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Randomness in Economic

Theory

Surprisingly, risk and uncertainty have a rather short history in eco-

nomics. The formal incorporation of these concepts into economic theory

was only accomplished when Von Neumann and Morgenstern (1944) pub-

lished their Theory of Games and Economic Behavior - although the excep-

tional effort of Ramsey (1926) and Keynes (1921) must be mentioned as an

antecedent. Indeed, the very idea that risk and uncertainty might be rele-

vant for economic analysis was only really suggested by Frank Knight (1921)

in his formidable treatise, Risk, Uncertainty and Profit. What makes this

lateness even more surprising is that the very concept of marginal utility,

the foundation stone of Neoclassical economics, was introduced by Bernoulli

(1738)1 in the context of choice under risk. Bernoulli’s notion of expected

utility which decomposed the valuation of a risky venture as the sum of util-

ities from outcomes weighted by the probabilities of outcomes, was generally

not appealed to by economists. Part of the problem was that it did not

seem sensible for rational agents to maximize expected utility and not some-

1reprinted in Bernoulli (1954)
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thing else. Specifically, Bernoulli’s assumption of diminishing marginal utility

seemed to imply that, in a gamble, a gain would increase utility less than a

decline would reduce it. Consequently, many concluded, the willingness to

take on risk must be “irrational”, and thus the issue of choice under risk or

uncertainty was viewed suspiciously, or at least considered to be outside the

realm of an economic theory which assumed rational actors. The great task

of Von Neumann and Morgenstern (1944) was to lay a rational foundation

for decision-making under risk according to expected utility rules. However

the novelty of using the axiomatic method - combining sparse explanation

with often obtuse axioms - ensured that most economists of the time would

find their contribution inaccessible. Restatements and re-axiomatizations by

Marschak (1950); Samuelson (1952); Herstein and Milnor (1953) did much to

improve the situation. A second revolution occurred soon afterwards. The

expected utility hypothesis was given a celebrated subjectivist twist by Sav-

age (1954) in his classic Foundations of Statistics. Inspired by the work of

Ramsey (1926) and De Finetti (1931, 1937), Savage derived the expected

utility hypothesis without imposing objective probabilities but rather by al-

lowing subjective probabilities to be determined jointly. Savage’s brilliant

performance was followed up by Anscombe and Aumann (1963). In some re-

gards, the Savage-Anscome-Aumann subjective approach to expected utility

has been considered more general than the older von Neumann-Morgenstern

concept. Another “subjectivist” revolution was initiated with the “state-

preference” approach to uncertainty of Arrow (1964) and Debreu (1959).

Although not necessarily opposed to the expected utility hypothesis, the

state-preference approach does not involve the assignment of mathematical

8



probabilities, whether objective or subjective, although it often might be use-

ful to do so. The structure of the state-preference approach is more amenable

to Walrasian general equilibrium theory where payoffs are not merely money

amounts but actual bundles of goods. In economic theory, utility is usually

understood as a numerical representation of a preference relation; preferences

are assumed to satisfy certain condition of internal consistency, axioms, which

ensure that a utility representation exists for preferences and that choosing

consistently with one’s preferences can be represented as the maximization

of utility. Expected utility theory imposes a particular set of consistency

conditions, which imply that choice under uncertainty can be represented as

the maximization of the mathematical expectation of the utility of conse-

quences. Famous paradoxes such as those in Shackle (1952); Allais (1953);

Ellsberg (1961), have been presented to critic this set of axioms underling

the expected utility theory, see Camerer (1995) for an overview. On the

other hand, influential experimental studies, such as those by Kahneman

and Tversky (1979), have revealed a range of systematic patterns of behav-

ior which appear to contravene expected utility theory. These motivations

reinforced the need to rethink and to re-axiomatize much of the theory of

choice under risk and uncertainty. In the last thirty years, an enormous

amount of work has been done to develop new decision theories, the so called

non-expected utility theories, which can accommodate at least some of the

patterns of choice that contravene expected utility theory. Non expected

utility theories impose different - usually weaker - consistency conditions

with respect to those imposed by utility theory, which represent choice un-

der uncertainty as the maximization of some other function rather than the
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mathematical expectation of the utility of consequences. Over these alter-

native theories, are worthy to be mentioned: weighted expected utility (e.g.

Allais and Hagen (1979); Chew and MacCrimmon (1979); Fishburn (1983)),

rank-dependent expected utility (Quiggin (1982); Yaari (1987)), non-linear

expected utility (e.g. Machina (1982)), regret theory (Loomes and Sugden

(1982), non-additive expected utility (Shackle (1949); Schmeidler (1989)) and

state-dependent preferences (Karni (1985)). Prospect Theory (PT) of Kah-

neman and Tversky (1979) merits a special mention. Due to the great de-

scriptive powerful of the theory, the two authors (psychologists) imposed

initially prospect theory as a descriptive model, without an axiomatic foun-

dation. The modern version Cumulative Prospect Theory (CPT), Tversky

and Kahneman (1992), is nowadays considered one of the most suitable gen-

eralization of classical expected utility. With CPT the authors generalized

PT, and summarized the most relevant ideas contained in the other non-

expected utility theories. Since CPT is nowadays considered the reference

model of choice under risk and uncertainty, most of empirical studies are

designed to test it. In very recent years some critiques have been advanced

against CPT, particularly regarding the gain loss separability, i.e. the fact

that in the model gains and losses contained within a lottery are evaluated

separately, and then summed to obtain an overall evaluation. These critiques

have been formalized in many studies, the most relevant of which is surely

Wu and Markle (2008). With this thesis we aim to generalize CPT, allowing

gains and losses within a mixed prospect to be evaluated conjointly, in this

bypassing the critique regarding the gain loss separability but retaining the

main features of CPT. We call our model the bipolar Cumulative Prospect
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Theory (bCPT), to underline that we retain it the most natural extension

of CPT. At the end we wish to point out that this thesis does not provide a

full preference foundation of bCPT, i.e. the model is not elicited from a set

of axioms, but we use an utility-based method. We think most theorist of

choice under uncertainty will acknowledge that, in their actual practice, they

use axiomatic and utility-based methods in parallel. Some new theories have

been developed out of the consideration of alternative axioms about prefer-

ences, but in many cases, theories were initially developed in the language

of utility and the equivalent axiomatic form were discovered later. Expected

utility theory itself provides an extreme example of this process: the utility-

based form of this theory preceded its axiomatic form by about two hundred

years. In recent years PT (utility-based) preceded CPT by thirteen years.

It is not obvious, then, that the axiom-based versions of theories are more

fundamental than the utility-based versions.
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Chapter 1

Historical Background

1.1 The St. Petersburg paradox

During the development of probability theory in the 17th century, math-

ematicians such as Blaise Pascal and Pierre de Fermat assumed that the

attractiveness of a gamble offering the payoffs (x1, . . . , xn) with probabilities

(p1, . . . , pn) was given by its expected value ∑i xipi.

Nicholas Bernoulli proposed the following St. Petersburg game in 1713, which

was resolved independently by his cousin Daniel Bernoulli (in 1738) and

Gabriel Cramer (in 1728). Suppose someone offers to toss a fair coin repeat-

edly until it comes up heads. If the first head appears at the nth toss, the

payoff is $2n−1. What is the largest sure gain you would be willing to forgot

in order to undertake a single play of this game? Typically the gamble is

represented as

G = ($20,2−1;$21,2−2;⋯;$2n−1,2−n;⋯) (1.1)

13



Since its expected value is ∑i 2
−i2i−1 = ∑i 1/2 = ∞, a person would be willing

to pay any sum to play the game, yet, real-world people is willing to pay only

a moderate amount of money. This is the so-called St. Petersburg paradox.

Daniel Bernoulli’s solution involved two ideas that have since revolutionized

economics: firstly, that people’s utility from wealth, u(w), is not linearly

related to wealth w but rather increases at a decreasing rate - the famous

idea of diminishing marginal utility ; secondly that a person’s evaluation of

a risky venture is not the expected return of that venture, but rather the

expected utility from that venture.

In general, by Bernoulli’s logic, the valuation of any risky venture takes

the expected utility form:

E(u, p,X) = ∑
x∈X

p(x)u(x)

whereX is the set of possible outcomes, p(x) is the probability of a particular

outcome x ∈X and u ∶X →R is a utility function over outcomes.

In the St. Petersburg case, the sure gain λ which would yield the same utility

as the St. Petersburg gamble, i.e., the certainty equivalent λ of this gamble,

is determined by the following equation

u(ω + λ) = 1

2
u(ω + 1) + 1

4
u(ω + 2) +⋯

where ω is the person’s initial wealth. For example, when u(x) = ln(x) and
ω = $50000, λ is about $9 even thought the gamble has an infinite expected

value. Finally we note that as Menger (1934) later pointed out, placing

an ironical twist on all this, Bernoulli’s hypothesis of diminishing marginal
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utility is actually not enough to solve all St. Petersburg-type Paradoxes. To

see this, note that we can always find a sequence of payoffs x1, x2, x3,⋯ which

yield infinite expected value, and then propose, say, that u(xn) = 2n so that

expected utility is also infinite. The Menger game is nowadays called the

super St. Petersburg paradox. Thus, Menger proposed that utility must also

be bounded above for paradoxes of this type to be resolved.

1.2 von Neumann and Morgenstern

While Bernoulli theory - the first statement of EUT - solved the St. Pe-

tersburg puzzle, it did not find much favor with modern economists until the

1950s. This is partly explained by the fact that, in the form presented by

Bernoulli, the theory presupposes the existence of a cardinal utility scale; an

assumption that did not sit well with the drive towards ordinalization during

the first half of the twentieth century. Interest in the theory was revived

when Von Neumann and Morgenstern (1944) showed that the expected util-

ity hypothesis could be derived from a set of apparently appealing axioms

on preference. Since then, numerous alternative axiomatizations have been

developed, some of which seem highly appealing, some might even say com-

pelling, from a normative point of view. To the extent that its axioms can

be justified as sound principles of rational choice to which any reasonable

person would subscribe, they provide grounds for interpreting EUT norma-

tively (as a model of how people ought to choose) and prescriptively (as a

practical aid to choice). Our concern, however, is with how people actually

choose, whether or not such choices conform with a priori notions of ratio-
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nality. Consequently, we will not be delayed by questions about whether

particular axioms can or cannot be defended as sound principles of rational

choice, and I will start from the presumption that evidence relating to actual

behavior should not be discounted purely on the basis that it falls foul of

conventional axioms of choice.

In the von Neumann-Morgenstern (vNM) hypothesis, probabilities are as-

sumed to be “objective” or exogenously given by “Nature” and thus cannot

be influenced by the agent. The problem of an agent under objective uncer-

tainty (another name commonly used in the literature is “risk”) is to choose

among lotteries. vNM’s original formulation involved decision trees in which

compound lotteries were explicitly modeled. We use here the more compact

formulation of Fishburn (1970), which implicitly assumes that compound

lotteries are simplified according to Bayes’s formula. Thus, lotteries are de-

fined by their distributions, and the notion of “mixture” implicitly supposes

that the decision maker is quite sophisticated in terms of her probability

calculations. Let X be a set of alternatives. There is no additional struc-

ture imposed on it. X can be a familiar topological and linear space, but it

can also be anything you wish. In particular, X need not be restricted to a

space of product-bundles such as Rl
+ and it may include outcomes such as,

God forbid, death. The objects of choice are lotteries with finite support.

Formally, define

L = {P ∶X → [0,1] ∣ #{x ∣ P (x) > 0} < ∞ ∧ ∑
x∈X

P (x) = 1 }

16



Observe that the expression ∑x∈X P (x) = 1 is well-defined thanks to the finite

support condition that precedes it. A mixing operation is performed on L,
defined for every P,Q ∈ L and every α ∈ [0,1] as follows: αP + (1 − α)Q ∈ L
is given by

(αP + (1 − α)Q) (x) = αP (x) + (1 − α)Q(x)
for every x ∈ X. The intuition behind this operation is of conditional prob-

abilities: assume that we offer you a compound lottery that will give you

the lottery P with probability α and the lottery Q with probability (1 − α).
If you know probability theory, you can ask yourself what is the probability

to obtain a certain outcome x, and observe that it is, indeed, α times the

conditional probability of x if you get P plus (1 − α) times the conditional

probability of x is you get Q.

Since the objects of choice are lotteries, the observable choices are modeled

by a binary relation, ≿, on L, i.e. ≿ ⊆ L×L, where P ≿ Q means that lottery

P is considered at least as “good” as lottery Q and the strict preference ≻
and indifference ∼ are defined as usually, i.e. ≻ is the asymmetric part of ≿
and ∼ is its symmetric part.

The vNM’s axioms are:

V1. Weak order: ≿ is complete and transitive.

V2. Continuity: For every P,Q,R ∈ L if P ≻ Q ≻ R, there exist α,β ∈ (0,1)
such that αP + (1 − α)R ≻ Q ≻ βP + (1 − β)R.

V3. Independence: For every P,Q,R ∈ L and every α ∈ (0,1), P ≿ Q iff

αP + (1 − α)R ≿ αQ + (1 − α)R.

The weak order axiom is not very different from the same assumption
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in consumer theory or in choice under certainty and allows lotteries to be

ordered. Continuity may be viewed as a “technical” condition needed for the

mathematical representation and for the proof to work. Indeed, one cannot

design a real-life experiment in which it could be violated, since its violation

would require infinitely many observations. But continuity can be hypothet-

ically “tested”by some thought experiments (Gedankenexperiments). For

instance, you can imagine very small, but positive probabilities, and try to

speculate what your preferences would be between lotteries involving such

probabilities. If you are willing to engage in such an exercise, consider the

following example, supposedly challenging continuity: assume that P guar-

antees $1, Q $0, and R death. You are likely to prefer $1 to nothing, that is,

to exhibit preferences P ≻ Q ≻ R. The axiom then demands that, for a high

enough α < 1, you will also exhibit the preference

αP + (1 − α)R ≻ Q,

namely, that you will be willing to risk your life with probability (1 − α) in
order to gain $1. The point of the example is that you are supposed to say

that no matter how small is the probability of death (1 − α), you will not

risk your life for a dollar. A counter-argument to this example (suggested by

Raiffa) was that we often do indeed take such risks. For instance, suppose

that you are about to buy a newspaper, which costs $1. But you see that

it is handed free on the other side of the street. Would you cross the street

to get it for free? If you answer yes, you are willing to accept a certain

risk, albeit very small, of losing your life in order to save one dollar. This

18



counter-argument can be challenged in several ways. For instance, you may

argue that even if you do not cross the street your life is not guaranteed with

probability 1. Indeed, a truck driver who falls asleep may hit you anyway.

In this case, we are not comparing death with probability 0 to death with

probability (1−α, and, the argument goes, it is possible that if you had true

certainty on your side of the street, you would have not crossed the street,

thereby violating the axiom. In any event, we understand the continuity

axiom, and we are willing to accept it as a reasonable assumption for most

applications.

The independence axiom is related to dynamic consistency. However, it

involves several steps, each of which could be and indeed has been challenged

in the literature (see Karni and Schmeidler (1991)). Consider the following

four choice situations: 1. You are asked to make a choice between P and Q.

2. Nature will first decide whether, with probability (1 −α), you get R, and

then you have no choice to make. Alternatively, with probability α, nature

will let you choose between P and Q.

3. The choices are as in (2), but you have to commit to making your choice

before you observe Nature’s move.

4. You have to choose between two branches. In one, Nature will first decide

whether, with probability (1−α), you get R, or, with probability α, you get

P . The second branch is identical, with Q replacing P .

Clearly, (4) is the choice between αP +(1−α)R and αQ+(1−α)R. To relate

the choice in (1) to that in (4), we can use (2) and (3) as intermediary steps,

as follows. Compare (1) and (2). In (2), if you are called upon to act, you

are choosing between P and Q. At that point R will be a counterfactual

19



world. Why would it be relevant? Hence, it is argued, you can ignore the

possibility that did not happen, R, in your choice, and make your decision

in (2) identical to that in (1). The distinction between (2) and (3) has to do

only with the timing of your decision. Should you make different choices in

these scenarios, you would not be dynamically consistent: it is as if you plan

(in (3)) to make a given choice, but then, when you get the chance to make

it, you do (or would like to do) something else (in (2)). Observe that when

you make a choice in problem (3) you know that this choice is conditional

on getting to the decision node. Hence, the additional information you have

should not change this conditional choice. Finally, the alleged equivalence

between (3) and (4) relies on changing the order of your move (to which

you already committed) and Nature’s move. As such, this is an axiom of

reduction of compound lotteries, assuming that the order of the draws does

not matter, as long as the distributions on outcomes, induced by your choices,

are the same. Whether you find the independence axiom compelling or not,

we suppose that its meaning if clear. We can finally state the theorem:

Theorem 1 (von Neumann-Morgenstern) The preference relation, ≿,
satisfies axioms V1-V3 if and only if there exists u ∶ X → R such that,

for every P,Q ∈ L

P ≿ Q if and only if ∑
x∈X

P (x)u(x) ≥ ∑
x∈X

Q(x)u(x)

moreover, in this case u is unique up to a positive linear transformation.
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1.3 Descriptive Limitations of Expected Util-

ity Theory

Empirical studies dating from the early 1950s have revealed a variety of

patterns in choice behavior that appear inconsistent with EUT. With hind-

sight, it seems that violations of EUT fall under two broad headings: those

which have possible explanations in terms of some “conventional” theory of

preferences and those which apparently do not. The former category con-

sists primarily of a series of observed violations of the independence axiom

of EUT; the latter of evidence that seems to challenge the assumption that

choices derive from well-defined preferences. Let us begin with the former.

1.3.1 Allais paradoxes

There is now a large body of evidence indicating that actual choice be-

havior may systematically violate the independence axiom. Two examples

of such phenomena, first discovered by Maurice Allais (1953), have played

a particularly important role in stimulating and shaping theoretical devel-

opments in non-EU theory. These are the so-called common consequence

effects and common ratio effects. The first sighting of such effect came in

the form of the following pair of hypothetical choice problems. In the first

you have to imagine choosing between the two prospects: P = ($1M, 1)
or Q = ($5M, 0.1; $1M, 0.89; 0, 0.01). The first option gives one million

of dollars for sure; the second gives five million with a probability of 0.1,

one million with a probability of 0.89, otherwise nothing. What would you
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choose? Now consider a second problem where you have to choose between

the two prospects: P ′ = ($1M, 0.11; 0, 0.89) or Q′ = ($5M, 0.1; 0, 0.9).
What would you do if you really faced this choice? Allais believed that EUT

was not an adequate characterization of individual risk preferences and he

designed these problems as a counterexample. A person with expected util-

ity preferences would either choose both “P” options, or choose both “Q”

options across this pair of problems. In fact rewriting the prospect P and

confronting it with Q

P = ($1M, 0.11; $1M, 0.89)

Q = ($5M, 0.1; $1M, 0.89; 0,0.01).
the preference over P and Q should be independent from the common con-

sequence $1M with probability 0.89, so that replacing it with 0 in both the

prospects (i.e. P ′ and Q′) should not reverse the preference. Allais expected

that people faced with these choices might opt for P in the first problem,

lured by the certainty of becoming a millionaire, and select Q′ in the sec-

ond choice where the odds of winning seem very similar, but the prizes very

different. Evidence quickly emerged that many people did respond to these

problems as Allais had predicted. This is the famous “Allais paradox” and

it is one example of the more general common consequence effect. Allais was

the first who discovered this phenomenon, however, numerous studies have

found that choices between prospects with this basic structure are systemat-

ically influenced by the value of the common consequence. A closely related

phenomenon, also discovered by Allais, is the so-called common ratio effect.
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Suppose you had to make a choice between $3000 for sure, or entering a gam-

ble with an 80 percent chance of getting $4000 (otherwise nothing). What

would you choose? Now think about what you would do if you had to choose

either a 25 percent chance of gaining $3000 or a 20 percent chance of gaining

$4000. A good deal of evidence suggests that many people would opt for the

certainty of $3000 in the first choice and opt for the 20 percent chance of

$4000 in the second. Such a pattern of choice, however, is inconsistent with

EUT and would constitute one example of the common ratio effect. More

generally, this phenomenon is observed in choices among pairs of problems

with the following form: P ′′ = (y, p; 0, 1 − p) and Q′′ = (x, λp; 0, 1 − λp)
where x ≻ y and λ ∈ (0,1). Assume that the ratio of “winning”probabilities,

λ, is constant, then for pairs of prospects of this structure, EUT implies that

preferences should not depend on the value of p. In fact calculating the vNM’s

expectation of the two prospects V (P ′′) = u(y)p and V (Q′′) = u(x)λp, that
is P ′′ ≻ Q′′ iff u(y)p > u(x)λp, i.e. iff u(y)/u(x) > λ, independly by p. Yet

numerous studies (e.g. Loomes and Sugden (1987); Starmer and Sugden

(1989)) reveal a tendency for individuals to switch their choice from P ′′ to

Q′′ as p falls.

