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ABSTRACT

The fundamental theory of strong interactions is the so called Quan-
tum Chromo Dynamics (QCD) that is a quantum field theory with an
extremely rich dynamical content. The main features of this theory are
the asymptotic freedom and confinement. The study of QCD, under ex-
treme conditions of temperature and density has been one of the most
difficult problem in physics during the last decades, capturing increasing
experimental and theoretical attention also in connection with its rela-
tion to the Early Universe physics.

In this work of thesis it is extensively discussed the effect of the primor-
dial QCD phase transition during the first part of the evolution of our
Universe: the Big Bang nucleosynthesis.

On the other hand, the Relativistic Heavy lon Collider (RHIC) and Large
Hadron Collider (LHC) programs have been used to probe the properties
of nuclear matter under such extreme condition. In the light of the ex-
perimental results accumulated in these years in these ultra relativistic
heavy ion collisions, the main purpose of this thesis is to study the dy-
namical evolution of the Quark Gluon Plasma (QGP) in the framework
of kinetic theory.

In particular, recent experimental data show that the momentum anisotropy
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Abstract

of the emitted particles is an observable that encodes information about
the transport properties of the matter created in these HIC and also that
it is an observable sensitive to the shear viscosity to entropy density ratio
n/s. Hence, in this work we have investigated within an event-by-event
transport approach at fixed viscosity this elliptic flow vy and high order
harmonics v,,.

The principal results presented in this thesis concern the different sen-
sitivity to the n/s(T) at different energies (RHIC and LHC) for both
ultra-central and mid-peripheral collisions, especially in the cross over
region of the transition. Moreover we highlighted the effect of the inclu-
sion in our simulation code of a realistic kinetic freeze out. Finally, we
discussed the correlation between the initial spatial anisotropies ¢, and

flow coefficients v,,.
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INTRODUCTION

Within the framework of Standard Model, the fundamental theory
that governs the dynamics of strongly interacting particles is the Quan-
tum Chromodynamics (QCD). The degrees of freedom of such a theory
are quarks and gluons which play the role of intermediary of the interac-
tion. QCD is formulated as a gauge theory analogously with Quantum
Electrodynamics (QED).

However the different symmetries owned by the strong interaction with
respect to electromagnetic interaction implies that QCD is a non abelian
gauge theory with properties quite different from QED.

Moreover, this theory have two important and characterizing features,
that are the colour confinement and the asymptotic freedom. The first
one implies that quarks and gluons can only exist as confined objects in-
side hadrons. The second one is directly related to its non Abelian nature
and consists in the decrease of interaction strength with the decreasing
of interaction distance.

The asymtotic freedom opens the way to the possibility of studying the
strong interaction in a perturbative regime for sufficiently high energy
processes, and implies that under particular condition of temperature or

density the strong interaction that confines quarks and gluons becomes
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smaller enough to release them.

Hence a new state of matter can exist in which the colour charges are
deconfined in a Quark Gluon Plasma (QGP), the predictions of Lat-
tice Quantum Chromodynamics indicate that the critical temperature
in which the nuclear matter experiences a phase transition is Ty =
160 MeV ~ 10?2 K.

This phase of the matter should have existed in the early stage of Uni-
verse life up to a time of about 107 sec after the Big Bang and in this
work we also studied the role of this phase transition and its effect dur-
ing the Big Bang Nucleosynthesis (BBN). More precisely in this thesis
we present some novel results about the propagation of sound waves in
the QGP of interest for evolution of the first stage of the Early Universe.
The studies of the matter under such extreme conditions can be done
performing Heavy Ion Collisions (HIC) at ultrarelativistic energy (above
10 AGeV). Signatures of a Quark Gluon Plasma formation became man-
ifest in the experiment with energies up to 200AGeV performed at Rela-
tivistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory.
Further confirmations as well as new discoveries have been coming from
the experiments at Large Hadron Collider (LHC) started in 2010 where
it is possible to reach energies up to 5.57TeV .

A clear understanding of the features of the Quark Gluon Plasma (QGP)
created in such heavy ion collision is yet a theoretical challenge. This is
due first of all to the complex nature of the Quantum Cromodynam-
ics, expecially in the non-perturbative regime, that makes difficults to
have a full understanding of the dynamics of partons which compose the
QGP. However in the recent years a wide development of lattice QCD
has occured allowing to have more and more knowledge about the ther-
modynamical properties of the matter at the high temperatures as those
reached in ultra-relativistic heavy ion collision. In particular, we have a

safe computation of the energy density and pressure of the Quark Gluon
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Plasma and of the transition temperature from the QGP to the hadronic
phase while it is becoming possible to compute in medium particle cor-
relations and transport properties.

Secondly, but not less important, the observables experimentally accesi-
ble are hadrons and consequently the study of the partonic behaviour is
partially veiled by the hadronization process that is yet not completely
understood. Nevertheless there are a lot of observables that permit to
identify the formation and the properties of the QGP. Such observables
are influenced by the different phase of the evolution of the QGP, there-
fore it is important to identify observables that are able to probe one
particular phase of the system without being influenced by the other
phase. In this way it is possible to have information about a particular
phase of the evolution.

One of the strongest pieces of evidence for the formation of the QGP in
ultra-relativistic nucleus-nucleus collisions stems from the strong anisotropic
collective flow which is a measure of the azimuthal asymmetry in mo-
mentum space. This is an observable that encodes information about
the transport properties of the matter created in HIC and the equation
of state and it is an observable sensitive to the shear viscosity to entropy
density ratio n/s. Experimentally, the particle azimuthal distribution
measured with respect to the so-called reaction plane is not isotropic.
Moreover, the reaction plane cannot be directly measured in high energy
nuclear collisions, but can be estimated from the azimuthal distribution
event-by-event.

The presence of strong collective flow in the Quark Gluon Plasma emerg-
ing in the experiments of heavy ion collision have suggested that the
evolution of QGP can be treated using hydrodynamics. This model do
not need a detailed description of the microscopic dynamics since it deals
with collective properties of the plasma.

Hydrodynamical models supplies a good description of the QGP observ-
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abels in the low pr region, there it is conceivable to have a local kinetic
equilibrium as assumed by hydrodynamics. In particular it is able to
correctly predict the experimental data relative to the elliptic flow vq, a
measure of the pressure and the viscosity of the created matter. However
hydrodynamics fails to reproduce experimental data relative to vy and
higher harmonics v, in the intermediate and high pr region. Moreover it
is necessary to include viscosity effects which lead to the developments
of a viscous hydrodynamics that has a limited range of validity in mo-
mentum space especially at increasing viscosity like the one that could
be present in the cross-over region of transition or at very large temper-
atures.

The work presented in this thesis is based on a study of the dinamical
evolution of the quark gluon plasma in the framework of kinetic theory.
In such an approach the dynamical evolutions of the system is studied
solving the equation of motion for the one-body phase space distribution
f(z,p), i.e. solving the Boltzmann-Vlasov equation. At variance with
hydrodinamics this is a microscopic approach to study the dynamics of
the system. Indeed, our model describes the dynamics of QGP consider-
ing both the collision term, that accounts for the short range interaction
between partons, and the mean field, that instead accounts for the long
range physics.

We have developed a numerical code to implement a solution of the rel-
ativistic Boltzmann equation for the parton distribution function tuned
at a fixed shear viscosity to entropy density ratio n/s. This approach
provides a tool to estimate the viscosity of the plasma valid in a wider
range of /s and pr. Finally, in order to generate an initial profile that
change event by event we use the Monte-Carlo Glauber model to ob-
tain the initial density distribution for each event. In this way, we can
study the initial collisional geometry fluctuations and investigate how

they evolve through different stages of the fireball history and translate
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into final particle momentum anisotropies.

First of all, in order to get stable results, we have tested the good sam-
pling of the initial geometry. So we have checked the convergency of our
model for vy, v3 and vy with the lattice spacing of the calculation grid
and the total number of test particles Nyeg.

The main goal of the present thesis is therefore to study the build up of
elliptic flow v9 and high order harmonics v,, within a transport approach
at fixed shear viscosity to entropy density ratio n/s and with initial state
fluctuations. In particular we study the effect of a temperature dependent
n/s for two different beam energies: RHIC for Au+ Au at /s = 200 GeV
and LHC for Pb+Pb at /s = 2.76 T'eV. We find that for the two different
beam energies considered the suppression of the elliptic flow and of higher
harmonics v3(pr) and vy(pr) due to the viscosity of the medium have dif-
ferent contributions coming from the cross over transition or QGP phase.
Moreover, we discuss the correlation between the initial spatial anisotropies
¢, and flow coefficients v,,. We observe that the elliptic flow v is strongly
correlated with initial eccentricity e;. While higher harmonics vs and vy
are weakly correlated to their asymmetry measure in coordinate space
e3 and ¢4. However we pointed that at LHC energy for ultra-central
collisions the correlation remains very high also for (v4,es) and also the
sensitivity to n/s(T) in significantly larger than in mid-peripheral colli-
sions that have been more intensively studied till now.

The thesis is divided in five chapter:

In the first chapter we will present the general features and the peculiar-
ity of Quantum CromoDynamics. Moreover the theoretical approaches
that allow its study will be discussed. In addiction, an overview of our
results about the conseguence of the QCD transition in the first stage of
Early Universe it will be also presented. Finally at the end of the chapter
the phase diagram of the nuclear matter will be described.

In chapter 2, we will give a primer of the ultra-relativistic heavy ion colli-
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sions and the main probes and observables of the formation of the Quark
Gluon Plasma. A particular attention will be alight on the anisotropic
collective flows and their experimental operative definitions and results.
In chapter 3, we will introduce the numerical simulation code developed
in this work based on an effective kinetic transport theory approach that
permits to study a system evolving dynamically. In particular it will be
discussed the solution of the relativistic Boltzmann equation. Finally at
the end of this chapter will be described the implementation of a kinetic
theory in which it is possible to fix the value fo the shear viscosity n/s.
In chapter 4, the potentiality of studying the initial collision geometry
fluctuations and the final particle momentum anisotropies with a trans-
port approach that change event by event will be analized. Moreover, we
will show our test of convergency for v, with the lattice spacing grid and
total number of test particles.

Finally, in chapter 5, the results obtained perfoming simulations of the
heavy ion collisions at RHIC and LHC will be shown and commented. In
particular we will describe the effect of a temperature dependent shear
viscosity to entropy density ratio in the evolution of anisotropic flow
vn. Moreover, we will investigate within our event-by-event transport
approach the correlation between the initial spatial anisotropies ¢, and

flow coefficients v,,.




CHAPTER 1

QUANTUM CHROMO DYNAMICS
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1.3 Perturbative QCD . . .. ... ... ...... 19
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bative QCD . . . . .. .. ... . . . 000 22
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1.4.2 Lattice QCD . . . ... ... ... .. ..., 24
1.5 Quark Gluon Plasma ... ........... 29

1.5.1 Energy density fluctuations in Early Universe 32
1.6 Phase diagram ofthe QCD . ..... .. .. 38

In this chapter the main features of the Quark Gluon Plasma created
in ultra-relativistic heavy ion collisions will be discussed with the purpose
of contextualizing the work presented in this thesis. In the first part of

the chapter a primer of the theory that describes the strong interaction



will be treated along with the theoretical approach that permit to deal
with its non-perturbative aspects: lattice QCD (1QCD). The information
collected from 1QCD will be summarized showing the phase diagram of
the strong interacting matter, which will lead to the second chapter in
which it will be described the ultra-relativistic heavy ion collisions as the

unique tool to probe such a phase diagram at high temperature.




1.1 Introduction to QCD

1.1 Introduction to QCD

The modern physics aim is to describe the elementary building blocks
of matter and the forces that rule on them. As we know, at the present
moment the Standard Model is the most comprehensive physical theory
ever developed, that has been experimentally tested with high accuracy
[1]. In the Standard Model, gauge bosons are defined as force carriers
that mediate the strong, weak, and electromagnetic fundamental interac-
tions. The different type of gauge bosons, all with spin 1, are the photons
7 that mediate the electromagnetic force, W4, W, Z° that mediate weak
interactions and gluons g that are the carriers of strong interaction be-
tween color charged particles.

The Standard Model includes 12 elementary particles of spin %, known as
fermions. Each fermion has a corresponding antiparticle. The fermions
of the Standard Model are classified according to how they interact (or
equivalently, by what charges they carry).

There are six quarks (up, down, charm, strange, top, bottom), and six
leptons (electron, electron neutrino, muon, muon neutrino, tau, tau neu-
trino). These particles are considered as point particles. All the other
particles that have been discovered over the years, the hadrons, are
composite particles consisting of three or two quarks, respectively. The
quarks are fermions having not only the flavour degrees of freedom (up,
down, strange, charm, bottom, top), but also color degrees of freedom
(red, blue and green).

An isolated color has never been observed experimentally, which indicates
that quarks are always bound together to form color-white composite ob-
jects. Baryons (proton, neutron, A, 3,...) comprise three valence quarks,
and mesons (7, p, K, J/W, ...) comprise a quark-antiquark pair. They
are the simplest color-white constructions of hadrons, but possible multi-
quark systems (like tetraquarks, pentaquarks and esaquarks) may exist

and have been subject of increasing interest especially in the last decade.
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1.1 Introduction to QCD

The concept of color, as well as the quantum dynamics of color, was
first proposed by Nambu [2] and this theory is now called ”Quantum
Chromodynamics” (QCD). This is a generalization of Quantum Electro-
dynamics (QED), which is a quantum theory of charged particles and the
electromagnetic field. QCD (respectively QED) has gluons (the photon)
as spin-1 gauge bosons that mediate the force between quarks (charged
particles). Although QCD and QED look similar, there is a crucial dif-
ference: whereas the photon is electrically neutral and therefore transfers
no charge, the gluons are not neutral in color. The fact that gluons them-
selves carry color is related to the fundamental concept of non-Abelian
or Yang-Mills gauge theory [3]. The term "non Abelian” or "non com-
mutative” is realized in the color SU(3) algebra in QCD but not in the
U(1) algebra in QED, being the last an Abelian group.

QCD provides us with two important characteristics of quark-gluon dy-
namics. At high energies the interaction becomes small and quarks and
gluons interact weakly which is called ”asymptotic freedom” [4, 5], while
at low energy the interaction becomes strong and leads to the confine-
ment of color. The asymptotic freedom, which is a unique aspect of non-
Abelian gauge theory, is related to the anti-screening of color charge.
Because the gauge fields themselves have color, a bare color charge cen-
tered at the origin is diluited away in space by the gluons. Therefore, as
one tries to find the bare charge by going through the cloud of gluons,
one finds a smaller and smaller portion of the charge. This is in sharp
contrast to the case of QED, where the screening of a bare charge takes
place due to the cloud of, for example, electron-positron pairs surround-
ing the charge. As the typical length scale decreases, or the energy scale
increases, the coupling strength decreases in QCD. This is why we can
expect a QGP phase at high temperature, for which the typical thermal
energies of the quark and gluons are large while the interactions become

weak.
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1.2 Classical QCD action

The interaction in QCD becomes stronger at long distances or at low
energies. This is a signature of the confinement of color. Indeed, the
phenomenological potential between a quark and an anti-quark at large
separation increase linearly. Consequently, even if we try to separate the
quark and the anti-quark beyond some critical distance the potential en-
ergy becomes large enough such that a new quark-antiquark pair pops
up from the vacuum. Then, the original quark-antiquark pair becomes
two pairs. In this way, quarks are always confined inside hadrons and
can never be isolated in QCD.

Because the QCD coupling strength, ag, becomes large at long distances,
which means low energies, we encounter a technical difficulty: Agep de-
fines a typical energy scale of the strong interaction and the coupling
ag perturbatively is oc In™* (%) and therefore the scale is about 250
GeV that correspond to a distance scale r &~ 0.8 fm which tell us that the
physics of the scale of a proton size is infinitely non-perturbative, so that
we can adopt a perturbative method only for £/ > 10Agcp =~ 2 — 3GeV.
Wilsons lattice gauge theory may be used to circumvent this problem
[6]. It treats fourdimensional space-time not as a continuum, but as a
lattice, just as in crystals, in which quarks occupy lattice points while
the gauge field occupies lattice links. By this lattice discretization, one
may solve QCD utilizing Monte Carlo numerical simulations. Results
confirm that the potential energy is indeed proportional to the length
of the string as well as that nuclear matter undergoes a transition at

temperature T' ~ 200MeV .

1.2 Classical QCD action

In order to better discuss how the different interactions between parti-
cle physics are treated in the standard model is useful to treat the theory
that describes the electromagnetic interaction between particles, i.e the

Quantum ElectroDynamics (QED) [7]. In fact it represent the prototype

11



1.2 Classical QCD action

of the modern description of the interaction.
One considers a simple physical system described by a free Dirac field W,

with the Lagrangian:
L =V(z)(iy"d, —m)¥(x) (1.1)

where x are the space-time coordinates. Starting from this Lagrangian
and making use of the Eulero-Lagrange equations one obtains the Dirac

equation, which describes the dynamic of this simple system:
(iv"0, — m)W¥(x) = 0. (1.2)

The Lagrangian 1.1 is invariant under global U(1) transformations, i.e.
U — 90, but, if such transformation is promoted from global to local,
U — Q@ the lagrangian is no more invariant. This means that a
system of non interacting particles does not satisfy the U(1) gauge trans-
formation. On the other hand we know that such a symmetry is owned by
the electromagnetic interaction and already present in the Maxwell equa-
tions. In fact it is possible to show that if one modifies the Lagrangian 1.1
introducing the minimal interaction required to make it invariant under
the local transformation, automatically arises the electromagnetic force
between particles. One obtains, in this way, the correct equation of mo-
tion for charged particles interacting with an electromagnetic field.

This approach to derive the interaction is called gauge principle. In
practice the interaction is introduced with one gauge vector boson field
A, (z), which interacts with the fermionic field and transforms in such
way to make the Lagrangian invariant under the U(1) gauge transfor-
mation. Usually the way to build this gauge invariant Lagrangian is to

replace the derivative 0, by the so-called covariant derivative D,
D,V = (0, —ieQA,)¥ (1.3)

which, under the local U(1) transformations, transforms as for the non-
interacting field
DU — @D (1.4)

12



1.2 Classical QCD action

therefore preserving gauge invariance also when the interaction is in-
cluded.

The last step is to include the propagation of the photon field A, (z)
adding the kinetic term 1/4F,, F*”, which is known to be also gauge
invariant already from the classical covariant Maxwell equations, where
F, =0,A,—0,A,.

At this point we can write the Lagrangian of QED as

Lown = ¥(@)(ir* Dy = m)W(&) = {Fu@F().  (L5)

This procedure that bring us to the Lorp can be generalized and sum-
marized in this way: once the properties of the symmetries of a kind
of interaction are known it is possible to build the Lagrangian of a sys-
tem, whose particle interact through such interaction, starting from the
Lagrangian of a free system and exploiting the symmetries of the interac-
tion. In such way automatically arise the gauge fields, which act as force
carriers, and whose number is the same of the number of the generator
of the symmetric group relative to the interactions under consideration.
Therefore the characteristic of the interactions are strongly related to its
symmetries.

