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ABSTRACT 

 

 

 

 

 

The aim of this thesis is to achieve a new finite element formulation for framed RC structures 

capable to model the flexure-shear interaction both in terms of stiffness, strength and residual 

ductility.  The objective is not the definition of an itemized model, rather an accurate model 

with a sustainable computational cost for the seismic vulnerability analysis of existing 

buildings. Especially for non slender structures, the contribution to the nonlinear behaviour due 

to flexure may be not sufficient and flexure-shear interaction changes deeply the structural 

response. 

This new finite element is based on the adoption of Heaviside’s distributions functions to model 

abrupt, both flexural and shear, stiffness discontinuities of the beam, by which it is possible to 

lead to the exact closed-form solution of the Timoshenko beam differential equations. The new 

frame element is composed by two sectional constitutive models, one for flexure and one for 

shear, that can interact by means of an empirical relation that relates curvature demand and 

shear strength degradation. 

The flexure–shear model is verified against experimental tests on RC rectangular columns, 

walls and frames. Comparisons with experimental results on these shear-sensitive elements 

shows relatively good agreement.  
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SUMMARY 

 

 

 

 

 

In this thesis, a new finite element for framed RC structures capable to model the flexure-shear 

interaction both in terms of stiffness, strength and residual ductility is formulated. The model 

strategy that is used is the spread plasticity approach because is a great evolution of the 

concentrated plasticity models, and as such helps to improve results especially in cyclic non-

linear analysis. A distributed plasticity model with a fiber discretization has the advantage to 

be self consistent from a P-Mz-My interaction but the model implies computational complexity 

and cost for relatively large structures with many elements. From this point of view the spread 

plasticity model has a convenient computational cost, because the constitutive laws are 

expressed in terms of sectional quantities. 

The spread plasticity model is classically formulated using the principle of virtual work in order 

to determine the element flexibility matrix and this is equivalent to imposing equilibrium in the 

nodes (in the solution the stiffness matrix is used). There are alternatives methods that are not 

using the principle of virtual work, the one presented in section 6.1.1 makes use of the theory 

of distributions to solve the Timoshenko beam differential equations that directly govern the 

structural problem. In other words adopting Heaviside’s distributions functions to model abrupt, 

both flexural and shear, stiffness discontinuities of the beam (see equations (6.2)) , it is possible 

to lead to the exact closed-form solution because it is based on the differential equation 

associated (strong formulation). This alternative approach is the base of the proposed finite 

element. 

The new frame element is composed by two sectional constitutive models, one for flexure and 

one for shear, that can interact by means of an empirical relation that relates curvature demand 

and shear strength degradation. The flexure–shear model is verified against experimental tests 

on RC rectangular columns, walls and frames. Comparisons with experimental results on these 

shear-sensitive elements shows relatively good agreement. Nevertheless, numerical 

complications are encountered, associated to the post-peak strength degradation that it is not 

fully captured if the shear strength degradation is dominant in the experimental test. Therefore, 

it seems that both at the element and sectional level additional improvements are required.  
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1 INTRODUCTION 

1.1 Research objectives 

The aim of this thesis is to achieve a new finite element formulation for framed RC structures 

capable to model the flexure-shear interaction both in terms of stiffness, strength and residual 

ductility.  The objective is not the definition of an itemized model, rather an accurate model 

with a sustainable computational cost for the seismic vulnerability analysis of existing 

buildings.  Figure 1 shows the year of first seismic classification of Italian municipalities; the 

city of Catania was classified as seismic risk area in 1981.  

 

Figure 1 – Year of first seismic classification of Italian municipalities (ingvterremoti.wordpress.com). 
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Figure 2 shows the percentage of dwellings built through the years; so it is easy to see that at 

least 80% of the buildings in the city of Catania (and in his province) were designed without 

specific seismic provisions. This makes Catania extremely vulnerable from a seismic point of 

view. 

 

Figure 2 - percentage of dwellings built through the years (Censimento ISTAT 2001). 

