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Preface

The research activities, described in this thesis, have been mainly focused on

images analysis and quality enhancement. Specifically the research regards the

study and development of algorithms for color interpolation, contrast enhance-

ment and red-eye removal, which have been exclusively oriented to mobile de-

vices. Furthermore an images analysis for forgeries identification and image

enhancement, usually directed by investigators (Forensic Image Processing) has

been conducted.

The thesis is organized in three main parts: Image Processing for Embedded

Devices; Image Analysis and Enhancement; Forensics Image Processing.

Image Processing for Embedded Devices

Imaging consumer, prosumer and professional devices, such as digital still and

video cameras, mobile phones, personal digital assistants, visual sensors for

surveillance and automotive applications, usually capture the scene content by

means of a single sensor (CCD or CMOS), covering its surface with a Color Fil-

ter Array (CFA), thus significantly reducing costs, sizes and registration errors.

The most common arrangement of spectrally selective filters is known as Bayer

pattern [25]. This simple CFA, taking into account human visual system charac-

teristics , consists of a simple RGB lattices and contains twice as many green as

red or blue sensors (human eyes are more sensitive to green with respect to the

other primary colors)[BCGM10]. Some spatially undersampled color channels

are then provided by the sensor and the full color information is reconstructed

by color interpolation algorithms (demosaicing) [GMTB08]. Demosaicing is a

very critical task. A lot of annoying artifacts that heavily degrade picture quality

Giuseppe Messina AA 2009-2010
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can be generated in this step: zipper effect, false color, etc. False colors are ev-

ident color errors which arise near the object boundaries, whereas zipper effect

artifacts manifest as “on-off” patterns and are caused by an erroneous interpola-

tion across edges. The green channel is less affected by aliasing than the red and

blue channels, because it is sampled at a higher rate. Simple intra-channel in-

terpolation algorithms (e.g., bilinear, bicubic) cannot be then applied and more

advanced solutions (inter-channel), both spatial and frequency domain based,

have been developed [GMT10a]. In embedded devices the complexity of these

algorithms must be pretty low. Demosaicing approaches are not always able to

completely eliminate false colors and zipper effects, thus imaging pipelines of-

ten include a post-processing module, with the aim of removing residual artifacts

[TGM09].

It is worthwhile to understand that picture quality is strictly related not only to the

number of pixels composing the sensor, but also to the quality of the demosaicing

algorithm within the Image Generation Pipeline (IGP). The IGP usually consists

of a preprocessing block (auto-focus, auto-exposure, etc.), a white balancing, a

noise reduction, a color interpolation, a color matrixing step (that corrects the

colors depending on the sensor architecture), and postprocessing blocks (sharp-

ening, stabilization, compression, red-eyes removal, etc.) [BBMP10,BCM10].

Color interpolation techniques should be implemented by considering the arti-

facts introduced by the sensor and the interactions with the other modules com-

posing the image processing pipeline, as it has been well analyzed in [5]. This

means that demosaicing approaches have to guarantee the rendering of high

quality pictures avoiding typical artifacts, which could be emphasized by the

sharpening module, thus drastically deteriorating the final image quality. In the

meantime, demosaicing should avoid introducing false edge structures due to

2
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residual noise (not completely removed by the noise reduction block) or green

imbalance effects. Green imbalance is a mismatch arising in some sensors be-

cause the photosensitive elements that capture G intensity values at GR locations

can have a different response than the photosensitive elements that capture G

intensity values at and GB locations. This effect is mainly due to crosstalk [73].

In order to broaden the know-how and to allow an efficient study of the state

of the art in the color interpolation field, an extensive patent research has been

performed, since this problem dealt with industrial processes [BGMT08]. In

Chapter 1 we describe the state of the art of demosaicing techniques. A com-

plete excursus on color interpolation techniques is described, from spatial to

frequency domain approaches, also in terms of color artifacts removal. Thus

in Chapter 2 a new color interpolation technique, developed for embedded de-

vices, is described. The method has been compared with other state of the art

approaches and has shown good performances both in term of color reconstruc-

tion and artifact reduction. Furthermore it has been established that the method

is also able to drastically reduce residual noise, preserving details [GMT10].

Image Analysis and Enhancement

Red-eye artifact is caused by the flash light reflected off a person’s retina. This

effect often occurs when the flash light is very close to the camera lens, as in

most compact imaging devices. To reduce these artifacts, most cameras have a

red-eye flash mode which fires a series of pre-flashes prior to picture capturing.

Rapid pre-flashes cause pupil contraction thus minimizing the area of reflection;

it does not completely eliminate the red-eye effect, though reduces it. The major

disadvantage of the pre-flash approach is power consumption (e.g., flash is the

3
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most power-consuming device of the camera). Besides, repeated flashes usually

cause uncomfortable feeling.

Alternatively, red-eyes can be detected after photo acquisition. Some photo-

editing software make use of red-eye removal tools which require considerable

user interaction. To overcome this problem, different techniques have been pro-

posed in literature (see [56, 106] for recent reviews in the field). Due to the

growing interest of industry, many automatic algorithms, embedded on commer-

cial software, have been patented in the last decade [57]. The huge variety of

approaches has permitted to explore different aspects of red-eyes identification

and correction [BFGMR10,BFMGR10b]. The big challenge now is to obtain the

best results with the minor number of visual errors.

To this end, several low-level feature eyes classification techniques have been

analyzed [BGMM09,GGMT10]. This has allowed us to identify a methodology

that has improved the performance of the techniques previously developed at the

state of the art. In Chapter 3 we provide an overview of well-known automatic

red eye detection and correction techniques, pointing out working principles,

strengths and weaknesses of the various solutions [MM10]. Finally we describe

our advanced red-eyes removal pipeline (see section 3.3). After an image filter-

ing pipeline devoted to select only the potential regions in which red-eye arti-

facts are likely to be, a cluster-based boosting on gray codes based features is

employed for classification purpose. Red-eyes are then corrected through de-

saturation and brightness reduction. Experiments on a representative dataset

confirm the real effectiveness of the proposed strategy which also allows to

properly managing the multi-modally nature of the input space. The obtained

results have pointed out a good trade-off between overall hit-rate and false pos-

itives. Moreover, the proposed approach has shown good performance in terms

4
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of quality measure [BFGMR10a]. This activity has also produced the filling of

a patent application to the Italian patent office [MGF09] and its extension to the

U.S. patent office (which is at a preliminary stage).

Finally we have faced the exposure correction of wrongly acquired images. The

problem of the proper exposure settings for image acquisition is of course strictly

related with the dynamic range of the real scene [BMC08]. In many cases some

useful insights can be achieved by implementing ad-hoc metering strategies. Al-

ternatively, it is possible to apply some tone correction methods that enhance the

overall contrast of the most salient regions of the picture. The limited dynamic

range of the imaging sensors doesn’t allow to recover the dynamic of the real

world. In Chapter 4 we present a brief review of automatic digital exposure cor-

rection methods trying to report the specific peculiarities of each solution. Start-

ing from exposure metering techniques, which are used to establish the correct

exposition settings, we describe automatic methods to extract relevant features

and perform corrections [CM10].

Forensics Image Processing

The analysis and improvement of image quality, for forensic use, are the sub-

ject of recent studies and have had a major boost with the advent of the digital

imaging [12]. In this context it was agreed to deal with two different aspects of

the image processing for forensics use: tampering identification into digital im-

ages (through the analysis of available data) and quality improvement of digital

evidence for investigations purpose.

Nowadays the ubiquity of video surveillance systems and camera phones have

made available a huge amount of digital evidences to the investigators [BFMP10,

BM10a]. Unfortunately one of the main problem is the malleability of digital
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images for manipulation. Hence the detection of tampering into digital images

is a research topic of particular interest, both in academia contents, as evidenced

by the recent literature, and in forensics field, as there are several requirements

to validate the reliability of digital evidence in legal processes [BMR09].

One of the existing approaches considers the possibility of exploiting the statis-

tical distribution of DCT coefficients of JPEG images in order to reveal the ir-

regularities due to the presence of a signal superimposed onto the original (e.g.,

due to copy and paste). As recently demonstrated [45–48], the relationship be-

tween the quantization tables used to compress the signal, before and after the

forgery, highlights anomalies in the histograms of DCT coefficients, especially

for certain frequencies.

Starting from an initial study of the prior art some preliminary results of the

detection of forgery (i.e., detection of tampering of the image) have been pre-

sented to the anti-pedophilia group (Crime Against Children) at Interpol in Lyon

(France). This presentation formed the basis for a possible collaboration with

international intelligence agencies and allowed the identification of the issues of

existing approaches. The research was then directed to a detailed analysis of the

performance of existing approaches to assess their effectiveness and weaknesses,

and then outlined the basis for the implementation of an approach robust enough

to deal with quality tests disappointed by the existing methods. The first results

obtained from the analysis of robustness of some algorithms were then presented

at an international conference [BM09]. These studies, described in Chapter 5,

have highlighted the gaps in the known techniques and also has emphasized the

need to create a database of forged images [BMT10], which could be candidate

as reference point for the scientific community [81].
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The second research field, described in Chapter 6, involves the quality improve-

ment of data for investigative use. The quality of images obtained from digital

cameras and camcorders today is greatly improved since the first models of the

eighties. Unfortunately it is still not unusual, in the forensic field, to get into

images wrongly exposed, noisy and/or corrupted by motion blur. This is often

due to the presence of old devices or to an illumination of the scene that does

not allow a correct acquisition (for example in night shots). Extrapolating some

details, normally invisible to human eye, by improving the quality of the image,

is of crucial aspect to facilitate investigations [BMS10]. The current rules, for

the production of forensic digital material, require to fully document the steps

of images processing, in order to allow the exact replication of the enhance-

ment [1, 3]. The automation of image enhancement techniques are therefore

required and must be thoroughly documented. This chapter describes a tool for

the automation of image enhancement technique, that allows both the automatic

image correction and the generation of a script able to repeat the chain of en-

hancement steps. This work has been developed through a request received from

the RIS (Scientific Investigations Department) of Messina (Italy), which has ex-

pressed a strong interest into this research area.
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1. Color Interpolation and False
Color Removal

The simplest demosaicing (or color interpolation) method is the bilinear inter-

polation, a proper average on each pixel depending on its position in the Bayer

Pattern. For a pixel, we consider its eight direct neighbors and then we determine

the two missing colors of this pixel by averaging the colors of the neighboring

ones. We actually have 4 different cases of averaging which correspond to the

red pixel, the blue pixel, the green pixel on a red row and the green pixel on the

blue row. On each of them, the averaging will be slightly different. Assuming

the notation used in Fig.(1.1) and considering, as example, the pixels R33, B44,

G43 and G34, the bilinear interpolation proceeds as follows:

G12 R13 G1R11

G21 B22 G23 B2

G12 R13 G14G32 R33 G3R31

B22 G23 B24G41 B42 G43 B4B22 G23 B24G41 B42 G43 B4

G R GR G52 R53 G5R51

G GG61 B62 G63 B6

4 G16R15

G254 B26

4 G16R1534 G36R35

G254 B26G454 B46G254 B26G454 B46

GR54 G56R55

GG654 B66

Figure 1.1 : Example of Bayer pattern.

The interpolation on a red pixel (R33) produces the RGB triplet as:

Red = R33

Green =
G23 +G34 +G32 +G43

4
(1.1)

Blue =
B22 +B24 +B42 +B44

4

Giuseppe Messina AA 2009-2010
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The interpolation on a green pixel in a red row (G34):

Red =
R33 +R35

2

Green = G34 (1.2)

Blue =
B24 +B44

2

The interpolation on a green pixel in a blue row (G43):

Red =
R33 +R53

2

Green = G43 (1.3)

Blue =
B42 +B44

2

The interpolation on a blue pixel (B44):

Red =
R33 +R35 +R53 +R55

4

Green =
R33 +R35 +R53 +R55

4
(1.4)

Blue = B44

Despite this interpolation is very simple, the results are unsatisfactory: as many

other traditional color interpolation methods, usually results present color edge

artifacts, due to the non-ideal sampling performed by the CFA.

The term aliasing refers to the distortion that occurs when a continuous time sig-

nal is sampled at a frequency lower than twice its highest frequency. As stated in

the Nyquist-Shannon sampling theorem, an analog signal that has been sampled

can be perfectly reconstructed from the samples if the sampling rate exceeds

2B samples per second, where B is the highest frequency in the original sig-

nal. If the highest frequency in the original signal is known, this theorem gives

the lower bound on sampling frequency assuring perfect reconstruction. On the

14



Giuseppe Messina 1. Color Interpolation and False Color Removal

other hand, if the sampling frequency is known, the Nyquist-Shannon theorem

gives the upper bound to the highest frequency (called Nyquist frequency) of

the signal to allow the perfect reconstruction. In practice, neither of these two

statements can be completely satisfied because they require band-limited orig-

inal signals, which do not contain energy at frequencies higher than a certain

bandwidth B. An example of band-limited signal is depicted in Fig.(1.2).

Figure 1.2 : Example of a bandlimited signal.

In real cases a ”time-limited” or a ”spatial-limited” signal can never be perfectly

band-limited. For this reason, an anti-aliasing filter is often placed at the input

of digital signal processing systems, to restrict the bandwidth of the signal to

approximately satisfy the sampling theorem. In case of any imaging devices an

optical low pass filter smoothes the signal in the spatial optical domain in order

to reduce the resolution below the limit of the digital sensor, which is strictly

related to the pixel pitch, Xs, which is the distance between two adjacent pixels.

As explained in [116], the sampling frequency of the sensor is

f s =
1

Xs
(1.5)

To reproduce a spatial frequency there must be a pair of pixels for each cycle.

One pixel is required to respond to the black half cycle and one pixel is required

15
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to respond to the white half cycle. In other words one pixel can only represent

a half signal cycle, and hence the highest frequency the array can reproduce is

half its sampling frequency and it is called Nyquist frequency:

fN =
1

2Xs
(1.6)

In a two dimensional array, having the same pixel pitch in both directions, Nyquist

and sampling frequencies are equal in both X and Y axes. If a Bayer color filter

array is applied on the sensor surface, the Nyquist and the sampling frequencies

are different for the G channel and the R/B channels. Red and blue channels

have the same pattern, so they have the same Nyquist frequency. In particular,

let p be the monochrome pixel pitch; as noticeable from Fig.(1.3(a)) the red and

blue horizontal and vertical pixel pitch Xs is

Xs = 2p (1.7)

and hence the Nyquist frequency for red and blue channels in both horizontal

and vertical directions is

fNRBhv
=

1
4p

(1.8)

Looking at Fig.(1.3(b)), is possible to derive the diagonal spacing between two

adjacent red/blue pixels:

Xs =
√

2p (1.9)

the diagonal Nyquist frequency becomes:

fNRBd
=

√
2

4p
(1.10)
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Figure 1.3 : Red array line pairs at the Nyquist frequency.

This means that the diagonal Nyquist frequency is larger than the horizontal/vertical

one by a
√

2 factor.

As far as the green channel is concerned, the horizontal and vertical pixel pitch

equals the monochrome pixel pitch (see Fig.(1.4)), and hence its Nyquist fre-

quency equals that of the monochrome array:

fNGhv
=

1
2p

(1.11)

The diagonal Nyquist frequency, instead, equals that of the red/blue channels,

which has been already shown in (1.10).

From this analysis it is easily derivable that red and blue channels are more

affected by aliasing effects than the green channel. Despite the application of an

optical anti-aliasing filter, aliasing artifacts often arise due to the way the signal

is reconstructed in terms of color interpolation.
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Figure 1.4 : Green array line pairs at the Nyquist frequency.

Color interpolation techniques should be implemented by considering the arti-

facts introduced by the sensor and the interactions with the other modules com-

posing the image processing pipeline, as it has been well analyzed in [5]. This

means that demosaicing approaches have to guarantee the rendering of high

quality pictures avoiding typical artifacts, which could be emphasized by the

sharpening module, thus drastically deteriorating the final image quality. In the

meantime, demosaicing should avoid introducing false edge structures due to

residual noise (not completely removed by the noise reduction block) or green

imbalance effects. Green imbalance is a mismatch arising at GR and GB loca-

tions. This effect is mainly due to crosstalk [73].

In the last years a wide variety of works has been produced about color interpo-

lation, exploiting a lot of different approaches [64]. In this Chapter we review

some of the state of the art solutions devoted to demosaicing and antialiasing,

paying particular attention to the patents [21].
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1.1 Color Interpolation Techniques

Demosaicing solutions can be basically divided into two main categories: spatial-

domain approaches and frequency-domain approaches.

1.1.1 Spatial-Domain Approaches

In this sub-section we describe some recent solutions, devoted to demosaicing,

which are typically fast and simple to be implemented inside a system with low

capabilities (e.g., memory requirement, CPU, low-power consumption, etc.).

In the following we present techniques based on spatial and spectral correlations.

Spatial Correlation Based Approaches

One of the principles of color interpolation techniques is to exploit spatial corre-

lation. According to this principle, within a homogeneous image region, neigh-

boring pixels share similar color values, so a missing value can be retrieved by

averaging the pixels close to it. In presence of edges, the spatial correlation

principle can be exploited by interpolating along edges and not across them.

Techniques which disregard directional information often produce images with

color artifacts. Bilinear interpolation belongs to this class of algorithms. On the

contrary, techniques which interpolate along edges are less affected by this kind

of artifact. Furthermore, averaging the pixels which are across an edge also leads

to a decrease in the sharpness of the image.

Edge based color interpolation techniques are widely disclosed in literature, and

can be differentiated according to the number of directions, the way adopted to

choose the direction and the interpolation method.
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The method in [66] discloses a technique which firstly interpolates the green

color plane, then interpolates the remaining two planes. A missing G pixel can

be interpolated horizontally, vertically or by using all the four samples around

it. With reference to the neighborhood of Fig.(1.5) the interpolation direction is

chosen through two values:

∆H = |−A3+2 ·A5−A7|+ |G4−G6| (1.12)

∆V = |−A1+2 ·A5−A9|+ |G2−G8| (1.13)

which are composed of Laplacian second-order terms for the chroma data and

gradients for the green data, where the Ai can be either R or B.

Once the G color plane is interpolated, R and B at G locations are interpolated.

In particular, a horizontal predictor is used if their nearest neighbors are in the

same row, whereas a vertical predictor is used if their nearest neighbors are in

the same column. Finally, R is interpolated at B locations and B is interpolated

at R locations.

  A1

G2

A3   G4 A5

G2

 G8

 A9

1

2

    5  G6 A7

2

 8

 9

Figure 1.5 : Considered neighborhood.

Although the interpolation is not just an average of the neighboring pixels, wrong

color can be introduced near edges. To improve the performances, in [82] a con-
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(a) Horizontal mask (b) Vertical mask

Figure 1.6 : Variation masks proposed in [109].

trol factor of the Laplacian correction term is introduced. This control mech-

anism allows increasing the sharpness of the image, reducing at the same time

wrong colors and ringing effects near edges. In particular, if the Laplacian cor-

rection term is greater than a predefined threshold, it is changed by calculating

an attenuating gain, which depends on the minimum and maximum values of the

G channel and of another color channel. A drawback of these methods is that

G can be interpolated only in horizontal and vertical directions; R and B can be

interpolated only in diagonal directions (in case of B and R central pixel) or in

horizontal and vertical directions (in case of G central pixel).

The approach proposed in [109], similarly to the previous one, interpolates the

missing G values in either horizontal or vertical direction, and chooses the direc-

tion depending on the intensity variations within the observation window. The

variation filters, shown in Fig.(1.6), take into account both G and non-G intensity

values. In this case, the interpolation of G values is achieved through a simple

average of the neighboring pixels in the chosen direction, but the quality of the

image is improved by applying a sharpening filter. One important peculiarity

of this method is the GR −GB mismatch compensator step, which tries to over-

come the green imbalance issue. In some sensors the photosensitive elements

that capture G intensity values at GR locations can have a different response than
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the photosensitive elements that capture G intensity values at GB locations. The

GR −GB mismatch module applies gradient filters and curvature filters to derive

the maximum variation magnitude. If this value exceeds a predefined threshold

value, the GR −GB smoothed intensity value is selected, otherwise the original

G intensity value is selected. To interpolate the missing R and B values, the

color correlation is exploited. In fact, discontinuities of all the color components

are assumed to be equal. Thus, color discontinuity equalization is achieved by

equating the discontinuities of the remaining color components with the discon-

tinuities of the green color component. Methods which use color correlation in

addition to edge estimation usually provide higher quality images.

All the already disclosed methods propose an adaptive interpolation process in

which some conditions are evaluated to decide between the horizontal and ver-

tical interpolation. When neither a horizontal edge nor a vertical edge is identi-

fied, the interpolation is performed using an average value among surrounding

pixels. This means that resolution in appearance deteriorates in the diagonal

direction. Moreover, in regions near the vertical and horizontal Nyquist fre-

quencies, the interpolation direction can abruptly change, thus resulting in un-

naturalness in image quality. To overcome the above mentioned problems, the

method in [139] prevents an interpolation result from being changed discontin-

uously with a change in the correlation direction. First of all, vertical (∆V ) and

horizontal correlation values (∆H) of a target pixel to be interpolated are calcu-

lated by using the equations in (1.12). Then, a coefficient term, depending on
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the direction in which the target pixel has higher correlation, is computed:

K =



0 i f ∆H = ∆V

1− ∆V
∆H

i f ∆H > ∆V

∆H
∆V

−1 i f ∆H < ∆V

(1.14)

Thus K has values in the range [-1,1].

The K coefficient is used to weight the interpolation data in the vertical or hor-

izontal direction with the interpolation data in the diagonal direction. If K has

a positive value (∆V < ∆H), that is a vertical edge is found, a weighted average

of the vertical interpolated value (Vvalue) and the two-dimensional interpolated

value (2Dvalue) is calculated using the (1.15), where Ka is the absolute value of

the coefficient K.

Out put =Vvalue ×Ka+2Dvalue × (1−Ka) (1.15)

Obviously, if K is a negative value a weighted average of the horizontal interpo-

lated value and the two-dimensional interpolated value is computed. As a result,

a proportion of either the vertical or horizontal direction interpolation data can be

continuously changed without causing a discontinuous change in interpolation

result when the correlation direction changes.

The approach proposed in [110] is composed by an interpolation step followed

by a correction step. The authors consider the luminance channel as proxy for G

color, and the chrominance channel as proxy for R and B. Since the luminance

channel is more accurate, it is interpolated before the chrominance channels. The

luminance is interpolated as accurate as possible in order to not produce wrong
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modifications in the chrominance channels. However, after the interpolation

step, luminance and chrominances are orderly refined. The interpolation phase

is based on the analysis of the gradients in four directions (east, west, north and

south), defined as follows:

∆W =
∣∣2L(x−1,y)−L(x−3,y)−L(x+1,y)

∣∣+ ∣∣C(x,y)−C(x−2,y)
∣∣

∆E =
∣∣2L(x+1,y)−L(x−1,y)−L(x+3,y)

∣∣+ ∣∣C(x,y)−C(x+2,y)
∣∣

∆N =
∣∣2L(x,y−1)−L(x,y−3)−L(x,y+1)

∣∣+ ∣∣C(x,y)−C(x,y−2)
∣∣

∆S =
∣∣2L(x,y+1)−L(x,y−1)−L(x,y+3)

∣∣+ ∣∣C(x,y)−C(x,y+2)
∣∣ (1.16)

Since the aim is to interpolate along edges and not across them, an inverted

gradient function is formed:

fgrad(x) =


1
x

i f x ̸= 0

1 i f x = 0

(1.17)

where x represents one of the gradient of (1.16). This function allows to weight

more the smallest gradients and to follow the edge orientation. The interpolation

of missing luminance values is performed using the normalized inverted gradient

functions which weight both luminance and chrominance values in the neighbor-

hood. The chrominance values are used in the interpolation of luminance to get

a more accurate estimation. Similarly, chrominances are interpolated by using

both luminance and chrominance data. The correction step comprises the lumi-

nance correction first, and then the chrominance correction.

The method in [105] aims to generate images with sharp edges. And also in

this case a high frequency component, derived from the sensed color channel, is

added to the low frequency component of the interpolated channels. This tech-

nique takes into account eight different directions, as it shown in Fig.(1.7), and

uses 5×5 elliptical Gaussian filters to interpolate the low frequency component
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of each color channel (even the sensed one). For each available direction there is

a different Gaussian filter, having the greater coefficients along the identified di-

rection. These filters have the advantage of interpolating the missing information

without generating annoying jaggy edges.

8
5π

4
3π

8
7π

2
π

4
π8

3π

8
π

0

Figure 1.7 : Quantized directions for spatial gradients.

After having computed the low frequency component, for each color channel,

an enhancement of the high frequencies content is obtained taking into account

the color correlation (1.22). In particular, a correction term is calculated as the

difference between the original sensed value and its low pass component, as it is

retrieved through the directional Gaussian interpolation:

∆Peak = G−GLPF (1.18)

This correction term is then added to the low frequency component of the chan-

nels to be estimated:

H = HLPF +∆Peak (1.19)

The low frequency component, in this method, is calculated according to the

identified direction, so it is less affected by false colors than previous inventions.

Moreover, this solution provides a simple and effective method for calculating
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direction and amplitude values of spatial gradients, without making use of a first

rough interpolation of the G channel. More specifically, 3× 3 Sobel operators

are applied directly on the Bayer pattern to calculate horizontal and vertical gra-

dients. The orientation of the spatial gradient at each pixel location is given by

the following equation:

or(x,y) =


arctan

(
P′ ∗Sobely(x,y)
P′ ∗Sobelx(x,y)

)
if P′ ∗Sobelx(x,y) ̸= 0

π
2

otherwise

(1.20)

where P′ ∗ Sobely and P′ ∗ Sobelx are the vertical and horizontal Sobel filtered

values, at the same pixel location. The orientation or(x,y) is quantized in eight

predefined directions. Since the image could be deteriorated by noise, and the

calculation of direction could be sensitive to it, a more robust estimation of di-

rection is needed. For this reason, Sobel filters are applied on each 3× 3 mask

within a 5× 5 window, thus retrieving nine gradient data. In addition to the

orientation, the amplitude of each spatial gradient is calculated, by using the

following equation:

mag(x,y) =
(
P′ ∗Sobelx (x,y)

)2
+
(
P′∗Sobely (x,y)

)2 (1.21)

The direction of the central pixel is finally derived through the “weighted-mode”

operator, which provides an estimation of the predominant amplitude of the spa-

tial gradient around the central pixel. This operator substantially reduces the

effect of noise in estimating the direction to use in the interpolation phase.
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Spectral Correlation Based Approaches

In this class of algorithms final RGB values are derived taking into considera-

tion the inter-channel color correlations in a limited region. Gunturk et al. [65]

has demonstrated that high frequency components of the three color planes are

highly correlated, but not equal. This suggests that any color component can help

to reconstruct the high frequencies for the remaining color components. For in-

stance, if the central pixel is red R, the green G component can be determined

as:

G(i, j) = GLPF(i, j)+RHPF(i, j) (1.22)

where RHPF(i, j) = R(i, j)−RLPF(i, j) is the high frequency content of the R

channel, and GLPF and RLPF are the low frequency components if the G and R

channels, respectively.

This implies that the G channel can take advantage of the R and B information.

Furthermore for real world images the color difference planes (∆GR = G− R

and ∆GB = G−B) are rather flat over small regions, and this property is widely

exploited in demosaicing and antialiasing techniques. This model using chan-

nel differences (that can be viewed as chromatic information), is nearer to the

Human Color Vision system that is more sensitive to chromatic changes than

luminance changes in low spatial frequency regions. Like the previous example,

if the central pixel is R, the green component can be derived as:

G = R+∆GR (1.23)

27



1. Color Interpolation and False Color Removal Giuseppe Messina

 

Gi j‐1 G

Gi

Gi,j‐1 G

Gi+

Gi j Gi j+1

i‐1,j

Gi,j Gi,j+1

+1,j

Figure 1.8 : Pattern of five pixels used to calculate an edge metric on a central G
pixel of the LF (low frequency) G color channel.

The method proposed in [80] belongs to this class. The technique generates

by first an estimation of all color channels (R, G and B) containing the Low

Frequencies (LF) only. This is obtained by taking into consideration an edge

strength metric to inhibit smoothing of detected edges. Then a difference be-

tween the estimated smoothed values and the original Bayer pattern values is

performed to obtain the corresponding High Frequency (HF) values. Finally the

low frequency channels and the corresponding estimated high frequency planes

are combined into the final RGB image. In particular the high frequency values

are obtained through the relations described in Table.1.1.

Table 1.1 : Color Correlations defined in [80].
At a Red Pixel At a Green Pixel At a Blue Pixel

R R RLPF +G−GLPF RLPF +B−BLPF
G GLPF +R−RLPF G GLPF +B−BLPF
B BLPF +R−RLPF BLPF +G−GLPF B

Each smoothed LF image is formed by a two-dimensional interpolation com-

bined with a low-pass filtering excepted for pixels that maximize the edge strength

metric. For example, if the central pixel is a G pixel the four adjacent G pixels,

which will be taken into consideration to estimate the edge strength, are gen-

erated by interpolation (see Fig.(1.8)). Thus the measure of edge strength Ei j,

that is proportional to the square of the actual edge difference, is then calculated
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according to:

Ei j = (Gi, j −Gi, j−1)
2 +(Gi, j −Gi, j+1)

2 +(Gi, j −Gi−1, j)
2 +(Gi, j −Gi+1, j)

2

(1.24)

By considering this edge metric the algorithm reduce the presence of color arti-

facts on edges boundaries.

