
UNIVERSITÀ DEGLI STUDI DI CATANIA

Facoltà di Scienze Matematiche Fisiche e Naturali

Dottorato di ricerca in Informatica

ADVANCEMENTS IN

FINITE-STATE METHODS

FOR STRING MATCHING

Emanuele Giaquinta

A dissertation submitted in partial fulfillment of the requirements
for the degree of “Research Doctorate in Computer Science”

Tesi presentata per il conseguimento del titolo di “Dottorato di Ricerca
in Informatica” (XXIII ciclo)

Coordinatore
Prof. Domenico Cantone

Tutor
Prof. Domenico Cantone

ii

Printed December 2010

This opera is licensed under a

Creative Commons Attribuzione 2.5 Italia License.

http://creativecommons.org/licenses/by/2.5/it/

Acknowledgements

There are some people who have accompanied me during the last three years and

whom I would like to thank at the end of this journey. First of all, my supervisor,

Professor Domenico Cantone, who encouraged me to start this scientific project:

his continuous guidance and support have been fundamental for my growth as

a researcher. Dr. Simone Faro introduced me to the field of string algorithms

and has assisted me all along. It has been a pleasure to work with him in all

the activities that we have been developing together. I am also grateful to my

colleagues and to all my friends, without whom these years would have surely been

less enjoyable. I would also like to thank Alessandro Sergi for many interesting

conversations and for his friendly encouragement as well as Mauro Ferrario for his

help in a number of occasions. Finally, grazie to my family for their continuous

and overwhelming support and love.

iii

Contents

1 Introduction 1

1.1 Results . 5

1.2 Organization of the thesis . 6

2 Basic notions and definitions 7

2.1 Strings . 7

2.2 Nondeterministic finite automata 8

2.3 Bitwise operators on computer words and the bit-vector data struc-

ture . 8

2.4 The trie data structure . 9

2.5 The DAWG data structure . 10

2.6 Experimental framework . 12

3 The string matching problem 13

3.1 Automata based solutions for the string matching problem 14

3.2 The bit-parallelism technique . 16

3.2.1 The Shift-And algorithm . 18

3.2.2 The Backward-Nondeterministic-DAWG-Matching algorithm . 19

3.2.3 Bit-parallelism limitations 20

3.3 Tighter packing for bit-parallelism 21

3.3.1 q-grams based 1-factorization 27

3.3.2 Experimental evaluation . 30

3.4 Increasing the parallelism in bit-parallel algorithms 33

3.4.1 The Wide-Window Algorithm 34

3.4.2 The Bit-Parallel (Wide-Window)2 Algorithm 36

3.4.3 The Bit-(Parallel)2 Wide-Window Algorithm 37

v

vi CONTENTS

3.4.4 Experimental evaluation . 38

4 The multiple string matching problem 43

4.1 Bit-parallelism for multiple string matching 45

4.2 The Aho-Corasick NFA . 46

4.3 The suffix NFA . 48

4.4 Bit-parallel simulation of NFAs for the multiple string matching

problem . 50

4.5 Bit-parallel simulation of the Aho-Corasick NFA for a set of patterns 51

4.5.1 The Log-And algorithm . 53

4.6 Bit-parallel simulation of the suffix NFA for a set of patterns . . . 55

4.6.1 The Backward-Log-And algorithm 59

5 The approximate string matching problem 63

5.1 String matching with swaps . 64

5.1.1 Preliminary definitions . 65

5.1.2 The Approximate-Cross-Sampling algorithm 67

5.1.3 New algorithms for the approximate swap matching problem 69

5.1.4 Experimental evaluation . 76

5.2 Approximate string matching with inversions and translocations . 80

5.2.1 Preliminary definitions . 80

5.2.2 An automaton-based approach for the pattern matching

problem with translocations and inversions 81

5.2.3 Complexity analysis . 88

5.2.4 A bit-parallel implementation 93

5.2.5 Computing the minimum cost 94

5.2.6 Experimental evaluation . 96

6 The compressed string matching problem 99

6.1 String matching on Huffman encoded texts 100

6.1.1 Preliminary definitions . 102

6.1.2 Skeleton tree based verification 104

6.1.3 Adapting two Boyer-Moore-like algorithms for searching

Huffman encoded texts . 107

6.1.4 Experimental evaluation . 110

6.2 String matching on BWT-encoded texts 113

6.2.1 The Burrows-Wheeler transform 114

CONTENTS vii

6.2.2 Searching on BWT-encoded texts 115

6.2.3 A new efficient approach for online searching BWT-encoded

texts . 117

6.2.4 Experimental evaluation . 122

7 Conclusions 127

Bibliography 129

Chapter 1

Introduction

One of the oldest methods to represent information is by means of written texts.

A text can be defined as a coherent sequence of symbols which encodes informa-

tion in a specific language. One obvious example are natural languages, which are

typically used by humans to communicate in oral or written form. Other exam-

ples are DNA, RNA and protein sequences; DNA and RNA are nucleic acids that

carry the genetic information of living beings and can be represented as sequences

of the nucleobases (Cytosine, Guanine, Adenine and Thymine or Uracil) of their

nucleotides. Proteins are molecules made of amino acids that are fundamental

constituents of living organisms and can be represented by the sequence of amino

acids (20 in total) encoded in the corresponding gene.

A natural problem which arises when dealing with such sequences is identify-

ing specific patterns; as far as natural language texts are concerned, one is often

interested in finding the occurrences of a given word or sentence; on the other

side, an important problem in computational biology is finding given features in

DNA sequences or determining the degree of similarity of two sequences. Both

problems are particular instances of the string matching problem which has been

investigated in a formal way since 1970 [30, 57].

Among other applications of the string matching problem we recall data scan-

ning problems, such as intrusion detection or anti-virus scanning, and searching

of patterns within images (which can be modelled as two-dimensional sequences).

Formally, given an alphabet of symbols Σ of size σ, a text T of n symbols

and a pattern P of m symbols, the string matching problem consists in finding

all positions in T in which P occurs. In its online version only the pattern can

1

2 Introduction

be preprocessed before searching; instead, in the offline version the text can be

preprocessed to build a suitable data structure that allows searching for arbitrary

patterns without traversing the whole text.

In this thesis we deal with online string matching only. The first linear so-

lution for the string matching problem is the Knuth-Morris-Pratt algorithm [47],

which solves the problem with O(n) worst-case searching time complexity and

O(m)-space complexity. This algorithm is based on the deterministic finite au-

tomaton for the language Σ∗P and scans the text from left to right. The first

sublinear string matching algorithm is due to Boyer and Moore [14]. The Boyer-

Moore algorithm processes the text in windows of size m and scans each window

from right to left. The idea is to stop when a mismatch occurs and then shift the

window based on the characters read. The algorithm is quadratic in the worst

case though, on the average, it shows a sublinear behaviour. Another important

solutiond based on finite automata is the Backward-DAWG-Matching algorithm

(BDM) [30], which uses the deterministic automaton for the language Suff (P)

of the suffixes of P (suffix automaton) [11]; in this case the text is processed

in windows of size m and windows are scanned from right to left, as the Boyer-

Moore algorithm. When a mismatch occurs, the window is shifted according to

the length of the longest recognized prefix of the pattern that is aligned with the

right side of the window. The algorithm has O(mn) worst-case time complexity

and O(m)-space complexity.

The optimal average time complexity of the string matching problem, under

a Bernoulli model of probability where all the symbols are equiprobable, is equal

to O(n logσ(m)/m) [70]. Such a bound has been achieved by the BDM algorithm.

Another important finite automaton for the string matching problem is the factor

oracle [2]; this automaton recognizes at least the factors of the input string and

can be used in place of the suffix automaton in the BDM algorithm (this variant

is known as BOM). The advantage of this automaton is that it is lighter because

it has m + 1 states, as opposed to the suffix automaton which can have up to

2m−1 states. Although the solutions based on finite automata are suitable from

a theoretical point of view, in practice they do not always perform well. Indeed,

the algorithm which is usually implemented in computer programs is a simplified

version of the Boyer-Moore algorithm due to Horspool [39]. The principle of

simplicity is very relevant in string matching algorithms.

The situation changed in 1992 when Baeza-Yates and Gonnet introduced the

technique known as bit-parallelism to simulate the nondeterministic version of

3

the Knuth-Morris-Pratt automaton [8]. They devised a new algorithm, named

Shift-And, which is a version of the Knuth-Morris-Pratt algorithm based on the

nondeterministic finite automaton (NFA) recognizing Σ∗P . The virtue of this

algorithm is that it is extremely simple and succint, thus achieving very good

performance in practice. Bit-parallelism is a representation, based on bit-vectors,

that exploits the regularity of some nondeterministic automata. The space needed

by this encoding is O(σ⌈m/w⌉), where w is the size in bits of a computer word.

Later, Navarro and Raffinot extended this result to the nondeterministic version

of the suffix automaton [56]. They presented an algorithm, named BNDM, which

is the version of the BDM algorithm based on the NFA for the language Suff (P).

Despite being very efficient in practice, algorithms based on bit-parallelism suffer

from an intrinsic limitation: they have aO(⌈m/w⌉) overhead in the corresponding

time complexity, which is due to the use of a representation based on bit-vectors.

Hence, they do not scale efficiently as the pattern length grows. A few techniques

have been proposed to workaround this limitation [56, 59], but they all have some

drawbacks.

A natural generalization of the string matching problem is the multiple string

matching problem: given a set P of patterns and a text T , the multiple string

matching problem is tantamount to finding all the occurrences in T of the patterns

in P. The first linear solution for this problem based on finite automata is due to

Aho and Corasick [1]. The Aho-Corasick algorithm uses a deterministic incomplete

finite automaton for the language Σ∗P based on the trie for the input patterns,

and is basically a generalization of the Knuth-Morris-Pratt algorithm. The first

sublinear solution is due to Commentz-Walter [27] and is a generalization of the

Boyer-Moore algorithm based on the trie for the input patterns. Generalizations of

the BDM and of the BOM algorithms can be found in [57]. The nondeterministic

versions of finite automata for the multiple string matching problem are more

difficult to simulate because, in general, it is not true that for every state the

number of outgoing edges is at most 1, which is one of the properties exploited

by bit-parallelism. Nevertheless, there exist generalizations of the Shift-And and

of the BNDM algorithms [57] that are based on a simplified trie in which no

factoring of prefixes occurs.

An important variant of the string matching problem is the approximate string

matching problem, which consists in finding all the occurrences of a pattern in

a text allowing for a finite number of errors. Errors are formalized by means of

a distance function on strings which maps two strings into the minimal cost of

4 Introduction

a sequence of edit operations that are needed to convert the first string into the

second string. This problem is useful to find, for example, DNA subsequences af-

ter mutations, or spelling errors. Well known distance functions for this problem

are the edit distance [49] (also called the Levenshtein distance) or the Damerau

edit distance [31]. The edit operations in the former edit distance are insertion,

deletion, and substitution of characters; instead, in the second case, one allows for

swaps of characters, i.e., transpositions of two adjacent characters1. Approximate

string matching under the Damerau distance is also known as string matching

with swaps and was introduced in 1995 as one of the open problems in non-

standard string matching [52]. A variant of this problem, known as approximate

string matching with swaps, consists in computing, for each occurrence, also the

corresponding number of swaps.

Another important variant of the string matching problem is the compressed

string matching problem, which consists in searching for a pattern in a text stored

in a compressed form. Compression in this case means reducing the size of the

text representation without any loss of information, i.e., the original text can

be completely recovered from its compressed version. Despite the fact that the

price of external memory has lowered dramatically in recent years, the interest in

data compression has not withered; hence, being able to perform text processing

directly on the compressed text remains an interesting task. The two compression

methods that are investigated in this thesis are prefix codes and the Burrows-

Wheeler transform. Prefix codes are variable-length codes with the property

that no codeword is a prefix of any other codeword in the set. This compression

method is also known as Huffman coding [40]. The problem which arises when

performing string matching on prefix codes is that decoding must be performed

from left to right and no bit can be skipped. The Burrows-Wheeler transform [15]

(BWT) is a reversible transformation which yields a permutation of the text that

can be better compressed using the combination of a locally-adaptive encoding,

such as move-to-front [10], and statistical methods [40, 67]. It is not possible to

search for a pattern in a BWT encoded text without preprocessing the text once

at least. Hence, Existing algorithms [9] for string matching on BWT encoded

texts are not strictly online. These algorithms are able to compute how many

times a given pattern occurs in a text and all the positions in which it occurs,

but require more than one iteration over the compressed text.

1For an in-depth survey on approximate string matching see [53].

1.1. Results 5

1.1 Results

The main results presented in this thesis are:

• a new encoding, based on bit-vectors, for regular NFAs as those for the

languages Σ∗P and Suff (P). The new representation, based on a particular

factorization of strings, requires O(σ⌈k/w⌉) space and adds a O(⌈k/w⌉)
overhead to the time complexity of the algorithms based on it, where ⌈mσ ⌉ ≤
k ≤ m is the size of the factorization and m is the length of the input string.

We show that bit-parallel string matching algorithms based on this encoding

scale much better as m grows.

• a new encoding, based on bit-vectors, of the NFA for the language


P∈P Σ∗P

induced from the trie data structure for P and the NFA for the language
P∈P Suff (P) induced from the DAWG data structure for P. The new

representation requires O((σ+m)⌈m/w⌉) space, where m is the number of

states of the automaton.

• practical bit-parallel variants of theWide-Window algorithm that exploit the

bit-level parallelism to simulate two automata in parallel. In one case this

approach makes it possible to double the shift performed by the algorithm.

• the definition of a distance for approximate string matching based on edit

operations that involve substrings of the string, namely swaps of equal

length adjacent substrings and reversal of substrings; we also present an al-

gorithm, based on dynamic programming and on the DAWG data structure,

to solve the approximate string matching problem under this distance.

• a simple variant of an algorithm for the string matching with swaps problem

that is able to count, for each occurrence of the pattern, the corresponding

number of swaps without any time and space overhead.

• a general algorithm designed to adapt Boyer-Moore like algorithms for com-

pressed string matching in Huffman encoded texts; the new algorithm is able

to skip bits when decoding.

• a new type of preprocessing for online string matching on BWT encoded

texts to count the occurrences of a pattern; the new algorithms require one

iteration only over the compressed text and use less space, on average, in

the case of moderately large alphabets.

6 Introduction

This thesis includes material from my original publications [21, 17, 24, 25, 23,

22, 18].

1.2 Organization of the thesis

The thesis is divided into seven chapters. Chapter 2 provides the reader with the

basic notions needed to properly follow the results presented in the subsequent

chapters; in particular, it introduces the basic notions and notations used to

work with strings and finite state automata and also specifies some basic data

structures. Chapter 3 focuses on the basic string matching problem; it presents

a formal derivation of the solutions for this problem based on nondeterministic

finite automata and on the bit-parallelism technique and includes some novel

results as well. Chapter 4 deals with the multiple string matching problem and

presents existing and novel results concerning methods based on nondeterministic

finite automata and bit-parallelism. Chapters 5 and 6 focus on more complex

variants of the string matching problem such as approximate string matching

and compressed string matching, respectively, and present novel results for both

problems. The conclusions are finally drawn in Chapter 7.

Chapter 2

Basic notions and definitions

2.1 Strings

A string P of length |P | = m over a given finite alphabet Σ of size σ is any

sequence of m characters of Σ. For m = 0, we obtain the empty string ε. Σ∗

is the collection of all finite strings over Σ. We denote by P [i] the (i + 1)-th

character of P , for 0 ≤ i < m. Likewise, the substring (or factor) of P contained

between the (i + 1)-th and the (j + 1)-th characters of P is denoted by P [i .. j],

for 0 ≤ i ≤ j < m. We also put Pi =Def P [0 .. i], for 0 ≤ i < m, and make

the convention that P−1 denotes the empty string ε. It is common to identify a

string of length 1 with the character occurring in it. We also put first(P) = P [0]

and last(P) = P [|P | − 1].

For any two strings P and P ′, we write P.P ′ or, more simply, PP ′ to denote

the concatenation of P ′ with P . We also write P ′ ⊒ P (P ′ A P) to indicate

that P ′ is a (proper) suffix of P , i.e., P = P ′′.P ′ for some nonempty string P ′′.

Analogously, P ′ ⊑ P (P ′ @ P) denotes that P ′ is a (proper) prefix of P , i.e.,

P = P ′.P ′′ for some (nonempty) string P ′′. We denote by Fact(P) the set of the

factors of P and by Suff (P) the set of the suffixes of P . We write P r to denote

the reverse of the string P , i.e., P r = P [m − 1]P [m − 2] . . . P [0]. Given a finite

set of patterns P, let P r =Def {P r | P ∈ P} and Pl =Def {P [0 .. l − 1] | P ∈ P}.
We also define size(P) =Def


P∈P |P | and extend the maps Fact(·) and Suff (·)

to P by putting Fact(P) =Def


P∈P Fact(P) and Suff (P) =Def


P∈P Suff (P).

7

8 Basic notions and definitions

2.2 Nondeterministic finite automata

A nondeterministic finite automaton (NFA) with ε-transitions is a 5-tuple N =

(Q,Σ, δ, q0, F), where Q is a set of states, q0 ∈ Q is the initial state, F ⊆ Q is

the collection of final states, Σ is an alphabet, and δ : Q× (Σ ∪ {ε})→P(Q) is

the transition function (P(·) is the powerset operator).1 For each state q ∈ Q,

the ε-closure of q, denoted as ECLOSE(q), is the set of states that are reachable

from q by following zero or more ε-transitions. ECLOSE can be generalized to a

set of states by putting ECLOSE(D) =Def


q∈D ECLOSE(q). In the case of an

NFA without ε-transitions, we have ECLOSE(q) = {q}, for any q ∈ Q.

The extended transition function δ∗ : Q×Σ∗ →P(Q) induced by δ is defined

recursively by

δ∗(q, u) =Def

ECLOSE(q) if u = ε,
p∈δ∗(q,v) ECLOSE(δ(p, c)) if u = v.c, for some c ∈ Σ and v ∈ Σ∗.

In particular, when no ε-transition is present, then

δ∗(q, ε) = {q} and δ∗(q, v.c) = δ(δ∗(q, v), c) .

Both the transition function δ and the extended transition function δ∗ can be

naturally generalized to handle set of states, by putting δ(D, c) =Def


q∈D δ(q, c)

and δ∗(D,u) =Def


q∈D δ∗(q, u), respectively, for D ⊆ Q, c ∈ Σ, and u ∈ Σ∗.

The extended transition function satisfies the following property:

δ∗(q, u.v) = δ∗(δ∗(q, u), v), for all u, v ∈ Σ∗ . (2.1)

Given an NFA N = (Q,Σ, δ, q0, F), we define a reachable configuration of N any

subset D ⊆ Q such that D = δ∗(q0, u), for some u ∈ Σ∗.

2.3 Bitwise operators on computer words and

the bit-vector data structure

We recall the notation of some bitwise infix operators on computer words, namely

the bitwise and “&”, the bitwise or “|”, the left shift “≪” and right shift

1In the case of NFAs with no ε-transitions, the transition function has the form δ : Q×Σ→
P(Q). For the basics on NFAs, the reader is referred to [38].

2.4. The trie data structure 9

“≫” operators (which shifts to the left (right) its first argument by a number of

bits equal to its second argument), and the unary bitwise not operator “∼”.
The functions that compute the first and the last bit set to 1 of a word x are

⌊log2(x & (∼x + 1))⌋ and ⌊log2(x)⌋, respectively. Modern architectures include

assembly instructions for this purpose; for example, the x86 family provides

the bsf and bsr instructions, whereas the powerpc architecture provides the

cntlzw instruction. For a comprehensive list of machine-independent methods

for computing the index of the first and last bit set to 1, see [7].

A set S ⊆ {1, 2, . . . ,m} of integers can be conveniently represented as a vector

D of m bits. The i-th bit of D is set to 1 if the element i belongs to S, to 0

otherwise. If w is the size in bits of a computer word, ⌈m/w⌉ words are needed

to represent S. Using this representation, typical operations on sets map onto

simple bitwise operations:

• i ∈ S ⇐⇒ (D & (1≪ i)) ̸= 0

• S ∪ {i} ⇐⇒ D | (1≪ i)

• S1 ∪ S2 ⇐⇒ D1 | D2

• S1 ∩ S2 ⇐⇒ D1 & D2

• S1 \ S2 ⇐⇒ D1 & ∼D2

• Sc ⇐⇒ ∼D .

This representation allows to exploit the bit-level parallelism of the operations

on computer words, cutting down the number of operations that an algorithm

performs by a factor of w, as the time complexity of each operation is Θ(⌈m/w⌉).

2.4 The trie data structure

Given a set P of patterns over a finite alphabet Σ, the trie TP associated with P
is a rooted directed tree, whose edges are labeled by single characters of Σ, such

that

(i) distinct edges out of a same node are labeled by distinct characters;

(ii) all paths in TP from the root are labeled by prefixes of the strings in P;

10 Basic notions and definitions

(a)

q0 q1 q2 q3 q4 q5

q6 q7 q8 q9

q10 q11

g c g c a

t

g t g

t

c

(b)

q0 q1 q2 q3 q4 q5

q6 q7 q8 q9 q10

q13 q14 q15 q16 q17

g c g c a

g

c g t c

g

t g t g

Figure 2.1: (a) trie and (b) maximal trie for the set of strings {gcgca,gtgtg,gcgtc}.

(iii) for each string P in P there exists a path in TP from the root which is

labeled by P .

For any node p in the trie TP , we denote by lbl(p) the string which labels the

path from the root of TP to p and put len(p) =Def |lbl(p)|. Plainly, the map lbl

is injective. Additionally, for any edge (p, q) in TP , the label of (p, q) is denoted

by lbl(p, q).

For a set of patterns P = {P1, P2, . . . , Pr} over an alphabet Σ, the maximal

trie of P is the trie T max
P obtained by merging into a single node the roots of the

linear tries TP1
, TP2

, . . . , TPr
relative to the patterns P1, P2, . . . , Pr, respectively.

Strictly speaking, the maximal trie is a nondeterministic trie, as property (i)

above may not hold at the root. An example of trie and maximal trie is shown

in Fig. 2.1.

2.5 The DAWG data structure

The directed acyclic word graph (DAWG) [11, 28, 30] for a finite set of patterns P
is a data structure representing the set Fact(P). To describe it precisely, we need

the following definitions. Let us denote by end-pos(u) the set of all positions in

P where an occurrence of u ends, for u ∈ Σ∗; more formally, let

end-pos(u) =Def {(P, j) | u ⊒ Pj , with P ∈ P and |u| − 1 ≤ j < |P |} .

For instance, we have end-pos(ε) = {(P, j) | P ∈ P and − 1 ≤ j < |P |}, since
ε ⊒ Pj , for each P ∈ P and −1 ≤ j < |P | (we recall that P−1 = ε, by convention).
2

2In the case of a single pattern, i.e., |P| = 1, end-pos is just a set of positions rather than of
pairs.

2.5. The DAWG data structure 11

q0 q1 q2 q3 q4 q5

q6 q7 q8

a

g

c

g a

c

g c

a g

q suf R
q0 {ϵ}
q1 q0 {a}
q2 q0 {ag, g}
q3 q1 {aga, ga}
q4 q2 {agag, gag}
q5 q6 {agagc, gagc}
q6 q0 {agc, gc, c}
q7 q1 {agca, gca, ca}
q8 q2 {agcag, gcag, cag}

Figure 2.2: DAWG for the set of strings {agagc,agcag}.

We also define an equivalence relation RP over Σ∗ by putting

u RP v ⇐⇒Def end-pos(u) = end-pos(v) , (2.2)

for u, v ∈ Σ∗, and denote by RP (u) the equivalence class of RP containing the

string u. Futhermore, let

val(RP (u)) =Def the longest string in the equivalence class RP (u) , (2.3)

and length(RP (u)) =Def |val(RP (u))|. Then the DAWG for a finite set P of

patterns is a directed acyclic graph (V,E) with an edge labeling function lbl(),

where V = {RP (u) |u ∈ Fact(P)}, E = {(RP (u), RP (uc)) | u ∈ Σ∗, c ∈ Σ, uc ∈
Fact(P)}, and lbl(RP (u), RP (uc)) = c, for u ∈ Σ∗, c ∈ Σ such that uc ∈ Fact(P)
(cf. [12]).

We also define a failure function, suf : Fact(P)\{ε} → Fact(P), named suffix

link, by putting

suf (u) =Def the longest v ∈ Suff (u) such that y R̸Px (2.4)

for u ∈ Fact(P) \ {ε}.
The suf (·) and end-pos(·) functions can be extended to the equivalence classes

of RP not containing ε, by putting for all q ∈ V \ {RP (ε)}

suf (q) =Def RP (suf (val(q)))

end-pos(q) =Def end-pos(val(q)) .

An example of DAWG is shown in Fig. 2.2. The DAWG for a finite set of pat-

terns P naturally induces the deterministic automaton F (P) = (Q,Σ, δ, root , F)

whose language is Fact(P), where

12 Basic notions and definitions

• Q = {RP (u) : u ∈ Fact(P)} is the set of states,

• Σ is the alphabet of the characters in P ,

• δ : Q× Σ→ Q is the transition function defined by:

δ(RP (u), c) =

{RP (uc)} if uc ∈ Fact(P)
∅ otherwise

• root = RP (ε) is the initial state,

• F = Q is the set of final states.

2.6 Experimental framework

The experimental results presented in this thesis have been obtained using the

following setup: all the algorithms have been implemented in the C program-

ming language and have been compiled with the GNU C Compiler 4.0, using the

optimization options -O2 -fno-guess-branch-probability; the running times

have been measured with a high resolution timer by first copying the whole input

in memory and then taking the mean over a certain number of runs of the time

needed by the algorithm to end. The word size is 32 in all the tests. The corpus

used to carry out the tests consists of the following files:

(i) the English King James version of the “Bible” (n = 4, 047, 392, σ = 63),

(ii) the CIA World Fact Book (n = 2, 473, 400, σ = 94),

(iii) a DNA sequence of the Escherichia coli genome (n = 4, 638, 690, σ = 4),

(iv) a protein sequence of the Saccharomyces cerevisiae genome (n = 2, 900, 352, σ =

20),

(v) the Spanish novel “Don Quixote” by Cervantes (n = 2347740, σ = 86).

where n denotes the number of characters and σ denotes the alphabet size. Files

(i), (ii), and (iii) are from the Canterbury Corpus 3, file (iv) is from the Protein

Corpus 4, and file (v) is from Project Gutenberg 5.

3http://corpus.canterbury.ac.nz/
4http://data-compression.info/Corpora/ProteinCorpus/
5http://www.gutenberg.org/

http://corpus.canterbury.ac.nz/
http://data-compression.info/Corpora/ProteinCorpus/
http://www.gutenberg.org/

Chapter 3

The string matching

problem

Given a pattern P of length m and a text T of length n, both drawn from a

common finite alphabet Σ of size σ, the string matching problem consists in

finding all the occurrences of P in T . The optimal average time complexity of

the problem is equal to O(n logσ(m)/m) [70].

The most efficient solutions for the string matching problem are based on

finite automata. As already recalled, the first linear-time solution is the Knuth-

Morris-Pratt algorithm [47]. This algorithm uses an implicit representation of

the automaton for the language Σ∗P based on the border function of the pat-

tern [30] and solves the problem with O(n) worst-case searching time complexity

and O(m)-space complexity. The lower bound on average has been achieved by

the BDM algorithm [30], that is based on the deterministic automaton for the

language Suff (P). The worst-case searching time complexity of this algorithm

is O(mn) while its space complexity is O(m). Baeza-Yates and Gonnet [8] in-

troduced a technique, known as bit-parallelism, to simulate the nondeterministic

versions of these automata. They devised a new algorithm, named Shift-And, that

is the version of the Knuth-Morris-Pratt algorithm based on the NFA recognizing

Σ∗P . Later, Navarro and Raffinot [56] presented the BNDM algorithm, which is

the version of the BDM algorithm based on the nondeterministic suffix automa-

ton for the language Suff (P). Albeit algorithms based on bit-parallelism are very

efficient and compact, they have an O(⌈m/w⌉) overhead, where w is the size in

13

14 The string matching problem

bits of a computer word, as compared to the corresponding algorithms based on

a deterministic automaton. This limitation is intrinsic, since the bit-parallelism

encoding is based on bit-vectors.

In this chapter we present new results concerning bit-parallelism. In Sec-

tion 3.1 we formally define the NFAs for the string matching problem and in Sec-

tion 3.2 we introduce the bit-parallelism technique and the two main algorithms

based on it. Then, in Section 3.3 we present a new encoding, based on bit-vectors,

for regular NFAs as those for the languages Σ∗P and Suff (P). By exploiting a

particular factorization of strings, the new representation allows to encode au-

tomata by smaller bit-vectors resulting in faster algorithms. In Section 3.4 we

present a method to increase the parallelism in bit-parallel algorithms; more pre-

cisely, we introduce variants of the Wide-Window algorithm [37] that simulate two

automata in parallel. In one case this approach makes it possible to double the

shift performed by the algorithm at each iteration.

3.1 Automata based solutions for the string match-

ing problem

There are two main automata which are the core building blocks in different

algorithms for the string matching problem. Let P ∈ Σm be a string of length m.

The first automaton is the one for the language Σ∗P , i.e., the automaton that

recognizes all the strings that have P as suffix. The second one is the so called

suffix automaton, which is the automaton that recognizes the language Suff (P)

of the suffixes of P . It is important to observe that the nondeterministic versions

of these automata are very regular. We indicate with A (P) = (Q,Σ, δ, q0, F) the

nondeterministic automaton for the language Σ∗P , where:

• Q = {q0, q1, . . . , qm} (q0 is the initial state)

• the transition function δ : Q× Σ −→P(Q) is defined by:

δ(qi, c) =Def



{q0, q1} if i = 0 and c = P [0]

{q0} if i = 0 and c ̸= P [0]

{qi+1} if 1 ≤ i < m and c = P [i]

∅ otherwise

3.1. Automata based solutions for the string matching problem 15

(a)
0 1 2 3 4

Σ
a t a g

(b)

I

0 1 2 3 4
a t a g

ǫ
ǫ

ǫ
ǫ

ǫ

Figure 3.1: (a) Nondeterministic automaton and (b) nondeterministic suffix automa-
ton for the pattern atag.

• F = {qm} (F is the set of final states).

Likewise, we denote by S (P) = (Q,Σ, δ, I, F) the nondeterministic suffix

automaton with ε-transitions for the language Suff (P), where:

• Q = {I, q0, q1, . . . , qm} (I is the initial state)

• the transition function δ : Q× (Σ ∪ {ε}) −→P(Q) is defined by:

δ(q, c) =Def


{qi+1} if q = qi and c = P [i] (0 ≤ i < m)

Q if q = I and c = ε

∅ otherwise

• F = {qm} (F is the set of final states).

An example of both automata is shown in Fig. 3.1.

The algorithms based on the automata A (P) and S (P) for searching a pat-

tern P in a text T work by moving a logical window of size |P | over T . The

method based on the automaton A (P) computes, for a given window ending at

position j in T , all the prefixes of P that are suffixes of Tj . In particular, there

is an occurrence of P if the prefix of length m is found. The algorithm always

shifts the current window by one position to the right, i.e., it checks every win-

dow. Instead, the method based on the automaton S (P) computes, for a given

window ending at position j in T , the longest prefix of P that is a suffix of Tj by

reading the window from right to left with S (P r). As in the previous method,

there is an occurrence of P if the length of the longest prefix found is m. The

algorithm shifts the current window by a number of positions that depends on

the length of the longest proper prefix of P recognized. This approach makes it

possible to skip windows.

16 The string matching problem

Given a pattern P of length m, the automaton A (P) can be used to find the

occurrences of P in a given text T , by observing that P has an occurrence in T

ending at position i, i.e., P ⊒ Ti, if and only if δ∗A(q0, T [0 .. i]) contains the final

state qm. Thus, to find all the occurrences of P in T , it suffices to compute the

set δ∗A(q0, Ti) ∩ F , for i = 0, 1, . . . , |T | − 1.

Given a pattern P of length m, the automaton S (P r) can be used to find the

occurrences of P in a text T by observing that P has an occurrence in T ending

at position i, i.e., P ⊒ Ti, if and only if δ∗Sr(q0, (T [i −m + 1 .. i])r) contains the

final state qm. Hence, to find all the occurrences of P in T , one can compute

δ∗Sr(q0, (T [i−m+ 1 .. i])r) ∩ F , for i = m− 1,m, . . . , |T | − 1. With this approach

it is possible to skip windows: in fact, for a window of T of size m ending at

position i, let l be the length of the longest proper suffix of T [i−m+ 1 .. i] such

that δ∗Sr(q0, (T [i − l + 1 .. i])r) ∩ F ̸= ∅. It is easy to see that l is the length of

the longest prefix of P that is a suffix of Ti. Then, the windows at positions

i, i+ 1, . . . i+m− l − 1 can be safely skipped.

3.2 The bit-parallelism technique

Bit-parallelism is a technique, based on bit-vectors, that was introduced by Baeza-

Yates and Gonnet in [8] to simulate efficiently nondeterministic automata. The

first algorithms based on this technique are the well-known Shift-And [8] and

BNDM [56]. The trivial way to encode a nondeterministic automaton of m states

is by i) finding a linear ordering of its states, ii) representing the automaton

configurations as bit vectors, such that bit i is set iff state with position i is

active, and iii) by tabulating the transition function δ(D, c), for D ⊆ Q, c ∈ Σ.

However, the main problem of this representation is that the space in bits needed

to represent the transition function is (2m ·σ) ·m, which is exponential in m. Bit-

parallelism takes advantage of the regularity of the automata A (P) and S (P) to

efficiently encode the transition function in a different way. The construction can

be derived by starting from a result that was first formalized for the Glushkov

automaton and that can be immediately generalized to a certain class of NFAs

as follows (cf. [58]).

Let N = (Q,Σ, δ, q0, F) be an NFA with ε-transitions such that up to the

ε-transitions, for each state q ∈ Q, either

(i) all the incoming transitions in q are labeled by a same character, or

3.2. The bit-parallelism technique 17

B=

σ q1 q2 q3 q4
a 1 0 1 0
t 0 1 0 0
g 0 0 0 1

Figure 3.2: The map B(·) of the automaton A (atag).

(ii) all the incoming transitions in q originate from a unique state.

Let B(c), for c ∈ Σ, be the set of states of N with an incoming transition labeled

by c, i.e.,

B(c) =Def {q ∈ Q | q ∈ δ(p, c), for some p ∈ Q} .

Likewise, let Follow(q), for q ∈ Q, be the set of states reachable from state q with

one transition over a character in Σ, i.e.,

Follow(q) =Def


c∈Σ

δ(q, c) .

and let

Φ(D) =Def


q∈D

Follow(q) ,

for D ⊆ Q. Then the following result holds.

Lemma 3.1 (cf. [58]). For every q ∈ Q, D ⊆ Q, and c ∈ Σ, we have

(a) δ(q, c) = Follow(q) ∩B(c);

(b) δ(D, c) = Φ(D) ∩B(c).

