
UNIVERSITÀ DEGLI STUDI DI CATANIA

DOTTORATO DI RICERCA IN INFORMATICA – XXIII ciclo

Tesi di Dottorato

Feature Extraction and Randomized
Learning for Image Analysis and

Classification

Tony MECCIO

Tutor Coordinatore

Chia.mo Prof. Sebastiano Battiato Chia.mo Prof. Domenico Cantone

A N N O A C C A D E M I C O 2009-2010



To my family, my girlfriend, my friends, and my co-workers.



Feature Extraction and Randomized Learning for Image Analysis and Classification ii

Contents

1 Introduction 1

I Image Analysis using Interest Points 4

2 Interest Points 5

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Keypoint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Multi-Scale Representations . . . . . . . . . . . . . . . . . . 8

2.2.2 Corner-Based Detectors . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Blob-Based Detectors . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Orientation Assignment . . . . . . . . . . . . . . . . . . . . 22

2.3 Keypoint Description . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Red Eye Removal 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Red Eye Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Color Based . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Shape Based . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Pairing Verification . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Eye Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Flash/no-Flash . . . . . . . . . . . . . . . . . . . . . . . . . 39



Feature Extraction and Randomized Learning for Image Analysis and Classification iii

3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Red Eye Detection through Bag-of-Keypoints Classification . . . . . 41

3.5.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.3 Feature Space Quantization . . . . . . . . . . . . . . . . . . 43

3.5.4 SVM Classification . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 46

4 Robust Image Hashing for Near-Duplicate Image Detection 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Bag of Visual Phrases with Codebook Alignment . . . . . . . . . . . 51

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 54

II Image Classification with Randomized Learning 60

5 Image Classification with Randomized Learning 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Randomized Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Random Decision Forests . . . . . . . . . . . . . . . . . . . 65

5.2.2 Random Ferns . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Semantic Texton Forests . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Random Ferns . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.3 STFerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Dataset Construction 71



Feature Extraction and Randomized Learning for Image Analysis and Classification 1

1. Introduction

Computer Vision, the discipline of empowering machines with the ability to extract

semantic information from visual data, boomed as a field of study in the last few

decades, helped by the impressive evolution of modern computers, which have be-

come powerful enough to easily process large amounts of data. This field of study

is closely intertwined with other disciplines: biological vision, whose physiology is

often taken into account when designing artificial vision systems; machine learning,

since the employed methodologies often involve analyzing large data sets to detect

and learn relevant patterns; artificial intelligence, since understanding the surrounding

environment is essential for fully autonomous agents (e.g., robots) to make decisions

about the actions to perform and receive feedback about the actions performed.

Research in Computer Vision has grown in interest over the years and has devel-

oped a number of novel ideas and methodologies, up to the point where it became of

interest for corporate research, as proven by several collaborations between academic

and corporate research groups dealing with related areas of research all over the world.

However, academic and corporate research are not trivial to join together, since the

latter must deal with a certain range of problems which do not affect, or only affect

marginally, the former:

• Developed applications must generate enough interest for the market, so that the

sustained expenses for the research may (with a certain degree of probability)

be recouped with the profit generated by the products implementing the applica-

tions.
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• Development must follow such a schedule not to miss the “market window”: the

products which implement the developed applications must reach the market in

time so that interest by potential customers is still high.

• When possibile, applications must be designed in such a way that they may be

implemented on existing (or next to be produced) hardware, so that they may

hit the market without requiring (nor waiting) the design and production of new

hardware.

• Moreover, if the applications are designed to be implemented on embedded sys-

tems for small devices (e.g., mobile phones), they must be able to run in power-,

memory- and energy-constrained environments.

It is then of interest to study how Computer Vision techniques and methodologies

may be properly applied in corporate research, taking into account all the related is-

sues. The focus of this thesis is on studies which have been undertaken about designing

Computer Vision applications for image analysis and classification in embedded sys-

tems. This research was funded by STMicroelectronics, AST Imaging, Catania Lab,

where it was performed, and it is part of the activities of the Joint Lab between STMi-

croelectronics and the Image Processing Lab of the University of Catania.

More specifically, Chapter 2 explains a paradigm of image analysis based on the

selection and representation of peculiar interest points. Chapter 3 discusses the prob-

lem of red eye removal in digital photography, surveying the most recent techniques

to address the problem, and detailing an approach based on interest points analysis.

Chapter 4 deals with the problem of image hashing robust to small changes in image

content, and its application in image indexing and forensic analysis. Chapter 5 treats a

methodology of learning based on random extraction of decision functions, and shows
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how it can be used for image categorization. Last, Chapter 6 explores the issues related

to the creation of an image database for training and testing of image classification al-

gorithms.

Publications produced

• D. Ravı̀, T. Meccio, G. Messina and M. Guarnera. Jbig for printer pipelines: A

compression test. In 2009 Computational Color Imaging Workshop (CCIW09),

2009.

• S. Battiato, M. Guarnera, T. Meccio and G. Messina. Red eye detection through

bag-of-keypoints classification. In Berlin Heidelberg 2009, editor, LNCS 5646,

pages 180 - 187, Salerno, Italy, Semptember 2009. 15th International Confer-

ence on Image Analysis and Processing, Springer-Verlag.

• T. Meccio and G. Messina. Image Processing for Embedded Devices - From

CFA data to image/video coding, volume 1, chapter 8. Red Eyes Removal. S.

Battiato and A. Bruna and G. Messina and G. Puglisi, Bentham edition. 2010.

• T. Meccio and G. Messina. Image Processing for Embedded Devices - From

CFA data to image/video coding, volume 1, chapter 9. Video Stabilization. S.

Battiato and A. Bruna and G. Messina and G. Puglisi, Bentham edition. 2010.

• S. Battiato, G.M. Farinella, G.C. Guarnera, T. Meccio, G. Puglisi, D. Ravı̀, R.

Rizzo, Bags of Phrases with Codebooks Alignment for Near Duplicate Image

Detection, in Proceedings of ACM Workshop on Multimedia in Forensics, Se-

curity and Intelligence (MiFor 2010), in conjunction with the 2010 ACM Multi-

media (ACM-MM).



Part I

Image Analysis using Interest Points

4
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2. Interest Points

2.1 Overview

Image analysis, the extraction of meaningful information from images, may be per-

formed in a variety of ways. Global statistics (e.g., about texture or spatial enve-

lope) some general information about the scene [77, 82]. Frequency analysis (e.g.,

Fourier Transform) may give some understanding about the objects represented in the

image [92, 91]. Detecting lines and estimating their 3D position is useful to perform

3D reconstruction of the scene from a single image or set of images [88, 95]. Accord-

ing to each particular application for which image analysis is performed, there is a

lot of information which can be extracted from an image, and a lot of different tools

which can be used to extract it. One of such tools is the selection and characterization

of distinctive points in the image, which are called interest points, feature points or

keypoints.

Interest points are characteristic points of an image which, for their peculiar prop-

erties, especially geometric and photometric invariances, may be used for a number of

applications, ranging from image alignment and motion tracking to object recognition

and image indexing. The main idea behind interest points is the ability to correctly lo-

cate and match corresponding points in different images depicting the same object(s).

For example, given an image pair it is possible to locate feature points in both, then

look for a proper matching between them. It is then possible to create a “panorama”

using the feature point pairs to properly align the images (Fig. 2.1). It is also possible,

given a picture of an object, to find that object in another image, even in a different po-

sition, under a different illumination or from a (slightly) different 3D viewpoint [61,62]
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(Fig. 2.2).

(a)

(b)

Figure 2.1 : Example of feature point matching for panorama composition.

Keypoint-based analysis consists of two steps: keypoint detection [93] and key-

point description [71]. The goal of the first step is to select points in the image which

are:

• distinctive of the scene, that is, its surrounding content carries meaningful infor-

mation;

• well localized, that is, its position is well defined and its surrounding content

varies greatly with a small displacement of the point;

• repeatable, that is, it is selected in other images of the same object/scene, even

under a certain degree of transformations.
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(a)

(b) (c) (d) (e)

(f)

Figure 2.2 : Example of object detections using interest points. (a): Original scene;
(b) through (e): objects to detect; (f): detection results.
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The goal of the second step is to provide a representation of the visual content

surrounding each keypoint which is:

• discriminative, so that descriptors of different keypoints are very different;

• stable, so that descriptors of corresponding keypoints in different images are

very similar (therefore easily matched).

For repeatability and stability, it is extremely important for keypoints to be invari-

ant to a wide range of transformations which may occur between different images of

the same object(s) or scene. Among the most common are translation, scaling, rotation,

illumination changes and viewpoint changes. While translation is trivially addressed,

since keypoint detection is homogeneous across the image and all subsequent analysis

is performed relative to the estimated position of the keypoint, the other transforma-

tions are to be taken into account, either in the detection or in the description step.

2.2 Keypoint Detection

2.2.1 Multi-Scale Representations

The detection of keypoints, that is, the fact that certain points of the image are selected

to be points of interest, depends upon their “surrounding” content. This poses the

problem of what is meant by “surrounding”: more specifically, how close a point can

be to be considered part of the “surrounding content”, or equivalently, how large the

“neighborhood” of each point is. Defining a priori a certain size for the neighborhood

is not an acceptable choice, except in very peculiar cases, because it causes only image

structures at or near that particular size to be properly detected, while smaller or larger

structures are typically missed (smaller ones give low responses, larger ones cannot be
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properly detected as a whole). Moreover, corresponding keypoints in different images

may be present at different scales, due to a global transformation of the object/scene.

It is then necessary to adopt strategies which consider suitable image structures at

different scales. This goal is usually achieved by considering resampled versions of

the original image at different scales and/or using variable-sized operators to detect the

keypoints.

One multi-scale representation of images is the Gaussian Pyramid [28]. It consists

in a set of down-sampled versions of the original image (Fig. 2.3). In this represen-

tation, the first level is the original image, and each subsequent level is obtained by

smoothing and sub-sampling the previous one. Given an image:

I : R2 → R, (2.1)

its Gaussian Pyramid is defined as:

P : R2×N→ R (2.2)

P(x,y,0) = I (x,y) (2.3)

P(x,y,n+1) = S (G(x,y,σ)∗P(x,y,n)) , (2.4)

where S is a sub-sampling operator, G(x,y,σ) is the 2-dimensional Gaussian kernel

with standard deviation σ , and the convolution is computed along the x and y axes.