1.3.2 The early evidence

It would, of course, be unrealistic to expect any theory of human behav-

ior to predict accurately one hundred percent of the time. Perhaps the most

one could reasonably expect is that departures from such a theory is equally

probable in each direction. These phenomena, however, involve systematic
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(i.e., predictable) directions in majority choice. As evidence against the in-

dependence axiom accumulated, it seemed natural to wonder whether its

assorted violations might be revealing some underlying feature of preferences

that, if properly understood, could form the basis of a unified explanation.

Consequently, a wave of theories designed to explain the evidence began to

emerge at the end of the 1970s. Most of these theories have the following

features in common: (i)preferences are represented by some function V (⋅)
defined over individual prospects; (ii) the function satisfies ordering and con-

tinuity; and (iii) while V (⋅) is designed to permit observed violations of the

independence axiom, the principle of monotonicity is retained. We will call

theories with these properties conventional theories. The general spirit of

the approach is to seek “well behaved” theories of preference consistent with

observed violations of independence; this general approach can be called the

conventional strategy. There is evidence to suggest that failures of EUT may

run deeper than violations of independence. Two assumptions implicit in any

conventional theory are: procedure invariance, i.e. preferences over prospects

are independent of the method used to elicit them; and description invari-

ance, i.e. preferences over prospects are purely a function of the probability

distributions of consequences implied by prospects and do not depend on how

those given distributions are described. While these assumptions probably

seem natural to most economists, so natural that they are rarely even dis-

cussed when stating formal theories, there is ample evidence that, in practice,

both assumptions fail. One well-known phenomenon, often interpreted as a

failure of procedure invariance, is preference reversal. The classic preference

reversal experiment requires individuals to carry out two distinct tasks (usu-
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ally separated by some other intervening tasks). The first task requires the

subject to choose between two prospects: one prospect (often called the $-

bet) offers a small chance of winning a “good” prize; the other (the “P -bet”)

offers a larger chance of winning a smaller prize. The second task requires the

subject to assign monetary value - usually minimum selling prices denoted

M($) and M(P ) - to the two prospects. Repeated studies (Tversky and

Thaler (1990); Hausman (1992); Tammi (1997)) have revealed a tendency

for individuals to chose the P -bet (i.e., reveal P ≻ $) while placing a higher

value on the $-bet (i.e., M($) > M(P )). This is the so-called preference

reversal phenomenon first observed by psychologists Lichtenstein and Slovic

(1971); Lindman (1971). It presents a puzzle for economics because, viewed

from the standard theoretical perspective, both tasks constitute ways of ask-

ing essentially the same question, that is, “which of these two prospects do

you prefer?” In these experiments, however, the ordering revealed appears

to depend upon the elicitation procedure. One explanation for preference

reversal suggests that choice and valuation tasks may invoke different men-

tal processes which in turn generate different orderings of a given pair of

prospects (see Slovic et al. (1995)). Consequently, the rankings observed in

choice and valuation tasks cannot be explained with reference to a single

preference ordering. An alternative interpretation explains preference rever-

sal as a failure of transitivity (see Loomes and Sugden (1983)): assuming

that the valuation task reveals true monetary valuations, (i.e., M($) ∼ $;

M(P ) ∼ P ), preference reversal implies P ≻ $ ∼ M($) ≻ M(P ) ∼ P ; which

involves a violation of transitivity (assuming that more money is preferred

to less). Although attempts have been made to explain the evidence in ways
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which preserve conventional assumptions - see for example Holt (1986); Karni

and Safra (1987); Segal (1988) - the weight of evidence suggests that failures

of transitivity and procedure invariance both contribute to the phenomenon

(Loomes et al. (1989); Tversky et al. (1990)). There is also widespread evi-

dence that very minor changes in the presentation or “framing” of prospects

can have dramatic impacts upon the choices of decision makers: such effects

are failures of description invariance. Here is one famous example due to

Tversky and Kahneman (1981) in which two groups of subjects-call them

groups I and II-were presented with the following cover story: “Imagine that

the U.S. is preparing for the outbreak of an unusual Asian disease, which is

expected to kill 600 people. Two alternative programs to combat the disease

have been proposed. Assume that the exact scientific estimate of the conse-

quences of the programs are as follows:...” Each group then faced a choice

between two policy options. Options presented to group I: “If program A is

adopted, 200 people will be saved. If program B is adopted, there is a 1/3

probability that 600 people will be saved, and a 2/3 probability that no people

will be saved.” Options presented to group II: “If program C is adopted, 400

people will die. If program D is adopted, there is a 1/3 probability that nobody

will die, and a 2/3 probability that 600 people will die.”

The two pairs of options are stochastically equivalent. The only difference is

that the group I description presents the information in terms of lives saved

while the information presented to group II is in terms of lives lost. Tversky

and Kahneman found a very striking difference in responses to these two

presentations: 72 percent of subjects preferred option A to option B while

only 22 percent of subjects preferred C to D. Similar patterns of response

26



were found amongst groups of undergraduate students, university faculty,

and practicing physicians. Failures of procedure invariance and description

invariance appear, on the face of it, to challenge the very idea that choices

can, in general, be represented by any well behaved preference function.

If that is right, they lie outside the explanatory scope of the conventional

strategy. Some might even be tempted to say they lie outside the scope of

economic theory altogether. That stronger claim, however, is controversial,

and we will not be content to put away such challenging evidence so swiftly.

For present purposes, suffice it to make two observations. First, whether or

not we have adequate economic theories of such phenomenon, the “Asian

disease“ example is clearly suggestive that framing effects have a bearing on

issues of genuine economic relevance. Second, there are at least some theories

of choice that predict phenomena like preference reversal and framing effects,

and some of these models have been widely discussed in the economics lit-

erature. Although most of these theories draw on ideas about preference to

explain choices, they do so in unorthodox ways, and many draw on concepts

more familiar to psychologists than economists. The one feature common

to this otherwise heterodox bunch of theories is that none of them can be

reduced to, or expressed purely in terms of, a single preference function V (⋅)
defined over individual prospects. We will call such models non-conventional

theories. For further more details see the survey of Starmer (2000).
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1.4 The Axioms for Subjective Probability

1.4.1 Introduction

As we have seen in the vNM’s approach the probabilities are objective.

First to describe the model of Subjective Expected Utility of Savage (1954)

we need some preliminaries about the concept of subjective probability. The

most influential contributes on this field are due to Ramsey (1926); De Finetti

(1931, 1937); Savage (1954).

The axioms of subjective probability refer to assumed properties of a binary

relation “is more probable than”, on a set of propositions or events. This

relation often referred to as a qualitative or comparative probability relation,

can be taken either as an undefined primitive (intuitive views, Koopman and

Good) or as a relation derived from a preference relation (decision-oriented

approach, Ramsey, de Finetti and Savage).

Definition 1 Let S be a non-empty set. A Boolean algebra A for S is a non-

empty collection of subsets of S such that it is closed under complementation

and finite unions.

A probability measure µ on A satisfies:

(a) µ(X) ≥ 0 for all X ∈ A;
(b) µ(X ∪ Y ) = µ(X)+µ(Y ) whenever X and Y are disjoint elements in A;
(c) µ(S) = 1.
Definition 2 A σ−Algebra A for S is a Boolean Algebra which satisfies

Xi ∈ A for i = 1,2,⋯ ⇒ ∞⋃
i=1

Xi ∈ A.
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Definition 3 A probability measure µ on a σ−Algebra A is countable addi-

tive (or σ-additive) if

µ(∞⋃
i=1

Xi) = ∞∑
i=1

µ(Xi)
whenever Xi ∈ A for i = 1,2,⋯ and Xi ∩Xj = ∅ for i ≠ j.

1.4.2 De Finetti’s axioms

Let S be the set of states and A be an algebra of subsets of S.. We refer

to each A ∈ A as an event. We take the binary relation ≿ on A as basic.

Read A ≿ B as “event A is at least as probable as event B.”. As usually the

asymmetric part of this relation is denoted with ≻ and the symmetric part

with ∼; so we will read A ≻ B as “event A is more probable than event B”

and A ∼ B as “event A and B are equiprobable”.

Definition 4 A probability measure p on A agrees with ≿ if for all A,B ∈ A

A ≿ B iff p(A) ≥ p(B) (1.2)

Savage (1954) defines ≿ as a qualitative probability when it satisfies the

following axioms proposed by de Finetti, which are clearly necessary con-

dition on ≿ for there to be a representation by a probability measure as in

(1.2).

• (S1) weak order: ≿ onA is a weak order, i.e it is complete and transitive;

• (S2) non-triviality: S ≻ ∅;

• (S3) non-negativity: A ≿ ∅ for all A ∈ A;
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• (S4) additivity or independence: If A −C = ∅ = B −C, then A ≻ B iff

A ∪C ≻ B ∪C;

The question of whether de Finetti’s axioms, (S1)-(S4) are sufficient for

agreement remained open until it was settled in the negative by Kraft et al.

(1959). In the following we assume thatA is finite. Without loss of generality,

let A be the family of all subsets of S = {1,2,⋯, n}, that is A = 2S. For

convenience, let pi = p(i), i = 1,⋯, n. Then p agrees with ≿, if for all A,B ∈ A:

A ≿ B ⇔ ∑
i∈A

pi ≥ ∑
i∈B

pi (1.3)

Example (Kraft et al. (1959)). Let n = 5, with the following comparisons.

{1,3,4} ≻ {2,5} ≻ {1,2,4} ≻ {1,5} ≻ {3,4} ≻ {2,4} ≻ {1,2,3} ≻ {5} ≻ {2,3} ≻
{1,4} ≻ {4} ≻ {1,3} ≻ {1,2} ≻ {3} ≻ {2} ≻ {1} ≻ ∅.
The rest of ≻ is given by complementarity ( A ≻ B ⇔ Bc Ac ) and additivity,

hence

{4} ≻ {1,3} ,
{2,3} ≻ {1,4} ,
{1,5} ≻ {3,4} ,
{1,3,4} ≻ {2,5} .

If (1.3) holds, then

p4 > p1 + p3,
p2 + p3 > p1 + p4,
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p1 + p5 > p3 + p4,
p1 + p3 + p4 > p2 + p5.

Addition and cancellation leave us 0 > 0, a contradiction.

Let (A1, . . . ,Am) =0 (B1, . . . ,Bm) mean that the Aj and Bj are in A and,

for each i = 1, . . . , n the number of Aj that contain i equals the number of Bj

that contain i. In other words, the sums of the indicator functions over the

two event sequences are identical. Clearly, for any real numbers p1 . . . pn, we

have

(A1, . . . ,Am) =0 (B1, . . . ,Bm)⇒ m∑
j=1

∑
i∈Aj

pi = m∑
j=1

∑
i∈Bj

pi

Definition 5 We say that ≿ on A is strongly additive if, for all m ≥ 2 and

all Aj and Bj,

{(A1, . . . ,Am) =0 (B1, . . . ,Bm), Aj ≿ Bj, j <m}→ not(Am ≻ Bm).

Remark 1 Strong additivity implies weak order as well as additivity.

Strong additivity is actually much stronger. Namely, ≿ on A is strongly

additive if and only if there are real numbers p1, . . . , pn that satisfy (1.3). In

the special case of subjective probability with pi ≥ 0 and ∑i pi = 1, it is enough
to assume that ≿ is non-trivial and non-negative as well as strongly additive.

This fact is stated by the following theorem which solves the question for

finite agreement.
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Theorem 2 Suppose that S is non-empty and finite with A = 2S. Then there

is a probability measure p on A for which for all A,B ∈ A:

A ≿ B ⇔ ∑
i∈A

pi ≥ ∑
i∈B

pi

if and only if (S2) and (S3) hold for ≿ along with strong additivity.

For infinite Algebra we need to add Savage’s Archimedean axiom.

• (S5) A ≻ B implies that there is a finite partition {C1, . . . , Cm} of S

such that A ≻ (B ∪Ci) for i = 1, . . . ,m
Theorem 3 Suppose that A = 2S and ≿ on A satisfies (S1) - (S5). Then

there is a unique probability measure p ∶ A→ [0,1] such that

(a) for all A,B ∈ A : A ≿ B iff p(A) ≥ p(B)
(b) for every A ∈ A with p(A) > 0 and every 0 < a < 1, there is a B ⊂ A for

which p(B) = ap(A).

1.5 Savage’s Theorem

1.5.1 States, outcomes, and acts

The model of Savage (1954) includes two primitive concepts: states and

outcomes. The set of states, S, should be thought as an exhaustive list of

all scenarios that might unfold. A state, in Savage’s words, “resolves all

uncertainty”: it should specify the answer to any question you might be

interested in. The answer should be deterministic. If, for instance, in a given

state an act leads to a toss of a coin, you should further split the state to
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two possible states, each consistent with the original one, but also resolving

the additional uncertainty about the toss of the coin. The following chapter

elaborates on this notion. Observe that Savage considers a one-shot decision

problem. If the real problem extends over many period, the decision problem

considered should be thought of as a choice of a strategy in a game. The game

can be long or even infinite. You think of yourself as choosing a strategy a-

priori, and assuming that you will stick to it with no difficulties of dynamic

consistency, unforeseen contingencies, and so forth. This is symmetric to

the conception of a state as Nature’s strategy in this game. It specifies all

the choices that Nature might have to make as the game unfolds. An event

is any subset A ⊆ S. There are no measurability constraints, and S is not

endowed with an algebra of measurable events. If you wish to be more formal

about it, you can define the set of event to be maximal σ−algebra Σ = 2S ,

with respect to which all subsets are measurable. The set of outcomes will

be denoted by X. An outcome x is assumed to specify all that is relevant

to your well-being, insomuch as it may be relevant to your decision. In

this sense, Savage’s model does not differ from utility maximization under

certainty (as in consumer theory) or from vNM’s model. In all of these we

may obtain rather counter-intuitive results if certain determinants of utility

are left outside of the description of the outcomes. The objects of choice are

acts, which are defined as functions from states to outcomes, and denoted by

F. That is,

F =XS = {f ∣f ∶ S →X} .
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Choosing an act f , you typically do not know the outcome you will experi-

ence. But if you do know both your choice f and the state s, you know that

the outcome will be x = f(s). The reason is that a state s should resolve all

uncertainty, including what is the outcome of the act f. Acts that do not

depend on the state of the world s are constant functions in F. We will abuse

notation and denote them by the outcome they result in. Thus, x ∈X is also

understood as x ∈ F with x(s) = x. There are many confusing things in the

world, but this is not one of them. Since the objects of choice are acts, Sav-

age assumes a binary relation ≿⊆ F ×F. The relation will have its symmetric

and asymmetric parts, ∼ and ≻ defined as usual. It will also be extended to

X with the natural convention. Specifically, for two outcomes x, y ∈ X, we

say that x ≿ y if and only if the constant function that yields always x is

related by ≿ to the constant function that yields always y. Before we go on,

it is worthwhile to note what does not appear in the model. If you’re taking

notes, and you know that you’re going to see a theorem resulting in integrals

of real-valued functions with respective to probability measures, you might

be prepared to leave some space for the mathematical apparatus. You may

be ready now for a page of some measure theory, describing the σ-algebra of

events. You can leave half a page blank for the details of the linear structure

on X, and maybe a few lines for the topology on X. Or maybe a page or

so to discuss the topology on F . But none of it is needed. Savage does not

assume any such linear, measure-theoretic, or topological structures. If you

go back to the beginning of this sub-section, you will find that it says only,

There are two sets, S and X, and a relation on S to XS.
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1.5.2 Axioms

The axioms are given here in their original names, P1-P7. They do have

nicknames, but these are sometimes subject to debate and open to different

interpretations. Before to list the axioms, it will be useful to have a bit more

notation. As mentioned above, the objects of choice are simply functions

from S to X. What operations can we perform on F = XS if we have no

additional structure on X? The operation we used in the statement of (P2)

involves “splicing” functions, that is, taking two functions and generating a

third one from them, by using one function on a certain sub-domain, and

the other on the complement. Formally, for two acts f, g ∈ F and an event

A ⊆ S, define an act f g
A by

f
g
A(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(s) s ∈ A
f(s) s ∈ Ac

,

that is, f g
A is “f , where on A we replaced it by g.

It is also useful to have a definition that captures the intuitive notion that

an event is considered a practical impossibility, roughly, what we mean by a

zero-probability event when a probability is given. One natural definition is

to say that

Definition 6 an event A is null if, for every f, g ∈ F , with f(s) = g(s) for
all s ∈ Ac, then f ∼ g.
That is, if you know that f and g yield the same outcomes if A does not

occur, you consider them equivalent. Now we can enunciate the famous seven

Savage’s axioms.
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P 1 (Ordering) ≿ on F is a weak order, i.e. it is complete and transitive.

P 2 (Sure-Thing principle) For every f, g, h, h′ ∈ F , and every A ⊂ S,

fh
Ac ≿ ghAc ⇔ fh′

Ac ≿ gh′Ac

P 3 (Eventwise Monotonicity) For every f ∈ F , non-null event A ⊂ S

and x, y ∈X,

x ≿ y ⇔ fx
A ≿ f y

A

P 4 (Comparative Probability) For every A,B ⊆ S and for every x, y,

z,w ∈X with x ≻ y and z ≻ w,

yxA ≿ yxB ⇔ wz
A ≿ wz

B

P 5 (Non-triviality) There are f, g ∈ F such that f ≻ g

P 6 (Small Event Continuity) For every f, g, h ∈ F with f ≻ G, there

exists a partition of S, {A1,A2 . . . ,An} such that for every i ≤ n,

fh
Ai
≻ g and f ≻ ghAi

P 7 (Dominance) Consider acts f, g ∈ F and an event A ⊆ S. If it is the

case that, for every s ∈ A, f ≿A g(s), then f ≿A g, and if, for every s ∈ A,
g(s) ≿A f , then g ≿A f

In the following we discuss the meaning and some common interpretations

of the seven axioms of Savage.
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(P1)(Ordering). The basic idea is very familiar, as are the descriptive

and normative justifications. At the same time, completeness is a demand-

ing axiom. Observe that all functions in F are assumed to be comparable.

Implicitly, this suggests that choices between every pair of such functions can

indeed be observed, or at least meaningfully imagined.

(P2)(Sure-Thing Principle). This axiom says that the preference between

two acts, f and g, should only depend on the values of f and g when they

differ. Assume that f and g differ only on an event A (or even a subset

thereof). That is, if A does not occur, f and g result in the same outcomes

exactly. Then, when comparing them, we can focus on this event, A, and

ignore Ac. Observe that we do not need to know that f and g are constants

outside of A. Thus, (P2) is akin to requiring that you will have conditional

preferences, namely that you have well-defined preferences between f and g

conditional on A occurring, and that these conditional preferences determine

your choice between f and g if they are equal in case A does not occur. More

technically, we can define the conditional preference ≿A as follows

f ≿A g ⇔ fh
Ac ≿ ghAc

and we can state that under (P1) and (P2), ≿A is a weak order.