With this idea, the way to proceed in order to derive the Lagrangian
for a system of particles interacting via strong interaction is the same
followed in QED. The difference is due to the fact that strong interaction
has different symmetries with respect to the electromagnetic interaction.
In particular, while for the QED there is only one charge (and an an-
ticharge), in the case of quarks starting from the Gell-Mann model one
look for an interaction with three charges (and anticharges). Therefore,
the symmetry owned by the strong interaction generates a non abelian
group SU(3)¢, where C refers to colors and 3 refers to the three possible
color states of the quarks, which are assumed to be in the fundamental

representation.
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1.2 Classical QCD action

Applying the gauge principle we can obtain the Lagrangian of QCD:

. A\NQ 1 le% v
Locp = ¢ (z) ("D, — m)ijﬂq]@(ﬂf) - ZFW(x)Fff (), (1.6)

where ¢*(z) denotes the quark field of color i=1,2,3 and flavor a=1,2,3..6;
while 7 is the mass matrix that is color independent and diagonal in the
flavor space m = diags(m,, mq, ....,m;). The covariant derivative D, is

in this case defined as
) Ao o
(Dy)ag = 000, — igs > A (1.7)
afB

where A7 is the gluon field with a=1,...,N2-1=8, g is the bare coupling
constant (equivalent to the electron charge e in the e.m.) and A, denotes
the generators of the gauge SU(3)¢ group, whose main representation is

given by the Gell-Mann matrices. The gluon field strength is:
Fo(z) =0,A7(z) — 0, A5 () + gsfaﬂVAﬂgAw (1.8)

and contains a bilinear term in the gluon fields A,3A4,,, due to the non-

vy
abelian character of the SU(3) group. The term f*#7 is a totally antisym-
metric tensor and its elements are the structure constants of the group.
Like in the QED the interaction among quarks and gluons are contained
in the term giv*D,q. The key difference with QED is the fact that, due
to the bilinear term in the gluon fields, the kinetic terms F7, F4* contains

a three and a four gluon terms that are responsible for the self interaction

between gluons. This self-interaction has important implications:

1.2.1 Asymptotic freedom

One of the most important feature of QCD is the asymptotic freedom.
It has been demonstrated in the 70s that asymptotic freedom is a specific
features possible for non-Abelian gauge theories [8, 9].

This phenomenon can be investigated analyzing the renormalization of

14



1.2 Classical QCD action

a quantum field theory. In field theories, the quantum correction calcu-
lated with the perturbation theory have ultraviolet divergences which are
originated from the states with high momenta. In the case of QCD and
QED, that are renormalizable field theories, these divergences can always
be absorbed in renormalized parameters. The energy scale at which the
divergences are renormalized is named "renormalization point”, and this
is a function of the momentum tranfer (). The physical observables do
not depend on the renormalization point but the coupling a = ¢*/4w
depends on it and therefore o depends on the momentum transfer. It
is possible to show that, for Ny < 16, a is a decreasing function of the
renormalization point and therefore, in the case of QCD, with Ny = 6,
a is a decreasing function of the momentum transfer, as indicated in the

formula at the leading order [4, 5]:

4
(11— §Ny) In (Q*/A%cp)

where Agop < 220 — 260MeV is an intrinsic energy scale for the strong

O‘S(Qz) =

(1.9)

interactions. The momentum transfer dependence of the strong coupling
is also shown in Fig. 1.1 along with extrapolation from several experi-
mental data.

Qualitatively, asymptotic freedom can be described in terms of vacuum
polarization. This phenomenon is present also in QED and is due to the
fact that electric charges emits and absorbs continuatively photon that
can temporarily transforms in couple e~ — e™. This mechanism has the
effect to screen the original charge with a consequent decreasing of the
electric coupling at large distance (low momentum transfer). In QCD
is present the same mechanism but, due to the non abelianan nature of
QCD, the emitted gluons can generate both quark-antiquark and gluon-
gluon pairs. So there are both screening and anti-screening effect and
the anti-screening effect, caused by the coloured gluon clouds, prevails

causing at low distance (high momentum transfer) a decreasing of the

15



1.2 Classical QCD action
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Figure 1.1: Running coupling as a function of the transfer momenta. The graphic
have been obtained performing measure at various energy scales.

coupling.

The asymptotic freedom of the strong interaction permits to study per-
turbatively the strong interaction for high momenta transfer, while for
energy comparable with Agecp = 200MeV the coupling becames very

large and the perturbative treatment is completely inadequate.

1.2.2 Confinement

An important non-perturbative feature of the QCD is the colour con-
finement. The hypothesis of confinement says that hadrons can only
exist in states with zero colour charge and quarks can only exist confined
within hadrons. This hypothesis is supported by experimental results, in
fact free quarks or gluons have never been observed in experiments, but
until now there is no an analytical description of confinement.

Qualitatively, in the limit of massive quarks (m, > Agcp), it can be

16



1.2 Classical QCD action

described by a potential between a quark and an antiquark, as:
1
Viry=—a--—+b-r (1.10)
r

where a and b are real constants.

The first term is Coulomb-like while the second term, named ”string
potential”, increases with the distance and is responsible for confinement.
Beyond some critical distance the potential energy between the couple of
quarks becomes so large that a new quark-antiquark pair pops up from
the vacuum and the original quark-antiquark pair becomes two confined
pairs (two mesons). However also in this case quarks are always confined

inside hadrons.

1.2.3 Symmetries on QCD

In this paragraph will be discussed two global symmetries of QCD

that are the chiral symmetry and the dilatational symmetry.

e Chiral Symmetry: We first introduce the right- and left-handed
qrr = 1/2(1 £ v5)q quark fields. They are eigenstates of the chi-
rality operator 5 with eigenvalues 41, in the case of free quarks
with zero masses the chirality is equivalent to the helicity o - p.
This chiral symmetry leave the QCD Lagrangian density invariant
under the global SU(N¢)r x SU(Ny)g transformations that are
given by:

SU(Np)r : qr = €% % g (1.11)

SU(Ng)L: qr — e % qp '
where 7, are the generator of the SU(Ny) group. This symmetry
is equivalent to the symmetry that leave the Lagrangian invariant
under global vector and axial vector transformations, SU(Ny)y &
SU(Nf)a = SU(Ns)r ® SU(Ny)p.

In the so called chiral limit (m—0) this symmetry is exact but, from
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1.2 Classical QCD action

the analysis of hadrons spectra, there are no evidence of chiral sym-
metry and therefore one should conclude that chiral symmetry is
not realized in the ground state (vacuum) of QCD.

However this is not in contradiction with the QCD classical la-
grangian that would predict a nearly exact chiral symmetry. In
fact even if the lagrangian has a symmetry it can happen that it
is not realized in the ground state, in other words it is sponta-
neously broken (more precisely is the SU(Ny)y symmetry that is
spontaneously broken). The mechanism responsible for such spon-
taneous symmetry broken is of nonperturbative origin and it is
related to the existence of a quark condensate different from zero
(qq) = —(240MeV)? [10]. An important consequence of the spon-
taneous breaking of exact continuous global symmetries is the exis-
tence of a massless mode, the so called ”Goldstone boson”, which,
in the case of chiral symmetry, can be identified with pions. If
chiral symmetry was a perfect symmetry of QCD the pions should
be massless. However chiral symmetry for QCD is not exact since
quarks have small, but non zero masses. Hence we expect that pi-
ons have a finite mass that has to be, however, small compared to
the masses of all other hadrons, in fact the mass of pions is about
140 MeV, quite smaller than the proton mass, for example, that is

940 MeV.

Dilatational Symmetry: Another feature of the Lagrangian of
QCD in the case my = 0 is the invariance under the following scale

transformation:

Ty, — e_lxu;
q(z) — €%q(e 'z); (1.12)
a a(,—1
Al(z) = eAj (e ).
This symmetry of the QCD Lagrangian is called dilatational sym-
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1.3 Perturbative QCD

metry and the current associated to such symmetry is
(T) = € = 3P = (a,/12m) (F* F,) + m (Y1) (1.13)

that is the trace of the energy momentum tensor 7. The increasing
of the strong coupling breaks the dilatational symmetry, leading to
a trace different from zero for the energy momentum tensor (trace

anomaly).

1.3 Perturbative QCD

As already mentioned the most important consequence of asymptotic
freedom is the possibility to use the method of perturbation theory to
describe various QCD processes that happen at short distances (large
momentum transfer). A rigourous description of perturbation theory
could be done in the framework of path integral formulation [11]. In
such paragrah we want anyway describe the main features of perturbation
theory applied to QCD.

In perturbation theory interaction can be seen as a perturbation of the
free theory. Obviously this way to proceed works as better as small
the coupling ag is, that is at increasing energy. In order to discuss
about perturbation theory applied to quantum chromodynamics is useful
to rewrite the QCD Lagrangian separing the part responsible for the

interaction L;,; from the free Lagrangian Ly [11]:

r— £0+9A§\¢7)\ta¢_gfabC(akAc;\)AkbA)\c_EQZ(feabAZAI;\)(fechkcA)\d)‘
(1.14)

In Ly are englobed the free propagation term for the quark fields and for

the gluon fields; while the second term indicates the interaction between

quark and gluons, similar to lepton-photon interaction in QED, and the

other two terms indicate the self-interaction between gluons.

In order to describe scattering between QCD particles (quarks and glu-

ons), one have to deal with a basic quantity of all collision processes:
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1.3 Perturbative QCD

the scattering matrix S which relates the fields before the interaction ¢;,
with those after the interaction ¢,,;. The S-Matrix encodes all informa-
tion about the scattering process, thus is strongly related to L;,;, more
precisely it is possible to show that the transition probability is related

to L;n: through the relation:

Telfd4x£1nt

(dout

8| 6in) = (o

Oin) (1.15)

where T is the ordered-time operator.

If the coupling costant g is small enough this expression can be expandend
in power series of g and this series can be turn out in a very simple struc-
ture using the Feynman diagrams and the Feynman rules. Before describe
how to calculate the cross section from the S-matrix is useful to make
some consideration regarding the scattering matrix. It is defined in such
a way that no interaction correspond to the unit matrix. Therefore it
can be write as a sum of a unit matrix plus the interaction part encoded

now in the T-matrix defined as following S = I 4 ¢I". Moreover the ma-

trix elements of <¢0ut S ‘ qu> contains a kinematical term reflecting the
energy and momentum conservation (27)**(p; — p;) and is not directly
linked to the specific dynamics of the interaction. It is useful to introduce
a quantity, linked to the S-matrix, that is free from such a term. This

quantity is the invariant matrix element M defined as:

(G0

S‘ ¢zn> = <¢out

I +1T] 6in ) = (Goutlin) + (27)5% (7 = ) Mo

(1.16)
From the invariant matrix elements it is possible to calculate the tran-
sition probability per unit time and per unit volume that is equal to
(2m)*6*(py — pi)| Moi|*. Multiplying this last quantity for the number of
final states and dividing from the initial flux one obtain the cross sections

of the process that in case of a two body process can be written as:

do 1 1 9
— = 1.17
dt  64ms |ﬁlcm|2|M| ( )
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1.3 Perturbative QCD

where pi,, is the momenta of one of the incoming particles and s,t are
the Mandelstmann variables.

The results of perturbative QCD (pQCD) are in good agreement with
experimental data for collisions at energies /s > 1TeV and for high
momenta particles pr > 10 GeV. Unfortunately, due to the colour con-
finement, in experiments the initial and final state observed are hadrons.
This implies that in order to have a description of the collision it is neces-
sary to consider both the hard scattering between partons of the different
colliding hadrons, that can be treated perturbatively, and also the dy-
namics of hadronization involving a long range interaction and therefore
cannot be treated pertubatively.

This issue is solved by the factorization theory, that consists to factorize
the cross section in two parts: the short distance part which can be calcu-
lated in the framework of pQCD, and the long range part that involves
hadronic wave functions and/or fragmentation function and cannot be
calculate within pQCD [12, 13]. These last non-perturbative quantities
have however important scaling properties that allows to determine their
evolution with energy and momentum transfer. The first of this property
permits to calculate the matrix element for any momentum transfer scale
Q?, once they are known for a particular Q32, towards the Doskshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [14-16]. The second
property is their universality i.e. they are at least in certain mathemati-
cal region independent from the specific process. This means that if they
are measured in one process (usually ete™ collisions) can be applied to
another process. The perturbative QCD parton model is based on this

factorization picture of hard process.
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1.4 Phenomenological approach to non perturbative QCD

1.4 Phenomenological approach to non per-
turbative QCD

The perturbative QCD permits to give a good description of all phe-
nomena whose energy scale is large compared to the energy scale of the
strong interaction Agep ~ 250MeV (Agep ~ 0.8fm). Unfortunately
there are many interesting process of QCD matter that involve low en-
ergy and therefore cannot be treaded perturbatively, it is sufficent to
think for example at the confinement or at the process of phase transition
of QCD matter. In order to study these non-perturbative process various
model have been proposed, such as the bag model and the Nambu-Jona-
Lasino model (NJL) that we mention because in this thesis we present
some novel results about the propagation of sound waves in the QGP of

interest for evolution of the first stage of the Karly Universe.

1.4.1 MIT Bag model

In the Bag Model hadrons are considered as bags embedded in a non
perturbative QCD vacuum. There are various version of Bag Model,
here will be described the MIT bag model [17]. In such model quarks
are treated as particles with zero mass inside a bag of finite dimen-
sion. The confinement in the bag model is due to a balancement of
two "forces”: the bag pressure, which is directed inward and the pres-
sure arising from the kinetic energy of the quarks directs outward. The
bag pressure is a phenomenological quantity that permits to take into
account non-perturbative effects and in particulat the trivial QCD vac-
uum.

One way to estimate the bag pressure is to consider massless free quarks
in a spherical cavity of radius R [18]. In practice, one solves the Dirac
equations for a massless quark inside the cavity and, in order to consider

confinement, one impose that the scalar density of the quarks 1), where
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1.4 Phenomenological approach to non perturbative QCD

1 is the solution of Dirac equation, vanishes at the bag surface. From
this constraint emerges an equation that permits to calculate the kinetic
energy of one quark as a function of the radius of the sphere and such an

equation is satisfied for [1§]

2.04
B =— 1.1
- (118

which can be read as an effect of the indetermination principle F -t ~ h
hence massless quarks moves at the speed of light: ¢t = R.

Multiplying this kinetic energy for the number of quarks N inside the
sphere and adding the energy arising from the Bag pressure B, it is

possible to calculate the total energy E as a function of R and of B:

2.04N 4
E=""—""+ B-7R> 1.1
i + 37rR (1.19)

At this point the equilibrium radius of the system is determinated by the
equation dF/dR = 0 which allows, knowing the radius R, to calculate B.
If we consider a system of three quarks in a hadrons of radius R = 0.8 we
obtain for BY* the value of 206MeV . The different properties of hadrons
lead to different estimation for the bag pressure (B'/4), that however are
in the range 145MeV — 235MeV .

The Bag model permits to have an estimate of the transition temperature
Ty to the quark matter from the hadronic state. In fact, if the pressure of
the quark matter inside the bag exceed the bag pressure, the bag cannot
confine quarks and gluons and a new state of matter is formed. in order
to do that it is necessary to calculate the pressure of the system that in
the simplest case of massless non interacting quarks and gluons is given
by

P = 377T—2T4 (1.20)
90 '

where 37 are the total degrees of freedom. Now it is possible to calculate
T, that correspond to the temperature for which the pressure P is equal
to the bag pressure. Utilizing for BY* the value of 235MeV one obtain
T, =170MeV.
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1.4 Phenomenological approach to non perturbative QCD

1.4.2 Lattice QCD

A powerful method to study the properties of the QCD at low energies
is the lattice QCD and in this section will be briefly described the main
features of lattice QCD and will be described some results related to the

physics of phase transitions [19].

Path integral and partition function

Using the Feynman path integral formulation the transition amplitude
can be written as a sum over all possible configuration of the fields. The

vacuum to vacuum transition amplitude in such formulation is given by

(0

where S is the action coming from the Lagrangian in Eq. 1.6

e—iﬁ(tf —t;)

o> - /DAgw(x)m(x)eiS (1.21)

S = /d‘*:c,C(A;j,w,w) (1.22)

From the Eq. 1.21 it is possible to obtain an expression for the grancanon-
ical partition function of quarks, antiquarks and gluons in thermal equi-
librium at a certain temperature 7. This can be done performing a
Wick-rotation, moving from Minkowski to Euclidean space. In practice,
one replace time ¢ by imaginary time 7 (¢ — i7), and restricts the inte-
gration range over 7 in the action to the interval [0, = 1/T] [20]. In

this way one obtain:
amy,, L o b
Z = /DAND@D(QE, 7Dy (z, T)el TeEALDY) (1.23)

That is the grancanonical partition function for a QCD system at finite 7".
The integral in Eq. 1.21 and 1.23 have contributious from an uncountably
infinite number of degrees of freedom due to the continuous nature of

space-time. These infinities must be removed by regularizing the theory.
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1.4 Phenomenological approach to non perturbative QCD

Basics of lattice QCD

The regularization of the integral in Eq. 1.23 can be achieved intro-
ducing a four dimensional space-time lattice of size N2 x N, with a lattice
spacing a and performing the integration is such lattice [6]. Volume and
temperature are then related to the number of points in space and time

directions

V = (N, -a)*
(1.24)
T '=N,-a

In order to perform the discretization of the integral of Eq. 1.23 is neces-
sary to divide the action S in a part that contains a purely gluonic con-
tribution Sg and one that contains the fermion part Sg, (S = Sg + Sr).
This because the discretization of the two contribution must be done by
different procedures.
In order to discretize the gluonic part one proceeds introducing the link
variables U, (x), which are associated with the link between two neigh-
boring sites on the lattice and describe the parallel transport of the fields

A, from site x to x + fia. Such link variables are determined by the line

integral of A, along the link
U = Pt st (129

where the P-operator path-orders the field , along the integration path
and g is the strong coupling. One uses U, in place of A, on the lattice
because it is impossible to formulate a lattice version of QCD directly in
terms of A, keeping gauge invariance. The U matrices on the other hand
are elements of the SU(3) colour group and transform very simply under

a gauge transformations:
Uu(z) = G(z)U, ()G (z + p). (1.26)

In particular from the above equation seems clear that any closed loop of

these matrices is gauge invariant. The minimum closed loop in the lattice
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1.4 Phenomenological approach to non perturbative QCD

is a 1 x 1 square of lattice links, called plaquette, and in the following

equation are shown the U matrices calculated along such a plaquette
Upiag = Upu(2)Uy(z + p)U,(x + v)U, () (1.27)

Using Upq, it is possible to build a gauge invariant action for the gluonic

field, called Wilson gauge action

1
Se=8) (1- S ReT1Upiag) (1.28)

plagq

where 3 = 6/g* is the gauge coupling. This lattice gauge action repro-
duces the continuum version of the QCD action in the limit a — 0 up to
cut-off errors of the order of a®.