Generally, at each level the image dimensions are halved, and σ = 2.
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(a) (b) (c) (d)

Figure 2.3 : Four levels of a Gaussian pyramid.

Another way to produce a multi-scale representation of an image is the scale-

space [97, 57, 60]. It is based upon a continuous scale parameter. It is obtained by

convolution of the image with Gaussian kernels of increasing standard deviation σ :

L : R2×R+ → R (2.5)

L(x,y,0) = I (x,y) (2.6)

L(x,y, t) = G
(
x,y,

√
t
)∗ I (x,y) , (2.7)

where t is the scale parameter. The idea underlying the scale-space representa-

tion is the creation of a family of “low-pass” images, whose fine-scale information is

progressively suppressed (Fig. 2.4).
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(a) (b) (c) (d)

Figure 2.4 : Four scales of a scale-space.

The 2-dimensional Gaussian function is separable in the product of the two 1-

dimensional components:

G(x,y,σ) =
1

2πσ 2 e
−x2−y2

2σ2 =
1√

2πσ
e
−x2

2σ2
1√

2πσ
e
−y2

2σ2 = g(x,σ)g(y,σ) , (2.8)

where g(·,σ) is the 1-dimensional Gaussian kernel with standard deviation σ . This

allows to evaluate a 2-dimensional convolution by cascading two 1-dimensional con-

volutions, which is computationally much less expensive to compute:

G(x,y,σ)∗ I (x,y) = (2.9)

=
∫ +∞

−∞

∫ +∞

−∞
I (ξ ,υ)G(x−ξ ,y−υ ,σ)dξ dυ =

=
∫ +∞

−∞

∫ +∞

−∞
I (ξ ,υ)g(x−ξ ,σ)g(y−υ ,σ)dξ dυ =

=
∫ +∞

−∞

(∫ +∞

−∞
I (ξ ,υ)g(x−ξ ,σ)g(y−υ ,σ)dξ

)
dυ =

=
∫ +∞

−∞

(∫ +∞

−∞
I (ξ ,υ)g(x−ξ ,σ)dξ

)
g(y−υ ,σ)dυ =

= I (x,y)∗g(x,σ)∗g(y,σ) ,

where the two 1-dimensional convolutions are computed along the respective axes.
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When the scale-space is precalculated at certain scales, to speed up its construction

and any subsequent calculation the image may be sub-sampled at regular scale inter-

vals, generating sets of images called octaves (Fig. 2.5). Generally, each octave has

half the height and width of the previous one, and is filtered with the same Gaussian

kernels, but the corresponding scales are higher: halving both image dimensions is

equivalent to doubling the standard deviation of the kernels, which means increasing

the scale parameter by a factor 4, which is consistent with the size of images decreasing

to one quarter.

Figure 2.5 : Subdivision of the scale-space into octaves.

If the detector is based on derivatives (and it usually is) it is possible to use an

alternative method based on the derivatives of the Gaussian. To that purpose, it can be

shown that blurring and then differentiating an image is equivalent to differentiating

the Gaussian kernel:

Lx(x,y, t) = (2.10)

=
∂
∂x

(
G

(
x,y,

√
t
)∗ I (x,y)

)
=

∂
∂x

(
G

(
x,y,

√
t
))∗ I (x,y) = Gx

(
x,y,

√
t
)∗ I (x,y) .
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The same applies to the derivatives with respect to the y axis, and for any subse-

quent order of derivatives, both pure and mixed. It is then possibile to build a family

of Gaussian differentiation kernels (Fig. 2.6). The scale parameter t is also called dif-

ferentiation scale.

Figure 2.6 : Family of Gaussian differentiation kernels. Top row: G, Gx, Gy, Gxx, Gxy.
Bottom row: Gyy, Gxxx, Gxxy, Gxyy, Gyyy.

Convolution with Gaussian differentiation kernels, in the same way as seen above

for Gaussian kernels, is separable (at any order). Thus, it is possible to perform two

1-dimensional convolutions instead of a 2-dimensional one. The differentiation order

of each 1-dimensional Gaussian is the same as the 2-dimensional kernel along the

corresponding axis.

The differentiated Gaussian scale-space may be precalculated, possibly subdivid-

ing it into octaves as seen above. Its memory requirement is of course higher than

the simple Gaussian scale-space, but a greater amount of pre-made calculations is pro-

vided for the algorithms to use. As an alternative, it is possible to compute the Gaussian

derivatives “on the fly” each time they are needed. Thus, the trade-off between speed

and memory requirements of scale-space-based analysis may be customized for each

system.

Another convenient property of Gaussian differentiation kernels is provided by the

linearity of the convolution operator, which allows to define more complex operations
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by directly precalculating the kernels, as is the case of the Laplacian-of-Gaussian op-

erator (see Sec. 2.2.3).

Regardless of the method used to obtain a multi-scale representation, it is impor-

tant, for the reasons explained above, that the search for keypoint is performed in a

wide range of scales. The scale found for each keypoint must be also taken into ac-

count when computing descriptors, either by considering image data at the appropriate

precalculated scale or by computing pixel intensities and/or derivatives applying the

appropriate Gaussian smoothing.

2.2.2 Corner-Based Detectors

Corners are characteristic points, which for their nature are good choices for feature

points. The Harris corner detector [44] considers as an estimate for the ”cornerness”

of a point the weighted SSD (Sum of Squared Differences) function between its local

neighborhood and a shifted neighborhood:

SSD(x,y) = ∑
(u,v)∈W

w(u,v)(I (u+ x,v+ y)− I (u,v))2, (2.11)

where W represents the weighting window centered over the point of interest and

w(u,v) is the weight associated to each pixel. Usually a Gaussian function is used,

to avoid abrupt transitions between pixels inside and outside the window. To avoid

isotropy problems which arise from directly calculating the SSD from the values of

nearby pixels, the Harris detector considers the first-order Taylor expansion centered

on (u,v):

I (u+ x,v+ y)≈ I (u,v)+ Ix (u,v)x+ Iy (u,v)y. (2.12)
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Applying this approximation, the weighted SSD becomes:

SSD(x,y)≈ ∑
(u,v)∈W

w(u,v)(Ix (u,v)x+ Iy (u,v)y)2, (2.13)

the squared sum may be written in matrix form:

SSD(x,y)≈ (2.14)

≈ ∑
(u,v)∈W

w(u,v)
[

x y
][

I2
x (u,v) Ix (u,v) Iy (u,v)

Ix (u,v) Iy (u,v) I2
y (u,v)

][
x
y

]
=

=
[

x y
]

A
[

x
y

]
.

The matrix A thus defined:

A = ∑
(u,v)∈W

w(u,v)
[

I2
x (u,v) Ix (u,v) Iy (u,v)

Ix (u,v) Iy (u,v) I2
y (u,v)

]
(2.15)

is called autocorrelation, second-moment or Harris matrix, and describes how the

values of the pixels vary in the neighborhood of the point being considered. To main-

tain isotropy, the eigenvalues of A are considered. These eigenvalues are proportional

to the principal curvatures of the image around the point, and describe (in a rotation

invariant way) its cornerness. Three cases may be considered:

• if both eigenvalues have small values, the point belongs to a flat region;

• if one of the eigenvalues is big and the other is small, the point belongs to an

edge;

• if both eigenvalues are big, the point belongs to a corner.
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To avoid directly computing the eigenvalues, since an estimate of their magnitude

is needed rather than their exact values, a corner response function is used, defined as:

R = det(A)− ktr(A)2 , (2.16)

where k is a tuning parameter usually set in the range [0.04,0.06]. Since the de-

terminant of A is the product of its eigenvalues, while the trace is their sum, in order

for the R function to have an high value both the eigenvalues must be big, otherwise

the negative term is larger than the positive one. The Harris corner detector selects as

interest points the local maxima of R which surpass a certain threshold. Varying the

threshold, it is possible to extract a variable number of points.

The Harris corner detector aforementioned is not scale-invariant, since it uses punc-

tual differentiation and uses a fixed-size weighting window. To overcome this draw-

back, the multi-scale Harris corner detector can be used. It basically consists of an

adaptation where the derivatives are computed in the scale-space (using one of the

methods seen earlier) and the weighting window is sized accordingly:

A = t ∑
(u,v)∈WI

wI (u,v)
[

L2
x (u,v, t) Lx (u,v, t)Ly (u,v, t)

Lx (u,v, t)Ly (u,v, t) L2
y (u,v, t)

]
; (2.17)

the square of standard deviation of the Gaussian weighting window is called inte-

gration scale, and is usually proportional to the differentiation scale (e.g. by a factor

2), to avoid introducing an unnecessary degree of freedom in detection of the corners.

The t which multiplies the entire matrix acts as a normalization factor, and is used to

obtain coherent ranges of values at different scales.

The multi-scale Harris corner detector, if applied independently at different scales,

detects the same corners multiple times, at a different position for each scale. It is
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then necessary to select the characteristic scale of each corner. The simplest approach

is to look for the local maxima of the cornerness function with respect to x, y and t.

However, this does not yield satisfactory results, since in lots of cases the cornerness

does not reach a well defined maximum along the scale axis, then the corresponding

corners are not detected. This problem is solved by the hybrid Harris-Laplace detector

(see Sec. 2.2.3).

2.2.3 Blob-Based Detectors

Blobs, in the context of interest point detection, are a geometrical concept in some

extent complementary to corners. Blobs are approximatively circular regions whose

intensity is distinctively higher or lower than those of their surrounding. Since their

position is well defined, they can be used as interest points.

An useful operator to detect blobs is the Laplacian operator:

∇2I (x,y) = Ixx (x,y)+ Iyy (x,y) . (2.18)

It has big (positive or negative) values in points whose value is very different from

its neighbors.