(P3)(Eventwise Monotonicity). Axiom (P3) states, roughly, the follow-

ing. If you take an act, which guarantees an outcome x on an event A, and

you change it, on A, from x to another outcome y, the preference between

the two acts should follow the preference between the two outcomes x and

y (when understood as constant acts). There are two main interpretations
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of (P3). One, which appears less demanding, holds that (P3) is simply an

axiom of monotonicity. The interpretation of (P3) as monotonicity is quite

convincing when the outcomes are monetary payoffs. The other interpreta-

tion of (P3), which highlights this issue is the following. The game we play is

to try to derive utility and probability from observed behavior. That is, we

can think of utility and probability as intentional concepts related to desires

and wants on the one hand, and to knowledge and belief on the other. These

concepts are measured by observed choices. In particular, if we wish to find

out whether the decision maker prefers x to y, we can ask her whether she

prefers to get x or y when an event A occurs, i.e., to compare fx
A to f

y
A. If

she says that she prefers fx
A, we will conclude that she values x more than y.

(P4)(Comparative Probability). This axiom is the counterpart of (P3)

under the second interpretation. Let us continue with the same line of rea-

soning. We wish to measure not only the ranking of outcomes, but also of

events. Specifically, suppose that we wish to find out whether you think that

event A is more likely than event B. Let we take two outcomes x, y such that

≻ y. For example, x will denote $100 and y $0. We now intend to ask you

whether you prefer to get the better outcome x if A occurs (and otherwise y),

or to get the better outcome if B occurs (again, with y being the alternative).

Suppose that you prefer the first, namely, yxA ≿ yxB, then it seems reasonable

to conclude that A is more likely in your eyes than is B. Clearly axioms (P4)

avoids contradictory conclusions on this event’s ranking.

(P5)(Non-triviality). If (P5) does not hold, we get f ∼ g for every f, g ∈ F .

This relation is representable by expected utility maximization: you can

choose any probability measure and any constant utility function. Moreover,
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the utility function will be unique up to a positive linear transformation,

which boils down to an additive shift by a constant. But the probability

measure will be very far from unique. But since a major goal of the axioma-

tization is to define subjective probability, and we want to pinpoint a unique

probability measure, which will be “the subjective probability of the deci-

sion maker”, P5 appears as an explicit axiom. Not only in the mathematical

sense, namely that P5 follows from the representation, but in the sense that

P5 is necessary for the elicitation program to succeed. Someone who is in-

capable of expressing preferences cannot be ascribed subjective probabilities

by the reverse engineering program of Ramsey-de Finetti-Savage.

(P6)(Small Event Continuity). This axiom has a flavor of continuity, but

it also has an Archimedean twist. Let us assume that we start with strict

preferences between two acts, f ≻ g, and we wish to state some notion of

continuity. We cannot require that, say f ′ ≻ g whenever ∣f(s) − f ′(s)∣ < ǫ,
because we have no metric over X. We also cannot say that f ′ ≻ g whenever

P ({s∣f(s) ≠ f ′(s)}) < ǫ, because we have no measure P on S. How can we

say that f ′ is “close” to f? One attempt to state closeness in the absence

of a measure P is the following. Assume that we had such a measure P and

that we could split the state space into events A1, . . . ,An such that P (Ai) < ǫ
for every i ≤ n. Not every measure P allows such a partition, but assume

we found one. Then we can say that, if f ′ and f differ only on one of the

events A1, . . . ,An, then f ′ is close enough to f and therefore f ′ ≻ g. This

last condition can be stated without reference to the measure P . And this

is roughly what (P6) requires. Finally, observe that it combines two types

of constraints: first, it has a flavor of continuity: changing f (or g) on a
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“small enough” event does not change strict preferences. Second, it has

an Archimedean ingredient, because the way to formalize the notion of a

“small enough” event is captured by saying “any of finitely many events in

a partition”. (P6) thus requires that the entire state space not be too large;

we have to be able to partition it into finitely many events, each of which is

not too significant. The fact that we need infinitely many states, and that,

moreover, the probability measure Savage derives as no atoms is certainly a

constraint. The standard way to defend this requirement is to say that, given

any state space S, we can always add to it another source of uncertainty, say,

infinitely many tosses of a coin.

(P7)(Dominance). If there is a “technical” axiom, this is it. Formally, it

is easy to state what it says. (P7) requires that if f is weakly preferred to any

particular outcome that g may obtain, than f should be weakly preferred to

g itself. But it is hard to explain what it does, or what it rules out. It is,

in fact, very surprising that Savage needs it, especially if you were already

told that he does not need it for the case of a finite X. But Savage does

prove that the axiom is necessary. That is, he provides an example, in which

axioms (P1)-(P6) hold, X is infinite, but there is no representation of ≿ by

an expected utility formula. Let us first assume that we only discuss A = S.
If we did not have the axioms (P1)-(P6), one can generate weird preferences

that do not satisfy this condition. But we have (P1)-(P6). Moreover, re-

stricting attention to finitely many outcomes, we already hinted that there

is a representation of preferences by an expected utility formula. How wild

can preferences be, so as to violate (P7) nevertheless? We will regard (P7)

as another type of continuity condition, one imposed on the outcome space.
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1.5.3 The theorem

Let us remember that a probability measure, µ, such that µ(A ∪ B) =
µ(A) + µ(B) whenever A ∩ B = ∅ is finite additive; ; µ is σ-additive if

µ (⋃∞i=1Ai) = ∑∞i=1 µ(Ai) whenever i ≠ j → Ai ∩ Aj = ∅. Having a finitely

additive measure, σ-additivity is an additional constraint of continuity: de-

fine Bn = ⋃n
i Ai and B = ⋃∞i Ai. Then Bn → B and σ-additivity means

µ ( lim
n→∞

Bn) = µ(∞⋃
i

Ai) = ∞∑
i

µ(Ai) = lim
n→∞

µ(Bn)

that is, σ-additivity of µ is equivalent to say that the measure of the limit

is the limit of the measure. As such, σ-additivity is a desirable constraint.

Lebesgue, who pioneered measure theory, observed that the notion of length

of intervals cannot be extended to all the subsets of the real line (or of [0,1])
if σ-additivity is to be retained. We can relax this continuity assumption,

but some nice theorems (e.g. Fubini’s theorem) do not hold for finitely

additive measures. De Finetti, Savage, and other probabilist in the 20th

century had a penchant, or perhaps an ideological bias for finitely additive

probability measures. If probability is to capture our subjective intuition,

it does indeed seem much more natural to require finite additivity, rather

than sophisticated mathematical condition such as σ-additivity. Given this

background, it should come as no surprise to us that Savage’s theorem yields

a measure that is (only) finitely additive.

The discussion of (P6) above made references to “atoms” of measures. For

a σ-additive measure an event A is an atom of µ if (i) µ(A) > 0; (ii) for

every event B ⊂ A, µ(B) = 0 or µ(B) = µ(A). That is, an atom cannot
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split, in terms of its probability, trying to split it to B and A ∖B, we find

either that all the probability is on B or on A ∖B. A measure that has no

atoms is called non-atomic. A more demanding definition of non-atomicity

is: that for every event A with µ(A) > 0, and for every r ∈ [0,1] there be an

event B ⊂ A such that µ(B) = rµ(A). In the case of a σ-additive µ, the two

definitions coincide. But this is not true for finite additivity. Moreover, the

condition that Savage needs, and the condition that turns out to follow from

(P6), is the strongest, hence, we will adopt it as definition of non-atomicity.

The Savage’s theorem for a finite and for a general outcome set is

Theorem 4 (Savage) Assume that X is finite. Then ≿ satisfies (P1)-(P6)
if and only if there exist a non-atomic finitely additive probability measure

p on (S,2S) and a non-constant function u ∶ X → R such that, for every

f, g ∈ F
f ≿ g iff ∫

S
u(f(s))dp(s) ≥ ∫

S
u(g(s))dp(s)

Furthermore, in this case p is unique, and u is unique up to positive linear

transformations.

Theorem 5 (Savage) ≿ satisfies (P1)-(P7) if and only if there exist a non-

atomic finitely additive probability measure p on (S,2S) and a non-constant

bounded function u ∶X →R such that, for every f, g ∈ F

f ≿ g iff ∫
S
u(f(s))dp(s) ≥ ∫

S
u(g(s))dp(s)

Furthermore, in this case p is unique, and u is unique up to positive linear

transformations.
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1.6 A critique of Savage

Savage’s “technical” axioms, P6 and P7 have been discussed above. They

are not presented as canons of rationality, but as mathematical conditions

needed for the proof. We therefore do not discuss them any further. There is

also little to add regarding axiom P5. It is worth emphasizing its role in the

program of behavioral derivations of subjective probabilities, but it is hardly

objectionable. By contrast, P1-P4 have been, and still are a subject of heated

debates, based on their reasonableness from a conceptual viewpoint.

1.6.1 Critique of P3 and P4

The main difficulty with both P3 and P4 is that they assume a separation

of tastes from beliefs. That is, they both rely on an implicit assumption that

an outcome x is just as desirable, no matter at which state s it is experienced.

The best way to see this is, perhaps, by a counterexample. The classical one,

mentioned above, is considering a swimsuit, x, versus an umbrella, y. You

will probably prefer y to x in the event A, in which it rains, but x to y in

the event B, in which it does not rain. This is a violation of P3. Similarly,

the same example can be used to construct a violation of P4.

1.6.2 Critique of P1 and P2

The basic problem with axioms P1 and P2, as well as with Savage’s

Theorem and with the entire Bayesian approach is the following: for many

problems of interest, there is no sufficient information based on which one

can define probabilities. Subjective probabilities are not a solution to the
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problem: subjectivity may save us needless arguments, but it does not give

us a reason to choose one probability over another. This difficulty can man-

ifest itself in violations of P1 and/or of P2. If one takes a strict view of

rationality, and asks what preferences can be justified based on evidence and

reasoning, one is likely to end up with incomplete preferences. One problem

of the Bayesian approach is that it does not distinguish between choices that

are justified by reasoning (and evidence) and choices that are not. David

Schmeidler was bothered by these issues in the early ’80s. He suggested the

following mind experiment: you are asked to bet on a flip of a coin. You

have a coin in your pocket, which you have tested often, and found to have

a relative frequency of Head of about 50%. I also have a coin in my pocket,

but you know nothing about my coin. If you wish to be Bayesian, you have

to assign probabilities to each of these coins coming up Head. The coin for

which relative frequencies are known should probably be assigned the prob-

ability .5. About the other coin your ignorance is symmetric. You have no

reason to prefer one side to the other. So you assign the probability of .5,

based on symmetry considerations alone. Now that probabilities were as-

signed, the two coins have the same probability. But Schmeidler intuition

was that they feel very different. There is some sense that .5 assigned based

on empirical frequencies is not the same as .5 that was assigned based on

default. Schmeidler’s work (i.e. Schmeidler (1986, 1989)) started with this

intuition. As we will see below, this intuition has a behavioral manifestation

in Ellsberg’s paradox.
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1.6.3 Ellsberg’s urns

Ellsberg (1961) suggested two experiments. His original paper does not

report laboratory experiment, only replies obtained from economists. The

two-urn experiment is very similar to the two coin example.

Ellsberg’s two-urn paradox. There are two urns, each containing 100

balls. Urn I contains 50 red balls and 50 black balls. Urn II contains 100

balls, each of which is known to be either red or black, but you have no

information about how many of the balls are red and how many are black.

A red bet is a bet that the ball drawn at random is red and a black bet is

the bet that it is black. In either case, winning the bet, namely, guessing the

color of the ball correctly, yields $100. First, you are asked, for each of the

urns, if you prefer a red bet or a black bet. For each urn separately, most

people say that they are indifferent between the red and the black bet. Then

you are asked whether you prefer a red bet on urn I or a red bet on urn II.

Many people say that they would strictly prefer to bet on urn I, the urn with

known composition. The same pattern of preferences in exhibited for black

bets (as, indeed, would follow from transitivity of preferences given that one

is indifferent between betting on the two colors in each urn). That is, people

seem to prefer betting on an outcome with a known probability of 50% than

on an outcome whose probability can be anywhere between 0 and 100%. It is

easy to see that the pattern of choices described above cannot be explained by

expected utility maximization for any specification of subjective probabilities.

Such probabilities would have to reflect the belief that it is more likely that a

red ball will be drawn from urn I than from urn II, and that it is more likely
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that a black ball will be drawn from urn I than from urn II. This is impossible

because in each urn the probabilities of the two colors have to add up to one.

P2 is violated in this example, (to see this we should embed it in a state

space). Thus, Ellsberg’s findings suggest that many people are not subjective

expected utility maximizers. Moreover, the assumption that comes under

attack is not the expected utility hypothesis per se: any rule that employs

probabilities in a reasonable way would also be at odds with Ellsberg’s results.

The questionable assumption here is the basic tenet of Bayesianism, namely,

that all uncertainty can be quantified in a probabilistic way. Exhibiting

preferences for known vs. unknown probabilities is incompatible with this

tenet.

Ellsberg’s single-urn paradox. The two urn example is intuitively

very clear, but we need to work a bit to define the states of the world for

it. By contrast, the single-urn example is more straightforward in terms

of the analysis. This time there are 90 balls in an urn. We know that 30

balls are red, and that the other 60 balls are blue or yellow, but we do have

any additional information about their distribution. There is going to be

one draw from the urn. Assume first that you have to guess what color the

ball will be. Do you prefer to bet on the color being red (with a known

probability of 1/3) or being blue (with a probability that could be anything

from 0 to 2/3)? The modal response here is to prefer betting on red, namely,

to prefer the known probability over the unknown one. Next, with the same

urn, assume that you have to bet on the ball not being red, that is being

blue or yellow, versus not being blue, which means red or yellow. This time

your chances are better. You know that the probability of the ball not being
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red is 2/3, and the probability of not-blue is anywhere from 1/3 to 1. Here,

for similar reasons, the modal response if to prefer not red, again, where the

probabilities are known. (Moreover, many participants simultaneously prefer

red in the first choice situations and not-red in the second.) Writing down

the decision matrix we obtain

R B Y

red 1 0 0

blue 0 1 0

not − red 0 1 1

not − blue 1 0 1

With this simply notation we have indicate the sates with R, B and Y; the

outcomes with 0 and 1; and the acts with red, blue, not-red and not-blue. It

is readily seen that red and blue are equal on Y. If P2 holds, changing their

value from 0 to 1 on Y should not change preferences between them. But

when we make this change, red becomes not-blue and blue becomes not-red.

That is, P2 implies

red ≿ blue iff not-blue ≿ not-red

whereas model preferences are

red ≻ blue iff not-blue ≺ not-red
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1.7 Concluding remarks

The first attempts to develop a utility theory for choice situations un-

der risk were undertaken by Cramer (1728) and Bernoulli (1738) to face the

St. Petersburg paradox. To solve this “puzzle” Bernoulli (1738) proposed

that the expected monetary value has to be replaced by the expected util-

ity (“moral expectation”) as the relevant criterion for decision making under

risk. Not until two centuries later, did Von Neumann and Morgenstern (1944)

prove that if the preferences of the Decision Maker satisfy certain assump-

tions they can be represented by the expected value of a real-valued utility

function defined on the set of consequences. Only a few years later, Savage

(1954), building upon the works of Ramsey (1926); De Finetti (1931, 1937),

developed a model of expected utility for choice situations under uncertainty.

In Savage’s subjective approach, not only the utility function but also sub-

jective probabilities have to be derived from the preferences of the Decision

Maker. For the last fifty years the Expected Utility model has been the dom-

inant framework for analyzing decision problems under risk and uncertainty.

According to Machina (1982) this is due to “the simplicity and normative

appeal of its axioms,the familiarity of the notions it employs (utility func-

tions and mathematical expectation), the elegance of its characterizations of

various types of behavior in terms of properties of the utility function...and

the large number of results it has produced”. Since the well known paradoxes

of Allais (1953); Ellsberg (1961), however, a large body of experimental ev-

idence has been gathered which indicates that individuals tend to violate

the assumptions underlying the expected Utility Model systematically. This
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empirical evidence has motivated researchers to develop alternative theories

of choice under risk and uncertainty able to accommodate the observed pat-

terns of behavior. These models are usually termed “non-expected utility”

or “generalizations of expected utility”(for a review see Starmer (2000)).

Cumulative Prospect Theory (CPT) of Tversky and Kahneman (1992), the

moder version of Prospect Theory (PT) (Kahneman and Tversky (1979)) is

surely considered one of the most valid non-expected utility theory, due to

its great descriptive power. In the next chapters we will describe in detail

CPT and, next, we will present a generalization of the model, called “bipo-

lar CPT”, which is able to cover some situations that CPT cannot, for its

nature, accommodate.
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Chapter 2

Bipolar Cumulative Prospect

Theory

2.1 Introduction

Since its publication, the Prospect Theory (PT) of Kahneman and Tver-

sky (1979) have had an enormous impact on the decisions theory, and when

the Cumulative Prospect Theory (CPT) (Tversky and Kahneman (1992))

appeared, this model has become the most widely used alternative to the

classical Expected Utility Theory (EUT) of Von Neumann and Morgenstern

(1944). This mainly depends on two factors of great importance. The first

is that CPT has preserved the mathematical tractability and the descriptive

power of the original PT, enlarging its applicability field to prospects with

any number of outcomes (infinitely many or even continuous outcomes too)

and to the uncertainty, whereas PT was thought only for risky prospects

with only two outcomes. The second factor is that CPT has captured the
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fundamental idea of the Rank Dependent Utility (RDU) of Quiggin (1982)

and of the Choquet Expected Utility (CEU) of Schmeidler (1986, 1989) and

Gilboa (1987) solving some imperfections within the original model. As was

pointed out from Fishburn (1978) and Kahneman and Tversky (1979) it

was possible, under PT, to violate the axiom of first-order stochastic dom-

inance; the authors thought to an editing phase in which the transparently

dominated alternatives were eliminated but this generated non-transitivity

problems. After to have extended his applicability from risk to uncertainty

too and after to have built solid bridges with others valid models of non-

Expected Utility Theory, the CPT needed only an axiomatic validation (i.e.

a preference foundation), to be fully accepted also from the normative point

of view, whereas the success from the descriptive point of view was incon-

testable. Several axiomatic basis for CPT were presented and, among them,

the most well known are those of Wakker and Tversky (1993), Chateauneuf

and Wakker (1999), Wakker and Zank (2002). In recent years CPT has ob-

tained increasing space in applications in several fields: in business, finance,

law, medicine, and political science (e.g., Benartzi and Thaler (1995); Bar-

beris et al. (2001); Camerer (2000); Jolls et al. (1998); McNeil et al. (1982);

Quattrone and Tversky (1988)) Despite the increasing interest in CPT-in

the theory and in the practice-some critiques have been recently proposed:

Levy and Levy (2002); Blavatskyy (2005); Birnbaum (2005); Baltussen et al.

(2006); Birnbaum and Bahra (2007); Wu and Markle (2008). As well as

the paradoxes of Allais (1953) and Ellsberg (1961) showed that for the EUT

of Von Neumann and Morgenstern (1944) and for the Subjective Expected

Utility Theory (SEUT) of Savage (1954) the weak point was the preference
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independence axiom, so, we believe that the relevant critic against CPT is

the Gain-Loss Separability (GLS), i.e. the separate evaluation of losses and

gains. More precisely, let P = (x1, p1; ...xn, pn) be a prospect giving the out-

come xi with probability pi, i = 1, . . . , n. We indicate with P + the “positive

part” of P , i.e. the prospect obtained from P by substituting all the losses

with zero and we indicate with P − the “negative part” of P , i.e. the prospect

obtained from P substituting all the gains with zero. GLS means that the

evaluation of P is obtained as sum of the value of P + and P − :

V (P ) = V (P +) + V (P −).

