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Facoltà di Scienze Matematiche Fisiche e Naturali
Dottorato di ricerca in Informatica

AUTOMATIC CLASSIFICATION OF FRAMES FROM

WIRELESS CAPSULE ENDOSCOPY

ELIANA GRANATA

A dissertation submitted to the Department of Mathematics and Computer Sci-

ence and the committee on graduate studies of University of Catania, in fulfill-

ment of the requirements for the degree of doctorate in computer science.

ADVISOR

Prof. Giovanni Gallo

COORDINATOR

Prof. Domenico Cantone

XXIII Ciclo



Contents

1 INTRODUCTION 1

2 WIRELESS CAPSULE ENDOSCOPY OVERVIEW 4

2.1 Device description . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Advantages and disadvantegs of Wireless Capsule Endoscopy . 9

2.3 Common examples of capsule video images of the gut . . . . . 10

2.4 Manual annotation . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Intestinal content . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 LITERATURE REVIEW 15

3.1 Topographic segmentation . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Event boundary detection . . . . . . . . . . . . . . . . 18

3.2 Event detection . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Detection of intestinal contractions and juices . . . . . 21

3.2.2 Abnormal patterns detection . . . . . . . . . . . . . . . 23

3.2.3 Bleeding detection . . . . . . . . . . . . . . . . . . . . 27

3.3 Adaptive viewing speed adjustment . . . . . . . . . . . . . . . 30

3.4 Image quality enhancement . . . . . . . . . . . . . . . . . . . 31

4 FEATURE EXTRACTION 32

4.1 Energy and high frequency content . . . . . . . . . . . . . . . 33

4.2 Gabor filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Local Binary Pattern . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 The original LBP . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



CONTENTS ii

4.4 Derivative of Gaussian filter . . . . . . . . . . . . . . . . . . . 43

4.5 Co-occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 TEXTONS 53

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 The basic algorithm . . . . . . . . . . . . . . . . . . . . . . . . 55

6 INFORMATION THEORETIC METHOD 59

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Kolmogorov complexity . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Normalized Compression Distance . . . . . . . . . . . . . . . . 66

7 LINEAR DISCRIMINANT ANALYSIS OF WCE DATA 69

7.1 Different approaches to LDA . . . . . . . . . . . . . . . . . . . 70

7.2 Mathematical operations . . . . . . . . . . . . . . . . . . . . . 70

7.3 Fisher Analysis applied to WCE frames . . . . . . . . . . . . . 75

8 DETECTION ALGORITHMS 80

8.1 Sudden changes detection in a WCE video . . . . . . . . . . . 80

8.1.1 Pre-processing and feature extraction . . . . . . . . . . 81

8.1.2 Classification method . . . . . . . . . . . . . . . . . . . 83

8.1.3 Finding sudden changes . . . . . . . . . . . . . . . . . 84

8.1.4 Visual exploration of textons variability . . . . . . . . . 85

8.1.5 Experimental results . . . . . . . . . . . . . . . . . . . 86

8.2 Information Theory based WCE video summarization . . . . . 91

8.2.1 The proposed method . . . . . . . . . . . . . . . . . . 91

8.2.2 Experimental results . . . . . . . . . . . . . . . . . . . 93

8.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3 LBP based detection of intestinal motility in WCE images . . 97

8.3.1 Contractions features description . . . . . . . . . . . . 98

8.3.2 Texton-based classification . . . . . . . . . . . . . . . . 99

8.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3.4 Conclusion and future work . . . . . . . . . . . . . . . 102



CONTENTS iii

8.4 Detection of intestinal motility using block-based classification 105

8.4.1 Preliminary classification . . . . . . . . . . . . . . . . . 105

8.4.2 Extracting spatial local features . . . . . . . . . . . . . 107

8.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 CONCLUSION AND FUTURE WORK 111



Chapter 1

INTRODUCTION

Conventional endoscopic techniques for examining the small intestine are

limited by its length (3.5-7 m) and by its looped configurations. There are

a vast number of different techniques ranging from colonscopy and push

enteroscopy to full intraoperatory endoscopy. Either the limitations or the

intrusive nature of these techniques have made the small intestine the most

uncharted section of the gastrointestinal tract, mostly due to its anatomical

characteristics and difficult access.

Wireless Capsule Endoscopy (WCE) is a recent technological breakthrough

to examine the entire small intestine without any surgery. With capsule en-

doscopy, a pill with a micro-camera attached to it is swallowed by the patient.

During several hours, the capsule emits a radio signal which is recorded into

an external device, storing a video movie of the trip of the capsule throughout

the gut.

The application of this technique allows the specialist to overcome most

of the difficulties associated to classical clinical procedures. However, capsule

endoscopy carries a main drawback: the visualization analysis of the video

frames is a tedious and difficult task, which deserves specifically trained staff,
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CHAPTER 1. INTRODUCTION 2

and which may last for more than one hour for each study. Thus, although

the information provided by capsule endoscopy is unique and there is no

other current technique which improves the reach and quality of the capsule

images, the consequent procedure of analysis of the video material makes

this clinical routine not feasible. Besides, abnormalities in GI tract may be

present in only one or two frames of video, so sometimes they may be missed

by physicians due to oversight. Moreover, there may be some abnormalities

that cannot be detected by naked eyes due to their size and distribution. In

addition, different clinicians may have different findings when they review

the same image. All these problems motivate researchers to develop reliable

and uniform assisting methods to reduce the great burden of physicians.

In this work a machine learning system to automatically detect the mean-

ingful events in video capsule endoscopy is proposed, driving a very useful

but not feasible clinical routine into a feasible clinical procedure. Our pro-

posal is divided into two different parts. The first part tackles the problem

of the automatic detection of sudden changes in a video sequence to provide

an automatic tissue discriminator.

It is reported that a medical clinician spends one or two hours to exam-

ine the output video and this limits the number of examinations and leads

to considerable amount of costs. The problem is to label the video frames

to automatically discriminate digestive organs such as esophagus, stomach,

small intestine (duodenum, jejeunum, ileum) and colon. So it is possible

individuate event boundaries that indicate either entrance in the next organ

or unusual event in the same organ, such as bleedings, intestinal juices or

obstructions, etc. To this aim the construction of an indicator function that

takes high value, whenever there is a sudden change, is proposed. Several

features are extracted from images to build a robust classifier. The con-
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struction of the function uses the statistical texton approach. Experimental

results show that it is possible to take in account only the 30% of the video,

that represents the percentage of relevant frames.

The second part of the current work tackles the problem of the auto-

matic detection of specific events such as intestinal contractions, that may

be related to certain gastrointestinal disorders. The proposal is based on

the analysis of the wrinkle patterns, presenting a comparative study of sev-

eral features and classification methods, and providing a set of appropriate

descriptors for their characterization. Experiments have been conducted on

over 2000 frames extracted from WCE videos. A recall of 99% and a pre-

cision of 95% have been reached. The effects of various parameters on our

classification algorithm is discussed. The achieved high detection accuracy

of the proposed system has provided thus an indication that such intelligent

schemes could be used as a supplementary diagnostic tool in endoscopy.

In this dissertation a detailed analysis of the performance, achieved fol-

lowing several approaches both in a qualitative and a quantitative way, is

provided.



Chapter 2

WIRELESS CAPSULE

ENDOSCOPY OVERVIEW

Medical diagnosis is based on information obtained from various sources, such

as results of clinical examinations and histological findings, patients history

and other data that physician considers in order to reach a final diagnos-

tic decision [1]. Wireless Capsule Endoscopy (WCE) has been proposed in

2000 ([2],[3]) and it integrates wireless transmission with image and video

technology. It has been used to examine the small intestine non invasively.

The WCE procedure consists of the ingestion of a small capsule whose front

end has an optical dome where a white light illuminates the luminal surface

of the intestine. This video produced by a micro colour camera, is emitted

by radio frequency and recorded into an external device carried by the pa-

tient. Images have 256× 256 pixel resolution with three 8-bit colour planes.

Frame rate is approximately two per second, and an average exam has around

50.000 images where 1000 are from the gastrointestinal tract entrance (exte-

rior, teeth, esophagus, etc.), 4.000 from the stomach, 30.000 from the small

intestine (duodenum, ileum, etc.) and 3.000 from the large intestine (cecum,
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CHAPTER 2. WIRELESS CAPSULE ENDOSCOPY OVERVIEW 5

colon, etc.) Once the study is finished, the final record can be easily down-

loaded into a PC with the appropriate software for its posterior analysis by

the physicians.

Recently, several works have tested the performance of capsule endoscopy

in multiple clinical studies. Some of these clinical scenarios include intestinal

polyposis and the diagnosis of small bowel tumors, obscure digestive tract

bleeding, Crohn’s disease [4], Celiac disease [5] and occult bleeding [6]. In

this direction, comparative studies have been published showing the main

advantages and drawbacks of WCE in comparison with push enteroscopy,

sonde enteroscopy and intraoperative endoscopy in this kind of pathologies.

A more exhaustive review and summary about the current literature regard-

ing wireless capsule endoscopy can be found in the following bibliographic

references [7, 8, 9].

Imaging techniques have been extensively used, in the last decades, as

a valuable tool in the hands of an expert for a more accurate judgment of

patients condition. Medical specialists look for significative events in the

WCE video by direct visual inspection manually labelling, in tiring and up

to one hour long sessions, clinical relevant frames. This is a bottleneck of

WCE usage, since it limits its general applicability. The solution might lie

in Computer Vision, by creating automatic annotation tools that preselect

all the important images. This can both reduce annotation times and au-

tomatically label data for clinical research. To automatically discriminate

digestive organs such as esophagus, stomach, small intestine (duodenum, je-

jeunum, ileum) and colon is hence of great advantage. Mostly relevant is

to find event boundaries that indicate either entrance to the next organ or

to find unusual events within the same organ, such as bleedings, intestinal

juices or obstructions, etc. All of these events are characterized by a sudden



CHAPTER 2. WIRELESS CAPSULE ENDOSCOPY OVERVIEW 6

change in the video.

In this scenario, the need of an alternative procedure for the obtention

of the meaningful events in video capsule endoscopy is mandatory. This

urgent need boosted the collaboration with a group of gastroenterologists

from Ospedale M. Raimondi in San Cataldo, so as to evaluate the possibility

of starting a new research line in this fieldwork. From that moment on, our

efforts were focused on the development of a machine learning based system

for the automatic detection of specific events in video capsule endoscopy.

2.1 Device description

The American Food and Drug Administration (FDA) approved the endo-

scopic capsule in 2001, for the purpose of visualization of the small bowel

mucosa as a tool in the detection of abnormalities of the small bowel. The

capsule was developed by a team of Israeli and British scientists, and was

marketed by Given Imaging Ltd., Israel [3]. Since its acceptance, and accord-

ing to its distributor, over 400 thousand capsule exams have been performed

worldwide. Another capsule distributor, Olympus [10], started marketing its

own endoscopic capsule in 2006. This technology is performed by means of

three main components: the capsule, the registration device and the propri-

etary data analysis software. The capsule is an ingestible device equipped

with all the suitable technology for image acquisition, including illumination

lamps and radio frequency emission.

Figure 2.1 shows a graphical scheme of the capsule together with the

distribution of its components in scale. The exterior shell is a disposable

plastic capsule weighting 3.7 g and measuring 11mm × 26mm. (1), which

contains a lens holder (2) with one lens (3), four illuminating leds (4), a
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Figure 2.1: The components of the pillcam.

complementary metal oxide silicon (CMOS) image sensor (5), a battery (6),

an application-specific integrated circuit (ASIC) transmitter (7), and a micro-

antenna (8). The field of view of the lens spans 140-degree, very similar to

that of standard endoscopy. The illuminating lamps are low consume white-

light emitting diodes (LED). The video images are transmitted using UHF-

band radio-telemetry to aerials taped to the body which allow image capture,

and the signal strength is used to calculate the position of the capsule in the

body. Synchronous switching of the LEDs, the CMOS sensor and the ASIC

transmitter minimize power consumption, which lets the emission of high-

quality images at a frame ratio of 2 frames per second during 8 hours. The

capsule is completely disposable and does not need to be recovered after use,

being expelled by the body 10 to 72 hours after ingestion and it is passively

propelled by peristalsis.

Figure 2.2: The M2A camera through the intestine.



CHAPTER 2. WIRELESS CAPSULE ENDOSCOPY OVERVIEW 8

The registration device consists of a set of aerial sensors for the RF signal

reception, connected to a CPU with a hard disk for data storage. The regis-

tration device is carried by the patient fastened into a belt, altogether with

a battery for power supply. The aerial sensors are taped to the body of the

patient, forming an antenna array which collects the signal transmitted by

the capsule and sends it to the receiver. The received data is subsequently

processed and stored in the data storage by the CPU. Figure 2.3 shows a

picture of (a) the external device, and (b) the belt worn by the patient.

(a) (b)

Figure 2.3: The external device and the belt, which are to be taped to the
patients body.

The proprietary software is installed into a PC workstation. It allows the

physicians to retrieve the data from the recorder and to transfer it to the

workstation for additional processing and visualization on the display. The

performed study can be stored independently on the workstation hard disk

or be registered into a CD, a DVD or any other storage device, being ready

for visualization and annotation on any computer in which the displaying

software has been previously installed.
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2.2 Advantages and disadvantegs of Wireless

Capsule Endoscopy

Capsule endoscopy overcomes most of the drawbacks related to manometry

and other intestinal motility assessment techniques. It is much less invasive,

since the patient simply has to swallow the capsule, which will be secreted

in the normal cycle through the defections. Depending on the type of study,

during the whole process of the capsule endoscopy video recording the patient

may lead an ordinary life. No hospitalization is needed nor special staff, since

the video recording is performed without the need of any type of interaction.

One of the main technological breakthroughs that this technology allows is

the direct study and visualization of the entire small intestine, something

that was not possible with the previous techniques so far [11]. In terms of

cost, a US economic analysis in 2003, which was funded by Given Imaging

Ltd., concluded that CEs per unit cost as a diagnostic tool for small intestine

bleeding was comparable to that of other current endoscopic procedures.

Nowadays, however, capsule endoscopy cannot replace any of the other

procedures in a general and exclusive way, and the investigation of the small

intestine should include capsule endoscopy together with the rest of technolo-

gies. Since the capsule has no therapeutic capabilities, any lesion discovered

by capsule endoscopy must be further investigated using other standard tech-

niques. In addition, the capsule use is contraindicated in patients with car-

diac pacemakers, defibrillators or implanted electromechanical devices (due

to the risk of radio-interference with the UHF signal), and in those patients

with known or suspected obstruction or pseudo-obstruction (due to the risk

of causing bowel obstruction) [12]. Nowadays, the number of capsule studies

performed worldwide is still small and it is too soon to appreciate the sensitiv-
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ity and specificity of this technique. The study of a capsule endoscopy video

takes between 1 and 2 hours, which means a heavy load for the physicians.

In this sense, the research on computer-aided and intelligent systems, such as

the one presented in this work, results highly interesting for the development

of this technology.

2.3 Common examples of capsule video im-

ages of the gut

Capsule endoscopy video images are quite similar to those acquired by clas-

sical endoscopic techniques. Each video frame consists of a 256 × 256 pixel

image, rendering a circular field of view of 240 pixels of diameter, which spans

140-degrees, in which the gut wall and lumen are visualized (Figure 2.4).

Figure 2.4: Appearance of a frame in capsule video endoscopy. The intestinal
lumen and walls are rendered in a circular field of view. The black area has
no information.

Typically, the aspect shown by each part of the gastrointestinal tube

presents differences in texture, shape and colour, is patient-dependant and

presents variability with several pathologies. For instance, gastric images

appear with the common folded shape of the stomach wall and a pink tonality.

This folded pattern is replaced in the jejunum by a plain pattern, describing
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star-wise distributed wrinkles when a contractile event occurs and showing a

colour tonality closer to orange. A hybrid pattern is shown in the duodenal

zone, and almost no visibility is achieved in the cecal area. Figure 2.5 shows

a set of sample images such as those described previously.

(a) (b) (c) (d)

Figure 2.5: Different examples of capsule endoscopy video images. (a) Con-
traction. (b) Normal mucosa. (c) Residuals. (d) Intestinal juices.

The multiple patterns and appearances of the different images, and se-

quences of images will be the object of deep analysis in the next chapter.

2.4 Manual annotation

Video annotation is an essential characteristic of the capsule endoscopy tech-

nology. The general protocol is as follows. Once the study is downloaded

to the workstation, the physician visualizes the whole video, selecting those

frames where the object of interest is present (bleeding, polyp, wound, etc).

