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Preface 

 

Active volcanoes are one of the most severe natural hazards in the world. 

Volcanoes are geologic manifestations of highly dynamic and complexly 

coupled physical and chemical processes in the interior of the Earth. 

They are complex dynamical systems that produce distinctive patterns. 

Volcanic eruptions are the culmination of a complex ensemble of 

processes that occur on a broad range of time scale, from tens or 

hundreds of years (e.g. magma rise and differentiation) to fractions of 

seconds (e.g. fragmentation). About 550 volcanoes have erupted in 

historical times. Reconstruction of the eruptive history of many volcanoes 

has shown that inactive periods of thousands of year are not uncommon 

(Scarpa and Gasparini, 1996). Historical data indicate that eruptions are 

almost always preceded and accompanied by “volcanic unrest” 

manifested by physical and/or geochemical changes in the state of the 

volcano (Tilling, 2008). Detection of precursory phenomena (e.g., seismic, 

geodetic, gravity signals, gas emission) is the main aim of volcano 

monitoring which provides parameters for early warning systems. 

Systematic collection and analysis of huge amount of data recorded on 

active volcanoes are performed for both research and monitoring 

purposes. The fact that strongly different precursory patterns can be 

observed for different eruptions at the same volcano means that there 

exists no universal sets of empirical parameters relating precursor to 

eruptions. However, data from volcano monitoring constitute the only 

scientific basis for short-term forecast of imminent eruption or changes in 

the volcano behavior. Most active volcanoes are routinely monitored 
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observing the pattern of the seismic activity and ground deformations. 

During the last years a key role in volcano monitoring is played by time 

series analysis methods and pattern recognition techniques, both in time 

and time-frequency domain, in order to detect and analyze different 

eruptive patterns. The aim of this thesis is the study of seismic and 

infrasonic signals generated by volcanoes using signal processing 

techniques and novel approaches based on nonlinear time series analysis 

and pattern recognition (PR) techniques. Chapter 1 is an overview on the 

state of the art of volcano monitoring. The description of methods applied 

to analyse different kinds of signal will be given in chapter 2. Chapter 3 

deals with pattern recognition techniques largely applied on infrasonic 

signal treatment at Mt.Etna. In chapter 4 the methods used for seismo-

volcano signal analysis will be described. In chapter 5,  practical 

applications of the techniques depicted in chapters 2, 3, and 4  will be 

shown with the aim of investigating the infrasonic signals  at Mt. Etna 

and their relationship with eruptive activity. While seismo-volcanic 

transients have been treated in literature using PR approaches (e.g. Del 

Pezzo et al., 2003; Scarpetta et al., 2005; Benitez et al., 2007), infrasonic 

signals characterization by PR techniques is brand new. Since infrasonic 

signals exhibit very suitable descriptive features, one of the most 

important topics that will be treated in this thesis, is the robust PR 

approach for infrasonic signals characterization and classification. In 

chapter 6 Mt. Etna volcano dynamics will be investigated from a seismo-

volcanic point of view. In particular, in the second half of the chapter, a 

novel technique based on the multi station coherence will be used to 

highlight lava fountain precursor phenomena. Finally, in chapter 7 

conclusions will be reported.  
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Chapter 1 

 

Volcano monitoring 

Monitoring of active volcano uses a wide range of techniques and instru-

mentations.  Its aim is the interpretation of data in order to discover pat-

tern in geophysical and/or geochemical parameters before, during and 

after eruptions. Monitoring provides the means to answer questions of 

vital interest to communities affected by impending eruptions such as 

when and where will the volcano erupt? Which areas are safe or danger-

ous? When will the eruptions cease? (McNutt et al., 2000). The answers 

come from an optimal  interpretations of data and give information for 

forecast purpose. Unfortunately, the capability to answer these questions 

depends on the adequate scientific understanding of complex volcano dy-

namics both in general and for each specific volcano. A primary role in 

volcano monitoring is to establish the level of background or baseline ac-

tivity of each monitored parameter, against which anomalous activity 

can be measured (McGuire, 1991). Well-equipped and well-staffed volca-

nological observatories are located only close to 20 of the potentially 

eruptive volcanoes and some geophysical instruments (most seismome-

ters and benchmarks of geodetical networs) are installed on about 150 

volcanoes in the world (Scarpa and Gasparini, 1996). Changes in geo-

physical and geochemical pattern are indicative of possible eruptive reac-

tivation and include  
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Figure 1: Techniques for volcano monitoring (modified from McGuire, 1991). 
Acronyms: EMR: electro-magnetic radiation; EDM: electronic distance measure-
ment; GPS: global positioning system; SAR: synthetic aperture radar; IR: infra-
red; SP: self-potential; ER: electrical resistivity; COSPEC: correlation spectrome-
ter. 

changes in seismicity, ground  deformations,  physical-chemical  changes  

in  fumaroles, emission  rates  of volcanic gases, anomaly in 

gravity and magnetic fields. When combined with geological mapping 

and dating studies to reconstruct comprehensive eruptive histories of 

high-risk volcanoes, these geoindicators can help to reduce eruption-

related hazards to life and property. Different techniques are used to 

monitor these parameters (figure 1). Each type of data provides informa-

tion related to process which may be related to movement of molten rock 

or other precursory phenomena. Seismic activity is considered one of the 

best indicator of the evolution of volcanic activity and is one of the most 

common surveillance tool for active volcano.  
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The seismology gives useful information about the location of magma 

bodies/hydrothermal fluids in depth, their dynamics and composition and 

the plumbing system geometry (e.g. Kumagai and Chouet, 1999; Chouet 

et al., 2003; Patanè et al., 2006). Moreover, most volcanic eruptions have 

been preceded by increases in earthquake activity beneath or near the 

volcano (McNutt, 1996 ). Once the background seismicity has been char-

acterized for a particular volcano, changes in the “steady state” may be 

related to changes in the volcano activity. Ground deformation study is 

another technique for volcano monitoring. Generally, the movement of 

subsurface material precedes volcanic eruptions and the increasing pres-

sure results in ground deformation (Van der Laat, 1996). It is possible to 

model deformation caused by change of volume at a certain depth and 

modeling magma reservoirs, cracks and conduits (e.g. Van der Laat, 

1996; Linde et al., 1993). GPS is the most suitable technique to measure 

ground deformations. However, it provides spot data, i.e. they refer to 

network vertices whose number rarely exceeds the order of tens in areas 

of hundreds, often thousands, of square kilometers (Palano et al., 2008). 

Remote sensing is a growing field in volcano monitoring and provides the 

only practical monitoring tools for many volcanic areas that are in rela-

tively isolated regions. As defined in Francis et al. (1996), remote sensing 

consists of detection by a sensor of electromagnetic energy reflected, ra-

diated or scattered from the surface of volcano or its airborne erupted 

material. For volcanoes already monitored by conventional techniques, 

this technique not only provides complementary observations but also 

offers new approaches (e.g. monitoring of ground deformation using In-

SAR techniques).  Electromagnetic variations, preceding eruptive or 

seismic activity, are sometimes observed in volcanic areas (e.g. Johnston 

et al., 1981). Microgravity studies, involving the measurement of small 

changes with time in the value of gravity at a network of stations with 
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respect to a fixed base, are a valuable tool for mapping out the subsurface 

mass redistributions that are associated to volcanic activity (Rymer, 

1996). Volcanic gas analysis and temperature measurements are also 

commonly performed. While geophysical precursors may yield different 

patterns related to the particular volcanic system, tectonic setting and 

physicochemical properties of the magma, geochemical precursory mostly 

depends on changing rates of magma degassing and interactions with 

shallow aquifers (Martini, 1996). Significant variations have been ob-

served prior to some eruptions but often the changes occurred with the 

onset of the eruption (McNutt et al., 2000). Although these techniques 

have been successfully applied to forecast eruptive events on different 

volcanoes, during the last years new insights into explosive volcanic 

processes have been achieved by studying infrasonic signals (e.g. Vergni-

olle and Brandeis, 1994; Ripepe et al., 1996, 2001a). This kind of signal, 

together with seismic signal related to volcanic processes, constitutes an 

useful tool able to significantly contribute to volcano activity monitoring. 
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1.1  Volcano seismology 

Seismic sources at volcanoes are highly complex and involve gases, melts 

and solids interaction (McNutt et al., 2000). Volcano seismology  is a field 

of volcanology in which seismological techniques are employed to under-

standing physical conditions and dynamic states of volcanic edifices and 

volcanic fluid systems (Kawakatsu and Yamamoto, 2007). The main goal 

of volcanic seismology is to understand the nature and dynamics of seis-

mic sources associated with the injection and transport of magma and 

related hydrothermal fluids (Chouet, 2003). Active volcanoes are the 

sources of a great variety of seismic signals. Traditionally, seismo-

volcanic signals have been classified into six different types: high-

frequency (HF) and low-frequency (LF) events, Very Long Period (VLP) 

events, volcanic tremor, hybrid events and volcanic explosions (figure 2) 

(e.g. Minakami, 1974; Lahr et al., 1994; McNutt, 1996; Zobin, 2003; Iba-

nez et al., 2003):  

HF events: high-frequency events, also called Volcano Tectonic events 

(VT), manifest clear onset of P- and S-wave arrivals. In general, they are 

subdivided into two classes: deep VT events (VT-A), located below about 

2 km,  that  manifest high frequency content (> 5 Hz); VT of type B (VT-

B) that show much more emergent P-wave onset and sometimes any 

clear S-wave arrival and their spectral bands are shifted to lower fre-

quencies (< 5 Hz) (Wassermann, 2009). High frequency may be generated 

at the source, but is not recorded because of instrumental limitations or 

high local attenuation (McNutt, 1996). HF events have been attributed to 

regional tectonic forces, gravitational loading, pore pressure effects and 

hydrofracturing, thermal and volumetric forces associated with magma 

intrusion withdrawal, cooling, or some combinations of any or all of these 
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(McNutt, 2005). This kind of events differ from their tectonic counterpart 

only in their patterns of occurrence, which, at volcanoes, are typically in 

swarm rather than mainshock-aftershock sequences (McNutt, 1996). HF 

events are useful at volcanoes to determine stress orientation via study 

of focal mechanisms and stress tensor inversion (e.g. Moran, 2003; San-

chez et al., 2004; Waite and Smith, 2004). The greatest progress in study 

VT events has been the implementation of new techniques for defining 

the volcanic structures; in particular, high-resolution tomography is a 

powerful method for determining subsurface volcanic structure (e.g. 

Dawson et al., 1999; Patanè et al., 2006).   

LF events: Low-frequency events (LF), also called long period events (LP) 

(figure 2b), commonly observed on many volcanoes worldwide, are be-

lieved to be caused by fluids moving in volcanic conduits, heat and gas 

supply (Chouet, 1996a; Almendros et al., 2002a) and considered precur-

sory phenomenon for eruptive activity. LP signals show no S-wave arriv-

als and very emergent signal onset. LP sources are often shallow (< 2 

km) and their frequency content is mostly restricted in a narrow band 

between 0.5-5 Hz. LP activity originates in particular locations within 

the magma plexus where disturbances in the flow are encountered 

(Chouet, 1996a). Despite the ambiguity regarding the source, many au-

thors have studied these events, focusing on particular features such as 

spectral content, rates, or relation to eruptions (McNutt, 2005). Injection 

of water into hot dry rock has been found to produce seismic signal  simi-

lar to LF volcanic signal and support the idea of a source that involves 

the opening of tensile cracks caused by excess fluid pressure (Bame and 

Fehler 1986;  Konstantinou, 2002). The associated source models range 

from an opening and resonating crack (Chouet, 1996a; Wassermann, 

2009) to existence of pressure transients within the fluid-gas mixture 
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causing resonance phenomena within the magma itself (Wassermann, 

2009; Seidl et al., 1981). Since LF events exhibit no emergent onset, 

phase picks are difficult to determine, thereafter it is impossible to apply 

standard location algorithm based on travel time inversion. Recently, LF 

events are located using semblance location techniques from particle mo-

tions recorded on a broad-band seismometer network (Kawakatsu et al., 

2000).  

Hybrid events: Some seismo-volcanic signals show characteristics of both 

LF and HF events and are called Hybrids (figure 2d). They are consi-

dered a subset of LF earthquakes, characterized by high-frequency on-

sets. Signals of this class begin with high-frequency phase followed by 

monochromatic signal which may reflect a possible mixture of source me-

chanisms. Spectral analysis reveals the different properties of these two 

distinct phases. The initial high-frequency portion has a broad spectrum, 

extending up to frequencies of 40 Hz. In contrast, the LP segment is qua-

si-monochromatic and peaks at low frequencies (1-6 Hz) (Ibanez et al., 

2003). These events are thought to represent the failure of brittle rock 

which is accompanied by the excitation of nearby magmatic fluids. Some 

studies suggest that the onsets represent a separate trigger that initiates 

conduit resonance (Neuberg, 2006). Events of this sort have been ob-

served at different volcanoes such as Montserrat, Redoubt, and Decep-

tion Island (Lahr et al., 1994; Miller et al., 1998; Neuberg et al., 2000; 

Ibanez et al., 2003).  

Explosion quakes (ExQ): This signal class accompanies Strombolian or 

other explosive eruptions (figure 2e). Most of these signals can be identi-

fied by the occurrence of an air-shock phase caused by the sonic boost 

during an explosion (Wasserman, 2009). Some LF events show the same 
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frequency-time characteristics but lack an air phase (McNutt, 1986) re-

flecting a common source mechanism of deeper situated LF and shallow 

produced explosion. They have been studied by using calibrated infrason-

ic microphones or infrasonic pressure sensors. Key issues include the 

depth, ground-air energy coupling and seismic or acoustic efficiency 

(McNutt, 2005). The infrasonic signal (figure 2f) for short distances tra-

vels in an almost homogenous atmosphere without structures that may 

scatter, attenuate or reflect acoustic waves. Then, unlike the seismic sig-

nal whose wavefield is strongly affected by topography (Neuberg and 

Pointer, 2000) and path effects (Gordeev, 1993), the infrasonic signal 

maintains its features almost unchanged during propagation, allowing 

obtaining information concerning source dynamics. This can be explained 

by the simpler Green’s functions for a fluid atmosphere than those for a 

complex, heterogeneous volcanic edifice, which supports compressional, 

shear, and surface waves (Johnson, 2005). Thus acoustic data give a 

more direct view of some explosive and eruptive processes (McNutt, 

2005). The source mechanism of the sound radiated during eruptions is 

still open to debate. According to some studies, this signal can be related 

to the acoustic resonance of magma in the conduit, triggered by explosive 

sources, implying propagation of sound waves in the magma and atmos-

phere through an open vent (Buckingham and Garces, 1996; Garces and 

McNutt, 1997; Hagerty et al., 2000; Cannata et al., 2009a). Other theo-

ries relate the source of sound to eruption dynamics, such as a sudden 

uncorking of the volcano (Johnson et al., 1998; Johnson and Lees, 2000), 

local coalescence within a foam (Vergniolle and Caplan-Auerbach, 2004) 

and Strombolian bubble vibration (Vergniolle and Brandeis, 1994, 1996; 

Vergniolle et al., 1996, 2004). Methods to estimate relative elastic energy 

partitioning during Strombolian eruptions were developed and show var-

iations related to changing vent conditions (Johnson and Aster, 2005).  
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Figure 2:  waveforms with the associated spectrograms for: (a) VT earthquake 
(VT); (b) long period event (LP); (c) volcanic tremor; (d) hybrid event (Hyb); (e) ex-
plosion quake (EXQ); (f) infrasonic signal. 
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Very Long Period Events: the use of broadband seismometers in the past 

decade has allowed to record a new class of seismo-volcanic signals called 

Very Long Period (VLP) events. VLP events with dominant periods in the 

range 2–100s (Neuberg et al., 1994; Ohminato et al., 1998) are assumed 

to be linked to mass movements, and to represent inertial forces result-

ing from perturbations in the flow of magma and gases through conduits 

(Uhira and Takeo, 1994; Kaneshima et al., 1996; Chouet, 1996b; Cannata 

et al., 2009c). This class of signals has been observed at several volcanoes 

such as Aso Volcano (Kawakatsu et al., 1994; Kaneshima et al., 1996; 

Yamamoto et al., 1999), Stromboli (Neuberg et al., 1994; Chouet et al., 

2003), Kilauea (Ohminato et al., 1998), Etna (Cannata et al., 2009c; 

Patanè et al., 2008). 

Volcanic tremor:  volcanic tremor is a persistent ground vibration record-

ed near active volcanoes (figure 2e). In figure 3 is shown a location of vol-

canoes where the tremor occurrences were recorded (Konstantinou and 

Schlindwein, 2002). This signal is the most favored parameter in volcano 

early eruption warnings. At Mt. Etna (Italy), strong fluctuations of vol-

canic tremor amplitude are associated with lava fountaining or with 

opening of a flank fissure (Cosentino et al., 1989). Tremor is generally 

characterized by narrow frequency range and long duration compared 

with earthquakes and other seismo-volcanic signals (figure 2e). Although 

spectra of tremor usually contain a series of narrow peaks suggesting the 

modes of oscillation of a resonant system, commonly tremor signal is 

complicated and chaotic in appearance (Julian, 1994). Seismo-volcanic 

earthquakes like LP and explosion quakes events have spectra similar to 

tremor and probably are closely related to it. Observations made at dif-

ferent volcanoes suggest the involvement of gas/fluid interaction. 
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Figure 3: Location of volcanoes that present tremor occurrence (from Konstanti-
nou and Schlindwein, 2002 ) 

The content spectra similarity with LP and  ExQ signals suggests a simi-

lar source process. Flow instability plays an important role in the excita-

tion of volcanic tremor in multi phase flow pattern (Seidl et al., 1981; 

Schick, 1988) and associate LP and ExQ are seen as a transient within 

the same physical process (Wasserman, 2009). The physical mechanism 

of the tremor source has proved to be very difficult. Complexity arises 

from the fact that a volcano represents the place of interaction between 

material of different physical properties: magmatic fluids, surrounding 

bedrock and gases (Konstantinou and Schlindwein, 2002). It is well 

known that very different physical processes in a volcano may produce 

quite similar results (Schick, 1992). This has been confirmed by theoreti-

cal modeling in the frequency domain of tremor and low frequency seis-
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mo-volcanic events and was found that many physical mechanisms could 

explain them equally well (Nishimura et al., 1995). Also, many authors 

support the fact that the tremor source is not unique and may differ from 

a volcano to another. Harmonic tremor and spasmodic tremor are two 

special cases of more general volcanic tremor. 

 

Figure 4: Tremor gliding phenomena . The changing frequency content with time 
is related to conduit physical parameters changes. 
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The former is a low-frequency, often monotonic sinusoid with smoothly 

varying amplitude, the latter is a higher-frequency, pulsating and irregu-

lar signal (Finch, 1949; McNutt, 1996). A very interesting feature of tre-

mor is referred to as gliding (figure 4), in which the frequencies of evenly 

spaced spectral peaks vary systematically with time. Also in the case of 

the volcanic tremor, the standard location techniques based on travel 

time inversion cannot be used because of the non-impulsive signature of 

tremor. Therefore, new methods based on the space distribution of the 

seismic amplitude were developed and used for the signals coming from 

classical seismic networks (different techniques are used for the seismic 

arrays) (Battaglia and Aki, 2003; Di Grazia et al., 2006). A large number 

of papers showed a strict relationship between eruptive activity and 

variations of volcanic tremor. They consist of whether spectral and am-

plitude changes (Gresta et al., 1991; McNutt, 1994; Alparone et al., 2007; 

Cannata et al., 2008) or location source variations (Patanè et al., 2008; Di 

Grazia et al., 2009).  
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1.2  Time Series Analysis: an introduction 

Time series (TS) problems arise in almost all disciplines, ranging from 

studying variations in biomedical measurements to variations in geo-

physical or in financial parameters. A time series is a finite series of ob-

servations usually collected at regular intervals. Using time series analy-

sis it is possible to characterize, predict and model the observed system. 

Also,  time series obtained  by different disciplines (e.g. geophysics and 

geochemistry) can be analyzed in order to discover a possible link among 

them. Once the background level has been characterized, changes in the 

so called “steady state” may be related to changes in the activity.  

From a seismo-volcanic point of view, several parameters can be ex-

tracted from recorded signals. Since they are linked to magma-gas mo-

tion inside the volcano, studies of changes in parameters like spectral 

content, rate, quality factor, background noise and wavefield, can be used 

for understanding volcano dynamic evolution and their implications for 

monitoring purposes. In order to accomplish this task, time series analy-

sis (TSA) techniques provide useful tools for volcano state changes inter-

pretation. In TSA there are three recurring main tasks (Gershenfeld, 

2006). The first task is related to nature of the underlying system that 

produces observed time series. It provides information about the nature 

of the system, its degrees of freedom, its linear or nonlinear nature, noise 

influences and how random it is. The second task is related to forecast 

defined as the estimation of the next state known the current state. The 

last task is the TS modeling and is related to governing equations esti-

mation and their long-term behavior.  

In general, TS analysis can be articulated on the following points:   
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Regression analysis: Linear system theory is expressed by the Wold de-

composition where a stochastic process is separated into the sum of two 

processes: deterministic one that is a linear function of its past values; 

stochastic one that is a linear function of previous values of uncorrelated 

random variable (Priestley, 1981; Gershenfeld, 2006). Approximation of 

Wold form with finite number of parameters leads to auto-

regressive/moving-average (ARMA) process where the system output y is 

a linear function of external inputs x, its previous outputs and noise. Al-

though linear systems are very well understood, they appear very limited 

in real geophysical applications where non-linearities are significant.  

Stationarity: Traditional time series analysis implicitly assume that data 

come from a linear dynamical system with many degrees of freedom and 

added noise. The variation is assumed to be a superposition of sine waves 

and additional terms that grow or decay. The exponential terms typically 

lead to nonstationarity in which statistical properties of time series, such 

mean or standard deviation, change in time (Sprott, 2003). In time series 

measurement, reproducibility is closely connected to the stationarity of 

the underlying process (Kantz and Schreiber, 1997). The weakest statio-

narity requires that probably density functions (p.d.f.) remain constant 

for all parameters that characterize the dynamic of the system. A time 

series is considered to originate from a stationary process if statistical 

fluctuation of mean, variance and auto-covariance, does not change over 

time. In order to estimate the stationarity, some methods use nonlinear 

statistics techniques, such as the so-called cross-prediction error (Schrei-

ber, 1997). 

Non-linear analysis: Link between chaos theory and real world is the 

analysis of time series in terms of nonlinear dynamics. It is well known 



16 
 

that real processes are characterized by a number of interdependent va-

riables. Modeling of geophysical/geochemical systems is an extremely dif-

ficult task. Data sequences are obtained from the observation rather 

than physical equations. For a dynamical description of such time series, 

linear statistical techniques are insufficient as they do not take into ac-

count nonlinear relationship (Matcharashvili et al., 2000). A nonlinear 

dynamical approach provides more information on complex system beha-

vior than classical linear tools (Berge et al., 1984; Theiler, 1990; Abarba-

nel et al., 1993; Kantz and Shreiber, 1997). Theory of deterministic chaos 

is an useful tool in order to explain irregular behavior of systems that are 

not influenced by stochastic inputs. The dynamics of systems is described 

in state space, whose dimension is given by the number of the dependent 

variables of the model. State space describes how the behavior of a nonli-

near system evolves as one or more of its parameters are bifurcating 

(Konstantinou and Lin, 2004). When we analyze a time series, we will 

almost always have only incomplete information due to the measurement 

on a single variable as a function of time. In this cases the state space 

and the dynamics of the system that generated the measures are un-

known. The missing information can be recovered from time delayed cop-

ies of the available time series if certain requirements are fulfilled 

(Schreiber, 1998). Several geophysical systems exhibit chaotic behavior 

characterized by high sensitivity to initial conditions. Small changes in 

initial conditions or slightly different external forces produce wildly dif-

ferent outcomes even when the governing equation are known. Nonlinear 

time series analysis provides practical method for studying chaotic sig-

nals by reconstructing phase space and extracting information about the 

underlying process.  
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Time-frequency analysis: In time series analysis we can represent infor-

mation in two basic ways: time and frequency representations. The for-

mer does not display spectral content while the latter shows only fre-

quency information. Frequency representation is commonly computed 

using the Fourier transform that allows the retrieval of information on 

power content at any frequency. The widely used Fourier transform is 

designed for stationary signals; in classical Fourier analysis we lose the 

frequency location in the time domain. For the analysis of time series 

containing non-stationary power at many different frequencies, Short 

time Fourier transform (STFT) and wavelet transform (WT) are common-

ly applied (Daubechies, 1990). In contrast to the Fourier transform, 

which consists of a linear superposition of independent and nonevolving 

periodicities, the WT is based on the convolution of signals with a set of 

functions derived from the translations and dilatations of a basic func-

tion called the “mother wavelet”. Unlike STFT, WT gives a more accurate 

time-frequency description of signals containing low and high frequency 

components. Taking into account STFT method, once the length of the 

moving window is chosen, also the frequency resolution is fixed, and the 

entire phase space is uniformly described by cells of fixed sizes. Con-

versely, WT method, based on variable-sized cells, allows the use of long 

time intervals to gather more precisely low-frequency information, and of 

shorter regions for high-frequency information (Bartosch and Seidl, 1999; 

Lesage et al., 2002). Some example of time-frequency representation of 

seimo-volcanic events are reported in figure 2 and 4.   
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1.3  Pattern recognition approach 

The process of automatic extraction, recognition, description and classifi-

cation of patterns extracted from time series  plays an important role in 

modern volcano monitoring techniques. In particular, the ability of a cer-

tain system to recognize different volcano regimes can help the research-

ers to better understand the complex dynamics underlying the geophysi-

cal systems. The recognition process consists of one of the following 

tasks: supervised classification and clustering. Clustering and classifica-

tion processes in  high dimension metric space are widely applied on data 

analysis when more than two descriptive features are needed. For this 

purpose approaches based on Self Organizing Map and density based 

method will be illustrated. Also, the classification problem by optimal 

hyperplane separator using support vector machine (SVM) will be faced 

with the aim of classifying information provided by the clustering task. A 

basic pattern recognition schema is shown in figure 5 and can operate in 

two modes: training mode and classification mode (Jain et al., 2000).  

 

Figure 5: Basic pattern recognition model (from Jain et al., 2000). 
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The role of the preprocessing module is to segment and filter the pattern 

of interest from the background, remove noise, normalize the pattern and 

then comprises all the operations used to  define a compact representa-

tion of the pattern. In the training mode, the features extraction block 

finds the descriptive features of the input patterns and then the classifier 

is trained to partition the features space. 
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Chapter 2 

 

Time series analysis methods  

In this chapter methods for time series analysis will be introduced. In 

particular, we will focus on the time-frequency domain signal processing 

and nonlinear analysis techniques. The former techniques are related to 

multi-scale/frequency signals representation using wavelet framework 

considering statistical significance with respect to a background noise.  

Further, a brief description of power parametric spectrum estimation will 

be introduced. The nonlinear techniques will be treated to investigate 

time series from a dynamical point of view. In particular, various meth-

ods for determinism and nonlinearity detection will be applied in order to 

characterize different kinds of signals. A very important topic will be the 

chaotic behaviour detection and phase space reconstruction from a single 

time series. This methodology has been widely applied since the available 

data  are generally in form of time series and the underlying dynamical 

system in unknown.  All of these techniques will be applied in the next 

chapters with the aim to investigate different volcano activity regimes at  

Mt. Etna volcano. 
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2.1  Time-Frequency analysis 

Information content of a physical quantity can be represented either as a 

function of time (time domain) or as a spectrum (frequency domain). A 

function of time does not show spectral content while representation by 

Fourier spectrum cannot represent the temporal variation of the signal. 

The Fourier transform give information about the spectral content of a 

signal using a linear superposition of independent and non-evolving peri-

odicities. This technique implicitly assumes that the underlying process 

is stationary and  gives no information about the location of these fre-

quency in time. This treatment is not well suited for data which involves 

transient process and frequency content changes in time. Fourier analy-

sis presents limitation if applied on signals including intermittent burst 

processes or intermittent processes (Labat, 2005). To overcome this prob-

lem methods based on sub-sections or moving-windows of the data are 

used in order to detect abrupt regime changes in statistical property of 

the signal. Common approaches in time-frequency analysis are the Win-

dowed Fourier Transform (WFT), also known as Short Time Fourier 

Transform (STFT), and Continuous Wavelet Transform (CWT). These 

representations give a very clear picture of the non-stationarity nature of 

the signal in a time-frequency domain. STFT provides this representa-

tion by transforming short windows of data. In this case a Fourier spec-

trum is computed over time by a fixed-size window shifted along the time 

axis. This has the problem that a fixed size moving window limits the de-

tection of cycles at wavelengths that are longer than windows itself, and 

nonstationarity in short wavelength are smoothed (Prokoph and Patter-

son, 2004; Gershenfeld, 1999). The use of CWT solves this problem be-

cause it uses wide windows at low frequencies and narrow window at 

high frequencies providing a multi-scale representation of the signal.  
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2.1.1  Short Time Fourier Transform  

STFT is defined as a convolution between a signal f(t) and a sliding win-

dow w(t-t’): 

    '''),( '* dtettwtftS tj




                              (2.1) 

where w*(t-t’) is the window function centered on t, commonly a Hann or 

Gaussian window (Bartosch and Seidl, 1999; Lesage et al., 2002). STFT 

can be seen as a local spectrum of f(t’) around the analysis time t, whose 

position indicate the approximate time for which the spectrum is valid. 

STFT of a sequence f(n) is defined as: 

 nj

n

enmwnfmF  



  )()(),(                          (2.2) 

where the sequence f(n)w(m-n) is called short-time section of the se-

quence f(n) at time m. The windowing process introduces leakage effects 

and frequency resolution strongly depends on the choice of the window 

function. In particular, time-frequency resolution can be adjusted by the 

window length tw. A good time resolution requires a narrow window in 

time, while a good frequency resolution requires a large window in time  

(corresponding to a narrow filter in frequency domain). Once the window 

size is chosen, both time and frequency resolutions are fixed and the en-

tire phase space is described by cells of fixed size (figure 1).  
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Fig. 1: Filtering view of STFT at frequency ω0. 

   

This is related to Heisenberg’s uncertainty principle that prohibits the 

existence of a window with arbitrary small duration and bandwidth. 

Once the windows size tw is chosen, the smallest measurable frequency is 

determined as fw=1/tw (Lesage et al., 2002;  Bartosch and Seidl, 1999). 

Equation (2.1) can be interpreted as a convolution between the signal f(t) 

and the window function w(t) also  called analysis filter. The last defini-

tion is justified on the basis of the fact that STFT can be interpreted as 

the output of an infinite channel of filter bank where the window w(n) 

plays the role of the filter input response (Nawab and Quatieri, 1988). 

Fixing  ω= ω0  equation (2.2) can be rewritten as:  

  




 
m

mj nmwenfmF )()(),( 0

0

                   (2.3) 

Using the convolution operator * equation (2.3) can be rearranged as: 

   )()(),( 0

0 nmwenfmF mj                       (2.4) 
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The term njenf 0)(  can be interpreted as modulation of f(n) up to the fre-

quency ω0. 

In the light of it equation (2.4) can be rewritten in the following form:     

 njnj enwnfenF 00 )()(),( 0

  
                                 (2.5) 

Time variation of STFT for a fixed frequency ω0 can be represented using 

a block diagram as shown in figure 2  (Nawab and Quatieri, 1988; Bar-

tosch and Seidl, 1999).  Considering a finite number of frequencies the 

STFT can be  viewed as the output of the filter bank shown in figure 2 

where each filter is a bandpass filter centered around its selected fre-

quency ωi (i=0..N-1).  

 

Figure 2: STFT as the output of a bandpass filter bank. 
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2.1.2  Continuous Wavelet Transform 

As aforementioned, STFT has the drawback of fixed resolution in  time-

frequency domain. In general it is very difficult to find a good trade-off 

between frequency and time resolution. The continuous wavelet trans-

form (CWT) solves this problem because it combines high temporal reso-

lution with good frequency resolution offering a reasonable balance be-

tween these two parameters. For this reason CWT is an useful tool when 

signals are characterized by localized high frequency or scale-variable 

process and allows tracking time evolution at different scales (Labat, 

2005; Leasage et al., 2002). The CWT transforms the signal in a time-

scale plane called scalogram. From a mathematical point of view it is de-

fined as: 

'
'

)'(
1

),( * dt
a

tt
tf

a
atW 






 

 




                    (2.6) 

where ψ is a real or complex function called analyzing wavelet, a is the 

dilatation parameter which controls the time duration of the wavelet and 

t is the translation parameter. The analyzing wavelet fulfills the  admis-

sibility condition: 

 
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where  
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is the Fourier transform of ψ(t) (Daubechies, 1992; Bartosch and Seidl, 

1999). Let a discrete sequence x(n)  (n=1,..,N), the CWT can be defined 

as: 

   






 

N

n a

t
nnnxanW

0'

* ''),(


                           (2.9) 

where δt is the uniform time step, * indicates complex conjugate, a is the 

wavelet scale and N is the number of points in the time series. By trans-

lating the time index n and varying the scale a we obtain a picture show-

ing amplitude at any scales and its variation with time. The convolution 

in equation (2.9) can be computed faster in the Fourier space. The DFT 

(Discrete Fourier Transform) of the sequence x(n) is defined as: 
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with frequency index k=0…N-1. Using the convolution theorem, wavelet 

transform can be viewed as the inverse Fourier transform of the product: 
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where  the angular frequency is defined as: 
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Figure 3: CWT as non-uniform infinite channel filter bank. 

 

and Ψ෢ሺܽ߱ሻ  is  the Fourier transform of the wavelet function Ψሺݐ/ܽሻ. 

The choice of wavelet function (also called mother wavelet) is a critical 

aspect of the CWT and it is related to the particular features that we 

want to consider in our analysis (Torrence and Compo, 1998; Farge, 

1992).  One particular wavelet, used in time series feature extraction,  is 

the Morlet wavelet that provides a Gaussian modulation of the time-scale 

plane: 

 
2

0 2

1
4/1

0


 ee j                                    (2.13) 

where ω0 and η are the dimensionless frequency and time respectively  

(Grinsted et al., 2004). In order to provide a good balance between time 

and frequency and satisfy the admissibility condition ω0 must be 6 

(Farge, 1992). It is noteworthy that for Morlet wavelet ( with ω0=6  ) the 

Fourier period T is almost equal to the scale ( T ~ 1.03a ). In order to 
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normalize the CWT that is to have unit energy, equation (2.9) can be 

written as:    

   
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                      (2.14) 

Similar to STFT (section 2.1.1), the CWT can be investigated as a non-

uniform infinite channel filter bank (figure 3). In this case impulse re-

sponse is derived by dilatation of prototype band pass impulse response 

Ψ(n) whose duration depends on the scale parameter a (Bartosch and 

Seidl, 1999). Transferring concepts of classical Fourier analysis to wave-

let domain, a wavelet power can be defined as the transformation of the 

autocorrelation function.  Since the wavelet function Ψ(n) is in general 

complex the W(n,a) is also complex. The transform can be divided into 

real part R{W(n,a)} and imaginary part I{W(n,a)} and amplitude 

|W(n,a)|, and phase, tan-1[I{W(n,a)}/R{W(n,a)}]. The Wiener-Khinchin 

theorem can be defined as the expectation value of W(n,a) multiplied by 

its conjugate: 

),(),(),( *2
anWanWanW                              (2.15) 

If wavelet is centered close to the beginning or to the end of the time se-

ries, edge artifacts occur. For this reason it is useful to introduce the so 

called Cone of Influence (COI) in which edge effect become important and 

the results should be interpreted carefully. COI can be defined as the 

area in which the wavelet power caused by a discontinuity at the edge 

has dropped by a factor e-2 of the value at the edge itself (Torrence and 

Compo, 1998; Grinsted et al, 2004; Maraun and Kurths, 2004).   
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2.1.3  Comparison between STFT and CWT  

Both time-frequency methods can be interpreted as the inner product of 

the signal f(t) and a function F(t,f). In the case of STFT  the F(t,f) takes 

the form: 

'2)'(),( ftiettgft                                     (2.16) 

while, in wavelet transform, it becomes: 
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Both techniques have the same time-frequency resolution limitations. 

While STFT resolution do not depend on the investigated frequency (the 

window size is fixed a priori) the CWT is a multi-resolution approach 

with better time resolution at high frequency and better frequency reso-

lution at low frequency. The tilling of the time-frequency plane is differ-

ent for both STFT and CWT and is characterized by duration T and 

bandwidth B. In the former these two parameters are constant (T=const, 

B=const) and the tiled time-frequency plane can be represented as in fig-

ure 4a. In the latter case the parameters T and B are related to the scale 

parameter a (T=a, B=Ba=1/a) and lead to a non uniform tile time-

frequency plane (figure 4b). An example of time-frequency representation 

of a signal with added spike and noise using STFT and CWT is shown in 

figure 5.  
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Figure 4: Tilling of time-frequency plane of a) STFT and b) CWT. 

 

 

Figure 5: STFT (middle plot) and CWT (bottom plot) of a synthetic signal (top 
plot) of Gaussian windowed 5 Hz harmonic signal with added spike and noise. The  
spike and the beginning of the high frequency noise is well resolved in time by 
CWT than STFT. This picture clearly shows the advantages of CWT  respect to 
classical spectrogram based on Fourier transform. 

   

a) b) 
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2.1.4  Statistical significance 

In order to estimate the reliability of the power spectrum a statistical 

significance level is required. To accomplish this task one firstly needs an 

appropriate hypothesis about background  spectrum.  

Statistical significance of power spectrum is based on the assumption 

that the investigated signal is generated by a stationary process with a 

given background power spectrum. This assumption is known as the null 

hypothesis. Hypothesis about an appropriate background spectrum is 

closely related to the considered system. For many geophysical pheno-

mena background spectrum can be white noise (flat Fourier power spec-

trum) or red noise (increasing power with decreasing frequency). The last 

one reflects the fact that a sort of memory is presented in the process 

that generates the measured signal. A simple method for red noise mod-

eling is an AR1 (auto-regressive model of first order) process with lag-1 

autocorrelation α: 

nnn zxx  1                                          (2.18) 

with x0 = 0, and zn is taken from Gaussian white noise (Torrence and 

Compo, 1998).  Fourier power spectrum of (18) is given by (e.g. Allen and 

Smith, 1996): 
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where k is the Fourier frequency index.  Let a time series and a back-

ground spectrum hypothesis, the estimated power spectrum peak above 

background spectrum can be assumed to be a true feature with a certain 

percent confidence. Peaks in the time series power spectrum are assumed 
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significant if they exceed the 95% confidence spectrum computed based 

on the hypothesis of white or red background noise. For definition the 

‘95% confidence’ level is equivalent to ‘significant at the 5%’ and ‘95% con-

fidence interval’ is related to the range of confidence about a given value.  