In [35] a method based on the smooth hue transition algorithms by using the

color ratio rule is proposed. This rule is derived from the photometric image for-

mation model, which assumes the color ratio is constant in an object. Each color

channel is composed of the Albedo multiplied by the projection of the surface

normal onto the light source direction. The Albedo is the fraction of incident

light that is reflected by the surface, and is function of the wavelength (is differ-

ent for each color channel) in a Lambertian surface (or even a more complicate

Mondrian). The Albedo is constant in a surface, then the color channel ratio

is hold true within the object region. This class of algorithms, instead of us-

ing inter-channel differences, calculates the green channel using a well-known

interpolation algorithm (i.e., bilinear or bicubic), and then computes the other

channels using the red to green and blue to green ratios, defined as:

Hb =
B
G

and Hr =
R
G
. (1.25)

An example of such method is described in [111]. In this work the Bayer data are

properly processed by a LPF circuit and an adaptive interpolation module. The

LPF module cuts off the higher frequency components of the respective color

signals R, G and B and supplies RLPF , GLPF and BLPF . On the other hand, the

adaptive interpolation circuit calculates a local pixel correlation from the color
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signals R and G and executes interpolation with a pixel which maximizes the

correlation to obtain a high resolution luminance signal.
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G G
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Figure 1.9 : RG pixel map for luminance interpolation.

The authors assume that, since the color signals R and G have been adjusted by

the white balance module, they have almost identical signal levels and thus they

can be considered as luminance signals. Taking into consideration the Bayer

pattern selected in Fig.(1.9), they consider the luminance signals arranged as

shown in Fig.(1.10), where the value Y5 has to be calculated according to the

surrounding values.

The correlation S for a set of pixels Yn along a particular direction can be defined,

similarly to the (1.25), as follows:

S =
min(Yn)

max(Yn)
(1.26)

where S ≤ 1 and the maximum correlation is obtained when S = 1.

The correlation is calculated for the horizontal, vertical and diagonal directions,

and interpolation is executed in a direction which maximizes the correlation. For

instance, for the vertical direction:

min(Yn) = min(Y1,Y4,Y7) ·min(Y2,Y8) ·min(Y3,Y6,Y9) (1.27)
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and

max(Yn) = max(Y1,Y4,Y7) ·max(Y2,Y8) ·max(Y3,Y6,Y9) (1.28)

The correlations in the horizontal and diagonal directions are computed in a

similar way. If the direction which maximizes the correlation is the vertical one,

the interpolation is executed as follows:

Y5 =
(Y2 +Y8)

2
(1.29)

Another way to decide the direction is to consider the similarities between the

pixels. The dispersion degree σR of the color R is calculated as:

σR =
min(R1,R2,R3,R4)

max(R1,R2,R3,R4)
(1.30)

If the dispersion degree is greater than a threshold, interpolation along a diagonal

direction is executed. On the contrary, when the dispersion degree is small,

correlation of the color R is almost identical in any directions, so it is possible to

interpolate only G along the vertical or horizontal direction. This implies that the

interpolation is executed only with G having the highest frequency, thus enabling

to obtain an image of a higher resolution.

Once the luminance signal Y is interpolated, a high pass filter (HPF) is applied

to Y and the color signal R and G. The HPF creates a luminance signal YHPF

containing higher frequency components only. Finally, an adder combines the

already computed color signals RLPF , GLPF and BLPF with the higher frequency

component luminance signal YHPF .
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Figure 1.10 : Luminance map of analyzed signal.

Non Adaptive Approaches

The pattern based interpolation techniques perform, generally, a statistical anal-

ysis, by collecting actual comparisons of image samples with the corresponding

full-color images. Chen et al. [34] propose a method to improve the sharpness

and reduce the color fringes with a limited hardware cost. The approach consists

of two main steps:

1. Data training phase:

(a) Collecting samples and corresponding full-color images;

(b) Forming pattern indexes, by selecting the concentrative window for

each color in the Bayer samples and quantizing all the values on the

window;

(c) Calculating the errors between the reconstructed pixels and the actual

color values;

(d) Estimating the optimal combination of pattern indexes to be sorted into

a database.

2. Data practice phase:

(a) For each pixel a concentrative window is chosen, and within it, the

pixels are quantized in two levels (Low, High) to form a pattern index,
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as shown in Fig.(1.11). This index is then used as key for the database

matching.
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Figure 1.11 : Relationship between a color filter array and a concentrative win-
dow. (a) Bayer Pattern, (b) Quantization of acquired samples in two levels: Low
(L) and High (H), (c) Resulting pattern index.

During the data training phase, the proposed method assumes that the recon-

structed value (Recvalue) is function of the original value (Origvalue) and the

feasible coefficient set ( f easible coe f f icient set), which can be expressed as:

Recvalue =
Origvalue ∗ f easible coe f f icient set

(sum o f coe f f icients)
(1.31)

Once the value has been calculated for each f easible coe f f icient set, the sys-

tem chooses the set having the minimal error between the calculated values and

the real value. These results are then stored into the database. During the data-

practice phase, the reconstruction is based on color differences rules applied to

the pixel neighborhood.

A simpler technique [86] uses a plurality of stored interpolation patterns. To se-

lect the correct interpolation pattern an analysis of the input signal is performed

using gradient and uniformity estimation. In practice, by first the G channel is

interpolated using the 8 stored fixed patterns (Horizontal, Vertical, the two Di-

agonals and the four corners). To achieve this purpose the uniformity and the
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gradient are estimated in the surrounding of the selected G pixel. The minimum

directional data estimation Gv(i) (i ∈ [1..8]) , obtained through the eight fixed

patterns, defines the best match with the effective direction.

For example, Fig.(1.12.(a)) shows an interpolation pattern in which low lumi-

nance pixels are arranged along the diagonal.
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Figure 1.12 : Some samples of interpolation patterns.

The directional data Gv(1), which represents a numerical value of the similarity

between the surround of the pixel to be interpolated and the interpolation pattern,

is obtained through the following expression:

Gv(1) =
|G33 −G51|+ |G33 −G42|+ |G33 −G24|+ |G33 −G15|

4
(1.32)

The remaining seven directional data are calculated in a similar manner, tak-

ing into account the fixed direction. The smallest directional data from Gv(1)

to Gv(8) identifies the interpolation pattern which is the best fit to the image

neighborhood of the pixel to be interpolated.

When one interpolation pattern only is present, providing the smallest direc-

tional value, it is chosen to perform the interpolation. On the contrary, when two

or more interpolation patterns provide the smallest directional value, a correla-
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tion with the interpolation patterns of the surrounding pixels, whose optimum

interpolation pattern has already been determined, is considered.

Specifically, if one of the interpolation patterns having the smallest value is the

interpolation pattern of one surrounding G pixel, this pattern is chosen for per-

forming the interpolation. Otherwise it is impossible to determine a specific

pattern to use for the interpolation, and thus a simple low pass filter is applied.

If Gv(1) is the smallest directional value:

G0 =
G15 +2G24 +2G33 +2G42 +G51

8
(1.33)

P0 =
P14 +P34 +P32 +P52

4
(1.34)

Q0 =
Q23 +Q25 +Q43 +Q41

4
(1.35)

where P and Q represent the R and B or B and R values.

If it is impossible to determine a specific pattern:

G0 =
(G22 +G24 +G42 +G44 +4G33)

8
(1.36)

P0 =
(P34 +P32)

2
(1.37)

Q0 =
(Q23 +Q43)

2
(1.38)

Once the missing values for the G pixels have been processed, the algorithm cal-

culates the missing values for the R and B pixels. If the interpolation patterns,

estimated for the already processed G pixels, describe a fixed direction in the

surrounding of the R/B pixel (that is several patterns indicate the same direction)

then this pattern is used to perform the interpolation. Otherwise the numerical

directional data are estimated. Like the G case, eight different interpolation pat-

terns are stored in the interpolation storage memory and a directional data value
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is computed for each of these patterns. When there are two or more patterns

having the smallest directional data value, correlations with the interpolation

patterns of the already interpolated G pixels are evaluated. The reason why G

pixels are taken into consideration instead of R and B pixels is that G pixels are

more suitable for pattern detection than R and B pixels.

This class of techniques is very robust to noise, because it takes into consider-

ation the interpolation patterns of the already processed pixels, but introduces

jagged edges in abrupt diagonal transitions, due to the equations used in the

interpolation step.

Iterative Approaches

In this category we collect all approaches that derive interpolation through an

iterative process able to find after a limited number of cycles the final mosaicized

image. In particular, in [70,71,83], starting from an initial rough estimate of the

interpolation, the input data are properly filtered (usually using a combination

of directional high-pass filters with some global smoothing) to converge versus

stable conditions. These methods proceed in different ways with respect to the

local image analysis but share the overall basis methodology.

In [83] a color vector image is formed containing the original Bayer values. Af-

ter an initial estimate of the RGB original value for each pixel such quantity is

updated by taking into account two different functions: “roughness” and “pre-

ferred direction”. The final missing color are defined by finding the values that

minimize a weighted sum of Rough and CCF (Color Compatibility Function)
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functions over the image by using the following formula:

Q = ∑
(m,n)

Rough(m,n)+λ ∑
(m,n)

CCF(m,n) (1.39)

where λ is a positive constant while Rough(m,n) is defined in this case as the lo-

cal summation of approximated local gradients and CCF(m,n) is a function that

penalizes local abruptly changes. By using the classic Gauss-Siedel approach

the method converges after 4-5 iterations.

In [70] and [71] the luminance channel is properly extracted from input Bayer

data and analyzed in a multiscale framework by applying smoothing filtering

along preferred directions. Chrominance components are smoothed by isotrop-

ically smoothing filters. The final interpolated image is obtained after a few

iterations. Just before to start a new iteration the pixel values are reset to the

original (measured) values.

1.1.2 Frequency-domain Approaches

Demosaicing is an ill posed problem and thus it cannot have a unique solution.

This can be easily understood by considering that different real images can have

the same mosaiced representation [8]. The mosaicing operation cannot be in-

verted and thus, it necessary to consider a priori assumptions to extrapolate the

missing information. All the demosaicing algorithms use specific a priori as-

sumptions to design the interpolator operator. One of the a priori assumption is

the band limited of image signal and the limit is due to the sampling rate of the

color channels.

In natural images, the energy spectrum is primarily present in a low frequency

region and high frequencies along the horizontal and vertical axes [49], and the
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human visual system is more sensitive to these high frequencies than to the ones

present at the corner of the spectrum. The demosaicing algorithms in the fre-

quency domain exploit these band limit assumptions.

Fourier Transform Analysis and Processing

Several demosaicing algorithms in the Fourier domain have been proposed in

literature [59, 76, 77] exploiting the spectrum properties of the CFA mosaiced

images. The spectral representation of a CFA image can be directly derived

from its representation in the spatial domain.

A color image I can be represented as:

I (x,y) = {Ci (x,y)} , i ∈ {R,G,B} ,(x,y) ∈ N 2 (1.40)

where Ci are the color vectors in the lattice (x,y). Thus an image is expressed as

a vector of three dimensions for each pixel. The color triplets Ci form a linear

vector space of three dimensions. If we call ICFA the spatial multiplexed version

of the image I with a CFA pattern, we have:

ICFA (x,y) = ∑
i∈{R,G,B}

Ci (x,y) ·Di (x,y) (1.41)

where Di(x,y) are the sampling functions that have value 1 if the color channel is

present at the location (x,y), or 0 if not present. In case of the Bayer arrangement

of CFA, the Di represent the disjoint shifted lattices and can be expressed in

terms of cosine modulation:

DR (x,y) =
1
4
(1+ cos(πx))(1+ cos(πy))

DG (x,y) =
1
2
(1− cos(πx)cos(πy))

DB (x,y) =
1
4
(1− cos(πx))(1− cos(πy))

(1.42)
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The mosaiced image ICFA in the Fourier domain is the Fourier transform of the

(1.41):

ÎCFA (u,v) = ∑
i∈{R,G,B}

Ĉi (u,v)∗ D̂i (u,v) = R̂CFA (u,v)+ ĜCFA (u,v)+ B̂CFA (u,v)

(1.43)

where ∗ denotes the convolution operator, the .̂ represents the Fourier Transform,

R̂CFA, ĜCFA and B̂CFA are Fourier Transform of the sub-sampled color compo-

nents. The modulation functions defined in (1.42) are based on cosine and have

their Fourier Transform expressed in Dirac. These transforms can be compactly

arranged in a matricial form:

D̂i (u,v) = ∆(u)T M3x3∆(v) (1.44)

where

∆(u)=[ δ (u+0.5) δ (u) δ (u−0.5) ]T

and

∆(v)=[ δ (v+0.5) δ (v) δ (v−0.5) ]T

As expressed in (1.43), the Fourier Transform of the sub-sampled color channels

can be derived by convolving the original Ĉi channels with the corresponding

modulation functions Di(x,y); making the matrices of (1.44) explicit:

R̂CFA (u,v) = ĈR (u,v)∗

∆(u)T

 − 1
16

1
8 − 1

16
−1

8
1
4 −1

8
− 1

16
1
8 − 1

16

∆(v)


ĜCFA (u,v) = ĈG (u,v)∗

∆(u)T

 1
8 0 1

8
0 1

2 0
1
8 0 1

8

∆(v)


B̂CFA (u,v) = ĈB (u,v)∗

∆(u)T

 − 1
16 −1

8 − 1
16

1
8

1
4

1
8

− 1
16 −1

8 − 1
16

∆(v)


(1.45)
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This matrix representation is useful because it clarifies how the samples are

scaled replications of the Fourier transform of the full resolution channels. The

ĜCFA formula in (1.45) points that the replications are placed on the diagonal

directions only, while the R̂CFA and B̂CFA have replications also on the horizon-

tal and vertical directions. The Fig.(1.13) shows the Fourier transform of the

sub-sampled green channel and of the red and blue channels. In Fig.(1.13(b))

the spectrum of the whole ICFA is shown. It is evident the overlapping among the

base band and the shifted replication, that is the cause of color artifacts.

To overcome the aforementioned overlapping, Alleysson [10] started from the

commonality between the human visual system (HVS) and the CFA based im-

age sensors to sample one color only in each location (that is a pixels for imaging

devices, a cone or a rod for the human eye) and thus spatial and chromatic in-

formation is mixed together. It is also known that the HVS encode the color

information into luminance and opponent color signals. Similarly, for CFA sen-

sors each color sample is composed by a spatial information due its position and

chromatic information due to its spectral sensitivity. According to this represen-

tation, the (1.40) can be rewritten as:

I (x,y) = {Ci (x,y)}= ϕ (x,y)+{ψi (x,y)}= ∑
i∈{R,G,B}

pi ·Ci (x,y)+{ψi (x,y)}

(1.46)

The spatial information, expressed by the scalar term ϕ , is composed by a weighted

sum of each color channel, while { ψi } is a vector of three opponent color com-

ponents. Subtracting the luminance to the color image, the chrominance infor-

mation is obtained. For CFA images the modulation functions can be rewritten

as composed by a constant part pi and by a fluctuation part with null mean D̃i :

Di (x,y) = pi + D̃i (x,y) (1.47)
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(a) Input image.
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(f) G CFA Spectrum.

Figure 1.13 : Example of spectrum with relative channels.
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The pi represent the probability of presence of each color channel in the CFA.

Since in the Bayer pattern the green components are twice the red and blue pix-

els, then pR = 1
4 , pG = 1

2 and pB = 1
4 . According to the (1.41) the ICFA is now:

ICFA (x,y) = ∑
i∈{R,G,B}

pi ·Ci (x,y)+ ∑
i∈{R,G,B}

Ci (x,y) · D̃i (x,y) (1.48)

The first term represents the luminance and the second vectorial term represents

the chromatic components. this representation highlights how the luminance

term in (1.48) is the same of (1.46), that is the luminance in CFA images is ex-

actly present and not subjected to interpolation even if it is subjected to aliasing

with chrominances. Thus a good estimation of luminance information is fun-

damental. The localization of luminance is performed on the Fourier domain.

Exploding the (1.43) with the equations in (1.45), it easily to rewrite ÎCFA as:

ÎCFA (u,v) = ∑
i∈[R,G,B]

pi ·Ĉi (u,v)

+
1
8 ∑

k∈{−0.5,0.5}
∑

l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−ĈB (u−k,v−l)

]
+

1
16 ∑

k∈{−0.5,0.5}
∑

l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−2ĈG (u−k,v−l)+ĈB (u−k,v−l)

]
(1.49)

If we pose:

L̂(u,v) =
1
4

ĈR (u,v)+
1
2

ĈG (u,v)+
1
4

ĈB (u,v)

Ĉ1 (u,v) =
1
16 ∑k∈{−0.5,0.5}∑l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−2ĈG (u−k,v−l)+ĈB (u−k,v−l)

]
Ĉ2 (u,v) =

1
8 ∑

k∈{−0.5,0.5}
∑

l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−ĈB (u−k,v−l)

]
(1.50)
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where L̂(u,v) is the luminance, Ĉ1(u,v) and Ĉ2(u,v) are the chrominance, the

(1.49) becomes:

ÎCFA (u,v) = L̂(u,v)+Ĉ1 (u,v)+Ĉ2 (u,v) (1.51)

The relations in (1.50) can be expressed in matricial form: L̂(u,v)
Ĉ1 (u,v)
Ĉ2 (u,v)

=

 1
4

1
2

1
4

−1
4

1
2 −1

4
−1

4 0 1
4

 ·

 ĈR (u,v)
ĈG (u,v)
ĈB (u,v)

 (1.52)

The inverse of this matrix represents the relation between the RGB values in the

CFA image and the luminance/chrominance signals in the Fourier domain.

fy

1/2

0

1/2

-1/2

0-1/2 0

L

MMax

1/20 f

0

1/20 fx

Figure 1.14 : Luminance Spectrum.

The spectrum of L̂(u,v) is not shifted, Ĉ1(u,v) is located at the corner of the

spectrum, while Ĉ2(u,v) is located at the sides of the spectrum, as shown in

Fig.(1.14) and Fig.(1.15). The smoothness of the color difference channels im-

plies a more limited band for Ĉ1(u,v) and Ĉ2(u,v) and, consequently, the replica-

tion are more compact and less overlapping than the R and B subsampled chan-

nels. This allows to design better performing filters to discriminate luminance

from the shifted bands than in the R, G and B representation.
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(a) Ĉ1(u,v)
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(b) Ĉ2(u,v)

Figure 1.15 : Chrominances spectrum.

Alleyson [10] proposed the filter in Fig.(1.16) to select the luminance. This

filter is able to cut the frequencies where Ĉ1 and Ĉ2 are located, leaving the

luminance unchanged, as can be seen in Fig.(1.16(b)). Other studies [9, 89]

proposed different filters, depending on the adopted filter design methodology.

The demosaicing algorithms based on this frequency analysis start estimating

the luminance by filtering the ÎCFA image.
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Figure 1.16 : Selection filter proposed by Alleysson [10].

The luminance is then subtracted to the CFA image, obtaining the chrominance.

The estimated chrominance is still subsampled and multiplexed. A further demuli-
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tiplexing step separates the chrominances in three channels, containing each

component color where it is defined and zeros otherwise. The final step is the

interpolation to recover the missing chrominance information. The interpolation

can be simple because it is applied to smooth channels. The results of this inter-

polation are the difference channels R-L, G-L and B-L. The estimated Luminance

is added to these channels to recover the R, G and B signals.
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Figure 1.17 : Spectrum areas analysis.

Dubois [41] proposed an alternative demosaicing approach. It is based on the

initial estimation of the chromatic components C1 and C2. These bands are lo-

cated at the corners and sides of the Fourier spectrum, and can be isolated using

bandpass filters. the first one, H1 used to estimate C1, is centered at frequency

(0.5, 0.5):

Ĉ1 (u,v) = ÎCFA (u,v) ·H1 (u,v) (1.53)

The result of this filtering is shifted in base band. Analyzing in Fig.(1.17) the

ICFA spectrum, is noticeable that the crosstalk in CFA images is mainly in be-
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tween luminance and C2 components. Given multiple and shifted copies of the

signal C2, they can be exploited to better recover the original signal. ICFA is fil-

tered by two other bandpass filters H2A and H2B. The results are demodulated in

baseband to estimate the C2A and C2B, the two sub-bands so that C2=C2A + C2B,

and placed on the vertical and horizontal axes of the spectrum. The more annoy-

ing artifact in demosaiced images is due to the crosstalk caused by the luminance

energy near the frequencies (1
2 , 0) and (0, 1

2 ) where the modulated C2 is present.

In this case nothing can be done to perfectly separate the signals. However, the

overlapping is often present in only one of the two bands. Leveraging on this

behavior, the C2 can be recovered as an adaptive sum of C2A and C2B, where

the component suffering less from crosstalk is weighted more. The weighting

function is modulated by a local estimation of the crosstalk, obtained analyzing

the energy in two bands along the horizontal and vertical axes, the results are

the local average energies ex and ey. The estimate of C2 is obtained through a

weighted sum:

C2 (x,y) = w(x,y)C2A (x,y)+(1−w(x,y))C2B (x,y) (1.54)

where

w =
ey

ex + ey
(1.55)

Once C1 and C2 have been estimated (in baseband), the luminance L is recovered

by subtracting them to the ICFA image. The inverse of the (1.52) matrix is at last

applied to yield the R, G, B values.

Wavelets Based Algorithms

Another exploited research direction for demosaicing is in the wavelet do-

main [104]. In [135], to overcome the problem of quincoux G pattern, the Gr
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(green samples on red rows) and Gb (green samples on blue rows) are separately

processed, thus the color channels to be considered are four: R, B, Gr and Gb.

Each plane has a dimension half respect to the original one. The interpolation

processes these four planes and thus acts as a zooming [125]. The wavelets, as

shown in Fig.(1.18) represent an image into sub-bands. The LL band contains

the most of energy for the image signal. Ignoring the remaining bands, it is pos-

sible to reconstruct the image, where the zooming is mainly the antitransform

of wavelets. In [135] an approach to interpolate the wavelet coefficients of the

other sub-bands is proposed using a local spatial analysis to estimate the miss-

ing coefficients. This approach is based on the fact that, using the DWT5/3 (the

same wavelets transform used in the JPEG2000 standard), if a coefficient has a

value close to zero, the corresponding image region is smooth/ homogeneous.

On the opposite, if the value is high, in the corresponding image region there is

great variability. Thus a simple spatial correlation estimator of the input image

values pi is considered (in both horizontal and vertical direction):

∆H = |pi, j − pi, j+1|
∆V = |pi, j − pi+1, j|

(1.56)

Let consider the case of estimating the coefficients wav coe fi of the HL band.

If the value of ∆H is low, then the correspondent wavelets coefficient in HL is

0 because there is a high correlation between adjacent pixels. If this value is

too high, there is a low correlation and the interpolation takes into consideration

other pixels:

wav coe fi = f
(

pi, j, pi, j−1
)

(1.57)

If the value is in a predetermined range the coefficients are found using correlated

pixels:

wav coe fi = f
(

pi, j, pi, j+1
)

(1.58)
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This approach is the same for LH band, considering the ∆V threshold measures.

The HH band is not interpolated due to the lower correlation of the input pixel

values and the wavelets coefficients in this band. The demosaicing approach

based on the coefficient interpolation is shown in Fig.(1.18).
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Figure 1.18 : Wavelets-based color interpolation.

This approach does not take into consideration any channel correlation, while

another important demosaicing algorithm that uses the interchannel correlation

has been proposed by Gunturk et al. [65]. Starting from the observation that

on natural scenes all the three channels are very likely to have the same edge

content, the authors show that the high frequencies subbands LH, HL and LL of

each color are highly correlated. This can be expressed in the form

|LH
(
Ki, j

)
−LH

(
Gi, j

)
|< threshold

|HL
(
Ki, j

)
−HL

(
Gi, j

)
|< threshold

|HH
(
Ki, j

)
−HH

(
Gi, j

)
|< threshold

(1.59)

where K is the R or B channel in the CFA image The aliasing is removed using

a Projection Onto Convex Sets (POCS) approach [114, 136]. The constraints set

are based on the interchannel differences and on the observed data (original CFA

pixels). This POCS method projects the initial estimate onto this constraint set

to reconstruct the red and blue channels. The observation constraint set ensures
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that the interpolated color channels are consistent with the observed data; that is,

the color samples captured by the sensor can not change during the reconstruc-

tion process. The projection onto the ”observation” constraint set is performed

by inserting the observed data into their corresponding locations in the color

channels at each iteration. The second constraint set imposes the similarity of

high frequency of the color channels. The projection onto the ”detail” constraint

set is performed by first decomposing the color channels into LL, LH, HL, HH

subbands and then updating the high frequency subbands of the R and B chan-

nels only if the detail subbands of the difference planes R-G and B-G exhibit

high values and, at last, restoring them with a bank of synthesis filters. This

constraint is able to drastically reduce the aliasing.

A more detailed description of the whole demosaicing algorithm is the follow-

ing:

1. An initial guess of the full color image is obtained using a simple linear

interpolation;

2. The green channel is updated using the high frequencies of the red/blue

channels:

(a) The red and blue channels in the CFA image are a downsampled ver-

sion of the full color image channels;

(b) Consider a downsampled version of the green channel corresponding

to all the interpolated data in the red and blue location separately;

(c) Decompose the blue and corresponding green channel, then the red

and corresponding green channel into subbands;

(d) The LH, HL and HH subband of the two green channels are replaced
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with the related subbands of the red and blue channels, that corre-

sponds to set to 0 the threshold in the (1.59);

(e) Reconstruct the green channel through the inverse transform and place

these new pixels in the initial guess of the green channel;

3. Iterate until a stop criterion is reached:

(a) Decompose the channels and update the red and blue high frequency

coefficients that do not verify the (1.59);

(b) Reconstruct the red and blue channels, and replace the obtained values

with the original ones (in the CFA image) at the red/blue location.

1.2 Techniques for Aliasing Correction

The two main types of demosaicing artifacts are false colors and zipper effect.

False colors are those artifacts corresponding to noticeable color errors as com-

pared to the original image. One example is shown in Fig.(1.19(a)), where the

left hand is the full-color original image and the right hand is the demosaiced

image with false colors. The zipper effect refers to abrupt or unnatural changes

of color differences between neighboring pixels, manifesting as an ”on-off” pat-

tern. One example is shown in Fig.(1.19(b)), where the left hand is the full-color

image and the right hand is the demosaiced image with the zipper effect around

the fence region.

An explanation of how the false colors arise in color interpolation is shown in

Fig.(1.20). In Fig.(1.20(a)), a graphical representation of the light intensity dis-

tribution incident to an image sensing array comprising, for example 16 pixels,

is depicted. For simplicity it will be assumed that the illumination comprises

two colors A (filled circle) and B (square) wherein each color is defined by a
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(a)

(b)

Figure 1.19 : Example of aliasing artifacts.

selected range of wavelengths different from the selected range of wavelengths

which defines the other color. As depicted in Fig.(1.20(a)), the incident illu-

mination defines a sharp grey edge between pixels 6 and 7 and a sharp grey to

color transition between pixels 12 and 13. Fig.(1.20(b)) shows the case in which

the illumination incident to an image sensing array having a filter arrangement in

which alternate pixels are overlapped by filter transmitting either color A or color

B. Thus, each pixel receives a single color of illumination, and linear interpola-

tion between the pixels which sample each color provides the color distribution

as shown graphically in Fig.(1.20(c)). From this figure, it is evident that the pix-

els 6 and 7 on each side of the grey edge no longer provide equal intensities for

the colors A and B and thus will provide a highly visible color artifact or fringe

in the reconstructed image.
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SHARP GREY 
EDGE

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

(a)

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

(b)

COLOR FRINGE 
ARTIFACT

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

(c)

Figure 1.20 : Examples of an aliasing artifact caused by color interpolation.

From this visual example, we can derive that false colors arise if spectral corre-

lation is not well exploited. This concept is also well disclosed in [33], where it

is also explained that zipper effects manifest if spatial correlation is disregarded.

Although most of demosaicing solutions aim to eliminate false colors, some ar-

tifacts still remain. Thus imaging pipelines often include a post-processing mod-

ule, with the aim of removing residual artifacts [92]. Post-processing techniques

are usually more powerful in achieving false colors removal and sharpness en-

hancement, because their inputs are fully restored color images. Moreover, to fit

some quality criteria, they can be applied more than once. For obtaining better

performances, the antialiasing step often follows the color interpolation process,

as a postprocessing step. The following subsections disclose a variety of state of

the art techniques for false colors and zipper effects reduction.
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1.2.1 False Colors Cancelling

Many techniques have been proposed in literature for reducing false colors. The

conventional approach to solve this problem is to eliminate the color fringes at

the expense of image sharpness by blurring the picture, so that the edges are

not sharp enough to create a color fringe. Blurring the image in this manner,

however, has its obvious disadvantages resulting in a reduction in resolution.

Therefore it is necessary to provide a demosaicing artifact removal technique

which reduces color fringing without the amount of blurring otherwise required.

An interesting technique to solve color fringes without blurring the images was

proposed by Freeman [52]. This approach starts from the consideration that in

natural images there is a high correlation between the red, green and blue chan-

nel, especially for the high frequencies, so they are likely to have the same tex-

ture and edge locations. Because of this inter-channel (or spectral) correlation,

the difference between two colors in a neighborhood is nearly constant, while

it rapidly increases and decreases in the area of sharp grey edges, where color

interpolation has introduced false colors. With reference to the example already

shown in Fig.(1.20), Fig.(1.21) represents the difference between colors A and

B for each pixel of Fig.(1.20(c)).

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

Figure 1.21 : Difference between colors A and B for each pixel.
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The rapid increase and decrease in the difference between the two colors in pixels

6 and 7 is a characteristic of the objectionable color fringing and not simply a

sudden rise in the difference between colors A and B as occurs after pixel 11 and

which is indicative of a change from one color to a different color. Thus, it is not

desirable to create such color spikes as a result of the method of interpolation

chosen. A better estimate of the actual difference between the values for the

colors A and B is provided by the graphical representation of Fig.(1.22), where

the sharp peaks and valleys are removed and the other sharp transitions retained.