Proof. Concerning (a), we notice that δ(q, c) ⊆ Follow(q)∩B(c) holds plainly. To

prove the converse inclusion, let p ∈ Follow(q)∩B(c). Then p ∈ δ(q, c′)∩δ(q′, c),
for some c′ ∈ Σ and q′ ∈ Q. If p satisfies condition (i), then c′ = c, and therefore

p ∈ δ(q, c). On the other hand, if p satisfies condition (ii), then q = q′ and

therefore p ∈ δ(q, c) follows again.

From (a), we obtain immediately (b), since

δ(D, c) =

q∈D

δ(q, c) =

q∈D

(Follow(q) ∩B(c))

=

q∈D

Follow(q) ∩B(c) = Φ(D) ∩ B(c) .

18 The string matching problem

Shift-And (P , m, T , n)

1. for c ∈ Σ do B[c]← 0m

2. for i← 0 to m− 1 do
3. B[P [i]] = B[P [i]] | (0m−11≪ i)
4. D ← 0m

5. for j ← 0 to n− 1 do
6. D ← ((D ≪ 1) | 0m−11) & B[T [j]]

7. if D & 10m−1 ̸= 0m then Output(j)

Figure 3.3: The Shift-And algorithm.

Provided that one finds an efficient way of storing and accessing the maps Φ(·)
and B(·), equation (b) of Lemma 3.1 is particularly suitable for a representation

based on bit-vectors, as set intersection can be readily implemented by the bitwise

and operation.

The map B(·) can be encoded with σ ·m bits, independently of the automaton

structure, using an array B of σ bit-vectors, each of size m, where the i-th bit

of B[c] is set if there is an incoming transition in state with position i labeled

by c. Instead, a generic encoding of the Φ(·) map requires 2m ·m bits, which is

exponential in the number m of states.

While this result allows to reduce the total bits needed to represent the tran-

sition function to (2m + σ) ·m, it can still be improved. In fact, depending on

the automaton structure, it is possible to find a more efficient way to compute

the map Φ(·).

3.2.1 The Shift-And algorithm

The Shift-And algorithm simulates the nondeterministic automaton that recog-

nizes the language Σ∗P , for a given string P of length m. An Automaton con-

figuration δ∗(q0, S) on input S ∈ Σ∗ is encoded as a bit-vector D of m bits (the

initial state does not need to be represented as it is always active), where the i-th

bit of D is set to 1 iff state qi+1 is active, i.e., qi+1 ∈ δ∗(q0, S), for i = 0, . . . ,m−1.
The map B(·) is encoded, as described above, using an array B of σ bit-vectors,

each of size m, where the i-th bit of B[c] is set iff δ(qi, c) = qi+1 or equivalently

iff P [i] = c, for c ∈ Σ, 0 ≤ i < m. An example of the B(·) map is shown in

Fig. 3.2. As far as the Φ(·) map is concerned, observe that Follow(qi) = {qi+1},
for i = 1, . . . ,m− 1, and Follow(q0) = {q0, q1}. Thus, for any automaton config-

3.2. The bit-parallelism technique 19

uration D,

Φ(D) =


qi∈D
{qi+1} ∪ {q0} ,

which becomes


qi∈D{qi+1}∪{q1} if we do not represent the initial state. Hence,

if D is represented as a bit-vector, we can compute Φ(D) with a bitwise left

shift operation of one unit and a bitwise or with 1 (represented as 0m−11).

For a configuration D of the NFA, a transition on character c can then be

implemented by the bitwise operations

D ← ((D ≪ 1) | 1) & B[c] .

When a search starts, the initial configuration D is initialized to 0m. Then,

the automaton configuration is updated for each text character, as described

before, by reading the text from left to right. For each position j in T , if D is

the automaton configuration after having read the j-th character, it holds that

Pi ⊒ Tj iff bit i is set in D. Thus, to verify if there is a match at position j it

suffices to check that the (m−1)-th bit is set in D. The worst-case searching time

complexity of the Shift-And algorithm is O(n⌈m/w⌉) while the space complexity

is O(σ⌈m/w⌉). The pseudocode of the algorithm is shown in Fig. 3.3.

3.2.2 The Backward-Nondeterministic-DAWG-Matching algo-

rithm

The Backward-Nondeterministic-DAWG-Matching algorithm (BNDM, for short) sim-

ulates the nondeterministic suffix automaton for P r with the bit-parallelism tech-

nique, using an encoding similar to that described above for the Shift-And algo-

rithm. The automaton configuration is encoded again as a bit vector D of m

bits. The i-th bit of D is set to 1 iff state qi+1 is active, for i = 0, 1, . . . ,m − 1,

and D is initialized to 1m, since after the ε-closure of the initial state I all states

qi represented in D are active. The first transition on character c is implemented

as D ← (D & B[c]), while any subsequent transition on character c can be

implemented as

D ← ((D ≪ 1) & B[c]) .

This algorithm works by shifting a window of length m over the text. Specifi-

cally, for each window alignment, it searches the pattern by scanning the current

window backwards and updating the automaton configuration accordingly.

20 The string matching problem

BNDM (P , m, T , n)

1. for c ∈ Σ do B[c]← 0m

2. for i← 0 to m− 1 do
3. c← P [m− 1− i]

4. B[c] = B[c] | (0m−11≪ i)
5. j ← m− 1
6. while j < n do
7. k ← 0, last← 0
8. D ← 1m

9. while D ̸= 0m do
10. D ← D & B[T [j − k]]
11. k ← k + 1

12. if D & 10m−1 ̸= 0m then
13. if k > 0 then
14. last← k
15. else Output(j)
16. D ← D ≪ 1
17. j ← j + m− last

Figure 3.4: The Backward-Nondeterministic-DAWG Matching algorithm.

Let j be the ending position of the current window. At each iteration k, for

k = 1, . . . ,m, the automaton configuration is updated by performing a transition

on character T [j − k + 1], as described before. After having performed the k-th

transition, it holds that

T [j − k + 1, . . . , j] = P [m− 1− i, . . . ,m− 2− i+ k]

iff bit i is set in D, for i = k − 1, . . . ,m− 1.

Each time a suffix of P r (i.e., a prefix of P) is found, i.e., when prior to the

left shift the (m − 1)-th bit of D & B[c] is set, the suffix length k is recorded

in a variable last. A search ends when either D becomes zero (i.e., when no

factor of P can be recognized) or when the algorithm has performed m iterations

(i.e., when a match has been found). The window is then shifted to the starting

position of the longest recognized proper prefix, i.e., to position j+m− last. The

worst-case searching time complexity of the BNDM algorithm is O(nm⌈m/w⌉),
while its space complexity is O(σ⌈m/w⌉). The algorithm BNDM is optimal on

average as BDM. The pseudocode of the algorithm is shown in Fig. 3.4.

3.2.3 Bit-parallelism limitations

When the pattern size m is larger than w, the configuration bit-vector and all

auxiliary bit-vectors need to be splitted over ⌈m/w⌉ multiple words. For this

3.3. Tighter packing for bit-parallelism 21

reason the performance of the Shift-And and BNDM algorithms, and, more in

general, of bit-parallel algorithms degrade considerably as ⌈m/w⌉ grows. A com-

mon approach to overcome this problem consists in constructing an automaton

for a substring of the pattern fitting in a single computer word, to filter possible

candidate occurrences of the pattern. When an occurrence of the selected sub-

string is found, a subsequent naive verification phase allows to establish whether

it belongs to an occurrence of the whole pattern. However, besides the costs of

the additional verification phase, a drawback of this approach is that, in the case

of the BNDM algorithm, the maximum possible shift length cannot exceed w,

which may be much smaller than m.

3.3 Tighter packing for bit-parallelism

We present a new encoding of the configurations of the nondeterministic (suffix)

automaton for a given pattern P of length m, which on the average requires less

than m bits and can be used within the bit-parallel framework. The effect is that

bit-parallel string matching algorithms based on this encoding scale much better

as m grows, at the price of a larger space complexity. We will illustrate such

a point experimentally with the Shift-And and the BNDM algorithms, but our

proposed encoding can also be applied to other variants of the BNDM algorithm.

Our encoding will have the form (D, a), where D is a k-bit vector, with k 6 m

(on the average k is much smaller than m), and a is an alphabet symbol (the last

text character read) that will be used as a parameter in the bit-parallel simulation

with the vector D.

The encoding (D, a) is obtained by suitably factorizing the simple bit-vector

encoding for NFA configurations presented in the previous section. More specifi-

cally, it is based on the following pattern factorization:

Definition 3.1 (1-factorization). Let P ∈ Σm. A 1-factorization u of size k of

P is a sequence ⟨u1, u2, . . . , uk⟩ of nonempty substrings of P such that:

(a) P = u1u2 . . . uk ;

(b) each factor uj in u contains at most one occurrence of any of the characters

in the alphabet Σ, for j = 1, . . . , k .

For a given 1-factorization u = ⟨u1, u2, . . . , uk⟩ of P , we put

ruj = Def |u1u2 . . . uj−1| , (3.1)

22 The string matching problem

for j = 1, 2, . . . , k + 1 (so that ru1 = 0 and ruk+1 = m) and call the numbers

ru1 , r
u
2 , . . . , r

u
k+1 the indices of u. Plainly, ruj is the index in P of the first char-

acter of the factor uj, for j = 1, 2, . . . , k.

A 1-factorization of P is minimal if such is its size.

Observe that the size k of a 1-factorization u of a string P ∈ Σm satisfies the

condition m
σ


≤ k ≤ m.

Indeed, as the length of any factor in u is limited by the size σ of the alphabet

Σ, then m ≤ kσ, which implies

m
σ


≤ k. The second inequality is immediate

and occurs when P has the form am, for some a ∈ Σ, in which case P has only

the 1-factorization of size m whose factors are all equal to the single character

string a.

As we shall show below, the size of the bit-vector D in our encoding depends

on the size of the 1-factorization used; as a result, a minimal 1-factorization yields

the smallest vector. A greedy approach to construct a 1-factorization of smallest

size for a string P consists in computing the longest prefix u1 of P containing no

repeated characters and then recursively 1-factorize the string P deprived of its

prefix u1, as in the procedure Greedy-1-Factorize shown below.

Greedy-1-Factorize(P)

if P is the empty string ε then

return the empty sequence ⟨ ⟩
else

u1 ← longest prefix of P containing no repeated character

P ′ ← the suffix of P such that P = u1P
′

return the sequence obtained by prepending the factor u1 to the

sequence Greedy-1-Factorize(P ′)

endif

The correctness of the procedure Greedy-1-Factorize is shown in the following

lemma:

Lemma 3.1. The call Greedy-1-Factorize(P), for a string P ∈ Σm, computes a

minimal 1-factorization of P .

Proof. Let u = ⟨u1, u2, . . . , uk⟩ be the 1-factorization computed by the call

Greedy-1-Factorize(P) and let v = ⟨v1, v2, . . . , vh⟩ be any 1-factorization of P .

We just need to show that k ≤ h.

3.3. Tighter packing for bit-parallelism 23

By construction, the character first(ui+1) occurs in ui, for i = 1, 2, . . . , k− 1,

otherwise the factor ui could have been extended by at least one more character.

We say that the factor vj of v covers the factor ui of u if rvj ≤ rui < rvj+1 (see

(3.1)), i.e., if j is the largest index such that the string v1v2 . . . vj−1 is a prefix of

the string u1u2 . . . ui−1.

Plainly, each factor of u is covered by exactly one factor of v. Thus, for our

purposes, it is enough to show that each factor of v can cover at most one factor

of u, so that the number of factors in v must be at least as large as the number

of factors in u. Indeed, if this were not the case then

rvj ≤ rui < rui+1 < rvj+1 ,

for some i ∈ {1, 2, . . . , h} and j ∈ {1, 2, . . . , k}. But then, the string ui.first(ui+1),

which contains two occurrences of the character first(ui+1), would be a factor of

vj , which yields a contradiction.

A 1-factorization ⟨u1, u2, . . . , uk⟩ of a given pattern P ∈ Σ∗ induces naturally

a partition {Q1, . . . , Qk} of the set Q \ {q0} of states of the automaton A (P) =

(Q,Σ, δ, q0, F) for the language Σ∗P , where

Qi =Def


qri+1, . . . , qri+1


, for i = 1, . . . , k ,

and r1, r2, . . . , rk+1 are the indices of ⟨u1, u2, . . . , uk⟩.
Notice that the labels of the arrows entering the states

qri+1, . . . , qri+1 ,

in that order, form exactly the factor ui, for i = 1, . . . , k. Hence, if for any

alphabet symbol a we denote by Qi,a the collection of states in Qi with an

incoming arrow labeled a, it follows that |Qi,a| ≤ 1 since, by condition (b) of

the above definition of 1-factorization, no two states in Qi can have an incoming

transition labeled by the same character. When Qi,a is nonempty, we write qi,a

to indicate the unique state q of A (P) for which q ∈ Qi,a, otherwise qi,a is

undefined. Upon using qi,a in any expression, we also implicitly assert that qi,a

is defined.

For any valid configuration δ∗(q0, Sa) of the automaton A (P) on some input

of the form Sa ∈ Σ∗, we have that q ∈ δ∗(q0, Sa) only if the state q has an in-

24 The string matching problem

coming transition labeled a. Therefore, Qi∩ δ∗(q0, Sa) ⊆ Qi,a and, consequently,

|Qi ∩ δ∗(q0, Sa)| ≤ 1, for each i = 1, . . . , k. The configuration δ∗(q0, Sa) can then

be encoded by the pair (D, a), where D is the bit-vector of size k such that D[i]

is set iff Qi contains an active state, i.e., Qi ∩ δ∗(q0, Sa) ̸= ∅, iff qi,a ∈ δ∗(q0, Sa).

Indeed, if i1, i2, . . . , il are all the indices i for which D[i] is set, we have that

δ∗(q0, Sa) = {qi1,a, qi2,a, . . . , qil,a} holds, which shows that the above encoding

(D, a) can be inverted.

To illustrate how to compute D′ in a transition (D, a)
A−→ (D′, c) on character

c using bit-parallelism, it is convenient to give some further definitions.

For i = 1, . . . , k− 1, we put ui = ui.first(ui+1). We also put uk = uk and call

each set ui the closure of ui.

Plainly, any 2-gram can occur at most once in the closure ui of any factor of

our 1-factorization ⟨u1, u2, . . . , uk⟩ of P . We can then encode the 2-grams present

in the closure of the factors ui by a σ × σ matrix B of k-bit vectors, where the

i-th bit of B[c1][c2] is set iff the 2-gram c1c2 is present in ui or, equivalently, iff

(last(ui) ̸= c1 ∧ qi,c2 ∈ δ(qi,c1 , c2))∨
(i < k ∧ last(ui) = c1 ∧ qi+1,c2 ∈ δ(qi,c1 , c2)) ,

(3.2)

for every 2-gram c1c2 ∈ Σ2 and i = 1, . . . , k.

To properly take care of transitions from the last state in Qi to the first state

in Qi+1, it is also useful to have an array L, of size σ, of k-bit vectors encoding,

for each character c ∈ Σ, the collection of factors ending with c. More precisely,

the i-th bit of L[c] is set iff last(ui) = c, for i = 1, . . . , k.

We show next that the matrix B and the array L, which in total require

(σ2 + σ)k bits, are all is needed to compute the transition (D, a)
A−→ (D′, c) on

character c. To this purpose, we first state the following basic property, which

can easily be proved by induction.

Lemma 3.2 (Transition Lemma). Let (D, a)
A−→ (D′, c), where (D, a) is the

encoding of the configuration δ∗(q0, Sa) for some string S ∈ Σ∗, so that (D′, c) is

the encoding of the configuration δ∗(q0, Sac).

Then, for each i = 1, . . . , k, qi,c ∈ δ∗(q0, Sac) if and only if either

(i) last(ui) ̸= a, qi,a ∈ δ∗(q0, Sa), and qi,c ∈ δ(qi,a, c), or

(ii) i ≥ 1, last(ui−1) = a, qi−1,a ∈ δ∗(q0, Sa), and qi,c ∈ δ(qi−1,a, c). �

3.3. Tighter packing for bit-parallelism 25

F-PREPROCESS(P,m)

1. for c ∈ Σ do S[c]← 0
2. for c ∈ Σ do L[c]← 0
3. for c, c′ ∈ Σ do B[c][c′]← 0
4. b← 0, e← 0, k ← 0
5. while e < m do
6. while e < m and S[P [e]] < k + 1 do
7. S[P [e]]← k + 1, e← e + 1
8. for i← b + 1 to e− 1 do
9. B[P [i− 1]][P [i]]← B[P [i− 1]][P [i]] | (1≪ k)

10. L[P [e− 1]]← L[P [e− 1]] | (1≪ k)
11. if e < m then
12. B[P [e− 1]][P [e]]← B[P [e− 1]][P [e]] | (1≪ k)
13. b← e
14. k ← k + 1
15. return (B,L, k)

Figure 3.5: Preprocessing procedure for the construction of the arrays B and L relative
to a minimal 1-factorization of the pattern.

Now observe that, by definition, the i-th bit of D′ is set iff qi,c ∈ δ∗(q0, Sac)

or, equivalently by the Transition Lemma and (3.2), iff (for i = 1, . . . , k)

(D[i] = 1 ∧B[a][c][i] = 1 ∧ ∼L[a][i] = 1)∨
(i ≥ 1 ∧D[i− 1] = 1 ∧B[a][c][i− 1] = 1 ∧ L[a][i− 1] = 1) iff

((D & B[a][c] & ∼L[a])[i] = 1 ∨ (i ≥ 1 ∧ (D & B[a][c] & L[a])[i− 1] = 1)) iff

((D & B[a][c] & ∼L[a])[i] = 1 ∨ ((D & B[a][c] & L[a])≪ 1)[i] = 1) iff

((D & B[a][c] & ∼L[a]) | ((D & B[a][c] & L[a])≪ 1))[i] = 1 .

Hence D′ = (D & B[a][c] & ∼L[a]) | ((D & B[a][c] & L[a])≪ 1) , so that D′ can

be computed by the following bitwise operations:

D ← D & B[a][c]

H ← D & L[a]

D ← (D & ∼H) | (H ≪ 1) .

To check whether the final state qm belongs to a configuration encoded as

(D, a), we have only to verify that qk,a = qm. This test can be broken into two

steps: first, one checks if any of the states in Qk is active, i.e., D[k] = 1; then, one

verifies that the last character read is the last character of uk, i.e., L[a][k] = 1.

26 The string matching problem

The whole test can then be implemented with the bitwise test

D & 10k−1 & L[a] ̸= 0k .

The same considerations also hold for the suffix automaton S (P). The only

difference is in the handling of the initial state. In the case of the automaton

A (P), state q0 is always active, so we have to activate state q1 when the current

text symbol is equal to P [0]. To do so it is enough to perform a bitwise or of

D with 0k−11 when a = P [0], as q1 ∈ Q1. Instead, in the case of the suffix

automaton S (P), as the initial state has an ε-transition to each state, all the

bits in D must be set, as in the BNDM algorithm.

A drawback of the new encoding is that the handling of the self-loop and of

the acceptance condition is more complex with respect to the original encoding.

However, it is possible to simplify them at the expense of an overhead of at

most two bits in the representation, by forcing the first and last factor in a 1-

factorization to have length 1. Note that the handling of the self-loop is relevant

for the automaton A (P) only, while the acceptance condition concerns both the

A (P) and S (P) automata. In particular, to simplify the handling of the self-

loop, we compute a factorization where the length of the first factor is equal to

1. Let ⟨v1, v2, . . . , vl⟩ be a minimal 1-factorization of P [1 ..m− 1]; we define the

following 1-factorization ⟨u1, u2, . . . , ul+1⟩ of P , where

ui =

P [0] if i = 1

vi−1 if 2 ≤ i ≤ l + 1.

Observe that the size of Q1 in the corresponding partition is 1; it follows that to

handle the self-loop one does not need to perform the check a = P [0] but just

perform a bitwise or with 0k−11, as there is one state only in the first subset and

thus q1,a is undefined for all a ̸= P [0].

In a similar way, in order to simplify the acceptance condition, we compute a

factorization where the length of the last factor is equal to 1; let ⟨v1, v2, . . . , vl⟩ be
a minimal 1-factorization of P [0 ..m− 2]; we define the following 1-factorization

⟨u′1, u′2, . . . , u′l+1⟩ of P where

u′i =

vi if 1 ≤ i ≤ l

P [m− 1] if i = l + 1.

3.3. Tighter packing for bit-parallelism 27

F-Shift-And(P,m, T, n)

1. (B,L, k)← F-PREPROCESS(P,m)

2. D ← 0k

3. a← T [0]
4. for j ← 1 to n− 1

5. if a = P [0] then D ← D | 0k−11
6. D ← D & B[a][T [j]]
7. H ← D & L[a]
8. D ← (D & ∼H) | (H ≪ 1)
9. a← T [j]

10. if (D & 10k−1 & L[a]) ̸= 0k

11. then Output(j)

F-BNDM(P,m, T, n)

1. (B,L, k)← F-PREPROCESS(P r,m)
2. j ← m− 1
3. while j < n do
4. i← 1, l← 0

5. D ← 1k, a← T [j]

6. while D ̸= 0k do

7. if (D & 10k−1 & L[a]) ̸= 0k then
8. if i < m then
9. l← i

10. else Output(j)
11. D ← D & B[a][T [j − i]]
12. H ← D & L[a]
13. D ← (D & ∼H) | (H ≪ 1)
14. a← T [j − i]
15. i← i + 1
16. j ← j + m− l

Figure 3.6: Variants of Shift-And (left) and BNDM (right) based on the 1-
factorization encoding.

In this case, the bitwise and with L[a] in the acceptance condition test is not

needed anymore, as there is only one state in the last subset.

Let k be the size of a minimal 1-factorization of P . Plainly, in both cases,

k− 1 ≤ l ≤ k; in particular, if l = k, we have an overhead of 1 bit. If we combine

the two techniques, the overhead in the representation is of at most two bits.

The preprocessing procedure which builds the arrays B and L described above

and relative to a minimal 1-factorization of the given pattern P ∈ Σm is reported

in Fig. 3.5. Its time complexity is O(σ2 + m). The variants of the Shift-And

and BNDM algorithms based on our encoding of the configurations of the au-

tomata A (P) and S (P) are reported in Fig. 3.6 (algorithms F-Shift-And and

F-BNDM, respectively). Their worst-case time complexities are O(n⌈k/w⌉) and

O(nm⌈k/w⌉), respectively, while their space complexity is O(σ2⌈k/w⌉), where k

is the size of a minimal 1-factorization of the pattern.

3.3.1 q-grams based 1-factorization

It is possible to a achieve higher compactness by transforming the pattern into a

sequence of overlapping q-grams and computing the 1-factorization of the result-

ing string. This technique has been extensively used to boost the performance of

several string matching algorithms [36, 60]. More precisely, given a pattern P of

length m defined over an alphabet Σ of size σ, the q-gram encoding of P is the

28 The string matching problem

string P
(q)
0 P

(q)
1 . . . P

(q)
m−q, defined over the alphabet Σq of the q-grams of Σ, where

P
(q)
i = P [i]P [i+ 1] . . . P [i+ q − 1] ,

i.e., the pattern is transformed into the sequence of its m − q + 1 overlapping

substrings of length q, where each substring P
(q)
i is regarded as a symbol be-

longing to Σq. Clearly, the size of the 1-factorization of the resulting string is

at least

m−q+1

σq


. Hence, the size of the 1-factorization can be significantly re-

duced by using a q-grams representation. The only drawback is that the space

needed for the tables B and L can grow up to (σ2q + σq)k, where k is the size

of the 1-factorization, if one follows a naive approach. Observe that, for each

pair

P

(q)
i , P

(q)
i+1


, with i = 0, . . . ,m − q − 1, the corresponding transition must

be encoded into the table B. However, as we are using overlapping q-grams, we

have that P
(q)
i [1 .. q − 1] @ P

(q)
i+1, i.e., the last q − 1 symbols of P

(q)
i are equal to

the first q − 1 symbols of P
(q)
i+1. Thus, there is no need to use the full q-gram

P
(q)
i+1 as index in the table, rather we can use only its last symbol. More precisely,

let ⟨uq
1, u

q
2, . . . , u

q
k⟩ be a 1-factorization of the q-gram encoding of P ; we encode

the substrings of length 2q (or, equivalently, the 2-grams over Σq) present in the

closure of the factors uq
i by a Σq×Σ matrix B of k bit vectors, where the i-th bit

of B[C1][c2] is set iff the substring C1.C1[1 .. q − 1].c2 is present in uq
i , for every

C1 ∈ Σq, c2 ∈ Σ. This method reduces the space complexity to (σq+1 + σq)k. In

general, however, it is not feasible to use a direct access table for the tables B

and T with this encoding.

For values of σq still suitable for a direct access table, a useful technique is

to lazily allocate only the rows of B that have at least one nonzero element. Let

gq(P) be the number of distinct q-grams in P ; then gq(P) ≤ min(σq,m− q + 1).

We can have at most gq(P)− 1 nonzero rows in B (there is no transition starting

from the last q-gram), which can be significantly less than σq. The resulting

space complexity is then O(σq + (gq(P)σ + σq)k).

An approach suitable to store the tables B and T , for arbitrary values of q,

is to use a hash table, where the keys are the q-grams of the pattern. The main

problem which arises when engineering a hash table is to choose a good hash

function. Moreover, as we require that lookup in the searching phase be as fast

as possible, the hash function must also be very efficient to compute. Since we

are using overlapping q-grams, a given q-gram shares q − 1 symbols with the

previous one. To exploit this redundancy, we need a hash function that allows a

3.3. Tighter packing for bit-parallelism 29

recursive computation of the hash value of a generic q-gram Xb starting from the

hash value of the previous q-gram aX, for |X| ∈ Σq−1 and a, b ∈ Σ. A method

that satisfies such a requirement is hashing by integer division, which has been

used in the Karp-Rabin string matching algorithm [42]. In this case, the hash

function has the following definition

h(s0, s1, . . . , sq−1) =
q−1
j=0

rq−j−1ord(sj) mod n , (3.3)

where the radix r and n are parameters and ord : Σ→ N is a function that maps

a symbol to a number in the range 0, . . . , r − 1. For a given string s, the hash

values of its overlapping q-grams can then be computed by using the following

recursive definition

1. h(sq0) =
q−1

j=0 r
q−j−1ord(sj) mod n

2. h(sqi) = (rh(sqi−1) + ord(si+q−1)− rqord(si−1)) mod n

for i = 1, . . . , |s| − q. The radix r is usually chosen in Z∗n in such a way that the

cycle length min{k | rk ≡ 1 (mod n)} is maximal (if the cycle length is smaller

than the length of the string, permutations of the same string could have the same

hash value). As our domain is the set of strings of fixed length q, in this case it is

enough to ensure that the cycle length is at least q. Another possibility would be

to use hashing by cyclic polynomial, which is described in [26] together with an

in-depth survey of recursive hashing functions for q-grams. The space complexity

of this approach is O(gq(P)((σ+1)k+ q)). If we handle collisions with chaining,

the time complexity gets an additional multiplicative term equal to (1 + α)q,

where α is the load factor. The q term in both the space and time complexities is

due to the fact that, for each inserted q-gram, we have to store also the original

string and, on searching, when an entry’s hash matches, we have to compare the

full q-gram. For small values of q, this overhead is negligible. If q log σ ∈ O(w),
where w is the word size in bits, the check can be performed in constant time by

storing in the hash table, for each inserted q-gram s0s1, . . . , sq−1, its signature

h(s0, s1, . . . , sq−1), with r = σ and n = σq, instead of the original string and

then computing incrementally the signatures of the q-grams of the text as shown

above.

30 The string matching problem

3.3.2 Experimental evaluation

In this section we present and comment the experimental results relative to an

extensive comparison of the BNDM and F-BNDM algorithms and of the Shift-And

and F-Shift-And algorithms. In particular, in the BNDM case we have imple-

mented two variants for each algorithm, named single word and multiple words,

respectively. Single word variants are based on the automaton for a suitable sub-

string of the pattern whose configurations can fit in a computer word; a naive

check is then used to verify whether any occurrence of the subpattern can be

extended to an occurrence of the complete pattern: specifically, in the case of the

BNDM algorithm, the prefix pattern of length min(m,w) is chosen, while in the

case of the F-BNDM algorithm the longest substring of the pattern which is a

concatenation of at most w consecutive factors is selected. Multiple words vari-

ants are based on the automaton for the complete pattern whose configurations

are splitted, if needed, over multiple machine words. The resulting implemen-

tations are referred to in the tables below as BNDM∗ and F-BNDM∗.We also

implemented versions of F-BNDM, named F-BNDMq, that use the q-grams based

1-factorization, for q ∈ {2, 3, 4}. q-grams are indexed using a hash table of size

212, with collisions resolution by chaining; the hash function used is (3.3), with

parameters r = 131 and n = 2w.

We have also included in our tests the LBNDM algorithm [59]. When the

alphabet is considerably large and the pattern length is at least two times the

word size, the LBNDM algorithm achieves larger shift lengths. However, the time

for its verification phase grows proportionally to m/w, so there is a treshold

beyond which its performance degrades significantly.

For the Shift-And case, only test results relative to the multiple words variant

have been included in the tables below, since the overhead due to a more complex

bit-parallel simulation in the single word case is not paid off by the reduction of

the number of calls to the verification phase.

The main two factors on which the efficiency of BNDM-like algorithms de-

pends are the maximum shift length and the number of words needed for repre-

senting automata configurations. For the variants of the first case, the shift length

can be at most the length of the longest substring of the pattern that fits in a

computer word. This, for the BNDM algorithm, is plainly equal to min(w,m):

hence, the word size is an upper bound for the shift length whereas, in the case of

the F-BNDM algorithm, it is generally possible to achieve shifts of length larger

3.3. Tighter packing for bit-parallelism 31

Algorithm 32 64 128 256 512 1024 2048 4096

LBNDM 2.44 1.46 1.13 0.77 0.62 0.55 1.94 10.81
BNDM 2.30 2.33 2.35 2.34 2.35 2.34 2.33 2.33
BNDM∗ 2.44 2.77 2.38 2.21 2.05 2.25 2.91 5.40
F-BNDM 2.44 1.62 1.27 1.03 1.03 0.99 0.98 0.93
F-BNDM∗ 2.53 1.64 1.23 1.72 1.49 1.50 1.60 2.44
F-BNDM2 3.26 2.24 1.63 1.04 0.68 0.67 0.68 0.68
F-BNDM3 2.49 1.61 1.26 0.84 0.59 0.55 0.55 0.56
F-BNDM4 2.29 1.37 1.05 0.70 0.53 0.51 0.57 0.58
Shift-And∗ 8.85 51.45 98.42 142.27 264.21 508.71 997.19 1976.09
F-Shift-And∗ 22.20 22.20 22.21 92.58 147.79 213.70 354.32 662.06

Table 3.1: Running times (ms) on the King James version of the Bible (σ = 63).

Algorithm 32 64 128 256 512 1024 2048 4096

LBNDM 1.24 0.84 0.60 0.48 0.38 0.52 7.83 36.84
BNDM 1.34 1.35 1.37 1.37 1.36 1.34 1.36 1.36
BNDM∗ 1.39 1.48 1.22 1.22 1.12 1.25 1.80 4.18
F-BNDM 1.19 0.77 0.56 0.49 0.48 0.48 0.48 0.47
F-BNDM∗ 1.36 0.84 0.83 0.89 0.77 0.79 1.00 1.92
F-BNDM2 1.42 0.96 0.67 0.48 0.35 0.35 0.36 0.36
F-BNDM3 1.26 0.71 0.47 0.32 0.32 0.40 0.63 0.76
F-BNDM4 1.36 0.71 0.45 0.30 0.30 0.40 0.73 2.92
Shift-And∗ 6.33 38.41 70.59 104.42 189.16 362.83 713.87 1413.76
F-Shift-And∗ 15.72 15.70 40.75 73.59 108.33 170.52 290.24 541.53

Table 3.2: Running times (ms) on a protein sequence of the Saccharomyces cerevisiae
genome (σ = 20).

than w, as our encoding allows to pack more state configurations per bit on the

average as shown in a table below. In the multi-word variants, the shift lengths

for both algorithms, denoted BNDM∗ and F-BNDM∗, are always equal, as they

use the same automaton; however, the 1-factorization based encoding involves

a smaller number of words on the average, especially for long patterns, thus

providing a considerable speedup.

The tests have been performed on a 2.33 GHz Intel Core 2 Duo. We used the

input files (i), (iii), (iv) (see Section 2.6).

For each input file, we have generated sets of 100 patterns of fixed length

m randomly extracted from the text, for m ranging over the values 32, 64, 128,

256, 512, 1024, 2048, 4096. For each set of patterns we report the mean over the

running times of 100 runs.

Concerning the BNDM-like algorithms, the experimental results show that in

32 The string matching problem

Algorithm 32 64 128 256 512 1024 2048 4096

LBNDM 3.90 2.88 2.78 8.63 90.43 109.34 101.86 98.87
BNDM 3.03 3.02 3.02 3.01 3.01 3.02 3.02 3.03
BNDM∗ 3.25 4.58 4.23 3.89 3.42 3.56 4.27 6.72
F-BNDM 4.44 2.47 2.25 2.19 2.13 2.10 2.08 2.06
F-BNDM∗ 4.20 2.85 4.20 3.15 2.85 2.78 3.23 4.89
F-BNDM2 7.17 4.40 2.97 2.64 2.59 2.58 2.59 2.60
F-BNDM3 5.13 3.38 2.53 1.50 1.33 1.42 1.33 1.31
F-BNDM4 3.29 2.22 1.99 1.24 0.84 0.76 0.77 0.77
Shift-And∗ 10.19 59.00 93.97 162.79 301.55 579.92 1131.50 2256.37
F-Shift-And∗ 25.04 42.93 114.22 167.11 281.37 460.37 839.32 1728.71

Table 3.3: Running times (ms) on a DNA sequence of the Escherichia coli genome
(σ = 4).

(A) ecoli protein bible

32 32 32 32
64 63 64 64

128 72 122 128
256 74 148 163
512 77 160 169

1024 79 168 173
1536 80 173 176
2048 80 174 178
4096 82 179 182

(B) ecoli protein bible

32 15 8 6
64 29 14 12

128 59 31 26
256 119 60 50
512 236 116 102

1024 472 236 204
1536 705 355 304
2048 944 473 407
4096 1882 951 813

(C) ecoli protein bible

32 2.13 4.00 5.33
64 2.20 4.57 5.33

128 2.16 4.12 4.92
256 2.15 4.26 5.12
512 2.16 4.41 5.01

1024 2.16 4.33 5.01
1536 2.17 4.32 5.05
2048 2.16 4.32 5.03
4096 2.17 4.30 5.03

Table 3.4: (A) The length of the longest substring of the pattern fitting in w bits; (B)
the size of the minimal 1-factorization of the pattern; (C) the ratio between m and the
size of the minimal 1-factorization of the pattern.