If a time series xn is normally distributed, both real and imaginary part 

of the DFT coefficients Xk  are normally distributed (Chatfield, 1989). 

Since the square of normally distributed variable is  chi-square distri-

buted with one degree of freedom  then |ܺ௞|ଶ is chi-square distributed 

with two degree of freedom denoted by ߯ଶ
ଶ   (Jenkins and Watts 1968). 

For instance, to obtain 95% confidence level, the background spectrum 

given by equation (2.19) must be multiplied by the 95Th percentile value 

for 2
2  (Gilman et al., 1963; Torrence and Compo, 1998). Under the as-

sumption of a background noise given by equation (2.19), the distribution 

of normalized Fourier power spectrum can be expressed as: 
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The corresponding relation in wavelet domain at each scale a and time n 

is: 
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These relations are correct assuming that the underlying distribution of 

the original time series is Gaussian. The choice of the mother wavelet is 

very important in the definition of wavelet power. As explained in Ge 

(2007) the wavelet power has a ߯ଶ
ଶ  distribution only when a wavelet fam-
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ily used is the Morlet wavelet. In practice, for many time series an ana-

lytical expression of the significance level against red-noise null hypothe-

sis is not available. In this case the significance level can be obtained 

empirically through Monte Carlo simulations (e.g. Torrence and Compo, 

1998; Grinsted et al., 2004). More details about wavelet significance test 

can be found in Ge (2007,2008).  

 

Figure 6: (a and b) Time series of the radiant power output of thermal camera; (c 
and d) power spectra computed via periodogram normalized by standard deviation 
of the time series shown in Figures 6a and 6b; (e and f) Wavelet transform, com-
puted using a Matlab code provided by Grinsted et al., 2004, of the two time se-
ries.  
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Methods described in this section have been widely applied on different 

scientific research areas, such as geophysics, volcanology and seismology. 

In figure 6 an application of Fourier and Wavelet power spectrum esti-

mation together with the confidence level is shown.  The two time series 

reported in figure 6a and 6b, were obtained from thermal image (Spam-

pinato et al., 2008). Both time series were normalized with 0 mean and 

unit standard deviation before wavelet spectrum computation. In order 

to investigate the most energetic periods, classical Fourier transform 

(figure 6c and 6d) and wavelet transform (figure 6e and 6f) were applied. 

Peaks in power spectrum are assumed significant if they exceed the 95% 

confidence spectrum computed based on the hypothesis of red back-

ground noise. Peaks found using periodogram (figure 6c and 6d) are con-

sistent with the wavelet transform results (figure 6e and 6f), which show 

significant spectral power (highlighted by the solid contour at 95% confi-

dence interval). Also the cone of influence (COI) discussed in section 2.1.2 

is shown in figure 6e and 6f. 

2.1.5  Cross-spectrum and coherence 

Let x(t) and y(t) two ergodic and stationary processes, the cross-

correlation can be considered as a quantitative measure of the related-

ness of two signals. The Fourier cross-spectrum can be defined as (Labat, 

2005): 

    dfiRfS XYXY 




 2exp)()(                         (2.22) 

where RXY(τ) is the cross-correlation between the signals x and y. SXY is 

called cross-spectral density or cross spectrum and SXX and SYY are the 
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autospectra of the two signals X and Y respectively. Coherence is an ex-

tension to Pearson’s correlation coefficient and can provides a measure of 

the linear relationship between two signals at various frequency (Saab et 

al., 2005; Caviness et al., 2003). In the light of it, spectral coherence can 

be defined as: 

   
   fSfS

fS
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YYXX

XY

XY                                 (2.23) 

Using Schwarz inequality we observe that CXY(f) takes values between 0 

and 1. The aforementioned Coherence measure assumes stationary of the 

signals and, similarly to Fourier transform, is insensitive to changes over 

time. To overcome this problem, a STFT (see section 2.1.1) approach is 

applied to produce the coherogram. In practice, while with Fourier cohe-

rence it is possible to isolate frequency bands in which two time series 

are covarying, with coherence computations using a moving window ap-

proach it is possible to identify both frequency band and time intervals in 

which the two time series are covarying. This can be produced by calcu-

lating the coherence using a moving window providing  coherence in 

time-frequency space. Similar to STFT, this process is constrained by the 

uncertainty principle and requires definition of several parameters such 

as window length and overlapping. 
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2.1.6  Cross wavelet spectrum and wavelet coherence 

Wavelet analysis has been defined for a single signal x(t). As defined for 

Fourier transform, it is possible to calculate the cross-wavelet spectrum 

from two signal x(t) and y(t) extending the idea of coherogram from a 

time-frequency to time-scale space. The cross wavelet transform can be 

defined as the expectation value of the product of the WX(n,a) and 

WY(n,a) respectively:  

 ),(),(),( * anWanWanW YXXY                            (2.24) 

Cross wavelet spectrum (CWS) is complex (analogous to Fourier cross-

spectrum) and can be decomposed in amplitude |WXY| and phase Φ(n,a) : 

  ani

XYXY eanWanW ,),(),(                                (2.25) 

The phase describes the delay between the two time series at time n and 

on scale a (Maraun and Kurths, 2004; Torrence an Compo, 1998; Tor-

rence and Webster, 1999). As Fourier and Wavelet spectrum, it is possi-

ble to define a confidence level for wavelet cross-spectrum. It can be de-

rived from the probability density function defined by the square root of 

the product of two chi-square distributed (Jenkins and Watts, 1968; Tor-

rence and Compo, 1998; Grinsted et al., 2004). Let two spectra χ2 distri-

buted with ν degrees of freedom, the probability distribution can be ex-

pressed as: 
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where z is a random variable, Γ is gamma function, K0(z) is modified Bes-

sel function of zero order. From (22) the cumulative distribution function 

is given by: 


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                                    (2.27) 

with Ζν(p) confidence level associated with the probability p. Given a 

probability p, inversion of integral (23) provides the confidence level 

Ζν(p). Let X and Y two time series with background power and 
Y
kP , theoretical distribution of cross-wavelet power is given by (Torrence 

and Compo, 1998): 
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where ߪ௑ and ߪ௒ are the respective standard deviations. CWS reveals 

areas with high common power of two signals without normalization. 

This can lead to misleading results due to the fact that the CWS is basi-

cally a product of the CWT of two time series. For example, if one spec-

trum is flat in band and the other spectrum exhibits strong peaks, the 

CWS can produce peaks in cross-spectrum that are not related to effec-

tive coupling between the signals. For this reason CWS is not suitable for 

significance testing relations between two signals (Maraun and Kurths, 

2004). This problem can be avoided by normalizing to the single CWT 

leading to the concept of wavelet coherence (WC) that provides a measure 

of how coherent the CWT is in time-scale/time-frequency space. This 

measure can find significant coherence also in intervals where CWS 

shows low common power. Also in this case, it is possible to estimate the 

confidence levels against background red noise.  

X
kP
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Similarly to Fourier coherence, wavelet coherence can be defined as the 

square of the cross-spectrum normalized by the individual power spec-

trum: 

    anWanW
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2                             (2.29) 

The equation (2.29) gives a quantity between 0 and 1. A value of 1 means 

a linear relationship between the two time series X and Y around time n 

and on scale a. A value of 0 means a vanishing correlation. As reported in 

Liu, 1994, the equation (2.29) is identically one at all times and scale.  To 

overcome this problem,  equation (2.29) is modified by introducing a 

smoothing operator: 
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Where the factor a-1 is used to convert to an energy density and the sym-

bol  indicates a smoothing operation in both time and scale. The wave-

let-coherency phase difference is given by: 
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In general, smoothing operator can be defined as: 

scaletime
aWnW ,                                   ( 2.32) 
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The choice of smoothing operator is related to the mother wavelet used in 

the analysis. For a Morlet wavelet a suitable time smoothing operation is 

performed by the following convolution in time (Torrence and Webster, 

1999; Jevrejeva et al., 2003): 

   scale

at

time
ecanWW

22 2/

1,                           (2.33) 

and in scale: 

      timescale
acanWW 6.0, 2                          (2.34) 

where c1 and c2 are normalization constants and П is the rectangle func-

tion. The value 0.6 is empirically determinate in Torrence and Compo, 

1998.   

 

Figure 7: Simple wavelet coherogram of two synthetic signals with growing phase 
difference. The relative phase relationships are plotted using arrows. 
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As aforementioned, wavelet cross-spectrum and wavelet coherence are 

complex and can be expressed in terms of absolute value and phase. As 

argued in Grinsted et al., 2004, an useful way to see the phase evolution 

in time-scale space is the overlay plotting of the phase angle on the cohe-

rogram (figure 7). The relative phase relationship can be plotted using 

arrows with in-phase plotting right, anti-phase plotting left and 90° 

pointing straight down while the 5% significance level against red noise 

is shown as a thick contour. In figure 8  an example of wavelet coherence 

is shown (Cannata et al., 2010). In particular, the relationship between 

amplitude of continuous background seismic signal (figure 8a) and soil 

CO2 flux (figure 8b) both recorded at Mt. Etna during the period 2003-

2005, was investigated using cross-wavelet spectrum (figure 8c) and 

wavelet coherence (figure 8d). As explained before, the vectors indicate 

the phase difference between CO2 flux and tremor amplitude time series. 

Horizontal arrow pointing from left to right signifies in phase and an ar-

row pointing vertically upward means the first series lags the second one 

by 90°. The 5% significance level against red noise is shown as a thick 

contour and the COI, where the edge effects might distort the picture 

(see section 2.1.2), is shown as a lighter shade.  
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Figure 8:  a) tremor amplitude; b) CO2 flux; C) cross-wavelet spectrum and d) 
wavelet coherence between the time series in a) and b) (both time series were 
standardize before cross-wavelet spectrum and wallet coherence computation). 
The 5% significance level against red noise is shown as a thick contour. The black 
dashed lines indicate the onset and the end of the eruption. 
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2.2  Time series power spectrum estimation  

The problem of estimating the power spectral density (PSD) of a time se-

ries can be brought back to the PSD function X(w) of a signal from a fi-

nite number of observations.  This task cannot be performed in a consis-

tent manner. To overcome this problem there are two main strategies. 

The first considers the digital signal as the output yn of a stationary li-

near filter excited by an input xn. This approach leads to the parametric 

or model-based methods where the estimation of the PSD is reduced to 

the problem of estimating a number of parameters m, much smaller than 

the length data N, of a generating model with known functional form. 

The second approach are in general known as nonparametric methods 

and are generally implemented using the Fast Fourier Transform (FFT). 

Two common power spectral estimators are known as periodogram and 

correlogram. In general these estimators are poor spectral estimators be-

cause their variance is high and does not decrease with the increase  of 

data length. This motivates the development of other methods, such as 

Bartlett or Welch methods, that present lower variance at a cost of re-

duced resolution (Stoica and Moses, 1997).  To increase the resolution 

other methods, known as filter bank methods ( e.g. Capon, 1969; Lacos, 

1971; Benesty et al., 2005 ), were developed. In particular, these methods 

come from a filter bank interpretation of the periodogram, 

In the next sections two kinds of power spectrum estimators, parametric 

and nonparametric, will be presented. In particular, in section 2.2.1 the 

Sompi method (Kumazawa et al., 1990), widely applied in geophysical 

time series analysis, will be explained. In section 2.2.2 the minimum va-

riance distortionless response (MVDR) method, both for PSD and cross-

PSD estimation, will be introduced. 
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2.2.1  Parametric power spectrum estimation: the Sompi Method  

Time series modelling consists of estimating the governing dynamics of 

the hypothetical linear dynamic system that has yielded the given time 

series data (Kumazawa et al., 1990). In these approaches, a signal is con-

sidered as the impulse response of an AR (autoregressive) or an ARMA 

filter (autoregressive moving average). ARMA filter is a discrete-time 

system that takes an input sequence xn and produces an output sequence 

yn. This kind of system can be described by a linear-constant difference 

equation:  
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                               (2.35) 

where {ak} and {bk} are the system coefficients, p and q are the order of 

the AR and MA parts of the filter, respectively. The coefficients of the AR 

filter can be obtained by solving the modified Yule-Walker equation 

(Marple, 1987) and the coefficients of the MA filter can be estimated us-

ing the Durbin method (Kay, 1981; Mars et al., 2004). As argued in 

Lesage (2008), this process is affected by numerical instabilities and long 

computation time. Furthermore, the deconvolution of the AR part alone 

gives good estimation of the duration and spectral content of the consid-

ered signals (Lesage, 2008). In order to estimate the AR coefficients, 

Sompi method (Kumazawa et al., 1990) can be implemented. Unlike the 

traditional spectral estimators in real frequency space, this method 

yields a line-shaped spectrum in complex frequency space. The basic con-

cepts of the AR model and the formulation based on the maximum likeli-

hood principle lead to a model estimation algorithm different from other 

AR methods (Fukao and Suda, 1989; Kumazawa et al., 1990). By Sompi 
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analysis, a time series is deconvoluted into a linear combination of coher-

ent oscillation with decaying amplitude and additional noise. Let {xn} 

time series that can be considered the sum of signal {un} and Gaussian 

white noise {en}:  

nnn eux                                            (2.36) 

where un is described as a set of decaying sinusoids (Fukao and 

Suda,1989): 
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and zk is defined as: 

))(2exp( tjfgz kkk                               (2.38) 

where Δt is the sampling step and the symbol * represents the complex 

conjugate. In equation (2.37)  Ck represents the complex amplitude of the 

kth sinusoid at the complex frequency given by fk-jgk and j is 1 . The 

time series {ui} is defined as the sequence satisfying the AR equation: 




 
m

mj
jijua 0                                     (2.39)  

where {aj} (j=0,1,….,m) are real AR coefficients. An exhaustive treatment 

about aj coefficients estimations is reported in Hori et al. (1989), Fukao 

and Suda (1989) and Kumazawa et al. (1990). Briefly, a way to compute 

the coefficients aj that satisfy equation (2.39) is the minimization of the 

functional S:  
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under the condition: 

 12 
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ja                                        (2.41) 

This minimization problem leads to an eigenvalue problem where coeffi-

cients aj are the eigenvectors corresponding to minimum eigenvalues. 

Now, once the aj are calculated, the Sompi characteristic equation is de-

fined as: 

 
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mj
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The roots zk of equation (2.42) give the complex frequencies expressed in 

equation (2.38). Let {xi} a time series, Sompi method extracts m wave 

elements characterized by a complex frequency fk-jgk where fk is the fre-

quency, gk is the growth rate. Each wave element can be represented as a 

point in a frequency-growth rate domain. The quality factor Q is then 

given by –fk/2gk. An example of frequency-growth rate domain is re-

ported in figure 9. In particular, clusters of points in figure 9b were ob-

tained considering AR model with order spanning from 2 to 60. The ob-

tained point clusters indicate dominant spectral components of the signal 

and scattered points represent noise. 
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Figure 9: (a) Waveform of infrasound event recorded at Mt. Etna, and correspond-
ing (b) frequency-growth rate plot (AR order 2-60) and (c) amplitude spectrum. 
The grey area in (a) represents the window used to calculate the frequency-growth 
rate plot in (b). The dashed lines in (b) represent lines along which the quality fac-
tor (Q) is constant. Clusters of points in (b) indicate dominant spectral components 
of the signal; scattered points represent noise.  
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2.2.2  High resolution power spectrum estimation 

One of the best known nonparametric power spectrum estimation ap-

proach is the Capon’s method, also known as minimum variance distor-

tionless response (MVDR) (Capon, 1969; Lacoss; 1971), which consists of 

measuring the signal power by using  a band-pass filters bank.  The 

MVDR method can be interpreted as the output of a bank of filters, with 

each filter centered at one of the analysis frequencies (Benesty et al., 

2005). While the periodogram-based approach can be viewed as a band-

pass filters both data and frequency independent, the bandpass filters in 

the MVDR approach are both data and frequency dependent (Stoica and 

Moses, 1997; Stoica et al., 1998; Benesty et al., 2005). The filter must re-

spect two conditions: 1) for a given frequency fk the frequency response is 

unity; 2) the influence of the other spectral components of the signal is 

minimized. This minimization under constrain leads to the following 

spectrum definition (Lesage et al., 2002):  
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where  Rx is the correlation matrix of the signal, ܵ௞
் ൌ ሾ1, ,௞ݏ ௞ݏ

ଶ, … , ௞ݏ
௣ሿ, 

with ݏ௞ ൌ ݁ଶ௜గ௙ೖ୼௧, p is the filter order, T and H denote the transpose and 

the conjugate transpose, Δt is the sampling interval.  

Assuming x(n) and y(n) two zero mean stationary random signals with 

respective spectra Px and Py, the cross-spectrum can be generalized from 

equation (2.43) as: 
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where Rxy is the cross-correlation matrix between x(n) and y(n), Rxx and 

Ryy are the cross-covariance matrices (for more details see Benesty et al., 

2005). From equation (2.44) the coherence between the signals x(n) and 

y(n) can be expressed as (see section 2.1.5): 
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In figure 10 a comparison between classical Welch method and MVDR 

method is shown. In particular, a coherence function is computed consi-

dering two sinusoidal signals:  

       ttftftfx 1321 2cos2cos2cos                                          (2.46) 

       ttftftfy 2332211 2cos2cos2cos                  (2.47) 

where ω1(t) and ω2(t) are two white Gaussian processes (figure 10a), the 

phases Φ1, Φ2 and Φ3 are random, f1=0.03, f2=0.04 and f2=0.05. The re-

sults show that high resolution methods like MVDR provide a more reli-

able result with respect to the classical Welch’s method (figure 10b). For 

these reasons, the MVDR approach will be applied in the next chapters 

(see chapter 4) together with time-frequency approaches (see section 

2.1.5) in order to build a high resolution coherogram for geophysical time 

series comparison (see chapter 4).  
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Figure 10: (a) Two signals x(t) and y(t) obtained as superposition of cosinusoidal 
function with added white Gaussian noise. (b) Coherence estimated by Welch me-
thod ( top plot ) and MVDR ( bottom plot ). 

  

a 
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2.3  Nonlinear analysis  

Real world processes comprise linear and nonlinear components, together 

with deterministic and stochastic ones. Figure 11 shows real world signal 

spanned by the properties of linearity and stochasticity. Signal from real 

world phenomena are related to processes that are located in the region 

denoted by (a), (b), (c) and (?). This is a consequence of nonlinearity, un-

certainty and noise that constitute the process. In terms of time series 

modelling only linear stochastic autoregressive moving average model 

(ARMA) and nonlinear deterministic models (NARMA) are well under-

stood (Mandic et al., 2008). In order to characterize a time series from a 

dynamical point of view, it is necessary to verify the presence of an un-

derlying  linear or nonlinear dynamics.  

 

Figure 11: Real world signals grouped in classes spanning from nonlinearity to 
stochasticity. The areas where the analysis method are readily, such as chaos and 
ARMA, are highlighted (redraw from Mandic et al., 2008).  
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While for many systems the assumption of  nonlinearity may be correct 

in principle, real world signals are subject to uncertainty and noise, so it 

is impossible to distinguish between nonlinear dynamics and linear dy-

namics that involve stochastic  components. In addition, time series 

comes from discrete measures on continuous dynamical systems. In this 

case the sampling space can influence the nature  of observed data. For 

these reasons, the rejection of the null hypothesis of linearity is an im-

portant  tool for time series analysis (e.g. Schreiber ans Schmits, 2000; 

Timmer, 2000, Mandic et al., 2008; Hou and Li, 2010).   

2.3.1  Nonlinear methods  

In order to study temporal evolution of a dynamic system, phase space is 

used. Phase space is a representation of the state vector X of the system 

at any given time by a point in an n-dimensional space n . Dynamic sys-

tems can be described by using a set of n first-order differential equations 

with initial condition X(0): 

 
))(,()( tXtftX
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                                    (2.48) 

X(t) solving the equation (2.48) is called trajectory of the dynamic system. 

The trajectory in the phase space evolves in time from initial conditions 

onto a geometrical object called attractor. Attractors can be divided into 

three categories: fixed point, limit cycle and the so-called strange attrac-

tor. Fixed point is the simplest attractor where, after a transient time, 

the system settles to a stationary state; a limit cycle is an isolated close 

trajectory, and in this case the system approaches a periodic motion; an 

attractor with aperiodic trajectories is called strange. In this case trajec-
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tories in phase space approach each other without intersection and orbits 

that are initially close diverge exponentially from each other due to sen-

sitivity conditions. This kind of attractor presents specific topological 

shape displaying infinite complexity in a bounded structure. There are 

two important parameters that characterize a dynamic system: the num-

ber of degrees of freedom, given by the fractal dimension of the attractor, 

and the degree of chaoticity, given by an estimation of the largest 

Lyapunov exponent (e.g., Kostantinou and Lin, 2004). As aforemen-

tioned, the property of sensitive dependence on initial conditions is char-

acterized by an exponential divergence of nearby trajectories in the phase 

space. The averaged exponent of this increase is called the Lyapunov ex-

ponent. Chaotic systems are characterized by at least one positive 

Lyapunov exponent and a low-dimensional fractal attractor in the phase 

space.  In recent years, with the developments of nonlinear dynamic the-

ory, many investigations have shown that time series can be considered 

as outputs of nonlinear dynamic systems and can provide information 

about the pertinent variables that characterize the dynamics of the 

source processes. In this view, a n-dimensional vector characterizing 

state of the system is estimated by the analysis of available time series 

data. The basic idea is that we cannot obtain the original phase space but 

rather we reconstruct a pseudo-phase space that maintains the topologi-

cal characteristics of the original space from a given time series. The 

most common method for phase space reconstruction is known as Delay 

Embedding Theorem (e.g., Takens, 1981). The reconstructed trajectory is 

expressed in matrix form:  

],...,[ 1 MXXY                                         (2.49) 
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where Xi (with i=1,…,M) represents the state of the system at time i. 

Considering a N-point time series {xi,…,xN}, the state vector Xi is defined 

as:  

],...,,[ )1( jmijiii xxxX                                   (2.50) 

where j and m are called reconstructed delay time and embedding di-

mension, respectively. The vector Xi, also called delay vector, has a corre-

sponding target, namely the next sample xi (e.g. Guatama et al., 2003). 

Therefore, in order to reconstruct the phase space, it is necessary to es-

timate j and m. Delay time is chosen such that the two values xi and xi+j 

are dynamically independent. There are two techniques able to estimate 

the delay time: autocorrelation function and the average mutual informa-

tion. The first technique selects j as the first zero value of the autocorre-

lation function. This method has a drawback: autocorrelation function is 

a linear statistic and does not account for nonlinear correlation (Abar-

banel, 1996). To overcome this limitation a nonlinear autocorrelation 

function called mutual information is used (e.g., Fraser and Swinney, 

1986). It is a measure of the amount of knowledge of xi+j known the value 

xi and can be defined as: 

  
h k h

hhhkhk PPtPtPtI ln2)(ln)()(                 (2.51) 

where Ph is the probability that value xi is in the bin h and Phk is the 

(joint) probability that value xi is in bin h and xi+j in bin k. Using this 

method, time delay j is chosen as the first minimum value of mutual in-

formation and provides time when xi+j adds maximum information to the 

knowledge that comes from xi.  In order to estimate the embedding di-

mension m, considered as the sufficient dimension for phase space recon-
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struction and strictly related to the number of equations of the system, 

Cao’s method (Cao, 1997) can be applied. This algorithm provides a 

minimum embedding estimation without any external parameters except 

for the delay time. Moreover, the considered method does not strongly 

depend on the number of samples of the investigated time series. Simi-

larly to the false nearest neighbour method (Kennel et al., 1992), the 

quantity a(i,m) is defined as:  
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where  is the Euclidean distance and  mjNmin  ,1),(  is an integer 

such that ܺ௡ሺ௜,௠ሻሺ݉ሻ is the nearest neighbour of ௜ܺሺ݉ሻ in the m-

dimensional reconstructed phase space (Cao, 1997). The mean value of 

all a(i,m) is defined as: 
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To estimate the variation from m to m+1, the parameter E1(m) is defined 

as:  
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If the time series X comes from an attractor, E1(m) stops changing when 

m is greater than a quantity m0. Then,  the  value  m0+1  is the  

 



56 
 

 

 

Figure 12: (a) Lorenz time series. (b) Reconstructed strange attractor.  
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minimum embedding dimension. In order to distinguish deterministic 

data from random data, Cao’s method introduces a new quantity E2: 
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For random data the value of E2(m) will be equal to 1 for any m while, 

for deterministic data, there will exist some values of m such that E2(m) 

≠1.  Once delay time j and embedding dimension m are known, the phase 

space can be reconstructed. An example of reconstructed phase space 

that preserves the invariant characteristics of the original one is shown 

in figure 12, where the attractor (figure 12b) is reconstructed from data 

series (figure 12a) with a time delay j=7, estimated using mutual infor-

mation (figure 13a), and an embedding dimension m=3 estimated as the 

first kink in the E1 and E2 plots (figure 13b). As aforementioned, expo-

nential divergence of nearby orbits in phase space is recognized as the 

hallmark of chaotic behaviour (Drazin, 1994).  
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Figure 13: (a) Mutual information related to Lorenz time series. (b) Values of E1 
and E2 for Lorenz time series.  
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Given two points in the phase space Xn1 and Xn2, their distance δ0 can be 

defined as ԡܺ௡ଵ െ ܺ௡ଶԡ ൌ  ଴.After a time t the new distance δ will beߜ

equal to ߜ ൌ  .ሻ, where λ1 is the largest Lyapunov exponentݐଵߣሺ݌ݔ଴݁ߜ

There are several techniques for λ1 estimation. The average exponential 

divergence between nearby trajectories can be studied using the predic-

tion error: 
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where ts is the sampling time, Xnn is the nearest neighbour of Xn, and k is 

the time step. For sufficient time steps k, the largest Lyapunov exponent 

λ1 can be estimated by the slope of the linear segment in p(k) vs k dia-

gram. As reported in Parlitz (1998), this method provides not only the 

estimation of λ1 but also a direct measure of exponential growth of dis-

tances to distinguish deterministic chaos from stochastic process.  
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2.3.2  Surrogate data analysis  

Usual methods widely applied in chaos theory, such as  saturation of cor-

relation dimension and the existence of positive Lyapunov exponent, 

alone do not provide sufficient evidence of the presence of deterministic 

chaos in the observed time series (Govindan et al., 1998; Mitschke and 

Dämmig, 1993). The method of surrogate data analysis was developed for 

the first time by Theiler et al., 1992, to detect the presence of nonlinear-

ity in time series. Since one of the necessary hypothesis for chaotic dy-

namics is nonlinearity, the technique has been widely applied to rule out 

the null hypothesis of linear stochastic process in an observed time series 

(e.g. Theiler et al., 1992; Fell et al., 1996). The surrogate time series 

method  test a specified null hypothesis about the underlying  dynamics 

of a given time-series. In order to accomplish this task, a group of surro-

gate time series are constructed from the original in such a way that the 

surrogates have all statistical properties included in the null hypothesis 

in common with the original, but are otherwise random (Kunhimangalam 

et al., 2008). As reported in Govindan et al., (1998), errors associated 

with the acquisition of data like bad choice of the sampling frequency, 

noise and digitization can lead to uncertainties in the estimation of corre-

lation dimension. Moreover, correlation dimension estimated from uncor-

related random data converges at a value (-2logN)/logε, where N is the 

number of points and ε is the length scale at which the slope of the corre-

lation integral is calculated (Eckmann and Ruelle, 1992). In an experi-

mental time series of limited length and finite precision, it may be im-

possible to distinguish nonlinear dynamics from linear dynamics involv-

ing stochastic component. For this reason, the only convergence of the 

correlation dimension is insufficient to confidently take the system be-

haviour as chaotic. In section 2.3.1 the Lyapunov exponent, λmax, was de-
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fined as the exponential rate of divergence of two neighboring  trajecto-

ries in the phase space. However, the existence of positive Lyapunov ex-

ponent is also true for stochastic dynamical systems  ande the estimation 

of the largest Lyapunov exponent can be problematic in presence of noise. 

Therefore, similarly to the correlation dimension, the λmax  cannot be 

used to brand a time series as chaotic since both the chaotic and stochas-

tic system have a positive λmax  (Mitschke and Dämmig, 1993). The sur-

rogate analysis, together with correlation dimension and positive 

Lyapunov exponent can provide more consistent hypotheses about the 

chaotic behaviour of the underlying time series process.  It is important 

to highlight the fact that if there is nonlinearity in the data., chaos has 

not been proven, but only a necessary condition has been established. 

There are two main types of null hypothesis: simple and composite. The 

former asserts that the data are generated by a specific and known linear 

process, the latter asserts that the unknown underlying process is a 

member of a certain family process (Schreiber and Schmitz, 2000; 

Mandic et al., 2008). In order to improve the simple null hypothesis, one 

possible composite null hypothesis would be that the observed time series 

is generated by a linear stochastic process driven by Gaussian white 

noise constrained to produce a time series with an autocorrelation func-

tion identical to the original time series. Owing to the Wiener-Khintchin 

theorem, this constrain is equivalent to say that the original and surro-

gate time series have identical power spectrum. Let Q a discriminating 

statistic (for instance correlation dimension, Lyapunov exponents, en-

tropy etc..), the null hypothesis is rejected if the observed value of  Q for 

the data is very unlikely when the null hypothesis is true (Hou and Li, 

2010). If many realizations of the experimental data are available the 

distribution of Q for the observed and surrogated data can be compared 

directly using conventional statistical test (t-test, Mann-Whitney U-test, 
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etc.). If the available knowledge regards only an experimental time se-

ries, surrogate data can be generated from the observed time series and 

the z-score Z estimated as (Stam et al., 1998; Govindan et al., 1998):  

s

sd QQ
Z




                                         (2.58) 

where Qd is the value of Q for the experimental  data, Qs  is the value of Q 

for the surrogate time series, ܳۃ௦ۄ  is the expected value of Qs and σs is the 

standard deviation of  Qs. The value of Z provides a measure of many 

standard deviation sigmas of Q for the experimental data deviates from 

the expectation value of the surrogates data. Assuming the normal dis-

tribution of metric Q, the null hypothesis can be rejected for two-sided 

testing at a significance level of p < 0.05 when Z > 1.96 (Hou and Li, 

2010). This method is general and many discriminating statistic deemed 

appropriate. 

Various approaches have been proposed in literature for generating  sur-

rogate time series (e.g. Schreiber and Schmitz, 2000). Since the null hy-

pothesis of linear Gaussian process implies that time series information 

are contained in its autocorrelation function and power spectrum, a suit-

able method for surrogate construction is the random phase surrogate 

approach. This kind of surrogate time series preserves the signal distri-

bution and amplitude spectrum of the original one.  

The random phase surrogate approach can be summarized as follow: 

 Let z(n) n=1,..,N a general complex time series: 

)()()( niynsnz                                                                 (2.59) 

where, for real data, y(n) = 0, n=1,..,N;  
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 Compute the DFT of the series z(n): 
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 Compute random phase set: 

  2/,...,3,2,0 Nmm    

 Phase randomization of the Fourier transformed data: 
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 Surrogate construction by Inverse Fourier Transform of ܼሺ݉ሻԢ: 
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An example of random phase surrogate time series is shown in plot figure 

14a, where nonlinear nature of Lorenz time series is investigated. Lorenz 

signal is produced with a sample rate of 10Hz by:   
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        a=10; b=28; c=8/3             (2.63) 
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Figure 14: (a) Lorenz time series ( top plot ) and random phase surrogate ( bottom 
plot. ). (b) Power spectrum of Lorenz time series ( top plot ) and its random phase 
surrogate ( bottom plot ). 

a 

b 
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As aforementioned, the random phase approaches maintains the infor-

mation related to the original time series as shown in the power spec-

trum reported in figure 14b. 

2.3.3  Hypothesis testing  

In order to detect the nonlinear nature of the investigated time series, a 

null hypothesis is that the original time series is generated by a Gaus-

sian linear stochastic process (Kantz and Schreiber, 1997); it is rejected if 

the associate test statistic is not conform with the null hypothesis. Since 

the analytical form of the probability distribution of the metrics (nonli-

nearity measure) is not known, a nonparametric rank-based test may be 

used (Theiler & Prichard, 1996). From the original time series, Ns = 99 

surrogate are generated; a statistic test for the original time series to and 

for the surrogates ts,i ( i=1…Ns ) is computed. The series {to ts,i} is sorted 

and the rank, defined as the position index r of to, is determined. A right-

tiled (left-tiled) test rejects the null hypothesis if rank r of the original 

time series exceeds 90, and two-tiled test is rejected if rank r is greater 

than 95 or less than or equal to 5. For the analyses, it is convenient to 

define the symmetrical rank rsymm for the right-tiled tests as:  

 
1
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rsym                                          (2.64) 

for the left-tailed tests as: 

 
1

2





Ns

rNs
rsym                                      (2.65) 

 



66 
 

finally, for the two-tiled tests:   
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Any of the described tests ( left, right or two-tiled ) are rejected if  

rsymm> 90% (Guatama et al., 2003; Mandic et al., 2008). 

2.3.4  Nonlinearity metrics  

As explained in section 2.3.1, nonlinearity analysis methods are based on 

the time-delay embedding representation of a time series in a phase 

space by a set of delay vector ௜ܺ ൌ ,௜ݔൣ ,௜ା௝ݔ … ,  ௜ାሺ௠ିଵሻ௝൧ , where j  analysisݔ

can be performed by computing a statistic for a certain number of surro-

gates. In order to accomplish this task a nonlinearity measure is required 

in combination to surrogate data approach. 

Traditional nonlinearity metrics used for nonlinearity measurement are 

the third-order autocovariance (C3) and the asymmetry due to time re-

versal (REV) (Schreiber and Schmitz, 1997). The former is a high-order 

extension of the traditional autocovariance and can be expressed as: 

  23 )(  kkkC xxx                                   (2.67) 

where τ is a time lag. A time series is said to be reversible if its probabili-

ty properties are invariant with respect to time reversal (Guatama et al., 

2003; Mandic et al., 2008).  
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Time reversal is preserved by a static transform and can be expressed as: 

 3)(   kkrev xx                                   (2.68) 

For a time series generated by a linear process,  the expected value of βrev 

≈ 0. In contrast, time series generated by a nonlinear dynamics is asym-

metrical in time and may yield values of βrev > 0 or βrev < 0 (Hou and Lin, 

2010). It has been shown in Schreiber and Schmitz, 1997, that in combi-

nation with the surrogate data approach, C3 and REV measures yield 

two-tiled tests for nonlinearity.  

2.3.5  The δ-ε method 

The δ-ε was used for model-free examination of the degree of predictabili-

ty of a time series (Kaplan, 1994; Kaplan, 1997). Let time delay vectors 

Xi and Xj, the δi,j Euclidean distance is computed. Then, distance be-

tween the corresponding targets xi and xj is computed and denoted as εi,j. 

Let ε(r) averaged ε-values conditional to r≤ δj,k≤r+Δr, where Δr is the 

width of the ‘bind’ used for averaging εj,k. Then, the smallest value for ε(r) 

denoted as lim௥՜଴  ሻ is a measure of predictability of the time series. Aݎሺߝ

Heuristic way for determining E value is the Y-intercept of the linear re-

gression of Nδ(δ,ε)-pairs with smallest δ (Mandic et al., 2008).  
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2.3.6  Deterministic versus stochastic plots 

Deterministic versus stochastic plots (DVS) method was introduced by 

Casdagli, 1991, and is based on the averaged prediction error E(n) for lo-

cal linear models of a given embedding dimension m as a function of the 

number of data points within the local linear model. The degree of locali-

ty is  controlled by the number of nearest delay vectors (DVs) of the given 

embedding dimension. A complete set of DVs is then divided into a test 

set Vtest and training set Vtrain. For every DV Xk in the test set, a subset 

Ωk is generated by grouping the DV in the training set nearest to Xk. The 

prediction error E(n) can be computed as: 

 
VtestkX

kk xxnE


 ˆ)(                                   (2.69) 

where ݔො௞ is the output of local linear model whose parameters are com-

puted using the set Ωk and Xk as input (Guatama et al., 2004). The pre-

diction error computed as a function of the degree of locality, defined as 

the number n of DVs in the set Ωk, provides information about the nonli-

nearity nature of the time series. The DVS plots represent E as a func-

tion of the number of false neighbours n. The position of the minimum in 

the DVS plot is used as an indicator of the nature of the investigated 

time series. The left-hand side is referred as ‘local linear extreme’ and a 

minimum near to it indicates a deterministic nature. The right-hand side 

is referred as ‘global linear extreme’ and a  minimum of E indicates a li-

near and stochastic nature.  Minima occurring between two extremes are 

an indication of nonlinearity (Casdagli, 1991; Guatama et al., 2004; 

Mandic et al., 2008). 
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2.3.7  Delay vector variance method 

Delay vector variance method (DVV) is an approach related to the δ-ε 

method, DVS (Casdagli, 1991) and false nearest neighbors (Kennel et al., 

1992). For a given embedding dimension m, DVV approach can be sum-

marized as follows (Gutama et al., 2003; Guatama et al., 2004; Mandic et 

al., 2008; Hou and Li, 2010): 

- Construct the delay vectors Xk and compute the mean μd and 

standard deviation σd for all pairwise Euclidean distances be-

tween the DVs: ฮ ௜ܺ െ ௝ܺฮ௜ஷ௝ ; 

- The set Ωk (k=1,..,N) are generated considering all DVs that lie 

closer to Xk than a threshold distance rd, where       Ω௞ሺݎௗሻ ൌ

ሼ ௜ܺԡܺ௞ െ ௜ܺԡ ൑  ௗሽ. The distance rd is taken from the intervalݎ

[max{0,μd-ηdσd}; μd+ηdσd] uniformly spaced where ηd is a para-

meter controlling the span over which to perform the DVV anal-

ysis; 

- For every set Ωk the variance of the corresponding target ߪ௞
ଶሺݎௗሻ 

is computed. The target variance כߪଶሺݎௗሻ is computed by averag-

ing over all set Ωk the variance ߪ௞
ଶሺݎௗሻ and normalizing by the 

variance of the time series ߪ௫ଶ: 
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The variance measurement is considered valid if the set Ωk(rd) contains 

at least No=30 DVs. When the time series exhibit some kinds of structure 

and the embedding dimension and time lag are correctly determined, 

similar delay vectors (in term of Euclidean distance) have similar targets 
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(Kaplan, 1994). In this case, the target variance conveys information re-

garding the predictability of the time series. The DVV-plots are obtained 

by plotting the target variance כߪଶሺݎௗሻ as a function of the standardized 

distance (in statistical sense) defined as (rd- μd)/ σd.  The minimal target 

variance ߪ௠௜௡
ଶכ ൌ ݉݅݊௥೏ሺߪ

 ௗሻሻ is a measure of the amount of noise, thatݎଶሺכ

represents the stochastic component in the analyzed time series. To illu-

strate the DVV approach, the nonlinear nature of Lorenz time series is 

investigated. In particular, the DVV analysis is performed on both the 

original and a 99 surrogate time series. In figure 15 the target variance 

versus standardized distanced is shown for both original time series and 

the mean of target variance of the surrogate. The difference between tar-

get variance of the original and surrogate, suggests the nonlinear nature 

of the investigated time series. 