Toward this goal a median filter, with a width of N pixels, can be used to replace

each value in the graph of Fig.(1.21) with the median value of the nearest N

pixels. For example, if the width of the median filter is selected to be five pixels,

then the value at pixel 6 will become the median value of the pixels 4, 5, 6, 7 and

8.

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

Figure 1.22 : Median filtered difference between colors A and B for each pixel.

Since the median values for each pixel are derived from the values of color A

minus the values of color B for each pixel, subtracting the median values from

the values of the color A provides the value of the color B for those pixels that

receive only A colored light. Similarly, adding the median values to the values of

the color B provides the value of the color A for those pixels that receive only B
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colored light. As depicted in Fig.(1.23), the Freeman’s approach operates to ac-

tively reconstruct the sharp grey edge between pixels 6 and 7 while maintaining

the color divergence starting at the pixel 11.

SHARP GREY 
EDGE RESTORED

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

Figure 1.23 : New reconstruction from sampled data.

This method, in a three colors system, operates according to the following rules

to obtain the values for the two missing colors of each pixel.

1. Pixels which receive only Red light:

R̂(i, j) = R(i, j)
Ĝ(i, j) = R(i, j)+ vGR (i, j)
B̂(i, j) = R(i, j)− vRB (i, j)

(1.60)

2. Pixels which receive only Green light:

R̂(i, j) = G(i, j)− vGR (i, j)
Ĝ(i, j) = G(i, j)
B̂(i, j) = G(i, j)− vGB (i, j)

(1.61)

3. Pixels which receive only Blue light:

R̂(i, j) = B(i, j)+ vRB (i, j)
Ĝ(i, j) = B(i, j)+ vGB (i, j)
B̂(i, j) = B(i, j)

(1.62)

where

vCD (i, j) = median{C (k, l)−D(k, l) |(k, l) ∈ H } (1.63)
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H denotes the support of the N ×N local window centered in (i, j), C and D de-

note two of the color channels. Analyzing the previous rules, is evident that the

original CFA-sampled color value at each pixel is not altered, and it is combined

with median-filtered inter-channel differences to obtain the other two missing

color values. In general, Freeman’s method is rather effective in suppressing de-

mosaicing artifacts, while preserving sharp edges. However, some demosaicing

artifacts, especially zipper effects, still remain around sharp edges and fine de-

tails. This is partly due to the fact that each pixel has independent inter-channel

differences, and filtering the differences separately does not take into account

the spectral correlation between color planes. To incorporate median filtering

with the spectral correlation for more effective suppression of demosaicing ar-

tifacts, Lu and Tan’s approach [92] lifts the constraint of keeping the original

CFA-sampled color values intact. Furthermore, it makes use of the latest pro-

cessed color values to filter the subsequent pixels so that estimation errors can

be effectively diffused into local neighborhoods. Specifically, it adjusts the three

color values at the central pixel of a local window (the window size is equal to

the support of the median filter) as follows:

Ĝ(i, j) = (R(i, j)−vRG(i, j))+(B(i, j)−vBG(i, j))
2

R̂(i, j) = Ĝ(i, j)+ vRG (i, j)
B̂(i, j) = Ĝ(i, j)+ vBG (i, j)

(1.64)

This approach removes more false colors and artifacts than Freeman’s method,

but it considerably blurs images, because it adjusts the green channel of each

pixel through an average of both the red and blue values of the same pixel. An-

other interesting technique, which is proposed in [84], updates the R, G, B values

adaptively, modifying also the original pixel value which could be corrupted, due

to the effect of noise. Two updated values for the green channel are calculated
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using each color difference domain:

GR (i, j) = R(i, j)+ vGR (i, j)
GB (i, j) = B(i, j)+ vGB (i, j)

(1.65)

where

vGR (i, j) = median{G(k, l)−R(k, l) |(k, l) ∈ A}
vGB (i, j) = median{G(k, l)−B(k, l) |(k, l) ∈ A} (1.66)

and A denotes the support of the 5x5 local window centered in (i, j).

The updated G value is determined by the weighted sum of two updated GR and

GB values of each color difference domain and original G value. Subsequently,

R and B values are updated using the updated G value. This process is expressed

as:

Ĝ(i, j) = 1
2G(i, j)+ 1

2

{
(1−a(i, j))GR (i, j)+a(i, j)GB (i, j)

}
R̂(i, j) = 1

2R(i, j)+ 1
2

{
Ĝ(i, j)− vGR (i, j)

}
B̂(i, j) = 1

2B(i, j)+ 1
2

{
Ĝ(i, j)− vGB (i, j)

} (1.67)

where a(i, j) is a weight, expressed as:

a(i, j) =
σ2
(G−R) (i, j)

σ2
(G−R) (i, j)+σ2

(G−B) (i, j)
,0 < a(i, j)< 1 (1.68)

σ2
(G−R) and σ2

(G−B) represent the variances of interchannel differences.

As it is apparent from the (2.42), the color correction algorithm proposed in [84],

thanks to the variance information, weights more the flatter color difference do-

main than the other. Moreover, the initially interpolated value is not totally ex-

changed by the updated value, but it is equally weighted for correction. Subse-

quently, the color values of the central pixel are replaced by R̂, Ĝ and B̂ so that

they will be involved in filtering the updating pixels.
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The local statistics are effectively estimated from a running square window as

follows:

E [A(i, j)] = ∑k,l∈A e(k,l)·A(k,l)
∑k,l∈A e(k,l)

σ2
A (i, j) = ∑k,l∈A e(k,l)·(A(k,l)−E[A(i, j)])2

∑k,l∈A e(k,l)

e(k, l) = 1− (A(i, j)−A(k, l))

(1.69)

Such technique has the disadvantage of weighting the unfiltered values together

with the filtered ones, so false colors are reduced, without being completely

removed.

In [94], the authors propose to exploit the original uncorrupted Bayer CFA data,

present in the demosaiced image, to correct erroneous color components pro-

duced by CFA interpolation with a localized color ratio model. This technique

is based on the assumption that pixels with similar hues but different intensities

should exhibit similar (if not identical) R/G and B/G color ratios. The post-

processing procedure starts updating the green channel at the original R and B

spatial locations as follows:

Ĝ(i, j) = H (i, j)mean(k,l)∈ζ

(
G(k, l)
H (k, l)

)
(1.70)

where H is the R or B central channel and

ζ = {(i−1, j) ,(i, j−1) ,(i, j+1) ,(i+1, j)} . (1.71)

In (1.70) the sampled G values are used together with the interpolated H values

to obtain a local color ratio description G/R or G/B. The proposed local color

ratio creates a model of the hue for the region under consideration and uses it to

estimate the G component based on the original component H. It should be noted

that this solution avoids extreme transitions in hue in the postprocessed images,
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thus reducing false colors. The second step consists in updating the R channel at

B locations and the B channel at R locations, according to the 1.72

Ĥ (i, j) = Ĝ(i, j)mean(k,l)∈ζ

(
H (k, l)
Ĝ(k, l)

)
(1.72)

where ζ = {(i−1, j−1) ,(i−1, j+1) ,(i+1, j−1) ,(i+1, j+1)}. The (1.72)

differs from the (1.70) mainly because ζ is modified to take into account loca-

tions of the original R or B CFA data. In the last step of the algorithm R and B

color values at G original locations are updated. The (1.72) is applied now using

the original G values G(i, j) and ζ = {(i−1, j) ,(i, j−1) ,(i, j+1) ,(i+1, j)}.

Moreover, two of the values H (k, l) of (1.72) are original components and the

other two are corrected components previously obtained using (1.72).

Some newer approaches address the problem of removing color artifacts in the

YCrCb domain, instead of the classic RGB color space. In fact, if there is a

strong edge in the R channel, there is usually a strong edge at the same location

in the G and B channels; on the contrary, the YCrCb domain is less correlated,

as demonstrated in [31]. Although edges still tend to be strong in the Y (lumi-

nance) plane, the chrominance planes (Cr and Cb) are smoother than the RGB

plane, and hence they are more suitable for interpolation. The simplest way to

remove color artifacts consists in correcting both the chrominance planes by sim-

ply blurring them. One liability with this approach is that there is no discrimina-

tion between false colors and genuine chrominance details. Consequently, sharp

colored edges in the image begin to bleed color as the blurring becomes more ag-

gressive. Adams et al. in [6] address the problem of eliminating low-frequency

colored patterns, such as color Moiré, by filtering chrominances according to an

activity value depending on the nearby luminance and chrominances. To remove

spikes or valleys from these signals, which usually change smoothly, a median
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filter can be applied, instead of blurring the chrominance planes through an av-

erage filter. A median filter can remove false colors pretty well from the image

edges, but it could introduce color bleeding artifacts in sharp colored edges. For

this reason the technique proposed in [140] modifies chrominance values with

respect to luminance and local chromatic dynamic ranges, in order to not reduce

chromaticity too much in regions with uniform colors (see also [102]). The dy-

namic chromatic ranges (DCr and DCb) and the dynamic luminance range (DY)

are evaluated in a 5x5 neighborhood of the pixel to be corrected. For each pixel

of interest, dynamic luminance and chrominance ranges may be computed as the

difference between the maximum and the minimum value in the local neighbor-

hood, as follows:
DY = maxI (Y )−minI (Y )
DCr = maxI (Cr)−minI (Cr)
DCb = maxI (Cb)−minI (Cb)

(1.73)

where I is the local neighborhood of the central pixel. Both the dynamic chro-

matic and luminance ranges are used to calculate a parameter, named Correc-

tionFactor, which determines the strength of the filter on chrominances. To re-

move possible false colors around sharp edges, the filtering action should be

strong. On the contrary, if the luminance edge is weaker than both the chromi-

nance edges, color bleeding has to be avoided by reducing the strength of the

filter. Thus, the following equation is used to calculate this parameter:

CorrectionFactor =
{

DY i f DY = minI (DY,DCr,DCb)
maxI (DY,DCr,DCb) otherwise

(1.74)

The CorrectionFactor determines the power of the false colors correction, ac-

cording to the following rule:

Cr = medianCrI + f (CorrectionFactor) · (originalCrI −medianCrI)
Cb = medianCbI + f (CorrectionFactor) · (originalCbI −medianCbI)

(1.75)
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where f(x) is defined as:

f (x) = e−
1
2

(
x

sigma

)2

(1.76)

where sigma is a fixed parameter. The (1.75) updates each chrominance value

with a weighted average of the original chrominance (originalCr and origi-

nalCb) and the median value of the chrominance in the neighborhood (medi-

anCr and medianCb). The weights depend on the CorrectionFactor parameter,

through the function f(x). The function f(x) is the right part of a Gaussian func-

tion with expected value equal to zero and standard deviation equal to sigma.

Fig.(1.24) illustrates the trend of the f(x), for a given sigma value (sigma = 10).

The function f(x) rapidly decreases as the x increases, according to the (1.76).

The value of the standard deviation sigma determines how fast f(x) approaches

zero. With reference to the (1.75), low values of the CorrectionFactor imply a

greater contribution of the original chrominance value; on the contrary, as the

CorrectionFactor increases a higher weight is assigned to the median value. The

function f(x) avoids discontinuous corrections when dynamic ranges change; in
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Figure 1.24 : Plot of f(x) vs. x, with sigma = 10.
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fact proportions of both the original value and the median filtered value are con-

tinuously varied to form the final value. This soft-threshold methodology avoids

abrupt transitions between corrected and non-corrected pixels.

Artifacts suppression can also be implemented in the frequency domain because

various artifacts often occur in high-frequency components. More specifically,

in [103] the authors propose to correct color artifacts by using the high bands

inter-channel correlation of the three primary colors. Each pixel is separated in

its low and high frequency components; then the high frequencies of the un-

known components are replaced with the high frequencies of the Bayer-known

component. The low-frequency component is preserved unchanged since the

low-frequency components of the color channels are less correlated. For exam-

ple, for a green pixel in the location (i, j), the green value can be decomposed

as:

G(i, j) = Gl (i, j)+Gh (i, j) (1.77)

where Gl and Gh denote the low and high frequency components of the G chan-

nel, respectively. R and B components at G locations are corrected according to

the 1.78

R̂(i, j) = Rl (i, j)+Gh (i, j)
B̂(i, j) = Bl (i, j)+Gh (i, j)

(1.78)

The correction at R and B original locations is performed in a similar way. The

selection of the low-frequency components is performed using a low-pass filter

while the high frequencies are calculated subtracting the low-frequency values.

An effective approach is to select the low and high frequencies using a 1-D filter,

so the interpolation is carried out only along the edges of the image.
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1.2.2 Zipper Cancelling

Zipper effect is an artifact caused by a not correct spatial correlation exploita-

tion. An artifact introduced by a wrong edge-estimation is usually difficult to

remove in a post-processing phase, so it should be avoided during the interpo-

lation step. Nevertheless, some techniques exist which reduce this effect. The

simplest approach is the application of a heavy low pass filter to the demosaiced

image. An example of antizipper filter is:

AZ =

[
1 1
1 1

]
(1.79)

This filter removes zipper artifacts, but at the same time consistently reduces

resolution thus removing genuine spatial details, which may not be recovered by

further image processing algorithms.

In [63] the authors propose a method to eliminate the false color and zipper effect

based on an adaptive scheme allowing to determine the specific artifact affect-

ing the pixels. The authors use the spectral correlation between color planes to

detect and reduce the artifacts. The block diagram representing the demosaicing

artifact removal algorithm is shown in Fig.(1.25). Before processing each pixel,

the zipper detector block produces a control signal which enables either the false

colors removal algorithm or the zipper effect removal algorithm. More specifi-

cally, zipper effect arises when the following three conditions are satisfied:

1. Along the horizontal (vertical) direction passing through the central pixel,

the inter-channel difference between the green channel and the other one

(for which there are the original sampled values) is almost constant;

2. The trend of the central pixel channel in the vertical (horizontal) direction,

the inter-channel difference between the green channel and the other one
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Figure 1.25 : Block diagram of the antialiasing algorithm proposed in [63].

(for which there are the original sampled values), is not constant;

3. The trend of the central pixel channel in the vertical (horizontal) direction

is increasing or decreasing, or there is a minimum or a maximum in the

central pixel.

Zipper effects are then removed using the following two equations:

1. G central pixel
Ĝ(i, j) = G(i, j)
Ĥ (i, j) = f (HSURROUND)
Ĵ (i, j) = G(i, j)+ vJG

(1.80)

2. R/B central pixel (e.g., H)

Ĝ(i, j) = f (GSURROUND)
Ĥ (i, j) = H (i, j)
Ĵ (i, j) = Ĝ(i, j)+ vJG

(1.81)

where f (·) is an average operator, whose inputs are the surrounding pixels

(HSURROUND or GSURROUND) along the direction having almost constant inter-

channel differences and vJG is calculated using the (1.63).
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The post-processing approach described in [95] is not only based on the color

difference model, but also uses fully adaptive edge-sensing mechanism based on

the aggregated absolute differences between the CFA inputs. The spectral corre-

lation between the G and R (or B) components of the full-color image is utilized

in the proposed post-processing process to further improve color appearance of

the image. Based on the color difference model, the proposed post-processor

reevaluates the G components produced by the demosaicking process as follows:

Ĝ(i, j) = H (i, j)+
∑(k,l)∈ζ w(k, l)(G(k, l)−H (k, l))

∑(k,l)∈ζ w(k, l)
(1.82)

where ζ = {(i−1, j) ,(i, j−1) ,(i+1, j) ,(i, j+1)} denotes the locations of the

original G components surrounding the interpolated location (i, j); H (i, j) de-

notes the original R (or B) component at the position under consideration and

w(k, l) are the edge-sensing weights, which have to satisfy two conditions:

1. each weight is a positive number, w(k, l)≥ 0;

2. the summation of all the weights, ∑(k,l)∈ζ w(k, l), is equal to unity.

More specifically, these weights are calculated as follows:

w(k, l) =
1

1+d (k, l)
(1.83)

where d (k, l) is the aggregated absolute difference between the G sampled val-

ues:

d (k, l) = ∑
(g,h)∈ζ

|G(k, l)−G(g,h)| (1.84)

These weights are used to regulate the contribution of the neighboring input

components G(k, l) in the (1.82). In fact, when no edge is positioned across the

directions in which the image is post-processed, the corresponding aggregated
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absolute difference d (k, l) is small and the CFA component G(k, l), via its cor-

responding weight w(k, l), contributes greatly in (1.82). The opposite is true in

case of an edge. After the post-processing of the G channel is complete, the R

(or B) component at B (or R) locations is post-processed as follows:

Ĥ (i, j) = Ĝ(i, j)+
∑(k,l)∈ζ w(k, l)(H (k, l)−G(k, l))

∑(k,l)∈ζ w(k, l)
(1.85)

The weights are computed as in (1.83), with d (k, l) = ∑(g,h)∈ζ |H (k, l)−H (g,h)|

where ζ = {(i−1, j−1) ,(i−1, j+1) ,(i+1, j−1) ,(i+1, j+1)}.

Finally, the R and B components at G locations are processed. In this case the

(1.85) is applied again with ζ = {(i−1, j) ,(i, j−1) ,(i+1, j) ,(i, j+1)} which

are the locations of the R (or B) pixels surrounding the central G pixel.
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2. An Adaptive Color Interpolation
Technique

In this chapter we present a new adaptive demosaicing algorithm, with the aim

of not magnifying the effect of noise, which is particularly visible in flat regions.

The proposed technique decides among three different interpolation approaches,

depending on the statistical characteristics of the neighborhood of the pixel to

be interpolated. Edges are effectively interpolated through a directional filtering

approach, which interpolates the missing colors selecting the suitable filter de-

pending on the edge orientation. Regions close to edges are filtered through a

simpler filter. Flat regions are identified and heavily low pass filtered in order

to eliminate some residual noise and to minimize the green imbalance issue. A

new powerful false colors removal algorithm has been also developed and used

as a post-processing step, in order to eliminate residual color artifacts. The ex-

perimental results show how sharp edges are preserved, false colors and zipper

effects are drastically reduced without accentuating noise.

2.1 Color Interpolation

As already outlined, the proposed color interpolation approach adaptively chooses

the reconstruction methodology to recover the missing color information, upon

the statistical characteristics of the surrounding pixels. As it is visible in Fig. 2.1

, the method is compound of three main steps:

1. The direction estimation stage computes the direction to be used in the

interpolation step, if needed;
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Figure 2.1 : Scheme of the color interpolation algorithm

2. The neighbor activity analysis stage selects which interpolation algorithm

shall be performed, according to the surrounding features (edge, texture,

flat area, etc.);

3. The interpolation stage executes a particular demosaicing algorithm, de-

pending on the choice performed by the neighbor activity analysis block;

the demosaicing algorithms could use the direction information provided

by the direction estimation block for choosing the suitable filter to be ap-

plied. Moreover, the available demosaicing algorithms could have different

kernel sizes.

Each phase of the algorithm will be extensively described in the following sub-

sections.

2.1.1 Direction Estimation Block

The quality of demosaiced images is clearly dependent on the extracted gradient

information from the input CFA image, but the information on mosaic image is
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not so accurate, as each pixel in the mosaic image only has one color channel, as

stated in [37]. The direction estimation block is based on the one proposed in the

patent [62], where the derivatives along both horizontal and vertical directions

are computed through the classical 3x3 Sobelx and Sobely filters, which are

shown in equation (2.1).

Sobelx =

 −1 0 1
−2 0 2
−1 0 1

 Sobely =

 1 2 1
0 0 0
−1 −2 −1

 (2.1)

Although these filters are widely used on full color images, their employment on

Bayer images is not a commonly defined procedure. We introduced this tech-

nique after fixing the following assumptions. Let Q be the generic 3x3 neigh-

borhood from the Bayer pattern as it is defined in (2.2):

Q =

 G11 J12 G13
H21 G22 H23
G31 J32 G33

 (2.2)

where Gi are the green components and Hi and Ji are the generic red and/or

blue components. In order to compute the derivatives only on the green channel,

we exploit the spectral correlation property. In particular, as already mentioned,

Gunturk et al. in [65] demonstrated that high frequency components of the three

color planes are highly correlated. For instance, if it is assumed a red central

pixel, the green component can be determined as:

G(i, j) = GLPF (i, j)+RHPF (i, j) (2.3)

Where RHPF is the high frequency content of the R channel, and GLPF and RLPF

are the low frequency components of the G and R channels, respectively. Since

69



2. An Adaptive Color Interpolation Technique Giuseppe Messina

the high frequency content of the red channel can be calculated as:

RHPF (i, j) = R(i, j)−RLPF (i, j) (2.4)

The equation (2.3) can be rewritten as follows:

G(i, j) = R(i, j)+GLPF (i, j)−RLPF (i, j)
= R(i, j)+∆GR (i, j) (2.5)

This implies that a Q’ neighborhood, which is a matrix containing only G sam-

ples could be written as:

Q′ =

 G11 J12 +∆12 G13
H21 +∆21 G22 H23 +∆23

G31 J32 +∆32 G33

 (2.6)

Therefore the mathematical convolution between Q’ and, for example, the deriva-

tive filter Sobelx, becomes:

∂Q′

∂x
= Q′ ⋆Sobelx =

 G11 J12 +∆12 G13
H21 +∆21 G22 H23 +∆23

G31 J32 +∆32 G33

⋆

 −1 0 1
−2 0 2
−1 0 1

=

= G13 +2(H23 +∆23)+G33 −G11 −2(H21 +∆21)−G31 (2.7)

where ∆23 and ∆21 are unknown values. Since for real world images the color

difference planes (∆GR=G-R and ∆GB=G-B) are rather flat over small regions,

the difference between ∆23 and ∆21 could be assumed irrelevant, and thus:

∂Q′

∂x
≈ ∂Q

∂x
= G13 +2H23 +G33 −G11 −2H21 −G31 (2.8)

A similar condition obviously holds for the computation of Sobely. This means

that Sobel filters can be applied directly on Bayer images.
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Unfortunately, if the color planes are not correlated, e.g. red to blue transitions

(as shown in Fig.2.2), the spectral correlation property is not valid [85], and the

just disclosed procedure for computing horizontal and vertical gradients could

fail. To solve this issue, we developed a method to establish if the color channels

are not correlated, directly acting on the Bayer pattern. Let M be the generic 3x3

window, which is shown in (2.9):

M =

 MNW MN MNE
MW MC ME
MSW MS MSE

 (2.9)

For each direction (horizontal and vertical) we define two different gradients,

external (ext) and central (cnt), each of which involving a single bayer channel,

as it is apparent from equation (2.10):

∂M
∂x

ext = MNE +MSE −MNW −MSW ;
∂M
∂x

cnt = ME −MW

∂M
∂y

ext = MNE +MNW −MSE −MSW ;
∂M
∂y

cnt = MN −MS (2.10)

The lack of correlation between color channels is evaluated in two different ways

according to the central pixel channel (G or not G). If the central pixel is green,

the equation (2.11) is applied:

NoCorrelation(M) =


1 i f

 SIGN
(

∂M
∂x ext

)
̸= SIGN

(
∂M
∂x cnt

)
OR

SIGN
(

∂M
∂y ext

)
̸= SIGN

(
∂M
∂y cnt

) 
0 otherwise

(2.11)
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Otherwise, if the central pixel is red or blue the equation (2.12) is applied :

NoCorrelation(M) =


1 i f



 SIGN
(

∂M
∂x ext

)
̸= SIGN

(
∂M
∂x cnt

)
AND

SIGN
(

∂M
∂y ext

)
̸= SIGN

(
∂M
∂y cnt

) 
OR ∣∣∣ ∂M

∂x ext
∣∣∣> 2

∣∣∣ ∂M
∂x cnt

∣∣∣ AND∣∣∣ ∂M
∂y ext

∣∣∣> 2
∣∣∣ ∂M

∂y cnt
∣∣∣




0 otherwise

(2.12)

where

SIGN (x) =
{

1 i f x ≥ 0
−1 otherwise (2.13)

The difference between (2.11) and (2.12) is due to the different arrangement of

color channels between G and non-G central pixel cases. In fact, if the cen-

tral pixel is green the horizontal central derivative has the information about the

blue (or red) channel, whereas the vertical central derivative has the information

about the red (or blue) channel, so the evaluation of cross-correlation could use

only simple sign criteria. In particular, equation (2.11) has the aim of evaluating

if at least either green-red or green-blue are opposite correlated. On the contrary,

if the central pixel is not green, both horizontal and vertical external derivatives

have the information of the same color channel, and hence more complex criteria

can be used to properly evaluate cross-correlation. More specifically, in equation

(2.12) the first term of the OR expression is used to evaluate if there is an op-

posite correlation between green and the color channel which has its samples at

the corners of the 3x3 mask; the second term is used to evaluate the lack of cor-

relation between green and the other color channel even if both the external and

the central gradients have the same sign. This could happen if the green channel
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is quite flat with respect to the other color channel. In this case the classic Sobel

operators could fail in providing a good gradient estimation.

Let SimpleGradx and SimpleGrady be two simpler gradient filters, defined in

equation (2.14):

SimpleGradx =

 −1 0 1
0 0 0
−1 0 1

 ; SimpleGrady =

 1 0 1
0 0 0
−1 0 −1

(2.14)

These gradient operators could be used every time a lack of correlation between

the three color channels is suspected, because they involve a single color channel,

and hence they are not negatively influenced by the different variations of the R,

G and B channels. Thus, the gradient for the central pixel of the Q neighborhood

could be calculated according to the following equation :

∇Q=

(
∂Q
∂x

,
∂Q
∂y

){
(Q⋆Sobelx,Q⋆Sobely) i f NoCorrelation(Q) = 0

(Q⋆SimpleGradx,Q⋆SimpleGrady) i f NoCorrelation(Q) = 1
(2.15)

The equations (2.11) and (2.12) have especially the aim to identify the cases

where the Bayer channels are not correlated, to avoid the application of Sobel

operators, which involve different color channels. On the contrary, even if the

simpler gradient operators were applied on a region where the Bayer channels

are correlated this would not be a problem, because they provide a quite good

gradient estimation, even if Sobel operators are better. Moreover, the final gra-

dient estimation for the central pixel depends on the gradients within its 3x3

neighborhood, as it will be further explained. Once the gradient is computed, its

73



2. An Adaptive Color Interpolation Technique Giuseppe Messina

direction and magnitude are calculated by the (2.16) and (2.17), respectively.

ψ (∇Q) =

{
arctg

(
∂Q/∂ y
∂Q/∂x

)
i f ∂Q

/
∂x ̸= 0

π
2 otherwise

(2.16)

|∇Q|=

√(
∂Q
∂x

)2

+

(
∂Q
∂y

)2

(2.17)

It is important to specify that ψ (∇Q) and |∇Q| represent the direction and mag-

nitude of the gradient of the central pixel of Q. If we set (x,y) as the coordinates

of the central pixel of Q, the direction and magnitude associated to its gradient

could be indicated as:

or (x,y) = ψ (∇Q)
mag(x,y) = |∇Q| (2.18)

The gradient orientation or(x,y) could be quantized into k predefined directions:

directioni =
i ·π

k
i ∈ [0,k−1] , k ∈ ℵ (2.19)

and, according to the equation (2.19), the gradient orientation or (x,y) is set as

follows:

or(x,y) = {directioni|directioni ≤ or(x,y)< directioni+1, i ∈ [0,k−1]}

(2.20)

To avoid the influence of noise on the gradient estimation, a “weighted-mode”

(WM) operator is applied on each pixel (x,y) computing the prominent direction

in its 3x3 neighborhood. For estimating this direction, the magnitudes of the

74



Giuseppe Messina 2. An Adaptive Color Interpolation Technique

pixels in the neighborhood are firstly accumulated according to their associated

directions:

Acc(x,y, i) =
1

∑
u=−1

1

∑
v=−1

mag(x+u,y+ v) · t(x+u,y+ v, i) (2.21)

where

t (x,y, i) =
{

1 i f or (x,y) = directioni
0 otherwise (2.22)

for i∈ [0, k-1], k∈ ℵ

Therefore the WM operator selects the direction associated to the maximum sum

of magnitudes in the neighborhood of the considered pixel:

WM(x,y) = j such that Acc(x,y, j) = max
i=0..k−1

(Acc(x,y, i)) , j ∈ [0,k−1](2.23)

Finally, after the gradient direction is retrieved, through the process already de-

scribed, the edge direction is obtained by taking the orthogonal direction to the

gradient one. The edge direction is provided to the neighbor analysis block for

the texture analysis, and to the interpolation block when the directional color

interpolation is selected.

2.1.2 Neighbor Analysis

The aim of this part of the proposed method (whose detailed functional scheme

is shown in Fig. 2.3) is to evaluate the presence of texture, edges or flat zones

in the pixel neighbor. This analysis is performed by estimating the variances

very close to the pixel and on a larger surrounding. The comparison of these

variances provides useful information about neighbor activity. In case of tex-

tured zones, an additional analysis is necessary, in order to validate the texture
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x

Figure 2.2 : Uncorrelated planes: example of red to blue transitions.

direction estimated by the Direction Estimation Block. According to the results

of this analysis, the appropriate interpolation scheme is then used. For our pur-

poses we used two kernel sizes: 5x5 for the larger surrounding analysis and 3x3

for the analysis close to the pixel. The variance is computed, as a measure of the

activity within a neighborhood. In particular, let P and Q be the generic 5x5 and

3x3 windows from the Bayer pattern, respectively.