Once the whole video is annotated, the expert can analyze, if necessary, each

labelled frame in order to obtain information for clinical purposes, diagno-

sis, etc. The manufacturer itself provides a software tool to detect bleeding

region; however, sensitivity and specificity of this system was reported to be

21.5% and 41.8%, respectively [13].

The expert visualizes the zone of interest where events are searched, and

labels those frames where an event is detected. Figure 2.6 shows a snapshot
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Figure 2.6: Annotation tool. The specialist saves into an external file the
time of the frames of interest.

from the visualization tool provided by Given Imaging: Rapid Viewer. On

the right, a time line indicates the real time (time in the real life experiment)

and relative position of the frame in the video. Together with the time line,

a set of findings labelled by the expert are shown in their relative position.

The main screen renders the video sequence showing the gut wall and lumen.

In addition, the relative position of the camera in the human body and a

graph of illuminance variation can be visualized, if desired, in the lower part.

The annotation process of intestinal events is, thus, not straightforward,

time consuming and stressful. A typical study may contain up to 50,000

images obtained at a frame ratio of 2 images per second (6-7 hours of capsule

recording). The visualization time can be adjusted from 5 to 25 frames per

second. At a typical visualization rate of 15 frames per second, the specialist

needs at least one hour only for visualization purposes, without taking into

account the time consumed in labelling the findings.
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2.5 Intestinal content

The gut can be seen as a long tube (about 4-7 meters) with its beginning

in the mouth and its end in the anus. The constitution, function and visual

appearance of each different part of the gut is multiple, and highly depends

on the physiological task to which each part is devoted. In a general way,

four main divisions can be enumerated (proximal -closer to the mouth- to

distal -closer to the anus-): esophagus, stomach, small intestine and colon.

The small intestine presents three different zones: duodenum, jejunum and

ileum. The colon can be studied, in its turn, as ascending colon, transversal

colon, descending colon and rectum. The typical visual aspect in capsule

endoscopy of each one of these different parts is pictured in Figure 2.7.

(a) (b) (c) (d)

Figure 2.7: Typical visual aspect of (a) esophagus, (b) stomach, (c) duode-
num, and (d) colon.

The transit of the pill through the esophagus is very fast, typically two or

three seconds, with no useful information present in this area. The stomach

is the first zone from which the specialists can obtain clinical information.

The stomach has the shape of a sac with folded walls; these folded walls

increase the overall surface of the stomach, allowing a higher performance in

the physiological processes involved. It usually presents a pale colour close to

pink. The typical aspect of the stomach walls in capsule endoscopy is shown

in Figure 2.7 (b). The duodenum is the first part of the small intestine.
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Outside the stomach, the intestinal lumen is visualized as a tunnel delimited

by the intestinal walls. The intestinal walls are still folded in the duodenum,

but with softer folds, presenting a colour ranging from pink to orange. A

frame showing the common appearance of the duodenal walls can be observed

in Figure 2.7 (c). The jejunum and ileum present a similar appearance: the

intestinal walls are plain in the relaxation state, but they contract creating

folds during the contractile activity. The colour appearance in these areas

of the small intestine usually ranges from orange to red. Finally, the colon

is the last part of the intestinal tube, see Figure 2.7 (d). The processes of

assimilation of nutrients which take place in the colon are slow, in comparison

with the previous stages. Moreover, since all the fecal content is released in

the colon, the visual aspect is dark and the visualization quality is poor.
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LITERATURE REVIEW

In the previous section we have shown the importance of capsule endoscopy

as a vital diagnostic procedure for a number of clinical conditions. Over 400

thousand capsule exams have been performed worldwide since 2001. It is

quite clear that Computer Vision has to address the problem to overcome

the most important problem of capsule endoscopy, the long exam annotation

times. Fritscher Ravens and Swain [14] comment that with the predictable

cost reductions of individual capsules, the time that a doctor needs to analyze

the exam may become the most costly part of the procedure.

Although the use of image processing in WCE video analysis is still in its

infancy, a significant number of papers have already been published. The ap-

plications of Computer Vision in capsule image analysis can be divided into

four categories. The first category, which is clearly the most mature judging

from the number and quality of papers published, considers the topographic

segmentation of WCE video into meaningful parts such as mouth, esopha-

gus, stomach, small intestine, and colon. The second category involves the

detection of clinically significant video events (both abnormal and normal).

Examples include bleeding, abnormality, intestinal fluids, intestinal contrac-

15
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tions, and capsule retention. The third category considers video analysis with

respect to changes in consecutive frames in an attempt to adaptively adjust

the video viewing speed, and hence achieve a reduction in the viewing time.

A final area of research has been identified, although not much work has been

done on it. It focuses on using image processing techniques to enhance the

viewing quality of raw images captured by the capsule. These approaches

differ in how the features are extracted and images are classified.

What follows provides a general review of the literature related to classi-

fication of images extracted from WCE videos.

3.1 Topographic segmentation

A wireless capsule endoscope, being swallowed, is propelled by peristalsis

through the entire gastrointestinal tract passing vital organs such as the

mouth, esophagus, stomach, and small intestine; finally reaching the colon

when its battery runs out. Different organs require different levels of atten-

tion from a clinical reviewer, so dividing the capsule video into meaningful

gastrointestinal segments allows the expert to focus on particular areas of

interest, thereby making the task of reporting easier. Moreover, gastric and

intestinal transit times, which can be calculated from the topographic seg-

mentation results, provide useful diagnostic cues for clinicians. It is also

an important preprocessing step for more advanced automatic tools. As an

example, users of Givens Rapid Reader software must interactively identify

boundaries between the stomach and the intestine (pylorus); and intestine

and colon (ileocaecal valve) before other functions (e.g., the suspected blood

indicator (SBI) and capsule localization function) are enabled. Finding the

pylorus in the video can be difficult and time-consuming, even for an ex-
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Figure 3.1: Typical structure of current topographic segmentation methods.

perienced viewer, as visually the stomach tissue in the pyloric region and

the tissue at the beginning of the intestine appear very similar. A further

difficulty presents itself at this point as tissues are often contaminated with

faecal material that occludes the camera view. To summarize, accurate topo-

graphic segmentation is a difficult and time consuming task that is currently

under-taken by clinical experts immediately before the WCE video can be

reviewed. A number of Computer Vision algorithms have been developed ad-

dressing this problem, most of these algorithms can be divided into different
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tasks as illustrated in the following subsections.

3.1.1 Event boundary detection

Lee et al. in [15] proposed a novel algorithm for event boundary detection in

WCE based on energy function. The basic idea is that each organ has differ-

ent pattern of intestinal contractions. So they first characterize the contrac-

tions using energy function in a frequency domain. Then, they segment WCE

video into events by using a high frequency content (HFC) function. The de-

tected boundaries indicate either entrance of the next organ or an anomaly in

the organ, such as bleedings or intestinal juices, etc. The classification result

is represented by a tree structure, which is called an event hierarchy of WCE.

In order to characterize the contractions they extract energy-based feature

in frequency domain from images and then they detect event boundaries by

using a high frequency content function. The motility patterns are different

since each digestive organ has different types of movements and functionali-

ties. They mainly focus on the colour features because colours are the only

feature values captured by the camera, so intestinal movements and contrac-

tions could change colour values. For the efficiency of processing first they

converted the RGB colour space into HSI colour space for every frame in

the video. Each part of the intestine has different pattern of colour sequence

values. When the capsule enters the next digestive organ, the corresponding

colour signal has a short-term change and the increase in energy. An event

of WCE videos is defined as a sequence of continuous frames that include the

same semantic contents. Events are for example esophagus, small intestine

or anomalies. They choose a frequency domain method since is able to reveal

the changes in overall energy and the energy concentration in frequency. In

the frequency spectrum a sudden change appear as high frequency energy.
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Event boundaries are detected by the energy based detection function. It is

possible that a single event can be divided into several events because of the

local maxima of the colour signal and the threshold value. To find the exact

boundary they merged these events into a single event. So they built a tree

using the energy function. They evaluate the performance of the proposed

schemes by demonstrating that the proposed event boundary detection tech-

nique detect and classify accurately transitions of events in WCE videos and

the proposed event hierarchy can provide the boundaries of digestive organs

each of which has different types of intestinal contraction. The experimental

results indicate that the recall and precision of the proposed event detection

algorithm reach up to 76% and 51%, respectively.

In [16, 17, 18, 19, 20, 21, 22] authors present a method to discriminate

automatically stomach and intestine tissue. They create a feature vector us-

ing colour and texture information; the colour features are derived from HSI

histogram of the useful regions, compressed using hybrid transform, incor-

porating DCT and PCA. The texture features are derived by Singular Value

Decomposition of the same tissue regions. After training the Support Vector

Classifier, they apply a discriminator algorithm, which scans the video with

an increasing step and builds up a classification result sequence. In [19] they

observed that histograms built using the entire image will contain any visual

contamination present in the image. In order to minimize the affect of visual

contamination, they divide each WCE (256× 256 pixel) image into a grid of

28 sub-images, 32×32 pixels each, covering most of the image area. Five pa-

rameters for each of the sub-images are derived: Mean Intensity, Saturation,

Hue, and Standard Deviation of Intensity and Hue. The values for these

parameters were set by experiment so that sub-images containing visual con-

tamination (i.e. outside the expected colour range for the tissue type) are
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rejected. In general the performance is performed by mean of the comparison

of two classifiers: K-Nearest Neighbor and Support Vector Classifier (SVC).

The best classification results were found using SVC. Although support vec-

tor machines are currently very popular in Computer Vision research due

to their typically good performance, this highlights some characteristics of

this specific scenario. The most important one is that using these features,

Gaussian distributions provide a poor modeling of the system. A nonlinear

classifier such as SVC yields better results but it provides very little in-sight

about the behavior of the system itself. This is even more serious if they

consider that different training data sets result in significant differences in

the classifier performance.

Coimbra et al. [23] handled this task by studying the performance of

the well known MPEG-7 visual descriptors for this specific scenario. Besides

concluding that the two best visual descriptors have clearly scalable colour

and homogenous texture, authors observed that better features are needed

for more complex tasks such as event detection. Although good results were

obtained in [24, 25], the authors have later shown that the key for successful

automatic tools might lie in combining content with context features [26].

This means that not only features extracted directly from the images should

be included, but other context features such as body spatial location and

capsule displacement velocity.

3.2 Event detection

The hardest and most important challenge of endoscopic capsule Computer

Vision research is, without doubt, automatic event detection. From a clinical

perspective, this is exactly what doctors need: the removal of all unimportant
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images and an automatic proposal for the annotation of all the relevant ones.

It is hard to imagine a system that does not require human validation but if

a doctor simply needs to validate/reject a small set of proposed annotations,

then the time he needs to annotate a full exam is drastically reduced. It is

thus obvious that all developed classifiers must have recall values very close

to 100%. A single event could not missed otherwise clinicians cannot trust

this system and will view the whole video anyway.

3.2.1 Detection of intestinal contractions and juices

In [27] Spyridonos et al. propose a method based on anisotropic image filter-

ing and efficient statistical classification of contractions and intestinal juices

in the intestinal tract. Their proposal is based on a machine learning system

which automatically learns and classifies contractions from a capsule video

source, providing the expert with the portion of the video which is highly

likely to contain the intestinal contractions. The prevalence of phasic con-

tractions in video frames is low (about 1:50-70), which states an imbalanced

problem. The omnipresent characteristic in these frames are the strong edges

(wrinkles) of the folded intestinal wall, distributed in a radial way around the

closed intestinal lumen. The procedure to encode in a quantitative way the

wrinkle star pattern was accomplished in three steps. Firstly, the skeleton of

the wrinkle pattern is extracted. Secondly, the center of the intestinal lumen

is detected, as the point where the wrinkle edges converge using the image

structure tensor. Finally, a set of descriptors were estimated taking into ac-

count the near radial organization of the wrinkle skeleton around the center

of the intestinal lumen. Classification performance was tested by means of a

SVM classifier with radial basis function kernel and employing the hold out

cross validation method. The classification performance was estimated in
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terms of sensitivity and specificity. On average the system detected correctly

90.84% of the positive examples, and 94.43% of the negative examples. In

[28] the same authors detect contractions in video images. In imbalanced

problems, even a small error rate results in an unacceptably large number

of false positive classifications. They propose to use ROC curves to evalu-

ate several classifier models, including classifier ensembles. The imbalanced

recognition task of intestinal contractions was addressed by employing an

efficient two-level video analysis system. At the first level, each video was

processed resulting in a number of possible sequences of contractions. In the

second level, the recognition of contractions was carried out by means of a

SVM classifier. To encode patterns of intestinal motility, a panel of textural

and morphological features of the intestine lumen were extracted. The sys-

tem exhibited an overall sensitivity of 73.53% in detecting contractions. In

order to automatically cluster the different types of intestinal contractions

in WCE, the same authors have been developed a Computer Vision system

which describes video sequences in terms of classical image descriptors [29].

The authors used Self-Organized Maps (SOM) to build a two-dimensional

representation of the different types of contractions, which were clustered by

the SOM in a non-supervised way.

In [30] Gabor filters for the characterization of the bubble-like shape of

intestinal juices in WCE images have been applied. The authors present

an algorithm which detects areas completely obscured by intestinal juices.

Early detection of such regions is highly beneficial since they can be removed

from the sequence presented to the clinician, resulting in a shortening of

the reviewing time. Intestinal fluids appear as yellowish to brownish semi

opaque turbid liquids often containing air bubbles as well as other artifacts.

The authors point out that the most relevant feature of the intestinal fluids
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is the presence of small bubbles of different sizes and circular shapes. The

algorithm is based on texture analysis performed using Gabor filter banks.

3.2.2 Abnormal patterns detection

Based on the observation that endoscopic images possess rich texture infor-

mation, Meng et al. in [31] search for regions affected by diseases, such as

ulcers or coli. The main idea in this paper is the use of curvelet based on

Local Binary Pattern (LBP) to extract textural features to distinguish ulcer

regions from normal regions. The proposed new textural features can cap-

ture multi-directional features and show robustness to illumination changes.

Curvelet transform has emerged as a new multi-resolution analysis tool re-

cently. The basic idea of curvelet transform is to represent a curve as a

superposition of functions of various lengths and widths obeying a specific

scaling law. Regarding 2D images, it can be done first by decomposing an

image into wavelet sub-bands, separating the object into a series of disjoint

scales. Each sub-image of a given scale is then analyzed with a local ridgelet

transform, another kind of new multiresolution analysis tool. Because im-

ages often suffer from illumination variations due to various imaging circum-

stances such as motion of camera and the rather limited range of illumination

in digestive tract. Consequently, it is necessary to consider illumination vari-

ations effects on textures of endoscopic images because texture features are

not constant to illumination variations. Uniform LBP shows rather robust

performance to illumination variation. In addition, it has been demonstrated

that uniform patterns can discern micro-structures such as bright spots and

dark spots. Many diseases in endoscopic images show spot patterns including

ulcer. Hence, they make use of uniform LBP to extract texture information

after they apply curvelet transform to images. Using uniform LBP histogram,
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they can obtain six statistical measurements of the histogram as features of

texture in order to reduce the number of features. These features are stan-

dard deviation, skew, kurtosis, entropy, energy and mean of the histogram.

To verify the performance of features, they deploy Multi Layer Perceptron

(MLP) neural network and SVM to demonstrate their power in differentiat-

ing normal region and ulcer region in endoscopic images. The goal of using

SVM and MLP simultaneously is to find which one is more suitable for the

specific problem. Results on present ulcer data validate that this method is

promising in recognizing ulcer regions since an impressive recognition rate of

92.37%, 91.46% and 93.28% in terms of accuracy, specificity and sensitivity,

respectively, was obtained with MLP in YCbCr colour space.

In [32] Kodogiannis et al. present an integrated methodology for de-

tecting abnormal patterns in WCE images. The implementation of an ad-

vanced neuro-fuzzy learning scheme has been adopted. In their research,

an alternative approach of obtaining those quantitative parameters from

the texture spectra is proposed both in the chromatic and achromatic do-

mains of the image. In this research work they focused the attention on

nine statistical measures (standard deviation, variance, skew, kurtosis, en-

tropy, energy, inverse difference moment, contrast, and covariance). These

statistical measures were estimated on histograms of the original image (1st-

order statistics). The majority of the endoscopic research has focused on

methods applied to grey-level images, where only the luminance of the in-

put signal is utilized. Endoscopic images contain rich texture and colour

information. All texture descriptors were estimated for all planes in both

RGB{R(red), G(green), B(blue)} andHSV {H(hue), S(saturation), V (intensity)}

spaces, creating a feature vector for each descriptorDi = (Ri, Gi, Bi, Hi, Si, Vi).