Using the Gaussian differentiation kernels to calculate the second-order derivatives

(or, equivalently, computing derivatives directly in the precalculated scale-space), and

normalizing the response across scales by multiplying by t, the Laplacian-of-Gaussian

(LoG) operator is obtained:
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t∇2L(x,y, t) = t (Lxx (x,y, t)+Lyy (x,y, t)) = (2.19)

= t
(

∂ 2

∂x2 G
(
x,y,

√
t
)∗ I (x,y)+

∂ 2

∂y2 G
(
x,y,

√
t
)∗ I (x,y)

)
=

= t∇2G
(
x,y,

√
t
)∗ I (x,y) .

The LoG operator has high responses (in absolute value) in presence of blobs

whose size is near t. This allows to find not only the position, but also the charac-

teristic scale of each blob. The selected keypoints are, then, the local extrema (maxima

and minima) of the LoG function with respect to x, y and t. By imposing a thresh-

old on the absolute value of the function, low contrasted (then unstable) extrema may

be discarded. Moreover, since this operator has high responses in presence of edges,

which is usually not desirable since they are not well localized, a further filtering may

be applied, based on the Hessian matrix of the LoG function [62]. Given the Hessian

matrix:

H (x,y, t) =
[

Lxx (x,y, t) Lxy (x,y, t)
Lxy (x,y, t) Lyy (x,y, t)

]
(2.20)

its eigenvalues are proportional to the principal curvatures of the LoG function

around the point, similarly to what seen in Sec. 2.2.2 for the second-moment matrix. It

is then desirable that the ratio between the highest and the smallest eigenvalue does not

exceed a certain threshold. Assuming that the determinant of H is positive (otherwise

the point is a saddle rather than a blob), be α the eigenvalue with the highest magnitude,

β the other one, and r = α/β , the following relationships hold:

tr(H)2

det(H)
=

(α +β )2

αβ
=

(rβ +β )2

rβ 2 =
(r +1)2

r
. (2.21)
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Since the quantity (r +1)2 /r increases monotonically with r, to impose a maxi-

mum threshold on r it is sufficient to impose a corresponding threshold on it to select

the final keypoints.

The LoG operator can also be used in conjunction with the Harris corner detector.

As seen in Sec. 2.2.2, searching for the local maxima of the cornerness function with

respect to x, y and t does not yield satisfactory results. Instead, the LoG operator is

much more accurate when selecting the characteristic scale of corners. This hybrid

combination of detectors is called Harris-Laplace detector, and selects feature points

which are simultaneously local maxima of the cornerness function with respect to x

and y and local extrema of the LoG over t.

An operator which is often used to approximate the LoG is the Difference-of-

Gaussians (DoG). It consists in subtracting two subsequent scales of the scale-space

representation to obtain a band-pass representation which only contains details at a

certain scale. This is very efficient when the scale-space is preconstructed (possibly

with octaves) but the derived scale-space is not, because it is very fast to compute and

does not require subsequent differentiation to extract keypoints.

The fact that the DoG approximates the LoG can be shown using the heat diffusion

equation (parametrized, for convenience, in terms of σ rather than t) [62]:

∂G(x,y,σ)
∂σ

= σ∇2G(x,y,σ) ; (2.22)

then, assuming that two subsequent scales are σ and kσ , with constant k, and using

a finite difference to approximate the derivative:

σ∇2G(x,y,σ) =
∂G(x,y,σ)

∂σ
≈ G(x,y,kσ)−G(x,y,σ)

kσ −σ
(2.23)
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from which follows:

G(x,y,kσ)−G(x,y,σ)≈ (k−1)σ2∇2G(x,y,σ) . (2.24)

This shows that, when subsequent scales are spaced by a constant factor k, the DoG

operator produces an approximation of the LoG, except for a constant coefficient k−1.

It does not affect extrema location, which can be performed simply by comparison of

each point not only in the adjacent positions, but also in the adjacent scales. A further

refinement of the pixel position may be obtained by applying a quadratic interpola-

tion to the DoG function at the extremum and then looking for the extremum of the

interpolated function [62].

Another detector is based of the determinant of the Hessian matrix of the image:

detHI (x,y) = Ixx (x,y) Iyy (x,y)− Ixy (x,y)2 . (2.25)

This determinant has high positive values in one point when the intensities of the

neighborhood pixels vary with the same sign along both principal curvatures. Using

the Gaussian differentiation and applying the normalization factor t2:

t2 detHL(x,y, t) = t2
(

Lxx (x,y, t)Lyy (x,y, t)−Lxy (x,y, t)2
)

. (2.26)

This function has local maxima in presence of blobs whose size is near t. Imposing

a minimum threshold, it is possible to discard low contrasted keypoints. Ill-localized

blobs (situated along edges) are automatically filtered out, since in this cases one of

the eigenvalues has a small value, therefore the determinant is not high.

To select the characteristic scale of the keypoints, local maxima over x, y and t

may be looked for. However, as is the case with the Harris detector, best results are
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obtained using the Laplacian operator to select the scale: this hybrid detector is called

Hessian-Laplace.

Another keypoint detector, called Maximally Stable Extremal Regions (MSER), is

based on the thresholding operation [67]. Differently from others, it does not process

derivatives in the scale-space, but acts directly on the pixels of the original image.

It extracts segmented regions rather than blobs, however, since the regions are well-

contrasted with the surrounding content, they share some properties with blobs, and a

circular keypoint can be fitted on each region to make it behave like other detectors.

The thresholding operation transforms an image in a binary map (often represented

as a black/white image) which includes only the pixels whose intensity is greater than

a certain value th. When this value is lowered from the maximum (white) to the mini-

mum (black) value, the thresholded image includes more and more pixels, which form

connected regions which increase in area and merge together. Such regions are called

extremal regions, since their intensity is greater than their surrounding. If a region is

well-defined, the number of pixels it includes varies slowly with th. Therefore, the

extremal regions are considered maximally stable, and selected as interest point, if the

variation of their area with respect to th, normalized with respect to the area, reaches a

local minimum. Be Qth an extremal region with respect to th, if the function:

q(th) =
|Qth−∆\Qth+∆|

|Qth|
(2.27)

has a local minimum in th∗, then Qth∗ is an MSER. All regions found as MSERs,

for all possible values of th, are selected. Subsequently, the image is converted to

negative and the process is repeated, to select also extremal regions which are darker

than the surrounding content.
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A number of other keypoint detectors exist in the recent literature [93], each with

its own strengths and weaknesses. Some of them were also adapted to extract elliptical

keypoints, thus also gaining invariance to affine transformations, which are typical

under viewpoint changes of planar objects [72]. It is worth noting that getting elliptical

keypoints is also possible with the MSER detector, since it is sufficient to fit an ellipse

instead of a circle on each detected region.

2.2.4 Orientation Assignment

As seen in Sec. 2.1, keypoints must be invariant to a wide array of transformations,

among which is rotation. Since, generally, the descriptors used with keypoints are not

rotation invariant, that is, the information they gather from pixels are not only depen-

dent on the distance between the pixels and the keypoint center, but also on their angle,

each keypoint must be assigned an orientation in such a way that it is covariant, with

a good degree of reliability, with the rotation that the object may undergo between

different images. In this way, by rotating the descriptor accordingly (or, equivalently,

by rotating the pixels underlying the keypoint before feeding it to the description algo-

rithm), the keypoint description can be made rotation invariant.

Orientation assignment is usually performed based on the orientation of the local

image gradients around the keypoint, since it is a feature which rotates coherently with

the object (except for parts not belonging to the object itself, like background objects

and occlusions) and is robust under illumination changes. The simplest approach is

to compute the average of the orientations of image gradients around the keypoint,

weighted by their magnitude and possibly by a Gaussian function to give more impor-

tance to nearest pixels.
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A more robust approach [62], which discards outliers and accounts for the possi-

bility of more than one dominant orientation, which in turn increases stability, consists

in creating a histogram of orientations, which covers all 360 degrees (usually with 36

bins). Each gradient added to the histogram is weighted according to its magnitude

and a Gaussian weighting window. The highest peak and other peaks with at least

80% value of the highest are selected as dominant orientations. If more than one ori-

entation is chosen, the keypoint is replicated, with one instance for each orientation.

A parabolic fitting is performed on each peak, considering the peak itself and the two

adjacent bins, to provide more accuracy in determining the orientation.

2.3 Keypoint Description

The most simple keypoint descriptor is the set of values of the local image patch,

centered, sized and rotated according to the keypoint position, scale and orientation. It

is then resized to a fixed (usually small) size, to have a constant-dimensional descriptor.

The local patch is sensitive to illumination changes, thus to measure similarity between

patches their correlation can be used:

r(I1, I2) =
1

wh

w−1
∑

x=0

h−1
∑

y=0

(
I1 (x,y)− I1

)(
I2 (x,y)− I2

)

σI1σI2

, (2.28)

where w and h are, respectively, the width and height of the patches, I1 and I2 are

the averages of the values of the patches, and σI1 and σI2 are the standard deviation of

the patches. By subtracting the average value and dividing by the standard deviation,

invariance to linear changes in brightness and contrast is achieved.

The most widespread keypoint descriptor in literature is the SIFT descriptor [61,

62]. Although the name “SIFT” (Scale Invariant Feature Trasnform) was originally
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given to an entire keypoint-based object recognition methodology, the employed de-

scriptor was widely used afterwards, and took the name on its own. The descriptor

consists in a set of histograms arranged in a 4x4 square matrix around the keypoint

(Fig. 2.7(a)). Each histogram overlays 4x4 pixels (at the keypoint scale) and accumu-

lates the orientation of the gradients beneath it, weighted by their magnitude and by

a Gaussian window centered on the keypoint. To avoid abrupt transition effects, a tri-

linear interpolation is used to distribute each value on the nearest two bins (along the

orientation axis) of the nearest four histograms (along the x and y axes). The resulting

128-dimensional vector is then normalized to unit Euclidean lenght, to be invariant to

linear contrast changes (the gradients are, by themselves, invariant to constant bright-

ness changes). To achieve some robustness to non-linear illumination changes (which

usually have a noticeable impact on the magnitude but not on the orientation of gradi-

ents), if there are any values greater than 0.2, they are thresholded to 0.2 and the vector

is normalized again.