Regarding the discretization of the fermionic part of the action, it can
be done naively replacing the derivatives appearing in the fermion La-
grangian by finite differences, i.e. 9,9 (x) = V¥n4u(®) —Vn—pu(x)/2a. How-
ever if one performs this kind of discretization a specier doubling problem
appears when one goes to the continuum limit. This is due to the fact
that the lattice version of the massless fermion propagator have poles not
only at zero momentum, but also at all corners of the Brillouin zone and
hence generate 16 rather than a single fermion species. This problem
can be solved either using the Wilson fermion formulation [6] or using
the staggered fermions formulation, which consists in distributing the
fermion Dirac spinors over several lattice sites [19, 21]. The staggered
fermion formulation does not eliminate the species doubling problem but
reduces from 16 to 4 the fermion species, however it has the advantage
to preserve a continuous subgroup of the original global chiral symmetry
22].

With this new formulation of the actions is possible to write the QCD

partition function on a lattice

Z(Ny, Ny, B,myg, i) = / [ dUns(det @ (my, )™ /*e 55 (1.29)
nn
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where Q%% is the staggered fermion matrix [19].
The integrand of Eq. 1.29 can be calculated with standard numerical
techniques if 7 = 0. In fact in such a case the fermion determinant of
Eq. 1.29is real and positive. A problem emerges instead in the case i # 0
due to the fact that in this case the fermion determinant is complex. The
imaginary part of this determinant however is zero, hence does not give
any problem, but the real part it is not strictly positive and constitutes
a serious problem in the application of numerical technique to solve the
integral. This sign problem constitutes the main problem if one want to
apply lattice QCD for i different from zero as it would desireable to know
if the transition has a critical point and to know the thermodynamics of
compact stars.
From the partition function it is possible to calculate all thermodynamic
observables, neverthless before it is necessary to set the lattice in such a
way to reduce the discretization errors and one has to be sure that the
lattice discretizate action reproduces the continuum limit. Moreover it is
necessary to determine the temperature scale because the lattice observ-
ables are dimensionless and are calculated in appropriate units of lattice
space a. In order to determine the temperature scale one has to perform
calculations for an observables for which is known the physical value in
MeV. Observables usually used for this purpose are the hadron masses,
my, and in the following expression it is shown how the temperature is
determined from it
T 1
= (1.30)

myg  mgalN,;

Result from Lattice QCD

Lattice QCD is a powerful method to study the phase transition of
the QCD matter through the calculation of some observables that are
sensitive to the phase transition. In fact such a phase transition is ex-

pected to occur at 7'~ 150 — 200MeV < Agep therefore dwelling in the
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non perturbative regime. A useful order parameter of the QCD matter

is the Polyakov loop defined as:
Vi(r)

L(T) ~ lim e~ 7

r—00

(1.31)

where V(r) represents the potential between a static quark-antiquark
pair separated by a distance r. This potential in the pure gauge case, i.e.
without light quarks, is proportional to or, where o is the string tension.
Therefore in the limit » — oo the potential V(r) tends to infinity and
the Polyakov loop vanishes in a confined phase.

In a deconfined medium the color screening among gluons melts the string
tension making V' (r) finite also at large distance r and consequently L is
different from zero. The Polyakov loop hence can be viewed as an order
parameter. The temperature 7T, of the transition from the confined to
the deconfined phase corresponds to the temperature at which L becomes
different from zero. The behavior of the Polyakov loop for the different

phase is summarized here

(0 {: 0, < confined phase,T' < T, (1.32)

>0, < deconfined phase, T > T,

For the case of finite quark masses also in the confined phase V (r) has
a superior limit due to the finite masses. In fact, in this case, when the
string potential becomes equal to the mass M}, of the smallest hadron it
becomes more favorable to produce an additional quark-antiquark pair
that allow for a new hadron creation and consequently the potential
stops to increase even in the vacuum, i.e. even without color screening
dynamics. Hence L does not vanishes but is however exponentially small
as indicated in the following equation

My,

L(T)~e T (1.33)

In the deconfined phase L is larger than in the confined phase and hence

also for finite quark masses it remains a good order parameter even if a
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real first order phase transition is not observed. Indeed from the study
of susrbilities it has been found that the QGP transition is a cross-over.
Another step in the understanding of the confinement to deconfinement
phase transition can be made analyzing the behavior of energy density
and pressure as a function of temperature. As we have said above, from
the partition function Z can be determined all thermodynamic variables

and in particular & and P can be calculated as
T2\ (0lnZ
e = | —
V or ),
OlnZ
P=T
(57),

An enhancement near the critical temperature T in the energy density

(1.34)

indicates an increase of the effective number of degrees of freedom, signal
of a transition from hadronic matter to a deconfined system of quarks
and gluons.

The results of lattice calculation obtained by the Wuppertal-Budapest
Collaboration for the Equation of State (EoS) with N,=6,8 or 10 lattices
are shown in Fig. 1.2 [23].

One can observe that near the critical value Ty the energy density
shows a rapid increase. Such an enhancement indicates an increase of
the effective number of degrees of freedom, signal of a transition from
hadronic matter to a deconfined system of quarks and gluons. Moreover,
it is important to note that the energy density in the deconfined phase
is about 15 — 20% below the Stefan-Boltzmann limit and thus there is a

strong interaction among quark and gluons.

1.5 Quark Gluon Plasma

Asymptotic freedom suggests that under particularly condition of
temperature or density the interaction which confine quarks and glu-

ons inside hadrons becomes smaller enough to release them. Thus a new
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Figure 1.2: EoS of the Wuppertal-Budapest Collaboration [23]. The energy density
is normalized by T* and is reported as a function of the temperature on
N-= 6, 8 and 10 lattices. The Stefan-Boltzmann limit is indicated by an
arrow.

state of the matter can exist in which the color charges are deconfined in
a Quark Gluon Plasma (QGP). There are two methods for the creation
of the Quark Gluon Plasma:

e QGP at high T: One assume that the QCD vacuum is heated in
a box. At low temperature, hadrons, such as pions, kaons, etc., are
thermally excited from the vacuum. Note that only the color-white
particles can be excited by the confinement at low energies. Because
the hadrons are all roughly the same size (about 1 fm), they start to
overlap with each other at a certain critical temperature, 7. Above
this temperature, the hadronic system dissolves into a system of
quarks and gluons (QGP). Note that in the QGP thus produced the
number of quarks, n, , is equal to that of antiquarks, n;. Although
this critical temperature is extremely high in comparison with (for
example) the temperature at the center of the Sun, 1.5 x 107K =
1.3keV | it is a typical energy scale of hadronic interactions and can

be obtained in laboratories.
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e QGP at high pg: Suppose to put a large number of baryons into
a cylinder with a piston and compress the system adiabatically,
keeping 1" ~ (0. The baryons start to overlap at a certain critical
baryon density, pc, and dissolve into a system of degenerate quark
matter. The quark matter thus produced is of high baryon density

with ng > ng.

Based on the two recipes for high 7" and high p, we should expect to find
QGPs in three places: (1) in the early Universe (T"), (2) at the center of
compact stars (p) and (3) in the initial stage of colliding heavy nuclei at

sufficiently high energies (T, p):

1. In the early Universe: according to Friedmann’s solution of Ein-
stein’s gravitational equation, the Universe experienced an expan-
sion from a singularity at time zero [24]. This scenario has been
confirmed by the formulation of Hubble’s law for the red shift of
distant galaxies [25]. Hubble’s law states that all objects observed
in deep space (intergalactic space) are found to have a Doppler shift
observable relative velocity to Earth, and to each other; and that
this Doppler-shift measured velocity, of various galaxies receding
from the Earth, is proportional to their distance from the Farth

and more generally to all other interstellar bodies:
v=Hyxl (1.35)

where Hy = 65 — 79kms~tMpc~! is the Hubble constant.

After the initial singularity, the temperature decreases inversely
proportional to the scale parameter a so that the Early Universe
passes through the electroweak phase transition at ¢ ~10~sec
(corresponding to T~ 100GeV') and the QCD phase transition at
t =10 5sec (T =~ 150MeV), then passing through the Big Bang
Nucleosynthesis (BBN) at t = 1sec —3min (T' = 0.1 — 1 MeV).
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This BBN plays a crucial role in constraining our views of the Uni-
verse: it is essentially the only probe for the radiation dominated
epoch during the range ~1-10%*sec. Moreover, the aforementioned
phase transitions could strongly affect the BBN, especially if they

are first order phase transitions [8].

1.5.1 Energy density fluctuations in Early Uni-
verse

From this point of view, the role of the QCD phase transition on
the evolution of the young universe is interesting because at that
time a big change in the number of the degrees of freedom took
place. The role of this primordial transition is still matter of de-
bate. For example, in [26] it was realized that an inhomogeneous
distribution of baryons due to a first-order QCD transition might
change the primordial abundances of the light elements [27].

One expects that the use of this EoS in the Friedmann equation
allows us to determine the precise time evolution of the thermo-
dynamic parameters in the early Universe. In this context, we
studied the impact of the EoS on the primordial QCD transition
using: Bag Model as well as the most recent and realistc one coming
from 1QCD. Moreover, during the QCD transition strong magnetic
fields might have been present [28, 29]. In order to take into ac-
count this possibility we present our results for the energy density
fluctuations in presence of a strong magnetic background, using
an effective model to compute the relevant equation of state [30].
Here we consider an admittedly large value of the magnetic field,
B ~ 10'® Tesla; this value of B is chosen to estimate the maximum
effect a magnetic field can have on the evolution of the energy den-
sity fluctuations in the early universe. The use of an effective model

to describe the QCD plasma in presence of a magnetic background
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might appear opinable, since such model fails to reproduce the de-
pendence of the chiral critical temperature on the magnetic field
strength [31] (see however [32] and also the discussions in [33]).
However our main point is to discuss the effect of the strengthen-
ing of the phase transition with the strength of E, a characteris-
tic which is observed both in lattice simulations and in the model
calculation, which is not related to the dependence of the critical
temperature on B.

In the energy range considered in the early universe phase transi-
tion, it is possible to describe the plasma as a quark-gluon plasma
plus electroweak matter in thermal equilibrium. The energy den-
sity (as well as other thermodynamical quantities) are then written
as

€ = Eew + Eqgps (1.36)

where €., €4gp correspond to the energy densities of the electroweak
and QCD plasmas respectively. The electroweak sector will be con-
sidered as a perfect gas of massless particles in thermal equilibrium
at the temperature 7T, hence

2 2

m m
Cew = gew%TAla pew = gew%T4 s (137)

with ge,, =14.45 [8].
To determine the temperature evolution we solve the Friedmann
equation that, assuming that the expansion of the Universe is isen-

tropic, takes the form

@ _ 5 r(le
dt 3

(e+P) (1.38)

The numerical solutions for the three different EoS are reported in
Fig. 1.3 that clearly shows how changing the equation of state af-
fects the behaviour of temperature vs time. The Bag Model (green

line) presents a plateau during the transition corresponding to the

33



1.5 Quark Gluon Plasma

0.50
— Realistic EoS
— Magnetic Model
0.30
>
()
e
e 0.20
0.15
0 10 20 30 40 50

t (us)

Figure 1.3: Temperature behavior obtained by solving the Friedmann equation for the
three different approach presented in the text: the red line refers to the
realistic lattice calculation, the blue line represents the same realistic case
but with the inclusion of the magnetic field while the green line reports
the simple Bag Model.

critical temperature of about 170 MeV, at which the phase transi-
tion is of first order. On the other hand because the QCD phase
transition is actually a crossover, the use of the lattice EoS (red
line) results in a smooth change of the temperature as a function of
time. The magnetic field does not change the nature of the phase
transition (blue line) but only leads to a delay of the cooling. We
stress that the difference between the three cases are strictly con-
fined to the time interval in which the transition takes place, while
at later times the temperatures for the three different cases are very
similar.

Finally we want to study the role of the primordial QCD transition
on the energy density fluctuations in the early universe. We note
that if the QCD phase transition was of the first order then the
speed of sound would vanish at the critical temperature, implying
large oscillations of the energy density fluctuation. For the realistic
case of the crossover we do expect the fluctuations to be damped

because the speed of sound never reaches zero but simply decreases
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to a finite value in the crossover temperature range; nevertheless it
is interesting to analyse how these fluctuations develop in presence
of the crossover transition [34]. In order to accomplish this goal we

solve the following system of equations [35]:

1
ﬁé’ +3(c2 —w)d = %1# —3(1 +w)a, (1.39)
L ok k
ﬁt/) + (1 = 3wy = —csﬁé —(1+ w)ﬁa, (1.40)
1, k
ﬁéew = ﬁ¢ew — 4&, (141)

Ty ks
H e 3H Y 3H

[(%)2 + 2(1 + wr)

where the prime denotes the derivative with respect to the confor-

a, (1.42)

3
a= —5(1 + 3¢2R)0r, (1.43)

mal time 7.

In the above equations the most important quantity for our in-
vestivation is the function 6 = de/e, where de corresponds to the
energy density fluctuation and € to the background energy den-
sity. Among the other variables involved in the dynamics, ¥ is
related to the fluid velocities and a to the fluctuation of the tem-
poral part of the metric tensor. The function w is an input and
corresponds to the ratio background pressure over background en-
ergy density, which we compute case by case according to the input
EoS’s presented before. In the system of Eqgs. (1.39)-(1.43) the first
two equations describe the dynamics of the QCD plasma and fol-
low from the energy-momentum conservation; the second couple
of equations refers to the electro-weak sector and follows from the
Euler equation of general relativity; finally the the last one follows
from the Einstein RJ-equation and couples the QCD plasma to the

electroweak one. For more details we refer to [34, 36].
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1.5 Quark Gluon Plasma

1.5

—Electro-Weak Sector  —Realistic EoS — Magnetic Model
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[

Figure 1.4: Time evolution of the energy density function with respect to the electro-
weak part (green dashed line). The red line refers to the lattice QCD data
while the blue line indicates the case in which a primordial magnetic field
is included.

In Fig. 1.4 we plot the result of our numerical solution of the
system of Eqs. (1.39)-(1.43), focusing in particular on the energy
density fluctuations . The initial time is to = 1.35 ps and is cho-
sen in order to have an initial temperature of 500 MeV, while the
final time corresponds to 110 ps which is well beyond the QCD
transition. In the figure the green dashed line corresponds to the
electro-weak component, while red (blue) solid line corresponds to
the QCD EoS without (with) magnetic field. It is evident that the
presence of the QCD crossover in the EoS at B = 0 damps the
energy density fluctuations in the considered time range in both
cases, affecting also the frequency of these fluctuations. Moreover,
effect of the magnetic field is to make this damping less efficient;
this was expected because B # 0 makes the crossover a stiffer one,
thus reducing strongly the speed of sound in the crossover region
compared to the speed of sound at B = 0, and favouring the en-

ergy density fluctuations bringing the system behaviour closer to
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1.5 Quark Gluon Plasma

the one expected for a first order phase transition.

In this way, we found that the oscillations of the energy density
fluctuations are damped during the QCD crossover, this implies
that there are small chances of inhomogeneities phenomena during

the Big Bang nucleosynthesis.

. In the core of super-dense stars: there are three possible stable
branches of compact stars: white dwarfs, neutron stars and quark
stars. The white dwarfs are made entirely of electrons and nuclei,
while the major component of neutron stars is liquid neutrons, with
some protons and electrons. The first neutron star was discovered
as a radio pulsar in 1967 [37]. If the central density of the neutron
stars reaches 5 — 10p,,, there is a fair possibility that the neutrons
will melt into the cold quark matter. There is also a possibility that
the quark matter, with an almost equal number of u. d and s quarks
(the strange matter), may be a stable ground state of matter; this
is called the strange matter hypothesis. If this is true, quark stars
made entirely of strange matter become a possibility. In order to
elucidate the structure of these compact stars, we have to solve
the Oppenheimer-Volkoff equation [38], obtained from the Einstein
equation, together with the equation of states for the superdense

martter.

. In the initial stage of the Little Bang: by means of relativis-
tic nucleus-nucleus collisions with heavy ion accelerators. At such
relativistic energies the nuclei are Lorentz-contracted as pancakes.
When the center-of-mass energy per nucleon is more than about 10-
20 GeV, the colliding nuclei tend to pass through each other, and
the produced matter between the receding nuclei is high in energy
density and temperature but low in baryon density. The Relativis-

tic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
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Figure 1.5: Phase diagram of the QCD matter in the (u,T") plane.

and the Large Hadron Collider (LHC) at CERN provide us with
this situation. In particular RHIC accelerates nuclei at the energy
range 10 — 200 AGeV creating a transient state at maximum tem-
perature T, = 350 MeV and LHC at T),,, = 600 MeV which
are both values above the one at which the transition to QGP is

expected.

1.6 Phase diagram of the QCD

The above consideration bring us to sketch the phase diagram for the
QCD matter Fig.1.5. In the horizontal axis there is the baryon chemical
potential ppg, while in vertical axis there is the temperature, both quan-
tities are expressed in MeV. The cold nuclear matter, as one can find in
the inner part of a lead nucleus, has a temperature equal to zero and a
chemical potential pg equal to 940 MeV. In correspondence to ug = 0
and T=170 MeV the matter undergoes a cross over from the confined
phase of hadronic gas to a quark gluon plasma (QGP). As we have seen
this phase should have existed in the early phase of the Universe after

the Big-Bang. In the region of non zero p and low temperature 7" there is
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1.6 Phase diagram of the QCD

also a phase transition towards the QGP phase, the place in which may
exist this condition is the interior of neutron stars. The phase transition
in this region seems to be of first order. For some moderate value of
and T a critical point is expected, for which the first order transition be-
comes a crossover. The only possibility to create the Quark gluon plasma
in laboratory is to perform ultra-relativistic heavy-ion collisions that will

be discussed in the next chapter.
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QGP IN HEAVY ION COLLISIONS
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The most useful experimental approach to probe the high tempera-
ture QCD matter is the detailed analysis of heavy ion collisions (HIC). In
fact, the suggestion of using HIC to create high density states of matter
predates the full development of QCD. In heavy ion collisions at relativis-
tic energies, indeed, there is both compression of the baryonic matter in
the nuclei and also the release of a large amount of energy within a small

volume from the almost simultaneous collisions of many nucleons. One
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or the other, or both, of these consequences of the interactions have the
potential to produce new forms or phases of QCD matter. This is one
of the prime reasons why in the past few decades much effort has been
spent studying collisions of heavy ions at higher and higher energies [39].
The modern era of HIC arrived with beam energies of 10-200 GeV /nucleon
at fixed-target facilities: the Alternating Gradient Synchrotron (AGS)
at Brookhaven National Laboratory (BNL) and the Super Proton Syn-
chrotron (SPS) at European Center for Nuclear Research (CERN). Both
the AGS and the SPS accelerated protons and several types of ions onto
fixed targets of heavy nuclei [40].