3.4. Increasing the parallelism in bit-parallel algorithms 33

the case of long patterns both variants based on the 1-factorization encoding are

considerably faster than their corresponding variants BNDM and BNDM∗. In

the first test suite, with σ = 63, the LBNDM algorithm turns out to be faster

than F-BNDM, except for very long patterns, as the treshold on large alphabets

is quite high. In the second test suite, with σ = 20, LBNDM is still competitive

but, in the cases in which it beats the F-BNDM algorithm, the difference is small.

In almost all the tests, the q-grams versions of F-BNDM achieve the best running

times. It is worth observing that, in the case of file (ii), the number of distinct

q-grams in the patterns is very high on average, and thus a small value of q yields

more stable results. Instead, in the case of file (iii), where the alphabet size is

small and thus also the number of distinct q-grams is small, the version with

q = 4 is the fastest one. It turns out that F-BNDM4 is the fastest algorithm also

in the case of file (i) (natural language), where, despite the large alphabet size,

the number of distinct q-grams in the patterns is small on average.

Likewise, the F-Shift-And variant is faster than the classical Shift-And algo-

rithm in all cases, for m ≥ 64.

3.4 Increasing the parallelism in bit-parallel al-

gorithms

In this section we present two different approaches which lead to a higher level of

parallelism in bit-parallel algorithms. By way of demonstration we apply them

to a bit-parallel version of the Wide-Window algorithm,1 but our approaches can

be applied to other (more efficient) solutions based on bit-parallelism as well.

The two approaches can be summarized as follows:

• first approach: if the algorithm searches for the pattern in fixed-size text

windows then, at each attempt, process simultaneously two (adjacent or

partially overlapping) text windows by using in parallel two copies of the

same automaton;

• second approach: if each search attempt of the algorithm can be di-

vided into two steps (which possibly make use of two different automata)

then execute simultaneously the two steps, by running the two automata

in parallel.

1We chose the Wide-Window algorithm in our case study since its structure makes its paral-
lelization simpler.

34 The string matching problem

(A) The Bit-Parallel Wide-Window algorithm (B) The Bit-(Parallel)2 Wide-Window algorithm

(C) The Bit-Parallel (Wide-Window)2 algorithm

Figure 3.7: Structure of a searching iteration at a given position j in the text t of (A)
the BpWw algorithm, (B) the Bp

2Ww algorithm, and (C) the BpWw
2 algorithm.

Both variants use the SIMD (Single Instruction Multiple Data) paradigm.

This approach, on which vectorial instructions sets like MMX and SSE are based,

consists in executing the same instructions on multiple data in a parallel way.

Tipically, a register of size w is logically divided into i blocks of k bits which are

then updated simultaneously.

In both variants of the BpWw algorithm, we divide a word of w bits into two

blocks, each being used to encode a suffix automaton. Thus, the maximum length

of the pattern gets restricted to ⌊w/2⌋. We denote with B the array of bit masks

encoding the suffix automaton S (p) and with C the array of bit masks encoding

the suffix automaton S (pr).

3.4.1 The Wide-Window Algorithm

The Wide-Window algorithm, (WW, for short) [37], is a recent algorithm for

the string matching problem based on the suffix automaton. In the following

description we slightly depart from its original version so as to make the algorithm

parallelizable in ways that will be explained later. Let p be a pattern of length

m and let t be a text of length n. The WW algorithm locates ⌊n/m⌋ attempt

positions in t, namely positions j = km− 1, for k = 1, . . . , ⌊n/m⌋. For each such

position j, the pattern p is searched for in the attempt window of size 2m − 1

centered at j, i.e., in the substring t[j −m+ 1 .. j +m− 1]. Each of such search

3.4. Increasing the parallelism in bit-parallel algorithms 35

phases is divided into two steps.

In the first step, the right side of the attempt window, consisting of the last

m characters, is scanned from left to right with the automaton S (p). In this

step, the starting positions (in p) of the suffixes of p aligned with position j in t

are collected in a set

Sj = {0 ≤ i < m | p[i ..m− 1] = t[j .. j +m− 1− i]} .

In the second step, the left half of the attempt window, consisting of the first m

symbols, is scanned from right to left with the automaton S (pr). During this

step, the end positions (in p) of the prefixes of p aligned with position j in t are

collected in a set

Pj = {0 ≤ i < m | p[0 .. i] = t[j − i .. j]} .

Taking advantage of the fact that an occurrence of p is located at position (j−k)

of t if and only if k ∈ Sj ∩ Pj , for k = 0, . . . ,m − 1, the number of all the

occurrences of p in the attempt window centered at j is readily given by the

cardinality |Sj ∩ Pj |.

Figure 2(A) shows a simple schematization of the structure of an iteration

of the WW algorithm at a given position j in t. The two sequential phases are

represented by the arrows labeled 1 and 2, respectively.

It is straightforward to devise a bit-parallel implementation of the WW algo-

rithm. The sets P and S can be encoded by two bit masks P and S, respectively.

The nondeterministic automata S (p) and S (pr) are then used for searching the

suffixes and prefixes of p on the right and on the left parts of the window, respec-

tively. Both automata state configurations and the final state configuration can

be encoded by the bit masks D and M = (1≪ (m−1)), so that (D & M) ̸= 0 will

mean that a suffix or a prefix of the search pattern p has been found, depending

on whether D is encoding a state configuration of the automaton S (p) or of the

automaton S (pr). Whenever a suffix (resp., a prefix) of length (ℓ + 1) is found

(with ℓ = 0, 1, . . . ,m− 1), the bit S[m− 1− ℓ] (resp., the bit P[ℓ]) is set by one

of the following bitwise operations:

S ← S | ((D & M)≫ ℓ) (in the suffix case)

P ← P | ((D & M)≫ (m− 1− ℓ)) (in the prefix case) .

36 The string matching problem

If we are only interested in counting the number of occurrences of p in t,

we can just count the number of bits set in (S & P). This can be done in

log2(w) operations by using a population count function, where w is the size

of the computer word in bits (see [7]). Otherwise, if we also want to retrieve

the matching positions of p in t, we can iterate over the bits set in (S & P) by

repeatedly computing the index of the highest bit set and then masking it.

The resulting algorithm based on bit-parallelism is named Bit-Parallel Wide-

Window algorithm (BpWw, for short). It needs ⌈m/w⌉ words to represent the bit

masks D, S, P, and B[c], for c ∈ Σ. The worst-case time complexity of the BpWw

algorithm is O(n⌈m/w⌉+ ⌊n/m⌋ log2(w)).
Additionally, we observe that the BpWw algorithm can be easily modified so

as to work on windows of size 2m. For the sake of clarity, we have just discussed

a simpler but slightly less efficient variant.

3.4.2 The Bit-Parallel (Wide-Window)2 Algorithm

In the first variant, named Bit-Parallel (Wide-Window)2 (BpWw
2 , for short), two

partially overlapping windows in t, each of size 2m − 1, centered at consecutive

attempt positions j − m and j, are processed simultaneously. For the parallel

simulation two automata are represented in a single word and updated in parallel.

Specifically, each search phase is divided again into two steps. During the

first step, two copies of S (p) are operated in parallel to compute simultaneously

the sets Sj−m and Sj (lines 13-18). Likewise, in the second step, two copies of

S (pr) are operated in parallel to compute the sets Pj−m and Pj (lines 20-25).

To represent the automata with a single word, the bit masks D, M, S, and P are

logically divided into two blocks, each of k = w/2 bits.

During the first step, the most significant k bits of D encode the state of the

suffix automaton S (p) that scan the attempt window centered at j−m. Similarly,

the least significant k bits of D encode the state of the suffix automaton S (p)

that scans the attempt window centered at j. An analogous encoding is used in

the second step, but with the automaton S (pr) in place of S (p). Figure 2(C)

schematizes the structure of a search iteration of the BpWw
2 algorithm, at given

attempt positions j −m and j of t.

The most significant k bits of the bit mask S (resp., P) encode the set Sj−m
(resp., Pj−m), while the least significant k bits encode the set Sj (resp., Pj).

Thus, to properly detect suffixes in both windows, the bit mask M is initialized

3.4. Increasing the parallelism in bit-parallel algorithms 37

(lines 8-9) with the value

M← (1≪ (m+ k − 1)) | (1≪ (m− 1))

and transitions of the automata are performed in parallel with the following

bitwise operations (lines 14-15 and lines 21-22)

D← (D≪ 1) & ((B[t[j −m+ ℓ]]≪ k) | B[t[j + ℓ]]) (in the first phase)

D← (D≪ 1) & ((C[t[j −m− ℓ]]≪ k) | C[t[j − ℓ]]) (in the second phase) ,

for ℓ = 1, . . . ,m− 1 (when ℓ = 0, the left shift of D does not take place).

The remaining bitwise operations are left unchanged, as the automata con-

figurations are updated using the same instructions. Since two windows are

simultaneously scanned at each search iteration, the shift becomes 2m, there-

fore doubling the length of the shift with respect to the WW algorithm. The

pseudocode of the algorithm BpWw
2 is reported in Fig. 3 (on the left).

3.4.3 The Bit-(Parallel)2 Wide-Window Algorithm

The second variant of the WW algorithm which we present next is called Bit-

(Parallel)2 Wide-Window algorithm (Bp
2Ww, for short). The idea behind it consists

in processing a single window at each attempt (as in the original WW algorithm)

but, in this case, by scanning its left and right sides simultaneously. Figure 2(B)

schematizes the structure of a searching iteration of the Bp
2Ww algorithm, while

Fig. 3 (on the right) shows the pseudocode of the Bp
2Ww algorithm.

As above, let p be a pattern of length m, and t be a text of length n. The

bit masks B and C which are used to perform the transitions on both automata

S (p) and S (pr) are computed as in the BpWw algorithm (lines 3-7).

Automata state configurations are again encoded simultaneously in a bit mask

D. Specifically, the most significant k bits of D encode the state of the suffix au-

tomaton S (p), while the least significant k bits of D encode the state of the suffix

automaton S (pr). The Bp
2Ww algorithm uses the following bitwise operations to

perform transitions2 of both automata in parallel (lines 14-15,17):

D← (D≪ 1) & ((B[t[j + ℓ]]≪ k) | C[t[j − ℓ]]) ,

for ℓ = 1, . . . ,m − 1. Note that in this case the left shift of k positions can be

precomputed in B by setting B[c]← B[c]≪ k, for each c ∈ Σ.

2For ℓ = 0, D is simply updated by D← D & ((B[t[j + l]]≪ k) | C[t[j − l]]).

38 The string matching problem

Using the same representation, the final-states bit mask M is initialized as

M← (1≪ (m+ k − 1)) | (1≪ (m− 1)) (lines 8-9) .

At each iteration around an attempt position j of t, the sets Sj and P∗j are

computed, where Sj is defined as in the case of the BpWw algorithm, and P∗j is

defined as P∗j = {0 ≤ i < m | p[0 ..m − 1 − i] = t[j − (m − 1 − i) .. j]}, so that

Pj = {0 ≤ i < m | (m− 1− i) ∈ P∗j }.
The sets Sj and P∗j can be encoded with a single bit mask PS, in the right-

most and leftmost k bits, respectively. Positions in Sj and P∗j are then updated

simultaneusly in PS by executing the following operation (line 16):

PS← PS | ((D & M)≫ l) .

At the end of each iteration, the bit masks S and P are retrieved from PS with

the following bitwise operations (lines 19-20):

P← reverse(PS)≫ (w −m) , S← PS≫ k ,

where reverse denotes the bit-reversal function, which satisfies reverse(x)[i] =

x[w−1− i], for i = 0, . . . , w−1 and any bit mask x. In fact, to obtain the correct

value of P we used bit-reversal modulo m, which has been easily achieved by right

shifting reverse(PS) by (w−m) positions. We recall that the reverse function can

be implemented efficiently with O(log2(w)) operations (see [7]).

3.4.4 Experimental evaluation

We present the results of an extensive experimental comparison of our proposed

variants Bp
2Ww and BpWw

2 with the BpWw and BNDM algorithms. In particular,

we have tested two different implementations of the Bp
2Ww and BpWw

2 algorithms,

characterized by a different implementation of the population-count function.

One implementation uses the built-in version of the GNU C compiler (algorithms

Bp
2Ww and BpWw

2), while the second implementation uses the population-count

function described in [7] (algorithms Bp
2Ww

bc and BpWw
2 bc). We compared the

following string matching algorithms, in terms of running times:

• the Bit-Parallel Wide-Window algorithm (BpWw)

• the Bit-(Parallel)2 Wide-Window algorithm (Bp
2Ww)

• the Bit-(Parallel)2 Wide-Window algorithm with bit-count (Bp
2Ww

bc)

3.4. Increasing the parallelism in bit-parallel algorithms 39

Bit-Parallel (Wide-Window)2 (p,m, t, n)
1. count← 0
2. k ← w/2
3. for c ∈ Σ do B[c]← 0m

4. for c ∈ Σ do C[c]← 0m

5. for i← 0 to m− 1 do
6. B[p[i]]← B[p[i]] | (0m−11≪ i)
7. c← p[m− 1− i]

8. C[c]← C[c] | (0m−11≪ i)

9. H← 10m−1

10. M← (H≪ k) | H
11. j ← 2m− 1
12. while j < n−m do
13. D← 1m, l← 0, S← 0m

14. while D ̸= 0m do
15. H← (B[t[j −m + l]]≪ k) | B[t[j + l]]
16. D← D & H
17. S← S | ((D & M)≫ l)
18. D← D≪ 1
19. l← l + 1
20. D← 1m, l← 0,P← 0m

21. while D ̸= 0m do
22. H← (C[t[j −m− l]]≪ k) | C[t[j − l]]
23. D← D & H
24. P← P | ((D & M)≫ (m− 1− l))
25. D← D≪ 1
26. l← l + 1
27. count← count + popcount(P & S)
28. j ← j + 2m

Bit-(Parallel)2 Wide-Window (p,m, t, n)
1. count← 0
2. k ← w/2
3. for c ∈ Σ do B[c]← 0m

4. for c ∈ Σ do C[c]← 0m

5. for i← 0 to m− 1 do
6. B[p[i]]← B[p[i]] | (0m−11≪ (k + i))
7. c← p[m− 1− i]

8. C[c]← C[c] | (0m−11≪ i)

9. H← 10m−1

10. M← (H ≪ k) | H
11. j ← m− 1
12. while j < n−m do
13. D← 1m, l← 0,PS← 0m

14. while D ̸= 0m do
15. H← C[t[j − l]] | B[t[j + l]]
16. D← D & H
17. PS← PS | ((D & M)≫ l)
18. D← D≪ 1
19. l← l + 1
20. P← reverse(PS)≫ (w −m)
21. S← PS≫ k
22. count← count + popcount(P & S)
23. j ← j + m

Figure 3.8: The Bit-Parallel (Wide-Window)2 algorithm (left) and the Bit-(Parallel)2

Wide-Window algorithm (right) for the string matching problem.

• the Bit-Parallel (Wide-Window)2 algorithm (BpWw
2)

• the Bit-Parallel (Wide-Window)2 algorithm with bit-count (BpWw
2 bc)

• the Backward-Nondeterministic-DAWG-Matching algorithm (BNDM) .

The tests have been performed on a 1.66 GHz Intel Core 2 Duo. In par-

ticular, all algorithms have been tested on seven Randσ problems, for σ =

2, 4, 8, 16, 32, 64, 128, where a Randσ problem consists of searching a set of 400

random patterns of a given length in a 5Mb random text over a common alphabet

of size σ, with a uniform character distribution.

Only short patterns of length m = 2, 4, 6, 8, 10, 12, 14, 16 have been considered

in our tests, since the bit size of a word was, in our case, 32. However, the same

approach could be applied with 64-bit processors or using Intel Processors with

SSE instructions on 128 bit registers, to process patterns up to lengths of 32

and of 64, respectively. Moreover, we observe that ⌈2m/w⌉ different words could
be used for representing our suffix automata for longer patterns, overcoming the

40 The string matching problem

Algorithm 2 4 6 8 10 12 14 16

BpWw 81.65 63.40 52.12 44.25 38.15 33.42 30.07 27.10

Bp
2 Ww 77.50 48.15 33.22 25.55 21.17 18.30 16.22 14.60

Bp
2 Ww

bc 64.22 45.55 35.35 28.75 24.30 21.07 18.65 16.72

BpWw
2 90.57 70.07 55.45 45.52 38.30 33.15 29.17 26.85

BpWw
2 bc 65.97 56.67 47.85 40.45 34.92 30.67 27.45 25.65

BNDM 69.07 54.57 41.05 30.80 24.45 20.15 17.20 15.00

Table 3.5: Running times for a Rand2 problem.

Algorithm 2 4 6 8 10 12 14 16

BpWw 61.57 38.12 27.80 22.15 18.55 15.92 14.02 12.55

Bp
2 Ww 52.70 31.17 23.27 18.67 15.57 13.40 11.82 10.62

Bp
2 Ww

bc 50.35 34.27 26.00 20.75 17.27 14.82 13.05 11.65

BpWw
2 64.50 38.62 27.92 21.95 17.97 15.22 13.27 11.92

BpWw
2 bc 55.77 37.55 27.62 21.72 18.00 15.40 13.55 12.22

BNDM 55.55 31.20 21.57 16.62 13.70 11.70 10.20 9.05

Table 3.6: Running times for a Rand4 problem.

bound on the value of m though at the price of an increased running time.

In the following tables, running times are expressed in milliseconds. The best

results among all bit-parallel WW variants have been boldfaced and underlined.

Additionally, running times relative to the BNDM algorithm have been boldfaced

and underlined when the BNDM algorithm outperforms the other algorithms.

The experimental results show that the algorithms obtained by applying a

second level of parallelism perform always better then the original BpWw algo-

rithm. The gap is more evident in the case of short patterns or small alphabets.

Algorithm 2 4 6 8 10 12 14 16

BpWw 42.27 27.35 19.97 15.37 12.37 10.35 8.92 7.90

Bp
2 Ww 37.57 23.45 17.32 13.75 11.52 10.05 8.95 8.07

Bp
2 Ww

bc 37.82 25.22 18.60 14.75 12.32 10.72 9.52 8.60

BpWw
2 40.77 23.90 16.47 12.62 10.32 8.90 7.82 7.07

BpWw
2 bc 39.85 24.92 17.22 13.10 10.75 9.20 8.15 7.32

BNDM 36.92 23.65 16.77 12.45 9.92 8.12 6.97 6.10

Table 3.7: Running times for a Rand8 problem.

3.4. Increasing the parallelism in bit-parallel algorithms 41

Algorithm 2 4 6 8 10 12 14 16

BpWw 35.37 20.40 15.47 12.75 10.82 9.27 8.07 6.95

Bp
2 Ww 25.82 18.50 14.50 11.42 9.40 7.87 6.77 5.90

Bp
2 Ww

bc 26.50 19.35 15.15 11.85 9.82 8.20 7.10 6.20

BpWw
2 27.85 17.35 12.90 9.92 7.97 6.57 5.62 4.85

BpWw
2 bc 28.27 18.12 13.42 10.32 8.27 6.82 5.80 5.02

BNDM 26.50 169.0 13.20 10.85 9.10 7.70 6.60 5.72

Table 3.8: Running times for a Rand16 problem.

Algorithm 2 4 6 8 10 12 14 16

BpWw 27.37 16.07 11.92 9.82 8.50 7.60 6.85 6.27

Bp
2 Ww 19.15 13.65 11.47 9.57 8.15 7.15 6.30 5.60

Bp
2 Ww

bc 19.70 14.05 11.90 9.80 8.45 7.35 6.42 5.67

BpWw
2 21.50 12.90 9.87 8.20 7.05 6.10 5.35 4.62

BpWw
2 bc 21.95 13.25 10.12 8.32 7.20 6.25 5.47 4.75

BNDM 21.87 12.82 9.80 8.20 7.20 6.45 5.82 5.27

Table 3.9: Running times for a Rand32 problem.

Algorithm 2 4 6 8 10 12 14 16

BpWw 25.00 13.67 9.85 7.95 6.75 5.95 5.37 4.92

Bp
2 Ww 16.00 10.70 8.90 7.50 6.52 5.97 5.40 5.02

Bp
2 Ww

bc 16.27 11.15 9.15 7.50 6.75 6.05 5.42 5.00

BpWw
2 18.42 10.42 7.70 6.32 5.52 4.95 4.50 4.12

BpWw
2 bc 18.60 10.57 7.82 6.42 5.57 4.97 4.55 4.17

BNDM 19.75 10.90 7.92 6.42 5.52 4.95 4.50 4.17

Table 3.10: Running times for a Rand64 problem.

Algorithm 2 4 6 8 10 12 14 16

BpWw 23.85 12.62 8.82 6.92 5.80 5.00 4.45 4.02

Bp
2Ww 14.57 9.27 7.35 6.15 5.30 4.90 4.35 4.15

Bp
2Ww

bc 14.80 9.60 7.60 6.15 5.47 4.90 4.30 4.10

BpWw
2 16.82 9.12 6.52 5.25 4.42 3.92 3.60 3.30

BpWw
2 bc 16.90 9.20 6.57 5.25 4.50 3.97 3.60 3.30

BNDM 18.72 9.95 7.02 5.55 4.67 4.07 3.65 3.35

Table 3.11: Running times for a Rand128 problem.

42 The string matching problem

In particular the Bp
2Ww algorithm achieves its best performances with small al-

phabets, while the BpWw
2 algorithm turns out to be the best choice for patterns

with a length greater than 4. The BNDM algorithm obtains the best results in

some cases and performs always better than the BpWw algorithm. It is interesting

to observe that the BNDM algorithm is slower than the Bp
2Ww algorithm when

the alphabet is small and by the BpWw
2 algorithm in the case of large alphabets.

Chapter 4

The multiple string

matching problem

Given a set P of r patterns and a text T of length n, all strings over a com-

mon finite alphabet Σ of size σ, the multiple string matching problem consists

in finding all the occurrences in T of the patterns in P. The optimal average

complexity of the problem is O(n logσ(rlmin)/lmin) [54], where lmin is the length

of the shortest pattern in the set P.
The first linear solution of the multiple string matching problem based on

finite automata is due to Aho and Corasick [1]. The Aho-Corasick algorithm

uses a deterministic incomplete finite automaton based on the trie for the input

patterns and on the failure function, a generalization of the border function of

the Knuth-Morris-Pratt algorithm [47]. The lower bound on average has been

achieved by algorithms based on the suffix automaton induced from the DAWG

data structure, namely the MultiBDM [29] and the SBDM algorithms [57], which

are generalizations of the BDM [30] algorithm to the multiple pattern case.

In this chapter we focus on automata based solutions of this problem and, in

particular, on the efficient simulation of the nondeterministic automaton for the

language


P∈P Σ∗P induced from the trie data structure for P (Aho-Corasick

NFA, for short) and for the nondeterministic automaton relative to the language
P∈P Suff (P) of all the suffixes of the strings in P induced from the DAWG data

structure for P (suffix NFA, for short).

In the previous chapter we have introduced the bit-parallelism technique [8] to

43

44 The multiple string matching problem

simulate efficiently simple nondeterministic finite automata for the single pattern

case. In particular, we have seen that, to represent an automaton configuration

as a bit-vector, the states of the automaton must be mapped onto the positions

of a bit-vector by a suitable topological ordering of the NFA.1 In the case of a

single pattern, the construction of the topological ordering is quite simple since

it is unique.

Appropriate topological orderings can be obtained also for the maximal trie

of a set of patterns, by interleaving the tries of the single patterns in either a

parallel fashion, under the constraint that all the patterns have the same length

[68], or in a sequential fashion [56]. The Shift-And and BNDM algorithms can

be easily extended to the multiple patterns case by deriving the corresponding

automaton from the maximal trie of the set of patterns. The resulting algorithms

have a O(σ⌈size(P)/w⌉)-space complexity and work in O(n⌈size(P)/w⌉) and

O(n⌈size(P)/w⌉lmin) worst-case searching time complexity, respectively, where

size(P) = 
P∈P |P | is the sum of the lengths of the strings in P and w is the

size of a computer word.

In both cases the bit-parallel simulation is based on the following property

of the topological ordering π associated to the trie which allows to encode the

transitions using a shift of k bits and a bitwise and: for each edge (p, q) the

distance π(q) − π(p) is equal to a constant k. For an in-depth survey on this

topic the reader is referred to [19].

The problem which arises when trying to bit-parallel simulate the Aho-Corasick

NFA and the suffix NFA is that, in general, there might be no topological ordering

π such that, for each edge (p, q), the distance π(q) − π(p) is fixed. Cantone

and Faro [19] presented a bit-parallel simulation of the Aho-Corasick NFA that

encodes variable length shifts using the carry property of addition and based on a

particular topological ordering; however, such topological orderings do not always

exist. Their algorithm has a O(σ⌈m/w⌉)-space and O(n⌈m/w⌉)-searching time

complexity, where m is the number of nodes in the trie.

In this chapter we present an efficient bit-parallel simulation of the Aho-

Corasick NFAs and suffix NFAs. Our construction is based on Lemma 3.1 pre-

sented in Section 3.2. We show that, by exploiting the relation between active

states of the NFA and its associated failure function, it is possible to represent

the Φ(·) map in polynomial space.

1We recall that a topological ordering of an NFA is any total ordering < of the set of its
states such that p < q, for each edge (p, q) of the NFA.

4.1. Bit-parallelism for multiple string matching 45

Multiple-Shift-And (T , P = {P1, . . . , Pr})
1. n← |T |
2. L← size(P)
3. for c ∈ Σ do B[c]← 0L

4. j ← 0
5. I ←M ← 0L

6. for k ← 1 to r do
7. for i← 0 to |Pk| − 1 do
8. B[Pk[i]]← B[Pk[i]] | (0L−11≪ (j + i))
9. I ← I | (0L−11≪ j)

10. M ←M | (0L−11≪ (j + |Pk| − 1))
11. j ← j + |Pk|
12. D ← 0L

13. for j ← 0 to n− 1 do
14. D ← ((D ≪ 1) | I) & B[T [j]]
15. if D & M ̸= 0L then Output(j)

Figure 4.1: The Multiple-Shift-And algorithm.

4.1 Bit-parallelism for multiple string matching

The existing variants of the Shift-And and BNDM algorithms that search for a set

P = {P1, . . . , Pr} of patterns, using bit-parallelism, are based on the maximal trie

of P. The number of states of T max
P is given by |QT max

P
| =r

i=1 |QTPi
| − r+1 =

size(P)+1, so that it can be represented by a bit-vector of L = size(P) bits. The
states of T max

P are mapped onto positions in the bit-vectors through a bijection

π : QT max
P
→ {0, 1, . . . , |QT max

P
| − 1}. The arrangement consists in concatenating

the different branches of the maximal trie of P in a sequential fashion. More

precisely, for each pattern Pi, the positions in π of the states {qi1, qi2, . . . , qi|Pi|} of
the trie TPi

are defined as

π(qik) =

i−1
j=0

|Pj |+ k

for k = 1, . . . , |Pi|. As we have r final states, the final-state bit mask is defined

as

M = (10|P1|−1)(10|P2|−1) · · · (10|Pr|−1) .

The automaton for the language Σ∗P can be easily obtained from the maxi-

mal trie of P by adding a self-loop on Σ on the initial state. The variant of

Shift-And for the multiple string matching problem, named Multiple-Shift-And,

46 The multiple string matching problem

has O(n⌈size(P)/w⌉) worst-case searching time complexity and O(σ⌈size(P)/w⌉)
space complexity. In this case the initial state of the automaton can activate the

r states corresponding to the first symbol of each pattern; correspondingly, the

bitwise or with 0L−11 must be changed to a bitwise or with the following bit mask

I = (0|P1|−11)(0|P2|−11) · · · (0|Pr|−11) .

The pseudocode of the Multiple-Shift-And algorithm is reported in Fig. 4.1.

Likewise, the suffix automaton for the language Suff (P) can be obtained from

the maximal trie by adding an ϵ-transition from the initial state to every other

state. The variant of BNDM for the multiple string matching problem, named

Multiple-BNDM, has O(n⌈size(P)/w⌉lmin) worst-case searching time complexity

and O(σ⌈size(P)/w⌉)-space complexity. It uses the maximal trie TPr
lmin

built on

the prefixes of the reversed patterns of length lmin to maximize the shift, where

lmin is the length of the shortest pattern. The pseudocode of the Multiple-BNDM

algorithm is reported in Fig. 4.2; for the sake simplicity in the pseudocode it is

assumed that all the patterns have the same length l.

4.2 The Aho-Corasick NFA

The Aho-Corasick NFA for a set P of patterns over an alphabet Σ is induced

directly by the trie TP for P. More precisely, it is the NFA AP = (Q,Σ, δA, q0, F),

where:

• Q is the set of nodes of TP (the set of states);

• q0 ∈ Q is the root of TP (the initial state);

• δA : Q× Σ→P(Q) is the transition function, with

δA(q, c) =Def


{p ∈ Q | lbl(p) = c } ∪ {q0} if q = q0

{p ∈ Q | lbl(p) = lbl(q).c } if q ̸= q0 ,

for q ∈ Q, c ∈ Σ, and where we recall that P(·) denotes the powerset

operator;

• F =Def {q ∈ Q | lbl(q) ∈ P} is the set of final states.

Plainly, we have |Q| ≤P∈P |P |.

4.2. The Aho-Corasick NFA 47

Multiple-BNDM (T , P = {P1, . . . , Pr})
1. n← |T |
2. L← size(P)
3. for c ∈ Σ do B[c]← 0L

4. j ← 0
5. C ←M ← 0L

6. for k ← 1 to r do
7. for i← 0 to l − 1 do
8. c← Pk[l − 1− i]
9. B[c]← B[c] | (0L−11≪ (j + i))

10. C ← C | (0L−l1l−10≪ j)
11. M ←M | (0L−11≪ (j + l − 1))
12. j ← j + l
13. j ← l − 1
14. while j < n do
15. k ← 0, last← 0
16. D ← 1L

17. while D ̸= 0L do
18. D ← D & B[T [j − k]]
19. k ← k + 1
20. if D & M ̸= 0L then
21. if k < l then
22. last← k
23. else Output(j)
24. D ← (D ≪ 1) & C
25. j ← j + l − last

Figure 4.2: The Multiple-BNDM algorithm.

We also associate with the NFA AP a failure function fail : Q \ {q0} → Q

such that

• lbl(fail(q)) A lbl(q), and

• len(fail(q)) ≥ len(p), for each p ∈ Q such that lbl(p) A lbl(q)

In other words, lbl(fail(q)) is the longest proper suffix of lbl(q) which is also a

prefix of a string in P.
The automaton AP can be seen as the nondeterministic version of the Aho-

Corasick automaton: this is a trie TP for a set of patterns P augmented with

failure links, which are followed when no transition is possible on a text character

(cf. [1]).

An immediate, yet useful, property of the Aho-Corasick NFA, which can be

readily proved by induction, is the following

q0 ∈ δ∗A(q0, u), for every u ∈ Σ∗. (4.1)

48 The multiple string matching problem

q0 q1 q2 q3 q4 q5

q6 q7 q8 q9

q10 q11

g c g c a

t

g t g

t

c

Σ

q fail
q0
q1 q0
q2 q0
q3 q1
q4 q2
q5 q0
q6 q0
q7 q1
q8 q6
q9 q7
q10 q6
q11 q0

Figure 4.3: Aho-Corasick NFA for the set of strings {gcgca,gtgtg,gcgtc}.

The Aho-Corasick NFA AP = (Q,Σ, δA, q0, F) relative to a given set P of

patterns can be used to find the occurrences of the patterns of P in a given

text T , by observing that a pattern P ∈ P has an occurrence in T ending at

position i, i.e., P ⊒ Ti, if and only if δ∗A(q0, T [0 .. i]) contains a final state q ∈ F

such that lbl(q) = P . Thus, to find all the occurrences in T of the patterns

of P, it suffices to compute the set δ∗A(q0, Ti) ∩ F , for i = 0, 1, . . . , |T | − 1. As

an immediate consequence of (2.1) and the definitions of δA and δ∗A on P(Q),

we have δ∗A(q0, Ti) = δA(δ
∗
A(q0, Ti−1), T [i]), for i = 1, 2, . . . , |T | − 1. Hence, the

problem of computing efficiently the sets δ∗A(q0, Ti) can be reduced to the problem

of evaluating efficiently transition actions of the form δA(D, c), for any c ∈ Σ and

any reachable configuration D ⊆ Q of AP .

The following property is an immediate consequence of the definition of the

failure function.

Lemma 4.1. Given the Aho-Corasick NFA AP = (Q,Σ, δA, q0, F) for a set P of

patterns and its associated failure function fail : Q \ {q0} → Q, we have

lbl(p) A lbl(q)→ lbl(p) ⊒ lbl(fail(q)),

for all p ∈ Q and q ∈ Q \ {q0}.

4.3 The suffix NFA

The suffix NFA for a finite set P of patterns over an alphabet Σ is the NFA with

ε-transitions SP = (Q,Σ, δS , q0, F) induced by the DAWG for P, where

4.3. The suffix NFA 49

• Q =Def {RP (u) |u ∈ Fact(P)} is the set of states;2

• q0 = RP (ε) is the initial state;

• δS : Q× (Σ ∪ {ε})→P(Q) is the transition function defined by:

δS(RP (u), a) =Def


Q if ua = ε

{RP (ua)} if ua ∈ Fact(P) \ {ε}
∅ otherwise;

• F = {q ∈ Q | val(q) ∈ Suff (P)} is the set of final states.

It is well-known that the language recognized by the NFA SP is Suff (P).
Additionally, the NFA S′P = (Q,Σ, δS , q0, Q), obtained from SP by considering

all states in Q as final, recognizes the language Fact(P) of all factors of strings

in P. In other words, for u ∈ Σ∗, we have

δS(q0, u) ̸= ∅ if and only if u ∈ Fact(P) . (4.2)

We also observe that if size(P) > 1, then |Q| ≤ 2


P∈P |P | − 1 (cf. [12]).

A useful property of the function suf (·) is proved in the following lemma.

Lemma 4.2. Given a nondeterministic suffix automaton SP = (Q,Σ, δS , q0, F)

for a set of patterns P, for all p, q ∈ Q we have

(a) if val(p) A val(q) then val(p) ⊒ val(suf (q)) A val(q);

(b) if val(p) A val(q) then suf (k)(q) = p, for some k ≥ 1

(where suf (0)(q) = Def q and, recursively, suf (h+1)(q) = Def suf (suf
(h)(q)), for

h ≥ 0, provided that suf (h)(q) ̸= q0).

Proof. Let val(p) A val(q). From the definition (2.4) of the function suf (·), we
have val(p) ⊒ suf (val(q)) A val(q), so that val(p) ⊒ val(RP (suf (val(q)))) A

val(q). Thus, (a) follows by observing that val(suf (q)) = val(RP (suf (val(q)))).

Concerning (b), we argue as follows. From (a) we have val(p) ⊒ val(suf (q)).

If val(p) = val(suf (q)), then suf (1)(q) = suf (q) = p, and (b) holds. Otherwise,

val(p) A val(suf (q)). By applying (a) repeatedly, we eventually obtain a sequence

val(p) = val(suf (k)(q)) A val(suf (k−1)(q)) A · · · A val(suf (q)) A val(q) ,

2RP is the equivalence relation defined by (2.2).