A variant of the SIFT descriptor is the Gradient Location-Orientation Histogram

(GLOH) descriptor. It works in the same way as the former, accumulating magni-

tude of local gradients in histograms, but it has a “dartboard”-like shape, with one

histogram at the center and two concentric annuli extending outwards, each divided in

8 histograms (Fig. 2.7(b)). Each histogram has 16 bins which, multiplied by the 17

histograms total, amounts to a 272-dimensional vector.

Another commonly used descriptor, which was invented with a priority on effi-

ciency, is the Speeded Up Robust Features (SURF) descriptor [22, 21]. Apart from

other simplifications which the authors made, like the use of integral images and box-

shaped approximation to Gaussians to detect keypoints, the SURF descriptor considers

a 4x4 square matrix of histograms which cover 20x20 pixels. Instead of considering the
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(a) SIFT (b) GLOH

Figure 2.7 : Schematic representation of the two descriptors.

orientation of gradients (like SIFT and GLOH), the SURF descriptor is based upon the

Haar wavelets [64], which in practice consist in computing simple pixel differences, in

one direction, at the keypoint scale. This is done independently for the horizontal and

vertical direction, which increases robustness to noise. For each direction, the absolute

values of the Haar wavelets are also accumulated. Thus, each histogram accumulates

four values: ∑dx, ∑ |dx|, ∑dy, ∑ |dy|. The samples are weighted by a Gaussian win-

dow centered on the keypoint center, in the same way as the SIFT descriptor. The 64-

dimensional vector is then normalized, to obtain invariance to contrast changes (pixel

differences are natively invariant to brightness changes).

Other descriptors exist in recent literature which may be useful for keypoint-based

image analysis [71]. Color information may be included in the keypoint description,

tripling the dimensionality of the descriptors instead of considering grayscale pixel

intensities, or by searching for ways to exploit color information more robustly [15].

To obtain more compact representations, Principal Component Analysis [53] can be

applied to the descriptor, using a reference dataset to pre-compute the basis of the

reduced-dimensionality space into which descriptors are to be projected [55]. Software
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is available on the Internet which allows to experiment with the keypoint detectors and

descriptors discussed in this chapter and many others [3, 5, 11, 7, 12].
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3. Red Eye Removal

3.1 Introduction

Red eye artifacts are a well-known problem in digital photography. They are caused

by direct reflection of the light of the flash from the blood vessels of the retina through

the pupil to the camera objective. When the flash is fired, light reflected from the

retina forms a cone, whose angle α depends on the opening of the pupil. Be β the

angle between the flash-gun and the camera lens (centered on the retina), the red eye is

formed if the red light cone hits the lens, that is, if α is greater than β (Fig. 3.1). Small

compact devices and point-and-click usage, typical of non-professional photography,

greatly increase the likelihood for red eyes to appear in acquired images.

Eye Red Eye Cone� �
(a)

Eye Red Eye Cone� �
(b)

Figure 3.1 : The red eye phenomenon depends upon various factors, including the
distance between the flashgun and the objective and the opening of the pupil.

High-end cameras often have a separate flashgun with a long bracket, which spaces

out the flash from the lens, reducing the probability for red eyes to appear. Another
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possible measure is to make additional flashes before taking the photograph (pre-flash).

This method, first proposed by Kodak [73], gives eyes time to react and shrink and is

quite effective, but has the disadvantage of greatly increasing power consumption, and

to be somewhat uncomfortable to people.

Red eye prevention methods reduce the red eye probability but cannot remove

it entirely. Most of the times the acquired pictures must be corrected during post-

processing, which is a very challenging task: red eyes vary in shape and color, and even

in position and size relative to the whole eye. Sometimes light is reflected on a part of

the retina not covered with blood, creating a yellow or white reflection (golden eyes).

Some examples of the variability of the phenomenon are shown in Fig. 3.2. Designing

a system which can effectively cope with such variability is very difficult [38, 39, 68].

(a) (b)

(c) (d)

Figure 3.2 : Examples of the variability of the red eye phenomenon. Golden eyes are
also visible.

Red eye removal requires first reliable detection, then proper correction. Detection

methods are divided into semi-automatic methods, which ask the user to manually

localize and point the red eyes, and automatic methods, which detect the red eyes
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themselves. In the first case the eyes are manually selected using a visual interface

(e.g., Adobe Photoshop [2], Corel Paint Shop Pro [4], ACDSee [1], etc.). Eyes are

easy to localize for men, but requiring manual intervention for every picture taken

is undesirable for non-professional usage; moreover, on mobile devices, it may be

difficult to have such an interface.

Automatic methods attempt to find red eyes on their own. They are easier to use

and more appealing, however automatic detection of red eyes is a very challenging

task, due to the variability of the phenomenon and the difficulty in distinguishing eyes

from other details.

Red eye correction, on the other hand, may be more or less invasive. Some cases

may be addressed with a soft correction, but sometimes a stronger intervention is

needed. The aim is to provide a corrected image which looks as natural as possible,

thus a less invasive correction is preferred when possible.

3.2 Red Eye Detection

The main difficulty in red eye detection of red eyes, as seen in Sec. 3.1, is their great

variability. In the easier cases, the pupil differs from a regular one only by its color.

However, it is not uncommon for the red reflection to spread over the iris and show

an unnatural luminance distribution. Usually a small white glint is also present, rep-

resenting the direct reflection of the flash on the eye and giving the eye much more

naturalness.

Typical red eye detection approaches involve extraction of red zones combined with

skin extraction, shape template matching, and/or face detection. Some approaches also

make use of classifiers to further refine their results.
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3.2.1 Color Based

Color based approaches are the simplest ones. They are based on detecting red zones

which are possible red eyes. In most cases they also detect the human skin, then

consider some criteria about the relative position of red eyes and skin (usually, the

eyes must be surrounded by nearby skin). Some color based approaches also detect the

sclera (the white part of the eye), distinguishing it from the skin. Additional constraints

may be imposed about the geometry of the red zones. This kind of approaches is quite

simple, but does not take into account more complex features like, e.g., the various

parts of the eye or the face.

One of the biggest problems of color-based techniques is characterizing the “red

eye” color. Usually, interesting portions of the color space (corresponding to red, skin

color, etc.) are delimited by hard thresholds, but they may also delimited by soft mar-

gins, giving a fuzzy probability for the color to belong to the region. Finding proper

boundaries for the regions is a challenging task: the color of red eyes is heavily influ-

enced by the type of flash used, the sensor and the processing pipeline. While this is

not a big issue, since the thresholds may be fine-tuned to adapt to the acquisition sys-

tem, there are external factors which may influence the color of the eyes: age, distance,

eye opening, angle, etc. Even one subject in one picture may have two different red

eyes, or a red eye and a regular one (Fig. 3.3).

The red color region may be defined in different color spaces. In the RGB space, a

possible definition is [100]:





R > 50
R/(R+G+B) > 0.40
G/(R+G+B) < 0.31
B/(R+G+B) < 0.36

(3.1)
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(a) (b)

Figure 3.3 : Picture (a) shows two very different red eyes; picture (b) shows one red
eye along with a regular one.

Often, instead of hard thresholds, a Redness function is provided, which is used to

define soft margins for the red color region. Some possible redness functions are [47,

40, 89, 37]:

Redness = (R−min{G,B}) (3.2)

Redness =
R2

(G2 +B2 +14)
(3.3)

Redness =
max{0,(R−max{G,B})}2

R
(3.4)

Redness = max
{

0,
2R− (G+B)

R

}2

(3.5)

A possible alternative is to compare a redness function with a luminance function,

discarding pixels whose luminance is predominant over the redness [96]:

Redness = R− (G+B)/2 (3.6)

Luminance = 0.25R+0.6G+0.15B (3.7)
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RedLum = max{0,2 ·Redness−Luminance} (3.8)

Search for red regions may be performed in other color spaces, such as YCC [81] or

HSL [23]. See Sec. 3.2.4 for a complete example of red eye search and patch extraction

performed in the HSL space.

Given a particular choice for the red color region, it is possible to convert each im-

age into a “redness map”. According to whether the red color region is hard-delimited

or soft-delimited, the redness map is a black-and-white or full-grayscale image (in the

latter case, the redness function is adjusted to the possible maxima and minima of

the redness function, or to the maximums and minimums over each particular image).

Figs. 3.4 and 3.5 show redness maps computed using the above formulas.

Other useful information may be gained by searching for the sclera [94] and select-

ing the zones which were effectively lighted by the flash [35]. Thresholding and mor-

phological operators may be used to combine the information, as shown is Sec. 3.2.4.

3.2.2 Shape Based

Shape based look for eyes based on their shape. Generally, they use shape templates

at different positions and resolutions, in order to search the image for shapes which

may correspond to eye features. Using circular or square templates it is possible to

recognize, e.g., the difference in intensity between the inner pupil and the outer skin

and sclera. Slightly more complex templates may be useful in locating the other parts

of the eye, which helps to assess the presence or the absence of a red eye [63].

Edge detection filters may also be used to extract information about shape. It is

possible to use them in conjunction with color tables to make advantage of both spatial

and chromatic information [84].
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4 : Examples of redness maps. (a) Original image; (b-f) redness maps ob-
tained from (3.1), (3.2), (3.3), (3.4), (3.5), respectively.
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(a) (b)

Figure 3.5 : (a) Redness map obtained from (3.6); (b) redness vs. luminance map
computed according to (3.8).

3.2.3 Pairing Verification

One constraint which can be useful to filter out false detections is eye pairing veri-

fication [85]. It is based on the assumption that every eye is paired with the other

one on the same subject’s face, with appropriate geometric constraints; otherwise, it is

discarded, since it is most probably a false detection.

This approach is effective, since it is very unlikely for two false positives to satisfy

the pairing criteria, but it presents a major drawback: if a face is partially occluded, or

only one eye is red, or even if both eyes are red but one is not detected, the detection

fails, because the paring criteria are not verified (Fig. 3.6).

3.2.4 Example

Explained here is an example of red eye detection procedure. First, the image is con-

verted to the HSL color spaces, with H ∈ [0◦,360◦], S ∈ [0,1], L ∈ [0,1].