However, the histogram of the original image carries no information regard-
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ing relative position of the pixels in the texture. An alternative scheme was

proposed in this research study to extract texture features from the texture

spectra in the chromatic and achromatic domains from each colour compo-

nent histogram of the endoscopic images. The definition of texture spectrum

employs the determination of the TU and TU number (NTU) values. The

statistical features are then estimated on the histograms of the NTU trans-

formations of the chromatic and achromatic planes of the image (R, G, B,

H, S, V). An intelligent decision support system has been developed for en-

doscopic diagnosis based on a multiple-classifier scheme. Two intelligent

classifier-schemes have been implemented in this research work. An adaptive

neuro-fuzzy logic scheme that uses an alternative to the centroid defuzzifica-

tion method, namely AOB (Area Of Balance) has been implemented while

is then compared with an RBF network. This multiple-classifier approach

using FI as a fusion method, provided encouraging results with a sensitivity,

97.18%, specificity, 98.55% and predictability 98.57%.

Four statistical measures, derived from the co-occurrence matrix in four

different angles, namely angular second moment, correlation, inverse dif-

ference moment, and entropy, have been extracted by Karkanis [33]. These

second-order statistical features were then calculated on the wavelet transfor-

mation of each image to discriminate among regions of normal or abnormal

tissue. A software system, called CoLD, integrated the feature extraction

and classification algorithms under a graphical user interface, which allowed

both novice and expert users to utilise effectively all system functions. The

detection accuracy of the proposed system has been estimated to be more

than 95%.

Krishnan et al. [34] used endoscopic images to define features of the

normal and the abnormal colon. New approaches for the characterization
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of colon based on a set of quantitative parameters, extracted by the fuzzy

processing of colon images, have been used for assisting the colonoscopist

in the assessment of the status of patients and were used as inputs to a

rule-based decision strategy to find out whether the colons lumen belongs

to either an abnormal or normal category. The quantitative characteristics

of the colon are: hue component, mean and standard deviation of RGB,

perimeter, enclosed boundary area, form factor, and centre of mass [35].

The analysis of the extracted quantitative parameters was performed using

three different neural networks selected for classification of the colon. The

three networks include a two-layer perceptron trained with the delta rule,

a multi-layer perceptron (MLP) with backpropagation (BP) learning and a

self-organizing network. A comparative study of the three methods was also

performed and it was observed that the self-organizing network is more ap-

propriate for the classification of colon status [36]. A method of detecting

the possible presence of abnormalities during the endoscopy of the lower GI

system using curvature measures has been developed in [37]. In this paper,

image contours corresponding to haustra creases in the colon are extracted

and the curvature of each contour is computed after non-parametric smooth-

ing. Zero-crossings of the curvature along the contour are then detected. The

presence of abnormalities is identified when there is a contour segment be-

tween two zero-crossings having the opposite curvature signs to those of the

two neighbouring contour segments. The proposed method can detect the

possible presence of abnormalities such as polyps and tumours. Fuzzy rule-

based approaches to the labelling of colonoscopic images to render assistance

to the clinician have been proposed. The colour images are segmented using a

scale-space filter. Several features are selected and fuzzified. The knowledge

based fuzzy rule-based system labels the segmented regions as background,
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lumen, and abnormalities (polyps, bleeding lesions) [38].

In [39] Lima et al. report a comparative study of Multilayer Perceptrons

(MLP) and SVM in the classification of endoscopic images. Both have several

advantages but their performance depends on the texture encoding process.

Texture information is coded by second order statistics of colour image levels

extracted from co-occurrence matrices. The co-occurrence matrices are com-

puted from images rich in texture information. These images are obtained

by processing the original images in the wavelet domain order to select the

most important concerning texture description. The most relevant texture

information often appears in the middle frequency channel. Hence are then

modeled by using third and forth order moments in order to cope with non-

Gaussinanity, which appear especially in some pathological cases. They used

several colour spaces such as RGB, HSI and YCbCr reaching the best results

with HSI, which better separates light and colour information.

3.2.3 Bleeding detection

The manufacturers of the Given capsule system [3] provide only one auto-

matic image analysis function in their Rapid Reader software: the suspected

blood indicator (SBI), which is designed to report the location in the video

of areas of active bleeding. However, this tool has been reported to have

insufficient specificity and sensitivity [40].

In [41, 42], the authors report on the classification performance of the

SBI for a multitude of patients, locations and different visual clarities of

blood. Besides relating poor performance, they conclude that the SBI does

not detect bleeding lesions in the stomach or altered blood anywhere in the

GI tract, and does not reduce the time required for interpretation of the

capsule endoscopy procedure.
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Independent early work on this topic is described in [43] where authors

propose an algorithm for detecting areas of bleeding in WCE videos, us-

ing expectation maximization (EM) clustering and a bayesian information

criterion (BIC).

In [44] a study of various bleeding characteristics and a computer-based

procedure to reduce the analysis time for detecting suspected bleeding dis-

eases in patients is discussed. The proposed method for detecting gastroin-

testinal bleeding regions is divided into two main steps. The first step pro-

vides an efficient discrimination of the input videos that contain bleeding

characteristics from those that do not correspond to bleeding. The second

step proceeds with a further evaluation of the bleeding images and verify-

ing if the initial classification really corresponds to active bleeding patterns.

During this second phase the luminance-saturation relationship is explored

to reduce the false positive detections. Another analysis tool is proposed,

exploring the red colour component, to analyze the presence of food remains

or bubbles, partly occluding the tissues. They differentiate four rules to

classificate four levels of bleeding. Level0 corresponds to a not-bleeding

while Level3 corresponds to an highly intensity bleeding. Furthermore a

framework, called Capsule Endoscopy Supporting Software (CESS) has been

developed. The system sensitivity reported is 88.3%.

Li and Meng [45, 46] propose to use local colour features based on chro-

maticity moments to discriminate normal regions and abnormal regions.

They make full use of the Tchebichef polynomials and the illumination invari-

ance of the HSI colour space. In the imaging process of WCE, the images suf-

fer from illumination variation due to the specific imaging circumstances such

as motion of the camera, the rather limited range of the illumination in the

digestive tract. They consider illumination effects on colour because colour
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features are very sensitive to illumination variation. The traditional multi-

layer percepton (MLP) neural network is employed to analyse the status of

the WCE images because MLP has many advantages over other classifiers

such as better generalization ability, robust performance, and less training

data.

Penna et al. investigate bleedings in [47]. The core of the algorithm is

represented by the Reed-Xiaoli (RX) detector, which is used to discriminate

the bleeding regions from the surrounding normal tissues. In order to allow

RX detector to target very specific blood areas, the data are pre-processed

by means of a multi-stage filtering algorithm, and the final result is improved

by means of morphological operations. The experimental results show that

the proposed method achieves on average 92% and 88% of sensitivity and

specificity respectively.

In [48] the authors compare the performance of the SVM classifier using

features such as the raw data and colour histogram. In addition, for each fea-

ture, they compare the performance of different kernels, including the linear,

polynomial (of degree 3), and radial basis functions (RBF). The accuracy for

both sensitivity and specificity reached is over 99%.

Finally, Al-Rahayfeh et al. [49] use the purity of the red colour to detect

the bleeding areas. They put range ratio colour for each of R,G, and B

components. Therefore, they divide each image into multiple pixels and

apply the range ratio colour condition for each pixel. Then the number of

the pixels that achieved the condition is counted. If the number of pixels is

greater than zero, then the frame is classified as a bleeding type. Otherwise,

it is a non-bleeding. Using the range-ratio-colour feature overall accuracy of

98% is obtained.
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3.3 Adaptive viewing speed adjustment

The main motivation for applying Computer Vision techniques to WCE video

analysis is the potential improvement gained by reducing the overall time

needed to review the data by alerting the expert to clinically significant

video frames. This may be achieved not only by automatic detection of

events or segmentation of the video into meaningful parts, but also by ad-

justing replay speed (number of frames displayed per second). The software

supplied by both Given Imaging [3] and Olympus [10] includes such a con-

trol, although details of these algorithms are unknown. In [50], the authors

propose a method for varying the frame rate in a capsule image sequence,

which plays the video at high speed in stable regions and at a slower speed

where significant changes between frames occur. The authors divide each

frame into blocks and measure the similarity of colours between respective

blocks in consecutive frames. In addition, the algorithm estimates motion

displacement by extracting features using the KLT algorithm [51], tracking

them using Newton-Raphson iterations. The authors conclude that using

their method the viewing time may be reduced from 2 hours to around 30

minutes without loss of information. The most obvious remark to this type

of methods is that their practical usefulness is highly subjective. There are

several possibilities for measuring image disparity and then modeling how

this should interact with video playback speed. How do we measure which

one is best for a clinician, the faster one, the one that leads to smaller manual

annotation errors. All research on this topic must handle this issue in a very

convincing way, surely involving deployment in real clinical conditions for

proper evaluation.
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3.4 Image quality enhancement

To conclude, we cover an even more subjective and difficult to evaluate topic:

image quality enhancement methods. Besides standard noise reduction meth-

ods, we can visually enhance the image somehow so that a clinician is faster

and more accurate in detecting relevant events. The first commercial ex-

ample is Olympus annotation software [10], which uses some sort of contrast

and texture enhancement algorithms for displaying the captured images. Re-

actions by clinicians were mixed. The images do look more appealing but

are they really improving our ability to correctly diagnose an exam? Or are

they, in fact, creating misleading visual artifacts?
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FEATURE EXTRACTION

Feature is synonymous of input variable or attribute. In Computer Vision

and Image Processing the concept of feature detection refers to methods

that aim at computing abstractions of image information and making local

decisions at every image point whether there is an image feature of a given

type at that point or not. The resulting features will be subsets of the image

domain, often in the form of isolated points, continuous curves or connected

regions.

There is no universal or exact definition of what constitutes a feature, and

the exact definition often depends on the problem or the type of application.

Given that, a feature is defined as an ”interesting” part of an image, and

features are used as a starting point for many Computer Vision algorithms.

Since features are used as the starting point and main primitives for sub-

sequent algorithms, the overall algorithm will often only be as good as its

feature detector. Consequently, the desirable property for a feature detector

is repeatability: whether or not the same feature will be detected in two or

more different images of the same scene.

Once features have been detected, a local image patch around the feature

32
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can be extracted. This extraction may involve quite considerable amounts

of image processing. The result is known as a feature descriptor or feature

vector. No general theory exists to allow us to choose what features are

relevant for a particular problem. Design of feature extractors is empirical

and uses many ad hoc strategies. The effectiveness of any particular set can

be demonstrated only by experiments.

4.1 Energy and high frequency content

Transitions, from an organ of the digestive tract to the next, are generally

marked by frames that present a greater density of details like foldings, wrin-

kles, etc. The colour signal in WCE video is caused by only the contraction of

digestive movements, and when the pillcam enters the next digestive organ,

the corresponding colour signal has a short-term change that is the suddeness

of the signal change and the increase in energy. This fact has been exploited

in [15] to characterize transitions. For the efficiency of processing we choose

the colour signal generated from intensity value of HSI colour domain.

In this work we define an “event” of WCE videos as a sequence of contin-

uous frames that include the same semantic content. Hence, in our setting

an event is a relevant anatomical locus (esophagus, pylorus, etc.), a patho-

logical presence (bleedings, ulcerations, etc.) or a common non patholog-

ical disturbance (intestinal juices, bubbles, residuals, etc.). We design the

event detection method by recognizing two signal properties associated with

a short-term change, which are the suddenness of the signal change, and the

increase in energy.

A frequency domain method is able to reveal non only changes in over-

all energy, but also the energy concentration in frequency. The frequency
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location of energy is very important since the sudden changes in the signal

cause phase discontinuities. In the frequency spectrum, this appears as high

frequency energy. We define the energy function of colour signal, E as a sum

of the squared magnitude of each frequency bin in a specified range. The

energy function of the ith frame, in a WCE video sequence, Ei is defined as:

Ei =

N
2

+1∑
k=2

(|Xi(k)|2) (4.1)

where N is the FFT (Fast Fourier Transforms) array length, and |Xi(k)|

is the kth bin of the FFT. In Equation (4.1), N
2

+ 1 indicates the frequency

FS
2

where FS is the sample rate.

In particular we consider the weighted sum of the energy function of the

ith frame, linearly increased toward the high frequencies:

HFCi =

N
2

+1∑
i=2

(|Xi(k)|2 ∗ k) (4.2)

where the range 0 · · ·N is the index number range of the FFT frequencies in

the frame; |Xi(k)|2 is the squared module of the kth component of the FFT,

and k is a weight to increase the relevance of higher frequencies.

In equation (4.1) and (4.2) we ignore the lowest two bins in order to avoid

unwanted bias from low frequency components. Event boundaries of WCE

video can be detected by the energy-based detection function.

The energy and HFC for each frame are plotted in Figure 4.1.
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Figure 4.1: Energy and High frequency energy content in a WCE sequence

4.2 Gabor filters

Textures are powerful discriminators when one has to classify real world pic-

tures. Indeed all the state of the art content based retrieval engines rely on

texture analysis. It is hence natural to include texture descriptors among

the features representing a WCE frame. Texture classification has a long

history in Computer Vision, starting with Haralick proposed features [52]

to the up today methods that use large sets of responses to family of lin-

ear filters. Since the sixties, texture analysis has been an area of intense

research. Texture methods can also be used in medical image analysis, bio-

metric identification, remote sensing, content-based image retrieval, docu-

ment analysis, environment modeling, texture synthesis and model based

image coding. Many methods have been proposed to extract texture fea-

tures, e.g. the co-occurrence matrix [6], and the texture spectrum in the

achromatic component of the image [9]. Signal processing based methods

rely on texture filtering for extracting features in the spatial or frequency
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Figure 4.2: Gabor filter composition for 1D signals: (a) sinusoid, (b) a Gaus-
sian kernel, (c) the corresponding Gabor filter.

domain. Spatial frequencies and their orientations are important character-

istics of textures in images. Properly tuned Gabor filters [53] react strongly

to specific textures and weakly to all others. The Gabor filters are band-pass

filters with tuneable center frequency, orientation and bandwidth. A Gabor

filter is obtained by modulating a sinusoid with a Gaussian. For the case of

one dimensional (1D) signals, a 1D sinusoid is modulated with a Gaussian.

This filter will therefore respond to some frequency, but only in a localized

part of the signal. This is illustrated in Figure 4.2.

For 2D signals such as images, let us consider the sinusoid shown in

Figure 4.3(a). By combining this with a Gaussian (Figure 4.3(b)), we obtain

a Gabor filter - Figure 4.3(c).

For the sake of the present application a Gabor filter is defined as follows:

H(u, v) =
1

2πσuσv
e
− 1

2

[
(u−u0)2

σ2
u

+
(v−v0)2

σ2
v

]
(4.3)
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Figure 4.3: Gabor filter composition: (a) 2D sinusoid oriented at 30◦ with
the x-axis, (b) a Gaussian kernel, (c) the corresponding Gabor filter. Notice
how the sinusoid becomes spatially localized.

where σx = 1
2πσu

and σy = 1
2πσv

are the standard deviation of the Gaussian

envelope along x and y directions. The set of parameters (u0, v0, σx, σy)

completely defines a Gabor filter.

In particular in our preliminary experiments we empirically found appro-

priate to choose as scale σx = σy = 2, 4, 8 and the following parameters set:

phase : 0, 2, 4, 8, 16, 32 and four directions: 0◦, 45◦, 90◦, 135◦. The rationale

behind our choice has been to achieve a good compromise between recall and

precision of the resulting classifier.

4.3 Local Binary Pattern

In most applications, image analysis must be performed with as few com-

putational resources as possible. Especially in visual inspection, the speed
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of feature extraction may play an enormous role. The size of the calculated

descriptions must also be kept as small as possible to facilitate classifica-

tion. Often, the Gabor filtering method is credited as being the current

state-of-the-art in texture analysis. It has shown very good performance in

a number of comparative studies. Although theoretically elegant, it tends to

be computationally very demanding, especially with large mask sizes. It is

also affected by varying illumination conditions. To meet the requirements of

real-world applications, texture operators should be computationally cheap

and robust against variations in the appearance of a texture. These vari-

ations may be caused by uneven illumination, different viewing positions,

shadows etc. Depending on the application, texture operators should thus

be invariant against illumination changes, rotation, scaling, viewpoint, or

even affine transformations including perspective distortions. The invariance

of an operator cannot however be increased to the exclusion of discrimination

accuracy. It is easy to design an operator that is invariant against everything,

but totally useless as a texture descriptor.