 

Figure 15: Plots of the target variance as a function of standardized distance. 

A more reliable plot can be obtained by using a DVV scatter diagram 

plotting the target variance of the original time series against the mean 
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of the target variances of the surrogate data. If the DVV plots of the sur-

rogate and original time series are similar to each other, then the DVV 

scatter diagram coincides with the bisector line. In this case, the original 

time series is judged to be linear. Conversely, when the DVV scatter dia-

gram shows a deviation from the bisector line, the original time series 

can be judged nonlinear. In figure 16 the DVV scatter diagram for Lorenz 

time series is shown; the deviation from the bisector line is an indication 

of the nonlinear nature of the observed time series.  

 

Figure 16: DVV scatter diagram obtained by plotting the target variance of the 
original Lorenz time series against the mean of the target variance of the surro-
gate data. 

The degree of nonlinearity can be quantified by measuring the deviation 

of the DVV scatter diagram from the bisector line. This task is very use-

ful for statistical testing and can be performed by computing the root 
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mean square error (RMSE) between the target variance כߪଶ of the origi-

nal time series and the averaged target variance of the surrogate time 

series (Mandic et al., 2008):   
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Since the DVV plot represents a test statistic, a traditional right-tailed 

surrogate testing can be performed. In order to improve the performance 

of the DVV method, the nonlinear nature of Lorenz time series (figure 

14a) is tested using traditional nonlinear metric as C3 and REV (see sec-

tion 2.4) and 99 surrogate time series.  

For DVV method, a right-tailed test is rejected if rank r exceeds 90 while, 

for C3 and REV, a two-tailed test is rejected if the rank r is less than or 

equal to 5 or greater than 95.  As explained in section 2.3.3, by using the 

quantity rsymm the described tests (right or two-tailed) are rejected if 

rsymm>90% (i.e. significant rejection of the null hypothesis at level α = 

0.10). The comparison results of the three aforementioned methods 

(DVV, C3 and REV)  are shown in table 1. In particular, for the consi-

dered simulation, REV method does not detect the nonlinear nature of 

the Lorenz time series.  Other two simulations are computed on AR mod-

el (table 2) and Henon time series (table 3). According to test statistic, 

DVV approach yields more consistent results with respect to the other 

two methods.  
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Table 1: result of the rank test for the Lorenz time series 

C3 REV DVV 

1 32 100 

nonlinear linear nonlinear 

 

Table 2: result of the rank test for the AR time series 

C3 REV DVV 

2 64 38 

nonlinear linear linear 

 

Table 3: result of the rank test for the Henon time series 

C3 REV DVV 

100 1 100 

nonlinear nonlinear nonlinear 

 

Other simulations about the robustness of DVV method can be found in 

literature (e.g. Guatama et al., 2003;  Guatama et al., 2004; Mandic et 

al., 2008; Hou and Li, 2010).  
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Chapter 3 

 

Pattern recognition analysis methods  

Automatic extraction, recognition, description and classification of pat-

terns extracted from images and signals are the most important tasks in 

several scientific disciplines. In the last years pattern recognition tech-

niques together with time series analysis constitute a novel research field 

in active volcano modelling and can provide useful information for moni-

toring purposes. There are many definitions of pattern recognition (here-

after referred to as PR). Fukunaga (1990) defined PR as the problem of 

estimating density functions in a high-dimensional space and dividing 

the space into regions of categories of classes. Duda and Hart (1973) de-

fined PR as a field concerning machine recognition of meaningful regu-

larities in noisy or complex environments. Gonzalez and Thomas (1978) 

defined PR as the process of classifying input data via extraction of sig-

nificant features from a set of noise data. Other definitions of the term 

pattern are given by several authors. Pavlidis (1977) refers the word pat-

tern to the root of word patron that is used to indicate something which 

is set up as a perfect example to be imitated. The main aspect of PR is 

the definition of a set of peculiar features or descriptive elements of the 

analyzed objects. Given a pattern, the recognition process consists of one 

of the following tasks: i) supervised classification in which the patterns 

are classified on the basis of a known learning rule; ii) clustering that is 

the process of grouping sets of objects into classes called clusters with no 
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a priori knowledge. In the first case the classifier design can be imple-

mented by several techniques, implying the definition of a metric based 

on template matching or the minimum distance between pattern and 

class prototype. There are different methods for metric definition, such as 

vector quantization and learning vector quantization (Oehler and Gray, 

1995; Xie et al., 1993). For instance, in statistical pattern recognition 

classification process is based on probabilistic approaches: the pattern-

class association is computed on the basis of a probability density func-

tion. The optimal Bayes decision rules assign a pattern to a class with 

the maximum posterior probability (Jain et al., 2000). Other classifica-

tion techniques are based on geometric approaches. These kinds of classi-

fiers are based on a training procedure that minimizes an error (such as 

the mean square error, MSE) computed comparing classification output 

and target value. Typical examples are Fisher’s linear discriminant 

(LDA) and single layer perceptron (SLP). The former minimizes the MSE 

between the classifier output and the desired label, the latter iteratively 

updates the decision surface in the form of hyperplane between classes. 

Fisher's discriminant can be extended in non-linear classification where 

original observations are mapped into a higher dimensional non-linear 

space. Applying linear classification on this higher dimensional space is 

equivalent to non-linear classification in the original space. The most 

commonly used technique is the kernel Fisher discriminant (Mika et al., 

1999). The nonlinear extension of SLP is the Multi Layer Perceptron 

(MPL) that allows nonlinear decision boundaries and overcomes many of 

the limitations of single layer perceptron. A powerful method in classifier 

design is the Support Vector Machine (SVM) introduced by Vapnik 

(1998). This algorithm is different from other hyperplane-based classifi-

ers such as SLP. The problem of estimating hyperplane separating two 

classes is not unique. The SVM algorithm is able to find the optimal hy-
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perplane that separates the classes. Beyond supervised classification,  

the other important task in PR is the clustering problem, that, as afore-

mentioned, is the process of grouping data without any a priori informa-

tion.  

3.1  Clustering:  an overview  

Objects belonging to the same cluster will be more similar than objects 

belonging to different clusters with respect to some given similarity 

measures. An object could be referred to a physical object or, in general, 

to a physical recording, such as a waveform, on which a set of quantita-

tive descriptive elements can be identified. A pattern is a set of features 

describing an object and generally is represented as a vector. In the light 

of it, a set of patterns is represented by a pattern matrix. The problem of 

clustering arises in many different scientific fields, and, thus, a vast 

amount of literature has been produced on the subject. The clustering 

methods exist can be broadly divided into hierarchical and partitioning 

(Berkhin, 2002). Hierarchical algorithms gradually (dis)assemble objects 

into clusters. On the other hand, partitioning algorithms learn clusters 

directly trying to discover clusters either by iteratively relocating points 

between subsets or by identifying areas heavily populated with data. 

This second type of partitioning algorithms attempts to discover dense 

connected components of data. Examples of algorithms belonging to such 

a category are: DBSCAN, OPTICS, DENCLUE (Berkhin, 2002).  
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Figure 1: Clustering stages. 

In figure 1 a general clustering task is shown (Jain and Dubes,, 1988). It 

can be synthesized as follow:  

- pattern representation; 

- definition of pattern proximity measure appropriate to the data 

domain; 

- clustering algorithm; 

- data abstraction (if needed); 

- assessment of clustering result. 

As reported in Jain et al., 1999, the pattern representation refers to the 

number of classes, number of available patterns, and number, type and 

scale of the features available for the clustering algorithm. While the fea-

ture selections task identifies the most effective features for discriminat-

ing available patterns, the features extraction can be defined as the 

process transforming the available features into new features with the 

purpose to better describe characteristics usable in the clustering 

process. For instance, considering a simply decaying waveform, the de-

scriptive characteristics may be the frequency peak, a measure of decay 

and the amplitude. Pattern proximity is usually evaluated by a distance 

function defined on pairs of patterns. Given a set of n patterns with d 

features the pattern set can be expressed in matrix form using an n ൈ d 

matrix. The jth feature of the generic ith pattern is xij. Using this nota-

tion, the ith pattern is described by the column vector ݔ௜ ൌ ሾݔ௜ଵݔ௜ଶ …  .௜ௗሿ்ݔ
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The clustering process requires proximity indices between all pairs of 

patterns (Dubes, 1993). A possible distance index is the Minkowski me-

tric defined as: 
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where q and r are pattern matrix indices. For m=2 the Minkowski metric 

produces the Euclidean distance between two patterns, while for m=1 re-

sults in the Manhattan distance (e.g. Aldridge, 2006; Jain et al., 1999). In 

particular, the Euclidean distance is commonly used to evaluate prox-

imity of objects in two or three-dimensional space and it is a good choice 

when the data set has compact or isolated clusters (Mao and Jain, 1996).  

To avoid features of large degree dominate the others, normalization 

process of the feature is required. A simple normalization can be per-

formed by a mapping process of  the original feature space into the range 

[0,1] by dividing the distance for each feature by the feature’s range. The 

features distance measures can be distorted by the presence of a linear 

correlation. To overcome this problem a whitening process of the data can 

be applied or the squared Mahalanobis distance can be used: 

      TrqrqrqM XXXXXXd  1                         3.2) 

where the patterns Xq and Xr are row vectors, ∑ is the covariance matrix. 

This distance definition assigns different weights to different features 

based on their variances and pairwise linear correlation (Jain, 1999). It is 

noteworthy that distances computation between pairs of patterns exhibit-

ing some or all noncontinuous features, may be problematic. In order to 

overcome this problem, a proximity measure for heterogeneous types of 
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pattern should be used. For instance, Wilson and Martinez (1997) have 

proposed a combination of a modified Minkowski metric for continuous 

features and a distance based measure for nominal attributes. A variety 

of other metrics can be found in Diday and Simon (1976) and Ichino and 

Yaguchi (1994). Another way of representing patterns is by using string 

or tree structures (Knuth, 1973). In particular, patterns string represen-

tation is commonly used in syntactic clustering (e.g. Fu and Lu 1977). 

Several measures of similarity between strings can be found in Baeza-

Yates  (1995), while similarity measures between trees are reported in 

Zhang (1995). Once the indices of dissimilarity or similarity have been 

computed, the outliers can be identified based on high distances from 

other patterns. Depending on the data domain and the intended goal of 

the clustering process, such outliers may be removed prior to applying a 

clustering algorithm. However, outliers sometimes provide useful infor-

mation that would otherwise be lost if removed prematurely (Aldridge, 

2006).  
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3.1.1  Hierarchical versus patitional algorithms  

Hierarchical clustering builds a cluster hierarchy or a tree of clusters, 

also known as a dendrogram. Each node in the dendrogram represents a 

cluster. The root of the dendrogram is a cluster that includes all objects, 

while each child contains a sub-cluster of its parent node. Hierarchical 

clustering methods are categorized into agglomerative (bottom-up) and 

divisive (top-down) (Jain and Dubes, 1988; Kaufman and Rousseeuw, 

1990). The agglomerative clustering process starts with one-point clus-

ters, called singleton, and recursively merge two or more of the most sim-

ilar clusters. A divisive hierarchical clustering, by beginning with the 

root node, starts with a single cluster containing all data points and re-

cursively splits the most appropriate clusters. The process continues un-

til a stopping criterion (for example the requested number k of clusters) 

is achieved. The height of each node is proportional to the measure of si-

milarity or dissimilarity between its sub-clusters. Typically, the leaf 

nodes in the dendrogram represent individual patterns. The hierarchical 

clustering approach allows data exploration on different levels of granu-

larity (figure 2).   

 
Figure 2: a) A possible set of clusters for six patterns. B) Dendrogram correspond-
ing to the clusters of a). 
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The creation of a hierarchical clustering may involve excessive time and 

space constraints, because the algorithm used must make an iteration for 

each level in the hierarchy (Dunham, 2003).  

Another clustering approach is the partitional clustering algorithm pro-

ducing a single partition of the patterns. This kind of clustering process 

requires less time and space than hierarchical clustering. However, par-

titional methods require the user to choose a specific number k of clus-

ters, in general known a priori, to be created. Additionally, while a parti-

tional method produces only one final set of clusters, the algorithm may 

create the final set iteratively, in the form of iterative optimization, be-

ginning each time with a different starting configuration and choosing 

the best result from all the runs (e.g. Jain et al., 1999). Unlike traditional 

hierarchical methods, in which clusters are not revisited after being con-

structed, relocation algorithms can gradually improve clusters. With ap-

propriate data, this results in high quality data (Berkhin, 2002). Another 

kind of partitioning algorithm is the Density-Based Partitioning. As the 

name suggests these clustering approaches rely on a density-based no-

tion of clustering and are capable of discerning clusters of arbitrary 

shape in spatial database with noise. One of the best known density 

based clustering approach is the Density-Based Spatial Clustering of Ap-

plications with Noise (DBSCAN).  
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3.1.2  Cluster assessment  

Process of cluster assessment is multi-faceted. Indeed, this process can 

be involved in the assessment of data domain itself or as a validation of 

clustering results. The former should be verified if the data set contains a 

reasonable number of clusters prior to performing cluster analysis. In 

this process the assessment procedure should be used to estimate if the 

data set has a low cluster tendency, meaning there is or no a benefit in 

attempting to perform clustering. In  this case, data which do not contain 

clusters should not be processed by a clustering algorithm. (e.g. Jain et 

al., 1999;  Aldridge, 2006).  

Assessment process as validation task is the goodness estimation of the 

clustering algorithm results. Let Km as cluster of N points {tm1,tm2,...,tmN}, 

three typical measurements are proposed in Dunham  (2003) and are 

centroid, radius and diameter respectively. The centroid can be viewed as 

the middle of the cluster and may not coincide with a point of cluster it-

self. It can be expressed as:  
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Alternatively, a medoid can be defined as the centrally located point of 

the cluster. The radius represents the averaged mean squared distance 

from any point to the cluster’s centroid. It is defined as : 
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The diameter is defined as the square root of the averaged mean squared 

distance between all pairs of points in the cluster. The diameter of a clus-

ter m is then defined as: 
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Common clustering evaluation involves the clusters distance by utilizing 

the centroid of cluster. In Dubes (1993) three types of validation studies 

are reported. In particular, an external assessment of validity compares 

the recovered structure to an a priori structure and attempts to quantify 

match between the two. An internal examination of validity tries to de-

termine if the clustering structure is intrinsically appropriate for the da-

ta. This assessment considers whether a given cluster is unusually com-

pact or isolated compared to other clusters of the same size in random 

data (Aldridge, 2006). A relative test compares two structures and meas-

ures their relative merit (Jain et al., 1999). Indices used for this compari-

son are discussed in detail in Jain and Dubes (1988) and Dubes (1993). 

An internal cluster validation measure is the Davies-Bouldin (DB) index 

(Davies and Bouldin, 1979). Such an index is function of the number of 

clusters, the inter-cluster and within-cluster distances.  Formally it is 

defined as follows: 
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where Sn is the average distance of all cluster objects to their cluster cen-

ters, S(Qi, Qj) is the distance between clusters centers. Small values of 

DB correspond to compact clusters whose centres are far away from each 
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other. In the light of it, the number of clusters that minimizes DB is 

taken as the optimal number of clusters.  

3.1.3  Squared error clustering and k-means algorithm 

Partitional clustering algorithms perform a subdivision of data set  into 

clusters based on some distance metrics. The most common used crite-

rion function is the squared error criterion, which tends to work well 

with isolated and compact clusters. This kind of methods is iterative and 

the clustering process terminates when a stopping criterion is met. For 

example, a common stopping criterion is met when squared error be-

tween successive iterations ceases to decrease significantly. Let a cluster 

C of size k and a pattern set X, the squared error is defined as: 
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where j represents the cluster number, nj denotes the number of ele-

ments, ݔ௜
ሺ௝ሻ  represents the ith pattern of cluster j and cj is the centroid of 

jth cluster (Jain et al., 1999).  General squared error clustering can be 

summarized as follows: 1) Set an initial partition of the data into k clus-

ters and calculate initial k cluster centers. 2) Assign each pattern to its 

closest cluster center and compute the new cluster centers based on the 

new cluster assignments; compute the squared error; repeat this step un-

til a stopping criterion is not met  (i.e., until the cluster membership is 

stable). 3) Merge and split clusters based on some heuristic information, 

optionally repeating step 2. The most common square error clustering 

method is the k-means clustering algorithm (McQueen, 1967). It differs 

from the general squared error clustering method only in the initializa-
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tion phase where k cluster means are chosen and patterns are assigned 

to its closest mean. In this case the cluster mean is defined as: 
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The k-means algorithm  is easy to implement, and its time complexity is 

O(n), where n is the total number of patterns. This algorithm converges 

to a locally but not globally optimal solution and depends on the choice of 

the initial cluster means. K-means algorithm can be summarized as fol-

lows (Jain et al., 1999): 1) Choose k cluster centers to coincide with k 

randomly-chosen patterns or k randomly defined points inside the hyper-

volume containing the data set. 2) Assign each pattern to the closest 

cluster center. 3) Recompute the cluster centers using the current cluster 

memberships. 4) If a convergence criterion is not met, repeat step 2. Typ-

ical convergence criteria are: no (or minimal) reassignment of patterns to 

new cluster centers, or minimal decrease in squared error. Since k-means  

algorithm is based on the concept of centroid, it is sensitive to noise and 

outlayer and a data filtering procedure is required. One solution is the 

use of feature weighting and a distortion measure to produce a partition 

that will minimize average within-cluster variance while simultaneously 

maximize the average between cluster distances (Modha and Spangler, 

2002). Several variants (Anderberg, 1973) of the k-means algorithm have 

been reported in the literature.  

For instance, another distance measure may be (Wu et al., 2004): 

  2||||1, yxeyxd  
                              (3.9) 
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β is a positive constant. The measure provided by equation (3.9) is robust 

to data outlayer and noise. Other methods are based on the idea of 

downweight data outlayer respect to its cluster centroid (Wu and Yang, 

2002).  As aforementioned, k-means algorithm assumes that the number 

k of clusters is known a priori. In practical applications the optimal value 

of k is, in general, not known. To overcome this limitation, many k-means 

clustering algorithms are executed with many values of k. The best k 

value is then determined on the basis of some cluster assessment crite-

rions (section 3.2.). A possible approach may be the use of validity algo-

rithms such as Davies-Bouldin (DB) index. As explained in section 3.2., 

the number of clusters that minimizes DB is taken as the optimal num-

ber. An example of 3-class k-means together with DB index is shown in 

figure 3. In particular, figure 3a shows the best 3-clustering structure of 

the data set, while figure 3b shows the value of DB index for increasing 

value of k. The best cluster number is chosen on the basis of minimum 

value of DB index. As aforementioned, k-means algorithm is very sensi-

tive to the choice of the initial partition leading to a locally optimal solu-

tion instead of a globally optimum. To alleviate this problem, different 

initialization strategy have been proposed.  One of the common initializa-

tion method is the Random Approach (RA) where the initial partitioning 

is computed in random way. Other methods that apply different strategy 

can be found in Pena et al., (1999) and Likas et al. (2003).  
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Figure 3: a) A features plane with three clusters; b) best clustering structure 
computed on the features plane using Davies-Bouldin index. 
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3.1.4  Clustering algorithm based on DBSCAN    

DBSCAN (Density-Based Spatial Clustering of Applications with Noise; 

Ester et al., 1995) is a density-based clustering algorithm able to discover 

clusters of arbitrary shape in spatial databases with noise (figure 4). 

Clusters are defined as maximal sets of density-connected points. Usu-

ally DBSCAN runs on datasets drawn from multidimensional or metric 

spaces and uses a distance function to compare objects. Given a dataset 

D of objects DBSCAN makes use of the following structures and defini-

tions: i) ε-neighbourhood, ii) core point, iii) directly density-reachable, iv) 

density-reachable and v) density-connected. The ε-neighbourhood of a 

point p, denoted by Nε(p), is a subset of points q in D, such that a dis-

tance measure dist(p,q) (such as the Euclidean distance) is lower than ε. 

The point p is called core point or core object if its ε-neighbourhood has 

cardinality above a minimum threshold called MinPts. Each point q 

which lies in the ε-neighbourhood of a point p is called directly density-

reachable from p (figure 5a). A point q is density-reachable from a point p 

with respect to ε and MinPts if there is a chain of points q1,...,qn such that 

q1=p, qn=q and qi+1 is directly density-reachable from qi for each I (figure 

5b). A point q is density-connected to a point p with respect to ε and 

MinPts if there is  

 

Figure 4: Different clusters shape.  
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Figure 5: Examples of (a) directly density-reachable, (b) density-reachable, (c) 
density connected in density-based clustering. 

 
a point o such that both p and q are density reachable from o with respect 

to ε and MinPts (figure 5c). Given D, ε and MinPts as input parameters, 

DBSCAN clusters D by checking the ε-neighbourhood of each object in D. 

If the ε-neighbourhood of an object p contains more than MinPts, a new 

cluster with p as core object is created. DBSCAN iteratively collects di-

rectly density-reachable objects from these core objects. The process ter-

minates when no new objects can be added to any cluster. In such a case 

the algorithm will return the set of clusters and a special cluster contain-

ing outliers. 

3.1.5  Self Organizing Maps (SOM)  

Self-Organizing Map (SOM), also known as  Kohonen map (Kohonen, 

1989), is a popular neural network approach based on unsupervised 

learning, that represents a general paradigm for knowledge extraction 

from a large and heterogeneous amount of data. Self-organization refers 

to the ability of a biological or technical system to adapt its internal or-

ganization to structures sensed in the input of the system. In the context 

of knowledge discovery, in which the dimension, complexity or the 

amount of data has so far been prohibitively large for human observation 
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alone, SOMs represent a useful tool in data exploration and visualiza-

tion. The SOM consists basically of two layers of so called units or neu-

rons. The input layer consists of N elementary computational units or 

neurons corresponding to the real-valued input data vector X of dimen-

sion N. These units are connected to a second layer of neurons U. SOM 

maps high-dimensional input data       vectors א ࣬௡ onto two-dimensional 

grid of prototype vectors that are easier to visualize and explore than the 

original data. A reference weight vector, also called prototype vectors, 

݉௜ ൌ ሾ݉௜ଵ, ݉௜ଶ, … , ݉௜ேሿ א   ࣬௡ , are associated with each neuron in the map 

and N is the dimensionality of the input data.  By means of lateral con-

nections, the neurons in U form a lattice structure of dimensionality M 

which is typically much smaller than N (Utlsch, 2000). The fundamentals 

of SOM are the competition between nodes in the output layer.  

The basic algorithm is “ winner takes all” where not only one node (the 

winner) but also its neighbours are updated. When an input data vector 

is presented to the network, it responds with a unit in the output layer 

closest to the presented input. This unit is called best-matching unit. 

From a mathematical point of view, at each iteration, the distance among 

prototype vector and the input space X are calculated. The best matching 

unit b represents the neuron with prototype vector closest to X satisfying 

the equation:  

 i
i

b mXmX  min
              

              (3.10) 

The prototype vector of each neuron i is updated following the rule: 

          tmXthttmtm ibiii  1                      (3.11) 
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where t is the time, α(t) is the learning rate, hbi is a neighbour function 

between neuron i and best matching unit b. Both the learning rate and 

the neighbour function decrease monotonically over time. In particular, 

assuming hbi  to be Gaussian, it can be expressed as: 
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where rb and ri are the position of neuron i and b respectively, σ(t) is the 

standard deviation of the Gaussian. As a result of learning process, the 

presentation of all input vectors and the adaptation of weight vectors 

generate a mapping from input space onto the lattice output layer (figure 

6) with the property that topological relationships in input space are pre-

served (Ritter and Schulten, 1986; Kohonen, 1989).  

 

 
Figure 6: SOM lattice structure. 

  



93 
 

 
Figure 7: a) 3D feature space with three clusters; b) U-Matrix after learning. The 
blue regions are related to neuron that are near to each other underling the exis-

tence of clusters. 

 

As aforementioned, the aim of visualization is to present large amount of 

detailed information in order to give a qualitative idea of data properties 

(Vesanto, 2000). Typically the number of properties that need to be visu-

alized is much higher than the number of usable visual dimensions. The 

low-dimensional map obtained by SOM algorithm provides a 2D projec-

tion of the high dimensional data that can be visually inspected. A com-

mon way to visualize the presence of clusters after SOM learning process 

is the so called unified distance matrix (U-matrix). In order to calculate 

the U-Matrix the averaged distances between each neuron and its 

neighbours are computed. This method provides a colour matrix repre-

senting distances between neighbouring map units, and thus shows the 

cluster structure of the map: high values of U-matrix indicate a cluster 

border while uniform areas of low values indicate clusters themselves 

(Ultsch, 1993). A simple example of clustering data in 3D space is re-

ported in figure 7. More in detail, figure 7a shows the 3D data structure 

while figure 7b shows the SOM U-Matrix after training process. The ex-

istence of three clusters is clearly visible in the U-Matrix by the blue re-

a b 



94 
 

gions. While the use of U-matrix leads to a visual inspection of the clus-

ters, automatic clustering of SOM grid can be used to quantify the num-

ber of discovered clusters (Vesanto and Alhoniemi, 2000). By studying 

the final U-Matrix map, and the underlying features planes of the map, a 

number of cluster can be identified by k-means algorithm (see section 

3.3.) (McQueen, 1967; Dubes and Jain, 1976). Figure 8a shows the Da-

vies-Bouldin index applied on the prototype vector obtained by the SOM 

trained on the 3D dataset shown in figure 7a. As expected, the best clus-

tering corresponds to a number of three clusters. The best clustering is 

then projected onto the SOM obtaining the new component plane shown 

in figure 8b. Two-level clustering process is summarized in figure 9.  

 

 

Figure 8: a) Davies-Bouldin index; b) Best clustering structure of SOM.  

  

a b 
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Figure 9: Two level clustering approach. 

 

 

3.2  Classification task 

Classification process can be defined as the task in which objects are 

classified on the basis of inference rules acting on a set of knowledge pat-

terns (Joswig, 1990). The main difference between clustering and classi-

fication process is the unsupervised nature of the clustering. While the 

clustering process attempts to derive meaningful classes directly from 

the data, the traditional classification methods involve a special input 

training set of classes in which known objects are placed. The choice of 

classification algorithm is strictly related to the data structure and is 

guided by the prediction performance obtained by the chosen model. In 

particular, in the following section, the support vector machines (SVM), 

that are a new generation of algorithms used for regression and classifi-

cation task, will be treated (Vapnik, 1995; Vapnik, 1998). SVM mini-

mizes simultaneously the empirical classification error and maximizes 

the inter-class geometric margin leading to a unique solution (Burges, 
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1998; Cristianini and Shave-Taylor, 2000). One of the major features of 

this kind of algorithm is that it can work in a kernel-induced feature 

space allowing nonlinear modelling (Devos et a., 2009). It has been re-

ported that the obtained classification models are robust and less subject 

to the curse of dimensionality and over-fitting (Belousov et al., 2002). 

Also, a good generalization performance can be obtained with a relatively 

small data set (Vapnik, 1995).  

3.2.1  Support Vector Machine 

Support Vector Machines (SVMs) are a popular machine learning method 

for solving problems in classification and regression, able to guarantee 

high classification quality (Burges, 1998). In recent years, novel applica-

tions of SVM have been performed in several research areas such as biol-

ogy (e.g. Noble, 2004) and volcano seismology (e.g. Masotti et al., 2008; 

Langer et al., 2009). The SVM algorithm can be summarized as follows. 

It first uses a non-linear mapping to transform the original dataset into a 

higher dimension space. Next, it identifies a hyperplane able to maximize 

the margin of separation among the classes of the training set. Such a 

hyperplane is called Maximum Marginal Hyperplane (MMH). The mar-

gin in SVMs denotes the distance from the boundary to the closest data 

in the feature space (figure 10). With appropriate mapping, data from 

two classes can always be separated by a hyperplane.  
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Figure 10: Two-features planes each of which with two classes of data (black 
squares and grey circles) and a separating line (dashed lines): the left one shows a 
small margin between clusters, the right one a larger margin (redrawn from Kec-
man, 2001). 

The problem of computing the MMH can be formulated in terms of qua-

dratic programming in the following way (Hwanjo et al., 2003): 

minimize:  
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The number of training data is denoted by l, α is a vector of l variables, 

where each component αi corresponds to a training data (xi, yi). C is the 

soft margin parameter controlling the influence of the outliers (or noise) 

in training data. The kernel for linear boundary function is xi · yi, a sca-

lar product of two data points. The nonlinear transformation of the fea-

ture space is performed by replacing k(xi, yi)  
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Figure 11: Two classes of data in the original 2D space (left) and in a higher-
dimensional feature space (right). 

with an advanced kernel φ, such as polynomial kernel (xTxi + 1)p or a 

radial basis function  kernel  ݁݌ݔ ቀെ
ଵ

ଶఙమ ԡݔ െ -௜ԡଶቁ. The use of an adݔ

vanced kernel is an attractive computational short-cut which avoids the 

expensive creation of a complicated feature space. An advanced kernel is 

a function that operates on the input data but has the effect of computing 

the scalar product of their images in a usually much higher-dimensional 

feature space (or even an infinite-dimensional space), which allows work-

ing implicitly with hyperplanes in such highly complex spaces (figure 11). 

The extension of SVM to multiclass problems can be performed using two 

different methods called one-against-one and one-against-all. The former 

constructs k(k-1)/2 classifier where each one is trained on data from two 

classes. The latter constructs k SVM classifier. In this last case, the ith 

SVM is trained using all training patterns belonging to ith class with 

positive labels and the others with negative labels. A point is assigned to 

the class for which the distance from margin is maximal. Finally, the 

output of one-against-all  method is the class corresponding to SVM with 

highest output value (Weston and Watkins, 1999; Hsu and Lin, 2002).  
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3.3  Model selection 

Typically our model will have a set of tuning parameters α that  varies 

the complexity of our model, and we wish to find the set of α that mini-

mizes error, that is, produces the minimum of the average test error. As 

mentioned the choice of such parameters is a key step in model learning 

because their values determine classification performance. It is impor-

tant to note that there are two separate goals in a classification model-

ing: 1) model selection that is the task of  estimating the performance of 

different models in order to choose the best one; 2) model assessment: 

having chosen a final model, estimating its predic-tion error (generaliza-

tion error) on new data. As a consequence, model selection is applied with 

the aim of finding the best set of parameters that minimizes the error 

rate estimated as the ratio between misclassified and hit patterns. More 

in detail, in a data-rich situation, the best approach for both problems is 

to randomly divide the dataset into three parts: a training set, a valida-

tion set, and a test set (figure 12). The first set is used to fit the models; 

the second set is used to estimate prediction error for model selection; the 

third set is used for assessment of the generalization error of the final 

chosen model (Hastie et al., 2002). In practical application it is difficult to 

give a general rule on how to choose the number of observations in each 

of the three parts. In particular, it depends on the signal-to-noise ratio 

and the training sample size.  

 

Figure 12: Subdivision of data set: training, validation and test. 
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Figure 13: Basic scheme of K-Fold Cross-Validation. 

 
A typical split might be 50% for training, and 25% each for validation 

and testing. In order to overcome this limitation, model  parameters can 

be chosen using a cross-validation (CV) approach, which is a statistical 

method for learning algorithms evaluation and model selection. In par-

ticular, in K-fold CV the available dataset is partitioned into K subsets or 

“folds”: K-1 folds are used for classifier learning purpose, and the remain-

ing fold for model validation. Thus, K iteration of learning and validation 

are performed and for each ith iteration the training process is carried 

out using K-1 folds and the ith fold for validation (figure 13). The model 

selection procedure can be summarized as follows: 1) for each set of tun-

ing parameters a mean error rate is computed averaging the error rate 

values obtained by the K classifiers {C1,C2,..,Ck}; 2) the set of parameter α 

with the minimum error rate are selected;  3) such parameters set is used 

to train the final classifier with the whole dataset, comprising all the K 

folds. The model selection scheme is shown in figure 14. 
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Figure 14: Best model selection using K-Fold cross-validation. 
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Chapter 4 

 

Seismo-volcanic analysis methods 

In this chapter the basic techniques applied in seismo-volcanic analysis 

will be briefly reported. While methods of spectral estimation have been 

treated in chapter 2, method for multi sensors and multi component sig-

nals analysis will be explained here. In particular, the detection  of multi 

channel coherence, widely applied in biomedical signals, will be adapted 

here in order to provide a measure of signal coupling on active volcano 

environment. Moreover, a novel triggering procedure able to extract 

waveform transients from continuous signal recording will be introduced. 

This is  a very important task since it constitutes the first step in events 

analysis. Also algorithm for seismo-volcanic events and tremor source 

location will be described. Once that events are extracted, algorithm for  

waveform classification are used in order to discover similarity among 

analyzed waveforms. For this purpose a methods based on waveform 

cross-correlation  will be introduced. All the methods described in this 

section, together with methods described in chapters 2 and 3, provide the 

basic knowledge for the data analysis that will presented in the next 

chapters.  
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4.1  Spectral analysis  

Estimation of frequency content is one of the primary tools for signal in-

vestigation. As reported in chapter 1, most of the waveform classification 

are based on time-frequency characteristics. An example of basic distinc-

tive spectral features among the seismo-volcanic signals introduced in 

section 1.2 is shown in figure 1. The different power spectrum content, 

computed using a periodogram (see section 2.2), is the first tool for an 

preliminary analysis of the recorded events.  This approach is also ap-

plied on infrasonic  signals. As will be explained in chapters 5 and 6, the 

spectral content of these signals is very useful to classify them.  

 

Figure 1: Power spectrum of seismo-volcanic events: VT earthquake (VT);  shal-
low VT (VT sh);  hybrid event (Hyb),  long period event (LP) and an explosion 
quake (EXQ).  
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In the analysis that will be shown in the next chapters, parametric power 

spectrum estimation methods described in section 2.2.1 are widely ap-

plied. This choice is justified by the fact that the seismo-volcanic and 

infrasonic waveform can be approximate using an auto regressive (AR) 

model (Lesage, 2008). Another important technique applied on the 

aforementioned signals is the time-frequency analysis that allows the 

time localization of the frequencies. This approach can be applied on con-

tinuous volcanic tremor and seismo-volcanic events by using Short Time 

Fourier Transform (STFT) or Continuous Wavelet Transform (CWT), 

both reported in sections 2.1.1 and  2.1.2 In particular, these technique 

are applied for the long-term analysis of volcanic tremor, a kind of signal 

that lasts for long periods and exhibits strong temporal variations in am-

plitude and frequency content (see section 1.2). These parameters are 

very important because they are used for source modeling and eruption 

forecasting. Together with time-frequency representation of a signal, the 

Root Mean Square (RMS) time series, computed using a time moving 

window on the signal, provide the temporal variation of the tremor am-

plitude. This parameter is widely used in volcano eruption forecast since 

it provides information about how “energetic” is volcanic tremor. It is 

generally evaluated after filtering the observed signals in a frequency 

band of interest. In figure 2 a time-frequency representation of volcanic 

tremor together with its RMS series is shown. By simply having a look at 

the figure, evident tremor amplitude changes occurred at the end of April 

2008 (figure 2a)  with a strong variation at the same time as the lava 

fountain episode on 10 May 2008, and before the occurrence of the erup-

tion on 13 may 2008. It is noteworthy that also the STFT (figure 2b) 

changed  its features during the same time intervals.  
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Figure 2: (a) RMS of tremor signal recorded at Mt Etna from 15 April to 15 May 
2008.  

 

4.2  Events triggering  

In order to automatically trigger transients placed inside a signal several 

techniques were developed. Some methods are applied on the signal in 

time domain, others in frequency domain, and others are based on the 

wavefield features such as rectilinearity and planarity. One of the widely 

used method is STA/LTA (short time average/long time average) algo-

rithm that evaluates the ratio of short- to long-term energy density 

(squared data). The optimal window lengths depend on the frequency 

content of the investigated seismic signal. Withers, 1997, and Withers et 

al., 1998, showed that the lengths of short and long windows equal to 3 

and 27 times the centre period of the detected  frequency band can be 

considered a  reasonable  compromise  between  
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Figure 3: (a) Three-minute-long infrasound signal recorded, (b) corresponding 
RMS envelope (black line) calculated by using a moving window of 0.7 s and (c) 
STA/LTA values. The horizontal grey dashed line in (b) indicates the detection 
threshold calculated by the 5th percentile multiplied by a constant value α=5. The 
horizontal grey dashed line in (c) indicates the detection threshold calculated fixed 
at 2. The arrows at top of (b,c) indicate the onset time of the detected events. 
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sensitivity and noise reduction. A novel triggering algorithm used for 

transients detection is here after reported. The root mean  square (RMS) 

envelope of the recordings (seismic or infrasound signals) is calculated by 

a moving window of fixed length. Successively, the percentile envelope on 

moving windows of RMS envelope is computed. For a given time series, 

the p-th percentile can be defined as the value such that at most 

(100*p)% of the measurements are less than this value and 100*(1-p)% 

are greater. In the light of this, the estimation of percentile enables effi-

ciently detecting amplitude transients and estimating background signal 

level. The percentage threshold should be chosen on the basis of both the 

amount of transients in the signal that have to be included or excluded in 

calculations and the signal to noise ratio. The performance of this method 

is compared with the STA/LTA (short time average / long time average) 

technique (e.g. Withers, 1997; Withers et al., 1998). As shown in figure 

3, the trigger results obtained by the two methods were similar; never-

theless, the technique based on percentile was also able to detect tran-

sients very close to each other. This is a very important feature for 

seismo-volcanic and infrasound transients detection, especially when 

events swarm took place before or during a volcanic eruption. This 

method can be used both to find transients within a signal (necessary 

task to automatically count LP events, infrasonic transients, etc…) and 

to estimate background noise level. Triggering techniques routinely ap-

plied on active volcanoes provide useful information about the occurrence 

rate of a certain type of seismo-volcanic or infrasonic events. As will be 

shown in the next chapters, change of this parameter can be related to 

volcano regime variations that may lead to a volcanic eruption. Events 

occurrence rate estimation, together with spectral feature changes, is an 

useful tool for active volcano monitoring and constitutes the first step in 

volcano early warning systems.  As introduced in the previous section, 
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RMS amplitude change and variation in the spectral content of the sig-

nals are related to different volcano regimes. In figure 4, the rate of 

seismo-volcanic long period events (see section 1.2)  together with tremor 

RMS and its STFT, recorded at Mt. Etna Volcano during the period 

April-May 2008, is shown. It is clear that seismo-volcanic events rate, 

RMS and spectral content of tremor changed  after the onset of the erup-

tion (figure 4).   