50 The multiple string matching problem

q0 q1 q2 q3 q4 q5

q6 q7 q8

a

g

c

ǫ
ǫ

ǫ
ǫ

ǫ

ǫ
ǫ

ǫ

g a

c

g c

a g

Figure 4.4: Suffix NFA for the set of strings {agagc,agcag}.

for some k ≥ 1, which implies suf (k)(q) = p, thus proving (b).

Given a set of patterns P over Σ, the suffix NFA Sr
P = (Q,Σ, δSr , q0, F) for

(Plmin)
r can be used to find the occurrences of the patterns of P in a text T

of length n by observing that a pattern P ∈ P of length m has an occurrence

in T ending at position i + m − 1, i.e., T [i .. i + m − 1] = P , if and only if

δ∗Sr(q0, (T [i .. i+ lmin−1])r) contains a final state q ∈ F such that val(q) ⊒ P r and

T [i+ lmin .. i+m−1] ⊒ P . Hence, to find all the occurrences of the patterns in P
in T , one can compute δ∗Sr(q0, (T [i .. i+lmin−1])r)∩F , for i = 0, 1, . . . , n−lmin and

then make the appropriate checks for the candidate matches. With this approach

it is possible to skip windows: in fact, for a window of T of size lmin beginning

at position i, let l be the length of the longest proper suffix of T [i .. i+ lmin − 1]

such that δ∗Sr(q0, (T [i+ lmin − l .. i+ lmin − 1])r) ∩ F ̸= ∅. Then, the windows at

positions i, i+ 1, . . . i+ lmin − l − 1 can be safely skipped.

4.4 Bit-parallel simulation of NFAs for the mul-

tiple string matching problem

In Section 3.2 we have analyzed a technique to represent a certain class of NFAs

which allows to improve the space complexity as compared to the naive technique

but which still requires exponential space in the number of states of the automa-

ton. We recall that the immediate solution of storing the maps Φ(·) and B(·) as
tables of bit words, respectively indexed by sets of states and by characters in

Σ, requires (2m + σ) ·m bits for an automaton with m states. In particular, the

exponential term in the space complexity is due to the Φ(·) map. Thus we have

to find a better way to store the map Φ(·), exploiting the fact that Φ(D) needs

4.5. Bit-parallel simulation of the Aho-Corasick NFA for a set of patterns 51

to be evaluated over reachable configurations D of AP or SP only.

In Sections 4.5 and 4.6 we will show that the map Φ(·) can be conveniently

stored in O(m2)-space, for both the Aho-Corasick NFA and the suffix NFA. More

specifically, we will show that, in both cases, each nonempty reachable con-

figuration D can be represented in terms of a unique state, which will be re-

ferred to as lead(D). This will allow us to represent Φ(D) as Φ̇(lead(D)), where

Φ̇ : Q→P(Q) is the map such that the q-th bit of Φ̇(p) is set if and only if there

is a transition to state q originating from p or from any other state belonging to

the reachable configuration uniquely identified by p. Plainly, the map Φ̇ can be

stored in O(m2)-space and allows to rewrite equation (b) of Lemma 3.1 as

δ(D, c) = Φ̇(lead(D)) ∩B(c) ,

which in turn translates readily into the bit-parallel assignment

D ← Φ̇[lead(D)] & B[c] .

4.5 Bit-parallel simulation of the Aho-Corasick NFA

for a set of patterns

In this section we present a bit-parallel encoding of the Aho-Corasick NFA; specif-

ically, following the idea explained in the previous section, we first show that each

reachable configuration of AP is uniquely identified by a single state. Then, we

devise the map Φ̇(·) by using the relation between reachable configurations of the

automaton and the associated failure function, and prove its correctness. Finally,

we show that the map lead(·) admits an efficient implementation.

A key result is contained in the following elementary lemma.

Lemma 4.3. Let AP = (Q,Σ, δ, q0, F) be the Aho-Corasick NFA for a finite

set P of patterns over the alphabet Σ, and let u ∈ Σ∗. Then δ∗(q0, u) = {q ∈
Q | lbl(q) ⊒ u}.

Proof. For u = ε, the lemma holds plainly. Thus, let u = u′.c, with u′ ∈ Σ∗ and

c ∈ Σ. We first show by induction on u that δ∗(q0, u) ⊆ {q ∈ Q | lbl(q) ⊒ u}. Let
p ∈ δ∗(q0, u). Since, by (2.1),

δ∗(q0, u
′.c) = δ∗(δ∗(q0, u

′), c) = δ(δ∗(q0, u
′), c) =


q∈δ∗(q0,u′)

δ(q, c) ,

52 The multiple string matching problem

we have p ∈ δ(q, c), for some q ∈ δ∗(q0, u′), so that, by inductive hypothesis,

lbl(q) ⊒ u′, and therefore lbl(p) = lbl(q).c ⊒ u′.c = u.

To show the converse inclusion relationship, let p ∈ Q be such that lbl(p) ⊒ u.

We prove by induction on lbl(p) that p ∈ δ∗(q0, u). In view of (4.1), we may

dismiss at once the case in which lbl(p) = ε, i.e., p = q0, and therefore assume that

lbl(p) = lbl(p′).c, for some p′ ∈ Q and c ∈ Σ. Hence u = u′.c, for some u′ ∈ Σ∗

such that lbl(p′) ⊒ u′, so that, by inductive hypothesis, we have p′ ∈ δ∗(q0, u′).

Thus, by (2.1), p ∈ δ(p′, c) ⊆ δ(δ∗(q0, u′), c) = δ∗(δ∗(q0, u′), c) = δ∗(q0, u′.c) =

δ∗(q0, u).

Given a reachable configuration D, the previous lemma implies that for any

two distinct states p, p′ ∈ D we have |lbl(p)| ̸= |lbl(p′)|, since either lbl(p) A

lbl(p′) or lbl(p′) A lbl(p). Thus there must exist a unique state q ∈ D such that

|lbl(p)| ≤ |lbl(q)|, for every p ∈ D. Let us denote such a state by lead(D). Then

we have:

Corollary 4.1. Let AP = (Q,Σ, δ, q0, F) be the Aho-Corasick NFA for a finite

set P of patterns over Σ, and let D be a reachable configuration of AP . Then

D = {q ∈ Q | lbl(q) ⊒ lbl(lead(D))}.

Proof. Let u ∈ Σ∗ be such that D = δ∗(q0, u). In view of Lemma 4.3, it suffices

to observe that lbl(q) ⊒ u if and only if lbl(q) ⊒ lbl(lead(D)), for every q ∈ Q.

From the preceding corollary, it readily follows that the reachable configura-

tions of the Aho-Corasick NFA AP = (Q,Σ, δ, q0, F), for a set P of patterns, are

in 1-1 correspondence with its states, and therefore their number is |Q|.
A convenient way to represent Φ uses the map Φ̇A : Q → P(Q), recursively

defined by

Φ̇A(q) =Def


Follow(q0), if q = q0

Follow(q) ∪ Φ̇A(fail(q)), if q ̸= q0 ,
(4.3)

as shown in the following lemma.

Lemma 4.4. For any reachable configuration D of the Aho-Corasick NFA AP ,

we have Φ(D) = Φ̇A(lead(D)).

Proof. We proceed by induction on |lbl(lead(D))|. If |lbl(lead(D))| = 0, then

lead(D) = q0 andD = {q0}, so that Φ(D) = Follow(q0) = Φ̇A(q0) = Φ̇A(lead(D)).

4.5. Bit-parallel simulation of the Aho-Corasick NFA for a set of patterns 53

For the inductive step, we have

Φ(D) =

q∈D

Follow(q) =


q ∈ Q

lbl(q) ⊒ lbl(lead(D))

Follow(q)

= Follow(lead(D)) ∪


q ∈ Q

lbl(q) A lbl(lead(D))

Follow(q)

= Follow(lead(D)) ∪


q ∈ Q

lbl(q) ⊒ lbl(fail(lead(D)))

Follow(q)

= Follow(lead(D)) ∪ Φ({q ∈ Q | lbl(q) ⊒ lbl(fail(lead(D)))})
= Follow(lead(D)) ∪ Φ̇A(fail(lead(D)) = Φ̇A(lead(D))).

Plainly, the map Φ̇A(·) requires only |Q|2 bits. Additionally, the map lead(·)
can be computed very efficiently at run-time, provided that the states of AP are

ordered in such a way that a state p precedes a state q whenever |lbl(p)| < |lbl(q)|
(say, by a breadth-first visit of AP from q0). Indeed, in such a case, if we assume

that D is encoded as a bit mask, then lead(D) is the index of the highest bit of

D set to 1.

4.5.1 The Log-And algorithm

Based on the previous considerations, we present an efficient bit-parallel algo-

rithm, which we call Log-And, for solving the multiple string matching problem.

In the Log-And algorithm, reported in Fig. 4.5, the sets D, B and the map

Φ̇A are encoded as bit tables.

As opposed to the Shift-And algorithm, bit 0 is reserved for the initial state,

so that lead(D) is never computed for an empty set (0 value) as the initial state

is always active.

In the preprocessing phase, the Log-And algorithm iterates over the nodes of

AP , which are assumed to be sorted by a breadth-first search; for each node,

the corresponding Φ mask is computed using (4.3) and the B masks associated

to the labels of its outgoing edges are augmented accordingly. The algorithm

precomputes also a final state bit mask, L, where a bit is set to 1 if and only

if it corresponds to a final state of the automaton. Then, during the searching

phase, the Log-And algorithm scans the text T , character by character, using the

54 The multiple string matching problem

Log-And (T ; P1, P2, . . . , Pr)

/* Preprocessing */
1. Let AP = (Q,Σ, δ, q0, F) be the Aho-Corasick NFA relative to the set of

patterns P = {P1, P2, . . . , Pr} and let the maps Follow(), lbl(), and fail() be
defined as before, relative to AP . We also assume that Q = {0, 1, . . . , ℓ− 1},
where ℓ = |Q|, and that if |lbl(p)| < |lbl(q)| then p < q, for any p, q ∈ Q.

2. L← 0ℓ

3. for c ∈ Σ do B[c]← 0ℓ−11
4. for p← 0 to ℓ− 1 do

5. Φ̇A[p]← 0ℓ−11
6. for q ∈ Follow(p) \ {0} do
7. H ← 0ℓ−11≪ q
8. c← lbl(p, q)
9. B[c]← B[c] | H

10. if q ∈ F then L← L | H
11. Φ̇A[p]← Φ̇A[p] | H
12. if p ̸= 0 then

13. Φ̇A[p]← Φ̇A[p] | Φ̇A[fail(p)]
/* Searching */

14. D ← 0ℓ−11
15. for j ← 0 to |T | − 1 do
16. lead ← ⌊log2(D)⌋
17. D ← Φ̇A[lead] & B[T [j]]
18. if D & L ̸= 0ℓ then Output(j)

Figure 4.5: The Log-And algorithm for the multiple string matching problem.

following basic transition, based on Lemma 3.1(b),

D ← Φ̇A[⌊log2(D)⌋] & B[c] .

The resulting algorithm has O((m+ σ)⌈m/w⌉)-space and O(n⌈m/w⌉)-searching
time complexity, where n = |T |, m is the number of nodes of AP , σ is the alphabet

size, and w is the word size in bits. When m ∈ O(w), the Log-And algorithm

turns out to have a O(m+ σ)-space and O(n)-searching time complexity.

If one is also interested in retrieving the patterns (if any) that match at each

text position, it is convenient to precompute a table which maps each final state

of AP onto the corresponding pattern index. Then, in the searching phase, for

each position j, the algorithm iterates over the bits of (D & L) by computing

the index of the highest bit set and querying the corresponding pattern number.

The whole sequence is repeated, after having cleared the highest bit, until there

are no more bits set.

4.6. Bit-parallel simulation of the suffix NFA for a set of patterns 55

4.6 Bit-parallel simulation of the suffix NFA for

a set of patterns

In this section we illustrate a bit-parallel encoding of the suffix automaton induced

by the DAWG data structure for a set of patterns. We observe that the maximal

trie of a set P of patterns can also be turned into an automaton that recognizes

the language Suff (P), by adding an ε-transition from the initial state to all

remaining states. The size of the DAWG data structure can vary between the

number |QAP | of states of the Aho-Corasick automaton for P and 2 · size(P)− 1

(cf. [13]). Thus, although the DAWG allows to factor prefix redundancy in the

patterns, it is not always preferable to the maximal trie, whose size is size(P).
However, it turns out that the average size of the DAWG is close to |QAP | which,
depending on the degree of prefix redundancy in P may be much smaller than

size(P).
Let SP be the suffix NFA for a set P of patterns over an alphabet Σ. We

devise a bit-parallel encoding of this automaton much along the lines of what has

been done for the AP automaton.

The following lemma is analogous to Lemma 4.3 in the present context of

suffix NFAs. For the sake of completeness, we include its proof, though, aside

from a few adaptations, it follows closely the proof of Lemma 4.3.

Lemma 4.5. Let SP = (Q,Σ, δS , q0, F) be the suffix NFA for a finite set P of

patterns, and let u ∈ Σ∗. Then δ∗S(q0, u) = {q ∈ Q | u ⊒ val(q)}.

Proof. For u = ε, the lemma holds plainly. Thus, let u = u′.c, with u′ ∈ Σ∗ and

c ∈ Σ. We first show by induction on u that δ∗S(q0, u) ⊆ {q ∈ Q | u ⊒ val(q)}.
Thus, let p ∈ δ∗S(q0, u). By (2.1), we have δ∗S(q0, u

′.c) = δ∗S(δ
∗
S(q0, u

′), c) =

δS(δ
∗
S(q0, u

′), c) =


q∈δ∗S(q0,u′) δS(q, c). Hence, p ∈ δS(q, c), for some q ∈ δ∗S(q0, u
′),

so that, by inductive hypothesis, u′ ⊒ val(q), and therefore u = u′.c ⊒ val(q).c =

val(p).

To show the converse inclusion relationship, let p ∈ Q be such that u ⊒
val(p). We prove by induction on val(p) that p ∈ δ∗S(q0, u). If val(q) = ε, then

p = q0 and u = ε, so that p ∈ δ∗S(q0, u) holds trivially. Let us then assume that

val(p) = val(p′).c, for some p′ ∈ Q and c ∈ Σ. Hence u = u′.c, for some u′ ∈ Σ∗

such that u′ ⊒ val(p′), so that, by inductive hypothesis, we have p′ ∈ δ∗S(q0, u
′).

Thus, by (2.1), p ∈ δS(p
′, c) ⊆ δS(δ

∗
S(q0, u

′), c) = δ∗S(δ
∗
S(q0, u

′), c) = δ∗S(q0, u
′.c) =

δ∗S(q0, u).

56 The multiple string matching problem

The following lemma illustrates some useful properties concerning a nonempty

reachable configurationD = δ∗S(q0, u) of SP for a string u and relative equivalence

class RP (u) defined by (2.2).

Lemma 4.6. Let SP = (Q,Σ, δS , q0, F) be the suffix NFA for a set of patterns

P. Then, for any string u ∈ Σ∗, the following implications hold:

(a) if q ∈ δ∗S(q0, u), then val(RP (u)) ⊒ val(q);

(b) if δ∗S(q0, u) ̸= ∅, then RP (u) ∈ δ∗S(q0, u);

(c) if δ∗S(q0, u) = δ∗S(q0, v) ̸= ∅, then u RP v, for v ∈ Σ∗.

Proof. Concerning (a), let q ∈ δ∗S(q0, u). From (4.2), it follows that u ∈ Fact(P),
so that val(RP (u)) is defined. Then by lemma 4.5 we have that u ⊒ val(q),

which in turn implies that end-pos(val(q)) ⊆ end-pos(u) = end-pos(val(RP (u))).

Hence, val(RP (u)) ⊒ val(q).

Concerning (b), from the very definitions of RP and val(·) (see (2.2) and

(2.3)), we have that u ⊒ val(RP (u)) which, by Lemma 4.5, implies that RP (u) ∈
δ∗S(q0, u).

Finally, concerning (c), let δ∗S(q0, u) = δ∗S(q0, v) ̸= ∅. Then (b) yields RP (u) ∈
δ∗S(q0, v) and RP (v) ∈ δ∗S(q0, u) which, again by Lemma 4.5, imply val(RP (v)) ⊒
val(RP (u)) and val(RP (u)) ⊒ val(RP (v)), respectively. Hence, val(RP (u)) =

val(RP (v)) so that u RP v.

Given a nonempty reachable configuration D for a string u, the previous

lemma implies that the set

{RP (u) | δ∗S(q0, u) = D, for u ∈ Fact(P)}

has exactly one element. Therefore the following definition is well founded

lead(D) =Def RP (u) ,

for any u ∈ Fact(P) such that δ∗S(q0, u) = D.

Corollary 4.2. Let SP = (Q,Σ, δ, q0, F) be the suffix NFA for a set of patterns

P, and let D be a nonempty reachable configuration of SP . Then D = {q ∈
Q | val(lead(D)) ⊒ val(q)}.

4.6. Bit-parallel simulation of the suffix NFA for a set of patterns 57

Proof. Let u ∈ Fact(P) such that δ∗S(q0, u) = D and let q ∈ D. From Lemma 4.6(a)

we have that val(lead(D)) = val(RP (u)) ⊒ val(q). Conversely, if val(RP (u)) ⊒
val(q), then u ⊒ val(q), so that, by Lemma 4.5, q ∈ D.

From the preceding corollary, it follows at once that the nonempty reachable

configurations of a suffix NFA SP = (Q,Σ, δS , q0, F) for a set P of patterns are

in 1-1 correspondence with its states, and therefore their number is |Q|.
For q ∈ Q, let

rsuf (q) =Def suf
−1[{q}] = {p ∈ Q | suf (p) = q}

be the set of states whose suffix link is q, where suf (·) is the map defined in (2.4).

We will show that a reachable configuration of SP can be represented in terms

of the maps lead(·) and rsuf (·).

Lemma 4.7. Let D be a nonempty reachable configuration of the suffix NFA

SP = (Q,Σ, δS , q0, F) for a set P of patterns. Then

D = {lead(D)} ∪


p∈rsuf (lead(D))

{q ∈ Q | val(p) ⊒ val(q)} .

Proof. From Corollary 4.2 we have

D = {q ∈ Q | val(lead(D)) ⊒ val(q)}
= {lead(D)} ∪ {q ∈ Q | val(lead(D)) A val(q)} .

Then to prove the lemma it is enough to show that

{q ∈ Q | val(lead(D)) A val(q)} =


p∈rsuf (lead(D))

{q ∈ Q | val(p) ⊒ val(q)} .

Let q′ ∈ Q be such that val(lead(D)) A val(q′). By Lemma 4.2(b), there exists

k ≥ 1 such that suf (k)(q′) = lead(D). Let p′ = suf (k−1)(q′). Plainly, suf (p′) =

lead(D), so that p′ ∈ rsuf (lead(D)). Additionally, val(p′) = val(suf (k−1)(q′)) ⊒
val(q′).

Hence,

q′ ∈ {q ∈ Q | val(p′) ⊒ val(q)} ⊆


p∈rsuf (lead(D))

{q ∈ Q | val(p) ⊒ val(q)}

58 The multiple string matching problem

so that

{q ∈ Q | val(lead(D)) A val(q)} ⊆


p∈rsuf (lead(D))

{q ∈ Q | val(p) ⊒ val(q)} .

To prove the converse relationship, let

q′ ∈


p∈rsuf (lead(D))

{q ∈ Q | val(p) ⊒ val(q)}

and let p′ ∈ rsuf (lead(D)) such that val(p′) ⊒ val(q′). Then val(lead(D)) =

val(suf (p′)) A val(p) ⊒ val(q′), since suf (p′) = lead(D). Hence q′ ∈ {q ∈
Q | val(lead(D)) A val(q)} proving

p∈rsuf (lead(D))

{q ∈ Q | val(p) ⊒ val(q)} ⊆ {q ∈ Q | val(lead(D)) A val(q)}

and in turn completing the proof of the lemma.

A convenient way to represent the map Φ(·) makes use of the following map

Φ̇S : Q→P(Q), defined by

Φ̇S(q) =Def


Follow(q), if rsuf (q) = ∅
Follow(q) ∪p∈rsuf (q) Φ̇S(p), if rsuf (q) ̸= ∅ ,

(4.4)

as proved in the following lemma.

Lemma 4.8. For any nonempty reachable configuration D of the suffix NFA

SP = (Q,Σ, δS , q0, F) for a set P of patterns, we have

Φ(D) = Φ̇S(lead(D)) .

Proof. To begin with, let us put Dp =Def {q ∈ Q | val(p) ⊒ val(q)}, for p ∈
rsuf (lead(D)), so that the decomposition of D provided by the preceding lemma

can be rewritten in a more compact way as

D = {lead(D)} ∪


p∈rsuf (lead(D))

Dp . (4.5)

4.6. Bit-parallel simulation of the suffix NFA for a set of patterns 59

Additionally, we observe that

lead(Dp) = p , (4.6)

for each p ∈ rsuf (lead(D)). Indeed, by Lemma 4.5,

δ∗S(q0, val(p)) = {q ∈ Q | val(p) ⊒ val(p)} = Dp ,

so that lead(Dp) = RP (val(p)) = p. We are now ready to prove the lemma. We

proceed by induction on height(lead(D)), where

height(q) =Def length of the longest chain of suffix link ending at q .

If height(lead(D)) = 0 then D = {lead(D)} and rsuf (lead(D)) = ∅. For the in-

ductive step, in view of (4.5) and (4.6) above and of the fact that height(lead(Dp)) <

height(lead(D)) for p ∈ rsuf (lead(D)), we have

Φ(D) = Φ({lead(D)}) ∪


p∈rsuf (lead(D))

Φ(Dp)

= Follow(lead(D)) ∪


p∈rsuf (lead(D))

Φ̇S(lead(Dp))

= Follow(lead(D)) ∪


p∈rsuf (lead(D))

Φ̇S(p)

= Φ̇S(lead(D)) ,

completing the proof of the lemma.

As for the Aho-Corasick NFA, the map Φ̇S requires |Q|2 bits only and the map

lead(·) can be computed very efficiently at run-time, provided that the states

of SP are ordered in such a way that a state p precedes a state q whenever

|val(p)| < |val(q)| (say, by a breadth-first search from q0). Indeed, in such a case,

if we assume that D is encoded as a bit mask, then lead(D) is the index of the

lowest bit of D set to 1.

4.6.1 The Backward-Log-And algorithm

In this section we present the Backward-Log-And algorithm, a BNDM-like bit-

parallel algorithm based on the suffix NFA, for the multiple string matching

60 The multiple string matching problem

Backward-Log-And (T ; P1, P2, . . . , Pr)

/* Preprocessing */
1. Let SPr

lmin
= (Q,Σ, δ, q0, F) be the suffix NFA relative to the set of patterns

Pr = {P r
1 , P

r
2 , . . . , P

r
r } and let the maps Follow(), val(), and suf () be defined

as before, relative to SPr
lmin

. We also assume that Q = {0, 1, . . . , ℓ−1}, where

ℓ = |Q|, and that if |val(p)| < |val(q)| then p < q, for any p, q ∈ Q.
2. L← 0ℓ

3. for c ∈ Σ do B[c]← 0ℓ

4. for p← ℓ− 1 to 0 do
5. for q ∈ Follow(p) do
6. H ← 0ℓ−11≪ q
7. c← lbl(p, q)
8. B[c]← B[c] | H
9. if q ∈ F then L← L | H

10. Φ̇S [p]← Φ̇S [p] | H
11. if p ̸= 0 then

12. Φ̇S [suf (p)]← Φ̇S [suf (p)] | Φ̇S [p]
/* Searching */

13. j ← l − 1
14. while j < n do
15. k ← 0, last← 0
16. D ← 1ℓ

17. while D ̸= 0ℓ do
18. lead ← ⌊log2(D & (∼D + 1))⌋
19. D ← Φ̇S [lead] & B[T [j − k]]
20. if D & L ̸= 0ℓ then
21. if k < l then
22. last← k
23. else Output(j)
24. k ← k + 1
25. j ← j + l − last

Figure 4.6: The Backward-Log-And algorithm for the multiple string matching prob-
lem.

problem. In the Backward-Log-And algorithm, whose pseudocode is reported in

Fig. 4.6, the sets D, B and the map Φ̇S(·) are encoded as bit tables. There is no

need to reserve bit 0 for the initial state, as the simulation stops when there are

no longer active states. For simplicity, in the pseudocode it is assumed that all

patterns have the same length l.

During the preprocessing phase, the Backward-Log-And algorithm iterates over

the states of the suffix NFA SPr
lmin

, which are assumed to be sorted by a breadth-

first search; for each state, the corresponding masks B and L are computed as in

the Log-And algorithm, while the mask Φ is computed using (4.4). Then, during

the searching phase, the Backward-Log-And algorithm scans the text T , character

4.6. Bit-parallel simulation of the suffix NFA for a set of patterns 61

by character, using the following transition based on Lemma 3.1(b),

D ← Φ̇A[⌊log2(D & (∼D + 1))⌋] & B[c] .

The resulting algorithm hasO(n⌈m/w⌉lmin)-searching time andO((m+σ)⌈m/w⌉)-
space complexity, where n = |T |, lmin is the length of the shortest pattern, m

is the number of nodes of SPr
lmin

, σ is the alphabet size and w is the word size

in bits. When m ∈ O(w), the Backward-Log-And algorithm turns out to have a

O(m+ σ)-space and O(nlmin)-searching time complexity.

Chapter 5

The approximate string

matching problem

The approximate string matching problem consists in finding all the occurrences

of a pattern in a text allowing for a finite number of errors. Errors are formal-

ized by means of a distance function on strings which maps two strings into the

minimal cost of a sequence of edit operations that are needed to convert the first

string into the second string. Well known distance functions for this problem

are the edit distance [49] (also called the Levenshtein distance) or the Damerau

edit distance [31]. The edit operations in the former edit distance are insertion,

deletion, and substitution of characters; instead, in the second case, one allows for

swaps of characters, i.e., transpositions of two adjacent characters 1. Approximate

string matching under the Damerau distance is also known as string matching

with swaps. In Section 5.1 we illustrate an algorithm for this problem that is sub-

linear on average and is also able to report, for each occurrence of the pattern,

the corresponding number of swaps, without any time or space overhead. The

distances described above assume that changes between strings occur locally, i.e.,

only a small portion of the string is involved in the mutation event. In contrast,

evidence shows that large scale changes are possible. For example, large pieces of

DNA can be moved from one location to another (translocations) or replaced by

their reversed complements (inversions). In Section 5.2 we introduce a distance

function modelled on these kinds of transformations, based on edit operations

1For an in-depth survey on approximate string matching see [53].

63

64 The approximate string matching problem

that involve substrings rather than just single characters. We then present an

algorithm, based on dynamic programming and on finite automata, to solve the

approximate string matching problem under this distance.

5.1 String matching with swaps

The pattern matching with swaps problem (swap matching problem, for short)

is a well-studied variant of the classic pattern matching problem. It consists in

finding all occurrences, allowing for swaps of characters , of a pattern P of length

m in a text T of length n, with P and T sequences of characters over a common

finite alphabet Σ of size σ. More precisely, the pattern is said to swap-match

the text at a given location j if adjacent pattern characters can be swapped,

if necessary, so as to make it identical to the substring of the text ending (or,

equivalently, starting) at location j. All swaps are constrained to be disjoint, i.e.,

each character can be involved in at most one swap. Moreover, we assume that

identical adjacent characters cannot be swapped.

Amir et al. [3] provided a O(nm1/3 logm)-time algorithm in the case of al-

phabets of size 2 and showed that the case of alphabets of size greater than 2

can be reduced to that of size 2 with a O(log σ)-time overhead. In [5] Amir et

al. studied some rather restrictive cases in which a O(n log2 m)-time algorithm

can be obtained. More recently, Amir et al. solved the swap matching problem

in O(n logm log σ)-time [4]. We observe that the above solutions are all based on

the fast Fourier transform (FFT) technique.

Iliopoulos and Rahman provided the first solution to the swap matching prob-

lem that does not make use of the FFT technique [41]. They modelled the prob-

lem using a graph-theoretic approach and devised an algorithm, based on the

bit-parallelism technique [8], which runs in O((n+m) logm)-time if the pattern

length is O(w), where w is the size in bits of a computer word.

More recently, Cantone and Faro [20] presented an algorithm, named Cross-

Sampling, that has O(nm) worst-case time complexity and admits a bit-parallel

implementation, named BP-Cross-Sampling, which achieves O(n) worst-case

time complexity if the pattern length is O(w). In [16] the same authors presented

another algorithm, namedBackward-Cross-Sampling, that hasO(nm2) worst-

case time complexity but shows a sublinear behaviour on average. They also de-

vised a bit-parallel implementation, named BP-Backward-Cross-Sampling,

which has O(nm)-time complexity if the pattern length is O(w).

5.1. String matching with swaps 65

In this section we investigate the approximate variant of the swap matching

problem. The approximate pattern matching with swaps problem is tantamount

to computing, for each text location j, the number of swaps necessary to convert

the pattern into the substring of length m ending at j.

A straightforward solution to the approximate swap matching problem con-

sists in searching for all the swapped occurrences of the pattern, using any al-

gorithm for the standard swap matching problem. For a given occurrence, to

compute the associated number of swaps it suffices to count the number of mis-

matches relative to the original pattern and then divide it by 2.

Amir et al. presented a theoretical algorithm that solves the approximate

swap matching problem in time O(n logm log σ) [6].

Cantone and Faro presented also an extension of the Cross-Sampling al-

gorithm, named Approximate-Cross-Sampling, for the approximate swap

matching problem. However, its bit-parallel implementation has a notably high

space overhead since it requires (m log(⌊m/2⌋+ 1) +m) bits [20].

In this section we present a variant of the Backward-Cross-Sampling algo-

rithm for the approximate swap matching problem, which works in O(nm2)-time

and requires O(m)-space. Its bit-parallel implementation, as opposed to the BP-

Approximate-Cross-Sampling algorithm, does not add any space overhead

and maintains a worst-case O(nm)-time and O(σ)-space complexity, when the

pattern length is O(w).

5.1.1 Preliminary definitions

Definition 5.1. A swap permutation for a string P of length m is a permutation

π : {0, ...,m− 1} → {0, ...,m− 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);

(b) for all i, π(i) ∈ {i− 1, i, i+ 1} (only adjacent characters are swapped);

(c) if π(i) ̸= i then P [π(i)] ̸= P [i] (identical characters can not be swapped).

For a given string P and a swap permutation π for P , we write π(P) to denote

the swapped version of P , namely π(P) = P [π(0)].P [π(1)]. · · · .P [π(m− 1)].

Definition 5.2. Given a text T of length n and a pattern P of length m, P is

said to swap-match (or to have a swapped occurrence) at location j ≥ m− 1 of

T if there exists a swap permutation π of P such that π(P) matches T at location

j, i.e., π(P) = T [j −m+ 1 .. j]. In such a case we write P ∝ Tj.

66 The approximate string matching problem

As already observed, if a pattern P of length m has a swap match ending

at location j of a text T , then the number k of swaps needed to transform P

into its swapped version π(P) = T [j −m + 1 .. j] is equal to half the number of

mismatches of P at location j. Thus the value of k lies between 0 and ⌊m/2⌋.

Definition 5.3. Given a text T of length n and a pattern P of length m, P is

said to swap-match (or to have a swapped occurrence) at location j of T with

k swaps if there exists a swap permutation π of P such that π(P) matches T at

location j and k = |{i : P [i] ̸= P [π(i)]}|/2. In such a case we write P ∝
k
Tj.

Definition 5.4 (Pattern matching with swaps problem). Given a text T of length

n and a pattern P of length m, find all locations j ∈ {m− 1, ..., n− 1} such that

P swap-matches with T at location j, i.e., P ∝ Tj.

Definition 5.5 (Approximate pattern Matching with swaps problem). Given

a text T of length n and a pattern P of length m, find all pairs (j, k), with

j ∈ {m − 1...n − 1} and 0 ≤ k ≤ ⌊m/2⌋, such that P has a swapped occurrence

in T at location j with k swaps, i.e., P ∝
k
Tj.

The following elementary result will be used later.

Lemma 5.1 ([20]). Let P and R be strings of length m over an alphabet Σ and

suppose that there exists a swap permutation π such that π(P) = R. Then π is

unique.

Proof. Suppose, by way of contradiction, that there exist two different swap

permutations π and π′ such that π(P) = π′(P) = R. Then there must exist

an index i such that π(i) ̸= π′(i). Without loss of generality, let us assume that

π(i) < π′(i) and suppose that i be the smallest index such that π(i) ̸= π′(i).

Since π(i), π′(i) ∈ {i − 1, i, i + 1}, by Definition 5.1(b), it is enough to consider

the following three cases:

Case 1: π(i) = i− 1 and π′(i) = i.

Then, by Definition 5.1(a), we have π(i − 1) = i, so that P [π(i − 1)] =

P [i] = P [π′(i)] = P [π(i)], thus violating Definition 5.1(c).

Case 2: π(i) = i and π′(i) = i+ 1.

Since by Definition 5.1(a) we have π′(i+ 1) = i, then P [π′(i+ 1)] = P [i] =

P [π(i)] = P [π′(i)], thus violating again Definition 5.1(c).

5.1. String matching with swaps 67

Case 3: π(i) = i− 1 and π′(i) = i+ 1.

By Definition 5.1(c) we have π(i− 1) = π′(i+ 1) = i. Thus π′(i− 1) ̸= i =

π(i− 1), contradicting the minimality of i.

Corollary 5.1. Given a text T of length n and a pattern P of length m, if

P ∝ Tj, for a given position j ∈ {m − 1, . . . , n − 1}, then there exists a unique

swapped occurrence of P in T ending at position j.

5.1.2 The Approximate-Cross-Sampling algorithm

The Approximate-Cross-Sampling algorithm [20] computes the swap occur-

rences of all prefixes of a pattern P (of length m) in continuously increasing

prefixes of a text T (of length n), using a dynamic programming approach. Ad-

ditionally, for each occurrence of P in T , the algorithm computes also the number

of swaps necessary to convert the pattern into its swapped occurrence.

In particular, during its (j+1)-th iteration, for j = 0, 1, . . . , n− 1, it is estab-

lished whether Pi ∝k
Tj , for each i = 0, 1, . . . ,m − 1, by exploiting information

gathered during previous iterations as is described below.

Let us put

S̄j =Def {(i, k) | 0 ≤ i ≤ m− 1 and Pi ∝k
Tj}

λ̄j,i =Def


{(0, 0)} if P [i] = T [j]

∅ otherwise ,

for 0 ≤ j ≤ n− 1, and

S̄ ′j =Def {(i, k) | 0 ≤ i < m− 1 and (Pi−1 ∝k
Tj−1 ∨ i = 0) and P [i+ 1] = T [j]} ,

for 1 ≤ j < n− 1. Then the following recurrences hold:

S̄j+1 = {(i, k) | i ≤ m− 1 and ((i− 1, k) ∈ S̄j and P [i] = T [j + 1]) or

((i− 1, k − 1) ∈ S̄ ′j and P [i− 1] = T [j + 1]) } ∪ λ̄j+1,0

S̄ ′j+1 = {(i, k) | i < m− 1 and (i− 1, k) ∈ S̄j and P [i+ 1] = T [j + 1]} ∪ λ̄j+1,1 .

