
 
 
 
 

 

  UNIVERSITÀ DEGLI STUDI DI CATANIA 
  FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI 

  DIPARTIMENTO DI MATEMATICA ED INFORMATICA  
  Dottorato di Ricerca in Informatica -XXIII Ciclo  

_______________________________________________________________________ 
 
 
 

Rosetta Rizzo  
 
 
 
 
 
 

Image Noise Removal for Embedded Devices 

Characterization, estimation and filtering techniques  
 
 
 
 
 
 

     __________ 
 

TESI DI DOTTORATO 
     __________ 

 
 
 
 
 
 
 
 

Tutor:          Coordinatore:  
Chiar.mo Prof. SEBASTIANO BATTIATO     Chiar.mo Prof. Domenico Cantone 
 
 
________________________________________________________________________________ 

 

ANNO ACCADEMICO 2009 - 2010 
 



To my husband.



Acknowledgements

Writing this thesis, it is natural to think back of those three years of work

that have brought me so far, and obviously places, events and especially

people who have accompanied me come to mind.

It is difficult to draw up an ordered list of people who I would like to

thank, and especially deciding in what order to make the list, because each

of them has been important as well. But, somehow, it needs to be done...

I’ll start, then, by thanking the two groups that have allowed me to com-

plete this PhD, which are: STMicroelectronics AST Imaging Group and

the IPLab of the University of Catania.

Starting from the latter, I would stress that it was a privilege for me to

be able to collaborate with the IPLab group, having professors Sebastiano

Battiato and Giovanni Gallo as guides, and qualified researchers like Gio-

vanni Puglisi and Giovanni Farinella. Obviously proper thanks go to them

and in particular to Prof. Sebastiano Battiato, who followed me through-

out this period and led me in my research. But thinking back to moments

spent at the University I cannot forget all the other students, and PhD col-

leagues who collaborate with the group, with whom I shared wonderful

moments of work and leisure during the summer schools.



At ST, on the other hand, I spent the most significant part of these three

years, therefore, my memories are particularly related to that place and the

people who work there. Let me begin, then, by thanking Angelo Bosco,

which more closely followed my activities, guiding me in all the phases of

my work, from the analysis of problems to the check of the results. But

a big thanks goes also to all other group members: Arcangelo, Giuseppe

M., Alessandro, Mirko, Valeria, Ivana, Daniele, Davide, Filippo, Antonio,

Salvo, Alfio, Giuseppe S. and Mauro. Each of them gave me a bit of his

experience in the workplace, contributing to my professional growth. A

great esteem and friendship binds me to every one of them, which is also

due to the positive and friendly atmosphere that exists in the group.

A special mention, however, is to be dedicated to my PhD colleagues:

Giuseppe Messina and Tony Meccio, with whom I shared the experience

in the company. Giuseppe, being already an ST employee and having a

long experience in research, was certainly an important guide to my work,

as well as a valuable friend; Tony, with whom I shared many moments of

work (but also coffee breaks), was a presence, irreplaceable and pleasant,

thanks to which it was easier to spend even the most intense and stressful

days with a smile.

A special thought, of course, also goes to my family and especially to

my husband. They have always supported and encouraged me, patiently

enduring even my moments of greatest stress.

Finally, I want to thank again in particular : the Prof., Giovanni P., Angelo,

Arcangelo e Tony, for their support in preparing this thesis.



Image Noise Removal for Embedded Devices iv

Contents

Glossary xvi

Published Works xvii

1 Noise Model 4

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Image Generation Pipeline . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Noise Types and Models . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Fixed Pattern Noise . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Temporal Random Noise . . . . . . . . . . . . . . . . . . . . 7

1.4 Additive Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Additive White Gaussian Noise Model . . . . . . . . . . . . . . . . . 10

1.7 Impulse Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Noise in Image Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8.1 White Balance Effects . . . . . . . . . . . . . . . . . . . . . 17

1.8.2 Demosaicing Effects . . . . . . . . . . . . . . . . . . . . . . 18

1.8.3 Color Correction Effects . . . . . . . . . . . . . . . . . . . . 19

1.8.4 Sharpening, Gamma Correction and Compression Effects . . 19

1.9 Noise Reduction Block Position . . . . . . . . . . . . . . . . . . . . 20

1.10 Signal Dependent Noise Model . . . . . . . . . . . . . . . . . . . . . 21

2 Noise Removal Techniques 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Noise Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



Image Noise Removal for Embedded Devices v

2.3 Noise Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Fast Noise Estimation . . . . . . . . . . . . . . . . . . . . . 27

2.4 Noise Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Column-FPN Filtering . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Spatial Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Sigma-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Noise Reduction Exploiting HVS Behaviour 42

3.1 Basic Concepts about the Human Visual System . . . . . . . . . . . . 42

3.2 The Proposed Technique . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Overall filter block diagram . . . . . . . . . . . . . . . . . . 43

3.3 Signal Analyzer Block . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Filter Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Texture Degree Analyzer . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Noise Level Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Similarity Thresholds and Weighting Coefficients computation . . . . 51

3.8 Final Weighted Average . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9.1 Noise Power Test . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9.2 Visual Quality Test . . . . . . . . . . . . . . . . . . . . . . . 57

3.9.3 PSNR Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Signal Dependent Noise Estimation 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 SDN Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Image Noise Removal for Embedded Devices vi

4.3 SDN Estimation by Multiple Images . . . . . . . . . . . . . . . . . . 73

4.3.1 Homogeneous Area Detection . . . . . . . . . . . . . . . . . 73

4.3.2 Noise Statistics Accumulation . . . . . . . . . . . . . . . . . 74

4.3.3 Noise Statistics Fitting for a Single Image . . . . . . . . . . . 75

4.3.4 Global Analysis of the Fitted Data . . . . . . . . . . . . . . . 77

4.3.5 Voting-based Sensor Noise Characterization . . . . . . . . . . 77

4.4 SDN Sensor Characterization Framework Tests . . . . . . . . . . . . 78

4.5 Application: Signal Dependent Noise Estimation for Multispectral Im-

ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Signal Dependent Noise Filtering 87

5.1 Signal Dependent Sigma Filter . . . . . . . . . . . . . . . . . . . . . 87

5.2 Signal Dependent Bilateral Filter . . . . . . . . . . . . . . . . . . . . 91

5.3 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Image Noise Removal for Embedded Devices vii

List of Figures

1.1 Image processing pipeline and noise sources. Pipeline stages in red in-

dicate the algorithms contributing to increase image noise, while blue

stages represent the algorithms that cause a reduction of noise levels. . 5

1.2 Bayer pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Column-FPN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Additive noise model. Ideal image signal I(x,y) is contaminated by

a noisy signal η(x,y) whose intensities are drawn from an underlying

noise distribution Zd . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Probability density function of the Gaussian (normal) distribution. . . 11

1.6 Impulse noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Defective Bayer image. . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Image pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Noise reduction blocks in Image pipeline. . . . . . . . . . . . . . . . 21

1.10 Noise curves in the Bayer domain for a 10 bit image acquired by a

sensor operating at two extreme analog gains. Lower curve represents

noise levels at minimum analog gain; upper curve represents noise lev-

els at maximum analog gain. It is clear how noise increases with the

signal level and the operating analog gain. . . . . . . . . . . . . . . . 23

2.1 Noise level estimation using noise histogram Gaussian-like distributed. 29

2.2 Black lines are used for FPN estimation, Dark lines for random noise

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Sigma filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Image Noise Removal for Embedded Devices viii

2.4 Sigma-filter output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Bilateral filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Bilateral filter output. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Overall Filter Block Diagram. . . . . . . . . . . . . . . . . . . . . . 44

3.2 HVS curve used in the proposed approach. . . . . . . . . . . . . . . . 46

3.3 Filter Masks for Bayer Pattern Data. . . . . . . . . . . . . . . . . . . 47

3.4 Green Texture Analyzer. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Red/Blue Texture Analyzer. . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Texture Analyzer output: (a) input image after colour interpolation,

(b) gray-scale texture degree output: bright areas correspond to high

frequency, dark areas correspond to low frequencies. . . . . . . . . . 50

3.7 The Wi coefficients weight the similarity degree between the central

pixel and its neighborhood. . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Block diagram of the fuzzy computation process for determining the

similarity weights between the central pixel and its N neighborhoods. 53

3.9 Weights assignment (Similarity Evaluator Block). The i-th weight de-

notes the degree of similarity between the central pixel in the filter

mask and the i-th pixel in the neighborhood. . . . . . . . . . . . . . . 53

3.10 Synthetic image test. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 Noise power test. Upper line: noise level before filtering. Lower line:

residual noise power after filtering. . . . . . . . . . . . . . . . . . . . 57



Image Noise Removal for Embedded Devices ix

3.12 Overall scheme used to compare the SUSAN algorithm with the pro-

posed method. The noisy color image is filtered by processing its color

channels independently. The results are recombined to reconstruct the

denoised color image. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.13 Images acquired by a CFA sensor. (a) SNR value 30.2dB. (b) SNR

value 47.2dB. The yellow crops represent the magnified details con-

tained in the following figures. . . . . . . . . . . . . . . . . . . . . . 60

3.14 A magnified detail of Fig.(3.13), to better evaluate the comparison be-

tween the proposed filter and the SUSAN algorithm applied on R/G/B

channels separately. Both methods preserve details very well, although

the proposed technique is capable to better preserve texture sharpness;

the enhancement is visible by looking at the wall and the roof texture.

The proposed method uses fewer resources as the whole filtering action

takes place on one plane of CFA data. . . . . . . . . . . . . . . . . . 61

3.15 Comparison test at CFA level (magnified details of Fig.3.13(a)). The

original SUSAN implementation was slightly modified so that it can

process Bayer data. The efficiency of the proposed method in retaining

image sharpness and texture is clearly visible. . . . . . . . . . . . . . 61

3.16 Magnified details (noisy and filtered) of Fig.3.13(b). The effects of

the proposed method over flat (a), (b) and textured (c), (d) areas are

shown. The noisy images are obtained by color interpolating unfil-

tered Bayer data (a), (c). The corresponding color images produced by

demosaicing filtered Bayer data (b), (d). SNR values are: 47.2dB for

noisy image and 51.8dB for filtered image. . . . . . . . . . . . . . . 62

3.17 Kodak image (kodim05). Original and noisy version. . . . . . . . . . 63



Image Noise Removal for Embedded Devices x

3.18 (a) Cropped and zoomed detail of noisy image in Fig.3.17(b), filtered

with: Multistage median-1 filter (b), Multistage median-3 filter (c) and

the proposed method (d). . . . . . . . . . . . . . . . . . . . . . . . . 64

3.19 Testing procedure. (a) The original Kodak color image is converted to

Bayer pattern format and demosaiced. (b) Noise is added to the Bayer

image, filtered and color interpolated again. Hence, color interpolation

is the same for the clean reference and the denoised images. . . . . . 65

3.20 PSNR comparison between proposed solution and other spatial ap-

proaches for the Standard Kodak Images test set. . . . . . . . . . . . 66

3.21 PSNR comparison between proposed solution and other fuzzy approaches

for the Standard Kodak Images test set. . . . . . . . . . . . . . . . . 67

4.1 Acquired noise samples at different analog gain (AG = 1, 2, 4, 16) for

a 3Mp ST Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Fitting of noise samples acquired at low analog gain (AG1), using

Eq.(1.20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Fitting noise samples at AG1 (a) and AG16 (b). . . . . . . . . . . . . 72

4.4 Images can generate noise plots containing missing data for some sig-

nal levels. The missing points are obtained via interpolation. . . . . . 76

4.5 Each (i,σ(i)) pair votes for a plane in the parameter space. Planes

corresponding to inliers (blue), intersecting in a single point, produce

the desiderate triplet. The outlier planes (red) do not disturbs this process. 79

4.6 Voting approach selects inliers (green) from the (i,σ(i)) pair set (red).

This inliers are then used to estimate (through Least Squares) the model

parameters. The fitting curve is represented in blue. . . . . . . . . . . 80



Image Noise Removal for Embedded Devices xi

4.7 Visual comparison between the voting approach (red) and the method

proposed in [1]. The reference curve (blue) is obtained by fitting the

noise samples obtained in lab, using Eq.4.1. . . . . . . . . . . . . . . 81

4.8 Noise samples estimated at 500, 550 and 600nm respectively. . . . . . 82

4.9 Voting approach selects inliers (green) from the (i,σ(i)) pair set (red)

at 500nm, 550nm, 600nm. These inliers are then used to estimate

(through Least Squares) the model parameters. The fitting curve is

represented in black. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Test figure 1. Crop of noisy and filtered images at 500, 550 and 600nm,

obtained using a modified bilateral filter [39]. . . . . . . . . . . . . . 85

4.11 Test figure 2. Crop of noisy and filtered images at 500, 550 and 600nm,

obtained using a modified bilateral filter [39]. . . . . . . . . . . . . . 86

5.1 Comparison between SDN filtering approach and SF approach, using

a real image acquired with a 3Mp sensor. It is evident how the signal-

dependent approach (c) better preserves details and sharpness com-

pared to the fixed noise model filtering (b). At this scale of resolution,

the differences may not be evident, depending on the media used to

show these images (screen, printer, etc.). Detailed crops of these sam-

ples are shown in Fig.5.2. . . . . . . . . . . . . . . . . . . . . . . . . 89



Image Noise Removal for Embedded Devices xii

5.2 Magnified detail of images in Fig.5.1. In (b) and (c), the SF model and

the SDN have similar performances because the sigma-fixed values

(σ = 18) is similar to the values used by the signal dependent model

for processing this area. In (e) and (f) the different performances of the

two models show up; in this dark crop, the constant noise model uses

a fixed sigma which is too high compared to the values taken from the

noise curve 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Sigma-curve and costant sigma value (σ = 18) used to filter the image

shown in Fig.5.1(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Reference test image kodim04 used for visual comparison at different

AG in Figg. 5.5, 5.6, 5.7, 5.8, 5.9 . . . . . . . . . . . . . . . . . . . . 104

5.5 AG1. Cropped part of image kodim04 shown in Fig.5.4 - Visual com-

parison between sigma fixed and signal dependent noise removal ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 AG2. Cropped part of image kodim04 shown in Fig.5.4 - Visual com-

parison between sigma fixed and signal dependent noise removal ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 AG4. Cropped part of image kodim04 shown in Fig.5.4 - Visual com-

parison between sigma fixed and signal dependent noise removal ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 AG8. Cropped part of image kodim04 shown in Fig.5.4 - Visual com-

parison between sigma fixed and signal dependent noise removal ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Image Noise Removal for Embedded Devices xiii

5.9 AG16. Cropped part of image kodim04 shown in Fig.5.4 - Visual com-

parison between sigma fixed and signal dependent noise removal ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Image Noise Removal for Embedded Devices xiv

List of Tables

4.1 RMSE comparisons among equations (1.20), (4.1), (4.2) and (4.3) at

different analog gains. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 RMSE comparison between voting approach and standard approach [1]. 80

5.1 AG1 - PSNR comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 AG1 - SSIM comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 AG2 - PSNR comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 AG2 - SSIM comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 AG4 - PSNR comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 AG4 - SSIM comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 AG8 - PSNR comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 100

5.8 AG8 - SSIM comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 101

5.9 AG16 - PSNR comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 102



Image Noise Removal for Embedded Devices xv

5.10 AG16 - SSIM comparison between Signal Dependent and Sigma-Fixed

Noise Removal Approaches . . . . . . . . . . . . . . . . . . . . . . . 103



Image Noise Removal for Embedded Devices xvi

Glossary
AG Analog Gain

AWGN Additive White Gaussian Noise

CFA Color Filter Array

CLT Central Limit Theorem

DCT Discrete Cosine Transform

FPN Fixed Pattern Noise

pdf Probability Density Function

PRNU Pixel Response Non Uniformity

PSN Photon Shot Noise

RMSE Root Mean Squared Error

SDN Signal Dependent Noise

SF Sigma Fixed

SNR Signal to Noise Ratio

WB White Balance



Image Noise Removal for Embedded Devices xvii

Published Works

1. A. Bosco, S. Battiato, A. Bruna, and R. Rizzo Texture sensitive denoising for sin-

gle sensor color. In proceedings of 2009 Computational Color Imaging Work-

shop (CCIW09), Lecture Notes in Computer Science, vol.5646, pp.130-139,

2009.