P =


G11 H12 G13 H14 G15
J21 G22 J23 G24 J25
G31 H32 G33 H34 G35
J41 G42 J43 G44 J45
G51 H52 G53 H54 G55

 Q =

 G22 J23 G24
H32 G33 H34
G42 J43 G44

 (2.24)

where Gi are the green components and Hi and Ji are the generic red and/or blue

components. The mean value and the variance, for a generic neighborhood S of
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the central pixel, are computed according to the following equations:

µX (S) =
∑(i, j)∈S

(
S(i, j)∗MaskX (i, j)

)
∑(i, j)∈S MaskX (i, j)

σ2
X (S) =

∑(i, j)∈S

(
S(i, j)∗MaskX (i, j)−µX (S)

)2

∑(i, j)∈S MaskX (i, j)

σ2 (S) =
(
σ2

G (S)+σ2
H (S)+σ2

J (S)
)

S ∈ {P,Q} X ∈ {G,H,J}

(2.25)

where MaskX identifies the involved pixels components present in the pattern of

the processed color component. Let ΛG, ΛH and ΛJ be the set of pixel loca-

tions, (x,y), that have the samples of green, red (blue) and blue (red) channels,

respectively. The binary mask MaskX is defined as:

MaskX(x,y) =
{

1 i f (x,y) ∈ ΛX
0 otherwise (2.26)

where X = G,H or J.

By using the equations in (2.25) on the neighborhoods P and Q, defined by the

equation (2.24), two values are calculated, σ2 (P) and σ2 (Q), which represent a

measure of the activity in the relative neighborhoods.

Two thresholds are set for distinguishing different conditions. With reference to

Fig. 2.3 , if both the variance values are under the lower threshold, the region is

considered flat, and hence a low pass filter based interpolation could be used, in

order to remove residual noise. This threshold could be either fixed or modulated

by the noise sigma (if computed or estimated). It allows to blur more the flat

zones, where the Human Visual System is more sensitive to noise.
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Figure 2.3 : Neighbor analysis block scheme

When the variances have values not too high or low, the evaluation is not straight-

forward, because it could be due either to a zone nor flat nor textured, or to a zone

with a texture without strong edges. In the first case a directional interpolation

could introduce artifacts, while in the second one the directional interpolation

could highlight the texture.

The mean values and the standard deviations of each color channel, within the

P neighborhood, are used to build a texture Mask (we call it TLM, three level

mask), which is a matrix having the same size as P and having each element

calculated according to the equation (2.27).

T LM (i, j) =

 0 i f P(i, j)< (µX (P)−σX (P)) with (i, j) ∈ ΛX
1 i f (µX (P)−σX (P))< P(i, j)< (µX (P)+σX (P)) with (i, j) ∈ ΛX
2 i f P(i, j)> (µX (P)+σX (P)) with (i, j) ∈ ΛX

X = {G,R,B} (2.27)

where σX (P) =
√

σ2
X (P).
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Figure 2.4 : Example of the Three Level Mask (TLM) generation

Each value within the current P window is associated, in the TLM, with one

of three possible levels: Low (value 0), Medium (value 1) or High (value 2),

according to its position with respect to its mean value and its standard deviation.

The generation of the TLM is illustrated in Fig. 2.4. In the top left of the figure,

a 5x5 crop of a Bayer image is represented, then its numeric representation is

shown. The mean values and the standard deviations of each color channel are

reported in a box.

Let us define ”Activity” the sum of absolute differences of contiguous elements

of the TLM within a certain working mask.

Once the TLM is generated, two working masks are taken into account and hence

two activity values are calculated accordingly. The first working mask is the

same for each pixel: it is the squared 3x3 mask centered in the pixel under con-

sideration. The second one depends on the direction provided by the direction

estimation block for the current pixel: it includes the pixels along the identified

direction. It is obvious that a greater activity within a certain working mask rep-

resents a lower uniformity of the image content in it. Fig. 2.5 shows an example
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Figure 2.5 : Example of the Activity evaluation assuming that the estimated
direction is 135◦.

of activity computation. Fig. 2.5(a) illustrates the TLM already presented in fig.

2.4; in fig. 2.5(b) the squared working mask is highlighted in pink. Finally, in

this example the edge direction is estimated to be 135◦, and the correspondent

directional working mask is highlighted in Fig. 2.5(c).

Let Ti represent the generic element of the TLM, the activities within the 3x3

squared mask and within the 5x5 directional mask are calculated through the

equations (2.28) and (2.29).

3×3Activity = |T7 −T13|+ |T8 −T13|+ |T9 −T13|+ |T14 −T13|
+ |T19 −T13|+ |T18 −T13|+ |T17 −T13|+ |T12 −T13|

(2.28)

DirectionActivity(135◦) = |T1 −T7|+ |T2 −T7|+ |T7 −T12|+ |T7 −T13|
+ |T13 −T19|+ |T14 −T19|+ |T19 −T24|+ |T19 −T25|

(2.29)

The 5x5 directional working mask and its related activity computation formula

depend on the edge direction, which is provided by the direction estimation

block. Finally the activity values computed in equations (2.28) and (2.29) are

compared to evaluate if the activity within the 3x3 squared mask is less than the

activity along the direction provided by the direction estimation block. If this is
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the case, a simple 3x3 interpolation could be used. This control allows avoiding

the directional 5x5 interpolation in case of a wrong estimated direction, or in

case of a region close to an edge, thus reducing the introduction of unpleasant

artifacts. In the example of fig. 2.4, the directional interpolation is chosen for

the central pixel, because the 3x3 squared mask activity (Fig. 2.5(b)) is greater

than the 5x5 directional one (Fig. 2.5(c)).

For the sake of completeness, the activity computation formulas applied in case

of edge direction equal to 0◦ and 22.5◦ are shown in equations (2.30) and (2.31),

respectively. All the other activity computation formulas can be easily derived

from the three examples already presented.

DirectionActivity(0◦) = |T6 −T8|+ |T8 −T10|+ |T11 −T12|+ |T12 −T13|
+ |T13 −T14|+ |T14 −T15|+ |T16 −T18|+ |T18 −T20|

(2.30)

DirectionActivity(22.5◦) = |T9 −T10|+ |T11 −T12|+ |T12 −T13|+ |T13 −T14|
+ |T14 −T15|+ |T16 −T17|+ |T13 −T10|+ |T13 −T16|

(2.31)

2.1.3 Interpolation

As already pointed out, according to the analysis of the ”Direction Estimation”

and ”Neighbor Analysis”, the appropriate color interpolation scheme is used. in

particular we use:

• 5x5 directional filter;

• 3x3 simple interpolation;

• 5x5 omnidirectional low pass filter.

In the following paragraphs each one of the aforementioned algorithms will be

described.

81



2. An Adaptive Color Interpolation Technique Giuseppe Messina

2.1.3.1 Directional filtering color interpolation

If a strong edge or a texture is detected, the directional filtering is used. This

interpolation is carried out through elliptical shaped Gaussian filters, given by:

f (u,v,α) = he
− ũ2

2σ2u
− ṽ2

2σ2v (2.32)

where

ũ = ucos(α)− vsin(α),
ṽ = usin(α)+ vsin(α),

(2.33)

and σ2
u , σ2

v are the variances along the two dimensions, h is a normalization

constant and α is the orientation angle. Through heuristic experiments σu = 8

and σv = 0.38 have been fixed.

These interpolation kernels can be computed only once, after the number of

admissible directions, k, has been set. More specifically, fixing the coordinates

(u,v) in a given range (i.e., 5x5), the kernel filters DFi can be generated, for

i ∈ [0,k−1]. The generic element of these matrices, DFi(u,v), is defined as

follows:

DFi (u,v) = f
(
u,v, i ·π

/
k
)

(2.34)

During the directional filtering color interpolation, once the direction j for the

central pixel is derived by the direction estimation block, the kernel DF j is ap-

plied to the central pixel to obtain the low pass filter (LPF) color components

RLPF DF , GLPF DF and BLPF DF , preserving the image from zigzag effect and

partially from false colors.
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Let P be the generic 5x5 neighborhood from the Bayer pattern as it is defined in

equation (2.24).

The LPF components, for the central pixel (x,y), are computed by assuming the

following rules:

HLPF DF = P⊗MaskH ⊗DFj
GLPF DF = P⊗MaskG ⊗DFj
JLPF DF = P⊗MaskJ ⊗DFj

(2.35)

where MaskX , which has been already defined in equation (2.26), identifies the

pixels belonging to the processed color component.

As already aforementioned, the high frequency components of the three color

channels are highly correlated, and hence any color component can be exploited

to reconstruct the high frequencies of the remaining color components. For this

reason, the directional LPF component of the central pixel is likewise computed

in order to calculate its high pass filter (HPF) component, which will be added

to the other two color channels. Assuming a green central pixel, its high pass

component can be calculated according to the equation (2.36).

GHPF = G−GLPF DF (2.36)

The resulting GHPF value is added to the unknown values, in this case R and B

(e.g. H), to increase their high frequency content:

HDF = HLPF DF +GHPF (2.37)

The central pixel value will be maintained to its original value:

GDF = G (2.38)
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2.1.3.2 Simple 3x3 interpolation

The 5x5 directional filtering color interpolation could produce some artifacts

near edges, especially in text images. This problem could arise when a wrong

direction is estimated or when a large interpolation window is used for inter-

polating a small region, enclosed by edges. To overcome this problem a 3x3

interpolation could be performed in regions which are close to edges.

A wide variety of 3x3 interpolation algorithms exists: bilinear interpolation,

edge sensing, etc. In order to achieve good quality results near corners and

edges, it is possible to use an algorithm which analyzes the 5x5 neighborhood of

the central pixel, and then applies a 3x3 interpolation, avoiding the interpolation

across edges.

Taking idea from the paper in [32], the proposed 3x3 interpolation algorithm

uses a threshold-based variable number of gradients. According to the central

pixel channel, four (G case) or eight (R or B case) gradients are computed in a

5x5 neighborhood. Each gradient is defined as the sum of absolute differences

of the like-colored pixels in this neighborhood. For each color channel to be in-

terpolated, a proper subset of these gradients is selected to determine a threshold

of acceptable gradients. Each missing color channel is then obtained by aver-

aging the color values of the same channel in the 3x3 neighborhood, which are

associated with gradients lower than the calculated threshold.

2.1.3.3 Omnidirectional low pass filter

This interpolation is performed on flat regions. A simple 5x5 omnidirectional

low pass filter is applied for smoothing the image, removing some residual noise

from it. In this case the original sampled values are also modified. The kernels
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used to achieve the interpolation are shown in equation (2.39). In particular, the

A kernel is applied in case of G central pixel, whereas the B kernel is used in

case of R/B central pixel.

A =


0 8 4 8 0
8 8 16 8 8
4 16 16 16 4
8 8 16 8 8
0 8 4 8 0


64

B =


0 3 9 3 0
3 16 10 16 3
9 10 28 10 9
3 16 10 16 3
0 3 9 3 0


64

(2.39)

2.2 False Colors Removal

Since the color interpolation step quite well exploits spatial correlation, zipper

effect does not often arises. On the contrary, residual false colors can be intro-

duced by the directional filters. For this reason, a postprocessing technique has

been developed, which eliminates the residual false colors, thus considerably

improving the final image quality.

Many methods have been developed in the past to reduce false colors. Among

them, the most interesting techniques median filter the inter-channel differences,

thus removing spikes and valley from them, which usually correspond to false

colors. Freeman’s approach [52] and Lu and Tan’s technique [92] have been

already presented in the introduction section. The post-processing approach de-

scribed in [95] not only is based on the color difference model, but also uses

an edge-sensing mechanism. Another interesting technique, which is proposed

in [84], updates the R, G, B values adaptively, modifying also the original pixel

value which could be corrupted, due to the effect of noise. Two updated values
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for the green channel are calculated using each color difference domain:

GR (i, j) = R(i, j)+ vGR (i, j)
GB (i, j) = B(i, j)+ vGB (i, j)

(2.40)

where

vGR (i, j) = median{G(k, l)−R(k, l) |(k, l) ∈ A}
vGB (i, j) = median{G(k, l)−B(k, l) |(k, l) ∈ A} (2.41)

And A denotes the support of the 5x5 local window centered in (i, j).

The updated G value is determined by the weighted sum of two updated GR and

GB values of each color difference domain and original G value. Subsequently,

R and B values are updated using the updated G value. This process is expressed

as:

G′ (i, j) = 1
2G(i, j)+ 1

2

{
(1−a(i, j))GR (i, j)+a(i, j)GB (i, j)

}
R′ (i, j) = 1

2R(i, j)+ 1
2 {G′ (i, j)− vGR (i, j)}

B′ (i, j) = 1
2B(i, j)+ 1

2 {G′ (i, j)− vGB (i, j)}
(2.42)

where a(i, j) is a weight, expressed as:

a(i, j) =
σ2
(G−R) (i, j)

σ2
(G−R) (i, j)+σ2

(G−B) (i, j)
,0 < a(i, j)< 1 (2.43)

σ2
(G−R) and σ2

(G−B) represent the variances of interchannel differences.

As it is apparent from the equation (2.42), the color correction algorithm pro-

posed in [84], thanks to the variance information, weights more the flatter color

difference domain than the other. Moreover, the initial interpolated value is not

totally exchanged by the updated value, but it is equally weighted for correction.

Subsequently, the color values of the central pixel are replaced by R′, G′ and B′

so that they will be involved in filtering the updating pixels.
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The local statistics are effectively estimated from a running square window,

through the formulas in (2.44):

E [A(i, j)] = ∑k,l∈A e(k,l)·A(k,l)
∑k,l∈A e(k,l)

σ2
A (i, j) = ∑k,l∈A e(k,l)·(A(k,l)−E[A(i, j)])2

∑k,l∈A e(k,l)

e(k, l) = 1− (A(i, j)−A(k, l))

(2.44)

The just described technique has the disadvantage of weighting the unfiltered

values together with the filtered ones, so false colors are reduced, without being

completely removed. If the unfiltered values were not weighted in the color

correction process, false colors would be removed much better but true colors

could be removed as well. In fact, it is well known [148] that a window width

2k+1 median filter can only preserve details lasting more than k+1 points. To

preserve smaller details in signals, a smaller window width median filter must

be used. Unfortunately, the smaller the filter window is, the poorer its false color

reduction capability becomes.

To overcome this problem, we have developed a new solution which takes into

account both a 3x3 window median filter and a 5x5 window median filter. In

particular, local variances of interchannel differences are evaluated through the

equation (2.44) in both 3x3 and 5x5 square windows, thus obtaining σ2
(G−R)3×3

,σ2
(G−B)3×3,σ

2
(G−R)5×5 ,σ2

(G−B)5×5. Similarly, four median values (vGR3x3,vGB3x3

,vGR5x5 ,vGB5x5) are computed.

Due to the Bayer arrangement and to a quite good interpolation achieved by the

previous demosaicing step, the green plane is less affected by false colors than

the R and B planes, and hence it is left unmodified. The color correction on R
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and B planes is performed according to the following rules:

R′ (i, j) = G(i, j)− [(1− krratio (i, j)) · vGR3×3 (i, j)+ krratio (i, j) · vGR5×5 (i, j)]
B′ (i, j) = G(i, j)− [(1− kbratio (i, j)) · vGB3×3 (i, j)+ kbratio (i, j) · vGB5×5 (i, j)]

(2.45)

Where

krratio (i, j) =
σ2
(G−R)3×3(i, j)

σ2
(G−R)3×3(i, j)+σ2

(G−R)5×5(i, j)

kbratio (i, j) =
σ2
(G−B)3×3(i, j)

σ2
(G−B)3×3(i, j)+σ2

(G−B)5×5(i, j)

(2.46)

By this way, the greatest weight is assigned to the median value associated to

the neighborhood having the lowest variance. So, if the pixel being processed

belongs to an edge, the 3x3 variances of interchannel differences are likely to

be greater than the correspondent 5x5 variances, and hence the filtering action

will be stronger. Vice versa, if the 3x3 neighborhood is flatter than the 5x5

neighborhood, the 3x3 median is weighted more than the 5x5 median, and hence

details lasting 2 pixels at least are preserved.

Fig.2.6 shows a schematic representation of the proposed approach.

Since variances could be used as measures of the flatness of a region, it is possi-

ble to perform the color correction process only where it is needed, thus reduc-

ing the power consumption. In the color difference domain, a flat color differ-

ence neighborhood is characterized by: expectation values close to the central

pixel values, low variance values. Defined Di f fGR(i, j) = G(i, j)−R(i, j) and

Di f fGB(i, j) = G(i, j)−B(i, j), these two conditions can be expressed with the

following formulas:

|E [Di f fGR(i, j)]−Di f fGR(i, j)|< MeanT hreshold
|E [Di f fGB(i, j)]−Di f fGB(i, j)|< MeanT hreshold

σ2
(G−R)3×3 (i, j)<VarianceT hreshold

σ2
(G−B)3×3 (i, j)<VarianceT hreshold

(2.47)
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σ2
(G-X)5x5

vGX5x5

σ2
(G-X)3x3

vGX3x3vGX5x5
vGX3x3

Color Correction

Corrected RGB values

Figure 2.6 : Schematic representation of the proposed approach
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where MeanThreshold and VarianceThreshold are two thresholds, which can be

set to 16 for 8 bits images.

If the conditions stated above are satisfied, the region is considered flat, thus the

central pixel can be left unchanged.

According to the expectation value and to the variance, a map of homogeneous

(black) vs. inhomogeneous (white) regions can be achieved, as it is apparent

from Fig.2.7.

(a) Processed image (b) Map of homogeneous vs. inhomo-
geneous regions

Figure 2.7 : Map of homogeneous vs. inhomogeneous regions

Homogeneous regions (black) can be left unchanged or can be low pass filtered.

Inhomogeneous regions (white) are processed by the color correction algorithm.

2.3 Experimental Results

In this section, we will show the experimental results obtained using the pro-

posed algorithm compared with other demosaicing techniques. The results are

highligthed both visually and numerically. For coherence with the most of pa-

pers on demosaicing, which use the Kodak image test set to make comparisons

with other techniques, we downloaded this database from [51] and then we pro-

cessed these images through the proposed approach. These images contains a
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lot of edges and textures, thus they are useful for highlight how the various algo-

rithms handle the high frequency content. Since the Kodak image test set is full

color, CFA images are simulated by subsampling the color channels according

to the Bayer Pattern. This means that the algorithms are not applied on gen-

uine Bayer data (derived from a real sensor), but on images that have already

had matrix and gamma applied, so their gamut is far wider than that of data

coming from a sensor. Moreover they are immune from noise and other impair-

ments related to the sensor technology. For these reasons we also applied the

proposed algorithm to the kodak images, to which we applied a gaussian noise

with σ = 8,σ = 12,σ = 25 In our experiments, we have used the PSNR (Peak

signal to Noise Ratio) for evaluating the quality of the images (only for Kodak

database). Given two N ×M images A and B, the PSNR is expressed as:

PSNR = 20× log10

 255√
1

N×M ∑N×M
i=1 (Ai −Bi)

2

 (2.48)

Higher values (expressed in decibel) of the PSNR generally imply better quality.

For demonstrating the competitiveness of the proposed algorithm, we compared

it with other thirteen demosaicing algorithms, whose PSNR are reported in Table

2.2. The Table reports, for readability reason, only part of the measures available

in the Table I of the survey [88]. For precision the techniques used are :

1. Lu&Tan’s method (LT) [92];

2. Alternating projection (AP) [65];

3. Adaptive homogeneity-directed (AHD) [74];

4. Successive approximation (SA) with edge-weighted improvement [138];

5. Lukac’s CCA method [97] with post-processing [96];
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6. Frequency-domain (FD) demosaicing [10];

7. Variance of color-difference (VCD) [36];

8. Directional Linear Minimum Mean Square-Error Estimation (DLMMSE)

[153];

9. Local polynomial approximation (LPA) [115];

10. Adaptive filtering (AF) for demosaicing. [89];

11. Gunturk’s method [65];

12. The directional interpolations proposed by Hirakawa et al. in [75];

13. Menon et al. in [103].

The PSNRs have been computed separately for each color channel. However, as

it is well known, the PSNR is not always representative of the visual quality of

an image. Two images having the same PSNR could appear very different from

the visual standpoint, because the artifacts on edge or in flat zones are differ-

ently perceived by the human visual system, due to the contrast masking effect.

Moreover, the PSNR approach is a full-reference metric which cannot be applied

on real sensor data. For these reasons, a subjective image quality analysis has

been also achieved. Figures 2.9 and 2.10 illustrate the ROIs (region of inter-

est) relative to the “hats” test image (kodim03) and to the “mountain” test image

(kodim13), respectively. They were obtained cropping a detail from the originals

and interpolated images. In these figures, (a) represents the ROI of the original

image, (b) is the result of the bilinear interpolation, (c) is the result of the edge

sensing algorithm, (d) is obtained applying the interpolation by Gunturk, (e) is

the result of the Hirakawa’s approach, (f) is the output of the technique proposed

by Menon et al. and, finally, (g) is obtained using the proposed algorithm. The
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ROIs show how our algorithm reduces both the zipper and false color defects.

Fig. 2.9.b presents a great amount of false colors and blur. Edge sensing algo-

rithm quite well interpolates along edges but introduces many false colors (see

fig. 2.9.c). Figs. 2.9.d and 2.9.f show that both Gunturk’s and Menon’s approach

still maintain few zipper artifacts near edges, although for this image the PSNR

of the Menon’s technique is comparable to ours and higher than the Hirakawa’s

approach, which outputs an image free from zipper effects and false colors (see

fig. 2.9.e) like our demosaicing technique. Looking at fig. 2.10, it is possi-

ble to see that the proposed technique (fig. 2.10.g) outperforms all the others in

removing false colors, providing an image where also edges are effectively inter-

polated and sharpness is maintained. Both bilinear (fig. 2.10.b) and edge sensing

(2.10.c) techniques produce images heavily affected by false colors. Gunturk’s

(fig. 2.10.d) and Menon’s (2.10.f) approaches also introduce some visible false

colors. Finally, Hirakawa’s technique still maintains a minimum amount of false

colors in comparison with our approach.

Another test which is usually performed to compare different demosaicing algo-

rithm is the interpolation of a colored resolution chart, which allows to see how

each algorithm resolves color details. For this purpose, the image shown in fig.

2.11.a was taken into consideration. Looking at fig. 2.11.d it is quite evident

that the proposed technique resolves color details much better than the other two

approaches (see figs. 2.11.b and 2.11.c). This is due to the proposed direction

estimation block which evaluates the correlation among different Bayer colors,

to determine the direction to be used in the interpolation phase.

As it has been already discussed, images coming from real sensors are often af-

fected by artifacts due to noise and green imbalance, so it is important to design

an interpolation algorithm able to not exalt and even to reduce these kinds of
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issues, which would be further enhanced by the successive sharpening step. As

the proposed technique low pass filters flat regions, green imbalance and noise

are heavily reduced while preserving the details on edges and textures, thus pro-

ducing high quality images. Looking at fig. 2.12.c it is possible to notice that

residual noise is quite well reduced by the proposed technique, whereas edges

are still well interpolated. Both figs. 2.12.a and 2.12.b are still affected by noise.

In order to have a numeric measure of the noise immunity of the presented demo-

saicing technique, we added three different amounts of Gaussian noise (having

standard deviations equal to 8, 12 an 25, respectively) to the original Kodak im-

ages, and then interpolated them with some state of the art color interpolation

approaches and the proposed technique. Afterwards, we calculated the PSNR

with respect to the original kodak images. The PSNR values are reported in

Table 2.1, where the proposed approach is compared with the algorithms pro-

posed in [103], [87] and [145]. From this table it is evident how the proposed

demosaicing algorithm has the greatest PSNR values for almost all the processed

images. Moreover, the improvement is greater especially in images having large

flat areas, where the human visual system is more sensitive to noise. The noise

immunity of the algorithm depends on the threshold used to identify flat regions.

In the aforementioned experiment it was set to 300 . Fig. 2.8 is a map show-

ing which interpolation is chosen for each pixel of the ’lighthouse’ image, where

gaussian noise having σ = 12 was added. In particular, black regions are interpo-

lated through the 5x5 omnidirectional low pass filter, red regions are interpolated

by the directional approach and green regions are interpolated through the sim-

ple 3x3 technique. It is quite evident that strong edges are interpolated by the

directional technique, whereas regions near edges and textures are reconstructed

by the 3x3 approach. Noise in flat regions is reduced by the omnidirectional
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(a) Original image (b) Map of interpolation

Figure 2.8 : Map of interpolation method

low pass filter. A ROI of the ’lightouse’ image is shown in fig. 2.13 where the

original kodak image is compared with the noisy image (with Gaussian noise,

σ = 12) interpolated by the Menon’s technique [103], the Li’s approach [87],

the Wu and Zhang’s algorithm [145] and the proposed technique.

Table 2.1 : PSNR(dB) performance comparison of different demosaicing meth-
ods in noisy conditions, where s8, s12 and s25 means σ = 8, σ = 12 and σ = 25
rispectively.

Image Kodim05 Kodim15 Kodim19 Kodim23 Average
s8 29.37 29.90 29.68 29.91 29.72

Menon s12 26.33 26.77 26.40 26.54 26.51
s25 20.53 21.07 20.33 20.43 20.59
s8 29.47 30.08 29.92 30.03 29.88

Li s12 26.38 27.00 26.66 26.75 26.70
s25 20.61 21.16 20.48 20.54 20.70
s8 29.74 30.40 30.04 30.44 30.16

Wu Zhang s12 26.80 27.31 26.85 27.10 27.02
s25 21.07 21.61 20.83 20.98 21.12
s8 29.42 32.12 30.82 34.00 31.59

Proposed s12 27.32 29.90 28.53 30.80 29.14
s25 21.43 22.40 21.34 21.54 21.68

Finally, one more visual comparison is presented to validate the effectiveness
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of the proposed post-processing false colors removal algorithm with respect to

other state of the art approaches. In particular, the images from the Kodak data

set were interpolated through the demosaicing step proposed in Section II, then

they were processed by the Freeman’s technique [52], the Lu’s algorithm [92],

the post-processing approach proposed by Lukac et al. in [95], the color correc-

tion technique presented in [84] and the proposed algorithm, already disclosed

in Section III. Fig. 2.14 is a ROI from the ”hotel” test image (kodim08). In

particular, (a) represents the ROI of the original image, (b) is the result of the

color interpolation disclosed in Section II, (c) is obtained processing (b) with the

Freeman’s approach, (d) is the result of the Lu’s technique, (e) is the output of

the Lukac’s post-processing technique, (f) is the result of [84] and, finally, (g)

is obtained processing (b) with the algorithm presented in Section III. It is quite

evident that the proposed color interpolation technique (fig. 2.14.b) very well

exploits spatial correlation, but some false colors are introduced, and hence we

apply a post-processing aliasing removal. Freeman’s technique (fig. 2.14.c) not

only does not remove many false colors but also introduces annoying zipper arti-

facts. Lu’s approach does not introduce zipper effects, but considerably blurs the

image. Lukac’s algorithm is neither able to remove all the color artifacts. Kim’s

approach, weighting the initially interpolated values to produce the corrected

ones, is not able to effectively reduce the false colors. The proposed technique

(fig. 2.14.g) quite well reduces false colors without introducing zipper effects.

The complexity in terms of operations is, obviously, dependent on the image

content. To figure out, somehow, the complexity of the approach, each single

algorithm phases will be analyzed. The direction estimation for each pixel needs

32 sums, 18 differences, 18 multiplications and 56 comparisons. This phase is

mainly composed by MAC operations. The Variance analysis needs 20 differ-
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ences and 2 divisions. The Activity analysis needs 20 sums, 25 diffs, 1 division

and 4 comparisons. The 5x5 filtering needs 25 MAC operations.

2.4 Conclusion

We have presented a color interpolation method based on edge and texture anal-

ysis. According to this analysis we proposed the usage of different interpola-

tion approaches, where the novel proposed directional filtering exploits spatial-

spectral correlation. The method allows to perform effective reconstructions also

in case of noisy images. A post-processing algorithm effectively removes resid-

ual impairments introduced by the color interpolation step. This paper compares

demosaicing performance of our improved method with the state-of-the-art de-

mosaicing methods. The cascading structure of the proposed method has a merit

of the pipelined real-time processing for the hardware implementation, while

some other methods require iterative computations.
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Table 2.2 : PSNR(dB) performance comparison of different demosaicing meth-
ods on Kodak PhotoCD image set selected from the first eight images used in
Table I of Li. et al [88].