 

Figure 4: Seismo-volcanic features at Stromboli volcano during the time period 
October 2006 - April 2007. (a) occurrence rate of LP events; (b) RMS of volcanic 
tremor; (c) averaged STFT of triggered events. The red vertical line indicates the 
onset of the eruption. 
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4.3  Averaged multi-channel coherence 

In this section an approach to measure averaged coupling or synchrony 

among signals simultaneously recorded at different stations is presented. 

The aim of this analysis is to highlight significant bursts of coherence 

among summit stations over time. Although the source mechanism pro-

ducing these coherence time changes is still not known, in the investi-

gated time intervals high summit coherence seems to precede periods of 

intense volcano activity. In particular, during the periods that will be in-

vestigated in the next chapter, high summit coherence among signals 

appears before lava fountains or effusive eruptions. As explained in sec-

tion 2.1.5 the coherence is a metric providing a measure of linear rela-

tionship between signals at various frequencies widely used in the stud-

ies of biomedical signals as EEG (e.g. Saab et al., 2005). An extension of 

the coherence in a time-frequency space leads to the concept of cohero-

gram. Here, the term averaged coherence refers as to the high resolution 

coherence (see section 2.2.2) computed between all pairs of stations and 

then averaged. Let n the number of stations, the value m=n(n-1)/2 

represents the number of all possible pairs on which the coherence is 

computed over time. In figure 5 a hourly averaged coherogram, computed 

at Mt Etna summit stations, is shown together with the RMS time series 

and the hourly rate of the triggered LP events. The red rectangle indi-

cates a period of high coherence (figure 5c), taking place at the same time 

as an increase of tremor amplitude (figure 5b) and followed by an in-

crease of the LP rate (figure 5a). All the time series described so far, will 

be used in the analysis of both non-eruptive and eruptive periods at Mt 

Etna with the aim of better understanding the processes leading to a crit-

ical state of the volcano system.  
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Figure 5: (a) hourly rate of triggered LP events from 01-04-2009 to 20-05-2009; 
(b) Tremor RMS amplitude; (c) coherogram computed by averaging coherence at 
summit Mt Etna stations over time.  
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4.4  Seismo-volcanic events source location 

Many of the analyses treated in this thesis are related to infrasound and 

seismo-volcanic signals whose onset is usually not clearly identified on 

the traces. For this reason, conventional approaches of event location by 

picking first arrivals cannot be applied. Therefore, different techniques, 

generally based on grid searching procedures, were developed. One of the 

most widely applied location approach is the semblance method (Neidell 

and Taner, 1971), based on the semblance function, that is a measure of 

similarity of multichannel data. Considering traces U acquired by a cer-

tain number of sensors N, the semblance is defined as (Neidell and Tan-

er, 1971): 
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where Δt is the sampling interval, τi is the origin time of the window 

sampling the i-th trace, Ui(τi +jΔt) is the j-th time sample of the trace i-th 

U, and M represents the number of samples in the window. S0 is a num-

ber between 0 and 1. The value 1 is only reached when the signals are 

identical, not only in waveform but also in amplitude. If the traces are 

normalized, and then the semblance values only depend on the shape of 

the signals, it can be demonstrated that the definition of semblance is 

equivalent to an averaging of the correlation coefficients of all the possi-

ble trace pairs (Almendros and Chouet, 2003). The semblance method 

consists in finding a set of arrival times (τi, i = 1,…, N), that yields a max-

imum semblance for the N-channel data. The procedure is composed of 

several steps. First of all, a broad enough region of interest has to be de-
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termined to include the actual source. A start time ts is fixed as the time 

of first arrival at a reference station (generally chosen on the basis of the 

highest signal to noise ratio) by visual inspection or triggering algorithm 

(see section 4.2). The source is assumed to be in each node of the grid, 

and for each node the origin time to is calculated, assuming a certain 

value of propagation velocity of the infrasonic or seismic waves, as fol-

lows: 

to = ts – r/v                                          (4.2) 

where r is the distance between the reference station and the node of the 

grid assumed as source location. Successively, the theoretical travel 

times are calculated at all the sensors ti (i = 1,…, N, number of stations): 

ti = ri/v                                            (4.3) 

where ri is the distance between the station i-th and the node of the grid 

assumed as source location. Then, by these theoretical travel times and 

the origin time, signals at the different stations are delayed and com-

pared by the semblance function. Signal windows containing between one 

and two cycles of the dominant period are generally used to calculate the 

semblance value because they provide the best performance (Almendros 

and Chouet, 2003). Therefore, the semblance function is assumed repre-

sentative of the probability that a node has to be the source location. The 

source is finally located in the node where the delayed signals show the 

largest semblance value. In order to estimate the error of the location, 

the method described in Almendros and Chouet (2003) is followed. 

Firstly, the signal to noise ratio (hereafter called SNR) for each event is 

compute by the following equation (Almendros and Chouet, 2003): 
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where is the modulus of the velocity recorded at the i-th station and 

represents the RMS of the seismogram within a window containing 

only noise. Successively, in order to define an error region, a semblance 

level, equal to (1 – dS)Smax is fixed for each event on the basis of its SNR 

and of the following equation (Almendros and Chouet, 2003): 

dS = 0.062 SNR-1.54                                     (4.5) 

Finally, the extension of this region can be calculated in the three space 

directions (longitude, latitude and altitude). The semblance method is 

used in several works to locate LP and VLP events, as well as infrasound 

events recorded by sensors arranged in both sparse networks and array 

configurations (e.g. Ripepe and Marchetti, 2002; Gresta et al., 2004; 

Patanè et al., 2008, Cannata et al., 2009a,b; Montalto et al., 2010). The 

main difference concerns the grid: a 3D grid is used for LP and VLP 

events, while a 2D grid coinciding with the topography for infrasound 

events. Indeed, the vent radiating infrasound can be reasonably consi-

dered a source point located on the topographical surface. This location 

procedure can be also performed in near real-time. In this case computa-

tional time has to be shorter than the analysed period.  Therefore, if the 

event rate is high and then not all the detected events can be located, 

only the “best” transients must be analysed. The choice is based on both 

the signal to noise ratio at all the available stations and the peak-to-peak 

amplitude of the events at the reference station. Finally, the number of 

events that can be located depends on the used space grid and on the 

available computational power. For instance, by this location technique 
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three different infrasonic sources, coinciding with North-East crater, 

South-East crater and the 2008 eruptive fissure have been found active 

during 2007-2008.  

In figure 6 three examples of semblance distribution and infrasound 

traces are reported. It is worth noting that, as infrasonic signals are si-

nusoidal, semblance space distribution is roughly sinusoidal too. The 

wavelength of such sinusoidal semblance function strictly depends on the 

wavelength of the infrasonic event. The higher the frequency of the infra-

sound event, the shorter the wavelength of the semblance function. In 

order to estimate the location error, the equation 4.5. can be followed. In 

this case the SNR is computed as: 
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where N is the number of stations,  and are RMS of the infrasound 

signal windows at the i-th station containing the event and only noise 

preceding the event, respectively.  
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Figure 6: (a, c, e) Examples of space distribution of semblance values calcu-
lated by locating three infrasonic events at Mt. Etna and (b, d, f) correspond-
ing infrasonic signals at four different stations shifted by the time delay that 
allows obtaining the maximum semblance. The red squares and circles in (a, 
c, e) indicate four station sites and the nodes with the maximum semblance 
value, respectively. The black lines in (a, c, e) are the altitude contour lines 
from 3 to 3.3 km a.s.l. 
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4.5  Volcanic tremor location and errors estimate 

Tremor source location is estimated by using a grid-search approach, as-

suming the propagation in a homogenous medium and a seismic ampli-

tude decay with the distance (Gottschammer and Surono, 2000, Battaglia 

et al., 2005; Di Grazia et al., 2006), according to the general law: 

Qc

f
esfAsfA sb    ,)(),( 0                             (4.7) 

where f is the frequency, c the velocity and b the exponent which takes 

values of 0.5 or 1 for the cases of surface and body waves, respectively. Q 

represents the ray-path-averaged quality factor. The equation (4.7) can 

be linearized taking the logarithm on both sides as: 

iii sbAsA lnlnln 0                                    (4.8) 

where Ai is the RMS amplitude measured at the ith station,  is the fre-

quency-dependent absorption coefficient and si is the corresponding 

source-to-receiver distance. In this form lnA0 and b represent the inter-

cept and the slope of the linear equation, respectively. The location proc-

ess considers the RMS amplitudes of the 25th percentile instead of aver-

age values. This leads to efficiently remove undesired transients in the 

signal and consider continuous recordings (Di Grazia et al., 2006). Fur-

thermore, tremor locations were retrieved considering two different fre-

quency bands (0.5-2.5 Hz and 0.5-5.0 Hz). Though most of the tremor en-

ergy at Mt.Etna is radiated in the 0.5-5.0 Hz frequency band, seismic 

signals above 2.5 Hz are generally due           to superficial activity, such  

as  degassing and/or  strombolian  activity  
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Figure 7: (a,b) 3-D images of the volcanic edifice reporting volcanic tremor loca-
tions computed between 20 August and 15 September 2007. (c) 3-D source centro-
ids of volcanic tremor locations computed between October 2006 and December 
2007, separated into twoclasses of depth (black dots ≤1000 m and red dots >1000 
m a.s.l.).  
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at summit craters. By using also the 0.5-2.5 Hz frequency band the 

deeper portion of tremor source volume is highlighted. The observed dif-

ference in the tremor locations in the two frequency bands suggests that 

close portions of the same source volume can be active. The source loca-

tion of tremor is found on the basis of the goodness of the fit (R2) obtained 

for each point of a 3D grid with centre underneath the craters. With the 

3D grid search, the most probable source location is identified as the 

point where the measured amplitudes best fit the amplitude decay law 

for body of surface waves (see eq. 4.8). The centroid position of all 3D grid 

points whose R2 do not differ more than 1% of the maximum R2 is as-

sumed as source location (Di Grazia et al., 2006).  

In order to assess the stability of source location a Jackknife technique 

was employed (Efron, 1982). The procedure is especially useful to reduce 

bias when extreme scores are present in the data set and/or the statisti-

cal distribution of the underlying population is unknown. For each source 

location in the Jackknife procedure, also called “leave one out”, n (num-

ber of stations) estimates of an unknown parameter P (latitude, longi-

tude and depth) are computed by leaving one station out at a time. The 

expected value of P is: 

 
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where Pi is the parameter computed by omitting the ith station. Let de-

fine the ith so called “pseudo-value” as: 

ii PnPnJ )1(ˆ                                      (4.10) 

where    is the parameter computed by considering all the stations. Fi-

nally, the Jackknife estimator of parameter P is given by: 
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If the original estimate of parameter  is biased then part of the bias is 

removed by the Jackknife procedure. Further, an estimate of the stan-

dard error of the Jackknife estimate, , is given by: 
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For instance, in the Tables 1 and 2, the 25th, 50th and 75th percentile of 

the standard error for the computed Jackknife locations during during 20 

August - 15 September 2007 at Mt. Etna  are reported. An example of 

tremor source location related to the time period 2006 – 2007 is shown in 

figure 7 (Patanè et al., 2008). 

Table 1: Standard Error for Latitude, Longitude and Depth of the Jackknife Es-
timation (0.5-5.5 Hz) 

 25th percentile 50th percentile 75th percentile 
Latitude (m) 415 476 555 
Longitude (m) 492 563 637 
Depth (m) 668 785 889 
 

Table 2: Standard Error for Latitude, Longitude and Depth of the Jackknife Es-
timation (0.5-2.5 Hz) 

 25th percentile 50th percentile 75th percentile 
Latitude (m) 442 491 573 
Longitude (m) 508 586 649 
Depth (m) 685 802 918 
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4.6  Three component sensor analysis 

In order to extract features from wavefield of seismic, seismo-volcanic 

events and volcanic tremor, a multi component approach is needed. Al-

though, several algorithms are used in frequency domain, in this section 

an algorithm based on three component covariance is carried out in the 

time domain  (Jurkevics, 1988). Three-component seismic signals are 

bandpass filtered into narrow frequency bands. The frequency and the 

time resolution depends on the considered application. For the frequency 

band of interest a series of overlapped and tapered time window is ex-

tracted for each component. For each window the polarization is esti-

mated as follows. Considering the data matrix in each window X = [xij]; i 

= 1,…, N; j = 1,…, 3, where xij is the ith sample of component j and N is 

the number of samples. Also, the mean of each component of matrix X is 

assumed to be zero.  Then, the covariance matrix S is evaluated as fol-

lows: 
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where T denotes transpose. The covariance matrix is 3×3, real and sym-

metric. Explicitly, the terms of S are the auto- and cross-variances of the 

three components of motion: 
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where z,n,e denote the vertical, north-south, east-west components re-

spectively. S is a positive semidefinite matrix of coefficients for a quad-
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ratic form which is an ellipsoid called polarization ellipsoid (Jurkevics, 

1988). The principal axis orientation of the polarization ellipsoid and 

their length can be obtained from the solution of the algebraic eigenprob-

lem for S. This involves eigenvalues (λ1, λ2, λ3) and eigenvector (u1,u2,u3) 

which are solution of the algebraic equation: 

 0)( 2  uIS                                          (4.15) 

where I is the 3×3 identity matrix. The eigenvector are chosen to be or-

thogonal and unit length. The direction of the principal axes of the ellip-

soid are given by the eigenvectors uj, whereas the axes lengths are speci-

fied by the eigenvalues λj. The eigenvalues are ordered such that λm > λn 

for m < n. It is noteworthy that in practical application the three eigen-

value are nonzero and different to each other, this leads to a polarization 

that is ellipsoidal. Information that describe features of ground motion 

are computed from the principal axes. In order to obtain a measure of 

what kind of motion prevails in the time window on which the analysis is 

performed, the rectilinearity and planarity are used. The rectilinearity 

coefficient rect, quantifying the degree of linearity of particle motion (i.e. 

the relative elongation of the ellipsoid in one direction) can be calculated 

by the following equation (Benhama et al., 1988): 
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For linear polarization, as theoretically expected for body waves, rect is 

equal to 1 while, for particle motion with no preferred direction (λ1 = λ2 = 

λ3), rect is equal to 0. Pure Rayleigh-wave motion is elliptical and the 

particle motion is confined to a plane. A measure of the degree of “planar-

ity” is given by the planarity plan and is defined as (Benhama et al., 

1988): 
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Also the values of plan lie in the interval [0,1], indicating no preferred 

polarization and polarization in a plane, respectively. The estimate of 

azimuth and incidence angles depends on the assumed wave. Assuming 

P-wave propagation, the azimuth φ can be estimated from the horizontal 

orientation of rectilinear motion given by eigenvector  related to the 

largest eigenvalue:  
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Finally, the incidence angle of a P-wave is obtained by: 

11arccos u                                        (4.19) 

An example of polarization analysis parameters computed on one day of 

continuous recording of volcanic tremor signal is shown in figure 8.  
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Figure 8: Example of polarization parameters calculated by using 4-second-long 
moving windows slid every 0.1 s on a seismic event recorded at Mt. Etna.  
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4.7  Waveform similarity detection 

On a active volcano there are a wide range of seismic and infrasonic sig-

nals related to fluids movement inside it. As reported in section 1.2 each 

type of signal can be distinguished by its temporal signature and fre-

quency content. In literature there are two different groups of waveform 

classification:  methods based on frequency content and methods based 

on a similarity measure of the whole waveform. The former, generally 

used to distinguish hybrid, LP, VLP events and so on, divides the events 

into groups on the basis of how much of the signal power is concentrated 

in certain frequency bands (e.g. Power et al., 1994; Miller et al., 1998). In 

contrast to frequency feature of a signal, waveforms morphology provides 

detailed information on the path that the signals has taken from the 

source to the sensor. A classification method based on waveform similari-

ties allows signals to be grouped into classes with distinct physical mean-

ing. Most of the methods of waveform classification use cross-correlation 

techniques to quantify event similarity (e.g. Stephens and Chouet, 2001). 

Similarity between events is defined using the cross correlation function 

(Green and Neuberg, 2006): 
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where n is the number of sample, xi is the i-th sample of the signal x,  

is the (i-l)th sample of the signal y, the index l is the lag between the two 

signals and the overbar represents the mean value of the signal. It is 

noteworthy that the correlation function rxy provides only the relative 

similarity of  two waveforms and does not depend on the amplitude of the 
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signals. Using a trigger procedure (see section 4.2) n events are isolated 

from the continuous recording and each one is then cross-correlated with 

every other event. A maximum correlation coefficient matrix m  is 

constructed where each element  represents the maximum correla-

tion coefficient between waveform x and y. In order to subdivide events 

into families a correlation coefficient threshold  ψ is needed. As reported 

in Green and Neuberg, (2006), the choice of this value is a trade-off be-

tween classification accuracy and event detection: low values of ψ lead to 

wrong classification of waveform; high values of ψ lead to discharge 

events with low signal to noise ratio. In order to sort the correlation ma-

trix m into families, a master event is chosen as the event with the larg-

est number of cross correlation values above ψ. Then, an average wave-

form of the family is found by stacking all events well correlated with the 

master event. This stack waveform is cross-correlated with the original 

records, and all events with a cross correlation coefficient greater than 

the threshold are grouped into a waveform family. Once an event is as-

signed to a given family, it is removed from the correlation matrix. The 

same process is applied until the entire matrix is classified into distinct 

families (e.g. Green and Neuberg, 2006). Although different methods 

based on sophisticated pattern recognition techniques (see chapter 3) 

were developed in the last years, the method reported here constitutes 

the state of art about seismo-volcanic event classification. This method 

can work also online. Once that a new event is triggered, its family class 

is then determined using a cross-correlation procedures between the new 

event and a stacking event of each family. The new waveform is then 

classified when  cross-correlation is greater than the fixed threshold ψ. 

However, it is noteworthy that in a volcano environment, whose charac-

teristics change in time, this approach can be weak since new families 

born and other families disappear. As will be explained in chapter 6, 
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infrasound waveforms maintain more stable features over time. For this 

reason a more robust classification system, based on pattern recognition 

processes, was developed with the aim to provide a novel method for in-

frasonic waveform clustering.  
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Chapter 5 

 

Infrasonic signals on active volcanoes 

Volcanic unrest is often evidenced by time variations of some physical 

and geochemical parameters. The geophysical surveillance of volcanoes is 

routinely performed mainly by observing the patterns of seismic activity 

and ground deformations (Scarpa and Gasparini, 1996).  In recent years, 

new insights into explosive volcanic processes have been made by study-

ing infrasonic signals (e.g., Vergniolle and Brandeis, 1994; Ripepe et al., 

1996; 2001a). Indeed, infrasonic activity on volcanoes is generally evi-

dence of open conduit conditions and can provide important indications 

on the dynamics of the explosive processes. Unlike the seismic signal, 

whose wavefield can be strongly affected by topography (Neuberg and 

Pointer, 2000) and path effects (Gordeev, 1993), the infrasonic signal 

keeps its features almost unchanged during propagation. In fact, for 

short distances the infrasonic signal travels in an almost homogeneous 

atmosphere with no structures that can scatter, attenuate or reflect 

acoustic waves, providing information about the source. This can be ex-

plained by the simpler Green’s functions for a fluid atmosphere than 

those for a complex, heterogeneous volcanic edifice, which supports com-

pressional, shear, and surface waves (Johnson, 2005). However, the 

source mechanism of the sound radiated during eruptions is still open to 

debate. Several phenomena are able to generate infrasound signals such 

as rockfalls or pyroclastic flows (e.g., Moran et al., 2008; Oshima and 
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Maekawa, 2001). Nevertheless, in most cases these signals are related to 

internal magma dynamics, like the acoustic resonance of fluids in the 

conduit, triggered by explosive sources; this implies propagation of sound 

waves in both magma and atmosphere (Garces and McNutt, 1997). Ac-

cording to some authors (e.g., Ferrick et al., 1982; Julian, 1994; Seidl and 

Hellweg, 2003), seismic and acoustic wave generation in volcanoes can be 

caused by nonlinear processes. Unlike linear models, nonlinear ones al-

low the harmonic frequencies to be not proportional to a geometric length 

scale, which for example may explain why tremor frequencies are similar 

at volcanoes of vastly different size (Hagerty and Benites, 2003). Another 

attraction of nonlinear models is that they are able to produce a large 

range of complex behaviors for relatively small changes in some control 

parameters (Hagerty and Benites, 2003). Recent studies relate the source 

of sound to the sudden uncorking of the volcano (Johnson and Lees, 

2000), opening of ‘‘valves’’ sealing fluid-filled cracks (Matoza et al., 2009), 

local coalescence within a magma foam (Vergniolle and Caplan-

Auerbach, 2004) and Strombolian bubble vibration (Vergniolle and Bran-

deis, 1996; Vergniolle et al., 2004). The location of the source of the infra-

sonic signals, generally coinciding with active vents, is of great impor-

tance for volcanic monitoring. Therefore, some techniques, based on sig-

nals recorded by infrasound arrays or networks, were developed to locate 

the source of this signal (e.g., Ripepe and Marchetti, 2002; Garces et al., 

2003; Johnson, 2005; Matoza et al., 2007; Jones et al., 2008). At multi-

vent systems, as Stromboli (Ripepe and Marchetti, 2002), Kilauea 

(Garces et al., 2003) and Mt. Etna (Cannata et al., 2009a, b), methods 

based on the comparison of the infrasonic signals by cross-correlation or 

semblance functions have enabled monitoring and discriminating of the 

explosive activity of distinct craters. Recently, joint analysis of seismic, 

infrasonic and thermal signals has proved very useful to investigate ex-
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plosive processes and distinguish the different eruptive styles and dy-

namics in various volcanoes, such as Stromboli (Ripepe et al., 2002), San-

tiaguito (Sahetapy-Engel et al., 2008), Villarica and Fuego (Marchetti et 

al., 2009). Moreover, recent multiparametric approaches, based on the 

investigation of infrasound, several different types of seismic signals, 

such as earthquakes and seismo-volcanic signals, ground deformation 

and so on, have allowed tracking the evolution of activity in both deep 

and shallow parts of volcanoes (e.g., Sherrod et al., 2008; Di Grazia et al., 

2009; Peltier et al., 2009). For several years, the surveillance of Mt. Etna 

volcano (Italy) has been performed by using permanent seismic, GPS, tilt 

and video camera networks. However, information provided by these 

networks is sometimes insufficient to characterize and well locate very 

shallow phenomena such as explosive activity episodes, especially when 

the visibility of the volcano summit is poor. In the light of this, the staff 

of Istituto Nazionale di Geofisica e Vulcanologia (INGV) section of Cata-

nia has recently started recording and studying the infrasound signal, 

strictly related to the volcano shallowest dynamics, with the aim of inte-

grating the information provided by the aforementioned networks. The 

summit area of Mount Etna volcano is currently characterized by four 

active craters: Voragine, Bocca Nuova, southeast crater, and northeast 

crater (hereafter referred to as VOR, BN, SEC, and NEC, respectively; 

see figure 1). These craters are characterized by persistent activity that 

can be of varying nature and sometimes involve different types simulta-

neously: degassing, lava filling or collapses, low rate lava emissions, 

phreatic, phreatomagmatic or Strombolian explosions, and lava fountains 

(Cristofolini et al., 1988). 
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Figure 1: Sketch map of Mount Etna with location of the five infrasonic sensors 
(triangles) composing the permanent infrasonic network. In top left inset the dis-
tribution of the four summit craters (VOR, Voragine; BN, Bocca Nuova; SEC, 
southeast crater; NEC, northeast crater) is reported. 

The greatest risk for the villages located around the volcano is linked to 

flank eruptions that take place from fractures cutting the slope of the 

edifice. During the second half of the 20th century, Mt. Etna was charac-

terized by an unusually high level of eruptive activity, with a clear in-

crease in effusive rates and in the frequency of summit and flank erup-

tions observed in recent decades (Behncke and Neri, 2003). A remarkable 

increase in the frequency of short-lived, but violent eruptive episodes at 

the summit craters has also been observed. Between 1900 and 1970 

about 30 paroxysmal eruptive episodes occurred at the summit craters, 

while there have been more than 180 since then (Behncke and Neri, 

2003). The location and characterization of the source of the infrasonic 

activity are of great importance for the monitoring of the explosive activi-

ty of the volcano. The first infrasound investigations at Mt. Etna were 
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performed by temporary experiments (e.g., Ripepe et al., 2001b; Gresta et 

al., 2004). Since 2006 a permanent infrasound network has been dep-

loyed and has allowed to continuously record infrasounds and investigate 

their link with volcanic activity (Cannata et al., 2009a, b; Di Graziaet al., 

2009).  

5.1  Infrasound monitoring at Mt.Etna 

The permanent infrasound network of Mt. Etna, run by INGV, Section of 

Catania, comprises five stations, located at distances ranging between 

1.5 and 7 km from the center of the summit area (figure 1). The infrason-

ic sensors consist of Monacor condenser microphones MC-2005, with a 

sensitivity of 80 mV/Pa in the 1–20 Hz infrasonic band. The infrasonic 

signals are transmitted in real-time by radio link to the data acquisition 

center in Catania (Italy) where they are acquired at a sampling rate of 

100 Hz.  

The entire infrasound monitoring system may be described by the follow-

ing parts: (1) data acquisition, (2) event detection, (3) event characteriza-

tion, (4) source location and (5) modeling (figure 2) (Montalto et al., 

2010). The steps (1–4) are designed for a real-time application, whereas 

the step (5) is for near real-time or off-line analysis. Once the infrasound 

signal is recorded, the signal portions of interest, which are the infrason-

ic events, have to be extracted. A reference station is chosen, according to 

the best signal-to-noise ratio. At Mt. Etna we use EBEL as reference sta-

tion. Therefore, the STA/LTA (short-time average/long-time average) me-

thod is applied (see section 4.2). This method is used both to pick the on-

set of the events and to count them. The picking allows the location anal-

ysis to be performed (see section  4.2).  
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Figure 2: Scheme of the infrasound monitoring system (see text for details). 
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The rate of occurrence of infrasonic events is useful for monitoring explo-

sive activity. Indeed, the occurrence rate of the events increases during 

the explosive activity (see figure 3).  The efficiency of videocameras and 

thermal sensors, that visually detect changes in explosive activity (Ber-

tagnini et al., 1999; Harris et al., 1997), is strongly reduced (or inhibited) 

if there are clouds, fog or gas plumes. Thus the detection and characteri-

zation of explosive activity by infrasound is very useful, especially when 

the visibility of the volcano summit is poor (e.g., Cannata et al., 2009a). 

 

Figure 3: Histogram showing the daily number of infrasonic events from 1 Au-
gust to 10 September 2007, detected at EBEL station. The light gray rectangle 
indicates the period characterized by explosive activity at SEC. 
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Nevertheless, it is worth noting that infrasonic events occurring during 

lava fountains are not detectable. The very high occurrence rate of events 

during the paroxysmal stages gives rise to an almost continuous signal 

(the so-called infrasonic tremor), preventing the detection of single 

events. On the other hand, the events also occurring during periods cha-

racterized by strong wind are not detectable because of the high noise. 

Recent studies performed at Mt. Etna have allowed recognizing SEC and 

NEC as the most active summit craters from an infrasonic point of view 

(Cannata et al., 2009a,b). During 2007–2008 the former was characte-

rized by both degassing and explosive activity (strombolian activity and 

lava fountaining), while the latter mainly by degassing. According to 

Cannata et al. (2009a,b) these craters generate infrasound signals with 

different spectral features and duration: ‘‘NEC events’’, lasting up to 10 s 

and characterized by dominant frequency generally lower than 2.5 Hz, 

are related to the degassing activity of NEC and are recorded almost con-

tinuously (figure 4a); ‘‘SEC events’’, with a duration of about 2 s, domi-

nant frequency mainly higher than 2.5 Hz and higher peak-to-peak am-

plitude than the NEC events, are recorded during explosive activity at 

SEC (figure 4b). Moreover, during the 2008–2009 eruption a third infra-

sound source, coinciding with the lowermost tip of the eruptive fissure, 

was active. During periods with explosive activity, this source generated 

signals, called ‘‘EF events’’, with features similar to the SEC events (fig-

ure 4c). On this basis and according to Cannata et al. (2009a, b), a simple 

spectral analysis of the infrasonic events recorded at a single station, to-

gether with the amplitude estimation, can give preliminary information 

on the ongoing volcanic activity and active craters. In particular, spectral 

and amplitude variations over time of such infrasound signals can be a 

good indicator of changes in the volcanic activity. Therefore, the third 

step of the automatic monitoring system consists of extracting spectral 
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features and the peak-to-peak amplitudes from the waveforms of the de-

tected events (figure 2). As shown in Cannata et al. (2009b), Sompi me-

thod (see section 2.2.1; Kumazawa et al., 1990) is a useful algorithm to 

calculate the dominant frequency and the quality factor of the events. 

Similarly to the detecting step, the infrasound characterization is carried 

out on the signal recorded by EBEL, considered as reference station. In 

figure 5 the time variation of peak-to-peak amplitude, frequency and 

quality factor values of events, recorded during January-June 2008, is 

reported, together with the source location and a scheme summarising 

the volcanic activity. There are strict relationships between variations of 

the infrasound event features and changes in the eruptive activity (figure 

5).  

 

Figure 4: Infrasonic events recorded by EBEL station and corresponding spectra. 
The gray areas in (a), (b), (c) show the signal windows used to calculate the spec-
tra. In particular, the events (a), (b) and (c) were generated at NEC, SEC and at 
the lowermost tip of EF, respectively.  
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For example the explosive activity at SEC, taking place on February 12, 

2008, and mainly consisting in ash emission (Corsaro, 2008), was accom-

panied by increases in both amplitudes and frequency peak values. Simi-

lar changes in the infrasound activity occurred on May 13, 2008, at the 

onset of the eruption at the eruptive fissure opened on the same day in 

the upper part of the Valle del Bove (Di Grazia et al., 2009). The source 

location (fourth step in figure 2) was performed by the semblance algo-

rithm (see section 4.4). During 2007–2008 the most active vents from the 

infrasonic point of view were SEC and NEC, mainly characterized by ex-

plosive and degassing activity, respectively (figure 5). Moreover, an erup-

tive fissure (EF in figure 6), opened on May 13, 2008, in the upper part of 

the Valle del Bove and characterized by both effusive and explosive activ-

ity, generated infrasound signals (figure 4).  
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Figure 5: (a) Scheme of the volcanic activity of Mt. Etna at SEC, NEC and EF 
during January–June 2008 (1: explosive activity; 2: effusive activity; 3: degassing 
and/or deep explosive activity with no ash emission). (b) Peak-to-peak amplitude, 
(c) frequency, (d) quality factor and (e,f) source location of about 450 infrasonic 
events recorded during January–June 2008. The error bar in (e, f), calculated by 
using the method explained in Sect. 2.4, was multiplied by a factor of 5 to become 
more visible. The volcanological information in (a) was provided by the internal 
reports of INGV.  
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Figure 6: Digital elevation model of Mt. Etna summit with the source locations of 
the infrasound events, indicated by red circles, occurring during January–June 
2008. The radii of the circles are proportional to the number of the locations in 
each grid node (see white circles and numbers reported in the lower right corner of 
the map). The sites of four infrasonic sensors are indicated with triangles. 

5.2  Source mechanism 

Following the sketch of figure 2, once the waveforms of infrasonic events 

have been extracted and characterized, and the source located, the source 

mechanism can be investigated. Since this task is not critical from the 

monitoring point of view, it can be performed in near real-time or even 

off-line. The source process of infrasound in volcanic areas is still open to 

debate. However, among the infrasound source models, three have been 

well developed and applied on observed data: (1) resonating conduit 

(Buckingham and Garces, 1996; Garces and McNutt, 1997; Hagerty et 

al., 2000); (2) Strombolian bubble vibration (Vergniolle and Brandeis, 

1994, 1996; Vergniolle et al., 1996, 2004; Vergniolle and Ripepe, 2008); 

(3) local coalescence  within a magma foam (Vergniolle and Caplan-
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Auerbach, 2004). The first model is based on a pipe-like conduit, that, if 

affected by trigger mechanisms such as explosive processes, can resonate 

generating seismic and infrasonic signals, whose waveforms strictly de-

pend on the geometrical-chemical-physical features and specific boun-

dary conditions of the conduit. The acoustic signal, thus generated, con-

sists in gradually decaying sinusoids with a fundamental mode and har-

monics. A candidate example recorded at Mt. Etna is shown in figure 4a. 

On the other hand, in the Strombolian bubble vibration model the infra-

sound is produced by the vibration of a thin layer of magma, pushed by a 

variation of pressure inside a shallow metric bubble prior to bursting. 

The bubble shape is approximated by a hemispherical head and a cylin-

drical tail, as expected in slug-flow (figure 7a). The propagation of pres-

sure waves is radial and the waveform of the resulting infrasound signal 

is composed of a first energetic part roughly composed of one cycle–one 

cycle and a half (corresponding to the bubble vibration), followed by a 

second part with various weaker oscillations sometimes with higher  fre-

quency (radiated during and after the bubble bursting) (e.g.,figure  4b, c). 

Finally, according to the Helmholtz resonator model the source of infra-

sound signals is the coalescence of the very shallow part of a foam build-

ing up into the conduit, which produces large gas bubbles.. In this case 

the gas escapes through a tiny upper hole. The shape of the bubble is 

similar to the Strombolian bubble model with the exception of a tiny up-

per hole (figure 7b). The resulting acoustic signal consists in gradually 

decaying monochromatic sinusoids and can be modelled by a Helmholtz 

resonator (Vergniolle and Caplan-Auerbach, 2004). Also this source me-

chanism, like the resonating conduit model, could give rise to harmonics 

in the signal. In fact the event in figure 4a can be interpreted as generat-

ed either by a resonating conduit or by a Helmholtz resonator. The infra-
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sound events at Mt. Etna, recorded during 2007–2008, can be interpreted 

as generated by the aforementioned source models.  

 

Figure 7: (a) Sketch of a vibrating bubble at the top of a magma column. R, L and 
h are, respectively, bubble radius and length, and thickness of the magma layer 
above the bubble (redrawn from Vergniolle et al., 2004). (b) The Helmholtz resona-
tor is a rigid cavity of radius R and length L. Gas can escape through a small hole 
of radius Rhole with a velocity large enough to produce sound waves. h is the 
thickness of magma layer above bubble (redrawn from Vergniolle and Caplan-
Auerbach, 2004) 
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5.2.1  Resonating conduit 

A pipe-like conduit, if affected by trigger mechanisms such as explosive 

processes, can resonate generating seismic and infrasonic signals. Both 

these signals are characterized by spectra with a fundamental mode and 

harmonics. The spectral content depends on conduit geometrical-

chemical-physical features.  

The first characteristic influencing the frequency content of the radiated 

waves is the conduit length (L). The longer is the conduit, the lower is the 

frequency content. Moreover, also specific boundary conditions influence 

the resonating system. In fact, if the conduit is an open–open or closed–

closed system has nλ/2 (λ = wavelength, n = 1,2,3,...) waves as longitu-

dinal resonance modes whereas a system with one open and one closed 

end has (2n−1) λ/4 waves. Therefore, open–open or closed–closed systems 

produce signals with spectra characterized by evenly spaced peaks con-

sisting of the fundamental mode, f0, and a set of n integer harmonics 

which are multiples of f0 (f0, f1 = 2 f0, f2 = 3 f0, …, fn = n f0); on the other 

hand spectra that have equally spaced peaks and contain only odd har-

monics (f0, f1 = 3f0, f2 = 5f0, …, fn = (2n−1) f0) are linked to resonant sys-

tems with one open and one closed end (De Angelis and McNutt, 2007). 

Finally, the frequency is also directly related to the wave velocity of the 

fluid in the conduit (c). The fluid could be gas or bubbly magma, that 

show a very wide range of variability of velocity. If air or pure hot gas are 

considered, their wave velocity are equal to 0.34 and 0.704 km/s (Weill et 

al., 1992), respectively. If we take into account bubbly magma, the wave 

velocity ranges from 0.3 km/s (Aki et al. 1977) to 2.5 km/s (Murase and 

McBirney, 1973), according to different flow conditions and magma prop-

erties (above all the gas fraction). Considering these prospective fluids 

filling the conduit, the lower end of the resonating system can consist in 



144 
 

the interface between bubbly-magma or gas and non-vesciculated mag-

ma. Because of the strong impedance contrast between the source fluid 

and the underlying non-vesciculated magma, this termination acts like a 

closed termination (De Angelis and McNutt, 2007). The upper end of the 

conduit can be either open to the atmosphere and act as an open termi-

nation, or obstructed by a relatively viscous plug at the vent acting as a 

closed boundary. In any case, the observation that the conduit is plugged 

at the vent (e.g. high porosity materials) does not necessary imply that it 

is an acoustically closed boundary (Garces and McNutt, 1997).  In the 

light of these parameters, the fundamental mode of the generated signal 

is equal to (Hagerty et al., 2000): 

L

c
f

20                                                (5.1) 

5.2.2  Strombolian bubble vibration 

In the Strombolian bubble vibration model the infrasound is produced by 

the vibration of a thin layer of magma, pushed by a variation of pressure 

inside a shallow metric bubble prior bursting. The bubble shape is ap-

proximated by a hemispherical head and a cylindrical tail, as expected in 

slug-flow (figure 7a). The radius of the bubble R varies around its equi-

librium radius Req by (Vergniolle and Brandeis, 1996): 

 

  1eqRR
                                     

  (5.2) 

 

where ε is the dimensionless radius of the bubble. The bubble volume Vg 

can be calculated by (Vergniolle and Brandeis, 1996): 
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where L is the bubble length, R0 is the initial radius. Req can be obtained 

by the following adiabatic law (Vergniolle and Brandeis, 1996): 
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where ΔP is the initial overpressure, pair is the air pressure, γ is the ratio 

of specific heats. The Strombolian bubble vibration model is based on the 

general equation for the bubble vibration (Vergniolle and Brandeis, 

1996):  
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where μ is the viscosity, ρl is the magma density, Veq is the equilibrium 

value of the gas volume, h is the thickness of the thin upper membrane. 