The redness map includes the pixels where −60◦ ≤ H ≤ 20◦ and S≥ 0.6. A mor-

phological closing operation is used to “clean” the redness map and fill possible small
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(a)

(b) (c)

Figure 3.6 : In picture (a), only one of the eyes is visible; the red eyes in picture (b) are
very different, and in most cases only one of them will be properly detected; in picture
(c) only one of the eyes is affected by the red eye phenomenon. In all these cases, the
pairing verification will fail.

holes. Afterward, for each connected component in the redness map, some geometrical

constraints are enforced:

• the size Si of the connected region i is within a certain range.

• the binary roundness constraint Ri, of the connected region i is verified:

Ri =
{

true ρi ∈ [Minρ ,Maxρ ]; ηi ≤Maxη ; ξi À 0
f alse otherwise (3.9)

where

ρi = 4π×Ai
Pi

2 is the ratio between the estimated area Ai and the perimeter Pi

of the connected region; the more this value is near 1 the more the shape

will be similar to a circle: a maximum and minimum threshold on ρ is then

imposed.
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ηi = max
(

∆xi
∆yi

,
∆yi
∆xi

)
is the distortion of the connected region along the axes,

which must be below a certain value.

ξi = Ai
∆xi ∆yi

is the filling factor, the more this parameter is near 1 the more

the area is filled.

In Fig. 3.7 all these steps are illustrated. The regions which satisfy all the con-

straints are used to extract the red eye patches candidates from the original input image

(Fig. 3.8). The extracted patches can then be resized to a fixed size for further exami-

nation.

(a) Input image. (b) Red map.

(c) Closing mask. (d) Remaining candidates.

Figure 3.7 : Red patches extraction from a CCD input image.
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(a) True red eyes.

(b) False positives.

Figure 3.8 : Examples of possible candidates after red patches detection.

3.3 Eye Correction

The goal of red eye correction is to remove the red eyes keeping the image as natural

as possible. According to the extent to which the artifact has corrupted the image, the

correction algorithm may need to adjust the hue, brightness, luminance distribution,

and/or even the shape and size of the pupil. Since naturalness of the image is the goal,

it is best to use a minimally invasive technique to correct each case. This also means

that a way to distinguish the gravity of each artifact (either in the detection phase or at

the very beginning of the correction phase) is preferred, in order to adapt the correction

method on a case-by-case basis [65].

3.3.1 Desaturation

In the simplest cases the artifact only consists in the wrong color of the pupil. In these

cases, the optimal solution is desaturating, that is, suppressing (totally or partially) the

chrominance, while leaving intact or slightly lowering the luminance (Fig. 3.9).

A simple way of desaturating red pupils is to replace each pixel with a gray shade
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(a) (b)

Figure 3.9 : In the simplest cases, pupil desaturation produces good results.

at 80% of original pixel luminance [81]. An adaptive desaturation may be performed

in the CIELAB color space by stretching the lightness values of the pupil so that its

darkest point becomes black [43]:

L∗corrected = maxL∗
(maxL∗−minL∗) (L∗−minL∗)

a∗corrected = 0
b∗corrected = 0

(3.10)

When desaturating, the transition between the corrected and uncorrected area may

be noticeable and unpleasant, and some pixels outside the pupil may be incorrectly de-

saturated. To overcome these problems, a Gaussian mask is generally used to modulate

the strength of the correction.

3.3.2 Inpainting

In the hardest cases, a more invasive correction is needed. Often, the distribution

of reflected light is influenced by the direction of the flash with respect to the face.

Sometimes eyes present the “washed out” effect, where the reflected light spreads off

the pupil onto the iris. In these cases a simple desaturation may give unnatural results

(see Fig. 3.10).

It is then necessary to use a more complex method to reconstruct a realistic im-

age of the eye. Inpainting may vary from an adaptive recoloring of red pixels to a
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(a) (b)

Figure 3.10 : When reflected light spreads over the iris, simple desaturation gives
unnatural results.

complete redrawing of iris and pupil [99]. The results, however, can be be unrealistic

(Fig. 3.111).

Figure 3.11 : Correction of washed-out red eyes with an inpainting technique.

3.3.3 Flash/no-Flash

Another way of addressing the red eye problem is the “flash/no-Flash” technique [69],

which aims to combine the advantages of taking a non-flashed picture and a flashed

1Corel Paint Shop Pro Red-eye Removal tool.
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one. The main idea is to take a high-quality flashed picture and a low-quality non-

flashed one, which is used to detect the red eyes and recover the natural colors of the

affected zones (Fig. 3.12 ).

(a) (b) (c)

Figure 3.12 : Flash/no-Flash technique. (a) Dark non-flashed picture used to recover
the correct color of the eyes; (b) high-quality picture affected by red eye artifacts; (c)
corrected picture.

The first picture is shot without flash with high sensitivity, large lens aperture and

with a relatively short exposure time. This yields a poor image, which is however

suitable to help recover the unaltered colors of the eyes. The second picture is taken

with flash immediately after and is the “real” picture to correct. Search for red eye

artifacts is performed in the CIELAB space. The a∗ channel is used as a measure

of redness. For the pixels above a certain threshold, the difference between the a∗

channel in the flashed and non-flashed images is checked against another threshold.

Morphological operators are used to cluster them into blobs, discarding isolated pixels

or very narrow regions. Red eyes are then corrected by considering the color in the

non-flashed picture, applying a compensation for the different color cast of the two

images.
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The approach is simple and effective, but it presents lots of weaknesses. First of

all, the memory and processing requirements double. Moreover, the images may suf-

fer from registration problems, or they may simply be misaligned due to movements

of the hand or of the subjects, which makes this method especially unsuitable for snap-

shot pictures. The illumination may be uneven, which may further confuse the color

comparison between the two images.

3.4 Classification

With research on red eye removal algorithms continuously advancing, more and more

detection techniques adapt a two-step method, consisting in a first candidate extraction

phase and a subsequent classification phase [100,63,84,50,20]. The candidate extrac-

tion phase detects the possible red eyes in the picture, and is much more permissive

than a stand-alone detection technique. This way, it detects a lot of false positives, but

misses very few (if any) red eyes. The classification phase, then, is used to validate

or reject each candidate, according to various features computed over the candidate

patch.

3.5 Red Eye Detection through Bag-of-Keypoints Clas-
sification

In this section a methodology of red eye detection based on interest points is dis-

cussed [20]. It involves extraction of local image features, quantization of the feature

space into a codebook through clustering, and extraction of codeword distribution his-

tograms. A classifier is used to decide to which class each histogram, thus each image,

belongs. Approaches of this kind have been shown to be able to recognize different
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kinds of images in a variety of applications [17, 25].

The main idea is to employ a classification technique to discriminate images repre-

senting red eyes from ones representing false candidates. The input dataset is analyzed

considering a set of well-known keypoint detectors/descriptors, as discussed in Sec. 2.

Support Vector Machine [26, 32] is used as final classifier. Such an approach is shape-

based, thus robust to red image features which often cause false positives in color-based

red eye detection algorithms, and is capable of detecting more complex features than

most template-based methods. This, combined with a color-based red eye candidate

extractor, and/or with a correction technique which leaves non-red zones untouched,

may contribute to a full system robust to both color-based and shape-based false posi-

tives.

3.5.1 Algorithm Overview

The overall algorithm pipeline is depicted in Fig. 3.13. First, keypoints are extracted

from images and descriptors are computed. In this application, the objects to describe

are the various parts of the eye. Thus, it is fundamental to extract features distinctive of

such parts, in order to well discriminate them from parts belonging to false candidates.

To compute a fixed-length vector from each image, local features extracted (which are

variable in number) are counted into a histogram. The bins are distributed across the

feature space in a way such that more populated portions of the space have more bins,

in order to obtain more meaningful histograms. The expression “Bag of Keypoints”,

or equivalently “Bag of Visual Words”, is commonly used to name this type of rep-

resentation, by way of analogy with a bag (the histogram) containing all the interest

points (counted in the different bins).
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Histograms are given as input to a classifier to separate the characteristics of the

histograms of the two classes (eye and non-eye) and to discriminate them with high

accuracy. A training set of labeled images is used to train the classifier and to find the

optimal parameters for it.

Figure 3.13 : The proposed algorithm pipeline. Left to right: Input image, feature
extraction, feature quantization, classification.

3.5.2 Feature Extraction

The keypoint detectors used for the experiments are Harris-Laplace, Hessian-Laplace,

Harris-Hessian-Laplace (combination of both, which is useful since they gather some-

what complementary information), Harris-Affine and Hessian-Affine. The descriptors

used are SIFT and GLOH. SIFT was also tested with the DoG detector, as in the orig-

inal SIFT image recognition pipeline [62].

3.5.3 Feature Space Quantization

Clustering is used to select a meaningful subdivision of the feature space into his-

togram bins. Descriptors from the training set are clustered with the k-means algo-

rithm [45], with k=50. The set of centroids found is used as a “codebook” of repre-

sentative features, and one bin is assigned to each, thus obtaining a finer quantization

in more populated regions of the feature space. Each descriptor contributes to the bin

relative to the closest centroid.



Feature Extraction and Randomized Learning for Image Analysis and Classification 44

In some cases, no keypoints are detected in a given candidate image. Since it al-

most always happens for false candidates, e.g., for blurry background objects, images

without keypoints are considered non-eyes and are discarded from further considera-

tion.

Prior to classification, histograms are normalized in order to make them less de-

pendent to the number of keypoints detected. Then, since the classifier used (see be-

low) considers euclidean distance between vectors, i.e. the 2-norm of the difference,

a trasformation is performed to make this distance more meaningful: histograms are

transformed by taking the square root of each bin. This converts 1-norm normalized

vectors into 2-norm normalized vectors. The dot product between two of these vec-

tors, which is equivalent to the cosine of the angle between them, is the Bhattacharyya

coefficient between the original (1-norm normalized) vectors [31]. This coefficient is a

common measure of similiarity between frequency distributions, and it can be shown

that the euclidean distance calculated this way is proportional to the metric commonly

associated to the coefficient:

BC(v,w) =
n

∑
i=1

√
vi ·√wi . (3.11)

d(v,w) =

√
n

∑
i=1

(vi−wi)
2 =

√
n

∑
i=1

vi
2 +

n

∑
i=1

wi
2−2 ·

n

∑
i=1

vi·wi =

=

√
n

∑
i=1

vi +
n

∑
i=1

wi−2 ·
n

∑
i=1

√
vi·√wi =

=
√

2−2 ·BC(v,w) =
√

2 ·
√

1−BC(v,w) . (3.12)
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In the above formulas, BC is the Bhattacharyya coefficient, d is the Euclidean dis-

tance, v,w are 1-norm normalized vectors and v,w are the corresponding 2-norm nor-

malized vectors.