In 2001 has started the activity at RHIC (Relativistic Heavy Ton Col-
lider) where it was possible to reach energies up to 200 GeV for nucleons.
The experiments at RHIC have supplied a large amount of observables
that have permitted to start a quantitative study of the Quark Gluon
Plasma properties [41 44]. In 2010 the experiments at LHC have started
with an energy of 2.7 TeV per nucleons and in 2013 it will be performed
experiments with the highest energy accessible at LHC that is 5.5 ATeV.
In this chapter the main features of the collision dynamic will be de-
scribed, as well as the evolution of the matter created in such collisions
and the observables that allow to identify if a new state of matter have

been created during the collisions.
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2.1 Collision Dynamics

2.1 Collision Dynamics

In the initial stage of this kind of collision, the incoming nuclei ap-
proaches each other with more than 99.9% of the speed of light and so
they are strongly Lorentz contracted along the beam direction. Thus
in the center of mass frame they appear as two tiny disks of thickness

2R/Yem., where R is the nuclear radius and

1 1

Yem. = -
vi-=g 1oz

EC.’n’L

(2.1)

where F..,. is the energy of one nucleus in the center of mass frame.
However, due to the uncertainty principle (Ap,Az & h), the longitudinal
size of nuclei cannot be smaller than a value Az which depends on the
energy of the collision and can be larger than the contracted geometrical
radius. This implies a geometrical delocalization of the nucleons inside
the nuclei that consequently pass through each other and leave the re-
gion of the collision. Such a transparency behaviour of ultrarelativistic
nuclei increases with the energy of the collision and allows to create in
the central region of the collision a matter that is not contaminated by
the original baryonic matter of the colliding nuclei.

As well established by the deep-inelastic lepton-hadron scattering experi-
ments, the nucleon is composed of valence quarks, gluons and sea-quarks.
Just after the collision, the nuclei are mostly composed by gluons because
the parton distributions functions inside the nucleons at high energy is
a function of z &~ pr//s. A successful picture that describes the initial
stage was proposed by Bjorken. According to this picture the production
of particles in ultra-relativistic heavy-ion collision is due to the excita-
tion of the vacuum caused by the collision of the two beams of partons,
with a consequent production of virtual quanta [45]. It takes a certain
proper time, 74 (de-excitation or de-coherence time), for these quanta to

be de-excited to real quarks and gluons. The de-excitation time would
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Figure 2.1: Heavy ion collision sequence

typically be a fraction of 1 fm. The state of matter for 0 < 7 < 74 is
said to be in the pre-equilibrium stage. Since 74 is defined in the rest
frame of each quantum, it experiences Lorentz dilation and becomes 7 =
Tqey in the center-of-mass frame of the collision, where v is the Lorentz
factor of each quantum. This implies that slow particles emerge first
near the collision point, while the fast particles emerge last, far from the
collision point. This phenomenon is called the inside-outside cascade.
The real partons produced during the de-excitation process interact with
cach other and constitute an equilibrated plasma (quark-gluon plasma)
[46).

An important role in the collision dynamics is played by the geometric
aspects of high energy heavy ion collsion that can be described using the
Glauber model that allows to estimate the initial spatial distribution in

the transverse plane that will be described in the following subsection.

2.2 Glauber model

The Glauber model is based on the geometrical configuration of the
nuclei in order to estimate the initial spatial distribution just after the
collision. It is a semiclassical model in which a nucleon of incident nu-

cleus interacts with target nucleons with a given density distribution: the
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2.2 Glauber model

Projectile B Target A

a) Side View b) Beam-line View

Figure 2.2: Representation of a collision between the nuclei A and B at a given impact
parameter: (a) trasverse view, (b) longitudinal view

nucleus-nucleus collision are treated as multiple nucleon-nucleon interac-
tion. The use of such a geometrical model is giustified by the fact that at
high energies the De Broglie wave length of the nucleons are smaller with
respect to the typical nuclear sizes. Moreover nucleons are assumed to
travel in straight lines and are not deflected after the collision and accord-
ing to eikonal approximation the multiple interaction can be considered
as independent. Also, the nucleon-nucleon inelastic cross-section, oy,
is assumed to be the same as that in the vacuum. In order to describe
the Glauber model we begin by introducing the nuclear overlap function
Typ(b) [47]:

Tag(b) = / Tu(s)T5(s —b)d>s (2.2)

where b is the impact parameter and s is the transverse coordinate; while
T4 and Ty are the nuclear tickness functions that give the probability to

find a nucleon per unit of transverse area and they are defined as:
TA/B(S) = /ﬁA/B(Sa za/p)dza/B (2.3)

being Ta /B the nuclear mass number density normalized to mass number
A or B, that in case of heavy ion is usually parametrized as a Wood

Saxon distribution:

_ Po
p= 1+ exp (T_R) ' (2.4)

a
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2.3 Evolution of the heavy ions collisions

Through the nuclear thickness function and the nuclear overlap function
it is possible to evaluate the number of binary nucleon nucleon collisions
Neouw and the number of the participant nucleons N, that are both

strongly related to the value of the impact parameter b.

Noou(b) = AB - Typ(b)o NN (2.5)

inel

Nyore(b) — A/TA(S) {1 [t Tnls - b)agg]B}d25+ (2.6)
+B/TB(S —b) {1 - [1 . TA(s)aﬁg]A}d%

The number of binary collisions and the number of participant cannot
be directly measured in experiments but they are related to the charged
particle multiplicity N., that is a measurable quantity. Exploiting the
relation between b, Np.¢ and N, it is possible to trace back to the im-
pact parameter of the collision performing a subdivision of N, in terms
of centrality classes. The relation between N, and Ny, and b is shown
in Fig 2.3.

The Glauber model can also be exploited to estimate the initial spatial
distribution of partons in the transverse plane. In fact, if one do not per-
form the integration over s in Eq. 2.2 and in Eq. 2.6 obtain respectively
the density profile in the transverse plane of the number of participant
and that of the binary collision. Whose linear combination could well
approximate the density profile in the transverse plane of the partons

created in the heavy-ion collision.

2.3 Evolution of the heavy ions collisions

In this paragraph the different stages of the evolution of relativistic

heavy-ion collisions will be described. In such collisions a hot and dense
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Figure 2.3: Cross section observed in function of N.,. On the z-axes can be seen the
relations between Nep, Npar¢ and b

matter, called fireball, will be created and subsequently cools and ex-
pands until it thermally freezes out and free-streaming hadrons reach the
detector. In principle, a non-equilibrium dynamical theory of a heavy
ion collision should be developed from the QCD lagrangian. Unfortu-
nately, due to the large range of energies and densities reached, it is
not possible to describe in a unified approach the whole evolution of a
HIC, because it involves also low energy scale where the theory is in a
non-perturbative regime. In literature two different approach have been
proposed to describe the evolution of the fireball: the hydrodynamical
and the kinetic approaches. The firs one is a macroscopic description of
the problem where local equilibrium is assumed while the second one is
a microscopical approach and it is also valid for non equilibrium stages.
The dynamical evolution of the collision can be divided in different stages

(Fig. 2.4):
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2.3 Evolution of the heavy ions collisions

_TR) _Tcll Te
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Figure 2.4: Schematic representation of the space time evolution of a ultra-relativistic
collision between heavy ions as a function of time ¢ and the longitudinal
coordinate z (the collision axis). In this Minkowski-diagram the time
variable which is used in the discussion in the text is the proper time
T = \/Zt2 — 2%), which has a Lorentz-invariant meaning and is constant
along the hyperbolic curves separating various stages in this figure.

e Pre-equilibrium stage and thermalization: The nuclei meet
each other at the point (z,¢)=(0,0). As we have said due to the
Lorentz contraction the incoming nuclei are approximately trans-
parent and thus they pass through each other. However, in the
region of the collision is generated a strong color field, which causes
an excitation of the vacuum and produces a dense pre-equilibrium
matter consisting mostly of gluons and also of quark and anti-quark.
This system takes about 1 fm/c to achieve the local thermalization
and forms the quark gluon plasma. In this very early collision stage,
the primary collisions between fast partons inside the colliding nu-
clei generate hard particles with either a large mass (m, Agep) or a
large transverse momenta pr > 1GeV (pr > T'). Their creation in-
volves large momentum transfer, therefore their production can be
calculated in perturbative QCD using factorization theorems from
the nuclear structure function.

Hydrodynamic cannot be used to describe the pre-equilibrium phase
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2.3 Evolution of the heavy ions collisions

because it involves out of equilibrium processes. Hence, to describe
the successive stages of evolution, using hydrodynamics, it is nec-
essary to know the initial condition, for the energy and spatial
density. Moreover is necessary to estimate the time 7, at which the
system reaches the equilibrium. As regard the transport theory, it
can be used also to describe the pre-equilibrium phase, once the
initial spatial density distribution of the particles is known and is
put as input. From these last considerations it seems clear that
is important to know the initial condition of the just thermalized
system. The initial energy density ¢y can be estimated knowing
the energy density released in the collision region (dEr/dy), which
is accessible if one measure the total energy of the final products
collected in the detectors. The initial energy density negletting the

work done by the pressure in the expansion is

1 dbp
TR dy

e(0) = (2.7)

and the Bjorken estimate for RHIC is between 5 and 7 GeV/fm?
[48], assuming an isoentropic expansion and neglecting the work
needed by longitudinal expansion. Taking into account the expan-
sion of the plasma, the previous estimation must be corrected to a
value ¢y ~ 10 + 15 GeV/ fm3, this energy density is much greater
than the critical energy density estimates by the lattice QCD. A
further correction would be necessary if the expansion of the system

were not iso-entropic and dissipation is taken in account.

QGP expansion: Once the system has reached a kinetic equilib-
rium it is characterized by an energy density well above the critical
energy density of the QCD phase transition (21GeV /fm3); at RHIC
for example, this energy density is about 10+-15 GeV/fm? as previ-
ously said, and at LHC the energy density is ~4-+5 ¢&#¢. Thus the

system is expected to be in the quark gluon plasma phase. Actually
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2.3 Evolution of the heavy ions collisions

due to the predominant presence of gluons with respect to quarks,
at the beginning of this phase the system is often considered as a
gluon plasma (Glasma). Driven by thermal pressure gradients the
QGP expands and cools down very quickly and the partons inside
the bulk rescatter elastically and inelastically. In particular, the
elastic collisions lead the system towards kinetic equilibrium, while
inelastic collisions cause a change in the relative abundances of the
different flavours of partons, leading the system towards chemical
equilibrium [49, 50].

This phase of the evolution of QGP can be described by relativistic
hydrodynamics or using kinetic theory. Historically the first and
most simple approach proposed was the ideal hydrodynamic. In
this approach, the equations of motion are obtained from the local

conservations law for energy-momentum and baryon number:
0,T" (x) = 0; oJp =0, (2.8)

where T* is the energy momentum tensor, that for a perfect fluid

can be written as:
T (z) = [e(x) + P(z)]u(z)u"(z) — P(z)g"” (2.9)

where u#(z) is the four flow velocity and g is the metric tensor.

In the local rest frame:

The additional equation necessary to solve the five equations 2.8 is
the Equation of State (EoS) of the system that drives its evolution,
in the form P = P(¢, p). In fact together with the EoS, the equa-
tions 2.8 form a closed system, that can be solved once the initial
condition, i.e the energy density ¢(x) and the velocity profile u*(x),

have been specified. In recent years further improvment have been
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2.3 Evolution of the heavy ions collisions

proposed including viscous effect. In this approach the expression
for the energy momentum tensor can be modified adding terms that
enable to take into account the dissipative effect present in a vis-
cous fluid. In fact it seems that the quark gluon plasma has a low
but non zero shear viscosity n/s to entropy density ratio close to
the conjectured lower boundary equal to 1 /4w, expected for system

in the infinite coupling limit.

Hadronization and hadronic phase: When the energy density
reaches the critical value €, = 1GeV /fm? partons hadronize. There
are two different mechanism of hadronization: the fragmentation
and the coalescence. In the first one each partons fragment into a
jet of hadrons which carries a fraction of the momenta of the ini-
tial partons. This is the predominant way to hadronize in proton-
proton collisions for partons with energy greater than 2 GeV.

In HIC there are several indications that the mechanism of coa-
lescence is dominant for producing hadrons up to pr ~=5-6 GeV.
It consists in the reconbination of two or three quarks that form
respectively mesons or baryons [51].

In the hadronic phase the hadrons keep rescattering to each other
until the distance between them is larger than the range of strong
interactions dr ~1 fm. Therefore at densities p < d3, all scatter-
ings stop and the hadrons decouple and free stream towards the
detector; this is called kinetic freeze-out.

In the Hydrodynamic description of the plasma the hadronization
is introduced through a freeze-out algorithm (Cooper Frye formula)
which stops the hydrodynamic evolution and translates the hydro-
dynamic output i.e energy density, baryon density and flow into
hadron spectra, making use of the statistical model which can ac-

count correctly for hadronization of the bulk i.e py <2 GeV.
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2.4 Principal observable probes for QGP

There are several suggestions at present to identify whether the mat-
ter produced in a high energy heavy ion collision is the Quark Gluon
Plasma phase. One approach is to look for primordial remnants in the
observed hadron features: discontinuities in the momentum distribution
of the secondaries reflecting a first order phase transition or strangeness
enhancement which is expected to be significantly larger if it arises from
the QGP. Another usual suggestion is to look for signals produced at
early times and are not affected by the subsequent hadronization. Possi-
ble observables of this type are thermal dileptons and thermal photons,
which are emitted by the plasma and then escape.

In the same context, one may also study the effect of the produced dense
medium on the observed production of heavy quark bound states, like
J /1 suppression or hard jets.

In the following a list of the principals observables of the QGP will be

presented:

e Global observables: The rapidity distribution of particles dN/dy
and transverse energy dEr/dy allow for the determination of tem-
perature, entropy, and energy density of the system created in a
heavy-ion collision. These observables need to be compared to
model calculations (lattice QCD calculations and so on), in order

to investigate if the system may have reached the QGP phase.

e Electromagnetic probes: During the evolution of a nuclear col-
lision are created photons and dileptons that can be used to probe
the QGP. The importance of such probes is due to the fact that
they do not interact through strong interaction and so there is a
little possibility that they interact after their creation. Therefore
these probes furnish information relative to the phase of the evo-

lution in which they are originated. Unfortunately there are many
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2.4 Principal observable probes for QGP

sources which can produces photons or dileptons, hence the analysis

of such kind of observables is quite difficult.

Strangeness enhancement: Enhancement of strangeness and an-
tibaryon production is a frequently discussed signal, it is due to the
reduction of the threshold for production of strange hadrons from
2my —2m, = 700 MeV to 2mg ~ 300 MeV and baryon-antibaryon
pairs from ~ 2 GeV to almost zero. The strongest signal is obtained
by considering strange antibaryons which combine both effects [52].
The enhanced strange quark production in deconfined quark-gluon
plasma leads to chemical equilibrium abundances for all strange
quarks. The strangeness abundance for hadronic matter in chem-
ical equilibrium is smaller. This signal was first predicted as a
consequence of the interaction between partons in the QGP [52]. It
has indeed been observed at both the SPS and the RHIC energies.

J/VU suppression: J/U particles are bound states formed by a
charm and an anticharm quark (c¢). They are produced mostly
by the hard scatterings in the first stage of the collision. When
they are created in p+p collisions, they can freely escape from the
collision region. On the other hand, the J/W¥ produced in nucleus-
nucleus collisions crosses the QGP and feels screening effects in the
medium. Although the J/W¥ meson is a tightly bound particle, in a
quark-gluon plasma environment the charm-anticharm potential is
screened, like in the analogous phenomenon called Debye screening
in QED. As a consequence, the interaction between the ¢ and ¢
quark is strongly weakened when r;. > Ap, with Ap the Debye
screening lenght. For sufficently high density, Ap is so small that
the J/W dissociates, leading to a suppression of the observed yield

compared to p+p or p+nucleus collisions [53].
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2.5 Anisotropic collective flow

One of the strongest pieces of evidence for the formation of a thermal-
ized dense state of unconventional strongly interacting matter in ultra-
relativistic nucleus-nucleus collisions stems from the strong anisotropic
collective flow measured in non-central collision events [54].

Studies of the final charged particle momentum distributions have re-
vealed strong collective effects in the form of anisotropies in the azimuthal
distribution transverse to the direction of the colliding nuclei [55], and
theory holds that their anisotropy around the beam axis in non-central
collisions is established during the earliest stages of the evolution of the
collision fireball [56]. This anisotropy has been interpreted as a result of
pressure-driven anisotropic expansion (referred to as ” flow”) of the cre-
ated matter. Flow signals the presence of multiple interactions between
the constituents of the medium created in the collision. More inter-
actions usually leads to a larger magnitude of the flow and brings the
system closer to thermalization. The magnitude of the flow is therefore

a detailed probe of the level of thermalization [57].

2.5.1 Definitions: the reaction and participant plane

Experimentally, the most direct evidence of flow comes from the ob-
servation of anisotropic flow which is the anisotropy in particle momen-
tum distributions correlated with the so-called reaction plane (fig. 2.5).

This reaction plane is spanned by the vector of the impact parameter
and the beam direction. Its azimuth is given by Wgp. The particle az-
imuthal distribution measured with respect to the reaction plane is not

isotropic, so it is customary to expand it in a Fourier series [58]:

BN 1 &N
Ed3 PR — (1+220ncos (¢ — \yRP)]>, (2.11)
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2.5 Anisotropic collective flow

Figure 2.5: Schematic view of a collision of two heavy ions (the left one emerging
from and the right one going into the page). Particles are produced in
the overlap region (blue-colored nucleons). The azimuthal angles and the
reaction plane are also depicted.

where F is the energy of the particle, p the momentum, pr the trasverse
momentum, ¢ the azimuthal angle, y the rapidity and Wgp the reaction
plane angle. The sine terms in such an expansion vanish because of
the reflection symmetry with respect to the reaction plane. The Fourier

coefficients are pr and y dependent and are given by

un(pr, ) = {cos [n (¢ — Urp)]), (2.12)

where the angular brackets denote the avarage over the particles, summed
over all events, in the (pr,y) bin under study. In this Fourier decompo-
sition, the coefficient v, is known as directed flow, vy as elliptic flow, vg
as triangular flow, vy as the fourth harmonic and so on.