Wu and Markle (2008) refer to the following experiment: 81 participants

gave their preferences as it is shown below (read H ≻ L “the prospect H is

preferred to the prospect L”)

H =
⎛⎜⎜⎜⎜⎜⎜⎝

0.50 chance

at $4,200

0.50 chance

at $ − 3,000

⎞⎟⎟⎟⎟⎟⎟⎠
≻
⎛⎜⎜⎜⎜⎜⎜⎝

0.75 chance

at $3,000

0.25 chance

at $ − 4,500

⎞⎟⎟⎟⎟⎟⎟⎠
= L

[52%] [48%]

H+ =
⎛⎜⎜⎜⎜⎜⎜⎝

0.50 chance

at $4,200

0.50 chance

at $0

⎞⎟⎟⎟⎟⎟⎟⎠
≺
⎛⎜⎜⎜⎜⎜⎜⎝

0.75 chance

at $3,000

0.25 chance

at $0

⎞⎟⎟⎟⎟⎟⎟⎠
= L+

[15%] [85%]
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H− =
⎛⎜⎜⎜⎜⎜⎜⎝

0.50 chance

at $0

0.50 chance

at $ − 3,000

⎞⎟⎟⎟⎟⎟⎟⎠
≺
⎛⎜⎜⎜⎜⎜⎜⎝

0.75 chance

at $0

0.25 chance

at $ − 4,500

⎞⎟⎟⎟⎟⎟⎟⎠
= L−

[37%] [63%]
As can be seen, H is weakly preferred to L, but when the two prospects

are split in their respective positive and negative parts, a relevant majority

prefers L+ to H+ and L− to H−. GLS is violated and CPT cannot cover such

a pattern of choice. In the sequel we will refer to this experiment as the

“Wu-Markle paradox”. In the CPT model the GLS implies the separation

of the domain of the gains from the domain of the losses, with respect to

a subjective reference point. This separation depends on a characteristic S-

shaped utility function, steeper for losses than for gains, and on two different

weighting functions, which distort in a different way probabilities relative to

gains and losses. We aim to generalize CPT maintaining the utility function,

but replacing the two weighting functions with a bi-weighting function. This

is a function with two arguments, the first corresponding to the probability of

a gain and the second to the probability of a loss of the same magnitude. We

call this model the bipolar Cumulative Prospect Theory (bCPT). The bCPT

will allow gains and losses within a mixed prospect to be evaluated conjointly.

The motivation of this generalization are in the Wu-Markle paradox, where

it is shown how people are more willing to accept the risk of a loss having

the hope of a win and, on the converse, are more careful with respect to

a possible gain having the risk of a loss. In other words, the evaluation of

a possible loss seems mitigated if this risk comes together with a possible
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gain. For example, the evaluation of the loss of $3,000 with a probability

0.5 in the prospect H = (0 ,0.5;$ − 3,000, 0.5) seems different from the

evaluation of the loss of the same amount with the same probability within

the prospect L = ($4,200 ,0.5; $ − 3,000 ,0.5), where the presence of the

possible gain of $4,200 has an evident mitigation role. On the contrary, the

evaluation of a possible gain will seem us diminished in case of a risk of a

loss. Therefore, the evaluation of the gain of $4,200 with a probability 0.5

in the prospect P = ($4,200 ,0.5; 0, 0.5) is different from the evaluation of

the gain of the same amount with the same probability within the prospect

L = ($4,200 ,0.5; $−3,000 , 0.5). This chapter is devoted to the description

of bCPT in a risky context. In the next chapter we will face the problem

of the preference foundation of the model. The bCPT can be axiomatized

separately in the field of decision under risk and in the field of decision under

uncertainty. The main tool to axiomatize the model in an uncertainty context

is the bipolar Choquet integral. Following Schmeidler (1986) for the Choquet

integral, we will present a fairly simple characterization of the bipolar Choquet

integral.

2.2 Cumulative Prospect Theory

2.2.1 CPT fundamental concepts

The most important idea in CPT is the concept of gain-loss asymmetry.

People perceive possible outcomes as either gains or losses with respect to a

reference point rather than as absolute wealth levels. Therefore CPT replaces
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Figure 2.1: CPT utility function

the classical utility function with a characteristic S-shaped utility function

(see Figure 2.1), null at the reference point, concave for gains and convex for

losses, steeper for losses than for gains.

The other important idea in CPT is the notion of probability distor-

tion, i.e. people tend to overweight very small probabilities and underweight

average and large probabilities. Differently from PT, which assumes that

people overweight small probability, independently from the relative out-

comes, CPT adopts the fundamental idea of the Rank Dependent Utility

Gilboa (1987); Quiggin (1982); Schmeidler (1986, 1989). This probability

transformation is mathematically described by means of a weighting function
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Figure 2.2: CPT weighting function

w(p) ∶ [0,1]→ [0,1], which typical inverse S-shape is shown in Figure 2.2.

2.2.2 The formal model

The outcomes set is the real line R and zero has the role of reference

point, so positive and negative outcomes are respectively gains and losses.

A lottery P = (x1, p1; . . . ;xn, pn) with xi ∈ R, pi ∈ [0; 1] , ∑pi = 1, is a finite

probability distribution. We suppose that the lottery P is rank ordered, i.e.

x1 ≥ ... ≥ xk ≥ 0 > xk+1.. ≥ xn, for some k ∈ {0, ...n}. Let us denote P + (P −)
the gain (loss) part of P , obtained by substituting all the losses (gains) in P

with zero. A binary preference relation ≿ over lotteries is given as primitive,
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where for all prospects P and Q, P ≿ Q means the prospect P is at least as

good as prospect Q. As usual ≻ and ∼ denote the asymmetric and symmetric

part of ≿. A real valued function V (⋅) over lotteries represents preferences if

P ≿ Q iff V (P ) ≥ V (Q).

CPT holds if the preference relation ≿ can be represented by a CPT functional

VCPT (P ) = n∑
j=1

πju(xj) (2.1)

where u(⋅) ∶ R → R is a continuous and strictly increasing S-shaped utility

function, as described in Kahneman and Tversky (1979) and πj are decision

weights, defined as follows. A function w ∶ [0; 1]→ [0; 1] is probability trans-

formation (or weighting function) if it is strictly increasing and satisfying the

conditions w(0) = 0 and w(1) = 1.
If j ≤ k, i.e. xj is a gain, and w+ is a (gain) probability transformation, then

πj = w+(p1 + ... + pj) −w+(p1 + ... + pj−1)

If j > k, i.e. xj is a loss, and w− is a (loss) probability transformation, then

πj = w−(pj + ... + pn) −w−(pj+1 + ... + pn)

Therefore, the (2.1) can be rewritten as

VCPT (P ) = VCPT (P +) + VCPT (P −) (2.2)
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where

VCPT (P +) = k∑
j=1

[w+(p1 + ... + pj) −w+(p1 + ... + pj−1)]u(xj) (2.3)

VCPT (P −) = n∑
j=k+1

[w−(pj + ... + pn) −w−(pj+1 + ... + pn)]u(xj) (2.4)

Remark 2 In the special case of a binary gamble P = (G,pG;L, pL) contain-
ing a gain G, with probability pG and a loss L with probability pL, the CPT

formula reduces to

VCPT (P ) = u(G)w+(pG) + u(L)w−(pL)

Remark 3 Using an integral representation the CPT functional assumes the

following concise form

VCPT(P ) = ∫ +∞

0

w+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠dt − ∫

+∞

0

w−
⎛
⎝ ∑

i∶u(xi)≤−t

pi
⎞
⎠dt (2.5)

Despite the (2.5) emphasizes that in CPT gains and losses are evaluated

separately, nothing avoid the above representation to be written by a unique

integral

VCPT(P ) = ∫ +∞

0

w+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠ − w−

⎛
⎝ ∑

i∶u(xi)≤−t

pi
⎞
⎠dt (2.6)

both the (2.5), (2.6) will be helpful in proving some results.
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2.2.3 CPT parametrization

In this section we describe the “classical CPT” proposed by Tversky

and Kahneman (1992). Kahneman and Tversky (KT) adopted two different

weighting functions (for probability of gains and losses)

w+(p) = pγ

[pγ + (1 − p)γ] 1γ , w−(p) = pδ

[pδ + (1 − p)δ] 1δ (2.7)

and a power utility function

u(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xα if x ≥ 0
−λ∣x∣β if x < 0 (2.8)

where typically the loss-coefficient is greater than the gain-coefficient, β ≥ α,
while the loss aversion coefficient, λ, is typically assumed 2.25. Table 2.1

reports some estimations of parameters α, β, γ and δ presented in recent

studies. In all the investigations after 1994, the coefficients α and β of the

power utility functions are greater than the coefficients γ and δ of the relative

weighting functions.

2.3 Bipolar Cumulative Prospect Theory

2.3.1 From CPT to bCPT

As we have seen in CPT the weighting function has the role to transform

the (cumulated) probabilities. This transformation happens separately for

the probabilities attached to gains and those attached to losses. As final
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Table 2.1: Estimation of CPT parameters proposed in literature

utility function weighting functions
Experimental study α β γ δ

Tversky and Kahneman (1992) 0.88 0.88 0.61 0.69
Camerer and Ho (1994) 0.37 - 0.56 -
Tversky and Fox (1995) 0.88 - 0.69 -
Wu and Gonzalez (1996) 0.52 - 0.71 -
Gonzalez and Wu (1999) 0.49 - 0.44 -
Abdellaoui (2000) 0.89 0.92 0.60 0.70
Bleichrodt and Pinto (2000) 0.77 - 0.67 0.55
Kilka and Weber (2001) 0.76-1.00 - 0.30-0.51 -
Abdellaoui et al. (2003) 0.91 - 0.76 -

result, see (2.5), the CPT functional can be seen as sum of the CPT functional

relative to gains and that relative to losses. In bCPT the two weighting

function of CPT are replaced with a two-variables bi-weighting function. This

has in the first argument the (cumulated) probability of a gain and in the

second argument the (cumulated) probability of a symmetric loss. The final

result is a number within the closed interval [-1;1] which we cannot think

as a distorted probability but as a distorted difference of the probability

of gains and the probability of symmetric losses, generated in the process

to evaluate conjointly gains and losses. In the sequel we propose some bi-

weighting functions that are the natural extensions of the most note weighting

functions proposed in the literature in the last years. These bi-weighting

functions inherit the respective properties of the weighting functions from

which they derive. One suggestion for future studies could be to determine

which of these functions is the most suitable to generalize the CPT model.

We choose-after presenting some generalizations-to use for the following part

of the thesis the classical KT bi-weighting function.
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2.3.2 The bi-weighting functions

As we have seen a weighting function is a strictly increasing function

w ∶ [0; 1] → [0; 1] satisfying the conditions w(0) = 0, w(1) = 1. In this

section we shall generalize this concept to the bipolar context. In CPT the

weighting function has the role to transform the (cumulated) probabilities;

in our model we have a two-variables bi-weighting function which has in the

first argument the (cumulated) probability of a gain with a utility greater

or equal than a given level L and in the second argument the (cumulated)

probability of a symmetric loss not smaller than −L. The final result is a

number within the closed interval [-1;1] which we cannot think as a distorted

probability but as a “distorted difference of the probability of gains and the

probability of symmetric losses”. Let us set

A = {(p, q) ∈ [0; 1] × [0; 1] such that p + q ≤ 1}

that is, in the p−q plane, the triangle which vertexes are O ≡ (0,0), P ≡ (1,0)
and Q ≡ (0,1), see figure 2.3.

Definition 7 We define bi-weighting function any function

ω(p, q) ∶ A→ [−1; 1]

satisfying the following conditions:

• ω(p, q) is increasing in p and decreasing in q (bi-monotonicity)

• ω(1,0) = 1, ω(0,1) = −1 and ω(0,0) = 0.
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Figure 2.3: the bi-weighting function domain

In table 1 we propose some generalizations of well known weighting func-

tions. They coincide with the original gain weighting function, ω+, if q = 0
and with the opposite loss weighting function, −ω−, if p = 0 . The following

propositions hold.

Proposition 1 The Kahneman-Tversky bi-weighting function with the pa-

rameters setting 1/2 < γ, δ < 1, is increasing in p and decreasing in q.

Proposition 2 The Latimore, Baker and Witte bi-weighting function with

the parameters setting α > 1/2 and 0 < γ, δ ≤ 1, is increasing in p and de-

creasing in q.
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Proposed by
Original weighting
function w(p) Bipolarized form

w(p, q)

Tversky and

Kahneman (1992)
pγ

[pγ+(1−p)γ]
1
γ

pγ−qδ

[pγ+(1−p)γ]
1
γ +[qδ+(1−q)δ]

1

δ −1

Lattimore, Baker

and Witte (1992)
αpγ

αpγ+(1−p)γ
α(pγ−qδ)

αpγ+(1−p)γ+αqδ+(1−q)δ

Prelec (1998)
e−β(−lnp)

α pγ−qδ

∣pγ−qδ ∣e
−β(−ln∣pγ−qδ ∣)α

Table 2.2: original and bi-polarized weighting function

Proposition 3 The Prelec bi-weighting function with the parameters setting

β ≅ 1, γ, δ > 0 and 0 < α < 1 is increasing in p and decreasing in q.

The proofs of these propositions, together with a brief discussion about any

of these generalization, are presented in appendix at the end of the chapter.

Remark 4 What we called bi-monotonicity of the bi-weighting functions,

i.e. the fact that they are increasing in the first argument (probability of gain

in the model) and decreasing in the second argument (probability of loss in

the model) will be crucial in proving that the bCPT functional satisfies the

stochastic dominance principle.

Remark 5 The bi-weighting function we propose are typically inverse S-

shaped in the space (see Figure 2.4)
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A typical feature of the weighting function described in Tversky and Kah-

neman (1992) is the inverse S-shape in the plane. Let us consider the bi-

polarized form of the KT weighting function, preserving the original param-

eters estimation γ = .61 and δ = .69

ω(p, q) = p0.61 − q0.69
[p0.61 + (1 − p)0.61] 1

0.61 + [q0.69 + (1 − q)0.69] 1

0.69 − 1 (2.9)

In Figure 2.4 we have plotted the (2.9). As can be seen the typical inverse

S-Shape is generalized from the plane to the space. Clearly we are interested

to the part of this plot such that p + q = 1.

Figure 2.4: bi-CPT weighting function
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2.3.3 The bipolar Cumulative Prospect

Theory (bCPT)

As for CPT the outcomes set is the real line R and zero has the role

of the reference point, so positive and negative outcomes are respectively

gains and losses. A risky prospect (or lottery) P = (x1, p1; . . . ;xn, pn) is a

finite probability distribution giving the outcome xj ∈ R with probability

pj ∈ [0; 1] , i = 1,2, . . . , n. The outcomes are mutually exclusive and betting

on P one of them is obtained, that is ∑pj = 1,. A preference relation ≿
over the prospects set is given as primitive. Let u(.) ∶ R → R be an utility

function (non necessarily S-shaped). If I = {1,2, . . . n} for any k = 1,2, . . . , n,
we define

I+k = {j ∈ I such that u (xj) ≥ ∣xk∣}
I−k = {j ∈ I such that u (xj) ≤ −∣xk∣} .

Let (⋅) ∶ I → I be an index permutation such that

∣u(x(1))∣ ≤ ∣u(x(2))∣ ≤ ⋅ ⋅ ⋅ ≤ ∣u(x(n))∣.

Finally, let ω(p, q) ∶ [0; 1] × [0; 1] → [−1; 1] be a bi-weighting function, i.e.

an increasing in p and decreasing in q, continuous function, satisfying the

coherence conditions: ω(0,0) = 0, ω(1,0) = 1 and ω(0,1) = −1. We define the

bCPT value of P as

VbCPT (P ) = n∑
i=1

(∣u(x(i))∣ − ∣u(x(i−1))∣)ω ⎛⎜⎝ ∑j∈I+
(i)

pj, ∑
k∈I−

(i)

pj
⎞⎟⎠ (2.10)
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where u (x(0)) = 0 and the sums in ω arguments are replaced with zero if

I+(i) or I
−
(i) are empty. Another way to formalize the bCPT functional is by

means of the integral representation

VbCPT (P ) = ∫ ∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

pi
⎞
⎠dt (2.11)

which can be helpful to prove some properties.

2.3.4 bCPT and Stochastic Dominance

Let us remark that the bi-monotonicity of the weighting function, i.e.

the fact that ω(p, q) is increasing in p and decreasing in q, ensures the bCPT

model satisfies Stochastic Dominance Principle. This means that if prospect

P stochastically dominates prospect Q then VbCPT (P ) ≥ VbCPT (Q). The

following theorem establishes this result.

Theorem 6 Let us suppose that prospects are evaluated with the bipolar

CPT. Then stochastic dominance is satisfied if and only if the bi-weighting

function ω(p, q) is increasing in p and decreasing in q

Proof. Trough the proof we shall consider the following formulation of the

bipolar CPT functional of a lottery P = (x1, p1;x2, p2; . . . ;xn, pn):

VbCPT (P ) = ∫ ∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

qi
⎞
⎠dt. (2.12)

Let us suppose the bi-weighting function ω(p, q) is increasing in p and de-

creasing in q. Let us consider two lotteries P = (x1, p1;x2, p2; . . . ;xn, pn) and
Q = (y1, q1; y2, q2; . . . ; ym, qm) such that P stochastically dominates Q. This
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means that for all t ∈R
∑
i∶xi≥t

pi ≥ ∑
i∶yi≥t

qi (2.13)

or equivalently,

∑
i∶xi≤t

pi ≤ ∑
i∶yi≤t

qi (2.14)

By the stochastic dominance of P over Q, we have that for all t ∈R+

∑
i∶u(xi)≥t

pi ≥ ∑
i∶u(yi)≥t

qi (2.15)

and

∑
i∶u(xi)≤−t

pi ≤ ∑
i∶u(yi)≤t

qi (2.16)

From 2.15 and 2.16, considering the monotonicity of ω(⋅, ⋅), we have that for
all t ∈R+

ω
⎛
⎝ ∑i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

pi
⎞
⎠ ≥ ω

⎛
⎝ ∑i∶u(xi)≥t

qi, ∑
i∶u(xi)≤−t

qi
⎞
⎠ (2.17)

and by monotonicity of the integral we conclude that VbCPT (P ) ≤ VbCPT (Q).
Now, let us suppose the bi-weighting function ω(⋅, ⋅) is not [increasing in p

and decreasing in q], i.e. that there exist (p, q), (p̃, q̃) ∈ [0,1]2 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ≥ p̃
q ≤ q̃
(p − p̃)2 + (q − q̃)2 > 0
ω(p, q) < ω(p̃, q̃)
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Let us consider x > 0 and y < 0 such that u(x) = −u(y) and the two lotteries

R = (x, p; y, q) and S = (x, p̃; y, q̃). Even if R stochastically dominates S, it

results

VbCPT (R) = ω(p, q) ⋅ u(x) < ω(p̃, q̃) ⋅ u(x) = VbCPT (S).
Q.E.D.

2.3.5 The relationship between CPT and bCPT

Now we wish to discuss the fundamental link between the CPT model

and its generalization, the bCPT model. As we have seen, in CPT gains

and losses are evaluated separately, whereas in bCPT they are evaluated

conjointly. This gives rise to different approaches and then formulations.

Let be given a lottery P = (x1, p1; ...;xn, pn); an utility function u(⋅) ∶R→R;

two weighting functions π− ∶ [0,1] → [0,1] and π+ ∶ [0,1] → [0,1]; and a

bi-weighting function ω(p, q) ∶ A → [−1,1]. Using an integral representation

we get

VCPT(P ) = ∫ +∞

0

π+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠dt − ∫

+∞

0

π−
⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt (2.18)

VbCPT(P ) = ∫ +∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

pi
⎞
⎠dt (2.19)
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The separate evaluation of gains and losses in CPT is generalized to a conjoint

evaluation of gains and losses in bCPT.