It is worth noting that Vg is a function of ε. The first initial condition to 

be specified is the initial value of the dimensionless radius ε0. The second 

initial condition is the initial radial acceleration 0 , which depends on 

the initial force applied to the layer of magma. Assuming that the bubble, 

at rest at the magma-air interface is suddenly overpressurized by an 

amount ΔP, this force is directly related to the bubble overpressure. 

Therefore the initial conditions are (Vergniolle and Brandeis, 1996): 
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Ignoring viscous damping and assuming small oscillations our equation 

has only one physically possible solution, which is a simple oscillator. 

Therefore, on the basis of these assumptions the excess pressure in air is 

expressed as a sinusoidal function: 
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where the amplitude A, the radian frequency ω and the phase delay φ 

are: 
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where pext is close to the atmospheric pressure pair. In general, the equa-

tion (6.5) has no analytical solution. We solved it by numerical integra-

tion using a fourth order Runge-Kutta method. Finally, in order to calcu-
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late the excess pressure in air, the following equation is used (Vergniolle 

and Brandeis, 1996): 
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where t is time, r is the distance source-sensor and c is the speed of sound 

in air, 340 m/s (Lighthill, 1978). 

5.2.3  Helmholtz resonator 

For a piston emitting sound in a halfspace, acoustic pressure is (Verg-

niolle and Caplan-Auerbach, 2004): 
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2
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where ξ is the displacement of air, Rhole is the hole radius. If the dimen-

sions of the resonator are small compared to the wavelength, the beha-

vior of an element of air in the neck of an undriven Helmholtz resonator 

is (Vergniolle and Caplan-Auerbach, 2004): 

0  helmhelmhelm sRm                                (5.14) 

where mhelm, Rhelm and shelm are the mass, the resistance coefficient lead-

ing to damping and the stiffness coefficient of the oscillator, respectively 

(Vergniolle and Caplan-Auerbach, 2004): 

holeairhelm Sm                                          (5.15) 
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where ρair is the air density, Shole is the hole area, Vhelm is the volume of 

the resonator, ε is the effective length of the orifice (calculated as ε = 

8Rhole/3π; Temkin, 1981). Shole and Vhelm are calculated as follows (Verg-

niolle and Caplan-Auerbach, 2004): 

2

holehole RS                                             (5.18) 

3/2 32 RLRVhelm                                    (5.19) 

where R and L are radius and length of the bubble, respectively.  

The air acceleration   can be calculated by (Vergniolle and Caplan-

Auerbach, 2004): 

      ttA cos/exp2                           (5.20) 

where ω and τ, radian frequency and relaxation time, respectively, are: 

  2/1/ helmhole VSc                                      (5.21) 
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and, finally, A and φ are arbitrary constants for a damped harmonic so-

lution and are calculated as follows: 
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These equations of the Helmholtz resonator are not able to model har-

monics, but only the fundamental mode of vibration.  

5.2.4  Model inversion 

The choice of the model to apply strictly depends on the waveform of the 

investigated signal. If the infrasound signal is composed of one cycle–one 

cycle and a half, followed by a second part with weaker oscillations (fig-

ure 4b, c), the Strombolian bubble model should be applied. On the other 

hand, if the infrasonic event is characterized by gradually decaying sinu-

soids with a fundamental mode and harmonics or with monochromatic 

spectral content (figure 4a), two different models can be applied: the re-

sonating conduit and the Helmholtz resonator. The method to choose the 

model has still to be defined. We suggest using the damping features of 

the oscillations composing the infrasonic events as a quantitative para-

meter indicating the source type. For example, slow damping, that means 

many cycles, would be indicative either of a resonating conduit or of a 

Helmholtz resonator. Conversely, quick damping, and then one or two 

cycles, could be due to a Strombolian bubble model. Therefore, the quali-

ty factor values, computed in the third step (see sketch of figure 2) and 

describing the damping features of the infrasound waveforms, can be 

chosen as a model discriminator. If the quality factor is less than a cer-

tain threshold the Strombolian bubble model will be applied, otherwise 
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the Helmholtz resonator or the resonating conduit model will be consi-

dered. In the resonating conduit model, if there is information about the 

fluid filling the conduit, the length of the resonating portion of the con-

duit can be calculated by using the equation (6.1). For example assuming 

that the event, shown in figure 4a and generated by the NEC, is caused 

by a resonant conduit and that the fluid filling the conduit is gas, we in-

fer that the length of the resonating portion of the conduit roughly 

ranges between 150 and 320 m, according to the air/gas conditions. How-

ever, since the ranges of variability of fluid features are very wide and 

the conduit resonance model oversimplified, the variations over time of 

the model parameters are to be taken into account rather than the exact 

values. In the other two models there are three unknown source parame-

ters: radius of the bubble/ hole (Strombolian bubble and Helmholtz reso-

nator respectively), length of the bubble and overpressure (R or Rhole, L 

and ΔP, respectively).  

It is worth noting that the Helmholtz resonator model requires that the 

radius of the bubble, which can be inferred by the vent radius, is known. 

In order to constrain these unknowns, the estimation of the similarity 

between synthetic and observed infrasound signals is required. The syn-

thetic signals can be calculated by using the equation (6.12) and (6.13) 

for the Strombolian bubble and Helmholtz resonator models, respective-

ly. The comparison is carried out by the following equation: 

 
M

UU
E

M

i
isyniobs




 1

2

                                 (5.25) 

where E is the misfit between observed and synthetic signals, called pre-

diction error, Uobs and Usyn are the observed and synthetic signals, and M 

is their number of samples. Model identification consists of two tasks. 
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The first task is a structural identification of the equations and the sec-

ond one is an estimation of the model parameters. The optimization 

method chosen to look for the best fit between observed and synthetic 

signals is the Genetic Algorithm (GA) that applies Darwin’s evolutionary 

theory to general optimization problems. This kind of algorithm repre-

sents a highly idealized model of a natural process and as such can be 

legitimately viewed as a very high level of abstraction. Biological strate-

gies of behaviour adaptation and synthesis are used to enhance the prob-

ability of survival and propagation during their evolution (Ghoshray et 

al., 1995). This method is based on individuals, grouped into populations 

that represent the parameters searched in the estimation process. The 

GA method can be reassumed by the following steps: i) an initial set of 

candidate solutions, called initial population, are generated; ii) the 

evaluation of the candidate solutions is performed according to some fit-

ness criteria; iii) on the basis of the performed evaluation some candidate 

solutions are kept and the others are discarded; iv) finally, certain vari-

ants are produced by using some kinds of operator on the surviving can-

didate solutions (Mitchell, 1996). The identification problem can be for-

mulated as an optimization task whose aim is to find a set of parameters 

that minimize the prediction error between measured data and the model 

output (figure 8). The inversion task can be considered completed if the 

prediction error is lower than a fixed threshold or if a time-out condition 

occurs. In the former case the source parameters are stored in a data-

base, while in the latter the event is discarded (figure 8). 
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Figure 8: The principle scheme for parameter estimation by Genetic Algorithm 
(GA). Tcomp and Tout indicate the computational time and the fixed timeout, respec-
tively. 
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Figure 9: Comparison between the observed waveforms of infrasonic events rec-
orded by EBEL station (red) and the synthetic ones (blue) considering Strombolian 
bubble vibration (a) and Helmholtz resonator (b) models. In (b) the bubble radius 
was fixed to 6 m. The observed waveform in(b) was low-pass filtered below 1.5 Hz, 
in order to remove harmonics. 
 

Following Vergniolle and Caplan-Auerbach (2004), when the Helmholtz 

resonator model is applied, the fit between observed and synthetic sig-

nals should be optimised at the beginning of the oscillations in case there 

are other sources of damping not considered in the model. Examples of 

waveform inversion are reported in figure 9. By the waveform inversion 

of the event of figure 9a, due to Strombolian bubble vibration, the ob-

tained radius and length of the bubble were equal to 4 m and 6 m, re-

spectively, with an initial overpressure of 0.13 MPa.  On the other hand, 

assuming that the event reported in figure 9b was generated by the 

Helmholtz resonator and fixing the bubble radius to 6 m, the obtained 

radius of the hole and length of the bubble would be equal to 0.5 m and 

40 m, respectively, with an initial overpressure of 0.02 MPa. Similarly to 

the resonating conduit model, also the changes over time of the calcu-

lated source parameters of Helmholtz resonator and Strombolian bubble 

models can be important information to track the evolution of the vol-

canic activity (Vergniolle and Ripepe, 2008). 
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5.3  Infrasound investigation at  Mt. Etna during September-

November 2007 as a case of study. 

A high degree of similarity of the waveforms of different infrasonic 

events implies the same source mechanism and locations varying roughly 

within one fourth of the dominant wavelength of the events (Geller and 

Mueller, 1980). However, the exact fraction of the wavelength depends on 

heterogeneity of velocity structure around the source (Nakahara, 2004). 

In light of these assumptions, a waveform classification is useful in order 

to get an initial idea about the variability of source mechanism and loca-

tion. In Cannata et al. 2009b,  a modified version of the method of Green 

and Neuberg (2006) was proposed (see section 4.7). In order to illustrate 

the algorithm, a set of 987 infrasonic events, recorded in the period 

spanning from September to November 2007 are used. The infrasonic 

signals, recorded in September–November 2007, contain a large number 

of infrasonic transients, generally short (1–4 s), characterized by impul-

sive compression onsets and by a spectral content in the frequency range 

1–5 Hz (figure 10). The observed waveforms of these infrasonic tran-

sients are very similar to those recorded at other volcanoes: Stromboli 

(Ripepe et al., 1996), Klyuchevskoj (Firstov and Kravchenko, 1996), San-

gay (Johnson and Lees, 2000), Karymsky (Johnson and Lees, 2000), Ere-

bus (Rowe et al., 2000), Arenal (Hagerty et al., 2000), and Tungurahua 

(Ruiz et al., 2006). The method comprise the following step: (1) the 987 

infrasonic events, belonging to the first data set (see section 2.1) and rec-

orded at EBEL station are filtered in the frequency range 1–5 Hz; (2) the 

correlation matrix is calculated (figure 11); (3) a threshold value of cross 

correlation coefficient equal to 0.85 is chosen; (4) a master event was se-

lected as the event with the largest number of correlation values above 

the  chosen  threshold;  (5)  an  average   family  waveform   is  found  by  



155 
 

 

Figure 10:  Examples of infrasonic events recorded by EBEL station and their 
short time Fourier transform, obtained by using 2.56-s-long windows overlapped 
by 1.28 s. The volcanic activity and the family (as explained in the text) are re-
ported at the top. 

stacking all events well correlated with the master event; (6) this stack 

waveform is then cross-correlated with the original infrasonic records, 

and all events with a correlation greater than 0.8 are grouped into a 

waveform family; and (7) steps 4–6 are repeated until the entire matrix 

was classified into distinct groups. In this procedure, overlap between 

clusters was not allowed; in fact, once an event was assigned to a given 

group, it was removed from the correlation matrix. Generally, the choice 

of the cross correlation threshold is a trade-off between classification ac-

curacy and event detection. A too low threshold allows waveforms having 

different structure to be classified into the same group; conversely, a too 

high one does not allow events characterized by poor signal-to-noise ratio 

to be classified at all. For this reason, unlike the method of Green and 

Neuberg (2006), two different cross correlation thresholds are used in 

steps 3 and 6 are fixed: thus, this algorithm is able to achieve a reasona-

ble number of families, each of which contains a significant quantity of 

events.  By using this  method  nine  families,  comprising  about  95%  of 
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Figure 11: Correlation matrix of the 987 infrasonic events. 

 

all the considered events, were found. This result suggests the repetitive 

excitation of stationary sources. The average waveforms and the time 

distribution of nine families are shown in figures 12 and 13, respectively. 

The great similitude observed among some families (figure 12) suggested 

the application of the cross correlation analysis described above on the 

stacked waveforms of the nine families. Tuning the cross correlation coef-

ficient threshold to 0.9, three clusters were recognized. Families from 1 

to 5 were grouped in cluster 1, families 6 and 7 in cluster 2, and families 

8 and 9 in cluster 3. Finally, it is noteworthy that, unlike the other fami-

lies that are spread out over periods of months, the events belonging to 

the families 8 and 9 (cluster 3) occurred during the interval 1–4 Septem-
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ber. Several other analyses were performed on the 987 events belonging 

to the first data set to characterize the infrasonic activity at Mount Etna 

during the studied period. At first, the peak-to-peak amplitude of the 

infrasonic events that ranged from 1 to over 100 Pa was calculated. The 

highest values are mainly clustered at the beginning of September and 

are linked to the Strombolian activity at SEC (figure 14a). Successively, 

two different spectral analyses on the infrasonic events were performed. 

First, a 10-s-long window (1024 samples) for each event recorded at 

EBEL was used, comprising the whole waveform, and a spectrum was 

calculated by fast Fourier transform (FFT). 

 

 

Figure 12: Waveforms obtained by stacking the events belonging to each family. 
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Figure 13: Time distribution of the families of the infrasonic events. These fami-
lies were obtained by filtering the infrasonic signals between 1 and 5 Hz and fol-
lowing the method of Green and Neuberg, 2006. As explained in the text, families 
1–5 are linked to activity at NEC, and families 6–9 are linked to activity at SEC. 

Then, a peak frequency value was obtained for each event (figure 14b). 

Most of the calculated peak frequencies ranged between 1 and 4 Hz. It is 

also noteworthy that most of the highest frequency values (3–4 Hz) are 

clustered in the interval 1–4 September. Second, in order to verify the 

aforementioned spectral variations and to obtain information about the 

damping features of these infrasonic signals, the Sompi analysis (section 

2.2.1; Kumazawa et al., 1990) was performed. Therefore, 2-s-long win-

dows of infrasonic signal, recorded at EBEL and coinciding with the tails 

of the events, were taken into account, and frequency and quality factor 

were calculated for AR orders ranging between 2 and 10. The sharply 

monochromatic nature of the investigated signals justifies the choice of 

these low orders (Lesage, 2008). The results were very similar for all the 

used orders. As shown in figure 15a, the obtained frequency values con-

firmed the overall results of the FFT analysis. The quality factor values 

mainly ranged between 2 and 10 (figure 15b). In order to confirm the re-
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sults gained with the crosscorrelation method, and try to reduce the size 

of information (signals, data, etc.), a parametric approach is an useful 

strategy able to speed up classification analyses, especially during moni-

toring activities.  

 

Figure 14: (a) Peak-to-peak amplitude and (b) peak frequency, calculated by FFT, 
of the infrasonic events at EBEL. 
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Figure 15: (a) Peak frequency and (b) quality factor at EBEL obtained by Sompi 
method for AR order of 2.  

Generally, definition of peculiar features or properties by a ‘‘feature ex-

tractor’’ may be useful. In this case, the obtained spectral characteristics, 

computed by Sompi method (section 2.2.1), can be used as features to de-

scribe the infrasonic events. Then, in order to investigate prospective si-

milarities or differences among these features extracted from the infra-

sonic signals, we plotted the frequency and the quality factor, in the x 

axis and y axis, respectively, and obtained the so-called ‘‘features plane’.’ 

As shown in figure 16, the three clusters found by cross-correlation me-

thod were confirmed. Cluster 1 (containing the families 1, 2, 3, 4 and 5) 

showed frequency and quality factor in the range 1.2–2.2 Hz and 1.5–6.0, 

respectively.  
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Figure 16: Peak frequency of the nine families of infrasonic events plotted versus 
the quality factor calculated by Sompi method (see legend). 

Cluster 2 (comprising the families 6 and 7) was characterized by frequen-

cy range 2.0–3.5 Hz and quality factor 1.5–4.0. Finally, cluster 3 (com-

posed of the remaining families 8 and 9) comprises events with frequency 

range 3.5–4.5 Hz and quality factor 3–9. The average waveforms of the 

three clusters and the respective spectra and f-g diagrams are shown in 

figure 17. The stacked trace of cluster 1 is characterized by the longest 

duration. The broadest range of quality factor of cluster 3 is due to the 

characteristics of this cluster. In fact, the waveforms of the events be-

longing to this cluster, composed of about 2.5 cycles with slow decay fol-

lowed by a sharp amplitude decrease, cannot be considered as a perfect 

superposition of simple decaying sinusoids. Hence, the calculated quality 

factor values are slightly scattered. 
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Figure 17: (a) Waveforms obtained by stacking the events belonging to the three 
clusters. (b) Amplitude spectra of the average waveforms, shown in (a). (c) The f-g 
diagrams of the average waveforms shown in (a) and obtained for all the trial AR 
orders (4–60). The gray lines represent lines along which the quality factor (Q) is 
constant. Clusters of points indicate a resolved dominant mode; scattered points 
represent noise. The solid ellipses encircle clusters of points representing resolved 
dominant mode with high spectral amplitude. 
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5.3.1  Source location 

In order to obtain preliminary qualitative information about the source 

location of the infrasonic events, the differences between the arrival 

times of the 987 events of the first data set at the four stations were cal-

culated (figure 18). It is noteworthy that only two different sets of time 

lag values were found, suggesting the existence of only two source loca-

tions. Moreover, events belonging to the same family shared the same 

time lag values, confirming a common source location. Successively, the 

location of the infrasonic source, computed using semblance method (see 

section 4.4), was estimated by the semblance grid searching procedure 

over a surface of 1.5 ൈ 1.5 km, with spacing of 25 m, centered on the vol-

canic edifice and coinciding with the topographical surface.  In this case, 

a point source and a sound speed of 340 m/s in the atmosphere is as-

sumed.  As the events of each family show both very similar waveforms 

and time lag values, they obviously share the same location and source 

mechanism. Therefore, a stacked waveforms of each family at all the sta-

tions is computed and then located. In order to calculate the stacked 

waveforms, all the waveforms from the two first events of the family 1 

(one set of 4 signals for each event) and tried different time lags between 

these two sets of signals are taken into account. For each time lag value, 

the similarity between the events was evaluated by averaging the cross 

correlation coefficients calculated for each couple of corresponding sig-

nals (for example, ‘‘EBEL of event 1’’ and ‘‘EBEL of event 2’’ are two cor-

responding signals). The time lag value that gave the maximum average 

cross correlation coefficient was chosen and an average signal was ob-

tained for each station. 
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Figure 18: Difference between the arrival times of the infrasonic events at EBEL 
and EPDN (blue diamonds), at EBEL and ECPN (pink squares), and at EBEL and 
EPLC (yellow triangles). 
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Figure 19: Location of the stacked events of the nine families recognized by the 
waveform classification. 

The other events were compared to the average event that was ‘‘updated 

step by step’’  Thus, all the events contributed to the stacked signals 

representing the family (figure 12). The same procedure was followed for 

the other families. Then, the stacked waveforms were located (figure 19). 

The results of this analysis, in good agreement with the position of the 

most active summit craters during the studied period, confirm the exis-

tence of only 2 sources, the one coinciding with NEC and the other one 

with the pit crater on the eastern flank of SEC. Therefore, the families 1, 

2, 3, 4 and 5 to NEC and the families 6, 7, 8 and 9 can be attributed to 
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SEC. Similarly, cluster 1 is related to the activity of NEC, and clusters 2 

and 3 are related to the activity of SEC. Similar results were found at 

Stromboli by Ripepe and Marchetti, 2002, that recognized two different 

groups of infrasonic signals associated to two different craters. However, 

in other cases, different clusters of infrasonic events were found with no 

apparent relation to location (e.g., Ruiz et al., 2006). 

5.3.2  Source mechanism 

The detected infrasonic events are similar to the signals described by 

Vergniolle and Brandeis (1996), Ripepe and Marchetti (2002), Vergniolle 

(2003), and Vergniolle et al. (2004), and explained as generated by the 

vibration of a large gas bubble before bursting (see section 6.2). The other 

possible well developed models give rise to different waveforms to our re-

cordings. For example, the local coalescence within a foam (Vergniolle 

and Caplan-Auerbach, 2004) produces gradually decaying sinusoids. The 

detected events are generally characterized by a first energetic part 

roughly composed of one cycle and a half, followed by a second part with 

various weaker oscillations. The acoustic resonance of magma/fluid in a 

conduit (Garces and McNutt, 1997) should produce signals with different 

harmonics components (a fundamental mode and overtones), whereas 

our recorded signals are mainly monochromatic. Therefore, in order to 

quantitatively investigate the source mechanism of the infrasonic events 

on the basis of bubble vibration model, a waveform inversion was per-

formed. Using the equations reported in section 6.2.2, and fixing the val-

ues of density, viscosity of the magma, and thickness of  magma  above  

the  vibrating bubble to 2700 kg/m3, 400 Pa s, and 0.1 m, respectively 

(Vergniolle, 2003; Vergniolle and Ripepe, 2008), synthetic waveforms can 

be calculated. 
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Figure 20: Comparison between the observed and stacked waveforms of the three 
clusters of infrasonic events (blue) and the synthetic ones (red). Min, Max, and 
Stacked indicate the waveforms of the events with minimum and maximum peak-
to-peak amplitude and the stacked waveforms, respectively. The source parame-
ters obtained by the waveform inversion are reported in Table 1. 

Then, by the optimization algorithms described in section 6.2.4, the val-

ues of the three unknown parameters (radius, length of the bubble, and 

initial overpressure), that allow finding the best fit between synthetic 

and measured waveforms, were constrained. As described in section 6.2.4 

the identification problem can be formulated as an optimization task 

whose aim is to find a set of parameters that minimize the prediction er-

ror between measured data and the model output. In this case, the model 

is represented by the vibration of a large gas bubble before bursting, ma-

thematically described in section 6.2.2, as mentioned above, and the 
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measured data for each cluster consist in the waveforms of the two 

events with minimum and maximum values of peak-to-peak amplitude, 

and the stacked waveform. The comparison between synthetic and ob-

served or stacked waveforms is reported in figure 20 and shows that the 

fit is good at least for the first cycle of vibration: an explanation can be 

that at the end of the first cycle the bubble bursts and then the model 

ceases to be valid. The results of the inversion (Table 1) exhibit smaller 

bubbles for clusters 2 and 3 (roughly radius of 3–4mand length of 2–7 m) 

than for cluster 1 (roughly radius of 5–7mand length of 11–16 m). Moreo-

ver, the initial overpressure is higher for clusters 2–3 (in the range 0.06–

1.15 MPa) than cluster 1 (in the range 0.02–0.32 MPa). It is also worth 

noting that cluster 3 shows the maximum values of overpressure (up to 

1.15 MPa). The obtained values of the three unknown parameters are 

reasonable and in good agreement with previously obtained values at 

Etna (Vergniolle, 2003; Vergniolle and Ripepe, 2008; Cannata et al., 

2009a), at Stromboli (Vergniolle and Brandeis, 1996), and at Shishaldin 

(Vergniolle et al., 2004). Moreover, given that clusters 2 and 3 shared the 

same source crater, the similarity of the bubble radii of these clusters 

was expected. In fact, the bubble radius strongly depends on the size of 

the source vent. Finally, the lower overpressure value of cluster 1 is con-

sistent with the longer duration of the events. Indeed, high gas overpres-

sure produces large pressure perturbations in the atmosphere with short 

duration. Conversely, low regimes of gas overpressure generate long last-

ing explosions with small acoustic amplitude (Wilson and Head, 1981; 

Ripepe and Marchetti, 2002).  
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 R (m) L (m) P (MPa) 
Min (Cluster 1) 6 15 0.02 
Max (Cluster 1) 5 16 0.32 
Stacked (Cluster 1) 7 11 0.08 

    
Min (Cluster 2) 3 7 0.06 
Max (Cluster 2) 4 2 0.56 
Stacked (Cluster 2) 4 6 0.13 

    
Min (Cluster 3) 3 5 0.08 
Max (Cluster 3) 3 2 1.15 
Stacked (Cluster 3) 3 4 0.23 

 
Table 1: Strombolian bubble Parameters obtained by the waveform inversion: R, 
L, and P indicate radius, length of the bubble and initial overpressure, respective-
ly. Min, Max, and Stacked indicate the waveforms of the events with minimum 
and maximum peak-to-peak amplitude, and the stacked waveforms, respectively.  

5.3.3  Emitted gas volume 

Following the method shown by Vergniolle et al., 2004, Vergniolle, 2008, 

and Vergniolle and Ripepe, 2008, we quantified the emitted gas volume 

per day for NEC and SEC. In this case the second data set, comprising 

the detectable events occurring during the studied period, was used. The 

whole data set was divided into subsets, each containing the events oc-

curring in a day. Then, on the basis of the spectral features of the events, 

each subset was again divided into three subsets, containing events with 

similar spectral content to the ones belonging to clusters 1, 2 and 3. 

Therefore, assuming that events of all the three clusters occurred every 

day during the studied 3 months, 91 times 3 subsets should be created. 

However, only 103 subsets were formed because of the lack of events in 

some clusters during several days (especially cluster 3, taking place only 

during the first days of September). Successively, the number of events 

and the stacked waveform at EBEL station (figure 21) were calculated 

for each obtained subset. Then, by performing the waveform inversion, as 
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shown in section 2.5, the bubble volume and the overpressure were calcu-

lated for each stacked waveform. The bubble gas volume expelled in the 

atmosphere can then be deduced from the gas volume at the vent by us-

ing the overpressure values and the perfect gas law (Vergniolle and Ri-

pepe, 2008). Finally, the daily emitted gas volume was calculated for 

each cluster by multiplying the bubble gas volume in the atmosphere 

with the daily number of events. The daily emitted gas volume of the 

NEC coincides with the total gas volume of the subset of events similar to 

cluster 1, whereas the one of the SEC is equal to the sum of the gas vo-

lume of the  subsets of events similar to clusters 2 and 3.  

 

 

Figure 21: Examples of (a) daily subsets of infrasound events and (b) correspond-
ing stacked waveforms (see section 6.3.3 for details). 
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Figure 22: (a) Daily number of hours, when the detection of events was not possi-
ble because of infrasonic tremor during paroxysmal volcanic activity or noise 
mainly due to bad weather. (b) Total daily emitted gas volume of NEC and SEC, 
calculated by inversion of infrasound events (see section 6.3.3 for details). (c) Daily 
emitted gas volume of NEC. 

Moreover, the estimation of daily duration of the time periods characte-

rized by infrasonic tremor (recorded at the same time as the two lava 

fountain episodes) and bad weather, when the events could not be per-

formed, was performed (figure 22a). Then, for the days characterized by 

wind and/or tremor we multiplied the estimated daily emitted gas vo-

lume by a factor calculated on the basis of the percentage of the day 

when the event detection was not possible. For instance, assuming that 

during a certain day there was a 12 h time interval of impossible event 
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detection, the gas volume estimated for that day would be multiplied by 

2. Thus, we could correct the daily emitted gas volume taking into ac-

count also the prospective nondetectable infrasonic events during these 

‘‘blind time intervals’’ (figures 22b, 22c, and 23a). In summary, this me-

thod enabled estimating the emitted gas volume for each active crater. 

The average and maximum daily emitted gas volume were equal to about 

106 and 107 m3, respectively, at NEC, and about 105 and 106 m3, respec-

tively, at SEC. It is worth noting that infrasound measurements can only 

detect bubbles with an inner overpressure and thus likely coming from 

depth. Surface degassing activity observed at vents results from both the 

bubbles coming from depth and those quasi-stagnant in the conduit, 

which are silent on acoustic records (Vergniolle and Ripepe, 2008). 

 

Figure 23: (a) Daily emitted gas volume of SEC. (b) Overpressure values calcu-
lated by waveform inversion of each daily stacked event related to clusters 1, 2, 
and 3 (see legend).  
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Consequently, degassing related to the former is called active, while de-

gassing caused by the latter is passive (Vergniolle and Ripepe, 2008). 

Therefore, by using the aforementioned method daily active degassing 

per crater was estimated. This was also confirmed by the 

overpressure values calculated for each stacked waveform (figure 23b), 

much higher than the ones obtained by the coalescence of two bubbles in 

a conduit (Vergniolle and Caplan-Auerbach, 2004; Vergniolle and Ripepe, 

2008). Finally, NEC has been the most active crater from the active de-

gassing point of view, although most of the 

explosive and effusive eruptions have affected SEC during the investi-

gated period. 

5.3.4  Volcanic activity 

In September–November 2007 the eruptive activity at Mount Etna vol-

cano, described in the reports of INGV, Sezione di Catania  was characte-

rized by explosive activity and degassing at two summit craters (figure 

24). In particular, SEC was affected by Strombolian activity (resumed on 

15 August 2007), ash emission and two lava fountain episodes that took 

place on 4–5 September and 23–24 November. These two episodes lasted 

several hours and gave rise to lava flows on the eastern flank of the vol-

cano. Strong degassing activity was observed at NEC. Moreover, the im-

ages recorded by a video camera located on the upper southern flank of 

the volcano (ca. 4 km away from SEC) to follow the eruptive activity of 

SEC in detail were used (see step 2 of the sketch shown in  figure 2). The 

images of video camera are stored at a rate of 30 frames per minute. Un-

fortunately, only very short time periods could be analyzed because of the 

generally bad weather conditions at high altitude. Focusing on the time  

period 1–4 September, characterized by fairly good visibility of the sum-
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mit area and by the occurrence of clusters 2 and 3, both linked to the ac-

tivity of SEC (see section 6.3.1). It was noted  that the infrasonic events 

generally occurred at the same time as explosions taking place at the pit 

crater opened on the ESE flank of the SEC during the 2004–2005 erup-

tion. In particular, the events belonging to cluster 3 (that was present 

only in this time span) were coincident with ‘‘more visible’’ explosions 

than the events of cluster 2. The explosions linked to cluster 3 were cha-

racterized by a relevant presence of ash composed by lithic clasts due to 

moderate landslides and collapse of the inner walls of the cone (figure 

25). The different features of the explosions can be due to (1) variable gas 

expansion velocity in the magma column; (2) changes in the depth of the 

bubble formation; and (3) variations in the gas volume and/or the gas 

mass fraction in the magma. Because explosions with different features 

were not separated in time but generally occurred during the same  time  

intervals,  the  hypotheses  

 

Figure 24: Eruptive activity at Mount Etna between September and November 
2007 shown for two summit craters (SEC and NEC) (1, degassing; 2, ash emission; 
3, Strombolian activity; 4, lava fountains). See Figure 1 for details of the summit 
area.  
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involving continuous and quick variation of the magma characteristics 

are not plausible. In light of this, the different intensity of events belong-

ing to cluster 3 may be linked to the occasional occurrence of landslides, 

as testified by images gathered. The interpretation of an overload gener-

ated by lithic clasts accumulation that occludes the vent seems more rea-

sonable. Moreover, the stronger intensity of the explosions accompanying 

the infrasonic events of cluster 3 is also supported by the higher values of 

overpressure of cluster 3 than cluster 2, obtained by the study of source 

mechanism (see section 6.3.2).  

 

 

Figure 25: Video camera frames showing explosive activity at the SEC recorded 
at the same time as infrasonic events belonging to clusters 2 and 3. 
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5.4  Mt.Etna during May 2008: second case of study 

In this section, the capability of infrasound monitoring at Mt. Etna is 

shown. In particular, the methods explained in section 6.1 and 6.2, were 

applied in the period May 8-16, 2008, characterised by intense and spec-

tacular volcanic activity affecting two of the four summit craters, the 

NEC and the SEC, and a new eruptive fissure (EF) that opened east of 

the summit area (figure 26) on May 13. During the last years Mt. Etna 

showed a high eruption rate. From January 2008 mild Strombolian and 

degassing activity took place at SEC and NEC. On May 8-9, strong de-

gassing occurred at NEC, then on May 10, Strombolian activity followed 

by a lava fountain, occurred at SEC. After the end of SEC eruption, NEC 

was the most active vent and was affected by moderate to strong de-

gassing. On May 13 at 08:39 (all times are GMT) a seismic swarm took 

place under the summit area (focal depths ranging between -1.5 and 1.5 

km a.s.l.). Volcanic tremor showed a significant amplitude increase at 

08:52, and clinometric and GPS networks almost simultaneously evi-

denced remarkable ground deformations. All these phenomena highlight 

an intrusive process in the summit part of the volcano. Nevertheless, ad-

verse weather conditions inhibited observations by the video-camera 

network on the volcano. The first detection of the eruption was made by 

Meteosat satellite images, whereas volcanologists climbing the volcano in 

the fog were only able to hear loud detonations until 13:00, when the im-

proved weather allowed Strombolian activity at the upper part of EF to 

be visible. On the basis of the onset of the eruptive activity of EF, the pe-

riod May 8-16, 2008 was divided into two intervals: period I, from May 8 

to 13 at 09:25, and the following period II, until May 16 (figure 27a). Also  

in  this  case the infrasonic signal consisted of a few 
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Figure 26: Digital elevation model of Mt. Etna summit. North East Crater (NEC), 
South East Crater (SEC) and the eruptive fissure (black line, EF), which opened 
on May 13, are indicated. The source locations of 400 infrasound events recorded 
during the periods I (a) and II (b) are indicated with red and yellow circles, respec-
tively. The radii of the circles are proportional to the number of the locations in 
each grid node (see white circles and numbers reported in the lower right corner of 
the map). The sites of the infrasonic sensors are indicated with triangles. 

seconds long transients  characterised by impulsive compression onsets 

(figure 27b) and by sharply peaked spectra (figure 27c). During the lava 

fountains the increasing rate of infrasonic events gave rise to an almost 

continuous signal called “infrasonic tremor” (figure 27d-e). Four types of 

data and/or information were helpful to instrumentally follow the evolu-

tion of the eruptive activity: i) the time variation of the root mean square 

(RMS) amplitude of raw data; ii) the peak-to-peak amplitude and iii) the 

dominant frequency of the infrasound events; iv) their source location. 

The signal amplitude at EBEL station (chosen because marginally af-

fected by wind noise) was obtained by calculating the RMS within non-

overlapping 30-second-long windows for the whole recordings.  
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Figure 27: (a) Eruptive activity (red = lava fountain; yellow = Strombolian activ-
ity; grey = degassing activity) from May 8 to 16, 2008 shown for NEC, SEC and 
EF. The dashed line indicates the boundary between period I and period II (see 
text for details). (b) Infrasonic events related to the activity of SEC, NEC and EF 
and their spectra (c). (d) Infrasonic recordings at EBEL station between 9:20 and 
9:30 on May 13, 2008. (e) Infrasonic tremor recorded at 9:27 on May 13, 2008 at 
EBEL (same time scale as in b). (f) Short Time Fourier Transform (STFT) of the 
infrasonic signal recorded at EBEL station on May 13, 2008, from 8:00 to 24:00. 
The white dashed line indicates the onset of the eruption. 
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Figure 28: (a) Time variation of amplitude of the infrasonic signal, calculated as 
root mean square (RMS) of moving windows of the recordings at EBEL; the top 
arrow evidences a period characterized by strong wind affecting the RMS ampli-
tude, nevertheless wind effect influenced other stations in a severe way also in 
crucial periods such as the May 10, during the lava fountain. (b) Time distribution 
of the peak-to-peak amplitude, and (c) of the dominant frequency of 400 infrasonic 
events recorded at EBEL. 

 



180 
 

The value of peak-to-peak amplitude was easily measured for each event. 

The dominant frequency of each event was obtained from a Fast Fourier 

Transform (FFT) spectrum computed on a 2.56-second-long window, 

starting at the onset of the event. The evolution of the three above pa-

rameters during the investigated time span is shown in figure 28a,b,c, 

respectively. The location of the infrasonic source was estimated by the 

2D semblance algorithm over a surface grid of 1.5×1.5 km, with spacing 

of 25 m, covering the summit area and coinciding with the topographic 

surface. The location results are reported in (figure 29a-b and 26a-b). The 

precision of locations is impressive, especially for the events linked to the 

activity of NEC and of spatter-cones located at the lowermost tip of EF. 

The scatter in source locations for the SEC events is due to wind effects, 

and then to both the noise and the break of the assumption of a constant 

sound speed.  The considered period was analyzed using the steps ex-

plained in section 6.1 In particular, during period I (figure 28a), the 

infrasound signal was mainly characterised by transients (recognized by 

means of automatic STA/LTA trigger) lasting up to 10 seconds (figure 

27b), with two different frequency peaks between 1 and 2 Hz (figure 27c 

and 28c), low values of peak-to-peak amplitude (figure 28b) and source 

location constrained at NEC (figure 29a,b and 26a). An  exception  was 

found on May 10, at the same time as SEC activity, when infrasonic 

transients showed shorter duration (about 2 seconds; figure 27b), larger 

peak-to-peak amplitude (figure 28b), and higher frequency (ranging be-

tween 3 and 4 Hz; figure 27c and 28c). Moreover, during the lava foun-

tain at SEC infrasonic tremor was recorded causing a sharp RMS in-

crease (figure 28a). We were able to locate only a few events related to 

the SEC activity because of the strong wind noise at ECPN and EPDN 

stations. Period II was initially characterised by the occurrence of infra-

sonic tremor, starting at 09:25 and marking the onset of the eruptive ac-
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tivity of EF (figures  27d,e). This is the only available real time datum 

able to give us the exact timing of the eruption onset. 

 

Figure 29: (a-b) Time variation of the source location of the infrasonic events. 
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The location was tentatively done on the basis of the first impulsive 

events following the continuous tremor signal. It is worth noting that 

during the first hours of the eruption, the spectral content of the infra-

sonic tremor gradually changed from about 1.0-3.5 Hz to 2.0-4.0 Hz (fig-

ure 27f), because of a change either in source location and/or in source 

parameters. The detected infrasonic events exhibited very short dura-

tion (about 1 second; figure 27b), frequencies mostly ranging between 2.5 

and 4 Hz (figure 27c and 28c), and higher peak-to-peak amplitude (fig-

ure 28b). Moreover, on May 13-14, the infrasound source moved south-

eastward from NEC highlighting the activity at the lowermost tip of EF 

(figures  29a,b and 26a). During both periods I and II, three families of 

events with different features were detected: NEC, SEC and EF events 

(figures 27b,c). Due to the explosive activity characterising SEC and EF, 

and to the observed waveforms, the events of the second and third fami-

lies can be modelled in terms of oscillations of Strombolian gas bubbles, 

as explained in section 6.2.2  modelled as cylinders with hemispherical 

heads before they burst. By the optimization process explained in section 

6.2.4., the values of the three unknown parameters, radius, length of the 

bubble and initial overpressure were constrained. For measured data, 

two events for each family were take into account. In particular, an 

event with low amplitude and another with high amplitude (figure 30a 

and 30c). Both the investigated families showed fairly steady values of 

radius and length of the bubble, but very variable initial overpressure. 

