest to the storage has to
be achieved.

Currently, two methods of harvesting are widely used:

1. The harvested potatoes are passed via a discharge belt onto a transport
vehicle which is driving alongside the harvester.

17



CHAPTER 1. POST HARVEST OF FRUIT AND VEGETABLES

2. The potatoes are collected in a hopper on board the harvester. When the
hopper is full, the content is transferred to the transport vehicle, either
on the field or at the edge of the field.

At the storage hall the tubers are tipped out, separated of soil and stones
as far as possible and brought into storage via a conveyor belt system. During
each handling stage the potatoes are exposed to mechanical stress which
leads to damage (Table 1.1).

Table 1.1: Proportion of potato damage per handling stage to total damages (Bouman,
1995).

Handling stage Damage (%)

Harvest 14.7
Transport and interim storage 0.5
Conveyor belt and stationary filler 1.5
Storage 20.8
Removal of potatoes 12.2
Loading lorry 14.2
Unloading lorry 3.0
Processing (sorting to packing) 33.1

The highest percentage of damage occurs during processing (33.1%), but
farmers often cannot influence this damage. Important for the farmer is
the question, how can be reduced the damage from harvest until the end of
storage. In total, one-third of the damage occur from harvest until the end of
the storage.

To avoid damage caused by handling, transport and storage, farmers are
tending to fill the potatoes into storage boxes immediately after harvesting.
Boxes are brought to the fields in transport vehicles and filled by the harvester.

1.4 Potato shaped instrumented devices

Potato tubers are often exposed to unnecessarily high mechanical loads at
many steps in the production chain from harvesting to packaging (Bentini et
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CHAPTER 1. POST HARVEST OF FRUIT AND VEGETABLES

al., 2006). These mechanical impacts can cause various external and internal
injuries in potatoes, particularly black spot bruise (Molema, 1999; Peters,
1996).

Although many efforts have been made to improve black spot bruising,
the best approach is to eliminate or at least to reduce the risk of mechanical
impacts during processing.

In a large number of studies the effects of actions influencing product
quality during harvesting and subsequent processes are evaluated by using
defined criteria. In order to reduce economic losses for growers and the
potato industry due to mechanical damage, electronic spheres or potato-
shaped instrumented devices are often used to measure handling impacts of
tubers (Herold et al., 2001; Van Canneyt et al., 2003; Maly et al., 2005; Praeger
et al., 2013; Opara & Pathare, 2014).

To characterise the most important sources of mechanical loads in the pro-
duction chain, so-called artificial fruits such as IS 100 (Figure 1.1) (United State
Department, Michigan Agricultural Experiment Station and Michigan State
University, 1989, USA) (Zapp et al., 1990), PTR 100 (Bioteknisk Istitut, 1990,
Denmark), PMS 60 (Figure 1.2) (Institut für Agrartechnik, Potsdam-Bornim
(ATB), 1992, Germany) (Herold et al., 1996), PTR 200 (SM Enginnering Den-
mark, 1999) and the “Smart Spud” (Sensor Wireless, 2000, Canada) (Bollen,
2006) have been available since several years.

Figure 1.1: Instrumented
Sphere IS 100.

Figure 1.2: Instrumented Sphere PMS 60 developed
at ATB.
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CHAPTER 1. POST HARVEST OF FRUIT AND VEGETABLES

These instrumented devices are sufficiently equipped and frequently ap-
plied to locate those zones in the harvesting and processing chain that present
a high level of risk of damage (Molema, 1999; Baheri, 1997). They consist of
electronic impact measurement systems placed in a hard rubber or plastic
body that simulates the real fruit. These instruments measure the actual
mechanical impacts at different processing steps and can thus be helpful
in identifying the potential risks of mechanical damage and in evaluating
measures to reduce impact loads.

However, the damage predictive value of the earlier instruments IS 100,
PTR 100 and PMS 60 has been frequently discussed in scientific literature: the
information given by harvested and handled potatoes does not always corre-
spond sufficiently with the information given by the instrumented devices.
Among biological bruise susceptibility factors, natural variation in impact
events, operating insufficiency of the devices for damage prediction purposes
or difficult in data interpretation may cause this discrepancy (Leicher, 1992;
Nerinckx and Verschoore, 1993).

The knowledge achieved so far by the instruments has not provided an
important contribution to reducing the economic losses due to black spots
in practice (Bollen et al., 2001; Bollen, 2006). Indeed, the limited practical use
of instruments is mainly due to the considerable differences between real
and artificial fruit, largely restricting the transferability of measured impact
data to mechanical load onto real products. The IS 100 and the other devices
are not able to truly simulate the biological and physical properties (shape,
elasticity, surface proprieties) of potato tubers.

Recently, a new approach has been proposed to overcome these disadvan-
tages of artificial fruits. Based on a miniaturized impact detecting system, a
self-contained Acceleration Measuring Unit (AMU) has been developed at
the ATB Leibniz-Institut für Agrartechnik, Potsdam-Bornim, small enough
to be fitted into a real product without significant changes of the product’s
properties (Figure 1.3). This AMU is suited to be integrated into a potato
tuber and to record acceleration events acting on the tuber at many steps of
the production chain.

The great advantage of the AMU is its ability to acquire impact data of a
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Figure 1.3: Specification and view of miniaturised acceleration measuring unit
(AMU) and its implantation in potato tuber (Praeger et al., 2013).

potato tuber based on the tuber’s actual physiological and physical properties.
However, it is not known whether these properties affect the measuring
characteristics of the AMU. Additionally, the technique of implanting the
AMU (preparing the product, fitting and positioning the AMU) may influence
the measuring data.
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Chapter 2

Basic concepts on FEM

2.1 General aspects

The Finite Element Method (FEM), sometimes referred to as Finite Element
Analysis (FEA), is a computational technique used to obtain approximate
solutions of problems in engineering.

The basic idea in the finite element method is to find the solution of
a complicated problem by replacing it by a simpler one. Since the actual
problem is replaced by a simpler one, in finding the solution we will be able
to find only an approximate solution rather than the exact solution.

The existing mathematical tools will not be sufficient to find the exact
solution of most of the practical problems. Thus, in the absence of any other
convenient method to find even the approximate solution of a given problem,
we have to prefer the finite element method.

Moreover, in the finite element method, it will often be possible to improve
or refine the approximate solution by spending more computational effort.

2.2 Brief history of the Finite Element Method
The term finite element was first used by Clough in 1960 in the context of plane
stress analysis and has been in common usage since that time.

During the decades of the 1960s and 1970s, the finite element method was
extended to applications in plate bending, shell bending, pressure vessels,
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and general three-dimensional problems in elastic structural analysis (Melosh,
1961; Melosh, 1963) as well as to fluid flow and heat transfer (Martin, 1968;
Wilson and Nickell, 1966). Further extension of the method to large deflections
and dynamic analysis also occurred during this time period (Turner et al.,
1960; Archer, 1965). An excellent history of the finite element method and
detailed bibliography is given by Noor (1991).

The mathematical roots of the finite element method, instead, dates back at
least a half century. Approximate methods for solving differential equations
using trial solutions are even older in origin. Lord Rayleigh (1870) and Ritz
(1909) used trial functions to approximate solutions of differential equations.
Galerkin (1915) used the same concept for solutions.

The drawback in the earlier approaches, compared to the modern finite
element method, is that the trial functions must apply over the entire domain
of the problem of concern. While the Galerkin method provides a very strong
basis for the finite element method not until the 1940s, when Courant (1943)
introduced the concept of piecewise-continuous functions in a sub-domain,
did the finite element method have its real start.

In the late 1940s, aircraft engineers were dealing with the invention of the
jet engine and the needs for more sophisticated analysis of airframe structures
to withstand larger loads associated with higher speeds. These engineers
collectively known the flexibility of the method, in which the unknowns are
the forces and the knowns are the displacements (Hutton, 2004).

The finite element method, in its most often-used form, corresponds to
the displacement method, in which the unknowns are system displacements
in response to applied force systems. This application of simple finite ele-
ments for the analysis of aircraft structure is considered as one of the key
contributions in the development of the finite element method.

The digital computer provided a rapid means of performing the many
calculations involved in the finite element analysis and made the method
practically viable. Along with the development of high-speed digital com-
puters, the application of the finite element method also progressed at a very
impressive rate (Rao, 2004). The book by Przemieniecki (1968) presents the
finite element method as applied to the solution of the stress analysis prob-
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lems. Zienkiewcz and Cheung (1967) present the broad interpretation of the
method and its applicability to any general filed problem.

2.3 Basics on the Finite Element Method

The Finite Element Method (FEM) has been developed into a key, indispens-
able technology in modelling and simulating advanced engineering systems
in various fields like housing, transportation, communications, and so on.
In building such advanced engineering systems, engineers and designers
go through a sophisticated process of modelling, simulation, visualization,
analysis, designing, prototyping, testing, and lastly, fabrication. Note that
much work is involved before the fabrication of the final product or system.
This is to ensure the workability of the finished product, as well as for cost
effectiveness.

FEM was first used to solve problems of stress analysis, and then has been
applied to many other problems like thermal analysis, fluid flow analysis,
piezoelectric analysis, and many others. In all the applications, the analyst
seeks to determine the distribution of some field variable: in stress analysis it
is the displacement field or the stress field; in the thermal analysis it is the
temperature field or the heat flux; in fluid flow it is the stream function or the
velocity potential function; and so on.

FEM is a numerical method seeking an approximated solution of the
distribution of field variables in the problem domain that is difficult to obtain
analytically (Liu and Quek, 2003). It is a way of getting a numerical solution
to a specific problem. A Finite Element Analysis does not produce a formula
as a solution nor does it solve a class of problems.

An unsophisticated description of FEM is that it involves cutting a struc-
ture into several elements (pieces of the structure), describing the behaviour
of each element in a simple way, then reconnecting elements at “nodes” as
if nodes were drops of glue that hold elements together. This process re-
sults in a set of simultaneous algebraic equations. In stress analysis these
equations are equilibrium equation of the nodes. There are may be several
hundred or several thousand of such equations, which means that computer
implementation is mandatory (Cook, 1995).
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There are numerous physical engineering problems in a particular system.
As mentioned earlier, although FEM was initially used for stress analysis,
many other physical problems can be solved. Mathematical models of FEM
have been formulated for many physical phenomena in engineering systems.
Common physical problems solved using the standard FEM include:

• mechanics for solids and structures;

• heat transfer;

• fluid mechanics.

2.4 Computational modelling using FEM

The behaviour of a phenomenon in a system depends upon the geometry
or domain of the system, the property of the material or medium, and the
boundary, initial and loading conditions.

For an engineering system, the geometry or domain can be very com-
plex. Further, the boundary and initial conditions can also be complicated.
It is therefore, in general, very difficult to solve the governing differential
equation via analytical means. In practice, most of the problems are solved
using numerical methods. Among these, the methods of domain discretiza-
tion championed by FEM are the most popular, due to its practicality and
versatility.

The procedure of computational modelling using FEM broadly consists of
four steps (Liu and Quek, 2003):

1. modelling of the geometry;

2. meshing;

3. specification of material properties;

4. specification of boundary, initial and loading conditions.
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2.5 Modelling of the geometry

Real structures, components or domains are in general very complex, and
have to be reduced to a manageable geometry. Curved parts of the geom-
etry and its boundary can be modelled using curves and curved surfaces.
However, it should be noted that the geometry is eventually represented by a
collection of elements, and the curves and curved surfaces are approximated
by piecewise straight lines or flat surfaces, if linear elements are used.

Depending on the software used, there are many ways to create a proper
geometry in the computer for the Finite Element (FE) mesh. Points can be
created simply by keying in the coordinates. Lines and curves can be created
by connecting the points or nodes. Surfaces can be created by connecting,
rotating or translating the existing lines or curves; and solids can be created
by connecting, rotating or translating the existing surfaces. Points, lines and
curves, surfaces and solids can be translated, rotated or reflected to form new
ones.

Graphic interfaces are often used to help in the creation and manipulation
of the geometrical objects. There are numerous Computer Aided Design
(CAD) software packages used for engineering design which can produce
files containing the geometry of the designed engineering system. These
files can usually be read in by modelling software packages, which can
significantly save time when creating the geometry of the models.

However, in many cases, complex objects read directly from a CAD file
may need to be modified and simplified before performing meshing or dis-
cretisation. It may be worth mentioning that there are CAD packages which
incorporate modelling and simulation packages, and these are useful for the
rapid prototyping of new products.

2.6 Meshing

Meshing is performed to discretise the geometry created into small pieces
called elements or cells.

Mesh generation is a very important task of the pre-process. It can be a
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very time consuming task to the analyst, and usually an experienced analyst
will produce a more credible mesh for a complex problem. The domain has
to be meshed properly into elements of specific shapes such as triangles and
quadrilaterals. Information, such as element connectivity, must be created
during the meshing for use later in the formation of the FEM equations.

It is ideal to have an entirely automated mesh generator, but unfortunately
this is currently not available in the market. A semi-automatic pre-processor
is available for most commercial application software packages. There are
also packages designed mainly for meshing. Such packages can generate files
of a mesh, which can be read by other modelling and simulation packages.

Triangulation is the most flexible and well-established way in which
to create meshes with triangular elements. It can be made almost fully
automated for two-dimensional (2D) planes, and even three-dimensional
(3D) spaces. Therefore, it is commonly available in most of the pre-processors.
The additional advantage of using triangles is the flexibility of modelling
complex geometry and its boundaries. The disadvantage is that the accuracy
of the simulation results based on triangular elements is often lower than
that obtained using quadrilateral elements. Quadrilateral element meshes,
however, are more difficulty to generate in an automated manner.

2.7 Property of the material

Many engineering systems consist of more than one material. Property of
materials can be defined either for a group of elements or each individual
element, if needed. For different phenomena to be simulated, different sets of
material properties are required. For example, Young’s modulus and shear
modulus are required for the stress analysis of solids and structures, whereas
the thermal conductivity coefficient will be required for a thermal analysis.

Inputting of a material’s properties into a pre-processor is usually straight-
forward; all the analyst needs to do is key in the data on material properties
and specify either to which region of the geometry or which elements the data
applies. However, obtaining these properties is not always easy. There are
commercially available material databases to choose from, but experiments
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are usually required to accurately determine the property of materials to be
used in the system.