2. A. Bosco, S. Battiato, A. Bruna, and R. Rizzo, Noise reduction for CFA im-

age sensors exploiting HVS behaviour. Sensors Journal, MDPI Open Access -

Special Issue on Integrated High-Performance Imagers, vol.9 (3), pp.1692-1713,

2009.

3. A. Bosco, A. R. Bruna, D. Giacalone, S. Battiato, R. Rizzo, Signal Dependent

Raw Image Denoising Using Sensor Noise Characterization Via Multiple Acqui-

sitions. In proceedings of SPIE Electronic Imaging, vol.7537, 2010.

4. S. Battiato, G. Puglisi, R. Rizzo, Characterization of Signal Perturbation Using

Voting Based Curve Fitting For Multispectral Images. In proceedings of Image

Processing (ICIP) 2010, pp.545-548, 2010.

5. A. Bosco, R. Rizzo, Chapter 6 - Noise Removal. In Image Processing for Em-

bedded Devices, vol.1. Bentham, ISSN.1879-7458, 2010.

6. A. Bosco, A. R. Bruna, D. Giacalone, R. Rizzo - A System for Image Texture

and Flatness Estimation Based on CFA Raw Noise Analysis, European Patent

Pending, November 2010.



Image Noise Removal for Embedded Devices xviii

Other Published Works

1. S. Battiato, G. Messina and R. Rizzo, Image Forensics: Contraffazione Digitale

e Identificazione della Camera di Acquisizione: Status e Prospettive. In IISFA

Memberbook 2009 - Digital Forensics, Chapter 1, pp.1-48, 2009.

2. S. Battiato, G.M. Farinella, G.C. Guarnera, T. Meccio, G. Puglisi, D. Ravı̀, R.

Rizzo, Bags of Phrases with Codebooks Alignment for Near Duplicate Image

Detection. In Proceedings of ACM Workshop on Multimedia in Forensics, Se-

curity and Intelligence (MiFor 2010), in conjunction with the 2010 ACM Multi-

media (ACM-MM).



Image Noise Removal for Embedded Devices 1

Introduction

Among the many factors contributing to image quality degradation, noise is one of the

most recurrent and difficult elements to deal with. Camera phones and low-end digital

still cameras are particularly subject to noise degradation, especially when images are

acquired in low light. This issue has been the main focus of my work, with the aim of

find solutions to the problem of noise on digital images acquired with low cost devices.

My research was funded by STMicroelectronics AST Imaging Catania Lab, which

is also the place where it was entirely performed, and it is part of the activities of

the joint laboratory between STMicroelectronics and the Image Processing Lab of the

University of Catania.

There is not just one single noise source, rather, different elements contribute to

signal degradation. Since the noise is generated by the sum of different sources, which

overlap with a Gaussian distribution, typically it is defined additive white Gaussian

noise (AWGN), and its intensity is provided by the standard deviation σ of the under-

lying distribution.

Many noise removal filters rely on σ to adaptively change their smoothing effects;

for this reason have a good estimate of the amount of noise contaminating an image

is crucial to allow the noise filters to work properly. Anyway, due to the intrinsic

difficulty in discriminating noise from actual image signal, achieving a correct noise

level estimation is a complex operation that usually requires the localization of low

textured areas in the image, where the oscillations of the signal level are mainly caused

by random noise and not by image content.

The quality of a filtered image, however, depends, not only on a reliable estimate

of the noise level, but also by the adopted filtering method. Smart filters capable to re-
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move noise without affecting the tiny details of a digital image are, in fact, of primary

importance to produce pleasant pictures. There is a large literature on image denoising

techniques. Over the years have been implemented a wide variety of methods, that use

different approaches and models in order to eliminate signal fluctuations while preserv-

ing image details. Sophisticated denoising methods perform multiresolution analysis

and processing in wavelet domain [27, 34]; other techniques implement texture dis-

crimination using fuzzy logic [23,36]. There are also algorithms based on: anisotropic

non-linear diffusion equation [32], bilateral filtering [39], non-local mean [8], etc..

Most of these methods, anyway, are often too complex to be run on low cost imaging

devices.

Typically, denoising algorithms assume that the noise is AWGN and use a standard

deviation constant with varying intensity value. However, due to the different sources

of noise involved in the acquisition process and the quantum nature of light itself, it

was proved that the noise level mainly depends on the signal intensity [14]. Hence, a

reliable noise reduction filter cannot be based on a single standard deviation value but

it must take into account its variation as a function of the underlying signal intensity.

Recent literature suggests, therefore, different and quite complex frameworks that are

capable to estimate the intensity-based noise standard deviation [10, 14].

This thesis aims to provide an overview of the complex problem of noise in digital

images, yielding an excursus on the principal noise sources and analyzing some clas-

sical noise estimation and filtering algorithms. Useful and innovative methods for the

characterization of the imager signal dependent noise are then introduced, jointly with

some reliable and effective signal dependent noise reduction algorithms. In addition, a

novel denoising technique based on the study of the human visual system is analyzed.

This work is organized as follows. In Chapter 1 the main noise sources at sensor
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level are described, distinguishing fixed pattern noise from temporal random noise and

introducing Gaussian noise model and signal dependent noise model. A section is also

devoted to analyze the image pipeline stages in which noise has a key impact on image

quality. Chapter 2 reports the main classical techniques used to estimate and filter im-

age noise, while in Chapter 3 an innovative noise removal technique based on Human

Visual System (HVS) behaviour is detailed. Chapter 4 exploits some reliable methods

to characterize and model the image sensor noise, considering its signal dependency,

and finally, in Chapter 5 some innovative filtering algorithms that use signal dependent

noise evalutation are proposed.
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Chapter 1. Noise Model

1.1 Introduction

Noise formation on a digital image is a quite complicated process, since there are many

factors that determine it. During acquisition, the light, passing through the lens, hits the

sensor and is converted into a digital signal. This analog to digital conversion creates

electronic and physical conditions on the image sensor that corrupt the acquired data,

contributing to the formation of image noise.

This chapter discusses the main elements that allow us to better understand this

phenomenon of noise on digital images. The image generation pipeline is introduced

by analyzing the steps necessary to acquire an image and describing the noise sources

and how these are combined and overlap. The difference between a fixed pattern noise

and random noise is also explained.

A large part of the chapter deals with the AWGN noise model. In particular, the

analysis concentrates on how the noise distribution changes during the execution of the

image pipeline and how these changes affect the performance of each algorithm; this

allows having a clear picture of how noise impacts the final quality of the image.

Finally the signal-dependent noise is introduced, highlighting how it is possible

shape the noise level through a function, whose slope is closely related to the image

sensor and its acquisition settings.

1.2 Image Generation Pipeline

An image sensor (or imager) uses an electronic sensor to acquire the spatial variations

in light intensity and then uses image processing algorithms (called image generation
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pipeline) to reconstruct a color picture from the data provided by the sensor (see Fig.
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Figure 1.1 : Image processing pipeline and noise sources. Pipeline stages in red in-
dicate the algorithms contributing to increase image noise, while blue stages represent
the algorithms that cause a reduction of noise levels.

The sensor is composed by a 2D array of thousands or millions of light-sensitive

diodes (photosites) which convert photons (light) into electrons (electrical charge).

Due to the deposition of color filters (CFA) on top of a monochrome sensor, each

photosite is sensitive to one color component only. The CFA allows you to capture

the red, green or blue color component, and is typically arranged into a pattern known

as Bayer pattern (Fig.1.2), where number of green elements is twice the number of
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red and blue pixels due to the higher sensitivity of the human eye to the green light.

Starting from the CFA data, image pipeline algorithms (such as white balance, color

interpolation, sharpening, etc.) are used to obtain an RGB high quality version of the

acquired scene.

Figure 1.2 : Bayer pattern.

1.3 Noise Types and Models

There is not just one single noise source, rather, during image generation process,

many factors contribute to signal degradation (Fig.1.1). Each noise source injects

extra-information in the ideal noise-free image signal; eventually unpleasant images

are generated if noise is not properly treated. Noise in a digital raw image can be

classified into two main categories:

1. Fixed Pattern Noise (FPN);

2. Temporal (Random) Noise.

Next sections analyze this two different types of noise and explain how these impact

on the images generation process.
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1.3.1 Fixed Pattern Noise

In FPN, the term fixed refers to the the fact that this noise has a pattern which is

invariant with respect to time. FPN has two main components, one at dark and one

under illumination. The dark component is known as dark-FPN and it is present even

in absence of illumination. The FPN under illumination is called Pixel Response Non

Uniformity, (PRNU) and is caused by different sensitivity of the pixels to light. If the

image sensor contains column amplifiers, dark-FPN may appear as vertical stripes in

the image (column-FPN) that are very annoying and easily detected by the human eye

(see Fig.1.3). A technique for removing column-FPN is described in Section 2.4.1.

Figure 1.3 : Column-FPN.

1.3.2 Temporal Random Noise

Temporal (random) noise is the part of the noise that fluctuates over time. It changes

its pattern frame by frame, even if the same acquisition settings are used, and causes
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a random variation of brightness or color information. Temporal noise is the sum of

different noise sources generated on the imager during the acquisition process. The

main temporal noise sources are:

• Photon shot noise: image sensors record light by capturing photons into the

photodiodes, eventually converting them into numbers. During the integration

time, the arrival rate of photons at each photosite is not constant; rather, there is

an intrinsic uncertainty caused by the oscillations of the number of photons that

reach the imager.

These oscillations can be modeled by Poisson distribution. [15, 16].

• Dark current noise: represents the temperature dependent noise generated on

the surface of the image sensor. Noise is introduced by the sum of electrons

freed by the thermal energy plus electrons generated by the photons hitting the

imager.

• Readout noise: is the electronic noise generated during the sensor readout pro-

cess.

• Reset noise: is generated by residual electrons left in sensors capacitor after the

reset operation, which is performed before a new scene acquisition occurs.

• Quantization noise: is due to conversion of photons into a digital number per-

formed by an A/D converter. The errors introduced in the conversion of an ana-

log signal to a set of discrete digital values are known as quantization errors.

In particular, quantization noise significantly affects image quality when the bit-

depth of the digital conversion process is small.
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1.4 Additive Noise Model

Consider an ideal image I with size M1×M2, denoted as I = [i(x,y)]M1×M2
, such that

i(x,y) ∈ {0, . . . ,L−1}, 0 ≤ x ≤ M1 − 1, 0 ≤ y ≤ M2 − 1. Ideal image I contains

no noise, every pixel being the exact representation of the light intensity perfectly

recorded and converted by the sensor. In the additive noise model, each pixel of the

ideal image is contaminated by a random value drawn from a certain underlying noise

distribution Zd; this random quantity adds to the original ideal signal, generating the

noisy observed image N(x,y):

N(x,y) = I(x,y)+η(x,y) (1.1)

The term η(x,y) which is added to the ideal value I(x,y) is generated by the contri-

bution of many overlapping noise sources. Because of the central limit theorem, a

common assumption is to model the contribution of all noise sources as zero mean

Additive White Gaussian Noise (AWGN). Eventually, the noisy term N(x,y) is then

observed and recorded.

1.5 Central Limit Theorem

Before proceeding, we recall the Central Limit Theorem (CLT). Consider n indepen-

dent and identically distributed (i.i.d.) random variables X1,X2, . . . ,Xn, each one having

a certain mean µ and variance σ2 > 0. Let Sn be the sum of each Xi, i = 1, . . . ,n:

Sn =
n

∑
i=1

Xi (1.2)

Consider the new variable:

Zn =
Sn−nµ

σ
√

n
(1.3)
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Figure 1.4 : Additive noise model. Ideal image signal I(x,y) is contaminated by a
noisy signal η(x,y) whose intensities are drawn from an underlying noise distribution
Zd .

The CLT states that the distribution of the sample average of the random variables

converges to the normal distribution with mean µ and variance σ2/n even if the Xi have

different distributions. In other words the distribution of Zn converges in distribution to

the normal standard distribution N (0,1) as the number of added i.i.d. Xi approaches

infinity:

Zd→N (0,1) (1.4)

1.6 Additive White Gaussian Noise Model

AWGN is the most widely adopted noise model; this assumption arises from the cen-

tral limit theorem: all noise sources overlap, finally producing a zero mean Gaussian

distributed noise. More specifically, the theorem states that the sum of a large number

of independent random variables is Gaussian distributed. In order to correctly apply

the CLT, the following properties must be satisfied:
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• each single random variable must be independent;

• each term in the sum must be small compared to the overall sum;

• there must be a large number of random variables contributing to the sum.

These assumptions fit well with the fact that not all noise sources have Gaussian dis-

tribution. Probability Density Function (pdf) of the Gaussian distribution is shown in

Fig.1.5 and is modeled as:

f (x,µ ,σ) =
1√

2πσ
e−

1
2(

x−µ
σ )2

(1.5)

where x is the signal intensity, µ and σ are respectively the mean and standard devia-

tion of the signal x [15]. Some key properties of the normal distribution often used in

0.
3

0.
4

0.
2

0

P
ro

ba
bi

lit
y 

D
en

si
ty

34.1%34.1%

0.
0

0.
1

P � � 4� �� 3� �� 2� �� � � �� � �� 2� � � 3� � � 4�13.6% 2.1%
0.1%

13.6%2.1%
0.1%

x-value

� 4� � 3� � 2� � � � �� � �� 2� � � 3� � � 4�
Figure 1.5 : Probability density function of the Gaussian (normal) distribution.

noise reduction algorithms are given below. The probability that a randomly selected

value of a variable x falls between the values a and b is defined as:

P(a≤ x≤ b) =
∫ b

a
f (x)dx (1.6)
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Let z be the z-score defined as:

z =
(x−µ)

σ
(1.7)

The Chebychev theorem states that for any population or sample, the proportion

of observations, whose z-score has an absolute value less than or equal to k, is no less

than (1− (1/k2)):

P(x≤ k)≥ 1− 1
k2 (1.8)

In case of Gaussian distribution, the Chebychev theorem can be further refined. In

particular the following properties hold:

P(−1≤ z≤ 1) =
∫ 1
−1 f (z)dz = 68.27%

P(−2≤ z≤ 2) =
∫ 2
−2 f (z)dz = 95.45%

P(−3≤ z≤ 3) =
∫ 3
−3 f (z)dz = 99.73%

(1.9)

In other words:

• 68% of the samples fall within -1 and +1 standard deviations from the mean;

• 95% of the samples fall within -2 and +2 standard deviations from the mean;

• 99% of the samples fall within -3 and +3 standard deviations from the mean.

This implies that there is a small probability that a normally distributed variable falls

more than two times standard deviations away from its mean. This noise model is

representative of the small oscillations that are observed in the pixel values. It must be

observed however, that for high levels of noise, the Gaussian distribution bell becomes

significantly wide, eventually degenerating to a fat tailed distribution which causes

increase of color noise and leaky pixels.
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1.7 Impulse Noise Model

Image sensors are composed of millions of photodiodes collecting photons. Faulty

elements in the sensor array may occur, generating pixels that do not record correct

information. The single isolated defective pixels located in random spatial positions of

the imager are referred as impulse noise.

The defective nature of a pixel can be classified into two main classes: fixed-valued

and random-valued impulse noise. The following definition shows the fixed-valued

impulse noise pdf :

f (x) =





fa i f x = a
fb i f x = b
0 otherwise

(1.10)

For a 8-bit image, a = 0 yields black pixels in the image (dead pixels), and b = 255,

produces clipped values (spikes). Pixels affected by fixed-valued impulse noise always

appear defective unless they are masked by texture, and they can be corrected using

a defect map, which stores the position of the faulty elements. The correction stage

uses information from the neighboring pixels. Fig.1.6 shows an image contaminated

by fixed-valued impulse noise.