(5.1)

where the base cases are given by S0 = λ̄0,0 and S ′0,0 = λ̄0,1.

Such relations allow one to compute the sets S̄j and S̄ ′j in an iterative fashion,

as shown in Fig. 5.1. Observe that S̄j+1 is computed in terms of both S̄j and S̄ ′j ,
whereas S̄ ′j+1 needs only S̄j for its computation. The code of the Approximate-

68 The approximate string matching problem

S̄0 S̄1 S̄2 S̄3 S̄4 S̄5 S̄j S̄j+1

S̄′
0 S̄′

1 S̄′
2 S̄′

3 S̄′
4 S̄′

5 S̄′
j S̄′

j+1

Figure 5.1: A graphic representation of the iterative fashion for computing sets S̄j

and S̄ ′
j for increasing values of j.

Cross-Sampling algorithm is shown in Fig. 5.2 (left). The time complexity of

the Approximate-Cross-Sampling algorithm is O(nm).

In [20] a bit-parallel implementation of the Approximate-Cross-Sampling

algorithm, called BP-Approximate-Cross-Sampling, has been presented.

The BP-Approximate-Cross-Sampling algorithm uses a representation of

the sets S̄j and S̄ ′j as bit-vectors of qm bits, D̄j and D̄′j respectively, where m

is the length of the pattern and q = log(⌊m/2⌋ + 1) + 1. If (i, k) ∈ S̄j , where
0 ≤ i < m and 0 ≤ k ≤ ⌊m/2⌋, then the rightmost bit of the i-th block of D̄j

is set to 1 and the leftmost q − 1 bits of the i-th block correspond to the value

k (we need exactly q bits to represent a value between 0 and ⌊m/2⌋). The same

considerations hold for the sets S̄ ′j .
For each character c of the alphabet Σ, the algorithm maintains a bit mask

M [c], where the rightmost bit of the i-th block is set to 1 if P [i] = c, and a bit

mask B[c], whose i-th block have all its bits set to 1 if P [i] = c.

The algorithm also maintains two bit vectors, D̄ and D̄′, whose configurations

during the computation are denoted D̄j and D̄′j respectively, as the location j

advances over the input text. For convenience, we introduce also the bit vectors

D̄−1 and D̄′−1, which are both set to 0qm.

While scanning the text from left to right, the algorithm computes for each

position j ≥ 0 the bit vector D̄j in terms of D̄j−1 and D̄′j−1, by performing the

following bitwise operations:

(a) D̄j ← (D̄j−1 ≪ q) | 1
(b) D̄j ← D̄j & B[T [j]]

(c) D̄j ← D̄j | ((D̄′j−1 & B[T [j]])≪ q)

(d) D̄j ← D̄j + (((D̄′j−1 & M [T [j]])≪ q)≪ 1)

5.1. String matching with swaps 69

corresponding respectively to the relations:

(a) S̄j = {(i, k) : (i− 1, k) ∈ S̄j−1} ∪ {(0, 0)}
(b) S̄j ← S̄j \ {(i, k) : P [i] ̸= T [j]}

(c− d) S̄j ← S̄j ∪ {(i, k + 1) : (i− 1, k) ∈ S̄ ′j−1 ∧ P [i− 1] = T [j]}

Similarly, the bit vector D̄′j is computed in the j-th iteration of the algorithm

in terms of D̄j−1, by performing the following bitwise operations:

(a) D̄′j ← (D̄j−1 ≪ q) | 1
(b) D̄′j ← D̄′j & (B[T [j]]≫ q)

(c) D̄′j ← D̄′j & ∼ D̄j

corresponding respectively to the relations:

(a) S̄ ′j ← {(i, k) : (i− 1, k) ∈ S̄j−1} ∪ {(0, 0)}
(b) S̄ ′j ← S̄ ′j \ {(i, k) : P [i+ 1] ̸= T [j]}
(c) S̄ ′j ← S̄ ′j \ {(i, k) : (i, k) ∈ S̄j}

During the j-th iteration, if the rightmost bit of the (m − 1)-th block of D̄j

is set to 1, i.e., if (D̄j & 10q(m−1)) ̸= 0m, a swap match is reported at position j.

The total number of swaps is contained in the q− 1 leftmost bits of the (m− 1)-

th block of D̄j , which can be retrieved by performing a bitwise shift on D̄j of

(q(m− 1) + 1) positions to the right.

The code of the BP-Approximate-Cross-Sampling algorithm is shown in

Fig. 5.2 (right). It achieves a O(n⌈m logm/w⌉) worst-case time complexity and

requires O(σ⌈m logm/w⌉) extra space, where σ is the size of the alphabet. If

m(log(⌊m/2⌋+ 1) + 1) = O(w) then the algorithm requires O(n)-time and O(σ)
extra space.

5.1.3 New algorithms for the approximate swap matching

problem

In this section we present a new practical algorithm for solving the swap matching

problem, called Approximate-BCS (Approximate Backward Cross Sampling),

which is characterized by a O(nm2)-time and O(m)-space complexity, where m

and n are the lengths of the pattern and text, respectively.

Our algorithm is an extension of the Backward-Cross-Sampling algo-

70 The approximate string matching problem

Approximate-Cross-Sampling (P,m, T, n)

1. S̄0 ← S̄′
0 ← ∅

2. if P [0] = T [0] then S̄0 ← {(0, 0)}
3. if 1 < m and P [1] = T [0]
4. then S̄′

0 ← {(0, 0)}
5. for j ← 1 to n− 1 do
6. S̄j ← S̄′

j ← ∅
7. for (i, k) ∈ S̄j−1 do
8. if i < m− 1 and P [i + 1] = T [j]
9. then S̄j ← S̄j ∪ {(i + 1, k)}

10. if i + 1 < m− 1 and P [i + 2] = T [j]
11. then S̄′

j ← S̄′
j ∪ {(i + 1, k)}

12. for (i, k) ∈ S̄′
j−1 do

13. if i < m− 1 and P [i] = T [j]
14. then S̄j ← S̄j ∪ {(i + 1, k + 1)}
15. if P [0] = T [j] then S̄j ← S̄j ∪ {(0, 0)}
16. if 1 < m and P [1] = T [j]
17. then S̄′

j ← S̄′
j ∪ {(0, 0)}

18. for (i, k) ∈ S̄j do
19. if i = m− 1 then Output(j, k)

BP-Approximate-Cross-Sampling (P,m, T, n)

1. q ← log(⌊m/2⌋+ 1) + 1
2. for c ∈ Σ do M [c]← 0qm

3. for c ∈ Σ do B[c]← 0qm

4. j ← 0
5. for i← 0 to m− 1 do
6. M [P [i]]←M [P [i]] | (0qm−11≪ j)

7. B[P [i]]← B[P [i]] | (0q(m−1)1q ≪ j)
8. j ← j + q
9. D̄ ← D̄′ ← 0qm

10. for j ← 0 to n− 1 do
11. H0 ← (D̄ ≪ q) | 1
12. H1 ← (D̄′ & B[T [j]])≪ q
13. H2 ← (D̄′ & M [T [j]])≪ q
14. D̄ ← H0 & B[T [j]]
15. D̄ ← (D̄ | H1) + (H2 ≪ 1)
16. D̄′ ← (H0 & (B[T [j]]≫ q)) & ∼ D̄

17. if D̄ & 0q−110q(m−1) ̸= 0qm then
18. k ← (D̄ ≫ (q(m− 1) + 1))
19. Output(j, k)

Figure 5.2: The Approximate-Cross-Sampling algorithm (left) for the approx-
imate swap matching problem and its bit-parallel variant BP-Approximate-Cross-
Sampling (right).

rithm [16], for the standard swap matching problem. It inherits from the

Approximate-Cross-Sampling algorithm the same doubly crossed structure

in its iterative computation, but searches for all occurrences of the pattern in the

text by scanning characters backwards, from right to left.

Later, in Section 5.1.3, we present an efficient implementation based on bit-

parallelism of the Approximate-BCS algorithm, which achieves a O(nm)-time

and O(σ)-space complexity, when m = O(w).

The Approximate-BCS Algorithm

The Approximate-BCS algorithm searches for all the swap occurrences of a

pattern P (of length m) in a text T (of length n) using right-to-left scans in

windows of size m, as in the Backward-DAWG-Matching (BDM) algorithm for the

exact single pattern matching problem [30]. In addition, for each occurrence of P

in T , the algorithm counts the number of swaps necessary to convert the pattern

in its swapped occurrence.

As in the BDM algorithm, the Approximate-BCS algorithm processes the

text in windows of size m. Each attempt is identified by the last position, j, of

5.1. String matching with swaps 71

Sℓ
j

Wℓ
j

S2
j

W2
j

S1
j

W1
j

S0
j

W0
j

Sh
u

Wh
u

S2
u

W2
u

S1
u

W1
u

S0
u

W0
u

u = j +m− ℓ

Figure 5.3: A graphic representation of the iterative fashion for computing the sets
Sh
j and Wh

j for increasing values of h. A first attempt starts at position j of the text
and stops with h = ℓ. The subsequent attempt starts at position u = j +m− l.

the current window of the text. The window is searched for the longest prefix of

the pattern which has a swapped occurrence ending at position j of the text. At

the end of each attempt, a new value of j is computed by performing a safe shift

to the right of the current window in such a way to left-align it with the longest

prefix matched in the previous attempt.

To this end, if we put

Shj =Def {h− 1 ≤ i ≤ m− 1 | P [i− h+ 1 .. i] ∝ Tj} ,

Wh
j =Def {h ≤ i < m− 1 | P [i− h+ 2 .. i] ∝ Tj and P [i− h] = T [j − h+ 1]} ,

for 0 ≤ j < n and 0 ≤ h ≤ m, then the following recurrences hold:

Sh+1
j = {h− 1 ≤ i ≤ m− 1 | (i ∈ Shj and P [i− h] = T [j − h]) or

(i ∈ Wh
j and P [i− h+ 1] = T [j − h]) }

Wh+1
j = {h ≤ i ≤ m− 1 | i ∈ Shj and P [i− h− 1] = T [j − h]} .

(5.2)

where the base cases are given by

S0j = {i | 0 ≤ i < m} and W0
j = {0 ≤ i < m | P [i] = T [j + 1]} .

Such relations allow one to compute the sets Shj and Wh
j in an iterative

fashion, where Sh+1
j is computed in terms of both Shj and Wh

j , whereas Wh+1
j

needs only Shj for its computation. The structure is similar to the one of the

Approximate-Cross-Sampling algorithm, as shown in Fig. 5.3.

Plainly the set Shj includes all the values i such that the h-substring of P

72 The approximate string matching problem

ending at position i has a swapped occurrence ending at position j in T . Thus,

if (h − 1) ∈ Shj , then there is a swapped occurrence of the prefix of length h of

P . Hence, it follows that P has a swapped occurrence ending at position j if and

only if (m− 1) ∈ Smj .

Observe however that the only prefix of length m is the pattern P itself. Thus

(m− 1) ∈ Smj if and only if Smj ̸= ∅.
The following result follows immediately from (5.2).

Lemma 5.2. Let P and T be a pattern of length m and a text of length n,

respectively. Moreover let m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m. If i ∈ Sγj , then it

follows that i ∈ (Shj ∪Wh
j), for 1 ≤ h ≤ γ.

Lemma 5.3. Let P and T be a pattern of length m and a text of length n,

respectively. Then, for every m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m such that

i ∈ (Sγj ∩Wγ−1
j ∩ Sγ−1j), we have P [i− γ + 1] = P [i− γ + 2].

Proof. From i ∈ (Sγj ∩ Sγ−1j) it follows that P [i − γ + 1] = T [j − γ + 1]. Also,

from i ∈ Wγ−1
j it follows that P [i − γ + 2] = T [j − γ + 1]. Thus P [i − γ + 1] =

P [i− γ + 2].

The following lemma will be used.

Lemma 5.4. Let P and T be a pattern of length m and a text of length n,

respectively. Moreover let m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m. Then, if i ∈ Sγj ,
there is a swap between characters P [i − γ + 1] and P [i − γ + 2] if and only if

i ∈ (Sγj \ Sγ−1j).

Proof. Before entering into details we remember that, by Definition 5.1, a swap

can take place between characters P [i − γ + 1] and P [i − γ + 2] if and only if

P [i−γ+1] = T [j−γ+2], P [i−γ+2] = T [j−γ+1] and P [i−γ+1] ̸= P [i−γ+2].

Now, suppose that i ∈ Sγj and that there is a swap between characters

P [i−γ+1] and P [i−γ+2]. We proceed by contradiction to prove that i /∈ Sγ−1j .

Thus, we have

(i) i ∈ Sγj (by hypothesis)

(ii) P [i− γ + 2] = T [j − γ + 1] ̸= P [i− γ + 1] (by hypothesis)

(iii) i ∈ Sγ−1j (by contradiction)

(iv) i /∈ Wγ−1
j (by (ii), (iii),

and Lemma 5.3)

(v) P [i− γ + 1] = T [j − γ + 1] (by (i) and (iv))

5.1. String matching with swaps 73

obtaining a contradiction between (ii) and (v).

Next, suppose that i ∈ (Sγj \ Sγ−1j). We prove that there is a swap between

characters P [i− γ + 1] and P [i− γ + 2]. We have

(i) i ∈ Sγj and i /∈ Sγ−1j (by hypothesis)

(ii) i ∈ Wγ−1
j (by (i) and Lemma 5.2)

(iii) i ∈ Sγ−2j (by (ii) and (5.2))

(iv) P [i− γ + 1] = T [j − γ + 2] (by (i) and (ii))

(v) P [i− γ + 2] = T [j − γ + 1] (by (ii))

(vi) P [i− γ + 2] ̸= T [j − γ + 2] = P [i− γ + 1] (by (i) and (iii)).

The following corollary is an immediate consequence of Lemmas 5.4 and 5.2.

Corollary 5.2. Let P and T be strings of length m and n, respectively, over a

common alphabet Σ. Then, for m− 1 ≤ j ≤ n− 1, P has a swapped occurrence

in T at location j with k swaps, i.e., P ∝
k
Tj, if and only if

(m− 1) ∈ Smj and |∆j | = k ,

where ∆j = {1 ≤ h < m : (m− 1) ∈ (Sh+1
j \ Shj)}.

In consideration of the preceding corollary, theApproximate-BCS algorithm

maintains a counter which is incremented every time (m− 1) ∈ (Sh+1
j \ Shj), for

any 1 < h ≤ m, in order to count the swaps for an occurrence ending at a given

position j of the text.

For any attempt at position j of the text, let us denote by ℓ the length of

the longest prefix matched in the current attempt. Then the algorithm starts its

computation with j = m− 1 and ℓ = 0. During each attempt, the window of the

text is scanned from right to left, for h = 1, . . . ,m. If, for a given value of h, the

algorithm discovers that (h− 1) ∈ Shj , then ℓ is set to the value h.

The algorithm is not able to remember the characters read in previous itera-

tions. Thus, an attempt ends successfully when h reaches the value m (a match

is found), or unsuccessfully when both sets Shj and Wh
j are empty. In any case,

at the end of each attempt, the starting position of the window, i.e., position

j−m+1 in the text, can be shifted to the starting position of the longest proper

74 The approximate string matching problem

prefix detected during the backward scan. Thus the window is advanced by m−ℓ

positions to the right. Observe that since ℓ < m, we have m− ℓ > 0.

The code of the Approximate-BCS algorithm is shown in Fig. 5.4 (left).

Its time complexity is O(nm2) in the worst case and requires O(m) extra space

to represent the sets Shj and Wh
j .

The Approximate-BPBCS Algorithm

In [16] an efficient bit-parallel implementation of the Backward-Cross-

Sampling algorithm, called BP-Backward-Cross-Sampling, has also been

presented. Here we illustrate a practical bit-parallel implementation of the

Approximate-BCS algorithm, named Approximate-BPBCS, along the same

lines of the BP-Backward-Cross-Sampling algorithm.

In the Approximate-BPBCS algorithm, the sets Shj andWh
j are represented

as bit-vectors of m bits, Dh
j and Ch

j respectively, where m is the length of the

pattern.

The (i− h+ 1)-th bit of Dh
j is set to 1 if i ∈ Sj , i.e., if P [i− h+ 1 .. i] ∝ Tj ,

whereas the (i−h+1)-th bit of Ch
j is set to 1 if i ∈ Wh

j , i.e., if P [i−h+2 .. i] ∝ Tj

and P [i− h] = T [j − h+ 1]. All remaining bits are set to 0.

For each character c of the alphabet Σ, the algorithm maintains a bit mask

M [c] whose i-th bit is set to 1 if P [i] = c.

As in the Approximate-BCS algorithm, the text is processed in windows

of size m, identified by their last position j, and the first attempt starts at po-

sition j = m − 1. For any searching attempt at location j of the text, the bit

vectors D1
j and C1

j are initialized to M [T [j]] | (M [T [j+1]] & (M [T [j]]≪ 1)) and

M [T [j]] ≫ 1, respectively, according to the recurrences (5.2) and relative base

cases. Then the current window of the text, i.e., T [j−m+1 .. j], is scanned from

right to left, by reading character T [j−h+1], for increasing values of h. Namely,

for each value of h > 1, the bit vector Dh+1
j is computed in terms of Dh

j and Ch
j ,

by performing the following bitwise operations:

(a) Dh+1
j ← (Dh

j ≪ 1) & M [T [j − h]]

(b) Dh+1
j ← Dh+1

j | ((Ch
j & M [T [j − h]])≪ 1) .

Concerning (a), by a left shift of Dh
j , all the elements of Shj are added to

the set Sh+1
j . Then, by performing a bitwise and with the mask M [T [j − h]], all

elements i such that P [i − h] ̸= T [j − h] are removed from Sh+1
j . Similarly, the

bit operations in (b) have the effect of adding to Sh+1
j all the elements i in Wh

j

5.1. String matching with swaps 75

such that P [i− h+ 1] = T [j − h]. Formally, we have:

(a′) Sh+1
j ← Shj \ {i ∈ Shj : P [i− h] ̸= T [j − h]}

(b′) Sh+1
j ← Sh+1

j ∪Wh
j \ {i ∈ Wh

j : P [i− h+ 1] ̸= T [j − h]} .

Similarly, the bit vector Ch+1
j is computed in terms of Dh

j , by performing the

following bitwise operations

(c) Ch+1
j ← (Dh

j ≪ 1) & (M [T [j − h]]≫ 1)

which have the effect of adding to the setWh+1
j all the elements of the set Shj (by

shifting Dh
j to the left by one position) and of removing all the elements i such

that P [i−h−1] ̸= T [j−h] holds (by a bitwise and with the maskM [T [j−h]]≫ 1),

or, more formally:

(c′) Wh+1
j ← Shj \ {i ∈ Shj : P [i− h− 1] ̸= T [j − h]} .

In order to count the number of swaps, observe that the (i − h + 1)-th bit

of Dh
j is set to 1 if i ∈ Shj . Thus, the condition (m − 1) ∈ (Sh+1

j \ Shj) can be

implemented by the following bitwise condition:

(d) ((Dh+1 & ∼ (Dh ≪ 1)) & (1≪ h)) ̸= 0 .

As in the Approximate-BCS algorithm, an attempt ends when h = m or

(Dh
j |Ch

j) = 0. If h = m and Dh
j ̸= 0, a swap match at position j of the text is

reported. In any case, if h < m is the largest value such that Dh
j ̸= 0, then a

prefix of the pattern of length ℓ = h, which has a swapped occurrence ending at

position j of the text, has been found. Thus, a safe shift of m − ℓ positions to

the right can take place.

In practice, two vectors only are enough to implement the sets Dh
j and Ch

j ,

for h = 0, 1, . . . ,m, as one can transform the vector Dh
j into the vector Dh+1

j and

the vector Ch
j into the vector Ch+1

j , during the h-th iteration of the algorithm at

a given location j of the text.

The counter for taking note of the number of swaps requires log(⌊m/2⌋ + 1)

bits to be implemented. This compares favorably with the BP-Approximate-

Cross-Sampling algorithm which uses instead m counters of log(⌊m/2⌋ + 1)

bits, one for each prefix of the pattern.

The resulting Approximate-BPBCS algorithm is shown in Fig. 5.4 (right).

It achieves a O(⌈nm2/w⌉) worst-case time complexity and requires O(σ⌈m/w⌉+

76 The approximate string matching problem

Approximate-BCS (P,m, T, n)

1. j ← m− 1
2. while j < n do
3. h← 0, l← 0
4. S0

j ← {i | 0 ≤ i < m}
5. W0

j ← {0 ≤ i < m | P [i] = T [j + 1]}
6. c← 0

7. while h < m and Sh
j ∪Wh

j ̸= ∅ do

8. Sh+1
j ←Wh+1

j ← ∅
9. if (h− 1) ∈ Sh

j then ℓ← h

10. for i ∈ Sh
j do

11. if i ≥ h and P [i− h] = T [j − h]

12. then Sh+1
j ← Sh+1

j ∪ {i}
13. if i > h and P [i− h− 1] = T [j − h]

14. then Wh+1
j ←Wh+1

j ∪ {i}
15. for i ∈ Wh

j do
16. if i ≥ h and P [i− h + 1] = T [j − h]

17. then Sh+1
j ← Sh+1

j ∪ {i}
18. if m− 1 ∈ Sh+1

j and m− 1 /∈ Sh
j

19. then c← c + 1
20. h← h + 1

21. if (h− 1) ∈ Sh
j then Output(j,c)

22. j ← j + m− ℓ

Approximate-BPBCS (P,m, T, n)

1. for c ∈ Σ do M [c]← 0m

2. for i← 0 to m− 1 do
3. c← P [m− 1− i]

4. M [c]←M [c] | (0m−11≪ i)
5. j ← m− 1
6. while j < n do
7. h← 1, ℓ← 0
8. H ←M [T [j + 1]] & (M [T [j]]≪ 1)
9. D ←M [T [j]] | H

10. C ←M [T [j]]≫ 1
11. c← 0
12. while h < m and (D | C) ̸= 0m do
13. if D & 10m−1 ̸= 0m then ℓ← h

14. D
′ ← D ≪ 1

15. H ← (C & M [T [j − h]])≪ 1

16. D ← D
′
& M [T [j − h]]

17. D ← D | H
18. C ← D

′
& (M [T [j − h]]≫ 1)

19. if (D & ∼ D
′
) & (0m−11≪ h) ̸= 0

20. then c← c + 1
21. h← h + 1
22. if D ̸= 0m then Output(j,c)
23. j ← j + m− ℓ

Figure 5.4: TheApproximate-BCS algorithm (left) for the approximate swap match-
ing problem and its bit-parallel variant Approximate-BPBCS (right).

log(⌊m/2⌋+1)) extra space, where σ is the alphabet size. If m = O(w), then the

algorithm finds all the swapped occurrences of the pattern and their correspond-

ing number of swaps in O(nm) time and O(σ) extra space.

5.1.4 Experimental evaluation

Next we report and comment on the experimental results relative to an extensive

comparison, under various conditions, of the following approximate swap match-

ing algorithms:

• Approximate-Cross-Sampling (ACS)

• BP-Approximate-Cross-Sampling (BPACS)

• Approximate-BCS (ABCS)

• Approximate-BPBCS (BPABCS)

• Iliopoulos-Rahman algorithm with a naive check of the swaps (IR∗)

5.1. String matching with swaps 77

Algorithm 4 8 12 16 20 24 28 32

ACS 385.66 387.14 383.95 392.69 383.95 387.09 385.80 384.28
ABCS 420.39 297.81 248.44 229.37 212.75 204.41 199.82 190.85
BPACS 44.72 41.37 41.41 41.95 42.00 42.02 41.99 43.13
BPABCS 27.37 14.93 10.24 8.15 6.75 5.75 5.07 4.52
IR∗ 13.77 12.29 12.21 12.22 12.21 12.21 12.21 12.21
BPBCS∗ 30.34 15.54 10.57 8.32 6.88 5.86 5.18 4.62

Table 5.1: Running times (ms) for a Rand4 problem.

Algorithm 4 8 12 16 20 24 28 32

ACS 338.09 337.75 337.33 344.72 342.72 342.82 343.48 338.19
ABCS 280.04 206.02 176.68 157.63 147.02 138.32 131.98 127.70
BPACS 41.71 41.35 41.39 41.41 41.38 41.40 41.35 41.48
BPABCS 19.96 11.36 7.85 6.08 4.94 4.18 3.66 3.24
IR∗ 12.32 12.22 12.22 12.22 12.20 12.20 12.21 12.20
BPBCS∗ 20.40 11.63 8.04 6.19 5.01 4.23 3.68 3.24

Table 5.2: Running times (ms) for a Rand8 problem.

• BP-Backward-Cross-Sampling algorithm with a naive check of the

swaps (BPBCS∗)

We have also included in our comparison the algorithms IR∗ and BPBCS∗, since

the algorithms IR and BPBCS turned out to be the most efficient solutions for the

swap matching problem [16]. Instead, the Naive algorithm and algorithms based

on the FFT technique have not been taken into consideration as their overhead

is quite high.

The tests have been performed on a 2.33 GHz Intel Core 2 Duo. In particular,

all the algorithms have been tested on six Randσ problems, for σ = 4, 8, 16, 32, 64,

and 128, and on files (i), (iii) and (iv) (see Section 2.6) with patterns of length

m = 4, 8, 12, 16, 20, 24, 28, 32. Each Randσ problem consists in searching

a set of 100 random patterns for a given length value in a 4Mb random text

over a common alphabet of size σ, with a uniform character distribution. In the

following tables, the running times are expressed in milliseconds and the best

results have been bold-faced.

The experimental results show that the BPABCS algorithm obtains the best

performance in most cases. The only exception is found in the case of very short

patterns and small alphabets, where the IR∗ algorithm is faster. For long patterns

the difference between the BPABCS algorithm and the BPBCS∗ algorithm is small,

78 The approximate string matching problem

Algorithm 4 8 12 16 20 24 28 32

ACS 317.06 317.28 317.29 324.95 322.67 325.98 324.82 317.22
ABCS 222.69 167.56 142.81 128.57 119.03 112.56 106.97 102.99
BPACS 41.36 41.32 41.37 41.35 41.34 41.37 41.32 41.38
BPABCS 13.34 9.09 6.68 5.15 4.11 3.47 2.96 2.60
IR∗ 12.22 12.21 12.20 12.20 12.20 12.20 12.20 12.21
BPBCS∗ 13.60 9.33 6.85 5.29 4.22 3.57 3.05 2.68

Table 5.3: Running times (ms) for a Rand16 problem.

Algorithm 4 8 12 16 20 24 28 32

ACS 340.75 325.60 335.11 322.18 315.97 348.98 332.09 336.83
ABCS 201.47 154.68 123.63 112.35 104.85 102.78 95.25 91.88
BPACS 41.36 41.36 41.33 41.34 41.32 41.36 41.36 41.32
BPABCS 10.22 6.62 5.23 4.35 3.73 3.28 2.89 2.53
IR∗ 13.10 12.45 12.46 12.81 13.38 12.85 12.45 12.98
BPBCS∗ 11.46 7.51 5.59 4.45 3.85 3.54 2.99 2.75

Table 5.4: Running times (ms) for a Rand32 problem.

Algorithm 4 8 12 16 20 24 28 32

ACS 304.73 308.63 304.70 314.56 320.50 326.09 331.66 329.80
ABCS 185.15 135.45 118.52 101.56 97.27 90.71 87.66 84.88
BPACS 41.36 41.36 41.33 41.31 41.32 41.36 41.36 41.34
BPABCS 8.51 5.03 3.88 3.29 2.90 2.60 2.36 2.16
IR∗ 14.59 14.58 14.61 14.60 14.59 14.59 14.60 14.60
BPBCS∗ 8.76 5.15 3.96 3.37 2.97 2.66 2.41 2.21

Table 5.5: Running times (ms) for a Rand64 problem.

Algorithm 4 8 12 16 20 24 28 32

ACS 303.10 302.91 302.77 356.32 356.05 356.27 356.02 302.91
ABCS 176.61 121.39 104.44 94.66 88.59 84.77 81.38 79.36
BPACS 41.32 41.33 41.32 41.32 41.37 41.33 41.39 41.32
BPABCS 7.72 4.27 3.12 2.55 2.20 1.99 1.79 1.67
IR∗ 15.50 15.51 15.48 15.48 15.49 15.49 15.51 15.51
BPBCS∗ 7.98 4.39 3.19 2.60 2.24 2.01 1.82 1.69

Table 5.6: Running times (ms) for a Rand128 problem.

5.1. String matching with swaps 79

Algorithm 4 8 12 16 20 24 28 32

ACS 441.41 447.77 453.67 446.16 452.23 449.74 442.72 452.46
ABCS 466.88 340.48 288.85 266.94 247.83 239.04 226.08 223.28
BPACS 52.29 48.00 48.09 48.73 48.72 48.79 48.69 50.12
BPABCS 32.25 17.07 11.79 9.40 7.83 6.67 5.84 5.26
IR∗ 16.16 14.27 14.18 14.19 14.19 14.18 14.19 14.19
BPBCS∗ 35.85 17.89 12.20 9.63 7.99 6.81 5.95 5.37

Table 5.7: Running times (ms) for a DNA sequence (σ = 4).

Algorithm 4 8 12 16 20 24 28 32

ACS 228.95 228.78 227.05 229.41 229.31 230.46 230.82 228.85
ABCS 161.95 115.47 101.37 92.35 85.70 80.10 76.97 73.70
BPACS 29.97 29.94 29.97 29.98 29.94 29.94 29.97 29.98
BPABCS 9.74 6.28 4.68 3.66 3.00 2.51 2.16 1.91
IR∗ 8.83 8.83 8.83 8.83 8.83 8.82 8.83 8.83
BPBCS∗ 9.94 6.43 4.79 3.76 3.09 2.57 2.22 1.96

Table 5.8: Running times (ms) for a protein sequence (σ = 20).

Algorithm 4 8 12 16 20 24 28 32

ACS 190.74 192.93 196.09 201.45 200.99 197.57 201.64 192.25
ABCS 124.98 95.45 85.95 75.93 69.92 65.31 64.56 61.19
BPACS 25.62 25.54 25.58 25.54 25.55 25.57 25.58 25.64
BPABCS 7.63 4.97 4.04 3.08 2.65 2.29 2.00 1.79
IR∗ 7.84 7.80 7.79 7.79 7.79 7.80 7.79 7.79
BPBCS∗ 7.77 5.07 4.14 3.14 2.70 2.35 2.04 1.83

Table 5.9: Running times (ms) for the CIA World Fact Book (σ = 94).

80 The approximate string matching problem

because the number of occurrences of the pattern and, consequently, the number

of verifications performed by the BPBCS∗ algorithm decrease significantly as m

grows. Observe also that the algorithms IR∗, ACS, and BPACS maintain a linear

behaviour whereas the algorithms ABCS and BPABCS show a sublinear trend.

5.2 Approximate string matching with inversions

and translocations

In this section we investigate the approximate string matching problem under a

string distance whose edit operations are translocations of equal length adjacent

factors and inversions of factors. In particular, we present a O(nmmax(α, β))-

time and O(m2)-space algorithm, where α and β are the maximum length of the

factors involved in a translocation and in an inversion, respectively. Our algo-

rithm is based on a dynamic-programming approach and makes use of the Di-

rected Acyclic Word Graph of the pattern. The DAWG data structure has already

been used in algorithms for the approximate string matching problem [66, 65] to

keep track of the substrings of the pattern that match the text at every loca-

tion. We show that, under the assumption of equiprobability and independence

of characters in the alphabet, our algorithm has, on the average, a O(n logσ m)-

time complexity. Finally, we also present an efficient implementation of our algo-

rithm, based on bit-parallelism, which has O(nmax(α, β))-time and O(σ +m)-

space complexity when the pattern length is comparable with the size of the

computer word. To our knowledge there is no report in the literature of a similar

formalization of the above problem.

5.2.1 Preliminary definitions

A distance d : Σ∗×Σ∗ → R is a function which associates to any pair of strings X

and Y the minimal cost of any finite sequence of edit operations which transforms

X into Y , if such a sequence exists, ∞ otherwise. Edit operations have the form

Z →t W , where Z,W ∈ Σ∗ and t is a nonnegative real number representing the

cost. Any factor of X can be involved in at most one edit operation. If, for

every operation Z →t W , there is also the symmetric operation W →t Z (with

the same cost), then the distance d is symmetric, i.e., d(X,Y) = d(Y,X), for all

X,Y ∈ Σ∗.

5.2. Approximate string matching with inversions and translocations 81

Definition 5.6. Given two strings X and Y , the mutation distance md(X,Y)

is based on the following edit operations:

(1) Translocation: a factor of the form ZW is transformed into WZ, provided

that

|Z| = |W | > 0.

(2) Inversion: a factor Z is tranformed into Zr.

Both operations are assigned unit cost.

Observe that, by definition, the maximum length of the factors involved in a

translocation is ⌊|X|/2⌋, whereas the length of the factors involved in an inversion

can be at most |X|. Note, moreover, that there are strings X,Y such that X

can not be converted into Y by any sequence of translocations and inversions, in

which case md(X,Y) = ∞. When md(X,Y) < ∞, we say that X and Y have

an md-match. Additionally, if X has an md-match with a suffix of Y , we write

X ⊒md Y .

5.2.2 An automaton-based approach for the pattern match-

ing problem with translocations and inversions

We present an efficient algorithm, called M-Sampling, which finds the md-

matches of a given pattern P (of length m) in a text T (of length n). Our al-

gorithm, based on the dynamic programming approach, has a O(nmmax(α, β))-

time and O(m2)-space complexity, where α ≤ ⌊m/2⌋ is a bound on the length of

the factors involved in any translocation and β ≤ m is a bound on the length of

the factors involved in any inversion.

Given P , T , m, n, α, and β as above, the M-Sampling algorithm iteratively

computes, for j = m−1,m, . . . , n−1, all the prefixes of P which have anmd-match

with a suffix of Tj , by exploiting information gathered at previous iterations. For

this purpose a set Sj defined by

Sj =Def {0 ≤ i ≤ m− 1 | Pi ⊒md Tj} .

is maintained. Thus, the pattern P has an md-match ending at position j of the

text T if and only if (m− 1) ∈ Sj .
Since the allowed edit operations involve substrings of the pattern P , it is

useful to introduce the set Fk
j of all the positions in P where an occurrence of

82 The approximate string matching problem

the suffix of Tj of length k ends. More precisely, for 1 ≤ k ≤ α and k−1 ≤ j < n,

we put

Fk
j =Def {k − 1 ≤ i ≤ m− 1 | T [j − k + 1 .. j] ⊒ Pi} .

Observe that Fk
j ⊆ Fh

j , for 1 ≤ h ≤ k ≤ m.