The local binary pattern (LBP) operator was developed as a gray-scale

invariant pattern measure adding complementary information to the amount

of texture in images. It was first mentioned by Harwood et al. (1993) and

introduced to the public by Ojala et al. [54]. The approach brings together

the separate statistical and structural approaches to texture analysis, opening

a door for the analysis of both stochastic micro-textures and deterministic

macro-textures simultaneously. The LBP operator can be made invariant

against rotation, and it also supports multi-scale analysis.
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4.3.1 The original LBP

The LBP operator was first introduced as a complementary measure for local

image contrast [54]. The first incarnation of the operator worked with the

eight-neighbors of a pixel, using the value of the center pixel as a threshold.

An LBP code for a neighborhood was produced by multiplying the thresh-

olded values with weights given to the corresponding pixels, and summing up

the result (Figure 4.4). Since the LBP was, by definition, invariant to mono-

tonic changes in gray scale, it was supplemented by an orthogonal measure

of local contrast. Figure 4.4 shows how the contrast measure (C) was de-

rived. The average of the gray levels below the center pixel is subtracted from

that of the gray levels above (or equal to) the center pixel. Two-dimensional

distributions of the LBP and local contrast measures were used as features.
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Figure 4.4: Calculating the original LBP code and a contrast measure. (a)
LBP = 1 + 2 + 4 + 8 + 128 = 143. C = (5+4+3+4+3)/5-(1+0+2)/3=2.8

4.3.2 Derivation

The basic version of the LBP operator considers only the eight neighbors of

a pixel, but the definition has been extended to include all circular neighbor-

hoods with any number of pixels. The derivation of the LBP was represented

by Ojala et al. in 2002 [55]. Let us therefore define texture T in a local neigh-

borhood of a gray-scale image as the joint distribution of the gray levels of
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P + 1(P > 0) image pixels:

T = t(gc, g0, . . . , gP−1) (4.4)

where gc corresponds to the gray value of the center pixel of a local neigh-

borhood. gP (p = 0, . . . , P − 1) corresponds to the gray values of P equally

spaced pixels on a circle of radius R(R > 0) that forms a circularly sym-

metric set of neighbors. This set of P + 1 pixels is later denoted by GP .

In a digital image domain, the coordinates of the neighbors gp are given by

(xc+Rcos(2π/P ), yc−Rsin(2π/P )), where (xc, yc) are the coordinates of the

center pixel. Figure 4.5 illustrates two circularly symmetric neighbor sets for

Figure 4.5: Circularly symmetric neighbours. The first represents P = 4 and
Radius = 1; the second represents P = 8 and Radius = 1. The pixel values
are bilinearly interpolated whenever the sampling point is not in the center
of a pixel.

different values of P and R. The values of neighbors that do not fall exactly

on pixels are estimated by bilinear interpolation. Since correlation between

pixels decreases with distance, much of the textural information in an image

can be obtained from local neighborhoods.

If the value of the center pixel is subtracted from the values of the neigh-

bors, the local texture can be represented, without losing information, as a
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joint distribution of the value of the center pixel and the differences:

T = t(gc, g0 − gc, . . . , gP−1 − gc) (4.5)

Assuming that the differences are independent of gc, the distribution can

be factorized:

T ≈ t(gc)t(g0 − gc, . . . , gP−1 − gc) (4.6)

In practice, the independence assumption may not always hold. Due to the

limited nature of the values in digital images, very high or very low values of

gc will obviously narrow down the range of possible differences. However, ac-

cepting the possible small loss of information allows one to achieve invariance

with respect to shifts in the gray scale.

Since t(gc) describes the overall luminance of an image, which is unrelated

to local image texture, it does not provide useful information for texture anal-

ysis. Therefore, much of the information about the textural characteristics

in the original joint distribution (Eq. 4.5) is preserved in the joint difference

distribution [56]:

T ≈ t(g0 − gc, . . . , gP−1 − gc) (4.7)

The P dimensional difference distribution records the occurrences of dif-

ferent texture patterns in the neighborhood of each pixel. For constant or

slowly varying regions, the differences cluster near zero. On a spot, all dif-

ferences are relatively large. On an edge, differences in some directions are

larger than the others. Although invariant against gray scale shifts, the dif-

ferences are affected by scaling. To achieve invariance with respect to any

monotonic transformation of the gray scale, only the signs of the differences

are considered:



CHAPTER 4. FEATURE EXTRACTION 42

T ≈ t(s(g0 − gc), . . . , gs(P − 1− gc)) (4.8)

where s(x) is the sign function:

s(x) =

1, if x ≥ 0

0, if x < 0
(4.9)

Now, a binomial weight 2p is assigned to each sign s(gp − gc), transform-

ing the differences in a neighborhood into a unique LBP code. The code

characterizes the local image texture around (xc, yc):

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2P (4.10)

The name Local Binary Pattern reflects the functionality of the operator,

i.e., a local neighborhood is thresholded at the gray value of the center pixel

into a binary pattern.

In practice, Eq. (4.10) means that the signs of the differences in a neigh-

borhood are interpreted as a P -bit binary number, resulting in 2P distinct

values for the LBP code. The local gray-scale distribution, i.e. texture, can

thus be approximately described with a 2P -bin discrete distribution of LBP

codes:

T ≈ t(LBPP,R(xc, yc)) (4.11)

Let us assume we are given an N ×M image sample (xc ∈ {0, . . . , N −

1}, yc ∈ {0, . . .M − 1}). In calculating the LBPP,R distribution (feature vec-

tor) for this image, the central part is only considered because a sufficiently

large neighborhood cannot be used on the borders. The LBP code is calcu-
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lated for each pixel in the cropped portion of the image, and the distribution

of the codes is used as a feature vector, denoted by S:

S = t(LBPP,R(x, y)), x ∈ {dRe, . . . , N−1−dRe}, y ∈ {dRe, . . . ,M−1−dRe}

(4.12)

The original LBP, described in the previous section, is very similar to

LBP8,1, with two differences. First, the neighborhood in the general def-

inition is indexed circularly, making it easier to derive rotation invariant

texture descriptors. Second, the diagonal pixels in the 3 × 3 neighborhood

are interpolated in LBP8,1.

4.4 Derivative of Gaussian filter

Edges detection is one of the fundamental steps in image processing, image

analysis, image pattern recognition, and Computer Vision techniques, par-

ticularly in the areas of feature detection and feature extraction, which aim

at identifying points in a digital image at which the image brightness changes

sharply or more formally has discontinuities. In the ideal case, the result of

applying an edge detector to an image may lead to a set of connected curves

that indicate the boundaries of objects, the boundaries of surface markings

as well as curves that correspond to discontinuities in surface orientation.

Thus, applying an edge detection algorithm to an image may significantly

reduce the amount of data to be processed and may therefore filter out infor-

mation that may be regarded as less relevant, while preserving the important

structural properties of an image.

There are many methods for edge detection, but most of them can be
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grouped into two categories, search-based and zero-crossing based. The

search-based methods detect edges by first computing a measure of edge

strength, usually a first-order derivative expression such as the gradient mag-

nitude, and then searching for local directional maxima of the gradient mag-

nitude using a computed estimate of the local orientation of the edge, usually

the gradient direction. The zero-crossing based methods search for zero cross-

ings in a second-order derivative expression computed from the image in order

to find edges, usually the zero-crossings of the Laplacian or the zero-crossings

of a non-linear differential expression. As a pre-processing step to edge de-

tection, a smoothing stage, typically Gaussian smoothing, is almost always

applied. The edge detection methods that have been published mainly differ

in the types of smoothing filters that are applied and the way the measures

of edge strength are computed. As many edge detection methods rely on the

computation of image gradients, they also differ in the types of filters used

for computing gradient estimates in the x and y directions. A filter that

combines the gradient operator with a smoothing filtering is the Derivative

of Gaussian (DroG). This operator corresponds to smoothing an image with

Gaussian function and then computing the gradient. The Gaussian filter is

a rotational simmetry function which equation in 2D is:

h(x, y) = exp(−x
2 + y2

2σ2
) = exp(− r2

2σ2
) (4.13)

where σ is the standard deviation and r is the value for which h(x, y) is

reduced to 1√
e

of his maximum.

A classical solution to have an useful mask is to sample the continuous

function from the origin, that represents the point of application of the mask.

σ sets the not null sample of the gaussian function. Hence, sets the width of

the mask.
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Figure 4.6: h(x, y) represented for different values of σ.

The responses to the function in two directions are obtained convolving

the two gradient components with the gaussian function. Alternatively, be-

cause of the linearity of the derivate, the derivates of the gaussian in the two

directions can be calculated:

dh

dx
= − x

σ2
exp(−x

2 + y2

2σ2
) (4.14)

dh

dy
= − y

σ2
exp(−x

2 + y2

2σ2
) (4.15)

Once a measure of edge strength is computed, the next stage is to apply

a threshold, to decide whether edges are present or not at an image point.

The lower threshold detects more edges, and the result will be increasingly

susceptible to noise and detecting edges of irrelevant features in the image.

Conversely a high threshold may miss subtle edges, or result in fragmented

edges.

A commonly used approach to handle the problem of appropriate thresh-

olds for thresholding is by using thresholding with hysteresis. This method
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Figure 4.7: A 2D gaussian function with σ = 0.5

uses multiple thresholds to find edges. We begin by using the upper threshold

to find the start of an edge. Once we have a start point, we then trace the

path of the edge through the image pixel by pixel, marking an edge whenever

we are above the lower threshold. We stop marking our edge only when the

value falls below our lower threshold. This approach makes the assumption

that edges are likely to be in continuous curves, and allows us to follow a

faint section of an edge we have previously seen, without meaning that every

noisy pixel in the image is marked down as an edge. Still, however, we have

the problem of choosing appropriate thresholding parameters, and suitable

thresholding values may vary over the image.

4.5 Co-occurrences

Gray Level Co-occurrence Matrix (GLCM) has proven to be a powerful basis

for use in texture classification. Various textural parameters calculated from

the gray level co-occurrence matrix help understand the details about the

overall image content. The textural features based on gray-tone spatial de-
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pendencies have a general applicability in image classification. Features gen-

erated using this technique are usually called Haralick features [57]. GLCM

is also called as Gray Level Dependency Matrix. It is defined as a two di-

mensional histogram of gray levels for a pair of pixels, which are separated

by a fixed spatial relationship. The basis for these features can reveal cer-

tain properties about the spatial distribution of the gray levels. This matrix

is square with dimension Ng, where Ng is the number of gray levels in the

image. Element (i, j) of the matrix is generated by counting the number of

times a pixel with value i is adjacent to a pixel with value j and then divid-

ing the entire matrix by the total number of such comparisons made. Each

entry is therefore considered to be the probability that a pixel with value i

will be found adjacent to a pixel of value j. GLCM of an image is computed

using a displacement vector d, defined by its radius δ and orientation θ. A

generalized GLCM for that image is shown in matrix G where p(i, j) stands

for number of times gray tones i and j have been neighbors satisfying the

condition stated by displacement vector d.

G =


p(1, 1) p(1, 2) · · · p(1, Ng)

p(1, 1) p(1, 2) · · · p(1, Ng)
...

...
. . .

...

p(Ng, 1) p(Ng, 2) · · · p(Ng, Ng)


Since adjacency can be defined to occur in each of four directions in a

2D, square pixel image (horizontal, vertical, left and right diagonals, Figure

4.8)), four such matrices can be calculated.

Consider a 4 × 4 image represented by Figure 4.9 with four gray-tone

values 0 through 3. The four GLCM for angles equal to 0◦, 45◦, 90◦ and 135◦

and radius equal to 1 are shown in Figure 4.10))
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Figure 4.8: Four directions of adjacency as defined for calculation of the Har-
alick texture features. The Haralick statistics are calculated for co-occurrence
matrices generated using each of these directions of adjacency.

Figure 4.9: Test image with four gray levels

Various research studies show δ values ranging from 1, 2 to 10. Applying

large displacement value to a fine texture would yield a GLCM that does

not capture detailed textural information. From the previous studies, it has

been concluded that overall classification accuracies with δ = 1, 2, 4, 8 are

acceptable with the best results for δ = 1 and 2. This conclusion is justified,

as a pixel is more likely to be correlated to other closely located pixel than

the one located far away. Also, displacement value equal to the size of the

texture element improves classification.

Every pixel has eight neighboring pixels allowing eight choices for θ, which

are 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦. However, taking into considera-

tion the definition of GLCM, the co-occurring pairs obtained by choosing θ,

equal to 0 would be similar to those obtained by choosing θ, equal to 180◦.

This concept extends to 45◦, 90◦, and 135◦ as well. Hence, one has four

choices to select the value of θ. Sometimes, when the image is isotropic, or
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(a) (b) (c) (d)

Figure 4.10: (a) GLCM for δ = 1 and θ = 0; (b) GLCM for δ = 1 and
θ = 45◦; (c) GLCM for δ = 1 and θ = 90◦; (d) GLCM for δ = 1 and
θ = 135◦;

directional information is not required, one can obtain isotropic GLCM by

integration over all angles.

The dimension of a GLCM is determined by the maximum gray value of

the pixel. Number of gray levels is an important factor in GLCM compu-

tation. More levels would mean more accurate extracted textural informa-

tion, with increased computational costs. The computational complexity of

GLCM method is highly sensitive to the number of gray levels and is pro-

portional to O(G2) [58]. Thus for a predetermined value of G, a GLCM is

required for each unique pair of δ and θ. GLCM is a second-order texture

measure. The GLCM’s lower left triangular matrix is always a reflection

of the upper right triangular matrix and the diagonal always contains even

numbers. Various GLCM parameters are related to specific first-order sta-

tistical concepts. For instance, contrast would mean pixel pair repetition

rate, variance would mean spatial frequency detection etc. Association of a

textural meaning to each of these parameters is very critical. Traditionally,

GLCM is dimensioned to the number of gray levels G and stores the co-

occurrence probabilities g(i, j). To determine the texture features, selected

statistics are applied to each GLCM by iterating through the entire matrix.
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The textural features are based on statistics which summarize the relative

frequency distribution which describes how often one gray tone will appear

in a specified spatial relationship to another gray tone on the image. Some

statistics can be calculated from the co-occurrence matrix with the intent of

describing the texture of the image:

Energy =
∑
i

∑
j

g(i, j)2 (4.16)

This statistic is also called uniformity or angular second moment. It measures

the textural uniformity that is pixel pair repetitions. It detects disorders

in textures. Energy reaches a maximum value equal to one. High energy

values occur when the gray level distribution has a constant or periodic form.

Energy has a normalized range. The GLCM of less homogeneous image will

have large number of small entries.

Entropy =
∑
i

∑
j

g(i, j)log2g(i, j) (4.17)

This statistic measures the disorder or complexity of an image. The entropy

is large when the image is not texturally uniform and many GLCM elements

have very small values. Complex textures tend to have high entropy. Entropy

is strongly, but inversely correlated to energy.

Contrast =
∑
i

∑
j

(i− j)2g(i, j) (4.18)

This statistic measures the spatial frequency of an image and is difference

moment of GLCM. It is the difference between the highest and the lowest

values of a contiguous set of pixels. It measures the amount of local variations

present in the image. A low contrast image presents GLCM concentration
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term around the principal diagonal and features low spatial frequencies.

V ariance =
∑
i

∑
j

(i− µ)2g(i, j) (4.19)

where µ is the mean of g(i,j).

This statistic is a measure of heterogeneity and is strongly correlated to

first order statistical variable such as standard deviation. Variance increases

when the gray level values differ from their mean.

Homogeneity =
∑
i

∑
j

1

1 + (i− j)2
g(i, j) (4.20)

This statistic is also called as Inverse Difference Moment. It measures image

homogeneity as it assumes larger values for smaller gray tone differences in

pair elements. It is more sensitive to the presence of near diagonal elements

in the GLCM. It has maximum value when all elements in the image are

same. GLCM contrast and homogeneity are strongly, but inversely, corre-

lated in terms of equivalent distribution in the pixel pairs population. It

means homogeneity decreases if contrast increases while energy is kept con-

stant.

Correlation =

∑
i

∑
j(ij)g(i, j)− µxµy

σxσy
(4.21)

where µx, µy, σx, σy are the means and standard deviation of gx and gy. The

correlation feature is a measure of gray tone linear dependencies in the image.