2.8 Boundary, initial and loading conditions

Boundary, initial and loading conditions play a decisive role in solving the
simulation. Inputting these conditions is usually done easily using commer-
cial pre-processors, and it is often interfaced with graphics. Users can specify
these conditions either to the geometrical identities (points, lines or curves,
surfaces, and solids) or to the elements or grids.

Again, to accurately simulate these conditions for actual engineering
systems, requires experience, knowledge and proper engineering judgements.
The boundary, initial and loading conditions are different from problem to
problem.
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Chapter 3

Materials and Methods

3.1 General aspects

The goal of this PhD Thesis is to evaluate the impact damage of vegetables
resulting from mechanical harvest and post-harvest handling by means of
the Finite Element Method (FEM) approach.

The Thesis has been developed in collaboration with the Institut für
Agrartechnik, Potsdam-Bornim (ATB), Germany, and the referent was the
Prof. Dr. Ing. Klaus-Günter Gottschalk.

During the stay in Potsdam, they were conducted laboratory tests (drop
tests and texture analysis) with artificial fruits and the experimental results
were compared with data of Finite Element Analysis (FEA) to verify correct-
ness and reliability of FEM approach.

The Finite Element Analysis is a computer simulation technique used in
the engineering analysis. This technique employs the Finite Element Method
with the aim to obtain approximate solutions of problems in engineering.

All the software used to develop the FEA has in common the partition of
the analysis process in three steps:

1. the pre-processing: to develop the finite element model;

2. the processing: to resolve the element finite problem, taking into account
material properties, load and boundary conditions;
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3. the post-processing: to elaborate and represent the solution.

Nowadays are available a great variety of FEA software, both open source
and commercial. In this Thesis the Linux distribution CAElinux2011 has been
used. It contains several technical-engineering software, among which stand
out Salome-Meca and Code-Aster. The first is a model building, meshing and
post-processing software, while the latter is a processing software.

3.2 The Salome-Meca software

Over the last decade, the improvements in computer hardware and software
have brought significant changes in the capabilities of simulation software.
New computer power made possible the emergence of simulations that are
more realistic (complex 3D geometries being treated instead of 2D ones),
more complex (multi-physics and multi-scales being taken into account) and
more meaningful (with propagation of uncertainties).

Since 2001, in order to facilitate and improve this process, CEA (Commis-
sariat à l’énergie atomique et aux énergies alternatives) and EDF (Électricité
de France) have developed a software platform named Salome that provides
tools for building more complex and integrated applications.

Salome-Meca is an open-source software that provides a generic platform
for pre- and post-Processing for numerical simulations. It is based on an
open and flexible architecture made of reusable components. The platform
has been built using a collaborative development approach and is therefore
available under the LGPL license (http://www.salome-platform.org).

Salome-Meca provides modules and services that can be combined to
create integrated applications that make the scientific codes easier to use and
well interfaced with their environment. It is used in nuclear research and
industrial studies by CEA and EDF in the fields of nuclear reactor physics,
structural mechanics, thermo-hydraulics, nuclear fuel physics, material sci-
ence, geology and waste management simulation, electromagnetism and
radioprotection.

Salome-Meca can be used as standalone application for generation of a
CAD model, its preparation for numerical calculations and post-processing
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of the calculation results. Salome-Meca can also be used as a platform for inte-
gration of external third-party numerical codes to produce new applications
for the full life-cycle management of CAD models.

Two different modes of interaction with Salome-Meca components are
systematically provided:

1. a graphic interface coupled with 3D graphic interaction (Qt4, VTK);

2. a text interface based on the Python language.

Both modes provide the same set of functionalities and Salome-Meca
offers easy short cuts from one mode to the other.

3.3 The Code-Aster software

Developed since 1989 by EDF and for EDF’s needs in computational me-
chanics, Code-Aster has demonstrated the possibility to combine in a unique
software two so-called antagonistic aims:

1. an efficient software for engineering studies (about 300 users in-house
and thousands as free users) with quality assurance requirements;

2. a numerical platform for software development products of the EDF’s
research in various computational mechanics fields.

Being constantly developed, updated and upgraded with new models,
Code-Aster represents by now 1 200 000 lines of source code, most of it in
Fortran and Python. The documentation of Code-Aster represents more than
12 000 pages: user’s manuals, theory manuals compiling EDF’s know-how in
mechanics, example problems, verification manuals. All of these documents
are available on line at www.code-aster.org.

The company EDF has chosen to freely distribute the program for the
following reasons:

• create a sizeable user’s group to speed up the process of identifying and
correction of errors;
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• increase the level of competence thanks to an extensive collaboration in
the academy community with university, research centres, laboratories
and specialist companies;

• encourage co-operative development of the program, sharing the expe-
rience and the new functionalities implemented by individual users in
the greatest number possible of fields of application.

Code-Aster offers a full range of multi-physical analysis and modelling
methods that go well beyond the standard functions of a software for ther-
momechanical computation:

• static and dynamic mechanics, linear or non-linear;

• modal analysis, harmonic and random response, seismic analysis;

• acoustics, thermodynamics;

• fracture, damage and fatigue;

• multi-physics, drying and hydration, metallurgy analysis, soil structure,
fluid structure interactions;

• geometric and material non linearities, contact and friction.

3.4 FEM analysis

FEM analysis via Salome-Meca and Code-Aster basically requires four steps,
each involving a software module. Modelling of geometry and meshing steps
are generated by means of Salome-Meca, whereas specification of material
properties, boundary, initial and loading conditions are described by using
Code-Aster. In detail:

1. model building (GEOMETRY MODULE): geometric construction of the
object (by Salome-Meca);

2. model meshing (MESH MODULE): mesh generation, creation of groups
of surfaces on which to apply loads and constrains and definition of
groups of volumes to which assign materials (by Salome-Meca);
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3. model solving (CODE-ASTER MODULE): assigning materials and
boundary conditions, analysis and resolution FE (by Code-Aster);

4. view of the results (POST-PRO MODULE): visualisation of the results
and post-processing data (by Salome-Meca).

All steps can be performed by means of suitable interfaces and templates.
Moreover, the geometry model and its meshing can be parametrised by means
of a Python script, that allows easy changes in several aspects (size, position,
rotation and so on).

3.5 Preliminary tests

Several simple models were preliminarily developed to gain familiarity with
the computational software Salome-Meca and Code-Aster. A first group of
models were developed to investigate their behaviour under static conditions,
while in a second group of studies dynamic conditions were considered.

The first study (STUDY 1) was developed to verify the agreement between
theoretical values and calculated values in terms of deformation and stress.
Verified the correctness of the response, in the second test (STUDY 2) it was
studied as to build an object composed of two or more materials. Finally, it
was developed a third study (STUDY 3) showing a sphere of given material,
inside which was placed a box of different material. This was a first, very
simple model of a potato containing an acceleration or force sensor. On a
defined area of the sphere it was applied a force to obtain the values of strain
and stress on the box.

Forces and deformation were evaluated only under static conditions and
linear behaviour of the materials.

In the second groups of studies dynamic conditions of analysis were
examined and simple models of linear dynamic analysis and of non-linear
dynamic analysis were developed.

With the model STUDY 4 it was developed a study where the applied
force varies in time.
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The impact damage of fruits is typically investigated through drop experi-
ments: a fruit is dropped from a defined height onto an instrumented base.
The FEM Analysis is perhaps the most appropriate technique for computer
modelling of problems of this nature.

To represent a computer simulation model, it was developed a study
(STUDY 5) showing a sphere of given material containing a box of different
material, colliding against a rigid flat plane. Deformation, acceleration and
velocity were evaluated under dynamic conditions.

Finally, the last preliminary test (STUDY 6) was equal to the previous
study, but with shorter sampling time. The aim of the study was to analyse
with greater detail the values of deformation and acceleration during the first
impact between sphere and plane.

3.6 The experimental activity at ATB

Laboratory tests at Potsdam were aimed at measuring the impact force pro-
duced by two artificial fruits when dropped on a base provided with sensors.
The two artificial fruits were of spherical form and with different mass, diam-
eter, density and modulus of elasticity.

The first, named “BALL 1” or BIG BALL (Figure 3.1), had diameter of
68.4 mm (average value in the three axial directions: x = 68.4 mm, y =

68.3 mm, z = 68.6 mm), mass of 57 g and then density of 338 kg/m3.
The second, named “BALL 2” or SMALL BALL (Figure 3.1), had diameter

of 57.4 mm (average value in the three axial directions: x = 58.2 mm, y =

57.1 mm, z = 57.0 mm), mass of 134 g and then density of 1350 kg/m3.
A summary of the main characteristics of the two spheres is reported in

Table 3.1.

Table 3.1: Main features of the two artificial fruits.

Artificial fruits Diameter, mm Mass, g Density, kg/m3

BALL 1 68.4 57 338
BALL 2 57.4 134 1350
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Figure 3.1: The two artificial fruits used for the drop tests: BALL 1 (left) and BALL
2 (right).

3.6.1 Measurement of the modulus of Young

The two spheres were preliminarily studied with a “texture analyser” (Figure
3.2), an instrument that records the curve stress-strain, from which it can be
obtained the modulus of Young based on the Hertz theory.

To this end, the texture analyser was equipped with two spherical steel
probes of different diameter (Figure 3.3) to press the artificial fruits. The two
probe diameters were:

• probe 1: diameter = 12.7 mm;

• probe 2: diameter = 6.3 mm.

Ten points, enumerated in ascending order from 1 to 10, were located at
random on each artificial fruit. Then the two spheres were fixed in a sand
bed (Figure 3.4) and pressed with the probes in correspondence of the points
previously fixed at a rate of 10 mm/min until a maximum force of 2 N was
reached. During the test, the instrument recorded the maximum force and the
displacement at the maximum force. The force limit of 2 N ensured that the
relation between force and displacement stayed approximately linear during
the movement of the probe. The measurements were performed one by one
during approximately one hour.

According to Hertz’s theory of elastic contact (Nuovo Colombo, 1985;
Khodabakhshian and Emadi, 2011; Geyer et al., 2009), when two elastic
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Figure 3.2: The texture analyser for calculating the modulus of Young.

spheres with diameters D1 and D2 are are brought into contact at a single
point, if collinear forces F are applied so as to press the two spheres together,
deformation takes place and a small contact area will replace the contact point
of the unloaded state (Figure 3.5).

Hertz starts by assuming that the contacting solids are isotropic and
linearly elastic, and also that the representative dimensions of the contact area
are very small compared to the various radii of curvature of the undeformed
bodies, in the vicinity of the contact interface.

Under these hypotheses, the deformation u, defined as the relative move-
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Figure 3.3: Spherical probes for measur-
ing the modulus of Young.

Figure 3.4: Positioning of the sphere for
measuring the modulus of Young.

Figure 3.5: Hertz contact of two spheres.

ment of approach along the line of the applied force of two points, each of
which in one of the two bodies, can be evaluated as:

u = 1.040 3


F2C2

E
CC

, (3.1)

being:

• F: total force which presses the bodies against one another;

• CE =
1 − ν2

1
E1

+
1 − ν2

2
E2

;
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•
1

CC
=

1
D1

+
1

D2
: a parameter that takes into account the curvature of

the two spheres;

• ν1, ν2: moduli of Poisson of the two spheres;

• E1, E2: moduli of Young of the two spheres;

• D1, D2: diameters of the two spheres.

Equation 3.1 can be solved to obtain CE:

CE =
1 − ν2

1
E1

+
1 − ν2

2
E2

=


u3CC

1.0403F2 (3.2)

Assuming the sphere 1 as the probe and the sphere 2 as the artificial fruit,

E1 is much higher than E2, so the term
1 − ν2

1
E1

can be neglected and Equation

3.2 allows calculation of E2:

E2 = 1.061
F(1 − ν2

2)

u3/2C1/2
C

, (3.3)

or (ASAE Standards, 1999):

E2 = 1.061
(1 − ν2

2)F
u3/2


1

D1
+

1
D2

1/2

. (3.4)

The value used for ν2 was 0.49.

3.6.2 Drop tests with artificial fruits

After calculation of modulus of Young, the two artificial fruits were subjected
to impact tests by using a drop simulator to control the impact dynamic
(Figure 3.6, Geyer et al., 2009).

It consisted of a frame with two vertical guide wires, taut clamped in
parallel. A sliding carriage was free to move along the guide wires. An
artificial fruit was placed on a circular hole in the middle of the carriage
(thickness of 5 mm). The artificial fruits protruded slightly from the hole

38



CHAPTER 3. MATERIALS AND METHODS

Figure 3.6: Schematic view of the drop simulator (Geyer et al., 2009): a = artificial
fruit, b = sliding carriage, c = guide wire, d = frame, e = steel plate, and f = force
sensor.

depending on their radius of curvature. The diameter of the hole (40 mm)
was wider than that of a circular plate (diameter 30 mm) that was rigidly
coupled on a force sensor at the bottom of the frame.

Two impact materials were considered (Figure 3.7):

• Steel plate: thickness of 5 mm;

• PVC plate: thickness of 5 mm, applied over the steel plate.

The carriage was fixed at the preselected height and was released after
placing the artificial fruit. Two drop heights were considered (10 cm and
25 cm) and 20 replicates for each test condition were carried out. During
the impact on the plate, the force sensor recorded and stored on a PC the
maximum force. The files are in tabular format and can be easily managed
with a spreadsheet.
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Figure 3.7: The two impact materials: steel and PVC.

3.7 Drop test simulations

The drop tests with the artificial fruits were simulated with Salome-Meca and
Code-Aster, using as moduli of Young for the artificial fruits those measured
with the experimental tests. The aims of these simulations were to develop a
model that, if in agreement with the experimental results, could be used for
further simulations.

The impact area was modelled as a disk with diameter of 5 cm and thick-
ness of 0.5 cm. When necessary, it was covered with a disk of PVC of same
diameter and thickness.

As these preliminary simulations provided good agreement between
measured and simulated impact force, the model was used to develop an
extensive set of simulations to analyse the effects on the impact force of mate-
rial properties (density and modulus of Young), pseudo-fruit size (spheres of
different diameters) and drop height.