Image 1 2 3 4 5 6 7 8 Average
R 42.20 37.69 41.29 34.27 40.98 38.42 40.25 38.14 39.16

Gunturk G 43.48 41.29 43.34 38.08 44.10 41.03 44.47 42.62 42.30
B 38.64 34.00 36.93 32.59 38.74 36.83 35.44 38.44 36.45
R 38.96 37.58 40.06 33.21 40.31 36.63 41.36 37.61 38.22

Hirakawa G 43.27 39.11 42.66 35.35 43.01 39.01 42.86 39.50 40.60
B 39.57 36.45 39.01 33.24 40.64 37.46 40.55 37.86 38.10
R 39.97 39.29 41.39 34.66 41.25 38.33 42.89 38.78 39.57

Menon G 45.08 41.06 44.09 37.33 44.39 40.93 44.59 41.23 42.34
B 39.92 37.91 40.22 34.76 42.94 39.02 41.98 39.98 39.59
R 42.90 38.00 43.33 34.88 42.85 38.81 41.01 40.11 40.24

LT G 46.24 39.82 45.88 37.15 44.90 40.88 42.88 41.95 42.46
B 43.06 37.59 42.44 34.98 41.90 39.35 40.55 39.46 39.92
R 42.07 39.06 42.53 35.20 42.50 39.08 42.18 40.02 40.33

AP G 45.33 42.75 44.91 39.66 45.30 42.78 45.75 43.86 43.79
B 42.69 38.97 41.51 35.58 42.31 40.02 41.70 39.95 40.34
R 41.42 38.58 41.13 34.17 41.76 37.64 42.37 39.16 39.53

AHD G 45.16 40.08 43.67 36.14 44.06 39.89 43.77 40.77 41.69
B 42.23 38.05 40.33 34.35 41.08 38.41 41.57 38.62 39.33
R 41.90 40.21 42.53 35.96 42.93 39.18 43.40 40.98 40.89

SA G 46.32 43.48 44.52 40.37 46.12 43.29 46.42 44.33 44.36
B 42.96 39.54 40.48 36.78 42.33 40.53 42.24 40.33 40.65
R 41.14 39.58 41.74 35.65 42.76 39.03 42.45 40.66 40.38

CCA G 45.56 43.03 45.21 39.77 45.98 43.32 45.72 43.96 44.07
B 42.13 38.96 40.87 36.22 41.94 40.46 41.62 39.95 40.27
R 38.86 37.40 39.35 32.28 39.93 36.88 40.10 37.12 37.74

FD G 44.16 42.30 43.49 37.58 43.60 42.74 44.84 42.05 42.60
B 41.41 38.23 41.03 32.95 41.11 39.23 40.62 37.90 39.06
R 42.97 40.93 42.92 36.57 43.70 39.73 44.47 41.10 41.55

VCD G 46.74 43.83 45.58 40.25 46.71 43.33 47.03 44.09 44.70
B 43.50 40.37 41.85 37.10 43.10 40.82 43.55 40.60 41.36
R 42.90 41.39 42.95 36.33 43.71 39.98 44.75 41.69 41.71

DLMMSE G 47.56 43.69 46.26 39.63 46.68 43.19 46.82 44.14 44.75
B 43.86 40.44 41.80 36.66 42.93 40.96 43.54 40.88 41.38
R 43.86 42.10 43.77 37.42 44.26 40.44 44.91 42.18 42.37

LPA G 47.75 44.81 46.53 41.15 47.01 43.85 47.15 44.72 45.37
B 44.46 41.07 42.65 37.85 43.42 41.39 43.77 41.46 42.01
R 42.93 38.74 43.48 35.51 43.16 39.38 41.61 40.58 40.67

AF G 46.98 41.67 46.66 38.88 46.29 42.63 44.53 43.49 43.89
B 43.65 38.18 42.41 35.63 42.69 39.80 40.99 39.92 40.41
R 41.16 37.16 40.64 33.50 40.87 37.05 40.29 37.86 38.57

Proposed G 44.79 40.92 43.77 37.93 43.97 41.43 43.95 41.69 42.31
B 41.76 36.73 40.19 33.67 40.39 38.38 39.91 38.39 38.68
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.9 : Example of ROI visual comparison relative to the ”hats” test image
(kodim03). (a) Original image; (b) Bilinear Interpolation; (c) Edge sensing [35];
(d) Gunturk [65]; (e) Hirakawa [75]; (f) Menon [103]; (g) Proposed solution.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.10 : Example of ROI visual comparison relative to the ”mountains”
test image (kodim13). (a) Original image; (b) Bilinear Interpolation; (c) Edge
sensing [35]; (d) Gunturk [65]; (e) Hirakawa [75]; (f) Menon [103]; (g) Proposed
solution.
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(a)

(b) (c) (d)

Figure 2.11 : Example of visual comparison on colored resolution chart.(a) Real
sensor image; (b) ROI by Hirakawa [75]; (c) ROI by Menon [103]; (d) ROI by
proposed solution.
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(a) (b) (c)

Figure 2.12 : Example of visual comparison on noise reduction effects.(a) ROI
by Hirakawa [75]; (b) ROI by Menon [103]; (c) ROI by proposed solution.
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(a) (b)

(c) (d)

(e)

Figure 2.13 : Example of ROI visual comparison relative to the ”lighthouse” test
image (kodim19) corrupted by gaussian noise with sigma=12. (a) Original image;
(b) Menon [103]; (c) Li [87]; (d) Wu and Zhang [145]; (e) Proposed solution.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.14 : Example of ROI visual comparison relative to the ”hotel” test im-
age (kodim08). (a) Original image; (b) Interpolation through proposed approach
(Sec.II); (c) image (b) filtered by Freeman [52]; (d) image (b) filtered by Lu [92];
(e) image (b) filtered by Lukac [95]; (f) image (b) filtered by Kim [84]; (g) Pro-
posed solution.
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Image Analysis and Enhancement
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3. Red Eyes Removal

3.1 Introduction

Red eye artifacts are a well-known problem in digital photography . They are

caused by direct reflection of light from the blood vessels of the retina through

the pupil to the camera objective. When taking flash-lighted pictures of peo-

ple, light reflected from the retina forms a cone, whose angle α depends on the

opening of the pupil. Be β the angle between the flash-gun and the camera lens

(centered on the retina), the red eye artifact is formed if the red light cone hits

the lens, that is, if α is greater than or equal to β (see Fig.(3.1)). Small com-

pact devices and point-and-click usage, typical of non-professional photography,

greatly increase the likelihood for red eyes to appear in acquired images.

Eye Red Eye Cone

α
β

(a)

Eye Red Eye Cone

α
β

(b)

Figure 3.1 : The red eye is caused by the reflection of the flash off the blood
vessels of the retina. The camera will record this red hue if the angle β is not
greater than α (a), otherwise the red eye is not recorded (b).

High-end cameras often feature a separate flash with an extensible and steerable

Giuseppe Messina AA 2009-2010
Advanced Techniques for Image Analysis and Enhancement.
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bracket, which allows for more distance between the flash and the lens, thus re-

ducing the probability for red eyes to appear. One preventive measure suitable to

both high-end and low-end devices is to make additional flashes before actually

taking the photograph (pre-flash). This method, first proposed by Kodak [108],

gives time to pupils to shrink in order to reduce the reflectance surface, thus mak-

ing red eyes less likely. It is important that enough time elapses between flashes

to account for the response time of the pupils (see Fig.(3.2)). This approach is

effective, but it has the disadvantage of greatly increasing power consumption,

which may be problematic for power-constrained mobile devices. Also, the ad-

ditional flashing may sometimes be uncomfortable to people.

~ 0.3 to 0.6

pre-flash

time
65 seconds

flashshutter opening

Figure 3.2 : Timeline explaining the pre-flash approach. Before the actual ac-
quisition, a flash is fired. After a short time, the shutter opens and light enters the
sensor. At the end of the exposure time the “true” flash is fired. Time between
flashes is such that the pupils have time to react and shrink.

Red eye prevention methods reduce the probability of the phenomenon but don’t

remove it entirely. Most of the times, then, the picture must be corrected dur-

ing post-processing. Red eye removal is a very challenging task: red eyes may

vary in shape and color, and may also differ in position and size relative to the

whole eye. Sometimes light is reflected on a part of the retina not covered with

blood vessels, yielding a yellow or white reflection (golden eyes). Some exam-

ples of the phenomenon are showed in Fig.(3.3). Designing a system which can

effectively address all the possible cases is very difficult.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3 : Examples of the variability of the red eye phenomenon. Golden eyes
are also visible.
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For red eyes to be removed, they must be first reliably detected then properly

corrected. Detection methods are divided into semi-automatic methods, which

ask the user to manually localize and point the red eyes, and automatic methods,

which detect the red eyes themselves. In the first case the eyes are manually

selected using a visual interface (e.g., Adobe Photoshop [7], Corel Paint Shop

Pro [39], ACDSee [4], etc.). This is feasible because eyes are easy to localize for

men, but requiring manual intervention for every picture taken is unsuitable for

non-professional usage; moreover, it may be difficult to have such an interface

on a mobile device.

Automatic methods attempt to find red eyes on their own. Since they don’t re-

quire user intervention, they are easier to use and more appealing, thus suitable

for embedded devices. However, automatic detection of red eyes is a very chal-

lenging task, due to the variability of the phenomenon and the general difficulty

in reliably discerning the shape of eyes from other details.

Red eye correction techniques, on the other hand, may be more or less invasive.

Generally speaking, “easier” cases may be addressed with a softer correction,

while sometimes a stronger intervention is needed. Since the aim is to provide a

corrected image which looks as natural as possible, a less invasive correction is

preferred when the natural aspect of the eye is reconstructible from the acquired

image.

This Chapter aims to provide an overview of well-known automatic red eye

detection and correction techniques, pointing out working principles, strengths

and weaknesses of the various solutions. For further information about red eye

removal, see recent surveys by Gasparini et al. on academic papers [56], on

patents [57] and some of our personal works [17–19].

110



Giuseppe Messina 3. Red Eyes Removal

This Chapter is organized as follows. Section 3.2.1 explores red eye detection.

Section 3.2.2 describes methods for red eye correction, while section 3.2.3 gives

an insight into the problem of unwanted and improper corrections, showing their

side effects. Lastly, Section 3.2.4 provides criteria to evaluate the quality of the

results.

3.2 Prior Art

3.2.1 Eye Detection

The main difficulty in detection of red eyes is their great degree of variability. In

the easier cases, the pupil has a normal shape and size and differs from a regular

one only by its color. However, it is not uncommon for the red reflection to

spread over the iris generating an unnatural luminance distribution. Usually a

small white glint is also present, representing the direct reflection of the flash on

the surface of the eye and giving the eye much more naturalness.

Typical red eye detection approaches involve extraction of red zones combined

with skin extraction, shape template matching, and/or face detection. Some ap-

proaches also make use of classifiers to further refine their results.

3.2.1.1 Color Based

Color based approaches are the simplest ones. They are based on detecting

red zones which may correspond to red eye artifacts. As a typical constraint

for the position of the red eyes, they also detect the human skin, then consider

some criteria about the relative position of the red eyes and the skin (usually, the

eyes must be almost completely surrounded by nearby skin). Some color based

approaches also detect the sclera (the white part of the eye), distinguishing it
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from the skin. Possible constraints may be imposed about the geometry of the

red zones, such as discarding candidates too much elongated to represent a red

pupil. This kind of approaches is quite simple, but does not take into account

more complex features like, e.g., the presence of the various parts of the eye or

the detection of the face.

One of the biggest problems of color-based techniques is characterizing exactly

the colors to look for. Usually, interesting portions of the color space (corre-

sponding to red, skin color, etc.) are delimited by hard thresholds, but they

may also delimited by soft margins, yielding a fuzzy probability for the color

to belong to the region. However, finding proper boundaries for the regions is

a challenging task. The color of red eyes is heavily influenced by the type of

flash used, the sensor and the processing pipeline. While this is not a big issue,

since the thresholds may be fine-tuned to adapt to the acquisition system, there

are external factors which may influence the color of the eyes, including (but not

limited to) the age of the person, the opening of the pupils, the distance from the

camera, and the angle between the eyes and the flash. The variability is so high

that even the same subject in one picture may have two different colored red eye

artifacts, or a red eye and a regular one (see Fig.(3.4)). Moreover, if the flash is

not very strong (as is often the case with mobile devices), the external illuminant

may produce a noticeable color cast on the picture, which adds another degree

of variability to the colors. Similar considerations apply to the color of the skin

and of the sclera.

The red color region may be defined in different color spaces. In the RGB space,
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“The variability is so high that even th
have two different colored red eye arti
one”. 

Foto di persona con due occhi rossi vi
con un occhio rosso e uno giusto.

he same subject in one picture may 
ifacts, or a red eye and a regular 

sibilmente diversi; e foto di persona 

(a)

“The variability is so high that even th
have two different colored red eye arti
one”. 

Foto di persona con due occhi rossi vi
con un occhio rosso e uno giusto.

he same subject in one picture may 
ifacts, or a red eye and a regular 

sibilmente diversi; e foto di persona 

(b)

Figure 3.4 : Picture (a) shows two very different red eyes; picture (b) shows one
red eye along with a regular one.

a possible definition is [152]:


R > 50
R/(R+G+B)> 0.40
G/(R+G+B)< 0.31
B/(R+G+B)< 0.36

(3.1)

Often, instead of hard thresholds, a Redness function is provided. This function

is an estimate of how well the color of each pixel resembles a red eye artifact, and

is used as a way to define soft margins for the red color region. Some possible

redness functions [55, 58, 72, 133] are:

Redness = (R−min{G,B}) (3.2)

Redness =
R2

(G2 +B2 +14)
(3.3)

Redness =
max{0,(R−max{G,B})}2

R
(3.4)

Redness = max
{

0,
2R− (G+B)

R

}2

(3.5)
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As an alternative to select an interesting portion of the color space, it is possi-

ble to compare a redness function with a luminance function, discarding pixels

whose luminance is more noticeable than the redness [144]:

Redness = R− (G+B)/2 (3.6)

Luminance = 0.25R+0.6G+0.15B (3.7)

RedLum = max{0,2 ·Redness−Luminance} (3.8)

Search for red regions may also be performed in color spaces different from

RGB, such as YCC [117] or HSL [26].

Given a particular choice for the red color region, it is possible to convert each

image to a representation which shows whether each pixel belongs to the region.

Such representations are called redness maps. According to the employed def-

inition for the red color region (hard-thresholded or soft-delimited), the redness

map is a black-and-white or full-grayscale image (in the latter case, the red-

ness function is adjusted to the possible maximums and minimums of the red-

ness function, or to the maximums and minimums over each particular image).

Fig.(3.5) and Fig.(3.6) show redness maps computed using the above formulas.

Skin extraction may be performed in a similar way as red color extraction.

Other color based information useful to detect red eyes may be gained search-

ing for the sclera [143] and selecting the zones where the flash has noticeably
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5 : Examples of redness maps. (a) Original image; (b-f) redness maps
obtained from (3.1), (3.2), (3.3), (3.4), (3.5), respectively.
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(a)

(b)

Figure 3.6 : (a) Redness map obtained from (3.6); (b) redness vs. luminance
map computed according to (3.8).
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affected the image (discarding, e.g., a distant background) [50]. Using thresh-

olding and morphological operators to combine different masks, it is possible to

effectively extract red pupils.

3.2.1.2 Shape Based

Shape based approaches attempt to find eyes exploiting simple information about

their shape. They typically use templates which are matched at different posi-

tions and resolutions, in order to search the image for shapes which may corre-

spond to eye features. The region of interest is then restricted to zones where the

response of the templates is stronger. Using simple circular or square templates

it is possible to recognize, e.g., the difference in intensity between the inner pupil

and the outer skin and sclera. Slightly more complex templates may be useful in

locating the other parts of the eye, which helps to effectively assess the presence

or the absence of a red eye [98].

Edge detection filters may also be useful to extract information about shape. It is

possible to use them in conjunction with color tables to make advantage of both

spatial and chromatic information [128].

3.2.1.3 Pairing Verification

One of the most obvious constraints which can be used to filter out false detec-

tions is eye pairing verification [131]. It is based on the assumption that every

eye found must be paired with the other one on the same subject’s face. The

two eyes must have the same size, and they must be in a certain range of dis-

tances (possibly proportional to the size, in order to account for the distance of

the subject from the camera) from each other, in a horizontal or almost horizon-
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tal direction. If an eye can’t be paired because it has no suitable match, it is

discarded, since it is most probably a false detection.

This approach is effective, since it is very unlikely for two false positives to

satisfy the pairing criteria, but it presents a major drawback: if a face is partially

occluded, so that only one eye is visible in the picture, and that eye is red, it will

not be corrected, since it can’t be matched to the other one. The same problem

will occur when both eyes are visible but only one is red, or when both are red

but only one is detected, possibly due to a difference in color (see Fig.(3.7)).

“This approach is effective, since it is 
to satisfy the pairing criteria, but it pre
partially occluded, so that only one ey
eye is red, it will not be corrected, sinc
one. The same problem will occur whe
is red, or when both are red but only o
difference in color”.

Faccia parzialmente coperta con solo u
Faccia con un occhio rosso e uno norm
Faccia con due occhi rossi molto diver

[in caso vedi se riciclare le due facce d

very unlikely for two false positives 
esents a major drawback: if a face is 
ye is visible in the picture, and that 
ce it can't be matched to the other 
en both eyes are visible but only one 

one is detected, possibly due to a 

un occhio rosso visibile.
male.
rsi.

della figura precedente]

(a)

“This approach is effective, since it is 
to satisfy the pairing criteria, but it pre
partially occluded, so that only one ey
eye is red, it will not be corrected, sinc
one. The same problem will occur whe
is red, or when both are red but only o
difference in color”.

Faccia parzialmente coperta con solo u
Faccia con un occhio rosso e uno norm
Faccia con due occhi rossi molto diver

[in caso vedi se riciclare le due facce d

very unlikely for two false positives 
esents a major drawback: if a face is 
ye is visible in the picture, and that 
ce it can't be matched to the other 
en both eyes are visible but only one 

one is detected, possibly due to a 

un occhio rosso visibile.
male.
rsi.

della figura precedente]

(b)

“This approach is effective, since it is 
to satisfy the pairing criteria, but it pre
partially occluded, so that only one ey
eye is red, it will not be corrected, sinc
one. The same problem will occur whe
is red, or when both are red but only o
difference in color”.

Faccia parzialmente coperta con solo u
Faccia con un occhio rosso e uno norm
Faccia con due occhi rossi molto diver

[in caso vedi se riciclare le due facce d

very unlikely for two false positives 
esents a major drawback: if a face is 
ye is visible in the picture, and that 
ce it can't be matched to the other 
en both eyes are visible but only one 

one is detected, possibly due to a 

un occhio rosso visibile.
male.
rsi.

della figura precedente]

(c)

Figure 3.7 : In picture (a), only one of the eyes is visible; the red eyes in picture
(b) are very different, and in most cases only one of them will be properly de-
tected; in picture (c) only one of the eyes is affected by the red eye phenomenon.
In all these cases, the pairing verification will fail.

3.2.1.4 Face Detection

The most sophisticated kind of approach to red eye detection is based on face de-

tection [58]. Restricting the search region to the zones where faces are detected,
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it is possible to discard a great number of false positives.

In details, a face detection system determines the locations and sizes of human

faces in arbitrary digital images by making use in some cases of ad-hoc facial

features. The localization is done by considering a bounding box that encloses

the region of interest. The detection problem if often achieved as a binary pat-

tern classification task; the content of a given part of an image is transformed

into features used to train a classifier on example faces able to decide whether

that particular region of the image is a face, or not. For practical situations is

very common to employ a sliding-window technique just using the classifier on

small portions of an image (usually squared or rectangular), at all locations and

scales, as either faces or non-faces. In the more general case the face localiza-

tion is achieved regardless of position, scale, in-plane rotation and orientation,

pose (out-of-plane rotation) and illumination. Further source of problems are

the presence or absence of structural components (e.g., beards, mustaches and

glasses), the facial expression that has a great impact over the face appearance

and the occlusions that occur when faces may be partially occluded by other

objects.

To implement a robust face detector it is fundamental to fix some points relative

to the specific application. In particular it is important to decide the facial repre-

sentation, the involved pre-processing, the particular ”cues” (e.g., colors, shape,

etc.) and the classifier design.

In literature a lot of approaches have been published with different capabilities,

advantages and limitations. Of course, the implementation of a face detector sys-

tem inside an embedded device system requires ad-hoc peculiarities due the lim-

ited available resources. The constrained domain imposes to consider methods
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Figure 3.8 : Face Detection Example.

able to guarantee a reasonable trade-off between robustness and computational

issues. For this reason it is out of the scope of this Section to provide a detailed

review of all related technologies. See [79, 147] for more specific details.

One of the most popular algorithms in the field is due to Viola and Jones [142].

For this reason we have decided to describe it in a more details just to give also

some useful suggestions for a practical implementation. The authors introduced

for the first time the concept of ”integral image”, a way to compute efficiently

local features in an incremental way just to find in a suitable way the underlying

scale of the face to be localized. The integral image Int(x,y) of a given image I

at location (x,y) is defined as follows:

Int(x,y) = ∑
(i≤x, j≤y)

I(i, j) (3.9)

It is computed using just a single pass over the image I as described in [142].

By proper managing such image it is possible to compute any processing over

rectangular patches in a very efficient manner. The corresponding rectangular
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Figure 3.9 : Some examples of rectangular features managed by the algorithm of
Viola and Jones. Each feature can be computed in a very efficient way just using
the concept of integral image.

features can then be computed as simple differences between adjacent rectangu-

lar sums. Although the similarity with the Haar features [91] are pretty evident,

the proposed strategy is able to obtain effective results in a more efficient way.

The remaining important contribution of the seminal work of Viola and Jones

was the introduction of an ad-hoc classifier making use of a learning approach

based on Adaboost [53]. This classifier is able to discriminate, among a large

set of potential features, a smaller number of elements without lacking too much

of accuracy. The system is able to select, among others, a small number of

features just considering a boosting approach [130] that, given an exhaustive set

of positive and negative examples, with a greedy algorithm, decides the best set

of features to be considered both in terms of robustness and fast detection rate

(see Fig.(3.9) an example of rectangular features.).

Finally, they described a way to combine efficiently, in a cascade approach, the

output of different classifiers just to speed-up the overall process. With respect

to the former approaches this method was the first able to work with sufficient

accuracy in real time application.

Of course, the underlying ingredients of a face detector can be improved in sev-

eral ways just providing to the overall flow further information to be processed.
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In [78] is proposed a learning based face detector able to find human faces in a

very fast way. To further speed up the process, a face rejection cascade is con-

structed to remove most of negative samples while retaining all the face samples.

To do that a series of skin color features [123] are used as useful prior.

The face localization can be thought as the pre-processing step needed to recog-

nize the person which the face belong to. Person identification is, of course, a

more difficult task especially if implemented in a so constrained domain such as

imaging devices. Also in this field there is a huge number of papers published

over the past decades, specifically devoted to biometric world. By the way, per-

sonal photos have an associated context, often already available to the user of the

photo management system. In newer systems the combination of user feedback

with EXIF meta information (and, if available, with GPS location) can give an

effective improvement to the unsupervised recognition [112].

First commercial products are available also to be used in novel application con-

text such as social network [44, 61], etc.

The quality of the detection greatly depends on the quality of the face detec-

tor. Sometimes it is limited to frontal upright faces, while red eye artifacts may

be located in profile or three-quarter views of subjects (especially when taking

snapshots). Therefore, face detectors with such limitations are not suitable for

red eye detection. Another important degree of variability is the age of the sub-

ject: children are difficult to detect, since their faces have a different shape and

different features than those of adults. Nonetheless, they have a higher chance

to present red eye artifacts, since their pupils are usually more open. Thus, it is

important for face detection to be robust both to the angle of view and to the age

of the subject.
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Another important issue related to face detection is that it doesn’t help discard

false detections on the face, which are usually critical. An additional constraint

which may be imposed is to only accept eyes located in the upper half of the

detected face. This helps filter out some false detections (e.g., lips or tongue)

but it keeps the ones near the eyes (e.g., details of glasses or pimples on the

forehead).

3.2.2 Red Eye Correction

The goal of red eye correction is to modify the image in such a way that it looks

as natural as possible, given the assumption that there are red eye artifacts in the

detected zones (according to the eye detector, the assumption may be given for

sure or with a certain degree of probability).

According to the extent to which the artifact has corrupted the image, the cor-

rection algorithm may need to adjust the hue, brightness, luminance distribution,

and/or even the shape and size of the pupil. Since naturalness of the image is the

goal, it is best to use a minimally invasive technique to correct each case. This

also means that a way to distinguish the gravity of each artifact (either in the de-

tection phase or at the very beginning of the correction phase) is to be preferred,

in order to be able adapt the correction method on a case-by-case basis [101].

3.2.2.1 De-saturation

In the simplest cases, the eye has its regular shape, and the artifact only consists

in the wrong color of the pupil. In these cases, the optimal solution is equally

simple: the red eye is desaturated, that is, its chrominance is (totally or par-

tially) suppressed, while its luminance is left intact or only slightly lowered (see

Fig.(3.10)).
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(b)

Figure 3.10 : In the simplest cases, pupil desaturation produces good results.

One simple way of desaturating red pupils is to replace each pixel with a gray

shade at 80% of original pixel luminance [117]. An adaptive desaturation may

be performed in the CIELAB color space by stretching the lightness values of

the pupil so that its darkest point becomes black [67]:

L∗
corrected = maxL∗

(maxL∗−minL∗) (L
∗−minL∗)

a∗corrected = 0
b∗corrected = 0

(3.10)

Desaturation may suffer from a boundary effect: the transition between the cor-

rected and uncorrected area may be noticeable and unpleasant. Moreover, some

pixels outside the pupil may be incorrectly considered to be part of the red eye ar-

tifact and desaturated. To overcome these problems, a smoothing (usually Gaus-

sian) mask may be used to modulate the strength of the correction. For each

pixel (i, j) in the red eye artifact area, be coriginal(i, j) its color in the uncorrected

image, ctarget(i, j) the target color of the correction and m(i, j) the value of the
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smoothing mask; the final corrected color ccorrected(i, j) is then:

ccorrected(i, j) = ctarget(i, j) ·m(i, j)+ coriginal(i, j) · (1−m(i, j)) (3.11)

3.2.2.2 Inpainting

In the hardest cases, a more invasive correction is needed. Often, the distribution

of reflected light is influenced by the direction of the flash with respect to the

face. Sometimes eyes present the “washed out” effect, where the reflected light

spreads off the pupil onto the iris. In these cases a simple desaturation may yield

incorrect and unnatural results (see Fig.(3.11)).

“Sometimes eyes present the ``washed
light spreads off the pupil onto the iris
desaturation may yield incorrect and u

- Faccia con occhi washed out.
- Faccia corretta MALE desaturando. 

d out'' effect, where the reflected 
ses. In these cases a simple 
unnatural results”.

(a)

“Sometimes eyes present the ``washed
light spreads off the pupil onto the iris
desaturation may yield incorrect and u

- Faccia con occhi washed out.
- Faccia corretta MALE desaturando. 

d out'' effect, where the reflected 
ses. In these cases a simple 
unnatural results”.

(b)

Figure 3.11 : When reflected light spreads over the iris, simple desaturation gives
unnatural results.

It is then necessary to use a more complex method to reconstruct a realistic

image of the eye. Inpainting may vary from an adaptive recoloring of red pix-

els to a complete redrawing of iris and pupil [150]. The results, however, tend

to be unrealistic, up to the point that they sometimes resemble glass eyes (see

Fig.(3.12)1).

1Corel Paint Shop Pro Red-eye Removal tool.
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“Inpainting may vary from an adaptive
complete redrawing of irises and pupil
unrealistic, up to the point that results 

- Faccia cifficile da correggere.
- Faccia corretta con inpainting. 

e recoloring of red pixels to a 
ls. The results, however, tend to be 
sometimes resemble glass eyes”.

Figure 3.12 : Correction of washed-out red eyes with an inpainting technique.

3.2.2.3 Flash/no-Flash

Another way of obtaining simultaneous detection and correction of red eye arti-

facts is the “flash/no-Flash” technique [107], which aims to combine the advan-

tages of taking a non-flashed picture and a flashed one. The main idea is to take

a high-quality flashed picture and a low-quality non-flashed one, which is used

to detect the red eyes and recover the natural colors of the affected zones (see

Fig.(3.13)2).

The method works as follows: two pictures are taken in quick succession. The

first one is shot without flash with high sensitivity, large lens aperture and with

a short (for a non-flashed picture in low light conditions) exposure time. This

yields a dark and noisy picture with small depth of focus, but still suitable to

help recover the unaltered colors of the eyes. The second one is a regular flashed

picture, which represents the “real” picture to correct. It is important that the

two pictures are taken with the same focal length and that very little time elapses

2Picture taken from Petschnigg et al. [121].
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(b)

“The main idea is to take a high-qualit
non-flashed one, which is used to dete
natural colors of the affected zones”.

- Esempio di flash/no-flash.
- Risultato finale.

ty flashed picture and a low-quality 
ect the red eyes and recover the 

(c)

Figure 3.13 : Flash/no-Flash technique. (a) Dark non-flashed picture used to
recover the correct color of the eyes; (b) high-quality picture affected by red eye
artifacts; (c) corrected picture.

in between, in order to prevent misalignment. Search for red eye artifacts is

performed in a luminance-chrominance color space, usually CIELAB. The a∗

channel is used as a measure of redness. Pixels whose a∗ component exceeds a

certain threshold are considered red. Among such pixels, those whose difference

between the a∗ channel in the flashed image and the same channel in the non-

flashed image is larger than another threshold are marked as possible red eye

pixels. Morphological operators are used to cluster them into blobs, discarding

isolated pixels or very narrow regions as noisy results.

To correct red eyes using information from the non-flashed picture, it is impor-

tant to first compensate differences in color cast between the two images. To this

end, for each of the chroma channels a∗ and b∗, the difference between the two

images is averaged over all non-red eye pixels, thus obtaining a color compen-

sation term. Correction of red eye artifacts is then performed by substituting the

chrominance of affected pixels in the flashed image with the chrominance of the
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corresponding pixels in the non-flashed image, then adding the color compensa-

tion term.

The approach is quite simple and theoretically effective, but it presents a number

of drawbacks. First of all, the memory and processing requirements double,

since there are two pictures being taken in place of one. Moreover, the images

may suffer from registration problems, or they may simply be misaligned due

to movements of the hand or of the subjects. This makes this method especially

unsuitable for snapshots, where people may be caught while moving. Another

important issue of this approach is uneven illumination, which is recorded by the

non-flashed image but not by the flashed one: a dark shadow on a red detail (such

as the shadow of the nose projected on the lips) may trigger a false detection,

which in turn causes image degradation (especially if the chrominance of the

shaded part is not correctly perceived due to insufficient illumination).

3.2.3 Correction Side Effects

3.2.3.1 False Positive

One of the biggest issues in red eye removal is false positives in the detection

phase. Correcting a red detail falsely detected as a red eye artifact may have

a much more displeasing effect than leaving an artifact uncorrected. For this

reason, getting as few false positives as possible is more important than catch-

ing as many red eyes as possible. Examples of image degradation resulting as

correction of false positives are shown in Fig.(3.14).