Leaky pixels do not respond well to light, rather, their response is uncertain, caus-

ing random-valued impulse noise (i.e., impulse noise with variable amplitude). The

behavior of leaky pixels is not constant and varies according to external factors such as

temperature; this extra uncertainty makes leaky pixels position almost unpredictable.

For an image contaminated with impulse noise, the impulse noise ratio Q can be de-

fined as:

Q =
Number of impulse defective pixels

Total number of pixels
(1.11)

The position of the defects and their amplitude are two independent quantities, hence,

the map of defects D is defined as the point by point multiplication between DPOS and
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(a) Clean Image

(b) Fixed-Valued impulse noise

Figure 1.6 : Impulse noise.



Image Noise Removal for Embedded Devices 15

DAMP [43]:

D = DPOS·DAMP (1.12)

where:

• DPOS is M×N binary matrix mapping the positions of the impulse noise;

• DAMP is M×N representing the amplitudes of the impulse noise at each pixel

position;

The following probabilities can be then defined:

P{DPOS (x,y) = 1}= n
P{DPOS (x,y) = 0}= 1−n (1.13)

with x = 1, . . . , M, y = 1, . . . ,N and 0≤ n≤ 1. Binary distribution (1.13) indicates

that position (x,y) is faulty with probability n and correct with probability 1−n. The

correction of impulse noise can incur into three classes of errors:

• Type I: this type of errors simply refer to the case in which a defective element

is not detected (false negative); this error causes a visible, not corrected, defect

in the final image unless it is masked by texture.

• Type II: a pixel not affected by impulse noise is erroneously classified as de-

fective and corrected (false positive).Type II errors occurring in textured areas of

the image cause loss of detail because important information related to sharpness

is lost after correction. False positives in homogeneous areas are not a problem

because overcorrecting a homogeneous area does not produce visible artifacts.

• Type III: a defective pixel is correctly classified and corrected, nonetheless its

correction augments defectivity (overcorrection problem). This category of er-

rors is more subtle and refers to the case in which the correction of the defect

produces a new value which is more defective and visible than the previous one.
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As the pixel size decreases and the operating conditions of the imager become critical

(e.g., high temperature, low light, etc.) the probability of occurrence of adjacent defec-

tive pixels augments. For example, adjacent leaky pixels, in certain conditions behave

as couplets of defective pixels, particularly visible and annoying in uniform and dark

backgrounds (heavy tailed noise).

Couplets are difficult to remove because two adjacent defective elements may be

considered as part of an edge and not corrected. To cope with this problem, ad-hoc

defect correction algorithms must be used or properly tuned defect maps have to be

built [6]. Fig.1.7 shows the defective and filtered version of a CFA Bayer image (see

Section 1.3) in false color. Strong defect correction, such as heavy median filtering,

can cause significant resolution loss generating unpleasant blurred images.

(a) Colorized defective Bayer image. (b) Colorized Filtered Bayer image.

Figure 1.7 : Defective Bayer image.

1.8 Noise in Image Pipeline

Noise can change significantly its intensity and statistics in the different stages of the

pipeline. In fact, noise which is superimposed on the image signal during the acqui-
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sition phase, has a standard deviation that changes because of the influence of each

processing algorithm (see Fig.1.1). Despite the efforts in reducing noise introduced

during the acquisition process, the residual unfiltered noise may be amplified in the

subsequent image pipeline processing steps. This is a problem especially in low light

conditions, when amplification gains are used in order to produce an acceptable pic-

ture.

Noise reduction algorithm can take place in different stages of the image process-

ing pipeline. In order to keep noise levels low, it may be necessary to perform more

than a single noise reduction stage. Unfiltered sensor noise can also introduce artifacts

in colors that are difficult to recover after demosaicing, because color interpolation

mixes noises of different color channels, increasing signal and noise correlation.

Algorithms in Fig.1.8 [26] and their side-effects on the noise distribution [4] are de-

scribed in detail in the following subsections.����������	� 
���
��	��� ����������	���� ����������	�������������� ������

���
Figure 1.8 : Image pipeline .

1.8.1 White Balance Effects

The first block having a high impact in noise amplification is the White Balance (WB).

Before WB application, the noise levels basically depend only on the pixel values, as

shown in Fig.1.10. However the WB algorithm typically applies three different global

gains (one for each CFA channel) in order to compensate the amounts of red, green

and blue such that the neutral colors are represented correctly [4]. Let IR, IG, IB be the
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red, green and blue pixels of the CFA image respectively. Let gWB
R , gWB

G , gWB
B be the

gains applied to each CFA color channel according to:

IWB
R = gWB

R IR
IWB
G = gWB

G IG
IWB
B = gWB

B IB

(1.14)

Hence, the noise variance (σ2
n ) in each CFA plane is modified in the following ways:

σ2
n
(
IWB
R

)
= gWB

R σn (IR)2

σ2
n
(
IWB
G

)
= gWB

G σn (IG)2

σ2
n
(
IWB
B

)
= gWB

B σn (IB)2
(1.15)

1.8.2 Demosaicing Effects

The demosaicing process allows recovering the color image from the interspersed sam-

ples of the Bayer pattern. The algorithm chosen to reconstruct the color image impacts

the noise levels because of changes in the spatial correlation of data. To show the

effects of demosaicing on noise level a simple algorithm which recovers the color

component at location (x,y) by averaging the available color components in the neigh-

borhood is employed. For example, if the current (x,y) is the site of a green sample

(IG), the missing red (I∗R) and blue (I∗B) components are recovered by using:

I∗R (x,y) = IWB
R (x−1,y)+ IWB

R (x+1,y)
2

I∗B (x,y) = IWB
B (x−1,y)+ IWB

B (x+1,y)
2

(1.16)

The noise variance related to the red and blue components interpolated at pixel (x,y)

are defined as ( [4]):

σ2
n (I∗R (x,y))∼= σ2

n (IWB
R (x−1,y))

2

σ2
n (I∗B (x,y))∼= σ2

n (IWB
B (x−1,y))

2

(1.17)



Image Noise Removal for Embedded Devices 19

σ2
n is scaled by a factor of two because of the average operation on data. The spatial

correlation of noise also increases.

1.8.3 Color Correction Effects

Color correction is necessary because the response of the color filters placed on top

of the imager do not match the one of the human eye; consequently, the RGB values

must be corrected using a proper 3×3 matrix that adjusts the values accordingly. This

multiplication changes the pixel values but, meanwhile, increases noise and reduces

the SNR, especially in the blue channel:




Ic
R

Ic
G

Ic
B


 =




c11 c12 c13
c21 c22 c23
c31 c32 c33







I∗R
I∗G
I∗B


 (1.18)

noise variance σ2
n for each color channel change in the following way ( [4]):

σ2
n ( Ic

R ) = c11σ2
n ( I∗R )+ c12σ2

n
(

I∗G
)
+ c13σ2

n ( I∗B )
σ2

n
(

Ic
G

)
= c21σ2

n ( I∗R )+ c22σ2
n
(

I∗G
)
+ c23σ2

n ( I∗B )
σ2

n ( Ic
B ) = c31σ2

n ( I∗R )+ c32σ2
n
(

I∗G
)
+ c33σ2

n ( I∗B )
(1.19)

1.8.4 Sharpening, Gamma Correction and Compression Effects

The demosaicing process reconstructs the full RGB color image starting from the

Bayer samples; this process is essentially a low-pass operation, hence the output image

is weak in terms of sharpness and it looks blurred; therefore a sharpening algorithm is

mandatory in order to obtain an acceptable image. Subsequently a gamma correction
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algorithm is also applied, to align the linear response to light intensity of the imager to

the nonlinear response of the human visual system.

Sharpening and gamma correction algorithms improve image quality, but increase

noise as well. The sharpening algorithm amplifies the high frequencies, consequently

increasing the image noise. Gamma correction modifies luminance values to enhance

contrast in the dark regions; due to its nonlinearity, it makes the noise distribution for

each signal level even more complex to describe. Compression is used to reduce the

size of image files. There are two types of compression: lossless, where the amount of

image data is reduced without loss of information, and lossy (e.g., JPEG) where image

file is reduced allowing the lost of a part of data.

JPEG converts the RGB image in the YCbCr color space; the luminance plane (Y)

is used for recognizing structures and details while the chrominance planes (CbCr)

are subsampled without significant loss of image information for the observer. The Y

plane is divided in 8×8 blocks that are compressed separately and transformed in the

frequency domain using DCT (Discrete Cosine Transform) . DCT coefficients are then

quantized using a quantization table. Compression rate depends on the used quantiza-

tion table; the higher the compression rate the lower the image quality, due to presence

of artifacts. Lossy image compression is similar to a noise reduction algorithm, that

maintains the main image structures and suppresses fine textures and details. Anyway,

artifacts introduced by compression reduce global image quality.

1.9 Noise Reduction Block Position

According to the previous considerations about the image pipeline, the position of

the noise reduction stage strongly affects the quality of the final image. Basically, in

order to avoid false colors and increment of noise spatial correlation, it is important
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to implement noise reduction before demosaicing. Nonetheless, as discussed above,

not all noise can be removed before (or jointly to [31]) demosaicing; the residual noise

is further amplified by the color correction and sharpening algorithms, hence a new

application of noise reduction is generally required at the end of the pipeline. Fig.1.9

shows a possible image processing pipeline with two noise reduction stages. The first

denoising stage is applied in the CFA domain, before demosaicing; the second noise

filtering stage works in the luminance domain and is positioned at the end of pipeline

before compression. ����������	��
���	�
���
�� ���������
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Figure 1.9 : Noise reduction blocks in Image pipeline.

1.10 Signal Dependent Noise Model

In previous sections we have dealt with the noise, assuming that is additive Gaussian

(AWGN), as well as most of the literature dealing with this topic. We have also seen

that noise contaminating raw images is the juxtaposition of many different sources that

overlap the ideal signal. In particular we could distinguish the noise sources into two

groups:

1. Noise sources that are dependent on irradiance (Poisson distributed);
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2. Noise sources caused by the electric and thermal noise of the imager (Gaussian

distributed).

Photon shot noise belongs to the first group, because it is closely tied to the number of

photon that reaches the sensor. Therefore, the standard deviation of photon shot noise

is Poissonian and depends on signal intensity. The other noise sources, such as read-

out noise, thermal noise, amplifiers noise, quantization noise, etc. are usually modeled

by considering that their overlap is Gaussian distributed.

Hence, the sum of all sources of noise has a distribution that varies with the signal

intensity. The standard deviation of the signal dependent noise (SDN) can be modeled

using an equation of the form [14]:

σ(x) =
√

a · x+b (1.20)

where: x is signal intensity and a,b ∈ ℜ+, are constants related to the slope of the

curve; these parameters change depending on quantum efficiency, pedestal and analog

gain [14]. Therefore , given a specific image sensor, its intrinsic noise contribution can

be estimated considering its behaviour under different illumination conditions. This

implies computing a and b coefficents in (1.20) for each sensor operating analog gain,

starting from observed noise samples. Fig.1.10 also shows that signal dependent noise

standard deviation is quite similar for each Bayer color channel.
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Figure 1.10 : Noise curves in the Bayer domain for a 10 bit image acquired by a
sensor operating at two extreme analog gains. Lower curve represents noise levels at
minimum analog gain; upper curve represents noise levels at maximum analog gain. It
is clear how noise increases with the signal level and the operating analog gain.
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Chapter 2. Noise Removal Techniques

2.1 Introduction

The main purpose of an image denoising algorithm is to preserve image details as

much as possible while eliminating noise. Typically, denoising filter based on AWGN

noise model, requires the estimation of standard deviation (σ) in order to calibrate

the filtering intensity. Therefore, a noise removal procedure requires that two different

processing algorithms are performed on the image: one to estimate the noise level and

the actual filtering process.

In this chapter we first introduce a metric to compute numerically the quality of an

image, focusing subsequently our attention on the algorithms for noise estimation and

filtering. In particular, the basic concepts for the implementation of some noise estima-

tion algorithms are given, showing in detail the description of a simple procedure [5].

An overview of the most well-known filtering techniques is then presented, providing

a detailed explanation of two algorithms such as: Sigma Filter [6] and Bilateral Fil-

ter [39] which are also reported in the Chapter 5 adapted to use signal dependent noise

estimation.

2.2 Noise Metrics

An important measures dealing with noise filtering is SNR (Signal to Noise Ratio),

which is usually adopted as a simple reference measure to numerically define the image

quality. It is computed as the ratio between the signal and the underlying noise and is
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expressed in decibel [15]:

SNR(S) = 20log10

(
S

σN

)
(dB) (2.1)

All quantities are measured in electrons. The term S represents the signal level while

σN represents the noise standard deviation. More specifically σN is defined as sum

of different kinds of noise: σN = σS + σR + σDSNU + σPRNU where σS, σR, σDSNU ,

σPRNU are shot noise, read noise, dark signal non uniformity and photon response non

uniformity respectively.

After acquisition and digital conversion, the image is coded into L levels, where L

depends on the bit depth of the Analog to Digital (A/D) conversion process. Hence,

the SNR of an image I(x,y), in this case, is defined as:

SNR(I) = 20log10

(
E (I)
σ (I)

)
(dB) (2.2)

where E(I) and σ (I) are the average value and the standard deviation of the image I

respectively. The higher the SNR, the better the image.

2.3 Noise Estimation

As discussed in Chapter 1, the zero mean AWGN noise model requires the estima-

tion of the standard deviation of the underlying Gaussian noise distribution. Pixels

deviate from their correct value by some value which is drawn from a Gaussian distri-

bution; usually pixel fluctuations are small, but greater fluctuations are also possible.

Nonetheless, in 99% of the cases, the deviations do not exceed 3-times σ in absolute

value. Large noise amplitudes generated by the distribution tails are possible; in this

case the pixel of interest might appear as a spike or dead element. The knowledge of a

good σ estimation allows filtering the image data properly, significantly reducing the
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unpleasant effects of Gaussian noise. Furthermore, σ can also be a reference value for

detecting outliers.

Compared to the wide literature on image denoising, the literature on noise estima-

tion is very limited. Noise can be estimated from multiple images or a single image.

Estimation from multiple image is an over-constrained problem [17], while the esti-

mation asedo on a single image, is an under-constrained problem and requires further

assumptions for the noise.

Olsen [29] analyzed six methods for noise standard deviation estimation and showed

that the best was the average method, which is also the simplest. Average method con-

sists of filtering the data I with the average filter (a simple box function) and subtracting

the filtered image from I. Then a measure of the noise at each pixel is computed. To

avoid contribution of image edges to the estimate, the noise measure is rejected if the

magnitude of the intensity gradient is greater than a fixed threshold, T .

Estimation of noise standard deviation is based on the following general ideas:

• Locate homogeneous areas in the image, because in flat areas pixel fluctuations

are supposed to be caused exclusively by random noise.

• Compute the local variance in the detected flat areas.

• Repeat the previous two steps until the whole image has been processed.

• Estimate the signal variance using the accumulated noise samples.

Therefore, noise estimation algorithms often rely on texture detection techniques, among

these are: Amer-Dubois method [3], that uses a set of highpass filters to detect sig-

nal activity in the horizontal, vertical, diagonal and corner directions; Kim-Lee tech-

nique [44] that is based on a more sophisticated approach in that it tries to differentiate
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image areas with same standard deviations but generated by patterns not related to ran-

dom signal fluctuations; finally, Staelin-Nachlieli [11] which propose to estimate noise

in areas where cross channel color correlation is low. In the next subsection we present

in detail a simple iterative method for estimating the noise [6].

2.3.1 Fast Noise Estimation

A rough approximation of the noise level in an image can be obtained by exploiting

the statistical properties of the Gaussian noise distribution (1.9). It is reasonable to

suppose that the image cannot contain an arbitrary high noise level [6]; hence initially

noise level is set to the maximum (σmax); this value is obtained using a tuning phase

in which the behavior of the image sensor is characterized under different illumination

conditions.