For SEC events, a radius length of 2.9-3.3 m, a length 4.4-5.6 m and an 

initial overpressure of 48-221 kPa were obtained. On the other hand, EF 

events were fitted by using radius and length of the bubble respectively 

equal to 2.5-3.1 m and 2.8-3.4 m, with an initial overpressure of 72-421 

kPa. These results are reasonable and in good agreement with previ-

ously obtained values at Mt. Etna (Vergniolle and Ripepe, 2008). Con-
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versely, the source of long lasting (up to 10 s) NEC events cannot be ex-

plained by Strombolian bubble oscillations. A possible source of these 

signals is the coalescence of the very shallow part of a foam building up 

into the conduit, which produces large gas bubbles. In this case, the gas 

escapes through a tiny upper hole. The main difference with the former 

Strombolian bubble model is a lower overpressure, which changes the 

type of sound radiation. 

 

Figure 30: Comparison between the observed waveforms of the three families of 
infrasonic events (black) and the synthetic ones (dashed grey). Traces of NEC 
events are low-pass filtered at 1.5 Hz. “Low” and “High” indicate the waveforms of 
the events with low and high peak-to-peak amplitude, respectively. 
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The resulting acoustic signal can be modelled by the Helmholtz resonator 

introduced in section 6.2.3 Hence,  NEC events were modelled  by a 

Helmholtz resonator, by using the equation reported in section 6.2.3 and 

performing GA inversion (see section 6.2.4).  Since the Helmholtz resona-

tor is only able to model monochromatic damped oscillations, observed 

waveforms were filtered below 1.5 Hz (eliminating harmonics) consider-

ing events characterised by low and high amplitude (figure 30b). On the 

basis of results obtained analysing the infrasound recorded during Sep-

tember – November 2007 (Cannata et al., 2009b), the bubble radius at 

NEC was fixed at 6 m. Therefore, the obtained radius of the hole and 

length of the bubble were equal to 0.5 m and 34-40 m, respectively, with 

an initial overpressure of 1.8-22.7 kPa. Since the fact that other sources 

of damping are not considered in the model, the fit at the beginning of 

the oscillations was optimized (figure 30b). Moreover, the small mis-

match observed at the very first beginning of the acoustic waveform is 

compatible with the finite time taken by the hole to reach its final size 

(Vergniolle and Caplan-Auerbach, 2004). Although the results of inver-

sion for NEC events were acceptable, the different damping between syn-

thetic and observed waveforms, together with the presence of harmonics 

in the signals,  leads to a possible existence  of  other  potential  source  

mechanisms, allowing to model damped oscillations, such as the reso-

nance of fluids (magma or gas) in a conduit (Garces and McNutt, 1997). 
Given that for NEC events the frequency value of a spectral peak is ex-

actly twice the frequency value of the other spectral peak (figure 27c), 

the conduit is to be assumed either open or closed at both ends (Garces 

and McNutt, 1997). We suggest that the part of the conduit of NEC gen-

erating infrasonic events was filled by gas and closed: the lower closed 

end was provided by the magma free surface, while the upper closed end 

by a narrowing of the conduit. This due to the fact that propagation of 
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infrasound in the atmosphere requires that the conduit is not completely 

closed. In any case, the observation that the conduit is plugged at the 

vent does not necessary imply that it is an acoustically closed boundary 

(Garces and McNutt, 1997). On the basis of this model, the lower spectral 

peak (1.1 Hz; figure 27c) can be interpreted as the fundamental mode. It 

is equal to the ratio between the speed of sound in gas and twice the 

length of the conduit. The speed of sound ranges between 708 m/s, con-

sidering a pure hot gas (Weill et al., 1992), and 340 m/s  the speed of 

sound in air. Therefore, a length of the resonating portion of the conduit, 

roughly ranging between 150 and 320 m, can be reasonable. By a com-

parison between the two investigated periods, September-Novenber 2007 

and May 2008, it is clear that the NEC events exhibit different features. 

While in the first period a strombolian bubble vibration model provided 

good results, in May 2008 the resonating conduit gave more reliable re-

sults. This change can be explained considering the different volcanic 

processes that led to different phenomena, the lava fountains in 2007 and 

the 2008-2009 eruption.  

 

  



186 
 

5.5  Clustering of infrasonic events as tool to detect and locate 

explosive activity at Mt. Etna volcano 

The periods analyzed in sections 6.3 and 6.4 show how the active volca-

noes generate infrasonic signals, whose investigation provides useful in-

formation for both monitoring purposes and the study of the dynamics of 

explosive phenomena. In this view, at Mt. Etna volcano, a pattern recog-

nition system based on infrasonic waveform features has been developed. 

Firstly, by a parametric power spectrum method, in particular Sompi 

method, features able to characterize the infrasound events were used. 

As described in section 6.3, peak frequency and quality factor are a good 

waveform descriptors. Then, together with the peak-to-peak amplitude, 

these features set is used to classify waveforms. Before the classification, 

the definition of possible clusters in the feature space is needed. The goal 

of this process is to find a reasonable cluster partitioning of the feature 

space describing the infrasonic waveform and then the association with 

volcano activities. This process involves different techniques and consti-

tutes the basis of an automatic system able to locate different kinds of 

infrasound events without the standard location algorithm described in 

sections 4.4 Since different kinds of activities are associated to distinct 

signal waveform features, this system is able to recognize different explo-

sive regimes in the summit area of Mt. Etna. This leads to a waveform – 

source crater association. The following section will describe the first 

automatic event characterization applied on real time infrasound moni-

toring at active volcanoes (Montalto et al., 2010). It can be seen as a 

naturally extension of the sketch reported in figure 2 and described in 

section 6.1.  
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5.5.1  Discovering clusters using SOM 

In this section infrasound signals recorded during the period September - 

November 2007, also described in section 6.3, are analyzed using unsu-

pervised clustering approach. In order to investigate prospective similari-

ties or differences among the waveform features, the frequency, the qual-

ity factor and the peak-to-peak amplitude, are plotted in the x-axis, y-

axis and z-axis, respectively, obtaining the feature space (figure 31). This 

can be considered as an extension of the feature plane shown in figure 16 

and described in section 6.3 The approach adopted in this section for 

clusters discovering is the Self- Organizing Map (SOM) (see section 3.4). 

SOM, is a neural network based on unsupervised learning useful in data 

visualization and exploration . 

 

Figure 21: Feature space with frequency, quality factor and peak-to-peak ampli-
tude of the infrasound events recorded at EBEL station during September - No-
vember 2007.  
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As mentioned in section 4.4 the fundamental of the SOM is the competi-

tion between the nodes in the output layer. For clustering aim, U-matrix 

is used for a visual inspection of SOM. It visualizes distances between 

neighboring map units, and thus shows the cluster structure of the map. 

In figure 32 the SOM U-matrix after training algorithm is shown. Each 

group of neurons constitutes a cluster. In the obtained U-matrix we can 

see three dark blue regions, corresponding to low values in the U-matrix, 

and hence to clusters in the data. By studying the final U-matrix map, 

and the underlying features plane of the map, a number of cluster can be 

identified by K-means algorithm. In section 3.2 the concept of cluster as-

sessment was introduced; in the proposed approach, the best clustering 

structure of the SOM is obtained applying Davies-Bouldin index. 

 

Figure 32: SOM U-Matrix after learning process. The blue dark regions indicate 
a possible clustering structure of the data. 
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As described in chapter 3, this index uses the within-cluster distance and 

the between-clusters distance. The Davies-Bouldin index is suitable for 

evaluation of k-means partitioning because it gives low values indicating 

good clustering results. In figure 33 the Davies-Bouldin index plot, in 

which the best clustering structure correspond to the number of three 

clusters, is shown.  The best clustering structure of the obtained SOM is 

shown in figure 34 According to section 6.3.4, a cluster (called C1) is re-

lated to the degassing activity of the NEC, while the other two (called C2 

and C3) to two different kinds of explosive activity of the SEC (figure 34). 

 

Figure 33: Best clustering structure computed using Davies-Bouldin index index 
(DB index). 

   

Best clusters number 
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Figure 34: Best clustering structure of the SOM. Cluster 2 (C2) and Cluster 3 
(C3) are associated with two different kinds of explosive events at SEC. 

5.5.2  Real time infrasound signals classification system   

In this section, a real time waveform classification is described. Using 

SOM a three cluster structure emerged by infrasound waveform features 

space. Although this kind of system can be used as a classifier, it does not 

provide information about outliers. To overcome this problem a cluster-

ing algorithm based on the concept of density, described in section 3.4, is 

applied. In particular, the proposed system is composed of two levels: 1) 

clustering using density (e.g. DBSCAN) and 2) classification using op-

timal hyperplane separators (e.g. SVM). The learning phase merges to-

gether results of clustering and classification analysis (figure 35). The 

techniques described in section 3.1.4 and 3.2.1, are applied on infrasound 

event features together with geophysical information used to “label” the 

recognised clusters. Using DBSCAN algorithm three clusters are recog-
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nized (called cluster 1, 2 and 3) and other outlier points that can be con-

sidered as noise (figure 36). Points belonging to each cluster are related 

to infrasonic events that were located using semblance location method 

(see section 4.4.) (figure 37). As described in section 6.3, during Septem-

ber-November 2007, two infrasonic sources were found, NEC and SEC. 

In particular, a cluster was composed of events generated by NEC (clus-

ter 1) and the other two by SEC. 

 

Figure 35: Scheme of the learning system. 
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Figure 36: Clustering of the feature space reported in figure 31. The clusters are 
indicated with blue (cluster 1) and green dots (cluster 2) and light green triangles 
(cluster 3), the outliers with black diamonds. 

Such last two clusters were related to different kinds of explosive activity 

at SEC. As reported in section 6.3.4 and 6.5.1, the events belonging to 

cluster 3 were coincident with “more visible” explosions, characterized by 

a relevant presence of ash, whereas the events of cluster 2 were hardly 

visible in the monitoring video-camera recordings (Cannata et al., 

2009b). Features clustering together with labels provide the patterns for 

SVM learning process. As mentioned in section 3.3, optimization of pa-

rameters is a key step in model selection. In particular, C (regularization 

parameter) and σ  (radial basis function kernel parameter) are key pa-

rameters in SVM learning because their values determine classification 

performance (Devos et al., 2009). As a consequence, model selection is 

applied with the aim of finding the best pair of parameters C and σ that 

minimizes the error  rate  estimated  as the ratio  between  misclassified 

and  hit patterns. 
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Figure 37: Examples of space distribution of semblance values, calculated by lo-
cating two infrasonic events at Mt. Etna (top plots), and corresponding infrasonic 
signals at four different stations shifted by the time delay that allows obtaining 
the maximum semblance (bottom plots). The red squares and stars in the top plots 
the indicate four station sites and the nodes with the maximum semblance value, 
respectively. The black lines in the top plots are the altitude contour lines from 3 
to 3.3 km a.s.l. 

These parameters can be chosen using a cross-validation (CV) approach 

(Hastie et al., 2002), which is, as described in section 3.3, a statistical 

method for learning algorithms evaluation and model selection. In par-

ticular, in K-fold CV the available dataset is partitioned into K subsets or 

“folds”: K-1 folds are used for SVM learning purpose, and the remaining 

fold for model validation. All SVM training algorithms are computed us-

ing one-against-all method (see section 3.2.1). Since the used dataset is 

small, a simple exhaustive grid search can be performed (Hsu et al., 

2007). C was systematically changed in the range [1 100] with a step of 

10, σ in the range [0.1 10] with a step of 0.5, and a K-fold CV with K=10 

was used. 
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Figure 38: Best SVM model selection using K-Fold Cross-Validation (modified 
from figure 14 of section 3.3.). 
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The entire procedure can be summarized as follows (figure 38): 1) a grid 

value of C and σ is defined; 2) for each pair of C and σ values, a mean er-

ror rate is computed averaging the error rate values obtained by the K 

SVM models; 3) the pair of C and σ with the minimum error rate is se-

lected; 4) such a pair is used to train the final SVM model with the whole 

dataset, comprising all the K folds. Here, the best parameter values were 

C=1 and σ=0.1, for which mean cross-validation error minimized to 0.6%.  

In order to verify the system, the trained SVM is tested by classifying 

new unknown infrasonic events and then assigning them to their source 

crater. The reliability is verified using events not analysed during the 

previous learning phase. To this end, a new test dataset of about 610 

events, recorded during two months, August and December 2007, was 

used and labeled by semblance location algorithm (section 4.4) (figure 

37). As aforementioned, the events belonging to cluster 2 and cluster 3 

were labelled using information related to the intensity of the explosive 

activity (Cannata et al., 2009b). It is noteworthy that this kind of infor-

mation often is not available, leading to a misclassification  of the Cluster 

2 and Cluster 3. The quality of classification is quantified using confusion 

matrix (table 1), where each column represents the instances in the pre-

dicted class (based on the SVM model), while each row represents the in-

stances in the actual class (based on the previously attributed labels). 

Thus, the entries on the diagonal count the events in which prediction 

agrees with known labels, whereas the other entries the misclassified 

events. 63 elements were wrong assigned, providing an error rate of 

about 11.97%.  
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Table 1: Confusion matrix calculated in the testing phase. Each column 
represents the instances in the predicted class (based on the SVM model), while 
each row represents the instances in the actual class (based on the previously at-
tributed labels). Thus, the entries on the diagonal (bold numbers) count the events 
in which prediction agrees with known labels, whereas the other entries the mis-
classified events. 

Misclassifications were mostly concentrated in the second and third 

classes that are related to the two different explosion activities of SEC 

crater. Indeed, such a distinction is qualitative and not clear-cut, hence 

many halfway events can be misclassified. If we do not take into account 

the distinction between clusters 2 and 3, and consider them as a single 

cluster, the error decreases to 5.25%.  

Finally, the proposed system can be summarized as follows (figure 39): i) 

triggering procedure is performed on buffers of acquired signal; ii) then, 

if events are found, the system evaluates whether there is a sufficient 

number of stations for semblance location algorithm; iii) if the number of 

stations is not sufficient, alternative “single station” location is per-

formed by extracting signal features and classifying them using the 

trained SVM. It is also worth noting that SVM classifier is also applied 

off-line on localizable events to evaluate its performance in distinguish-

ing NEC events (cluster 1) from SEC events (clusters 2 and 3). In this 

case, events belonging to clusters 2 and 3 are simply considered SEC 
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events and then labelled based on the source vent, with no further dis-

tinction depending on the type of explosive activity. This task is carried 

out by comparing the results of the classifier with the location parame-

ters provided by the semblance algorithm. By the inspection of the ob-

tained error rate, a new clustering execution is necessary when classifi-

cation of new signals is not aligned with that of infrasonic network clas-

sifier. This may be caused by the creation of a new active vent or by the 

changing activity of a preexisting vent; in such a case the system must be 

updated. 

 

Figure 39: Flow chart of the proposed system. 
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Chapter 6 

 

Insights into deep volcano dynamics using seismo-volcanic sig-

nals 

A fundamental goal of volcano seismology is to understand the dynamics 

of active magmatic systems in order to assess eruptive behavior and the 

associated hazard. Imaging of magma conduits, quantification of magma 

transport, and investigation of long-period seismic sources, together with 

their temporal variations, are crucial for the comprehension of eruption-

triggering mechanisms and its evolution over time. In this chapter seis-

mo-volcanic signals recorded at Mt. Etna volcano during 2007-2008 will 

be analyzed in detail using time-frequency and nonlinear techniques. In 

particular, a novel technique based on multi stations coherence able to 

highlight periods of intense activity will be introduced. In the last part of 

the chapter an extensive analysis of the banded tremor phenomena, that 

occurred at Mt. Etna during the 2008-2009 eruption, will be analyzed. All 

the methods described in this chapter, provide the basic knowledge for 

volcano activity analysis and eruption forecasting at Mt. Etna.  
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6.1  Seismic signals on active volcanoes 

In literature, on active volcanoes seismo-volcanic signals are routinely 

monitored, for surveillance and research purposes (e.g. Stephens and 

Chouet 2001; Patanè et al., 2008; Di Grazia et al., 2009; Varley et al., 

2010). These seismo-volcanic signals, already introduced in section 1.2, 

including volcanic tremor and LP events, have origin in the dynamics of 

magmatic fluids (Chouet, 1996; Almendros et al., 2002a) and are consi-

dered precursory phenomena for eruptive activity (Chouet, 1996). In par-

ticular, as mentioned in section 1.2, volcanic tremor can be defined as a 

persistent seismic signal recorded on active volcanoes. Although the rela-

tion between tremor amplitude and eruptive activity is still not very 

clear, in many cases increases of tremor amplitude coincides with the on-

set of strombolian activity, lava fountains, dome building or effusive 

eruptions (e.g. Dvorak and Okamura, 1985; McNutt, 1986; Brandsdòttir 

and Einarsson, 1992; Patanè at al., 2007; Patanè et al., 2008; Di Grazia 

et al., 2009). However, in other cases no relationship between superficial 

activity and tremor amplitude can be identified. This suggests that tem-

poral variations of volcanic tremor amplitude could also be a function of 

the flow rate of magma at large depths inside the crust (Ferrazzini and 

Aki, 1992; Konstantinou and Schlindwein, 2002). Focusing on the spec-

tral content, volcanic tremor generally exhibits many frequency peaks 

related to either source or path/attenuation effects due to seismic wave 

propagation through heterogeneous volcanic structures. Temporal varia-

tions of the power spectrum are in general observed on active volcanoes 

and are interpreted as source effects (Gordeev et al., 1990; Patanè et al., 

2008; Di Grazia et al., 2009).  Since the frequency content evolution is 

one of the primary tools for investigating the nature of volcanic tremor, 

several methods have been developed. In particular, methods based on 
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the time-frequency transforms (e.g. STFT or CWT described in chapter 2) 

are widely applied on volcano monitoring systems.  

Models related to the process of magma ascension from a deeper storage 

volume towards the surface, generating volcanic tremor, has been exten-

sively studied. The quantitative study of the processes responsible of the 

generation of volcanic tremor requires the formulation of a system of par-

tial differential equations describing the fluid flow and the elastic distur-

bance caused by the coupling between fluid and surrounding rock 

(Chouet and Julian, 1985; Konstantinou and Schlindwein, 2002).  

 

Figue 1: Lumped parameter model of the generation of volcanic tremor. Viscous 
incompressible fluid flows in the x direction from the upstream to downstream re-
servoir through a channel of length (L) with imperfectly elastic walls, modeled as 
movable but undeformable blocks of mass 2M, stiffness 2k and damping constant 
2A (all measured per unit distance in the z direction). All motion occurs in the x-y 
plane and it is independent of z. The dynamic variables are the channel thickness 
h(t) and the fluid speed v(x,t) (from Julian, 1994).  
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As explained in Julian (1994), tremor generation process must necessari-

ly be nonlinear. An important characteristic of time-invariant linear sys-

tem is that its output can contain only frequencies that are present in its 

input signal. For this reason, this kind of system cannot oscillate sponta-

neously. Volcanic tremor exhibits a nonlinear behavior since it can be ex-

plained as an oscillatory response to a steady input (e.g. stress, fluid 

pressure, heat etc..). Julian (1994)  proposed a simple lumped-parameter 

model that explains how tremor oscillations are excited by a nonlinear 

instability that arises when fluid flows through an irregular channel 

with deformable walls (figure 1). Further complications may arise if the 

fluid is considered biphasic, if the thickness of the conduit changes in 

space and/or in time, if there is a visco-elastic behavior. 

 

Figure 2:  Synthetic seismograms of volcanic tremor (channel thickness versus 
time ) generated for different values of the magma driving pressure p1 depicted in 
the flow model shown in figure 1. Note the gradual transition from simple limit 
cycle, to limit cycle with one subharmonic up to chaotic behavior (from Julian, 
1994).  
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In the light of it, a number of simplifying assumptions are usually made: 

(a) the fluid has one phase only, (b) the fluid has constant density, (c) the 

motion occurs in one or two dimensions, (c) the conduit behaves elastical-

ly, (d) conduit thickness change only as function of time (Konstantinou 

and Schlindwein, 2002).  

Using the principles of mass and momentum conservation the lamped-

parameter model of Julian (1994) derived a third-order system of nonli-

near ordinary differential equations describing the flow through a con-

stricted channel with elastic walls (figure 1). The model considers two 

reservoirs, filled with a single phase fluid at pressure p1 and p2 connected 

by a channel of length L and thickness h, through which the fluid can 

vary only in the x direction (figure 1), undeformable blocks of mass 2M, 

stiffness 2k and damping constant 2A . In particular, the channel thick-

ness is a function of time and its variation is related to walls deformation 

along the y direction due to changes in the fluid pressure. The equations 

of motion that control the dynamics of the tremor model can be expressed 

using a third order system of ordinary differential equations (Julian, 

1994):   
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where ρ is the fluid density, ν is the flow speed averaged over the channel 

cross-section h and η is the viscosity. Julian (1994) demostrated numeri-

cally that synthetic tremor time series (channel thickness h versus time) 

generated for different values of the fluid driving pressure p1, exhibit dif-

ferent types of behavior: from simple limit cycle to chaotic behavior (fig-

ure 2). Considering the previous system in a chaotic regimes, the phase 

space of the three state variable h, ν and ሶ݄  of the system reveals sets of 

orbits that diverge from each other due to the high sensitivity to initial 

condition. The obtained geometrical object, already described in section 

2.3.1, is a fractal object called strange attractor (figure 3).  

 

Figure 3:  Phase space formed by plotting the triplet of values h, v, ࢎሶ  for a driving 
pressure of p1 =19.0 MPa. (from Julian, 1994). 
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In particular, intermittency of particular seismo-volcanic events and the 

transition to tremor reflect behaviors characteristic of nonlinear systems 

(Stephens and Chouet, 2001). Evidence of chaotic behavior has been re-

ported in the pattern of eruptions of hydrothermal systems at Old Faith-

ful (Nicholl et al., 1994) and banded tremor episodes at Mt. Etna that 

will be described in this chapter.  

The possibility of using LP signals to place quantitative constraints on 

the ascent rate of magma and on its pathway within the conduit is moti-

vated by observations of rapidly increasing LP-event rate merging into 

the tremor before an eruption. Furthermore, the use of VLP and LP 

events to probe the state of the fluid and dynamic processes within a vol-

canic system has gained prominence in recent years (Neuberg et al., 

2000; Chouet, 2003; Kumagai et al., 2003). In order to collect LP and 

VLP events at Mt. Etna, an automatic detection procedure, based on the 

trigger methods described in section 4.2, is used. In general, a dynamic 

threshold is  computed as a multiple of the 5th percentile alculated on 

the squared RMS of the signal filtered in frequency bands of interest. 

This allows the recognition and counting of the different type of events, 

together with an evaluation of their energy content. Although LP swarm 

are observed before lava fountain and/or eruptions, the occurrence rate 

alone does not provide quantitative information about the activity state 

of the monitored volcanoes. For this reason, beyond the number of trig-

gered seismo-volcanic events over time, other information related to 

them are needed. In particular their spectral characteristics, waveform 

morphology and source locations, are considered. A number of studies 

have shown evidences of apparently changing source depths of tremors. 

Thus, tremor source location could constitute the best candidate for map-

ping the extend and geometry of the underlying magma, conduits, or re-

servoirs and also for quantifying pressure transients caused by resonance 
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or movement of fluids along those conduits (Battaglia et al., 2005; Di 

Grazia et al., 2006). There have been previous attempts to estimate the 

location of volcanic tremor sources mainly based on recordings from a 

single or a number of multichannel seismic systems (Furumoto et al., 

1990; Almendros et al., 2002b; Saccorotti et al., 2004). More recently, 

precise locations based on amplitudes, recorded at temporary or perma-

nent short-period vertical or three-component broadband stations have 

been performed at Bromo (Gottschammer and Surono, 2000), Piton de la 

Fournaise (Battaglia and Aki, 2003), Mt. Etna (Di Grazia et al., 2006). In 

the next section several periods of intense volcano activity, such as the 

lava fountains that occurred in the periods September-November 2007 

and May 2008, and the 2008-2009 eruption, will be analyzed in detail us-

ing the analysis techniques reported in the previous chapters.  
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6.2  Seismo-volcanic signals at  Mt.Etna  during 2007 

Like many basaltic volcanoes, Mt. Etna typically erupts in effusive to 

weakly explosive styles (Mulargia et al., 1985), even though powerful ex-

plosive eruptions (sub-Plinian to Plinian events) have been recognized 

during the Quaternary (Del Carlo et al., 2004). As a result, lava flow 

propagation has typically been considered the main hazard at Etna and 

only recently its explosive activity has been taken into account as a se-

rious volcanic risk for local populations and for aviation in the central 

Mediterranean region (Andronico et al., 2007, 2008b). This is because, in 

the last decades, explosive eruptions represented its most frequent activ-

ity, producing eruptive plumes and copious ash fallout on its flanks. 

Since the 1970s, more than 180 fire fountain episodes have occurred at 

summit craters (Behncke and Neri, 2003). During the 2001 and 2002–

2003 eruptions, an exceptional and prolonged explosive activity was ob-

served for the first time in the last century (Allard et al., 2006). These 

two highly explosive events were related to the arrival of undegassed, vo-

latile-rich, fast-rising magma that rose from the deep portion of the feed-

ing system and bypassed the central conduits (Andronico et al., 2008a; 

Patanè et al., 2003, 2006). After the 2004–2005 quiet summit effusive 

eruption and the 2006 summit eruptive phase, characterized by both ef-

fusive and explosive activity from the South East Crater (SEC), a new 

period of explosive activity started from this crater at the end of March 

2007, producing four episodes of fire fountains in about 1.5 months. The-

reafter, on 4–5 September 2007, one of the most powerful fire fountaining 

episodes (both in terms of duration, about 12 h, and erupted volume of 

lava and tephra, about 2–4 ൈ 106 m3) originated from SEC, producing a 

plume up to 2 km high and dispersed deposits up to several tens of kilo-

meters from the volcano (Andronico et al., 2008b). This was followed on 
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23–24 November by another energetic fire fountaining episode (with du-

ration of about 6 hours). 

 

Figure 4: (top left) Structural map of eastern Sicily reporting the front of the Ap-
penninic-Maghrebian chain and the main faults. (a) Map of the summit part of Mt. 
Etna volcano showing 3-D source centroids of volcanic tremor locations computed 
between 20 August and 15 September 2007. In the map, broadband seismic sta-
tions (light blue triangles) operating during the study period and used for tremor 
locations, the GPS stations used in this work (ECPN and EPDN are located at the 
same place as the homonymous seismic stations), historical eruptive fissures (red 
lines), and time evolution of tremor locations (orange, red, and black circles) are 
also reported. The concentric black curves represent elevation contours at 500-m 
intervals. Yellow dots indicate central craters (C.C.). The rose diagrams show the 
dike structures directions as appearing at the surface through erosion processes in 
the southern and northern walls of Valle de1 Bove. (b and c) 3-D images of the vol-
canic edifice reporting volcanic tremor locations.  
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Both explosive and effusive eruptive styles are believed to be largely con-

trolled by the total volatile content and magma flow rate (Woods and 

Cardoso, 1997), which is modulated by processes within the volcanic con-

duit (Jaupart and Vergniolle, 1988). Models for the ascent of magma 

through shallow conduits have become increasingly sophisticated over 

the last two decades (Jaupart and Vergniolle, 1988; Sahagian, 2005). 

However, constraining the model behavior with observational data has 

proven difficult because the geometry of the shallow volcanic plumbing 

system is not generally well defined at almost all volcanoes worldwide, 

notwithstanding recent advances in the high-resolution seismic tomogra-

phy studies (Chouet, 2003; Patanè et al., 2006).  

In 2007, 14 seismic broadband stations were installed at elevations be-

tween 1100 and 3000 m a.s.l. and distances from the summit craters be-

tween 1.5 and 9 km (figure 4a), all equipped with Nanometrics TRIL-

LIUM seismometers, with flat response within the 40–0.01 s period 

range. In this section quantitative observations of seismo-volcanic signals 

(tremor, LP and VLP events) recorded at Mt. Etna during a 7-month pe-

riod are shown, focusing  on the  analysis  of  the  two  powerful  lava  

fountain  episodes taking place on 4–5 September and on 23–24 Novem-

ber 2007. In particular,  the temporal evolution of the tremor and of LP-

VLP activity in terms of source movement, change of the waveforms 

morphology, temporal evolution of the ‘‘dominant’’ resonance frequencies 

and the source quality factor (Q) for the LP events, will be studied using 

mainly the methods explained in chapter 4.  
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Figure 5: Temporal variation of the seismo-volcanic activity at ECPN station and 
GPS ground deformation in the period June–September 2007. (a and c) Number of 
LP and VLP events per hour and (b and d) related RMS values (energy content), 
(e) tremor amplitude computed in the LP and VLP bands. 
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6.2.1  Signal analysis  

The wide variety of seismo-volcanic events at Mt. Etna requires a sophis-

ticated trigger system able to detect the highest number of events when 

events swarm occurs. For this purpose the novel trigger method de-

scribed in section 4.2 was for its ability to detect events that are very 

close to each other. In order to collect different kinds of signals, in partic-

ular LP and VLP events, the aforementioned  procedure was applied on 

different frequency bands of interest. In this case, the 0.5-5 Hz frequency 

band is used for LP detection, while 0.03-0.2 Hz frequency for VLP detec-

tion. It is noteworthy that the LP detection frequency band allows the 

recognition of different types of events, as example  ExQ, VT and Hybrid, 

together with an evaluation of their energy content. The graphs in fig-

ures 5a–5e show the details of tremor, LP, and VLP activity in the period 

15 June to December 2007. The most relevant seismic feature (figures 

5a–5e), recognizable before the two lava fountaining episodes from SEC, 

both preceded by discontinuous ash emission and strombolian activity, is 

the  increase  in  the  number  of  LP events (figure 5a). Also the ampli-

tude of tremor in the LP band increases before the first eruptive episode 

at SEC (hereafter referred to as LF1), followed by a progressive decrease. 

By contrast, the second eruptive episode (hereafter referred to as LF2) 

occurred in a period of decreasing tremor amplitude, even though it was 

preceded by a period of increasing tremor amplitude. The VLP source 

during this period showed a low rate of occurrence (figure 5c). However, a 

temporary increase of the number of VLP events can be recognized in the 

second half of July before the first lava fountaining episode and after its 

end. 
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Figure 6: (a) tremor depth, (b–d) ‘‘dominant’’ frequency and quality factor of LP, 
and (e) GPS ground deformation measurements in the summit area (baseline be-
tween ECPN and EPDN GPS stations). The vertical red lines mark the two lava 
fountaining episodes of 4–5 September and 23– 24 November. The shadow gray 
area marks the period of discontinuous ash emission, whereas the yellow one 
marks the period of prevalent strombolian activity. The red line in (e) represents 
the moving average of original data considering groups of five measurements. 
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Afterward, another increase in the VLP rate is recorded about one week 

before the onset of the second lava fountaining episode. It is noteworthy 

that a low rate of VT seismicity was detected under the volcano during 

these months, similarly to the first half of 2007, which is in contrast with 

the progressively increasing occurrence rate of LP events. In the follow-

ing sections, more detailed analyses are presented on LP and VLP 

sources, focusing on the two lava-fountaining episodes of 4–5 September 

and of 23–24 November. The tremor location procedure, normally applied 

at Etna on 1-h-long filtered signal windows (0.5–5 Hz) for surveillance 

purposes (figure 6a), has been reapplied on 5-min-long filtered signal 

windows (in both the frequency ranges 0.5–2.5 and 0.5–5.0 Hz) consider-

ing two wide periods encompassing the two lava fountaining episodes 

(shadow gray areas in figures 5 and 6). In addition, since also LPs and 

VLPs may be sensitive to factors that can change with time during a 

magmatic cycle (Chouet, 2003), their locations were also computed.  

6.2.2  Tremor source location 

In order to constrain the tremor source locations, the spatial distribution 

of tremor amplitudes was recorded by the distributed network shown in 

figure 4a. By using the location method described in section 4.4, precise 

locations based on 5-min-long filtered signal windows, were determined 

for tremor recorded from 20 August to 15 September for the first lava 

fountaining episode and during 15–30 November for the second episode. 

As aforementioned, tremor locations were retrieved considering two dif-

ferent frequency bands (0.5–2.5 Hz and 0.5–5.0 Hz) by using a grid-

search approach (Battaglia et al., 2005; Gottschammer and Surono, 

2000). In particular, to avoid unstable solutions, the location results were 

considered reliable only when (1) the goodness of the R2 fit is ~0.9 and 
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(2) at least 12 of the 14 stations are available. Even if the attenuation 

factor may not have a large influence on the source locations (Battaglia 

and Aki, 2003), several values of the parameter α (0 ≤ α ≤ 0.4, step 0.01) 

that include the quality factor Q, are computed with the aim of improv-

ing the goodness of the fit. Following this procedure, the best fitting val-

ues (R2) were achieved with very low α values, mainly between 0 and 

0.02, suggesting high values of Q. For example, considering α = 0.02, c = 

2.0 km/s, and f = 1 Hz or 2 Hz, Q values of 78 and 157 were obtained. 

These values are in agreement with recent attenuation studies on this 

volcano (De Gori et al., 2005; Martinez-Arevalo et al., 2005; Giampiccolo 

et al., 2007), considering an averaged Q value for body wave propagation 

in a large rock volume, that takes into account the station distances from 

the source (about 10 km). Finally, in order to assess the stability of the 

source location a Jackknife technique was employed (Efron, 1982). In Ta-

ble 1, the 25th, 50th, and 75th percentile of the standard error for the 

whole computed Jackknife locations are reported for the period 20 Au-

gust - 15 September 2007 which includes the first lava fountaining epi-

sode. 

Table1: Standard Error, measured in kilometers, for Latitude, Longitude, and 
Depth of the Jackknife Estimation. 

 25th 
percentile 

50th 
percentile 

75th 
percentile 

Latitude 0.39 0.46 0.54 
longitude 0.48 0.55 0.62 
depth 0.65 0.77 0.88 
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Figura 7: 3-D source centroids of volcanic tremor locations computed between Oc-
tober 2006 and December 2007. 

Figure 7 depicts the 3-D source centroids of tremor locations computed 

for the period between 20 August and 15 September in the frequency 

range 0.5–5.0 Hz, also in order to take into account higher frequencies 

related to the very shallow tremor activity in proximity of the vents (Di 

Grazia et al., 2006). These locations reveal, for the first time, the geome-

try of the shallow central feeding system. The imaged conduit consists of 

two connected resonating dike-like bodies, extending from sea level to the 

surface. The shallower dike, crossing the central craters (orange and red 

dots in figures 4a–4c), shows a lateral dimension changing with depth. It 

is located between about 1.0 km a.s.l. and the surface. In proximity of the 

surface it presents a maximum horizontal extension of about 2.0 km 

while its deeper part shows a maximum horizontal extension of about 3.0 

km. Retrieved inclination and azimuth of the dike are of 15° ± 10° and 

135°± 5°, respectively, thus suggesting a resonating dike-like body strik-

ing NW–SE, slightly inclined from the vertical toward the SW. The dee-

per dike (black dots in figures 4a–4c), tilted to the north of 25° and main-

ly located below 1 km a.s.l., shows a lateral dimension of about 3 km and 

a vertical extension of about 0.5 km. It strikes in the NNW–SSE direc-

tion  (black  
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Figure 8: Temporal evolution between 20 August and 15 September of (a) alti-
tude, (b) longitude, and (c) latitude of tremor sources. The red lines are the moving 
average of original data considering groups of 30 measurements. The vertical 
orange line marks the start of strombolian activity at SEC, while the empty red 
rectangle defines the lava fountaining period (for details see INGV-CT volcanolog-
ical reports at http://ct.ingv.it). 

dots in figures 4a–4c) and is slightly inclined (about 20°) from the vertic-

al toward ENE. The stability of this shallow plumbing system geometry 

is confirmed considering: (1) 3-D source centroids of tremor locations 

computed during 15–30 November including the 23–24 November lava 

fountaining episode at SEC and (2) tremor locations calculated on the 1-

hour-long windows of signals between October 2006 and December 2007, 

comprising the two lava fountaining episodes (figures 5 and 6). Notwith-

standing the different time resolution, the locations reported in figure 4d, 

divided as a function of depth, show clearly the orientation of the two 

dike-like bodies at different depth (NNW–SSE the deeper and NW–SE 

the shallower). The temporal evolution of tremor sources during 20 Au-
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gust to 15 September indicates a progressive migration toward the SEC, 

starting about 8 days before the onset of the lava fountaining (figures 

8a–8c), whereas a clear shallowing of sources is observed only a few 

hours before the onset of the lava fountaining. After its end, the source 

centroids migrated deeper (below 1 km a.s.l.), clustering in a wide vo-

lume, NNW–SSE oriented, beneath the central craters (black dots in fig-

ures 4a–4c and figure 8c). Similar spatiotemporal results have also been 

obtained for the lava fountaining episode occurring on 23–24 November. 

6.2.3  Waveform events classification 

At Mt. Etna, LP signals are often accompanied by the VLP pulse or 

pulses with a peak frequency between 0.06 and 0.1 Hz. However, in some 

cases VLP signals occur alone, either as VLP tremor or a single VLP 

pulse not accompanied by an LP event (Saccorotti et al., 2007; Lokmer et 

al., 2007). The variability of the LP component associated with VLP 

events is evident in the seismogram reported in figure 9, which shows a 

small VLP pulse accompanying the LP event, and then a higher VLP 

pulse with a much weaker LP component. LP and VLP events often occur 

as swarms, also with many hundreds (tens for VLP) of earthquakes with-

in a few hours. However, VLP events usually show an almost stable low 

rate of occurrence (figure 5c). It is well known that the waveform of a 

seismic event depends on different effects: source effects (location and 

geometrical-physical-chemical    features  of  the  structure   that   pro-

duces   the  signal),  propagation effects (geometrical spreading, anelastic 

attenuation and scattering), site effects, and instrumental effects (e.g., 

Lay and Wallace, 1995). Therefore, two very similar waveforms imply 

that all these effects are the same. On the basis of such considerations 

and following Green and Neuberg’s procedure reported in section 4.7 
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(Green and Neuberg, 2006), a waveform classification of the LP and VLP 

events occurring during the period 1 July to 31 December 2007, was per-

formed  using a cross-correlation analysis between all pairs of selected 

signals recorded at ECPN station. Nine hundred eighty LP events, cha-

racterized by high signal-to-noise ratio and uniformly distributed in time 

(about six events per day), were selected and filtered below 0.7 Hz. The 

correlation matrix was obtained considering 15-s-long windows that in-

cluded the whole LP events and a threshold value of cross correlation 

coefficient equal to 0.8 was chosen. 

 

Figure 9: Velocity seismogram recorded at the vertical component of ECPN sta-
tion on 7 September 2007. The low-pass filtered signals, below 0.7 Hz and 0.15 Hz, 
are also reported. 