The reaction plane cannot be directly measured in high energy nuclear
collisions, but can be estimated from the azimuthal distribution event-
by-event. Then the different harmonic flow coefficients are reconstructed

from two or many particle azimuthal correlations. This introduces un-
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2.5 Anisotropic collective flow

certainty in the analysis as the azimuthal correlations are not determined
solely by anisotropic flow but have other contributions, usually referred
to as nonflow and in case of two-particle correlations quantified by pa-

rameters 0,
(cos[n(¢; — ¢;)]) = <U,2L> + 0, (2.13)

Anisotropic flow can fluctuate event to event both in magnitude and
direction even at fixed impact parameter. This flow fluctuation can be
described by

o2, = (v2) — (un)?. (2.14)

vn n

One of the important sources of flow fluctuations is in the initial geome-
try of the overlapping region due to the random nature of the interaction
between constituents of the two nuclei. The participants are those con-
stituents which take part in the primary interaction. The principal axis
of the so-called participant zone can deviate from the reaction plane.
The axes of the participant coordinate system (PP), compared to the
reaction plane system (RP) are shown in figure 2.6. It is important to
distinguish between flow values measured in these two system: the values
in the RP system being always smaller than in the PP system [59].
Moreover, the flow is determined by the initial density profile. Although
its precise value depends on the detailed shape of the profile, most of the
relevant information is encoded in the initial eccentricity of the overlap

zone, ¢ [60]. The standard definition of the eccentricity is [61]

(P27
S o (2.15)

where (z,y) is the position of a participant nucleon in the RP system.
Also in this case, the angular brackets mean the avarage over participant
nucleons and over many collision events at the same impact parameter.
Because of the event-by-event fluctuations in the participant nucleon po-

sitions, the eccentricity driving flow in a given event is that defined by
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Figure 2.6: Schematic view of the participant and reaction planes with respect to the
beam direction (z-axis). Due to fluctuations, the overlap zone could be
shifted and tilted with respect to the RP frame. zpp and ypp are the
principal axes of inertia of the dots.

the principal axes of the PP system. This participant eccentricity can

be written as [54]

V/ {ricos (n)? + (g sin (ng))?

n
Tt

(2.16)

€part =

2.6 Experimental methods

Since the reaction plane is not known exactly on an event-by-event
basis, v, is measured indirectly using azimuthal correlations. Several
methods have been used. In the following, we present a little summary

of these methods.
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2.6 Experimental methods

2.6.1 Event plane method

In the standard event plane method one estimates the azimuthal angle
of the reaction plane from the observed event plane angle determined
from the anisotropic flow itself [62]. This is done for each harmonic, n,
of the Fourier expansion. The event flow vector Q,, is a 2D vector in the

transverse plane:

Qn,x = sz COS(n¢i) = Qn COS(n\I/n)

(2.17)
Qny = Z w; sin(ng;) = Q,, sin(nv,,)

where the sum goes over all particle ¢ used in the event plane calculation.
The quantities ¢; and w; are the lab azimuthal angle and the weight for
particle ¢, where for odd harmonics w;(—y) = w;(y). The optimal choice
for w; is to approssimate v, (pr,y). Since often v,(pr,y) almost linearly
increases with pr, the transverse momentum is a common choice as a
weight. The event plane angle is the azimuthal angle of Q, calculated

as

Qn,y

1 .
an = — aI“Ctan _— = — arctan <pT Sln(n¢)>

n Qnz N (pr cos(ng))

The observed v, is the n'* harmonic of the azimuthal distribution of

(2.18)

particles with respect to this event plane:

v (pr.y) = {cos[n(ds — ¥)]) (2.19)

where angle brackets denote an average over all particles in all events with
their azimuthal angle ¢; in a given rapidity and pr momentum space bin
at a fixed centrality. To remove auto-correlations one has to subtract
the Q-vector of the particle of interest from the total event Q-vector,
obtaining a ¥, to correlate with the particle.

Since finite multiplicity limits the estimation of the angle of the reaction

plane, the v, have to be corrected for the event plane resolution for each
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2.6 Experimental methods

harmonic given by
Ry = (cos[n(¥,, — ¥gp)]) . (2.20)

where angle brackets denote an average over a large event sample. The

final flow coefficients are

Uobs

n = . 2.21
v, = - (2:21)

By large event one means a large enough sample to obtain good averages,

but small enough to avoid shifts in the beam position and/or detector

response as a function of time.

2.6.2 Two-particle correlation

The pair-wise correlation method is based on the fit of the two-particle

azimuthal distribution to that expected from anisotropic flow:

deairs > )
i x (1 + ; 2v; cos(nAgb)) (2.22)

where all pairs of particles in a given momentum region are correlated.
No event plane is used. Acceptance correlations are removed to first order
by dividing by the mixed event distribution. The harmonic coefficients
are small because they are the squares of the flow coefficients. This quan-
tity is only for integrated quantities, but normally the integrated values
are obtained by averaging the differential quantities.

The two-particle cumulants method differs from the previous one be-
cause instead of the fit to the two-particle distribution it calculates the

coefficients directly as

vn {2} = (cos[n(¢r — ¢2))) (2.23)

for all pairs of particles.

Event plane method and two-particle cumulants are essentially equivalent
[63].
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2.7 Viscous effect
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Figure 2.7: Experimental Au 4+ Au data on pr integrated vy from RHIC compared to
hydrodynamic model for various viscosity ratios 1/s as presented in [64].

2.7 Viscous effect

Historically one of the most important result from the Au + Au
collisions at RHIC was the observation of large elliptic flow vo(pr) for
pr < 2GeV. The comparison of the centrality and pr dependence of v
with the ideal hydrodynamics calculations and the experimental results
had led to the conclusion that the matter created in these collision be-
haves like a perfect fluid.

A more through study joined to more precise experimental data shows
that the elliptic flow produced was smaller than the ideal hydrodynamic
calculation. This deviation was due to the breakdown of the local equilib-
rium hypothesis. Further improvement have been done with the inclusion
of viscous effect and the develop of viscous hydrodynamics.

The comparison between the experimental results and the viscous hy-
drodynamics calculations (shown in fig. 2.7) confirmed that the matter
created had a very small viscosity with an n/s ~ 1/4m7 [64].

Known good fluids in nature have an n/s of order h/kg. In a strongly
coupled N' = 4 supersymmetric Yang Mills theory with a large number
of colors ('t Hooft limit), 1/s can be calculated using a gauge gravity
duality and this gives [65]:

h

s drkp

(2.24)
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2.7 Viscous effect

Kovtun, Son and Starinets [65] conjectured, using the AdS/CFT corre-
spondence, that this implies that all fluids have n/s > h/4mkg (the KSS
bound). Therefore a fluid with n/s = 1/47 (in natural units) is very
close to a perfect fluid. The KSS bound raises the interesting question
on how fundamental this value is in nature and if the QGP behaves like
an almost perfect fluid. It is argued that the transition from hadrons
to quarks and gluons occurs in the vicinity of the minimum in 7/s, just
as is the case for the phase transitions in helium, nitrogen, and water.
An experimental measurement of the minimal value of 1/s would thus
pinpoint the location of the transition [66].

However, small value of /s ~ 1/4x is not an evidence of the creation
of a QGP phase. A phenomenological estimation of its temperature de-
pendence could give information if the matter created in these collisions
undergoes a phase transition [66, 67.

There are several theoretical indications that 7/s should have a particu-

lar behavior with the temperature [66, 67, 70-73]. As an example in Fig.
2.8 it is shown a collection of theoretical results about the temperature
dependence of n/s. Figure 2.8 shows that in general 1/s should have a
typical behavior of phase transition with a minimum close to the critical
temperature T [66, 67].
On one hand at low temperature estimations of n/s performed in the
chiral perturbation theory for a meson gas [70, 71], have shown that in
general 7/s is a decreasing function with the temperature, see down-
triangles in Fig. 2.8. Similar results for n/s have been extrapolated
from heavy-ion collisions at intermediate energies, see HIC-IE diamonds
in Fig. 2.8. On the other hand at higher temperature 17" > Tx 1QCD
calculation have shown but with large error bars that in general n/s be-
comes an increasing function with the temperature [72], see up-triangles
and circles in Fig. 2.8.

In general due to the large error bars in the 1QCD results for /s it is not
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2.7 Viscous effect

| A 1QCD: Meyer et al.

O 1QCD: Nakamura et al.
=— pQCD: Arnold et al.

v xPT Meson Gas

¢ HIC-IE

4nn/s

Figure 2.8: Different parametrizations for n/s as a function of the temperature. The
orange area refers to the quasi-particle model predictions for n/s [68]. The
different lines indicate different possible T dependencies while green line
represents the result for the pQCD calculation [69]. Symbols are as in the
legend. See the text for more details.

possible to infer a clear temperature dependence in the QGP phase. The
analysis at different energies of ve(pr) and the extension to high order
harmonics v, (pr) can give further information about the T dependence
of n/s.

The comparison between event-by-event viscous hydrodynamical calcu-
lations and the experimental results for v,, seems to confirm a finite but

not too large value of 47n/s ~ 1 — 3 (as shown in figure 2.9) [74, 75].
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Figure 2.9: Viscous hydrodynamic calculations for v, (pr) with 1/s = 0.08 (upper
panel) and 7/s = 0.16 (lower panel) compared with experimental RHIC
data [74].
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CHAPTER 3

TRANSPORT THEORY
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In order to describe the Quark Gluon Plasma created in ultra-relativistic
heavy ion collisions, we use in this work an effective transport theory that
permits to study a system evolving dynamically. In this chapter will be
discussed the main features of transport theory, from its classical for-

mulation up to its application to field theory. Moreover, the solution
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of the relativistic Boltzmann equation for the parton distribution func-
tion tuned at a fixed shear viscosity to entropy density ratio /s will be

analyzed.
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3.1 Classical transport theory

3.1 Classical transport theory

In the classical kinetic theory, one considers a system composed by
N particles inside a box of volume V' colliding each other with a cross
section 0. In such a system the probability to find a particle in a phase

space element at the position x and momentum p is defined by:

f(x,p)dPzd®p (3.1)

where f(x,p) is the phase space density, basic element of the kinetic
theory. To point out that the N particles must be inside the V' volume

one may normalize the function in the following way:

/Vf(x, p)d®zd’p = N. (3.2)

While the spatial density of the system can be calculated performing an

integration over p:
p(x) = / f(x,p)dp. (3.3)

Moreover trought the distribution function is possible to calculate the

average of a physical observable O(x, p):

(06)) = [ 06x.p)f(x p)ps. (3.4

The aim of the kinetic theory is to describe the evolution of the distribu-
tion function for a certain interaction. In order to do this, our first task is
to find an equation of motion for this distribution function. Considering
the simplest case in which collisions are switched off (¢ = 0), at time ¢
a particle have coordinates (x,p). After a certain time ¢ 4 dt, the same
particle will have coordinates (x + vét,p + Fot), where F is an external
force applied on the particle and v = p/m is the velocity. In this way,
all the particles inside the volume d®zd*p around (x,p) at time ¢, will be
found in the volume d32'd®p’ around (x + vdt,p + Fét) at time ¢ + ot.

Hence, in the case of no collisions, we have:

f(x+vét,p+ Fét)d*z'd®*p’ = f(x,p)d*zd’p (3.5)
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3.1 Classical transport theory

which, in case of forces that depending only from position, reduces to
f(x+vit,p+Fét) = f(x,p). (3.6)

Expanding the left-hand side to the first order in d¢, we obtain the equa-
tion of motion for the distribution function as we let 6t — O:

B
(& + % Vit F- vp) F(x,p) =0, (3.7)

while, when there are collisions (¢ > 0), the eq. 3.6 must be modified as:
fx+vit,p+Fit) = f(x,p) +Clf], (3.8)

where C[f] is a functional of the distribution function f, called collision
integral, and it takes into account the change of the function f due to
the collisions. Also in this case, expanding the left-hand side to the first

order in dt, one obtains:

(% V- VU vp) f(x.p) = Clf] (3.9)
where we have considered the force as derivable from a potential U.

An explicit form of C[f] can be obtained taking into account the number
of particles that get into or are removed from the volume element during

the time interval d¢t. This statement may be expressed in the form:
Cét = (R — R) dt, (3.10)

where Rtd®zd>p represents the number of collision occurring during the
time between ¢ and ¢ + 6t in which one of the initial particles is in d®>zd®p
around (x,p) while Rétd3xd®p is the same number in which one of the

final particles is in d®*zd®p around (x,p) [76].

3.1.1 Collision term derivation

To derive an explicit form of the collision term we neglect the pos-

sibility that three or more particles may collide simultaneously, so we
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3.1 Classical transport theory

assume that only binary collisions need be taken into account. Moreover
the effect of external forces on collisions are ignored.

With this assumption we can simply define a collision as a transition from
the initial state to a set of final states. For final states in the infinitesimal

momentum-space element d>p|d3p}, the transition rate is:
dP12_>1/2/ = dgplldgpééll(Pf - Pl)|./\/lfl|2 (311)

where My, is the transition amplitude of the process and the function

§*(P; — P;) enforce momentum-energy conservation and is defined as:
§Y(P;— P) =8P —-P)o(FE—E). (3.12)

The number of transition 12 — 1’2" in a volume element d®z at x, owing

to collisions during the time interval 0t is:
dN1odPyo_s1:0:6t (3.13)

where dNj5 is the initial number of colliding pairs (p;, py). The two-

particle correlation function is introduced by:
dNyy = f(x, Py, Po)d°zd*p1d°ps. (3.14)
Thus, using eq. 3.11 and the notation described above, we obtain:
R [ @ndhdhd' (P~ P)I ML fxpip)  (313)
and similarly for R we have:
R= / d’pad®pd’ph6* (P — Py)|Mis P f (x, 1. ) (3.16)

Finally, taking into account that the ¢ functions in the above equations

are identical and that |Mg;| = | M|, we find for the collision term:

C[f] = (R - R) = /d3p2d3p’1d3p’254(Pf - Pi)|Mif|2 (fm' - f12>-
(3.17)
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3.2 Relativistic transport theory

The expression we obtained is exact but it contains the unknown corre-

lation function f . So that, we now introduce the crucial assumption:

A

f(x,p1.p2) = [(x,P1) f (X, Py)- (3.18)
This says that the momenta of two particles in the volume element d®z
are uncorrelated, so that the probability of finding them simultaneously
is the product of the probability of finding each alone. This is known as

the assumption of molecular chaos, introduced firstly by Boltzmann. It

allows to obtain a closed form for the Boltzmann transport equation:

(52 V= V%, ) i = [ Enad st (P = PAMGPLS, — of)
(3.19)

which is a nonlinear integro-differential equation for the distribution func-

tion [76].

3.2 Relativistic transport theory

In the relativistic case of the kinetic theory, the distribution function
f(z,p) is a Lorentz scalar where x represents the spacetime coordinates
(x = z* = (t,x)) and the components of the four-momentum p = p* =
(p°, p) obey to the mass shell condition p° = \/m [77].
Considering the relativistic formalism, the distribution function can be

expressed with the following formula:

f(z,p) = Z 5 (z;(t) — )6W (pi(t) — p). (3.20)

The temporal evolution of the phase space density is described by the
Liouville’s theorem which states that in absence of dissipative force the
phase space density is a constant of motion i.e. df(x,p)/dt = 0. Starting

from this theorem is possible to derive the equation of motion for f(z,p)
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3.2 Relativistic transport theory

as follows [78]:

i) =3 S PO (a0 - )6t i) — ) =

~ (5 + @) ) S
(3.21)
where F*(x) denotes an external or a selfconsistent internal four-force.
This equation is the relativistic Vlasov equation that in the non-relativistic
limits becomes:

(%+%-VX+F-VP) f(x,p) = 0. (3.22)

The Vlasov equation is appropriate for a system in which there are only
conservative forces but does not take into account dissipative effects that
arise to incorporate some two body correlation in the one body treatment.
In presence of two body scatterings in fact the phase space density is no
more a constant of motion but changes as a consequence of the collisions.
Making this consideration is possible to derive the equation of motion
for f(z,p) adding a collision term C[f]. One obtains in this way the

Boltzmann-Vlasov equation:

1pﬂi + F“(l‘) 0

m' Ok g | 1(#P) = Cl/(p) (3.23)

The collision term could be derived rigorously by mean of the BBGKY
hierarchy (BogoliubovBornGreenKirkwoodYvon hierarchy) or it can be
written for the case of a two-body collisions, see next paragraph. Its
effect can be studied also by mean of a phenomenological ansatz taking

the dissipation into account:

(3.24)

where 7, denotes the relaxation time parameter and fy the equilibrium

one-body distribution function, towards which the system will relax.
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3.2 Relativistic transport theory

If effects of quantum statistics are neglected the equilibrium solution of

the Boltzmann equation is given by the Juttner distribution:

fo(z,p) = exp [-B(p - u+ p)] (3.25)

where the local parameters [ = 1/T,u*, u](x) denote the inverse tem-
perature, flow four-velocity and chemical potential, respectively. When
quantum effects are included the exponential Boltzmann is replaced by
the Fermi-Dirac or Bose-Einstein distribution, depending on the nature

of the considered particles.

3.2.1 Collision integral

As we have seen, the Vlasov equation does not take into account
dissipative effects that arise from the collisions between particles. In
order to consider such scatterings it is necessary to add the collision
term that when only the two body collision processes are considered
is indicated with Cso. Assuming that there are no particle correlations
before each collision (molecular chaos), the Cos is related to the product
of the phase space densities of the colliding particles, and is given by [79]

1 d3p2 1 dgpll dgpé et
622 - - / / f1f2
2F, (27r)32E2 v (27?)32E1 (27r)32E2
1

25, (3.26)
X/ d3p2 l/ d3p/1 dgp/Q ff
(27)32E, v | (27)32EY (27 )32E, M2

X | Moo |*(2m) 0 (p1 + p2 — Pl — Ph),

X | Moo (21) 0N (p) + ph — p1 — pa) —

where v = 2 if one considers identical particles, to avoid double counting,
otherwise v = 1. |M;_;|* is the invariant amplitude matrix for a specific
scattering process. Beyond the hypothesis of the molecular chaos it is

assumed that the collisions are local in the x-space.
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3.3 Quantum transport theory

3.3 Quantum transport theory

The transport theory can be extended also to the quantum mechanics.
In order to find the analogous of such equations in quantum theory it is
necessary to define a quantity that can play the same role of f(z,p). This
quantity is the Wigner function f,,(z,p) that is defined as [80]

d .
fulop) = [ 5oe P (el ) (3.27)

where 24 = z £ y/2. The above equation using the explicit expression

for the density operator p = |¢) (| becomes for pure states:

fuleep) = [ 5 ™ (@) V(o) (3.28)

In analogy to the phase space function, the Wigner function allows to
obtain the probability distributions in z and p variable, as indicated in

the following expressions:

plz) = / fulz.p)dp  plp) = / fulz.p)dz  (3.29)

Once the Wigner function has been defined one can obtain the quantum
version of the Vlasov equation simply performing a Wigner transforma-
tion of the Schroedinger equation or, equivalently, as shown in the fol-
lowing performing a Wigner transformation of the Heisenberg equation.

Therefore one starts from the equation of motion for the density operator

% — [ﬁ, H} (3.30)

with H = p?/2m + U ; making the Wigner transformation

Y —ipajn @ — |5 ﬁ g _
/27rhe |\l (2 v +U| )|z—)=0 (3.31)

and after some calculations one gets the equation of motion for the

Wigner function:

Ofu . p O L (N o (5.9 _
wtme g mm(a) V(%) aen-
(3.32)
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3.4 Transport theory in relativistic quantum field theory

No approximation has been made to find this equation and it is exactly
equivalent to the Heisenberg equation or to the Schroedinger equation. If
the gradient of the potential is not too strong the summation over £ index

can be truncated at the first term and the previous equation become:

8fw pafw — — o
St VU Vfu =0 (3.33)

that has the same form of the classical transport equation but it is here
for the Wigner functions. In case of collisions, one can also add the

collision integral.

3.4 Transport theory in relativistic quan-
tum field theory

The extension of the Wigner function formalism to quantum field

theory brings to a 4 x 4 matrix as indicated in the following expression

4 .

Pl = [ Geze® (Dpfe)Val@) ) (330
where a and [ are indices for spin and flavor; W(z) is the field and the
colons denote normal ordering.

According to the Clifford algebra, the Wigner function E (x,p) can be

decomposed as:

F(a,p) = F(z,p) 43P (2,p) + 50 F* (@, 9) +7° Az, p) 74 (., ).