 

Therefore, it seems indispensable to consider this argument as of great importance in 

professional practice since buildings designed in absence of specific seismic provisions are 

particularly vulnerable to the fragile mechanisms. It is worth noting that the current approaches 

used in the professional, consistent with the seismic provisions requirements, in many cases, 

return the paradoxical response that the construction is expected to collapse even due to gravity 

loads only.  

The shear failure mechanisms of reinforced concrete framed structures, on the contrary of the 

flexure mechanisms, are generally characterized to be brittle. For this reason in new buildings 

is necessary to ensure that such mechanisms do not become active, and this is achieved through 

a design that orients toward a more ductile collapse mechanisms according to the Capacity 

Design. However in buildings designed in the absence of specific seismic codes, as many 

existing buildings in Italy, often shear collapse manifests before the flexural one and it makes 

the building even more vulnerable (both in terms of resistance and ductility) especially for 

seismic actions. Therefore, there is the need to set analysis models capable of evaluating, for 

reinforced concrete elements, both the activation of any brittle failures or, more generally, the 

reduction of ductility capacity. The Italian code tends to separate the ductile mechanisms of 

flexure from those more fragile and, for the latter, require further limits through the introduction 

of safety coefficients that in many cases lead to unrealistic results by returning output in contrast 

with the physical sense. 
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1.2 Organisation of the thesis 

The thesis is organised in eight chapters. 

In Chapter 1, an introduction on the research field and on its importance is presented. 

In Chapter 2 considers analysis and design for shear in flexural members, with emphasis on 

beams and columns. This chapter also introduces strut-and-tie models for low-aspect-ratio 

members and discontinuity regions. 

In Chapter 3 an extensive description of the most used finite element formulations for framed 

structures is performed. Particular emphasis is given to the evolution of the formulations from 

the beginning to the most complex and recent. 

Chapter 4 concerns the study of beam models with multiple singularities as a new approach to 

solve structural problems. 

Chapter 5 is dedicated to the review of the main existing beam-column elements formulation 

with shear modelling, underling their characteristics and features. 

In Chapter 6 the formulation of the novel finite element is performed.  

Chapter 7 is dedicated to the elastic and inelastic numerical verification with benchmarks in 

order to validate the novel finite element. 

The conclusions are inserted in Chapter 8. 
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2 SHEAR IN BEAMS & COLUMNS 

2.1 Shear in flexural members 

Structural elements such as beams, columns and wall designed to resist seismic loads are 

subjected to a combination of axial, flexural and shear actions. For example, in Figure 3, the 

internal actions on a column due to an earthquake are shown. Neglecting the body forces, shear 

and axial load are constant along the member. If the column was made of a homogeneous, 

isotropic material, shear and normal stresses would be as illustrated in Figure 3. Using the Mohr 

circle theory on infinitesimal elements at the ends and in the middle of the column it is possible 

to define the principal stresses directions. Cracks tend to form perpendicular to principal tensile 

stresses, suggesting crack orientations. First cracks occur near member ends, approximately 

perpendicular to the longitudinal axis and they are called flexure cracks. As loading continues, 

additional shear-flexural cracks initiate away from member ends, but shear causes these cracks 

to incline. In other words where the normal stresses are comparable with the shear stresses the 

principal tensile stresses deviate from the vertical direction. 
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Figure 3 - Axial, flexural, and shearing actions  on a  column [Moe14]. 

This behavior is quite common in all the special moment framed structures, as it will be 

shown in the following sections. 
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2.2 Relations among moment, shear, and bond 

From equilibrium, it is known that the shear is the first derivative of flexure respect to the x 

coordinate. 