Similarly, to handle inversions, it is convenient to define the set Ikj of the

positions in P where an occurrence of the reverse of the suffix of Tj of length k

ends. More precisely, for 1 ≤ k ≤ β and k − 1 ≤ j < n, we put

Ikj =Def {k − 1 ≤ i ≤ m− 1 | (T [j − k + 1 .. j])r ⊒ Pi} .

The sets Sj can then be computed based on the following elementary recursion.

Lemma 5.5. Let T and P be a text of length n and a pattern of length m,

respectively. Then i ∈ Sj, for 0 ≤ i < m and i ≤ j < n, if and only if one of the

following three facts holds

(a) P [i] = T [j] and (i− 1) ∈ Sj−1 ∪ {−1} (standard match);

(b) (i−k) ∈ Fk
j , i ∈ Fk

j−k, and (i−2k) ∈ Sj−2k ∪{−1}, for some 1 ≤ k ≤ ⌊ i+1
2 ⌋

(translocation);

(c) i ∈ Ikj and (i− k) ∈ Sj−k ∪ {−1}, for some 1 ≤ k ≤ i+ 1 (inversion).

Conditions (b) and (c) refer to a translocation of adjacent factors of length k

and an inversion of a factor of length k, respectively.

Likewise, the sets Fk
j and Ikj can be computed according to the following

lemma:

Lemma 5.6. Let T and P be a text of length n and a pattern of length m,

respectively. Then i ∈ Fk
j , for 1 ≤ k ≤ α, k − 1 ≤ i < m, and k − 1 ≤ j < n, if

and only if the following condition holds

(k = 1 or (i− 1) ∈ Fk−1
j−1) and P [i] = T [j] .

Similarly, i ∈ Ikj , for 1 ≤ k ≤ β, k − 1 ≤ i < m, and k − 1 ≤ j < n, if and only

if the following condition holds

(k = 1 or i ∈ Ik−1j−1) and P [i− k + 1] = T [j] . ⊓⊔

5.2. Approximate string matching with inversions and translocations 83

Based on Lemmas 5.5 and 5.6, a general dynamic programming algorithm

can be readily constructed, characterized by an overall O(nmmax(α, β))-time

and O(m2)-space complexity. However, the overhead due to the computation of

the sets Fk
j and Ikj turns out to be quite large. By suitably preprocessing the

pattern with the DAWG data structure, as will be described in the next section,

the M-Sampling algorithm succeeds in drastically reducing such a overhead (see

Fig. 5.7). The code of the algorithm M-Sampling is shown in Fig. 5.6.

Efficient computation of the sets Fk
j and Ikj

An efficient method for computing the sets Fk
j defined above, for 1 ≤ k ≤ α and

k − 1 ≤ j < n, makes use of the DAWG of the pattern P and of the function

end-pos. Later we also show how to compute efficiently the sets Ikj .
Let F (P) = (Q,Σ, δ, root , F) be the DAWG of P . For each position j in

T , let P ′ be the longest factor of P , of length at most α, which is a suffix of

Tj , let qj be the state of F (P) such that RP (P
′) = qj , and let lj be the length

of P ′. We call the pair (qj , lj) a T -configuration of F (P). The idea is then to

compute the T -configuration (qj , lj) of F (P), for each position j of the text,

while scanning the text. The set Fk
j computed at previous iterations are not

maintained explicitly; rather, only T -configurations are maintained. These are

then used to compute efficiently the set Fk
j only when needed.

The longest factor of P ending at position j of T is computed in the same

way as in the Forward-Dawg-Matching algorithm for the exact pattern matching

problem (cf. [30]). Specifically the algorithm makes use of an improved suffix link

function sℓ∗ : Q→ Q, defined as

sℓ∗(q) =


suf (q) if context(q) ̸= context(suf (q))

sℓ∗(suf (q)) otherwise

where context(q) = {c ∈ Σ | δ(q, c) ̸= nil} is the set of all characters which

label an outgoing transition from state q. Rougly speaking, given a node q of the

automaton, the improved suffix link function jumps directly to the first node in

the suffix path which has a context different from context(q).

Since we are interested in factors of length at most α, we maintain the invari-

ant that the current state of the automaton never corresponds to factors longer

than α (we discovered that a similar idea was used in [65]).

Let (qj−1, lj−1) be the T -configuration of F (P) at step (j − 1). Two cases

84 The approximate string matching problem

DAWG-DELTA(q, l, k, c,B)
1. if l = k then
2. l← l− 1
3. if length(suf B(q)) = l
4. then q ← suf B(q)
5. if δB(q, c) = nil then
6. do
7. q ← sℓ∗B(q)
8. while q ̸= nil and δB(q, c) = nil
9. if q = nil then

10. l← 0, q ← rootB
11. else l← length(q) + 1
12. q ← δB(q, c)
13. else l← l + 1
14. q ← δB(q, c)
15. return (q, l)

Figure 5.5: the DAWG state update algorithm.

must be distinguished.

Case lj−1 < α: The new T -configuration (qj , lj) is set to (δ(q, T [j]), length(q)+

1), where q is the first node in the suffix path

(qj−1, suf (qj−1), suf
(2)(qj−1), . . .)

of qj−1, including qj−1, having a transition on T [j], if such a node exists;

otherwise (qj , lj) is set to (root , 0).2

Case lj−1 = α: We first compute the T -configuration corresponding to the factor

T [j − α + 1 .. j − 1] of P of length (α − 1) ending at position j − 1 in T ,

namely the T -configuration (q′j−1, l
′
j−1), where

(q′j−1, l
′
j−1) =Def


(suf (qj−1), lj−1 − 1) if length(suf (qj−1)) = lj−1 − 1

(qj−1, lj−1 − 1) otherwise.

Then we compute the new T -configuration (qj , lj) starting from (q′j−1, l
′
j−1)

as in the previous case, observing that l′j−1 = α − 1. The algorithm to

update the T -configuration of the DAWG F (P) is given in Fig. 5.5, where

sℓ∗ denotes the improved suffix link [30].

2We recall that suf (0)(q) =Def q and, recursively, suf (h+1)(q) =Def suf (suf (h)(q)), for

h ≥ 0, provided that suf (h)(q) ̸= root .

5.2. Approximate string matching with inversions and translocations 85

Before explaining how to compute the sets Fk
j , it is convenient to introduce

a partial function φ : Q × N → Q which, given a node q ∈ Q and a length

k ≤ length(q), computes the node φ(q, k) whose corresponding set of factors

contains the suffix of val(q) of length k. This is the same as saying, more formally,

that φ(q, k) is the node suf (i)(q) such that

length(suf (i+1)(q)) < k ≤ length(suf (i)(q)) ,

for each q ∈ Q and each integer k ≤ length(q). Roughly speaking, φ(q, k) is the

first node p in the suffix path of q such that length(suf (p)) < k.

In the preprocessing phase, the DAWG F (P) = (Q,Σ, δ, root , F) is computed

together with the associated end-pos function. Since for a pattern P of length m

we have that |Q| ≤ 2m + 1 and |end-pos(q)| ≤ m, for each q ∈ Q, we need only

O(m2) extra space (see [11, 28]).

To compute the set Fk
j , for 1 ≤ k ≤ lj , one can take advantage of the following

relation

Fk
j = end-pos(φ(qj , k)) . (5.3)

Notice, in particular, that we have F lj
j = end-pos(qj).

The time complexity of the computation of φ(q, k) can be bounded by the

length of the suffix path of node q. Specifically, since the sequence

(length(suf (0)(q)), length(suf (1)(q)), . . . , 0)

of the lengths of the nodes in the suffix path from q is strictly deacreasing, we

can do at most length(q) iterations over the suffix link, obtaining a O(m)-time

complexity.

According to Lemma 5.5, a translocation of length 2k at position j of the text

T is possible only if factors of P of length at least k have been recognized at both

positions j and j − k, namely if lj ≥ k and lj−k ≥ k.

Let ⟨k1, k2, . . . , kr⟩ be the increasing sequence of all values k such that 1 ≤
k ≤ min(lj , lj−k). For each 1 ≤ i ≤ r, condition (b) of Lemma 5.5 requires

member queries on the sets Fki
j and Fki

j−ki
.

We notice that, if we proceed for decreasing values of k, the sets Fk
j , for

1 ≤ k ≤ lj , can be computed in constant time. Specifically, the set Fk
j can be

computed in constant time from Fk+1
j , for k = 1, . . . , lj − 1, with at most one

86 The approximate string matching problem

iteration over the suffix link of the state φ(qj , k + 1).

The computation of Fkr

j−kr
has a O(α)-time complexity, since length(qj−kr

) ≤
α. To compute Fki

j−ki
, for i = r− 1, r− 2, . . . , 1, we distinguish the following two

cases:

Case ki+1 = ki + 1: Let q′ = φ(qj−ki+1
, ki+1). Given the node q′ computed in

the previous iteration, the node φ(qj−ki
, ki) can be computed in two steps:

first, we look up the node corresponding to the suffix of length ki+1 − 2

of the factor represented by q′, with at most two iterations of the suffix

link of q′; then, we perform a transition on T [j − ki] on the node so found.

Formally:

φ(qj−ki
, ki) = δ(φ(q′, ki+1 − 2), T [j − ki]) .

Case ki+1 > ki + 1: Observe that lj−s ≤ s − 1 must hold, for each s = ki+1 −
1, . . . , ki + 1. In particular, we have lj−(ki+1) ≤ ki which implies that

lj−ki
≤ ki + 1 since lj ≤ lj−1 + 1 always holds. Hence, the computation of

φ(qj−ki
, ki) requires at most one iteration of the suffix link of qj−ki

.

Thus, in both cases, Fki

j−ki
can be computed in constant time, for 1 ≤ i < r.

Therefore, the total complexity for computing all the sets Fki

j−ki
, for i = 1, . . . , r,

is O(α).

Next, to compute the sets Ikj we use the DAWG F (P r) of P r. Specifically,

we compute the longest reversed factor ending at j and maintain the invariant

that the current state of the automaton never corresponds to factors longer than

β, using algorithm given in Fig. 5.5, as for the computation of the sets Fk
j . Let

(qrj , l
r
j) denote the T -configuration of F (P r) after having read the character of T

at position j, where lrj is the length of the longest reversed factor of P recognized.

Then the sets Ikj can be computed, for 2 ≤ k ≤ lrj , by

Ikj = {i | (m− i+ k − 2) ∈ end-pos(φ(qrj , k))} . (5.4)

Indeed, i ∈ Ikj iff P [i− k + 1 .. i] = (T [j − k + 1 .. j])r iff

P r[(m− 1)− i .. (m− 1)− (i− k + 1)] = (P [i− k + 1 .. i])r = T [j − k + 1 .. j] .

Thus (5.4) follows, as the latter is equivalent to (m−i+k−2) ∈ end-pos(φ(qrj , k)).

For each k = 1, . . . , lrj , condition (c) of Lemma 5.5 requires member queries

on the sets Ikj . As in the case of the sets Fk
j , the set end-pos(φ(qrj , k)) can be

5.2. Approximate string matching with inversions and translocations 87

M-Sampling (P, T, α, β,F ,F ′)

/* F is the DAWG of P and F ′ is the DAWG of P r */
1. m← |P |, n← |T |
2. (q0, l0)← Dawg-Delta(rootF , 0, α, T [0],F)
3. (qr0, l

r
0)← Dawg-Delta(rootF′ , 0, β, T [0],F ′)

4. S0 ← ∅
5. if P [0] = T [0] then S0 ← {0}
6. for j ← 1 to n− 1 do
7. (qj , lj)← Dawg-Delta(qj−1, lj−1, α, T [j],F)
8. (qrj , l

r)← Dawg-Delta(qrj , l
r, β, T [j],F ′)

9. Sj ← ∅
/* Standard matches */

10. if P [0] = T [j] then Sj ← {0}
11. for i ∈ Sj−1 do
12. if i < m− 1 and P [i + 1] = T [j] then
13. Sj ← Sj ∪ {i + 1}

/* Inversions */
14. p← qrj
15. for k ← lrj downto 2 do
16. for i ∈ Sj−k ∪ {−1} do
17. if (m− 2− i) ∈ end-posr(p) then
18. Sj ← Sj ∪ {i + k}
19. if k = length(suf F′ (p)) + 1 then
20. p← suf F′ (p)

/* Translocations */
21. last← 0
22. p← qj
23. for k ← lj downto 1 do
24. if k ≤ j and k ≤ lj−k then
25. if last = k + 1 then
26. while p′ ̸= rootF

and k − 1 ≤ length(suf F (p′)) do
27. p′ ← suf F (p′)
28. p′ ← δF (p′, T [j − k])
29. else
30. p′ ← qj−k

31. while k ≤ length(suf F (p′)) do
32. p′ ← suf F (p′)
33. last← k
34. for i ∈ Sj−2k ∪ {−1} do
35. if (i + k) ∈ end-pos(p)

and (i + 2k) ∈ end-pos(p′) then
36. Sj ← Sj ∪ {i + 2k}
37. if k = length(suf F (p)) + 1
38. then p← suf F (p)
39. if (m− 1) ∈ Sj then
40. Output(j)

Figure 5.6: The M-Sampling algorithm for solving the pattern matching problem
with translocations and inversions.

computed in constant time, in decreasing order of k, by iterating the suffix link

on qrj . Although Ikj is not equal to end-pos(φ(qrj , k)), a member query on Ikj can

still be done in constant time using (5.4).

88 The approximate string matching problem

5.2.3 Complexity analysis

We first analyze the worst-case time complexity of the M-Sampling algorithm

and then its average-case complexity. Our analysis assumes that sets are imple-

mented as bit vectors so that any member query on a set takes constant time.

We shall also evaluate the space complexity of the M-Sampling algorithm.

Worst-case analysis

First of all, observe that the main for-loop at line 6 is always executed n times.

Moreover, observe that |Sj | ≤ m, lj ≤ α, and lrj ≤ β, for all 0 ≤ j < n. For each

iteration of the for-loop at line 23, the amortized cost of the two while-loops at

lines 26 and 31 is O(1). Thus, at each iteration of the main for-loop, the for-loop

at line 11 takes at most O(m)-time while the for-loops at lines 15 and 23 take at

most O(mβ)- and O(mα)-time respectively. Summing up, the algorithm has a

O(nmmax(α, β)) worst-case time complexity, which becomes O(nm2)-time when

max(α, β) = Θ(m).

Average-case analysis

Next, we evaluate the average time complexity of the algorithm M-Sampling

assuming a uniform distribution and the independence of characters.

Given integers 1 ≤ α, β ≤ m ≤ n and an alphabet Σ of size σ ≥ 4, for

j = 0, 1, . . . , n− 1, we consider the following nonnegative random variables over

the sample space of the pairs of strings P, T ∈ Σ∗ of length m and n, respectively:

– X(j) =Def the length lj ≤ α of the longest factor of P

which is a suffix of Tj ,

– Y (j) =Def the length lrj ≤ β of the longest factor of P r

which is a suffix of Tj ,

– Z(j) =Def |Sj |, where we recall that Sj = {0 ≤ i ≤ m− 1 | Pi ⊒md Tj}.

Then the run-time of a call to the M-Sampling algorithm with parameters

5.2. Approximate string matching with inversions and translocations 89

(P, T, α, β) is proportional to

n−1
j=1

Z(j − 1) +

Y (j)
k=2

Z(j − k) +

X(j)
k=1

Z(j − 2k) +X(j)

 , (5.5)

where the external summation refers to the main for-loop (at line 6), and the

three terms within it take care of the internal for-loops at lines 11, 15, and 23,

in that order.

The average-case complexity of the M-Sampling algorithm is thus the ex-

pectation of (5.5), which, in view of the linearity of expectation, is equal to

n−1
j=1

E(Z(j − 1)) + E

Y (j)
k=2

Z(j − k)

+ E

X(j)
k=1

Z(j − 2k)

+ E(X(j))

 .

(5.6)

Since
E(X(j)) ≤ E(X(n− 1))

E(Y (j)) ≤ E(Y (n− 1))

E(Z(j)) ≤ E(Z(n− 1)) ,

for 0 ≤ j ≤ n− 1,3 and also

E(X(n− 1)) = E(Y (n− 1)) ,

by putting

X =Def X(n− 1) and Z =Def Z(n− 1) ,

expression (5.6) gets bounded from above by

n−1
j=1


E(Z) + E


X

k=2

Z


+ E


X

k=1

Z


+ E(X)


. (5.7)

For i = 0, . . . ,m− 1, let Zi be the indicator variable

Zi =Def

1 if i ∈ Sn−1
0 otherwise ,

3In fact, for j = m, . . . , n− 1 all inequalities hold as equalities.

90 The approximate string matching problem

so that

Z =

m−1
i=0

Zi and E(Z2
i) = E(Zi) = Pr{Pi ⊒md T} .

Likewise, for k = 1, . . . ,m, let Xk be the indicator variable

Xk =Def

1 if X ≥ k

0 otherwise ,

so that

X =

m
k=1

Xk and E(X2
k) = E(Xk) = Pr{X ≥ k} .

The we have

X
k=1

Z = XZ =


m

k=1

Xk


·


m−1
i=0

Zi


=

m
k=1

m−1
i=0

XkZi .

Therefore

E


X

k=2

Z


≤ E


X

k=1

Z


=

m
k=1

m−1
i=0

E(XkZi) ,

yielding the following upper bound for (5.7):

n−1
j=1


E(Z) + 2 ·

m
k=1

m−1
i=0

E(XkZi) + E(X)


. (5.8)

To estimate each of the terms E(XkZi) in (5.8), we use the well-known

Cauchy-Schwarz inequality which in the context of expectations assumes the form

|E(UV)| ≤

E(U2)E(V 2) ,

for any two random variables U and V such that E(U2), E(V 2) and E(UV) are

all finite.

Then, for 1 ≤ k ≤ m and 0 ≤ i ≤ m− 1, we have

E(XkZi) ≤


E(X2
k)E(Z2

i) =


E(Xk)E(Zi) . (5.9)

5.2. Approximate string matching with inversions and translocations 91

From (5.9), it then follows that (5.8) is bounded from above by

n−1
j=1


E(Z) + 2 ·

m
k=1

m−1
i=0


E(Xk)E(Zi) + E(X)



=

n−1
j=1


E(Z) + 2 ·


m

k=1


E(Xk)


·


m−1
i=0


E(Zi)


+ E(X)


. (5.10)

To better understand (5.10), we evaluate the expectations E(X) and E(Z)

and the sums
m

k=1


E(Xk) and

m−1
i=0


E(Zi). To this purpose, it will be

useful to estimate also the expectations

• E(Xk) = Pr{X ≥ k}, for 1 ≤ k ≤ m, and

• E(Zi) = Pr{Pi ⊒md T}, for 0 ≤ i ≤ m− 1.

Concerning E(Xk) = Pr{X ≥ k}, we reason as follows. Since T [n − k .. n −
1] ranges uniformly over a collection of σk strings and there can be at most

min(σk,m− k + 1) distinct factors of length k in P , the probability Pr{X ≥ k}
that one of them matches T [n− k .. n− 1] is at most min


1, m−k+1

σk


, so that, for

k = 1, . . . ,m, we have

E(Xk) ≤ min


1,

m− k + 1

σk


. (5.11)

Then, in view of (5.11), we have:

E(X) =

m
i=0

i · Pr{X = i} =
m
i=1

Pr{X ≥ i} ≤
m
i=1

min


1,

m− i+ 1

σi


. (5.12)

Let k be the smallest integer 1 ≤ k < m such that m−k+1
σk < 1. Then from (5.12)

we have

E(X) ≤
k−1
i=1

1 +

m
i=k

m− i+ 1

σi
≤ k − 1 + (m− k + 1)

m
i=k

1

σi

< k − 1 +
σ

σ − 1
· m− k + 1

σk
< k − 1 +

σ

σ − 1
< k + 1 .

(5.13)

Since m−(k+1)+1

σk+1
≥ 1, then σk+1 ≤ m− (k + 1) + 1 ≤ m− 1, so that

k + 1 < logσ m. (5.14)

92 The approximate string matching problem

From (5.13) and (5.14), we obtain

E(X) < logσ m. (5.15)

Likewise, from (5.11) and (5.14) we have

m
k=1


E(Xk) ≤

m
k=1


min


1,

m− k + 1

σk


=

k−1
k=1

1 +

m
k=k


m− k + 1

σk

≤ k − 1 +

m− k + 1 ·

m
k=k

1√
σk

< k − 1 +

√
σ√

σ − 1
·


m− k + 1

σk

(5.16)

< k − 1 +

√
σ√

σ − 1
≤ k + 1 < logσ m,

where k is defined as above.

Next we estimate E(Zi) = Pr{Pi ⊒md T}, for 0 ≤ i ≤ m− 1.

Let us denote by µ(i) the number of distinct strings which have an md-match

with a given string of length i and whose characters are pairwise distinct. Then

Pr{Pi ⊒md T} ≤ µ(i+ 1)

σi+1
.

From the recursion
µ(0) = 1

µ(k + 1) =
k

h=0 µ(h) +
⌊ k−1

2 ⌋
h=1 µ(k − 2h− 1) (for k ≥ 0) ,

it is not hard to see that µ(i+ 1) ≤ 3i, for i = 0, 1, . . . ,m− 1, so that we have

E(Zi) = Pr{Pi ⊒md T} ≤ 3i

σi+1
. (5.17)

Then, concerning E(Z), from (5.17) we have

E(Z) = E


m−1
i=0

Zi


=

m−1
i=0

E(Zi) ≤
m−1
i=0

3i

σi+1
<

1

σ
· 1

1− 3
σ

=
1

σ − 3
≤ 1 (5.18)

(we recall that we have assumed σ ≥ 4).

5.2. Approximate string matching with inversions and translocations 93

Likewise, from (5.17) we have

m−1
i=0


E(Zi) ≤

m−1
i=0


3i

σi+1
<

1√
σ
· 1

1−


3
σ

=
1√

σ −
√
3
< 4 . (5.19)

From (5.18), (5.15), (5.16), and (5.19), it then follows that (5.10) is bounded

from above by

(n− 1) · (9 logσ m+ 1) ,

yielding a O(n logσ m) average-time complexity for the M-Sampling algorithm.

Space complexity

In order to evaluate the space complexity of the M-Sampling algorithm, we

observe that in the worst case, during the j-th iteration of its main for-loop,

the sets Fk
j−k and Sj−2k, for 1 ≤ k ≤ α, must be kept in memory to handle

translocations, as well as the sets Sj−k, for 2 ≤ k ≤ β, to handle inversions.

However, as explained before, we do not keep the values of Fk
j−k explicitly but

we rather maintain only their corresponding T -configurations of the automaton

F (P). Thus, we need O(α)-space for the last α configurations of the automaton

and O(mmax(α, β))-space to keep the last max(2α, β) values of the sets Sj−k,
considering the maximum cardinality of each set ism. Observe also that, although

the size of the DAWG is linear in m, the end–pos(·) function can require O(m2)-

space. Therefore, the total space complexity of the M-Sampling algorithm is

O(m2).

5.2.4 A bit-parallel implementation

In this section we present an efficient simulation of the M-Sampling algorithm

based on bit-vectors.

We associate a bit vector pos to each node of the DAWG. For each node q

of the DAWG of P , pos(q) encodes the end-pos function, while, for each node q

of the DAWG of P r, pos(q) encodes the starting positions in P of the reversed

factors represented by the node, i.e., {(m − 1 − i) | i ∈ end-pos(q)}. The bit-

vectors Fk
j and Ikj , corresponding to Fk

j and Ikj respectively, can be computed by

94 The approximate string matching problem

the following assignments:

Fk
j ← pos(φ(qj , k))

Ikj ← pos(φ(qrj , k))≪ (k − 1) .

Each set Sj is mapped into a corresponding bit-vector Sj . Finally, for each

character c of the alphabet Σ, a bit mask B[c], representing the positions of c in

P , is maintained.

The algorithm scans T from left to right and, for each position j ≥ 0, it

computes the vector Sj in terms of Sj−1, of Sj−2k, Fk
j−k, and Fk

j , for 1 ≤ k ≤ lj ,

and of Sj−k and Ikj for 1 ≤ k ≤ lrj , with the following bitwise operations:

Sj ← ((Sj−1 ≪ 1) | 1) & B[T [j]]

Sj ← Sj | (((((Sj−2k ≪ k) | 10k−1) & Fk
j)≪ k) & Fk

j−k)

Sj ← Sj | (((Sj−k ≪ k) | 10k−1) & Ikj) ,

corresponding respectively to the relations:

Sj = {i+ 1 : i ∈ Sj−1 ∪ {−1} ∧ P [i] = T [j]}
Sj = Sj ∪ {i+ 2k : i ∈ Sj−2k ∪ {−1} ∧ (i+ k) ∈ Fk

j ∧ (i+ 2k) ∈ Fk
j−k}

Sj = Sj ∪ {i+ k : i ∈ Sj−k ∪ {−1} ∧ (i+ k) ∈ Ikj } .

During the j-th iteration, if the m-th bit of Sj is set to 1, i.e., if Sj & 10m−1 ̸= 0m,

a match at position j is reported.

The algorithm has a O(nmax(α, β)⌈m/w⌉) worst-case time complexity and a

O((m+σ)⌈m/w⌉)-space complexity, where σ is the size of the alphabet. When the

length of the pattern satisfies m ≤ w, the worst-case time and space complexity

become O(nmax(α, β)) and O(σ +m), respectively.

5.2.5 Computing the minimum cost

For some applications it is not enough to find all the approximate occurrences

of the pattern; rather, it can also be important to compute, for each match, the

associated minimum cost. In this section we show how to extend the dynamic

programming algorithm to compute the minimum cost under the md distance,

where δ(zw,wz) and δ(z, zr) are the cost of a translocation and inversion opera-

tion, respectively. The equation and the recurrence to compute the sets Sj can be

easily modified to compute, for each i ∈ Sj , the distance md(Pi, S[j − i+ 1 .. j]).

5.2. Approximate string matching with inversions and translocations 95

To ease the formalization, we represent S as a matrix n×m, where

Sj,i = md(Pi, S[j − i+ 1 .. j])

for 0 ≤ j < n and 0 ≤ i < m. In this scenario we must take care not to

consider a translocation or an inversion when z = w or z = zr (i.e., z is a

palindrome), respectively. To this end, we shall make use of the following simple

result concerning the end-pos(·) function:

Lemma 5.7. Given a string P ∈ Σ∗ and strings u, v ∈ Fact(P) such that |u| =
|v|, then the following implication holds

(end-pos(u) ∩ end-pos(v)) ̸= ∅ → u = v.

Based on Lemma 5.7, condition (b) of Lemma 5.5 can be modified as follows:

(i− k) ∈ Fk
j ∧ i ∈ Fk

j−k ∧ i /∈ Fk
j ∧ (i− 2k) ∈ Sj−2k ∪ {−1}

i.e., we add the condition i /∈ Fk
j to verify that Fk

j and Fk
j−k do not represent

the same factor.

Similarly, condition (c) of Lemma 5.5 can be modified as follows:

i ∈ Ikj ∧ i /∈ Fk
j ∧ (i− k) ∈ Sj−k ∪ {−1}

i.e., we add the same condition i /∈ Fk
j to verify that Fk

j and Ikj do not represent

the same factor. Indeed, it is easy to see that if this is the case, then the implied

factor is a palindrome. Within this new formulation we have to compute Fk
j , for

i = 0, . . . , lrj . This can be easily achieved in two steps; we first compute the node

q correspoding to the longest factor of P ending at j with length at most lrj :

q =


φ(qj , l

r
j) if lj > lrj

qj otherwise.

Then, in the loop which handles inversions, we compute Fk
j , for i = 0, . . . , lrj , in

decreasing order of k, with at most one iteration over the suffix link of q. Note

that, if lj < lrj , the sets Fk
j are empty, for k = lj + 1, . . . lrj , and so we start

iterating after lrj − lj steps . With this modification, the complexity of the loop

to compute inversions becomes O(max(α, β)).

96 The approximate string matching problem

We are now ready to describe how to compute the matrix S. The element

Sj,i can be recursively defined as follows:

Sj,i = min(g1(i, j), g2(i, j), g3(i, j)) ,

where the functions g1, g2, and g3 map a pair of indices (i, j) onto the cost of

converting Pi into the substring of length i ending at j with a standard match,

a translocation, and an inversion ending at j respectively. These functions are

defined as follows:

g1(i, j) =


Sj−1,i−1 if i > 0 and Sj−1,i−1 <∞ and P [i] = T [j]

0 if i = 0 and P [i] = T [j]

∞ otherwise

g2(i, j) =



Sj−2k,i−2k + δ(zw,wz) if i ≥ 2k and Sj−2k,i−2k <∞ and

(i− k) ∈ F k
j and i ∈ F k

j−k \ F k
j

δ(zw,wz) if k ≤ i < 2k and i− k ∈ F k
j

and i ∈ F k
j−k \ F k

j

∞ otherwise

g3(i, j) =


Sj−k,i−k + δ(z, zr) if i ≥ k and Sj−k,i−k <∞ and i ∈ Ikj \ F k

j

δ(z, zr) if i < k and i ∈ Ikj \ F k
j

∞ otherwise.

Observe that, by using a matrix representation, the average size of the row Sj is

Θ(m); hence, the average time complexity of the algorithm becomesO(nm logσ m).

5.2.6 Experimental evaluation

Next we present some experimental results which allow to compare, in terms

of running times, the M-Sampling algorithm, based on the DAWG approach,

against its direct dynamic programming implementation. We have also included

in our comparison the variant BPM-Sampling of the M-Sampling algorithm.

We remark that sets have been implemented as bit vectors also in the first two

algorithms, so that member and insert operations can be performed in constant

5.2. Approximate string matching with inversions and translocations 97

 0

 5000

 10000

 15000

 20000

 25000

 30000

 100 200 300 400 500

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

pattern length

Naive implementation
M-Sampling

BPM-Sampling

m M-S BPM-S

8 740.82 402.26

16 911.21 503.96

32 1068.46 615.47

64 1473.12 1462.29

Figure 5.7: Experimental results relative to a DNA sequence of the Escherichia coli
genome with σ = 4. Running times (ms) are also tabulated for small values of m to ease
the comparison between the M-Sampling algorithm (M-S) and the BPM-Sampling
algorithm (BPM-S).

time.

Iteration over the elements of a set represented as a bit vector can then be

implemented efficiently in time proportional to its cardinality by repeatedly

(a) extracting the lowest bit set,

(b) computing its index, and

(c) masking it, until there are no more bits set.

In the BPM-Sampling algorithm, bitwise operations have a Θ(⌈m/w⌉) com-

plexity, since they have to update ⌈m/w⌉ words. Instead, in the M-Sampling

algorithm the corresponding operations have a Θ(⌈m/w⌉+ |Sj |) complexity, be-

cause, for each word of the bit vector that encodes Sj , it iterates over all the bits
set (|Sj | in total). Since, on average, the sets Sj contain only a few elements, the

average complexity of iterating over all the elements of a set is O(⌈m/w⌉). The

tests have been performed on a 1.5 GHz PowerPC G4. We used the input files

(iii) and (iv) (see Section 2.6). For each input file, we have generated sets of 50

patterns of fixed length m, randomly extracted from the text, for m ranging in

the set {8, 16, 32, 64, 128, 256, 512}. For each set of patterns, we have calculated

the mean over the running times of the 50 runs.

As can be seen from the plots in Figs. 5.7 and 5.8, the M-Sampling algo-

rithm is considerably faster than its naive implementation. Indeed, even if their

98 The approximate string matching problem

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 100 200 300 400 500

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

pattern length

Naive implementation
M-Sampling

BPM-Sampling

m M-S BPM-S

8 247.00 141.53

16 273.77 162.10

32 294.60 183.24

64 379.26 385.60

Figure 5.8: Experimental results relative to a protein sequence of the Saccharomyces
cerevisiae genome with σ = 20. Running times (ms) are also tabulated for small values
of m to ease the comparison between the M-Sampling algorithm (M-S) and the BPM-
Sampling algorithm (BPM-S).

asymptotic time complexity is the same, the hidden constant in the naive im-

plementation, due to the explicit computation of the sets Fk
j and Ikj , is quite

large. In our experiment with a computer word of size 32, it turns out that the

BPM-Sampling algorithm is faster than the M-Sampling algorithm only for

m ≤ 32, as can be observed by looking at the running times (ms) reported in the

tables. As explained above, the complexity of the bitwise operations is the same,

on average, for both algorithms. However, the M-Sampling algorithm scales

better because it requires fewer bitwise operations. Finally, observe that the

rate of growth of the M-Sampling and the BPM-Sampling algorithm matches

the average O(n logσ m)-time complexity estimated in Section 5.2.3 under the

assumptions of equiprobability and independence of characters.

Chapter 6

The compressed string

matching problem

The compressed string matching problem consists in finding all the occurrences

of a pattern in a text stored in compressed form. A straightforward solution

is the so-called decompress-and-search strategy, which consists in decompressing

the text and then using any classical string matching algorithm for searching.

However, recent results show that in many cases searching directly in compressed

texts can be more efficient. In Section 6.1 we discuss this problem when the

compression method employed is an optimal prefix code (we recall that a prefix

code is a variable-length code with the property that no codeword is a prefix

of any other codeword in the set). This compression method is also known as

Huffman coding [40]. The limitation of using a variable-length code is that the

decoding of the compressed text must be performed from left to right and no bit

can be skipped. For this reason, it is natural to try to adapt the Knuth-Morris-

Pratt algorithm rather than Boyer-Moore like algorithms to work directly on the

compressed text. Daptardar and Shapira proposed [62] a modified Knuth-Morris-

Pratt algorithm, while Takeda et al. proposed [64] a modification of the Aho-

Corasick algorithm. We present a method to solve the string matching problem

on Huffman encoded texts that makes it possible to skip bits when decoding, by

making use of a fairly recent data structure, named skeleton tree [44], to represent

a prefix code.

In Section 6.2.1 we investigate this problem when the compression method

99

100 The compressed string matching problem

used is the Burrows-Wheeler transform [15]. The Burrows-Wheeler transform

(BWT) is a reversible transformation which yields a permutation of the text that

can be better compressed using the combination of a locally-adaptive encoding,

such as move-to-front [10], and statistical methods [40, 67]. The main issue which

arises in this case is that in the decoding phase the text must be preprocessed at

least once and O(n)-space is needed for the preprocessed data, where n is the text

size. In particular, finding the set of positions of the pattern in the text requires

three iterations over the text and Θ(n)-space. Instead, counting the occurrences

of the pattern in the text requires two iterations over the text and Θ(n)-space.

We present a new method to solve the problem of counting the occurrences of

a pattern in a BWT encoded text that requires one iteration only over the text

and O(n)-space. Despite the space used is still bounded by n, for large alphabets

the actual space compares favorably with the total size of the text.

6.1 String matching on Huffman encoded texts

We investigate next the string matching problem on Huffman compressed texts.