In detail, the experimental design considered:

• sphere diameter D: 50, 55, 60, 65, 70, 75 and 80 mm;

• modulus of Young E: 0.5, 1.5, 2.5 and 3.5 MPa;

• material density ρ: 900, 1000 and 1100 kg/m3;
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• drop height h: 10, 15, 20, 25, 35 and 50 cm.

With the given values of material density and sphere diameter, the mass
of the sphere ranged from 60 up to 295 g. All values were chosen to approach
potato tubers properties (Geyer et al., 2009).

Only drop tests on steel were simulated, given their greater agreement
with experimental results. Material behaviour was considered as elastic linear.
The following quantities were extracted from each run test:

• the maximum impact force transmitted to the steel plate (to simulate
the force sensor during drop tests);

• the maximum acceleration at the centre of the sphere (to simulate the
AMU device, Figure 1.3);

• the maximum acceleration af a node of the sphere belonging to the
contacting area with the steel plate.

Globally, 360 simulations were carried out, using always the same model.
To reduce the simulation time, in the geometric model the sphere was placed
at a distance ∆h = 3 mm above the impact plate and its initial velocity was
calculated accordingly:

v0 =


2g(h − ∆h), (3.5)

being g = 9.81 m/s2 the gravity acceleration and h the effective drop height.
For each model, the tetrahedron containing the centre of the sphere was

selected and its four nodes (N_1, N_2, N_3 and N_4) were localised. The
acceleration of each node was recorded and the average values was con-
sidered as representative of the acceleration of the centre of the sphere (the
acceleration that should be measured by the AMU sensor).

Accelerations and impact forces were analysed at varying the model
parameters: diameter, density, mass and modulus of Young of the sphere and
drop height.

Data analyses and graphical representations were carried out by using the
open source software R (R Core Team, 2013).
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Results and Discussion

4.1 General aspects

Results discuss firstly the preliminary models aimed at gaining familiarity
with the software, then the experimental tests carried out at Potsdam labora-
tories to measure modulus of Young and impact force of two artificial fruits,
and finally the extensive set of simulations aimed at evaluating the effects of
size, density, modulus of Young of the sphere and drop height on the impact
parameters (maximum impact force and maximum acceleration at the centre
of the sphere).

Python code to build the models and Code-Aster commands to analyse
them are also provided for a reproduction of the results.

4.2 Preliminary tests

4.2.1 Study 1

Theoretical aspects

With reference to a simple and homogeneous isotropic parallelepiped block
(Figure 4.1), the Hooke’s law for linear-elastic materials, in the simplest form,
is given by:

σ = E · ϵ, (4.1)
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with:

• σ: stress;

• E: modulus of Young;

• ϵ: strain.

Figure 4.1: Normal stress.

The strain ϵ is given by:

ϵ =
∆L
L

, (4.2)

with:

• ∆L: deformation;

• L: initial length.

The stress σ is given by:

σ =
F
A

, (4.3)

with:
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• F: applied force;

• A: area.

From Equation (4.1) we obtain:

ϵ =
σ

E
. (4.4)

Equating Equations (4.2) and (4.4), we obtain:

ϵ =
∆L
L

=
σ

E
(4.5)

and then:
∆L =

σ

E
L. (4.6)

Given stress, modulus of Young, and initial length, Equation (4.6) allows
the calculation of the deformed shape.

Study 1 refers to an object parallelepiped-shaped with size (x, y and
z values) 10 cm × 10 cm × 100 cm and modulus of Young E = 100 N/cm2.
This object is placed on a plane that imposes the boundary conditions (no
movements of the base); on the opposite face it is applied a force equal to
1000 N.

Being the area of application of the force A = 100 cm2, from Equation (4.3)
we obtain the theoretical value of stress:

σ =
1000 N
100 cm2 = 10 N/cm2. (4.7)

From Equation (4.6) we obtain the theoretical value of deformation:

∆L =
10 N/cm2

100 N/cm2 100 cm = 10 cm. (4.8)

Geometrical model building

The next step is the building in Salome-Meca of the model with the aim
to verify the correctness of the solution provided by the software. To this
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purpose it was verified the agreement between the theoretical values of ∆L
and σ and those calculated after the FEM analysis.

Primarily, by means of the Geometry module of Salome-Meca, it was built a
box with size 10 cm × 10 cm × 100 cm. Salome-Meca provides some primitive
entities to build models. A box can be defined by specifying two vertices (its
opposite corners), or by specifying its dimensions along the coordinate axes
and with edges parallel to them.

After, the box was “exploded” by using the Explode function: in this way
the box is divided in its face components. Moreover, it is possible to detect
the face, which was named Pressure, on which to apply the stress σ, and
the face, which was named Base, regarded as constrain. Single faces can be
selected with the mouse pointer.

Meshing

The goal is now to divide the box volume into a mesh, a bunch of small
volumes on which it will be applied the material properties and it will be
calculated the stresses resulting from the load.

The Mesh module of Salome-Meca provides several algorithms in order
to produce a mesh. The menu Mesh, Create Mesh, opens a dialogue box
called Create Mesh. Selecting the Box value as geometrical object, you will be
prompted to fill Hypothesis and Algorithm. Here there is a multiple selection
for both fields. We used the algorithm NETGEN 3D-2D-1D (triangulation). A
new element named Mesh_1 will be created.

Subsequently, it is necessary the designation of the faces on which it will
be applied the loads and of the volumes on which it will be applied the
material properties. When the mesh and all geometrical entities (faces and
volumes) have been created, the mesh will be exported to a MED file format
that can be read by Code-Aster.

Model processing via Code-Aster

Model processing is carried out by using a script, that is a Python code
that can be edited according to the needs. There is a small utility, named
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EFICAS, that enables to input the material properties, the loads, the boundary
conditions and so on. EFICAS can be launched via the ASTK wizard, a graphical
user interface for Code-Aster.

To assign material properties, we used the DEFI_MATERIAU directive. In
a linear study, a material’s name and three numerical values are required:
modulus of Young E, Poisson coefficient NU and volumetric mass RHO. In this
study the material’s name entered is Mat1.

To assign load conditions, the AFFE_CHAR_MECA directive is used. To apply
a boundary condition to the face Base of our box, the DDL_IMPO instruction
assigns at the GROUP_MA Base null displacement along all the three coordi-
nates. To apply the homogeneous pressure to the face Pressure of our box,
the PRES_REP instruction assigns at the GROUP_MA Pressure the desired value
of loads (10 N/cm2).

Finally, the MECA_STATIC instruction provides the solution and the fields
for nodes and elements are saved in a MED file. Here is the command file.

# Linear Statics with 3D linear solid elements

# template by J.Cugnoni, CAELinux.com, 2005

DEBUT();

# Read MED MESH File

# First command LIRE_MAILLAGE is used to read the MED mesh file

# generated by Salome.

# To Do:

# Enter the name of your Salome Mesh in b_format_med->NOM_MED

MeshLin=LIRE_MAILLAGE(UNITE=20,

FORMAT='MED',

NOM_MED='Mesh_1',

INFO_MED=1,);

# Assigns a physical model to geometric entities.

# Here we assume that all the geometric entities (TOUT=OUI)
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# are used for mechanical simulation (PHENOMENE=MECANIQUE)

# with 3D solid elements.

# To Do (Optional):

# you can assign other physics or element types (like shells

# for example) to some of the elements by replacing TOUT=OUI

# in AFFE with GROUP_MA = TheElementGroupYouWantToModel

FEMLin=AFFE_MODELE(MAILLAGE=MeshLin,

AFFE=_F(TOUT='OUI',

PHENOMENE='MECANIQUE',

MODELISATION='3D',),);

# Material properties

# To Do:

# Enter your material properties in this section if necessary

# Copy/Paste the DEFI_MATERIAU command to add a second material

Mat1=DEFI_MATERIAU(ELAS=_F(E=10,

NU=0.3,

RHO=1000,),);

# Assign Material properties to Elements

# To Do:

# If you need more than one material, you need to enter pairs

# of element group <-> materials by duplicating the AFFE option.

Mat=AFFE_MATERIAU(MAILLAGE=MeshLin,

MODELE=FEMLin,

AFFE=_F(TOUT='OUI',

MATER=Mat1,),);

# Boundary conditions
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# This section defines the boundary conditions of the FEA, use

# DDL_IMPO on selected groups to impose displacements and

# FORCE_*/PRESSION to apply forces/pressures to selected groups

# To Do:

# for each boundary conditions, you need to choose the

# appropriate option, for example DDL_IMPO for imposed

# displacements, and assign this option to a selected region of

# the mesh by using the GROUP_NO option for a node group or the

# GROUP_MA for face/volume groups.

BCnd=AFFE_CHAR_MECA(MODELE=FEMLin,

DDL_IMPO=_F(GROUP_MA='Base',

DX=0.0,

DY=0.0,

DZ=0.0,),

PRES_REP=_F(GROUP_MA='Pressure',

PRES=1,),);

# Finite Element Solution

Solution=MECA_STATIQUE(MODELE=FEMLin,

CHAM_MATER=Mat,

EXCIT=_F(CHARGE=BCnd,),

SOLVEUR=_F(METHODE='MUMPS',

RENUM='AUTO',),);

# Compute VonMises Stress / Strain

Solution=CALC_ELEM(reuse=Solution,

RESULTAT=Solution,

OPTION=('SIEF_ELNO', 'SIEQ_ELNO',

'SIGM_ELNO',),);
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Solution=CALC_NO(reuse=Solution,

RESULTAT=Solution,

OPTION=('REAC_NODA', 'SIEQ_NOEU',

'SIEF_NOEU', 'SIGM_NOEU',),);

# Write Results to MED file

IMPR_RESU(MODELE=FEMLin,

FORMAT='MED',

UNITE=80,

RESU=_F(RESULTAT=Solution,

TOUT_CHAM='OUI',

TOUT_CMP='OUI',),);

FIN(FORMAT_HDF='OUI',);

EFICAS only works on the command file; once it has been saved, one must
come back to ASTK to launch the Code-Aster calculation. Code-Aster runs
and displays its output in a non interactive shell window.

Post-processing module

Come back to Salome-Meca, this time using the post-processor module, where
you can graphically display the results saved by Code-Aster in a .RES.MED.

file. By importing this file in Salome-Meca, we can display the Solution DEPL

and Solution SIGM_ELNO fields, that are the displacements and the stresses
respectively.

To visualize the displacements, we can plot the Deformed Shape (Figure
4.2). The displacement values of the nodes belonging to the face Pressure are
9.94 cm, very close to the theoretical value of 10 cm (Figure 4.3). Therefore the
theoretical values of deformation agree with those computed by the software.

Finally, to visualize the stress, the SIGM_ELNO field allow plotting the stress
distribution along the bar. A coloured box and a graduate colour map is
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Figure 4.2: Deformed shape.

Figure 4.3: Displacements of the Pressure face nodes.

Figure 4.4: Stress distribution along the box.
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displayed (Figure 4.4). The colour of the box is the same along the bar and
the numerical value assigned to that colour is 10 N/cm2. This confirms that
the value of stress is the same in the entire box, as it should be.

4.2.2 Study 2

The aim of the Study 2 was to analyse a simple object composed of two
materials. In the same time, all the steps pertaining to te building of the
geometric model and its meshing were coded in a Python script, which
allows for a parametrisation of the object geometry and then for fixing new
values according to the needs.

It refers to an object composed of two overlapping parallelepipeds. That
on the top, called Box_1, has size 10 cm × 10 cm × 100 cm and modulus of
Young E = 100 N/cm2, while that on the bottom, called Box_2, has size
10 cm × 10 cm × 200 cm and modulus of Young E = 50 N/cm2. This object
is placed on a plane, which imposes the constraint conditions on the base,
while on the face opposite the base it is applied a force equal to 1000 N.

For each parallelepiped it was verified the agreement between theoretical
values and simulated values of displacements ∆L and stress σ.

Considering only the Box_2, the theoretical value of stress σ2 is equal to:

σ2 =
1000 N
100 cm2 = 10 N/cm2. (4.9)

The corresponding value ∆L2 of the deformation is:

∆L2 =
10 N/cm2

50 N/cm2 · 200 cm. (4.10)

Considering only the Box_1, the theoretical value of stress σ1 is equal to:

σ1 =
1000 N
100 cm2 = 10 N/cm2, (4.11)
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while the theoretical value of deformation ∆L1 is equal to:

∆L1 =
10 N/cm2

100 N/cm2 · 100 cm. (4.12)

Really, the face of the Box_1 on which it is applied the pressure has a
theoretical value of total deformation given by the sum of ∆L2 and ∆L1:

∆L = ∆L1 + ∆L2 = 50 cm. (4.13)

The model building of the object in Salome-Meca can be executed not
only via graphical interface, but also with textual interface based on Python
program language. Below the Python code of the Study 2.