Of the textural features described above, the angular second moment, the

entropy, the sum entropy, the difference entropy, the information measure of

correlation and the maximal correlation features have the invariance prop-

erty. Earlier studies [59] cite Energy and Contrast to be the most efficient

parameters for discriminating different textural patterns. The general thumb
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rules used in the selection of the textural features can be stated as follows:

- Energy is preferred to entropy as its values belong to normalized range.

- Contrast is associated with the average gray level difference between

neighbor pixels. It is similar to variance however preferred due to reduced

computational load and its effectiveness as a spatial frequency measure.

- Energy and contrast are the most significant parameters in terms of

visual assessment and computational load to discriminate between different

textural patterns.



Chapter 5

TEXTONS

“Textons” is a term used in different contests to name the fundamental

micro-structures present in natural images (and videos). They have been

first proposed as the atoms of pre-attentive human visual perception [60].

Unfortunately, the word “texton” has not been precisely defined and it re-

mains a vague concept in the literature for lack of a universally accepted

mathematical model. Texture analysis is important in many applications of

computer image analysis and classification or segmentation of images based

on local spatial variations of intensity or colour. A successful classification

or segmentation requires an efficient description of image texture. Important

applications include industrial and biomedical surface inspection, for exam-

ple for defects and disease, ground classification and segmentation of satellite

or aerial imagery, segmentation of textured regions in document analysis, and

content-based access to image databases. Despite many potential areas of

application for texture analysis in industry only a limited number of success-

ful examples are reported in literature. A major problem is that textures

in the real world are often not uniform, due to changes in orientation, scale

or other visual appearance and invariance in texture analysis is still a hard

53
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problem. In addition, the degree of computational complexity of many of the

proposed texture measures is very high.

A wide variety of techniques for describing image texture have been pro-

posed. Tuceryan and Jain [61] divided texture analysis methods into four

categories: statistical, geometrical, model-based and signal processing. Due

to the extensive research on texture analysis over the past 30 years, it is

beyond the scope of this dissertation to propose an organized list of all pub-

lished methods. The following sections provide a short introduction together

with some key references. For surveys on texture analysis methods see Har-

alick [62], Van Gool et al. [63], Haralick and Shapiro [64], Reed and Du Buf

[65], and Tuceryan and Jain [61]. Texture classification process involves two

phases: the learning phase and the recognition phase. In the learning phase,

the target is to build a model for the texture content of each texture class

present in the training data while in the recognition phase the texture con-

tent of the unknown sample is first described with the same texture analysis

method. The textural features of the sample are then compared with those

of the training images using a classification algorithm, and the sample is as-

signed to the category with the best match. Texton models [66] have proven

to be very discriminative for the recognition of grayvalue images taken from

rough natural textures. Textons represent a statistical approach in which

textures are modelled by the joint probability distribution of filter responses.

5.1 Background

Classifying textures from single images under general conditions is an hard

challenge. The classification problem is, given an image of a textured mate-

rial, to classify it into one of a set of pre-learnt classes.
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The resulting image of a texture is primarily a function of the following

variables: the texture surface, its albedo, the illumination, the camera and its

viewing position. Most textures have large stochastic variations which make

them difficult to model. Furthermore, often, two textures when photographed

under very different imaging conditions can appear to be quite similar. The

combination of both these factors makes the texture classification problem

so hard.

Textures are modelled by the joint distribution of filter responses. This

distribution is represented by texton (cluster centre) frequencies, and textons

and texture models are learnt from training images. Classification of a novel

image proceeds by mapping the image to a texton distribution and comparing

this distribution to the learnt models. This approach is most closely related

to those of Leung and Malik [67], Schmid [68] and Cula and Dana [69] and

Varma and Zisserman [66]. Leung and Malik’s method is not rotationally

invariant and requires as input a set of registered images acquired under a

(implicitly) known set of imaging conditions. Schmid’s approach is rotation-

ally invariant and texton clustering is in a higher dimensional space. Cula

and Dana classify from single images, but the method is not rotationally in-

variant. The classifier developed by Varma and Zisserman [66] does not use

colour information at all but rather normalises the images and filter responses

so as to achieve partial invariance to changes in illuminant intensity.

5.2 The basic algorithm

The algorithm is based on a weak classifier and is divided in two phases:

the learning stage and the classification stage. Tha first step of the learning

stage is the construction of the texton dictionary (Figure 5.1). Multiple,
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unregistered images from the training set of a particular texture class are

convolved with a filter bank and features related to colour are extracted. The

resulting ensemble is clustered into textons using the K-Means algorithm [70]

to get a small set of recurrent and typical “visual words” and each cluster

center was said to correspond to a texton.

Many criteria have been developed for determining cluster validity, all of

which have a common goal to find the clustering which results in compact

clusters which are well separated. The objective is to minimize this measure

as we want to minimize the within-cluster scatter and maximize the between-

cluster separation. Hence, the number of clusters is chosen to optimize the

ratio of dispersion between cluster centers over the dispersion within clusters.

Textons from different texture classes are combined to form the texton

dictionary. In this way we come to a high level representation of an image as

a “bag of visual words”. This dictionary will subsequently be used to define

the models based on texton frequencies learnt from training images.

Filter

Filter

Filter

K-means
clustering

Texton
Dictionary

Figure 5.1: In the learning stage of the algorithm, every image of the training
set is convolved with a filter bank. Filter responses are clustered using k-
means algorithm to build a texton dictionary.
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Figure 5.2: The second step is to learn models for each training image. Each
filter response is labelled with the texton which lies closest to it in filter
response space. The histogram represents the model corresponding to the
training image.

In the classification stage, the same procedure is followed to build the

histogram corresponding to the novel image. The histogram of textons, the

frequency with which each texton occurs in the labelling, forms the model

corresponding to the training image (Figure 5.2).

The problem of evaluating similarity between images is hence turned into

the computation of histograms distance. The query image is declared as be-

longing to the texture class of the closest model using the k-nearest neighbor

classifier [71] with a distance to measure the separability of classes (Figure

5.3). The Bhattacharyya [72] distance or the χ2 [73] distance can be em-

ployed to compute the histograms distance to pick the closest model in the

training set to the image to be classified.
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Novel
image Histogram

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Classification stage of an image using K-NN algorithm. In this
example the distance (Euclidean, Bhattacharyya, χ2 is calculated between
the histograms of the novel image and the images (a), (b), (c) and the novel
image and (d), (e), (f). The minimum is found for the image (c).
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INFORMATION THEORETIC

METHOD

6.1 Introduction

Information Theory is a branch of applied mathematics and electrical en-

gineering involving the quantification of information. Information Theory

was developed by Claude E. Shannon, in 1948, to find fundamental limits

on signal processing operations such as compressing data and on reliably

storing and communicating data. In “A mathematical theory of communica-

tion” [74] he defined measures such as entropy and mutual information, and

introduced the fundamental laws of data compression and transmission.

Applications of fundamental topics of Information Theory include loss-

less data compression (e.g. ZIP files), lossy data compression (e.g. MP3s),

and channel coding (e.g. for DSL lines). The field is at the intersection of

mathematics, statistics, computer science, physics, neurobiology, and electri-

cal engineering. Its impact has been crucial to the success of the Voyager

missions to deep space, the invention of the compact disc, the feasibility of

59
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mobile phones, the development of the Internet, the study of linguistics and

of human perception, the understanding of black holes, and numerous other

fields. Important sub-fields of information theory are source coding, chan-

nel coding, algorithmic complexity theory, algorithmic information theory,

information-theoretic security, and measures of information.

An information source or source is a mathematical model for a physi-

cal entity that produces a succession of symbols called outputs in a ran-

dom manner. The symbols produced may be real numbers such as voltage

measurements from a transducer, binary numbers as in computer data, two

dimensional intensity fields as in a sequence of images, continuous or discon-

tinuous waveforms, and so on. The space containing all of the possible output

symbols is called the alphabet of the source and a source is essentially an

assignment of a probability measure to events consisting of sets of sequences

of symbols from the alphabet.

In this chapter, some basic concepts of information theory and algorithmic

information theory describing an absolute information-theoretic distance be-

tween bit strings, its practical approximation, and applications to real-world

data are presented. A very good reference is the classic “Vitany trilogy”

[75, 76, 77]. Other main reference used in this chapter is [78].

6.2 Entropy

Shannon asks himself: “Can we define a quantity which will measure, in

some sense, how much information is produced by such a process, or better,

at what rate information is produced?”

His answer is: “Suppose we have a set of possible events whose probabilities

of occurrence are p1, p2, . . . , pn. These probabilities are known but that is all
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we know concerning which event will occur. Can we find a measure of how

much choice is involved in the selection of the event or of how uncertain we

are of the outcome?”

If there is such a measure, say H(p1, p2, . . . , pn), it is reasonable to require of

it the following properties:

• H would be continuous in the pi.

• If all the pi are equal, pi = 1 , then H should be a monotonic increasing

n function of n. With equally likely events there is more choice, or

uncertainty, when there are more possible events.

• If a choice is broken down into two successive choices, the original H

should be the weighted sum of the individual values of H. The meaning

of this is illustrated in Figure 6.1.

1/2 1/3
1/3 1/6

1/32/3

1/2

1/2 1/2

1/6

Figure 6.1: Grouping property of the entropy.

On the left, we have three possibilities p1 = 1
2
, p2 = 1

3
, p3 = 1

6
. On the

right, we first choose between two possibilities each with probability 1/2, and

if the second occurs, we make another choice with probabilities 2
3

,1
3
. The

final results have the same probabilities as before. We require, in this special

case, that H(1
2
, 1

3
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6
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2
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2
H(2

3
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). The coefficient 1

2
is because this

second choice only occurs half the time.
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After these requirements, he introduces the following theorem: The only H

satisfying the three above assumptions is of the form:

H = −k
n∑
i

pi log pi (6.1)

where k is a positive constant. When k = 1 and the logarithm is log2,

information is measured in bits. The Shannon entropy is the classical mea-

sure of information, where information is simply the outcome of a selection

among a finite number of possibilities. Entropy also measures uncertainty or

ignorance.

Thus, the Shannon entropy H(X) of a discrete random variable X with

values in the set S = x1, x2, . . . , xn is defined as

H = −
n∑
i

pilogpi (6.2)

where n = |S|, pi = Pr[X = xi] for i ∈ 1, . . . , n, the logarithms are taken

in base 2 (entropy is expressed in bits), and we use the convention that

0 log 0 = 0, which is justified by continuity. We can use interchangeably the

notationH(X) orH(p) for the entropy, where p is the probability distribution

p1, p2, . . . , pn, also represented by pi. As − log pi represents the information

associated with the result xi, the entropy gives us the average information or

uncertainty of a random variable. Information and uncertainty are opposite.

Uncertainty is considered before the event, information after. So, information

reduces uncertainty. Note that the entropy depends only on the probabilities.

Some other relevant properties of the entropy are:

• 0 ≤ H(X) ≤ log n

– H(X) = 0 if and only if all the probabilities except one are zero,
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this one having the unit value, i.e., when we are certain of the

outcome.

– H(X) = log n when all the probabilities are equal. This is the

most uncertain situation.

• If we equalize the probabilities, entropy increases.

By taking the consistencies out of a storage element, such as the re-

dundancies, similar components, longest most used words, etc. compression

increases the entropy of the file, until there is so much entropy in the file that

it can’t be further compressed. At the same time, the decompression algo-

rithm adds more and more consistency and order to the entropic file, until

it means something. One of the reasons that compression does not make a

good form of encryption, is that there is information hidden in the entropy

of the file, that indicates to the decompression program how to recover it.

In fact in extreme compression the amount of data needed to recover the

compressed text, is often a greater percentage of the file, than the actual

remaining data that has yet to be compressed.

6.3 Kolmogorov complexity

In computer science, the concepts of algorithm and information are funda-

mental. In 1965 Andrey Nikolaevich Kolmogorov [79], a Russian mathe-

matician, established the algorithmic theory of randomness via a measure of

complexity, now referred as “Kolmogorov complexity”. According to Kol-

mogorov, the complexity of an object is the length of the shortest computer

program that can reproduce the object. All algorithms can be expressed in

a programming language based on Turing machine models with respect to
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these models programs turn to be equally succinctly, up to a fixed additive

constant term. The remarkable usefulness and inherent rightness of the the-

ory of Kolmogorov complexity also called “descriptive complexity”, comes

from this independence of the description method. The idea of Kolmogorov

complexity first appeared in the 1960s in papers by Kolmogorov, Solomonoff

and Chaitin. As specified by Schning and Randall [80], an algorithm can ex-

hibit very different complexity behavior in the worst case and in the average

case. The Kolmogorov complexity is defined as a probability distribution

under which worst-case and average-case running time (for all algorithm si-

multaneously) are the same (up to constant factors). Quick sort algorithm

has been widely taken as an example to show the applicability of Kolmogorov

complexity since the algorithm takes O(n log n) time in average but ω(n2)

time at worst case. Later, the Kolmogorov complexity has been connected

with Information Theory and proved to be closely related to Claude Shan-

non’s entropy rate of an information source. The basic theory of Kolmogorov

complexity has also been extended to data compression and communication

for the sake of true information measure.

Kolmogorov complexity of a string x, denoted K(x), is the length l(p) of

the shortest binary program p that runs on a universal computing device (a

Universal Turing Machine) and produces the string x as output, ϕ(x) = p.

Mathematically, this is stated as follows [75]:

K(x) = min
{p|φ(p)=x}

l(p) (6.3)

Intuitively, the above equation describes a competitive selection of the

shortest program (algorithmic description), denoted p∗, from an unbounded

set of competing programs {p0, p1, . . .}, each capable of producing the desired

output x. Experience has shown that every attempt to construct a theoretical
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model of computation that is more powerful than the Turing machine has

come up with something that is at the most just as strong as the Turing

machine. This has been codified in 1936 by Alonzo Church as Church’s Thesis

[81]: the class of algorithmically computable numerical functions coincides

with the class of partial recursive functions. Everything we can compute we

can compute by a Turing machine and what we cannot compute by a Turing

machine we cannot compute at all. Kolmogorov complexity can be used as

a universal measure that will assign the same value to any sequence of bits

regardless of the model of computation, within the bounds of an additive

constant.

Kolmogorov complexity is not computable. It is nevertheless essential

for proving existence and bounds for weaker notions of complexity. The

fact that Kolmogorov complexity cannot be computed comes from the fact

that we cannot compute the output of every program. More fundamentally,

no algorithm is possible that can predict of every program if it will ever

halt, as has been shown by Alan Turing in his famous work on the halting

problem [82]. No computer program is possible that, when given any other

computer program as input, will always output true if that program will

eventually halt and false if it will not. Even if we have a short program

that outputs our string and that seems to be a good candidate for being

the shortest such program, there is always a number of shorter programs of

which we do not know if they will ever halt and with what output. The

uncomputability of Kolmogorov complexity has motivated several authors to

seek useful approximations.
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6.4 Normalized Compression Distance

In the trilogy of papers of Vitany et al. [75, 76, 77], authors describe practical

approaches to approximate Kolmogorov complexity and the related notion of

algorithmic information distance using common data compression algorithms

such as “bzip”. In particular, the Normalized Compression Distance (NCD)

measure has been shown to be a versatile and broadly applicable tool for

pattern analysis. Specifically, the NCD measure approximates the idealized

Normalized Information Distance (NID) using generic data compression al-

gorithms [78]. Cilibrasi and Vitanyi [76] demonstrated the effectiveness of

NCD across several applications in genomics, virology, languages, literature,

music, handwritten digits, and astronomy. Following [78] the formulation

of NCD is based on the relative Kolmogorov complexity between digitally

represented objects (strings), rather than the Kolmogorov complexity of in-

dividual objects. Bennett et al. [75] define the absolute information distance

between two strings x and y, denoted E(x, y), as:

E(x, y) = max {K(x|y), K(y|x)} (6.4)

where K(x|y) is the conditional Kolmogorov complexity of a string x rel-

ative to string y defined as the length of the shortest program to compute x if

string y is provided to the universal computer as an auxiliary input. Accord-

ing to the Church’s thesis, K(x) and K(x|y) are machine independent up to

an additive constant. E(x, y) is the length of the shortest binary program

that computes y from x, as well as x from y, while remaining unchanged it-

self, to within an additive logarithmic constant O(log max{K(y|x), K(x|y)}).

Importantly, the lengths of the two strings need not be the same. Bennett et

al. [75] show that E(x, y) satisfies metric properties up to an additive fixed
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constant. Image analysis problems of interest to us only require a relative or

normalized distance metric, known as the NID [77] given as follows:

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
(6.5)

NID is an interesting theoretical concept with little practical value due

to the noncomputability of its constituent Kolmogorov complexity terms.

