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SOLUTIONS 
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Non-intrusive appliance load monitoring (NIALM) is the process of disaggregating a household’s 

total electricity consumption into its contributing appliances. Smart meters are currently being 

deployed on national scales, providing a platform to collect aggregate household electricity 

consumption data. Existing approaches to NIALM require a manual training phase in which either 

sub-metered appliance data is collected or appliance usage is manually labelled. This training data 

is used to build models of the household appliances, which are subsequently used to disaggregate 

the household’s electricity data. Due to the requirement of such a training phase, existing 

approaches do not scale automatically to the national scales of smart meter data currently being 

collected. 

 

In this thesis an unsupervised disaggregation method is presented which, unlike existing approaches, 

does not require a manual training phase. A NIALM system reads real-time data from a smart 

meter, usually positioned at the point on the public electricity network at which the customers is 

connected, and uses algorithms not only to quantify how much energy is used in the home, but also 

to determine what main devices are being operated. NIALM algorithms need a complete load 

signature and complex optimization algorithms to find the right combination of single loads that fits 

the real electrical measurements. It is practically impossible to get the detailed signature of all 

appliances inside a house/building and sophisticated optimization algorithm are not suitable for on-

line applications. To do so, we address the following topics. 

 

First, a straightforward NIALM algorithm is proposed, it is based on both a simple load signature, 

rated active and reactive power and a heuristic disaggregation algorithm. 
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Second, on real applications, this approach cannot reach very high performances; this is the reason 

why an active involvement of users is considered. The users’ feedback aims to: correct the load 

signatures, reduce the error of disaggregation algorithm and increase the active participation of 

users in saving energy politics.  

 

Third, the NIALM algorithm has been accurately tested numerically using as input load curves 

generated randomly but under given constraints. In this way, the causes of inefficiency of the 

proposed approach are quantitatively analyzed both separately and in different combinations.  

 

The above contributions provide a solution which satisfies the requirements of a NIALM method 

which is both unsupervised (no manual interaction required during training) and uses only smart 

meter data (no installation of additional hardware  is required). When combined, the contributions 

presented in this thesis represent an advancement in the state of the art in the field of non-intrusive 

appliance load monitoring, and a step towards increasing the efficiency of energy consumption 

within households. 
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Chapter 1 

Introduction 

 

Nowadays the need to both solve environmental problems and cope with the exhausting of 

traditional fossils  has forced many countries and organizations (e.g. the European Community) to 

put in their political agenda the energy problem. In this context to find a sustainable solution it is 

needed to combine three different strategies: energy saving, efficiency and renewable energies. On 

the other hand the great development of ICT technologies has drawn the attention of many 

researchers on the development of smart grids as a hardware and software structure that can allow 

the actuation of the energetic strategies. Smart grids are so complex and varied that a unique 

definition is needed. 

 

The Organization for Economic Cooperation and Development (OECD) beholds Smart Grid in two 

perspectives [1]. From a solution perspective, the smart grid is characterized by:  

• More efficient energy routing and thus an optimized energy usage, a reduction of the need of 

excess capacity and increased power quality and security. 

• Better monitoring and control of energy and grid components. Improved data capture and thus an 

improved outage management. 

• Two-way flow of electricity and real-time information allowing for the incorporation of green 

energy sources, demand-side management and time market transactions. 

• Highly automated, responsive and self-healing energy network with seamless interfaces between 

all parts of the grid; 

From a technical components' perspective, the main components of a smart grid are: 

• New and advanced grid components. 

• Smart devices and smart metering. 

• Integrated communication technologies.  

• Decision support systems and human interfaces. 

• Advanced control systems. 
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In this continuously evolving system the user becomes the protagonist through the use of electronic 

devices which makes transparent consumption, encourages his active participation in the energy 

market, promotes a rational use of energy. 

 

Commercial solutions to improve the management of energy demand have centered on the 

deployment of smart meters and in-home energy displays that can provide whole-house real-time 

energy monitoring and dynamic pricing from suppliers in order to motivate users to shift or reduce 

their energy consumption [2]. 

 

A number of countries and regions are deploying new electricity metering, and its introduction is 

being accelerated by legislation: in the European Union the 80% of households will have a smart 

meter by 2020. Austria and Switzerland commissioned a bi-national study on the topic “Smart 

Metering Consumption” [3]. The study, completed in 2012, assessed the energy used by existing 

and planned metering, to better understand the impact of implementing large scale roll out of smart 

metering, and to estimate the own energy consumption required for the operation of this 

infrastructure. In 2012 study on Smart Metering Infrastructure (SMI) was completed and presented 

by Austria and Switzerland to the 4E ExCo as well. The study included two major topics namely, 

Smart Metering Consumption (SMC) and Non Intrusive Load Monitoring System (NIALM). The 

term NILM is sometimes also used for NIALM. 

 

The domestic energy monitoring infrastructure planned today will be set for decades, millions of 

smart meters will be deployed, and the associated energy consumption will be fixed with the 

technology and architecture chosen for these systems. However, end-users at household level have 

often been excluded from this energy efficiency optimization process: they have traditionally held a 

passive role in issues related to energy savings although it rests on them to decide the amount of 

energy to consume and how to utilize it. As a result, it is quite evident that consumers also need to 

be active players in this process and research suggests that users are willing and capable to adapt 

their behaviour to energy saving practices if the necessary feedback, support and incentives are 

given [4]. 

 

The increasing concern about the impact of energy usage on the environment as well as the rise of 

energy costs are arguably the main factors that encourage customers to look for ways of decreasing 

consumes. 
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Nevertheless, the major difficulty is the lack of information about day-to-day activities; for 

instance, energy bills, which are usually received at the end of each month, cannot be used to 

distinguish the effects of individual actions or to obtain meaningful feedback about the 

effectiveness of users’ change of habits [5][6]. Such problems need innovative feedback 

mechanisms with greater transparency about the consumption at any time and the associated cost 

that can potentially improve energy savings practices. Current trends in the development and 

convergence of ICT and energy networks are ushering a range of possibilities in areas such as 

residential energy monitoring (measuring, processing and providing feedback in near-real-time), 

context-aware application and activity detection [7]. 

 

1.1 Scenario Description 

 

The complexity of the NIALM task depends largely upon the target household, which is affected by 

many factors. The two most important of which are the appliances and occupants of the household. 

This section discusses a typical scenario in which a NIALM would be expected to operate, and the 

monitoring techniques which would be used. 

 

Zeifman and Roth [8] estimate that a typical household contains 30–50 appliances. These 

appliances draw a wide variation of power (0–3000 W) and are in operation for different durations 

of time (0–24 hours per day). As a result, domestic appliances can consume vastly different amounts 

of energy. Figure 1 displays approximate figures for the average energy consumption per day for the 

most common appliance types. The figure collects appliances of the same type (e.g. multiple light 

bulbs) as would be expected in households, and consequently shows fewer appliances than the 

estimate of Zeifman and Roth. The estimates are calculated using power demands of household 

appliances [9] and scaled up using approximate durations of use. A full breakdown of the figures 

used is given in Appendix A. The shape of the graph appears to roughly follow an exponential 

distribution, in which  the  majority of the household’s energy is consumed by relatively few 

appliances, specifically those which perform heating or cooling tasks. Therefore, it is most 

important for a NIALM to successfully disaggregate such high energy consuming appliances. 

Having described the typical households in which a NIALM will be required to operate, we now 

describe the potential applications which are enabled by disaggregated energy consumption data. 
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Figure 1: Average energy consumption of domestic appliances 

 

 

1.2 Application Areas 

 

Providing disaggregated real-time feedback has been found to reduce a household’s electrical 

energy consumption by 9–18% [10]. Such a reduction in domestic energy consumption would 

clearly contribute to national goals of a reduction in carbon dioxide emissions. In addition, such an 

increase in the efficiency of domestic electricity consumption places a lower demand on electricity 

generation, and consequently a lower demand on the burning of fossil-fuels or international energy 

imports. 

 

In addition to these national goals, individual consumers will also benefit financially from such 

reductions in electricity consumption. Furthermore, disaggregated energy feedback also has the 

potential to educate each household’s occupants about the relative energy consumption of different 

appliances. This increase in awareness could also prompt energy savings in other domains, such as in 

commercial and industrial premises. 
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In order to realise such energy savings, disaggregated appliance data must be used to produce 

actionable suggestions which are then presented to a household’s occupants. The remainder of this 

section discusses three types of such feedback. 

 

First, disaggregated electricity consumption can be used to provide personalised suggestions 

regarding the mode of an appliance’s use. The system would detect when an appliance is being used 

in a mode of poor energy efficiency and quantify the savings should the appliance be switched to a 

more energy efficient mode. Such suggestions do not prevent the household’s occupants from 

carrying out their desired task, but instead allows them to make an informed decision regarding the 

mode of use of an appliance. Examples of such appliances are generally those with an economy or 

low power setting (e.g. an economy shower or a cool cycle of a washing machine). 

 

Second, the disaggregated electricity consumption can also be used to provide automated load 

deferral suggestions. Since the mix of generators supplying electricity to the national grid varies 

with demand, so does the rate of carbon emissions. Load deferral is the act of delaying the use of 

electricity from a peak time to an off-peak time, therefore reducing the net carbon emissions despite 

the same amount of energy being used. An automated system could suggest the deferral of 

appropriate energy intensive appliances to off-peak times, and would therefore require information 

regarding the time of day when  the appliance is used, the energy consumption of the appliance and 

the carbon intensity of the national grid throughout the day. Deferrable loads are generally 

appliances whose usage is not required to be performed immediately upon user interaction (e.g. 

running of a washing machine or dishwasher). Furthermore, with the introduction of time of use 

pricing or real-time pricing, load deferral can also decrease the overall cost of electricity for 

individual households. 

 

Last, disaggregated electricity consumption could be used to detect faulty or deteriorating 

appliances [11]. Since the NIALM estimates the energy consumption of each appliance, a faulty 

appliance can be identified as either an appliance which draws significantly more power than the 

average for that appliance type or an appliance whose energy consumption increases over time. In 

such a situation, the automated system could suggest either a more energy efficient replacement for 

less expensive appliances or a repair for more expensive appliances. The system could even 

calculate  how long it would take to break even after such a replacement or repair, compared to had 

the household occupants taken no action. Examples of such appliances are generally those which 

become less energy efficient throughout their lifetime (e.g. a refrigerator or oven with a 
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deteriorating door seal). Having described the various applications which are enabled by 

disaggregated electricity data, we now consider existing solutions to the disaggregation problem. 

 

1.3 Existing Solutions 

 

A number of appliance monitoring methods exist which reduce the complexity of the 

disaggregation problem at the expense of a more substantial intrusion into the household.  

The literature defines a clear distinction between intrusive and non-intrusive metering [12]. 

Intrusive metering refers to appliance-level metering;  the deployment of one meter per appliance. 

Conversely, non-intrusive metering refers to premises-level metering; the deployment of one meter 

per premises. The term premises-level metering is used to describe the aggregate metering of 

appliances, whether contained within a household, a workplace or any other building. 

 

Appliance energy disaggregation could be performed through intrusive metering. The deployment 

of one meter per appliance would allow each individual appliance’s energy consumption to be 

communicated to a central hub. However, there are many practical disadvantages to this method that 

have prompted the study of non-intrusive metering. First, the financial cost of manufacturing and 

installing enough meters to match the number of domestic appliances would be considerable. 

Second, the installation of one meter per household appliance would clearly cause substantial 

inconvenience to the household’s occupants. Third, the system would require additional meters to 

be deployed should the set of appliances change (e.g. appliance replacements or the introduction of 

new appliances). Therefore, until such appliance metering is available at scale at low cost, intrusive 

metering should not be considered as a practical or scalable solution to the appliance energy 

monitoring problem [13]. 