(3.35)
The components are all real, except A(z,p) which is purely imaginary,
and are related to the scalar, vector, tensor, pseudoscalar and pseudovec-
tor densities respectively. The pseudoscalar and axial-vector parts of
F (x,p) vanish for the case of locally spin-saturated system as demon-
strated in [81], while the tensor part can be neglected in the classical

limit as shown in [82]. Thus the Wigner matrix can be simply decom-

posed in terms of a scalar and a vector part as:

A

F(Z’,p) = FS(xap) + %F\‘;(xap)- (336)
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3.4 Transport theory in relativistic quantum field theory

The procedure to derive the transport equation i.e. the equation of mo-
tion for the Wigner function is similar to that used in the previous section
in order to derive the transport equation in quantum mechanics. Thus
one has to do a Wigner transformation of the field’s equation of mo-
tion. Taking into account a system described by a fermionic field which

interacts trough a scalar field, the Lagrangian of such a system is
- 1
L= w(x) [i’}/ua'u - gsa] Zﬂ(l‘) - §m§(72 (3.37)

from the lagrangian we derive the equation of motion for the fermionic

fields:
[i7,0" — (gs0)| ¥(x) = 0. (3.38)

At this point one makes the Wigner transformation of the equation of
motion [83, 84] obtaining
d*y

/7(27%)46_“;? Ws(zy) [i7,0" — (m — g,0)] We(z_) =0 (3.39)

and after some operations one gets

(7'?‘%7'8—m)5pppa(x,p)+/ %e‘i? (: Ug(zy)Vo(z_)o(z) 1) =0

(3.40)
This equation is exactly equivalent to the Dirac equation 3.38. How-
ever to derive the usual expression of the quantum relativistic transport
equation one makes two approximations. In fact the evaluation of the
integrals in eq. 3.40 is considerably simplified if one uses the mean field
approximation treating the scalar field as a classical function and thus
keeping it out from the expectation value. Moreover using the so called
semi-classical approximation the field can be expanded in a Taylor series
at the space time x and, if its gradient is not too large, is reasonable to

stop the expansion at the first order getting

o(z_) =o(x) — =00(x) (3.41)




3.5 Kinetic approach at fixed shear viscosity to entropy density ratio

if one substitute this semiclassical approximation in eq. 3.40:
%7 D+ -p—m*(z)+ %a;;a(x)ag F(z,p) =0 (3.42)

*

where m* is the effective mass (m* = m — o(z)). The equation 3.42
corresponds to two different equations: one for the imaginary part and

the other one for the real part. For this last one has:
[v-p—m*(2)] F(z,p) = 0 (3.43)
while for the imaginary part we have:
[0 =m0 () ()] F(z.p) = 0. (3.44)

In the real part is contained the mass shell condition.

Making use of the decomposition of F (x, p) into scalar and vector compo-
nents as shown in eq. 3.36, writing all in terms of the scalar part Fy(z, p)
and using the relation between the latter and the one-body phase space

distribution f(z, p) = Fy(x, p)/M(z) one obtains:
(90, + m* (2)0,m* ()0}] f(x,p) = 0 (3.45)

that is the Vlasov equation for a system of fermions that interact through
a scalar field o.

Finally, adding the collision integral, one has an equation describing the
motion of particles considering both the collisions acting at short range

and the mean field that accounts for the long range physics:

[P0, +m(2)0um* (2)0y] f(z.p) = C[f](z,p). (3.46)

3.5 Kinetic approach at fixed shear viscos-
ity to entropy density ratio

In this section we introduce a transport approach in which it is pos-

sible to fix the /s ratio. The motivation to develop such a transport
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3.5 Kinetic approach at fixed shear viscosity to entropy density ratio

approach is twofold: from one hand, in this way it is possible to have
a direct link with viscous hydrodynamic calculations and therefore it is
possible to have an estimation of the viscosity of the plasma. On the
other hand we have a kinetic approach which is valid in a wider range of
transverse momentum pr and 7/s ratio. In particular in this way it is
possible to include in a self consistent way the effect of the kinetic freeze
out.

In order to study the dynamical evolution of the fireball with a certain
n/s(T) we determine locally in space and time the total cross section o
needed to have the wanted local viscosity.

In the Chapmann-Enskog theory and for a pQCD inspired cross section,
typically used in parton cascade approaches [79, 85-90], with do/dt ~

a?/(t —m%)?, the n/s is given by the following expression:

_ 1 _ 1
7]/8—1—5 >Tn—1—5m (3.47)

where @ = mp /2T, with mp being the screening mass regulating the
angular dependence of the cross section, while g(a) is the proper function
accounting for the pertinent relaxation time T, b = g(a)op associated
to the shear transport coefficient and in the function g(a) it is encoded
the information about the anisotropy of the collision. The function g(a)
is given by:

ola) = o5 faw® |+ e v 1 (5) . @y

where K,,-s are the Bessel functions and the function h relate the trans-

port cross section to the total cross section
01 (8) = Oyor R(M3 /) (3.49)

with
h(¢) =4C(1+ O [(2¢ + Din(1 +1/¢) —2]. (3.50)
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3.6 Numerical implementation of the transport equation

Therefore the total cross section is evaluated locally by mean the Eq.3.47,

and the effective total cross section is given by:

_ Lty L )
7t = 15 = 55 glam/sp

From this approach is clear that at lower temperature, where it is ex-

(3.51)

pected the increase of n/s toward the value estimated for hadron gas

n/s ~ 6 — 7, it permits a smooth realization of the kinetic f.o..

3.6 Numerical implementation of the trans-
port equation

To solve the transport equation we use the so called test particle
method, introduced by Wong [91] and used in almost all transport cal-
culations [87, 88, 92-94]. In this method the phase space distribution
function is sampled by mean of a large number of so called test particles.
Usually the test particles are to be chosen point-like, i.e § function in
coordinates and momenta space, hence the phase space distributions can
be written as a sum of the § test particle distribution:

Ntest

foep)=w > 8 (x—x)8*p—p,) (3.52)

i=1
where x; and p; indicate respectively the position and the momentum of
the i-th test particle; Ny is the total number of test particles; while w
is a renormalization factor that is related to the real number of particles,
Nyear, so that the integral over coordinates and momenta space of the

phase space distribution is equal to the total number of actual particles:

d? w
/d3$/ (271_];3‘]"()(, p) = WNtest = Nreal (353>

hence (27)3/w is equal to the number of test particles per real particles.
Once the test particles have been introduced, the solution of the trans-

port equation reduces to solve the classical equation of motion for the
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3.6 Numerical implementation of the transport equation

test particles as will be described in the following. In fact, it can be
shown, with the help of the Liouville theorem, that the phase space dis-
tribution given as a collection of point like test particles is a solution of
the Boltzmann-Vlasov equation if the positions and momenta of the test

particle obey the relativistic Hamilton equations [95]:

E; (3.54)
p; = — V. FE; + coll
where the term coll indicates the effect of the collision integral, while
—V.FE; comes from the presence of a mean field depending from the
mass of the generic particle.
In this work, the Boltzmann relativistic equation of motion will be solved
in the case of binary collision without the V,F; term. In this way, the

equations of motion are implemented numerically as shown hereafter:

x;(t + At) =x;(t — At) — 2A¢ (pi(t))

Ei(t) (3.55)

p;(t + At) =p,(t — At) + coll

where the index 7 refers to i-th test particle and At is the mesh time.

3.6.1 The stochastic method

In this section it will be discussed the numerical implementation of
the collision integral that is based on the so called stochastic method
implemented by Xu and Greiner in a parton cascade [79].

In such a method whether one collision between two particles will happen
or not is sampled stochastically comparing the collision probability asso-
ciated to the process P, with a random number chosen between 0 and
1. The collision will occur only if the extracted number is less than Pas.
The Py can be derived directly from the collision term of the Boltzmann-
Vlasov equation [96]. We know in fact that the collision probability in a

unit box A3z and unit time At can be defined as the ratio between the
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3.6 Numerical implementation of the transport equation

number of collision that happen in such unit box during the time At and

the total number of pair present in the unit box

AN2—>2
Poo — coll )
27 AN, AN, (3:56)

ANZ2:? is simply derived once is known the collision rate per unit phase

space indicated in the following equation that can be read off from the

collision term:

AN2=2 1 A3p2

coll

Al A3 A%py T 2E, (27)32E, Stz
1 d*py d’pl 2 (3.57)
7 / o2 E, @ Mo
x (2m)* 64 (p1 + p2 — P} — Ph).

Writing the distribuction function in the following way:

fim =12 (3.58)

and employing the definition of cross section [77]:

1 1/ d*p) d>pl,
(

_ 1t o 12(97) 454 A
Fv | @rnE @omm e TG0 et pe = = p)

(3.59)

where F' = \/ (p1 - p2) — m3m3 is the so called invariant flux, one obtains

022

the expression for the probability:

Py, _ AN At

_ ey 3.60
AN AN, 92 A3, (3.60)

where the relative velocity v, is defined as:

V(01 -p2) —mim3  \/[s — (my +my)?][s — (my — my)?]

frel = E\ B N 2, Es o)
with s = (p; + p2)? and in the massless case becomes:
s
rel — . .62
el = B By (362)

78



3.6 Numerical implementation of the transport equation

The numerical solution using the stochastic method converges to the ex-
act solution of the Boltzmann equation in the limit At — 0, A3z — 0.
Hence we divide the space into sufficiently small spatial cells. In order
to have reasonable results At and A3z have to be taken smaller than
the typical scales of spatial and temporal inhomogeneities of the particle
densities. Only particles from the same cell can collide with each other,
and the collision probability has to be calculated for each pair of couple
inside the cell and compared with a random number, and this is done for
all the cells in which the lattice space is divided.
In order to reduce the computational time instead of considering all pos-
sible pair of particles it is possible to follow the scheme of Refs [79, 97].
In such a scheme the pairs of particles analyzed are an arbitrary number
Nas. Hence the correct collision rate is obtained multiplying the collision
probability by an amplification factor, obtaining in this way an effective
probability as indicated in the following expression:
n(n—1)/2

Nog

A good choice in order to have a substantial reduction of the computa-

P = Py, (3.63)

tional time is to take Nas equal to the number of particle inside the cell

n.
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CHAPTER 4

TESTING THE CODE

Contents
4.1 Imitial conditions . . . . ... ... ... .... 81
4.2 Initial geometry . .. .. ... ... 000 85
4.3 Simulation code parametrization . .. .. .. 88

In this chapter will be discussed the implementation of the initial
state fluctuation in a transport approach.
We will start with the description of the implementation of Monte Carlo
Glauber model in order to generate in the coordinate space an initial pro-
file that change event by event. Furthermore we will discuss the effect of
these initial state fluctuations on the initial eccentricities e,.
Our purpose is tu study the evolution of the QGP anisotropies. In partic-
ular we will investigate how the initial asimmetry in coordinate space is
traslated in final anisotropies in momentu space of the emitted particles.
Finally, at the end of the chapter, some convergency test of the code will

be presented.
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4.1 Initial conditions

4.1 Initial conditions

In order to generate an initial profile that change event by event we use
the Monte-Carlo Glauber model to obtain the initial density distribution
for each event. In this model the Woods-Saxon distribution is used to

sample randomly the positions of the nucleons in the two colliding nucleus
A and B:

_ Po
) = el —R)d (4.1)

where the radius R and the diffuse constant d depend on the particular
nucleus (Au or Pbin our case). The above distribution is normalized to
the atom number [ d®rp(r) = A with py = 0.163fm™>, R = 6.3 fm for
Au and R = 6.5 fm for Pb.

In this way a discrete distribution for these nucleons is generated. We
employ the geometrical method to determine if the two nucleons one
from the nucleus A and the other one from the nucleus B are colliding.
To simulate a collision of two nuclei using the Monte Carlo approach,
one first samples the positions of all nucleons in the nucleus according
to a Woods-Saxon distribution eq.4.1, and obtains discrete nucleon dis-
tributions with each single nucleon corresponding to a ¢ function. The
probability function &(s;, s;, b) for two nucleons to collide is taken to be

geometrical in form:

&(SA,Bj,b) =1 Zf dT:\/(xA—mB)2—|—(yA—yB)2§\/UNN/W

5(s4,By,b) =0 if dr= /(x4 —2p)?+ (ya —yn)® > Vonn/7
(4.2)

In other words, within this method two nucleons collide each other if the

relative distance in the transverse plane is dr < \/oyxn/m where oy is
the nucleon-nucleon cross section.
In the following discussion we will concentrate on the fireball produced

in Au+ Au at \/syn = 200GeV and Pb+ Pb at /syxy = 2.76TeV so for

the nucleon-nucleon cross section we have used oyy = 4.2 fm? for RHIC
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4.1 Initial conditions

and oyy = 7.0 fm? for LHC.

With the above probability distribution, the calculation of Ny and Npgrs
is given by counting the number of collisions and the number of partic-
ipating nucleons for each event. In this way the position of the partici-
pating nucleons will fluctuate from event-to-event.

The next step is the conversion of the discrete distribution for the nu-
cleons into a smooth one by assuming for each nucleon a gaussian dis-
tribution centered in the nucleon position. In our model we choose to
convert the information of the nucleon distribution into the density in
the transverse plane pr(z,y) which is given by the following sum

N, art
c (z—x)* + (y — y3)?
— Y exp |-
pr(z,y) 2 exp { 207,

(4.3)

where C'is an overall normalization factor fixed by the longitudinal distri-
bution dN/dy while o,, is the Gaussian width which regulate the smear-
ing of the fluctuations. In the following calculations the Gaussian width
has been fixed to o5, = 0.5 fm. In our calculation we have assumed a
longitudinal boost invariant distribution with a uniform pseudorapidity
distribution with 7 = y = 3In 22 in the range —2.5 < n < 2.5. The
initial total number of particles has been fixed to ‘fi—g = 1050 for RHIC
energies and ‘fi—];f = 2500 for LHC energies for (0 — 5)% of centrality class
(corresponding to an input parameter fo b = 2.5 fm) and for mid rapid-
ity.

In fig. 4.1 it is shown the initial test particle distribution at mid ra-
pidity along the z-axis for a given event and for y = 0 fm (left panel)
and y = 2.5 fm (right panel). In particular in fig. 4.1 we compare the
analitical results (yellow band) as given in the formula 4.3 with the same
calculation coming from our code (black point). The calculation with
our code is made for a given event with impact parameter b = 7.5 fm
at mid rapidity. The good agreement within the error bars between the

two result make us confident of the right implementation of the initial
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4.1 Initial conditions
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Figure 4.1: Comparison between the analitical result of the density function (red line
and yellow band) with respect to the code calculation (black point) for a
given event. Left panel refers to a pseudorapidity y = 0 fm while right
panel has y = 2.5 fm.

state fluctuation in the transport code. Note that both analitical and
simulation code results will be exactly the same when N.;; — 0o. In our
simulation in fig. 4.1 we have used N;.; = 3000 that was enough to have
a resolution better than 5%.

The contour plot of the initial transverse density at mid rapidity for a
given event with impact parameter b = 7.5fm is reported in fig. 4.2.
The upper panel refers to the system Au + Au at \/syny = 200GeV and
the lower panel to Pb+ Pb at \/syy = 2.76TeV.

For the initialization in momentum space at RHIC (LHC) energies we
have considered for the bulk, i.e. for partons with transverse momentum
pr < pr0 = 2GeV (3GeV) a thermalized spectrum in the transverse
plane:

% X mTe*mTT (4.4)
with my = /p% +m? and T is the temperature. Assuming the local

equilibrium the initial local temperature in the transverse plane T'(x,y)

is evaluated by using the standard thermodynamical relation:

/‘y
pr(z,y) = =5T° (4.5)

with v = N.N;N*#"N? = 37. In fig. 4.3 it is shown the corresponding

initial local temperature in transverse plane for RHIC (upper panel) and
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Figure 4.2: Initial transverse density pr(z,y) at mid rapidity for Au+ Au at \/syn =
200 GeV (upper panel) and Pb+ Pb at \/syny = 2.76 TeV (lower panel).
These plots are for an impact parameter of b = 7.5 fm.
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4.2 Initial geometry

LHC (lower panel). As shown in the central region of the fireball for mid
peripheral collision we can reach temperature T' = 27T ~ 300 MeV at
RHIC and T = 400 MeV at LHC. These are typical values used also in
hydrodynamical simulations. Notice that in this way the fluctuations in
the initial geometry include fluctuations in momentum space. Therefore
for partons with pr > pg we have assumed the spectrum of non-quenched
minijets according to standard NLO-pQCD calculations with a power law
shape: I minit )

minije

dp7 = (B + pr)" (4.6

The initial transverse momentum of the particles is distributed uniformly

in the azimuthal angle.

4.2 Initial geometry

Once the transverse density pr(z,y) has been fixed the initial anisotropy
in coordinate space can be evaluated. The initial anisotropy is quantified

in terms of the following coefficients ¢,,:

V/(rf cos (ng))? + (rf sin (ng))?

(r)

where rp = /22 + y? and ¢ = arctan(y/z) are the polar coordinate in

(4.7)

€np =

the transverse plane.

In figure 4.4 we have shown the distribution of ey, €3, €4 and €5 as a
function of the number of participant N4 and for a total number of
events Nt = 10°. In figure 4.5 it has been shown the corresponding
averaged initial spatial anisotropies €s, €3, €4 and €5 as a function of the
impact parameter. The second coefficient ey (solid green line) shows
a stronger dependence with the impact parameter respect to the other
coefficients because it acquires a contribution due to the global almond
shape of the fireball while the other harmonics have most of their origin in

the fluctuations in the positions of the nucleons. In fact for more central
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Figure 4.3: Initial temperature in trasverse plane at RHIC (upper panel) and LHC
(lower panel). These plots are for an impact parameter of b = 7.5 fm.
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4.2 Initial geometry

100 200 300 400
N
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Figure 4.4: Initial anisotropy coefficient ¢,, as a function of the participant nucleons
Npart respectively for n =2, 3, 4 and 5.

collisions b < 2.5 fm the e; becomes smaller than the other harmonics
this is because when the effect of the overlap region disappear the only
contribution to ¢; comes from the fluctuations. In fact for smaller impact
parameter becomes more difficult to have fluctuations of the positions
of the nucleons along one direction and for large n we get larger ¢,.
Moreover, in fig. 4.5 we have shown the comparison between the Monte
Carlo Glauber approach (solid lines) and the Glauber model (dashed
lines). It is clear that in this second case with the absence of the initial
fluctuation, the ¢, vanishes for all odd moments and presents a very
different behaviour for even ones, expecially at low impact parameter b.

In fact for central collisions ¢y in the Glauber model becomes zero due to
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Figure 4.5: Initial spatial anisotropies €, as a function of the impact parameter. Dif-
ferent colors are for different n. The solid lines refer to the Monte Carlo
Glauber while the dashed ones to the Glauber model.

a more symmetric shape while for large impact parameter it approaches
the values obtained with the Monte Carlo Glauber where the fluctuation

gives a very small contribution.

4.3 Simulation code parametrization

In the following discussion, the final set of parameters chosen in our
simulation are tested and presented.