Assuming a 3×3 filter support, the absolute differences δ0, δ1, . . . ,δ7 between the

central pixel Pc and its neighborhood are computed:

δi = |Pc−Pi| i = 0, . . . ,7 (2.3)

If δi ∈ [0,σmax], i = 0, . . . ,7 then the assumption of having localized a homogeneous

area can be made. The idea is to build a noise histogram Ψ that accumulates the col-

lected noise samples in its bins. Let γ j be the value of the j-th absolute difference

δ j, j ∈ [0, . . . ,7] when δi ∈ [0,σmax], i = 0, . . . ,7 ; in this case the bin γi in Ψ is incre-

mented:

Ψ(γ j) = Ψ(γ j)+1 (2.4)

After processing the entire frame, the absolute differences accumulated in the his-

togram will be Gaussian-like shaped. Because of the absolute values, only the positive
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side of the x-axis is filled; this is not a problem because the normal distribution is

symmetric around its mean value, which is zero in our case.

The noise standard deviation is determined considering the property of the Gaus-

sian distribution stating that 68% of its samples fall in the interval [µ−σ ,µ +σ ]. The

histogram of the absolute differences is integrated until the 68% of the total samples

has been accumulated. As soon as the histogram integrations stops, the value on the x-

axis which attains the 68% of the total samples, represents the estimated noise standard

deviation (Fig.2.1):

σest = {max k|
k

∑
i=1

Ψ(i)≤ d0.68 ·Σsamplese} (2.5)

This solution is strongly based on the value originally chosen for σmax. This num-

ber has to be carefully generated by performing a tuning phase which consists in test-

ing the image sensor under different light conditions and determining the typical worst

case noise situations. These noise levels will set an upper bound for 3σmax. Nonethe-

less, the gathered sample of the noise population could be contaminated by the real

signal. A possible solution that can minimize the bias problem is to allow σmax to

change over time; if σmax is initially overestimated, then σmax can be decreased for the

next iteration. This allows progressively reducing the sample bias and converging to

the optimal estimation. The method can be further refined using a more sophisticated

texture detector, like the one described in [3].

Though the estimation is not perfect and may be biased, it is anyway an approxi-

mation, indicating the overall noise level. On a CFA image this method will generate

a single σ value for each color channel.
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(a)

(b)

(c)

Figure 2.1 : Noise level estimation using noise histogram Gaussian-like distributed.
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2.4 Noise Filtering

The noise filtering problem can be described as the process of effectively removing the

unwanted noisy component from the acquired signal, restoring the original ideal data,

without sacrificing the image sharpness and features (i.e., color component distances,

edges, sharpness, etc.). In particular, a robust filtering algorithm should satisfy the

following conditions [10]:

• Flat regions should be as smooth as possible. Noise should be completely re-

moved from these regions.

• Image boundaries should be well preserved. This means the boundary should

not be either blurred or sharpened.

• Texture details should not be lost. This is one of the hardest criteria to match.

Since image denoising algorithm always tends to smooth the image, it is very

easy to lose texture details in denoising.

• The global contrast should be preserved, or the low-frequencies of the denoised

and input images should be identical.

• No artifacts should be produced in the denoised image.

The global contrast is probably the easiest to match, whereas some of the rest principles

are almost incompatible. For instance, (a) and (c) are very difficult to be tuned together

since most denoise algorithms could not distinguish flat and texture regions from a

single input image.

Filtering techniques differ in the choice of image prior models and there is a very

large part of literature that deals with this topic. Some of the most important denoising

approaches are:
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• Wavelet ( [27, 34]): image is decomposed into multiscale oriented sub-bands.

The filtering process typically acts applying an (hard or soft) threshold on wavelet

coefficients.

• Anisotropic Diffusion ( [32]): is a non-linear and space-variant transformation of

the original image. This method remove noise solving an isotropic heat diffusion

equation (a second order linear partial differential equations).

• Non-Local Mean ( [8]): uses multiple pictures and take the mean to remove the

noise. This method is unpractical for a single image, but a temporal mean can

be computed from a spatial mean as long as there are enough similar patterns in

the single image.

• Bilateral Filtering ( [39]): is an adaptive Gaussian filtering, that, to preserve

edges, takes into account both space and range distances.

The following sections describe some techniques for the removal of some specific noise

disturbs such as: fixed pattern noise [7] and temporal random noise by using spatial

filtering methodology [6, 39].

2.4.1 Column-FPN Filtering

The column-Fixed Pattern Noise (FPN) is caused by column amplifiers, and appears as

vertical stripes in the image (see Section 1.3.1). Since FPN is equal in all acquisitions,

for its effective cancellation, it is necessary to estimate its signature that, once learned,

can be subtracted from the image data.

FPN estimation can be performed using supplementary data provided by the image

sensor. As Fig.2.2 depicts, a series of black and dark lines are placed at the top of the



Image Noise Removal for Embedded Devices 32

imager, that are not shown in the final color pictures. Black lines have zero integration

time while dark lines have the same exposure time as the image lines but they are

shielded from the incident light. These considerations imply that:

• black lines contain very little noise (specifically, FPN noise only);

• dark lines accumulate almost the same random noise as the image, because they

have the same integration time of the image lines.

The FPN cancellation is achieved by continuously averaging the black sampled data,

according to the following equation:

FPNEst = FPNEst(FPNEst/LeakC)+(FPNCurSample/LeakC) (2.6)

where:

• LeakC: is a constant to weight the previous estimation.

• FPNEst : is the estimation of the FPN signature.

• FPNCurSample: is the FPN signature, extracted from the current frame.

Denoting with nb the number of black lines and with W the image width, the current

estimation, FPNCurSample, for the FPN of image I is obtained by averaging each column

j of the black lines:

M j = ∑i=0,1,...,nb I(i, j)
nb j = 1, . . . ,W (2.7)

FPNEst is initialized to zero and is updated by means of equation (2.6), each time

a new frame arrives. The first estimation, computed on the first frame, is merely a

coarse approximation of the real FPN signature. After some iterations the estimation
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Black  Lines
Dark Lines

Black  Lines

I m age Linesage es

Figure 2.2 : Black lines are used for FPN estimation, Dark lines for random noise
estimation.

converges towards the correct signature that must be row-wise subtracted from the

image data in order to get rid of the FPN. The LeakC value defines how much weight is

attributed to the previous estimations; by changing this value, the speed of convergence

can be modulated.

The number of black lines used to learn the signature is a key element of the algo-

rithm. If a low number of black lines is used, the estimation would be not reliable, as

noise would generate uncertain approximations. On the other hand, using more lines

than necessary is a useless waste of resources, both on the sensor and from a computa-

tional point of view. Thus, a trade-off between the number of black lines and the leak

factor value must be found.
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2.4.2 Spatial Filtering

Spatial filters are based on low pass filtering of neighboring pixels under the assump-

tion that the noisy part of the signal is located in its high frequencies. Spatial filters can

be partitioned into two main classes: linear and non-linear filters [15]. Linear filters,

such as the mean filter, are weak in terms of image details preservation and cannot

be successfully adopted for removing noise without blurring the image. Other simple

non-linear filters such as the median filter are also weak in terms of detail preservation,

basically because this filter applies the same processing without explicitly identify-

ing noise. Nonetheless a median filter has good response in cases in which the noise

distribution has long tails.

A vast variety of spatial filters exist and covering them is out of the scope of this

Section [6]. Follows a short description of two widely used filtering methods, known

as Sigma Filter [6] and Bilateral Filter [39]. In particular, these algorithms are also

reported in the Chapter 5 in a modified version, adapted to use a signal dependent noise

estimation.

2.4.3 Sigma-Filter

If a reliable noise estimator is available, the Sigma-Filter [6] represents a fast solution

for reducing noise. The filtering process is based on the assumption that the observed

pixel value N(x,y) is a good estimate of the local signal mean. The observed pixel value

N (x,y) can be expressed as the sum of its representative mean η plus a Gaussian noise

term Γ:

N (x,y) = η(x,y)+Γ(x,y) (2.8)
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We then consider a value δ = 3σ and consider all the pixels in the range delimited

by the central pixel value ±δ . Under the assumption of zero mean AWGN, this range

includes ˜99% of the distribution from the same class as the central pixel.

Let M be a m1 ×m2 filter mask and Pc the value of its central pixel. The final

output is a weighted average of the pixels having value close to one of the mask

central pixel. Weights decrease as the distance in intensity between the central pixel

and the neighborhood augments. Under the assumption of Gaussian noise model, the

Sigma Filter averages all the pixels whose values fall in the range [Pc−3σ ,Pc +3σ ].

In particular, pixels whose distance falls in the range [Pc−σ ,Pc +σ ] receive maxi-

mum weight Wmax. Pixels whose value falls in the range [(Pc−σ)−σ ,(Pc +σ)+σ ]

are weighted with medium weight Wmid . Finally, pixels whose intensity falls in the

range[(Pc−2σ)−σ ,(Pc +2σ)+σ ] are weighted with minimum weight Wmin. Pixels

outside of the range [(Pc−3σ),(Pc +3σ)] are considered outliers having zero weight

in the weighted average. Clearly, a reliable noise estimate is necessary, otherwise blur-

ring or lack of noise reduction effectiveness can occur, depending on sigma over- or

under estimation respectively. The final weighted average Pf can be expressed as the

sum of the mask pixels multiplied by their respective weights and divided by the sum

of the weights:

Pf =
∑i≤(m1×m2)−1

i=0 Wi ·Pi

∑i≤(m1×m2)−1
i=0 Wi

(2.9)

The selection of the range [(Pc−3σ),(Pc +3σ)] excludes shot noise pixels and pixels

outside a local edge, maintaining sharp edges and allowing effective noise suppres-

sion in homogeneous areas. On the other hand, the preservation of sharp edges and

strong filtering strength in flat areas also becomes a weakness of this filter. The main

problem is that the Sigma-Filter has a strong inclusion/exclusion rule in the average



Image Noise Removal for Embedded Devices 36

High Similarity with central pixel intensity

Mid Similarity with central pixel intensity

Low Similarity with central pixel intensity

Weight

Low Similarity with central pixel intensity

No Similarity with central pixel intensity

Weight

2��Wmax

W
����Wmid

Wlow

0 Pixel Value

Figure 2.3 : Sigma filter.
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process; this, if not well controlled, adds a cartoon-like appearance to the filtered im-

age because transitions become too abrupt [9]. In fact, if a strong edge separating two

regions is present and if the grey level difference between both regions is larger than a

threshold, the algorithm computes averages of pixels belonging to the same region as

the reference pixel creating artificial shocks. In conclusion, the Sigma-Filter can create

large flat zones and spurious contours inside smooth regions [9]. Not only noise must

be reduced but, at the same time, it is necessary to retain a sense of sharpness, depth

and focus which manifests through gradual and smooth edge transitions. The bilateral

filter satisfies this requirement by applying a smooth weighting scheme in both spatial

and intensity domains.

2.4.4 Bilateral Filter

Bilateral filtering [39, 45] can be seen as an extension of the Sigma-Filter. Again,

the noise reduction process is based on a weighted average of local samples, but in

this case the filter is driven by two different standard deviation values: the intensity

related σi and the spatial related σs. In analogy with the sigma filter, σi represents

the effective noise level which depends on the pixel intensity values. The additional

spatial σs is used to weight the pixels in the mask depending on their distance from the

center of the mask. Hence, if a low σs is used, the pixels far from the central pixel are

assigned a low weight and have less importance in the final weighted average.

An example of bilateral filtering on a 7× 7 mask is shown in Fig. 2.5. At a pixel

location −→x the output of the filter is given by:

I (−→x ) =
1
C ∑

y ∈N(−→x )
e
−‖−→y −−→x ‖

2 σ2
s e

−|I(−→y )−I(−→x )|
2 σ2

i I (−→y ) (2.10)
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(a) Noisy image (SRN = 25.3dB)

(b) Filtered image (SRN = 28.3dB)

Figure 2.4 : Sigma-filter output.
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where N (−→x ) is a spatial neighborhood of pixel I (−→x ) and C represents the normaliza-

tion costant:

C = ∑
y ∈N(−→x )

e
−‖−→y −−→x ‖

2 σ2
s e

−|I(−→y )−I(−→x )|
2 σ2

i (2.11)
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(a) Noisy input

(b) Filter

(c) Filtered output

Figure 2.5 : Bilateral filter.
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(a) Noisy image (SRN = 25.4dB) (b) Filtered image (SRN = 29.0dB)

Figure 2.6 : Bilateral filter output.
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Chapter 3. Noise Reduction Exploiting
HVS Behaviour

This Chapter presents a novel spatial noise reduction method [2] that directly pro-

cesses the raw CFA (Color Filter Array) data acquired by CCD/CMOS image sensors,

combining together HVS (Human Visual System) heuristics, texture/edges preservation

techniques and sensor noise statistics, in order to obtain an effective adaptive denois-

ing.

The proposed algorithm introduces the concept of the usage of HVS peculiarities

directly on the CFA raw data from the sensor, and aims to keep low the complexity by

using only spatial information and a small fixed-size filter processing window, to obtain

real-time performance on low cost imaging devices (e.g., mobile phones, PDAs). The

HVS properties, able to characterize or isolate unpleasant artifacts, are a complex phe-

nomenon (highly nonlinear) not yet completely understood involving a lot of complex

parameters [21, 28]. Several studies in literature are trying to simulate and code some

known aspects, in order to find out reliable image metrics [30, 41, 42] and heuristics

to be applied also for demosaicing [25]. The filter processes raw Bayer data, provid-

ing the best performance if executed as the first algorithm of the Image Generation

Pipeline (Fig.1.8), and adapts its smoothing capability to local image characteristics

yielding effective results in terms of visual quality.

3.1 Basic Concepts about the Human Visual System

It is well known that the HVS has a different sensitivity at different spatial frequen-

cies [40]. In areas containing mean frequencies the eye has a higher sensitivity. Fur-
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thermore, chrominance sensitivity is weaker than the luminance one. HVS response

does not entirely depend on the luminance value itself, rather, it depends on the lumi-

nance local variations with respect to the background; this effect is described by the

Weber-Fechners law [15,28], which determines the minimum difference DY needed to

distinguish between Y (background) and Y+DY. Different values of Y yield to different

values of DY.

The aforementioned properties of the HVS have been used as a starting point to

devise a CFA filtering algorithm. Luminance from CFA data can be extracted as ex-

plained in [24], but for our purposes it can be roughly approximated by the green

channel values before gamma correction. The filter changes its smoothing capability

depending on the CFA color of the current pixel and its similarity with the neighbor-

hood pixels. More specifically, in relation to image content, the following assumptions

are considered:

• If the local area is homogeneous, then it can be heavily filtered because pixel

variations are basically caused by random noise.

• If the local area is textured, then it must be lightly filtered because pixel varia-

tions are mainly caused by texture and by noise to a lesser extent; hence only the

little differences can be safely filtered, as they are masked by the local texture.

3.2 The Proposed Technique

3.2.1 Overall filter block diagram

A block diagram describing the overall filtering process is illustrated in Fig.3.1. Each

block will be separately described in detail in the following sections.

The fundamental blocks of the algorithm are:
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• Signal Analyzer Block: computes a filter parameter incorporating the effects of

human visual system response and signal intensity in the filter mask.

• Texture Degree Analyzer: determines the amount of texture in the filter mask

using information from the Signal Analyzer Block.

• Noise Level Estimator: estimates the noise level in the filter mask taking into

account the texture degree.

• Similarity Thresholds Block: computes the fuzzy thresholds that are used to

determine the weighting coefficients for the neighborhood of the central pixel.

• Weights Computation Block: uses the coefficients computed by the Similarity

Thresholds Block and assigns a weight to each neighborhood pixel, representing

the degree of similarity between pixel pairs.

• Filter Block: actually computes the filter output.

Figure 3.1 : Overall Filter Block Diagram.
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The data in the filter mask passes through the Signal Analyzer block that influences

the filter strength in dark and bright regions (Section 3.3 for further details). The HVS

value is used in combination with the output of the Texture Degree Analyzer (Section

3.5) and Noise Level Estimator (Section 3.6) to produce the similarity thresholds used

to finally compute the weights assigned to the neighborhood of the central pixel (Sec-

tion 3.6). The final filtered value is obtained by a weighted averaging process (Section

3.8).