 

Alternatively, non-intrusive metering can be used to disaggregate appliance energy from a single 

point of measurement. Such a system is commonly referred to as a non-intrusive appliance load 

monitor (NIALM). One approach is to design a meter specifically for appliance energy 

disaggregation, which is able to sample the household’s electricity demand thousands of times per 

second, therefore allowing multiple electrical features to be extracted. These features can be used to 

easily discriminate between appliance power demands, therefore simplifying the disaggregation 

task. However, the financial and convenience cost of installing a bespoke meter in each household is 

still substantial relative to the benefits of appliance energy disaggregation [13]. 
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A summary of these methods is given below, and a full description is given in Chapter 2: 

• Electrical sub-metering: Installing one electricity meter per appliance. 

• Smart appliances: Appliances self-report energy consumption to a central hub. 

• Electrical probing: Transmitting an electrical signal into the household mains circuit and analysing 

the return signal. 

• Appliance tagging: Installing a low-cost appliance tag which  detects  usage through  non-electrical 

methods. 

• Ambient sensors: Using existing sensors such as occupancy, lighting and audio sensors to infer 

appliance usage. 

• Conditional demand analysis: Using an appliance survey to estimate appliance energy consumption. 

 

However, the intrinsically intrusive nature of these methods clearly violates the requiremnets of 

NIALM and as a result none of these methods constitute a solution for disaggregating smart meter 

data.  

Having discussed the existing solutions, we now summerise the research contributions of this thesis. 

 

1.4 Research Contributions  

 

The following requirements contribute positively to define a good NIALM approach are described:  

1. feature selection: the feature that characterize the appliances should be sample at 1 Hz; 

2. accuracy: the minimum acceptable accuracy of the disaggregation algorithm is 80%-90%; 

3. no training: no training algorithm should be necessary; 

4. near real-time capabilities: the algorithm should perform in real time; 

5. scalability: the algorithm should be scalable if the number of used appliances increase from 10 to 

20; 

6. various appliance types: the types of used appliances should be various (on-off appliances, 

multistate appliances, continuous consuming appliances, and permanent consuming devices). 

Another important requirement to obtain a good NIALM approach is to involve the final user on the 

disaggregation algorithm, as in [13] has been demonstrate how using disaggregation method can 

lead to energy savings of up to 12% through a real time energy feedback at appliance level. This is 

consistent with the wealth of literature focusing on how provision of feedback to households on 

energy use data can facilitate energy savings [14] [15] [16] [17]. 
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Our contributions towards this objective can be summarised as follows. 

 

We have developed an “innovative” load disaggregation algorithm that respect the requirements 

above mentioned and exploits feedback algorithms. “Innovative”, because we use a simple 

algorithm but effeciently integrated with a feedback algorithms, in which the user plays an active 

role. Consumer systems for home energy management can provide significant potential energy 

saving. But most people have only an approximate idea of how much energy they are using and 

what impacts they could make by changing day-to-day behavior. On the other hand a detailed 

information about energy consumption is crucial especially when a PV system is also locally 

connected (e.g. load and  PV generation curve overlapping). Hence it is important to develop 

systems, based on non - intrusive appliance load monitoring (NIALM), in which individual 

appliance power consumption information is disaggregated from single-point measurements, that 

provide a feedback in such a way to make energy more visible and more amenable to understanding 

and control. Digital electricity meters (e.g. power meters) measure total electricity consumption of a 

household at a fine temporal granularity. Using this data, the consumption of individual appliances 

can be retrieved and used to provide novel services, such as personalized energy consulting. 

 

Our research focuses on the development of a software tool to direct, instantaneous non-intrusive 

load monitoring and energy disaggregation of individual home appliances.  

 

Therefore, the final aim is to provide a service to the user that provides whole-house real-time 

energy monitoring and dynamic pricing from electrical energy retailers in an attempt to motivate 

users to shift or reduce their energy consumption. Particular attention is devoted to define the 

feedback functions and to evaluate their positive effects on the reduction of disaggregation errors.  

 

These contributions are also detailed in the following five papers: 

 

1. V. Amenta, G. Tina, “Load Demand Disaggregation based on Simple Load Signature and User’s 

Feedback”, SEB 2015, 7th International Conference on Sustainability in Energy and Buildings. 

2. G.M.Tina, V.Amenta, G.Di Modica, O.Tomarchio, “Web interactive non-intrusive load 

disaggregation system for active demand in smart grids”, EAI Endorsed Transactions on Energy 

2014,1(3): e4 
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3. G.M.Tina, V.Amenta, “Consumption awareness for energy savings: NIALM algorithm efficiency 

evaluation”, IREC, IEEE International Renewable Energy Congress, Hammamet, 25-27 March 

2014.  

4. V.A.Amenta, G.M.Tina, S.Gagliano, G. Di Modica,O.Tomarchio, “Web interactive non intrusive 

load disaggregation system for energy consumption awareness”, National Conference AEIT, 

Mondello , 3-5 October 2013, IEEE  pages 1 - 6 , ISBN: 978-8-8872-3734-4 

5. V.A.Amenta, G.M.Tina, “Non Intrusive Load Monitoring Techniques for Energy Emancipation of 

Domestic Users”. International Conference, CISBAT, Lausanne, 4-6 September 2013.  

 

Having summarised our research contributions, we now describe the structure of this thesis. 
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1.5 Thesis Structure 

 

The remaining chapters of this thesis are structured as follows: 

 

Chapter 2 provides a background of theoretical and empirical research relevant to non- intrusive 

appliance load monitoring. First, intrusive monitoring methods are discussed. Second, approaches 

based on high frequency electricity monitors are considered. Last, low frequency methods are 

introduced. 

 

Chapter 3, we present an overall ICT architecture for energy consumption awareness: data about 

energy consumption collected in users' homes are sent to a service provider site that, after 

disaggregating and processing them, allows a user friendly representation of energy consumption 

providing the user with a direct feedback about his habits and distribution of consumption among 

his appliances. 

 

Chapter 4 describes the disaggregation algorithm and the function to generate a random and 

controlled load profiles.  

 

Chapter 5 shows the experimental results. The robustness of the disaggregation algorithm has been 

tested both numerically and experimentally. Secondly, we defines the users’ feedback and the 

different feedback algorithms. 

 

Finally, Chapter 6 gives a summary of the research presented in this thesis. We also discuss future 

extensions of the work presented in this thesis, with specific attention to apply NIALM system in a 

real scenario.  
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Chapter 2 

 

Background 

 

This chapter gives a background of various existing approaches which aim to disaggregate a 

household’s total energy consumption into individual appliances. We begin by describing intrusive 

methods for appliance monitoring, and highlight their intrinsic dis- advantage of poor scalability. 

We  then move on to non-intrusive monitoring methods  and introduce high frequency based 

approaches. However, such methods require bespoke hardware to be installed within homes since 

smart meter data is of insufficient granularity. Next, we discuss low frequency event based methods, 

although such approaches inherently consider all appliance switch events to be independent, and as 

a result have poor sensitivity to errors. 

 

2.1 Intrusive Monitoring 

 

Intrusive monitoring refers to the deployment of multiple hardware sensors throughout   a 

household. Such intrusive methods can be further divided into direct and indirect monitoring 

methods.  Direct monitoring methods measure the electrical characteristics  of each appliance’s 

power demand. In contrast, indirect methods measure non-electrical characteristics, from which 

each appliance’s power demand is inferred. We give a discussion of both direct and indirect 

methods in Section 2.1.1 and Section 2.1.2 respectively, and highlight the reasons why neither 

category of methods is an appropriate solution for the disaggregation of smart meter data. 

2.1.1 Direct Monitoring 

This section describes three forms of direct intrusive monitoring: electrical sub-metering (Section 

2.1.1.1), smart appliances (Section 2.1.1.2) and electrical probing (Section 2.1.1.3). We discuss the 
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various costs involved with each method, and give reasons why each approach is not a suitable 

solution to the smart meter disaggregation problem. 

 

2.1.1.1 Electrical Sub-metering 

 

Electrical sub-metering refers to the installation of a system in which individual appliances are 

monitored directly using one meter per appliance. The appliance meters typically take the form of a 

plug-in meter or a clamp-on meter. Plug-in meters are installed by plugging the appliance into the 

meter, and plugging the meter into an electrical outlet. This allows the meter to both monitor the 

appliance and control the flow of electricity between the mains circuit and the appliance.  

Alternatively, clamp-on meters can be installed without breaking the electrical circuit, by attaching 

a clamp around a lightly insulated positive or neutral wire. The power drawn by theappliance can be 

calculated by measuring the electromagnetic field generated by the flow of current through the wire. 

The combination of plug-in and clamp-on meters allow appliances that are either plugged in to an 

electrical outlet or hard-wired in to the mains circuit to be monitored. 

 

Although both plug-in and clamp-on meters allow accurate measurements to be made of the energy 

consumed by an appliance, they have many practical disadvantages. The significant cost and time 

required per installation are often cited as reasons why this approach is impractical to deploy for a 

large user base [11],[18],[19]. Therefore, the use of electrical sub-meters for appliance monitoring 

will not be considered further in this work. We now discuss smart appliances as an alternative form 

of direct monitoring. 

 

 

2.1.1.2 Smart Appliances 

 

Smart appliances can be used to self-report their energy consumption to a central hub, therefore 

circumventing the issue of installing additional monitoring appliances. Such smart appliances would 

therefore need to be fitted with a wireless enabled energy monitoring module. However, older 

appliances would need to be either replaced or retrofitted in order to self-report their energy 

consumption. Replacing every domestic appliance is clearly prohibitively expensive, while 

retrofitting appliances incurs the same disadvantages as appliance sub-metering. The turnover of 

domestic appliances is generally quite slow, as most appliances can only be expected to be 

replaced if the old appliance is faulty. Therefore,  it would take many decades for most appliances 

to be replaced through  this  cycle. This  is  way  beyond  the  2020  target for the  roll  out of smart 
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meters in the UK (Department of Energy & Climate Change, 2009), and as a consequence smart 

appliances will not be considered as a complete solution to the non-intrusive monitoring problem. 

It is worth noting  that both smart appliances and  NIALM  systems could cooperate. In such a 

scenario, each smart appliance could report its energy consumption to the NIALM system. The 

NIALM could then subtract each smart appliance’s  power demand from the household aggregate 

power demand prior to performing disaggregation, therefore simplifying the disaggregation task for 

the remaining appliances. However, this would require the standardisation of energy consumption 

reporting that does not yet exist. Having ruled out a complete deployment of smart appliances, and 

shown that a partial roll out would only slightly simplify the disaggregation problem, we now 

discuss disaggregation via electrical probing. 

 

2.1.1.3 Electrical Probing 

 

Electrical probing is the process of transmitting a signal into a household’s electrical circuit and 

using features extracted from the returned signal to classify the loads currently in use [12]. 

Electrical probing is not intrusive in  the physical  sense (as with sub-metering), but is instead 

intrusive upon the household’s electrical circuit. However, electrical probing inherently adds 

interference to the electrical circuit, which  can adversely affect the power quality delivered to each 

appliance. As a result, energy disaggregation by electrical probing has not been reported in the 

literature since it was first suggested by Hart [12]. For these reasons, electrical probing will no 

longer be considered as a solution to NIALM in this report.  Having discussed three direct forms of 

monitoring, we now move on to indirect monitoring methods. 

 

2.1.2 Indirect Monitoring 

 

This section describes three forms of indirect intrusive monitoring: appliance tagging (Section 

2.1.2.1), ambient sensors (Section 2.1.2.2) and conditional demand analysis (Section 2.1.2.3). We 

discuss the various costs involved  with each method, and give reasons why each approach is not a 

suitable solution to the smart meter disaggregation problem. 