 

 
𝑉 =

𝑑𝑀

𝑑𝑥
 

 

(2.1) 

 

 

In members subjected to pure flexure M = Ts jd,  where Ts is the flexural tension force and jd is 

the internal moment arm, substituting in eq. (2.1) we find 

 

 𝑉 =
𝑑𝑀

𝑑𝑥
=
𝑑(𝑇𝑠 𝑗𝑑 )

𝑑𝑥
=
𝑑(𝑇𝑠 )

𝑑𝑥
𝑗𝑑 +

𝑑(𝑗𝑑 )

𝑑𝑥
𝑇𝑠  

 

(2.2) 

 

 

The two terms on the right-hand side of eq. (2.2) represent two mechanisms by which shear can 

be resisted in structural concrete members without transversal reinforcement (Figure 4). 

 

Figure 4 - Cantilever  beam with concentrated load [Moe14]. 

 Imposing that the internal moment arm jd is constant, equation (2.2) simplifies to 

 𝑉 =
𝑑(𝑇𝑠 )

𝑑𝑥
𝑗𝑑  

 

(2.3) 
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Equation (2.3) expresses beam action for a fully cracked beam where the flexural tension force 

Ts varies linearly along the span. If, instead, flexural tension force Ts is constant equation (2.2) 

simplifies to 

 𝑉 =
𝑑(𝑗𝑑 )

𝑑𝑥
𝑇𝑠  

 

(2.4) 

 

 

Equation (2.4) expresses arch (or truss) action, where the internal moment arm jd varies linearly 

along the span. The physical meaning of these two resisting mechanisms will be explained in 

section 2.2.1 . 

Recalling eq. (2.3) can be noted that beam action requires to be directly proportional to the shear 

force V. Thus, in a short length x of the beam, longitudinal reinforcing steel is subjected to a 

change in tensile force equal to 
𝑑(𝑇𝑠 )

𝑑𝑥
∆𝑥. Figure 5 shows the forces Ts  and 

𝑑(𝑇𝑠 )

𝑑𝑥
∆𝑥 acting on a 

reinforcing bar of length  x. In order to respect horizontal equilibrium, a bond stress u acting 

between the surface of the bar and the surrounding concrete is required.  

 

 
 

Figure 5 - Free-body diagram of short length of reinforcing bar [Moe14]. 

Horizontal force equilibrium requires 

 
𝑢 ∑ (𝜋𝑑𝑏 )

𝑛 𝑏𝑎𝑟𝑠

∆𝑥 =
𝑑(𝑇𝑠 )

𝑑𝑥
∆𝑥 

 

(2.5) 

 

 

Rearranging eq. (2.5), bond stress is 

 
𝑢 =

𝑑(𝑇𝑠 )

𝑑𝑥

1

∑ (𝜋𝑑𝑏 )
𝑛 𝑏𝑎𝑟𝑠

=
𝑉

∑ (𝜋𝑑𝑏 )𝑗𝑑
𝑛 𝑏𝑎𝑟𝑠

 

 

(2.6) 

 

 

This can prove that bond stress u between longitudinal reinforcement and surrounding concrete 

also is directly proportional to applied shear V. This somewhat explains why some members 

subjected to high shear and showing signs of shear failure may also show signs of bond failure. 

An example of this phenomenon can be found in [VS04] where the beams without stirrups 

experienced extensive cracks and in some cases bond failure (Figure 6). 
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Figure 6 – Tested beams without stirrups [VS04]. 

Especially in beam OA3 splitting cracks due to bond slip are evident and bond failure is coupled 

with shear producing a brittle collapse mode. 
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2.2.1 Beam action and arch action 

Equations (2.3) and (2.4) define mathematically the concepts of beam action and truss action, 

which are two distinct methods for resisting applied shear and moment. It is important to 

understand the physical meaning of these two equations. Figure 7a shows beam action, by which 

shear and moment are resisted through a couple between tensile and compressive forces at 

constant internal moment arm jd. Beam action results in flexural tension force Ts and flexural 

compression force C that vary in proportion with the applied moment. Basic flexural design is in 

accordance with the assumptions of beam action. Figure 7b illustrates arch (or truss) action, 

where shear and moment are resisted through constant tensile force Ts acting with the variation of 

the internal lever arm jd.  In other words, the beam is acting as a truss abc. 