3.5.4 SVM Classification

Histograms are classified using a Support Vector Machine classifier [26,32]. This clas-

sifier works by finding an optimal separation hyperplane between two different classes

of labeled training vectors and specifying a small number of weighted vectors which

lie on the boundaries of the classes (these vectors are called “support vectors”). Since a

linear separation usually is not meaningful, vectors are usually projected into a higher-

dimensional space and then linearly classified in that space. However, computing the

projected vectors explicitly can be expensive or even impossible. Instead, the problem

can be expressed in a form where the projected vectors only appear in dot products

between two of them. Thus, a common practice is to employ a function which, given

two vectors in the original space, computes the dot product of their projections in the

higher-dimensional space (usually in a much simpler way). This function is named

“kernel”, and this practice is named “kernel trick”. It is proven that any continuous,

symmetric, semidefinite positive function from Rn to R can be used as a classification

kernel.

The kernel used in the experiments is the Radial Basis Function (RBF) kernel,

which is a multidimensional non-normalized gaussian:

K(v,w) = e−γ·‖v−w‖2
2 , γ > 0 . (3.13)

As shown above, the aperture of the gaussian function is controlled by a parameter

γ . This is one of the parameters which must be adjusted in order to obtain the most
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accurate classification for each given training set. The other parameters to find, called

C1 and C2, are penalty factors for outliers in the two classes of the training set. It is

important to carefully adjust them in order to find an optimal tradeoff between accuracy

of the classification and tolerance to outliers, which is important to prevent overfitting.

The two parameters are adjusted independently to achieve more generality.

Optimal parameters are searched with a multi-level grid search using 8-fold cross-

validation for training and testing: first, a grid of parameter triples, spaced evenly in a

logarithmic scale, is tried, then a finer grid covering the parameters who gave the best

results is tried, and so on, up to the fifth level of grid refinement.

3.5.5 Experimental Results

The proposed red eye detection system has been trained on a data set of 4079 image

patches, including 956 red eyes, and tested on a data set of 5797 image patches, in-

cluding 234 red eyes. The sets has been collected from photographs taken with various

sources, including DSLR images, compact cameras and Internet photos, and the im-

age candidates have been extracted using an automatic red cluster detector [19]. This

means that the “eye” class is mostly trained with red eye patches: however, since the

method is shape-based, regular eyes are recognized as well, as red eye artifacts have lit-

tle impact on the luminance. Training on red eyes allows to learn the slight differences

in shape which occur (e.g. biggest and brightest pupils, different luminance distribu-

tion), while classifying regular eyes along with red eyes is not a problem, since regular

eyes have no red pupils to correct, then a color-based correction algorithm can discard

them easily, and a “blind” correction algorithm can desaturate them with almost no

harm.
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Table 3.1 shows results achieved with the different detector+descriptor combina-

tions. Hit rate is the percentage of eyes correctly classified out of the total number of

eyes; False positives is the percentage of false candidates incorrectly classified out of

the total number of false candidates; Overall performance is (Hit rate + (100% - False

positives))/2; Accuracy is the percentage of patches correctly classified out of the total

number of patches.

Table 3.1 : Classification results for each detector/descriptor combination tested.
Detector + Descriptor Hit rate False positives Overall perf. Accuracy

DoG + SIFT 83.3% 8.9% 87.20% 90.78%
HarLap + SIFT 78.2% 12.2% 83.00% 87.47%
HesLap + SIFT 71.8% 7.1% 82.35% 92.12%
HarHesLap + SIFT 82.9% 3.5% 89.70% 95.94%
HarAff + SIFT 70.1% 8.1% 81.00% 91.08%
HesAff + SIFT 82.9% 7.0% 87.95% 92.59%
HarLap + GLOH 75.2% 12.1% 81.55% 87.38%
HesLap + GLOH 80.3% 14.4% 82.95% 85.41%
HarHesLap + GLOH 76.9% 7.3% 84.80% 92.07%
HarAff + GLOH 73.5% 11.9% 80.80% 87.52%
HesAff + GLOH 69.2% 7.3% 84.80% 92.07%

It can be seen from the results that, while there are quite a significant amount of

eyes that are missed, a small percentage of false candidates are misclassified as eyes

(using the best performing detector+descriptor combinations). This is important, since

correction of false positives is one of the biggest problems in red eye removal, thus

it is very important to keep false positives as low as possible. It is also evident how

the blob-based detectors yielded better results than the corner-based detectors. This is

not surprising, as many parts of the eye are more suitable to be extracted by a blob-

like detector (expecially the iris and the pupil). Using both types of detector together,



Feature Extraction and Randomized Learning for Image Analysis and Classification 48

however, helps keep the false positives lower. SIFT performed better than GLOH.

Examples of correct and wrong classifications are shown in Fig. 3.14.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14 : Classification examples obtained with Harris-Affine + SIFT. Top row:
(a), (b), (c) are eye patches correctly classified; (d) has been incorrectly classified as
non-eye. Bottom row: (e), (f), (g) have been correctly classified as non-eyes; (h) is a
false positive.
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4. Robust Image Hashing for
Near-Duplicate Image Detection

4.1 Introduction

The increasing use of low cost imaging devices and the availability of large databases

of digital photos and movies makes the retrieval of digital media a frequent activity

for a number of applications. In particular, image retrieval from large databases, such

as popular social networks, collections of surveillance images and videos, or digital

investigation archives, is a fundamental issue for forensic tasks. Recent estimates about

popular websites [36] report about 4 billion photographs on Flickr [8], with about 4000

uploads per minute. In YouTube [14] approximately 20 hours of video are uploaded

per minute, for a total of about 120 million videos. Facebook [6] proceeds at a rate of

about 22,000 uploads per minute for an estimated 15 billion images. Moreover, among

the other archives used in image forensic, a huge amount of data comes from video

surveillance systems.

During digital investigation (e.g., for copyright violation, child abuse, etc.), hash-

ing techniques are commonly used to index large quantities of images to detect copies

from different archives. However, classic hashing methods (e.g., MD5 [83]) are un-

suitable to find altered copies, even in case of slight modifications (near duplicates).

Classic hashing techniques mainly fail because just a small change in the image (even

a single bit) will, with overwhelming probability, result in a completely different hash

code. For example, two copies of the same image depicting a scene of crime are per-

ceptually identical under small viewpoint changes, partial occlusion, and/or low pho-

tometric distortions, but their hash code is completely different when a classic hashing
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approach is used to check their similarity. This fact could implicate the missing of

important evidences for related investigations. In order to cope with this problem, ro-

bust hashing techniques must be developed: perceptually identical images should have

the same hash value with high probability, while perceptually different images should

have independent hash values.

Recently, some commercial approaches of robust hashing have been proposed for

photos (PhotoDNA [10]) and videos (Videntifier [13]). These techniques make use of

the recent developments in the field of Near Duplicate Image (NDI) retrieval. The defi-

nition of near duplicate depends on the degree of variability (photometric and geomet-

ric) that is considered acceptable for each particular application. Some approaches [56]

consider as NDI images obtained by slightly modifying the original ones through com-

mon transformations such as changing contrast or saturation, scaling, cropping, etc.

Other techniques [48] consider as NDI images of the same scene but with different

viewpoint and illumination.

In the last few years, different image hashing techniques have been proposed in

literature to cope with image retrieval and near-duplicate images detection problems.

Most of these techniques are based on the Bags of Visual Words paradigm [90] to build

a holistic representation of the images. Ke et al. [56] detected near-duplicate images

by employing local descriptors to represent and match images under several transfor-

mations. They used a hash-based indexing technique to efficiently search the descrip-

tor database, then applied an optimized storage layout to further improve efficiency.

Chum et al. [30] proposed two novel image similarity measures for image indexing us-

ing local feature descriptors and enhanced min-Hash techniques. The authors of [29]

introduced a method to combine visual words with geometric information to improve

hashing-based image retrieval and object detection, obtaining a novel algorithm called
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Geometric min-Hash which shows significant advantages against geometrical defor-

mations and occlusions.

Recently, the Bag of Visual Words paradigm has been augmented by using multi-

ple descriptors (“Bags of Visual Phrases”) to exploit the coherence between different

feature spaces in which local image regions are described. Specifically, to reduce the

amount of false matches in the Bag of Visual Words model, the authors of [48] intro-

duced the coherent phrase model. In this model, a local image region is described by

a visual phrase of multiple descriptors instead of a visual word of a single descriptor.

In the Bags of Visual Phrases approach, both feature coherence (local regions are de-

scribed by descriptors of different types) and spatial coherence (multiple descriptors

are obtained from local areas at different sizes) are exploited.

4.2 Bag of Visual Phrases with Codebook Alignment

A further improvement on the Bags of Visual Phrases approach will now be discussed,

which exploits the coherence between feature spaces not only in the image represen-

tation, but also in the codebooks generation [18]. This is obtained by aligning the

codebooks of different descriptors to produce a more significant quantization of the

involved descriptors spaces, which leads to a more distinctive representation. In par-

ticular, instead of separately obtaining each codebook as in [48], to further enforce

feature correspondence we generate the final codebook taking into account the corre-

spondence of the clusters of the involved descriptors spaces.

Taking into account an image I, M local regions are extracted by making use of

some detectors [70] or dense sampling [58]. Each region i is hence described by H
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descriptors φih [71]:

φi = {φi1,φi2, ...,φiH} (4.1)

Considering a vocabulary Vh for each descriptor type, each φih can be associated

with a visual word in Vh and hence φi can be associated with a H-tuple of visual words,

called “visual phrase”:

v = {vh|h ∈ [1,2, ...,H]} (4.2)

where vh is a visual word belonging to the codebook Vh. Each image is then de-

scribed by the frequency distribution of visual phrases. The coherent phrase model

tries to incorporate the coherence across multiple descriptors properly chosen in order

to describe different aspects of the appearance of a local region within an image.