Cilibrasi and Vitany presented a method for approximating the NID using

the NCD, a similarity metric between strings that is computed using off-the-

shelf lossless compression programs such as zip, gzip, bzip2, etc. Compression

algorithms excel at identifying and exploiting patterns in the data and the

NCD measure exploits this ability. Intuitively, strings with similar patterns

will compress better together versus when compressed separately. The NCD

is computed as follows:

Let C(x) denote the size of the compressed version of string x and C(x, y)

be the size of the compressed version of the concatenation of x and y.

NCD(x, y) =
C(x, y)−min(C(x), C(y))

max(C(x), C(y))
(6.6)

There are no parameters needed to compute the NCD, except for the

choice of compression algorithm and its settings. As shown by Vitany et

al., the choice of compression algorithm has a negligible impact on the fi-

nal analysis. NCD is a reasonable approximation to NID in that it is a

nonnegative number in the range 0 and 1 + ε, where the ε arises from imper-

fections in real world compression algorithms and is typically less than 0.1.

It is also approximately a metric and its deviations from metric properties

depend upon the performance of the compression algorithm. NCD compu-

tation does not require any specific background knowledge about the data
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and it can be computed meaningfully when x and y are of different lengths.

Practically speaking, the NCD can be computed for any set of image se-

quences in much the same manner, regardless of application details. Different

compression algorithms may capture more or less of the structure in a string

and exhibit different levels of compression performance. The normalization

in (6.6) ensures that differences in NCD values resulting from the choice of

different compression algorithms are modest.



Chapter 7

LINEAR DISCRIMINANT

ANALYSIS OF WCE DATA

Linear discriminant analysis (LDA) and the related Fisher’s linear discrimi-

nant [70] are methods used in statistics and machine learning to find a linear

combination of features which characterizes or separates two or more classes

of objects or events. The resulting combination may be used as a linear

classifier, or, more commonly, for dimensionality reduction successive later

classification. Computationally, discriminant function analysis is very similar

to analysis of variance (ANOVA). Specifically, one can ask whether or not

two or more groups are significantly different from each other with respect to

the mean of a particular variable. If the means for a variable are significantly

different in different groups, then we can say that this variable discriminates

between the groups.

In the case of a single variable, the final significance test of whether or

not a variable discriminates between groups is the F test. As described in

Elementary Concepts and ANOVA /MANOVA, F is essentially computed as

the ratio of the between-groups variance in the data over the pooled (average)

69
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within-group variance. If the between-group variance is significantly larger

then there must be significant differences between means. This method also

helps to better understand the distribution of the feature data.

7.1 Different approaches to LDA

Data sets can be transformed and test vectors can be classified in the trans-

formed space by two different approaches.

Class-dependent transformation: This type of approach involves maxi-

mizing the ratio of between class variance to within class variance. The

main objective is to maximize this ratio so that adequate class separability

is obtained. The class-specific type approach involves using two optimizing

criteria for transforming the data sets independently.

Class-independent transformation: This approach involves maximizing

the ratio of overall variance to within class variance. This approach uses

only one optimizing criterion to transform the data sets and hence all data

points irrespective of their class identity are transformed using this transform.

In this type of LDA, each class is considered as a separate class against all

other classes.

7.2 Mathematical operations

To explain discriminant analysis, let’s consider a classification involving two

target categories and two predictor variables. The following figure shows a

plot of the two categories with the two predictors on orthogonal axes:

A visual inspection shows that category 1 objects (open circles) tend to

have larger values of the predictor on the Y axis and smaller values on the X
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Figure 7.1: Data sets and test vectors in original

axis. However, there is overlap between the target categories on both axes, so

we can’t perform an accurate classification using only one of the predictors.

For ease of understanding let us represent the data sets as a matrix consisting

of features in the form given below:

set1 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 set2 =


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bm,1 bm,2 · · · bm,n


Compute the mean of each data set and mean of entire data set. Let µ1

and µ2 be the mean of set1 and set2 respectively and µ3 be mean of entire

data, which is obtained by merging set1 and set2, is given by Equation ( 7.1).

µ3 = p1 × µ1 + p2 × µ2 (7.1)

where p1 and p2 are the apriori probabilities of the classes. In the case of

this simple two class problem, the probability factor is assumed to be 0.5.
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In LDA, within-class and between-class scatter are used to formulate

criteria for class separability. Within-class scatter is the expected covariance

of each of the classes. The scatter measures are computed using Equation

(7.2) and Equation (7.3).

Sw =
∑
j

pj × (covj) (7.2)

Therefore, for the two-class problem:

Sw = 0, 5× cov1 + 0.5× cov2 (7.3)

All the covariance matrices are symmetric. Let cov1 and cov2 be the

covariance of set1 and set2 respectively. Covariance matrix is computed

using the following equation.

covj = (xj − µj)(xj − µj)T (7.4)

The between-class scatter is computes using the following equation:

Sb =
∑
j

(xj − µ3)(xj − µ3)
T (7.5)

Sb can be thought of as the covariance of data set whose members are the

mean vectors of each class. As defined earlier, the optimizing criterion in LDA

is the ratio of between-class scatter to the within-class scatter. The solution

obtained by maximizing this criterion defines the axes of the transformed

space. However for the class-dependent transform the optimizing criterion

is computed using equations Equation (7.4) and Equation (7.5). It should

be noted that if the LDA is a class dependent type, for L-class L separate

optimizing criterion are required for each class. The optimizing factors in
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case of class dependent type are computed as:

Jj = inv(covj)× Sb (7.6)

For the class independent transform, the optimizing criterion is computed

as:

J = inv(Sw)× Sb (7.7)

By definition, an eigen vector of a transformation represents a 1-D invari-

ant subspace of the vector space in which the transformation is applied. A set

of these eigen vectors whose corresponding eigen values are non-zero are all

linearly independent and are invariant under the transformation. Thus any

vector space can be represented in terms of linear combinations of the eigen

vectors. A linear dependency between features is indicated by a zero eigen

value. To obtain a non-redundant set of features all eigen vectors correspond-

ing to non-zero eigen values only are considered and the ones corresponding

to zero eigen values are neglected. In the case of LDA, the transformations

are found as the eigen vector matrix of the different criteria defined in Equa-

tion (7.6) and Equation (7.7).

For any L-class problem we would always have L-1 non-zero eigen values.

This is attributed to the constraints on the mean vectors of the classes in

Equation (7.1). The eigen vectors corresponding to non-zero eigen values for

the definition of the transformation.

Having obtained the transformation matrices, we transform the data sets

using the single LDA transform or the class specific transforms which ever

the case may be.

For the class dependent LDA,
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transformedsetj = transformedTj × setj (7.8)

For the class independent LDA,

transformedset = transformedTspec × datasetT (7.9)

Figure 7.2: Data sets in original space and transformed space along with the
transformation axis for class dependent LDA of a 2-class problem

Once the transformations are completed using the LDA transforms, Eu-

clidean distance or RMS distance is used to classify data points. Euclidean

distance is computed using Equation (7.10) where µntrans is the mean of the

transformed data set, n is the class index and x is the test vector. Thus for

n classes, n euclidean distances are obtained for each test point.

distn = (transformnspec)
T × x− µntrans (7.10)

The smallest Euclidean distance among the n distances classifies the test

vector as belonging to class n. The choice of the type of LDA depends on

the data set and the goals of the classification problem. If generalization is
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of importance, the class independent transformation is preferred. However,

if good discrimination is what is aimed for, the class dependent type should

be the first choice.

7.3 Fisher Analysis applied to WCE frames

To analyze WCE data we considered ten images in which we want to dis-

criminate frames with contractions from frame without contractions. Images

are partitioned into 25 blocks of 32×32 pixel and are labelled and each block

is labelled following the protocol:

0 is the label associated to normal mucosa; 1 represents a wrinkle; 2

represents bubbles; 3 is a black part of the image that is associated to the

intestinal lumen. In Figure 7.3 (a) the original dataset is reported. In Figure

7.3 (b) the manual labelling of blocks is indicated.

In Table 7.1 frames statistics over 10 images representing contractions/not-

contractions extracted from WCE frames are reported. For each image we

have the percentage of the four classes.

Table 7.1: Percentage of classes manually labelled in every image.
0 (mucosa) 1 (wrinkle) 2 (bubble) 3 (lumen) Total

Img1 44% 44% 12% 0% 100%
Img2 20% 0% 80% 0% 100%
Img3 32% 0% 68% 0% 100%
Img4 64% 4% 32% 0% 100%
Img5 44% 48% 0% 8% 100%
Img6 16% 60% 0% 24% 100%
Img7 52% 48% 0% 0% 100%
Img8 40% 56% 0% 4% 100%
Img9 48% 52% 0% 0% 100%
Img10 48% 52% 0% 0% 100%

Successively each block the following features are extracted: H, S, I, hfc,
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(a)

(b)

Figure 7.3: (a) ten original images extracted from WCE video. (b) The same
frames subdivided in 25 blocks of 32 x 32 pixel.

Drog, LBP(8,1). Each block is classified by mean of the use of K nearest

neighbor following the method LOO (Leave On Out).

Labelling obtained with the application of K-NN is reported in Table 7.2.

In the first four columns are reported the number of the classes of an image.

The last column is the manual labelling in which ”1” is associated to images

that represent an intestinal contraction. Instead ”0” is associated to images

that are not a contraction.

Now we apply the linear discriminant analysis to separate the two classes,

in particular we find a score function the results positive if the image represent

an intestinal contraction and negative if the image is not a contraction.

The first step is the computation of the mean of all data and the subtrac-

tion to the same data. This corresponds to a change of the reference system
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Table 7.2: Number of blocks labelled by K-NN. The last column represent
the manual labelling of contraction/not-contraction (1/0)

0 (mucosa) 1 (wrinkle) 2 (bubble) 3 (lumen) Label (c/nc)
Img1 10 14 1 0 1
Img2 8 0 17 0 0
Img3 12 0 13 0 0
Img4 16 3 6 0 0
Img5 7 15 1 2 1
Img6 3 16 0 6 1
Img7 14 10 1 0 1
Img8 10 14 0 1 1
Img9 9 16 0 0 1
Img10 14 10 1 0 1

in the geometrical space so that the center of the ”cloud” of the points cor-

responds to the origin of the axes. The total mean is given by the vector:

(10.3, 9.8, 4.0, 0.9).

Subtracting the vector to the data we obtain 2 arrays that represent

respectively contractions images and not-contractions images:

contr =



−0, 3 4, 2 −3 −0, 9

−3, 3 5, 2 −3 1, 1

−7, 3 6, 2 −4 5, 1

3, 7 0, 2 −3 −0, 9

−0, 3 4, 2 −4 0, 1

−1, 3 6, 2 −4 −0, 9

3, 7 0, 2 −3 −0, 9


not− contr =


−2, 3 −9, 8 13 −0, 9

1, 7 −9, 8 9 −0, 9

5, 7 −6, 8 2 −0, 9



The second step is the computation of the covariance matrix and the

mean of the single variances: In the following are reported the covariances

for the two classes:
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class1 =


14, 95 −8, 71 1, 12 −7, 36

−8, 71 6, 62 −0, 88 2, 98

1, 12 −0, 88 0, 29 −0, 52

−7, 36 2, 98 −0, 52 4, 90

 class0 =


16 6 −22 0

6 3 −9 0

−22 −9 31 0

0 0 0 0


Mean of the covariances of the two classes:

mean =


15, 48 −1, 36 −10, 44 −3, 68

−1, 36 4, 81 −4, 94 1, 49

−10, 44 −4, 94 15, 64 −0, 26

−3, 68 1, 49 −0, 26 2, 45


The score function is obtained in the following way:

S = inv(C)(m1 −m2)
′ (7.11)

where m1 and m2 are the mean of the two classes.

The linear scores for the two classes are calculated as: A ∗ S and B ∗ S

where A and B are the two classes of images.

A ∗ S =



14.7264

15.1149

12.1579

1.0778

12.8928

21.2290

1.0778


B ∗ S =


−27.8956

−29.1826

−21.1984


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Finally, considering that the elements of the contractions class are pos-

itives and the elements of the not-contractions class are negatives, the dis-

criminant function classifies successfully all the images.

LDA has been applied to WCE data to understand how the two sets of

contractions/not-contractions are saparable. The analysis has been useful to

apply the automatic classification to discriminate intestinal motility in WCE

images.



Chapter 8

DETECTION ALGORITHMS

In this final chapter of the dissertation we called all the results obtained

applying the methods described previously. In particular 8.1 ensamble ex-

periments published in [83, 84, 85], 8.2 refers to [86], 8.3 refers to [87] and

finally 8.4 refers to a work in progress in which we are improving the results.

8.1 Sudden changes detection in a WCE video

We consider the problem of classifying frames of a WCE video without im-

posing any constraints on the viewing or illumination conditions under which

these images were specially obtained.

The basic idea is that each digestive organ has a different visual pattern.

Each pattern may be characterized by specific values of a set of observed

features. Several candidate features may be considered: the texton method

[66] allows to statistically combine all of them to produce a classifier. Our

proposal integrates texture-based features, obtained as response to a bank of

Gabor filters, with features like high frequency content of energy, colour and

luminance, that are customarily of primary relevance to the clinician.

80
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The general goal of automatic WCE segmentation is to split a video into

shorter sequences each with the same semantic content. In the following

with the term “event” we indicate a very short frame sequence (6 consec-

utive frames) that testifies an abrupt and significative change in the video.

We made precise this term in agreement with the medical expert that have

manually labelled the sequencies. Our definition of “event” includes bound-

ary transitions from an organ to another one, intestinal juices, bile, bubbles,

pathologies, etc.

The features, that we have selected to build a classifier, are: luminance

and colour, high-frequency energy content and the responses to a bank of

Gabor filters. These features are computed separately on frame sub-blocks.

We apply C-means clustering to the set of feature vectors to build a texton

dictionary. Frames are hence represented by mean of the histograms over the

resulting dictionary. The computation of a function to compare histograms

provides a way to assign a distance between frames. High values correspond

to an abrupt change in the frames sequences.

8.1.1 Pre-processing and feature extraction

The frames coming from the WCE videos have been pre-processed as follows.

The original frames have a dimension of 576 × 576 pixels in which there is

a large black background and textual annotations. We restrict the Region

Of Interest within the circular area of the video, hence for each frame only a

sub-image is considered. More precisely only the maximum square inscribed

in the circular image is considered. The information loss is not relevant,

since the left over “lunettes” are typically out of focus because of the dome

structure of the camera-pill (Figure 8.1)

Each extracted ROI has been initially transformed into the HSI colour
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(a) original image (b) extracted
ROI

Figure 8.1: Example of an image extracted from a WCE video.

space. This colour space has been chosen for the well known robustness

in image processing [88]. Frames, moreover, are partitioned into squares

each of 16 × 16 pixels. For each one of these square sub-images we extract

the features used for automatic classification. Direct visual inspection by

clinicians is largely based on the consideration of the chrominance value of

the frames. For this reason we choose to include the average values of the

hue, saturation and intensity of each of the blocks of a frame among the

representative features of the frame. These features, although informative,

are not sufficient to effectively classify the frames and have to be integrated

with more features as follows.

Transitions from an organ of the digestive tract to the next are generally

marked by frames that present a greater density of details. This fact has

been exploited in [15] to characterize transitions. For this reason we include

the high frequency energy content of blocks among the features used by the

classifier. When the capsule enters the next organ the corresponding colour

signal has short-term change, that is the suddeness of the signal change, and

an increase in energy. A frequency domain method it is able to reveal non

only changes in overall energy, but also the energy concentration in frequency.

Following [15] we consider the weighted sum of the energy function, as

described in 4.1, linearly increased toward the high frequencies, and we ig-

nore the lowest two bins in order to avoid unwanted bias from low frequency
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components. We include the HFC of each 16x16 sub-image among the rep-

resentative features of a frame.

Textures are powerful discriminators when one has to classify real world

pictures. Indeed all the state of the art content based retrieval engines rely on

texture analysis. It is natural to include texture descriptors among the fea-

tures representing a WCE frame. We choose a Gabor filter bank [53] for tex-

ture representation. In particular in our preliminary experiments we empiri-

cally found appropriate to choose as scale σx = σy = 2, 4, 8 and the following

parameters set: phase : 0, 2, 4, 8, 16, 32 and four directions: 0◦, 45◦, 90◦, 135◦.

The rationale behind our choice has been to achieve a good compromise be-

tween recall and precision of the resulting classifier. In our proposal a frame

comes to be eventually represented as a vector of 28× 484 components. The

28 features includes information about average colour and luminance (3 ele-

ments), HFC (1 element) and Gabor filter responses (24 elements) for each

block.