 

2.1.2.1 Appliance Tagging 
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Appliance tagging refers to the modification of an appliance such that a tag emits a  unique signal 

when the appliance turns on or off. These signals are detected by a central hub which estimates each 

appliance’s energy consumption. McWilliam and Purvis [20] demonstrate the use of transmitting 

RFID signals through the live mains circuit to a central recorder in order to uniquely identify 

appliances. However, this approach requires the customisation of each individual appliance in 

addition to the installation of a central signature detector. The installation time and cost per 

household of this method is considerable and will therefore not be considered further in this work. 

Having dismissed appliance tagging as a reasonable solution, we now consider the use of ambient 

sensors. 

 

2.1.2.2 Ambient Sensor 

 

Multiple wireless sensors could be used to monitor feeds other than electricity in order to 

disaggregate premises-level power measurements into individual appliances [21], [22]. Examples of 

such sensors include audio, temperature and light sensors, which could be used to monitor both 

human behaviour and appliance operation. As with appliance tagging, this approach requires the 

intrusive installation of multiple sensors throughout each household, and therefore will not be 

considered further in this work. Since ambient sensors do not provide a suitable solution, we now 

discuss the use of conditional demand analysis. 

 

2.1.2.3 Conditional Demand Analysis 

 

Unlike other approaches requiring the installation of additional meters, conditional demand analysis 

(CDA) uses only a household’s billed energy consumption. In addition, CDA also requires 

information about the consumer, household and weather. Such data from many households are 

analysed using a multivariate regression technique to learn the typical contribution of individual 

appliances [23]. CDA can  then be used estimate the energy consumption of domestic appliances. 

Again, the lack of appliances installation makes this a non-intrusive approach in the traditional 

metering sense. However, CDA requires a large participant base, in which each participant must 

complete a detailed questionnaire; an example of a social intrusion. Furthermore, CDA does not 

capture unusual cases which are not accounted for by such questionnaires, e.g. a day when the 

washing machine has been run three times. Therefore, this method will  not be considered further in 

this work. 
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Having ruled out intrusive monitoring methods as appropriate solutions to the problem  of smart 

meter disaggregation, we now turn to non-intrusive methods. 

 

2.2 Non Intrusive Monitoring 

 

We consider non-intrusive appliance monitoring as the disaggregation of a household’s appliances 

from the total load through a single point of measurement. In this section, we first give a brief 

history of the field, before describing non-intrusive methods based on high frequency data, which 

are capable of disaggregating household energy consumption to a  high degree of  accuracy. 

However, smart meters are not  capable of  reporting such high frequency data, and as a result such 

methods would require the installation of additional hardware to each household. This is followed 

by a description of non-intrusive methods which make use of low frequency data, in which we 

highlight a direction of research with the potential to solve the smart meter disaggregation problem. 

 

2.2.1 History 

 

Hart [12] first introduced the field in his seminal work, which outlined a set of principles NIALM 

algorithms should follow, a taxonomy of potential approaches, a set of features that such 

approaches could use to discriminate between appliances and the use of finite state machines to 

model appliances. Although Hart didn’t pursue the problem of energy disaggregation much further, 

the concepts introduced in this work have since been consistently echoed by the literature. 

 

Hart and Bouloutas later published an a theoretical method by which two appliances  could be 

disaggregated via an approach based on the Viterbi algorithm [24], although it was  never applied to 

energy disaggregation in practice. This work laid the foundations for what would become known as 

non-event based monitoring, which describes the application of probabilistic temporal graphical 

models to the area of energy disaggregation, as discussed later in Section 2.2.3.3. 

 

The field of energy disaggregation drew limited attention over the subsequent 15 years, until it 

received renewed interest as a result of decreasing hardware costs, expanding connectivity 

infrastructure, and most recently, national roll outs  of  smart  electricity meters. Such factors have 

contributed to the formation of a community of researchers to establish the field in its own right. 
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Since 2011, a number of public data sets designed specifically for energy disaggregation have been 

released, 4 international workshops have been held (EPRI EU NILM 2016, EU NILM 2015, NILM 

2012, EPRI NILM 2013), and a toolkit  has been released enabling the empirical comparison of 

various energy disaggregation algorithms [25]. We now go on to describe developments in the field 

which rely on high frequency sampling. 

 

2.2.2 High Frequency Sampling 

 

We consider high frequency sampling as the measurement of electrical characteristics at a rate 

greater than 1 Hz. By sampling the current and voltage thousands of times per second, various 

electrical features can be calculated.  Most commonly, real  and reactive power are calculated from 

current and voltage readings over one cycle of the alternating current waveform. Hart [12] first 

showed that such features could be used to discriminate between appliances of equal apparent 

power demand. Since, much research has applied various classification methods to such electrical 

features in order to disaggregate appliances [26], [27], [28], [29]. 

 

In addition, Hart [12] also demonstrated that certain appliances generate non-sinusoidal waveforms, 

and consequently create significant low-order odd harmonics. Such harmonic content of an 

aggregate load can also be used to accurately discriminate between appliances [30], [31], [32]. 

Furthermore, [33] have shown that appliances’ switch mode power supplies create frequency peaks 

at non-harmonic frequencies, referred to as switching frequencies. Appliance disaggregation based 

on switching frequencies can achieve even greater accuracy than harmonic based disaggregation, 

since switching frequencies are often unique to each appliance while harmonic frequencies are 

always multiples of the power line’s fundamental frequency. 

 

Last, [34] have shown that the high frequency voltage noise generated  by appliances as they switch 

on or off can be used to identify individual appliances. Since such transient voltage noise typically 

lasts only a few microseconds, these transients are unlikely to overlap, and as a result can 

discriminate between appliances with similar continuous power and frequency components. 

Furthermore, [35] have shown that a hierarchical Bayesian framework can be used to extract 

features which generalise over multiple transient signals from a single appliance class. 
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However, although smart meters typically sample a household’s current and voltage internally at a 

high frequency, only low frequency power is reported externally by the household’s smart meter. 

As a result, each of these high frequency based approaches would require the installation of 

additional hardware into each household. This would clearly violate one of the requirement of 

NIALM, and as a result will not be considered further in this work. We now move on to discuss 

approaches based on low frequency sampling. 

 

2.2.3 Low Frequency Sampling 

 

In contrast to high frequency sampling, we consider low frequency sampling as  the reporting of 

household’s electrical features at a rate less than 1 Hz. Smart meters belong to this category, since 

they will typically only report power at 10 second intervals. We now discuss low frequency methods 

in more detail, first covering event based methods in Section 2.2.3.1 and those based on blind 

source separation techniques, before giving  an introduction to non-event based methods in Section 

2.2.3.3. 

 

2.2.3.1 Event Based Methods 

 

Event based disaggregation methods aim to classify appliance switch events (e.g. a microwave 

turning on or off) using a set of features which can be immediately extracted from the power load. 

For low frequency methods, such features are generally the difference between the steady power 

demands before and after the switch event, and the duration of the switch event. However, since UK 

smart meters only report the power demand at 10 second intervals, the duration of each appliance’s 

switch event will almost always be less than the sampling interval. As a result, the switch event 

duration cannot be used to discriminate between appliances, and therefore only the step change in 

power can be used. 

Furthermore, event based approaches either consider each appliance switch event as independent, or 

make local classifications based on fixed previous classifications. In the first case of independent 

classification, the step change in power alone often does not provide enough information to produce 

an accurate classification.  In the second case of local classifications, earlier incorrect classifications 

can ‘lock’ the algorithm into an incorrect event sequence [36]. 

As a result of these disadvantages, event based methods have focused only on the disaggregation of 

sequences of sampling rates of 1 Hz or greater [37], and have not been applied to power sequences 
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of 0.1 Hz sampling rates as will be reported by UK smart meters. Therefore, we  will not consider 

event  based approaches further in this work, and move on to discuss methods based on blind source 

separation in the following section. 

 

2.2.3.2 Blind Source Separation 

 

Blind source separation aims to separate a set of mixtures of sources into a set of individual sources 

[38]. A classic example of blind source separation is that of speaker diarisation, in which multiple 

microphones are placed in a room containing multiple speakers, and the aim is to estimate when 

each speaker is speaking throughout the set of audio recordings. In the domain of energy 

disaggregation, the sources correspond to the appliances within a household and the mixtures 

correspond to electrical measurements taken at a single point of measurement. In the scenario in 

which smart meters are used as the measurement hardware, only a single mixture is observed (the 

household aggregate power demand), and as such the problem is severely underdetermined; there 

exist more unobserved sources than observed mixtures. This is in contrast to the typical scenarios in 

which blind source separation is applied, in which the number of mixtures is close to the number of 

sources, for example, the separation of two mixtures of three speech signatures [39]. Furthermore, 

blind source separation techniques are typically applied to scenarios in which little or no 

information is available regarding the structure of sources or the mixing process. Again, this is in 

contrast to energy disaggregation, in which rich prior information is available regarding the 

behaviour of appliances and the mixing process is known, although sub-metered data from 

individual appliances in each household is rarely available to directly learn the structure of such 

appliances. 

 

Kolter et al. [40] proposed an approach for energy disaggregation via discriminative sparse coding, 

in which appliances are represented using a set of basis functions, and disaggregation is 

accomplished by finding a sparse set of activations which explain the household aggregate data. 

Crucially, the approach learns general appliance models from appliance data collected from 

households other than the test household in which disaggregation  is  performed. The authors  then 

apply  non-negative  matrix  factorisation to solve an optimisation problem in order to disaggregate 

appliances. This approach models sequential time slices independently,  and as such this method is 

best applied to very low frequency data (e.g. data collected at 15 minute intervals). However, this 

approach is likely to ignore the strong dependency between sequential measurements taken at 
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higher frequencies (e.g. 10 second intervals), and therefore will likely perform poorly when applied 

to the disaggregation of smart meter data in our scenario. 

 

Dong et al. [41] applied a similar approach based on discriminative sparse coding to the 

disaggregation of domestic water consumption data. However, the approach suffers from the same 

core disadvantage; that the approach does not exploit the strong dependencies between sequential 

readings taken at 10 second intervals, and as such is not well suited to the disaggregation of 

electrical data collected by a smart meter. However, it should be noted that the authors proposed a 

recursive technique, in which appliances are iteratively separated from the household aggregate 

data. Such an approach is particularly interesting to electricity disaggregation, given the complexity 

of modelling a  large number of potentially unknown household appliances, but the vast majority of 

household energy can typically be accounted for by less than 10 appliances. 

 

The approaches drawn from the blind source separation field discussed in this section share a 

common disadvantage; that such approaches do not exploit the dependencies between sequential 

measurements, and as such will not be considered further by this work. However, it is exactly this 

disadvantage that motivates the study of non-event  based methods in the following section. 

 

2.2.3.3 Non-event Based Methods 

 

In contrast to event based methods, non-event based methods do not require a separate event 

detection process. Instead, event detection is integrated directly into the disag- gregation model. All 

existing non-event based disaggregation methods use temporal graphical models to represent the 

event detection and disaggregation problems using a  single probabilistic framework. Section 2.3 

introduces the theory of relevant temporal graphical models, while Section 2.4 describes how related 

works have applied such models to energy disaggregation. 

 

2.3 Temporal Graphical Models 

 

This section introduces a class of probabilistic graphical models which address the short- comings 

of the event based approaches. Such probabilistic graphical  models  have  previously been applied 

to a number of  real  world  problems, the prototypical example being speech recognition [42]. 

Speech recognition shares a number of similarities with energy disaggregation, in that the aim is to 
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identify the most likely sequence of discrete states (words) corresponding to a time series of 

continuous measurements (audio recordings). 

 

However, with energy disaggregation,  the aim is not to classify the operation of only a single 

appliance, but instead to classify the operation of a number of simultaneously operating household 

appliances given a time series of power measurements.  The field of speech recognition has since 

expanded to address similar problems of simultaneous classifications, such as speech recognition 

with non-stationary noise or multiple speakers [43]. A key difference between such domains and 

appliance monitoring is that these domains generally consider the classification of a small number of 

simultaneous sources of noise or speech (e.g. 2 or 3), whereas energy disaggregation methods must 

be robust to large numbers of simultaneous sources (e.g. 20 or more). As a result, similar 

assumptions of model scalability cannot be made, and consequently solutions to speech recognition 

problems are rarely applicable to the problem of energy disaggregation. 