The inclusion of the initial state fluctuations introduces further difficul-
ties because in order to get stable results we need to have a good sampling
of the initial geometry event by event and this is controlled by the to-
tal number of test particles Ny.s. Furthermore an irregular initial profile
need a good calculation grid resolution. We have checked the convergency
of our results for vs, v3, v4 and vy with the lattice spacing of the calcula-
tion grid and Ng. In order to determine this convergency we have per-
formed our simulations with a fixed viscosity 7/s = 1/4w constant during

all the expansion of the fireball and for an impact parameter b = 7.5 fm
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Figure 4.6: Checking the convergency with several parameters. The results of our
code are reported for the spectra (upper panel) and for the elliptic flow
(lower panel). See the text for details.
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Figure 4.7: v, at mid rapidity as function of the grid dimension at a fixed value of
pr-

for the case of Au + Au at /syy = 200GeV. Moreover, we have se-
lected three different grid dimensions (Az = Ay = 0.35 fm, 0.465 fm
and 0.7 fm) and four different number of test particles for real particle
(200 Niest, 400 Nies, 800 Niesy and 1600 Niesy ). Finally, in order to sep-
arate the physical fluctuation from the numerical ones, we set for these
simulations a fixed density profile calculated for a single event with the
fluctuating Monte Carlo Glauber approach.

In the upper panel of fig. 4.6 we have shown the results for the spectra,

(27?)_1197‘1152;J = integrated over the azimuthal angle and over the momentum
rapidity window |y| < 0.5 as function of py for different grid resolution
and for different number of test particles N;... The spectra clearly show
a good convergency for all cases, expecially at intermediate transverse
momentum pr < 4 GeVwhich is the range of our interest. However this

study does not allow us to choose the best set of parameters. A more
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Figure 4.8: v,, at mid rapidity as function of the total number of test particles for real
particle at a fixed value of pyr = 1GeV.

sensitive observable is the elliptic flow v,. In fact as shown in the lower
panel of fig. 4.6 the vo(pr) at mid rapidity reveal a small sensitivity to
the grid resolution and a large sensitivity to the number of test particles.
We observe a difference of about 20% for the single event.

In order to focus on the results of elliptic flow and to select the best set
of parameter, in fig. 4.7 we reported the value of vy, v3, v4 and v for the
three different values of grid dimensions at a fixed transverse momentum
pr = 1 GeV. From this plot it is possible to deduce that for all n-order of
flow there is a very small dependence with respect to the lattice spacing
of the calculation grid. So that in the following simulations we decide
to use A = 0.35 fm which is the value closer to the one used in viscous
hydro calculations of about 0.2 fm. Note that the choice of this value
of A improve the resolution but does not introduce sensible delay in the

time of calculation.
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4.3 Simulation code parametrization

In the similar way discussed above in fig. 4.8 we have checked the conver-
gency of the value of v, with respect to the total number of test particles
Niest at mid rapidity and for the same fixed value of pr. The plot shows
a dependence in the values of v, with respect to the number of N,
for Niese < 400 and then a clear stability of the numerical results for all
vn. As a consequence we choose 800 as total number of test particles for
real particle in all the following calculations since for N;.,; = 1600 the
computational time increase of about a factor of 4.

In conclusion, in this preliminary study we have been checking the im-
plementation of the initial state fluctuation and the subsequent evolu-
tion spectra and the related collective flows. Moreover, we discussed the
initial parametrization of our code and presented the result about the
convergency of the numerical procedure. Finally, we found that for the
evolution of all v,(pr) it is safe to use a grid with Ay = 0.12fm? of
transverse area and total number of test particles Nsy = 2 - 10 and
these parameters will be used for all the computations presented in the

next chapter.
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In this chapter will be presented the final results coming from the
computation of the simulation transport code presented in the previous
chapters. The main purpose of this work of thesis is to study the effect
of a temperature dependent shear viscosity to entropy density ratio n/s
in the evolution of the elliptic flow v, and high order harmonics v,,.

To this aim we run our simulations with and without the inclusion of the
fluctuating Monte Carlo Glauber initial condition for two different beam
energies: RHIC for Au + Au at /s = 200 GeV and LHC for Pb+ Pb at
Vs =2.T76TeV.

Moreover, it will be discussed the influence of the impact parameter in
the behaviour of the build up of elliptic flow and high order harmonics.

Finally, we have investigated the correlation between the initial spatial
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anisotropies ¢, and flow coefficients v,, and its evolution with the beam

energy.
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5.1 Event by event fluctuations

5.1 Event by event fluctuations

In this section we discuss the effect of the initial state fluctuation on

the final azimuthal integrated spectra (27?)_1ijéYipT and the differential
anisotropic flows v, (pr).

The initial time of the simulation have been fixed to 75 = 0.6 fm/c for
RHIC and 75 = 0.3 fm/c for LHC. In the following table 5.1 is summa-

rized the set of parameters that we have presented in the above discussion:

Table 5.1: Set of parameters chosen in our code. See the text for more informations.

| onn (fm?) | ouy (fm) | po (GeV) | 7 (fm/c)
RHIC ‘ 4.2 ‘ 0.5 ‘ 2. ‘ 0.6

LHC 7.0 0.5 3. 0.3

In this work, we will consider two different types of initial conditions.
One of them consist in a fixed initial distribution by using the standard
Glauber model as used in previous works, see [98, 99]. The second one
consist of an initial profile changing event by event according to the MC
glauber model as discussed before.

In our simulations we have used Ngyens = 500 events for each centrality
class. This number is enough to get solid results for the spectra, differ-
ential elliptic flow and high order flow coefficients v, (p).

In fig. 5.1 the spectra at final time of evolution (¢t = 7.5 fm/c, black
color) and initial time (¢t = 0.6 fm/c, red color) for the two approaches
are shown: the solid line refer to the case with initial state fluctuations
while the dashed line is for the case without fluctuations. The simu-
lation refers to RHIC Au + Au mid peripheral |y| < 0.5 collisions at
Vs = 200GeV and for 47n/s = 1 constant during all the expansion of
the fireball.

The results of our model show that the inclusion of the initial state fluc-
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Figure 5.1: Transverse momentum spectrum at RHIC in Au + Au collisions /s =
200 GeV. Solid line is for the initial state that change event by event
while dashed line refers to the case with an averaged initial profile. These
results are (20 — 30%) centrality class and 47n/s = 1 constant during all
the expansion of the fireball.

tuation introduces a small tail in the parton distribution at high pr with
respect to the standard non fluctuating case at the end of the evolution
while in the initial time the two approach are very similar. This means
that due to the different density distribution we have a little bit more
particles that escape from the interaction zone at the early stage of the
collision. However, this is not a significantly sizeable effect while the
most significant consequences in the application of the event by event
approach are in the build up of the differential flow coefficients v,,.

The elliptic flow vy(pr) and the high order harmonics vs(p;) and vy(pr)

have been calculated as

vy, = (cosn(op — ¥,)) (5.1)

where the momentum space angles ¥,, are given by

v, = l arctan M

s () (5-2)
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Figure 5.2: Results for Au + Au collisions at /syny = 200 GeV for (20 — 30%) cen-
trality class. Left: differential elliptic flow ve(pr) at mid rapidity. The
solid line refer to the case with initial state fluctuations while the dashed
lines is for the case without initial fluctuations. Right: differential vy(pr)
at mid rapidity with the same legend as in the left panel.

as detailed thouroughly in chapter 4.

In figure 5.2 we present the results for the final ve(py) and vy(pr) corre-
sponding to the two different initial configurations. In the left panel we
show the comparison between the differential elliptic flow vs(pr) obtained
with and without (w/o) fluctuations. These results are for Au+ Au col-
lisions at /s = 200 GeV and for (20 — 30%) centrality class. In these
calculation we have considered 477 /s = 1 constant during all the expan-
sion of the fireball.

One can note that for this centrality the effect of the fluctuations in the
initial geometry is to reduce the vo(py) with a reduction of about 20%.
Despite for this centrality we have the same initial eccentricity, see green
solid and dashed lines in fig. 4.5, the fluctuations anyway lead to a reduc-
tion of vy (pr). This reduction is related to the fact that for an irregular
geometry in the transverse plane the pressure gradients generate a small

flow towards the inner part of the fireball reducing the build up of the az-
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Figure 5.3: €p/en(to) as a function of the time for Au + Au collisions at \/syn =
200 GeV and for peripheral collisions. Different colors refer to different
harmonics n.

imuthal anisotropy in momentum space due to the global almond shape.
Moreover the fluctuations in the initial geometry play the role of gen-
erating the higher order harmonics in particular the odd harmonics v
which were absent due to the symmetry constraint in the averaged initial
configuration.
In the right panel of fig. 5.2 we compare the quadrangular flow vy(pr) for
the same system with and w/o fluctuations. We observe an opposite be-
haviour with respect to the vo(pr): the initial state fluctuations increase
the final vy(pr) of about 60%. This result is related to the fact that
the fluctuations introduce a larger initial ¢4 as shown by the comparison
between blue solid and dashed lines in fig. 4.5. In other words for mid
peripheral collisions most of vo(pr) comes from the global almond shape
while vy (pr) comes from the fluctuations.

In fig. 5.3 it is shown the time evolution of the initial eccentricities
at RHIC energies. In particular we plot the ¢, normalized to the initial
eccentricity e,(to = 0.6 fm/c). At very early times the small deformation

of the fireball in the transverse plane decrease with time and at first order
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Figure 5.4: (vy,)/{vp)™** as a function of time at mid rapidity and for (20 — 30)% of
centrality. Solid lines are the results for Au + Au at /syn = 200 GeV
while dashed lines Pb+ Pb at /syny = 2.76 TeV. Different colors corre-
spond to different harmonics: green, red and blue curves correspond to
n = 2, 3 and n = 4 respectively.

of this deformation we have that €, o €,(tg) — a, t""2. This gives the
ordering in the time evolution of ¢, shown in the plot: the time evolution
of ¢, is faster for larger n.

On contrary (v,) show an opposite behaviour during the early times
of the expansion of the fireball. In fig. 5.4 we present the average (v,)
normalized to (v"**) which is the maximum value at the end of the ex-
pansion. The solid line refers to Au + Au collisons at /s = 200 GeV
while the dashed one to Pb+ Pb collisions at /s = 2.767eV. As it
is possible to see the (v,) appear later for larger n and it is flatter at
early times for larger n. Similar results have been obtained in a 2 + 1D
transport approach where considerations on the early times evolution of
the fireball give that (v,) oc t™ [100, 101].

As we can see comparing the dashed lines with the solid ones the time
evolution of (v,,) depends on the collision energy, in fact for example the

generation of v, ends at ¢t =~ 4.5 fm/c at RHIC and at ¢t ~ 6.5 fm/c

99



5.2 Effect of the n/s(T") on v,(pr)

10— -
r e 47t1/5=1 + f.0. 1

i — o 47MY/s=1

47n/s

0.5\\\\1\\\\1-5\\\\2\\\\2.5\\\\3\\\\3.5

Figure 5.5: Different parametrization of n/s(T"). Black dashed line refer to 47n/s =1
during all the evolution. Red solid line refers to the inclusion of kinetic
f.o. for T' < 1.2T¢. Finally, blue dot dashed line refer to the inclusion
of linear temperature dependence for 7' > 1.27¢ and the kinetic f.o. at
lower temperature.

al LHC energies. At LHC energy we note that after 2 fm/c about 40%
of the vq is already formed, while ate the same time only 10% of vy is
present. This suggests that the different harmonics are sensitive to differ-
ent stages of the QGP fireball evolution, hence their value is determined

by the properties of QGP at different temperatures.

5.2 Effect of the n/s(T) on v,(pr)

Differential flow coefficients v, (pr) are observables that carry out
more informations about the fireball created in the heavy ion collisions
with respect to the pr spectrum. In particular they are sensitive to the
transport properties of the medium like the n/s ratio.

In this section we discuss the role of the /s on the build up of the elliptic
flow vo(pr) and on the high order harmonics v3(pr) and vy(pr).
In order to study the role of the n/s ratio and its temperature depen-

dence we have performed three different calculations, corresponding to

100



5.2 Effect of the n/s(T") on v,(pr)

the different parametrization of 1/s reported in figure 5.5: one with a
constant 4771/s = 1 during all the evolution of the system (dashed line);
another one with 47n/s = 1 at higher temperature in the QGP phase and
an increasing 77/s in the cross over region towards the estimated value
for hadronic matter 47n/s ~ 6 (solid line).

Such an increase of n/s in the cross over region 0.87¢ < T < 1.27¢
allows for a smooth realistic realization of the kinetic freeze-out. This
is because at lower temperature in our approach the effective total cross
section is o o< 1/n/s (see eq. 3.47) therefore to account for the increase
of n/s towards the estimated value for the hadronic matter, the total
cross section decrease. In the following discussion the term f.o. take into
account the increase of n/s at low temperature.

The third one is shown in fig. 5.5 by the dot dashed line. In this case we
consider the increase of /s at higher temperature with a linear tempera-
ture dependence (as suggested by quasi particle models [68]), a minimum
close to the critical temperature and the increase of n/s in the cross over
region.

In the following discussion with v,(p7) we mean the root mean square
v {EP} = \/(v2) as it has been done in experimental data using the
event plane method (see section 2.6.1).

In the upper panel of fig. 5.6 it is shown the elliptic flow vs(pr) and the
vy(pr) (green and blue lines) at mid rapidity for (20 — 30)% centrality
for both RHIC Au+ Au at /s = 200 GeV (left panel) and LHC Pb+ Pb
at /s = 2.76 TeV (right panel). The increase of the viscosity of the
medium has the effect to reduce the v, and v, as expected, but the size
of the reduction is quite different at RHIC with respect to LHC.

As we can see at RHIC energies comparing the green dashed lines with
the solid ones, in the upper-left panel of fig. 5.6, the va(pr) is sensitive
to the increase of the 1/s at lower temperature close to the cross over

region. In particular the effect is a reduction of the elliptic flow of about
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Figure 5.6: Upper panel: differential va(pr) and vs(pr) green and blue lines respec-
tively at mid rapidity and for (20 —30)% collision centrality. The compar-
ison is between the two systems: Au + Au at /s = 200 GeV and Pb+ Pb
at /s = 2.76 TeV. The dashed lines refer to the case with a constant
n/s = (47)~! during all the evolution while the solid lines to the case
with n/s = (47)~1 at higher temperature and with an increasing n/s ra-
tio at lower temperature. Finally, the dot dashed lines represent an 7/s
increasing linearly with the temperature.

Lower panel: differential v3(py) red lines with the same legend as in the
upper panel.
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5.2 Effect of the n/s(T") on v,(pr)

20%. A similar trend is observed for the 4-th harmonic vy (pr) where we
have a reduction due to the increase of /s at lower temperature but the
effect in this case is larger then the previous, about 30%.

The different sensitivity to the n/s of vy with respect to vy can be at-
tributed to their different formation time, ¢,, > t,, [88]. As shown in fig.
5.4 each harmonics v, start to develop at different time. In particular
vy start to develop approximatively at A7 = 1.5 — 2 fm/c later than vs.
This means that different harmonics probe different temperatures and
hence different value of the n/s ratio. In fact assuming that the first few
fm/ec (r = 1-2 fm/c) of the expanding fireball are dominated by the 1D
longitudinal expansion [102] where approximatively 7(7) = Ty(7o/7)"/?
we have that when vy start to develop at about 7 ~ 2 fm/c the temper-
ature is 1.37¢ at RHIC and 27 at LHC. In other words this tell us that
the v3 and vy at RHIC energies start to develop closer to the cross over
region. According to this interpretation and looking at fig. 5.4 a similar
trend should be seen also for vs (as we find in fig. 5.6 lower-left panel).
On the other hand at LHC energies, upper-right panel of fig. 5.6, the sce-
nario is different, the elliptic flow is almost unaffected by the increase of
n/s ratio at low temperature (in the hadronic phase) as we can see com-
paring the green dashed line with the solid one. Instead we observe that
the increase of /s at lower temperature has a more sensitive effect on
the vy (pr) with a reduction of about 5%, see blue solid and dashed lines.
Again this different sensitivity to the 7/s in the cross over region between
vy and vy at LHC are consistent with the results obtained at RHIC en-
ergies and related to the different formation time of the harmonics. The
greater sensitivity at RHIC energies of both v, and vy to the n/s at low
temperature is related to the different life time of the fireball. In fact the
life time of the fireball at LHC is greater than that at RHIC, 810 fm/c
at LHC against 4-5 fm/c at RHIC. In general this means that at RHIC

energies the v, have not enough time to fully develop in the QGP phase.
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5.2 Effect of the n/s(T") on v,(pr)

While at LHC energies we have that the v, develops almost completely
in the QGP phase and therefore it is less sensitive to the dynamics at
lower T

Other interesting informations can be extracted by studying the v, (pr)
at different collision energies for example from RHIC to LHC energies.
In particular it is possible to extract information about the temperature
dependence of n/s. In fig. 5.6 it is shown the effect of an n/s(7T") in
the QGP phase. In the comparison between the solid lines and the dot
dashed ones the only difference is in the linear temperature dependence
of n/s for T' > T while at lower temperature we have the same depen-
dence. As we can see the vy at LHC is sensitive to the change of n/s at
higher temperature while at RHIC energies the v, is unaffected by this
change.

In the lower panel of fig. 5.6 it is shown the triangular flow v3(pr) (red
lines) at mid rapidity for (20—30)% centrality and for both RHIC Au+ Au
at /s = 200 GeV (left panel) and LHC Pb+ Pb at \/s = 2.76 TeV (right
panel). In agreement with what has been obtained for the even harmon-
ics vy and vy, we observe at RHIC energies a reduction of vs(pr) due
to the increase of the 1/s at low temperature with a reduction of about
30%, while at LHC it is almost insensitive to the change of /s in the
cross over region. However we observe that at LHC the third and fourth
harmonics are more sensitive to the change of /s(T") with respect to the
elliptic flow with a deviation of about 10% and 15% for v3 and v4 against
5% for vs.

Finally, even if in the results presented in this work the hadronization
is not included, in fig. 5.7 we compare our simulation results with the
experimental data of both RHIC and LHC. In fact while the hadroniza-
tion and hadron decay can lead to some re-shaping of the v,(pr) the
comparison allows us to show that the v,(pr) generated by our transport

approach show similar trends and size to the experimental data for all
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Figure 5.7: Comparison between experimental data and differential v,, coming from
our simulation code (see the text for details) at both RHIC and LHC
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the n-harmonics. Left panels report the comparison between our calcu-
lations and most recent data of the PHENIX experiment at RHIC for
Au+ Au collisions at /s = 200 GeV at mid rapidity and for (20 — 30)%
centrality with their error bars [103] while in the right panels of fig. 5.7
is shown the same comparison at LHC energies with the data taken from
CMS collaboration for Pb+ Pb collisions at mid rapidity for (20 — 30)%
centrality (in this case the error bars are included in the experimental
points) [104, 105]. Different colors refer to different flow harmonics: vy
(green lines), v (red lines) and vy (blue lines). As we already mentioned,
fig. 5.7 clearly shows that at LHC energy a larger n/s is favored. In par-
ticular in fig. 5.7 we compare with the case where 4771/s = 2 in the QGP
phase plus the kinetic f.o. in the cross over region (dashed lines) while at
RHIC energies the case with 47n/s = 1 in the QGP phase (solid lines) is
quite close to the data within the experimental error bars. This result is
in agreement to that has been obtained in viscous hydrodynamical calcu-
lations in which is usually exctracted a range of value 1 < 47n/s < 3 and
favor for LHC energy and 7n/s about 1.5-2 times larger than at RHIC.
The most natural interpretation of such a trend is that in the QGP phase

the /s has a T' dependence as suggested by quasi-particle models.