 



219 
 

Considering only the  families  with  more  than  20 events, three  main  

families  of  LP  events (hereafter referred to as families 1, 2, and 3) were 

obtained. These families comprise about 90% of all the considered events 

suggesting the repetitive excitation of stationary sources in a nondestruc-

tive process. As shown in figure 10a, most of the events belong to the 

family 1 (frequencies ranging between 0.3 and 0.4 Hz), except for the 

events occurring after the first lava fountain episode (for about 10 days) 

and from the second one to the end of the studied period. During these 

two periods most of the events belong to the family 2 showing higher fre-

quency content (about 0.5–0.6 Hz). On the other hand, the family 3 (fre-

quency of about 0.3 Hz) is composed of events scattered in almost the 

whole period. Regarding the VLP activity, about 700 VLP events, charac-

terized by high signal-to-noise ratio and uniformly distributed in time, 

were also selected and filtered below 0.15 Hz. Also for these events a 

cross-correlation threshold equal to 0.8 was used. Considering only the 

families with more than 20 events, four main families of VLP (hereafter 

referred to as families 1, 2, 3, and 4; figure 10a) were obtained. The aver-

age waveforms of the four families are shown in figure 10b. These fami-

lies comprise about 85% of all the considered events suggesting also in 

this case the repetitive excitation of stationary sources in a nondestruc-

tive process. 

  



220 
 

 

Figure 10: (a) Time distribution of the LP (families 1 (black diamonds), 2 (black 
triangles), and 3 (black squares)) and VLP (families 1 (red diamonds), 2 (red tri-
angles), 3 (red squares), and 4 (red crosses) events as a function of their average 
frequency content, and RMS of the tremor signal calculated by 30-min-long time 
windows at the vertical component of ECPN station (black line). (b) Average wave-
forms of the four VLP families and (c) of the three LP families. (d) f-g diagrams of 
the average waveforms shown in (c). The black lines represent values of constant 
quality factor (Q). Clusters of points (encircled with gray ellipses) indicate a re-
solved dominant mode, scattered points represent noise. 
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6.2.4  Properties of the resonator system 

It is known from simplified models of seismo-volcanic sources that the 

resonance frequency and damping of the system is strongly influenced by 

the nature of liquid and gas content (Chouet, 2003, and references there-

in). In order to study the temporal evolution of fluid-driven sources at 

Mt. Etna during the investigated period, the spectral features of about 

13000 LPs were analyzed. Since the characteristic properties of a resona-

tor system can be estimated by the spectral content of the radiated sig-

nals, two different spectral analyses on the selected LP events were per-

formed. First, 20-s-long (2048 samples) windows were considered, whose 

onset coincided with onset of the LP events. Since most of the radiated 

energy was concentrated below 0.7 Hz, a low-pass filter below 0.7 Hz was 

applied. Then, the spectra of the vertical component of ECPN station was 

estimated using the Fast Fourier Transform (FFT) obtaining the highest 

peak frequency. Most of the calculated peak frequencies range between 

0.3 and 0.7 Hz (figure 6g). The moving average over 25 samples (black 

line in figure 6g) highlights spectral time variations, most of which are 

related to the volcanic activity. In fact, the frequency values decreased 

before the lava fountain episodes occurring on 4–5 September and 23–24 

November and then increased. The decrease was slight before the first 

episode and strong before the second one. In order to verify the aforemen-

tioned spectral variations and also to obtain information about the damp-

ing features of the LPs source, the Sompi analysis was applied (Chouet, 

2003, and references therein). As explained in section 2.2.1, by this me-

thod, a signal is deconvolved into a linear combination of coherent oscil-

lations with amplitudes decaying and additional noise.  Again, a low-pass 

filter below 0.7 Hz was applied on the data obtaining frequency and qual-

ity factor for autoregressive (AR) orders ranging between 2 and 10. The 
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sharply monochromatic nature of the investigated signals justifies the 

choice of these low orders (Lesage, 2008). The results were very similar 

for all the used orders. As shown in figure 6c, the obtained frequency 

values (for AR order 2) confirm the results of the FFT analysis in figure 

2b. The quality factor, mostly ranging between 2 and 8, showed an im-

portant variation after the first episode of lava fountain on 4–5 Septem-

ber (figure 6d), when the values decreased from about 5 to 2–3. 

6.2.5  Events location 

LP locations were performed by applying the semblance technique (Nei-

dell and Tarner, 1971) described in section 4.4. This method was pre-

ferred to the radial semblance technique (Kawakatsu et al., 2000), used 

instead for the VLPs analysis, because the particle motion of the ob-

served LPs was radial at only some summit stations. According to their 

uniform distribution in time and high signal-to-noise ratios, a subset of 

about 900 LPs were selected and located by using the five or six nearest 

stations to the summit area. Four-second-long windows of seismic data, 

low-pass filtered below 0.7 Hz, whose onset coincided with onset of the 

LP events, were used. For the locations a 3-D grid is adopted, with di-

mensions of 6x6 km and vertical extent of 3.25 km (from 0 km a.s.l. to the 

top of the volcano). The horizontal and vertical grid spacing is 125 m. A 

value of 1.7 km/s was chosen as seismic velocity because it allowed to ob-

tain the maximum semblance value. This value is consistent with seismic 

velocity values reported in literature for this kind of study at Mt. Etna 

(e.g., Privitera et al., 2003; Gresta et al., 2004; Bean et al., 2008). Fur-

thermore, the most recent high resolution velocity tomographies on this 

volcano suggest that for depth less than 1.0–1.5 km (Cocina et al., 2008), 

the used value is reliable and justified by the presence of intensely frac-
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tured rocks and pyroclastic deposits in the shallow layers of the volcanic 

edifice. The results, summarized in figure 11, suggest shallow LP sources 

located below the summit craters. The LP source showed striking time 

variations and a deepening from 3 to 1 km a.s.l. after the two lava foun-

tain episodes. In addition, the LP source gradually shifted northward 

from September to November. Concerning the VLP seismicity, about 400 

VLP events occurring between July and October 2007 were located by the 

radial semblance method (Kawakatsu et al., 2000). Because of the low 

amplitude of these signals, the VLP source was located by using only the 

four stations nearest to the summit area. The lack of one of the closest 

stations (EPDN; figure 4) between November and December precluded 

the extension of the analysis to the period of the 23–24 November lava 

fountaining episode. Twenty-second-long windows of seismic signal, 

whose onset coincided with the onset of the VLP events, low-pass filtered 

below 0.15 Hz, were used. The 3-D grid is the same as the one used to lo-

cate the LP events. The VLP locations, shown in figure 11, also suggest 

for VLP seismicity shallow sources located just below the summit area. 

Unlike the LP locations, the VLP locations (figure 11) remain steady for 

the whole period. A slight deepening can be observed after the lava foun-

tain episode occurring on 4–5 September. In order to estimate the error 

of the location, we followed the Almendros and Chouet method (Almen-

dros and Chouet, 2003). It is noteworthy  that in  most  cases, the  ob-

tained error  region contained only the node of the grid characterized by 

the maximum semblance value. Therefore, if error bars are not reported, 

the error can be considered lower than the grid spacing. It is noteworthy 

that the used location methods do not take into account material hetero-

geneity and topography. The former can affect the location results of both 

semblance and radial semblance methods. Conversely, the latter mostly 

influences the locations obtained by radial semblance, that is based on 



224 
 

both the similarity of the waveform and the particle motion. However, 

results obtained during the large-scale passive seismological experiment 

(June–July 2008), aimed at complementing the permanent Etna monitor-

ing system in the near-field, with the deployment of over 20 broadband 

stations in summit area, showed that the LP and VLP source locations 

obtained by only the permanent stations are quite reliable. For both LP 

and VLP sources, locations obtained using the dense network were only 

shifted by about 100–200 m. However, for seismovolcanic studies it is 

important to deploy as many stations as is feasible close to the source 

with the best azimuthal coverage possible as suggested by Neuberg and 

Pointer (2000), which allows partially minimizing the above mentioned 

effects. 
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Figure 11: (a and c) Time variation of the source location of about 900 LP and 400 
VLP events, occurring between 1 July and 31 December 2007 and between 1 July 
and 31 October 2007, respectively. The yellow rectangle indicates the time period 
when EPDN station did not operate. (b and d) Maps and W–E sections of summit 
area with the source locations of the LP (b) and VLP (Figure d) events (blue cir-
cles). The radii of the circles are proportional to the number of the locations in 
each grid node (see blue circles and numbers reported at center). 

  



226 
 

6.2.6  Volcanic processes 

The geometry of the magma pathway feeding the eruptive activity at 

SEC was highlighted by precise volcanic tremor source locations obtained 

in long periods including two lava fountaining episodes. As described in 

section 6.2.2 the imaged plumbing system consists of two connected reso-

nating dike-like bodies,NNW–SSE andNW–SE oriented, extending from 

sea level to the surface. The NW–SE trending source region has recently 

been supported by (1) the moment-tensor inversion of  LPs sources, indi-

cating a crack-like geometry (Lokmer et al., 2007) and (2) the dike propa-

gation trends modeled by crustal deformation data (Bonaccorso and Da-

vis, 2004; Patanè et al., 2005). Further evidence for NNW–SSE and NW–

SE dike structures can be found at the surface, exposed by erosion near-

by the summit craters. Their presence to depths of 500–700 m is dis-

played in a very impressive manner in the southern wall of the Valle del 

Bove (see rose diagram of dikes direction in figure 4a).  Moreover, it was 

evident that the features of volcanic tremor, LP, and VLP events, accom-

panying eruptive activity changed and such variations can be explained 

by transport/discharge of gas-rich magma. In the medium-term, the 

clearest relationship between the uprising of magma, the progressive in-

crease of the pressure in the conduits and the renewal of activity at SEC 

(INGV-CT volcanological reports at http://ct.ingv.it) can be recognized 

since 15 July by the increasing activity of LPs events. Afterward, since 

15 August the onset of a discontinuous activity of ash emission, followed 

by strombolian activity at SEC (Andronico et al., 2008b) on 27 August, 

was accompanied by (1) the migration of tremor sources at shallow depth 

(figure 6a); (2) the progressive increase in the tremor amplitude (figure 

5e); (3) the increase in the number of LPs and of their associated energy 

(figures 5a and 5b); and (4) by variations of ground deformation mea-
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surements. In fact, ground deformation measured by GPS stations at the 

summit (in figure 6e the baseline ECPN-EPDN is shown) indicated an 

accelerating small dilatation of the summit area. A low rate of VT seis-

micity was, instead, detected under the volcano during these months, si-

milarly to the first half of 2007, suggesting that magma flowed almost 

aseismically. These observations suggest that, since 15 August, the ar-

rival of a small batch of undegassed magma (Nishimura, 2006) might 

have played a significant role in the re-activation of the SEC, leading to 

the 4–5 September lava fountaining episode. After this eruptive episode, 

the observed deflation of the edifice (figure 6e) and changes in tremor lo-

cations (deepening; figure 6a) can easily be explained by the gas-rich 

magma discharge during the paroxysm (Thompson et al., 2002; Kumagai, 

2006). The cartoon in figure 12 illustrates the evolution of the eruptive 

activity at SEC, leading to this lava fountaining episode, between July 

and September 2007. Afterward, a new slow magma recharge affected 

the conduit, as testified by a similar but slightly different behavior of 

GPS ground deformation and variations in seismovolcanic parameters, 

which prepared the way for the 23–24 November lava fountaining epi-

sode. In the short term, the decrease and following increase of the ‘‘domi-

nant’’ frequency of the LP events occurring before and after the two lava 

fountain episodes can be explained by variations of the resonator system. 

It is noteworthy that the first eruptive episode was also followed by a 

quality factor decrease. The resonator system, source of LPs, can be 

represented by a fluid-filled crack as suggested by recent studies based 

on the waveform inversion (Kumagai et al., 2003; Lokmer et al., 2007). 

Moreover, as suggested by the strong and frequent explosive activity in-

volving discharge of high volumes of magma during the studied time pe-

riod, the fluid can reasonably be considered a magma-gas mixture. 

Therefore, in the light of these assumptions, the aforementioned varia-
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tions that followed the lava fountain episodes may be due to a decrease in 

the solid/fluid impedance contrast caused by either a decrease of the gas-

volume fraction in the fluid or by an increase of pressure at constant 

temperature and gas-volume fraction (Kumagai, 2006). The observed 

eruptive activity supports the first interpretation that, in fact, is consis-

tent with the gas/gas-rich magma discharge during the lava fountain epi-

sodes. Similarly, the decrease of the ‘‘dominant’’ frequency, observed be-

fore the lava fountain episodes, can be interpreted as the consequence of 

an increase of the gas-volume fraction in the fluid. This variation, there-

fore, can likely be linked to the fast uprise of gas-rich magma preceding 

the explosive activity. It is noteworthy that the interpretation of the 

quality factor variations implies that the attenuation due to intrinsic 

losses is negligible. Concerning the LP and VLP source locations, it is 

worth noting that the observed limited and stable spatial extension of the 

most active clusters of LP events can be recognized over the years (Sacco-

rotti et al., 2007; Lokmer et al., 2008). This is indicative of the repetitive 

action of nondestructive sources in a restricted source zone where a shal-

low crack or a system of cracks probably exists. At Mt. Etna VLP events, 

similar to those observed in other active volcanoes (e.g., Kilauea, Ha-

waii), have  dominant  spectral  peaks  at  periods  of 10-15 s and can be 

associated with the transport of magma or gas slugs through cracks. As 

shown in figures 11b and 11d, the cluster of VLP lies directly beneath the 

main cluster of LP seismicity. This can be explained if VLP and LP oscil-

lations originate in the same system, representing the volumetric defor-

mation and     LP   oscillation of  a  shallow  crack  (or plexus of cracks),  

respectively  
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Figure 12: (a–e) Cartoon showing the evolution of eruptive activity at SEC be-
tween July and September 2007. Here the increase in the magma rising rate and 
volatile flux is considered the most probable trigger of the formation of the 4–5 
September fire fountain through a progressive coalescence of bubbles in the con-
duit. In (b), in a first stage, since 15 August, a discontinuous activity of episodic 
ash puff was observed, mainly consisting of lithic material, indicating failure and 
collapses of the inner walls of the conduit (Andronico et al., 2008b). This emission 
gradually increased in frequency and intensity and was then replaced by the ejec-
tion of incandescent material. In (c), from 27 August, strombolian activity (forma-
tion and release of gas slugs) started, becoming more regular and stronger in the 
next days. In figure (d), the increasing gas volume fraction in the conduit modified 
the slug flow (strombolian activity) into an annular flow responsible for the 4–5 
September lava fountain, driven by a long inner gas jet. In figure (e), after the 
eruptive episode, the observed fluctuation in the depth of tremor locations could 
suggest oscillation in the magma level in the conduit.  

(Chouet, 2003). Conversely, the scattered sources of deeper LPs and vol-

canic tremors would represent the result of the dynamic interaction of 

volcanic fluids (magma degassing) with surrounding solid rocks in wider 

parts of conduit. In conclusion, our results confirm the feasibility of vol-

canic tremor and LPs location as an effective monitoring tool for tracking 

the temporal evolution of seismovolcanic sources and the ascent of small 
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magma gas-rich batches which could flow almost aseismically through 

the conduits. Moreover, the investigations of many seismic parameters, 

integrated with geodetic observations, may be useful to forecast erup-

tions that, like the summit effusive or explosive eruptions at Mt. Etna, 

apparently do not show clear precursor signals. 
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6.3  Seismo-volcanic signals at Mt.Etna during 2008 

In this section, it is shown how volcanic tremor and LP events, together 

with infrasound signals treated in chapter 5, can represent important 

precursory phenomena of eruptive activity because of their strict rela-

tionship with eruptive mechanisms and with fluid flows through the vol-

cano’s feeding system. Important variations of these seismo-volcanic and 

infrasound signals, recorded at Mt. Etna volcano, occurred both in the 

medium- and short term before the eruption started on 13 May 2008. 

Several studies show how seismicity and ground deformation are the 

precursory phenomena most frequently observed before eruptions, as the 

Earth’s crust is distorted by magma rising to the surface and fluids mov-

ing within rocks. In the considered period, the most significant changes 

were observed in the frequency content and location of LP events, as well 

as in volcanic tremor location that, similarly to what observed during the 

lava fountain episodes described in the previous sections, allowed to 

track the magma pathway feeding of the 2008 eruptive activity. The 

infrasound showed three different families of events linked to the activity 

of the three active vents: NEC, SEC crater and the eruptive fissure (he-

reafter referred to as EF). The seismic and infrasonic variations reported, 

corroborated by ground deformations variations, help to develop a quan-

titative prediction and early-warning system for effusive and/or explosive 

eruptions. In particular, the period 2008–2009 was characterized by both 

effusive and explosive activities. As described in section 5.4, after the la-

va fountain occurring on 10 May 2008, at SEC, a new eruption took place 

on 13 May from EF.  
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6.3.1  VT earthquakes, ground deformation and volcanic tremor 

On the basis of the VT earthquakes, low-frequency seismic signals and 

deformation pattern, five different periods were distinguished during 

January–May 2008 (figures 15,16,19 and 20). At the beginning of 2008 

(period I) volcanic activity renewal was evidenced by both the occurrence 

of deep earthquakes (about 10–20 km b.s.l.; Figure 15a) and the exten-

sion of GPS lines (green line EMGL-EMAL, in figures 13a and 15b). De-

formation became more evident after mid-March (onset of period II) in-

volving the lines located at higher altitude on the volcano (green line 

EPDN-EPLC, in Figures 13a and 15b).  

 

Figure 13: (top left) Structural map of eastern Sicily reporting the front of the 
chain (1) and the main faults (2). (a) Map of the summit part of Mt. Etna volcano 
showing 3D source centroids of volcanic tremor locations, filtered in the band 0.5–
5 Hz and computed during the period 1–25 May 2008. Seismic stations (light blue 
triangles), seismic-infrasound stations (light blue squares), and baselines (green 
line and circles), whose measurements are shown in (b), are reported. The thick 
black line, located near the summit area, represents the eruptive fissure opened 
on 13 May 2008. Yellow and black dots indicate central craters and the earth-
quakes, occurring on 13 May 2008, respectively.  
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Figure 14: (a and b) 3D images of the volcanic edifice reporting volcanic tremor 
and earthquake locations, accompanying the eruption onset. 

A modest increase in the number of earthquakes and in the strain re-

lease was observed (figure 15a) from early April to early May, when a 

strong swarm occurred near Pernicana Fault (an important volcano-

tectonic structure in the north-eastern part of the volcano (e.g., Palano et 

al., 2009). This swarm marked the beginning of the period III. On 13 May 

(time boundary between period IV and V), hours before the beginning of 

the eruption, a further seismic swarm took place under the summit area 

(focal depths ranging between 1.5 b.s.l. and 1.5 km a.s.l.) and an intense 

deformation of about 0.9 m was measured, especially in the line at higher 

altitude, EPDN-EPLC (inset in figure 15b). Volcanic tremor locations are 

retrieved by following the approach described by Di Grazia et al. (2006) 

and Patane` et al. (2008), inverting the spatial distribution of tremor 

amplitude using the grid-search approach. Two different kinds of loca-

tions were performed: i) the volcanic tremor acquired during the whole 5 

months period was located by using 1-hour-long moving windows (figure 

15c); in order to obtain detailed information in the period 1-25 May (just 

before and during the first stage of the eruption), the tremor location 

technique was applied on 5-minute-long filtered signal windows. The 3D 

location of the volcanic tremor centroid for the period 1– 25 May (figures 

13a,14b and 14c) constrains both the area and depth range of magma de-
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gassing and highlights the magma pathway feeding the 2008 eruptive 

activity. 

 

Figure 15: (a) Volcano-tectonic (VT) earthquake daily number (histogram) and 
cumulative strain release (grey area) during January–May 2008. (b) GPS mea-
surements (baseline EMGL-EMAL and EPDN-EPLC in Figure 1a). The red and 
blue lines represent the moving average considering groups of five measurements. 
The inset in the left upper corner indicates the measurements of EPDN-EPLC 
baseline with a larger y-axis. (c) Altitude of the volcanic tremor source calculated 
by using 1-hour-long windows of the seismic signal filtered in the frequency band 
0.5–2.5 Hz (red dots) and 0.5–5.0 Hz (black dots). 
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Figure 16: (a) Reduced displacement of the seismic signal recorded by EBEL sta-
tion and filtered in the frequency band 0.5–2.5 Hz. (b) Hourly number of LP events 
detected in the frequency band 0.5–5.0 Hz (black dots) and their cumulative num-
ber (red line). The black vertical dashed lines and the top roman numbers indicate 
the time periods identified by VTearthquakes, low-frequency seismic signals and 
deformation pattern.  

During the period January – mid- March (period I in Figure 15c) the vol-

canic tremor depth remained at 0– 1.5 km a.s.l. with the exception of a 

brief period (first half of February), characterized by a renewal of the ex-

plosive activity at SEC. Rapid changes in volcanic tremor depth began in 

mid-March (period II). In particular, volcanic tremor centroids activation 

at very shallow depth (up to 3 km a.s.l.) in the frequency range 0.5–5.0 

Hz was observed. Also the deeper components of volcanic tremor  better 

evidenced in the range 0.5–2.5 Hz (Figure 15c)  shallowed from 0–0.5 km 

b.s.l to 1–1.5 km a.s.l.. From mid-March to the beginning of April, deep 

and shallow tremor sources alternated their dominance. From the second 
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part of April a deepening of location in the frequency range 0.5–2.5 Hz 

occurred. During these period, a regular increasing trend of the reduced 

displacement values occurred unlike the erratic variations previously 

noted (figure 16a). A further deepening occurred during 4–12 May (pe-

riod III–IV; figure 15c). At the same time as the beginning of the erup-

tion a shallowing of the tremor source was observed, followed by a dee-

pening, evident in the frequency band 0.5–2.5 Hz (period V).  

6.3.2  Long period events 

During the period January–May 2008, over 100,000 LP events were rec-

orded at Mt. Etna volcano (figure 16b). In figure 17 three examples of LP 

events at two stations (ECPN and EBEL) are shown. It is clear that the 

spectral content of these events is similar at the two considered stations, 

suggesting that the spectral peaks are due to source rather than to 

propagation and site effects. A subset of 7500 LP events characterized by 

a high signal to noise ratio at station ECPN was selected to carry out 

spectral analysis. For each LP event, a spectrum from the vertical com-

ponent of station ECPN using 10.24 s windows were computed. Daily av-

erage spectra were calculated, normalized and visualized as a pseudo-

spectrogram (figures 18 and 19a). Most of the radiated energy was con-

centrated in the band 0.4–4 Hz for almost the entire studied period. Dur-

ing the periods I-II the LP events were polychromatic. At least two dif-

ferent spectral peaks can be noted at frequencies ~0.7-1.5 and 3.5 Hz. In 

the first event of figure 17 (taking place on March 5) it is clear that these 

two  spectral  peaks  of  the  
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Figure 17: Examples of LP events recorded at the vertical component of ECPN 
and EBEL stations and their Short Time Fourier Transform (STFT). The STFT 
was calculated by 2.56-second-long moving windows overlapped by 1.28 s. 

periods I and II are not due to two different kinds of LP events, but to the 

same type of polychromatic events. Assuming that the source of the LP 

events is represented by a resonating fluid-filled crack, as suggested by 

recent studies based on waveform inversion (e.g. Nakano et al., 2003; 

Lokmer et al., 2007), the spectral features of the LP signal depend on the 

size/geometry of the crack (Chouet, 1996; Kumagai and Chouet, 2000, 

2001; Falsaperla et al., 2002) and on the physical-chemical features of 

the fluid within it (Kumagai and Chouet, 2000; Morrissey and Chouet, 

2001). Therefore, on the basis of this, the two peaks could be related to 

two different resonating structures connected each other. It is also inter-

esting to note that from March to the beginning of May (period II) a spec-

tral peak gradually shifted from 0.7 to 1.5 Hz. Speculatively, the ob-

served variations of the peak at 0.7-1.5 Hz could be due to a slow varia-



238 
 

tion of the fluid characteristics inside the resonating structure. On 4 May 

the LP signal suddenly turned from polychromatic to monochromatic 

with almost the whole energy radiated at about 1.5 Hz (period III; figure 

19a). Finally, during periods IV and V the LP events were again polyc-

hromatic with spectral content ranging from 1 to over 6 Hz (figure 17). 

 

 

Figure 18: Pseudo-spectrograms obtained by using the daily average spectra (a) 
and the normalised ones (b) of the LP events recorded at the vertical component of 
ECPN station. The black vertical dashed lines in (a-b) and the top roman numbers 
indicate the time periods identified by VT earthquakes, low-frequency seismic sig-
nals and deformation pattern. 
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Figure 19: (a) Pseudo-spectrogram obtained by using the normalized daily aver-
age spectra of the LP events recorded at the vertical component of ECPN station. 
(b) Longitude, (c) latitude and (d) altitude of the source locations of 600 LP events. 
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Figure 20: Map and section of Mt. Etna with the source locations of 600 LP 
events during the five periods. The radii of circles dots are proportional to the 
number of the locations in each grid node (see black circles and numbers reported 
in the lower right corner of the map).  
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A subset of 600 LP events with high signal to noise ratio at all the six 

stations nearest to the summit area (figure 13a) was selected to perform 

location analysis. LP events were located by following the semblance me-

thod (Neidell and Tarner, 1971) using 4-second-long windows of seismic 

signal, whose onset coincided with onset of the LP events, low pass fil-

tered below 1 Hz. This frequency band was chosen because of the best 

performance of the location algorithm at low frequencies. The 3D grid 

was centered on the volcano edifice with dimensions of 6 ൈ 6 ൈ 3.25 km 

and node spacing of 125 m and a  seismic velocity of  1.7 km/s  (e.g., Pa-

tanè et al., 2008). The results show LP sources generally located below 

the summit craters (figures 19b–d). However, some source location 

changes were noted. From the beginning of January to 3 May (period I–

II), the LP source remained stable below the Bocca Nuova crater at shal-

low depth (about 3 km a.s.l.). From 4 to 11 May (period III) the number of 

LP events located at greater depth (about 2 km a.s.l.) sharply increased.  

On 12 May (period IV), LP events northward shifted, roughly below NEC 

(figures 19 and 20).  
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6.3.3  Infrasound and LP events as precursor 

As mentioned in section 5.4. three types of infrasonic events were found 

during May 2008, whose source locations are in good agreement with the 

position of the most active summit craters (figure 21a): ‘‘NEC events’’ 

lasting up to 10 seconds and characterized by dominant frequency gener-

ally between 1 and 2 Hz; ‘‘SEC events’’ showing duration of about 2 

seconds, dominant frequency equal to 3–4 Hz and higher peak-to-peak 

amplitude than the NEC events; ‘‘EF events’’ exhibiting about 1 second 

duration, dominant frequencies mostly ranging between 2.5 and 4 Hz, 

and higher peak-to-peak amplitude than NEC and SEC events (Cannata 

et al., 2009a; Montalto et al., 2010) (figure 21b).  

 

Figure 21:  (a) Map of the summit area of Mt. Etna showing the site of the infra-
sonic sensors (triangles) and the source locations of infrasonic events (red circles). 
The radii of the red circles are proportional to the number of the locations in each 
grid node (black circles and numbers reported in the lower right corner of the 
map). (b) Infrasonic events recorded by EBEL station and related to the activity of 
NEC, SEC and EF.   
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The hourly number of infrasound events (figure 22b) and the variation of 

the amplitude of the whole infrasonic recordings (figure 22a) provide in-

sights into the explosive activity. Generally the explosive activity is ac-

companied by increase in both hourly number of events and infrasonic 

RMS. Two exceptions can be noted in the event number series at the 

same time as the paroxysmal activity taking place on 10 and 13 May. 

The very high occurrence rate of events during the two paroxysmal epi-

sodes gave rise to a continuous signal and did not allow detecting single 

events.  

 

Figure 22: (a) Time variation of amplitude of the infrasonic signal, calculated as 
root mean square (RMS) of 1-hour-long moving windows of the recordings at 
EBEL. (b) Hourly number of infrasound events in the time period 1–31 May 2008. 
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Following the method described in the previous section, a pseudo-

spectrogram was obtained for the infrasound events recorded during 8–

14 May (figures 23b).  A particular kind of NEC events, called long period 

infrasound (LPI) events, characterized by very low peak frequencies (0.3–

0.5 Hz) and accompanied by strong seismic signature, was recorded just 

before the lava fountain at SEC and the beginning of the eruption at EF, 

taking place on 10 and 13 May, respectively (figures 23a and 23c). Final-

ly, the dominant frequency of the NEC events decreased right after the 

end of the lava fountain at SEC (figure 23b). Focusing on LP and infra-

sound events recorded a few hours before the onset of the eruption, on 12 

May (period IV), as aforementioned, LP events northward shifted, rough-

ly below NEC (figures 19 and 20). At the same time the LPI events, gen-

erated by NEC, were recorded (figures 23b and 23c). Thus the shallow 

intrusion of the dike became evident. Finally, on 13 May (time boundary 

between period IVand V), a few hours before the beginning of the erup-

tion a large number of phenomena highlighted the imminence of the 

eruption: pre-eruptive swarm and dramatic deformation of the upper 

part of the volcano took place, together with tremor amplitude increase 

and change in its source location, that clearly showed the eruptive fissure 

location (figure 13). Both the LP events and the infrasound showed that 

NEC played an important but still not clear role at the beginning of this 

eruption. This was confirmed by the epicenters of the earthquakes, oc-

curring on 13 May (figure 13a), and by the dry fissures, opened on the 

same date (Neri, 2008), both located near the northern rim of NEC. A 

strict relationship was also highlighted between SEC and NEC by infra-

sound signals. In fact the lava fountain at SEC, taking place on 10 May, 

was followed by spectral changes in the NEC infrasound events (figure 

23b). The proposed approach, based on the simultaneous observation of 

several parameters, is more powerful than a single precursor analysis. 
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The use of a dense geophysical permanent network – allowing a detailed 

space-time analysis (4D) – enabled to follow the volcano dynamics is-

suing two warnings (21 April and 3 May 2008) and to forecast the erup-

tion a few hours before the onset. 

 

Figure 23: (a) Examples of waveforms of NEC, SEC and EF events recorded at 
EBEL station. (b) Pseudo spectrogram obtained by using the normalized hourly 
average spectra of the infrasound events recorded at EBEL. (c) Long period infra-
sound events, recorded by EBEL and characterized by dominant frequencies rang-
ing between 0.3 and 0.5 Hz, occurring before the lava fountain at SEC and the be-
ginning of the eruption at EF. 
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6.4  Discover lava fountain precursors using three component 

sensors 

In this section the multi component analysis already described in section 

4.6 is applied. The basic idea, also confirmed by the analysis shown in 

the previous section, is that seismic wavefield may strongly change be-

fore a critical volcanic event like a lava fountain or effusive eruption. To 

demonstrate this assumption, the three lava fountain episodes, previous-

ly described, were taken into account. The seismic wavefield investiga-

tion was performed using polarization method developed by Jurkevics 

(1988) and Benhama (1988) (see section 4.6) and  applied on continuous 

three component signals recording on a reference summit station (figure 

13). In order to discover SEC lava fountain precursors, EBEL station was 

chosen (figure 13). The analysis was performed on continuous seismic re-

cording using a moving window of one minute with 50% of overlap, ob-

taining the time series of the three polarization parameters: azimuth, in-

cidence and rectilinearity. Considering the lava fountain, that occurred 

on 4-5 September 2007, the temporal variations of the three parameters  

are shown in figure 24. Three variations appear in the azimuth time se-

ries starting from the second half of August together with an increase of 

tremor amplitude (figure 24a and 24b). As shown in figure 6a this pat-

tern corresponds to the migration of tremor sources at shallow depth. 

The second pattern starts on 25 of August 2007, when the tremor source 

indicates a progressive migration toward SEC (figuree 8b and 8c). At the 

same time, a relevant  variation of incidence angle occurs (figure 24c). In 

order to confirm the validity of polaritazion variations as precursor, other 

two lava fountain episodes, described in the previous section, were consi-

dered. 
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Figure 24: (a) Tremor amplitude during the period from 01-Aug-2007 to 10-Sep-
2007. (b-d) Time series of azimuth, incidence and rectilinearity respectively. The 
green rectangle indicates the first anomaly while yellow and red rectangles indi-
cate the second anomaly and the onset of the lava fountain respectively. 

In figure 25 and 26 the variations of polarization parameters during the 

lava fountains on 23 November 2007 and on 10 May 2008 are shown, re-

spectively. As displayed in figures 25b-c and 26b-c two strong variations 

of azimuth and incidence occurred  before the onset of the two lava foun-

tains. The comparison among the polarization parameters calculated 

during all the three considered lava fountains highlights that the wave-

field variations may occur at different time scale. While on 4-5 Septem-

ber 2007 the polarization anomalies start about 15 day before the lava 

fountain, in the last two episodes (23 November 2007 and on 10 May 
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2008) the same pattern occurs only a few hours before the onset of the 

eruptions. During the considered periods the rectilinearity parameter 

does not show significant variations.  The incidence changes before and 

during all the three fountains indicate a migration of the tremor source 

under SEC providing a reliable precursor parameter.  The polarization 

analysis for the considered lava fountain periods reveals a similar trend  

of high values of incidence together with a clustered values of the azi-

muth. Several studies identified the dominant wavefield either as P 

waves (Ferrucci et al., 1990) or love/SH waves (Ereditato and Luongo, 

1994; Wegler and Seidl, 1997) showing  complicated overlapping pat-

terns. Similar observations have also been reported on other volcanoes 

such as Arenal (Benoit and McNutt, 1997). The tremor wavefield ob-

served during the considered lava fountain episodes turned out to be so 

complex that it is impossible to identify a clear wave type composition. 

This is not surprising, because, unlike the polarization analysis in earth-

quake seismology that can provide information about the wave types 

composing the wavefield and the seismic source location and mechanism 

(e.g., Alessandrini et al., 1994), in volcano seismology such an analysis 

cannot give these information because of the heterogeneities and rough 

topography of volcanoes (e.g., Neuberg and Pointer, 2000). However, this 

kind of analysis can be useful to detect even very small variations in 

seismic source location and/or mechanism. Moreover, this study showed 

that polarization  parameters, together with the tremor amplitude and 

tremor source location, are an useful tool for the definition of eruption 

precursors.  
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Figure 25: (a) Seismic signal recorded on 23 Nov 2007. (b-d) Time series of azi-
muth, incidence and rectilinearity respectively. Red rectangle indicates the inci-
dence anomaly that occurred before the onset of the lava fountain. 
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Figure 26:  (a) Seismic signal recorded on 10 May 2008. (b-d) Time series of azi-
muth, incidence and rectilinearity respectively. Red rectangle indicates the inci-
dence anomaly that occurred before the onset of the lava fountain. 

  



251 
 

6.5  Multi-stations coherence  

The method introduced in section 4.3 allows highlighting the coherence 

among summit station signals over time. Although the source mechanism 

producing these coherence time changes is still not well known, there are 

evidences that summit stations coherence is related to volcano system 

recharge. Considering the three eruptive periods previously described, a 

full coherence analysis is here performed. For this purpose, the recorded 

signal on 2007-2008 time period were analyzed using the MVDR methods 

(section 4.3). The MVDR coherence is estimated considering a 10 minutes 

moving window without overlap and then a hourly averaged coherence 

value is calculated. The resulting coherogram shows how coherent the 

different frequency bands are among summit stations EBEL, EPDN, 

EPLC and ECPN  as a function of time (figure 27). A first evidence of vol-

cano system recharge is shown in figure 27 before the lava fountain that 

occurred on 4-5 September 2007.  

 

Figure 27: Summit stations coherence calculate at the N component during the 
time period June-September 2007. The red rectangle shows the lava fountain. 
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According to  what reported in section 6.1.4 most of the energy, coherent 

at the summit stations, was concentrated near 0.7 Hz, showing a link 

with the LP source related to transport/discharge of gas-rich magma. 

This can highlight the recharge phase of the system before the onset of 

lava fountain and/or eruption. Other two clear evidences of this assump-

tion are the high coherence episodes before the lava fountains of 23 No-

vember 2007 and 10 May 2008 (figures 28 and 29, respectively). In par-

ticular, the coherogram reported in figure 28 exhibits high coherence re-

lated to lava fountain of 4-5 September and a low coherence in the second 

half part of October when a new recharge phase starts in November lead-

ing to the fountain of 23-23 November. While the first episode is in 

agreement with the migration of tremor source under the SEC (figure 8), 

during the second episode this relationship is not so clear. The last epi-

sode, analyzed in this section, regards the summit stations coherence be-

fore the onset of the lava fountain that took place on 10 May 2008 shown 

in figure 29.   

 
Figure 28: Summit stations coherence calculated at the N component dur-
ing the time period June-September 2007. The red rectangles show the lava 
fountains. 
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Figure 29: Summit stations coherence calculated at the N component during the 
time period April-May 2008. The red rectangles show the lava fountain on 10 May 
and the beginning of the eruption on 13 May. Yellow rectangle indicates the time 
period related to a deepening of LP and tremor source before the lava fountain. 

In this last case, the summit station coherence indicates a system re-

charge started at mid April when a progressive and regular increase of 

the reduce displacement of tremor was observed (figure 16a), confirming 

a gradual increase of energy of the volcanic system. Also, short-term 

changes occurred during the period 4–10 May, when the low frequency 

coherence (below 0.5 Hz) coincides with tremor and LP sources deepening 

(0–1.5 km a.s.l. and 2 km a.sl.) and LP spectral content changes (Figure 

15c and 19). 

  



254 
 

6.6  Seismic and infrasonic coupling using cross wavelet analysis  

A novel approach described in this section is used to discover coupling 

between seismo-volcanic and infrasonic signals. The analysis of a single 

signal (whether seismic or acoustic) sometimes is not sufficient to detect 

ongoing explosive activity. Indeed there are some cases when increases in 

tremor amplitude did not correspond to eruptive activity, such as during 

banded tremor activity (e.g. Cannata et al., 2010). Similarly, in some cas-

es infrasound signal is so affected by weather-dependent effects, like 

wind noise, that could provide wrong information regarding the ongoing 

volcanic activity. Therefore, the joint analysis of infrasonic and seismic 

data turns out to be the best monitoring tool. Since the infrasonic signals 

are the clear evidences of open conduits on active volcano, the process 

that leads to infrasonic emission can generate low frequency seismic sig-

nals. Several studies have been performed on the physical relationship 

between these kinds of signals (e.g. Ripepe et al., 2001b). The cross-

wavelet analysis computed on seismic and infrasonic RMS may reveal 

time periods of high coherence that can be related to volcano summit ac-

tivity (e.g. Strombolian activity). At Mt. Etna, the high availability of 

infrasonic and seismic signals together with different kinds of volcanic 

regimes, permit the joint analysis of seismic and infrasonic signals in or-

der to study  their relations with the volcano activity. In several works 

(e.g. Grinsted et al., 2004), the coupling between different time series is 

performed using a multi resolution analysis like wavelet transform. In 

this section, cross-wavelet analysis (see section 2.1.6) will be applied on 

seismic and infrasonic RMS using a 1 hour moving window. In particu-

lar, two periods of intense Strombolian activity, that occurred before the 

two lava fountains of September and November 2007, will be analyzed. 