### Loading libraries

import sys

import salome

salome.salome_init()

theStudy = salome.myStudy

### GEOM component

import GEOM

import geompy

import math

import SALOMEDS

geompy.init_geom(theStudy)

# size Box_1

DX1 = 10.0

DY1 = 10.0

DZ1 = 200.0

# size Box_2

DX2 = 10.0
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DY2 = 10.0

DZ2 = 100.0

Box_1 = geompy.MakeBoxDXDYDZ(DX1, DY1, DZ1)

geompy.addToStudy(Box_1, 'Box_1')

Box_2 = geompy.MakeBoxDXDYDZ(DX2, DY2, DZ2)

geompy.TranslateDXDYDZ(Box_2, 0, 0, DZ1)

geompy.addToStudy(Box_2, 'Box_2')

Fuse_1 = geompy.MakeFuse(Box_1, Box_2)

geompy.addToStudy(Fuse_1, 'Fuse_1')

Partition_1 = geompy.MakePartition([Fuse_1], [Box_1, Box_2],

[], [], geompy.ShapeType["SOLID"], 0, [], 0)

[Box_1_1, Box_2_1] = geompy.ExtractShapes(Partition_1,

geompy.ShapeType["SOLID"], True)

[Face_1, Face_2, Face_3, Face_4, Base, Face_6, Pressure,

Face_8, Face_9, Face_10, Face_11] =

geompy.ExtractShapes(Partition_1,

geompy.ShapeType["FACE"], True)

geompy.addToStudy(Partition_1, 'Partition_1')

geompy.addToStudyInFather(Partition_1, Pressure, 'Pressure')

geompy.addToStudyInFather(Partition_1, Base, 'Base')

geompy.addToStudyInFather(Partition_1, Box_1_1, 'Box_1')

geompy.addToStudyInFather(Partition_1, Box_2_1, 'Box_2')

### SMESH component

import smesh, SMESH, SALOMEDS

import NETGENPlugin

Mesh_1 = smesh.Mesh(Partition_1)
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NETGEN_2D3D = Mesh_1.Tetrahedron(algo=smesh.FULL_NETGEN)

NETGEN_3D_Parameters = NETGEN_2D3D.Parameters()

NETGEN_3D_Parameters.SetMaxSize(2)

NETGEN_3D_Parameters.SetSecondOrder(0)

NETGEN_3D_Parameters.SetOptimize(1)

NETGEN_3D_Parameters.SetFineness(4)

isDone = Mesh_1.Compute()

Box_1_2 = Mesh_1.GroupOnGeom(Box_1_1, 'Solid_1', SMESH.VOLUME)

Box_2_2 = Mesh_1.GroupOnGeom(Box_2_1, 'Solid_2', SMESH.VOLUME)

Base_1 = Mesh_1.GroupOnGeom(Base, 'Base', SMESH.FACE)

Pressure_1 = Mesh_1.GroupOnGeom(Pressure, 'Pressure', SMESH.FACE)

Box_1_2.SetName('Box_1')

Box_2_2.SetName('Box_2')

[Box_1_2, Box_2_2, Base_1, Pressure_1] = Mesh_1.GetGroups()

# Set object names

smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')

smesh.SetName(NETGEN_2D3D.GetAlgorithm(), 'NETGEN_2D3D')

smesh.SetName(NETGEN_3D_Parameters, 'NETGEN 3D Parameters')

smesh.SetName(Box_1_2, 'Box_1')

smesh.SetName(Box_2_2, 'Box_2')

smesh.SetName(Base_1, 'Base')

smesh.SetName(Pressure_1, 'Pressure')

The script is interpreted by Salome-Meca, so performing the geometrical
building of the object and its meshing.

The Code-Aster command file is the following:

DEBUT();

MeshLin=LIRE_MAILLAGE(UNITE=20,

54



CHAPTER 4. RESULTS AND DISCUSSION

FORMAT='MED',

NOM_MED='Mesh_1',

INFO_MED=1,);

FEMLin=AFFE_MODELE(MAILLAGE=MeshLin,

AFFE=_F(TOUT='OUI',

PHENOMENE='MECANIQUE',

MODELISATION='3D',),);

Mat1=DEFI_MATERIAU(ELAS=_F(E=100,

NU=0.3,

RHO=1000,),);

Mat2=DEFI_MATERIAU(ELAS=_F(E=50,

NU=0.3,

RHO=1000,),);

Mat=AFFE_MATERIAU(MAILLAGE=MeshLin,

MODELE=FEMLin,

AFFE=(_F(GROUP_MA='Box_1',

MATER=Mat1,),

_F(GROUP_MA='Box_2',

MATER=Mat2,),),);

BCnd=AFFE_CHAR_MECA(VERI_NORM='OUI',

MODELE=FEMLin,

DDL_IMPO=_F(GROUP_MA='Base',

DX=0.0,

DY=0.0,

DZ=0.0,),

PRES_REP=_F(GROUP_MA='Pressure',

PRES=10,),);
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Solution=MECA_STATIQUE(MODELE=FEMLin,

CHAM_MATER=Mat,

EXCIT=_F(CHARGE=BCnd,),

SOLVEUR=_F(METHODE='MUMPS',

RENUM='AUTO',),);

Solution=CALC_ELEM(reuse=Solution,

RESULTAT=Solution,

OPTION=('SIEF_ELNO', 'SIEQ_ELNO',

'SIGM_ELNO',),);

Solution=CALC_NO(reuse=Solution,

RESULTAT=Solution,

OPTION=('REAC_NODA', 'SIEQ_NOEU',

'SIEF_NOEU', 'SIGM_NOEU',),);

IMPR_RESU(MODELE=FEMLin,

FORMAT='MED',

UNITE=80,

RESU=_F(RESULTAT=Solution,

TOUT_CHAM='OUI',

TOUT_CMP='OUI',),);

FIN(FORMAT_HDF='OUI',);

As in Study 1, in the post-processor Module the interesting lines are
Solution DEPL and Solution SIGM_ELNO fields, that is displacements and
stresses respectively.

The deformed shape is shown in Figure 4.5; the values of displacements
of the nodes belonging to the face on the top of the Box_2 are 40.27 cm, near
to the theoretical values of deformation of 40 cm (0.6% error, Figure 4.6).

In the Box_1 the values of the total displacement of the nodes belonging
to the face Pressure are 49.93 cm, again very close to the theoretical value of
50 cm (Figure 4.7).
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Figure 4.5: Deformed shape of the two boxes.

Figure 4.6: Deformed shape of the Box_2.

Figure 4.7: Displacements of the Pressure face nodes.
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Finally, the stress distribution along the boxes (Figure 4.8) shows a con-
stant value of 10 N/cm2, according to the theory.

Figure 4.8: Stress distribution along the boxes.

4.2.3 Study 3

The Study 3 shows an object sphere-shaped with radius R = 5 cm (named
Fruit) at the centre of which is placed an object parallelepiped-shaped with
size 2 cm × 3 cm × 1 cm (named Sensor). The two objects are fused together
and are of different materials. On a defined area of the sphere, a segment
named Pressure, it was applied a pressure of 1000 N/cm2, while the opposite
area, a segment named Base, was regarded as the constraint. To locate both
areas, it was constructed an arc lying on the sphere, subjected to a revolution
of 360° around one of the Cartesian axis.

The goal of this test is to know the values of deformation and stress on
the parallelepiped faces. Below it is showed the Python code.

### Loading libraries

import math

import salome

import GEOM
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import geompy

salome.salome_init()

theStudy = salome.myStudy

### GEOM component

R = 5. # sphere radius

dx = 2. # box size

dy = 3. # box size

dz = 1. # box size

alfad = 30. # angle used to define the arc, degree

alfar = alfad * math.pi/180. # radian

Sphere_1 = geompy.MakeSphereR(R)

Box_1 = geompy.MakeBoxDXDYDZ(dx, dy, dz)

geompy.TranslateDXDYDZ(Box_1, -dx/2., -dy/2., -dz/2.)

Origin = geompy.MakeVertex(0, 0, 0)

Fuse_1 = geompy.MakeFuse(Sphere_1, Box_1)

P1 = geompy.MakeVertex(0, R*math.sin(alfar), R*math.cos(alfar))

P2 = geompy.MakeVertex(0, 0, R)

Arc_1 = geompy.MakeArcCenter(Origin, P1, P2, False)

Vector_z = geompy.MakeVectorDXDYDZ(0, 0, 1)

Revolution_1 = geompy.MakeRevolution(Arc_1, Vector_z,

360*math.pi/180.0)

Mirror_1 = geompy.MakeMirrorByPoint(Revolution_1, Origin)

Partition_1 = geompy.MakePartition([Fuse_1], [Box_1], [], [],

geompy.ShapeType["SOLID"], 0, [], 0)

[Face_7, Face_8, Face_9, Face_10, Face_11, Face_12, Face_13] =

geompy.ExtractShapes(Partition_1,
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geompy.ShapeType["FACE"], True)

[Solid_1, Solid_2] = geompy.ExtractShapes(Partition_1,

geompy.ShapeType["SOLID"], True)

geompy.addToStudy(Sphere_1, 'Sphere_1')

geompy.addToStudy(Box_1, 'Box_1')

geompy.addToStudy(Origin, 'Origin')

geompy.addToStudy(Fuse_1, 'Fuse_1')

geompy.addToStudy(P1, 'P1')

geompy.addToStudy(P2, 'P2')

geompy.addToStudy(Arc_1, 'Arc_1')

geompy.addToStudy(Vector_z, 'Vector_z')

geompy.addToStudy(Revolution_1, 'Revolution_1')

geompy.addToStudy(Mirror_1, 'Mirror_1')

geompy.addToStudy(Partition_1, 'Partition_1')

geompy.addToStudyInFather(Partition_1, Face_7, 'Face_7')

geompy.addToStudyInFather(Partition_1, Face_8, 'Face_8')

geompy.addToStudyInFather(Partition_1, Face_9, 'Face_9')

geompy.addToStudyInFather(Partition_1, Face_10, 'Face_10')

geompy.addToStudyInFather(Partition_1, Face_11, 'Face_11')

geompy.addToStudyInFather(Partition_1, Face_12, 'Face_12')

geompy.addToStudyInFather(Partition_1, Face_13, 'Face_13')

geompy.addToStudyInFather(Partition_1, Solid_1, 'Solid_1')

geompy.addToStudyInFather(Partition_1, Solid_2, 'Solid_2')

### SMESH component

import smesh, SMESH, SALOMEDS

import NETGENPlugin

Mesh_1 = smesh.Mesh(Partition_1)

NETGEN_2D3D = Mesh_1.Tetrahedron(algo=smesh.FULL_NETGEN)
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NETGEN_3D_Parameters_1 = NETGEN_2D3D.Parameters()

NETGEN_3D_Parameters_1.SetMaxSize(0.5)

NETGEN_3D_Parameters_1.SetSecondOrder(0)

NETGEN_3D_Parameters_1.SetOptimize(1)

NETGEN_3D_Parameters_1.SetFineness(4)

isDone = Mesh_1.Compute()

F7 = Mesh_1.GroupOnGeom(Face_7, 'F7', SMESH.FACE)

F8 = Mesh_1.GroupOnGeom(Face_8, 'F8', SMESH.FACE)

F9 = Mesh_1.GroupOnGeom(Face_9, 'F9', SMESH.FACE)

F11 = Mesh_1.GroupOnGeom(Face_11, 'F11', SMESH.FACE)

F12 = Mesh_1.GroupOnGeom(Face_12, 'F12', SMESH.FACE)

F13 = Mesh_1.GroupOnGeom(Face_13, 'F13', SMESH.FACE)

# Filters to select Base and Pressure elements

# on the sphere surface

filter = smesh.GetFilter(smesh.FACE, smesh.FT_LyingOnGeom,

Revolution_1, Tolerance=0.1)

ids = Mesh_1.GetIdsFromFilter(filter)

Pressure = Mesh_1.MakeGroupByIds('Pressure', smesh.FACE, ids)

filter = smesh.GetFilter(smesh.FACE, smesh.FT_LyingOnGeom,

Mirror_1, Tolerance=0.1)

ids = Mesh_1.GetIdsFromFilter(filter)

Base = Mesh_1.MakeGroupByIds('Base', smesh.FACE, ids)

Sensor = Mesh_1.GroupOnGeom(Solid_1, 'Sensor', SMESH.VOLUME)

Fruit = Mesh_1.GroupOnGeom(Solid_2, 'Fruit', SMESH.VOLUME)

[F7, F8, F9, F11, F12, F13, Pressure, Base, Sensor, Fruit] =

Mesh_1.GetGroups()
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# set object names

smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')

smesh.SetName(NETGEN_2D3D.GetAlgorithm(), 'NETGEN_2D3D')

smesh.SetName(NETGEN_3D_Parameters_1, 'NETGEN 3D Parameters')

smesh.SetName(F7, 'F7')

smesh.SetName(F8, 'F8')

smesh.SetName(F9, 'F9')

smesh.SetName(F11, 'F11')

smesh.SetName(F12, 'F12')

smesh.SetName(F13, 'F13')

smesh.SetName(Pressure, 'Pressure')

smesh.SetName(Base, 'Base')

smesh.SetName(Sensor, 'Sensor')

smesh.SetName(Fruit, 'Fruit')

Figure 4.9 shows the mesh corresponding to the deformed shape, while
Figure 4.10 shows the stress distribution on the Sensor block.

Figure 4.9: Deformed shape of the sphere.

Moreover, the software allows to know, both in tabular and graphical
format, the stress values along a defined line. For example, the Face 11 of
the Sensor (the upper side, in front of the segment where it was applied the
load), was divided in 10 lines, and the values of stress along each line were
plotted. In Figure 4.11 it is reported the stress distribution along the central
line: the maximum value (1182 N/cm2) is comparable with the applied load
(1000 N/cm2).
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Figure 4.10: Stress distribution on the sensor inside the sphere.

Figure 4.11: Stress distribution along a line on the upper face of the sensor inside
the sphere.

4.2.4 Study 4

The purpose of Study 4 was to develop a model where the applied force
varies in time. The temporal loading must be given in the form of a linear
combination of constant forces assembled in time.