In order to link the above integrals we must establish the relation between a

bi-weighting function and a weighting function. It is straightforward to note

that given a bi-weighting function

ω(p, q) ∶ A→ [−1; 1]

we can define two weighting functions by setting for all p, q ∈ [0,1]

π+(p) = ω(p,0) ∶ [0,1]→ [0,1]

π−(q) = −ω(0, q) ∶ [0,1]→ [0,1]
and, on the converse, given two weighting functions

π+(p) =∶ [0,1]→ [0,1]

π−(q) =∶ [0,1]→ [0,1]
we can obtain a bi-weighting function by setting for all p, q ∈ [0,1]

ω(p, q) = π+(p) − π−(q) ∶ A→ [−1; 1]

In this last case we say that the bi-weighting function is separable, that means

it can be represented as difference between two weighting functions.

In the next two propositions we will formalizes the relationship between the
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two models. The first proposition states that CPT and bCPT can be con-

sidered coincident for non-mixed prospects, i.e. for prospects non containing

simultaneously gains and losses. This fact is of great importance, since CPT

has been widely tested (with success) in situations involving only gains or

only losses, as it will be pointed out at the end of the proof. The second

proposition states that the CPT model can be considered a special case of

the bCPT model provided that we use a separable bi-weighting function.

This assertion too will be better discussed at the end of the proof.

Proposition 4 For non mixed prospects (containing only gains or losses)

the bCPT model coincides with the CPT model.

Proof. In proving the proposition we clarify its meaning. Let us sup-

pose the prospects are evaluated with the bCPT model and let us indicate

with u(⋅) ∶ R → R the utility function and with ω(p, q) ∶ A → [−1,1] the
bi-weighting function. Using the above considerations we can obtain two

weighting function by setting π+(p) = ω(p,0) and π−(q) = −ω(0, q) for all

p, q ∈ [0,1]. Now, let P = (x1, p1; ...;xn, pn) be a prospect assigning the non-

negative outcome xj ∈ R+ with probability pj. Since P contains only gains

(more precisely it does not contain losses), putting ω(p,0) = π+(p), we get:

VbCPT(P ) = ∫ +∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi , ∑
i∶u(xi)≤−t

pi
⎞
⎠dt =

= ∫ +∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi , 0
⎞
⎠dt = ∫

+∞

0

π+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠dt =

= ∫ +∞

0

π+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠dt − ∫

+∞

0

π− ( 0 )dt = VCPT(P )
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In the same manner, let P = (x1, p1; ...;xn, pn) be a prospect assigning the

non-positive outcome xj ∈ R− with probability pj. Since P contains only

losses (more precisely it does not contain gains), putting ω(0, q) = −π−(q),
we get:

VbCPT(P ) = ∫ +∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi , ∑
i∶u(xi)≤−t

pi
⎞
⎠dt =

= ∫ +∞

0

ω
⎛
⎝ 0 , ∑

i∶u(xi)≤−t
pi
⎞
⎠dt = −∫

+∞

0

π−
⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt =

= ∫ +∞

0

π+ ( 0 )dt − ∫ +∞

0

π−
⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt = VCPT(P )

The above reasoning can be replaced as follows. Let us suppose the prospects

are evaluated with the CPT model and let us indicate with u(⋅) ∶R→R the

utility function and with π+(p) ∶ [0,1] → [0,1] and π−(q) ∶ [0,1] → [0,1] the
two weighting functions (for gains and losses respectively). We can obtain a

bi-weighting function by setting ω(p, q) = π+(p) − π−(q) for all p, q ∈ [0,1]
and replacing the steps in the above proof we get VCPT(P ) = VbCPT(P ). We

conclude that for non-mixed prospects the two model coincide, provided that

we use weighting functions and bi-weighting function linked as it has been

shown.

Q.E.D.

Wu and Markle (2008) assert: “Prospect theory distinguishes itself from

the classical theory of decision under risk, expected utility theory, in tak-

ing change in wealth rather than absolute wealth to be the relevant carrier

of value (Kahneman and Tversky (1979); Tversky and Kahneman (1992)).

This distinction has been applied with enormous success to applications in
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business, finance, law, medicine, and political science (e.g., Barberis et al.

(2001); Camerer (2000); Jolls et al. (1998); McNeil et al. (1982); Quattrone

and Tversky (1988)). Indeed, most important real world decisions are mixed

gambles, involving some possibility of gain and some possibility of loss (Mac-

Crimmon and Wehrung (1990); March and Shapira (1987)). This article

investigates how individuals choose among mixed gambles . . .”

In the majority of works cited by Wu and Markle (2008), CPT has been

tested with success for non mixed prospects. The fact that, in this con-

text, bCPT coincides with CPT is, then, of great importance. Fist, because

all the investigations regarding CPT can be seen as investigation regarding

bCPT and secondarily since our model preserves all the descriptive powerful

of CPT in a non-mixed context. On the converse, Wu and Markle (2008)

expressed doubts about the gain loss separability: “This article investigates

how individuals choose among mixed gambles by examining a fundamental as-

sumption of prospect theory, gain-loss separability. Simply stated, gain-loss

separability requires that preferences for gains be independent of preferences

for losses and, more strongly, that the valuation of a mixed gamble be the

sum of the valuations of the gain and loss portions of that gamble. A fail-

ure of gain-loss separability has practical as well as theoretical implications.

First,empirical findings gleaned from the numerous studies of single domain

gambles will not necessarily generalize to the domain of mixed gambles. In

addition, estimates of the probability weighting function to the choice data

support our psychological interpretation that individuals are less sensitive to

probability differences when making choices among mixed gambles than when

faced with gambles involving all gains or all losses.”
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The authors supported their thesis with a large amount of data, showing

systematic violations of gain-loss separability. In this case we wish to point

out that if in a non mixed context CPT and bCPT can be considered the

same model, in a situations involving both gains and losses they are different

models. As we will soon see bCPT allows violation of gain-loss separability

and is able to cover the majority of data in Wu and Markle (2008).

Proposition 5 If the prospects are evaluated with the bCPT model with a

separable bi-weighting function, than the representation coincides with that

obtained with the CPT model. On the converse, if the prospects are evaluated

with the CPT model, than the representation coincides with that obtained

with the bCPT model with a separable bi-weighting function.

Proof. Let us suppose the prospects are evaluated with the bCPT model,

with a separable bi-weighting function

ω(p, q) = π+(p) − π−(q) ∶ A→ [−1; 1]
being π+ and π− two weighting function and let us denote by u(⋅) ∶ R → R

the utility function. We get immediately:

VbCPT(P ) = ∫ +∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi , ∑
i∶u(xi)≤−t

pi
⎞
⎠dt =

= ∫ +∞

0

π+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠ − π−

⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt =

= ∫ +∞

0

π+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠dt − ∫

+∞

0

π−
⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt = VCPT(P )
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On the converse let us suppose the prospects are evaluated with the CPT

model and let us denote by u(⋅) ∶ R → R the utility function and with

π+(p) ∶ [0,1] → [0,1] and π−(q) ∶ [0,1] → [0,1] the two weighting functions

(for gains and losses respectively). We can obtain a separable bi-weighting

function by setting ω(p, q) = π+(p) − π−(q) for all p, q ∈ [0,1] and replacing

the steps in the above proof we get

VCPT(P ) = ∫ +∞

0

π+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠dt − ∫

+∞

0

π−
⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt =

= ∫ +∞

0

π+
⎛
⎝ ∑i∶u(xi)≥t

pi
⎞
⎠ − π−

⎛
⎝ ∑

i∶u(xi)≤−t
pi
⎞
⎠dt =

= ∫ +∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi , ∑
i∶u(xi)≤−t

pi
⎞
⎠dt = VbCPT(P )

Q.E.D.

Proposition 5 establishes the only situation in which CPT and bCPT

are the same model (also for mixed prospects). More precisely, it asserts

that the CPT can be regarded as a special case of bCPT, in the sense that

there exists a (separable) bi-weighting function ω(p, q) = π+(p) − π−(q) such
that VbCPT(P ) = VCPT(P ) for all prospects P . This fact has two important

consequences. First, it is relevant in order to provide a preference foundation

for the model, since bCPT will need a less restrictive set of axioms with

respect to CPT. Second, it seems to contradict Wu and Markle (2008) “A

failure of gain-loss separability has practical as well as theoretical implications

. . . Finally, models that relax gain-loss separability will necessarily be more
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complex than models that assume separability.”

If in propositions 5 and 4 we have just analyzed the cases where CPT and

bCPT coincide, in the next sections we will see the explanation, by using

bCPT, of a recent paradox presented against CPT.

2.3.6 Explanation of the Wu-Markle

paradox

Let us reconsider the Wu-Markle paradox described in the introduction.

Wu and Markle (2008) refer the following experiment: 81 participants gave

their preferences as it is shown below

H =
⎛⎜⎜⎜⎜⎜⎜⎝

0.50 chance

at $4,200

0.50 chance

at $ − 3,000

⎞⎟⎟⎟⎟⎟⎟⎠
≻
⎛⎜⎜⎜⎜⎜⎜⎝

0.75 chance

at $3,000

0.25 chance

at $ − 4,500

⎞⎟⎟⎟⎟⎟⎟⎠
= L

[52%] [48%]

H+ =
⎛⎜⎜⎜⎜⎜⎜⎝

0.50 chance

at $4,200

0.50 chance

at $0

⎞⎟⎟⎟⎟⎟⎟⎠
≺
⎛⎜⎜⎜⎜⎜⎜⎝

0.75 chance

at $3,000

0.25 chance

at $0

⎞⎟⎟⎟⎟⎟⎟⎠
= L+

[15%] [85%]

H− =
⎛⎜⎜⎜⎜⎜⎜⎝

0.50 chance

at $0

0.50 chance

at $ − 3,000

⎞⎟⎟⎟⎟⎟⎟⎠
≺
⎛⎜⎜⎜⎜⎜⎜⎝

0.75 chance

at $0

0.25 chance

at $ − 4,500

⎞⎟⎟⎟⎟⎟⎟⎠
= L−

[37%] [63%]
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As can be seen H is weakly preferred to L, but when the two prospects

are split in their respective positive and negative parts, a relevant majority

prefers L+ to H+ and L− to H−. GLS is violated and CPT cannot cover such

a pattern of choice.

Wu and Markle (2008) suggested to use the the same model, CPT, with

a different parametrization for mixed prospects and for prospects involving

only gains or only losses. We report their general conclusions:

“In the last 50 years, a large body of empirical research has investigated how

decision makers choose among risky gambles. Most of these findings can be

accommodated by prospect theory. An S-shaped utility function and inverse S-

shaped probability weighting function can model the reflection effect, the four-

fold pattern of risk preferences, the common-ratio and common-consequence

effects, as well as the generalization of these findings from risk to uncertainty.

However, the majority of the existing empirical evidence has involved single-

domain gambles. The emphasis on these gambles is sensible - they are easy

for research participants to understand and can be studied in hypothetical sit-

uations as well as played out for real payoffs. The study of single-domain

gambles is justified if the understanding gleaned from these investigations ex-

tends to the domain of mixed gambles. Our study indicates that mixed

gamble behavior is described well by an S-shaped utility function

and an inverse S-shaped probability weighting function. However,

gain-loss separability fails, and hence different parameter values

are needed for mixed gambles than single-domain gambles. As

a result, findings inferred from studies of single domain gambles may not

extend automatically to mixed gambles. Our violations of gain-loss separa-
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bility appear to be systematic. Although a comprehensive study of gain-loss

separability is beyond the scope of this paper, we encourage extensions of our

tests to mixed gambles with different structures. Thus, even though future

research will surely qualify the account of mixed gambles developed here, we

nevertheless see our paper as moving us a step closer toward a fuller under-

standing of this important and understudied choice domain. In addition, we

have proposed cognitive and affective explanations for the violations of gain-

loss separability but have not provided direct evidence for either explanation.

The role that these psychological accounts and others play in the general eval-

uation of mixed gambles awaits further investigation.”

Despite the conclusions of Wu and Markle we are able to cover their para-

dox using bCPT, without changing the parameters in the passage from non

mixed prospects to mixed prospects. If we use the bipolar CPT with the

bi-polarized KT weighting functions (with the original parameters):

ω(p, q) = p0.61 − q0.69
[p0.61 + (1 − p)0.61] 1

0.61 + [q0.69 + (1 − q)0.69] 1

0.69 − 1
and the classical KT power utility function

u(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xα if x ≥ 0
−λ(−x)α if x < 0
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we obtain

VbCPT (H) = −443.24 > VbCPT (L) = −453.76
VbCPT (H+) = 649.19 < VbCPT (L+) = 652.26

VbCPT (H−) = −1,172.45 < VbCPT (L−) = −1,083.04
These results agree with the preference relation ≿ and gain loss separability

is naturally covered. In our knowledge do not exist many models that are

able to explain such a pattern of choice.

2.4 Appendix

In this appendix we prove propositions 1, 2 and 3. We remember that all

the bi-weighting ω(p, q) functions we propose in this study are defined in

A = {(p, q) ∈ [0,1] × [0,1] such that p + q ≤ 1}

that is, in the p−q plane, the triangle which vertexes are O ≡ (0,0), P ≡ (1,0)
and Q ≡ (0,1) (see 2.3). Moreover they coincide with the original gain

weighting function, ω+(p), if q = 0 and with the opposite loss weighting

function, −ω−(q), if p = 0. Since any bi-weighting generalization has as

special case the original form, it inherits all its limitations. For instance,

like the KT weighting function is not in general monotonic (see Rieger and

Wang (2006); Ingersoll (2008)) so the bi-polarized form is not, in general,

bi-monotonic, i.e. increasing in p and decreasing in q. We remark that it

has this characteristic for all the relevant values of its parameters, where
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relevant means established from the previous literature. On the other hand,

the Prelec bi-polarized weighting function is bi-monotonic (like the original)

without limitations for the parameters. Another aspect to take into account

in future behavioral investigation in field experiments is the form of the

curve ω(p, q) = 0. For all the three bi-weighting functions we are proposing

this curve has equation pγ − qδ = 0. It is represented by the arc ÔR in figure

2.3; by choosing γ > δ, γ < δ or γ = δ, we have, respectively, a convex, a

concave or a linear curvature.

2.4.1 The Kahneman-Tversky bi-weighting function

The first and most famous weighting function is that proposed in Tversky

and Kahneman (1992)

π(p) = pγ

[pγ + (1 − p)γ] 1γ
where the parameter gamma can be chosen differently for gains and losses

and it is well known that the authors estimated γ = 0.61 and δ = 0.69. For

this weighting function we propose the following bipolar form

ω(p, q) = pγ − qδ
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1 (2.20)

As the original KT weighting function is non monotonic for γ too much near

to zero, see Rieger and Wang (2006); Ingersoll (2008), so it is the case of

the bi-weighting function (2.20) when γ and δ are near zero. Proposition 1

establishes the parameter limitations preserving the bi-monotonicity of the
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bi-weighting function (2.20).

Proof of proposition 1.

For x ∈ [0,1] and δ ∈ [0,1] it results f(x) = [xδ + (1 − x)δ] 1δ ≥ 1 since

this function is continuous in the closed interval [0,1], with f(0) = f(1) = 1,
while f ′(x) is positive in ]0,1/2[ and negative in ]1/2,1[. In fact

f ′(x) = [xδ + (1 − x)δ] 1δ−1 [xδ−1 − (1 − x)δ−1] ≥ 0

⇔ [xδ−1 − (1 − x)δ−1] ≥ 0 ⇔ 1 ≥ ( x

1 − x)
1−δ ⇔ x ≤ 1

2

It follows that in (2.20) the denominator is positive and the sign depends on

pγ − qδ. If we start from the zero curve ω(p, q) = 0 ⇔ pγ − qδ = 0, that is

the ÔB curve in 2.5 , it is clear that an increase in p will bring us in the

domain in which the function (2.20) is positive (OAB ”triangle”) while an

increase in q will bring us in the domain in which the function is negative

(OBC ”triangle”) and then, in this case, the function (2.20) is increasing in

p and decreasing in q. Now it is sufficient to prove that ω(p, q) is increasing
in p and decreasing in q within the two triangles, i.e. where ω(p, q) > 0 (< 0)
and p, q > 0. If ω(p, q) > 0, and then if pγ−qδ > 0 and since the function Ln(x)
is strictly increasing, it is sufficient to prove that Ln(ω(p, q)) is increasing in

p and decreasing in q. By differentiating w. r. t. the first variable:

∂Ln [ω(p, q)]
∂p

= γpγ−1

pγ − qδ − [(
1

p
)1−γ − ( 1

1 − p)
1−γ] ⋅

⋅ [pγ + (1 − p)γ] 1γ −1
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1

(2.21)
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If 1/2 ≤ p < 1 → [(1
p
)1−γ − ( 1

1−p)1−γ] ≤ 0 and the (2.21) is positive.

Suppose 0 < p < 1/2, than the first summand in the (2.21) is positive and the

second is negative. We have the following decreasing sequence:

∂Ln [ω(p, q)]
∂p

= γpγ−1

pγ − qδ − [(
1

p
)1−γ − ( 1

1 − p)
1−γ] ⋅

⋅ [pγ + (1 − p)γ] 1γ −1
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1

≥ 1

≥ γpγ−1

pγ
− [(1

p
)1−γ − ( 1

1 − p)
1−γ] ⋅ [pγ + (1 − p)γ] 1γ −1

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1
≥ 2

≥ γpγ−1

pγ
− [(1

p
)1−γ − ( 1

1 − p)
1−γ] ⋅ [pγ + (1 − p)γ]

1

γ
−1

[pγ + (1 − p)γ] 1γ =

= γpγ−1

pγ
− [(1

p
)1−γ − ( 1

1 − p)
1−γ] ⋅ 1

pγ + (1 − p)γ ≥ 3

≥ γ (1
p
)1−γ
pγ

− (1
p
)1−γ

pγ + (1 − p)γ = (
1

p
)1−γ ⋅ [ γ

pγ
− 1

pγ + (1 − p)γ ]
Then in order to prove that the (2.21) is non negative it is sufficient to show

that the quantity in the last square bracket is non negative

γ

pγ
− 1

pγ + (1 − p)γ =
γ [pγ + (1 − p)γ] − pγ
pγ [pγ + (1 − p)γ] ≥ 0 ⇔ γ [pγ + (1 − p)γ] − pγ ≥ 0

⇔ γ(1 − p)γ ≥ (γ)pγ ⇔ (1 − p
p
)γ ≥ 1 − γ

γ
⇔ 1 − p

p
≥ (1 − γ

γ
)

1

γ
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Remembering that we are under the limitation 0 < p < 1/2 the first term is

greater than one and then the last is true if

(1 − γ
γ
)

1

γ ≤ 1 ⇔ γ ≥ 1

2

and this is ensured by the hypothesis of proposition 1.

At this time we have proved that if ω(p, q) > 0 then the function ω(p, q) is
increasing in p. A dual demonstration will prove that if ω(p, q) < 0 then

the function is decreasing in q, i.e. the function −ω(p, q) is increasing in q.

For this it is sufficient to exchange p with q and γ with δ and to repeat the

previous passages. Now, in the case ω(p, q) > 0 we turn out our attention to

the first derivative with respect to q

∂Ln [ω(p, q)]
∂q

= −δqδ−1
pγ − qδ − [(

1

q
)1−δ − ( 1

1 − q)
1−δ] ⋅

⋅ [qδ + (1 − q)δ] 1δ−1
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1

(2.22)

If [(1
q
)1−δ − ( 1

1−q)1−δ] ≥ 0 ⇔ q ≤ 1/2 then the (2.22) is negative. Supposing

q > 1/2 the first summand in the (2.22) is negative and the second is positive.