 

2.4 Summary 

 

This chapter has described various existing approaches to the energy disaggregation problem. We 

first introduced intrusive monitoring techniques, however they were dis- missed due to the 

requirement to install multiple sensors throughout each household. We then described a category of 

approaches based on the processing of high frequency data. However, such methods are not 

compatible with current smart meters, and would therefore require the installation of additional 

expensive metering hardware. We also discussed how existing event based methods could be 

applied to smart meter data. However, such methods assume all appliance switch events to be 

independent, and as a result are unlikely to provide realistic solutions when applied to 10 second 

power data 

 

The following chapter describes a ICT architecture devoloped by us, where the measurements 

acquired by the power meters will be sent to low frequency (1 Hz) and the data are average values 

with respect to a sampling period set in advance in the above-mentioned appliances. 
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Chapter 3 

 

System Architecture 

 

In this chapter we present the overall architecture of the system. In the envisaged scenario, energy 

consumption data coming from users’ homes are sent to a service provider where data are 

appropriately processed in order to give users detailed information about their energy consumption 

habits. The overall architecture, shown in Figure 2, is broken down into three main subsystems: 

 

- Local monitoring subsystem: it is composed of a power meter installed at the user’s home, where it 

measures the global energy consumption of the user (along with other energy parameters) and a 

network device able to communicate the measured data to the central monitoring subsystem by 

means of a common Internet link. 

- Central monitoring subsystem: it is the core of the system, where all the processing takes place. It 

has all the software components required to process the data coming from the power meters, to 

execute the NIALM algorithms, to store processed data on an appropriate DBMS, and to generate a 

graphical data presentation for the end user. 

- User presentation: being typically a web-based interaction, it does not require any special 

prerequisites on the user side allowing, among other things, to access the system wherever they may 

be (after a suitable authentication). 
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Figure 2 Overall system architecture 

 

3.1 Local Monitoring Subsystem 

 

In the Local Monitoring Subsystem (LMS), at the common coupling point with the public 

distribution system, a power meter (PM) is installed to monitor locally electrical loads. After a 

properly data processing, they are transmitted via the web to a central server (SMC) where an 

higher level processing is performed. Both data collected locally and those drawn from the central 

server will then be made available to the user through an appropriate platforms.  

The SMC using this information, through an appropriate mathematical algorithms, named NIALM, 

by means of individual appliance power consumption information is disaggregated from single-

point measurements, provides a feedback in such a way to make energy more visible and more 

amenable to understanding and control.  

 

PM measures current and voltage and reports in real time the rms values for all three phases and 

neutral. In addition, PM calculates power factor, real power, reactive power, and others variables. It 

is also guaranteed a variation on the measurements of 0.5%. The updated frequency of the data is 

1/second. The input current to the device is included in a range of values from 0 to 6 amperes, to 
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ensure the protection of the device is appropriate to use a TA (current transformer). The data are 

transferred via the RS485 port and, a Modbus RTU protocol can be used.  

The device displays the following electrical parameters: voltage (V), current (I), active power (P), 

reactive power (Q), apparent power (S), power factor (PF), voltage and current THD.  

The data captured by the PM can be classified in two types,: direct (V, I, PF) and indirect, that is 

processed internally by a micro-processor, (P, Q, S, THD). 

 

The data provided by the power meter represent the inputs of the disaggregation algorithm. As in 

any measurement system, measurement errors have to be taken into account. These errors can 

impact greatly the efficiency of NIALM algorithm.  

 

Another important aspect is data transmission. PM is built in isolated Half duplex RS-485 serial 

interface. The communication port setting is obtained through dedicated setup parameters. To 

connect to the web we use an intelligent Ethernet gateway. The gateway is used to allow a remote 

full control and configuration of the PM. PM allows us to be sampled at a frequency of 1 second.  

 

3.2 Central Monitoring Subsystem 

 

The logical architecture of the Central Monitoring Subsystem is represented in Figure 3. 

It is composed of several modules providing the following features: 

• Data communication: it is the module that manages the communication with the Local monitoring 

systems and deals with the store of measured data into the Raw DB. The protocol used to get the 

measured data is the Modbus/TCP, which allows to directly query the measurement device over an 

IP network. 

• NIALM module: by means of a novel NIALM algorithm, it is able to perform a workload 

characterization that disaggregates the global energy consumption of the appliances. Details on the 

behavior and the algorithm executed by this module will be given in section III. 

•  Data Management and Persistence: it manages data persistence and controls data access for the 

purpose of historical data analysis and presentation to the end user. Three different databases are 

used: 



34 

 

• Raw DB: it stores the raw data coming from the local monitoring systems; these are the input data 

for the NIALM module; 

• Processed DB: it stores  the results produced by the NIALM module; it also contains intermediary 

information generated by the system’s business logic; 

• User configuration management: this module contains users related data, such as information about 

their appliances and their configurations, users’ feedback, and so on. 

• Business logic: it is the module containing the logic needed to process data and generate the useful 

information to be presented to the home user; 

• Presentation layer: this layer is responsible for presenting the home user with the required 

information. It is equipped with a simple and effective web interface. Through the web interface 

users may also provide "feedbacks" regarding their consumption habit, thus proactively interacting 

with the system in order to improve the behavior of the NIALM algorithm. 

• Billing system interaction: this module manages the interaction with the billing system of the 

energy provider. It retrieves information about the provider’s cost of energy and transforms the 

users’ data related to energy consumption (measured in Watt) into an actual cost. 

A simplified view of the information model used within the software architecture is represented in 

UML class diagram depicted in Figure 4. 

 

 

Figure 3 Software architecture 
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In the diagram entities, mutual relationships and relationships’ cardinalities were modelled; entities-

roles are briefly explained in the following: 

- User: it models the information associated to the user (authentication information included). 

- Power Meter: this entity models the measurement device installed at the user’s home.  

- Device: this entity models a generic device consuming energy (appliance). It is characterized by 

some energy parameters that constitute its signature load. 

- Category: devices are grouped into categories, in order to allow for simple filtering and compact 

visualization by users. 

- Device energy consumption: this entity stores all the consumption data associated to a device 

obtained from the NIALM algorithm. 

- State: it represents the state of the device. 

- Global raw data: this entity is needed to store the global consumption data and associated 

measurements produced by the Power Meter and locally stored into the RawDB. 

 

 

 

Figure 4 Information model 

 

 

3.3 Presentation Subsystem 

 

The intention of our research is to develop hardware and software solutions for providing advanced 

tools to electric utilities users (mainly residential) not only to optimize their energy consumptions 

but also to make them an active part of future Smart Grids. 
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In this way the users can have access to information and tools, in such a way to become aware of 

their energy consumptions habits. Further it will be possible to use information on the energy price 

and tariffs, and to reach many objectives such as: increasing the reshaping of load curves (i.e. 

redirect the electrical loads to the hours of low network usage), improving efficiency and reducing 

the electricity bill.  

 

The main idea of the proposed architecture is to exploit as much as possible the commitment of the 

users by means of active interaction with a dedicated web site. The user plays an active roles in the 

whole process in many steps. Firstly, the user is required to communicate the list of appliances 

connected to the main power supply along with some information about their electrical 

characteristics. 

 

The more complete the information provided by the user during this phase, the more accurate the 

results provided by the NIALM algorithm. However, since we are aware that not only the user may 

not be able to provide precise and complete  data about his appliances, but also the results of NILM 

algorithm are affected by errors (see chapter 4), an interactive phase has been designed. So, during 

the normal operation of the system, the user can be engaged in two different kinds of interactions, 

i.e. feedback, named respectively “Check Status” and “Verify Signature” (see chapter 5). 
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Chapter 4 

 

The NIALM Concept 

 

Non-intrusive methods are intended to offer installation simplicity and the ability to distinguish 

important load changes measurements at a central monitoring point [44]. Researchers at MIT were 

the early users of this technology to monitor residential and commercial end-user loads [12]. 

 

4.1 Structure of the NIALM Algorithm 

 

In the proposed method, the operating states of given appliance are determined by identifying 

moments where its active and/or reactive power consumption measurements change from one 

nearly constant or steady-state value to another one. These steady-state changes usually correspond 

to the appliance either turning on or turning off and they are characterized by a magnitude value and 

a sign (in active and/or reactive power (±∆P, ±∆Q)). 

 

 

 

Figure 5 Overview diagram of the NILM algorithm 

 

 



38 

 

In Figure 5 the main structure of the NILM algorithm is presented. The output is the status of each 

appliance, whereas the input can be classified as follows: 

 

• Measurements: it contains the information coming from the local monitoring subsystem (e.g. 

voltage, current, active and reactive  power, total harmonic distortion and so on). 

• Status0: it is the daily initial status of all appliances. 

• Appliance Data: it contains information about type and signature of loads, mainly rated active (P) 

and reactive (Q) power. It is worth mentioning that the initial information about loads can be 

obtained only from data in nameplates or in technical documentation provided by the manufacturer. 

• Parameters: the NILM algorithm needs some parameters that are somehow correlated with the set 

of appliances.  

 

The NILM program is written in the Matlab programming language and its behavior is described by 

the flowchart depicted in tha paragraph 4.2. Measurements have to be preprocessed before entering 

the NILM algorithm: this data treatment aims to smooth out small or erratic variations in the total 

demand signal. This preprocessing consists mainly in P and Q linearization.  

 

It performs also filtering of spikes and low frequency noise. Filtered signals consist of piecewise 

line where each positive or negative demand drop is more likely to represent a significant ON or 

OFF signal. 

 

The algorithm compares each change in the global P signal to each rated power appliance. If the 

magnitude of the change is greater than the rated power of an appliance the change is attributed to 

that appliance. If there are more than one candidate that can generate the same power drop, a new 

comparison in change in the Q global signal is applied. So as matter of fact, the proposed algorithm 

uses only power analysis to characterize the signature of electric appliances. 

 

Although this method achieves an estimated detection accuracy of about 70%, it is possible to 

improve these results by an effective interaction with customers.  
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4.2 Algorithm Description 

 

In order to decompose the total load into its components, we need the model of each appliance and 

its main characteristics. The appliances can be modeled by a power constant load. 

 

Some appliances contain more than one electrical load (for example, a front loader washing 

machine contains a heating element and a motor – each component drawing very different loads). 

 

The system use a power meter for voltage (V), current (I) and active and reactive power (P, Q) 

measurement. The data for developing the algorithm were collected at 1s intervals in the laboratory 

IDRILAB (DIEEI-University of Catania).  

 

The algorithm is able to detect the consumers based on changes of active and reactive power 

consumption (hereinafter, we name it as P and Q Disaggregation Algorithm –PQ-DA) of two states 

(on-off) and multi-state appliances.  

 

This algorithm has been tested experimentally at the Power system Laboratory of University of 

Catania, where the load signature (LS) of certain appliances that might be found in a domestic 

environment have been performed.  

 

Different appliances have been monitored, such as a light bulb, a laptop, a refrigerator, a radio a 

coffee machine and a microwave. The appliances are modeled as on/off appliance that consume 

constant power at a single steady state. In reality, coffee machine loads depend on the water 

volume, the refrigerator have a second power state corresponding to defrosting. 

 

Due the pretty constancy of the voltage over the day, in the disaggregation algorithm have not been 

introduced a procedure to cope with it. Preliminary data analysis consisted of observing how the 

electric demand of each appliance varies over time and then comparing it to the total electric 

demand. For example, the refrigerator has a long low rectangular profile with a relatively large 

initial spike and a short period of decreasing demand at the end of the switching event. Each 

appliance event is characterized by an ON signal, an OFF signal and a duration. 
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The NILM program is written in the Matlab programming language and it is descript in Figure 6. 