The model refers to a parallelepiped-shaped object with size (x, y and z
values) of 0.1 m × 0.1 m × 0.4 m and modulus of Young E = 10 000 Pa. This
object is placed on a plane that imposes the boundary conditions (no move-
ments of the base); on the opposite face it is applied an increasing pressure
from 0 up to 1000 Pa. The corresponding theoretical value of deformation is:

∆L =
σ

E
L = 0.04 m. (4.14)

Below the Python code to build the model.
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### Loading libraries

import sys

import salome

import GEOM

import geompy

salome.salome_init()

theStudy = salome.myStudy

geompy.init_geom(theStudy)

### GEOM component

dx = 0.1 # box size

dy = 0.1 # box size

dz = 0.4 # box size

Box_1 = geompy.MakeBoxDXDYDZ(dx, dy, dz)

[Face_1, Face_2, Base, Pressure, Face_5, Face_6] =

geompy.ExtractShapes(Box_1, geompy.ShapeType["FACE"], True)

geompy.addToStudy(Box_1, 'Box_1')

geompy.addToStudyInFather(Box_1, Face_1, 'Face_1')

geompy.addToStudyInFather(Box_1, Face_2, 'Face_2')

geompy.addToStudyInFather(Box_1, Base, 'Base')

geompy.addToStudyInFather(Box_1, Pressure, 'Pressure')

geompy.addToStudyInFather(Box_1, Face_5, 'Face_5')

geompy.addToStudyInFather(Box_1, Face_6, 'Face_6')

### SMESH component

import smesh, SMESH, SALOMEDS

import NETGENPlugin

Mesh_1 = smesh.Mesh(Box_1)
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NETGEN_2D3D = Mesh_1.Tetrahedron(algo=smesh.FULL_NETGEN)

NETGEN_3D_Parameters = NETGEN_2D3D.Parameters()

NETGEN_3D_Parameters.SetMaxSize(0.0424264)

NETGEN_3D_Parameters.SetSecondOrder(0)

NETGEN_3D_Parameters.SetOptimize(1)

NETGEN_3D_Parameters.SetFineness(4)

isDone = Mesh_1.Compute()

Base_1 = Mesh_1.GroupOnGeom(Base, 'Base', SMESH.FACE)

Pressure_1 = Mesh_1.GroupOnGeom(Pressure, 'Pressure', SMESH.FACE)

smesh.SetName(Mesh_1, 'Mesh_1')

# set object names

smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')

smesh.SetName(NETGEN_2D3D.GetAlgorithm(), 'NETGEN_2D3D')

smesh.SetName(NETGEN_3D_Parameters, 'NETGEN 3D Parameters')

smesh.SetName(Base_1, 'Base')

smesh.SetName(Pressure_1, 'Pressure')

When the mesh and all the geometrical entities (faces and volumes) have
been created, the mesh was exported so that Code-Aster could read the data.
The load was applied in steps defined by a time function and a multiplication
factor. The time step is defined by the DEFI_LIST_REEL command, whereas
the scaling function castle is defined by the DEFI_FONCTION command. In
total 200 time steps were generated. The solution process is managed by the
DYNA_LINE_TRAN command.

The file command is showed below.

DEBOUT();

# Read MED MESH File

MeshLin=LIRE_MAILLAGE(UNITE=20,

FORMAT='MED',
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NOM_MED='Mesh_1',

INFO_MED=1,);

FEMLin=AFFE_MODELE(MAILLAGE=MeshLin,

AFFE=_F(TOUT='OUI',

PHENOMENE='MECANIQUE',

MODELISATION='3D',),);

steel=DEFI_MATERIAU(ELAS=_F(E=10000,

NU=0.28,

RHO=7850,

AMOR_ALPHA=0.1,),);

Mat=AFFE_MATERIAU(MAILLAGE=MeshLin,

MODELE=FEMLin,

AFFE=_F(TOUT='OUI',

MATER=steel,),);

# Boundary conditions

BCnd=AFFE_CHAR_MECA(MODELE=FEMLin,

DDL_IMPO=(_F(GROUP_MA='Base',

DX=0.0,

DY=0.0,

DZ=0.0,),

_F(GROUP_MA='Pressure',

DX=0.0,

DY=0.0,),),

PRES_REP=_F(GROUP_MA='Pressure',

PRES=1000,),);

# Multiplication factor on the load

tsteps = 200;

t0 = 0.0;
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tc = 0.002;

t1 = (1.00001 * tc);

te = 5;

time=DEFI_LIST_REEL(DEBUT=t0,

INTERVALLE=_F(JUSQU_A=te,

NOMBRE=tsteps,),

INFO=2,

TITRE='time',);

castle=DEFI_FONCTION(NOM_PARA='INST',

VALE=(t0, 0.00,

tc, 0.00,

t1, 1.00,

te, 1.00,),

INFO=2,

TITRE='castle',);

MACRO_MATR_ASSE(MODELE=FEMLin,

CHAM_MATER=Mat,

CHARGE=BCnd,

NUME_DDL=CO('numdof'),

MATR_ASSE=(_F(MATRICE=CO('Mstiff'),

OPTION='RIGI_MECA',),

_F(MATRICE=CO('Mmasse'),

OPTION='MASS_MECA',),

_F(MATRICE=CO('Mdampg'),

OPTION='AMOR_MECA',),),);

solu=DYNA_LINE_TRAN(MODELE=FEMLin,

CHAM_MATER=Mat,

MATR_MASS=Mmasse,

MATR_RIGI=Mstiff,
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MATR_AMOR=Mdampg,

SCHEMA_TEMPS=_F(BETA=0.25,

GAMMA=0.5,),

EXCIT=_F(CHARGE=BCnd,

FONC_MULT=castle,),

INCREMENT=_F(LIST_INST=time,),);

# Write Results to MED file

solu=CALC_ELEM(reuse=solu,

RESULTAT=solu,

OPTION=('SIEF_ELNO', 'SIEQ_ELNO',),);

IMPR_RESU(FORMAT='MED',

UNITE=80,

RESU=_F(MAILLAGE=MeshLin,

RESULTAT=solu,

NOM_CHAM=('DEPL', 'ACCE', 'VITE',),),);

FIN();

In the post-processor module the interesting lines are Solution DEPL,
Solution VITE and Solution ACCE. These three groups are the displace-
ments, the velocities and the accelerations, respectively.

It is possible to select interactively a node belonging to the object and
display its curve trend of displacement, velocity and acceleration with respect
to the time. It was selected the Node 5, belonging to the face on the top of the
box. Figure 4.12 reports the modulus of the displacement.

After the initial oscillations due to the linear increasing in the load applied
on the top of the box, the displacement approaches 0.04 m. Therefore the
theoretical value of deformation agrees with that achieved by the simulation.

The vertical component of the velocity trend of the same node is reported
in Figure 4.13. After the initial oscillations, it approaches zero, as it should be.
Finally, Figure 4.14 shows the acceleration trend.
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Figure 4.12: Displacement of the “Node 5” over the time.

Figure 4.13: Velocity of the “Node 5” over time.

Figure 4.14: Acceleration of the “Node 5” over time.

4.2.5 Study 5

The Study 5 models a sphere (fruit) with radius of 0.05 m, at the centre
of which is placed an object parallelepiped-shaped (sensor) with size of
0.02 m × 0.02 m × 0.02 m. The sphere is placed at a distance of 0.05 m above
a 1 m × 1 m × 0.1 m plane. The sphere falls in the z direction on the plane
considering only the force of gravity. The boundary conditions are: zero
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translational displacement for the rigid flat plan, zero displacements in the x
and y-direction for the sphere. Below the Python code of the Study 5.

### Loading of libraries

import sys

import salome

salome.salome_init()

theStudy = salome.myStudy

### GEOM component

import GEOM

import geompy

import math

import SALOMEDS

DXp = 1.0 # plane size

DYp = 1.0

DZp = 0.1

DXs = 0.02 # sensor size

DYs = 0.02

DZs = 0.02

R = 0.05 # sphere radius

DZ = DZp + 0.10 # translation of the sphere above the plane

geompy.init_geom(theStudy)

plane = geompy.MakeBoxDXDYDZ(DXp, DYp, DZp)

geompy.TranslateDXDYDZ(plane, -DXp/2, -DYp/2, 0)

geompy.addToStudy(plane, 'plane')
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[Face_1, Face_2, z, floor, y, x] = geompy.ExtractShapes(plane,

geompy.ShapeType["FACE"], True)

geompy.addToStudyInFather(plane, z, 'z')

geompy.addToStudyInFather(plane, floor, 'floor')

geompy.addToStudyInFather(plane, y, 'y')

geompy.addToStudyInFather(plane, x, 'x')

sphere = geompy.MakeSphereR(R)

sensor = geompy.MakeBoxDXDYDZ(DXs, DYs, DZs)

geompy.TranslateDXDYDZ(sensor, -DXs/2, -DYs/2, -DZs/2)

geompy.addToStudy(sphere, 'sphere')

geompy.addToStudy(sensor, 'sensor')

Fuse_1 = geompy.MakeFuse(sphere, sensor)

Cut_1 = geompy.MakeCut(sphere, sensor)

geompy.addToStudy(Fuse_1, 'Fuse_1')

geompy.addToStudy(Cut_1, 'Cut_1')

Partition_1 = geompy.MakePartition([Fuse_1],

[sensor, Cut_1], [], [], geompy.ShapeType["SOLID"], 0, [], 0)

geompy.TranslateDXDYDZ(Partition_1, 0, 0, DZ)

[sensor, fruit] = geompy.ExtractShapes(Partition_1,

geompy.ShapeType["SOLID"], True)

[Face_1, Face_2, shell] = geompy.ExtractShapes(Partition_1,

geompy.ShapeType["SHELL"], True)

71



CHAPTER 4. RESULTS AND DISCUSSION

[Face_1, Face_2, Face_3, Face_4, Face_5, Face_6, Face_7] =

geompy.ExtractShapes(Partition_1,

geompy.ShapeType["FACE"], True)

geompy.addToStudy(Partition_1, 'Partition_1' )

geompy.addToStudyInFather(Partition_1, Face_1, 'Face_1')

geompy.addToStudyInFather(Partition_1, Face_2, 'Face_2')

geompy.addToStudyInFather(Partition_1, Face_3, 'Face_3')

geompy.addToStudyInFather(Partition_1, Face_5, 'Face_5')

geompy.addToStudyInFather(Partition_1, Face_6, 'Face_6')

geompy.addToStudyInFather(Partition_1, Face_7, 'Face_7')

geompy.addToStudyInFather(Partition_1, shell, 'shell')

geompy.addToStudyInFather(Partition_1, sensor, 'sensor')

geompy.addToStudyInFather(Partition_1, fruit, 'fruit')

### SMESH component

import smesh, SMESH, SALOMEDS

smesh.SetCurrentStudy(theStudy)

import NETGENPlugin

Mesh_plane = smesh.Mesh(plane)

NETGEN_2D3D = Mesh_plane.Tetrahedron(algo=smesh.FULL_NETGEN)

NETGEN_3D_Parameters = NETGEN_2D3D.Parameters()

NETGEN_3D_Parameters.SetMaxSize(0.1)

NETGEN_3D_Parameters.SetSecondOrder(0)

NETGEN_3D_Parameters.SetOptimize(1)

NETGEN_3D_Parameters.SetFineness(2)

isDone = Mesh_plane.Compute()

z_1 = Mesh_plane.GroupOnGeom(z, 'z', SMESH.FACE)

floor_1 = Mesh_plane.GroupOnGeom(floor, 'floor', SMESH.FACE)
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y_1 = Mesh_plane.GroupOnGeom(y, 'y', SMESH.FACE)

x_1 = Mesh_plane.GroupOnGeom(x, 'x', SMESH.FACE)

plane_1 = Mesh_plane.GroupOnGeom(plane, 'plane', SMESH.VOLUME)

[z_1, floor_1, y_1, x_1, plane_1] = Mesh_plane.GetGroups()

Mesh_Partition_1 = smesh.Mesh(Partition_1)

NETGEN_2D3D_1 =

Mesh_Partition_1.Tetrahedron(algo=smesh.FULL_NETGEN)

NETGEN_3D_Parameters_1 = NETGEN_2D3D_1.Parameters()

NETGEN_3D_Parameters_1.SetMaxSize(0.01)

NETGEN_3D_Parameters_1.SetSecondOrder(0)

NETGEN_3D_Parameters_1.SetOptimize(1)

NETGEN_3D_Parameters_1.SetFineness(2)

isDone = Mesh_Partition_1.Compute()

fruit_1 = Mesh_Partition_1.GroupOnGeom(fruit, 'fruit',

SMESH.VOLUME)

sensor_1 = Mesh_Partition_1.GroupOnGeom(sensor, 'sensor',

SMESH.VOLUME)

shell_1 = Mesh_Partition_1.GroupOnGeom(shell, 'shell',

SMESH.FACE)

Face_1_1 = Mesh_Partition_1.GroupOnGeom(Face_1, 'Face_1',

SMESH.FACE)

Face_2_1 = Mesh_Partition_1.GroupOnGeom(Face_2, 'Face_2',

SMESH.FACE)

Face_3_1 = Mesh_Partition_1.GroupOnGeom(Face_3, 'Face_3',

SMESH.FACE)

Face_5_1 = Mesh_Partition_1.GroupOnGeom(Face_5, 'Face_5',

SMESH.FACE)

Face_6_1 = Mesh_Partition_1.GroupOnGeom(Face_6, 'Face_6',
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SMESH.FACE)

Face_7_1 = Mesh_Partition_1.GroupOnGeom(Face_7, 'Face_7',

SMESH.FACE)

Mesh_1 = smesh.Concatenate([Mesh_plane.GetMesh(),

Mesh_Partition_1.GetMesh()], 1, 0, 1e-05)

[z_2, floor_2, y_2, x_2, plane_2, fruit_2, sensor_2, shell_2,

Face_1_2, Face_2_2, Face_3_2, Face_5_2, Face_6_2,

Face_7_2 ] = Mesh_1.GetGroups()

[z_1, floor_1, y_1, x_1, plane_1] = Mesh_plane.GetGroups()

[fruit_1, sensor_1, shell_1, Face_1_1, Face_2_1, Face_3_1,

Face_5_1, Face_6_1, Face_7_1] = Mesh_Partition_1.GetGroups()

[z_2, floor_2, y_2, x_2, plane_2, fruit_2, sensor_2, shell_2,

Face_1_2, Face_2_2, Face_3_2, Face_5_2, Face_6_2,

Face_7_2] = Mesh_1.GetGroups()

## Set object names

smesh.SetName(Mesh_plane.GetMesh(), 'Mesh_plane')

smesh.SetName(NETGEN_2D3D.GetAlgorithm(), 'NETGEN_2D3D')

smesh.SetName(NETGEN_3D_Parameters, 'NETGEN 3D Parameters')

smesh.SetName(z_1, 'z')

smesh.SetName(floor_1, 'floor')

smesh.SetName(y_1, 'y')

smesh.SetName(x_1, 'x')

smesh.SetName(plane_1, 'plane')

smesh.SetName(Mesh_Partition_1.GetMesh(), 'Mesh_Partition_1')

smesh.SetName(NETGEN_3D_Parameters_1, 'NETGEN 3D Parameters')

smesh.SetName(fruit_1, 'fruit')

smesh.SetName(sensor_1, 'sensor')
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smesh.SetName(shell_1, 'shell')

smesh.SetName(Face_1_1, 'Face_1')

smesh.SetName(Face_2_1, 'Face_2')

smesh.SetName(Face_3_1, 'Face_3')

smesh.SetName(Face_5_1, 'Face_5')

smesh.SetName(Face_6_1, 'Face_6')

smesh.SetName(Face_7_1, 'Face_7')

smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')

smesh.SetName(z_2, 'z')

smesh.SetName(floor_2, 'floor')

smesh.SetName(y_2, 'y')

smesh.SetName(x_2, 'x')

smesh.SetName(plane_2, 'plane')

smesh.SetName(fruit_2, 'fruit')

smesh.SetName(sensor_2, 'sensor')

smesh.SetName(shell_2, 'shell')

smesh.SetName(Face_1_2, 'Face_1')

smesh.SetName(Face_2_2, 'Face_2')

smesh.SetName(Face_3_2, 'Face_3')

smesh.SetName(Face_5_2, 'Face_5')

smesh.SetName(Face_6_2, 'Face_6')

smesh.SetName(Face_7_2, 'Face_7')

In Code-Aster the contact between the two objects is defined by the
DEFI_CONTACT command. This command makes it possible to describe the
areas subjected to conditions of unilateral contact with or without friction.
The solution process is managed by the DYNA_NON_LINE command. Below it
is showed the file comm.