 
 

Figure 7 - Theoretical beam action and arch  action [Moe14]. 

 

In typical members both mechanisms are existent, with one possibly more dominant than the other 

depending on member geometry. 
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In a relatively slender beam (Figure 8a), tests show that beam action predominates, with flexural 

tension force varying nearly linearly along the span.  

 

 

 
 

Figure 8 - Practical conditions  for beam action and arch  action [Moe14]. 

 

Whereas, in a deep beam, as in the corbel in Figure 8b, the stiffest force path is a compression 

strut along bc, equilibrated by tension Ts along ab. Thus, this member resists shear primarily 

through arch or truss action. For this reason, in all the cases where the aspect ratio between length 

and height of the member is less than 2.5 is preferred to design the reinforcing steel with the limit 

analysis approach using the static theorem and a truss analogy model. 

2.2.2 Internal forces in members with transverse reinforcement 

In members with transverse reinforcement subjected to shear, it is convenient to construct an 

idealized force path to approximate internal stresses. Consider the weightless cantilever shown 

in Figure 9a imagine two idealized cracks, a vertical crack along ac and an inclined crack along 

bc. Figure 9b shows a free-body diagram of abc. Tension in top reinforcement is assumed to 

increase along ba by amount ΔTs. The crack surface along bc can be presumed to be rough, such 

that any movement parallel to the crack produces aggregate interlock shear Va. It is assumed that 

there is no tension perpendicular to the crack, which is not necessarily correct but which is a 

reasonable approximation for the present discussion. Crack opening along bc will also result in 

tensile force Ft in the transverse reinforcement. Vertical movement at point b will result in a 

dowel shear Vd acting on the longitudinal reinforcement. Near ultimate strength, the dowel shear 
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is likely to cause concrete splitting cracks along the longitudinal reinforcement, the occurrence of 

which will reduce the dowel force. Therefore, for the present discussion, it is assumed Vd ~0. 

Finally, a portion of the total shear V' and a compressive force C' will act on the vertical  face ac. 

The line of action of force Va passes approximately through point c. Therefore, moment 

equilibrium about c is preserved mainly by the opposing moments due to forces Ft and ΔTs. 

 

Figure 9 - Internal forces in member with transverse   reinforcement [Moe14]. 

 
 

Now consider the free-body diagram of Figure 9c, in which longitudinal and transverse 

reinforcement have been cut from the surrounding concrete, leaving a small concrete "node" at 

their intersection. The transverse reinforcement, being anchored around the longitudinal 

reinforcement, creates a downward reaction on the longitudinal reinforcement. Similarly, as a 

simplification, it is supposed that horizontal force ΔTs is anchored entirely at the intersection of 

the longitudinal and transverse reinforcement. Consequently, a diagonal compression force Fd is 

required in the concrete to equilibrate the node. 

The diagonal compression force Fd identified in Figure 9c is similar to the diagonal compression 

force Fd identified in Figure 8b. The concept of reinforcement acting as tension ties, concrete 

acting as struts, and their intersections acting as nodes is a powerful tool for analysis of reinforced 

concrete members. Section 2.2.3 further pursues this concept. 
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2.2.3 Truss Model 

Since the late 1800s many researchers were interested in the resistant mechanisms of reinforced 

concrete elements with transverse reinforcement. Ritter and Morsh are the two most 

representative (Figure 10). Through many experimental tests they postulated that for loads close 

to the collapse RC beams behave as a truss with elements in tension and in compression. In the 

truss can be identified an upper and a lower chord (one in tension and one in compression) that 

are linked through a drape of inclined struts of concrete and vertical steel ties (Figure 11). 

 

Figure 10 – Ritter’s original drawing of the truss analogy (a) and shear forces (b) [CM97]. 