3.3 Signal Analyzer Block

As noted [12, 19] and [46] it is possible to approximate the minimum intensity gap

that is necessary for the eye to perceive a change in pixel values. The base sensitiv-

ity thresholds measure the contrast sensitivity in function of frequency while fixing

the background intensity level. In general, the detection threshold varies also with the

background intensity. This phenomenon is known as luminance masking or light adap-

tation. Higher gap in intensity is needed to perceive a visual difference in very dark

areas, whereas for mid and high pixel intensities a small difference in value between

adjacent pixels is more easily perceived by the eye [19].

It also crucial to observe that in data from real image sensors, the constant AWGN

(1.6) model does not fit well the noise distribution for all pixel values. In particular,

as discussed in [13], the noise level in raw data is predominantly signal-dependent and

increases as the signal intensity raises; hence, the noise level is higher in very bright

areas. In [13] and [14] it is also illustrated how clipping in data is the cause of noise

level underestimation; e.g., noise level for pixels close to saturation cannot be robustly

tracked because the signal reaches the upper limit of the allowed bitdepth encoding.
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We decided to incorporate the above considerations of luminance masking and

sensor noise statistics into a single curve as shown in Fig.3.2. The shape of this curve

allows compensating for lower eye sensitivity and increased noise power in the proper

areas of the image, allowing adaptive filter smoothing capability in relation to the pixel

values.

A high HVS value (HV Smax) is set for both low and high pixel values: in dark

areas the human eye is less sensitive to variations of pixel intensities, whereas in bright

areas noise standard deviation is higher. HVS value is set low (HV Smin) at mid pixel

intensities. As stated in Section 3.3, in order to make some simplifying assumptions,

we use the same HVS curve for all CFA colour channels taking as input the pixel

intensities directly from the sensor. The HVS coefficient computed by this block is

used by the Texture Degree Analyzer that outputs a degree of texture taking also into

account the above considerations (Section 3.5).

HVSHVSweight

maxHVS

minHVS

Pixel 
Value

2bitdepth -1(2bitdepth -1)/20

Value

Figure 3.2 : HVS curve used in the proposed approach.
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3.4 Filter Masks

The proposed filter uses different filter masks for green and red/blue pixels to match the

particular arrangement of pixels in the CFA array. The size of the filter mask depends

on the resolution of the imager: at higher resolution a small processing window might

be unable to capture significant details. For our processing purposes a 5× 5 window

size provided a good trade-off between hardware cost and image quality, allowing us

to process images up to 5 megapixels, a resolution that is typical of high end mobile

phones. Typical Bayer processing windows are illustrated in Fig.3.3.

G G G

G G G

G G G

G G

GG

R R R

R R R

R R R

B B B

B B B

B B B

Figure 3.3 : Filter Masks for Bayer Pattern Data.

3.5 Texture Degree Analyzer

The texture analyzer block computes a reference value Td that is representative of the

local texture degree. This reference value approaches 1 as the local area becomes

increasingly flat and decreases as the texture degree increases (Fig.3.4). The computed

coefficient is used to regulate the filter smoothing capability so that high values of Td

correspond to flat image areas in which the filter strength can be increased.

Depending on the color of the pixel under processing, either green or red/blue,

two different texture analyzers are used. The red/blue filter power is increased by
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slightly modifying the texture analyzer making it less sensitive to small pixel dif-

ferences (Fig.3.5). The texture analyzer block output depends on a combination of

the maximum difference between the central pixel and the neighborhood Dmax and

TextureT hreshold , a value that is obtained by combining information from the HVS re-

sponse and noise level, as described below (3.1).

Texture 

Threshold

Td

1

0
Dmax

Figure 3.4 : Green Texture Analyzer.

The green and red/blue texture analyzers are defined as follows:

Td(green) =





1 Dmax = 0
− Dmax

TextureT hreshold
+1 0 < Dmax ≤ TextureT hreshold

0 Dmax > TextureT hreshold

(3.1)

Td(red/blue) =





1 Dmax ≤ T hR/B

− (Dmax−T hR/B)
(TextureT hreshold−T hR/B) +1 T hR/B < Dmax ≤ TextureT hreshold

0 Dmax > TextureT hreshold
(3.2)

hence:

• if Td = 1 the area is assumed to be completely flat;
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Texture 

Threshold

Td

1

0
ThR/B Dmax

Figure 3.5 : Red/Blue Texture Analyzer.

• if 0 < Td < 1 the area contains a variable amount of texture;

• if Td = 0, the area is considered to be highly textured.

The texture threshold for the current pixel, belonging to Bayer channel c (c = R,G,B),

is computed by adding the noise level estimation to the HVS response:

TextureT hresholdc(k) = HV Sweight(k)+NLc(k−1) (3.3)

where NLc denotes the noise level estimation on the previous pixel of the same Bayer

color channel c (see Section 3.6) and HV Sweight (Fig.3.2) can be interpreted as a jnd

(just noticeable difference); hence an area is no longer flat if the Dmax value exceeds

the jnd plus the local noise level NL.

The green texture analyzer (Fig.3.4) uses a stronger rule for detecting flat areas,

whereas the red/blue texture analyzer (Fig.3.5) detects more flat areas, being less sen-

sitive to small pixel differences below the T hR/B threshold. The gray-scale output of

the texture detection is shown in Fig.3.6: bright pixels are associated to high texture,

dark pixels to flat areas.
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(a) (b)

Figure 3.6 : Texture Analyzer output: (a) input image after colour interpolation, (b)
gray-scale texture degree output: bright areas correspond to high frequency, dark areas
correspond to low frequencies.

3.6 Noise Level Estimator

In order to adapt the filter smoothing capability to the local characteristics of the image,

a noise level estimation is required. The proposed noise estimation solution is pixel

based and is implemented taking into account the previous estimation to calculate the

current one. The noise estimation equation is designed so that:

1. if the local area is completely flat (Td = 1), then the noise level is set to Dmax;

2. if the local area is highly textured (Td = 0), the noise estimation is kept equal to

the previous region (i.e., pixel);

3. otherwise a new value is estimated.

Each color channel has its own noise characteristics hence noise levels are tracked sep-

arately for each color channel. The noise level for each channel is estimated according
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to the following formulas:

NLR(k) = Td(k)∗DMax(k)+ [1−Td(k)]∗NLR(k−1)
NLG(k) = Td(k)∗DMax(k)+ [1−Td(k)]∗NLG(k−1)
NLB(k) = Td(k)∗DMax(k)+ [1−Td(k)]∗NLB(k−1)

(3.4)

where Td(k) represents the texture degree at the current pixel and NLc(k− 1) (c =

R,G,B) is the previous noise level estimation, evaluated considering pixel of the same

colour, already processed. For k = 1 the values NLR(k−1),NLG(k−1) and NLB(k−1)

are set to an initial low value depending on the pixel bit-depth. These equations satisfy

requirements 1), 2) and 3). The raster scanning order of the input image is constrained

by global HW architecture. Starting from different spatial locations the noise level

converges to the same values due to the presence of homogeneous areas that are, of

course, prominent in almost all natural images.

3.7 Similarity Thresholds and Weighting Coefficients
computation

The final step of the filtering process consists in determining the weighting coefficients

Wi to be assigned to the neighboring pixels of the filter mask. The absolute differences

Di between the central pixel and its neighborhood must be analyzed in combination

with the local information (noise level, texture degree and pixel intensities) for esti-

mating the degree of similarity between pixel pairs (see Fig.3.7).

As stated in section 3.1, if the central pixel Pc belongs to a textured area, then only

small pixel differences must be filtered. The lower degree of filtering in textured areas

allows maintaining the local sharpness, removing only pixel differences that are not

perceived by the HVS. The process for determining the similarity thresholds and the

Wi coefficients can be expressed in terms of fuzzy logic (Fig.3.8). Let:
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Figure 3.7 : The Wi coefficients weight the similarity degree between the central pixel
and its neighborhood.

• Pc be the central pixel of the working window;

• Pi, i = 1, . . . ,7 be the neighborhood pixels;

• Di = ‖Pc−Pi‖, i = 1, . . . ,7 the set of absolute differences between the central

pixel and its neighborhood.

In order to obtain the Wi coefficients, each absolute difference Di must be compared

against two thresholds T hlow and T hhigh that determine if, in relation to the local infor-

mation, the i-th difference Di is:

1. small enough to be heavily filtered;

2. big enough to remain untouched;

3. an intermediate value to be properly filtered.

The two thresholds can be interpreted as fuzzy parameters shaping the concept of sim-

ilarity between pixel pairs. In particular, the associated fuzzy membership function
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Figure 3.8 : Block diagram of the fuzzy computation process for determining the
similarity weights between the central pixel and its N neighborhoods.

computes the similarity degree between the central and a neighborhood pixel. By prop-

erly computing T hlow and T hhigh, the shape of the membership function is determined

(Fig.3.9).

W
i

Max

Similarity
No

Similarity
Mid

Similarity

Figure 3.9 : Weights assignment (Similarity Evaluator Block). The i-th weight de-
notes the degree of similarity between the central pixel in the filter mask and the i-th
pixel in the neighborhood.
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To determine which of the above cases is valid for the current local area, the lo-

cal texture degree is the key parameter to analyze. It is important to remember at

this point that, by construction, the texture degree coefficient (Td) incorporates the

concepts of dark/bright and noise level; hence, its value is crucial to determine the

similarity thresholds to be used for determining the Wi coefficients. In particular, the

similarity thresholds are determined to obtain maximum smoothing in flat areas, mini-

mum smoothing in highly textured areas, and intermediate filtering in areas containing

medium texture; this can be obtained by using the following rules (3.5).




T hlow = T hhigh = Dmax if Td = 1
T hlow = Dmin if Td = 0
T hhigh = Dmin+Dmax

2 if Td = 0
Dmin < T hlow < T hhigh if 0 < Td < 1
Dmin+Dmax

2 < T hhigh < Dmax if 0 < Td < 1

(3.5)

Once the similarity thresholds have been fixed, it is possible to finally determine the

filter weights by comparing the Di differences against them (Fig.3.9).

To summarize, the weighting coefficient selection is performed as follows. If the

i-th absolute difference Di is lower than T hlow, it is reasonable to assume that pixels P

and Pi are very similar; hence the maximum degree of similarity Maxweight is assigned

to Pi. On the other hand, if the absolute difference between P and Pi is greater than

T hhigh, it is reasonable that this difference is due to texture details, hence Pi is assigned

a null similarity weight. In the remaining cases, i.e., when the i-th absolute difference

falls in the interval [T hlow,T hhigh], a linear interpolation between Maxweight and 0 is

performed, allowing determining the appropriate weight for Pi.
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3.8 Final Weighted Average

Let W1, . . . ,WN (N: number of neighborhood pixels) be the set of weights computed

for the each neighboring element of the central pixel Pc. The final filtered value Pf is

obtained by weighted average as follows 3.6:

Pf =
∑N

i=1 [WiPi +(1−Wi)Pc]
N

(3.6)

In order to preserve the original bitdepth, the similarity weights are normalized in the

interval [0,1], and chosen according to equation 3.7:

Wi





1 if Di ≤ T hlow
L(T hlow,T hhigh) if T hlow < Di < T hhigh
0 if Di ≥ T hhigh

(3.7)

Where L(T hlow,T hhigh) performs a simple linear interpolation between T hlow and

T hhigh as depicted in Fig.3.9.

3.9 Experimental Results

The following sections describe the tests performed to assess the quality of the pro-

posed algorithm. First, a test computing the noise power before and after filtering is

reported. Next some comparisons between the proposed filter and other noise reduc-

tion algorithms [22, 23, 38] are described.

3.9.1 Noise Power Test

A synthetic image was used to determine the amount of noise that the algorithm is

capable to remove. Let us denote:

• INOISY : Noisy CFA Pattern;

• IFILT ERED: Filtered CFA Pattern;
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• IORIGINAL: Original noiseless CFA Pattern.

According to these definitions we have:

• INOISY - IORIGINAL = IADDED−NOISE ;

• IFILT ERED - IORIGINAL = IRESIDUAL−NOISE .

Where IADDED−NOISE is the image containing only the noise artificially added to

IORIGINAL, whereas IRESIDUAL−NOISE is the image containing the residual noise after

filtering. The noise power is computed for both IADDED−NOISE and IRESIDUAL−NOISE

according to the following formula (3.8):

P = 20log10

(
1

MN

N−1

∑
n=0

M

∑
m=0

I(m,n)2

)
(3.8)

To modulate the power of the additive noise, different values of the standard deviation

of a Gaussian distribution are used. Noise is assumed to be AWGN, with zero mean.

A synthetic test image has been generated having the following properties: it is

composed by a succession of stripes having equal brightness but different noise power.

Each stripe is composed of 10 lines and noise is added with increasing power start-

ing from the top of the image and proceeding downwards (Fig.3.10). In Fig.3.11 is

illustrated the filtering effects in terms of noise power; the x-axis represents the noise

standard deviation; the y-axis shows the corresponding noise power decibels before

and after filtering.

Figure 3.10 : Synthetic image test.
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Figure 3.11 : Noise power test. Upper line: noise level before filtering. Lower line:
residual noise power after filtering.

The filter significantly reduces noise and gains up to 6− 7dB can be obtained in

terms of noise power reduction.

3.9.2 Visual Quality Test

In order to assess the visual quality of the proposed method, we have compared it

with the SUSAN (Smallest Univalue Segment Assimilating Nucleus) [38] and MMF

(Multistage Median Filters) [22] classical noise reduction algorithm. This choice is

motivated by considering the comparable complexity of these solutions. Though more

complex recent methods for denoising image data exist [18, 31, 33, 40] achieving very

good results, they are not yet suitable for real-time implementation.

The tests were executed using two different approaches. In the first approach, the

original noisy Bayer data were interpolated obtaining a noisy color image, which was

splitted in its color channels; each color plane was filtered independently using SU-
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SAN. Finally, the filtered color channels were recombined to obtain the denoised color

image as sketched in Fig.3.12 The second approach consists in slightly modifying the

Figure 3.12 : Overall scheme used to compare the SUSAN algorithm with the pro-
posed method. The noisy color image is filtered by processing its color channels inde-
pendently. The results are recombined to reconstruct the denoised color image.

SUSAN algorithm so that it can process Bayer data. In both cases, the results of

SUSAN were compared with the color-interpolated image obtained from a denoised

Bayer pattern produced by the proposed method. Fig.3.13 shows two of test noisy

reference images acquired by a CFA image sensor (2 megapixels) after colour interpo-

lation. Original SNR values for the two images are 30.2dB and 47.2dB respectively.

After filtering, the corresponding SNR values became comparable and higher for both,

SUSAN and our filtering. In the first comparison test, both algorithms show very good

performances; the proposed method, anyway, is capable to preserve some small details

that are lost by SUSAN independent R/G/B filtering. Furthermore, processing is very

fast because the method processes only one plane of image information, i.e., the CFA

data. Fig.3.14 shows a magnified detail of Fig.3.13(a) and the filtering results with
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SUSAN and our method. Fig.3.15 shows how the proposed method significantly re-

tains texture and sharpness after filtering. Fig.3.16 shows two different details of the

noisy image in Fig.3.13(b) and their filtered counterparts. The homogeneous areas are

heavily filtered 3.16(a) , 3.16(b); on the other hand, in textured areas, the detail is well

preserved 3.16(c), 3.16(d).

Finally, Fig.3.17 and 3.18 illustrate the results of the multistage median filters de-

scribed in [22] compared with the proposed filter. Specifically, the multistage median-1

and multistage median-3 filter outputs were considered. The three methods work on

CFA data. Fig.3.18(d) shows, again, that the proposed filtering technique is able to

preserve texture and sharpness very well.