DEBUT();

# Read MED MESH File
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MeshLin=LIRE_MAILLAGE(UNITE=20,

FORMAT='MED',

NOM_MED='Mesh_1',

INFO_MED=1,);

# Assigns a physical model to geometric entities.

FEMLin=AFFE_MODELE(MAILLAGE=MeshLin,

AFFE=_F(TOUT='OUI',

PHENOMENE='MECANIQUE',

MODELISATION='3D',),);

# Material properties

Steel=DEFI_MATERIAU(ELAS=_F(E=2.1e11,

NU=0.27,

RHO=7800.0,),);

Fruit=DEFI_MATERIAU(ELAS=_F(E=1000000,

NU=0.35,

RHO=980,),);

# Assign Material properties to Elements

Mat=AFFE_MATERIAU(MAILLAGE=MeshLin,

MODELE=FEMLin,

AFFE=(_F(GROUP_MA='plane',

MATER=Steel,),

_F(GROUP_MA='fruit',

MATER=Fruit,),

_F(GROUP_MA='sensor',

MATER=Steel,),),);

# Boundary conditions

BCnd=AFFE_CHAR_MECA(MODELE=FEMLin,

DDL_IMPO=(_F(GROUP_MA='x',
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DX=0.0,),

_F(GROUP_MA='y',

DY=0,),

_F(GROUP_MA='z',

DZ=0,),),);

gravity=AFFE_CHAR_MECA(MODELE=FEMLin,

PESANTEUR=_F(GRAVITE=9.81,

DIRECTION=(0, 0, -1,),),);

pre_velo=CREA_CHAMP(TYPE_CHAM='NOEU_DEPL_R',

OPERATION='AFFE',

MAILLAGE=MeshLin,

AFFE=_F(GROUP_MA=('fruit', 'sensor',),

NOM_CMP=('DX', 'DY', 'DZ',),

VALE=(0, 0, 0,),),);

contact=DEFI_CONTACT(MODELE=FEMLin,

FORMULATION='DISCRETE',

REAC_GEOM='AUTOMATIQUE',

ZONE=_F(APPARIEMENT='MAIT_ESCL',

GROUP_MA_MAIT='floor',

GROUP_MA_ESCL='shell',

ALGO_CONT='LAGRANGIEN',),);

timelst=DEFI_LIST_REEL(DEBUT=0,

INTERVALLE=_F(JUSQU_A=1,

NOMBRE=1000,),);

# Finite Element Solution

solu=DYNA_NON_LINE(MODELE=FEMLin,

CHAM_MATER=Mat,

EXCIT=(_F(CHARGE=BCnd,),
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_F(CHARGE=gravity,),),

CONTACT=contact,

COMP_ELAS=_F(RELATION='ELAS',

DEFORMATION='GROT_GDEP',

ITER_INTE_MAXI=100,

TOUT='OUI',),

ETAT_INIT=_F(VITE=pre_velo,

PRECISION=1e-04,),

INCREMENT=_F(LIST_INST=timelst,),

SCHEMA_TEMPS=_F(SCHEMA='NEWMARK',

FORMULATION='DEPLACEMENT',),

NEWTON=_F(REAC_INCR=1,

PREDICTION='ELASTIQUE',

MATRICE='TANGENTE',

REAC_ITER=1,

REAC_ITER_ELAS=1,),

CONVERGENCE=_F(ITER_GLOB_MAXI=500,),

SOLVEUR=_F(SYME='OUI',),

INFO=1,);

# Compute VonMises Stress / Strain

solu=CALC_ELEM(reuse=solu,

RESULTAT=solu,

OPTION=('SIEF_ELNO', 'SIEQ_ELNO',),);

solu=CALC_NO(reuse=solu,

RESULTAT=solu,

OPTION='SIEQ_NOEU',);

# Write Results to MED file

IMPR_RESU(MODELE=FEMLin,

FORMAT='MED',

UNITE=80,
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RESU=_F(MAILLAGE=MeshLin,

RESULTAT=solu,

NOM_CHAM=('DEPL', 'VITE', 'ACCE',),),);

FIN(FORMAT_HDF='OUI',);

In post-processing, a node belonging to the bottom of the sphere (Node
295), where it happens the contact with the plane, was selected. Its displace-
ment along the z-axis is reported in Figure 4.15.

Figure 4.15: Displacement along the z-axis of the “Node 295” over the time.

Figure 4.16: Displacement along the z-axis of the “Node 314” over time.

The curve trend shows rebound peaks of around 0.05 m, that is the dis-
tance between the sphere and the plane. At the end of the curve the values of
the peaks tends to move away from the theoretical value probably because of
instability of the model over a long period of simulation.
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A second node (314) was selected on the bottom face of the sensor. Its
displacement is shown in Figure 4.16.

It can be noticed that the maximum displacement is greater than 0.05 m
because of the compression of the sphere.

4.2.6 Study 6

The goal of the Study 6 was to know what happens during the first impact
between sphere and plane. The simulation was carried out as in Study
5, but with different sampling time. In the operand INTERVALLE of the
DEFI_LIST_REEL command, in fact, the end of the interval (JUSQU_A=0.2) is
set to 0.2, whereas the number of steps is set to 1000.

Figure 4.17: Modulus of the displacement of the “Node 295” over time.

Figure 4.18: Modulus of the displacement of the “Node 314” over time.

Figures 4.17 and 4.18 report the displacements of the same nodes (295 and
314). Figure 4.17 allows calculation of contact time between sphere and plane
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(the trait with constant displacement), while Figure 4.18 allows calculation
the maximum compression of the sphere.

4.3 Measurement of the modulus of Young

Figure 4.19 reports the box-plots of the modulus of Young measurements at
varying artificial fruit and probe diameter.
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Figure 4.19: Box-plots of the modulus of Young values at varying artificial fruits
and probe diameters.

The Figure shows significant differences between the moduli of Young for
the same artificial fruit at varying the probe diameter. In fact, the analysis of
variance (ANOVA), with artificial fruit and probe as source of variation and
modulus of Young as dependent variable, showed significant differences due
both to artificial fruits and probes (Table 4.1).
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Table 4.1: Results of the analysis of variance on modulus of Young values.

Source of variation Df F value Pr(>F)

Artificial fruit 1 74.585 2.68e-10 ***
Probe 1 4.702 0.0368 *
Interaction 1 2.553 0.1188 ns
Residuals 36
***: p-level=0.001; *: p-level=0.05; ns: not signifi-
cant; Df: degree of freedom.

This could be related to some inaccuracies in measuring the small defor-
mations during the compression tests, that should be different with the two
probes. But the ANOVA on deformation values (Table 4.2) showed that this
parameter was not significantly affected by the probe type.

Table 4.2: Results of the analysis of variance on deformation values.

Source of variation Df F value Pr(>F)

Artificial fruit 1 883.507 <2e-16 ***
Probe 1 0.094 0.761 ns
Interaction 1 0.062 0.805 ns
Residuals 36
***: p-level=0.001; ns: not significant; Df: degree
of freedom.

Taking into account these observations, the mean values of deformations
and moduli of Young were those reported in Table 4.3.

Table 4.3: Mean values of deformations and moduli of Young (E).

Deformation, mm E, MPa

Artificial fruit Probe 1 Probe 2 Probe 1 Probe 2

BALL 1 0.240 0.243 4.3 5.6
BALL 2 0.086 0.087 21.3 30.5
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4.4 Drop tests

Figure 4.20 reports an example of the file provided by the force impact
recorder. It contains a list with all the impacts and, for each impact, the
time of occurrence, its duration, the maximum force and the time integral of
the force profile.

Figure 4.20: Example of file with force data.

All data were grouped for artificial fruit, impact material and drop height.
Rebounds were excluded from the analyses. The box-plots of the impact force
values are reported in Figure 4.21, whereas average values are reported in
Table 4.4.

On average, with BALL 1 and with drop height from 10 cm, the impact
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Figure 4.21: Box-plots of the force values measured during the drop tests with the
two artificial fruits.

force increased 3.5 times (from 45 to 158 N) changing the impact material
(from PVC to steel). When the drop height was 25 cm, the increase was on
average 3.0 times (from 89 to 266 N).

When testing BALL 2, the increase was 3.3 times with drop height of
10 cm. So, on average, the PVC reduced the impact force to one third respect
to the steel.

When comparing the two artificial fruits, the second (BALL 2) produced
impact forces greater from 1.8 to 2.2 times those produced by BALL 1: this
results is mainly due to its greater mass, density and modulus of Young.
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Table 4.4: Mean values of impact force measured during the drop tests.

Artificial fruit Drop height, cm Impact material Force, N

BALL 1 10 PVC 45.4
BALL 1 10 steel 158.3
BALL 1 25 PVC 89.1
BALL 1 25 steel 266.2
BALL 2 10 PVC 86.0
BALL 2 10 steel 286.4
BALL 2 25 PVC 199.9
BALL 2 25 steel –

4.5 Drop test simulation

4.5.1 Preliminary simulations

Drop tests were simulated with Salome-Meca and Code-Aster software to
asses whether measured and simulated forces were in agreement when using
artificial fruit parameters (diameter, density, modulus of Young) comparable
with those measured experimentally.

Figure 4.22 reports the geometric model used for the simulations. The
simulated impact force was that on the base of the steel disk.

Figure 4.22: Geometric model used for the drop tests.

The first simulations were carried out considering impacts against steel
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and changing the modulus of elasticity (E) of the sphere materials. The
density of the spheres was kept constant, being this parameter more easily
measurable. The coefficient of Poisson was kept constant for both spheres
(0.49)

When an acceptable agreement between simulated and measured values
was reached, the modulus E of the spheres was kept constant and the impacts
against PVC were simulated, changing its E and density.

The final parameter values used for simulations are those reported in
Table 4.5.

Table 4.5: Parameters used for the drop tests.

Modulus of Young, MPa Density, Coefficient of

Material Measured Simulated kg/m3 Poisson

BALL 1 4.25–5.64 14.8 338 0.49
BALL 2 21.36–30.51 22.4 1350 0.49
PVC 0.425 500 0.49
Steel 210000 7800 0.27

Figure 4.23 reports the comparison between simulated and measured
force.

Even if further experimental test could better validate the model, the
overall results were quite good: the values of E for both artificial fruits
found with the simulations were of the same order of magnitude of those
experimentally measured in Potsdam, based on the Hertz theory. In particular,
the simulated value of the modulus of Young for BALL 2 (22.4 MPa) was in the
range between the two measured values (21.36–30.51 MPa). Instead, as far as
BALL 1 is concerned, the simulated value of the modulus of Young (14.8 MPa)
was 2.6–3.5 times as much the measured values, but nevertheless it was
considered acceptable, also considering the variability in the experimental
measurements when using different probes.

As far as the impact force, only for one test (impact material = PVC,
drop height = 25 cm, artificial fruit = BALL 2) the simulated force was under
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Figure 4.23: Comparison between simulated and measured force in drop tests.

estimated with respect to the measured one. This could be due to the lack of
information in modelling the PVC behaviour.