Using just equilibrium, the structural problem of Figure 11 cannot be solved unless the angle θ 

is already picked. In fact the first studies used θ=45°, during the years the inclination of the 

struts was made variable (θ<45°) basically because the theoretical results were conservative 

compared with the experimental one. 
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Figure 11 – Truss model for simple supported beam [Moe14]. 

 

2.2.4 Empirical Approach for Shear Strength of Beams and Columns 

Advances in strut-and-tie models, especially since the 1980s, have greatly improved 

understanding of design requirements for shear, especially for D-regions where internal forces 

can be highly non uniform. Prior to this development, designs were based largely on empirical 

expressions and ad hoc procedures. For B-regions, empirical expressions still provide an 

efficient and effective  approach for design, and are used widely. Next section presents test results 

demonstrating strength trends, followed by some of the empirical expressions and design 

requirements of ACI 318 for beam and column design. 

2.2.5 Strength of Members without Transverse Reinforcement 

Shear strength of beams without transverse reinforcement has been studied through hundreds of 

laboratory tests all over the world. From theese tests were understood the primary variables 

affecting shear strength and the mechanisms of shear resistance. A series of beam tests reported 

by Leonhardt (1962) are shown in Figure 12. The beams were simply supported and subjected 

to two point loads (Figure 12). 
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Figure 12 - Damage at failure in series of tests on beams without transverse reinforcement. (After leonhardt, 1962.) 

 

In the Leonhardt tests, the behavior was strongly influenced by shear span ratio a/d, where a is 

span from point load to reaction and d is beam effective depth. 

 Beams with largest a/d had shear strength exceeding the shear corresponding to flexural 

yielding (beams 10/1 and 9/1). They developed cracks mainly perpendicular to the beam 

longitudinal axis, with slight crack inclination due to shear. Failure was by crushing of 

the flexural compression zone, without shear failure. 

 Beams with 2.5 < a/d < 6 sustained shear failures associated with steeply inclined cracks 

(beams 8/1, 7/1, 6, 5, and 4). Initially, the beams were stable owing primarily to transfer 

shear through aggregate interlock across inclined cracks. Further loading increased crack 

opening, reducing aggregate interlock, and leading to diagonal tension failure. Failure is 

characterized by steeply inclined cracks extending along the bottom longitudinal bars, 

which are sheared off the bottom of the beam. Such failures can be especially brittle and 

coupled with bond failure. The primary inclined cracks also may penetrate the flexural 

compression zone, leading to compression zone failure. 

 Beams with a/d < 2.5 developed a diagonal compression strut that supported the 

concentrated loads through arch action (beams 1, 2, and 3). Failure can be by splitting of 
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the diagonal compression strut, as occurs in a split cylinder test, or by failure of the 

compression chord at the top of the beam. 

The different force-resisting mechanisms in beams with different aspect ratios result in different 

beam strengths. Figure 13 plots measured shear strength as function of aspect ratio a/d for  the 

beams shown in Figure 12. Beams with aspect ratio a/d = 7 and 8 developed flexural strength 

prior to shear failure. For smaller a/d, the shear force corresponding to flexural failure increases 

(broken curve in Figure 13), such that shear failure occurred before flexural strength was reached. 

Shear strength was nearly constant for a/d to around 3, but increased rapidly for smaller a/d. 

Apparently, the arch mechanism that develops for a/d <2.5 results in shear strength significantly 

exceeding the strength observed for larger values of a/d. 

 

For a cracked reinforced concrete flexural member, flexural stresses and, hence, shear flow act 

over section depth extending from the extreme flexural compression fiber to the flexural tension 

reinforcement at depth d. Thus, it is conventional to define average nominal shear stress as, v =  

Figure 13 - Shear at failure as function of aspect ratio for beams without transverse reinforcement [PP75].  
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V/bwd, in which bw is section width (or web width for flanged members) and d is the effective 

depth to centroid of flexural tension reinforcement. 