In figure 30 a clear episode of high seismic – infrasound coherence is 
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shown by the high coherence started on 29 August. It is in agreement 

with the SEC strombolian activity described, from an infrasound point of 

view, in section 5.3.4. It is noteworthy that this high coherence could be 

the evidence of the interaction between seismo-volcanic sources, whose 

wave-field change on 25 August is related to the migration of tremor 

sources at shallow depth (figures 8b-c), and the intense infrasonic activi-

ties at SEC. Less clear is the seismic-infrasonic relation during the lava 

fountain of November 2007 (figure 31). From a visual inspection of the 

signal buffer reported in figures 32 and 33, the high coherence is justified 

by the presence of infrasonic signals together with their seismic counter-

part. In particular, these high coherence periods are related to main 4 

episodes of intense infrasonic activity that took place at the end of No-

vember 2007 before the onset of lava fountain episode. 
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Figure 30: (a) RMS of the infrasonic signal recorded during the period 15 August 
2007 – 03-September 2007. (b) RMS of the seismic signal recorded during the 
same time interval. (c) Wavelet coherence between infrasonic and seismic signal 
RMS. The vectors indicate the phase difference between the two RMS time series 
(a horizontal arrow pointing from left to right signifies in phase and an arrow 
pointing vertically upward means the first series lags the second one by 90°). The 
cone of influence (COI), where the edge effects might distort the picture, is shown 
as a lighter shade. The gray dashed lines indicate the onset of high signals cohe-
rence. The yellow rectangle indicates a period of high wind causing high infrasonic 
RMS due to noise. 
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Figure 31: (a-b) RMS of infrasonic and seismic signals during the period 21-23 
November 2007. (c) Wavelet coherogram of the two RMS time series. The vectors 
indicate the phase difference between the two RMS time series (see caption figure 
30). The red rectangles with top roman numerals indicate the periods whose seis-
mic and infrasound signals are shown in figures 32 and 33.The right red rectangle 
indicates the lava fountain period. 
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Figure 32: periods I and II shown in figure 31. The orange areas highlight both 
relevant seismic and infrasonic signals.   
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Figure 33: periods III and IV shown in figure 31. The orange areas highlight both 
relevant seismic and infrasonic signals. 
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6.7  Banded tremor phenomena at Mt. Etna during 2008 

The literature reports the occurrence of a particular kind of volcanic 

tremor characterised by regular cyclic increases of amplitude in several 

volcanic and geothermal areas such as Nevado del Ruiz (Martinelli, 

1990), Pinatubo (Mori et al., 1996), Soufriere Hills (Baptie and Thomp-

son, 2003), Kilauea (Barker et al., 2003), Stromboli (Langer and Falsa-

perla, 1996), Etna (Gresta et al., 1996a), Pavlof, Manam and Poas 

(McNutt, 1992, 1994). Because of its peculiar seismic signature on the 

seismograph drum, forming evident stripes on seismograms, this kind of 

seismic signal is called “banded” tremor. It has largely been recorded 

during times of hydrothermal activity (McNutt, 1992) and its source 

process has recently been modelled using a two-phase hydrothermal in-

stability flow model (Fujita, 2008). In this section banded tremor activity 

that occurred at Mt. Etna volcano between August-October 2008 during 

the 2008-2009 eruption was analyzed in detail. The banded tremor oc-

curred in episodes lasting 25-30 minutes with intervals in between the 

episodes of about 25 minutes. Seismic signal analyses showed that the 

banded tremor was characterised by spectral contents, wavefields and 

source locations that differed from the “ordinary” volcanic tremor de-

scribed in the previous sections. The infrasound recordings exhibited an 

intermittent infrasonic tremor alternating with the banded tremor epi-

sodes. Finally, nonlinear analyses suggested that banded tremor system 

can be considered chaotic, implying: i) sensitive dependence on initial 

conditions, suggesting not only that a banded tremor system requires 

particular conditions to generate, but also that slight variations of these 

conditions are able to greatly change the features of the banded tremor or 

even to stop it; ii) long-term  unpredictability, that is, the  impossibility  

to  forecast the  
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Figure 34: Digital elevation model of Mt. Etna with locations of the used stations 
equipped with seismometer (triangles), and with both seismometer and infrasonic 
sensor (squares). “EF” and the bold white line indicate location of the eruptive fis-
sure that opened on 13 May 2008. The six named stations correspond to those 
used to locate the banded tremor source by the seismic signal envelope method.  

long-term evolution of the banded tremor. On the basis of all these re-

sults and analogies with geyser models, a model of banded tremor that 

invokes alternating recharge-discharge phases is proposed. Banded 

tremor is due to “perturbations” in shallow aquifers, such as fluid move-

ment and bubble growth or collapse due to hydrothermal boiling, trig-

gered by the heat and hot fluid transfer from the underlying magma bod-

ies. This heat-fluid transfer also causes an increasing pressure in the aq-

uifer leading to fluid-discharge. During this process the seismic radiation 

decreases and, if the fluid-discharge is well coupled with the atmosphere, 

acoustic signals are generated.  
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6.7.1  Banded tremor characteristics 

Station EBEL (figure 34) recorded the banded tremor best. To character-

ize the tremor, a long time series is constructed for all three components 

of EBEL by subdividing the continuous time series into non-overlapping 

1-minute-long windows. An average spectrum was calculated for each 

window by averaging two spectra computed on partially overlapped, 

roughly 40-second-long portions of window, and these average spectra 

were used both to obtain multi-day-long spectrograms and to calculate 

the overall spectral amplitude (OSA; for details of OSA calculation see 

Alparone et al., 2007) (figures 35 and 36). In order to emphasize the 

banded tremor episodes, the OSA was computed in the frequency band 

12-20 Hz, which generally lacks energy contributions from the “ordinary” 

tremor source (<10 Hz) and is quite unaffected by seismic noise due to 

wind and rainfall (>20 Hz).  In order to define the onset and end times of 

the single episodes of banded tremor, and thus their duration and the in-

tervals between them, the following method was used. The OSA time se-

ries of the vertical component of EBEL station, calculated as above de-

scribed, was smoothed by means of a moving average over 5 minutes. 

Then, the smoothed series was divided into 400-minute-long windows 

overlapped by 399 minutes, and an amplitude threshold was fixed for 

each window equal to 40-th percentile. As explained in section 4.2, for a 

given time series, the p-th percentile can be defined as the value such 

that at most (100*p)% of the measurements are less than this value and 

100*(1-p)% are greater. Whenever the smoothed OSA time series exceeds 

the threshold value, the onset time of an episode is declared. Similarly, 

every time the smoothed OSA time series falls below the threshold value, 

the end time of an episode is declared. 
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Figure 35: Overall spectral amplitude (OSA) of the seismic signal recorded at the 
vertical component of station EBEL during (a) 20 August–9 September and (b) 1–
27 October 2008. Seismic signal recorded on the vertical component of EBEL in 
the interval (c) 1200–2400 on 29 August and (d) 1200–2400 on 2 October, and cor-
responding (e, f) OSA, (g, h) spectrograms and (i, j) mean frequency. All times re-
ported are in UTC.  



264 
 

 

Figure 36: (a, b) Durations of the banded tremor episodes; (c, d) length of the in-
tervals between the end of one episode and the start of another; (e, f) maximum 
OSA values reached during all the banded tremor episodes. (a, c, e) and (b, d, f) 
refer to the periods 20 August–9 September and 1–27 October 2008, respectively. 

In the light of it, the first studied period, 20 August – 9 September 2008, 

was characterised by ~620 clear episodes of banded tremor with fairly 

steady duration for the entire period and equal to ~25 minutes (figure 

36a). The interval between the end of an episode and the onset of the fol-

lowing one was also quite steady and roughly equal to the time duration 

of the episodes (figure 36c). There was a high degree of variability in the 

maximum values of OSA for different episodes (figure 36e). During the 

second period, 1-27 October 2008, ~650 episodes of banded tremor oc-

curred with average episode duration of ~30 minutes and intervals be-

tween the end of an episode and the onset of the following one roughly 
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equal to 25 minutes (figures 36b and 36d). The maximum values of OSA 

were very variable but generally higher than the values of the first stud-

ied period (figure 36e and 36f). 

6.7.2  Spectral and polarization analysis 

The spectral representation of the banded tremor activity was obtained 

by the method described in section 6.7.1 taking into account periods 

characterised by both the most energetic banded tremor episodes and 

very low seismic noise due to wind and rainfall. They were averaged and 

compared to the spectra calculated during intervals in between the epi-

sodes (figure 37). The spectra for banded tremor were broader than those 

for “ordinary” tremor activity. In fact, the radiated energy at frequencies 

above 5 Hz sharply increased during the banded tremor episodes, as also 

shown by the mean frequency plotted in figure 35i and 35j (computed us-

ing the method described in Carniel et al., 2005).  Moreover,  a  slight  

difference  can  be  seen  between  the spectra of the two banded tremor 

periods: the spectrum of the second period is characterised by greater en-

ergy at high frequency (>20 Hz) than the spectrum of the first period. 

The higher and broader frequency content of the banded tremor is a dis-

tinctive feature of such cyclic banded tremor episodes. Indeed, unlike 

such banded tremor episodes, the repetitive increases of volcanic tremor, 

sometimes taking place at Mt. Etna at the same time as strombolian ac-

tivity and lava fountaining occur, are accompanied by a decrease in the 

dominant frequency and by a narrowing of the spectra (Falsaperla et al., 

2005; Cannata et al., 2008). The polarization analysis was performed us-

ing the method described in section 4.6  based on the calculation of the 

covariance matrix for the three components of the seismic signal. 
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Figure 37: Spectra obtained by averaging the spectra calculated on 40.96 
second‐long seismic windows recorded during the most energetic banded tremor 
episodes in the periods 20 August–9 September (dark gray line) and 1–27 October 
2008 (black line) and during “ordinary” volcanic tremor (light gray line). 

Two different frequency bands were analysed: 0.5-5.0 Hz, characterised 

by both “ordinary” and banded tremor; 12-20 Hz, with only banded 

tremor. The multi-day-long tremor time series at station EBEL was di-

vided into windows of 2 second with 50% overlap for the band 0.5-5.0 Hz 

and 0.5 second for 12-20 Hz. In figures 38 and 39 the time variation of 

the polarization parameters during the periods 12:00-24:00 on 24 August 

and 12:00-24:00 on 2 October is reported. These two intervals were cho-

sen because of the high signal to noise ratio at all the three components 

of the seismic signal at station EBEL. The frequency band 0.5-5.0 Hz is 

characterised by azimuth values ranging from 80° to 110°, incidence 

above 80° and rectilinearity coefficient between 0.6 and 0.9. In particular 

variations in the polarization parameters took place at the same time as 

the occurrence of the banded tremor: specifically, rectilinearity coeffi-

cients decrease, while the azimuth slightly increases during the banded 

tremor episodes. 
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Figura 38: OSA (black lines in the top plots) calculated in the frequency band 12–
20 Hz, polarization parameters (light gray dots) and their moving average over 
200 samples (thick black lines) in two frequency bands 0.5–5.0 Hz of signal rec-
orded at EBEL during the periods 1200–2400 on 24 August and 1200–2400 on 2 
October. The incidence angle is calculated with respect to the vertical direction. 
The polarization parameters (gray dots) were calculated by using windows of 2 
and 0.5 seconds for 0.5–5 Hz. 
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Figura 39: OSA (black lines in the top plots) calculated in the frequency band 12–
20 Hz, polarization parameters (light gray dots) and their moving average over 
200 samples (thick black lines) in two frequency bands 12–20 Hz of signal record-
ed at EBEL during the periods 1200–2400 on 24 August and 1200–2400 on 2 Oc-
tober. The incidence angle is calculated with respect to the vertical direction. The 
polarization parameters (gray dots) were calculated by using windows of 2 and 0.5 
seconds for 12–20 Hz. 

 



269 
 

Variations in incidence angles are less clear, but slight decreases can be 

seen in the incidence time series of 2 October. The frequency band 12-20 

Hz shows azimuth of 90-110°, lower values of incidence than the other 

band, ranging from 70° to 80° and rectilinearity above 0.6. Also in this 

case variations can be noted at the same time as the banded tremor epi-

sodes occurred. Similarly to the variations observed in the other fre-

quency band, azimuth values slightly increase, while, unlike the results 

of the other frequency band, both incidence and rectilinearity increase 

during banded tremor episodes. The different patterns observed in the 

two analysed frequency bands can be explained as follows. The band 0.5-

5.0 Hz is characterised by both continuous “ordinary” tremor and cyclic 

occurrence of banded tremor. Therefore, during the periods in between 

the banded tremor episodes, a wavefield features of the “ordinary” tremor 

was observed, whereas, during the banded tremor episodes, the “coexis-

tence” between the two wavefields giving rise to variations of the polari-

zation parameters occurred. In particular, because of the “mixture” of 

seismic waves coming from different sources out-of-phase with each 

other, the wavefield becomes more chaotic and the rectilinearity coeffi-

cient decreases. On the other hand, the band 12-20 Hz is only character-

ised by banded tremor and obviously background noise, and thus during 

the episodes of banded tremor the rectilinearity increases because of both 

the lack of “ordinary” tremor and the less chaotic wavefield of banded 

tremor than the background noise wavefield. Finally, on the basis of such 

data, it is not possible to identify the exact wave types constituting the 

wavefields of “ordinary” and banded tremor.  
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6.7.3  Tremor source location 

Unlike location method used to localize ordinary volcanic tremor (see sec-

tion 4.5), the banded tremor was localized using methods based on cross-

correlation of seismic signal envelopes at different stations (Obara, 2002; 

Obara and Hirose, 2006). This is justified by the fact that, unlike “ordi-

nary” volcanic tremor, the banded tremor was well recorded only by the 

nearest stations to the summit area and showed significant and rapid 

amplitude variations, making it particularly amenable to location via en-

velope cross-correlation. In this section, source location of both tremor 

signals, ordinary and banded, are explained. In particular, ordinary vol-

canic tremor is localized using the approach explained in section 4.5 also 

used to highlight the geometry of the shallow volcanic plumbing system 

in section 6.2 and 6.3 For this purpose, signals recorded by 16 stations, 

belonging to the broadband permanent seismic network and located at 

distances ranging between 1.5 and 9 km from the centre of the summit 

area were used considering a 3D grid of 6x6x6 km3 volume with a spac-

ing between nodes of 250 m. For the tremor source localization here re-

ported,  the goodness of the linear regression fit R2 (details are reported 

in section 4.5)  were  achieved  with  very  low   values (equation 4.8), 

mainly between 0 and 0.02, suggesting high values of ray-path-averaged 

quality factor Q (equations 4.7. and 4.8). To avoid unstable solutions, a 

result is accepted only when: i) the goodness of the R2 fit is ≥ 0.9, and ii) 

at least 13 stations are available. Three different frequency bands, 1-5, 5-

10 and 10-15 Hz, were analysed. The first one comprises both continuous 

“ordinary” tremor and cyclic occurrence of banded tremor. In this case 

the tremor sources were located in a volume between the eruptive  fis-

sure and  the  SEC  (see figure 34)  at  altitude 
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Figure 40: Source locations of tremor obtained by amplitude decay in the fre-
quency bands 1–5 (a), 5–10 (b) and 10–15 (c) Hz on 29 August and 2–3 October, 
and by the comparison of the seismic signal envelopes during 27 August–3 Sep-
tember and 2–3 October 2008 (see key for details). 

of 1.0-2.8 km above sea level (a.s.l.; black dots in figure 40a). It is worth 

noting that time variations of the source location, consisting of shallow-

ing and westward shifts, were observed at the same time as the occur-

rence of banded tremor episodes (figure 41). In figure 41 a gradual shal-

lowing of the ordinary tremor source is also evident, which could be re-

lated to either a real tremor source shift or the decrease of the noise level 

during the nocturnal hours. In fact, large variations in noise amplitudes 

during the daytime, especially evident at the stations located at low alti-
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tude, can generate apparent changes in the depth of the tremor source. 

The seismic signal filtered in the bands 5-10 and especially 10-15 Hz con-

tained a lower contribution of “ordinary” volcanic tremor to advantage of 

banded tremor than in the band 1-5 Hz. In these cases the source re-

mained fairly stable and was located below SEC at very shallow depth 

(~3 km a.s.l.; black dots in figures 40b and 40c). Since for the band 10-15 

Hz very few tremor locations showed R2 values greater than 0.9, a mini-

mum R2 value of 0.85 for that band was fixed. Such low quality of tremor 

location in this frequency band can be related to the shallowness of the 

source of the banded tremor and then to the low tremor amplitude at the 

stations farthest from the summit area, linked to the strong cultural and 

environmental noise at high frequency at these stations. The method 

based on the comparison of the seismic signal envelopes was similar to 

the technique developed to locate the source of the deep non-volcanic 

tremor in Japan (Obara, 2002; Obara and Hirose, 2006). As a first step, 

we selected 30 tremor episodes for both investigated periods that were 

characterised by high seismic energy of banded tremor at the six stations 

nearest to the summit area (see stations with labels of name in figure 34) 

and lacked long period (LP) events and explosion-quakes. 
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Figure 41: (a, b, c) Time variations of the source location of the tremor filtered in 
the frequency range 1–5 Hz and (d) OSA time series during the interval 12:00–
24:00 on 2 October 2008. The gray areas indicate the time spans with banded tre-
mor episodes. 
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In fact, the higher amplitude of these transients relative to the tremor 

generate peaks in the RMS series of all the considered stations, strongly 

affecting the following time lag calculation. In order to emphasize the 

banded tremor contribution, the vertical component of the seismic signal 

recorded during these selected episodes was filtered in the frequency 

band 12-20 Hz.  

 

Figure 42: Example of seismic signals and corresponding RMS amplitude time 
series at the six station used to locate the source of the banded tremor by cross 
correlation of seismic signal envelopes. 
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The root mean square (RMS) envelope of the filtered signal was calcu-

lated for 0.5-second-long moving windows shifted every 0.01 s (one sam-

ple) for all six stations (figure 42). Then a cross-correlation analysis be-

tween 10-minute-long RMS time series at all the station pairs, system-

atically changing the lag between the series, was performed. A time lag 

Δtobs between station pairs that produced maximum cross correlation co-

efficients is evaluated. Then, the location of  the tremor episodes is com-

puted using a three-dimensional grid of assumed source positions. The 

grid was centred underneath the craters, had horizontal dimensions of 6 

x 6 km, a vertical extent of 3.25 km (from 0 km a.s.l. to the top of the vol-

cano), and an even node spacing of 62.5m. A set of theoretical time lags 

between the station pairs (Δttheor) was calculated for each node, consider-

ing a homogeneous velocity model equal to 1.4 km/s, that was chosen be-

cause it allowed minimizing the difference between observed and theo-

retical time lags. The source location was determined by searching for 

the node that minimized the difference between observed and theoretical 

time lags. The location results, consistent with the location obtained by 

the standard method in the frequency bands 5-10 and 10-15 Hz, showed 

that the banded tremor sources were shallow and located near to the 

SEC (red dots in figure 40). It is noteworthy that there is not  any signifi-

cant variations between the first (20 August – 9 September) and second 

(1-27 October) periods. Very shallow sources of banded tremor were also 

inferred by Fujita (2008) at Miyakejima volcano. 
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6.7.4  Comparison between seismic and infrasonic OSA patterns 

In order to understand whether the banded tremor source has a connec-

tion with the atmosphere, the infrasound signal recorded by EBEL sta-

tion (figure 34) during the two investigated periods was analysed. This 

station, located at a distance of about 1.5 km from the centre of the 

summit area, worked well and showed the best signal to noise ratio dur-

ing the studied period. The OSA of the infrasonic signal was calculated 

by the method described in section 6.7.1 In order to exclude the contribu-

tion of the infrasonic events of the NEC, generally characterised by spec-

tral content below 2 Hz (Cannata et al., 2009a,b), the frequency band 3-6 

Hz was chosen to calculate the OSA series. In order to investigate the re-

lation between the infrasonic and seismic OSA time series, the method 

proposed in section 6.6 was applied. The mother wavelets used for the 

analysis is the Morlet wavelet, since it provides a good balance between 

time and frequency localization as well as information about phase 

(Grinsted et al., 2004). During the first time interval (20 August – 9 Sep-

tember 2008) there was no significant relation between the infrasonic 

and seismic time series, whereas an initial portion of the second interval 

(08:00 on 2 October – 05:00 on 3 October; all times reported in this paper 

are in UTC), characterised by fairly high OSA values (figure 36f), showed 

a meaningful relation for periods of about 50-60 minutes (figure 43). This 

period roughly corresponds to the sum of the duration of a single episode 

and the time interval between the end of an episode and the onset of the 

following one. It is worth noting that the phase analysis mainly exhibited 

a phase difference of about 180° between the two  time series, highlight-

ing   that  increases in  the seismic  amplitude corresponded 
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Figure 43: (a) Short Time Fourier Transform (STFT) of the infrasound signal rec-
orded by EBEL station in the period 0800 on 2 October–0500 on 3 October 2008. 
(b) Normalized OSA values calculated for the seismic (blue line) and infrasonic 
(red line) signals. (c) Wavelet Transform Coherence (WTC) between the OSA val-
ues reported in (b). The thick contour shows the 95% confidence interval and the 
lighter shade indicates the cone of influence, or the region of the wavelet spectrum 
affected significantly by edge effects. The relative phase relations are shown with 
arrows, with in-phase pointing right, anti-phase pointing left, and seismic OSA 
leading infrasonic OSA by 90° pointing straight down. (d) Stacking of the columns 
of coherence values reported in (c). The roman numbers (I, II, III) reported in (a) 
and (b) indicate the amplitude increases of infrasound signal shown in figure 44. 
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to decreases in the infrasonic amplitude and vice versa. The increases in 

the infrasonic amplitude were not due to the occurrence of discrete 

events but to a weak continuous signal (weak infrasonic tremor) in the 3-

5 Hz band that lasted for several minutes (figure 44). 

 

Figure 44: Raw infrasonic signal recorded on 02 October 2008. (I, II, III) indicate 
the amplitude increases of infrasound signal shown in figure 43b. 
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6.7.5  Nonlinear analysis of banded tremor 

As stated by Kostantinou and Lin (2004), in order to better understand 

the source mechanisms of seismic signals in volcanic areas, such as vol-

canic and banded tremor, the assumption that the underlying mecha-

nism requires a linear oscillator that is set into resonance by a sudden 

sustained disturbance should be reconsidered. Shaw (1992) and Julian 

(1994) suggested that a nonlinear process of some kind may be involved 

in tremor generation. Indeed, the attraction of nonlinear models of vol-

canic tremor is that the harmonic frequencies are not proportional to a 

geometric length scale as they are in the linear case, which may explain 

why tremor frequencies are similar at volcanoes of vastly different size 

(Hagerty and Benites, 2003). Moreover, such nonlinear models are able 

to produce a large range of complex behaviours for relatively small 

changes in some control parameters (Hagerty and Benites, 2003). This 

issue also implies considering new methods of analysis based on the dis-

cipline of nonlinear dynamics. Such methods allow studying systems 

with many degrees of freedom n, not known a priori, which cannot be ob-

served directly. In these cases sets of differential equations are unavail-

able but only one system parameter is accessible (Faybishenko, 2002). As 

inferred by Fujita (2008), the banded tremor system is ruled by many pa-

rameters that cannot directly be observed and measured. In view of all 

these considerations, nonlinear time series analysis technique was ap-

plied in order to better understand the underlying physical process of the 

banded tremor. Application of these methods to the geophysical sciences 

demonstrated that nonlinear models are useful tools for understanding 

complex phenomena such as seismic signals in volcanic areas and their 

chaotic behaviour (e.g., Kostantinou and Lin, 2004).  
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Figure 45: (a) Evolution in time of the state variables x, y and z of the Rossler 
attractor, (b) Rossler attractor and (c) reconstructed attractor calculated from x 
state variable. j in (c) is referred to as the delay time. 

Classical linear analysis methods based on Fourier transform and linear 

correlations implicitly assume that the data come from linear systems. 

This means that the intrinsic dynamics of the system is governed by the 

linear paradigm: small causes lead to small effects (e.g., Kantz and 

Schreiber, 1997). From an analytical point of view, small errors in de-

termining initial conditions result in a small error in the prediction of the 

future behaviour. This behaviour is lost if we consider systems with 

nonlinear relation among state variables, where small errors in the 

measurements of initial conditions lead to entirely different outcomes. 

This phenomenon is called sensitive dependence on initial conditions 

(e.g., Gao et al., 2007). In this section the nonlinear time series analysis 

techniques reported in section 2.3 will be applied on a two-day-long win-

dow of OSA time series  figure 46a. Thus, the single oscillations were not 

investigated but rather the “macro-dynamics” of the banded tremor activ-
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ity was taken into account. The phase space was reconstructed  using 

Cao method (Cao, 1997). An example of phase space reconstruction con-

sidering only one state variable is reported in figure 45 where, a syn-

thetic example using Rossler attractor is shown. The values of both pa-

rameters E1(m) (equation 2.54) and E2(m) (equation 2.55) versus the 

embedding dimension m are shown in figure 47 where the kink in the 

plot suggests a minimum embedding dimension of 4. Both quantities are 

computed by using a time delay j = 15 which is the first minimum in the 

mutual information function. As aforementioned, the delay time is cho-

sen such that the two time series values xt and xt+j are dynamically inde-

pendent and their estimation is needed to reconstruct the phase space.  

After the reconstructed phase space is defined, the nonlinear nature of 

the OSA time series was investigated using the surrogate data analysis 

method (section 2.3.2).  

 

Figure 46: OSA time series window, considered in the nonlinear analysis. 
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Figure 47: Minimum embedding dimension computed by using Cao’s method. 

In order to apply this technique 99 surrogate time series are generated 

using random phase surrogate approach that preserves the signal distri-

bution and amplitude spectrum of the original one. As reported in section 

2.3.3 a null hypothesis is that the original time series is generated by a 

Gaussian linear stochastic process (Kanty and Schreiber, 2004) and it is 

rejected if the associate statistic test is not conform with the null hypo-

thesis. In the light of it, DVV method was applied on both the original 

and the 99 surrogate time series. When the time series exhibit some 

kinds of structure and the embedding dimension and time lag are cor-

rectly determined, similar delay vectors (in term of Euclidean distance) 

have similar targets (Kaplan, 1994). As explained in section 2.3.7, in 

DVV methods  the target variance (equation 2.70) conveys information 

regarding the predictability of the time series. In the DVV scatter dia-

gram plotting reported in section 2.3.7, the original time series is judged 

to be linear if the surrogate and original time series are similar to each 

other leading to a scatter diagram that coincides with the bisector line. 

Conversely, when the DVV scatter diagram shows a deviation from the 
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bisector line, the original time series can be judged nonlinear. The result 

of DVV analysis, computed  on banded tremor OSA time series, is shown 

in figure 48, where the deviation from bisector line stresses the nonlinear 

nature of the analyzed series. Once that the nonlinear nature is con-

firmed, other parameters such as fractal dimension and largest Lyapu-

nov exponent are computed. The selected periods showed values of corre-

lation dimension computed using Takens’ estimator (Takens, 1981) of 

3.5, an embedding dimension of 4 and a positive Lyapunov exponent, es-

timated by the slope of the linear segment of prediction error (figure 49), 

of 0.04.  

 

Figure 48: DVV scatter diagram obtained by plotting the target variance of the 
original banded tremor OSA time series against the mean of the target variance of 
the 99 surrogate data. 
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In particular, the embedding dimension m is lower than other periods 

when the banded tremor did not occur. These results can be interpreted 

as an indication that banded tremor generation is not controlled by a sto-

chastic process, and then it can be described by only a few degrees of 

freedom.  For representation purposes, only three variables are selected 

for phase space plot shown in figure 50. The attractor derived by OSA 

series of the banded tremor exhibits the characteristics described for a 

generic strange attractor. Briefly, it is characterised by the following fea-

tures: i) orbits do not intersect or overlap, suggesting that the system 

does not return to a previous state and implying a chaotic behaviour; ii) 

orbits move within a bounded region of the phase space due to dissipa-

tion of energy in the system; iii) orbits that are initially close  diverge  

exponentially from each other due to sensitivity to initial conditions. 

 

Figure 49: prediction error for the considered time series. The black dashed line 
indicates the regression line. 
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Figure 50: 3D phase portrait of the strange attractor, obtained for the OSA time 
series window shown in figure 46. y(i) indicates the OSA time series reported and j 
is referred to as the delay time.  

6.7.6  Banded tremor qualitative model 

In light of all the analyses shown in the previous sections, the following 

model, consisting in alternating recharge-discharge phases, can be pro-

posed for the studied banded tremor activity (figure 51). The banded 

tremor episodes are likely due to “perturbations” in shallow aquifers, 

such as fluid movement and bubble growth or collapse due to hydrother-

mal boiling, triggered by the heat and hot fluid transfer from the under-

lying magma bodies. The presence of magma below the summit area is 

suggested by ground deformation data (Aloisi et al., 2009) and volcanic 

tremor source locations (Di Grazia et al., 2009), indicating that the 2008-

2009 eruption was fed by an intrusion following the path of the central 

conduit in the first part of the intrusion (below 1.5-2.0 km a.s.l.) and then 

breaking off towards the east in the last shallow part. The perturbations 
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of the shallow aquifers can cause resonance and oscillations of fluid-filled 

cracks. The heat transfer also causes an increasing pressure in the aqui-

fer, that leads to fluid-discharge. During this process, the increased frac-

tion of steam increases the acoustic impedance between the aquifer and 

the surrounding rocks, thus causing a drastic decrease of the seismic ra-

diation. On the other hand, if these “eruptions” are well coupled with the 

atmosphere, acoustic signals are produced, otherwise no acoustic signal 

can be detected. Phenomena of time-coupling between infrasound tremor 

and gas emission have been noted at different volcanoes, including Tun-

gurahua (Ruiz and Arenallo, 2008), Kilauea (Fee and Garces, 2008) and 

Sakurajima (Morrissey et al., 2008). Since an increases in infrasound ac-

tivity was detected only during a short time span of the investigated pe-

riods, a time modification of the source, such as a slight depth change, 

can be inferred. Other phenomena that can prevent the acoustic emission 

in the atmosphere are self-sealing and clogging of fractures because of 

circulation of hydrothermal fluids, common processes in fumarolic sys-

tems (e.g., Harris and Maciejewski, 2000). Once the level of hot fluids 

within the aquifer has sufficiently decreased, the discharge stops. Since 

the banded tremor activity maintains its features for long periods (tens of 

days), it is reasonable to assume a phenomenon of supply of fluids from 

shallower or deeper levels. Unfortunately, because of the lack of meteoro-

logical data acquired in the summit area of the volcano, an eventual rela-

tions between rainfall or atmospheric temperature/pressure and the on-

set or end of the banded tremor cannot be investigated. On the basis of 

this banded tremor source model, it is possible to infer that there were no 

direct links between the banded tremor activity and the eruption at EF 

(figure 51).  Another  interesting  observation  was  the  different 
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Figure 51: (a) Cartoon showing the proposed model of generation of banded tre-
mor during alternating phases of recharge and discharge (see text for details). (b) 
Examples of seismic and infrasound signals during phases of discharge (blue area) 
and recharge (green area). 

behaviour of banded tremor during the two analysed periods in terms of 

duration of the episodes, average amplitude of OSA and spectral content 

of the radiated seismic signal (figures 36,37). In particular, the second 

period (October 2008) was characterised by longer episode duration, 

higher average amplitude and greater energy at high frequency than the 

first period (August-September 2008). The first two changes can be con-

nected to each other. Indeed, similarly to geysers, if the time to resatu-

rate the system with fluids increases, eruptions become less frequent and 

larger (Ingebritsen and Rojstaczer, 1996). A larger eruption could rea-

sonably imply more energetic seismic radiation. Further, on the basis of 

the aforementioned tremor source model, the different spectral content 
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during the two analysed periods could be due to either different 

size/geometry of the resonating cracks or physical–chemical features of 

the fluid within it. For instance, considering a crack containing bubbly 

water and assume that geometry, size and fluid chemical composition 

remain steady, a simple increase in temperature and/or pressure is 

enough to generate seismic energy with higher frequency (e.g., Kumagai 

and Chouet, 2000). The nonlinear analysis performed on OSA time series 

in section 6.7.5 showed that banded tremor has a chaotic behaviour. 

Since it was shown that both mass flow rate and eruption interval data 

of a geyser have a chaotic behaviour (Ingebritsen and Rojstaczer, 1996; 

Nicholl et al., 1994), the close similarity between banded tremor and gey-

ser systems is further supported. The chaotic behaviour firstly implies a 

sensitive dependence on initial conditions. Therefore, this means that not 

only does banded tremor require particular conditions to generate, but 

also that slight variations of these conditions are able to greatly change 

the features of the banded tremor or even to stop it. Some of the condi-

tions/factors controlling the system generating banded tremor and its 

features are system geometry, quantity of water and heating rate (Fujita, 

2008). Rock properties, such as permeability and porosity, have also been 

found to strongly affect geyser systems (Ingebritsen and Rojstaczer, 

1993; 1996), and then presumably also greatly the features of the banded 

tremor. Even very small variations in any of these factors can modify the 

system and consequently the characteristics of the banded tremor or to 

stop it. Such sensitivity is testified for geysers by many external events 

able to modulate their activity, such as earthquakes (Husen et al., al., 

2004) and precipitations (Hurwitz et al., 2008). In addition to the sensi-

tive dependence on initial conditions, which Lorenz has called “butterfly 

effect”, there are several other features that must be present in systems 

that exhibit chaotic behaviour (Faybishenko, 2002), and thus also in 
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banded tremor systems: i) the system is dissipative and the motion irre-

versible, as in systems with friction or those exchanging energy with ex-

ternal media; ii) intrinsic properties of the systems, not random external 

factors, are the cause of chaotic behaviour; iii) the chaotic nature also 

implies the severely limited predictability of future behaviour, regardless 

of how much data is collected. 
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Chapter 7 

 

Conclusions 

This thesis presents a study of different types of seismic and infrasonic 

signals recorded at Mt. Etna and their relation to different kind of 

volcano activity. The study of seismic and infrasound signals using the 

techniques described in the first 4 chapters, turned out to be a very 

powerful tool to investigate the volcano dynamics. The infrasound signals 

can be helpful to investigate the volcanic processes occurring in the vents 

(e.g. Ripepe et al., 1996; 2001a), that can be considered as the shallowest 

parts of the volcano plumbing systems. As shown for Mt. Etna, the study 

of infrasound, reported in chapter 5, allows to discriminate different 

kinds of source processes, such as strombolian bubble (Vergniolle and 

Brandeis, 1994), Helmholtz resonator (Vergniolle and Caplan-Auerbach, 

2004) or resonance of fluids in a conduit (Garces and McNutt, 1997).  

The LP and VLP events analysis at Mt. Etna allows to investigate the 

portions of plumbing systems characterised by fluid movements (e.g. 

Chouet, 1996a; Almendros et al., 2002). Moreover, the analysis of these 

signals can reveal time variations of the composition of magmatic fluids 

filling the resonant structures inside volcanoes (e.g. Kumagai, 2006; 

Patanè et al., 2008). In particular, the extensive application of time-

frequency analysis highlighted  time variations of frequency and quality 

factor of seismo-volcanic events observed before and after the three lava 

fountains analyzed in chapter 6. Such variations were interpreted as fast 
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uprise and discharge of gas-rich magma. An important result regards the 

variations of the polarization parameters before the onset of the lava 

fountains. As explained in chapter 6, polarizations parameters are 

related to changes in wavefield due to tremor source changes (e.g. in its 

location and/or in its physical characteristics) and provide a very clear 

precursor before the onset of lava fountain. Another novel technique 

reported in this study is the multi channel coherence. In particular, the 

coherence among summit stations showed possible recharge phenomena 

of the magmatic system, while the coherence analysis between seismic 

and infrasound signals turned out to be a suitable approach for summit 

volcano activity detection. In this last case, a multi-scale approach using 

wavelet transform was applied.   

All results presented in this thesis have shown, for the first time at Mt. 

Etna, how the seismo-volcanic together with infrasound signals are a 

useful tool for real-time volcano monitoring. These signals, integrated 

with geodetic observations, may be useful to forecast eruptions that, like 

the summit effusive or explosive eruptions, apparently do not show clear 

precursor signals. While detection of waveform variations of LP and 

VLP events turned out to be very effective to follow movements of 

batches of gas-rich magma inside the volcano, the infrasound signals 

allowed locating explosive activity in space and time and estimating its 

intensity. For this purpose, the infrasound monitoring system described 

in chapter 5 is routinely applied to track Mt. Etna summit activity. 

Moreover, a novel approach based on pattern recognition techniques (e.g. 

density clustering approach and SVM classification) is able to localize 

different kinds of signals using only one reference station. This method is 

very useful to monitor explosive activity at Mt. Etna especially during 

the winter season when because of the bad weather conditions most of 

the infrasonic sensors do not operate and then the standard location 
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algorithm cannot be applied. All the studies here reported show how 

volcanic activity is an high nonstationary process and, in some cases, 

may evolve in a chaotic manner. One of the best example  is the banded 

tremor phenomenon treated in chapter 6, that reveals an hypothetical 

geyser-like system located near the summit area. The dynamics of this 

process shows that a hydrothermal system can modulate the tremor 

signal recorded using the seismic stations. This system, similarly to 

volcanic tremor processes, exhibits high sensitivity to initial and 

boundary conditions, leading to a chaos theory interpretation of the 

underlying generating system.  
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Appendix 

 
Software 

All software used in this thesis include: 

Crosswavelet and wavelet coherence softwares provided by A. Grinsted 
(2004) (http://www.pol.ac.uk/home/research/waveletcoherence/)  
 
The OpenTSTOOL software package provided by C. Merkwirth et al. 
(2002) (http://www.physik3.gwdg.de/tstool/); 
 
Delay Vector Variance Matlab Toolbox provided by P. Mandic (2008) 
(http://www.commsp.ee.ic.ac.uk/~mandic/dvv.htm) 

SOM toolbox for Matlab provided by J. Vesanto (2000) 
(http://www.cis.hut.fi/somtoolbox/) 