False positives can be classified according to the severity of the associated degra-

dation risk, as discussed in Section 3.2.4.
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Figure 3.14 : Examples of corrections of false positives. Some are barely notice-
able, while others are totally unacceptable.
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3.2.3.2 Partial Detection/Correction

Sometimes eyes are properly detected, but wrongly corrected. In such cases

unnatural corrections appear in the final image. Unnatural corrections, like false

positives, are very undesirable, since they are often more evident and displeasing

than untouched red eyes. One type of unnatural correction is partial correction,

caused by an incorrect segmentation of the red eye zone (possibly due to a dif-

ference in hue or luminance between the detected and the undetected parts).

“One type of unnatural correction is p
incorrect segmentation of the red eye z
hue or luminance between the detected

- Esempi di occhi corretti a metà.

artial correction, caused by an 
zone (possibly due to a difference in 
d and the undetected parts)”.

(a)

“One type of unnatural correction is p
incorrect segmentation of the red eye z
hue or luminance between the detected

- Esempi di occhi corretti a metà.

artial correction, caused by an 
zone (possibly due to a difference in 
d and the undetected parts)”.

(b)

Figure 3.15 : Partial red eye correction, where the brighter area was not consid-
ered to belong to the red pupil.

Noisy Correction

Noisy correction is another kind of unnatural correction. Noisy corrections ap-

pear when, in presence of heavy image noise, red pixels are present around the

pupil. In this case, the detector may assume that such pixels belong to the red

eye, and correction may spread over the iris, giving a strange and unnatural look

to the corrected eye.

It is worthwhile to note that a strong lossy image compression (e.g., low-bitrate

JPEG) may cause the same phenomenon: however, in the context of automatic

algorithms which act just after the picture is taken, it is reasonable to assume
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Figure 3.16 : Correction of the red pupil extends over the iris, due to red pixels
caused by image noise.

that red eye removal is performed before image compression (to improve red

eye detection and to avoid compressing twice).

Dead Eye

Sometimes red eyes are properly detected, but the corrected image just doesn’t

look natural. This may happen when a wrong luminance distribution, caused

by reflected light, is kept through the correction and is evident in the resulting

image. This may also happen when the color of the corrected pupils isn’t quite

natural, possibly because the correction isn’t strong enough. Finally, the absence

of the glint, which may be due to inpainting or excessive correction, may cause

the eye to look “dead”.

3.2.4 Quality Criteria

The formulation of a quality metric allows to choose the best solution and to

adjust parameters of the algorithm in the best way. To achieve a quality control

on red eye removal algorithm is a challenging issue. Usually the quality of the

algorithm is estimated considering the ratio between corrected eyes and false
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Figure 3.17 : In some cases, an unnatural luminance distribution is visible in the
corrected image (b). Sometimes, instead, the eye has a “dead” look, due to the
absence of the glint (d).

positives. Obviously this is strictly related to the nature of the database and the

quantity of images. Safonov [128] introduced an interesting quality metric that

permit to remove correlation between quantity and quality.

First of all the author enumerated all possible cases, further he prioritized them

using Analytic Hierarchy Process (AHP) [127]. Obviously a representative set

of photos affected by red eye defect should be used for calculation of these un-

wanted cases. Furthermore good solutions must have low False Negatives (FN)

and False Positives (FP), ideally FN and FP are equal to zero. However the sever-

ity of the False Positives differs significantly. Almost indistinguishable small FP

on foreground is undesirable but sometimes allowable. Visible FP on foreground

especially on human faces and bodies is absolutely not allowable; such FP arti-

facts damage photo more than red eyes. Therefore he divided False Positives in

two classes: FPc is the number of critical FP and FPn is the number non-critical
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FP.

A similar situation is described for the False Negatives. Several red eye regions

are relatively large and well distinguishable; other regions are small and have

low local contrast. Detection of the first red eyes is defined as mandatory by

Safonov, whereas detection of the second regions is desirable. Accordingly to

such hypotheses he divided all FN in two groups: FNm is defined as the number

of regions which are mandatory for detection; FNd is the number of regions

which are desirable for detection.

One more unwanted situation is the correction of only one eye from pair. For

semi-automatic approaches it is not so crucial because users have possibility to

correct the second eye manually, but for embedded implementations it is quite

unpleasant. NP is then defined as the number of faces with one corrected eye

from pair of red eyes.

The retouching quality is important too. Regarding correction Safonov distin-

guished two cases: if the corrected eye looks worse of the original red eye, for

example only part of the red region is corrected, it is an irritating case; it is

noticeable that eye has been corrected but it does not irritate strongly. Accord-

ingly CI is the number of irritating cases and Cn is the number of situations when

retouching is noticeable.

As described above Safonov uses prioritization of the factors through AHP table

(see 3.1) according to observers opinions. The simplest way for filling the table

is: if left item is more important than top then cell is assigned to 5; if severity

of the two items are the same then cell is set to 1; if top item is more important

than left then cell is set to 1/5. Taking into account weights from AHP table,

and taking into consideration a global weight of 10, for all the features, Safonov
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Table 3.1 : Analytic Hierarchy Process Table. Where the coefficients ai, that
refer to the assigned importance values in each row, are used to estimate the
Geometric Mean. The weight is estimated in percentage from the sum of the
Geometric Means (=9.60).

Req. Quality FNm FNd FPc FPn Np Ci Cn
7
√

∏7
i=1 ai Weight %

FNm 1.00 5.00 0.20 5.00 1.00 0.20 5.00 1.26 13.13%
FNd 0.20 1.00 0.33 5.00 0.20 0.20 5.00 0.68 7.08%
FPc 5.00 3.00 1.00 3.00 5.00 5.00 5.00 3.43 35.73%
FPn 0.20 0.20 0.33 1.00 0.20 0.20 1.00 0.34 3.54%
Np 1.00 5.00 0.20 5.00 1.00 1.00 5.00 1.58 16.46%
Ci 5.00 5.00 0.20 5.00 1.00 1.00 5.00 1.99 20.72%
Cn 0.20 0.20 0.20 1.00 0.20 0.20 1.00 0.32 3.33%

proposes the following quality criterion:

Qc =
Nt −1.3 ·FNm −0.7 ·FNd −3.6 ·FPc −0.4 ·FPn −1.6 ·Np −2.1 ·Ci −0.3 ·Cn

Nt

(3.12)

where Nt is total number of red eyes.

3.3 A New Red-Eyes Detection and Correction Tech-
nique

The proposed red-eyes removal pipeline uses three main steps to identify and

remove red-eyes artifacts. First candidates red-eyes patches are extracted, then

classified to distinguish between eyes and non-eyes patches. Finally, correction

is performed on detected red-eyes. The details of the three steps involved in the

proposed pipeline are detailed in the following subsections.

3.3.1 Red Patch Extraction

To extract the red-eyes candidates, we first built a color model from the training

set to detect pixels belonging to possible red-eyes artifacts. We constructed red-
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eye-pixel and non-red-eye-pixel histogram models using a set of pixels of the

training images. Specifically, for each image of the training set, the pixels be-

longing to red-eyes artifacts have been labeled as red-eye-pixels (REP), whereas

the surrounding pixels within a windows of fixed size have been labeled as non-

red-eye-pixels (NREP). The labeled pixels (in both RGB and HSV spaces) have

been mapped in a three dimensional space C1 ×C2 ×C3 obtained taking into

account the first three principal components of the projection through princi-

pal component analysis [42]. By using the principal component analysis the

original six-dimensional space of each pixel considered in both RGB and HSV

color domains, is transformed into a reduced three-dimensional space maintain-

ing as much of the variability in the data as possible. This is useful to reduce

the computational complexity related to the space dimensionality. We used a

3D histogram with 64× 64× 64 bins in the C1 ×C2 ×C3 space. Since most

of the sample pixels of the training set lies within three standard deviations of

the mean, each component Ci has been uniformly quantized in 64 values taking

into account the range [−3λi, +3λi], where λi is standard deviation of the ith

principal component (i.e., the ith eigenvalue). The probability that a given pixel

belongs to the classes REP and NREP is computed as follows:

P(C1,C2,C3|REP) =
hREP[C1,C2,C3]

TREP
(3.13)

P(C1,C2,C3|NREP) =
hNREP[C1,C2,C3]

TNREP
(3.14)

where hREP[C1,C2,C3] is the red-eye-pixels count contained in bin C1 ×C2 ×C3

of the 3D histogram, hNREP[C1,C2,C3] is the equivalent count for non-red-eye-

pixels, TREP and TNREP are the total counts of red-eye-pixels and non-red-eye-
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pixels respectively. We derive a red-eye-pixel classifier through the standard

likelihood ratio approach. A pixel is labeled red-eye-pixel if

P(C1,C2,C3|REP)> αP(C1,C2,C3|NREP) (3.15)

where α is a threshold which is adjusted to maximize correct detection and min-

imize false positives. Note that a pixel is assigned to NREP class when both

probability are equal to zero.

Employing such filtering, a binary map with the red zones is derived. To remove

isolated red pixels, a morphology operation of closing is applied to this map. In

our approach we have used the following 3×3 structuring element:

m =

 0 1 0
1 1 1
0 1 0

 (3.16)

Once the closing operation has been accomplished, a search of the connected

components is achieved using a simple scanline approach. Each group of con-

nected pixels is analyzed making use of simple geometric constraints. As in

[143], the detected regions of connected pixels are classified as possible red-

eye candidates if the geometrical constraints of size and roundness are satisfied.

Specifically, a region of connected red pixels is classified as possible red-eye

candidate if the following constraints are satisfied:

• the size Si of the connected region i is within the range [Mins, Maxs], which

defines the allowable size for eyes.

• the binary roundness constraint Ri, of the connected region i is verified:

Ri =


True ρi ∈ [Minρ ,Maxρ ]; ηi ≤ Maxη ; ξi ≫ 0

False otherwise
(3.17)

where
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ρi =
4π×Ai

Pi
2 is the ratio between the estimated area Ai and the perimeter

Pi of the connected region; the more this value is near 1 the more the

shape will be similar to a circle.

ηi = max
(

∆xi
∆yi

,
∆yi
∆xi

)
is the distortion of the connected region along the

axes.

ξi =
Ai

∆xi∆yi
is the filling factor, the more this parameter is near 1 the

more the area is filled.

The parameters involved in the aforementioned filtering pipeline have been set

through a learning procedure as discussed in Section 3.3.5.

(a) Input image. (b) Red map.

(c) Closing operation. (d) Final candidates.

Figure 3.18 : Filtering pipeline on a input image.

In Figure 3.18 all the involved steps in filtering pipeline are shown. The regions

of connected pixels which satisfy the geometrical constraints are used to extract
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Figure 3.19 : Examples of possible candidates after red patches extraction.

the red-eyes patches candidates from the original input image (Figure 3.19). The

derived patches are resembled to a fixed size (i.e., 30×30 pixels) and converted

into gray code [60] for further classification purpose (Figure 3.20). Gray code

representation allows to have a natural way (e.g., no strong transaction between

adjacent values) to pick-up the underlying spatial structures of a typical eye.

The gray levels of an m-bit gray-scale image (i.e., a color channel in our case) is

represented in the form of the base 2 polynomial

am−12m−1 +am−22m−2 + · · ·+a121 +a020 (3.18)

Based on this property, a simple method of decomposing the image into a col-

lection of binary images is to separate the m coefficients of the polynomial into

m 1-bit bit planes. The m-bit Gray Code (gm−1 . . .g2,g1,g0) related to the poly-

nomial in Equation 3.18 can be computed as follows:

gi =


ai
⊕

ai+1 0 ≤ i ≤ m−2

am−1 i = m−1
(3.19)

where
⊕

denotes the exclusive OR operation. This code has the unique property

that successive code words differ only one bit position. Thus, small changes in

gray level are less likely to affect all m bit planes.
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Figure 3.20 : Example of gray code planes on the three RGB channels of a
red-eye patch.

3.3.2 Red Patch Classification

The main aim of the classification stage is the elimination of false positive red-

eyes in the set of patches obtained performing the filtering pipeline described in

Section 3.3.1.

At this stage we deal with a binary classification problem. Specifically, we want

discriminate between eye vs. non-eye patches. To this aim we employ an au-

tomatic learning technique to make accurate predictions based on past observa-

tions. The approach we use can be summarized as follows: start by gathering as

many examples as possible of both eyes and non-eyes patches. Next, feed these

examples, together with labels indicating if they are eyes or not, to a machine-

learning algorithm which will automatically produce a classification rule. Given

a new unlabeled patch, such a rule attempts to predict if it is eye or not.

Building a rule that makes highly accurate predictions on new test examples is a

challenging task. However, it is not hard to come up with rough weak classifiers

that are only moderately accurate. An example of such a rule for the problem

under consideration is something like the following: “If the pixel p located in

the sclera region of the patch under consideration is not white, then predict it is
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non-eye”. In this case such a rule is related the knowledge that the white region

corresponding to the sclera should be present in an eye patch. On the other hand,

such a rule will cover all possible non-eyes cases; for instance, it is correct to

say nothing about what to predict if the pixel p is white. Of course, this rule will

make predictions that are significantly better than random guessing. The key

idea is to find many weak classifiers and combine them in a proper way deriving

a single strong classifier.

Among other, Boosting [54, 129, 130] is one of the most popular procedure for

combining the performance of weak classifiers in order to achieve a better clas-

sifier. We use a boosting procedure on patches represented as gray codes to

build a strong classifier useful to distinguish between eye and non-eye patches.

Specifically, boosting is used to select the positions {p1, . . . , pn} corresponding

to n gray code bits that best discriminate between the classes eye vs. non-eye,

together with n associated weak classifiers of the form:

hi(g) =
{

ai gpi = 1
bi gpi = 0 (3.20)

where g = [g1,g2, . . . ,gD] is the gray code vector (gi ∈ {0,1}) of size D =

30×30×3×8 corresponding to a 30×30 patch extracted as described in previ-

ous Section. The parameters ai and bi are automatically learned by Gentleboost

procedure [54] as explained in Section 3.3.3. The classification is obtained con-

sidering the sign of the learned additive model:

H(g) =
n

∑
i=1

hi(g) (3.21)

where n ≪ D indicates the number of weak classifiers involved in the strong

classifiers H.
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The rationale beyond the use of gray code representation is the following. In

the gray code space just a subset of all possible bit combinations are related

the eyes patches. We wish to select those bits that usually differ in terms of

binary value between eye and non-eye patches. Moreover, by using gray code

representation rather than classic bit planes decomposition we reduce the impact

of small changes in intensity of patches that could produce significant variations

in the corresponding binary code [60].

In Figure 3.21 an example of n = 1000 gray code bits selected with Gentleboost

procedure is reported. Selected bits are shown as black or white points on the

different gray code planes. This map indicates that a red-eye patch should have

1 in the position coloured in white and 0 in the positions colored in black. Once

gray code bits and the corresponding weak classifiers parameters are learned, a

new patch can be classified by using the sign of Equation 3.21.

Figure 3.21 : Selected gray code bits.

The approach described above does not take into account spatial relationship be-

tween selected gray code bits. Spatial information is useful to make stronger the

classification task (e.g., pupil is surrounded of sclera). To overcome this prob-

lem we coupled the gray codes bits selected at the first learning stage using xor

operator to obtain a new set of n2 binary features. We randomly select a sub-

set containing m of these features and performed a second round of Gentleboost
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procedure to select the most discriminative spatial relationship among the m ran-

domly selected. This new classifier is combined with the one learned previously

to perform final eye and non-eye patches classification.

Due to the multi-modally nature of the patches involved in our problem (i.e.,

colours, orientation, shape, etc.), a single discriminative classifier could fail dur-

ing classification task. To get through this weakness we propose to perform first

a clustering of the input space and then apply the two stage boosting approach

described above on each cluster. More specifically, during the learning phase,

the patches are clustered by using K-means [42] in their original color space

producing the subsets of the input patches with the relative prototypes; hence

the two stage of boosting described above are performed on each cluster. During

the classification stage, a new patch is first assigned to a cluster according to the

closest prototype and then classified taking into account the two additive models

properly learned for the cluster under consideration.

Experimental results reported in Section 3.3.5 confirm the effectiveness of the

proposed strategy.

3.3.3 Boosting for binary classification exploiting gray codes

Boosting provides a way to sequentially fit additive models of the form in Equa-

tion 3.21 optimizing the following cost function [54]:

J = E[e−yH(g)], (3.22)

where y ∈ {−1,1} is the class label associated to the feature vector g. In this

work y=1 is associated to the eye class, whereas y=-1 is the label associated to

the non-eye class. The cost function in the Equation 3.22 can be thought as a

differentiable upper bound of the misclassification rate [130].
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There are many ways to optimize this function. A simple and numerical robust

way to optimize this function is called Gentleboost [54]. This version of boosting

procedure outperforms other boosting variants for computer vision tasks (e.g.,

face detection) [90]. In Gentleboost the optimization of Equation 3.22 is per-

formed minimizing a weighted squared error at each iteration [141]. Specifically

at each iteration i the strong classifier H is updated as H(g) := H(g)+ hbest(g)

where the weak classifier hbest is selected in order to minimize the second order

approximation of the cost function in the Equation 3.22:

hbest = argmin
hd

J(H(g)+hd(g))≃ argmin
hd

E[e−yH(g)(y−hd(g))2] (3.23)

Defining as w j = e−y jH(g j) the weight for the training sample j and replacing the

expectation with an empirical average over the training data, the optimization

reduces in minimizing the weighted squared error:

Jwse(hd) =
M

∑
j=1

w j(y j −hd(g j))
2, (3.24)

where M is the number of samples in the training set.

The minimization of Jwse depends on the specific form of the weak classifiers hd .

Taking into account the binary representation of samples (i.e., the gray code of

each patch), in the present proposal we define the weak classifiers as follows:

hd(g) =
{

ad i f gd = 1
bd i f gd = 0 (3.25)

In each iteration the optimal ad and bd for each possible hd can be obtained

through weighted least squares as follows:

ad =
∑M

j=1 w jy jδ (gd = 1)

∑M
j=1 w jδ (gd = 1)

(3.26)
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bd =
∑M

j=1 w jy jδ (gd = 0)

∑M
j=1 w jδ (gd = 0)

(3.27)

The best weak classifier hbest is hence selected in each iteration of the boosting

procedure such that the cost of Equation 3.24 is the lowest:

hbest = argmin
hd

Jwse(hd) (3.28)

Finally, before a new iteration the boosting procedure makes the following mul-

tiplicative update to the weights corresponding to each training sample:

w j := w je−y jhbest(g j) (3.29)

This update increases the weight of samples which are misclassified (i.e., for

which y jH(g j) < 0), and decreases the weight of samples which are correctly

classified.

The procedures employed for learning and classification on the proposed repre-

sentation are summarized in Algorithm 1 and Algorithm 2. In the learning stage

we initialize the weights corresponding to the elements of the training set such

that the number of the samples within each class is taken into account. This is

done to overcome the problems that can occur due to the unbalanced number of

training samples within the considered classes.

3.3.4 Red-Eyes Correction

Once the red-eyes have been detected the correction step is performed. Usually

the red-eye artifact consists of a red pupil with a white glint. This area is devoted

to absorb light and thus should be dark. To transform the red pupil to a dark
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Algorithm 1: Learning
Input: A set of gray code vectors G = {g1, . . . ,gM}, and corresponding labels

Y = {y1, . . . ,yM}
Output: A strong classifier H(g) = ∑n

i=1 hi(g)
begin

C+ := { j|y j = 1}
C− := { j|y j =−1}
w j∈C+ := 1

2|C+|
w j∈C− := 1

2|C−|
for i = 1,2, . . . ,n do

for d = 1,2, . . . ,D do

a∗d :=
∑M

j=1 w jy jδ (gd=1)

∑M
j=1 w jδ (gd=1)

b∗d :=
∑M

j=1 w jy jδ (gd=0)

∑M
j=1 w jδ (gd=0)

h∗d(g) :=
{

a∗d i f gd = 1
b∗d i f gd = 0

Jwse(h∗d) := ∑M
j=1 w j(y j −h∗d(g j))

2

end
pi := argmind Jwse(h∗d)
ai := a∗pi
bi := b∗pi

hi(g) :=
{

ai i f gpi = 1
bi i f gpi = 0

w j := w je−y jhi(g j)

end
H(g) := ∑n

i=1 hi(g)
end

Algorithm 2: Classification
Input: The strong classifier H, and a new gray code sample g to be classified
Output: The inferred class y ∈ {−1,1}
begin

y := sign(H(g))
end
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region, a de-saturation and a brightness reduction is accomplished [56,106]. The

region of connected red pixels is used to fix the area that must be desaturated.

To prevent unpleasant transition from the iris to the pupil, red-eye artifact is

replaced by a mask with equal dimensions where each value is used as weighted

brightness/de-saturation reduction factor. The correction mask M is based on a

32×32 fixed point LUT with Gaussian shape (Figure 3.22). The mask is resized

through a bilinear resampling to fit the dimension of the region of connected red

pixels under consideration.

Figure 3.22 : Brightness-Saturation Mask

Let Ir
c the channel c ∈ {R,G,B} of a region of interest r within the image I.

For each channel c ∈ {R,G,B} the pixels (x,y) belonging to the region Ir are

corrected as follows:

Ir
c(x,y) =


Ir
c(x,y) [Ir

R(x,y), I
r
G(x,y), I

r
B(x,y)] ∈W

Ir
G(x,y)

M(x,y) otherwise
(3.30)

where W is a surrounding of the “white” color which can slightly vary in terms

of lightness, hue and saturation. This means that, to prevent glint from disap-

pearing only red pixels are de-satured (the whitish pixels are excluded from the

brightness processing).
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3.3.5 Experimental Settings and Results

The proposed red-eye removal pipeline has been tested on a dataset of 390 im-

ages in which 1049 red-eyes have been manually labeled. The dataset has been

collected from various sources, including digital single-lens reflex (DSLR) cam-

eras, compact cameras, personal collections and Internet photos. Single red-

eyes, as well as high variability of red-eyes colors, poses and shapes have been

considered in building the dataset. In order to accurately assess the proposed

approach, the size of the eyes to be detected in the collected images must be

small enough to ensure that also the smallest red eyes can be detected and cor-

rected. The basic requirement considered in our experimental phase is that the

red eyes must be accurately detected and corrected up to three meter distance

from the camera. Table 3.2 presents the estimated eye sizes, in pixels, for XGA

image size (1024× 768), with the assumption that the average eye is directed

to the camera. In this paper the collected images have been considered with a

XGA image resolution and the minimum and maximum estimated pupil diam-

eter (Table 3.2) have been taken into account in building the dataset for testing

purposes.

Table 3.2 : Estimated eye sizes taking into account the distance from the
camera.

Distance (m) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
Diameter (pixels) 52 26 17 13 10 9 7 7 6 5 5 4 4 4 3

For each image of the dataset, the pixels belonging to red eyes artifacts have been

manually labeled as red-eye-pixels. The parameters Minh, Maxh, ts, Mins, Maxs,

Minρ , Maxρ , and Maxη involved in the first stage of the proposed approach (see

Section 3.3.1) have been learned taking into account the true and false red-eyes-

pixels within the labeled dataset. To this aim, a full search procedure on a grid of
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equispaced points in the eight dimensional parameters’ space was employed. For

each point of the grid, the correct detection and false positives rates of the true

red-eyes-pixels within the dataset was obtained. The tuple of parameters with

the best trade-off between correct detection and the false positives have been

used to perform the final filtering pipeline. A similar procedure was employed

to determine the subspace W of the RGB space involved in the correction step to

identify pixels belonging to the glint area.

Figure 3.23 : Example of clusters prototypes obtained in a LOOCV run.

In order to evaluate the classification performance of the proposed method, the

leave-one-out cross validation procedure (LOOCV) have been employed. Each

run of LOOCV has involved a single image as test, and the remaining images as

training data. This is repeated to guarantee that each input image is used once

as test image. At each run of LOOCV the parameters of the filtering pipeline

have been set to maximize correct detection and minimize false positives. At

each run of LOOCV the training images have been clustered and then the two

stage boosting approach described in Section 3.3.2 have been performed on each

cluster. Seven clusters (Figure 3.23) and 800 binary features for the additive

classifiers corresponding to the clusters have been used on each LOOCV run.

The maximum number of iterations used by boosting procedure to obtain the

800 binary feature was 1400. The final results have been obtained averaging on

the results of the overall LOOCV runs.

Taking into account both, the filtering and the classification stages, the hit-rate

148



Giuseppe Messina 3. Red Eyes Removal

of the proposed red-eyes detector is 83.41%. This means that 875 red-eyes have

been correctly detected with respect to the 1049 red-eyes of the 390 input images,

whereas only 34 false positives have been introduced. In Figure 3.24 the training

ability increasing the number of bits is shown in terms of Hit Rates (Figure

3.24(a)) and False Positives (Figure 3.24(b)).

In Figure 3.25 two examples of misclassified patches are reported. Fig. 3.25 (a)

a “golden” eye is depicted (another possible artifact due to similar acquisition

problem). The underlying structure in Fig. 3.25 (b) is probably the main reason

of misclassification.

In order to point out the usefulness of the proposed cluster-based boosting, as
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Figure 3.24 : Performances increasing number of bits.

(a) False Negative. (b) False Positive.

Figure 3.25 : Examples of misclassified patches.

149



3. Red Eyes Removal Giuseppe Messina

well as the usefulness of the spatial relationship introduced by using xor oper-

ation on gray codes bits, we have repeated tests considering different configu-

rations. Results reported in Table 3.3 confirm the effectiveness of the rationale

beyond the proposed method.

Configuration Hit Rate False Positives
Gray Codes 75.98% 47

Gray Codes + Clustering 77.51% 44
Gray Codes + XOR 79.31% 36

Gray Codes + Clustering + XOR 83.41% 34

Table 3.3 : Comparison of different configurations.

To properly evaluate the overall red-eyes removal pipeline, the qualitative cri-

terion (see Section 3.2.4) was adopted to compare the proposed solution with

respect to existing automatic solutions.

The proposed pipeline has been compared with respect to the following auto-

matic (mainly commercial) solutions: Volken [143], NikonView V6.2.7, Ko-

dakEasyShare V6.4.0, StopRedEye! V1.0, HP RedBot, Arcsoft PhotoPrinter

V5, Cyberlink MediaShow. Experiments have been done using effective com-

mercial software and the implementation of [143] provided by the authors. Nikon-

View approach is mainly based on [38].

Method FNm FNd FPc FPn Np Ci Cn Qc Hit Rate
Cyberlink MediaShow 270 86 40 19 39 122 61 0.1423 66.06%

Volken et alii [143] 179 117 150 1540 83 17 79 -0.5851 71.78%
KodakEasyShare V6.4.0 194 99 5 20 5 104 100 0.4243 72.07%

HP RedBot 174 109 26 45 85 99 150 0.2345 73.02%
NikonView V6.2.7 143 116 6 29 88 124 129 0.2944 75.31%
StopRedEye! V1.0 124 125 8 12 83 81 91 0.4161 76.26%

Arcsoft PhotoPrinter V5 132 103 10 78 80 89 82 0.3800 77.60%
Battiato et alii [19] 122 85 2 2 60 20 64 0.6346 80.26%
Proposed Pipeline 114 60 9 25 46 34 79 0.6174 83.41%

Table 3.4 : Quality score of different red-eyes removal approaches.
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As reported in Table 3.4, the proposed approach has obtained the best perfor-

mances in terms of both, hit rate and quality criterion. Moreover, the proposed

approach outperforms the method we have presented in [19] also in terms of

computational complexity. Despite the complete set of images used in the ex-

periments is not publicly available, since most of the photos are taken from pri-

vate collections, some examples with corresponding results are available at the

following web address:

http://iplab.dmi.unict.it/download/EurasipSpecialIssue2010.

3.3.5.1 Computational Complexity

To evaluate the complexity, a deep analysis has been performed by running the

proposed pipeline on an ARM926EJ-S processor instruction set simulator. We

have chosen this specific processor because it is widely used in embedded mo-

bile platforms. The CPU run at 300 MHz, and both data and instruction caches

have been fixed to 32 KB. The bus clock has been set to 150 MHz, and the mem-

ory read/write access time is 9 ns. The algorithm has been implemented using

bitwise operators to work on colour maps and fixed point operations. Due to the

dependence of the operations to the number of red clusters found in the image,

we have analyzed a mid case, that is an image containing around 40 potential red

eye zones, but only 2 of them are real eyes to be corrected.

Table 3.5 contains a report of the performances of the main steps of the proposed

pipeline, assuming to work on a XGA version (scaled) of the image: the redness

detection (Color Map), the processing on the generated maps (Morphological

Operations), the candidate extraction, the classification step and finally the cor-

rection of the identified eyes. The performances information reported in Table

3.5 are related to the following computational resources:
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Instructions: counts the executed ARM instructions;

Core cycles: core clock ticks needed to make the Instructions;

Data (D$): Read/Write Hits and Misses, cache memory hits and misses;

Seq and Non Seq: sequential and non-sequential memory accesses;

Idle: represents bus cycles when the instruction bus and the data bus are idle,

that is when the processor is running;

Busy: counts busy bus cycles, that is when the data are transferred from the

memory into the cache;

Wait States: the number of bus cycles introduced when waiting for accessing

the RAM (is an indicator of the impact of memory latencies);

Total: is the total number of cycles required by the specific function, expressed

in terms of bus cycles;

Milliseconds: time required by the specific function expressed in milliseconds.