Studies show that nominal shear strength of beams increases with increasing concrete compressive 

strength fc', increasing longitudinal reinforcement ratio pw, and decreasing a/d. The term a/d is 

applicable only to simply supported beams subjected to concentrated loads. To be applicable to 

more general loading cases, the term M/Vd must be substituted for a/d. Figure 14 plots nominal 

shear strength of beams without transverse reinforcement using a functional form presented by 

ACI- ASCE 326 (1962) as follows: 

 𝑣𝑐 = 0.16√𝑓𝑐
′ + 17𝜌𝑤

𝑉𝑑

𝑀
≤ 0.29√𝑓𝑐

′, 𝑀𝑃𝑎 (2.7) 

 

 
Figure 14 - Nominal shear strength of beams without transverse reinforcement (After ACI-ASCE 326, 1962). 

Axial stress also affects shear strength in fact in many codes is a variable that must be 

considered. For example in EC2, the shear strength for members without transversal 

reinforcement is equal to 

 
𝑉𝑅𝑑,𝑐 = [𝐶𝑅𝑑𝑐𝑘(100𝜌𝑙𝑓𝑐𝑘)

1/3 + 𝑘1 𝜎𝑐𝑝]𝑏𝑤𝑑, MPa 

 

(2.8) 
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Where 𝐶𝑅𝑑𝑐 represents the mean shear stress, it is modified by 𝑘 = 1 + √200/𝑑 ≤ 2 (d in mm) 

that considers the aggregate interlock decreasing when d increases. 

𝜌𝑙 is the longitudinal reinforcement ratio, 

𝑓𝑐𝑘  is the compressive strength, 

𝜎𝑐𝑝 =
𝑁𝐸𝑑

𝐴𝑐
 represents the beneficial effect of compressive axial load (eventually coming from 

post tensioning) because it postpones the cracks opening, 

𝑘1  =0.15 is a fixed parameter. 

2.2.6 Members with Transverse Reinforcement 

Early truss models assumed compression diagonals inclined at 45° with respect to the beam 

longitudinal axis. With this assumption, and the approximation that jd ~ d, can be proven that 

 𝑉𝑠 =∑𝐴𝑣𝑓𝑦𝑡 =
𝐴𝑣𝑓𝑦𝑡
𝑠

𝑑 

 

(2.9) 

 

in which shear resisted by the transverse reinforcement is now denoted by Vs. Tests confirmed 

that eq. (2.9) was conservative compared with test results. 

Given the conservatism of eq. (2.9), and the observation that concrete beams resist shear without 

transverse reinforcement, a common approach has been to express shear strength as the sum of 

concrete and transverse reinforcement components, as in 

 
𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠  

 

(2.10) 

 

in which Vc = vcbwd, with vc defined by eq. (2.7) and Vs is defined by eq. (2.9). Figure 15 

compares results of eq. (2.10) with test data. 

 In Figure 15, vs = Vs/bwd. 
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Figure 15 - Comparison of measured and calculated strengths as function of vs provided (After ACI-ASCE 326, 1962). 

The EC2 does not allow the sum between Vc and Vs in fact the design equations are: 

 

 

𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝛼𝑐𝑤𝑏𝑤𝑗𝑑 (𝜈1𝑓𝑐𝑑)/(𝑐𝑜𝑡𝜃 + 𝑡𝑎𝑛𝜃) 
 

𝑉𝑅𝑑,𝑠 =
𝐴𝑣𝑓𝑦𝑡
𝑠

𝑗𝑑𝑐𝑜𝑡𝜃 

 

(2.11) 

 

𝛼𝑐𝑤 ≥ 1 is a parameter that consider the compressive axial load, 

 𝜈1 = 0.6;  𝑤𝑖𝑡ℎ 𝑓𝑐𝑘 < 60𝑀𝑃𝑎 

 𝜈1 = 0.9 − 
𝑓𝑐𝑘
200

 >  0.5;  𝑤𝑖𝑡ℎ 𝑓𝑐𝑘 > 60𝑀𝑃𝑎 

 𝜈1 considers the more demanding biaxial stress state of the concrete in the web region. The 

limit of 60 MPa is due to shear cracking, in fact when the concrete strength 𝑓𝑐𝑘  increases the 

crack can occur through the aggregates and so dropping the interlock. 
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2.2.7 Effects of Inelastic Cyclic Loading 