3.9.3 PSNR Test

In order to numerically quantify the performance of the filtering process, the standard

Kodak 24 (8-bpp) [39] images have been processed with the proposed method compar-

ing them with the outputs of SUSAN [38], Multistage Median-1, Multistage Median-3

algorithms [22] and the following fuzzy approaches from [23]:

1. GMED: Gaussian Fuzzy Filter with Median Center;

2. GMED: Gaussian Fuzzy Filter with Median Center;

3. GMAV : Gaussian Fuzzy Filter with Moving Average Center;

4. AT MED: Asymmetrical Triangular Fuzzy Filter with Median Center;

5. AT MAV : Asymmetrical Triangular Fuzzy Filter with Moving Average. Center

After converting each image of the set to Bayer pattern format, the simulation was

performed by adding noise with increasing standard deviation to each CFA plane. In
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(a)

(b)

Figure 3.13 : Images acquired by a CFA sensor. (a) SNR value 30.2dB. (b) SNR value
47.2dB. The yellow crops represent the magnified details contained in the following
figures.
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(a) Noisy (SNR 30.2dB) (b) SUSAN applied to R/G/B
separately (SNR 30.5dB)

(c) Proposed Method (SNR
31.2dB)

Figure 3.14 : A magnified detail of Fig.(3.13), to better evaluate the comparison
between the proposed filter and the SUSAN algorithm applied on R/G/B channels
separately. Both methods preserve details very well, although the proposed technique
is capable to better preserve texture sharpness; the enhancement is visible by looking at
the wall and the roof texture. The proposed method uses fewer resources as the whole
filtering action takes place on one plane of CFA data.

(a) Noisy (SNR 30.2dB) (b) SUSAN adapted to CFA
(SNR 30.5dB)

(c) Proposed Method (SNR
31.2dB)

Figure 3.15 : Comparison test at CFA level (magnified details of Fig.3.13(a)). The
original SUSAN implementation was slightly modified so that it can process Bayer
data. The efficiency of the proposed method in retaining image sharpness and texture
is clearly visible.
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(a) Cropped part of noisy image
3.13(b), 200% zoomed (pixel resize)

(b) Filtered 200% zoomed (pixel re-
size) counterpart

(c) Cropped part of noisy image
3.13(b), 200% zoomed (pixel resize)

(d) Filtered 200% zoomed (pixel re-
size) counterpart

Figure 3.16 : Magnified details (noisy and filtered) of Fig.3.13(b). The effects of the
proposed method over flat (a), (b) and textured (c), (d) areas are shown. The noisy
images are obtained by color interpolating unfiltered Bayer data (a), (c). The corre-
sponding color images produced by demosaicing filtered Bayer data (b), (d). SNR
values are: 47.2dB for noisy image and 51.8dB for filtered image.
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(a) Original

(b) Noisy (SNR 26.1 dB)

Figure 3.17 : Kodak image (kodim05). Original and noisy version.
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(a) Cropped and zoomed noisy im-
age (SNR 26.1 dB)

(b) Multistage median-1 filter.
(SNR 26.5 dB)

(c) Multistage median-3 filter.
(SNR 26.8 dB)

(d) Proposed method. (SNR 27.2
dB)

Figure 3.18 : (a) Cropped and zoomed detail of noisy image in Fig.3.17(b), filtered
with: Multistage median-1 filter (b), Multistage median-3 filter (c) and the proposed
method (d).
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particular the following values have been used: σ = 5,8,10. More specifically, the

aforementioned values of σ refer to the noise level in the middle of the dynamic range.

To simulate a more realistic sensor noise, in fact, we followed the model described

in [13, 14], that allows obtaining lower noise values for dark areas and higher noise

values for bright areas, according to a square root characterization of the noise. In

order to exclude the effects of different color interpolations from the computation of

the PSNR, the reference images were obtained following the procedure described in

Fig.3.19; in this way, both images (i.e., clean and noisy) are generated using the same

color interpolation algorithm.

Experiments show that the proposed method performs better in terms of PSNR

compared to different spatial algorithms [21, 38] and fuzzy approaches [23]. The re-

sults are shown in Figg.3.20 and 3.21

Bayerize

Kodak

RGB Bayer Color

Interpolation

Reference

Kodak

RGB

Noise

Noisy

Bayer
Denoising

Filtered

Bayer Color

Interpolation

Filtered

RGB

(a)

(b)

Figure 3.19 : Testing procedure. (a) The original Kodak color image is converted
to Bayer pattern format and demosaiced. (b) Noise is added to the Bayer image, fil-
tered and color interpolated again. Hence, color interpolation is the same for the clean
reference and the denoised images.
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PSNR results (Noise Level σ=σ=σ=σ=5)
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(a) Kodak noisy images set with standard deviation 5

PSNR results (Noise Level σσσσ=8)
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(b) Kodak noisy images set with standard deviation 8

PSNR results (Noise Level σσσσ=10)
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(c) Kodak noisy images set with standard deviation 10

Figure 3.20 : PSNR comparison between proposed solution and other spatial ap-
proaches for the Standard Kodak Images test set.
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PSNR results (Noise Level σσσσ=5)
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PSNR results (Noise Level σσσσ=10)
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(c) Kodak noisy images set with standard deviation 10

Figure 3.21 : PSNR comparison between proposed solution and other fuzzy ap-
proaches for the Standard Kodak Images test set.
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Chapter 4. Signal Dependent Noise
Estimation

4.1 Introduction

In the Chapter 2 the importance of noise level estimation phase to obtain an effec-

tive noise filtering, is described in detail. Anyway, as introduced in Section 1.10, an

accurate noise model must take into account the noise dependency from the signal in-

tensity. Usually the standard deviation of the Signal Dependent Noise (SDN) is defined

using equation (1.20), as described in Section 1.10 [14]. However, through a series

of analyses that will be introduced in the next section, we will show that sensor noise

level at the various acquisition settings can be modeled by using a more precise fitting

equation. Therefore, to model the SDN noise, in this chapter and in the next one, the

following model is adopted:

σ(i) =
√

a · i2 +b · i+ c (4.1)

where: a,b,c ∈ℜ+ and i is signal intensity. Hence, the problem of characterizing the

image sensor noise can be formulated as the problem of finding the proper coefficients

a,b and c for any operating condition of the imager (e.g., low light, normal, etc.). To

this end, we observe that the noise characteristics of an image sensor are strictly related

to the amount of light in the scene being captured. More specifically, as illumination

decreases, amplification of the signal is mandatory in order to obtain an acceptable

image. Signal amplification at sensor level is obtained by means of analog gains that

boost the detected intensities [14]. Unfortunately, one cannot amplify image signal
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without boosting noise levels as well: the higher the analog gain applied at sensor

level, the higher the amplification of signal and noise.

An accurate sensor noise characterization requires measurements in a controlled

environment. The acquisition device must be analyzed at all its operating conditions;

this is usually realized by acquisitions of homogeneous images obtained by means of

an integrating sphere, which provides a uniform light field of variable intensity. The

sensor is then used to acquire the flat images at varying intensities and using various

amplification factors. For each homogeneous image its average value is computed and

is chosen as representative of the intensity i; the associated standard deviation is also

calculated. We call noise sample the pair (i,σ(i)), where i is the image average value

and σ(i) is the standard deviation associated to i.
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Figure 4.1 : Acquired noise samples at different analog gain (AG = 1, 2, 4, 16) for a
3Mp ST Sensor.

As Fig.4.1 shows, once the analog gain factor is set, the noise samples lie in a

specific locus that can be identified by a specific equation after a proper fitting process
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is performed.

This Chapter is structured as follows: in Section 4.2 the equations (1.20), so far

used to describe the signal-dependent noise [14], and the new model (4.1) are analyzed,

and compared with others fitting equations, in order to show the performance of each

model and detect the more accurate equation which provides the best fitting of the noise

samples at each illumination condition. An effective way to obtain noise curves for an

image sensor using heterogeneous images acquired without a controlled environment

[1] is introduced in Section 4.3. This noise estimation framework operate by fitting and

interpolating the noise samples using multiple acquisitions to achieve a more robust

estimation. Finally is introduced a study-case that applying the signal-dependent noise

estimation procedure to multispectral images, obtain interesting results.

4.2 SDN Model Analysis

The behavior of the signal dependent noise is typically described using Eq.(1.20) as

in [14]. However, starting from a set of noise samples acquired in laboratory under

controlled conditions, we discovered that an improved fitting equation may provide

better approximation of the noise samples in terms of RMSE under all sensor oper-

ating conditions. In particular, experiments show that in some cases the fitting curve

(1.20) deviates significantly from the noise samples that we obtained in a controlled

environment, especially for low signal values (Fig.4.2). Notice that the noise samples

associated to signal intensities near saturation (clipped values) are excluded from the

fitting process.

In order to find an improved fitting equation, we analyzed Eq.(1.20), together with
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Figure 4.2 : Fitting of noise samples acquired at low analog gain (AG1), using
Eq.(1.20).

the Eq.(4.1) and the following alternative functions:

σ(i) = a · ib + c (4.2)

σ(i) =
a · i+b

i+ c
(4.3)

Table 4.1 and Fig.4.3 show the fitting results and associated root mean squared error

(RMSE) for the analyzed models at different AG. As Table 4.1 proves, the lowest error

is associated to the fitting model (4.1); this equation, in fact, allows a more accurate

fitting of the noise samples for each considered analog gain especially in the lower part

of the dynamic range. For this reason, the Eq.(4.1) is used as reference for all SDN

estimation and SDN removal algorithms, which will be covered in these chapters.
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Figure 4.3 : Fitting noise samples at AG1 (a) and AG16 (b).
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Table 4.1 : RMSE comparisons among equations (1.20), (4.1), (4.2) and (4.3) at
different analog gains.

Eq. (1.20) Eq. (4.1) Eq. (4.2) Eq. (4.3)
AG1 0.4512 0.1346 0.1548 0.1801
AG2 0.3291 0.1634 0.1775 0.2210
AG4 0.2068 0.1785 0.1853 0.2419

AG16 0.1556 0.1553 0.1517 0.2184
average 0.2857 0.1579 0.1673 0.2154

4.3 SDN Estimation by Multiple Images

This section presents the signal dependent noise estimation framework, through which

the noise profile of an image sensor under any illumination condition can be obtained.

The initial phase of this procedure consists in the collection of noise samples from

images acquired at every analog gain. To obtain a reliable estimate, it is necessary to

collect noise samples from a certain amount of images acquired at each analog gain;

these images must be partitioned into sets, classified according to the corresponding

analog gain, and processed separately with the same methodology.

The proposed solution [1] is based on the analysis of raw CFA data generated be-

fore the application of any data processing, using the first image outputted from the

imager. The following Sections describe in detail: the methodology for the extrac-

tion of the noise samples (Sections 4.3.1 and 4.3.2), and the technique to obtain the

sigma-curves from the fitted samples (Sections 4.3.3 and 4.3.4). Finally, Section 4.3.5

describes an alternative voting-based fitting approach.

4.3.1 Homogeneous Area Detection

Noise can be estimated in image areas where the signal activity is very low: tipically,

texture detection algorithms are applied to separate homogeneous areas from textured
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ones. Many methods for texture detection exist: the Amer-Dubois method [3], for

example, uses a set of highpass filters that detect signal activity in the horizontal, ver-

tical, diagonal and corner directions; the Kim-Lee technique [44] is based on a more

sophisticated approach which tries to differentiate image areas with the same standard

deviations but generated by patterns not related to random signal fluctuations; finally,

Staelin-Nachlieli [11] propose to estimate noise in areas where cross channel color

correlation is low.

The proposed methodology can be used with any texture detector algorithm; we

adopted the Kim-Lee texture detector [44] because of its reliability and reduced outlier

amount.

4.3.2 Noise Statistics Accumulation

An highpass filter is used to reject image areas containing structure; as stated above,

we use the texture detector (TD) described in [44]. The basic idea is to accumulate a

significant amount of noise level samples for any available intensity; the noise samples

sets are then analyzed to characterize the noise sensor behaviour. Let:

• Wi : m×m i-th processing window over the input image I;

• T htexture: texture threshold depending on the used texture detector and desired

sensitivity;

• N: number of m×m blocks in the image I;

The set W f lat , composed by the flat areas of the image I, is obtained as follows:

W f lat = {Wi | T D(Wi) < T htexture, i = 1, . . . ,N} (4.4)
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For all the elements in W f lat the standard deviation (σ) and the average value (µ) are

computed:

(µ(w),σ(w)), ∀w ∈W f lat (4.5)

A list of σ values is collected for each image intensity l ∈ [0, . . . ,2bpp−1] such that at

least a flat mask exists:

Θ(l) =
⋃

w∈W f lat

{σ(w) | µ(w) = l} (4.6)

∀l ∈ [0, . . . ,2bpp − 1]; granularity in each set Θ(l) is reduced approximating to the

nearest integer or, for better accuracy, cutting precision to one digit after the decimal

point.

4.3.3 Noise Statistics Fitting for a Single Image

All the noise samples gathered in the previous step are analyzed to retrieve a noise

level for each signal intensity. To obtain a robust estimate for the noise level at a

certain intensity l we consider the most frequently computed standard deviation in

Θ(l). Furthermore, to reject outliers, a lower bound Ω on the number of occurrences

of the most recurrent element in Θ(l) is considered. Then, let τ represent the frequency

of the most recurrent value in Θ(l):

τ = f req(mode(Θ(l))) (4.7)

The noise level Φ for intensity l is obtained as:

Φ(l) =
{

mode(Θ(l)) i f τ ≥Ω
0 i f τ < Ω (4.8)

It should be noticed that:
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1. the image may contain portions of the dynamic range for which noise statistics

cannot be retrieved. For example, the image may not contain suitable flat areas

for a given signal level, even if that intensity exists in the image (Fig.4.4).

2. Θ(l) may contain outliers and null values that must be removed.

In order to solve the above two issues, a robust linear least squares (LLS) fitting is

applied to the points where Φ(l) is defined, i.e., Φ(l) > 0, finally obtaining the inter-

polating curve C(l):

C(l) = LLS(Φ(l)|Φ(l) > 0), l ∈ [0, . . . ,2bpp−1] (4.9)

using the square root approximating function (4.1) as fitting curve model.

Figure 4.4 : Images can generate noise plots containing missing data for some signal
levels. The missing points are obtained via interpolation.
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4.3.4 Global Analysis of the Fitted Data

The fitting process is repeated for every image of all the analog gains sets. Given a set

of images at a specific analog gain Γ, each image γ ∈ Γ is processed finally generating

a set of noise curves CΓ
γ (l) according to (4.9). Starting from the set of available noise

curves CΓ
γ (l), we generate the unique noise characterization curve for the analog gain

of the images in Γ. A non linear smoothing operator is applied along the y-axis to reject

data outliers; a median operator represents a robust outlier rejecter for this application:

CΓ
est(l) = F

(
median

({
CΓ

γ (l)
}

γ=1,...,|Γ|
))

(4.10)

where F(·) is a low pass smoothing operator applied to reduce small outliers. The final

a and b coefficients for the images at analog gain Γ are obtained by LLS interpolation

of the points in (4.10). As the number of images in Γ increases, the estimation errors

decrease, especially at high analog gains.

4.3.5 Voting-based Sensor Noise Characterization

Now we introduce a voting-based fitting technique, that can be used to make more ro-

bust the fitting process discussed in previous sections [1]. In fact, due to the complexity

of real scenes, the texture detector can misclassify textured areas as flat, yielding to the

generation outlier pairs (i,σ(i)). Simple curve fitting methods (e.g., Least Squares)

could be not able to cope well with outliers, hence an ad hoc robust fitting techniques

have to be used, and a voting-based approach may be a reliable choice [35]. Equation

(4.1), by means of some simple mathematical manipulations, can be rewritten as:

σ2(i) = a · i2 +b · i+ c (4.11)
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Equation (4.11) represents a plane in the three-dimensional parameter space (a,b,c).

For each analog gain Γ, all sets Θ(l) obtained during the noise statistics accumulation

(Section 4.3.2), can be used directly for the voting process. Each pair (i,σ(i)) ∈ Θ(l)

votes for a specific plane in the parameter space.

The fitting parameter values (a,b,c) can be then obtained considering the densest

region of the space (Fig.4.5) making use of a 3D histogram (generalized Hough Trans-

form [37]). In order to obtain higher accuracy (limited by the binning process), these

estimated parameters are only used to filter out noise sample outliers; this filtering is

performed in the 3D histogram by considering the pairs voting for the bins close to the

best one. Finally the selected inliers are used as input in the Least Squares estimation

(Fig.4.6).