The input are: an Excel data files (Appliance data.xls) which contain a series of information: the 

number of the appliance, the active nominal power (P), the reactive nominal power (Q) and a file 

with the information coming from the measurement system. This information can be preprocessing 

before enter in NILM algorithm. 

 

These algorithms are called signal preprocessors ( linearize P, linearize Q) because they filter the 

total demand signal before appliance load recognition is used. The preprocessor program aims to 

smooth out small or erratic variations in the total demand signal. The final filtered signal consists of 

distinct rectangular shapes where each increase or decrease in demand is more likely to represent a 

significant ON or OFF signal. To eliminate small or erratic variations it is necessary to set up: ∆P, 

∆Q, and the related ∆T (time interval). If the variations  ∆P, ∆Q is greater than a fixed value 

(Tolerance, that depends on the appliance) and this variation continues for a time interval greater 

than ∆T a steady-state value is detected. The filtered signal from the preprocessors are the input for 

the NILM algorithm. The algorithm compares each change in the P total signal to each appliance 

operating range (coming from Appliance data.xls). If the magnitude of the change is within the 

range of an appliance operating level, that is, the mean demand plus or minus two standard 

deviations, the change is attributed to that appliance.  

 

Therefore, assuming that there are no coincident ON or OFF signals, at least 95% of the ON and 

OFF signals should be recognized. If an increase is within both two different appliances range, a 

new comparison in change in the Q total signal has been applied. In Figure 6 algorithm’s flowchart 

is presented. 
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Figure 6 Flowchart of the proposed NILM algorithm 

 

 

4.2.1 Experimental Results 

 

The measurements of active and reactive power coming from the developed  system have been 

linearized and the results have been reported in Figure 7 and Figure 8. 

 

Of course the results of linearized process depend on the parameters values. Specifically, they are 

the minimum step of  P and Q, named respectively P_tol and Q_tol, and the minimum duration of 

the variation of the considered variables (e.g. P and Q), named Delta_T, that can be considered as a 

switching on and off of an appliance. Of course, as far as the Delta_T tends to zero the precision of 

the linearization increases, but, on the other hand, it does not allow to distinguish adequately a 

transition from noise in the variables. 

 



42 

 

This condition affects greatly the process of disaggregation. The samples have been recorded every 

second. Figure 9 shows the results for four appliances: lamp, personal computer, refrigerator and 

radio. 

 

Figure 7 Reactive Power: measurements and percentage error 

 

 

Figure 8 Active Power: measurements, corrected, linearized 
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Figure 9 Load curve: single appliances (above), total load (below) 

 

 

From the analysis of Figure 9, the disaggregation algorithm seems to perform adequately but some 

problems have arisen, it is worth mentioning the treatment of the switching on spikes of some 

appliances (e.g. refrigerator and coffee machine). In fact in the linearization process they are almost 

always eliminated but in this way important information for disaggregation process are lost. 

 

In a realistic NIALM implementation, the users have to provide data input to the disaggregation 

algorithm, these pieces of information needed for load signature are reported normally on labels 

stuck on the appliances.  

 

Specifically the user is required to communicate the list of appliances and for each appliance the 

following data: typology (on/off, multistate, so on), nominal electrical characteristics (Pn, Qn) and 

some other information related to the time of use (e.g. daily or weekly switching frequency and 

duration of the operating time).  

 

This input procedure can imply some problems related to the completeness and correctness of the 

information provided by the user.  

As matter of fact, the efficiency of PQ - DA is impacted negatively by the following issues: 

• Quality of the input: information about appliances are missing or incorrect. 
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• Difference between measured power and rating of the appliances (due to, for example, the effect of 

the variation of the voltage). 

• Operational complexity: two or more appliances are switched at the same time (e.g. simultaneously 

one appliance turns on and another turns off). 

Before implementing PQ-DA in a realistic context, it is crucial to test its performances numerically 

by means of the generation of random load profiles, named Global Load Profiles – GLPs, according 

to specific constraints in such a way to reproduce most of the situations that the disaggregation 

algorithm has to face in a real context.  

 

4.3 Load Profile Generation 

 

To evaluate quantitavely the performances of the proposed disaggregation algorithm, two different 

efficiencies have been defined. Further to understand deeply, the different causes of inefficiency of 

NIALM algorithm it has been decided to generate randomly load profiles (more details about this 

program are reported in the 4.4 paragraph). So in the following these profiles are cited specifically 

as generated (lowercase ‘g’), when the profiles come from random generation, whereas they are 

called disaggregated (lowercase ‘d’), if they come from NIALM algorithm.  

 

The first efficiency is based on the different, sample by sample of the generated and disaggregated 

power. In (1) only the active power efficiency is shown, but the reactive power efficiency has a 

similar definition. 
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Where: 

i is the ith sample; 

ns is the number of samples; 

Pgd is global disaggregated load profile; 

Pgg is global generated load profile. 
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Due to compensation phenomena it can be happen that ηp can be very high (e.g 80% ÷ 90 %), but 

the profiles of the single appliance can be wrong. This is the reason why another efficiency has been 

introduced, that is ηs. It is reported in (2). 
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Where: 

j is the j-th appliance; 

na is the number of appliances; 

Pj is the rated power of jth appliance 

 

SSAg,j(i) and SSAd,j(i) are logical values, that indicate the states of the appliance j at time i.  

The logical operation xor, allows to have a value equal to one when  SSAg,j(i) and SSAd,j(i) assume 

the same value (that can be either 0 or 1). 

 

There are many factors that significantly affect the efficiency of the disaggregation algorithm, such 

as: measurement accuracy of power meters (normally ± 1% f.s. and + - 0.25 f.s.), electrical 

characteristics of the customer’s appliances, and, finally it is related to actions that can fulfill the 

users. 

 

As far as measurement accuracy is concerned, the Italian technical standard UNI-CEI ENV 13005, 

recognizes that “the result of a measurement is only an approximation or estimate of the value of 

the measurand and is therefore complete only when it is accompanied by a statement of the 

uncertainty of that estimate”. 

 

Related to the appliances electrical characteristics there are two important aspects that impact 

greatly the effectiveness of disaggregation: the first one is connected with the nominal power of 

appliances. In fact when in a domestic dwelling, there are appliances whose rated powers are too 

small or close each other, considering a given power threshold (e.g. 4 W), the efficiency tends to 

decrease. The second one is linked with the simultaneous switching on and/or off of two or more 

appliances. 

 

In this context two factors that characterize a given group of appliances have been defined, that is 

KGP and DgP.  
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Lim DeltaP
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                                (3) 

 

Where: 

- Pmin is the smallest value among the rated power of  appliances belonging to a given group;  

- Lim_ Delta P is a parameter, i.e. 4W, it is a threshold for the detection of the switching events. 

 

{ }min , 1, 2,....,P i j aDg P P where i j n= − ∈                            (4) 

 

DgP is the smallest value among the values obtained from the differences between the rated power 

of i-th and j-th appliance.  

Finally it has been introduced another parameter, named global number of simultaneous switching – 

GNSS. Given a certain periods of time, for example a day, it is equal to number of sample 

characterized by simultaneous switching, nss, by the number of the involved appliances nca. 

 

                                 (5) 

 

 

4.4 Numerical analysis  

 

The robustness of the disaggregation algorithm has been tested both numerically and 

experimentally. Specifically, in this section, the function, that randomly generates different and 

controlled load profiles is described. The main parameters that need to be set to generate a load 

demand profile are: the number of the appliances (na) and the number of samples (ns), as well as 

deltaT, which is the minimum number of samples between a switch on and a switch off of an 

appliance. In this numerical analysis these parameters assume the following values: na = 10, ns = 

500 and deltaT = 2.  

 

For sake of simplicity, in this numerical analysis, only ON-OFF appliances are chosen, whereas in 

the proposed NIALM algorithm also multi-state loads are considered. 

 

Finally the load factors, defined in (3) and (4), are calculated considering the following parameters: 

Lim_ Delta P=4 W and Lim_Delta Q=20 VAr. It is worth to noting that in the group A there are 
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two appliances (e.g. 2 and 9, written in bold in Table I) whose rated active and reactive power differ 

by less than the respective tolerance (Lim_ Delta P=4 W and Lim_Delta Q=20 VAr). 

 

Table 1 RATING OF APPLIANCES AND GLOBAL INDICES 

 
A: 10 W < P < 100 W B: 10 W < P < 1000 W 

App. P(W) Q(VAr) cos(ϕ) P(W) Q(VAr) cos(ϕ) 

1 86 21.6 0.97 804 201.5 0.97 

2 64 99.8 0.54 228 304 0.60 

3 17 25.8 0.55 318 230.2 0.81 

4 25 15.5 0.85 468 213.2 0.91 

5 29 32.1 0.67 104 30.3 0.96 

6 86 114.7 0.60 295 292.6 0.71 

7 91 153.5 0.51 746 782.6 0.69 

8 50 46.8 0.73 599 174.7 0.96 

9 62 87.08 0.58 327 176.5 0.88 

10 77 30.4 0.93 894 181.5 0.98 

KG 4.25 0.77 - 26 1.52 - 

Dg 0 1.70 -  9 1.78 - 

 

Figure 10 shows an example of a generated global load profiles, active and reactive power, where: 

na is equal to 10, the number of samples, ns, is 500. A numerical calculation of KG and Dg has been 

performed referring to the load profiles shown in Figure 10, and the results are reported in Table 1. 

The value reported in red is Pmin in (5). 

 

Considering the case (A) (seeTable 1 and Figure 10 A), the graphical results of the disaggregation 

algorithm, described in ( see par. 4.2) are reported in Figure 11, where the global profile generated, 

named Pgg, is shown in red and the global profile coming from the application of the disaggregating 

algorithm, named Pgd, is shown in blue. The disaggregation efficiencies defined in (1) and (2) 

assume the following values: ηp = 75.08 % and ηs= 71.6 %. Such values are justified by the 

presence of two appliances (2 and 9).  
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Figure 10 Global generated load profiles: active power (solid red line) reactive power (dashed blue line): A) P=10÷100 W, B) 

P=10÷1000 W. 

 

 

Figure 11 Global load  profiles Pg:  Pgg – generated (dashed red line) and Pgd (solid blue line). 

 

Figure 12 depicts an example of comparison between the generated (SSAg) and disaggregated 

(SSAd) status profiles of two appliances ( 2 and 9); since the appliances are of ON/OFF type, the 

status can be 0 (OFF) or 1 (ON). 
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Considering the two cases A and B in Table 1, Figure 13 shows the cumulative relative error 

derived from the progressive difference of Pgg and Pgd. The curves highlight that an initial 

disaggregation error progresses very rapidly.  

 

Often changes in the derivative of these curves happen, they can be explained by means of 

compensation phenomena due to the presence, for instance, of two appliances that have  P and Q 

ratings very close.  

 

 

 

Figure 12 Graphs of the states of the appliances 2 and 9: SSAd - disaggregated (solid red line) and, SSAg - generated (dashed 

black line). 

 

To evaluate how the disaggregation algorithm works with different set of appliances, represented by 

the two indices DgP and KGP, twenty sets of appliances have been generated and the global profiles 

disaggregated. Figure 14 a) and b) the ηp and ηs disaggregation efficiencies varying with 

respectively DgP and KGP considering 20 groups of appliances, randomly generated, that range 

among 10 W and 1000 W. 
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Figure 13 Cumulative relative progressive error: A) appliances into the range 10÷100 W and B) appliances into the range 

10÷1000W. 

 

 

 

 

(A) 

(B) 
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Figure 14 ήp ands ήs disaggregation efficiencies for appliances into the range 10÷1000 W: a) varying with DgP and b) varying 

with KGP. 