Note that if γ ≥ δ the curve which equation is pγ − qδ = 0 coincides with the

graph of the function q = p γ

δ that is convex, like in 2.5, and within the domain

A+ = {(p, q) ∈ [0; 1] × [0; 1] such that p + q ≥ 1 and pγ − qδ}

it is impossible that q > 1/2 and so we have finished the proof. On the other
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hand if γ < δ the graph of the function q = p
γ

δ is concave and within the

domain A+ there are points such that q > 1/2. For these reasons, from here

we will suppose q > 1/2 and γ < δ and we will refer to 2.6.

From a sequence of increases it results:

∂Ln [ω(p, q)]
∂q

≤ 4 ≤ −δqδ−1
pγ − qδ − [(

1

q
)1−δ − ( 1

1 − q)
1−δ] =

= qδ−1 [ −δ
pγ − qδ + (

q

1 − q)
1−δ

− 1]
Then it is sufficient to prove that

−δ
pγ − qδ + (

q

1 − q)
1−δ

− 1 ≤ 0 ⇔ ( q

1 − q)
1−δ ≤ 1 + −δ

pγ − qδ

and this will follow from:

q

1 − q ≤ 1 + −δ
pγ − qδ

since

q > 1

2
⇒ q

1 − q > 1 ⇒ ( q

1 − q)
1−δ ⇒ q

1 − q
Summarizing, for our scope we must prove that

q

1 − q ≤ 1 + −δ
pγ − qδ (2.23)

Under the restrictions we are working with, it is possible to elicit some limi-

tations of the variables p, q, γ and δ. We have supposed pγ − qδ > 0 , q > 1/2
and δ > γ, that in the 2.6 delimit the area ABC. Since the curvature of
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pγ − qδ = 0 is more accentuate when larger is the difference between γ and δ,

a limit is, for us, the curve p0.5 − q1 = 0, i.e. q = √p, which delimits the area

ADE containing the area ABC. This consideration allows us to elicit some

sure limitations for p and q: the “highest” point is the intersection between

q = √p and p + q = 1, that is D(0.38; 0.62); the most “left-placed” point is

the intersection between q = √p and q = 0.5, that is E(0.25; 0.5); we elicit

0.25 < p < 0.5 and 0.5 < q < 0.62. Consider the function pγ − qδ, by differenti-

ating, we can prove that it is increasing in p and δ and decreasing in q and

γ, and then, using the elicited parameter limitations we have

pγ − qδ ≤ (1
2
)0.5 − (1

2
)1

which in turn implies

1 + −δ
pγ − qδ ≥ 1 + δ

(1
2
)0.5 − (1

2
)1 (2.24)

Finally, the quantity q/(1 − q) is increasing in q and then by using the sup

limitation of q it follows that

q

1 − q ≤
0.62

1 − 0.62 (2.25)

Using (2.24) and (2.25) the (2.23) is true if it is true the:

0.62

1 − 0.62 ≤ 1 + δ

(1
2
)0.5 − (1

2
)1

which gives δ > 0.131 and this is perfectly within our basic limitations.
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Similarly, by exchanging p with q and γ with δ it follows that ω(p, q) is

increasing in p when ω(p, q) < 0.
Q.E.D.

2.4.2 The Latimore, Baker and Witte

bi-weighting function

Another widely used weighting function is

π(p) = αpγ

αpγ + (1 − p)γ (2.26)

with γ,α > 0. It was introduced by Lattimore et al. (1992); Goldstein and

Einhorn (1987) and is known as linear in log odd form, since Gonzalez and

Wu (1999) proved this property.

We propose the bipolar form of this weighting form:

ω(p, q) = α(pγ − qδ)
αpγ + (1 − p)γ + αqδ + (1 − q)δ (2.27)

with α > 1/2 and 0 < γ, δ ≤ 1 These parameter limitations allow us to pre-

serve the space inverse S-shaped form of the function and to prove its bi-

monotonicity. We are not worried about these restrictions, since they include

many of the parameter estimations given for the form (2.26), as can be seen

in table 2.3, (from Bleichrodt and Pinto (2000))

Proof of proposition 2.

For x ∈ [0,1], α > 1/2 and γ ∈]0,1] it results f(x) = αxγ + (1 − x)γ ≥
min{1, α} > 1/2. Since this function is continuous in the closed interval
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authors α γ

Tversky and Fox (1995) 0.77 0.79
Wu and Gonzalez (1996) 0.84 0.68
Gonzalez and Wu (1999) 0.77 0.44
Abdellaoui (2000) (gains) 0.65 0.60
Abdellaoui (2000) (losses) 0.84 0.65
Bleichrodt and Pinto (2000) 0.816 0.550

Table 2.3: recent estimations of parameters for the (2.26)

[0,1], with f(0) = 1, f(1) = α and the second derivative is non-positive from

zero to one:

f ′′(x) = γ(γ − 1)αxδ−2 + γ(γ − 1)(1 − x)δ−2 ≤ 0

It follows that in the (2.27) the denominator is positive under the limitation

α > 1/2. Within its domain the first derivative of the (2.27) with respect to

p is :

∂ω(p, q)
∂p

= αγ (1 − p)
γ−1 (pγ−1 − qδ) + pγ−1 [2αqδ + (1 − q)δ − 1]
[αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1]2 (2.28)

Having chosen γ ≤ 1 the term pγ−1 ≥ 1 for all p ∈]0,1] and since qδ ≤ 1 then

pγ−1 − qδ ≥ 0 . On the other hand (2αqδ + 1 − q)δ − 1 ≥ 0 since for x ∈ [0,1],
α > 1/2 and 0 < δ ≤ 1 the function f(x) = 2αxδ + (1 − x)δ ≥ min{1,2α} ≥ 1
since it is continuous in the closed interval [0,1], with f(0) = 1, f(1) = 2α
and the second derivative is non-positive from zero to one:

f ′′(x) = γ(γ − 1)2αxδ−2 + γ(γ − 1)(1 − x)δ−2 ≤ 0
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Then (2.28) is non-negative and the (2.27) is increasing in p.

The first derivative with respect to q is

∂ω(p, q)
∂q

= αδ (1 − q)δ−1 (pγ − qδ−1) − qδ−1 [2αpγ + (1 − p)γ − 1][αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1]2 (2.29)

By the same argumentations, it is easy to see that it is non-positive and then

the (2.27) is decreasing in q.

Q.E.D.

2.4.3 The Prelec bi-weighting function

One of the most famous alternative to the classical weighting function

of Tversky and Kahneman (1992) is the compound-invariant form of Prelec

(1998), which has two variants, with two parameters:

π(p) = e−β(−Lnp)α (2.30)

and with one parameter

π(p) = e−(−Lnp)α (2.31)

where β ≈ 1 is variable for gains and for losses and 0 < α < 1. The Prelec

weighting function is undefined for p = 0 but it is extended by continuity to

the value of zero. We propose the following bi-weighting form:

ω(p, q) = pγ − qδ
∣pγ − qδ ∣e−β(−ln∣p

γ−qδ ∣)α (2.32)
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with β ≈ 1; γ, δ > 0 and 0 < α < 1. The term pγ−qδ

∣pγ−qδ ∣ means ±1, respectively if we
are within the OBA or OBC “triangle” of figure 2.5. The (2.32) is undefined

if pγ−qδ = 0, in this case we extend the function by continuity setting ω(p, q) =
0, following the original procedure. For the sake of simplicity we choose β = 1,
moreover the two parameters γ and δ have the obvious motivation that we

do not wish that ω(p, p) = 0 necessarily. Note that ∣pγ − qδ ∣ ∈ [0,1] and then

the logarithm is non positive.

Proof of proposition 3.

If we start from the zero curve ω(p, q) = 0 ⇔ pγ−qδ = 0 that is the ÔB curve

in 2.5, it is clear that an increasing in p will bring them in the domain in

which the function is positive (OAB “triangle”) while an increasing in q will

bring them in the domain in which the function is negative (OBC “triangle”)

and then, in this case, the function (2.32) is increasing in p and decreasing in

q. Now it is sufficient to prove that ω(p, q) is increasing in p and decreasing in

q within the two triangle, i.e. where ω(p, q) > 0 or ω(p, q) < 0 and p, q > 0. If
w(p, q) > 0 and then if pγ −qδ > 0 the (2.32) becomes: ω(p, q) = e−[−Ln(pγ−qδ)]α
and by differentiating w. r. t. the two variables:

∂ω(p, q)
∂p

= e−[−Ln(pγ−qδ)]αα [−Ln (pγ − qδ)]α−1 γpγ−1

pγ − qδ > 0

∂ω(p, q)
∂p

= e−[−Ln(pγ−qδ)]αα [−Ln (pγ − qδ)]α−1 −δqδ−1
pγ − qδ < 0

This proves the property within the triangle OBA, where ω(p, q) > 0. Sim-

ilarly if pγ − qδ < 0 the (2.32) becomes: ω(p, q) = −e−[−Ln(−pγ+qδ)]α and by
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differentiating w. r. t. the two variables:

∂ω(p, q)
∂p

= −e−[−Ln(−pγ+qδ)]αα [−Ln (pγ − qδ)]α−1 −γpγ−1−pγ + qδ > 0

∂ω(p, q)
∂p

= −e−[−Ln(−pγ+qδ)]αα [−Ln (pγ − qδ)]α−1 δqδ−1

−pγ + qδ < 0
We conclude that the Prelec bi-weighting function has the requested property

to be increasing in its first argument and decreasing in the second, for all the

parameter values.

Q.E.D.

Notes

1since

γpγ−1

pγ − qδ >
γpγ−1

pγ

2since from

[qδ + (1 − q)δ] 1δ − 1 ≥ 0→ [pγ + (1 − p)γ] 1γ −1
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1

≤ [pγ + (1 − p)
γ] 1γ −1

[pγ + (1 − p)γ] 1γ →

−[(1
p
)1−γ − ( 1

1 − p)
1−γ] [pγ + (1 − p)γ] 1γ −1

[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1
≥ −[(1

p
)1−γ − ( 1

1 − p)
1−γ] [pγ + (1 − p)

γ] 1γ −1
[pγ + (1 − p)γ] 1γ

3since

−(1
p
)1−γ ≤ −[(1

p
)1−γ − ( 1

1 − p)
1−γ] ≤ 0

4 since from

1/2 < γ, δ ≤ 1 → [pγ + (1 − p)γ] 1γ − 1 ≥ 0 and [qδ + (1 − q)δ] 1δ ≥ 1→
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[qδ + (1 − q)δ] 1δ−1
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1

≤ [q
δ + (1 − q)δ] 1δ−1
[qδ + (1 − q)δ] 1δ

=
1

qδ + (1 − q)δ ≤ 1
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Figure 2.5: the KT bi-weighting function domain; in the case γ > δ, the curve
q = pγ/δ is convex.
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Figure 2.6: if γ < δ the curve ÔB ∶ q = pγ/δ is concave and its most accentuate
curvature is that of ÔD ∶ q = √p. The point A(.5, .5) is the intersection
between the lines p = q and p+ q = 1; the point B is the intersection between
pγ−qδ = 0 and p+q = 1; the point C is the intersection between pγ−qδ = 0 and
q = .5; the point D(.38, .62) is the intersection between q =√p and p + q = 1;
the point E(.25, .5) is the intersection between q =√p and q = .5.
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2.5 Concluding remarks

Any author, testing a theory, tries to bring the respondents in the bound-

ary zones of their mental decision process, in the context of that theory.

Generally, the use of moderate probability should avoid the framing effect

and the certainty effect that occur with extreme probabilities. In CPT, if we

think to the inverse S-shaped probability weighting function, in the field of

moderate probabilities the model is very sensible. In fact as well as the small

probabilities are over-estimated, so the moderate probabilities are strongly

under-estimated. In this sense Levy and Levy (2002) opened the way, find-

ing the first data involving moderate probabilities which caused problems

(in prediction) to CPT. Despite just an year later Wakker (2003) demon-

strated how the theory could accommodate for the data of Levy and Levy

(2002), properly setting the parameters, successively different authors Bal-

tussen et al. (2006); Birnbaum and Bahra (2007); Wu and Markle (2008)

found the perfect mixture of gains, losses and associated probabilities to cre-

ate unsolvable problems to CPT. The most relevant of this is the violation of

Gain Loss Separability (GLS). GLS means that people in choosing between

mixed prospects, evaluate separately gains from losses and then obtain a

general evaluation by summing the two results. In this chapter we have ex-

tended the CPT model to the bCPT. In bCPT gains and losses within a

mixed prospect are evaluated conjointly and not separately as in CPT. The

most important paper denouncing the violation of GLS is that of Wu and

Markle (2008). In their study it seems to appear a phenomenon that we

should like to call Gain-Loss-Hedging (GLH). If we look trough, from up to
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down, the Table 1 of page 1326 in Wu and Markle (2008), with the preferences

elicited from the reported percentages, it seems like if the Gain Loss Hedg-

ing first appears, denounced by means of the reversed preferences, and then

disappears or, lose intensity so to be not enough strong to reverse the pref-

erences. In the next chapter we will see in detail as the bCPT model seems

to naturally capture the essence of the phenomenon. By way of example, we

have just seen how bCPT is able to cover what we called the “Wu-Markle”

paradox. We opened this chapter remembering how great, in the last years,

has been the successful of the CPT model of Tversky and Kahneman (1992)

to propose itself like the most valid alternative to the classical EUT. So the

last thing we want is to renounce to these successes. In this view, our model

is though so to coincide with the original in two distinct hypothesis. First

if all the gambles involved in the choosing process are not mixed, i.e. they

do not contain at the same time gains and losses. Second, using a separable

bi-weighting function the bCPT model collapses to the CPT model. The use

of a separable bi-weighting function corresponds to the axiomatic condition

that people evaluate separately gains and losses, contained in the same mixed

gamble.
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Chapter 3

Explanation of some recent

paradoxes against CPT

3.1 Recent literature against CPT

As discussed in the previous chapter this study aims to generalize CPT,

in the most natural way, allowing gains and losses within a mixed prospect

to be evaluated conjointly rather than separately. In this chapter we will

see how our generalization is able to account for some paradoxes found in

the recent literature. The major critique regards the most distinctive aspect

of the model, the separate valuations of gains and losses (GLS). We have

just argued how and why we retain the gain-loss separation at a perceptive

level, in this preserving the characteristic S-shaped utility function of CPT,

while we present a generalized way to evaluate the risky prospects, where

gains and losses are estimated conjointly. In the following we shall focus our

attention on two recent papers: Wu and Markle (2008) and Birnbaum and
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Bahra (2007). Both of them report violations, by part of CPT, of the GLS.

We will see how the bCPT is able to capture, at least partially, these errata

predictions.

3.2 Wu and Markle (2008)

In table 1 of page 1326 the authors show several reversals between pref-

erences for mixed gambles and their negative and positive parts. A mixed

gamble H is preferred to a mixed gamble L, but the gain and the loss por-

tions of L are preferred to the gain and the loss portions of H. This pattern

of choice is inconsistent with CPT, since for any prospect P and for any

parameters values setting: VCPT (P ) = VCPT (P +) + VCPT (P −). We prefer to

say that the preferences are reversed in the other sense, i.e. there is an in-

version when a person prefers the pure gamble L+ to the pure gamble H+

and prefers the pure gamble L− to the pure gamble H− but she prefers the

mixed gamble H to the mixed gamble L. This, since the choices between the

pure gambles involve less parameters and then, we think, are more “genuine”

respect to the choice between the mixed gambles, where it seems that has to

be considered a sort of Gain-Loss-Hedging (GLH). In our opinion the core of

the Wu-Markle paper is to have found the more precise mixture (or combi-

nation) between gains, losses and their probabilities in the same prospects to

denounce this GLH by means of the reversed preferences in the passage from

the pure gambles to their combination in mixed gambles. In 3.1 we repro-

duce the Table 1 of page 1326 in Wu and Markle (2008) with the preferences

elicited from the reported percentages found by the authors. In many cases
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(tests 6,7, 10-18) the respondents preferred (in percentage) H to L while

splitting the prospects into their respective positive and negative part the

preferences were reversed, violating GLS.

To test our model we have used the bCPT functional

VbCPT (P ) = ∫ ∞

0

ω
⎛
⎝ ∑i∶u(xi)≥t

pi, ∑
i∶u(xi)≤−t

pi
⎞
⎠dt (3.1)

the KT bi-weighting function

ω(p, q) = pγ − qδ
[pγ + (1 − p)γ] 1γ + [qδ + (1 − q)δ] 1δ − 1 (3.2)

with parameters γ = 0.9 and δ = 0.89 and the classical KT power utility

function

u(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xα
+ if x ≥ 0
−λ(−x)α− if x < 0 (3.3)

with parameters λ = 1.77 , α+ = 0.68, and α− = 0.79.
As can be seen in table 3.1, our data are in the same directions of the

preferences in all the pure positive choices except that in tests 13,23 and 25,

in all the pure negative choices except in tests 9, 12-15, 17 and 19 and in all

the mixed choices except in tests 3, 5 and 20. But, what we think is very

interesting, is that the model is able to accommodate for the reversed prefer-

ences, totally in tests 6, 7, 10, 11, 16 and 18 and partially in test 12, 14, 15,

and 17. The KT bi-weighting function seems able to predict the final choice,

i.e. between the mixed gambles, and at the same time to naturally capture

(totally or partially) what we have called the GLH, when this phenomenon
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appears. Future researches should be focused on the best fitting data in

the set of the bi-weighting functions or on the discovery of new bi-weighting

functions, that are non necessarily the extension of the well known weighting

functions. Wu and Markle (2008), in their conclusions, suggest that “the ob-

served choice patterns are consistent with a process in which individuals are

less sensitive to probability differences when choosing among mixed gambles

than when choosing among either gain or loss gambles”.

So to accommodate for the violation of GLS it must be used different parame-

ters in the same probability weighting function, for mixed and pure gambles.

But this process could generate, we think, non-transitivity problems if we

should choose in a set containing mixed as well as pure gambles. In Wu and

Markle (2008), the chooses involve only mixed gambles or pure (co-signed)

gambles, but if we should choose between a mixed and a pure gamble, what

kind of parameters we should use? Those designed for mixed gambles or

those designed for pure gambles? Another question is that, to admission of

the same authors, the tests are thought to favorite the violation of GLS: “the

special configuration in table 1 shows how the highest and the lowest outcomes

in H are better than the highest and lowest outcomes in L, so to contribute

to suggest a dominance of H over L.”

For all these reasons we think is relevant to have found a function which, for

the same parameters value, is able to capture, in many cases, the violation

of GLS when it appears. At the end, we want to point out that, in order to

find the best fitting set of parameters, we have forced not only those of the

bi-weighting function (γ, δ) , but also those of the utility function (α+, α− and

λ); but if the same authors admit that the test has been build to hard check
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the CPT model in its peculiarities, it is admissible to use the parameters

in all their elasticity, since we are in a boundary zone in the mind of the

Decision Makers in their choice process.