4.4 SDN Sensor Characterization Framework Tests

The last proposed noise profile estimator has been validated using sets of 20 images

per each analog gain, which are acquired using a ST 3MP sensor generating 10bit raw

images, and processed adopting the Kim-Lee texture detector [44]. The tests analyze

the validity of the proposed framework, comparing, in particular, the results achieved

by the voting-based approach [35], and those obtained by the standard technique based

on Least Squares fitting method [1].

For the voting method, all tests have been performed using the same parameters, a

3D histogram (a, b, c) of 291×12001×11 bins with a from 0 to 0.0001, b from 0.01

to 3, c from -60 to 60.

Table 4.2shows the performance of the two fitting methods in terms of RMSE,

i.e., the differences between estimated function and the sigma samples acquired in

laboratory at different AG. Then, we can see that with both technique the error in the
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Figure 4.5 : Each (i,σ(i)) pair votes for a plane in the parameter space. Planes corre-
sponding to inliers (blue), intersecting in a single point, produce the desiderate triplet.
The outlier planes (red) do not disturbs this process.
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Figure 4.6 : Voting approach selects inliers (green) from the (i,σ(i)) pair set (red).
This inliers are then used to estimate (through Least Squares) the model parameters.
The fitting curve is represented in blue.

estimate is low enough, and, in general, the voting approach seems to be the most

accurate.

Table 4.2 : RMSE comparison between voting approach and standard approach [1].
voting approach [1]

AG 1 0.2470 0.4801
AG 2 0.3648 0.6463
AG 4 0.6981 0.5296

AG 16 2.7514 3.0885
average 1.0153 1.1861

To visually assess the performances of the proposed system both voting approach

[35] and [1] are shown in Fig.4.7 together with the (i,σ(i)) pairs measured by the

integrating sphere. Estimation error increases as the analog gain augments, but it is

possible to reduce the errors by increasing the number of processed images.
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Figure 4.7 : Visual comparison between the voting approach (red) and the method
proposed in [1]. The reference curve (blue) is obtained by fitting the noise samples
obtained in lab, using Eq.4.1.

4.5 Application: Signal Dependent Noise Estimation for
Multispectral Images

The proposed voting-based SDN profile estimator [35] has been also validated using

a database of high spatial and spectral resolution reflectance images captured under

calibrated viewing conditions [20]. These images have been acquired using Applied

Spectral Imaging Spectracube camera1.

In order to profiling multispectral image perturbation, data at every band have been

considered. The images are partitioned into sets and classified according to the corre-

sponding band, obtaining noise samples as show in Fig.4.8:

Multispectral noise samples are then fitted using a voting-based appoach, where,

the square of the intensity standard deviation is modeled as a 2th order polynomial

function of the signal intensity (4.1).

1http://www.spectral-imaging.com/products/spectral-imaging
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Figure 4.8 : Noise samples estimated at 500, 550 and 600nm respectively.
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In Fig.4.9 the (i,σ(i)) pairs are shown together with the obtained interpolation

curve at 500, 550 and 600nm respectively.

The fitted curves have been then used to improve the quality of the original mul-

tispectral images, by making use of a modified signal dependent bilateral filter (see

Chapter 5). As can be seen in Figg.4.10 and 4.11 the noise in the homogeneous re-

gions has been considerably reduced without affecting image details.
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(a) Voting approach: noise samples of images acquired at 500nm
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(b) Voting approach: noise samples of images acquired at 550nm

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Intensity

Si
gm

a

 

 
(i, σ(i)) pairs
inliers
fitted curve

(c) Voting approach: noise samples of images acquired at 600nm

Figure 4.9 : Voting approach selects inliers (green) from the (i,σ(i)) pair set (red) at
500nm, 550nm, 600nm. These inliers are then used to estimate (through Least Squares)
the model parameters. The fitting curve is represented in black.
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(a) Noisy and filtered image at 500nm

(b) Noisy and filtered image at 550nm

(c) Noisy and filtered image at 600nm

Figure 4.10 : Test figure 1. Crop of noisy and filtered images at 500, 550 and 600nm,
obtained using a modified bilateral filter [39].
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(a) Noisy and filtered image at 500nm

(b) Noisy and filtered image at 550nm

(c) Noisy and filtered image at 600nm

Figure 4.11 : Test figure 2. Crop of noisy and filtered images at 500, 550 and 600nm,
obtained using a modified bilateral filter [39].
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Chapter 5. Signal Dependent Noise
Filtering

5.1 Signal Dependent Sigma Filter

A slightly modified version of the Sigma-Filter [6], detailed in Section 2.4.3, can be

used as noise reduction method to remove signal dependent noise; filtering process

works by means of SDN curves, that can be estimated as explained in Chapter 4.

Recall that the Sigma Filter process is based on the assumption that the observed

pixel value I(x,y) is a good estimate of the local signal mean. Let M be a m1×m2 filter

mask and Pc the value of its central pixel, the final filtered output is a weighted average

of the pixels having value close to one of the mask central pixel. Weights decrease

as the distance in intensity between the central pixel and the neighborhood augments.

Under the assumption of Gaussian noise model the Sigma Filter averages all the pixels

whose value fall in the range [Pc−3σ ,Pc +3σ ]. Anyway σ value, according to the

SDN model (4.1), have to be expressed as a function of the pixel value Pc as follows:

σ(Pc) =
√

a(Γ) ·P2
c +b(Γ) ·Pc + c(Γ) (5.1)

where a(Γ), b(Γ) and c(Γ) are estimated coefficients for the image I with analog gain

AG = Γ.

The Sigma Filter output Pf is computed as the sum of the mask pixels multiplied

by their respective weights and divided by the sum of the weights:

Pf =
∑i<(m1×m2)

i=0 wi ·Pi

∑i<(m1×m2)
i=0 wi

(5.2)

Fig.5.1 illustrates the validity of signal dependent noise filtering 5.1(c) compared

to the constant noise level model [6] 5.1(b) using a cropped part of a 10bit raw image
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acquired using a 3Mp sensor and processed using the ST image pipeline. The sigma

value used to process the image with the sigma-fixed (SF) version of the algorithm

[6], was determined by taking the average value of image intensities, and using the

corresponding value on the sigma-curves estimated at the same AG used to capture the

image, obtaining σ = 18.

It is evident how the signal dependent approach allows preserving details in a more

effective way, generating more pleasant images also in terms of perceptive sharpness.

Figg.5.2(a) and 5.2(d) show two zoomed and cropped details of image 5.1(a); it can be

noticed how the signal noise dependent model allows better filtering results in terms

of sharpness and detail preservation. In fact, while the SF model 5.2(b) and the SDN

model 5.2(c) in bright areas have similar performance, in 5.2(e) and 5.2(f) the image

portion filtered with the signal dependent noise model retains more details compared

to the image processed with the sigma-fixed model; this is caused by lower signal in-

tensity of the considerate area, where a lower sigma is required for the filtering process

(Fig.5.3).
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(a) Noisy Image

(b) SF Sigma-Filter denoising with (σ =
18)

(c) SDN Sigma-Filter denoising

Figure 5.1 : Comparison between SDN filtering approach and SF approach, using
a real image acquired with a 3Mp sensor. It is evident how the signal-dependent ap-
proach (c) better preserves details and sharpness compared to the fixed noise model
filtering (b). At this scale of resolution, the differences may not be evident, depending
on the media used to show these images (screen, printer, etc.). Detailed crops of these
samples are shown in Fig.5.2.
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(a) Crop of noisy image
5.1(a)

(b) SF Sigma-Filter denois-
ing (σ = 18)

(c) SDN Sigma-Filter denois-
ing

(d) Crop of noisy image
5.1(a)

(e) SF Sigma-Filter de-
noising based on fixed
noise model (σ = 18)

(f) SDN Sigma-Filter de-
noising

Figure 5.2 : Magnified detail of images in Fig.5.1. In (b) and (c), the SF model and
the SDN have similar performances because the sigma-fixed values (σ = 18) is similar
to the values used by the signal dependent model for processing this area. In (e) and (f)
the different performances of the two models show up; in this dark crop, the constant
noise model uses a fixed sigma which is too high compared to the values taken from
the noise curve 5.3.
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Figure 5.3 : Sigma-curve and costant sigma value (σ = 18) used to filter the image
shown in Fig.5.1(a).

5.2 Signal Dependent Bilateral Filter

Bilateral filter [39, 45], presented in Section 2.4.4, can be also adapted to use an SDN

estimation. This noise reduction process uses again, a weighted average of local sam-

ples, and is based on two different standard deviation values: the intensity related σi

and the spatial related σs.

I (−→x ) =
1
C ∑

y ∈N(−→x )
e
−‖−→y −−→x ‖

2 σ2
s e

−|I(−→y )−I(−→x )|
2 σ2

i I (−→y ) (5.3)

where N (−→x ) is a spatial neighborhood of pixel I (−→x ) and C represents the normaliza-

tion costant:

C = ∑
y ∈N(−→x )

e
−‖−→y −−→x ‖

2 σ2
s e

−|I(−→y )−I(−→x )|
2 σ2

i (5.4)

In this equation we can notice that, while σs is used to weight the pixels in the mask

depending on their distance from the center of the mask, while σi, in analogy with the
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Sigma Filter, represents the effective noise level which depends on the pixel intensity

values. For this reason, likewise Sigma Filter (Eq.5.3), σi can be modeled using an

SDN model (such as Eq.(4.1)) as follow:

σi(Pc) =
√

a(Γ) ·P2
c +b(Γ) ·Pc + c(Γ) (5.5)

where a(Γ), b(Γ) and c(Γ) are estimated coefficients for the image I with analog gain

AG = Γ.

5.3 Test Results

The algorithms based on a signal dependent noise model (SDN), described in previous

Sections, are tested using the Kodak’s images test set 1 and the results are compared

with the sigma-fixed (SF) versions of the related algorithms.

We have added signal dependent noise with variable intensity to the test images fol-

lowing the model (4.1). The noise added is the same as what we would have achieved if

we had acquired the images with a 3MP ST sensor and analog gain AG = 1,2,4,8,16.

The sigma values used to process each image with the SF version of the algorithms

Sigma Filter [6] and Bilateral Filter [39], was determined by using the average value

of image intensities, and using the corresponding value on sigma-curves at the related

AG.

We calculated the PSNR for each filtered image and the corresponding noisy, ob-

taining the results described in the following tables: 5.1, 5.3, 5.5, 5.7, 5.9. We also

measured the SSIM value [42], i.e., the index of similarity between the filtered im-

age and the clean original, to better observe the advantages of various algorithms (see

tables: 5.2, 5.4, 5.6, 5.8, 5.10).
1Standard Kodak test images - http://r0k.us/graphics/kodak/
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As can be see from the tables, the results obtained with the signal dependent algo-

rithms are certainly superior in terms of PSNR and SSIM respect their counterparts SF.

SDN technics, in fact, by using different noise level at at varying intensities, provide

an effective filtering, having the advantage of actually responding better to the edges

and details of the images and filtering optimally flat areas. Only with very high analog

gain (AG=16), however, the SF algorithms seem to obtain better results in terms of

SSIM; this is because the images are heavily filtered, then seem to be more similar to

the original, although many details are lost.

The effectiveness of SDN filtering methods can also be determined by visual com-

parison (see Figg. 5.5, 5.6, 5.7, 5.8,5.9), where the advantage of these algorithms is

considerable, especially in the way in which the edges and fine details are preserved.
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Table 5.1 : AG1 - PSNR comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 34.74959 35.24183 35.26959 35.16709 35.19698
kodim02 37.08459 37.99202 37.96968 37.64828 37.67370
kodim03 34.88670 36.64730 36.55227 36.42570 36.30483
kodim04 36.95896 38.52280 38.34436 38.02619 37.93403
kodim05 35.61580 35.99400 36.02466 35.81485 35.86205
kodim06 32.84290 34.84649 34.76991 34.41956 34.31775
kodim07 35.57861 38.08058 37.86075 37.77753 37.55052
kodim08 35.45245 35.98176 36.00265 35.81906 35.85969
kodim09 33.96313 37.82626 37.40592 37.70076 37.26373
kodim10 34.97469 37.70385 37.41296 37.58252 37.30110
kodim11 36.60744 38.27543 38.19516 37.86457 37.76396
kodim12 33.20269 35.78670 35.54419 35.45422 35.20424
kodim13 37.36304 37.57261 37.66409 37.35617 37.45777
kodim14 34.88872 35.31289 35.32094 35.20390 35.21244
kodim15 34.52629 37.98665 37.73629 36.55551 36.30336
kodim16 34.44982 37.21392 36.89351 37.07024 36.75801
kodim17 38.66623 39.40549 39.34746 39.00804 38.96821
kodim18 37.47080 37.61644 37.70459 37.54217 37.63532
kodim19 35.31433 38.11314 37.74395 38.07954 37.70599
kodim20 31.40890 36.00091 35.55803 35.72922 35.26558
kodim21 34.21362 37.53664 37.19758 37.36449 37.03256
kodim22 34.53973 35.76404 35.71290 35.50917 35.45657
kodim23 34.67054 36.82005 36.49245 36.43052 36.15563
kodim24 34.26248 36.06770 35.98733 35.68559 35.58252

GAINavg (dB) 1.85906 1.70913 1.56429 1.41977
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Table 5.2 : AG1 - SSIM comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 0.97669 0.93968 0.97956 0.93947 0.97931
kodim02 0.99613 0.96915 0.99680 0.96889 0.99657
kodim03 0.96106 0.94170 0.98040 0.94309 0.98224
kodim04 0.97765 0.95190 0.98532 0.94951 0.98299
kodim05 0.98051 0.94976 0.98354 0.94895 0.98290
kodim06 0.97348 0.94388 0.98462 0.94177 0.98240
kodim07 0.93862 0.92683 0.96744 0.92470 0.96489
kodim08 0.96704 0.93229 0.97213 0.93099 0.97114
kodim09 0.82925 0.87215 0.91498 0.87061 0.91305
kodim10 0.91681 0.90832 0.95301 0.90771 0.95253
kodim11 0.92394 0.92238 0.96019 0.91552 0.95191
kodim12 0.94797 0.92759 0.96968 0.92512 0.96683
kodim13 0.98371 0.94535 0.98583 0.94378 0.98436
kodim14 0.96706 0.93402 0.97025 0.93338 0.96963
kodim15 0.96636 0.94556 0.98384 0.93747 0.97580
kodim16 0.91201 0.91507 0.95261 0.91460 0.95230
kodim17 0.96252 0.92262 0.96898 0.91886 0.96519
kodim18 0.97841 0.94824 0.98166 0.94750 0.98121
kodim19 0.86897 0.87763 0.92134 0.87629 0.91967
kodim20 0.77596 0.85246 0.89705 0.84708 0.89015
kodim21 0.94965 0.92958 0.97273 0.92887 0.97188
kodim22 0.94322 0.92250 0.96477 0.91929 0.96099
kodim23 0.94893 0.92959 0.96710 0.92566 0.96361
kodim24 0.91800 0.91261 0.95399 0.90349 0.94355
SSIMavg 0.94016 0.92587 0.96533 0.92344 0.96271
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Table 5.3 : AG2 - PSNR comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 29.62765 30.85200 30.77186 30.76670 30.69148
kodim02 31.50375 33.31532 33.09713 33.09154 32.99279
kodim03 29.78230 32.27954 31.93061 32.05679 31.84142
kodim04 31.35997 33.93780 33.64227 33.62681 33.38482
kodim05 30.44175 31.33794 31.19074 31.18001 31.14023
kodim06 28.09800 30.42199 30.28046 30.09981 29.93752
kodim07 30.27507 33.32510 33.02930 33.10235 32.80436
kodim08 30.17987 31.32580 31.26461 31.22667 31.17920
kodim09 28.96382 33.49083 33.02008 33.39348 32.91197
kodim10 29.84105 33.50207 33.11873 33.42333 33.04540
kodim11 31.12757 33.40287 33.05409 33.14482 32.95472
kodim12 28.39436 31.75453 31.42617 31.48776 31.14046
kodim13 31.64802 32.41455 32.34049 32.26384 32.24992
kodim14 29.77718 31.01623 30.86855 30.86335 30.74453
kodim15 29.60406 33.20814 32.84645 32.17699 31.84785
kodim16 29.33813 33.05879 32.63329 32.89586 32.46970
kodim17 32.74560 34.64551 34.34593 34.37132 34.18037
kodim18 31.73876 32.50051 32.47821 32.44985 32.44231
kodim19 30.01755 33.93060 33.47874 33.93037 33.46962
kodim20 26.91008 31.77383 31.28375 31.55978 31.06197
kodim21 29.14270 33.22598 32.81210 33.11058 32.69320
kodim22 29.43847 31.43940 31.27931 31.22483 31.06580
kodim23 29.57268 32.78791 32.33579 32.40474 31.99829
kodim24 29.29853 31.38437 31.25926 31.17807 31.04020