Table 3.5 : Performances of the main steps of the proposed pipeline.
Color Map Morph. Oper. Candidate Extr. Classification Correction

Instructions 19.845.568 22.990.051 9.418.650 4.446.349 1.698.946
Core Cycles 28.753.276 30.489.180 16.407.293 5.668.496 2.390.279
D$ R Hits 4.722.760 2.903.178 2.504.092 945.959 205.188
D$ W Hits 97.636 261.213 428.924 135.634 94.727

D$ R Misses 75.495 6.293 5.666 3.450 244
D$ W Misses 2 193.891 3.290 24.069 1.133

SEQ 538.136 17.486.089 48.539 40.177 4.100
NON-SEQ 77.321 122.234 9.841 22.366 1.533

IDLE 16.282.401 7.325.256 10.345.379 3.203.188 1.372.407
Wait States 615.457 253.103 58.380 62.543 5.633

Total 17.513.316 16.208.789 10.462.139 3.328.274 1.383.673
Milliseconds 117 108 70 22 9

The overall time achieved on this mid-case is 326 ms. The table highlights the

efficiency of the classifier, because it is mainly based on bit comparisons. Con-

sidering patches scaled at 32×32 before the classification stage, the classifier is
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essentially a comparison of 32× 32 bit words for each channel with complex-

ity in the range of one operation per pixel. For this reason it is very fast and

light. Also the correction is very light because, as explained in Section 3.3.4,

it is based on the resampling of a precomputed Gaussian function. The impact

on memory is valuable only on the map processing, where data are processed

several times, whereas in the remaining steps of the pipeline the weight of the

instructions determines the main part of process timing.

We cannot compare the performances and complexity of our methodology with

other methods because the other proposed methods are commercial ones, hence

the related codes are not available for the analysis.

3.4 Conclusion and Future Works

In this work an advanced red-eyes removal pipeline has been discussed. After

an image filtering pipeline devoted to select only the potential regions in which

red-eye artifacts are likely to be, a cluster-based boosting on grey codes based

features is employed for classification purpose. Red-eyes are then corrected

through de-saturation and brightness reduction. Experiments on a representa-

tive dataset confirm the real effectiveness of the proposed strategy which also

allows to properly managing the multi-modally nature of the input space. The

obtained results have pointed out a good trade-off between overall hit-rate and

false positives. Moreover, the proposed approach has shown good performance

in terms of quality measure. Future works will be devoted to include the analysis

of other eyes artifacts (e.g., “golden eyes”).
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4. Exposure Correction Feature
Dependent

The problem of the proper exposure settings for image acquisition is of course

strictly related with the dynamic range of the real scene. In many cases some

useful insights can be achieved by implementing ad-hoc metering strategies. Al-

ternatively, it is possible to apply some tone correction methods that enhance

the overall contrast of the most salient regions of the picture. The limited dy-

namic range of the imaging sensors doesn’t allow to recover the dynamic of

the real world. In this Chapter we present a brief review of automatic digital

exposure correction methods trying to report the specific peculiarities of each

solution. Starting from exposure metering techniques, which are used to estab-

lish the correct exposition settings, we describe automatic methods to extract

relevant features and perform corrections.

4.1 Introduction

One of the main problems affecting image quality, leading to unpleasant pictures,

comes from improper exposure to light. Beside the sophisticated features incor-

porated in today’s cameras (i.e., automatic gain control algorithms), failures are

not unlikely to occur. Digital consumer devices make use of ad-hoc strategies

and heuristics to derive exposure setting parameters. Typically such techniques

are completely blind with respect to the specific content of the involved scene.

Some techniques are completely automatic, cases in point being represented by

those based on average/automatic exposure metering or the more complex ma-

trix/intelligent exposure metering. Others, again, accord to the photographer a

Giuseppe Messina AA 2009-2010
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certain control over the selection of the exposure, thus allowing space for per-

sonal taste or enabling him to satisfy particular needs. In spite of the great variety

of methods for regulating the exposure and the complexity of some of them, it

is not rare for images to be acquired with a nonoptimal or incorrect exposure.

This is particularly true for handset devices (e.g., mobile phones) where sev-

eral factors contribute to acquire bad-exposed pictures: poor optics, absence of

flashgun, not to talk about difficult input scene lighting conditions, and so forth.

There is no exact definition of what a correct exposure should be. It is possible

to abstract a generalization and to define the best exposure that enables one to

reproduce the most important regions (according to contextual or perceptive cri-

teria) with a level of gray or brightness, more or less in the middle of the possible

range. In any case if the dynamic range of the scene is sensibly ”high” there is

no way to acquire the overall involved details. One of the main issues of this

Chapter is devoted to give an effective overview of the technical details involved

in:

• Exposure settings of imaging devices just before acquisition phase (i.e.,

preprocessing phase) [99];

• Content-dependent enhancement strategies applied as post-processing [13];

• Advanced solution where multi-picture acquisition of the same scene with

different exposure time allows to reproduce the Radiance map of the real

world [16].

.

The rest of the Chapter is organized as follows. The initial Section will discuss in

details traditional and advanced approaches related to the pre-processing phase
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(i.e., the sensor is read continuously and the output is analyzed in order to deter-

mine a set of parameters strictly related with the quality of the final picture [99]).

The role of exposure setting will be analyzed also considering some case studies

where, by making use of some assumptions about the dynamic range of the real

scene, it is possible to derive effective strategies. Section 4.3 will describe the

work presented in [13] where by using post-processing techniques, an effective

enhancement has been obtained just analyzing some content dependent features

of the picture.

4.2 Exposure Metering Techniques

Metering techniques built into the camera are getting much better with the intro-

duction of computer technology but limitations still remain. For example taking

a picture on a snow scene or trying to photograph a black locomotive without

overriding the camera calculated metering is very difficult. The most important

aspect of the exposure duration is to guarantee that the acquired image falls in a

good region of the sensors sensitivity range. In many devices, the selected expo-

sure value is the main processing step for adjusting the overall image intensity

that the user will see. Many of the first digital cameras used a separate metering

system to set exposure duration, rather than using data acquired from the sensor

chip. Integrating exposure-metering function into the main sensor (through-the-

lens, or TTL, metering) may reduce system cost. The imaging community uses

a measure called Exposure Value (EV) to specify the relationship between the
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f-number1, F, and exposure duration, T :

EV = log2(
F2

T
) = 2log2(F)− log2(T ) (4.1)

The exposure value (4.1) becomes smaller as the exposure duration increases,

and it becomes larger as the f-number grows. Most auto-exposure algorithms

work in this way:

1. Take a picture with a pre-determined exposure value (EVpre);

2. Convert the RGB values to luminance, L;

3. Derive a single value Lpre (like center-weighted mean, median, or more

complicated weighted method as in matrix-metering) from the luminance

picture;

4. Based on linearity assumption and equation (4.1), the optimum exposure

value EVopt should be the one that permits a correct exposure. The picture

taken at this EVopt should give a number close to a pre-defined ideal value

Lopt , thus:

EVopt = EVpre + log2(Lpre)− log2(Lopt) (4.2)

The ideal value Lopt for each algorithm is typically selected empirically. Dif-

ferent algorithms mainly differ in how the single number Lpre is derived from

the picture. In Fig.(4.1) an example Table of EVs, which take into consideration

different exposure times and f-numbers, is reported.

1f-numbers, or aperture values, are measurement of the size of the hole that the light passes through
the rear of the lens, relative to the focal length. The smaller the f-number, the more light gets through
the lens.
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EV f

1.0 1.4 2.0 2.8 4.0 5.6
−6 60 2 m 4 m 8 m 16 m 32 m
−5 30 60 2 m 4 m 8 m 16 m
−4 15 30 60 2 m 4 m 8 m
−3 8 15 30 60 2 m 4 m
−2 4 8 15 30 60 2 m
−1 2 4 8 15 30 60
0 1 2 4 8 15 30
1 1/2 1 2 4 8 15
2 1/4 1/2 1 2 4 8
3 1/8 1/4 1/2 1 2 43 1/8 1/4 1/2 1 2 4
4 1/15 1/8 1/4 1/2 1 2
5 1/30 1/15 1/8 1/4 1/2 1
6 1/60 1/30 1/15 1/8 1/4 1/2
7 1/125 1/60 1/30 1/15 1/8 1/4
8 1/250 1/125 1/60 1/30 1/15 1/8
9 1/500 1/250 1/125 1/60 1/30 1/15

10 1/1000 1/500 1/250 1/125 1/60 1/30
11 1/2000 1/1000 1/500 1/250 1/125 1/60
12 1/4000 1/2000 1/1000 1/500 1/250 1/125
13 1/8000 1/4000 1/2000 1/1000 1/500 1/250
14 1/8000 1/4000 1/2000 1/1000 1/500
15 1/8000 1/4000 1/2000 1/1000
16 1/8000 1/4000 1/2000

f-number

8.0 11 16 22 32 45 64
64 m 128 m 256 m 512 m 1024 m 2048 m 4096 m
32 m 64 m 128 m 256 m 512 m 1024 m 2048 m
16 m 32 m 64 m 128 m 256 m 512 m 1024 m
8 m 16 m 32 m 64 m 128 m 256 m 512 m
4 m 8 m 16 m 32 m 64 m 128 m 256 m
2 m 4 m 8 m 16 m 32 m 64 m 128 m
60 2 m 4 m 8 m 16 m 32 m 64 m
30 60 2 m 4 m 8 m 16 m 32 m
15 30 60 2 m 4 m 8 m 16 m
8 15 30 60 2 m 4 m 8 m8 15 30 60 2 m 4 m 8 m
4 8 15 30 60 2 m 4 m
2 4 8 15 30 60 2 m
1 2 4 8 15 30 60

1/2 1 2 4 8 15 30
1/4 1/2 1 2 4 8 15
1/8 1/4 1/2 1 2 4 8
1/15 1/8 1/4 1/2 1 2 4
1/30 1/15 1/8 1/4 1/2 1 2
1/60 1/30 1/15 1/8 1/4 1/2 1

1/125 1/60 1/30 1/15 1/8 1/4 1/2
1/250 1/125 1/60 1/30 1/15 1/8 1/4
1/500 1/250 1/125 1/60 1/30 1/15 1/8
1/1000 1/500 1/250 1/125 1/60 1/30 1/15

Figure 4.1 : Example of fixed exposure times.

4.2.1 Classical Approaches

The metering system in typical imaging device measures the amount of light

in the scene and calculates the best-fit exposure value based on the metering

mode explained below. Automatic exposure is a standard feature in all digital

cameras. After having selected the metering mode, it is requested just pointing

the camera and pressing the shutter release. The metering method defines which

information of the scene is used to calculate the exposure value and how it is

determined. Cameras generally allow the user to select between spot, center-

weighted average, or multi-zone metering modes.

4.2.1.1 Spot Metering

Spot metering allows user to meter the subject in the center of the frame (or on

some cameras at the selected AutoFocus (AF) point). Only a small area of the

whole frame (between 1-5% of the viewfinder area) is metered while the rest of
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the frame is ignored. In this case Lpre (4.2) is the mean of the center area (see

Fig.(4.2(a))). This will typically be the effective center of the scene, but some

cameras allow the user to select a different off-center spot, or to recompose by

moving the camera after metering. A few models support a Multi-Spot mode

which allows multiple spot meter readings to be taken of a scene that are aver-

aged. Both of those cameras and others also support metering of highlight and

shadow areas. Spot metering is very accurate and is not influenced by other ar-

eas in the frame. It is commonly used to shoot very high contrast scenes. For

example (see Fig.(4.2(d))), if the subject’s back is being hit by the rising sun and

the face is a lot darker than the bright halo around the subject’s back and hairline

(the subject is ”backlit”), spot metering allows the photographer to measure the

light bouncing off the subject’s face and expose properly for that, instead of the

much brighter light around the hairline. The area around the back and hairline

will then become over-exposed. Spot metering is a method upon which the Zone

System depends2.

4.2.1.2 Partial Area Metering

This mode meters a larger area than spot metering (around 10-15% of the entire

frame), and is generally used when very bright or very dark areas on the edges

of the frame would otherwise influence the metering unduly. Like spot metering,

some cameras can use variable points to take readings from (in general autofocus

points), or have a fixed point in the center of the viewfinder. In Fig.(4.2(e)) an

2The Zone System is a photographic technique for determining optimal film exposure and develop-
ment, formulated by Ansel Adams and Fred Archer in 1941. The Zone System provides photographers
with a systematic method of precisely defining the relationship between the way they visualize the pho-
tographic subject and the final results. Although it originated with black and white sheet film, the Zone
System is also applicable to roll film, both black and white and color, negative and reversal, and to
digital photography.
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(a) Spot area (b) Partial area (c) Center weighted area

(d) Spot example (e) Partial area example (f) Center weighted example

Figure 4.2 : Metering examples.

example of partial metering on a backlight scene is shown; this method permits

to equalize much more the global exposure.

4.2.1.3 Center-weighted Average Metering

This method is probably the most common metering method implemented in

nearly every digital camera: it is also the default for those digital cameras which

don’t offer metering mode selection. In this system, as described in Fig.(4.2(c)),

the meter concentrates between 60 to 80 percent of the sensitivity towards the

central part of the viewfinder. The balance is then ”feathered” out towards the

edges. Some cameras allow the user to adjust the weight/balance of the cen-

tral portion to the peripheral one. One advantage of this method is that it is

less influenced by small areas that vary greatly in brightness at the edges of the

viewfinder; as many subjects are in the central part of the frame, consistent re-

sults can be obtained. Unfortunately, if a backlight is present into the scene the

central part results darker than the rest of the scene (Fig.(4.2(f))), and unpleasant
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underexposed foreground is produced.

4.2.1.4 Average Metering

In this mode the camera will use the light information coming from the entire

scene and averages for the final exposure setting, giving no weighting to any

particular portion of the metered area. This metering technique has been replaced

by Center-Weighted metering, thus is only obsolete and present in older cameras

only.

4.2.2 Advanced Approaches

4.2.2.1 Matrix or Multi-zone Metering

(a) Canon 21-Zones (b) Canon 16-Zones (c) Canon 35-Zones (d) Nikon 10-
Segments

(e) Nikon 7-
Segments

(f) Nikon 6-
Segments

(g) Sigma 9-Zones (h) Samsung
16-Zones

(i) Olympus ESP (j) Konica Minolta 40
zone honeycombs

(k) Konica Minolta 14
zone honeycombs

Figure 4.3 : Examples of different kind of Multi-zone Metering mode used by
several cameras manufacturers.
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This mode is also called matrix, evaluative, honeycomb, segment metering, or

esp (electro selective pattern) metering on some cameras. It was first intro-

duced by the Nikon FA, where it was called Automatic Multi-Pattern meter-

ing. On a number of cameras, this is the default/standard metering setting.

The camera measures the light intensity in several points of the scene, and

then combines the results to find the settings for the best exposure. How they

are combined/calculated deviates from device to device. The actual number of

zones used varies wildly, from several to over a thousand. However perfor-

mance should not be concluded on the number of zones alone, or the layout.

As shown in Fig.(4.3) the layout can change drastically from a manufacturer to

another, also within the same company the use of different multi-zone metering

can change due to several reasons (e.g., the dimension of the final pixel matrix).

Many manufacturers are less than open about the exact calculations used to de-

termine the exposure. A number of factors are taken into consideration, these in-

clude: AF point, distance to subject, areas in-focus or out-of-focus, colors/hues

of the scene, and backlighting. Multi-zone tends to bias its exposure towards the

autofocus point being used (while taking into account other areas of the frame

too), thus ensuring that the point of interest has been properly exposed (it is also

designed to avoid the need to use exposure compensation in most situations). A

database of many thousands of exposures is pre-stored in the camera, and the

processor can use a selective pattern to determine what is being photographed.

Some cameras allow the user to link (or unlink) the autofocus and metering,

giving the possibility to lock exposure once AF confirmation is achieved, AEL

(Auto Exposure Lock). Using manual focus, and on many compacts cameras,

the AF point is not used as part of the exposure calculation, in such instances it

is common for the metering to default to a central point in the viewfinder, using
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a pattern based off of that area. Some users have problems with wide angle shots

in high contrast, due to the large area which can vary greatly in brightness, it is

important to understand that even in this situation, the focus point can be critical

to the overall exposure.

4.2.3 Exposure Control-System

In many conventional digital cameras, such as Digital Single Lens Reflex (DSLR),

the exposure control systems are implemented using mechanical devices. Such

mechanical devices include a mechanical iris and/or a mechanical shutter wheel.

The most common implementation, the mechanical iris, varies the rate at which

the sensor receives photons. The mechanical shutter varies the amount of time

during which the sensor receives photons.

Since mechanical devices have a relatively low reliability, slow response time,

and increase the size and the cost of lenses, mobile devices have been fitted

up with exposure control systems which take into account integration time and

multiplication gain factors (see Fig.(4.4)).

The exposure control system performs a first lecture of pixels values, directly

on Bayer data coming from the sensor and analyzes the pixel values through a

statistic processing block. The algorithm involved into this statistical analysis

can be a simple statistical (weighted) mean brightness (see Section 4.2.1.3) or a

more sophisticated metering (see Section 4.2.2).

The viewfinder pipeline is used to estimate the correct exposure. This pipeline

is a simplified version of the image generation pipeline, and is used to show

a preview of captured image on the embedded display. The exposure control

system, described in Fig.(4.4), performs the following steps:
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1. Initial integration time consideration: a first image is captured and is given

to the system, which perform the statistical analysis.

2. Calculate ideal gain: to achieve a first correction an ideal multiplication

gain is is used to accordingly set both analog and digital gains.

3. Determine analog gain: the analog gain is estimated through statistical

measures.

4. Finalize integration time: the integration time is then fixed.

5. Determine digital gain: the digital gain is estimated through statistical mea-

sures.

6. Determine final exposure: the final exposure is thus estimated and the im-

age capture is achieved.

SENSOR

PIXEL
ARRAY X X

Integration
Time

Analog
Gain

Digital
Gain

EX
CO

STATISTICS
PROCESSOR

PIXELS

STATISTICS

XPOSURE
ONTROL

Figure 4.4 : Exposure Control-System pipeline.
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4.3 Exposure Correction

As explained in Section 4.2, a good exposure should be able to reproduce the

most important regions (according to contextual or perceptive criteria) with a

level of gray or brightness, more or less in the middle of the possible range.

After acquisition phase typical post-processing techniques try to realize an ef-

fective enhancement by using global approaches: histogram specification, his-

togram equalization and gamma correction to improve global contrast appear-

ance [11, 60] only by stretching the global distribution of the intensity. More

adaptive criterions are needed to overcome such drawback. The exposure cor-

rection technique [13] described in this Section is designed essentially for mobile

sensors applications. This new element, present in newest mobile devices, is par-

ticularly harmed by “backlight” when the user utilizes a mobile device for video

phoning. The detection of skin characteristics in captured images allows selec-

tion and properly enhancement and/or tracking of regions of interest (e.g., faces).

If no skin is present in the scene the algorithm switches automatically to other

features (such as contrast and focus or indoor/outdoor) tracking for visually rel-

evant regions. This implementation differs from the algorithm described in [27]

because the whole processing can also be performed directly on Bayer pattern

images [25], and simpler statistical measures were used to identify information

carrying regions. The algorithm is defined as follows:

1. Luminance extraction. If the algorithm is applied on Bayer data, in place

of the three full color planes, a sub-sampled (quarter size) approximated

input data (Fig.(4.8)) is used.

2. Using a suitable features extraction technique the algorithm fixes a value to

each region. This operation permits to seek visually relevant regions (for
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(a) (b)

m 1 m 5m 2 m 3 m 4

m 6 m 10m 7 m 8 m 9

m 11 m 15m 12 m 13 m 14

m 16 m 20m 17 m 18 m 19

m 21 m 25m 22 m 23 m 24

m 1 m 5m 2 m 3 m 4

m 6 m 10m 7 m 8 m 9

m 11 m 15m 12 m 13 m 14

m 16 m 20m 17 m 18 m 19

m 21 m 25m 22 m 23 m 24

(c) (d)

Figure 4.5 : Features extraction pipeline (for focus and contrast with N = 25).
Visual relevance of each luminance block (b) of the input image (a) is based on
relevance measures (c) able to obtain a list of relevant blocks (d).

contrast and focus, or indoor/outdoor, the regions are block based, for skin

recognition the regions are associated to each pixel).

3. Once the ‘visually important’ pixels are identified (e.g., the pixels belong-

ing to skin features) a global tone correction technique is applied using as

main parameter the mean gray level of the relevant regions.

4.3.1 Feature Extraction

As aforementioned, in the following we will briefly describe three techniques

able to extract useful information to correct the image exposure.
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4.3.1.1 Focus and Contrast

To be able to identify regions of the image that contain more information, the

luminance plane is subdivided in N blocks of equal dimensions. For each block,

statistical measures of “contrast” and “focus” are computed. Contrast refers to

the range of tones present in the image. A high contrast leads to a higher number

of perceptual significance regions inside a block. Focus characterizes the sharp-

ness or edgeness of the block and is useful in identifying regions where high

frequency components (i.e., details) are present.

The contrast measure is computed by simply building a histogram Hx for each

block x of the N blocks and then calculating its deviation (4.3) from the mean

value (4.4):

Cx =
∑255

i=0 |i−Mx| ·Hx[i]

∑255
i=0 Hx [i]

(4.3)

where M is the mean value:

Mx =
∑255

i=0 i ·Hx [i]

∑255
i=0 Hx [i]

(4.4)

A high deviation value denotes good contrast and vice versa.

The focus measure is computed by convolving each block with a simple 3x3

Laplacian filter. In order to discard irrelevant high frequency pixels (mostly

noise), the outputs of the convolution at each pixel are thresholded. The mean

focus value of each block is computed as:

Fx =
∑M

i=1 thresh[lapl(i),Noise]
M

(4.5)
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where M is the number of pixels and the thresh() operator discards values lower

than a fixed threshold Noise. Once the values Fx and Cx are computed for all

blocks, relevant regions will be classified using a linear combination of both

values. Features extraction pipeline is illustrated in Fig.(4.5).

Therefore it is assumed that well focused or high-contrast blocks are more rele-

vant compared to the others.

• Contrast refers to the range of tones present in the image. A high contrast

leads to a higher number of perceptual significance regions inside a block.

• Focus characterizes the sharpness or edginess of the block and is useful

in identifying regions where high frequency components (i.e., details) are

present.

If the aforementioned measures were simply computed on highly underexposed

images, then regions having better exposure would always have higher contrast

and edginess compared to those that are obscured.

In order to perform a visual analysis revealing the most important features re-

gardless to lighting conditions, a new “visibility image” is constructed by push-

ing the mean gray level of the input green Bayer pattern plane (or the luminance

channel for color images) to 128. The push operation is performed using the

same function that is used to adjust the exposure level and it will be described

later. Furthermore to remove irrelevant peaks, the histogram is slightly smoothed

by replacing each entry with its mean in a ray 2 neighborhood. Thus, the original

histogram entry is replaced with the gray-level H̃x [i] :

H̃x [i] =
(Hx [i−2]+Hx [i−1]+Hx [i]+Hx [i+1]+Hx [i+2])

5
(4.6)
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Once the values Fx and Cx, for each block x of the N blocks, are computed,

relevant regions will be classified using a linear combination of both values.

4.3.1.2 Skin Recognition

As before a “visibility image” obtained forcing the mean gray level of the lu-

minance channel to be about 128 is built. Most existing methods for skin color

detection usually threshold some sort of measure of the likelihood of skin colors

for each pixel and treat them independently. Human skin colors form a special

category of colors, distinctive from the colors of the most other natural objects.

It has been found that human skin colors are clustered in various color spaces

( [122], [151]). The skin color variations between people are mostly due to in-

tensity differences. These variations can therefore be reduced by using chromi-

nance components only. Yang et al. [146] have demonstrated that the distribution

of human skin colors can be represented by a two-dimensional Gaussian func-

tion on the chrominance plane. The center of this distribution is determined by

the mean vector µ⃗ and its shape is determined by the covariance matrix Σ; both

values can be estimated from an appropriate training data set. The conditional

probability p (⃗x|s) of a block belonging to the skin color class, given its chromi-

nance vector x⃗ is then represented by:

p (⃗x|s) = 1
2π

|Σ|−
1
2 exp

{
− [d(⃗x)]2

2

}
(4.7)

where d(⃗x) is the so-called Mahalanobis distance from the vector x⃗ to the mean

vector µ⃗ and defined as:

[d(⃗x)]2 = (⃗x− µ⃗)′Σ−1(⃗x− µ⃗) (4.8)
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(a) (b) (c)

Figure 4.6 : Skin recognition examples on RGB images: (a) original images
compressed in JPEG format; (b) simplest threshold method output; and (c) prob-
abilistic threshold output.

The value d(⃗x) determines the probability that a given block belongs to the skin

color class. The larger the distance d(⃗x) , the lower the probability that the block

belongs to the skin color class s.

Due to the large quantity of color spaces, distance measures, and two-dimensional

distributions, many skin recognition algorithms can be used. The skin color al-

gorithm can be applied in different ways (as shown in Fig.(4.6)):

1. By using the input YCbCr image and the conditional probability (4.7), each

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g

r

026 Skin

(c)

Figure 4.7 : Skin recognition examples on Bayer pattern image: (a) original
image in Bayer data; (b) recognized skin with probabilistic approach; and (c)
threshold skin values on r−g bidirectional histogram (skinlocus).
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pixel is classified as belonging to a skin region or not. Then a new image

with normalized grayscale values is derived, where skin areas are properly

highlighted (Fig.(4.6(c))). The higher the gray value the bigger the proba-

bility to compute a reliable identification.

2. By processing an input RGB image, a 2D chrominance distribution his-

togram (r, g) is computed, where r=R/(R+G+B) and g=G/(R+G+B). Chromi-

nance values representing skin are clustered in a specific area of the (r,g)

plane, called “skin locus” (Fig.(4.7(c))), as defined in [134]. Pixels having

a chrominance value belonging to the skin locus will be selected to correct

exposure.

3. For Bayer data, the skin recognition algorithm works on the RGB image

created by sub-sampling the original picture, as described in Fig.(4.8).

Figure 4.8 : Bayer data sub-sampling generation, where G′ = GR+GB
2 .

4.3.1.3 Indoor/Outdoor

Another technique reported in [132] uses a two-stage classifier exploiting two

features: colors and textures. Then through a Support Vector Machine (SVM)

classifier [30], the algorithm independently classifies image blocks according to

features using wavelets coefficients. The classified blocks are then used by the

second stage SVM classifier to determine a final indoor/outdoor decision.
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To be able to extract color information the image is by first converted into the

LST color space. This color space is based on Otha Color Space [113] except

for the normalization factors:

L = k√
3
(R+G+B)

S = k√
2
(R−B)

T = k√
6
(R−2G+B)

(4.9)

where k = 225/max(R,G,B). Thus L represents the luminance channel, S and

T the chrominances one. This color space is used to de-correlate color chan-

nels in the original RGB image. Using a 16 bin histogram for each channel a

48 dimensions feature vector is computed for each block [132] and classified

independently.

The texture features are extracted, from the L channel, through a two level

wavelets decomposition, using Daubechies’ 4-taps filters [40].

Let c2,c3,c4,c5,c6,c7 and c8 represents the subband coefficients of the two level

wavelets decomposition, as described in Fig.(4.9). The texture features are ob-

tained by first filtering the low-frequency coefficients c5 using the Laplacian

filter and then by taking into consideration the subband energy:

ex =
1

MN

M

∑
i=1

N

∑
j=1

|cx(i, j)|2, x = 2,3, ...8 (4.10)

where M and N are the image dimensions.

Input
c1Level 1 Leve

c2

c3 c4

el 2

c5 c2
c6

c7 c8

c4 c3

Figure 4.9 : Coefficients of the two-level wavelets decomposition.
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For classifying each block, using calculated features, the SVM is applied with a

radial basis kernel function, as described by Efimov et al. in [43].

By taking into account the information, collected on block basis, a similar ap-

proach as described in 4.3.1.1 can be achieved. In this case the correction is

adaptively performed considering the number of indoor versus the number of

outdoor blocks. In particular:

1. if the number of indoor blocks is larger than the number of outdoor blocks

then the scene has probably been taken into a room and the exposure must

be correct in function of such blocks.

2. if the number of outdoor blocks is larger than the number of indoor blocks

then the scene has probably been taken outside the exposure must be correct

in function of such blocks.

3. finally if the number of blocks of each class is equal or more or less equal

then the exposure must be corrected taking into consideration the global

statistics.

4.3.2 Exposure Correction

Once the visually relevant regions are identified, the exposure correction is car-

ried out using the mean gray value of those regions as reference point. A sim-

ulated camera response curve is used for this purpose. This function can be

expressed by using a simple parametric closed form representation:

f (q) =
255(

1+ e−(Aq)
)C (4.11)
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where q represents the ‘light’ quantity and the final pixel value is obtained by

means of the parameters A, and C used to control the shape of the curve. q is sup-

posed to be expressed in 2-based logarithmic unit (usually referred as “stops”).

These parameters could be estimated, depending on the specific image acquisi-

tion device or chosen experimentally, as better specified below The offset from

the ideal exposure is computed using the f curve and the average gray level of

visually relevant regions avg, as:

∆ = f−1(Trg)− f−1(avg) (4.12)

where Trg is the desired target gray level. Trg should be around 128 but its value

could be slightly changed especially when dealing with Bayer Pattern data where

some post processing is often applied.

The luminance value Y(x,y) of a pixel (x,y) is modified as follows:

Y ′(x,y) = f ( f−1(Y (x,y))+∆) (4.13)

Note that all pixels are corrected. Basically all processing steps could be imple-

mented through a LUT (Lookup Table) transform.

4.3.3 Results

The described technique has been tested using a large database of images ac-

quired at different resolutions, with different acquisition devices, both in Bayer

and RGB format. In the Bayer case the algorithm was inserted in a real-time

framework, using a CMOS-VGA sensor on “STV6500 - E01” Evaluation Kit

equipped with “502 VGA sensor” [137]. Examples of skin detection by using
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(a)

(b) (c) (d) (e)

Figure 4.10 : Exposure Correction results by real-time and post processing: (a)
original Bayer input image; (b) Bayer skin detected in real-time; (c) color inter-
polated image from Bayer input; (d) RGB skin detected in post processing; (e)
exposure corrected image obtained from RGB image.
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(a) (b) (c)

Figure 4.11 : Exposure correction results by post processing: (a) original color
input image; (b) contrast and focus visually significant blocks detected; (c) expo-
sure corrected image obtained from RGB image.

real time processing are reported in Fig.(4.10). In the RGB case the algorithm

could be implemented as post-processing step. Examples of contrast/focus, in-

door/outdoor and skin exposure correction are respectively shown in Fig.(4.11),

Fig.(4.12) and Fig.(4.13). Results show how the features analysis capability of

the proposed algorithm permits contrast enhancement taking into account some

strong peculiarity of the input image. Major details and experiments can be

found in [13].