The proposed approach augments the coherent phrase model improving the vocab-

ularies generation step. In [48], H codebooks (one per descriptor type) are created

separately by using a classical clustering approach on each descriptor space. Then the

images are described with a normalized multidimensional histogram in which each bin

is related to a visual phrase. The rationale underlying the proposed apporach is that,

although different descriptors encode different properties of a local region, they rep-

resent the same image area, hence the clustering, and the visual words, are in “some

way” related. So, the coherence of different kind of descriptors should be exploited

also in the vocabulary generation step. The main schema of the proposed approach

is shown in Fig. 4.1 where, for sake of simplicity, only two descriptors (SIFT [61],

SPIN [52]) are shown.
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Figure 4.1 : Bags of Visual Phrases with Codebooks Alignment.

First, the H different descriptors spaces are clustered separately and K visual words

(cluster centroids) are obtained for each vocabulary Vh (one visual vocabulary per de-

scriptor). The orders of cluster labels in all of the clustering are then rearranged ac-

cording to the first one. A K×K similarity matrix between pairs of partitions in two

clustering algorithms is obtained counting the number of elements (local image areas)

they share. The Hungarian algorithm [80] is then used to find the best assignment for

the cluster correspondence problem from the previous obtained similarity matrix. The

correspondences are then used to create H novel vocabularies where visual words are

generated considering the centroids relative to both common and uncommon elements

between aligned clusters. Hence three new visual words (cluster means) per descriptor

space are generated from two aligned clusters considering the operations of intersec-

tion and difference. Notice that, although Hungarian algorithm aligns all the clusters,

some of them can have no common elements (Fig. 4.1). In that case the only two



Feature Extraction and Randomized Learning for Image Analysis and Classification 54

obtained visual words are equal to the original one.

4.3 Experimental Results

In this section the effectiveness of the proposed approach is demonstrated through a

number of experiments on a dataset of NDI captured by hand held digital cameras. The

proposed approach is compared with respect to the coherent phrase model proposed

in [48].

Our system has been trained using a set of 116 images, acquired with different cam-

eras, in different conditions (e.g., illumination, distance from the subjects, etc.), with

high scene variability (indoor, outdoor, natural, artificial, etc.), as shown in Fig. 4.2.

For testing purposes we used two different NDI test sets: a synthetic one and a real

one. The synthetic NDI set consists of 5684 images generated from the training set by

using transformations typically available on image manipulation software (Fig. 4.3).

Specifically, accordingly with [56], the following transformations have been used: Col-

orizing, contrast changing, cropping, despeckling, downsampling, format changing,

framing, rotating, scaling, saturation changing, intensity changing, shearing. Consid-

ering the different parameter settings, for each training image 49 near duplicate copies

have been obtained. The transformations have been performed with ImageMagick [9].

The real NDI test set consists of 182 real images which depict the same subjects as

the training set images (Fig. 4.4). These copies vary, with respect to the training set, in

viewpoint, occlusion, scale, illumination conditions, etc.

Training images have been used for the codebooks generation. First, local interest

points have been detected in these images using the Hessian-Laplace detector [71]. Af-

terward, two different types of descriptors have been extracted on each interest point:

SIFT [62] and SPIN [52]. Since these descriptors are extracted considering different
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Figure 4.2 : Example images from the training set.
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Figure 4.3 : Examples of synthetic near duplicate test images.

Figure 4.4 : Examples of real near duplicate test images.
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image properties (gradient orientation (SIFT) and intensity distribution at different dis-

tance from the center (SPIN)), they are somewhat complementary, hence can be fruit-

fully combined. K-means algorithm (K=500 in our tests) has been then used to produce

the two independent codebooks corresponding to the two involved types of descriptors.

The two obtained partitions have been aligned to generate the new codebooks. Finally,

training images have been represented by visual phrases (a 2D histogram) obtained

considering the new codebooks.

Test images are used to perform queries on the training image dataset. Each test im-

age is represented by a visual phrase histogram obtained considering the aligned code-

books. This representation is then used to find the corresponding image in the training

dataset, by means of a similarity function between bag of phrases histograms. To cope

with partial matching, we use the intersection distance τ defined as follows [42]:

τ(HI,HJ) =
V

∑
v=1

min(Hv(I),Hv(J)) (4.3)

where HI , HJ are two visual phrase histograms and Hv(.) is the vth bin of the

histogram.

Each query is associated to a list of training images. The retrieval performance

is evaluated with the probability of the successful retrieval P(n) in a number of test

queries:

P(n) =
Qn

Q
(4.4)

where Qn is the number of successful queries according to top-n criterion, i.e. the

correct NDI is among the first n retrieved images, and Q is the total number of queries.
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The proposed approach has been compared with the original Bags of Phrases ap-

proach [48]. Results obtained are reported in Fig. 4.5 and Fig. 4.6. In both tests,

the proposed approach outperforms the original Bags of Visual Phrases. The preci-

sion/recall values at top-n=1 are shown in Table 4.1 and Table 4.2. Note that, since

there is only one correct match for each query, the precision and recall for top-n=1

are equal. Finally, Fig. 4.7 shows an example of the first retrieved image on a specific

query.
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Figure 4.5 : Top-n NDI retrieval performance comparison on the synthetic NDI
dataset.

Table 4.1 : Precision/Recall values on the synthetic NDI dataset. The best result is
shown in bold.

Precision/Recall
Hu et al. [48] 0,9664

Proposed Approach 0,9698

Table 4.2 : Precision/Recall values on the real NDI dataset. The best result is shown
in bold.

Precision/Recall
Hu et al. [48] 0,7033

Proposed Approach 0,7308
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Figure 4.6 : Top-n NDI retrieval performance comparison on the real NDI dataset.

Figure 4.7 : A visual example of the first retrieved image on a specific query.
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5. Image Classification with
Randomized Learning

5.1 Introduction

Image classification, the problem of assigning a discrete label to an image from a set of

possible labels [34], is a complex problem which usually employs sophisticated Ma-

chine Learning methodologies, being treated as a supervised learning problem [46].

Such problems are addressed by systems which need to be trained with a set of previ-

ously labeled image examples (called training set). Image categorization engines must

be able to generalize well on the intra-class variation (differences between elements on

the same class), like different lighting condition, viewpoint, differences in the subjects

themselves, etc.

Most of the systems for image categorization use sets of binary classifiers, one for

each image category Ci. In each of the two-class categorization problems, given an

image I, the problem is to understand if it contains a particular visual class Ci or not,

taking into account the representation of I into some feature space f = F (I). From a

statistical point of view, the task of categorization becomes a comparison between two

probability scores:

• P(Ci| f ): the probability of having Ci given the feature vector f ;

• P(Other| f ): the probability of not having Ci given the feature vector f ;

The ratio between the two probabilities may be expressed, by using the Bayes
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theorem [24], as follows:

P(Ci| f )
P(Other| f ) =

P( f |Ci)P(Ci)
P( f )

P( f |Other)P(Other)
P( f )

=
P( f |Ci)P(Ci)

P( f |Other)P(Other)
(5.1)

There are two different classes of approaches to the above equation [33,76,51,98]:

• Discriminative methods directly estimate P(Ci| f )/P(Other| f ), which is called

posterior probability ratio, by finding boundaries of the classes in the feature

space. The ratio acts as a function which directly discriminates the target class

for each image.

• Generative methods learn a model of P( f |Ci)P(Ci), the joint probability dis-

tribution, and make predictions by using Bayes’ rule to calculate the posterior

probability P(Ci| f ). Training data are used to learn a model for the likelihood

P( f |Ci) and the prior distribution P(Ci). The likelihood can be seen as describ-

ing how to generate random instances of an image conditioned on the target

class.

5.2 Randomized Learning

Given a problem to learn and a set of possible functions which can be used to model

the problem, an exhaustive optimal search on the entire space of possible function may

not always be feasible: in some cases it may be simply not computable, in others it

may be very expensive [49]. Moreover, choosing the absolute best function for the

training data, even when possible, may “overfit” the training data, with some loss of

generality with respect to the problem itself.

Randomized learning is a decisional process based on the random extraction of

decisional functions [16]. Given a labeled training set of input data and a set of possible
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functions defined in the domain of the input type, it performs a sub-optimal search in

the function space by randomly extracting a given number of possible functions and

selecting among them the most discriminative one, i.e., the one which best divides the

training data. To measure the “goodness” of the subdivision, the Shannon entropy is

used to measure the set impurity [86]:

E (X) =−
n

∑
i=1

p(xi) log p(xi), (5.2)

where p(xi) is the number of elements of the set X which belongs to the class

i divided by the total number of elements in X , and n is the total number of classes.

Given this measure, the information gain which is achieved by subdividing the training

data in two subsets (by the extracted decisional function) is measured as the drop in

entropy which results from the subdivision:

∆I =−∆E = E (X)− |Xl|
|X | E (Xl)−

|Xr|
|X | E (Xr) , (5.3)

where Xl and Xr are the two resulting subsets. Thus, it is possible to choose, among

the randomly extracted function, the one which maximizes the information gain. An

example is shown in Fig. 5.1.

This type of decisional process is quite fast and straightforward, but of course may

not perfectly divide the training data, even when it is separable. However, as seen

above, overfitting the training data may cause loss of generality, so allowing for a

small misclassification margin is actually a good characteristic.

A single function is almost always not enough to classificate the data: there may

be more than two classes, and in general it is preferable to combine more simpler

functions than to consider a pool of overly complex single functions. So, a strategy to
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Figure 5.1 : Toy example of randomized learning. The decision functions are straight
lines in the plane which divide it in two half-planes. Several lines are tried, and the
best one is chosen. Each resulting half-plane is subject to a subsequent subdivision. A
small misclassification is visible in the last subdivision.
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combine more random decisional functions into a greater decisional structure is needed

to obtain a powerful random-based classification tool.

5.2.1 Random Decision Forests

Decision trees are well-known classification tools which consist in decisional struc-

tures which arrange tests in a tree-like hierarchy [54, 27]. They are quite simple to

run, but are prone to overfitting training data; moreover, the search for optimal training

may be expensive [49]. These characteristic make them well suited for the adaption of

randomized learning.