5.3 wv,(pr) for central collisions

In order to have more information about the dynamic of the collisions
we have performed our calculation also for ultra central collisions with
b =0 fm. In such a way it is possible to study all v,’s as coming from
the fluctuations because of the circular symmetry determined by the ex-
act centrality of the collisions. The ultra central collisions are interesting
because the initial geometry and the ¢, comes completely from the fluc-
tuations and in particular as we will discuss in the next section the final
v, is strongly correlated with the initial €,.

For this case we run our simulation for the most interesting energy of
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Figure 5.8: Differential v,,(pr) as a function of the transverse momentum for Pb +
Pb collisions at \/syy = 2.76 TeV and for central collision, b = 0.fm.
Different colors are for different harmonics n. Solid lines refer to the case
with 47n/s = 1 in QGP phase and f.o. while the dot dashed lines refer
to the case with 7/s o T in the QGP phase and f.o..

LHC Pb+ Pb at /s = 2.76TeV. In figure 5.8 we plot the differential
vn(pr) as a function of the transverse momentum for the the first five
harmonics n = 2 — 5 (reported in different colors). We select two differ-
ent parametrizations for the 7/s ratio: solid lines refer to the case with
47 /s = 1 in QGP phase and f.o. (see solid red line in fig. 5.5) while the
dot dashed lines refer to the case with n/s o< T" in the QGP phase and
f.o. (blue dot-dashed line in fig. 5.5).

The first result is that v,(pr) at low pp is much flatter for larger n. This
result is in agreement with what has been obtained also in ideal hydro-
dynamic calculation where one generally expect that v,(pr) at low pr
scale like p [100]. On the other hand at high pr we observe that v, (pr)
for n > 3 increase linearly with py. A different behaviour is found for
the second coefficient vo(pr) where at high pr it shows a saturation with
a behaviour very similar to the experimental data.

We observe in agreement with the results obtained for mid peripheral
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Figure 5.9: Comparison between v, (pr) for mid peripheral (left panel) and central
(right panel) collision. Different colors refer to different harmonics while
solid lines correspond to 47n/s = 1 in QGP phase and f.o. and dot dashed
lines to n/s o< T in the QGP phase and f.o.

collisions that the v,(pr) at LHC is more sensitive to the value of the
n/s ratio in the QGP phase. In particular comparing mid peripheral and
central collision one can note that for central collisions v,(pr) are more
sensitive to the value of n/s in the QGP phase especially for larger value
of n. This is shown in fig. 5.9 in which we have been plotted the results of
v, (pr) for the two different class of centrality: 20 —30% in the left panel
and 0 — 5% in the right one. Different colors refer to different harmonics
n while with the solid lines it is reported the results for 47n/s = 1 in
QGP phase and f.o. and with the dot dashed lines the ones for /s oc T
in the QGP phase and f.o. (as in fig 5.8). We observe once more that
v, X p7. also in the case of non central collisions. Moreover we note that
the effect of the reduction of v, due to the temperature dependent 7/s
in the QGP is enhanced when we have 0 — 5% centrality class and this

effect is greater for high n order. In fact, if we take into account the v
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Figure 5.10: Left panel: avaraged (v,) in function of n for three different cases of
viscosity: solid black line refers to 47n/s = 1 in QGP phase and f.o., dot
dashed one for 1/s o< T in the QGP phase and f.o. while solid orange line
reports the case of the same value of eta/s but with a suddenly kinetic
f.o. when the local energy density is € < €f.,. (see the text for details).
Right panel: experimental v, vs n for central Pb+ Pb collision (black
points) compared to hydro calculations for different models as presented
in [106].

we note that the reduction due to the different n/s(T) is of about 12%
in the case of b = 7 fm while becomes 25% for b = 0 fm. This behavior
increase with the n: for v, we have a reduction of about 20% in central
collision instead of 9% for mid peripheral ones while for vs we have 30%
instead of 12%.

Finally, in left panel of fig. 5.10 we report the avaraged (v,) corre-
sponding to the v, (pr) of fig. 5.8 as a function of the n-order for Pb+ Pb
collisions at LHC energy and for 0 — 5% of centrality class. In this figure,
solid black line refers to the case of 47n/s = 1 in QGP phase and f.o.
while dot dashed lines for /s oc T in the QGP phase and f.o.. Moreover
in order to investigate the effect of the kinetic f.o. on the (v,) we show
with the solid orange line the results for the case of a different imple-
mentation of the kinetic f.o.. In particular we have considered a suddenly
f.0., i.e. when the local energy density € < ¢;, = 0.3GeV/fm? we im-
pose that the total cross section drop instantly to the zero value. The

value of €5, is choosen in order to correspond to the value of the critical
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temperature. This type of f.o. is more similar to the one implemented
in hydrodynamics where the f.o. is just a cut in the evolution when the
local temperature of the fluid reaches 7%, ~ 120 MeV. As we have seen
the n/s of the QGP phase reduces the value of (v,,). As shown in fig.
5.8 comparing the black solid and black dashed lines we found a peak of
(vn) for n = 3. This result is in agreement with the recent experimental
results obtained at LHC [107]. In general we observe that the effect of
n/s o T is to reduce the value of (v,,). However it is worth to note that
a peak at n = 3 remains and moreover the relative strength of v, and v
is closer to the experimental data when 7/s ~ T that should represent
a more realistic case. This behavior is particularly interesting because
viscous hydrodynamics predicts a vy > v3 (as shown in left panel of fig.
5.10). We find out that a main reason for such a different ordering may
reside on the way the f.o. is realized. Comparing the solid black and
orange lines we have that in the case with the suddenly f.o. we obtain
that (v,) becomes a decreasing function with respect to n and in this way
we obtain similar result to what has been obtained in viscous hydrody-
namical calculation where is not possible to include a smooth realization
of the kinetic freeze out. These hydrodynamical results are shown in the
right panel of fig 5.10 where different blue and green bands correspond to
different hydrodynamical approaches as shown in [106], the black points
are the experimental data (yellow boxes represent the statistical error
bars) taken by CMS collaboration [106].

5.4 Correlations between v, and ¢,

In the recent years, the correlation between integrated ve and high
order harmonics vz, vy with the initial asymmetry in coordinate space
€2, €3 and ¢4 have been studied [108-110]. In general it has been shown
that the elliptic flow is strongly correlated with the initial eccentricity

while a weaker correlation has been found for higher harmonics vs, vy
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Figure 5.11: e and vy for Au + Au collisions at /syy = 200GeV and for three
different centrality class from up to down: (10 — 20)%, (20 — 30)% and
(30 — 40)% respectively.
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with €3 and ¢4.

One explanation for the weak correlation observed between vy and ¢4
is that for final vy there is also a correlation with the initial e;. In
particular in [110] it has been shown that it is possible to have a good
linear correlation between vy, and a linear combination of the initial €
and e4.

In this section we discuss these correlations within an event by event
transport approach with initial state fluctuation. As first we discuss the
change of the degree of correlation between the initial ¢, and the final
v, with the centrality of the collision and collision energy. Finally, we
discuss the role of the n/s ratio and the effect of the kinetic f.o. on the
correlation between ¢, and v,.

A measure of the linear correlation is given by the correlation coefficient

C(n,m) given by the following expression:

Cn,m) — il = () (Vi — (vm) (5.3)
V2ileh — {en))? 22 (vl — ()

where ¢/ and v’ are the values of €, and v,, corresponding to the given
event i. C(n,m) ~ 1 corresponds to a strong linear correlation between
the initial ¢, and the final v,,.
The results shown in this section have been obtained with N_yen: = 1000
events for each centrality class. In figure 5.11, it is shown the two-
dimensional plots of the integrated flow coefficients v, as a function of
the corresponding initial e, for each event. The results shown are for
Au + Au collisions at /syy = 200 GeV and for three different centrali-
ties (10 —20)%, (20 —30)% and (30 —40)%. The viscosity has been fixed
to 4mn/s = 1 plus the kinetic f.o. below the transition. One can observe a
strong linear correlation between e, and vy for mid central collisions with
a linear correlation coefficient that shows a monotonic behaviour with the
collision centrality from C'(2,2) ~ 0.96 for (10 —20)% to C(2,2) ~ 0.89
for (30 — 40)%. Qualitatively the results are in agreement with the one
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obtained within a 2+1D viscous hydrodynamics, see [108]. In general we
observe a smaller degree of correlation: the main difference is that we
simulate a 34+1D expansion that can give a contribution to the uncor-
relation but also the increase of n/s(T') for T < 1.3T¢. Neverthless the
value of C(2,2) is only marginally different with respect to 241D viscous
hydrodynamics especially for more central conllisions.

In the left and right panels of fig. 5.12 we have shown similar plots
for the third and fourth harmonics, respectively. We observe again a
reduction of the correlation coefficient with the centrality of the collision
similarly to v and e;. We obtain that the correlation between €3 and v
for all the collision centralities is weaker with respect to that obtained
for the elliptic flow. Furthermore for the fourth harmonic flow v, we
observe essentially a luck of linear correlation with the initial ¢4 also for
mid peripheral collisions as shown by a correlation coefficient close to
the zero value, C(4,4) ~ 0.45 — 0.03. Furthermore we observe that the
(vn) /€, ratio decrease when decrease the correlation coefficient C(n,n)
which happens for more peripheral collisions.

A similar behaviour of the coefficient C'(n,n) we observe at LHC ener-
gies for Pb + Pb collisions at \/syy = 2.76 T'eV. In fig. 5.13 it is shown
the coefficient C(n,n) as a function of the impact parameter for both
RHIC (solid lines) and LHC (dashed lines) energies. As shown the cor-
relation coefficient is a decreasing function of the impact parameter for
all the harmonics and for the two different collision energies considered.
However we note that the comparison between the dashed and solid lines
show that at LHC energies we get a stronger correlation between ¢, and
v, for all n respect to RHIC energies. Indeed for most central collisions
C(n,n) remains above 0.95 for all n = 2, 3, 4, as shown in the comparison
of fig. 5.14.

Furthermore we observe that v, and e, have the same degree of cor-

relation for both RHIC and LHC energies. Instead a lower degree of
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Figure 5.12: In the left panels are shown the correlations plots between €3 and v3 for
Au+ Au collisions at \/syny = 200 GeV and for three different centrality
class from up to down: (10—20)%, (20—30)% and (30—40)% respectively.
Similar plots are reported in the right panels for ¢4 and vy.

114



5.4 Correlations between v,, and €,

-~ ——
——
—
-_—
—_——
—

0.8

0.6

C(n,n)

e—e C(2,2): RHIC
A—a C(3,3): RHIC
#—u C(4,4): RHIC
o- -0 C(2,2): LHC
- A AC(33): LHC
021 o 1 C(4,4): LHC

04

b (fm)

Figure 5.13: Correlation coefficient C'(n,n) as a function of the impact parameter b.
Different symbols refer to different harmonics n. in particular circles,
triangles and squares refer to n = 2,3 and 4 respectively. The solid lines
correspond to Au+ Au collisions at /sy n = 200 GeV while dashed lines
to the system Pb+ Pb at \/syny = 2.76 TeV.

correlation it is shown for higher harmonics n = 3 and n = 4 at RHIC
especially for non-central collisions.

According to these results for central and mid peripheral collisions the
(vo) gives a direct information about the initial eccentricities of the fire-
ball. Furthermore this explains the strong dependence of (vo) with the
collision centralities observed in the experiments at LHC against an al-
most flat behaviour observed for (vs) and (vy).

Moreover the strong correlation observed for central collisions means that
the value obtained for (v,) and its dependence with the harmonics n for
those collisions is strongly related to the value of the initial ¢,. In par-
ticular this could imply that the structure of the v,(pr) at LHC where
C(n,n) = 1 carry out informations about the geometry of the fluctua-
tions. This joined to the observation that for ultra-central collisions the
sensitivity of v, to n/s is increased by about a factor of two suggest to

focus the experimental efforts at LHC highest energy and ultra-central
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Table 5.2: Linear correlation coefficient C(n,n) for RHIC and LHC energies and for
different temperature parametritazion of n/s. These results are for (20 —
30)% centrality class.

C(n,n) | n|4mn/s=1|4mn/s=1+ fo.| n/sxT + f.o.
2 0.95 0.94 0.93
RHIC | 3 0.70 0.58 0.65
4 0.30 0.28 0.31
2 0.96 0.96 0.96
LHC |3 0.78 0.78 0.74
4 0.39 0.38 0.38
collisions.

In order to study the effect of the viscosity and its possible temperature
dependence on the correlation we have studied how change the corre-
lation coefficient with the different parametrizations for n/s. In Table
5.2 we show the results for C'(n,n) for the two energies RHIC and LHC
for (20 — 30)% centrality class. In general for this centrality we observe
that at LHC energies and for all the viscosities considered the degree of
correlation between ¢, and v, is greater than the one at RHIC energies.
Moreover we obtain that in general the correlation coefficient is not sensi-
tive to the change of the viscosity both at low and high temperature. An
exception is found at RHIC energies for vs where the effect of the kinetic
freeze out is to reduce the degree of correlation between the initial ¢, and

the final v,,.
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CONCLURSIONS

This thesis is focused on the study of the build up of the anisotropic
collective flow created in ultra relativistic heavy ion collisions. Indeed the
production of elliptic flow v, and high order harmonics v,, is one of the
strongest evidence of the formation of a thermalized dense state of mat-
ter strongly interacting and at very high pressure (P = 100 Mev/fm?)
and temperature (T’ & 200 MeV = 10" K): the Quark Gluon Plasma.
In the first part of this work we presented the main features of the QGP
and the characteristics of the QCD phase diagram. We considered that
the QGP is also present in the Early Universe and we have studied the
possible impact of such a phase transition. With this aim we determined
the precise time evolution of the thermodynamic parameters of the early
Universe by solving the Friedmann equation for a realistic equation of
state (EoS) coming from the heavy ion collision and lattice QCD data of
Wuppertal-Budapest. A comparison with the result obtained with sim-
ple bag model EoS was made. We also included for a realistic EoS the
impact of a strong primordial magnetic field.

The realistic equation of state describes a crossover rather than the first-
order phase transition between the quark-gluon plasma and hadronic

matter. Our numerical calculations of the energy density fluctuations
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show that small inhomogeneities of strongly interacting matter in the
early Universe are moderately damped during the crossover transition.
This implies that there are small chances of inhomogeneities phenomena
during the Big Bang nucleosynthesis.

In the second part of the thesis is described a primer of the collision
dynamics in the ultra-relativistic heavy-ion reactions with a particular
accent on the two beam energies of our interest for the successive anal-
isys: RHIC for Au + Au at /s = 200GeV and LHC for Pb+ Pb at
Vs =2.T76TeV.

The principal probes of the formation of the QGP state were also de-
scribed. In particular, in this work we focus the attention to the strong
anisotropic collective flow measured in both central and non-central colli-
sion events. It has been presented the experimental problems, definitions
and methods developed to study the anisotropies in the azimuthal dis-
tribution. Moreover, we pointed out that elliptic flow and high order
harmonics are observables sensitive to the shear viscosity 7/s. Further-
more, we reported the status of the art for both the experimental data
and the hydrodynamic approach.

The aim of this work was to employ a Boltzmann-like transport code in
order to study this anisotropic flows taking advantage from the use of a
microscopic approach. So that, we have described the principal features
of the kinetic theory and we have developed a code in which it is possi-
ble to estimate the viscosity of the plasma in a wider range of 1/s and
pr. Moreover, in order to investigate the evolution of the initial collision
geometry fluctuations we have implemented in the code an initial profile
that changes event-by-event using a Monte-Carlo Glauber model.

As a first step we have tested the right computation of initial density
and temperature fluctuations comparing with the analitical calculation
of the density function. Moreover, for both the energy of our interest we

were able to reproduce the initial fluctuating transverse density and local
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temperature expected in a Au + Au or Pb+ Pb collision.

Furthermore, with a fixed density profile calculated with the fluctuating
Monte-Carlo Glauber approach, we have tested the convergency of our
results for v, with the lattice spacing grid and N;.,. We have found the
good compromise between the convergency and the computational time
for Ap = 0.12fm? of transverse area and Ny = 2 - 10° total number of
test particles.

The analysis of our results with the fluctuating method in comparison
with the standard Glauber model indicate that the most important effect
in the introduction of the event by event approach is in the evolution of
the differential flow coefficients. More precisely the final spectra calcu-
lated for the two different approach are very similar in the transverse
momentum range of our interest (pr < 3GeV) while the elliptic flow
vo(pr) shows a reduction of about 20% as a conseguence of the fluctua-
tion in the initial geometry.

On the contrary, the introduction of fluctuations in r-space in the trans-
verse plane generates the higher order harmonics and in particular the
odd harmonics which were absent by symmetry in the averaged initial
configuration. This effect was confirmed by our calculations in which we
have observed an increasing in the final vy(pr) of about 60% for the case
with event by event fluctuations.

The main purpose of this work of thesis was to study the effect of the
shear viscosity in the evolution of the differential flow coefficients v, (pr)
because of their sensibility to this quantity. In particular, we had been
computed our code for three different cases of 1/s: one with a constant
47mn/s = 1 during all the evolution of the system; another one with
47n/s = 1 in the QGP phase and an increasing 7/s in the cross over
region towards the estimated value for hadronic matter 47n/s ~ 6 and
the third one with an increase of 7/s at higher temperature with a linear

dependence and a minimum close to the critical temperature.
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In this way we have found that at RHIC for Au + Au at /s = 200 GeV'
the v, (pr) are more sensitive to the value of n/s at low temperature and
in particular this sensitivity increase with the order of the harmonics. At
LHC for Pb+ Pb at /s = 2.76 TeV we get a different effect, the v, (pr)
are not so sensitive to the increase of 77/s in the cross over region of the
transition. More precisely, the difference sensitivity can be due to the
different formation time of each harmonics amd this involve at RHIC a
reduction of the elliptic flow of about 17%, 25% for the third harmonic
and of about 30% in case of vy(pr). At LHC, this reduction is negligible
for elliptic flow and for vsz(py) while is only about 10% for the fourth
harmonic.

Finally we have also studied the correlation between v,, and ¢, forn = 2,3
and 4. We have shown that the second and third harmonic flows are cor-
related to their initial eccentricities, a result similar to that has been
obtained in the recent years in viscous hydrodynamics.

We have however pointed out that in ultra-central collision at LHC en-
ergy the correlation between v, and ¢, stays above 0.9 (90%) for all the
harmonics (n = 2, 3,4) at variance with RHIC energy and more generally
with respect to non central collision. Moreover we have found that the
sensitivity of v,(pr) to n/s(T) is increased by a factor of two in ultra-
central collisions. In addiction, studing the avaraged (v,,) as a function of
n-order we pointed out that the inclusion of a realistic smooth freeze out
in our simulation code leads to the presence of a peak in correspondence
of n = 3 in agreement to the experimental results. This particular result
is in contrast to what has been obtained in viscous hydrodynamical cal-
culation where is not possible to include such a kinetic freeze out.

The results of our work can be a starting point for further investigations.
In fact the transverse momentum spectra and the differential flow coef-
ficients v, (pr) calculated with the event by event fluctuation approach

improved in this work can be implemented in a model based on a quark
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coalescence mechanism in order to study the effect of hadronization and

to compare the final result with experimental data.
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