4.4 Conclusion

The problem of the proper exposure settings for image acquisition is of course

strictly related with the dynamic range of the real scene. In many cases some

useful insights can be achieved by implementing ad-hoc metering strategies. Al-

ternatively it is possible to apply some tone correction methods that enhance the

overall contrast of the most salient regions of the picture. The limited dynamic
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(a) (b) (c)

Figure 4.12 : Exposure correction results by post processing: (a) original color
input image; (b) indoor blocks detected; (c) exposure corrected image obtained
from RGB image.
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(a) (b) (c)

Figure 4.13 : Exposure correction results: in the first row the original images
(a) and (b) acquired by Nokia 6125, 1.3Mpixels CMOS sensor; (c) picture ac-
quired with CMOS sensor 10 Mpixels, Canon 400D camera; in the second row
the corrected output.

range of the imaging sensors doesn’t allow to recover the dynamic of the real

world; in that case only by using ”bracketing” and acquiring several pictures

of the same scene with different exposure timing a final good rendering can be

realized.

In this work we have presented a brief review of automatic digital exposure cor-

rection methods trying to report the specific peculiarities of each solution. Just

for completeness we report that recently, Raskar et al. [124] have proposed a

novel strategy devoted to ”flutter” the camera’s shutter open and closed dur-

ing the chosen exposure time with a binary pseudo-random sequence. In this

way high-frequency spatial details can be recovered especially when movements

with constant speed are present. In particular a robust deconvolution process is

achieved just considering the so-called coded-exposure that makes the problem
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well-posed. We think that the Raskar’s technique could be used also in multi pic-

ture acquisition just to limit the overall number of images needed to reconstruct

a reliable HDR map.
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5. Forgery Detection

5.1 Introduction

Forgery is a subjective word. An image can become a forgery based upon the

context in which it is used. For instance, an image altered for fun by some-

one who has taken a bad photo, but has been altered to improve its appearance,

cannot be considered a forgery even though it has been altered from its original

capture. The other side of forgery are those who perpetuate a forgery to gain

payment and prestige. To achieve such purpose, they create an image in which

they dupe the recipient into believing the image is real. There are different kinds

of criminal forgeries:

• Images created through computer graphics tools (like 3D rendering) which

looks like real but are completely virtual.

• Creating an image by altering its content, is another method. Duping the

recipient into believing that the objects in an image are something else from

what they really are (e.g., only by altering chrominances values). The im-

age itself is not altered, and if examined will be proven as so (see example

in Fig.5.1 from [48]).

• Objects are removed or added, for example, a person can be added or re-

moved. The easiest way is to cut an object from one image and insert it

into another image. By manipulating the content of an image the message

can drastically change its meaning.

Altering images is not new - it has been around since the early days of photogra-

phy. The first known forgery, see Figure5.2, was created only a few years after

Giuseppe Messina AA 2009-2010
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Figure 5.1 : After 58 tourists were killed in a terrorist attack (1997) at Hatshep-
sut’s temple in Luxor Egypt, the Swiss tabloid Blick digitally altered a puddle of
water (picture on the top) to appear as blood flowing from the temple (figure on
the bottom).

Figure 5.2 : circa 1860: This nearly iconic portrait of U.S. president Abraham
Lincoln is a composite of Lincoln’s head and the southern politicianJohn Cal-
houn’s body.
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the invention of the modern photography (circa 1826). The concepts have moved

into the digital world by virtue of digital cameras and the availability of digital

image editing software. The ease of use of photoshopping1, which does not re-

quire any special skills, makes image manipulation easy to achieve. A good in-

troduction to digital image forgery is given by Baron [12]. The book provides an

excellent overview of the topic and describes some detailed examples. Further-

more, it illustrates methods and popular techniques in different contexts, from

the historical forgeries until forensics aspects. The inverse problem of forgery

detection is, on the other hand, a big issue. Several techniques take into account

multiple aspect of image properties to achieve such purpose [47]. One of the

promising approach, among others, considers the possibility to exploit the sta-

tistical distribution of DCT coefficients in order to reveal the irregularities due

to the presence of a superimposed signal over the original one (e.g., copy and

paste).

In this chapter we analyze in details the performances of three existing ap-

proaches evaluating their effectiveness by making use of different input datasets

with respect to resolution size, compression ratio and just considering different

kind of forgeries. Starting from a Bayesian approach to identify if a block is

doctored or not, the authors of [69] use a support vector machine to classify the

two classes of blocks into the forged JPEG image. In [149], the authors de-

scribe a passive approach to detect digital forgeries by checking inconsistencies

of blocking artifact. Given a digital image, they find a blocking artifact measure

based on an estimated quantization table using the power spectrum of the DCT

1Adobe Photoshop is a popular tool that can digitally enhance images. Images that have been modi-
fied using Photoshop or similar drawing tools (e.g., Gimp, Corel Paint, MS Paint, etc.) are described as
being ”photoshopped” or ”shopped”. The quality of the shopped images depends on both the tool and
the artist.
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coefficient histogram. The approach in [46] explicitly detects if part of an image

was compressed at a lower quality than the saved JPEG quality of the entire im-

age. Such a region is detected by simply re-saving the image at a multitude of

JPEG qualities and detecting spatially localized local minima in the difference

between the image and its JPEG compressed counterpart.

All previous studies does not consider a sufficient number of effective cases

including for examples different image resolution, compression size and forgery

anomalies. Also the DCT basis to be evaluated for forgery detection should be

selected in a proper way. In this chapter we start to build a systematic way to

analyze the problem of forgery detection into DCT domain pointing out both

strength and weak point of the existing solutions. Also some post processing

strategies can be devised to properly mask the DCT anomalies.

The rest of the chapter is organized as follows. In section 5.2 the DCT quan-

tization is described. In section 5.3 a deep description of the aforementioned

techniques is presented. The experimental part is described in section 5.4 taking

into consideration a large database which aim is to stress the described tech-

niques. Finally the conclusion are given drawing possible improvements.

5.2 DCT Quantization

The DCT codec-engines typically apply a quantization step in the transform do-

main just considering non-overlapping blocks of the input data. Such quantiza-

tion is usually achieved by a quantization table useful to differentiate the levels

of quantization adapting its behavior to each DCT basis. The JPEG standard has

fixed the quantization tables and just varying by a single multiplicative factor,
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these tables, different compression ratios (and of course different quality levels)

are obtained [60, 118]. As the tables are included into the image file, they are

also customizable [14, 22, 29]. In such a way the commercial codec solutions

exploit proprietary tables. One among other is the largely used Photoshop which

take into consideration thirteen levels of quality (from 0 to 12) and in the ”Save

as Web” configuration hundred quality levels (from 1 to 100). For each basis the

same quantization step qi (for i = {1, ..,63}) is applied over the entire set of non-

overlapping blocks just producing a set of values that can be simply clustered by

their values (integers) that constitute a clear periodic signal with period equal to

qi.

Once a first quantization has been performed a second quantization will intro-

duces periodic anomalies into the signal (See Fig.5.3). The anomalies of such

periodicity can be analyzed to discover possible forgeries. Mathematically the

meaning of the double quantization is:

Q1,2(u1,i) =

[[
u1,i

q1,i

]
q1,i

q2,i

]
(5.1)

where q1,i and q2,i are two different quantization factors and u1,i is the DCT co-

efficient at position i of the current block.

5.3 State of the Art Analysis

In the following we will describe the three aforementioned techniques. In partic-

ular we will show typical example of unrecognized forgeries cases, explaining

the reason of such failures.
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(b)
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(c)

Figure 5.3 : Double quantization artifacts: (a) the distribution of singly quantized
coefficients with q1 = 5; (b) the distribution of these coefficients de-quantized; (c)
the distribution of doubly quantized coefficients with q1 = 5 followed by q2 = 3
(note the empty bins in this distribution);

Quantization tables approximation

The approach of Ye et al. [149] consists of three main steps: collection of DCT

statistics, analysis of statistics for quantization tables estimation, and assessment

of DCT blocks errors with respect to the estimated quantization tables. The per-

formances of such technique are strictly related with the amount of forged blocks

in comparison with the total number of blocks. In other words the sensibility of

the corresponding forgery detector is very high only at lower resolution size; at

higher resolution the related performances degrades abruptly even in presence

of an extended connected region (e.g., faces). Furthermore as the technique per-

forms an estimation of the quantization tables to identify anomalies from the

first quantization to the second one, the algorithm is very subject to the level of

quality and number of compression.

As example of failure we show the forged image obtained from uncompressed

Kodak image [51] (”River” landscape) with overimpressed ”Woman” (from JPEG

Standard uncompressed test set) previously resampled from original size to 256×

320. Before the ”copy and paste” the two images ”Woman” and ”River” have

been saved through photoshop respectively with level 6 and 12. The final photo-
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shopped image has been saved through all the possible photoshop levels from 0

to 12. As result we show the two examples in Fig.5.4: in the first row (Fig.5.4(a))

the forged image saved with level 10 and the resulting error map (Fig.5.4(b))

which enhance several errors on blocks with high frequencies and less errors

in low frequencies blocks (the woman and the sky). The second example of

Fig.5.4(d) shows the resulting error map from the same image Fig.5.4(c) with a

saved quality factor of 12 (maximum). In this final case the method was unable

to find any kind of forgery and furthermore the level of estimated error is very

low.

(a) (b)

(c) (d)

Figure 5.4 : Error maps obtained through [149] of a doctored image saved with
different quality factor: (a) Saved doctored image with quality factor 10, (c) the
same image saved with quality factor 12. (b) and (d) resulting blocks error maps.
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Bayesian Approach of Detecting Doctored Blocks

The four advantages possessed by the solution of He et al. [69], namely auto-

matic doctored part determination, resistant to different kinds of forgery tech-

niques in the doctored part, ability to work without full decompression, and fast

detection speed, make the algorithm very attractive. But the initial quantization

factor q1 and the second one q2 must be known in order to estimate the peri-

odic function n(k) needed to estimate the periodicity of histograms of double

quantized signals. Actually q2 can be dumped from the JPEG image. Unfor-

tunately, q1 is lost after the first decompression and hence has to be estimated.

From our purpose, as the initial quantization factor is unknown, it can be only

estimated from the image under analysis. Also for this reason we have designed

a reference dataset where the original input image can be compressed by using

different quantization parameters (i.e., different quantization tables at different

quality levels).

The main issue of such approach is the correct estimation of n(k) for such pur-

pose we show some examples of periodicity estimation. The authors correctly

assert that if the periodicity is n(k) = 1 it is impossible to estimate the forgery,

otherwise if the periodicity is greater than 1 a forgery is likely to be present into

the image. In Fig.5.5 we have considered three typical cases: Fig.5.5(a) is a

doctored image where all the subjects into the scene have the same face, the im-

age has been compressed through a medium quality level; Fig.5.5(b) shows an

image without any kind of forgeries; Fig.5.5(c) is the same image as above with

quality factor 7. As it is clearly visible the periodicity estimated Fig.5.5(d) for

the image Fig.5.5(a) is uniformly equal to 1 for all the 63 coefficients statistics of

the DCT (the DC has been excluded due to the nature of the histogram distribu-
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Figure 5.5 : Periodicity Estimation through He et al. [69] method. (a) Original
doctored image with low compression quality; (b) Original undoctored image;
(c) Doctored image saved with photoshop quality 7. (d), (e) and (f) Periodicity
estimation from the 63 DCT coefficients histograms.

tion). This means that the image is not affected by forgeries. On the other hand

the estimated periodicity of the image Fig.5.5(b) depicts the presence of artifacts

but the original images has been acquired directly from a Digital Camera and

have not been altered. Finally we show the periodicity of the above mentioned

test image; in this case the periodicity Fig.5.5(d) has been altered only for the

coefficient 19 of the DCT basis, furthermore as there is only a small periodicity

deviation the forgeries can not be estimated.

Multiple-Differences

Farid et al. [46] presents a technique based on multiple differences between orig-

inal compressed JPEG and successive re-compressed version of the original im-
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age, with increasing compression factors. The disadvantage of this approach is

that it is only effective when the tampered region is of lower quality than the im-

age into which it was inserted. The advantage of this approach is that it is effec-

tive on low quality images and can detect relatively small regions that have been

altered. In Fig.5.6 we show the error maps estimate from the original doctored

image ”Woman” and ”river” with compression quality 11 and 12 respectively.

The final doctored image has been saved with quality factor 12. The errors maps

does not show significant ghost in any of the differences, in particular the sky

and the woman present similar errors level and can not be estimated as clearly

forged areas. The authors assert that the forgery is only effective when the tam-

pered region is of lower quality than the image, which is the case of the example

in Fig.5.6.

As shown in the three cases above, the reliability of the current solution is not

so robust with respect to various aspects of image forgeries pipeline. A more

sophisticated and extensive experimental assessment is needed for each forth-

coming solution. In our opinion the relative ratio between q1 and q2 is funda-

mental to drive any existing forgery detection strategy into DCT domain. Also

the relative size of the forged patch with respect to input resolution size should

be taken into account. Finally all the methods that try to estimate the original

quantization table block by block should be tuned just considering the content

of each block in terms of local energy (e.g., textured vs. flat areas).

5.4 Dataset and Discussion

To assess the effectiveness of any forgery detection technique, a suitable dataset

of examples should be used for evaluation. In this chapter we are interested in
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Figure 5.6 : Multiple differences maps from original ”woman+river” doctored
image, in this case the woman was compressed with quality 11 and the river
with quality 12. The doctored image was save with quality 12. The maps are
represented from bottom right to top left in a decreasing level quality factor.

Figure 5.7 : Woman (JPEG Standard test image) and Lena masks, used to gen-
erate forgeries.
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providing a reference dataset for the forgery detection to be used for performance

assessment just including various critical (and in some cases typical) condition.

It is also important to consider, into the dataset, images without any kind of

forgeries to avoid false positives. The initial dataset contains the standard dataset

from Kodak images [51] and from UCID v.2 [28].

A first version of the dataset used the quantization tables furnished by Photo-

shop [68] that were used to generate various compression ratio. The reason was

mainly based upon the fact that if some one has to introduce forgeries into an im-

age he must use some imaging software to achieve such intent. In particular we

have designed a series of Photoshop scripting that were used in an unsupervised

way to generate real examples. Using manually generated masks, as described

in Fig.5.7, it was possible to generate several kinds of forgeries, modifying both

forgery image and compression factor, also in this case making use of the script-

ing mechanism provided by Photoshop (which is largely used in image forensics

analysis). Using this methodology it has been possible to generate hundreds of

tampered images, through all possible combinations of compression ratios con-

tained in Photoshop. This work has allowed us to create the first dataset, called

DBForgery 1.0 [81]. This first version includes:

• 60 Images (UCID and Kodak dataset) [28, 51];

• 30 Forgeries;

• 13 Quantization Tables.

All possible combinations of Photoshop compression have been contemplated.

Thus for each couple of background image and forgery image the number of pos-

sible combinations are 2197 (13x13x13 compression levels). This first version

contains 30 forgeries combination (some are clearly evident and other are very
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(a) (b)

Figure 5.8 : User interface of DBForgery 2.0. (a) the main interface which permit
to generate both forged images and scripts; (b) the preview of the forgery.

difficult to find). The initial dimension of the DB is around 39MBytes (before

scripts) and expand to 9GBytes after forgeries generation. The final size of the

dataset is of about 65 thousands forgeries.

Successively we have improved the database taking into account a bigger amount

of quantization tables, the ability to store only the scripts for the subsequent

regeneration of photomontages, and the independence from Photoshop [126].

The improved version of dataset contains:

• 156 Input quantization tables (iPhone, Canon, Fuji, Sony, Sigma, Pentax,

Olympus, Nikon, Konica Minolta);

• 31 Output quantization tables (Photoshop, Photoshop for web, Infranview

(Standard JPEG));

• 30 forgeries (same as DBForgery 1.0).

The possible combinations of all this quantization tables allow to generate 754416

triples. This means the final number of forged images is of about 2 millions.

Thus to overcome the problem of an huge quantity of possible combination an
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user interface has been created. To be able to recreate the same dataset a script-

ing generator has been integrated into the application. Hence by sharing only the

scripts, which contain all the needed information, the dataset can be recreated in

the same way whenever it is necessary. The most important difference of DB-

Forgery 2.0 respect to the previous version is the independence from Photoshop.

Indeed, by taking into account the ”cjpeg” and ”djpeg” open source codes for

jpeg compression/decompression coupled with a simple merging program (writ-

ten in C ANSI standard), it has been possible to bypass the Photoshop interface.

Figure 5.9 : An example of script genreated by the U.I. containing all the infor-
mation necessary to regenerate the forgery.

We plan to add to our dataset also a series of possible image alterations including

among others: cropping, flip, rotation, rotation-scale, sharpening, Gaussian fil-

tering, random bending, linear transformations, aspect ratio, scale changes, line

removal, color reduction, etc. We hope to re-use in some sense, part of the avail-

able software already adopted in the field of benchmarking tool for still image
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watermarking algorithms (e.g., Stirmark, CheckMark,Optimark) [119, 120].

One possible strategy to improve robustness and reliability of forgery detection

into DCT domain is related to the choice of the effective DCT basis to be consid-

ered in the process. Preliminary results have reported an improvement of about

10% in terms of forgery detection just implementing some heuristics devoted to

filtering out low and high frequency coefficients just working only on mid-basis

values.
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5.6 Conclusions

The forgery detection is not a trivial task. The DCT domain, just considers

specific peculiarities of the quantized basis. Unfortunately, the variability of the

context especially in real cases includes many situations (e.g. resolution size,

camera model, compression ratio, quantization parameters, number of forgeries,

etc.) that are not fully exploited. In this chapter we have presented experimental

evidence of weakness and strength points of the current solutions. We have also

started to build a comprehensive dataset that can be used for a robust assessment
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and evaluation of any forthcoming technique in the field. At conference time a

more detailed experimental framework together with a freely accessible dataset

to be used for DCT-based forgery detection will be presented.
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6. Chain of Evidence

6.1 Introduction

Nowadays digital cameras are certainly the most used devices to capture im-

ages. They are everywhere, including mobile phones, personal digital assistants

(PDAs), and surveillance and home security systems. There is no doubt that the

quality of the images obtained by digital cameras, regardless of the context in

which they are used, has improved a lot since digital cameras early days. How-

ever, there are still a variety of problems which need to be tacked regarding the

quality of the acquired images [13, 15, 24, 93].

The use of evidence from surveillance video cameras is expected to increase

greatly. For instance, the NYC Surveillance Camera Project [2] is a project

of volunteers which aim is to sign out every camera, public or private, which

records people in public space in Manhattan. At the current stage the number

of mapped surveillance camera is 2,397. Furthermore, the recording tools still

using obsolete technologies (e.g., video tapes), and the quality of the output is

usually very poor. Common problems of such videos are poor resolution, poor

contrast due to under or over-exposure, corruption with noise, motion blur or

poor focus and misalignment of rows from line jitter. To be able to find some

invisible particulars, into such images, a processing enhancement is obviously

required.

In this work we are mainly interested to contrast enhancement of input data. A

common definition of contrast can be summarized as:“the standard variation of

the image gray-levels or luminance”. The histogram of the gray-levels is thus

Giuseppe Messina AA 2009-2010
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stretched and/or re-arranged just using the entire range of the discrete levels

available, in the way that an enhancement of image contrast is achieved [60].

The forensics rules to produce evidences require a complete documentation of

the processing steps, enabling the replication of the entire procedure. Literally

the Chain of Evidence is :“The movement and location of physical evidence

from the time it is obtained until the time it is presented in court”. The House

of Lords [1] has fixed some rules about “Digital Images as Evidence”. More

specifically, There are two elements to establish authenticity: to have an “audit

trail” which records everything that happens to the image from capture to its

presentation in court; and/or to have a technological solution which brands or

“watermarks” the image at the time of capture and can subsequently show it

is authentic. The FBI [3] , to facilitate the integration of imaging technologies

and systems in the criminal justice system, has also provided definitions and

recommendations for the capture, storage, processing, analysis, transmission,

and output of images. The automation of enhancement techniques is thus quite

difficult and needs to be carefully documented.

This work presents an automatic procedure, based on sub-regions analysis. Us-

ing a suitable features extraction technique the algorithm fixes a value to each

region. This operation permits to seek visually relevant regions (e.g., contrast

and focus). Once the “visually important” regions are identified a global tone

correction technique is applied using as main parameter the mean gray levels of

the relevant regions. The correction is then achieved through an automatically

generated JavaScript, Adobe Photoshop compliant, which contains the estimated

correction curve (lookup table). Once the script has been generated the contrast

enhancement can be applied, in the same manner, at anytime.
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6.2 Image Analysis

The approach is divided into three principal steps: features extraction, data anal-

ysis and correction. In this work we present the ”contrast” and ”focus” analyzer,

which is used as general purpose to estimate exposure. This module can be ex-

panded or substituted with other kind of feature extractors: skin and/or face, car

plate, text, etc. .

6.2.1 Features Extraction

To be able to identify regions of the image that contain more information, the

luminance plane of the input image is subdivided into N blocks of equal di-

mensions (in our experiments we employed N=64). For each block, statistical

measures of “contrast” and “focus” are computed. Therefore it is assumed that

well focused or high-contrast blocks are more relevant compared to the others.

Contrast refers to the range of tones present in the image. A high contrast leads to

a higher number of perceptual significance regions inside a block. Focus charac-

terizes the sharpness or edginess of the block and is useful in identifying regions

where high frequency components (i.e., details) are present.

If the aforementioned measures were simply computed on highly under-exposed

images, then regions having better exposure would always have higher contrast

and edginess compared to those that are obscured. In order to perform a visual

analysis revealing the most important features regardless to lighting conditions,

a new “visibility image” is constructed by pushing the mean gray level of the

luminance channel to 128. The push operation is performed using the same

function that is used to adjust the exposure level and it will be described later. In

order to remove irrelevant peaks, the histogram is slightly smoothed by replacing
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each entry with its mean in a ray 2 neighborhood. Thus, the original histogram

entry is replaced with the gray-level:

Ĩ [i] =
(I [i−2]+ I [i−1]+ I [i]+ I [i+1]+ I [i+2])

5
(6.1)

The contrast measure C is then computed by simply building a histogram for

each block and then calculating its deviation (6.2) from the mean value M (6.3).

A high deviation value denotes good contrast and vice versa. Therefore the

histogram deviation C is computed as:

C =
∑255

i=0 |i−M| · Ĩ[i]
∑255

i=0 Ĩ [i]
(6.2)

where M is the mean value :

M =
∑255

i=0 i · Ĩ [i]
∑255

i=0 Ĩ [i]
(6.3)

The focus measure F is computed by convolving each block with a simple 3×3

Laplacian filter. In order to discard irrelevant high frequency pixels (mostly

noise), the outputs of the convolution at each pixel are thresholded. The mean

focus value of each block is computed as:

F =
∑P

i=1 thresh[lapl(i),Noise]
P

(6.4)

where P is the number of pixels per blocks and the thresh() operator discards

values lower than a fixed threshold Noise. Once the values F and C are computed

for all blocks, relevant regions will be classified using a linear combination of

both values.

We have also improved the quality of the region detection by applying a coarse

to fine approach. In this case the block are iteratively subdivided and analyzed
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to obtain finer statistical details. In this way it is possible to generate a more

precise map of the regions of interest.

6.2.2 Features Analysis

Once the visually relevant regions are identified, the exposure correction is esti-

mated using the mean gray value of those regions as reference point. A simulated

camera response curve is used for this purpose, which gives an appraisal of how

light values falling on the sensor become final pixel values. Thus it is a function

f (q) = I (6.5)

where q represents the “light” quantity and I the final pixel value. This function

can be expressed by using a simple parametric closed form representation:

f (q) =
255(

1+ e−(αq)
)γ (6.6)

where parameters α , and γ can be used to control the shape of the curve and

q is supposed to be expressed in 2-based logarithmic unit (usually referred as

“stops”). These parameters could be estimated, depending on the specific image

acquisition device, using the techniques described in ( [100]) or chosen experi-

mentally. The offset from the ideal exposure is computed using the f curve and

the average gray level of visually relevant regions avg, as:

∆ = f−1(Trg)− f−1(avg) (6.7)

where Trg is the desired target gray level. Trg should be a value around the

middle of the histogram spectrum. The final luminance value Y ′ of a pixel (x,y)
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is thus modified as follows:

Y ′(x,y) = f ( f−1(Y (x,y))+∆) (6.8)
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Figure 6.1 : LUTs derived from curves with (a) α = 7 and γ = 0.13; (b) α = 0.85
and γ = 1.

Note that all pixels are corrected. Basically the previous step is implemented as

a LUT (Lookup Table) transform (Figure 6.1 shows two correction curves with

different α,γ parameters).

6.2.3 Script Generation

Usually standard contrast enhancement approaches tend to represent pictures in

a more pleasant aspect. In this particular case, which is much more oriented to

forensics, the content is more important than the aspect. Two possible solutions

can be taken into account to retrieve information from under-exposed pictures:

1. Correct the contrast block by block: in this case each block is processed in

function of the medium luminance value (128) and due to its medium value

a softer or an hard enhancement is achieved.
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2. Correct the overall contrast: this mean the global contrast enhancement.

Using the scripting approach we are able to generate automatically a couple of

images for both types of corrections.

To generate the JavaScript code we use a fixed template which already opens the

image and splits the image into three channels (RGB). The photoshop document

object uses the “activeLayer” to select the working plane. As the “adjustCurves”

method, used to apply the contrast correction, allows using a maximum of four-

teen points, the LUT is quantized using fourteen values. The resulting points are

passed to the methods and then the script is associated to the image. As example

we show the following code with 3 points:

app.activeDocument.activeLayer.adjustCurves( Array(

Array(35,80), Array(128,128), Array(230,190) ) );

To achieve the correction only on the selected regions the Photoshop method

“selection” is also used.

6.3 Experiments

To show the effectiveness of our methods a dataset of images underexposed and

affected with backlight, has been taken into account. The images have been

processed through the two solution: local correction and global correction.

As example of curves used to correct the contrast, we have selected two exam-

ples in Fig.6.2. In particular the first curve (Fig.6.2.a) has been created using the

following Photoshop script code:

app.activeDocument.activeLayer.adjustCurves(

Array(Array(0,0),Array(19,38),Array(38,70),Array(57,98),
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(a) (b)

Figure 6.2 : Examples of Photoshop curves used to modify the contrast both
locally and globally.

Array(76,122),Array(95,144),Array(114,163),Array(133,179),

Array(152,194),Array(171,208),Array(190,220),Array(209,231),

Array(228,241),Array(255,255)));

This kind of curves have been used both for local correction and for global con-

trast enhancement. To achieve the global correction a statistical measure on

blocks has been achieved, taking into account the most recurrent curve, that

should be applied on blocks, as the global correction curve. In Fig.6.31 a group

of young boys have been pictured in a place with several signs. At a first look it

seems that only three persons are present in the scene and furthermore due to the

low light quality the signs on the walls are not clear (Fig.6.3.a). If this was the

scene of an investigation it would be necessary to enhance the contrast. Using

a local contrast correction the details came out. In effect the Fig.6.3.b permit to

better identify the scene and the number of persons present. In this case the local

enhancement is clearly more powerful than the global one (Fig.6.3.c).

1All the pictures used for testing have been downloaded from internet and are full property of their
owners.
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In the following we will show different aspect of correction that must be taken

into account when such algorithm is performed. In Fig.6.4 a similar result as

previous example is shown. In particular the local enhancement, Fig.6.4.b, has

permit to identify a person sitting in front of a window with backlight. The

Fig.6.5 show a case of a better global enhancement than local one. In this case

the local enhancement has introduce a heavy overshooting, causing loss of in-

formation.

Finally two examples of highly compressed images (Fig 6.5 and Fig.6.6). In

these cases the correction, both local and global, have been correctly achieved,

but the quality of the images has allowed introduction of new information from

the scene.

6.4 Conclusion

In this chapter an automatic procedure, based on sub-regions analysis, has been

presented. Using a suitable features extraction technique the algorithm is able to

fix a value to each region. Once the “visually important” regions have been iden-

tified a global tone correction technique is applied using as main parameter the

mean gray levels of the relevant regions. The correction is then achieved through

an automatically generated JavaScript, Adobe Photoshop compliant, which con-

tains the estimated correction curve (lookup table). In this particular case, which

is much more oriented to forensics, the content is more important than the as-

pect, thus the quality of the final results are more oriented to the content than

to the image pleasance. The main aspect of this work is that once the script has

been generated the contrast enhancement can be applied, in the same identical

manner, at anytime.
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(a)

(b)

(c)

Figure 6.3 : Example of contrast enhancement from an underexposed image. (a)
Input, (b) Local correction; (c) Global correction.
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(a)

(b)

(c)

Figure 6.4 : Example of contrast enhancement from an underexposed image. (a)
Input, (b) Local correction; (c) Global correction.
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(a)

(b)

(c)

Figure 6.5 : Example of contrast enhancement from an underexposed image. (a)
Input, (b) Local correction; (c) Global correction.
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(a)

(b)

(c)

Figure 6.6 : Example of contrast enhancement from an underexposed image. (a)
Input, (b) Local correction; (c) Global correction.
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(a)

(b)

(c)

Figure 6.7 : Example of contrast enhancement from an underexposed image. (a)
Input, (b) Local correction; (c) Global correction.
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