4.5.2 Model building

Gained good agreement between simulated and measured parameters, the
model was extensively used for other analyses on the impact forces and
accelerations. Below the Python code to build the model. The several models
differ for the size of the sphere only.

import sys

import salome

salome.salome_init()

theStudy = salome.myStudy
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### GEOM component

import GEOM

import geompy

import math

import SALOMEDS

geompy.init_geom(theStudy)

RC = 0.025 # steel plate cilinder radius, m

DZ = 0.005 # steel plate cilinder height, m

Cilindro = geompy.MakeCylinderRH(RC, DZ)

[Base, Face_2, Piano] = geompy.ExtractShapes(Cilindro,

geompy.ShapeType["FACE"], True)

# sphere

RS = 55.0/2000.0 # Sphere radius, m

Sfera = geompy.MakeSphereR(RS)

DH = 0.003 # drop height when simulation starts, m

geompy.TranslateDXDYDZ(Sfera, 0, 0, DZ+RS+DH)

[Guscio] = geompy.ExtractShapes(Sfera,

geompy.ShapeType["FACE"], True)

Vertex_1 = geompy.MakeVertex(0, 0, DZ+RS+DH)

geompy.addToStudy(Cilindro, 'Cilindro')

geompy.addToStudy(Sfera, 'Sfera')

geompy.addToStudy(Vertex_1, 'Vertex_1')

geompy.addToStudyInFather(Sfera, Guscio, 'Guscio')
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geompy.addToStudyInFather(Cilindro, Base, 'Base')

geompy.addToStudyInFather(Cilindro, Face_2, 'Face_2')

geompy.addToStudyInFather(Cilindro, Piano, 'Piano')

### SMESH component

import smesh, SMESH, SALOMEDS

smesh.SetCurrentStudy(theStudy)

import NETGENPlugin

MeshSfera = smesh.Mesh(Sfera)

NETGEN_2D3D = MeshSfera.Tetrahedron(algo=smesh.FULL_NETGEN)

NETGEN_3D_Parameters = NETGEN_2D3D.Parameters()

NETGEN_3D_Parameters.SetMaxSize(0.01)

NETGEN_3D_Parameters.SetSecondOrder(0)

NETGEN_3D_Parameters.SetOptimize(1)

NETGEN_3D_Parameters.SetFineness(4)

NETGEN_3D_Parameters.SetLocalSizeOnShape(Vertex_1, 0.005)

isDone = MeshSfera.Compute()

Guscio_1 = MeshSfera.GroupOnGeom(Guscio, 'Guscio', SMESH.FACE)

Sfera_1 = MeshSfera.GroupOnGeom(Sfera, 'Sfera', SMESH.VOLUME)

MeshCilindro = smesh.Mesh(Cilindro)

NETGEN_2D3D_1 = MeshCilindro.Tetrahedron(algo=smesh.FULL_NETGEN)

NETGEN_3D_Parameters_1 = NETGEN_2D3D_1.Parameters()

NETGEN_3D_Parameters_1.SetMaxSize(0.01)

NETGEN_3D_Parameters_1.SetSecondOrder(0)

NETGEN_3D_Parameters_1.SetOptimize(1)

NETGEN_3D_Parameters_1.SetFineness(4)

isDone = MeshCilindro.Compute()

BaseN = MeshCilindro.GroupOnGeom(Base, 'BaseN', SMESH.NODE)
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PianoN = MeshCilindro.GroupOnGeom(Piano, 'PianoN', SMESH.NODE)

Base_1 = MeshCilindro.GroupOnGeom(Base, 'Base', SMESH.FACE)

Piano_1 = MeshCilindro.GroupOnGeom(Piano, 'Piano', SMESH.FACE)

Cilindro_1 = MeshCilindro.GroupOnGeom(Cilindro, 'Cilindro',

SMESH.VOLUME)

Mesh_1 = smesh.Concatenate([MeshSfera.GetMesh(),

MeshCilindro.GetMesh()], 1, 0, 1e-05)

[Guscio_2, Sfera_2, BaseN_1, PianoN_1, Base_2, Piano_2,

Cilindro_2] = Mesh_1.GetGroups()

## set object names

smesh.SetName(MeshSfera.GetMesh(), 'MeshSfera')

smesh.SetName(NETGEN_2D3D.GetAlgorithm(), 'NETGEN_2D3D')

smesh.SetName(NETGEN_3D_Parameters, 'NETGEN 3D Parameters')

smesh.SetName(Guscio_1, 'Guscio')

smesh.SetName(Sfera_1, 'Sfera')

smesh.SetName(MeshCilindro.GetMesh(), 'MeshCilindro')

smesh.SetName(NETGEN_3D_Parameters_1, 'NETGEN 3D Parameters')

smesh.SetName(BaseN, 'BaseN')

smesh.SetName(PianoN, 'PianoN')

smesh.SetName(Base_1, 'Base')

smesh.SetName(Piano_1, 'Piano')

smesh.SetName(Cilindro_1, 'Cilindro')

smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')

smesh.SetName(Guscio_2, 'Guscio')

smesh.SetName(Sfera_2, 'Sfera')

smesh.SetName(BaseN_1, 'BaseN')

smesh.SetName(PianoN_1, 'PianoN')

smesh.SetName(Base_2, 'Base')

smesh.SetName(Piano_2, 'Piano')

90



CHAPTER 4. RESULTS AND DISCUSSION

smesh.SetName(Cilindro_2, 'Cilindro')

After meshing, it were identified:

• the four nodes (N_1, N_2, N_, N_4) belonging to the tetrahedron lo-
calised in the centre of the sphere;

• the node (N_5) localised in the point of the impact between sphere and
plate.

Figure 4.24 reports the geometric model after meshing, when the sphere
diameter was 80 mm.

Figure 4.24: Geometric model used for drop tests after meshing.

The cylindrical plate was characterised by 252 nodes, 74 edges, 478 faces
and 672 volumes. The values for the sphere, when the diameter ranged
from 50 mm to 80 mm, were 334–765 nodes, 14–15 edges, 570–600 faces and
1357–3474 volumes.

In Code-Aster command file the following directives were used:

• CREA_CHAMP to assign the initial velocity (pre_velo) to the sphere;

• CALC_NO to calculate the nodal forces (REAC_NODA)

• POST_RELEVE_T to extract the acceleration of the selected nodes and the
impact force transmitted to the steel plate. Values are provided by the
software in tabular form (IMPR_TABLE).

Below the command file.
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DEBUT();

# Read MED MESH File

MeshLin=LIRE_MAILLAGE(UNITE=20,

FORMAT='MED',

NOM_MED='Mesh_1',

INFO_MED=1,);

# Assigns a physical model to geometric entities.

FEMLin=AFFE_MODELE(MAILLAGE=MeshLin,

AFFE=_F(TOUT='OUI',

PHENOMENE='MECANIQUE',

MODELISATION='3D',),);

# Material properties

Steel=DEFI_MATERIAU(ELAS=_F(E=2.1e11,

NU=0.27,

RHO=7800.0,),);

# Material parameters

E_B = 5e5;

NU_B = 0.49;

RHO_B = 900;

UN_SUR_K_B = ((3*(1 - (2*NU_B)))/E_B);

Ball=DEFI_MATERIAU(ELAS=_F(E=E_B,

NU=NU_B,

RHO=RHO_B,),

LEMAITRE=_F(N=1,

UN_SUR_K=UN_SUR_K_B,),);

# Assign Material properties to Elements

Mat=AFFE_MATERIAU(MAILLAGE=MeshLin,

MODELE=FEMLin,
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AFFE=(_F(GROUP_MA='Cilindro',

MATER=Steel,),

_F(GROUP_MA='Sfera',

MATER=Ball,),),);

# Boundary conditions

gravity=AFFE_CHAR_MECA(MODELE=FEMLin,

PESANTEUR=_F(GROUP_MA='Sfera',

GRAVITE=9.81,

DIRECTION=(0, 0, -1,),),);

BCnd=AFFE_CHAR_MECA(MODELE=FEMLin,

DDL_IMPO=_F(GROUP_MA='Base',

DX=0.0,

DY=0,

DZ=0,),);

# Initial velocity

v10 = -1.3795;

v15 = -1.6983;

v20 = -1.9659;

v25 = -2.2014;

v35 = -2.6092;

v50 = -3.1227;

pre_velo=CREA_CHAMP(TYPE_CHAM='NOEU_DEPL_R',

OPERATION='AFFE',

MAILLAGE=MeshLin,

AFFE=_F(GROUP_MA='Sfera',

NOM_CMP=('DX', 'DY', 'DZ',),

VALE=(0, 0, v10,),),);

contact=DEFI_CONTACT(MODELE=FEMLin,
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FORMULATION='DISCRETE',

REAC_GEOM='AUTOMATIQUE',

ZONE=_F(APPARIEMENT='MAIT_ESCL',

GROUP_MA_MAIT='Piano',

GROUP_MA_ESCL='Guscio',

ALGO_CONT='LAGRANGIEN',),);

# Solution

timelst=DEFI_LIST_REEL(DEBUT=0,

INTERVALLE=_F(JUSQU_A=0.006,

PAS=0.0001,),);

# Compute VonMises Stress / Strain

solu=DYNA_NON_LINE(MODELE=FEMLin,

CHAM_MATER=Mat,

EXCIT=(_F(CHARGE=gravity,),

_F(CHARGE=BCnd,),),

CONTACT=contact,

COMP_INCR=_F(RELATION='LEMAITRE',

DEFORMATION='GDEF_HYPO_ELAS',

GROUP_MA='Sfera',),

COMP_ELAS=_F(RELATION='ELAS',

DEFORMATION='PETIT',

RESI_INTE_RELA=1e-06,

GROUP_MA='Cilindro',),

ETAT_INIT=_F(VITE=pre_velo,),

INCREMENT=_F(LIST_INST=timelst,),

SCHEMA_TEMPS=_F(SCHEMA='HHT',

FORMULATION='DEPLACEMENT',),

NEWTON=_F(REAC_INCR=1,

PREDICTION='ELASTIQUE',

MATRICE='TANGENTE',

REAC_ITER=1,
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REAC_ITER_ELAS=1,),

CONVERGENCE=_F(ITER_GLOB_MAXI=100,),

ARCHIVAGE=_F(PAS_ARCH=1,

PRECISION=1e-06,),);

solu=CALC_ELEM(reuse=solu,

MODELE=FEMLin,

RESULTAT=solu,

OPTION=('SIEF_ELNO', 'EPSI_ELNO',

'EPSI_ELGA', 'SIEQ_ELNO',),);

solu=CALC_NO(reuse=solu,

RESULTAT=solu,

OPTION=('REAC_NODA', 'SIEQ_NOEU',

'SIEF_NOEU', 'FORC_NODA',),);

# Write Results to MED file

Forza=POST_RELEVE_T(ACTION=(_F(OPERATION='EXTRACTION',

INTITULE='ForzeNod',

RESULTAT=solu,

NOM_CHAM='REAC_NODA',

GROUP_NO='PianoN',

RESULTANTE='DZ',),

_F(OPERATION=('EXTRACTION',),

INTITULE='Accelerazione',

RESULTAT=solu,

NOM_CHAM='ACCE',

GROUP_NO='N_1',

RESULTANTE=('DX', 'DY', 'DZ',),),

_F(OPERATION=('EXTRACTION',),

INTITULE='Accelerazione',

RESULTAT=solu,

NOM_CHAM='ACCE',
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GROUP_NO='N_2',

RESULTANTE=('DX', 'DY', 'DZ',),),

_F(OPERATION=('EXTRACTION',),

INTITULE='Accelerazione',

RESULTAT=solu,

NOM_CHAM='ACCE',

GROUP_NO='N_3',

RESULTANTE=('DX', 'DY', 'DZ',),),

_F(OPERATION=('EXTRACTION',),

INTITULE='Accelerazione',

RESULTAT=solu,

NOM_CHAM='ACCE',

GROUP_NO='N_4',

RESULTANTE=('DX', 'DY', 'DZ',),),

_F(OPERATION=('EXTRACTION',),

INTITULE='Accelerazione',

RESULTAT=solu,

NOM_CHAM='ACCE',

GROUP_NO='N_5',

RESULTANTE=('DX', 'DY',

'DZ',),),),);

IMPR_TABLE(TABLE=Forza,);

IMPR_RESU(MODELE=FEMLin,

FORMAT='MED',

UNITE=80,

RESU=_F(RESULTAT=solu,

TOUT_CHAM='OUI',

TOUT_CMP='OUI',),);

FIN(FORMAT_HDF='OUI',);
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4.5.3 Effect of drop height

Figures 4.25, 4.26 and 4.27 report, for three sphere diameters, the maximum
impact force trend vs the drop height at varying density and modulus of
Young of the material. Trends were well explained by second order equations,
with determination coefficients ranging from 0.996 to 1.000.
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Figure 4.25: Maximum impact force vs drop height at varying modulus of Young
(MPa) and density (kg/m3) when the sphere diameter was 50 mm.

When the modulus of Young was 3.5 MPa, the sphere diameter 50 mm
and the sphere density 1100 kg/m3, the impact force increased from 103 N to
257 N when the drop height increased from 10 cm to 50 cm. With the sphere
diameter of 80 mm, the impact force increased from 266 N to 442 N when the
drop height increased fro 10 cm to 25 cm.

Geyer et al. (2009) reports that, when dropping potato tubers with mass in
the range 100–210 g from 10 cm and 25 cm on steel plate, the maximum impact
force was on average about 140 and 250 N respectively. These simulations,
in similar conditions (mass = 102–199 g, modulus of Young = 2.5–3.5 MPa,
density = 900–1100 kg/m3), provided maximum impact forces of 154 N and
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diameter = 65 mm
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Figure 4.26: Maximum impact force vs drop height at varying modulus of Young
(MPa) and density (kg/m3) when the sphere diameter was 65 mm.
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Figure 4.27: Maximum impact force vs drop height at varying modulus of Young
(MPa) and density (kg/m3) when the sphere diameter was 80 mm.
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271 N, in good agreement with the experimental results.
Similar trends were showed by the maximum acceleration at the centre

of the sphere (Figure 4.28, 4.29 and 4.30), with determination coefficients
ranging from 0.976 to 1.000.
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Figure 4.28: Maximum acceleration at the centre of the sphere vs drop height at
varying modulus of Young (MPa) and density (kg/m3) when the sphere diameter
was 50 mm.

When the modulus of Young was 3.5 MPa, the sphere diameter 50 mm
and the sphere density 1100 kg/m3, the maximum acceleration at the centre
of the sphere increased from 1455 m/s2 to 3806 m/s2 when the drop height
increased from 10 cm to 50 cm. With the sphere diameter of 80 mm, the impact
force increased from 928 m/s2 to 1537 m/s2 when the drop height increased
fro 10 cm to 25 cm.

The cited Authors (Geyer et al., 2009) report maximum acceleration values
at the centre of the potatoes, measured with the AMU device in the afore-
mentioned conditions, of around 50 g (490 m/s2) for drop heights of 10 cm
and of around 80 g (785 m/s2) for drop heights of 25 cm. Simulations, instead,
provided average values of acceleration about 2.4 times greater (1200 m/s2
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Figure 4.29: Maximum acceleration at the centre of the sphere vs drop height at
varying modulus of Young (MPa) and density (kg/m3) when the sphere diameter
was 65 mm.
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Figure 4.30: Maximum acceleration at the centre of the sphere vs drop height at
varying modulus of Young (MPa) and density (kg/m3) when the sphere diameter
was 80 mm.
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with drop height of 10 cm and 2000 m/s2 with drop height of 25 cm). This
difference could be due to the implantation system of the AMU device inside
the tuber.

The acceleration in the impact zone was on average from 10 to 18 times
higher that at the centre of the sphere, when the diameter increased from 50
to 80 mm.

4.5.4 Effect of modulus of Young

Figure 4.31 reports the average value of the impact force vs the modulus of
Young. The trend was approximately linear, with coefficient of determination
R2 = 0.97, significant at p-level = 0.05. When the modulus of Young increased
from 0.5 up to 3.5 MPa, the impact force increased from 101 up to 232 N.