 

 

 

Figure 15 ήp and ήs disaggregation efficiencies for appliances into the range 10÷100 W: a) varying with DgP and b) varying 

KGP. 
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Figure 16 Disaggregation efficiencies varying with GNSS for appliances into A) the range 10÷100 W and into B) the range 

10÷1000 W,. 

 

We note that when the generated values of the rated power are below the threshold are varied, so it 

is clear that the values, obtained by disaggregation, are less than 90%. Then, we have increasing the 

range of nominal power, so the cases in which the differences between the powers are below the 

threshold decrease significantly, obtaining a percentage of disaggregation at 100%. Whereas Figure 

15 a) and b) shows the results about 20 groups of appliances, randomly generated, that range among 

10 W and 100 W. Considering the case A) and B) of the Table 1, Figure 16 shows how the 

simultaneous switching influences both status and power efficiencies. 

 

In Figure 17 c, a GLPg of both active (solid line) and reactive (dashed line) power is shown. These 

curves have been built starting from the status profile of two appliances (App1 (Figure 17 a) and 

(A) 

(B) 
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App2 (Figure 17 b)). The rated powers of App1 and App2 are, respectively: Pn,1=28 W, Q n,1=30 

VAR and Pn,2=30 W, Qn,2=60 VAR. 

 

The two vertical lines, CS1 and CS2, show respectively the switch on and off, of both appliances, 

whereas the third line, SS1, shows a simultaneous switching; in fact, at the same time App1 

switches on and App2 switches off. It is worth noticing that the variation of the active power ∆P is 

equal to – 2W, so it is smaller than ∆Pmin (that has been set equal to 4W), so a disaggregation 

algorithm based only on active power measurements cannot detect this transaction. On the other 

hand, the variation of the reactive power ∆Q is equal to – 30 VAR, so it is greater than ∆Qmin (that 

has been set equal to 20 VAR), so it can be detected by PQ-DA. 

 

 

Figure 17 Example of construction of a GLPg (c) starting from the status profiles of two appliances: App1 (a) and App2 (b) 

 

 

 

4.5 The effects of noise on disaggregation 

 

The tests described above have used (automatically) generated profiles that were not measured in 

practice; in fact, the presence of noise affected the entire disaggregation process. 
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In order to create simulations that are closer to a real scenario, we decided to add a white noise with 

zero mean to the generated signals. 

For the NIALM systems, the noise has a disruptive influence because it affects the algorithm's 

ability to recreate the profile and to discern the states of the individual appliances, thus finally 

changing their efficiencies. 

 

4.5.1 Noise definition and analysis of the different causes 

 

The noise can be defined as any abnormality that introduces artifacts in the input data. 

In addition to purely electrical noise, its definition includes also: 

• Uncertainty of the measurement device 

• Loss of data synchronization between the readings and the disaggregation algorithm; (In this 

case the algorithm find some samples of which he does not know what is going on); 

• Errors in the data transmission between the measurement device and the device processing 

data; 

• Appliances that the algorithm cannot recognize because it has not been included in the 

database; 

• Appliances whose power consumption is different from the nominal one, and is therefore 

not recognizable; 

• Standby appliances, where the overall power consumption caused by individual 

contributions can reach power levels comparable with those of an on-line apparatus. 

 

Based on this considerations, we can define the noise as the difference between the measured power 

value (aggregated) and the total power value given by the disaggregation [45]. 

In other words, it can be defined as the portion of aggregate energy for which it is difficult to find a 

suitable match with the values of the database. 

 

 ����� = �� − ∑ ��
(�)��

���                               (6) 
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Given the high number of factors that, in the end, will compose the overall noise, it is important to 

specify in advance,  whether the results refer to conditions with or without noise. 

 

In a situation where noise  is present, we should determine its percentage: 

 

% − �� = ∑ ����∑ ��
(�)����� ���

���
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���
                              (7) 

 

To perform the disaggregation in the presence of noise, we should establish a proper limit value that 

sets a threshold between the noise and the electric signal.  

With a high threshold, we may restrict the noise impact, but we lose all the transitions characterized 

by a less variation in the power output on the value chosen as a threshold (Figure 19 ). On the other 

hand, a very low threshold involves the recognition of each event, but with the risk that the noise 

will be interpreted as a fictitious change ( Figure 18). 

 

 

Figure 18 Load Curve: using a threshold 15W/ 15 VAR 
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Figure 19 Load Curve: using a threshold 65W/ 65 VAR 

 

With a limit sets to 65 W (see Figure 19) , events are uniquely identified, implying that everything 

happening under the threshold will not be recognized and then labeled as noise. 

The establishment of the value to use as threshold should be made on a set of considerations that 

depends on the appliances' set, the quality of signals and the type of algorithm used. 

It is worth noting that the algorithms based on the PQ mapping are only limited by the risk of losing 

the ignitions of appliances that have a power value lower than the threshold. 

For the algorithms that use a recognition based on the profiles waveforms, a too high threshold 

value would result in the loss of information inherent to the shape, making impossible the 

identification of the status of a specific appliance. 

In the literature, we can notice that the value used for the threshold are very different (ranging from 

20W [46] to 100W [47]). In order to choose the threshold in the most appropriate way, it is better to 

refer to the working conditions rather than set a value a priori. 

 

4.5.2 Efficiency and noise 

The presence of noise leads to a reduction of the efficiency indexes ηs  and ηp. 

Due to an unpredictable nature, it is not possible to detect a unique correlation between the noise 

level (regarding power) and how it affects the efficiency. We can also note a deterioration in 
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performance but, is not possible to have a quantitative estimate, due to the difficulties to analyze 

phenomena that affect the validity of the results. 

To try to get an idea of how this influence occurs, we can refer to the average values that provide an 

estimate of the performance. To simulate the actual conditions, we generated a white noise of 10 dB 

amplitude that has been multiplied by a factor ([2, 5 or 10]) to obtain different power levels, while 

preserving the same shape (Figure 20 ) . 

 

Figure 20  Global generated load profiles with different values of withe noise 

 

To verify how the algorithm reacts to the presence of noise we generated a profile to which 

increasing values of noise are added. In cases where the signal with noise is disaggregated without 

any processing, we obtain a predictable decrease of the efficiencies ηs and ηp (Figure 21 ).  
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Figure 21 ηs and ηp  disaggregations efficiences varying with noise 

 

To improve the effectiveness of the algorithm we can proceed in two ways: raising the threshold for 

the events determination (Lim_ Delta P) or linearize. 

 

4.5.3 Lim_ Delta P variation in ideal conditions 

To examine how the Lim_ Delta P variation has an effect on efficiencies ηs and ηp, we chose 

different configurations of the appliances, characterized by various DgP,Q and for each, we generated 

50 random profiles. Each of these has been disaggregated, and the effectiveness determined. 
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Figure 22 ηs disaggregation efficience varying with Lim_ Delta P and varying DgP 

 

Figure 23  ηp  disaggregation efficience varying with Lim_ Delta P and varying DgP 

 

 

The two figures (Figure 22 and Figure 23) have been obtained by referring to the average values. As 

expected we can see that the increase of Lim_ Delta P  can result in a lowering of the efficiency. 

The use of the average values gives only a qualitative idea of the trend of the two indices; in 

practice, we notice that the correlation between the efficiencies and the Lim_ Delta P is strictly 

connected with the profile type and with the power of the individual transitions, rather than with the 

set of appliances. 
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For example, if the profile does not contain transitions in which the power is less than the value of 

Lim_ Delta P, the values of the two indices will remain constant. 

To investigate possible correlations between the efficiencies, the Lim_ Delta P and DgP are used in 

3D representations to look for any peaks (both positive and negative) of the efficiencies. 

From the figures (Figure 24 and Figure 25) we notice as in ideal conditions (no noise), the variation 

of DgP and Lim_ Delta P does not affect the efficiency significantly. 

 

 

 

Figure 24  ηs varying with Lim_ Delta P and DgP 
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Figure 25 ηp varying with Lim_ Delta P and DgP 

 

On the other hand, if the profile is combined with the noise, from the tests we can notice that the 

increase of the threshold results in an improvement of the disaggregation process and therefore of 

the efficiencies. 

The higher the noise level, the greater the benefit that it yields from the use of a higher threshold 

(Figure 26 and Figure 27). 

 

Figure 26 ηs with varying noise level, and with varying Lim_ Delta P 
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Figure 27 ηp  with varying noise level, and with varying Lim_ Delta P 

 

Analyzing of the figures (Figure 26 and Figure 27) it is observed that, even in the presence of noise, 

an increase of Lim_ Delta P, results in an increase of the efficiencies. 

In fact, if the increase of the threshold value makes it impossible to identify the transitions whose 

powers are lower than this value, an increase commensurate with the requirements allows 

eliminating the effects of noise while preserving the significant transitions. 

As we defined for the performance indices, in particular, ηs, we have that the transitions involving a 

higher power value have a greater weight. To verify that, we generated 100 profiles affected by a 

noise of 10 dB and then disaggregated with three different values of the Lim_ Delta P (4, 10 or 20 

W]. The value of 20 W is not excessively high, in fact in the literature we can see higher values as 

well (up to 100 W). 

In this scenario, a similar value is useful to see how the algorithm reacts to the noise and the 

threshold variation. From the analysis of the data in the Table 2 we can see that in the presence of a 

noisy profile, it is verified that the disaggregation undergoes the beneficial effect of a higher 

threshold. 

 

Table 2 MEAN VALUES OF  ΗS AND ΗP  WITH VARYING LIM_ DELTA P 

Lim_ Delta P ηs 

mean 

ηp 

mean 

4 70.15 65.19 

10 86.87 84.34 

20 89.43 88.67 
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The use of a larger Lim_ Delta P may be useful in cases where the user is unable to provide 

accurate feedback. In these circumstances, we can use a higher threshold to try identifying the most 

significant transitions. 

 

4.5.4 Signal linearization 

 

The signal linearization is another possible solution to the electrical noise problem. 

Since disorders (of any type) have an impact on the active and reactive power values, the measured 

values are first processed and then sent to the algorithm that implements the disaggregation of the 

input signal. 

This first processing takes place via two algorithms (P linearization and Q linearization) that 

attenuate or eliminate the small variations in the signal. 

In this way, the final signal will consist of an overlapping of square wave fronts that represent the 

changes of state on the devices. 

In order to linearize, it is necessary to define ∆P, ∆Q, and a ∆T interval. If the ∆P and ∆Q variations 

are greater than a particular threshold (set in line with the set of appliances), and if these variations 

have a time duration greater than ∆T, the linearization algorithm will identify a steady-state 

condition and then will send the linearized data to the disaggregation algorithm [5]. 

In Figure 28 we can observe the result of the linearization applied to a signal affected by noise. 
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Figure 28 Load global Profile linearized, and Load global profile generated with noise 

 

The linearization process changes the signal; therefore modifying the data that will be treated and 

on which depends the final result of the disaggregation. 

We have to choose the tolerances and the threshold values very accurately so that they preserve the 

information, contained in the original signal, and that are useful for the disaggregation (we should 

then maintain the information related to transitions that represent the changes of real status of 

appliances). At the same time, we should eliminate those ailments that could be mistaken as 

changes in the status. 

It is evident how the software implemented process depends upon an accurate analysis of the signal 

noise level. Figure 29 helps to understand these extreme conditions, where there is a constant power 

section of the signal in the presence of noise. 
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Figure 29 Signal effected by noise, and different threshold of linearization 

 

In the presence of high noise, the use of a too small threshold implies that in the signal will still be 

present a ripple, but if we use a  too high threshold, the linearization algorithm will tend to 

reconstruct the portions of the signal that are not really there (in Figure 29, samples ranging from 

ns= 382 to ns = 384 s). 

During the tests, we performed a significant number of simulations inherent linearization and we 

tried different approaches, some based on a moving average operation and others on an energy 

approach. 

 

Starting from the simple consideration, that the purpose of the linearization is to match the signal 

affected by noise with the ideal signal. 