8.1.2 Classification method

In order to achieve a more abstract representation we pool together the vector

of all of the 16x16 blocks of the frames in the video. In our experiments

each of the videos is made of 500 frames. This leads to an ensamble of

242000 vectors. The ensamble has been clusterized to get a small set of

recurrent and typical “visual words”. Clusterization is performed with a

standard K-clustering. The number of clusters is chosen to optimize the

ratio of dispersion between cluster centers over the dispersion within clusters.

We empirically found that a suitable value for the number of clusters in our

experiments is 100. In this phase the dictionary obtained provides the buckets

to compute, for each frame, the relative frequencies of “visual word”. In this
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way we come to a high level representation of a frame as a “bag of visual

words”.

8.1.3 Finding sudden changes

The problem of evaluating similarity between frames is hence turned into the

computation of histograms distance. Among the several available choices for

histogram distance estimation we choose the Bhattacharya distance [72], that

is normally used to measure the separability of classes. In this way we de-

fine d(fi, fj), as the distance between frame fi and fj, the Bhattacharya

distance between the corresponding histograms. Direct computation of the

Bhattacharya distance of a pair of consecutive frames is generally a weak indi-

cator of changes in the video. This happens because occasionally a frame can

be quite different from the previous one just because of casual disturbances

and trasmission noise. To have a more robust indicator of sudden changes

in the video we consider for each frame fi the function C(i) defined as follows:

C(i) =
1

9

i+2∑
k=i

5∑
j=3

d(fk, fi+j) (8.1)

C(i) averages the distances between frames in a short sequence and it pro-

vides high values when a sudden change is happening or low values in more

homogeneous segments (Figure 8.2). Thresholding the function C(i) will nat-

urally lead to select frames that are very likely to be loci of sudden changes

(Figure 8.3).

Thresholding the function C(i) will naturally lead to select frames that

are very likely to be loci of sudden changes (Figure 8.4).
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(a)

(b)

Figure 8.2: The two rows represent two sequences of consecutive frames. The
row (a) is relative to the pylorus: function C(i) for it takes the value 0.41.
The row (b) is relative to a smooth portion of stomach: the C(i) takes the
value 0.21

8.1.4 Visual exploration of textons variability

A smart visualization of the frequency variations of the visual words across

the video may also supply the medical specialists with a powerful and effective

way to explore WCE data. Because our visual dictionary is made of 100

words, it is possible to represent the frequency of each word with a column

of coloured pixels. Collecting all of these columns in a strip, one gets a direct

visual representation of a whole video from the textons point of view. In

this strip each pixel column is the histogram of a frame, and each row is the

temporal sequence of values assumed by a texton. The “jet” colourmap has

been chosen to provide sufficient contrast. In Figure 8.5(a) the textons are

in the same arbitrary order produced by C-means clustering; Figure 8.5(b)

shows the same histogram sequence after sorting the textons by row entropy,

to bring together rows carrying more information. This improves the visual

impact of the representation and helps to highlight both singular events and

slow changes in the video; notice that the light stripe near the upper left

corner of Figure 8.5(b) was completely invisible in Figure 8.5(a). In an

interactive environment, a clinician could click on an interesting zone and
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Figure 8.3: Plot of the function C(i) for a WCE video sequence; peaks
indicate loci of sudden change. The sequence in the upper row of Figure 8.2
corresponds to the maximum (interval of frames: 355-360) while the sequence
in the lower row of Figure 8.2 corresponds to the minimum (interval of frames:
172-177)

immediately see the corresponding video frames for further investigations.

8.1.5 Experimental results

To assess the validity of the use of the indicator function C(i) we have ana-

lyzed the performance of this index over 10 manually labelled sequences from

patients of the Hospital ”Maddalena Raimondi” in the period between 2005

and 2008. The manual labelling protocol has been the following. Let (f1...fN)

be the sequence of frames in a video. We have formed the sequence of in-

tervals (I1...IN−3
3

) where interval Ii is made of the six frames (f3i−2...f3i+3).

For each interval the expert has judged if there is a significative change be-

tween the first 3 frames with respect to the last 3 frames. If this is the case

the interval has been labelled as “event”. Hence, in our setting an event is

a relevant anatomical locus (esophagus, pylorus, etc.), a pathological pres-

ence (bleedings, ulcerations, etc.) or a common non pathological disturbance
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(a)

(b)

(c)

(d)

Figure 8.4: Examples of events among the WCE video frames; the row (a)
corresponds to a pylorus; (b) is relative to the ileo-caecal valve; (c) represents
frames with faecal residuals; (d) show the presence of bubbles.

(intestinal juices, bubbles, etc.) (Figure 8.4). Thresholding the normalized

C(i) function is a simple and direct way to eliminate a large percentage of

the video frames from the need of medical direct visual inspection.

The performance of the index C(i) has been tested as follows: intervals

Ii of each video have been sorted according to the decreasing value of C(i).

We have hence partitioned the sorted Ii’s into ten groups of the same size.

The first group contains the intervals with the top 10% C(i) score and so

on until the last group contains the interval with the lowest 10% C(i) score.

For each group we have counted the number of intervals that the expert has

labelled as event (true events) (Table 8.1, Table 8.2).

We repeated the classification tests using three different settings for the

bank of Gabor filters in the features extraction phase. More precisely we tried
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(a)

(b)

Figure 8.5: Compact representation of frequency variations of the visual
words across a video. In (a) the rows are in arbitrary order, while in (b) they
are sorted by row entropy.

Figure 8.6: Percentage of events and not-events in a WCE video sequence
partitioned into ten intervals representing the 10% of C(i) score.

them separately with σx = σy = 2, 4, 8. We report also results considering

the three scale together without appreciating important performances. As it

is shown in Table 8.1 and Table 8.2 scale is not of great relevance; but in any

case the best results have been obtained at the smallest scale (σx = σy = 2).

It is evident from the experimental data that the proposed method may

safely provide a filter to the clinician that could indeed concentrate the visual

inspection on the intervals that score at the top 30% of the C(i) index.

Although this reduction is significative, the number of intervals that have to
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Table 8.1: Percentage of true events in the ten groups made of all intervals
sorted by C(i) value. Each row represents the mean of the values for the ten
videos examined

σ 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st

2 95 76 14 1 1 0 1 0 1 0
4 93 69 23 2 1 0 1 1 0 0
8 94 66 25 3 1 0 1 0 1 0

2,4,8 93 71 17 7 1 1 0 1 0 0

Table 8.2: Presence in % of true events in the ten groups of intervals sorted
by C(i) value.

σ 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st

2 51 40 7 1 0 0 0 0 0 0
4 50 37 11 1 0 0 0 0 0 0
8 51 34 13 1 1 0 1 0 1 0

2,4,8 50 38 8 3 0 0 0 0 0 0

be examined is still high for a human observer; however, it may allow the

realistic application of computationally more expensive pattern recognition

algorithms to this restricted set of intervals. The statistics relative to the

test data are reported in Table 8.3.
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Table 8.3: Values of Recall and Precision calculated for the ten video sequen-
cies at the top 20% score and top 30% score

top 30% top 20%
Video Precision Recall Precision Recall

Video 1 100% 69% 85% 88%

Video 2 100% 50% 100% 75%

Video 3 93% 79% 78% 100%

Video 4 100% 52% 100% 78%

Video 5 94% 69% 80% 88%

Video 6 100% 67% 91% 91%

Video 7 100% 54% 100% 81%

Video 8 100% 64% 100% 94%

Video 9 97% 65% 88% 88%

Video 10 100% 52% 96% 75%

mean 98% 62% 83% 78%
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8.2 Information Theory based WCE video sum-

marization

In this experiment a method of automatically discriminating intestine tissue

which can signicantly speed-up the video analysis time is presented. The

texton method is connected to the Normalized Compression Distance (NCD)

[89] to create a robust binary classifier. The original contribution of this work

is the use of an information theoretic approach to summarize meaningful

changes in WCE image sequences inspired to [78].

8.2.1 The proposed method

As described in the previous section (8.1.1) images are pre-processed and fea-

tures relative to colour and texture are extracted. In the early experiments

NCD distance adopting several compression algorithms (dzip, gzip, etc.) has

been tested. Although these algorithms are supposed to grant a good per-

formance because of their ability to exploit the sequencial redundancies in

the data, their usage is costly. We found that, for the problem at hand,

the gain obtained in this way is not relevant and for this reason a simplified

(althought rough) version of NCD based on Shannon’s entropy is introduced:

NCDentropy(x, y) =
E(x, y)−min((E(x), E(y))

max(E(x), E(y))
(8.2)

where E(x) is the Shannon’s entropy for the string x and E(x, y) is the

entropy of the concatenation of the string x and y. In the application consid-

ered here x is the string obtained concatenating the ”symbols” made with the

textons dictionary. In other words a frame from a WCE video is represented

here as a sequence of visual words. Following a common practice in Com-
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puter Vision we disregard the sequencial order of the words and represent a

frame as a ”bag” of visual words. This observation justify the substitution

of a compression algorithm with the much less expensive use of Shannon’s

entropy. The use of entropy in place of Kolmogorov complexity is not novel

even in image domain, see for example [90, 91]. Observe that if sequenciality

is disregarded, the entropy of the string of visual words obtained concatenat-

ing the representation of two frames is the entropy relative to the averaged

histogram of the visual words frequencies in two frames.

For the WCE application, however, it makes sense to bias the difference

between frames not only considering the visual differences but taking into

account the proximity of the frames within the video. To this aim a new

similarity distance SIM is introduced as follows:

SIM(x, y) = α ∗NCDentropy(x, y) + β ∗ |i(x)− i(y)| (8.3)

i(x) and i(y) represent the index of two frames in the video sequence and

α + β = 1. In this experiments the best results have been obtained with

α = 0.8 and β = 0.2.

In particular following the prevoius works, for each frame fi, a new func-

tion Score(i) is defined as follows:

Score(i) =
1

9

i+2∑
k=i

5∑
j=3

SIM(fk, fi+j) (8.4)

Score(i) averages the distances between frames in a short sequence and it

provides high values when there is an abrupt change or low values in segments

with similar frames. Thresholding the function Score(i) will lead to select

interval of frames in which there is a sudden change in pattern.
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8.2.2 Experimental results

In this section a number of experiments are undertaken in a real problem

domain to demonstrate the efficacy of the proposed method. In our exper-

iments we use ten video sequences provided by the “Maddalena Raimondi”

Hospital. We use the labelling protocol explained in [83]. Let (f1...fN) be

the sequence of frames in a video. We have formed the sequence of intervals

(I1...IN−3
3

) where interval Ii is made of the six frames (f3i−2...f3i+3).

Figure 8.7: The computation of function Score(i) (8.4)

In our setting an event includes every change in pattern in a short video

sequence like a boundary transition, a pathology or a common disturbance

like intestinal juices, residuals, bubbles, etc. For each interval the clinician

has judged if there is a significative change between the first 3 frames with

respect to the last 3 frames. If this is the case the interval has been labelled

as an “event”. To grant greater robustness the labelling has been performed

independently by two human experts. Only those intervals that both of them

have labelled “event” are considered real event in the following experiments.

The two independent labelling agree on 93% of the cases.

Intervals Ii of each video have been sorted according to the decreasing

value of their Score(i) indicator. We have hence partitioned the sorted Ii’s

into ten groups of the same size. The first group contains the intervals with

the top 10% of Score(i), the last group contains the interval with the lowest
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Figure 8.8: The two rows represent two sequences of consecutive frames. The
row (a) represents an event. The row (b) is relative to an homogeneus tract.

10% of Score(i). For each group we have counted the number of intervals

labelled as event. In this experimental session two experts have labelled the

sequencies and the resulting ensamble has been given by their intersection.

Figure 8.9: Percentage of events and not-events in a WCE video

The bar plot of Figure 8.9 shows the average percent of intervals that have

been labelled as event vs the intervals that have been labelled not-event in

the ten groups. The use of precision-recall analysis is investigated in Figure

8.10. As the ROC curve shows the discrimination obtained using the pro-

posed method is comparable with the results in [83]. The slightly less robust

discrimination shown by the novel method is justified by the proposed usage

of NCDentropy instead of classical NCD. This loss in discrimination power

is however justified by the greater efficiency that the usage of NCDentropy
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provides with respect to NCD.
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Figure 8.10: Two ROC curves compare the performance of tested methods

Table 8.4: Summary of experimental results
Intervals NCDentropy NCDαβ

top 20% 72% 71%
top 20% 68% 66%
top 30% 85% 86%
top 30% 53% 54%

In particular we compare the results obtained with the formula ofNCDentropy

(8.2), the modified version that uses the concept of entropy, and NCDαβ

(8.3). Results are shown in Table 8.4.

Examples of images are shown in Figure 8.11. The first row corresponds

to an event found in the first 10% until the last row corresponds to an event

found in the sixth interval.

8.2.3 Conclusion

In this experiment we have presented an algorithmic information-theoretic

method applied to find sudden changes in WCE video sequences. We used

a modified formula NCD to compute the distance between the histograms
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Figure 8.11: Examples of events found with the proposed method

obtained with the textons approach explained in [83]. Experimental results

have been shown that using the entropy, in combination with two parameters

α and β, we reach a recall of 90% with a precision of 52% discarding the 30%

of the video. Future works will extend the usage of NCD-like distance since

the early stage of textons dictionary construction.
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8.3 LBP based detection of intestinal motil-

ity in WCE images

Small intestine motility dysfunctions are shown to be related to certain gas-

trointestinal disorders which can be manifest in a varied symptomatology.

Small intestine contractions are among the motility patterns which reveal

many gastrointestinal disorders, such as functional dyspepsia, paralytic ileus,

irritable bowel syndrome, bacterial overgrowth. Several techniques have been

developed and tested in a wide range of modalities to analyze intestinal con-

tractions. Nevertheless, all of these techniques suffer from important draw-

backs: they are highly invasive, they usually generate patient discomfort,

they need hospitalization and specialized staff, etc. In this section the use

of Local Binary Pattern (LBP) combined with the powerful textons statis-

tics, to find the frames of the video related to contractions, is proposed.

Recognizing intestinal contractions from WCE image sequences provides a

non-invasive method of measurement, and suggests a solution to the prob-

lems of traditional techniques for assessing intestinal motility [37]. Based on

the characteristics of contractile patterns and information on their frequen-

cies, the contractions can be investigated using essential image features ex-

tracted from WCE videos. The methodology proposed in this paper is made

in two phases. The first implements the extraction of image features while

in the second phase a textons-based [66] classifier is employed to perform

the contraction detection task. In particular the definition and extraction of

quantitative parameters from endoscopic images based on colour and texture

information is at the core of the proposed technique. Several techniques for

the texture analysis of images have been reported in the literature [52, 53]. In

this section, the Local Binary Pattern (LBP) approach proposed by Ojala et
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al. [54, 56], that provides highly discriminative texture information, is used.

Among the advantages of LBP are its invariance to any monotonic change in

gray level and its computational simplicity. Following [83] colour and high

frequency energy content are included as features to build the model for each

image. Feature evaluation in detecting positive examples of contractions

has been performed by means of texton method, finally using the K-Nearest

Neighbors (K-NN) with Bhattacharyya [72] distance to classify the images.

Experiments have been conducted on over 6000 frames extracted from WCE

videos. Results suggest that the technique is suitable for clinical applica-

tions. We also discuss the effects of various parameters on our classification

algorithm such as the choice of filter bank, the size of the texton dictionary

as well as the number of training images used. Furthermore we compare the

performance of texton classifier with the Support Vector Machine (SVM)

[70].

8.3.1 Contractions features description

Some pre-processing steps are applied before going ahead with any learn-

ing or classification. First, before convolving with any of the filter banks, a

central region is cropped and retained from every image and the black back-

ground data and textual information discarded. All processing is done on

these cropped regions and they are converted to HSI colourspace for the well

known robustness in image analysis. Following [83] we divide each image into

blocks of the same size and then we calculate HSI and the High Frequency

Energy Content (HFC) for each block. In this paper we use LBP filter to

characterize the texture of each block. In particular we use a filter bank with

two parameters: radius 8 and neighbors 1, radius 16 and neighbors 4.
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8.3.2 Texton-based classification

The goal of classification in general is to select the most appropriate category

for an unknown object, given a set of known categories. To this purpose we

build a training set containing positive and negative examples with different

orientations and illuminations conditions. Hence the textons are learned

using k-means clustering for the resulting feature vector. The histogram

of textons forms the model corresponding to the training image. In the

classification stage a novel image is classified by forming its histogram and

then using a nearest neighbour classifier and the Bhattacharyya distance to

pick the closest model.