Random decision trees consist in decision trees whose functions at split nodes are

determined (at training time) using a randomized learning methodology [41]. For each

subtree, learning is iterated recursively considering the corresponding training subset.

Tree growth is stopped at a certain depth, and/or when the information gain falls below

a certain threshold. Leaf nodes are populated with histograms representing the class

frequency distribution for the training data which reach each node. To account for

possible imbalances, each class is weighted with the inverse of the class probability

distribution in the training set. The histogram at each leaf node is used, at test time,

to estimate the probability for the unlabeled input to belong to each class. Since the

information gain is higher for functions which better separate the data, histograms

typically tend to have a high peak for one class. The class with maximum probability

is then chosen as the classification output for the tree (Fig. 5.2).

Random decision trees may suffer from a stability problem: if the decision func-

tions at the highest nodes succeed to capture some characteristics but fail at represent-

ing others, classification in lower nodes may not manage to recover. To overcome this

problem, a common methodology is the creation of a set of random decision trees,
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Figure 5.2 : Classification with a random decision tree. Split functions and leaf his-
tograms are produced at training time.

called random decision forest. By separately considering more trees and averaging

their classification output, stability problems can be easily contained. To reduce the

memory and time requirements of training, and to achieve a further amount of gener-

ality, for each tree a training subset is randomly sampled from the entire training set

(with possible overlap with other subsets).

Random decision forests have been fruitfully employed for many applications,

among which are shape recognition [16], codebooks generation [75, 74] and keypoint

recognition [59].

5.2.2 Random Ferns

Random ferns are decisional structures, invented as an alternative to random decision

forests for keypoint recognition [79, 78], which make use of a considerable number

of randomly extracted decisional functions but does not arrange them in a hierarchical
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structure.

Considering simultaneously a (possibly large) number of decisional functions poses

a remarkable problem in computing the probability histogram for each function com-

bination. Writing this problem as a conditional probability and applying the Bayes’

rule:

P(Ci| f1, f2, . . . , fN) =
P( f1, f2, . . . , fN |Ci)P(Ci)

P( f1, f2, . . . , fN)
. (5.4)

Assuming a uniform prior and factoring out the denominator (which is independent

from the class):

P(Ci| f1, f2, . . . , fN) ∝ P( f1, f2, . . . , fN |Ci) . (5.5)

As stated above, estimating the joint probability for all the functions is usually

not feasible, since it would require computing 2N probabilities to account for every

function combination. Assuming complete independence between the functions makes

the problem much simpler:

P( f1, f2, . . . , fN |Ci)≈
N

∏
j=1

P
(

f j
∣∣Ci

)
. (5.6)

However, this ignores any correlation between functions, which is usually an un-

acceptable approximation. A compromise between the two positions is to consider

some groups of functions, estimate the joint probability for each group, and assume

independence between them:

P( f1, f2, . . . , fN |Ci)≈
M

∏
k=1

P(Fk|Ci) . (5.7)



Feature Extraction and Randomized Learning for Image Analysis and Classification 68

In analogy to the random decision trees, these function groups are called “random

ferns”. This approach is considered as “semi-naive Bayesian”, since it is a compromise

between a proper Bayesian and a naive Bayesian approach. In training, probabilities

for all function combinations for all ferns are estimated and stored based on the training

data, making it very easy to compute, at test time, the above probabilities from the

stored values (“ten lines of code”).

5.3 Image Classification

An image classification paradigm which employs randomized learning is based on the

classification of image subwindows [66]. It consists in randomly extracting a number

of subwindows from the image and independently classifying them. The subwindows

are extracted by randomly picking their width, height and position among all the pos-

sible parameters for the image. After classification of individual subwindows, a voting

procedure determines the classification of the entire image. At training time, subwin-

dows are extracted from the training images and labeled with the classes of the images

before feeding them to the training phase of the classifier.

The aforementioned methodology is independent of the classifier and the type of

decision functions used. In the experiments performed, the subwindows were rescaled

to 16×16 pixels, converted to the HSL color space, then transformed using the Haar-

Wavelet transform. The decision functions are simple comparisons between pixels

of the transformed subwindows [74]. Different possibilities for the classifier were

experimented, as detailed in Sec. 5.3.1, 5.3.2, 5.3.3. Details about the dataset used for

the experiments are provided in Chapter 6.
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5.3.1 Semantic Texton Forests

As thoroughly explained in [87], simple decision functions on pixel pairs from local

neighborhood can give some basic information about image structures which can be

used for further classification. Random forests based on such functions are called se-

mantic texton forests (STF for short). Results achieved from subwindow classification

through STF are detailed in Table 5.1.

Table 5.1 : Classification results obtained with STF.
Indoor Outdoor

Indoor 67.39% 32.61%
Outdoor 21.82% 78.18%

Natural Artificial
Natural 31.30% 68.70%
Artificial 12.69% 87.31%

5.3.2 Random Ferns

Along with STF, experiments using ferns for image classification were performed.

Results are detailed in Table 5.2.

Table 5.2 : Classification results obtained with ferns.
Indoor Outdoor

Indoor 52.17% 47.83%
Outdoor 12.70% 87.30%

Natural Artificial
Natural 86.26% 13.74%
Artificial 52.24% 47.76%

5.3.3 STFerns

Along with STF and ferns, a novel classification procedure was experimented, which

aims to combine the strenghts of the two above classifiers in an unique way. It consists
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in a multi-branched decision tree, whose decision function in each split node is an

entire fern. This novel classifier has been named “STFern”, by the combination of

“STF” and “Fern”. By doing a full fern-based classification at each tree level, a greater

level of refinement can be achieved. Split nodes have as many subtrees as the number

of classes in the classification problem, and the subtree to visit is chosen based on the

classification made by the fern. This has a good potential for multi-modal problems,

because different aspects of the problem can be modeled at the different levels of the

tree. Altough more trees can be combined in one forest, fern classification has proven

stable enough not to require the added complexity. Results achieved are detailed in

Table 5.3.

Table 5.3 : Classification results obtained with ferns.
Indoor Outdoor

Indoor 47.83% 52.17%
Outdoor 7.82% 92.18%

Natural Artificial
Natural 88.55% 11.45%
Artificial 45.90% 54.10%
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6. Dataset Construction

Building a dataset, while in appearance is only a minor task, may prove a challenging

problem. It must be representative of all the characteristics, more or less typical, that

elements of a certain class may have (intra-class variance), and must also express well

the differences which hold between elements of different classes (inter-class variance).

Similar considerations apply not only for the training set, but also for the test set, which

is used as a benchmark for the obtained classifiers.

First of all, it is necessary to define the classes which it is necessary to distinguish.

There are plenty of types of classifications which may be useful for image understand-

ing, among which are recognizing the environment, estimating the distance of subjects,

or detecting the presence of people. Understanding the scene is important to tune the

imaging device and/or to perform subsequent post-processing enhancements to images,

or even to index them.

In designing the dataset used for the experiments, a number of possible useful

classifications were considered:

• Indoor vs. Outdoor

• Day vs. Night

• Portrait vs. Close-up (non-person) vs. Landscape

• Natural vs. Artificial

Instead of considering separate classifiers and/or datasets for the above classifica-

tions, a comprehensive database was crafted, with the idea of considering all possible
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combinations of the above categories (in a certain sense, the Cartesian product of the

datasets). After pruning out nonsensical combinations, the following categories were

chosen (each letter represents one of the above categories):

• IDC

• IDP

• ODCA

• ODCN

• ODLA

• ODLN

• ONCA

• ONLA

Given a comprehensive classifier able to distinguish all the above cases, it is then

easy to perform more granular classifications by simply joining the interested classes.

While having more classes leaves more possibility to misclassification, this procedure

allows to extract a great deal of information all in one step, and could prove useful

for imaging applications. Two of the possible classifications (Indoor vs. Outdoor and

Natural vs. Artificial) were chosen as test examples for Chapter 5.

The pioneering dataset used in the experiments consists in 394 training images

and 399 test images, roughly evenly distributed among classes. They were taken from

different sources; most of them were taken from Flickr [8].
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RAVÌ. Scene categorization using bag of Textons on spatial hierarchy. In ICIP, pages 2536–
2539, 2008.

[18] SEBASTIANO BATTIATO, GIOVANNI MARIA FARINELLA, GIUSEPPE CLAUDIO GUARNERA,
TONY MECCIO, GIOVANNI PUGLISI, DANIELE RAVÌ, AND ROSETTA RIZZO. Bags of phrases
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a Hybrid Generative/Discriminative Approach. IEEE Trans. Pattern Anal. Mach. Intell.,
30(4):712–727, 2008.

[26] BERNHARD E. BOSER, ISABELLE GUYON, AND VLADIMIR VAPNIK. A Training Algorithm
for Optimal Margin Classifiers. In COLT, pages 144–152, 1992.

[27] LEO BREIMAN, JEROME H. FRIEDMAN, RICHARD A. OLSHEN, AND CHARLES J. STONE.
Classification and Regression Trees. Wadsworth, 1984.

[28] PETER J. BURT, TSAI-HONG HONG, AND AZRIEL ROSENFELD. Segmentation and Estima-
tion of Image Region Properties through Cooperative Hierarchial Computation. Systems,
Man and Cybernetics, IEEE Transactions on, 11(12):802–809, 1981.

[29] ONDREJ CHUM, MICHAL PERDOCH, AND JIRI MATAS. Geometric min-Hashing: Finding a
(thick) needle in a haystack. In CVPR, pages 17–24, 2009.

[30] ONDREJ CHUM, JAMES PHILBIN, AND ANDREW ZISSERMAN. Near Duplicate Image Detec-
tion: min-Hash and tf-idf Weighting. In BMVC, pages 493–502, 2008.

[31] DORIN COMANICIU, VISVANATHAN RAMESH, AND PETER MEER. Kernel-Based Object
Tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(5):564–575, 2003.

[32] CORINNA CORTES AND VLADIMIR VAPNIK. Support-Vector Networks. Machine Learning,
20(3):273–297, 1995.

[33] BRAD EFRON. The efficiency of logistic regression compared to normal discriminant anal-
ysis. Journal of the American Statistical Association, 70(352):892–898, 1975.
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