Table 3.1: application of bCPT to the data of Wu and Markle (2008)

Test H gamble L gamble choice % preferences bCPT
g p l 1-p g′ p′ l′ 1-p′ H H+ H-

1 150 0,3 -25 0,7 75 0,8 -60 0,2 22 10 17 G+ G- G G+ G- G
2 1800 0,05 -200 0,95 600 0,3 -250 0,7 21 17 15 G+ G- G G+ G- G
3 1000 0,25 -500 0,75 600 0,5 -700 0,5 28 12 20 G+ G- G G+ G- H
4 200 0,3 -25 0,7 75 0,8 -100 0,2 33 18 22 G+ G- G G+ G- G
5 1200 0,25 -500 0,75 600 0,5 -800 0,5 43 21 25 G+ G- G G+ G- H
6 750 0,4 -1000 0,6 500 0,6 -1500 0,4 51 26 25 G+ G- HG G+ G- H
7 4200 0,5 -3000 0,5 3000 0,75 -6000 0,25 52 15 37 G+ G- HG G+ G- H
8 4500 0,5 -1500 0,5 3000 0,75 -3000 0,25 48 17 47 G+ G- GH G+ G- H
9 4500 0,5 -3000 0,5 3000 0,75 -6000 0,25 58 17 55 G+ H- H G+ G- H
10 1000 0,3 -200 0,7 400 0,7 -500 0,3 51 48 28 G+ G- HG G+ G- H
11 4800 0,5 -1500 0,5 3000 0,75 -3000 0,25 54 33 44 G+ G- H G+ G- H
12 3000 0,01 -490 0,99 2000 0,02 -500 0,98 59 42 36 G+ G- H G+ H- H
13 2200 0,4 -600 0,6 850 0,75 -1700 0,25 52 38 42 G+ G- HG H+ H- H
14 2000 0,2 -1000 0,8 1700 0,25 -1100 0,75 58 34 48 G+ G- H G+ H- H
15 1500 0,25 -500 0,75 600 0,5 -900 0,5 51 51 33 GH+ G- HG H+ H- H
16 5000 0,5 -3000 0,5 3000 0,75 -6000 0,25 65 43 43 G+ G- H G+ G- H
17 1500 0,4 -1000 0,6 600 0,8 -3500 0,2 59 48 41 G+ G- H G+ H- H
18 2025 0,5 -875 0,5 1800 0,6 -1000 0,4 72 52 42 G+ G- H G+ G- H
19 600 0,25 -100 0,75 125 0,75 -500 0,25 58 55 44 H+ G- H H+ H- H
20 5000 0,1 -900 0,9 1400 0,3 -1700 0,7 40 47 53 G+ HG- G G+ G- H
21 700 0,25 -100 0,75 125 0,75 -600 0,25 71 59 48 H+ H- H H+ G- H
22 700 0,5 -150 0,5 350 0,75 -400 0,25 63 58 48 H+ GH- H H+ H- H
23 1200 0,3 -200 0,7 400 0,7 -800 0,3 70 59 50 H+ H- H G+ H- H
24 5000 0,5 -2500 0,5 2500 0,75 -6000 0,25 79 54 54 H+ H- H H+ H- H
25 800 0,4 -1000 0,6 500 0,6 -1600 0,4 58 64 51 H+ H- H G+ H- H
26 5000 0,5 -3000 0,5 2500 0,75 -6500 0,25 71 61 59 H+ H- H H+ H- H
27 700 0,25 -100 0,75 100 0,75 -800 0,25 73 58 64 H+ H- H H+ H- H
28 1500 0,3 -200 0,7 400 0,7 -1000 0,3 75 59 63 H+ H- H H+ G- H
29 1600 0,25 -500 0,75 600 0,5 -1100 0,5 73 60 69 H+ H- H H+ H- H
30 2000 0,4 -800 0,6 600 0,8 -3500 0,2 65 66 63 H+ H- H H+ H- H
31 2000 0,25 -400 0,75 600 0,5 -1100 0,5 80 63 69 H+ H- H H+ H- H
32 1500 0,4 -700 0,6 300 0,8 -3500 0,2 78 64 68 H+ H- H H+ H- H
33 900 0,4 -1000 0,6 500 0,6 -1800 0,4 70 74 61 H+ H- H H+ H- H
34 1000 0,4 -1000 0,6 500 0,6 -2000 0,4 78 71 70 H+ H- H H+ H- H

α+ = 0.68, α− = 0.79, δ = 0.89 λ = 1.77, γ = 0.9
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3.3 Birnbaum-Bahra

In Birnbaum and Bahra (2007) the authors reported systematic violations

of two behavioral properties implied by CPT, one is the just discussed GLS

and the other is the property known as coalescing:

“coalescing is the assumption that if there are two probability-consequences

branches in a gamble leading to the same consequence, they can be combined

by adding their probabilities.”

For example, the three-branch gamble A = ($100,0.25;$100,0.25;$0,0.5) is
equivalent to the two-branch gamble A′ = ($100,0.5;$0,0.5). Our model is

not able to accommodate for violation of coalescing, but we want to point

out that, in their paper, Birnbaum and Bahra tested violation of coalescing

presenting to the participants the gambles in terms of a container holding

exactly 100 marbles of different colors. So, according to coalescing, B′ =
(25 red to win $100; 75 white to win $0) should be considered equivalent to

B = (25 red to win $100; 25 white to win $0; 50 white to win $0). We are not

sure that to present the gambles in this form is the same that to present the

gambles with the cleared (numerically) probabilities, since any person which

faces up B will ask himself what is the reason that the first 25 white marbles

were not summed to the second 50 white marbles, it is admissible that she

will think if they differ in some way. In any case, she will have an additional

information or doubt to process and this could generate errors. As focused

from Wu and Markle (2008) the examples of Birnbaum and Bahra (2007) to

underline the GLS violation (implied from CPT) are less simple than theirs,

but our model is able to accommodate for these violations modifying only
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the parameter γ from the value of 0.9 used to accommodate the majority of

data in Wu and Markle (2008) to the value of 0.74. Next we report the part

of the table 5 at page 1022 in Birnbaum and Bahra (2007) that, in the words

of the same authors, form a test for the GLS. As we have said each gamble

“is described in terms of a container holding exactly 100 marbles of different

colors, from which one marble would be drawn at random, and the color of

that marble would determine the prize.”.

In the brackets are shown the percentages of each choose.

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 black

to win $100

25 white

to win $0

50 pink

to lose $50

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≻

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 blue

to win $50

25 white

to lose $0

25 red

to lose $100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G

[76%] [24%]

F+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 black

to win $100

25 white

to win $0

50 white

to win $0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≺

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 blue

to win $50

25 blue

to win $50

50 white

to win $0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G+

[29%] [71%]
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F− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 white

to lose $0

25 white

to lose $0

25 red

to lose $100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≺

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 black

to win $100

25 white

to win $0

50 pink

to loss $50

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G−

[35%] [65%]
As can be seen F is preferred to G, but when the two prospects are split

in their respective positive and negative parts (according to coalescing) a

relevant majority prefers G+ to F+ and G− to F−. This violation of the GLS

is clearly inconsistent with CPT. In order to evaluate these prospects we

substitute the respective probabilities to the colors, so do the authors, by

dividing for 100 any number of color within the prospects. Using the bipolar

CPT with the bi-polarized KT weighting functions with parameters γ = 0.74,
δ = 0.89

ω(p, q) = p0.74 − q0.89
[p0.74 + (1 − p)0.74] 1

0.74 + [q0.89 + (1 − q)0.89] 1

0.89 − 1
and the classical KT power utility function with parameters λ = 1.77, α = 0.68
and β = 0.79

u(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0.68 if x ≥ 0
−1.77(−x)0.79 if x < 0

we obtain

VbCPT (F) = −11.07 ≥ VbCPT (G) = −11.11
VbCPT (F+) = 6.67 ≤ VbCPT (G+) = 6.71

VbCPT (F−) = −19.28 ≤ VbCPT (G−) = −18.25
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These results agree with the preference relation ≿ and Gain Loss Separability

is naturally covered. Again as in Wu and Markle (2008) we remark that there

are no many models that are able to cover such pattern of choice.

3.4 Concluding remarks

Both in Wu and Markle (2008); Birnbaum and Bahra (2007) there are

systematic violations of Gain Loss Separability. These data seems to support

the hypothesis that people process in different ways mixed prospects and

non-mixed prospects. If the cited authors have suggested to use different

parametrization of the same model, we have shown how it is possible to

cover their “paradoxes” by using the same model, bCPT, without changing

the parameters setting in the passage from mixed prospects to prospects

containing all gains or all losses.
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Chapter 4

The bipolar Choquet Integral

4.1 Introduction

In the previous chapters we have seen a generalization of the Cumula-

tive Prospect Theory (CPT) in the field of risk, i.e. when probabilities are

assigned. We called this model the bipolar Cumulative Prospect Theory

(bCPT) and we showed how it is able to accommodate for recent paradoxes

regarding the CPT and, particularly, its most distinctive aspect, the sepa-

rate evaluation of gains and losses. In this chapter we will extend the bCPT

model from the field of risk to that of uncertainty, where the Decision Maker

(DM) faces events with non-assigned probabilities. In this context she must

use her subjective beliefs regarding the plausibility of any event, assigning

to it a subjective probability. CPT can be extended from the field to decision

under risk to that of decision under uncertainty by means of the two con-

cepts of capacity and Choquet integral with respect to a capacity (Choquet

(1953); Schmeidler (1986)). Similarly we extend bCPT by means of the two

105



generalized concepts of bi-capacity and bipolar Choquet integral with respect

to a bi-capacity (Grabisch and Labreuche (2005a,b); Greco et al. (2002)). A

second problem we will face in this chapter is that of axiomatize bCPT, i.e.

to find a preference foundation for the model. bCPT can be axiomatized

separately in the field of decision under risk and in the field of decision un-

der uncertainty. The main tool to axiomatize the model in an uncertainty

context is the bipolar Choquet integral. In the following we present a fairly

simple characterization of the bipolar Choquet integral (following Schmeidler

(1986) for the Choquet integral).

4.2 Extension of bCPT to uncertainty

4.2.1 Bi-capacity and bipolar Choquet integral

In order to extend bCPT from the field of risk to that of uncertainty we

need to generalize the concept of capacity and Choquet integral with respect

to a capacity.

Let S be a non-empty set of states of the world and Σ an algebra of subsets of

S (the Events). Let B denote the set of bounded real-valued Σ−measurable

functions on S and B0 the set of simple (i.e. finite valued) functions in B.

Definition 8 A function ν ∶ Σ→ [0,1] is a (normalized) capacity on Σ if

• ν (∅) = 0, ν (S) = 1
• for all A,B ∈ Σ such that A ⊆ B ⇒ ν (A) ≤ ν (B)
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Choquet (1953) defined an integration operation with respect to the non-

necessarily additive set function ν.

Definition 9 Given a nonnegative valued function f ∈ B and a capacity

ν ∶ Σ→ [0,1], the Choquet integral of f with respect to ν is

∫
S
f(s) dν =∶ ∫ ∞

0

ν ({s ∈ S ∶ f(s) ≥ t})dt

Successively Schmeidler (1986) extended this definition to all of B
Definition 10 Given a bounded real valued function f ∈ B and a capacity

ν ∶ Σ→ [0,1], the Choquet integral of f with respect to ν is

∫
S
f(s) dν =∶ ∫ 0

−∞
[ν ({s ∈ S ∶ f(s) ≥ t}) − 1]dt + ∫ ∞

0

ν ({s ∈ S ∶ f(s) ≥ t})dt

Let us consider the set of all the couples of disjoint events

Q = {(A,B) ∈ Σ ×Σ ∶ A ∩B = ∅}

Definition 11 A function µb ∶ Q → [−1,1] is a bi-capacity on Σ if

• µb(∅,∅) = 0, µb(S,∅) = 1 and µb(∅, S) = −1
• µb(A,B) ≤ µb(C,D) for all (A,B), (C,D) ∈ Q such that A ⊆ C ∧B ⊇D

Grabisch and Labreuche (2005a,b); Greco et al. (2002)
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Definition 12 The bipolar Choquet integral of a simple function f ∈ B0 with
respect to a bi-capacity µb is given by:

∫
S
f(s) dµb =∶ ∫ ∞

0

µb({s ∈ S ∶ f(s) > t},{s ∈ S ∶ f(s) < −t})dt

Grabisch and Labreuche (2005a,b); Greco et al. (2002)

4.2.2 Two different approaches

Since we are working with simple acts f ∈ B0 it follows that the set

f(S) = {f(s) ∣ s ∈ S} is finite, so, for the sake of simplicity, let us suppose

that S = {s1, s2,⋯, sn}. An uncertain act can then be expressed as a vector

f = (f(s1), s1;⋯; f(sn), sn) where the outcome f(si) ∈ R will be obtained

if the state of world si will occur. As usual let us indicate with f+ the

positive part of f , i.e. f+(s) = f(s) if f(s) ≥ 0 and f+(s) = 0 if f(s) < 0;

similarly f− indicates the negative part of f obtained from f substituting all

the gains with zero. The dual capacity of a capacity ν ∶ Σ→ [0,1] is defined
as ν̂(A) = 1 − ν(Ac) for all A ∈ Σ.
In order to evaluate the acts let be given an utility function u(⋅) ∶R→R, two

capacity (one for gains, one for losses) ν+ ∶ S → [0,1] and ν− ∶ S → [0,1] and
and a bi-capacity µb ∶ Q → [−1,1]. By using CPT or bCPT the evaluation of

an act f = (f(s1), s1;⋯; f(sn), sn) is obtained in different way by means of

their respective functionals.

In CPT we sum the Choquet integral of u(f+) with respect to ν+ with the

Choquet integral of u(f−) with respect to the dual of ν−, by getting a separate
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evaluation of gains and losses

VCPT (f) = ∫
S
u [f+(s)]dν+ + ∫

S
u [f−(s)]dν̂− (4.1)

The (4.1) can be rewritten as

VCPT(f) = ∫ ∞

0

ν+ ({sj ∶ u(f(sj)) ≥ t})dt − ∫ 0

−∞
ν− ({si ∶ u(f(xi)) ≤ t})dt

(4.2)

In bCPT we calculate the bipolar Choquet integral of u(f) with respect to

µb getting a conjointly evaluation of gains and losses

VbCPT(P) = ∫
S
u [f(s)]dµb = ∫ +∞

0

µb ({si ∶ u(xi) > t} ,{si ∶ u(xi) < −t})dt
(4.3)

In this paragraph it has been underlined how the main difference between

CPT and bCPT is in their different approach to the evaluation of an act

f . In CPT two different capacities, one for states of world corresponding

to gains and one for those corresponding to losses, allow the positive and

negative part of f to be evaluated separately and then summed. In bCPT

a bi-capacity allows gains and losses within f to be evaluated conjointly. In

the next section we will see the situations where the two model coincide and,

more precisely, where CPT can be seen as a special case of bCPT. As in a

risk-context this fact will occur for non mixed acts or by using a separable

bi-capacity.
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4.2.3 Link between CPT and bCPT

First we wish to discuss some properties and links with previous results.

Let us identify (A,B) ∈ Q with the double-indicator function (A,B)∗ ∈ B0
defined as follows:

(A,B)∗(s) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ A
−1 if s ∈ B
0 if s ∉ A ∪B

Since

∫
S
(A,B)∗µb = ∫ 1

0

µb(A,B)dt = µb(A,B) ⇒
the functional ∫S µb, i.e. the bipolar Choquet integral, can be considered as

an extension of the bi-capacity µb from Q to B0.
If µb ∶ Q → [−1,1] is a bi-capacity, then we can define a capacity ν+ as follows:

for all E ∈ Σ
ν+ (E) = µb (E,∅)

If f ∈ B0 is such that f(s) ≥ 0 for all s ∈ S, then

∫
S
f(s) dµb = ∫ ∞

0

µb({s ∈ S ∶ f(s) > t}, ∅ ) dt =

= ∫ ∞

0

ν+({s ∈ S ∶ f(s) > t}) dt = ∫
S
f(s) dν+ ⇒

Remark 6 For acts taking only non-negative values, the bipolar Choquet

integral collapses to the classical Choquet integral.
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If µb ∶ Q → [−1,1] is a bi-capacity, then we can define a capacity ν− as follows:

for all E ∈ Σ
ν− (E) = −µb (∅,E)

If f ∈ B0 is such that f(s) ≤ 0 for all s ∈ S, then

∫
S
f(s) dµb = ∫ ∞

0

µb( ∅, {s ∈ S ∶ f(s) < −t}) dt =

= −∫ ∞

0

ν−({s ∈ S ∶ f(s) < −t}) dt = ∫
S
(f(s) )dν̂− ⇒

Remark 7 For acts taking only non-positive values, the bipolar Choquet in-

tegral collapses to the classical Choquet integral

By using the remarks 6, 7 we can establish the following important relation-

ship between CPT and bCPT (which sense has been clarified in the previous

discussion)

Remark 8 For non-mixed acts, i.e. for acts containing all non positive or

non negative values, the bCPT model coincides with the CPT model

On the other hand, let be given two capacity ν+ ∶ S → [0,1] and ν− ∶ S → [0,1],
it is straightforward noting that we can define a separable bi-capacity by

posing for all (A,B) ∈ Q

µb(A,B) = ν+(A) − ν−(B)

Now we can establish the second situation where CPT can be seen as a special

case of bCPT. The following prepares
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Remark 9 The bipolar Choquet integral with respect to a separable bi-

capacity is the sum of two Choquet integrals

In fact, let be f ∈ B0 a simple function and µb(A,B) = ν+(A) − ν−(B) a

separable bi-weighting function, we get

∫
S
f(s) dµb =∶ ∫ ∞

0

µb({s ∈ S ∶ f(s) > t},{s ∈ S ∶ f(s) < −t})dt =

= ∫ ∞

0

[ν+({s ∈ S ∶ f(s) > t}) − ν−({s ∈ S ∶ f(s) < −t}) dt] =
= ∫ ∞

0

ν+({s ∈ S ∶ f(s) > t})dt − ∫ ∞

0

ν−({s ∈ S ∶ f(s) < −t})dt =
∫
S
f+(s) dν+ + ∫

S
f−(s) dν̂−

being f+ (f−) the non negative (positive) part of the act f and ν̂− the dual

capacity of ν. As direct consequence of the last remark we can state that

Remark 10 The bCPT model with a separable bi-weighting function coin-

cides with the CPT model.

Another way to state the 10 is to assert that the CPT model is the bCPT

model with a separable bi-capacity. In this case, CPT will appear as a special

case of bCPT. In the remind of this chapter we will face the problem of

the preference foundation of bCPT. As we have just seen the main tool

to extend bCPT from the field of risk to that of uncertainty is the bipolar

Choquet integral with respect to a bi-capacity. We will present a fairly simple

characterization of the bipolar Choquet integral (following Schmeidler (1986)

for the Choquet integral).
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4.3 The characterization theorem

4.3.1 Properties and main theorem

In this section we first give the concept of absolutely co-monotonic and co-

signed acts which are the special acts for which the bipolar Choquet integral

is additive. In a second time we will list some properties of the functional.

Finally we will state the main theorem, i.e. the characterization theorem.

This meaning that we will give some properties which, if satisfied by an

assigned functional, will characterize uniquely the bipolar Choquet integral.

In this we replay what Schmeidler (1986) did for the Choquet integral.

Definition 13 Two real valued functions f, g ∶ S →R are absolutely

co-monotonic and cosigned (a.c.c.) if

• their absolute value are co-monotonic, i.e.

( ∣f(s)∣ − ∣f(t)∣ ) ⋅ ( ∣g(s)∣ − ∣g(t)∣ ) ≥ 0 ∀s, t ∈ S

• are co-signed, i.e.

f(s) ⋅ g(s) ≥ 0 ∀s ∈ S

Let us suppose that µb is a bi-capacity and let us indicate with I = ∫S µb

the bipolar Choquet integral with respect to µb. The next proposition list

the properties of I. Given to the importance of this section, the proofs of

these properties are presented in the main text.
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Proposition 6 The functional I satisfies the following properties

• (P1) Monotonicity.

f(s) ≥ g(s) ∀s ∈ S ⇒ I(f) ≥ I(g)

• (P2) Positive homogeneity. For all a > 0, and f, a ⋅ f ∈ B0

I(a ⋅ f) = a ⋅ I(f)

• (P3) Bipolar-idem-potency. For all λ > 0

I(λ(S,∅)∗) = λ I(λ(∅,S)∗) = −λ

• (P4) Additivity for acts a.c.c. If f, g ∈ B0 are a.c.c. ⇒

I(f + g) = I(f) + I(g)

Proof. Supposing f(s) ≥ g(s) for all s ∈ S, then {s ∶ f(s) > t} ⊇ {s ∶ g(s) > t}
and {s ∈ S ∶ f(s) < −t} ⊆ {s ∈ S ∶ g(s) < −t} such that (P1) follows from mono-

tonicity of bicapacity and integral.