The Huffman data compression method [40] is an optimal statistical coding. More

precisely, the Huffman algorithm computes an optimal prefix code relative to given

frequencies of the alphabet characters. A prefix code is a set of (binary) words

containing no word which is a prefix of another word in the set. Thanks to such

a property, decoding is particularly simple. Indeed, a binary prefix code can be

represented by an ordered binary tree, whose leaves are labeled with the alphabet

characters and whose edges are labeled by 0 (left edges) and 1 (right edges) in

such a way that the codeword of an alphabet character is the word labeling the

branch from the root to the leaf labeled by the same character.

Prefix code trees, as computed by the Huffman algorithm, are called Huffman

trees. These are not, by any means, unique. The usually preferred tree for a given

set of frequencies, out of the various possible Huffman trees, is the one induced

by canonical Huffman codes [61]. This tree has the property that, when scanning

its leaves from left to right, the sequence of their depths is nondecreasing.

When performing a search on the bitstream of a Huffman encoded text by a

classical string matching algorithm, one faces the problem of false matches, i.e.,

occurrences of the encoded pattern in the encoded text which do not correspond to

occurrences of the pattern in the original text. Indeed, the only valid occurrences

of the pattern are those correctly aligned with codeword boundaries, or, otherwise

6.1. String matching on Huffman encoded texts 101

t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

t e

w a

y b

n

0 1

0 1

0 1

0 1

0 1

0 1

twenty 0̄01̄000̄11̄100̄01̄110

ten 0̄00̄11̄10

ten 0̄00̄11̄10

Figure 6.1: A Huffman code for the set of symbols {t, e, w, a, n, y, b}. The binary
string 0̄01̄000̄11̄100̄01̄110 is the encoding of the string twenty, where a “bar” indicates
the starting bit of each codeword. Two occurrences of the binary string ten start at the
4-th and 10-th bit of the encoded version of the string twenty. Both of them are false
matches.

said, valid matches must start on the first bit of a codeword. Consider, for

example, the Huffman code presented in Fig. 6.1. Note that there are two false

occurrences of the string ten starting at the 4-th and at the 10-th bit, respectively,

of the encoded string twenty. Thus a verification that the occurrences detected

by the pattern matching algorithm are correctly aligned on codeword boundaries

is in order.

False matches can be avoided by using codes in which no codeword is a prefix

or a suffix of any other codeword. However, such codes, which are called affix or

fix-free, are extremely infrequent [35].

Klein and Shapira [46] showed that, for long enough patterns, the probability

of finding a false match is very low, independently of the algorithm. They then

proposed a probabilistic algorithm which works on the assumption that Huffman

codes tend to realign quickly after an error.

More recently, Shapira and Daptardar [62] proposed a modification of the

Knuth-Morris-Pratt algorithm [47], here referred to as Huffman-KMP, which

makes use of a data structure, called skeleton tree [44], suitably designed for

efficient decoding of Huffman encoded sequences. The resulting algorithm is

characterized by fast search times, if compared with the decompress-and-search

method.

Algorithms based on the Boyer-Moore algorithm [14] have been considered

unsuitable for searching Huffman encoded texts because the right-to-left scan

does not allow one to determine the codeword boundaries in the compressed

text, unless the text is decoded from left to right. In addition, Boyer-Moore-like

algorithms are generally considered unsuitable for binary alphabets.

102 The compressed string matching problem

We present a new way to exploit skeleton trees for adapting Boyer-Moore-like

algorithms to the compressed string matching problem in Huffman encoded texts.

Specifically, we use skeleton trees to verify codeword alignments rather than for

decoding. This allows one to skip up to 70% of bits during the processing of the

encoded text. Futhermore, we make use of algorithms based on the Boyer-Moore

strategy, suitably adapted for searching on binary strings by regarding texts and

patterns as sequences of q-grams rather than as sequences of bits.

6.1.1 Preliminary definitions

A compression method for a given text T over an alphabet Σ is characterized by

a system (E ,D) of two complementary functions:

• an encoding function E : Σ→ {0, 1}+, and

• an inverse decoding function D,

such that D(E(c)) = c, for each c ∈ Σ. The encoding function E is then recursively

extended over strings of characters by putting

E(ε) = ε

E(T [0 .. ℓ]) = E(T [0 .. ℓ− 1]).E(T [ℓ]), for 0 ≤ ℓ < |T |,

so that E(T) = E(T [0 .. |T | − 1]) is just a binary string, i.e., a string over the

alphabet {0, 1}.
For ease of notation, we usually write t in place of E(T) and, more generally,

denote binary strings with lowercase letters.

Binary strings are conveniently stored in blocks of k bits, typically bytes

(k = 8), half-words (k = 16), or words (k = 32), which can be processed at the

cost of a single operation. If p is any binary string, we denote by Bp the vector

of blocks whose concatenation gives p, for a given block size k, so that

p[i] = Bp[⌊i/k⌋][i mod k], for i = 0, . . . , |p| − 1

(we assume that the last block, if not complete, is padded with 0’s).

The sequence of k bits starting at position i in p, denoted by Bp,i, can be

computed from Bp by the following bitwise operations:

Bp,i = (Bp[⌊i/k⌋]≫ (i mod k)) | (Bp[⌊i/k⌋+ 1]≪ (k − (i mod k))) ,

6.1. String matching on Huffman encoded texts 103

(A) Patt 0 1 2 3
0 11001011 00101100 10110000
1 01100101 10010110 01011000
2 00110010 11001011 00101100
3 00011001 01100101 10010110
4 00001100 10110010 11001011 00000000
5 00000110 01011001 01100101 10000000
6 00000011 00101100 10110010 11000000
7 00000001 10010110 01011001 01100000

(C) Last
2
2
2
2
3
3
3
3

(B) Mask 0 1 2 3
0 11111111 11111111 11111000
1 01111111 11111111 11111100
2 00111111 11111111 11111110
3 00011111 11111111 11111111
4 00001111 11111111 11111111 10000000
5 00000111 11111111 11111111 11000000
6 00000011 11111111 11111111 11100000
7 00000001 11111111 11111111 11110000

Figure 6.2: Let P =110010110010110010110 and k = 8. (A) The matrix Patt . (B)
The matrix Mask . (C) The array Last . In the tables Patt and Mask , bits belonging to
P are underlined. Blocks containing a factor of P of length 8 have a shaded background.

for i = 0, . . . , |p| − k.

Thus, a genuine solution to the compressed string matching problem consists

in finding all the occurrences of a pattern P in a text T , over a common alphabet

Σ, by operating directly on the block vectors Bt and Bp, representing the binary

strings t = E(T) and p = E(P), respectively, (again, relative to a fixed block size

k).

The algorithms for the compressed string matching problem in Huffman en-

coded texts, to be presented in Section 6.1.2, are based on a high-level model

to process binary strings, adopted in [45, 43, 32], which we shall review in the

following section.

A High-Level Model for Matching on Binary Strings

Let us assume that the block size k is fixed, so that all the references to both the

text and the pattern will only be in terms of entire blocks of k bits. We refer to

a k-bit block as a byte, though values larger than k = 8 can also be used.

We first define a matrix of bytes Patt , of size k × (⌈m/k⌉ + 1), consisting of

several copies of the pattern P stored in the form of a vector Bp of bytes, where

p = E(P) and m = |p|. More precisely, the i-th row of the matrix Patt , for

i = 0, 1, . . . , k − 1, contains a copy of p shifted by i positions to the right, whose

length in bytes is mi = ⌈(m+ i)/k⌉. The i leftmost bits of the first byte remain

104 The compressed string matching problem

undefined and are set to 0. Similarly, the rightmost ((k−((m+ i) mod k)) mod k)

bits of the last byte are set to 0.

Observe that each factor of p of length k appears exactly once in the table

Patt . For instance, the factor of length k starting at position j of p is stored in

Patt [k − (j mod k), ⌈j/k⌉].
The matrix Patt is paired with a matrix of bytes Mask , of size k×(⌈m/k⌉+1),

containing binary masks of length k, which allow to distinguish between signifi-

cant and padding bits in Patt . In particular, a bit in the mask Mask [i, h] is set

to 1 if and only if the corresponding bit of Patt [i, h] belongs to p.

Finally, we define a vector Last , of size k, where Last [i] is the index of the

last byte in the row Patt [i], i.e., Last [i] = mi − 1, for 0 ≤ i < k.

The procedure Preprocess used to precompute the above tables requires

O(k × ⌈m/k⌉) = O(m) time and O(m) extra-space. Fig. 6.2 shows the tables

Patt , Mask , and Last relative to the pattern P =110010110010110010110, for a

block size k = 8.

When the pattern is aligned with the s-th bit of the text, a match is reported

if

Patt [i, h] = Bt[j + h] & Mask [i, h] ,

for h = 0, 1, ...,Last [i], where

• Bt is the block representation of the text encoding t = E(T),

• j = ⌊s/k⌋ is the starting byte position in t, and

• i = (s mod k).

6.1.2 Skeleton tree based verification

The skeleton tree [44] is a pruned canonical Huffman tree, whose leaves corre-

spond to minimal depth nodes in the Huffman tree which are roots of complete

subtrees. It is useful to maintain at each leaf of a skeleton tree the common length

of the codeword(s) sharing the prefix which labels the path from the root to it.

A fast algorithm for building skeleton trees is described in [44]. Fig. 6.3 shows a

canonical Huffman tree and its corresponding skeleton tree, for the set of symbols

Σ = {a, b, c, d, e, g, i, k, l, r, t, u}, relative to suitable character frequencies.

Skeleton trees allow a faster Huffman decoding because, once the codeword

length has been retrieved at its leaves, it is possible to read a burst of bits to

6.1. String matching on Huffman encoded texts 105

b : 00
i : 01
d : 1000
t : 1001
a : 1010
r : 1011
l : 1100
c : 1101
g : 11100
k : 11101
u : 11110
e : 11111

b i

d t a r l c

g k u e

0

2 0

4 0

4 5

0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0 1

0 1

Figure 6.3: The Huffman tree induced by a Huffman code for the set of symbols
Σ = {a, b, c, d, e, g, i, k, l, r, t, u}. The skeleton tree is in bold.

complete the codeword, or just to skip them, if one is only interested in finding

codeword boundaries.

Our approach consists in searching for the candidate occurrences of Bp in Bt,

where we recall that Bp and Bt are the block vectors respectively associated to

a given Huffman encoded pattern and text, using Boyer-Moore-like algorithms

and then taking advantage of the skeleton tree to verify whether the candidate

matches are codeword aligned. In this way we obtain a substantial speedup,

especially when the frequency of the pattern in the text is low or when the length

of the pattern increases.

For every candidate valid shift s found by the binary pattern matching al-

gorithm, one must verify whether s is codeword aligned. For this purpose, we

maintain an offset ρ pointing at the starting position of the last window where

a skeleton tree verification took place. The offset ρ is then updated, with the

aid of the skeleton tree, to a minimal position ρ∗ ≥ s which is codeword aligned.

Only if ρ∗ = s the current window is codeword aligned and s is a valid shift.

Plainly, the performance of the algorithm depends on the number of skeleton

tree verifications and on the relative distance between candidate valid shifts.

Fig. 6.4 shows the pseudocode for the procedure Sk-Align used to update ρ.

In the pseudocode we assume that the starting value of ρ is codeword aligned and

that a node x in the skeleton tree is a leaf if the corresponding key is nonzero,

i.e., if Key(x) > 0. If Key(x) = ℓ > 0 and cx is the bit code which labels the path

from the root to x, then all codewords c such that cx ⊑ c have a length equal to

ℓ. Thus, if we are only interested in the codeword boundaries, we can skip the

106 The compressed string matching problem

Sk-Align (root , t , ρ, b)

1. x← root , ℓ← 0
2. while true do
3. B = Bt[⌊ρ / k⌋]≪ (ρ mod k)
4. if B < 2k−1 then x← Left(x) else x← Right(x)
5. if Key(x) ̸= 0 then
6. ρ← ρ+Key(x)− ℓ, ℓ← 0, x← root
7. if ρ ≥ b then break
8. else ρ← ρ+ 1, ℓ← ℓ+ 1
9. return ρ

Figure 6.4: Procedure Sk-Align(root , t , ρ, b) which computes the next codeword
alignment starting from position ρ, where root is the root of the skeleton tree, t is the
encoded text in binary form, b is a codeword boundary, and k is the block size.

ℓ− |cx| following bits and restore the skeleton-tree verification from the first bit

of the next codeword.

Consider, as an example, the search of the pattern P = “bit” in the text

T = “abigblackbugbitabigblackbear”. Suppose, moreover, that codewords

are defined by the Huffman tree of Fig. 6.3, so that p = E(P) =“00011001”.

A first candidate valid shift is encountered at position 12 in t, as shown below:

t 101000011110000110010101101111010011110111000001100110100001[· · ·]
p 0̄00̄11̄001

verif. 1̄0--0̄-0̄-1̄11--0̄

The skeleton tree verification starts at position 0 and stops at position 13, skip-

ping 6 bits over 14 (unprocessed bits are represented by the symbol “-”), showing

that the occurrence at position 12 is not codeword aligned.

A second occurrence is found at the 45-th bit of t, as shown below

t [· · ·]000110010101101111010011110111000001100110100001111000[· · ·]
p 0̄00̄11̄001

verif. 0̄-1̄10-1̄0--1̄10-1̄11--0̄-1̄11--1̄11--0̄

The skeleton tree verification restarts from position 14 and finds a codeword

alignment at position 45. Thus the occurrence is codeword aligned and the shift

is valid. The verification skips 12 bits over 32.

Finally, a third candidate valid shift is found at the 65-th bit of t. This time,

the skeleton tree verification skips 10 bits over 22.

6.1. String matching on Huffman encoded texts 107

t [· · ·]0001100110100001111000011001010110111101001111110101011
p 0̄00̄11̄001

verif. 0̄-0̄-1̄0--1̄0--0̄-0̄-1̄11--0̄

The strategy presented above for verifying codeword alignment is general and

not specific to any algorithm.

6.1.3 Adapting two Boyer-Moore-like algorithms for search-

ing Huffman encoded texts

Next we deal with the problem of searching for all candidate valid shifts. For this

purpose, we present two algorithms which are adaptations to the case of Huffman

encoded texts, along the lines of the high-level model outlined in Section 6.1.1,

of the FED algorithm [43] and the Binary-Hash-Matching algorithm [32].

The Huffman-Hash-Matching algorithm

Algorithms in the q-Hash family for exact pattern matching have been introduced

in [48], by adapting the Wu and Manber multiple string matching algorithm [69]

to the single string matching problem. Recently, variants of the q-Hash algo-

rithms have been proposed for searching on binary strings [32].

The first algorithm which we present, called Huffman-Hash-Matching,

associates directly each binary substring of length q with its numeric value in the

range [0, 2q−1], without using any hash function. To exploit the block structure

of the text, the algorithm considers substrings of length q = k.

To begin with, a function Hs : {0, 1, . . . , 2k − 1},→ {0, 1, . . . ,m}, defined by

Hs(B) = min

{0 ≤ u < m | p[m− u− k ..m− u− 1] ⊒ B} ∪ {m}


,

for each byte 0 ≤ B < 2k, is computed during the preprocessing phase. Observe

that if B = p[m− k ..m− 1], then Hs[B] = 0.

For example, in the case of the pattern P = 110010110010110010110 (see

Fig. 6.2), we have Hs[01100101] = 2, Hs[11001011] = 1, and Hs[10010110] = 0.

At variance with algorithms in the q-Hash family, where the maximum shift is

m− q, in this case maximum shifts can reach the value m. Since we do not use a

hash function but rather map directly the binary substrings of the pattern, the

shift table can be modified by taking into account the prefixes of the patterns

108 The compressed string matching problem

Huffman-Hash-Matching (p, m, t, n)

1. root← Build-Sk-Tree(φ)
2. (Patt , Last , Mask)← Preprocess (p, m)
3. Hs ← compute-hash(Patt , Last , Mask , m)
4. ρ← 0
5. i← (k − (m mod k)) mod k
6. B ← Patt [i][Last [i]]
7. shift ← Hs[B], Hs[B]← 0
8. gap← i+ 1, j ← m− 1
9. while j < n do

10. s← j/k, sℓ← j mod k
11. B ← Bt,j−k+1

12. if Hs[B] = 0 then
13. i← (sℓ+ gap) mod k
14. h← Last [i], q ← s
15. while h ≥ 0 and
16. Patt[i, h] = (Bt[q] & Mask [i, h]) do
17. h← h− 1, q ← q − 1
18. if h < 0 then
19. b← (q + 1)× k + i
20. ρ← Sk-Align(root, t, ρ, b)
21. if ρ = b then Print(b)
22. j ← j + shift
23. else j ← j +Hs[B]

Figure 6.5: The Huffman-Hash-Matching algorithm for the compressed string
matching problem on Huffman encoded texts. Parameters p and t stand for the Huffman
compressed version of the pattern and text, respectively.

Patt[i] of length k−i, with 1 ≤ i ≤ k−1. Thus Hs can be conveniently computed

by setting Hs[B] = m− k + i, where i is the minimum index such that Patt [i][0]

is a suffix of B, if it exists; otherwise Hs[B] is set to m.

The code of theHuffman-Hash-Matching algorithm is presented in Fig. 6.5.

The preprocessing phase of the algorithm consists in computing the function Hs

defined above and requires O(m+ k2k+1)-time complexity and O(m+ 2k) extra

space.

During the search phase, the algorithm reads, for each shift position s of

the pattern in the text, the block B = t[s + m − k .. s + m − 1] of k bits (line

11). If Hs(B) > 0, then a shift of length Hs(B) takes place (line 23). Other-

wise, if Hs(B) = 0, the pattern p is naively checked in the text block by block

(lines 13-17). The verification step is performed using the procedure Sk-Align

described before (lines 18-21).

6.1. String matching on Huffman encoded texts 109

After the test, an advancement of length shift takes place (line 22), where

shift = min

{0 < u < m | p[m− u− k ..m− u− 1] A p[m− k ..m− 1]} ∪ {m}


.

The Huffman-Hash-Matching algorithm has an overall O(⌊m/k⌋n)-time

complexity and requires O(m+ 2k) extra space.

For blocks of length k, the size of the Hs table is 2k, which seems reasonable

for k = 8 or even 16. For larger values of k it is possible to adapt the algorithm

so as to choose the desired time/space tradeoff by introducing a new parameter

K ≤ k, representing the number of bits taken into account for the computation

of the shift advancement. Roughly speaking, only the K rightmost bits of the

current window of the text are taken into account, reducing the total size of the

tables to 2K , at the price of possibly getting shift advancements of the pattern

shorter than the ones that would have been obtained if the full length of blocks

had been taken into consideration.

The Huffman-FED algorithm

The FED algorithm [43] (Fast matching with Encoded DNA sequences) is a

string matching algorithm specifically designed for matching DNA sequences com-

pressed with a fixed-length encoding, requiring two bits for each character of the

alphabet {A, C, G, T}. It combines a multi-pattern version of the Quick-Search

algorithm [63] and a simplified version of theCommentz-Walter algorithm [27].

However, its strategy is general enough to be adapted to different encodings, in-

cluding the Huffman one.

The resulting algorithm, which we call Huffman-FED, makes use of a shift

table δ and a hash table λ, both of size 2k.

More specifically, the shift table δ is defined as follows. For 0 ≤ i < k and

c ∈ Σ, we first define the Quick-Search shift table qs[i][c], by putting

qs[i][c] = min

{mi−2+1}∪{mi−2+1−h | Patt[i][h] = c and 1 ≤ h ≤ Last[i]−1}


.

Then, we put δ[c] = min{qs[i][c], 0 ≤ i < k}, for c ∈ Σ.

The algorithm also maintains, for each block B ∈ {0 . . . 2k − 1}, a linked

list λ which is used to find candidate patterns. In particular, for each block

110 The compressed string matching problem

B ∈ {0, . . . , 2k − 1}, the entry λ[B] is a set of indexes, defined by

λ[B] = {0 ≤ i < k | Patt[i][Last[i]− 1] = B}.

In practical cases, each set in the table can be implemented as a linked list.

The code of the Huffman-FED algorithm is presented in Fig. 6.6. The pre-

processing phase of the algorithm consists in computing the shift table δ and the

hash table λ defined above and, as in the Huffman-Hash-Matching algorithm,

it requires O(m+ k2k+1)-time complexity and O(m+ 2k) extra space.

During the searching phase, the algorithm performs a fast loop using the shift

table δ to locate a candidate alignment of the pattern (lines 18-20). In particular,

the algorithm checks whether δ[Bt[s]] ̸= 1 and, if this is the case, it advances the

shift by δ[Bt[s+ 1]] positions to the right.

If δ[Bt[s]] = 1 then, by definition of δ, we have Bt[s] = Patt[i, Last[i] − 1],

for some 0 ≤ i < k. In this case the last byte of the current window is used as

an index in the hash table and all patterns Patt[i], such that i ∈ λ[Bt[s]], are

checked naively against the window (line 7). For each alignment i found, the

pattern Patt[i] is compared block by block with the text.

As in the Huffman-Hash-Matching algorithm, one has also to verify that

the window is codeword aligned (line 14-17).

The Huffman-FED algorithm has a O(⌈m/k⌉n)-time complexity and re-

quires O(m+ 2k) extra space.

6.1.4 Experimental evaluation

Next, we present experimental results which allow to compare, in terms of running

times and percentage of processed bits, the following algorithms:

- the Huffman-KMP algorithm (Hkmp) [62];

- the Huffman-Hash-Matching algorithm (Hhm), presented in Section 6.1.3;

- the Huffman-FED algorithm (Hfed), presented in Section 6.1.3.

In addition, we also tested an algorithm based on the decompress-and-search

method (D&S for short) that makes use of the 3-Hash algorithm [48] for classical

exact pattern matching, which is considered among the most efficient algorithms

for the problem. The tests have been performed on a 1.5 GHz PowerPC G4. We

used the input files (i), (ii) and (v) (see Section 2.6). For each input file, we

have generated sets of 100 patterns of fixed length m, for m ranging in the set

{4, 8, 16, 32, 64, 128, 256}, randomly extracted from the text. For each set of

6.1. String matching on Huffman encoded texts 111

Huffman-FED (p, m, t, n)

1. root← Build-Sk-Tree(φ)
2. (Patt , Last , Mask)← Preprocess (p, m)
3. (δ, λ)← compute-Fed(Patt ,Last ,m)
4. ρ← 0
5. s = m/k
6. while s < n do
7. for i ∈ λ[Bt[s]] do
8. h← Last[i]
9. q ← s+ 1

10. while h ≥ 0 and
11. Patt[i][h] = Bt[q] & Mask [i][h] do
12. h← h− 1
13. q ← q − 1
14. if h < 0 then
15. b← (q + 1)× k + i
16. ρ← Sk-Align(root, t, ρ, b)
17. if ρ = b then Print(b)
18. do
19. s← s+ δ[Bt[s+ 1]]
20. while s < n and δ[Bt[s]] ̸= 1

Figure 6.6: The Huffman-FED algorithm for the compressed string matching prob-
lem on Huffman encoded texts. Parameters p and t stand for the Huffman compressed
version of the pattern and text, respectively.

patterns we have reported the mean over the running times of the 100 runs. The

tables also show the minimum (lmin) and maximum (lmax) length in bits of the

compressed patterns. For each set of patterns we have also computed the average

number of processed bits.

In the following tables, running times are expressed in milliseconds whereas

the number of processed bits is expressed as a percentage of the total number of

bits in the text.

The experimental results show that the Huffman-Hash-Matching and

Huffman-FED algorithms always achieve the best running times. In addition,

theHuffman-Hash-Matching algorithm always obtains better results than the

Huffman-FED algorithm. In particular the running times of both algorithms

decrease as the length of the pattern increases, since, as is reasonable to expect,

the frequency of the patterns, and thus the number of skeleton tree verifications,

is inversely proportional to m.

As expected, the Huffman-KMP algorithm maintains the same performance

independently of the pattern frequency. The gain of our algorithms compared

112 The compressed string matching problem

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [17, 31] 188.64 134.79 146.34 502.82
8 [36, 53] 185.77 105.59 112.98 491.87

16 [79, 102] 185.99 76.04 81.25 489.03
32 [164, 204] 184.23 65.78 70.31 487.74
64 [336, 378] 185.36 64.71 68.91 489.27

128 [694, 768] 187.73 72.00 77.11 487.31
256 [1383, 1545] 184.09 61.45 65.77 488.46

Processed bits

m Hkmp Hhm Hfed

4 0.75 0.81 0.95
8 0.76 0.68 0.77

16 0.75 0.45 0.53
32 0.75 0.42 0.48
64 0.75 0.38 0.42

128 0.75 0.34 0.37
256 0.76 0.34 0.36

Table 6.1: Running times (ms) on the Huffman encoded version of the King James
version of the Bible.

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [18, 29] 96.35 64.13 74.23 296.69
8 [38, 53] 95.50 49.38 56.47 289.82

16 [77, 108] 95.23 39.26 45.03 287.78
32 [162, 207] 94.74 33.55 38.53 287.34
64 [327, 392] 94.99 34.21 39.39 287.85

128 [662, 761] 94.42 28.54 32.92 287.51
256 [1347, 1610] 94.39 29.67 34.18 287.21

Processed bits

m Hkmp Hhm Hfed

4 0.67 0.74 0.98
8 0.66 0.55 0.68

16 0.66 0.43 0.50
32 0.65 0.35 0.40
64 0.65 0.35 0.38

128 0.64 0.29 0.31
256 0.65 0.30 0.32

Table 6.2: Running times (ms) on the Huffman encoded version of the CIA World
Fact Book.

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [18, 35] 122.25 87.44 95.44 308.56
8 [37, 60] 119.33 73.69 79.74 302.38

16 [83, 140] 120.35 45.99 49.67 300.53
32 [171, 216] 120.12 45.97 49.70 299.81
64 [348, 525] 119.20 41.86 45.26 300.90

128 [712, 1068] 117.55 37.80 40.83 299.78
256 [1439, 1773] 124.10 38.43 41.45 300.36

Processed bits

m Hkmp Hhm Hfed

4 0.75 0.81 0.95
8 0.76 0.68 0.77

16 0.75 0.45 0.53
32 0.75 0.42 0.48
64 0.75 0.38 0.42

128 0.75 0.34 0.37
256 0.76 0.34 0.36

Table 6.3: Running times (ms) on the Huffman encoded version of “Don Quixote”.

6.2. String matching on BWT-encoded texts 113

to Huffman-KMP is at least about 20% and grows as the pattern frequency

decreases and the pattern length increases.

Observe that, with the exception of very short patterns, the percentage of

bits processed by our newly presented algorithms is always lower than that of the

Huffman-KMP algorithm and, in many cases, the gain is almost 50%.

6.2 String matching on BWT-encoded texts

In this section we consider the problem of searching for a given pattern in a

text encoded by the Burrows-Wheeler Transform [15]. The Burrows-Wheeler

transform (BWT) is a reversible transformation which yields a permutation of

the text that can be better compressed using the combination of a locally-adaptive

encoding, such as move-to-front [10], and statistical methods [40, 67].

There are two main approaches to searching in an encoded text, offline and

online. In the offline approach the encoded text can be modified and preprocessed

for “free” before searching it. Thus solutions in the offline approach generally

consist in building at encoding time an index of some sort of the encoded data

which can be used to efficiently search arbitrary substrings of the indexed text.

An index should support at least two types of queries: counting the occurrences of

a pattern and locating their positions. Most offline algorithms [55, 33] are based

on the relationship between the Burrows-Wheeler transform and the suffix array

of the text [50]. They consist in creating an index, based on the compression of

the suffix array, which contains the indexed text.

In the online approach the text comes directly in its encoded form and any

preprocessing of the text and pattern can take place only at search time. For this

reason solutions in the online approach have generally a slower searching time

than those based on the offline approach. Traditionally, in the online approach,

only the pattern should be preprocessed. However, existing online algorithms

for the Burrows-Wheeler transform perform a preprocessing also on the encoded

text; in this respect, they are not strictly online. The difference is that in this

case the index is built at search time and resides in main memory. The major

drawback is that they require more than one iteration over the encoded text and

that the size of the preprocessed data is linear in the size of the text.

We propose a new type of preprocessing for online algorithms to answer count

queries. While still requiring linear space in the worst case, it uses less space on

average when the alphabet is moderately large, and requires just one iteration

114 The compressed string matching problem

i
1
2
3
4
5
6
7
8
9
10
11

M (id = 5)
i m i s s i s s i p p
i p p i m i s s i s s
i s s i p p i m i s s
i s s i s s i p p i m
m i s s i s s i p p i
p i m i s s i s s i p
p p i m i s s i s s i
s i p p i m i s s i s
s i s s i p p i m i s
s s i p p i m i s s i
s s i s s i p p i m i

F
i
i
i
i
m
p
p
s
s
s
s

L
p
s
s
m
i
p
i
s
s
i
i

V
6
8
9
5
1
7
2
10
11
3
4

W
5
7
10
11
4
1
6
2
3
8
9

I
11
8
5
2
1
10
9
7
4
6
3

Hr
5
4
11
9
3
10
8
2
7
6
1

i
m
p
s

C
1
5
6
8

Figure 6.7: The matrix M and related arrays for the string “mississippi”.

over the encoded text. We also illustrate variants based on this new preprocess-

ing of existing online algorithms and present experimental results under various

conditions. It turns out that such variants show better time and space behaviour,

as compared with solutions currently available in literature.

6.2.1 The Burrows-Wheeler transform

Given a string T of length n, a rotation of T is a string T [i .. n]T [1 .. i−1], for any

i = 1, . . . , n. To define the Burrows-Wheeler transform of a given string T [1 .. n],

we introduce a conceptual matrix M whose rows are the rotations of T sorted

in lexicographic order. We indicate the i-th row of M with Mi, for 1 ≤ i ≤ n.

Fig. 6.7 shows the matrix M corresponding to the string “mississippi”. Note

that each column of M is a permutation of the characters of T . Let F and L be

the first and the last columns of M , respectively. Hence F , by definition of M ,

can be obtained by sorting lexicographically the characters of T , and can thus be

computed from any column of M , in particular from L. Then the BWT-encoding

of T is defined as the pair (L, id), where id is the index in L corresponding to

character T [n]. It turns out that in general the string L is highly compressible,

as it contains with high probability long runs of identical characters.

The BWT-encoding of a string of length n can be performed in O(n2 log n)-

time by the naive method outlined above. If we compute the BWT-encoding

of the string T
′
= T#, obtained by appending to T a special character # that

is lexicographically smaller than any other character in T , then id is not needed

since the index in L of character T [n] = T ′[n−1] is fixed and equal to 1. Moreover,

in this case sorting the rotations is equivalent to sorting the suffixes which can

be performed using suffix trees [51] or suffix arrays [50].

6.2. String matching on BWT-encoded texts 115

The reverse BWT can be computed by a simple method, based on n subse-

quent sortings. However, a more efficient approach, proposed by Burrows and

Wheeler, requires only two iterations over the data and has a linear cost. This

consists in building an array V with the property that, for any character L[i],

the preceding character in the text is given by L[V [i]]. Thus, the array V can be

used to decode the text backwards as follows

T [n− i] = L[V i[id]] , for 0 ≤ i ≤ n− 1 ,

where V 0[j] = j and, recursively, V i+1[j] = V [V i[j]].

Plainly, such transformation is practical only for decoding the entire text

backwards. For left-to-right scanning, one can use a forward transformation,

which is defined by iterating the inverse function W = V −1 as follows

T [i] = L[W i[id]] , for 1 ≤ i ≤ n .

Both V and W can be computed in linear time, as shown in Fig. 6.8, based on

the following formula

V [i] = C[L[i]] + ri , (6.1)

where ri is the number of occurrences of character L[i] in L[1 .. i] and C is an

array, of dimension σ, such that C[c]− 1 is the number of all occurrences in T of

the characters which precede alphabetically c, for c ∈ Σ. (Notice that here and

in the following we are implicitly identifying the ordered alphabet Σ with the

integer range [1 .. σ], where σ = |Σ|.) By definition of M and C, C[c] turns out

to be the index of the first row in M starting with c. Observe that C can be used

to implicitly define the column F since C[c] and C[c + 1] − 1 are the indexes in

F of the first and last occurrence of the character c, respectively, for each c ∈ Σ.

6.2.2 Searching on BWT-encoded texts

Let P be a pattern of length m, and let L be the BWT-encoding of a text T

of length n, both over a finite alphabet Σ of dimension σ. In this section we

describe the existing solutions for the (online) problem of searching the pattern

P in T via L. Note that a direct online solution consists in decoding L and then

using any classical string matching algorithm for the searching phase.

The first nontrivial online solution [9] is based on a function Hr which maps

116 The compressed string matching problem

all characters from T to F and allows to access text positions in random order.

Formally, the mapping Hr and its inverse I are defined so as to satisfy

T [i] = F [Hr [i]] and T [I[i]] = F [i], for 1 ≤ i ≤ n.

The construction of Hr and I (cf. Fig. 6.8) requires three iterations over the

BTW-encoded text and the computation of the arrays W and C, yielding an

overall extra space of size (3n+ σ).

The resulting method turns out to be simple and flexible since one can use

any existing string matching algorithm as it is, including non-standard pattern

matching algorithms. In particular, [9] has chosen to adapt the Boyer-Moore [14]

algorithm, which has a O(nm) worst-case time complexity, but a sublinear be-

havior on average. However, the use of a linear algorithm may lead to an overall

O(n) worst-case time algorithm.

A more remarkable result is the Binary-Search algorithm [9], which is based

on the following observation. Since all rows Mi such that P ⊑Mi are contiguous,

it is possible to count the occurrences of the pattern P by locating the first and

last matching rows. The idea is then to use binary search to locate the pattern in

the range of rows [C[P [1]] .. C[P [1] + 1]− 1]. Rows are decoded as needed, using

the array W , and are lexicographically compared with the pattern to update the

current interval as in standard binary search. Once a matching row Mi is found,

the first and last rows are searched using a slightly modified binary search in the

ranges [C[P [1]] .. i− 1] and [i .. C[P [1] + 1]− 1], respectively.

Once the range has been found, it is possible to query the corresponding

positions in constant time, using the mapping I, since this, by the property

above, represents a mapping between F and T . The computation of the mapping

I requires, as for Hr , three iterations over the encoded text. However, if one

is only interested in counting the matching occurrences, the preprocessing just

requires two iterations, to build W .

The search time of the Binary-Search algorithm is O(m log n) in the worst

case and decreases to O(m log n/σ) on average. Thus, the overall worst-case time

complexity of the algorithm is O(n+m log n).

The indexing data structures for the BWT are based on the compression of

the suffix array of the text, which is strictly related to the BWT. In fact, they are

more than a traditional index in that they also encode the indexed text. Such

indexes allow one to efficiently compute two useful generic operations on symbol

6.2. String matching on BWT-encoded texts 117

Build-C (L)

1. for i← 1 to σ
2. K[i]← 0
3. for i← 1 to n
4. K[L[i]]← K[L[i]] + 1
5. sum← 1
6. for i← 1 to σ
7. C[i]← sum
8. sum← sum + K[i]
9. return C

Build-V-W (L,C)

1. for i← 1 to n
2. V [i]← C[L[i]]
3. W [C[L[i]]]← i
4. C[L[i]]← C[L[i]] + 1
5. return (V,W)

BWT-Decode (L,W , id)

1. i← id
2. for j ← 1 to n
3. i← W [i]
4. T [j]← L[i]
5. return T

Build-I-Hr (W , id)

1. i← id
2. for j ← 1 to n
3. Hr [j]← i
4. I[i]← j
5. i← W [i]
6. return (I,Hr)

Figure 6.8: Algorithms to compute the C, V , W , I, Hr and T arrays.

sequences:

• rank(L, c, i), which returns the number of occurrences of the character c in

the prefix L[1 .. i];

• select(L, c, i), which returns the index in L of the i-th occurrence of the

character c.