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5

10
0

12
0

14
0

16
0

18
0

20
0

22
0

modulus of Young, MPa

im
pa

ct
  f

or
ce

,  
N

y = 43.397 x + 87.922

R2 = 0.97*

Figure 4.31: Average impact force vs modulus of Young.

The trends for some sphere diameters (50, 65 and 80 mm) are showed in
figures 4.32, 4.33 and 4.34. They were all linear with coefficients of determi-
nation ranging from 0.916 up to 1.000. The increase in impact force per unit
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increase of modulus of Young


∆F
∆E


ranged from 16 to 81 N/MPa.
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Figure 4.32: Maximum impact force vs modulus of Young at varying drop height
(cm) and density (kg/m3) when the sphere diameter was 50 mm.

The average acceleration at the centre of the sphere increased linearly with
the modulus of Young (coefficient of determination equal to 0.98, significant
at p-level = 0.01). When the modulus of Young increased from 0.5 to 3.5 MPa,
the acceleration increased from 926 to 1940 m/s2. The increase in accelera-
tion (m/s2) per unit increase in modulus of Young (MPa) was on average
341 (m/s2)/MPa.

Figures 4.35, 4.36 and 4.37 report the single trends for some sphere diame-
ters (50, 65 and 80 mm) at varying material density and drop height.

Finally, the acceleration of the node in the impact area was not affected by
the Young modulus: it was on average 23 550 m/s2, from 12 to 26 times that
at the centre of the sphere.
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Figure 4.33: Maximum impact force vs modulus of Young at varying drop height
(cm) and density (kg/m3) when the sphere diameter was 65 mm.
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Figure 4.34: Maximum impact force vs modulus of Young at varying drop height
(cm) and density (kg/m3) when the sphere diameter was 80 mm.
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Figure 4.35: Maximum acceleration at the centre of the sphere vs modulus of Young
at varying drop height (cm) and density (kg/m3) when the sphere diameter was
50 mm.

diameter = 65 mm

modulus of Young, MPa

ac
ce

le
ra

tio
n,

  m
s2

500

1000

1500

2000

0.51.01.52.02.53.03.5

●

●
●

●

10:900

●

●
●

●

10:1000

0.51.01.52.02.53.03.5

●

●
●

●

10:1100

●

●

●
●

15:900

●

●
●

●

15:1000

●

●
●

●

15:1100

●

●
●

20:900

500

1000

1500

2000

●

●

●
●

20:1000
500

1000

1500

2000

●

●

●
●

20:1100

●

●

●

●
25:900

●

●

●

●

25:1000

●

●

●

●

25:1100
500

1000

1500

2000

●

35:900

Figure 4.36: Maximum acceleration at the centre of the sphere vs modulus of Young
at varying drop height (cm) and density (kg/m3) when the sphere diameter was
65 mm.
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Figure 4.37: Maximum acceleration at the centre of the sphere vs modulus of Young
at varying drop height (cm) and density (kg/m3) when the sphere diameter was
80 mm.

4.5.5 Effect of diameter

The effect of the sphere diameter on the impact force is showed in Figures
4.38 and 4.39 at varying drop height and material density, for two values of
modulus of Young (0.5 and 3.5 MPa).

The trends were linearly increasing, with coefficients of determination
ranging from 0.946 to 1.000. Slopes increased at increasing drop height, mod-
ulus of Young and density from 1.453 N/mm (drop height = 10 cm, density =
1000 kg/m3, modulus of Young = 0.5 MPa) to 11.050 N/mm (drop height =
50 cm, density = 1100 kg/m3, modulus of Young = 3.5 MPa). As an example,
when the drop height was 25 cm and the density 1100 kg/m3, the impact
force increased from 77 N (diameter of 50 mm) to 194 N (diameter of 80 mm)
when the modulus of Young was 0.5 MPa and from 176 N to 442 N when it
was 3.5 MPa.

The maximum acceleration values at the centre of the sphere are shown in
Figures 4.40 and 4.41 for the same two values of modulus of Young (0.5 and
3.5 MPa).
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Figure 4.38: Maximum impact force vs sphere diameter at varying drop height (cm)
and density when the modulus of Young was 0.5 MPa.

E = 3.5 MPa

sphere diameter, mm

im
pa

ct
  f

or
ce

, N

100

200

300

400

50 55 60 65 70 75 80

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

10

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

15

50 55 60 65 70 75 80

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

50 55 60 65 70 75 80

●

●
●

●

●

●

35

100

200

300

400

●

●

●

●

●

●

50

density, g cm3

0.9 1 1.1● ● ●

Figure 4.39: Maximum impact force vs sphere diameter at varying drop height (cm)
and density when the modulus of Young was 3.5 MPa.
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Figure 4.40: Maximum acceleration at the centre of the sphere vs sphere diameter at
varying drop height (cm) and density when the modulus of Young was 0.5 MPa.
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Figure 4.41: Maximum acceleration at the centre of the sphere vs sphere diameter at
varying drop height (cm) and density when the modulus of Young was 3.5 MPa.
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They showed a linear decreasing trend, with negligible differences due
to the material density. The decreasing trend is due to the cushioning effect
produced by the sphere material itself: when the size of the sphere increases,
there is a greater distance between impact zone and centre of the sphere, so
the acceleration measured at the centre of the sphere is reduced.

4.5.6 Effect of density

The effect of the material density on the impact force is showed in Figure 4.42
when the modulus of Young was 3.5 MPa. Similar graphs were obtained for
the other values of the modulus of Young. The trends were linear: increasing
material density, maximum impact force increased proportionally. The effect
was more pronounced at higher sphere diameters and higher drop heights.
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Figure 4.42: Maximum impact force vs material density at varying drop height and
sphere diameter (mm) when the modulus of Young was 3.5 MPa.

The trend of the acceleration at the centre of the sphere was linear too
(Figure 4.43, when the modulus of Young was 3.5 MPa), but in decreasing
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direction.
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Figure 4.43: Maximum acceleration at the centre of the sphere vs material density
at varying drop height and sphere diameter (mm) when the modulus of Young was
3.5 MPa.

Again, this results is due to the cushioning effect of the material, greater
when the density was greater, keeping constant all the other parameters.

4.5.7 Effect of mass

Finally, size (diameter) and density were combined in one single parameter,
the mass of the sphere. With the given values of diameter and density, mass
values ranged from 59 to 295 g.

Figures 4.44 and 4.45 report the impact force values at varying the mass of
the sphere, assuming as parameters the modulus of Young or the drop height.

Geyer et al. (2009) report that, when dropping potato tubers with mass
of 100–120 g from 25 cm onto steel plates, the impact force ranged from 190
to 220 N (depending on the potato variety). Simulations showed that the
impact force in the same conditions (mass of 102–113 g and modulus of
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Figure 4.44: Maximum impact force vs mass at varying drop height (cm), assuming
as parameter the modulus of Young.
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Figure 4.45: Maximum impact force vs mass at varying modulus of Young (MPa),
assuming as parameter the drop height.
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Young of 2.5–3.5 MPa) ranged from 198 to 242 N, in good agreement with
the experimental results. Again, when the mass tuber was 190–210 g, the
measured impact force was 310–325 N. The simulations showed, for mass of
199–221 g, impact forces ranging from 306 to 325 N, again in good agreement
with the experimental results.

Finally, Figures 4.46 and 4.47 report the acceleration values at the centre
of the sphere at varying the mass of the sphere and assuming as parameters
the modulus of Young or the drop height.
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Figure 4.46: Maximum acceleration at the centre of the sphere vs mass at varying
drop height (cm), assuming as parameter the modulus of Young.

Both graphs show a decreasing trend in acceleration values, due to the
cushioning effect of the material.

Geyer et al. (2009) report that, in the aforementioned conditions, the
acceleration measured by the AMU device ranged from 94 to 95 g (922–
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Figure 4.47: Maximum acceleration at the centre of the sphere vs mass at varying
modulus of Young (MPa), assuming as parameter the drop height.

932 m/s2) for masses of 100–120 g and from 78 to 84 g (765–824 m/s2) for
masses of 190–210 g. Simulations, in similar conditions, provided acceleration
values ranging from 1934 to 2314 m/s2 for masses of 102–113 g and moduli
of Young of 2.5–3.5 MPa and ranging from 1497 to 1843 m/s2 for masses of
199–221 g.

Simulated acceleration values were therefore about twice as high as those
measured. On the other hand, Geyer et al. (2009) report that, with the
measured values of acceleration, computed impact forces:

Fcomputed = mass × acceleration (4.15)

were approximately half the measured ones, meaning an under-estimation
of the acceleration with the AMU device, perhaps due to the implantation
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system of the AMU inside the tuber.
On the other hand, based on simulation tests, forces computed according

Equation 4.15 and those provided by simulations were in good agreement
(Figure 4.48).
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Figure 4.48: Correlation between simulated and computed force.

The regression equation provided a determination coefficient of 0.95,
statistically significant at p-level of 0.001, and a slope equal to 0.923 N/N,
very near to the theoretical value of 1.
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Impact forces and accelerations arising from collisions, are among the main
indices taken into account when studying the damage of fruit and vegetables
during post-harvest activities. The probability of damage is usually assessed
by dropping fruits in known conditions and evaluating the percentage of
damaged fruits.

Several “artificial sensorised fruits”, able to measure forces or accelera-
tions arising from impacts, have been designed and commercialised. A minia-
turised Acceleration Measuring Unit (AMU) has been recently developed at
the Institut für Agrartechnik, Potsdam-Bornim (ATB). When implanted into a
real product like a potato tuber, it is able to measure the accelerations at the
centre of the fruit deriving from a impact.

In this PhD Thesis it was simulated, by means of the Finite Element
Analysis approach, the behaviour of spherical artificial fruits when dropped
onto steel plates. Several simulations of drop tests of the artificial fruit at
varying density and modulus of elasticity of the material, diameter of the
fruit and drop height, were developed to know information about the impact
parameters (maximum impact force and maximum acceleration at the centre
of the sphere). Material properties were chosen to approach those of potato
tubers.

Even if further studies are necessary to improve the model, the main
results of the simulations allows the following conclusions:

• The maximum impact forces vs the drop height, when fixing density
and modulus of Young of the material and diameter of the sphere,
showed an increasing trend well explained by second order equations.
When the diameter of the sphere was 55 mm, the average impact force

114



CONCLUSIONS

increased from about 90 N to 220 N when the drop height increased
from 10 cm to 50 cm. The experimental results by Geyer et al. (2009),
referring to drop tests of potato tubers with mass in the range 100–210 g
from 10 cm and 25 cm on steel plate, reported maximum impact force
values of about 140 and 250 N respectively. The simulations, in similar
conditions, provided maximum impact force values of 154 N and 271 N,
in good agreement with the experimental results.

• Similar trends were showed by the maximum acceleration at the cen-
tre of the sphere. When the diameter of the sphere was 55 mm, the
acceleration increased from about 1085 m/s2 to 2850 m/s2 when the
drop height increased from 10 cm to 50 cm. Geyer et al. (2009), when
dropping potato tubers in the aforementioned conditions, reported
maximum acceleration values at the centre of the potatoes, measured
with the AMU device, of around 490 m/s2 for drop heights of 10 cm
and of around 785 m/s2 for drop heights of 25 cm. Simulations, instead,
provided average values of acceleration about 2.4 times greater. This
difference could be due to the implantation system of the AMU device
inside the tuber.

• The average value of impact force vs modulus of Young showed a
liner trend with coefficient of determination R2 = 0.97. Averaging
all the results, impact force increased from about 100 to 230 N when
the modulus of Young increased from 0.5 to 3.5 MPa. Similarly, the
average acceleration at the centre of the sphere increased linearly with
the modulus of Young: when the modulus of Young increased from 0.5
to 3.5 MPa, the acceleration increased from 926 to 1940 m/s2.

• The sphere diameter had a linear effect on the impact force: fixing
drop height, modulus of Young and material density, an increase in
the sphere diameter caused a linear increase in the maximum impact
force. The maximum acceleration at the centre of the sphere vs sphere
diameter, instead, reported a linear decreasing trend, with negligible
differences due to the material density. The decreasing trend is due to
the cushioning effect produced by the sphere material itself: when the
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size of the sphere increases, there is a greater distance between impact
zone and centre of the sphere, so the acceleration measured at the centre
of the sphere is reduced.

• The trends of the maximum impact force vs material density were linear:
increasing material density, maximum impact force increased propor-
tionally. The effect was more pronounced at higher sphere diameters
and higher drop heights. The trends of the acceleration at the centre of
the sphere vs material density were linear too, but in decreasing direc-
tion. Again, this results is due to the cushioning effect of the material,
greater when the density was greater, keeping constant all the other
parameters.

• Combining size and density of the sphere in one single parameter, the
mass of the sphere, the simulations showed an increasing trend of the
maximum impact force vs the mass. Considering masses ranging from
200 to 220 g, simulations provided impact forces ranging from 306 to
325 N when the drop height was 25 cm. Experimental tests in the same
conditions, reported by Geyer et al. (2009), showed impact force values
of 310–325 N, in good agreement with the simulations. The acceleration
values at the centre of the sphere at varying the mass of the sphere
and assuming as parameters the modulus of Young or the drop height,
reported a decreasing trend, due to the cushioning effect of the material.
The simulations provided acceleration values about twice as many those
measured in the experimental results.

• Considering the force Fc computed accordingly to the second law of
Newton (Fc = m · a) and comparing Fc with the impact force Fi, the
comparison gave good agreement in simulations, whereas in experi-
mental tests Fc was approximately half the measured force Fi, meaning
an under-estimation of the acceleration with the AMU device, perhaps
due to the implantations system of the AMU inside the tuber.

All considered, the concordance between experimental and simulated
tests, confirmed the validation of the FEM approach, although the limita-
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tions owing to the simplicity of the model developed in this work. Further
development of the work could take into account:

• implementation of other simulation by FEM approach with more com-
plex models that represent better the specific material of vegetables;

• development of other simulation on other types of vegetables to validate
the method of analysis.
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