Based on these experiments, it can be said that texton classification com-

bined to multi-scale LBP features is a relatively effective classification method

in wrinkled endoscopic images.

8.3.3 Experiments

This section investigates the performance of the textons method with the

use of the LBP texture features to classify contractions images. The typical

aspect of these frames is characterized by strong wrinkles of the folded in-

testinal wall, distributed in a radial way around the closed intestinal lumen.

In the case of the visual pattern of the intestinal contractions we label the

image as a positive example.

We perform our experiments to assess texture classification rates over

6000 images extracted from WCE videos. The original images have a dimen-

sion of 256×256 pixels. The cropped area is of 170×170 pixels and includes

the square inscribed in the circular area. Each frame has been divided into

16× 16 blocks and the vector feature has been extracted as we explained in
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(a)

(b)

Figure 8.12: The row (a) is relative to sequence of not contractions. The row
(b) is relative to frames that represent a contraction.

the previous section.

To avoid to have very similar visual words in the dictionary, we found

that a suitable value for the number of textons is 25. This number is chosen

to optimize the ratio of dispersion between cluster centers over the dispersion

within clusters. In our experiments, the classification is performed by a K-

NN classifier, with the value of k = 1, 3, 5. Bhattacharyya distance is used

to measure the difference between histograms that represent, for each frame,

the relative frequencies of each visual word in the dictionary.

In Figure 8.13 the visual texton representation of positives and negative

examples is reported.

We compared results using ten different training datasets of 500 images

extracted in random way from the whole set of 6000 frames. In Table 8.5 the

percentage of positives and negatives, for each training set, are listed.

The effectiveness of our algorithm is measured by mean of the use of

sensitivity and specificity. Results, for the ten extracted training set, are

reported in Table 8.5. The features used are: H, S, I, HFC, LBP8,1, LBP16,4.

To provide a comparison, we repeated our experiment extracting texture
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(a)

(b)

Figure 8.13: (a) textons in a sequence of not contractions. The row (b) is
relative to textons present in contraction frames.

Table 8.5: Statistics over the ten training set
Ts1 Ts2 Ts3 Ts4 Ts5

positives 36% 35,4% 36,6% 39,2% 41,6%
negatives 64% 64,6% 63,4% 60,8% 58,4%

Ts6 Ts7 Ts8 Ts9 Ts10

positives 41,6% 39,4% 39,3% 39,4% 39,4%
negatives 58,4% 60,6% 60,6% 60,6% 60,6%

features using the Gabor filter bank with different parameters for σ, phase

and orientation. In our settings we found that applying several gabor filters

the feature vector present many repeated values. Hence we obtained that

suitable parameters are: σx = σy = 2; phase= 0, 16; orientation = 0◦, 45◦.

Results are reported in Table 8.7.

A comparison with the SVM classifier is written in Table 8.8. We used

the Matlab implementation with the radial basis function.

We can conclude that results do not depend too much on the structure of

the training set. Furthermore, the experiments show that using LBP texture

features and Gabor features leads to classifier of comparable performance.

LBP on the other hand is up to 10 times faster than Gabor filtering. Com-
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Table 8.6: Sensitivity and specificity for different values of k for K-NN-
classifier using LBP texture extraction

Sensitivity Specificity
k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Ts1 60% 68% 72% 100% 100% 100%
Ts2 66% 78% 76% 100% 100% 100%
Ts3 62% 66% 66% 100% 100% 100%
Ts4 68% 72% 78% 100% 100% 100%
Ts5 74% 78% 76% 98% 100% 100%
Ts6 74% 82% 80% 100% 100% 100%
Ts7 74% 82% 78% 100% 100% 100%
Ts8 74% 84% 92% 100% 100% 100%
Ts9 64% 60% 68% 100% 100% 100%
Ts10 58% 62% 76% 100% 100% 100%
mean 67,4% 73,2% 76,2% 99,8% 100% 100%√
σ2 6 8 7 0 0 0

parison of texton based techniques with a standard SVM classifier shows

moreover that this general methodology achieves greater sensitivity paying

a high price in terms of number of false alarms. Our proposed solution has

the advantage of reducing complexity and making the methodology more

suitable for real-time application.

8.3.4 Conclusion and future work

In this paper a new method is developed for classification of intestinal con-

tractions in a WCE video sequence. The good experimental results suggest

its high potentiality to contribute to a totally intelligent auto-diagnosis en-

doscopy system. The main advantage of the proposed method is the com-

putational simplicity of LBP operator, used for texture feature extraction,

that permits applicable the technique in a real time modality. In our exper-

iments we improve the results using ten different training sets and we can
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Table 8.7: Sensitivity and specificity for different values of k for K-NN-
classifier using Gabor filters

Sensitivity Specificity
k=1 k=3 k=5 k=1 k=3 k=5

Ts1 60% 74% 74% 100% 100% 100%
Ts2 60% 72% 82% 100% 100% 100%
Ts3 56% 66% 68% 98,03% 100% 100%
Ts4 84% 82% 90% 100% 100% 100%
Ts5 78% 86% 90% 98% 100% 100%
Ts6 60% 68% 76% 100% 98% 100%
Ts7 66% 72% 80% 98,03% 100% 100%
Ts8 78% 88% 86% 100% 100% 100%
Ts9 56% 68% 74% 100% 100% 100%
Ts10 72% 70% 76% 100% 100% 100%
mean 67% 74,6% 79,6% 99,6% 99,8% 100%√
σ2 10 8 7 0 0 0

conclude that the algorithm does not depend on this selection. In this work

we compare the proposed method with the usage of Gabor filters to extract

texture features and SVM classifier to detect intestinal wrinkled frames. We

demonstrated that the proposed method reach a sensitivity of about 80% and

a specificity of about 99%. Future work will address in the extensions the

results to recognize other kind of events (such as bleedings, cancer, polyps,

etc.) in a video sequence. This will help the phycisian to reduce the time

inspection and to make capsule endoscopy as a clinical routine.
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Table 8.8: Sensitivity and specificity for the SVM classifier
LBP Gabor
Sensitivity Specificity Sensitivity Specificity

Ts1 76% 44% 94% 44%
Ts2 96% 32% 90% 50%
Ts3 96% 32% 84% 18%
Ts4 88% 70% 94% 64%
Ts5 98% 24% 82% 32%
Ts6 96% 36% 98% 34%
Ts7 96% 26% 74% 70%
Ts8 100% 50% 100% 54%
Ts9 96% 44% 100% 42%
Ts10 100% 32% 89% 47%
mean 94,2% 42,2% 90,5% 45,5 %√
σ2 7 16 8 15
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8.4 Detection of intestinal motility using block-

based classification

The goal of this experiments is the recognition of image contractions among a

set of images, representing several scenarios, extracted from different videos.

In this set of experiments we present a novel method to discriminate con-

traction images in a video, classifying each block in the image into one of a

set of fixed categories. We propose a 2-step approach to solve this problem,

first estimating image classes through a preliminary block-based classifica-

tion, which provides initial classification of the blocks as belonging to a fixed

class, then performing recognition of contraction/not-contraction by classify-

ing each image using the co-occurrence matrices derived from neighborhood

relations. Extensive results are presented comparing several methods for

blocks classification, image features extraction, etc. The performance of the

method is evaluated across the number of hits reached, and finally is com-

pared to the performance of the previous methods implemented. For these

experiments the conclusion is that the method needs further investigations

because it does not achieve the best results.

8.4.1 Preliminary classification

As previously described, images are pre-processed and for every frame only

the central square is considered, discarding the black area and the textual

information. The first step is the building of the training set, constituted

by 40 images extracted from different WCE videos. Every image is divided

into 25 blocks of 32 × 32 pixels and each block is labelled from the expert

as belonging to a specific class, that are fixed as follows: 0 corresponds to

a block representing normal mucosa; 1 corresponds to a region containing
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a wrinkle; 2 is represented by an obscure region that can be assimilated to

a lumen; 3 corresponds to an image with residuals and finally 4 presents

intestinal bubbles.

1

0
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1

1 1 1

1 1

1

1 1

1 1

0 1 1 1 0

0 1 0 0 1

1

(a)

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

(b)

0 1 0 0 0

1 2 1 0 0

1 1 1 0 0

1 1 0 0 0

0 0 0 0 0

(c)

Figure 8.14: Samples of blocks labelling of the training set.

In Table 8.9 the statistics over the 40 images of the training set are

reported.

Table 8.9: Percentage of classes in the training set
Img class 0 class 1 class 2 class 3 class 4 Total

Total 38,1% 38,3% 1,3% 11,9% 10,4% 100%

Statistics show that most blocks represent normal mucosa or an arc. For

every frame a further label (0, 1) is assigned, it indicates if the image is a

contraction or not. As control set a number of 5876 frames is considered.

The classification step has been obtained extracting first the features for

both training and control set and then applying a classification algorithm to

reach the representation of the control set by mean of a set of visual words,

according to the classes described above. The features considered for this set

of experiments are chosen among: hue, saturation, intensity, high frequency

energy content to extract information about colour. For texture extraction

Gabor filters, LBP filters and Drog filters are alternatively applied.
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Classification, achieved appyling a leave-n-out cross-validation, is per-

formed using essentially the standard K-NN and the Self Organizing Maps

(SOM) obtaining a representation of every image by mean of the classification

of his blocks.

8.4.2 Extracting spatial local features

Interpreting endoscopic images is still a significant challenge, especially since

one single still image may not always contain enough information to make

a robust diagnosis. To aid the physicians, some local feature-based retrieval

methods are proposed to provide, given a query image, the recognition of

contractions images. The central idea of this method is explained in [92]

in which authors combine image retrieval and mosaicing for endomicroscopic

images using a spatial criterion derived from the co-occurence matrix of local

features.

Bag of Visual Words (BVW) method has been successfully used in many

applications of Computer Vision. For example, on a well-defined non medical

application, by using this method on a large variety of images of natural or

artificial textures.

The BVW method, as described in section 5, aims at extracting a local

image description that is both efficient to use and invariant with respect to

viewpoint changes, e.g., translations, rotations and scaling, and illumination

changes, e.g., affine transformation of intensity. Its methodology consists

in first finding and describing local features, then in quantizing them into

clusters named visual words, and in representing the image by the histogram

of these visual words. The BVW retrieval process can thus be decomposed

into four steps: detection, description, clustering and similarity measuring,

possibly followed by a classification step for image categorization. A problem
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is that the spatial relationship between the local features is lost in the stan-

dard BVW representation of an image, whereas the spatial organization of

blocks is highly discriminative in contraction images. To extract discrimina-

tive information over the entire image field, the proposed method measures

a statistical representation of this spatial geometry. The spatial organization

of the blocks can be included in the retrieval process because it could be sub-

stantial to differentiate contractions images. This is achieved by exploiting

the co-occurence matrix of the visual words labelling the local features in the

image. Thus, we are able to store in a co-occurence matrix M of size K ×K

the probability for each pair of visual words of being adjacent to each other.

In Figure (8.15) an example of co-occurrence matrix building is illustrated.

In order to best differentiate the images of the contractions from other

images, we looked at the most discriminative linear combination W of some

elements m of M . Similarity is evaluated calculating the χ2 and euclidean

distance to find the model, in the training set, closest to the image query.

Our results show that taking into account the spatial relationship between

local features of images improves the retrieval accuracy.

8.4.3 Results

In this section we present our experimental results conducted over about

6000 images extracted randomly from several WCE videos. As previously

described, training set is builded by 40 frames and the control set by 5876

frames, divided into 25 blocks. In assessing the quality of our experiments

we first determined some parameters before running the preliminary classifi-

cation. These parameters include the combination of features, the value of k

for the K-NN for the initial classification of the blocks and the value of k for

the K-NN for the final classification of frames. We tested that for the pre-
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liminary classification the best value for k is 1 and for the final classification

is 5. The dataset has been normalized before the preliminary classification.

Table 8.10: Percentage of hits reached using different features
Features Hits

H,S, I, hfc,Drog, LBP81, Gabor2200, Gabor221690, R,G,B 76.41%

H,S, I, hfc,Drog,Gabor2200, Gabor221690 76.48%

H,S, I, hfc,Gabor2200, Gabor221690, Gabor2232135 71.80%

R,G,B, hfc,Drog,Gabor2200, Gabor221690 72.39%

Our experimental results indicate that the techniques discussed here are

promising but are not the best. Our future work in this area will include

a better choice of features for the initial blocks classification. The main

problem checked is that the labelling of a block of 32×32 pixel presents itself

ambiguity. Hence the automatic classification of blocks reports many errors.

Future work will explore the possibility to change the dimension of the blocks

and to introduce the correlatons analysis to capture the relationship between

the spatial correlation of all possible pairs of visual words as a function of

distance in the image. Correlograms capture both local and global shape

information, both short and long range spatial interactions. This makes

correlograms suitable to represent the whole object or just a part of it.
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(a)

(b)

(c)

Figure 8.15: (a) The spatial relationship feature is given by the co-occurrence
matrix of visual words. (b) Example of calculating the co-occurrence matrix
in a 8-adjacency. (c) Example of calculating the co-occurrence matrix in a
4-adjacency following four directions (0◦, 90◦, 180◦, 270◦).



Chapter 9

CONCLUSION AND

FUTURE WORK

In this thesis we have presented several distinctive methods to tackle the

problem of automatic classification of image frames belonging to a WCE

video. One of the limitation of the application of this diagnostic tool as a

feasible routine is the long annotation time that each exam needs from a

trained specialist. The duration of this assessment typically varies from one

to two hours. Therefore, it is expected to substantially reduce the number

of images to be manually analyzed to provide a diagnose proposal, allowing

a more widespread use of WCE.

In this dissertation we focuses two areas: sudden changes discrimination

and intestinal motility detection in a WCE video.

The general goal of automatic WCE segmentation is to split a video into

shorter sequences each with the same semantic content. In particular we

indicate with ”event” an abrupt and significative change in the video. Our

definition of event includes boundary transitions from an organ to another

one, intestinal juices, bile, bubbles, pathologies, etc. Event detection is the

111
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hardest and most important challenge from a clinical perspective because

clinicians are interested to remove unimportant images and annotate only

the relevant ones. To this aim we have constructed an indicator function

that reveals a sudden change in a video. Several features are extracted and

compared to build a robust classifier. The construction of the function uses

the statistical texton approach. In this thesis we have presented an algorith-

mic information-theoretic method applied to find sudden changes in WCE

video sequences. We also used a modified formula NCD to compute the

distance between the histograms obtained with the textons approach. The

best results can be achieved considering a combination of features related to

colours, texture and energy information. The experiments have been demon-

strated that the proposed method may eliminate up to 70% of the frames

from further processing while retaining all the clinically relevant frames.

Intestinal motility is investigated in the second part of this work. In-

testinal contractions may reveal the presence of different malfunctions. The

definition and extraction of quantitative parameters from endoscopic im-

ages based on colour and texture information is at the core of the proposed

technique. In our experiments we propose the use of the Local Binary Pat-

tern (LBP) to analyze intestinal wrinkled patterns, presenting a comparative

study of diverse features and classification methods. We also discuss the ef-

fects of various parameters on the classification algorithm such as the choice

of filter bank, the size of the texton dictionary as well as the number of

training images used. Furthermore we compare the performance of our tex-

ton classifier with a standard Support Vector Machine. We demonstrated

that the proposed method reach a sensitivity of about 80% and a speci-

ficity of about 99%. The achieved high detection accuracy of the proposed

system has provided thus an indication that such intelligent schemes could
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be used as a supplementary diagnostic tool in endoscopy. Recognition of

image contractions has been studied by classifying each image using the co-

occurrence matrices derived from neighborhood relations. Extensive results

are presented comparing several methods for block-based classification, image

features extraction, etc. The performance of the method is evaluated across

the number of hits reached, about the 71.80%, and finally is compared to the

performance of the previous methods implemented. For these experiments

the conclusions are that the method needs further investigations because it

does not achieve the best results.

The presented tests showed promising results. Future work will address

to achieve more sophisticated classification techniques. We think that the

enrichment of features to characterize WCE images could help to achieve

better results in classification.

Recognizing other kind of events (such as bleedings, cancer, polyps, etc.)

in a video sequence will help the phycisian to reduce the time inspection and

to make capsule endoscopy as a clinical routine. Finally, we are in a con-

tinuous feedback with the experts in order to improve the current methods,

create optimal protocols and include faster and more efficient versions of our

solutions for their use in a real clinical scenario in a close future.
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