Note that the rank function allows one to compute the array V using formula 6.1,

as ri = rank(L,L[i], i), for 1 ≤ i ≤ n.

Recently, much attention has been devoted to the efficient implementation,

time and space wise, of this data structure. One well known implementation is

the FM-Index [34]. In [34] Ferragina and Manzini presented an efficient algorithm

based on rank queries, which finds, as in binary search, the range of rows having

P as a prefix. In particular they showed that O(m) rank queries on the BWT

are needed to count the occurrences of a pattern of length m.

6.2.3 A new efficient approach for online searching BWT-

encoded texts

We present now a new approach for online searching BWT-encoded texts, which

yields algorithms with sublinear extra space in most practical cases, especially

in the case of large alphabets and short patterns. The main idea consists in

building a data structure which allows to efficiently implement select queries

only for characters occurring within the pattern.

To this end, let P be, as above, a pattern of length m over a finite ordered

alphabet Σ of size σ and let L be the BWT-encoding of a text T of length n,

118 The compressed string matching problem

over the same alphabet. Let Σ
P
⊆ Σ be the collection of the characters occurring

within P . Trivially, |Σ
P
| ≤ m.

We construct a Partial-select data structure, implemented as an array Ps

of size σ, where the entry Ps[c] points to a list containing all positions in L of

the character c, in increasing order, for each c ∈ Σ
P
. Thus, it turns out that

select(L, c, i) = Ps[c, i] , where Ps[c, i] is the i-th entry in the list pointed to by

P [c]. If occurrences lists are implemented as arrays, each select query can be

answered in constant time. For a given character c, let K[c] be the number of

the occurrences of c in L. The extra space needed for computing Ps is given by

σ +

c∈Σ

P

K[c] ≤ σ + n ,

where the equality holds if Σ
P
= Σ. Of course, if the alphabet is small, the gain,

if any, is negligible, but for moderately large alphabets, or when m is smaller

than σ, it favorably compares with the total size of the text.

The Partial-select data structure, in combination with the array C introduced

in Section 6.2.1, allows one to compare in an efficient way a pattern P of length

m with any row Mi. In particular, one can check whether P is lexicographically

smaller, equal, or greater than the prefix of length m of row Mi, for 1 ≤ i ≤ n.

To this end, let us suppose that we have succesfully compared a prefix P [1 .. k]

of the pattern with row Mi, with k < m, and also assume that j is the index of

P [k] in L, i.e., L[j] = P [k] = Mi[k]. In order to compare P [k+1] with Mi[k+1],

observe that the index of Mi[k + 1] in F is actually j; we thus need to know

whether F [j] = P [k + 1]. This can be done by exploiting the properties of the

array C. In particular, given an index j and a character c, it can be verified

in constant time if F [j] = c, by checking whether j is contained in the interval

[C[c] .. C[c+1]− 1]. If the answer is negative, we can also verify if F [j] is smaller

or greater than c by checking whether j is smaller than C[c] or greater than

C[c+ 1]− 1, respectively.

We use this tecnique to check whether Mi[k + 1] = P [k + 1]. If the answer

is positive, we reiterate the same procedure on L[j′], where j′ is the index of

Mi[k + 1] in L.

To compute j′, we observe that, by definition of M , the i-th occurrence of

a character c in F and in L maps onto the same character in T . Moreover, we

note that the index j in F corresponds to the (j − C[F [j]])-th occurrence of the

character F [j] in F . It thus turns out that the index j′ can be computed in

6.2. String matching on BWT-encoded texts 119

Build-C-Ps (P,L)

1. m← len(P)
2. for i← 1 to σ
3. K[i]← 0
4. H[i]← 0
5. for i← 1 to m
6. H[P [i]]← 1
7. for i← 1 to n
8. K[L[i]]← K[L[i]] + 1
9. if H[L[i]] > 0 then

10. Ps[L[i], H[L[i]]]← i
11. H[L[i]]← H[L[i]] + 1
12. sum← 1
13. for i← 1 to σ
14. C[i]← sum
15. sum← sum + K[i]
16. return (C,Ps)

(a)

i
1
2
3
4
5
6
7
8
9
10
11

L
p
s
s
m
i
p
i
s
s
i
i

(b)

Σ
P

= {s, i}

Ps
i
m
p
s

0 1 2 3
→ 5 7 10 11
→ null
→ null
→ 2 3 8 9

(c)

Σ
P

= {m, i}

Ps
i
m
p
s

0 1 2 3
→ 5 7 10 11

→ 4
→ null
→ null

Figure 6.9: left: procedure Build-C-Ps for computing the new data structure Ps.
right: (a) an example: the BWT-encoding of the string “mississippi”; (b) the data
structure Ps relative to L, for the alphabet ΣP = {i, s}; (c) the data structure Ps
relative to L, for the alphabet ΣP = {i,m}.

constant time by quering the Ps data structure as follows:

j′ = Ps

P [k + 1], j − C


P [k + 1]


.

A comparison function, named Ps-Strcmp and based on the Ps data structure,

is shown in Fig. 6.10. It requires O(m)-time for comparing P with Mi[1 ..m].

Figure 6.9 also shows the code of the procedure for computing the Partial-

select data structure Ps. It requires a single iteration on the BWT-encoded text

and has a O(n)-time and -space complexity.

A Standard-Search algorithm

Our first algorithm works as a standard pattern matching algorithm; it compares

the pattern P with the windows T [i .. i +m − 1] of the text, for 1 ≤ i ≤ n −m.

It exploits the fact that to locate all the occurrences of P in T it is enough

to compare the pattern with all the windows starting with character T [i] =

P [1]. This corresponds to comparing the pattern with all the rows Mi starting

with P [1]. Trivially, Mi starts with symbol P [1] if and only if i is in the range

[C[P [1]] .. C[P [1] + 1] − 1]. Thus, our proposed algorithm exploits the property

that the i-th occurrence in L of character P [1] is found at position Ps[P [1], i].

The resulting method is simple and flexible and can be used in combination

120 The compressed string matching problem

with any existing string matching algorithm which processes the text from left

to right, including non-standard pattern matching algorithms.

Figure 6.10 (on the top) shows the code of the Standard-Search algorithm,

where the procedure Ps-Strcmp is used as a subroutine for comparing the pat-

tern with a row Mi. Despite its worst-case O(nm)-time complexity, the algorithm

turns out to be efficient in practice, expecially when the number of occurrences

of the character P [1] is small. In particular, for a given pattern P , the searching

phase has a O(mK[P [1]])-time complexity.

A Binary-Search algorithm

Our second proposed solution is a variant of the Binary-Search algorithm, de-

scribed in Section 6.2.2 (cf. [9]). It makes use of the data structure Ps to facilitate

the comparison of the pattern P with the rows of the matrix M . The resulting

algorithm, whose code is shown in Fig. 6.10 (left), has the same structure of the

Binary-Search algorithm. As in the Standard-Search algorithm, we search the

pattern in the range of rows [C[P [1]] .. C[P [1] + 1] − 1]. A first binary search is

applied (lines 4-11) to locate a matching row Mi such that P ⊑ Mi. When a

matching row Mi is found (line 12), a slightly modified binary search is used to

locate the first row in the range [C[P [1]] .. i] (lines 13-20) and to locate the last

row in the range [i .. C[P [1] + 1]− 1] (lines 21-28).

The new Binary-Search method, as the original algorithm, achieves a O(n+

m log n) overall time complexity. However, since |Ps| + |C| ≤ |W | + |C|, in

practical cases it uses less space than the Binary-Search algorithm, as shown in

Section 6.2.4.

A Rank-Search algorithm

Our last solution for online searching BWT-encoded data is based on the use of

the rank function, as done in standard indexing algorithms.

The Rank-Search algorithm counts the number of occurrences of P in T by

locating two indexes, sp and ep, such that P ⊑Mi, for all i in the range [sp .. ep].

This can be done with O(m) rank queries. The code of the Rank-Search algorithm

is presented in Fig. 6.10 (right).

The new approach uses the subroutine Ps-Rank to exploit the Ps data struc-

ture in order to compute efficiently any rank query on L. In particular, for c ∈ Σ
P
,

6.2. String matching on BWT-encoded texts 121

Standard-Search (P,L)

1. count← 0
2. (C, Ps)← Build-C-Ps(P,L)
3. for i← C[P [1]] to C[P [1] + 1]− 1
4. if Ps-Strcmp(P,C, Ps, i) = 0 then
5. count← count + 1
6. return count

Ps-Strcmp (P,C ,Ps, i)

1. m← len(P), c← P [1]
2. for j ← 2 to m
3. i← Ps[c, i− C[c]], c← P [j]
4. if i < C[c] then return 1
5. if i >= C[c + 1] then return −1
6. return 0

Binary-Search (P,L)

1. count← 0
2. (C, Ps)← Build-C-Ps(P,L)
3. c← P [1]
4. low ← C[c]
5. high← C[c + 1]− 1
6. while low < high
7. mid← (low + high)/2
8. cmp← Ps-Strcmp(P,C, Ps,mid)
9. if cmp = 0 then break

10. if cmp > 0 then low ← mid + 1
11. else high← mid
12. if cmp = 0 then
13. h← mid− 1
14. while low < h
15. m← (low + h)/2
16. if Ps-Strcmp(P,C, Ps,m) > 0
17. then low ← m + 1
18. else h← m
19. if Ps-Strcmp(P,C, Ps, low) ̸= 0
20. then low ← mid
21. l← mid + 1
22. while l < high
23. m← (l + high + 1)/2
24. if Ps-Strcmp(P,C, Ps, l) ≥ 0
25. then l← m
26. else high← m− 1
27. if Ps-Strcmp(P,C, Ps, high) ̸= 0
28. then high← mid
29. count← high− low + 1
30. return count

Rank-Search (P,L)

1. count← 0
2. (C,Ps)← Build-C-Ps(P,L)
3. i← len(P)
4. c← P [i]
5. sp← C[c]
6. ep← C[c + 1]− 1
7. while sp ≤ ep and i ≥ 2
8. c← P [i− 1]
9. sp← C[c] + Ps-Rank(Ps, c, sp− 1) + 1

10. ep← C[c] + Ps-Rank(Ps, c, ep)
11. i← i− 1
12. if ep ≥ sp then
13. count← ep− sp + 1
14. return count

Ps-Rank (Ps, c, i)

1. low ← 1
2. high← len(Ps[c])
3. while low < high
4. mid← (low + high)/2
5. if Ps[c][mid] > i then
6. high← mid
7. else if Ps[c][mid] < i then
8. low ← mid + 1
9. else return mid

10. return low

Figure 6.10: Algorithms for online searching BWT-encoded texts. top: the Standard-
Search algorithm. left: the Binary-Search algorithm. right: the Rank-Search algo-
rithm.

the query rank(L, c, i) can be answered via the following relation

rank(L, c, i) = max{j | Ps[c, j] ≤ i} ∪ {0} .

Since the occurrences lists in Ps are in increasing order, it is possible to use a

binary search for locating the value of rank(L, i, c). The procedure Ps-Rank

achieves a O(logK[c])-time complexity for answering any rank query on charac-

ters occurring in the pattern, where we recall that K[c] is the number of occur-

122 The compressed string matching problem

rences of c in T . The Rank-Search algorithm achieves a O(n + m log n) overall

time complexity.

6.2.4 Experimental evaluation

Next, we illustrate and comment on some experimental results, in terms of space

usage and running times (preprocessing + searching times), of the following online

algorithms for searching BWT-encoded texts:

• HS: the Horspool algorithm which searches the text using the Hr mapping;

• D&S: the Decode-and-Search method with the Horspool algorithm;

• BS: the Binary-Search algorithm;

• SS: our Standard-Search algorithm;

• BS2: our modified variant of the Binary-Search algorithm;

• RS: our rank based algorithm.

In the case of the HS and D&S algorithms, we used the Horspool algorithm [39]

which is a simple and efficient variant of the Boyer-Moore algorithm. The tests

have been performed on a 1.5 GHz PowerPC G4. We used the input files (i), (ii),

(iii) and (iv) (see Section 2.6). For each input file, we have generated sets of 100

patterns, randomly extracted from the text, of fixed length m, with m ranging

in the set {4, 8, 12, 16, 20, 24, 28, 32}.

Average space usage

For each set of patterns, we computed the space used during preprocessing, ex-

pressed as number of bytes for text character. In particular, integers have been

represented in our tests by 4 bytes and characters by 1 byte. Hence, the arrays

L and W require n bytes and 4n bytes, respectively.

Note that the space required by the BS, HS, and D&S algorithms is indepen-

dent of the alphabet size and of the pattern size.

From the above experimental results, it turns out that the extra space required

by our newly presented variants is up to four times smaller than that required by

the BS algorithm, whose space-performance is better than those of the algorithms

HS and D&S. As expected, the best results are obtained for large alphabets and

short patterns. The gap relative to the BS algorithm decreases with the size of

6.2. String matching on BWT-encoded texts 123

σ

63
94
20
4

RS, BS2 and SS

4 8 12 16 20 24 28 32

1.16 1.76 2.16 2.52 2.68 2.88 2.92 3.04
0.72 1.32 1.64 1.84 2.04 2.24 2.40 2.56
0.84 1.56 1.96 2.40 2.68 2.96 3.16 3.28
2.80 3.44 3.68 3.84 3.92 3.92 3.96 3.96

HS D&S BS

8.00 5.00 4.00
8.00 5.00 4.00
8.00 5.00 4.00
8.00 5.00 4.00

Table 6.4: Average extra space required by the algorithms in bytes for text character.

m HS D&S BS BS2 RS SS

4 354.1 280.9 118.9 78.8 79.1 79.6
8 346.6 278.9 119.9 90.5 90.8 93.0

12 357.9 294.2 124.9 101.2 101.1 102.3
16 371.6 299.0 125.2 108.9 108.6 110.2
20 347.2 277.5 120.0 106.3 106.0 107.2
24 344.8 276.9 120.5 110.5 109.9 111.3
28 339.0 274.1 119.4 110.1 110.4 111.6
32 356.8 297.1 125.7 117.8 117.2 119.3

Table 6.5: Running times (ms) on the King James version of the Bible.

the alphabet. In particular, for an alphabet of dimension 4 and long patterns

the space required by the Ps data structure is almost the same as in the BS

algorithm.

Overall running times

In the following table we compare the overall running times of the algorithms

under consideration. For each set of patterns, we report the mean over the

running times of 100 runs. In the following tables, running times are expressed

in milliseconds and the best results are bold-faced.

From the above experimental results, it turns out that in most cases the

algorithm BS2 achieves the best results, especially in the case of large alphabets,

and is second only to the algorithm BS, in the case of 4 characters alphabets.

Note, however, that when σ > 4, our newly presented algorithms do always

perform better than previously available solutions.

The HS algorithm, based on the Hr mapping, turns out to be the worst, even

worse than the D&S method. Accessing the text in a non-sequential way is not

cache friendly and since the space needed to decode the text is the same as the

one required by Hr , there is no reason to prefer the algorithm HS to the D&S

124 The compressed string matching problem

m HS D&S BS BS2 RS SS

4 236.2 177.3 74.8 43.3 43.0 43.7
8 231.6 175.3 76.1 49.5 50.3 50.1

12 228.4 175.0 75.9 53.8 54.2 53.9
16 238.8 185.2 78.1 57.4 57.7 57.8
20 235.0 185.6 78.3 59.3 59.3 59.9
24 233.1 186.0 78.7 61.8 62.2 62.5
28 229.6 185.4 78.4 63.6 63.5 64.1
32 233.9 188.6 78.7 65.4 65.3 70.0

Table 6.6: Running times (ms) on the CIA World Fact Book.

m HS D&S BS BS2 RS SS

4 253.5 217.3 90.2 57.1 58.2 57.4
8 256.7 225.7 91.3 70.7 71.6 72.3

12 253.3 219.3 90.6 76.6 77.0 76.8
16 255.6 225.3 91.7 83.0 84.0 84.0
20 258.1 226.8 91.3 87.7 88.6 86.7
24 246.6 218.1 91.7 87.5 87.3 88.2
28 250.1 227.8 92.0 91.2 92.0 91.6
32 253.4 223.5 92.2 90.7 91.4 91.8

Table 6.7: Running times (ms) on a protein sequence.

m HS D&S BS BS2 RS SS

4 381.3 360.4 138.5 143.3 143.0 145.3
8 390.3 367.5 139.9 152.9 153.0 152.2

12 375.7 352.1 137.4 153.2 152.0 152.2
16 382.3 354.7 142.1 159.0 159.6 158.3
20 380.7 358.5 138.1 159.1 157.2 157.2
24 370.6 352.2 140.3 158.3 161.5 157.7
28 381.0 372.6 141.3 166.6 161.3 160.7
32 376.0 350.6 137.7 158.8 157.7 157.7

Table 6.8: Running times (ms) on a DNA sequence.

6.2. String matching on BWT-encoded texts 125

method. The algorithms BS2 and the RS always achieve better running times

as compared with the Binary-Search algorithm. The algorithm SS can be faster

than the other algorithms when the frequency of the first character of the pattern

is very low, but on average is always slower.

Chapter 7

Conclusions

In this thesis we have presented new results for the string matching problem

and some of its variants. In particular, we have introduced a novel encoding,

based on the bit-parallelism technique, for nondeterministic finite automata with

a regular structure like those relative to the languages Σ∗P and Suff (P) of a

string P . Our representation exploits a particular factorization of strings to

encode automata by smaller bit-vectors. The resulting algorithms scale much

better with the length of the pattern. This result leaves some questions open.

The first one is whether there exist other factorizations that can be used to obtain

efficient automata simulations. Another one is whether such a technique, which

is less flexible than bit-parallelism, can be extended to more complex patterns

like wildcards or regular expressions.

We have also illustrated an encoding, based on bit-parallelism, of the nonde-

terministic automata for the languages Σ∗P and Suff (P) of a set of strings P.
This representation exploits the relation between reachable configurations of the

automata and the associated failure function, and encodes the transition function

in polynomial space in the size of the automaton.

We have further presented practical bit-parallel variants of the Wide-Window

algorithm for the string matching problem that use the bit-level parallelism to

simulate two automata in parallel. In one case this technique doubles the shift

performed by the algorithm. This result shows that the method of using a fixed

length shift allows for an easy parallelization of the algorithm as opposed to

BDM-like algorithms; indeed, a variable shift requires a more complex simula-

tion to parallelize the algorithm. For this reason, this method is worth further

127

128 Conclusions

investigations.

As for the approximate string matching problem, we have presented a new dis-

tance function based on edit operations involving substrings rather than single

characters, i.e., swaps of equal length adjacent substrings and reversals of sub-

strings. We have also introduced an algorithm, based on dynamic programming

and on the DAWG data structure, that solves the approximate string matching

under this distance. A possible future work will be to investigate variants of the

proposed distance and more efficient algorithms.

In addition, we have also discussed a simple variant of an algorithm for the

string matching with swaps problem that is able to count, for each occurrence

of the pattern, the corresponding number of swaps without any time and space

overhead.

In relation to the compressed string matching problem, we have presented

adaptations of Boyer-Moore like algorithms relative to the Huffman encoding. An

idea that might be worth investigating is whether this approach can be improved

by decoding byte-wise rather than bit-wise while still being able to skip bits, as

this modification would speed up the decoding phase considerably. Finally, we

have presented a more efficient, both time and space wise, preprocessing method

to search for a pattern in Burrows-Wheeler encoded texts.

Bibliography

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-

graphic search. Communications of the ACM, 18(6):333–340, 1975.

[2] C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: A new struc-

ture for pattern matching. In J. Pavelka, G. Tel, and M. Bartosek, editors,

SOFSEM ’99, Theory and Practice of Informatics, 26th Conference on Cur-

rent Trends in Theory and Practice of Informatics, Milovy, Czech Republic,

November 27 - December 4, 1999, Proceedings, volume 1725 of Lecture Notes

in Computer Science, pages 295–310. Springer, 1999.

[3] A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein.

Pattern matching with swaps. Journal of Algorithms, 37(2):247–266, 2000.

[4] A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap

matching. Information and Computation, 181(1):57–74, 2003.

[5] A. Amir, G. M. Landau, M. Lewenstein, and N. Lewenstein. Efficient spe-

cial cases of pattern matching with swaps. Information Processing Letters,

68(3):125–132, 1998.

[6] A. Amir, M. Lewenstein, and E. Porat. Approximate swapped matching.

Information Processing Letters, 83(1):33–39, 2002.

[7] J. Arndt. Matters Computational. Springer, 2011.

http://www.jjj.de/fxt/.

[8] R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Com-

munications of the ACM, 35(10):74–82, 1992.

[9] T. Bell, M. Powell, A. Mukherjee, and D. Adjeroh. Searching BWT com-

pressed text with the Boyer-Moore algorithm and binary search. In 2002

129

130 BIBLIOGRAPHY

Data Compression Conference (DCC 2002), 2-4 April, 2002, Snowbird, UT,

USA, pages 112–121. IEEE Computer Society, 2002.

[10] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adap-

tive data compression scheme. Communications of the ACM, 29(4):320–330,

1986.

[11] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and

J. Seiferas. The smallest automaton recognizing the subwords of a text.

Theoretical Computer Science, 40:31–55, 1985.

[12] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht.

Complete inverted files for efficient text retrieval and analysis. Journal of

the ACM, 34(3):578–595, 1987.

[13] A. Blumer, A. Ehrenfeucht, and D. Haussler. Average sizes of suffix trees

and dawgs. Discrete Applied Mathematics, 24(1-3):37 – 45, 1989.

[14] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communi-

cations of the ACM, 20(10):762–772, 1977.

[15] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression

algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[16] M. Campanelli, D. Cantone, and S. Faro. A new algorithm for efficient

pattern matching with swaps. In J. Fiala, J. Kratochv́ıl, and M. Miller,

editors, Combinatorial Algorithms, 20th International Workshop, IWOCA

2009, Hradec nad Moravićı, Czech Republic, June 28-July 2, 2009, Revised

Selected Papers, volume 5874 of Lecture Notes in Computer Science, pages

230–241. Springer, 2009.

[17] M. Campanelli, D. Cantone, S. Faro, and E. Giaquinta. An efficient al-

gorithm for approximate pattern matching with swaps. In J. Holub and

J. Žďárek, editors, Proceedings of the Prague Stringology Conference 2009,

pages 90–104, Czech Technical University in Prague, Czech Republic, 2009.

[18] M. Campanelli, D. Cantone, S. Faro, and E. Giaquinta. Pattern matching

with swaps in practice. International Journal of Foundations of Computer

Science, 2010. in press.

BIBLIOGRAPHY 131

[19] D. Cantone and S. Faro. A space efficient bit-parallel algorithm for the

multiple string matching problem. International Journal of Foundations of

Computer Science, 17(6):1235–1252, 2006.

[20] D. Cantone and S. Faro. Pattern matching with swaps for short patterns

in linear time. In M. Nielsen, A. Kucera, P. B. Miltersen, C. Palamidessi,

P. Tuma, and F. D. Valencia, editors, SOFSEM 2009: Theory and Practice

of Computer Science, 35th Conference on Current Trends in Theory and

Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January

24-30, 2009. Proceedings, volume 5404 of Lecture Notes in Computer Science,

pages 255–266. Springer, 2009.

[21] D. Cantone, S. Faro, and E. Giaquinta. Adapting boyer-moore-like algo-

rithms for searching huffman encoded texts. In J. Holub and J. Žďárek,

editors, Proceedings of the Prague Stringology Conference 2009, pages 29–

39, Czech Technical University in Prague, Czech Republic, 2009.

[22] D. Cantone, S. Faro, and E. Giaquinta. Adapting boyer-moore-like algo-

rithms for searching huffman encoded texts. International Journal of Foun-

dations of Computer Science, 2010. in press.

[23] D. Cantone, S. Faro, and E. Giaquinta. Approximate string matching al-

lowing for inversions and translocations. In J. Holub and J. Žďárek, editors,

Proceedings of the Prague Stringology Conference 2010, pages 37–51, Czech

Technical University in Prague, Czech Republic, 2010.

[24] D. Cantone, S. Faro, and E. Giaquinta. Bit-(parallelism)2: Getting to the

next level of parallelism. In P. Boldi and L. Gargano, editors, Fun with

Algorithms, 5th International Conference, FUN 2010, Ischia, Italy, June 2-

4, 2010. Proceedings, volume 6099 of Lecture Notes in Computer Science,

pages 166–177. Springer, 2010.

[25] D. Cantone, S. Faro, and E. Giaquinta. A compact representation of non-

deterministic (suffix) automata for the bit-parallel approach. In A. Amir

and L. Parida, editors, Combinatorial Pattern Matching, 21st Annual Sym-

posium, CPM 2010, New York, NY, USA, June 21-23, 2010. Proceedings,

volume 6129 of Lecture Notes in Computer Science, pages 288–298. Springer,

2010.

132 BIBLIOGRAPHY

[26] J. D. Cohen. Recursive hashing functions for n-grams. ACM Transactions

on Information Systems, 15(3):291–320, 1997.

[27] B. Commentz-Walter. A string matching algorithm fast on the average. In

H. A. Maurer, editor, Automata, Languages and Programming, 6th Collo-

quium, Graz, Austria, July 16-20, 1979, Proceedings, volume 71 of Lecture

Notes in Computer Science, pages 118–132. Springer, 1979.

[28] M. Crochemore. Transducers and repetitions. Theoretical Computer Science,

45(1):63–86, 1986.

[29] M. Crochemore, A. Czumaj, L. Gasieniec, T. Lecroq, W. Plandowski, and

W. Rytter. Fast practical multi-pattern matching. Information Processing

Letters, 71(3-4):107–113, 1999.

[30] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press,

1994.

[31] F. J. Damerau. A technique for computer detection and correction of spelling

errors. Communications of the ACM, 7(3):171–176, 1964.

[32] S. Faro and T. Lecroq. Efficient pattern matching on binary strings. arXiv,

0810.2390, 2008. http://arxiv.org/abs/0810.2390.

[33] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text

indexes: From theory to practice. Journal of Experimental Algorithmics,

13:1.12–1.31, 2009.

[34] P. Ferragina and G. Manzini. Indexing compressed text. Journal of the

ACM, 52(4):552–581, 2005.

[35] A. S. Fraenkel and S. T. Klein. Bidirectional Huffman coding. The Computer

Journal, 33(4):296–307, 1990.

[36] K. Fredriksson. Shift-or string matching with super-alphabets. Information

Processing Letters, 87(4):201–204, 2003.

[37] L. He, B. Fang, and J. Sui. The wide window string matching algorithm.

Theoretical Computer Science, 332(1-3):391–404, 2005.

[38] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata

theory, languages, and computation. Addison-Wesley, 2001.

BIBLIOGRAPHY 133

[39] R. N. Horspool. Practical fast searching in strings. Software Practice and

Experience, 10(6):501–506, 1980.

[40] D. A. Huffman. A method for the construction of minimum redundancy

codes. Proc. I.R.E., 40:1098–1101, 1951.

[41] C. S. Iliopoulos and M. S. Rahman. A new model to solve the swap

matching problem and efficient algorithms for short patterns. In V. Gef-

fert, J. Karhumäki, A. Bertoni, B. Preneel, P. Návrat, and M. Bieliková,

editors, SOFSEM 2008: Theory and Practice of Computer Science, 34th

Conference on Current Trends in Theory and Practice of Computer Science,

Nový Smokovec, Slovakia, January 19-25, 2008, Proceedings, volume 4910

of Lecture Notes in Computer Science, pages 316–327. Springer, 2008.

[42] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-

rithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

[43] J. W. Kim, E. Kim, and K. Park. Fast matching method for dna sequences.

In B. Chen, M. Paterson, and G. Zhang, editors, Combinatorics, Algorithms,

Probabilistic and Experimental Methodologies, First International Sympo-

sium, ESCAPE 2007, Hangzhou, China, April 7-9, 2007, Revised Selected

Papers, volume 4614 of Lecture Notes in Computer Science, pages 271–281.

Springer, 2007.

[44] S. T. Klein. Skeleton trees for the efficient decoding of Huffman encoded

texts. Information Retrieval, 3(1):7–23, 2000.

[45] S. T. Klein and M. K. Ben-Nissan. Accelerating Boyer Moore searches on

binary texts. In J. Holub and J. Žďárek, editors, Implementation and Ap-

plication of Automata, 12th International Conference, CIAA 2007, Praque,

Czech Republic, July 16-18, 2007, Revised Selected Papers, volume 4783 of

Lecture Notes in Computer Science, pages 130–143. Springer, 2007.

[46] S. T. Klein and D. Shapira. Pattern matching in Huffman encoded texts.

Information Processing and Management, 41(4):829–841, 2005.

[47] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in

strings. SIAM Journal on Computing, 6(1):323–350, 1977.

[48] T. Lecroq. Fast exact string matching algorithms. Information Processing

Letters, 102(6):229–235, 2007.

134 BIBLIOGRAPHY

[49] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[50] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string

searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[51] E. M. McCreight. A space-economical suffix tree construction algorithm.

Journal of the ACM, 23(2):262–272, 1976.

[52] S. Muthukrishnan. New results and open problems related to non-standard

stringology. In Z. Galil and E. Ukkonen, editors, Combinatorial Pattern

Matching, 6th Annual Symposium, CPM 95, Espoo, Finland, July 5-7, 1995,

Proceedings, volume 937 of Lecture Notes in Computer Science, pages 298–

317. Springer, 1995.

[53] G. Navarro. A guided tour to approximate string matching. ACM Computing

Surveys, 33(1):31–88, 2001.

[54] G. Navarro and K. Fredriksson. Average complexity of exact and approxi-

mate multiple string matching. Theoretical Computer Science, 321(2-3):283–

290, 2004.

[55] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing

Surveys, 39(1):2, 2007.

[56] G. Navarro and M. Raffinot. Fast and flexible string matching by combining

bit-parallelism and suffix automata. Journal of Experimental Algorithmics,

5:4, 2000.

[57] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practi-

cal on-line search algorithms for texts and biological sequences. Cambridge

University Press, 2002.

[58] G. Navarro and M. Raffinot. New techniques for regular expression searching.

Algorithmica, 41(2):89–116, 2005.

[59] H. Peltola and J. Tarhio. Alternative algorithms for bit-parallel string match-

ing. In M. A. Nascimento, E. S. de Moura, and A. L. Oliveira, editors,

String Processing and Information Retrieval, 10th International Symposium,

SPIRE 2003, Manaus, Brazil, October 8-10, 2003, Proceedings, volume 2857

of Lecture Notes in Computer Science, pages 80–94. Springer, 2003.

BIBLIOGRAPHY 135

[60] L. Salmela, J. Tarhio, and J. Kytöjoki. Multipattern string matching with

q-grams. Journal of Experimental Algorithmics, 11:1.1, 2006.

[61] E. S. Schwartz and B. Kallick. Generating a canonical prefix encoding.

Communications of the ACM, 7(3):166–169, 1964.

[62] D. Shapira and A. Daptardar. Adapting the Knuth-Morris-Pratt algorithm

for pattern matching in Huffman encoded texts. Information Processing and

Management, 42(2):429–439, 2006.

[63] D. Sunday. A very fast substring search algorithm. Communications of the

ACM, 33(8):132–142, 1990.

[64] M. Takeda, S. Miyamoto, T. Kida, A. Shinohara, S. Fukamachi, T. Shino-

hara, and S. Arikawa. Processing text files as is: Pattern matching over

compressed texts, multi-byte character texts, and semi-structured texts. In

A. H. F. Laender and A. L. Oliveira, editors, String Processing and Informa-

tion Retrieval, 9th International Symposium, SPIRE 2002, Lisbon, Portugal,

September 11-13, 2002, Proceedings, volume 2476 of Lecture Notes in Com-

puter Science, pages 170–186. Springer, 2002.

[65] E. Ukkonen. Approximate string-matching with q-grams and maximal

matches. Theoretical Computer Science, 92(1):191–211, 1992.

[66] E. Ukkonen and D. Wood. Approximate string matching with suffix au-

tomata. Algorithmica, 10(5):353–364, 1993.

[67] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data

compression. Communications of the ACM, 30(6):520–540, 1987.

[68] S. Wu and U. Manber. Fast text searching: allowing errors. Communications

of the ACM, 35(10):83–91, 1992.

[69] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Tech-

nical Report TR-94-17, Department of Computer Science, University of Ari-

zona, Tucson, AZ, 1994.

[70] A. C. Yao. The complexity of pattern matching for a random string. SIAM

Journal on Computing, 8(3):368–387, 1979.

	Introduction
	Results
	Organization of the thesis

	Basic notions and definitions
	Strings
	Nondeterministic finite automata
	Bitwise operators on computer words and the bit-vector data structure
	The trie data structure
	The DAWG data structure
	Experimental framework

	The string matching problem
	Automata based solutions for the string matching problem
	The bit-parallelism technique
	The Shift-And algorithm
	The Backward-Nondeterministic-DAWG-Matching algorithm
	Bit-parallelism limitations

	Tighter packing for bit-parallelism
	q-grams based 1-factorization
	Experimental evaluation

	Increasing the parallelism in bit-parallel algorithms
	The Wide-Window Algorithm
	The Bit-Parallel (Wide-Window)² Algorithm
	The Bit-(Parallel)² Wide-Window Algorithm
	Experimental evaluation

	The multiple string matching problem
	Bit-parallelism for multiple string matching
	The Aho-Corasick NFA
	The suffix NFA
	Bit-parallel simulation of NFAs for the multiple string matching problem
	Bit-parallel simulation of the Aho-Corasick NFA for a set of patterns
	The Log-And algorithm

	Bit-parallel simulation of the suffix NFA for a set of patterns
	The Backward-Log-And algorithm

	The approximate string matching problem
	String matching with swaps
	Preliminary definitions
	The Approximate-Cross-Sampling algorithm
	New algorithms for the approximate swap matching problem
	Experimental evaluation

	Approximate string matching with inversions and translocations
	Preliminary definitions
	An automaton-based approach for the pattern matching problem with translocations and inversions
	Complexity analysis
	A bit-parallel implementation
	Computing the minimum cost
	Experimental evaluation

	The compressed string matching problem
	String matching on Huffman encoded texts
	Preliminary definitions
	Skeleton tree based verification
	Adapting two Boyer-Moore-like algorithms for searching Huffman encoded texts
	Experimental evaluation

	String matching on BWT-encoded texts
	The Burrows-Wheeler transform
	Searching on BWT-encoded texts
	A new efficient approach for online searching BWT-encoded texts
	Experimental evaluation

	Conclusions
	Bibliography