It can be defined an index elin (linearization error), that has the aim to evaluate the performance of  

linearization algorithm: 
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This index provides an estimate of the difference between the ideal and the linearized signal, for a 

perfectly linearized profile elin will be invalid and, it will increase with the growth of linearization 

errors. 

It is perceived that elin  is not related to the disaggregation efficiency, but provides only an idea of 

the result of linearization. 
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In other words, a small value of elin is not necessarily equivalent to a well-managed disaggregation. 

This consideration derives from the fact that during the test, we noticed many cases in which there 

has been a drastic drop of the efficiencies (in particular with ηp, with values in some cases even 

below 10%) without that the index elin highlighted this. 

To evaluate the result of the linearization efficiencies, we generated 50 profiles affected by noise 

(with a peak-to-peak maximum of 10 W), and we obtained the efficiencies in this two cases: 

1) when Lim_ Delta P =20 W; 

2) when the same profile is linearized.  

 The values can be compared in the Table 3.  

 

Table 3 PERFORMANCE OF  LINEARIZATION ALGORITHM 

 ηs mean ηp mean elin mean 

Lim_ Delta P = 20 87.89 80.16  

Signal Linearized 57.3 11 117 

 

The efficiency collapse appears to be caused by the transition from one condition to another. The 

linearization scheme carry out the change by intermediate values, which then force the algorithm to 

reconstruct the power levels that really are not present. 

An interesting aspect of the simulations is the behavior of the two indices ηs and ηp. 

At the operating conditions, the ηs index seems to suffer less the influence of external factors 

remaining at more stable values and high compared to ηp. Given the definition of ηs it is evident that 

this suffers any change of the operating state of the appliances according to the power of the same 

device. 

Therefore, even in front of external disturbances, the disaggregation algorithm succeeds, in any 

case, to identify in the aggregate profile, the contribution given by appliances with higher power. 

 

4.6 Summary 

 

Before implementing PQ-DA in a realistic context, it is crucial to test its performances numerically 

by means of the generation of random load profiles, named Global Load Profiles – GLPs, according 
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to specific constraints in such a way to reproduce most of the situations that the disaggregation 

algorithm has to face in a real context.  

 

Two disaggregation efficiencies, ηP and ηS, have been defined (see par. 4.3). The first efficiency, ηP, 

is based on the difference, sample by sample, between the energy of the generated GLP, GLPg, and 

the energy of the disaggregated GLP, GLPd. The second efficiency, ηS, is based on the different, 

sample by sample, between the generated status of each appliance, and the disaggregated status of 

each appliance.  

The input parameters that are needed to be set to generate a random GLPg can be classified in two 

groups:  

• Appliance data: number of the appliances (na), range of variation of both rated active power (P 

n,min÷P n,max) and reactive rating power of the appliances (Q n,min ÷Q n,max). 

• Algorithm parameters: number of samples (ns), minimum number of samples between a switch on 

and a switch off of an appliance, ∆Smin. 

Related to the electrical characteristics of the appliances, there are two important aspects that 

impact greatly the efficiency of the disaggregation algorithm:  

• Measurement accuracy of power meters (normally ± 1% f.s. and + - 0.25 f.s.). 

• Nominal power of appliances: when in a domestic dwelling, either there are appliances whose rated 

powers are too small or they differ less than a given power threshold, ∆Pmin, the disaggregation 

efficiency tends to decrease. The use of reactive power allows to partially overcoming this problem, 

but from a realistic point of view, the measurement of the reactive power involves other problems 

especially under current and voltage deformed regime. In this context two factors that characterize a 

given group of appliances have been defined (see par. 4.3), that is: KGP (ratio between the 

minimum power in the set of appliances and ∆Pmin) and DgP (the smallest value among the values 

obtained from the differences between the rated power of i-th and j-th appliance). The similar 

factors can be defined for the reactive power (KGQ, DgQ). 

• Multiple switching: in this context two cases can be considered: 

- Contemporary Switching (CS): two or more appliances are switching on (or off), at the same time. 

- Simultaneous Switching (SS): two or more appliances change the state simultaneously, some turn 

on and others turn off. 

• The presence of noise causes a decrease of the performance of the algorithm. To improve the results 

were analyzed two possible solutions: an increase Lim_ Delta P and a preprocessing of the active 

and reactive power signals using a linearization algorithm. 
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However, for all these reasons, PQ-DA algorithm is unable to obtain exactly which is the real status 

of all appliances. To improve the results, a Feedback Algorithm has been developed. 
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Chapter 5 

 

Feedback Algorithm 

 

In [13] a review about electricity consumption feedback is analysed, two different feedback actions 

are identified and classified as: direct feedback action and indirect feedback action.  

 

The direct, or real time, feedback is immediate and it comes from a meter or a display monitor, in 

the indirect feedback methods the information are processed in some ways, e.g. more detailed 

electricity bills or household- specific advices for reducing electricity usage.  

 

The context in which we define our feedback algorithm is a mix of direct and indirect actions.  

In real time, the results of the NIALM algorithm are shown, but for a series of reasons if, there are 

some differences respect with the real status of appliances, the user may interact with the system.  

 

5.1 User Interaction 

 

The main idea of the proposed architecture is to exploit as much as possible the commitment of the 

users by means of active interaction with a dedicated web site. The user plays an active roles in the 

whole process in many steps. Firstly, the user is required to communicate the list of appliances 

connected to the main power supply along with some information about their electrical 

characteristics. 

The more complete the information provided by the user during this phase, the more accurate the 

results provided by the NIALM algorithm. However, since we are aware that not only the user may 

not be able to provide precise and complete  data about his appliances, but also the results of NILM 

algorithm are affected by errors (see par. 4.4), an interactive phase has been designed. So, during 

the normal operation of the system, the user can be engaged in two different kinds of interactions, 

i.e. feedback, named respectively Check status and Verify signature, hereinafter described: 
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5.1.1 Check Status 

 

The user is prompted to confirm some information about the status of one or more appliances. He 

has to provide information related to the state, (on/off) of the i-th appliance. By means of this 

information, the NIALM algorithm will improve, and correct, if necessary, its disaggregation 

results. 

 

 

Figure 30 Logic scheme of check status feedback 

 

5.1.2Verify signature 

 

The user is asked to turn on and/or turn off a specific appliance, in order to revise the signature of 

the i-th load. This interaction is enforced if the user, during the preliminary step, has not been able 

to provide all the needed information related to nominal power of appliances. So the rated power of 

i-th appliance is corrected from P and Q to P’ and Q’. 

 

Therefore, this second feedback allows to solve the problem linked to the quality of the information. 
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Figure 31 Logic scheme of verify status feedback 

 

5.2 PQ-DA and User’s Feedback 

 

If a complete and precise information is provided, it is not necessary to implement the “Verify 

signature” feedback but the attention has to be focused on the “Check status”.  

 

To evaluate the NIALM algorithm an index Ce (Cumulative error), based on the difference, sample 

by sample, between the GLPg and the one of GLPd (coming from forward algorithm) has been 

introduced, as follows: 
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Where: 

i is the i-th sample; 

ns is the number of samples; 

Pgd is global disaggregated load profile; 

Pgg is global generated load profile. 

 



72 

 

In (9) only the cumulative error of active power is shown, but it can be evaluate also for the reactive 

power. 

 

The value of Ce (ns) is used to ask for a user feedback. In fact, if it is greater than a given threshold, 

Ce,min, it means that the final status Sa(ns) vector, coming from the application of PQ- DA (Forward 

Algorithm) contains some wrong values. In this case, we ask the user to provide right information 

about the status of some appliances, by means of the “Check status” feedback. The output of this 

feedback is a correct status vector, named Sa’(ns). This information is used to perform 

disaggregation algorithm (Back Algorithm), starting from the final corrected status to the initial 

status Sa(1).  

The flowchart in Figure 32 shows the interaction between PQ-DA and the user’s feedback.  

 

 

Figure 32 Flowchart of the PQ DA with the Feedback Algorithm 

 

5.3 User Presentation 

 

The Global load profile generation, the PQ – DA, and the Feedback Algorithm have been 

implemented in the Matlab programming environment. Specifically, MATLAB® /GUI based 

interface has been developed to handle to manager input and output of disaggregation system. 

The numerical results relative to a given example will be shown by means of the GUI screen shots. 

The parameters of the example are: na = 10, ns = 500. In Table 4Table 4 there are the list of the 

characteristics of 10 appliances, they have been generated randomly with the following constraints: 

10 < P (W) < 100 and 0.5 < cos (ϕ) < 1.  
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Table 4 RATING OF APPLIANCES 

Appliance P(W) Q(VAr) cos(ϕ) 

1 43 10,77 0.97 

2 44 68,58 0.54 

3 37 56,18 0.55 

4 36 22,31 0.85 

5 33 36,56 0.67 

6 52 69,33 0.60 

7 99 166,9 0.51 

8 45 42,13 0.73 

9 95 133,4 0.58 

10 25 9,88 0.93 

 

 

For sake of simplicity, in this numerical analysis, only ON-OFF appliances are considered, whereas 

in the PQ – DA also multi-state loads are included.  

The graphical interfaces of home page is illustrated inFigure 33, where the following sections can 

be detected: “Input”, “Random Load Profile”, “Disaggregation” and, “Quantitative Evaluation 

Nialm Algorithm”. In the same page, the graphs of generated and disaggregated load profiles are 

shown. 
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Figure 33 Screen shots of the Graphical Interface: NIALM GUI 

 

By means of the FEEDBACK ACTION button, it is possible to move to the next page, shown in 

Figure 34. The graphical interface consists in the following sections: “Feedback Action”, and 

“Output results”.  

In Feedback Action section, the type of Feedback action can be selected, that is: total feedback or 

partial feedback. In the first case, it is possible to change the status of all the appliances coming 

from the application of PQ- DA (Forward Algorithm), instead, in the second case only the status of 

several appliances is changed. The algorithm implements a criterion of choice, i.e. it provides a list 

of candidate appliances to change their status. 
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Figure 34 Screen shots of the Graphical Interface: Feedback GUI. 

 

Results of PQ-DA, using a Feedback Algorithm, demonstrate that errors can be compensated. In 

Figure 35Figure 35 are shown: the cumulative error (Figure 35 (a)), defined in (9), and the GLPg 

and GLPd using Feedback Algorithm (Figure 35(b)). It is possible to note that the error coming 

from the application of PQ- DA (Forward Algorithm) is greatly reduced after the application of the 

Feedback Algorithm. 
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Figure 35 Output Results after Feedback Algorithm application 

 

5.4 Validation Test 

 

A project named SEEE (Systems Efficiency for Energy Emancipation), whose partners are the 

department DIEEI of University of Catania, Catania (Italy) and a Sicilian energy trader, is under 

development; it aims to study hardware and software solutions for providing advanced tools to 

electric utilities users (mainly residential)  not only to optimize their energy consumptions but also 

to make them an active part of future Smart Grids. 

 

The designed system has been developed in a real domestic scenario in order to better evaluate the 

overall behavior of the system. 
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The graphs, in Figure 36, Figure 37, and Figure 38, show the power consumption of a typical 

domestic user (e.g.user A). These pieces of information can help the user to understand his energetic 

behavior. Specifically Figure 36 shows the home page where the global measurements (P, Q, V, I, 

THD, Power factor) are shown in different time frames (one day, two days and one week), and 

updated every three minutes. Since data produced by the NIALM module are stored in the database 

(Processed DB), the user can decide what to analyze. Figure 37 shows the “Appliance Power” page, 

where the NIALM algorithm results are represented by a piecewise graph with the same time 

features as the previous graph. 

 

 

Figure 36 Home page of SEEE web site. 
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Figure 37 Power consumption grouped by appliance. 

 

Finally, in the Overview page shown in Figure 38, two pie charts are presented: pie chart A where 

the monthly percentage of energy composition of each appliance is depicted, and pie chart B which 

shows the cost rate of the electricity bill for each appliance. 