GAINavg (dB) 2.56270 2.29004 2.34178 2.10255
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Table 5.4 : AG2 - SSIM comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 0.93204 0.87185 0.94937 0.87160 0.94920
kodim02 0.99018 0.93808 0.99382 0.93766 0.99363
kodim03 0.86201 0.84719 0.92310 0.85312 0.93133
kodim04 0.87561 0.87251 0.93287 0.86671 0.92629
kodim05 0.92734 0.88092 0.95134 0.87978 0.95081
kodim06 0.87734 0.87535 0.95010 0.87049 0.94473
kodim07 0.74926 0.80359 0.88500 0.80243 0.88406
kodim08 0.84595 0.81540 0.89653 0.81453 0.89649
kodim09 0.56292 0.69694 0.77122 0.69681 0.77030
kodim10 0.83800 0.83646 0.91842 0.83652 0.91833
kodim11 0.66409 0.73962 0.81208 0.73219 0.80291
kodim12 0.82142 0.83364 0.91924 0.83197 0.91692
kodim13 0.94573 0.87797 0.95235 0.87754 0.95260
kodim14 0.85126 0.80987 0.88499 0.80802 0.88313
kodim15 0.85825 0.86296 0.93759 0.85711 0.93052
kodim16 0.78127 0.81250 0.89982 0.81682 0.90556
kodim17 0.90511 0.88773 0.94880 0.89216 0.95432
kodim18 0.89009 0.86348 0.92351 0.85968 0.91948
kodim19 0.72002 0.77824 0.85491 0.77546 0.85172
kodim20 0.47201 0.62805 0.70417 0.62483 0.70133
kodim21 0.89991 0.87599 0.96015 0.87560 0.95970
kodim22 0.83598 0.80874 0.89275 0.80601 0.88904
kodim23 0.90060 0.87695 0.95264 0.87829 0.95481
kodim24 0.74826 0.77131 0.84515 0.75997 0.83177
SSIMavg 0.82311 0.82772 0.90250 0.82605 0.90079
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Table 5.5 : AG4 - PSNR comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 28.35616 29.78968 29.69447 29.68951 29.59767
kodim02 30.23546 32.26786 32.09242 32.03121 31.89678
kodim03 28.58153 31.30715 31.08785 31.03151 30.78785
kodim04 30.22814 33.09524 32.77256 32.77976 32.50211
kodim05 29.15596 30.20327 30.10877 30.00799 29.94871
kodim06 26.90997 29.38241 29.23112 29.05648 28.88137
kodim07 29.00144 32.21598 31.90091 31.95230 31.63599
kodim08 28.92227 30.27435 30.17516 30.14487 30.06932
kodim09 27.74002 32.41003 31.93707 32.32915 31.83329
kodim10 28.51690 32.31768 31.90970 32.22382 31.81550
kodim11 29.93086 32.36931 32.16449 32.07065 31.85749
kodim12 27.09325 30.67393 30.31142 30.39177 30.01900
kodim13 30.37236 31.33987 31.28202 31.16120 31.12571
kodim14 28.46847 29.96079 29.80830 29.77703 29.62785
kodim15 28.37972 32.14720 31.73975 31.07685 30.71822
kodim16 28.09992 31.98699 31.56194 31.82547 31.39726
kodim17 31.58448 33.73035 33.40346 33.41045 33.18176
kodim18 30.50684 31.41376 31.37228 31.35032 31.31754
kodim19 28.81394 32.94863 32.47906 32.96116 32.48454
kodim20 25.58448 30.45077 29.95101 30.23536 29.74024
kodim21 27.93544 32.18134 31.76022 32.06810 31.63405
kodim22 28.23403 30.47613 30.27803 30.23905 30.03771
kodim23 28.38024 31.85509 31.37583 31.44905 31.00432
kodim24 28.02604 30.23791 30.07835 30.02715 29.85602

GAINavg (dB) 2.74908 2.4758 2.50968 2.24635
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Table 5.6 : AG4 - SSIM comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 0.91332 0.86159 0.93741 0.86118 0.93704
kodim02 0.98706 0.93660 0.99234 0.93604 0.99191
kodim03 0.82737 0.82835 0.90120 0.83539 0.91134
kodim04 0.84725 0.86150 0.91974 0.85414 0.91151
kodim05 0.90858 0.87198 0.94000 0.87086 0.93959
kodim06 0.84121 0.86157 0.93386 0.85510 0.92668
kodim07 0.68948 0.77755 0.85220 0.77632 0.85101
kodim08 0.80480 0.79489 0.87236 0.79419 0.87276
kodim09 0.48999 0.65376 0.71714 0.65413 0.71657
kodim10 0.79773 0.82120 0.89828 0.82125 0.89812
kodim11 0.60737 0.70221 0.76720 0.69418 0.75725
kodim12 0.77705 0.81774 0.89854 0.81579 0.89589
kodim13 0.92984 0.86652 0.93971 0.86567 0.93992
kodim14 0.81514 0.78932 0.86055 0.78698 0.85810
kodim15 0.82125 0.84844 0.91994 0.84048 0.91058
kodim16 0.72815 0.79019 0.87238 0.79569 0.87969
kodim17 0.88388 0.87887 0.93874 0.88574 0.94680
kodim18 0.86125 0.84773 0.90549 0.84313 0.90007
kodim19 0.66263 0.74747 0.82034 0.74494 0.81727
kodim20 0.40810 0.58215 0.64751 0.57864 0.64395
kodim21 0.87164 0.86695 0.94909 0.86673 0.94862
kodim22 0.80377 0.79004 0.87019 0.78668 0.86569
kodim23 0.87730 0.86982 0.94397 0.87187 0.94683
SSIMavg 0.7872 0.80880 0.87961 0.80698 0.87774
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Table 5.7 : AG8 - PSNR comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 24.92398 26.93885 26.78827 26.82943 26.67537
kodim02 26.70580 29.45190 29.01574 29.18544 28.96265
kodim03 25.01730 28.25151 27.37712 27.93873 27.60716
kodim04 26.63413 30.08995 29.69976 29.85800 29.50627
kodim05 25.68645 27.23099 26.94983 27.01877 26.86982
kodim06 23.41486 26.27248 26.06368 25.97654 25.73854
kodim07 25.59096 29.10075 28.75056 28.86818 28.53869
kodim08 25.45677 27.33971 27.17264 27.24314 27.08877
kodim09 24.24915 29.03409 28.55505 28.99521 28.48200
kodim10 25.09847 29.25057 28.81694 29.20665 28.75767
kodim11 26.49293 29.34799 28.83583 29.12110 28.84441
kodim12 23.70148 27.77245 27.36346 27.52998 27.09338
kodim13 26.89983 28.50779 28.29914 28.36253 28.22794
kodim14 25.06194 27.26666 26.97930 27.06526 26.81487
kodim15 24.91582 28.89497 28.04866 27.93696 27.52302
kodim16 24.66960 28.98974 28.52734 28.84515 28.36448
kodim17 27.92703 30.71782 30.12445 30.39632 30.08031
kodim18 26.97623 28.46026 28.17465 28.38877 28.27281
kodim19 25.30910 29.75916 29.29225 29.83573 29.34490
kodim20 22.18379 27.10491 26.59447 26.94154 26.42817
kodim21 24.49327 28.94967 28.51564 28.90678 28.44650
kodim22 24.78112 27.62589 27.36195 27.43588 27.14944
kodim23 24.90001 28.92622 28.41813 28.49428 28.00189
kodim24 24.53935 27.04813 26.83993 26.88377 26.66752

GAINavg (dB) 3.19596 2.78897 2.98478 2.66072
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Table 5.8 : AG8 - SSIM comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 0.83746 0.81739 0.88658 0.81664 0.88559
kodim02 0.97102 0.93054 0.98452 0.92963 0.98413
kodim03 0.71323 0.76204 0.82310 0.77396 0.83951
kodim04 0.73844 0.80959 0.85984 0.79991 0.84876
kodim05 0.82916 0.82940 0.88658 0.82802 0.88949
kodim06 0.72090 0.80919 0.87242 0.79939 0.86156
kodim07 0.50996 0.67947 0.73480 0.67906 0.73417
kodim08 0.66078 0.72219 0.78435 0.72437 0.78844
kodim09 0.30680 0.50915 0.54921 0.51198 0.55059
kodim10 0.65907 0.75783 0.81945 0.75962 0.82115
kodim11 0.45386 0.58352 0.78301 0.57652 0.62009
kodim12 0.60928 0.74225 0.80603 0.73942 0.80178
kodim13 0.85357 0.81800 0.88357 0.81821 0.88637
kodim14 0.66984 0.70686 0.76311 0.70363 0.75938
kodim15 0.68412 0.78531 0.84462 0.77337 0.83062
kodim16 0.55745 0.70046 0.76545 0.71180 0.77865
kodim17 0.75701 0.81526 0.85717 0.84374 0.89740
kodim18 0.74924 0.78124 0.82551 0.77734 0.82445
kodim19 0.48820 0.65025 0.70523 0.64984 0.70503
kodim20 0.25684 0.43668 0.48291 0.43512 0.48208
kodim21 0.75494 0.82317 0.89590 0.82408 0.89634
kodim22 0.68683 0.71357 0.77943 0.70949 0.77441
kodim23 0.77021 0.82470 0.88941 0.82974 0.89548
kodim24 0.63087 0.66191 0.71812 0.65062 0.70666
SSIMavg 0.66121 0.73625 0.8000 0.73606 0.79426
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Table 5.9 : AG16 - PSNR comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 21.77130 24.32551 24.07544 24.28335 24.04779
kodim02 23.38835 26.71072 26.28839 26.69253 26.37244
kodim03 21.96400 25.65707 25.15957 25.43183 25.03442
kodim04 23.32953 27.25089 26.82941 27.32749 26.91100
kodim05 22.46622 24.45851 23.55486 24.34071 24.11478
kodim06 20.47102 23.72794 23.44164 23.51427 23.20344
kodim07 22.28903 25.99799 25.59276 25.90020 25.53774
kodim08 22.26718 24.74117 24.46728 24.73779 24.51045
kodim09 21.22578 26.10801 25.58291 26.13307 25.61488
kodim10 21.91767 26.27675 25.81266 26.33222 25.84389
kodim11 23.07271 26.28096 25.06844 26.20690 25.86916
kodim12 20.68932 25.03977 24.59592 24.93056 24.44989
kodim13 23.49033 25.88105 25.58928 25.89004 25.63679
kodim14 21.90099 24.75514 24.23716 24.62087 24.27942
kodim15 21.81081 25.90361 24.75050 25.28931 24.82901
kodim16 21.56759 26.09366 25.62567 26.05976 25.55264
kodim17 24.45252 27.76267 27.07776 27.73907 27.36133
kodim18 23.60495 25.67968 25.14752 25.73193 25.52218
kodim19 22.14410 26.78340 26.29124 26.98417 26.47820
kodim20 19.40421 24.37649 23.79873 24.28627 23.75541
kodim21 21.39857 25.98234 25.48065 26.01198 25.52655
kodim22 21.69124 25.08361 24.70294 24.99824 24.64525
kodim23 21.76497 26.06192 25.57326 25.80797 25.29563
kodim24 21.49540 24.40909 24.13935 24.35116 24.07413

GAINavg (dB) 3.57376 3.05440 3.50100 3.12036
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Table 5.10 : AG16 - SSIM comparison between Signal Dependent and Sigma-Fixed
Noise Removal Approaches

Filename Noisy
SDF SF

SDNSIGMA f ilt SDNBILAT f ilt SFSIGMA f ilt SFBILAT f ilt

kodim01 0.73394 0.75392 0.81333 0.75414 0.81370
kodim02 0.93838 0.91812 0.96932 0.91815 0.97021
kodim03 0.58870 0.67631 0.72307 0.69016 0.74084
kodim04 0.60937 0.72810 0.76991 0.72065 0.76060
kodim05 0.71524 0.76215 0.79990 0.76375 0.81367
kodim06 0.58958 0.73638 0.78736 0.72579 0.77679
kodim07 0.33408 0.54513 0.57934 0.54844 0.58179
kodim08 0.49500 0.61584 0.65904 0.62187 0.66702
kodim09 0.18070 0.36663 0.38397 0.37115 0.38702
kodim10 0.49341 0.65901 0.69871 0.66510 0.70475
kodim11 0.32376 0.44873 0.47928 0.44838 0.47841
kodim12 0.45655 0.65252 0.69846 0.65089 0.69502
kodim13 0.72299 0.73713 0.79108 0.74433 0.80171
kodim14 0.51363 0.60853 0.65023 0.60704 0.64770
kodim15 0.52471 0.68925 0.72705 0.67893 0.72003
kodim16 0.39169 0.57233 0.61804 0.58847 0.63516
kodim17 0.50823 0.65658 0.67043 0.72762 0.76346
kodim18 0.59340 0.67653 0.69896 0.68462 0.71752
kodim19 0.32559 0.51583 0.55251 0.52341 0.55982
kodim20 0.16420 0.31476 0.34502 0.31453 0.34643
kodim21 0.60438 0.75338 0.81146 0.75700 0.81441
kodim22 0.56922 0.63720 0.68788 0.63552 0.68541
kodim23 0.62735 0.74935 0.80040 0.76003 0.81232
kodim24 0.55323 0.58508 0.62922 0.57788 0.62534
SSIMavg 0.52322 0.63995 0.68100 0.64491 0.68830
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Figure 5.4 : Reference test image kodim04 used for visual comparison at different
AG in Figg. 5.5, 5.6, 5.7, 5.8, 5.9

.
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(a) Noisy image AG 1

(b) SF - SigmaFilter (c) SDN - SigmaFilter

(d) SF - BilateralFilter (e) SDN - BilateralFilter

Figure 5.5 : AG1. Cropped part of image kodim04 shown in Fig.5.4 - Visual compar-
ison between sigma fixed and signal dependent noise removal approaches.
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(a) Noisy image AG 2

(b) SF - SigmaFilter (c) SDN - SigmaFilter

(d) SF - BilateralFilter (e) SDN - BilateralFilter

Figure 5.6 : AG2. Cropped part of image kodim04 shown in Fig.5.4 - Visual compar-
ison between sigma fixed and signal dependent noise removal approaches.
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(a) Noisy image AG 4

(b) SF - SigmaFilter (c) SDN - SigmaFilter

(d) SF - BilateralFilter (e) SDN - BilateralFilter

Figure 5.7 : AG4. Cropped part of image kodim04 shown in Fig.5.4 - Visual compar-
ison between sigma fixed and signal dependent noise removal approaches.
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(a) Noisy image AG 8

(b) SF - SigmaFilter (c) SDN - SigmaFilter

(d) SF - BilateralFilter (e) SDN - BilateralFilter

Figure 5.8 : AG8. Cropped part of image kodim04 shown in Fig.5.4 - Visual compar-
ison between sigma fixed and signal dependent noise removal approaches.
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(a) Noisy image AG 16

(b) SF - SigmaFilter (c) SDN - SigmaFilter

(d) SF - BilateralFilter (e) SDN - BilateralFilter

Figure 5.9 : AG16. Cropped part of image kodim04 shown in Fig.5.4 - Visual com-
parison between sigma fixed and signal dependent noise removal approaches
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