For all a > 0 and for all f ∈ B0, af ∈ B0, taking t = az, by definition we get

I(af) = ∫ ∞

0

µb({s ∈ S ∶ f(s) > t

a
},{s ∈ S ∶ f(s) < − t

a
})dt =

∫ ∞

0

µb({s ∈ S ∶ f(s) > z},{s ∈ S ∶ f(s) < −z}) adz = aI(f).
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which is (P2).

For γ > 0, by homogeneity, I (γ (S,∅)∗) = γI (S,∅)∗ = γµb (S,∅) = γ. If

γ < 0, then I (γ (S,∅)∗) = −γI (∅, S)∗ = −γµb (∅, S) = γ. Note also that

I (0 (S,∅)∗) = I ((∅,∅)∗) = µb (∅,∅) = 0. I(λ(∅, S)∗) = −λ can be obtained

analogously. Thus (P3) is proved.

Let f, g ∈ B0 be two acts a.c.c., then following Schmeidler (1986)-remark 4

there exist

• a partition of S into k pairwise disjoint subsets of Σ, (Ei)ki=1, such that

for each Ei there exist E+i and E−i with E+i ∪E−i = Ei and E+i ∩E−i = ∅
• two k-list of numbers 0 ≤ α1 ≤ α2 ≤ ⋅ ⋅ ⋅ ≤ αk and 0 ≤ β1 ≤ β2 ≤ ⋅ ⋅ ⋅ ≤ βk

such that

f = k∑
i=1

αi (E+i ,E−i )∗ , g = k∑
i=1

βi (E+i ,E−i )∗

It follows that

f + g = k∑
i=1

(αi + βi) (E+i ,E−i )∗

By the definition of bipolar Choquet integral,

I(f + g) = I(f) + I(g)

this proves (P4).

Q.E.D.

The following characterization theorem extends the result with respect to

Choquet integral in Schmeidler (1986) to bipolar Choquet integral
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Theorem 7 Let J ∶ B0 →R satisfy

• J ((S,∅)∗) = 1 and J ((∅, S)∗) = −1
• (P1) Monotonicity

• (P4) Additivity for acts a.c.c.

then, by assuming µb(A,B) = J [(A,B)∗] ∀(A,B) ∈ Q,

⇓

J (f) = I(f) = ∫
S
f(s) dµb ∀f ∈ B0

Remark 11 The properties (P2), homogeneity of degree one and (P3), bipo-

lar idem-potency, are not among the hypothesis of Theorem 7 since they are

implied by additivity for absolutely co-monotonic and cosigned acts (P4) and

monotonicity (P1)

Proof. Let f ∈ B0 be a simple function with image f(S) = {x1, x2, . . . , xn}.
Let (⋅) ∶ N → N be a permutation of indexes in N = {1,2, . . . , n} such that

∣x(1)∣ ≤ ∣x(2)∣ ≤ ⋅ ⋅ ⋅ ≤ ∣x(n)∣. f can be written as sum of double-indicator

functions, i.e.

f = n∑
i=1

(∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗

where A(f)(i) = {s ∈ S ∶ f(s) ≥ ∣x(i)∣} , B(f)(i) = {s ∈ S ∶ f(s) ≤ − ∣x(i)∣} and
∣x(0)∣ = 0.
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Observe that the simple functions (A(f)(i),B(f)(i))∗ for i = 1,2, . . . , n are

a.c.c., as well as the simple functions (∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗ for
i = 1,2, . . . , n. On the basis of this observation, applying (P4), homogeneity

and the definition of µb(A,B) we get the thesis as follows:

J(f) = J [ n∑
i=1

(∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗] =

= n∑
i=1

J [(∣x(i)∣ − ∣x(i−1)∣) (A(f)(i),B(f)(i))∗] =

= n∑
i=1

(∣x(i)∣ − ∣x(i−1)∣)J [(A(f)(i),B(f)(i))∗] =

= n∑
i=1

(∣x(i)∣ − ∣x(i−1)∣)µb (A(f)(i),B(f)(i)) = ∫
S
fdµb

Q.E.D.

We have characterized the bipolar Choquet integral for simple acts, i.e.

for acts taking only a finite number of values. A natural question is if this

functional can be extended from B0 to the set of bounded real valued func-

tions B. In this work we are not able to obtain this extension, but we will get

some helpful suggestions in the next section encouraging future researches

over this argument. Finally, in the last section of this chapter we will dis-

cuss some coherence conditions, regarding the concept of bi-capacity. This

since we aim to build a model representing preferences of people and, in this

view, we must avoid some contradictory situations which could arise using

bi-capacities.
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4.3.2 Continuity and extension to bounded functions

In order to extend the definition 12 to all of B, let us remember some

well known results. The set B is a subspace of the linear space RS , with

the (sup)norm ∣∣f ∣∣∞ = sup{∣f ∣} and B0 is dense in B. That is B is the

norm closure of B0 with respect to the distance induced by the sup-norm. A

functional J ∶ B0 → R is said Holder continuous if there exist L > 0 and α ∈
(0,1) such that ∣J(f) − J(g)∣ ≤ L[d(f, g)]α, for all f, g ∈ B0, where d(f, g) is
a metric on B0. It is said Lipschitz continuous if is Holder continuous with

α = 1, i.e., if there exist a constant L such that ∣J(f) − J(g)∣ ≤ Ld(f, g),
for all f, g ∈ B0. Lipschitzianity implies uniform continuity: for any ǫ >
0 there exist δ > 0 such that ∣J(f)−J(g)∣ ≤ ǫ for all f, g ∈ B0 with d(f, g) < δ.
The following results are well known.

Theorem 8 Let X be a subset of some metric space S and f ∶ X → R uni-

formly continue in X, then f can be uniquely extended to a uniform continue

function to all of X.

A more general result is the following

Theorem 9 Let f ∶ D → Y be a Lipschitzian function, with D,Y metric

spaces and Y complete (i.e. every Cauchy’s sequence is convergent), let D

be dense in X, then f has a unique extension to all of X, Lipschitzian with

the same constant L.

After these preliminaries we now, first remember that the Choquet integral is

an uniform continuous functional and then we show how the bipolar Choquet

integral does not preserve this property, even if we reduce to the set of simple

and bounded functions.
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Remark 12 If Iν ∶ B0 → R is the Choquet functional, w.r.t. some capacity

ν and since Iν is additive for co-monotonic function (including constants)

then Iν is Lipschitz continuous.

In fact, let f, g ∈ B0 be two simple function with Iν(f) > Iν(g) and δ = d(f, g),
then Iν(f) ≤ Iν(g + δS∗) = Iν(g) + δ and ∣Iν(f) − Iν(g)∣ = Iν(f) − Iν(g) ≤ δ.

Remark 13 The bipolar Choquet functional is not uniform continuous, even

if we reduce to simple acts.

Example 1.Let Σ be the Algebra of finite union of intervals of S =]0,+∞[
and let Q = {(A,B) ∈ Σ ×Σ ∶ A ∩B = ∅}. We define a bicapacity µ ∶ Q →
{−1,0,1} by posing µ(A,B) = −1,0,1 if the sum of the lengths of the intervals

forming A is respectively minor, equal or major of those forming B. For any

even integer n let fn ∶ S →R be the simple function defined by

fn(s) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k if s ∈]k − 1, k] k = 1,3, . . . , n − 1
k if s ∈]k − 1, k] k = 2,4, . . . , n
0 if s > n

It is easy to see that Iµ(fn(s)) = n/2 and Iµ(fn(s) + δ) = n/2 + n ⋅ δ, for
any δ ∈ (0,1). So we can build two functions as close as we want (δ) whose
bipolar Choquet integrals differ by as much as we want.

The following example shows how the problem persists also if we reduce

to simple acts.

Example 2.With the same setting of previous example, let BM
0

be the set of

simple, real valued and Σ-measurable functions with value in [−M,M]. For
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any even integer n let fn ∶ S →R be the simple function defined by

fn(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−kM
n

if s ∈](k − 1)M
n
, kM

n
] k = 1,3, . . . , n − 1

kM
n

if s ∈]k − 1M
n
, kM

n
] k = 2,4, . . . , n

0 if s > n
It is easy to see that Iµ(fn(s)) = M/2 and Iµ(fn(s) + δ) = M/2 + n ⋅ δ, for
any δ ∈ (0,1). So we can build two functions as close as we want (δ) whose
bipolar Choquet integrals differ by as much as we want.

The previous examples teach us that in order to obtain the uniform con-

tinuity, probably we must check for some hypothesis of continuity on the

bi-capacity. Only after having obtained such a result we could think to ex-

tend the definition by means of the limit. Let f ∈ B be a bounded act and

let µb be a bicapacity on Σ, the bipolar Choquet integral of f will be given

by

I(f) = ∫
S
fdµb ≡ lim

n→∞
I(gn)

where {gn} is any sequence of simple functions such that

lim
n→∞

gn(s) = f(s) ∀s ∈ S

The question to find the conditions allowing this extension is an open problem

for future research.
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4.3.3 Coherence conditions.

The bipolar Choquet integral should represent preference under uncer-

tainty. In this case it is reasonable to expect that there is some belief about

plausibility of events A ⊆ S that should not depend on what is gained or lost

in other events. In this context it is reasonable to imagine that the value

given by a bi-capacity µb to (A,B) ∈ Q is not decreasing with the plausibil-

ity of A and non-increasing with the plausibility of B. If this is true, then

one has to expect that should not be possible to have µb(A,C) > µb(B,C)
and µb(A,D) < µb(B,D). In fact, this would mean that act (A,C)∗ would

be preferred to act (B,C)∗, revealing a greater credibility of A over B, and

act (A,D)∗ would be preferred to act (B,D)∗, revealing a greater credi-

bility of B over A. Similar situations arise when µb(C,A) > µb(C,B) and
µb(D,A) < µb(D,B), or µ(A,C) > µb(B,C) and µ(D,A) > µb(D,B). Taking
into account such situations, we shall analyze in detail the following coher-

ence conditions:

(A1) (A,C)∗ ≻ (B,C)∗⇒ (A,D)∗ ≻ (B,D)∗,
for all (A,C), (B,C), (A,D), (B,D) ∈ Q,

(A2) (C,A)∗ ≻ (C,B)∗⇒ (D,A)∗ ≻ (D,B)∗,
for all (C,A), (C,B), (D,A), (D,B) ∈ Q,

(A3) for any A,B ⊆ S there exist one C ⊆ S ∖ (A ∪B) such that

(A,C)∗ ≻ (B,C)∗⇔ (C,A)∗ ≺ (C,B)∗

(A4) (A,C)∗ ≻ (B,C)∗⇔ (C,A)∗ ≺ (C,B)∗,
for all (A,C), (B,C), (C,A), (C,B) ∈ Q,
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(A5) (A,C)∗ ≻ (B,C)∗⇔ (D,A)∗ ≺ (D,B)∗,
for all (A,C), (B,C), (D,A), (D,B) ∈ Q.

Theorem 10 The following proposition hold

1) If (A1) holds, then there exists a capacity ν1 on S and a function

ω1 ∶ {(v,B) ∶ v = ν1(A), (A,B) ∈ Q}→ [−1,1],

such that µ(A,B) = ω1(ν1(A),B) for all (A,B) ∈ Q, with function

ω1 increasing in the first argument and non increasing with respect to

inclusion in the second argument;

2) If (A2) holds, then there exists a capacity ν2 on S and a function

ω2 ∶ {(A,v) ∶ v = ν2(B), (A,B) ∈ Q}→ [−1,1],

such that µ(A,B) = ω2(A,ν2(B)) for all (A,B) ∈ Q, with function

ω2 non decreasing with respect to inclusion in the first argument and

decreasing in the second argument;

3) If (A1) and (A2) hold, then there exist two capacities ν1 and ν2 on S

and a function

ω3 ∶ {(u, v) ∶ u = ν1(A), v = ν2(B), (A,B) ∈ Q}→ [−1,1],

such that µ(A,B) = ω3(ν1(A), ν2(B)) for all (A,B) ∈ Q, with func-

tion ω3 increasing in the first argument and decreasing in the second

argument;
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4) If (A1), (A2) and (A3) hold, then there exists a capacity ν on S and a

function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1],

such that µ(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument;

5) If (A1) and (A4) hold, then there exists a capacity ν on S and a function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1],

such that µ(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument;

6) If (A2) and (A4) hold, then there exists a capacity ν on S and a function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1]

such that µ(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument;

7) If (A5) holds, then there exists a capacity ν on S and a function

ω ∶ {(u, v) ∶ u = ν(A), v = ν(B), (A,B) ∈ Q}→ [−1,1],

such that µ(A,B) = ω(ν(A), ν(B)) for all (A,B) ∈ Q, with function ω

increasing in the first argument and decreasing in the second argument.
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Proof.

1) Let us define ν1(A) = µb(A,∅). For all (A,C), (B,C), (A,D), (B,D) ∈
Q, it is not possible to have µb(A,C) = µb(B,C) and µb(A,D) > µb(B,D),
because, for (A1), µb(A,D) > µb(B,D) would imply µb(A,C) > µb(B,C),
too. Thus,

µb(A,C) = µb(B,C)⇒ µb(A,D) = µb(B,D),
for all (A,C), (B,C), (A,D), (B,D) ∈ Q. Consequently,

µb(A,∅) = µb(B,∅)⇒ µb(A,C) = µb(B,C),

from which we get

ν1(A) = ν1(B)⇒ µb(A,C) = µb(B,C),

for all (A,C), (B,C) ∈ Q. We can therefore define function ω1 as follows:

ω1(ν1(A),B) = µb(A,B), for all (A,B) ∈ Q.

For (A1) we have

µb(A,∅) > µb(B,∅)⇒ µb(A,C) > µb(B,C)

for all (A,C), (B,C) ∈ Q, i.e.

ν1(A) > ν1(B)⇒ µb(A,C) > µb(B,C),
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and consequently

ν1(A) > ν1(B)⇒ ω1(ν1(A), C) > ω1(ν1(B), C),

which means that ω1 is increasing in the first argument. Monotonicity of

bipolar capacity gives the monotonicity of function ω1 with respect to the

second argument.

2) It can be proved analogously to 1), by defining ν2(A) = −µb(∅,A).
3) By 1) and 2).

4) Condition (A3) ensures that capacities ν1 and ν2 agree in the sense

that for all A,B ⊆ S

ν1(A) > ν1(B)⇔ ν2(A) > ν2(B). (i)

Indeed, applying the definition of ν1, (A1), (A3), (A2) and the definition of

ν2, we get

ν1(A) > ν1(B)⇒ µb(A,∅) > µb(B,∅)⇒
µb(A,C) > µb(B,C)⇔ µb(C,A) < µb(C,B)
⇒ µb(∅,A) < µb(∅,B)⇒ ν2(A) > ν2(B),

i.e.

ν1(A) > ν1(B)⇒ ν2(A) > ν2(B). (ii)
Analogously, applying the definition of ν2, (A2), (A3), (A1) and the definition

of ν1, we get

ν2(A) > ν2(B)⇒ µb(∅,B) > µb(∅,A)⇒
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µb(C,A) > µb(C,B)⇔ µb(A,C) < µb(B,C)
⇒ µb(A,∅) < µb(B,∅)⇒ ν1(A) > ν1(B),

i.e.

ν2(A) > ν2(B)⇒ ν1(A) > ν1(B). (iii)
By (i) and (ii) we get (iii). (iii) implies also that for all A,B ⊆ S

ν1(A) = ν1(B)⇔ ν2(A) = ν2(B). (iv)

By (i) and (iv), there exists an increasing function g ∶ {v ∈ [0,1] ∶ ∃A ⊆
S for which ν2(A) = v} → [0,1] such that ν2(A) = g(ν1(A)). Thus we can

define a function ω ∶ {(u, v) ∶ u = ν1(A), v = ν1(B), (A,B) ∈ Q} → [−1,1]
defined as follows: for all A,B) ∈ Q

ω(ν1(A), ν1(B)) = ω3(ν1(A), g(ν1(B)))

where ω3 is the function defined in point 3). For the monotonicity of function

ω3 and g, ω is increasing in the first argument and decreasing in the second

argument.

5) Observe that (A3) is a particular case of (A4), which, given A,B ⊆ S
holds for any C ⊆ S such that (A,C), (B,C), (C,A), (C,B) ∈ Q (observe that

if (A,C), (B,C) ∈ Q, then also (C,A), (C,B) ∈ Q). Using (A4), (A1) and

again (A4) we get (A2) as follows: for all (C,A), (C,B), (A,D), (B,D) ∈ Q

µb(C,A) > µb(C,B)⇔ µb(A,C) < µb(B,C)⇒
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⇒ µb(A,D) < µb(B,D)⇔ µb(D,A) > µb(D,B)
With (A1), (A2) and (A3) we can apply 4) and obtain the result we looked

for.

6) Analogously to 5), using (A4), (A2) and again (A4) we get (A1) as

follows: for all (C,A), (C,B), (A,D), (B,D) ∈ Q

µb(A,C) > µb(B,C)⇔ µb(C,A) < µb(C,B)⇒

µb(D,A) < µb(D,B)⇔ µb(A,D) > µb(B,D)
With (A1), (A2) and (A3) we can apply 4) and obtain the result we looked

for.

7) (A4) is a specific case of (A5), which, given A,B ⊆ S holds for any

C,D ⊆ S such that (A,C), (B,C), (D,A), (D,B) ∈ Q. Using (A4), (A1) can

obtained as follows:

µb(A,C) > µb(B,C)⇔ µb(D,A) < µb(D,B)⇔ µb(A,D) > µb(B,D).

With (A1) and (A4) we can apply 5) and we get the thesis.

Q.E.D.

4.4 Concluding remarks

In this chapter we have extended the bCPT model to the field of uncer-

tainty where the probabilities attached to the Events are unknown. To this

scope we have used the concept of bipolar Choquet integral with respect to
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a bi-capacity, due to Grabisch and Labreuche (2005a,b); Greco et al. (2002).

Moreover we have presented a fairly simple characterization of this integral

for simple acts.
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Conclusion

We opened this thesis remembering how, in the last thirty years, an enor-

mous amount of work has been done to develop alternatives to the classical

Expected Utility Theory. One of the greatest strengths of recent work in

decision theory has been the interplay between theoretical development and

experimental investigation. The first wave of alternatives to Expected Util-

ity Theory were developed in an attempt to explain observed regularities in

behavior which contravened the received theory. Those new theories where

then subjected to experimental tests, and in the light of the result of those

tests, new theories were developed and old ones were revised. This healthy

process continues. Theorists have also become more aware of the findings

of experimental psychology, and have tried to construct theories which are

compatible with those findings. Cumulative Prospect Theory of Tversky and

Kahneman (1992) is considered nowadays one of the most valid alternative

to Expected Utility Theory. It was, perhaps, not a case that the authors

- Kahneman and Tversky - are two psychologists. They have been able to

capture, in their theory, the “irrationality” of some human behavior in the

process of choice. In very recent years (Wu and Markle (2008)) new experi-

mental results have shown some limitations of Cumulative Prospect Theory,
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particularly in denouncing how people tend to evaluate conjointly gains and

losses, showing a phenomenon which we called gain-loss hedging. Cumula-

tive Prospect Theory predicts that gains and losses are processed differently

and separately and is not able to cover situations in which gain-loss hedging

appears. The model we present in this thesis, bipolar Cumulative Prospect

Theory, is a “natural” generalization of Cumulative Prospect Theory, which

is able to accommodate for the gain-loss hedging, allowing gains and losses

to be evaluated conjointly. In the light of the previous discussion, regarding

the evolution of the decision theory, we think that our work is a stimulating

contribution to the research.
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