 

Figure 38 Pie Chart A about Power Consumption Overview, Pie Chart B about Costs Overview. 

 

Before starting the monitoring of a given user, it is very important to characterize it by the historical 

data taken by the electricity bills. Hereinafter, we will report the results concerning  the user that is 

now under monitoring (user A). 
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User A has a supply contract with power committed to 3 kW. During the first step of user’s 

characterization, user A communicates the list of appliances connected to the main power supply. In 

Table 5, the various appliances, grouped by category, of user A’ house are placed. 

 

Table 5 USER APPLIANCES CHARACTERIZATION 

 
Category 

Light Appliances Computer / 

entertainment 

Total number 7 10 7 

Global Power 

(W) 

271 14073 666 

 

 

The user has entered with an energy trader a contract that provides different tariff schemes, in this 

case a time-of-use tariff has been agreed.  

 

Actually the Italian Authority for Electricity and Gas (AEEG) approved the entry into force of a 

mandatory Time-of-Use (ToU) tariff among residential customers subject to the universal supply 

regime in Italy from July 1st 2010. It provides for variable electricity prices during the day: the 

price is higher during “peak hours” (the hours between 8 am and 7 pm on working days, also called 

F1 time slots) and lower during “off-peak hours” (all the remaining hours, also called F2 and F3 

time slots, which basically comprise nights and weekends). The AEEG established a 18-months 

transition period (until December 31st 2011): during such a period the price difference between 

peak and off-peak hours was limited (transitional ToU tariff) while, starting from January 1st 2012, 

it has become larger (final ToU tariff), based on the actual electricity market prices. ToU tariff is 

more convenient than the flat tariff only if more than 2/3 (i.e. 66.67%) of the total consumption 

occurs during off-peak hours: such value represents an “indifference threshold”.  

 

It is worth specifying that average consumption shift is only 1%, the main two factors that may have 

prevented a larger consumption shift are: a) rather limited price difference between peak and off-

peak hours; b) other components of the final price are not time-dependent the variation on the final 

price between peak and off-peak hours was even lower. In our case there are three time slots (F1-

F2-F3), and the electricity bill depends on the electricity usage habits, i.e. during which hours of the 

day, and in which day of the week, the appliances are used. Figure 39 shows the F1, F2, F3 daily 

and weekly time slots (F1 takes about 38 % of hours in a week, whereas F2 takes about the 21 %)  
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and relative price. On this regard, it is worth noticing that the price of electricity in F1 is about 30% 

greater than the  one in F3. 

 

 

 

Figure 39 Time of use tariffs, F1, F2, F3: weekly time slots and relative prices. 

 

Starting from the data reported in the electricity bills of an year, some information about energy 

behavior of the customer under study can be drawn. For example both cooling and heating of the 

house are based on electrical appliances (e.g. heat pumps), so the electricity demand increases 

during winter and summer and decreases in the other seasons. Figure 40 shows a bar graph with the 

monthly average daily demands, and the electricity usage habits over the year is very evident. 
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Figure 40 Monthly Average Daily Demand. 

 

 

Figure 41 Monthly Hourly time of use Demand 

 

Information reported in Figure 40 is not sufficient to understand how the user behaves respect with 

his electricity demand during a day and a week, so in Figure 41 the monthly hourly time-of-use 

demand divided by time slots is reported. It is clear that the demand is greatly concentrated in F1 

and F2 slots whereas the nocturnal hours are much less used. 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

Month

M
o

n
th

ly
 A

v
er

a
g

e 
D

a
il

y
 D

em
a

n
d

 (
k

W
h

)

 

 



82 

 

5.5 Summary  

 

Since the disaggregation occurs in real-time, at all times, we can discover the status of all 

appliances parts of the domestic load (unless there has been a mistake on the disaggregation). 

If these data are made available to the user, he has the possibility to monitor the consumption of 

every single appliance, thus obtaining a feedback regarding either the energetic or the economic 

perspective. 

The above statement results more efficient compared to the reading of the total instantaneous power 

consumption for the following reasons: 

- The knowledge of the operational status of every household appliance allows to examine and 

correct a behavior that can lead to wastage. 

- With that detailed information, the user is in the conditions to adopt strategies to reallocate the 

consumption based on the time slot that results more convenient, contrary to an aggregated 

information that do not distinguish from the appliance but is limited to the evaluation of the overall 

consumption. 

- [10] compare the financial saving based on the different type of feedbacks available for the user. 

Their results show that the application of the method proposed in this thesis leads to an economic 

saving of 12% per year. 

Figure 42, compares the different methods with their own savings: 
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Figure 42 Energy  Consumption Feedback 

 

As said previously, the knowledge of the state of each single appliance would increase the financial 

saving because a careful user would recognize the combination of appliances with a greater impact 

on the total power consumption and therefore on the power bill. 

A higher level of efficiency and saving can be achieved with the implementation of a system able to 

process the information in the form of guidance for the users, encouraging them to optimize their 

behavior. 

A possible indication concerns the right time for the use of a specific appliance based on the energy 

cost, e.g. when to use the electric oven (usually on the evening or during the weekend), the change 

of a particular appliance setting (e.g.  the washing machine temperature), a suggestion concerning 

the maintenance of the appliances (e.g. replacement of AC system filters) or information about the 

health status of each household appliance, with related "alert" notifying the user in the presence of 

an abnormal usage. 

The NIALM system can provide even another type of suggestions, namely a comparison between 

the consumption patterns with the fares applied by the various energy providers, suggesting to the 

user the most suitable company for his needs. Such a system, composed of notifications, 

information, and suggestions would enable a saving of more than 12% per year on the cost for the 

power supply. 
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Chapter 6  

 

Conclusions and Future Work 

 

This thesis has described an approach to train non-intrusive load monitoring systems for use with 

household smart meter data.  

The large-scale adoption of Non-Intrusive Appliance Load Monitoring (NIALM) systems would 

provide various benefits for both the end-user and the global system. 

The disaggregation capacity, together with a front-end which is able to show the data and the 

average consumptions from individual appliances, could increase the user awareness in knowing his 

real-time utilization. Therefore the user will plan his behaviour moving the use of household 

appliances in times when the energy cost is less.  

From the global system's view, this process will have a dampening impact on the peak periods of 

the load diagram, contributing to a uniform distribution of the demand for the different time slots, 

hence providing an adequate balance between the energy supply and demand. 

The research in the field of energy efficiency would benefit from the use of this technology. Indeed, 

a more conscious consumer will be encouraged to buy energy-efficient household appliances, with a 

valuable impact on the manufacturers which, to avoid the loss of market share, should make 

adjustments designing more energy efficient appliances. 

Also, the companies could use the information resulting from an analysis of the disaggregated 

consumption to plan new investments and marketing strategies. New promotional campaigns 

targeted to highlight the economic advantages emerging from the purchase of a new generation of 

household appliances able to break down the electricity consumption will attract the user to buy 

these products. 

The traditional market segmentation, based on geographical, demographical and behavioral 

statistics, could be incorporated with the information coming from the NIALM systems. These 

systems, thanks to specific consumption patterns, would provide useful information for the design 

of appliances intended for a particular target of users with the same requirements. 
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Moreover, these data could be utilized to implement targeted advertising campaigns by combining 

specific machines to a particular group of users. 

Finally, an additional scope is represented by the "social alarm" and "remote control". Given that 

the majority of consumption patterns mirror the "human" activity in the dwelling, subdividing the 

expenditures caused by the users' actions from those originated by appliances with an "automatic" 

functioning (e.g. refrigerators, boilers), we can monitor the activities of a particular class of people 

(e.g. people with health problems or limited mobility, etc...). 

 

We now summarise the contributions of this work, and give directions for future work. 

 

6.1 Conclusions 

 

We first defined the problem of non-intrusive load monitoring in Chapter 1. We identified four key 

requirements that must be fulfilled in order to realise a realistic solution to this problem. The 

requirements stated that the solution must be able to disaggregate low granularity smart meter data 

into individual appliances. However, most importantly the solution must not require training data to 

be collected from each household in which disaggregation will be performed. This requirement is 

crucial since it allows the approach to scale with the recent national deployments of smart meters. 

 

We then provided a background of existing work in the field of non-intrusive load monitoring in 

Chapter 2. We showed that solutions which involve the installation of hardware in addition to 

existing smart meters are too expensive for large scale deployments. 

 

Chapter 3, represents the first major contribution of this thesis, in which we propose an overall ICT 

architecture for energy consumption awareness. 

 

Chapter 4 describes the disaggregation algorithm and the function to generate a random and 

controlled load profiles. The proposed disaggregation algorithm is simple as it is based on a basic 

and straightforward signature (i.e. rated active power and power factor), as a consequence the 

results of this algorithm has to be corrected by means of the user interaction (i.e. feedback) 
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Chapter 5 shows the experimental results. The robustness of the disaggregation algorithm has been 

tested both numerically and experimentally. Secondly, we defines the users’ feedback and the 

different feedback algorithms. User information are presented through a user-friendly Web 

interface; this interface also gathers the user feedback which is needed to improve the efficiency of 

the disaggregation algorithm. 

 

Finally, Chapter 6 gives a summary of the research presented in this thesis. We also discuss future 

extensions of the work presented in this thesis, with specific attention to apply NIALM system in a 

real scenario.  

 

6.2 Future Work 

 

However, it is worth investigating ad hoc algorithms (e.g. Hidden Markov Model - HHM) that are 

able to characterize the appliances’ profile before the load disaggregation, in this way, the 

information requested to the users can be less crucial.  

 

The next step in the on field test is to enlarge the number of monitored users in such a way to 

perform a comparisons with users with similar characteristics. The results of this comparison, 

shown to the web users, could induce a ‘positive competition’ in electric demand reduction.  

 

Finally, in the context of Smart Grids, it would be interesting to analyze a domestic user with a 

photovoltaic (PV) power plant; on this regard forecast methods for both PV production and electric 

demand could be used to predict them in the next 24 hours, with the aim of improving the 

predictability of energy exchanges with the network. Forecast algorithms can be also used to predict 

the preferences of the users in using the home appliances, in order to identify which appliances are 

going to be used by the user and at what time of the day.  
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Appendix A 

 

Appliance Study 

 

 

Table 6 shows approximate values for common appliances’ power demands, usage per  day and 

energy consumption per day. The approximate power demands were taken from [48]. Estimates of 

daily usage were then used to calculate the expected energy consumption of each appliance per day. 

The appliances were ordered for consistency with Figure 1. 

 

Table 6 HOUSEOLD APPLIANCE POWER DEMAND, USAGE DURATION AND ENERGY CONSUMPTION. 

 

Appliance Name Power 

demand (W) 

Time per day 

(hours) 

Energy per day (kWh) 

CLOTHES DRIER 2500 0.8 2 

ELECTRIC HOB 3300 0.5 1.65 

DISHWASHER 2500 0.6 1.5 

ELECTRIC OVEN 3000 0.5 1.5 

WASHING MACHINE 2500 0.4 1 

KETTLE 3000 0.3 0.9 

INCANDESCENT  LIGHT BULBS 60 8 0.48 

FRIDGE 20 24 0.48 

MICROWAVE 1400 0.3 0.42 

WIRELESS ROUTER 10 24 0.24 

SET TOP BOX 10 24 0.24 

TELEVISION 100 2 0.2 

GAMES CONSOLE 170 1 0.17 

CFL LIGHT BULBS 20 8 0.16 

VACUUM CLEANER 1600 0.1 0.16 

TOASTER 1200 0.1 0.12 

COMPUTER 100 1 0.1 

PHONE CHARGER 5 12 0.06 

ALARM CLOCK 2 24 0.048 

LCD MONITOR 40 1 0.04 

LAPTOP 25 1 0.025 

STEREO 10 1 0.01 

DVD PLAYER 10 1 0.01 
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