Plastic strains in slender flexural members lead to degradation of the shear-resisting mechanisms, 

and can lead to eventual shear failure. For this reason, it is usually good design practice to 

maintain a margin against shear failure in slender flexural members. Consider a cantilever beam 

idealized using truss models (Figure 16). Note that two different truss models are required, one 

for loading in the downward direction and another for loading upward. If the member is designed 

with insufficient transverse reinforcement, that reinforcement will yield in tension for loading in 

each direction. Consequently, plastic tensile strains in transverse reinforcement will accumulate 

with each loading cycle, leading to dilation of the member with continued cycling (Figure 16d). 

This is in contrast with flexural behaviour at reversing plastic hinges where the longitudinal 

reinforcement is subjected to alternating tensile and compressive forces due to flexure. 

 

Figure 16 - Idealized behaviour for  yielding  transverse reinforcement [Moe14]. 

In cases where shear-yielding dominates, reversed cyclic loading will produce a set of 

crisscrossed diagonal cracks that effectively subdivide the member into a series of concrete 

segments separated by inclined fissures called shear-flexure cracks (Figure 16d and Figure 17). 

For shear applied in one direction, corresponding diagonal compression struts must form, closing 

any cracks that cross the struts. Shear force reversal requires that diagonal compression struts 

develop in the opposing direction. This requires the segments to shift orientation, a process that 

usually occurs with limited shear resistance. Significant lateral force resistance can be achieved 

only after the segments have shifted to a position that enables formation of diagonal compression 

struts effective for the loading direction. In a member with well-developed set of diagonal cracks, 
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considerable lateral displacement may be required to open and close the opposing cracks. This 

can result in "pinched" hysteresis loops in shear-damaged members. 

 

Figure 17 - Surface deformations  and cracks of beam in advanced stages of cyclic  loading.  Crack widths  and 

deformations are amplified by factor 5.0  (After Popov, 1984). 

 

Figure 18 illustrates force-displacement relations measured in laboratory tests of two fixed- 

ended columns. Figure 18a shows flexure dominated response. For this condition, shear-

displacement loops are relatively full without strength degradation to large displacements. 

Figure 18b shows results for a nearly identical column proportioned so that shear failure occurs 

shortly following flexural yielding. Rapid strength loss associated with shear failure is clear. 

Additionally, the shear-displacement loops are "pinched" for reasons described below. 

 

 
Figure 18 - Shear-displacement relations for (a) flexure-controlled column and (b) shear-controlled column. (After 

Higashi and Hirosawa, 1974.) 

 

Even if classical design methods treat shear and flexure as independent mechanisms, and control 

the resistance in a separated way, truss models suggest instead that they are coupled. 
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Many of these do not take into account the interaction between flexural ductility and shear 

resistance in the zone where plastic hinge occurs. In others, the influence of the axial load or 

the pretension is not explicitly considered in the reinforced concrete member.  

 Members with low axial loads gradually elongate as a result of accumulated plastic strain in 

longitudinal reinforcement (Figure 19a). This elongation leads to rotation of inclined compression 

struts, which reduces shear resistance mechanisms. Longitudinal strain also may reduce strength 

of diagonal compression struts further contributing to shear strength degradation. Lee and 

Watanabe [LW03] have presented empirical models that show good correlation between inelastic 

flexure,    axial elongation, and shear strength degradation (Figure 19b). Degradation effects may 

be less pronounced for members with moderate axial loads because axial elongation is suppressed 

in such members. Effects of axial force above the balanced point are not extensively studied, 

though it seems likely that crushing of the flexural compression zone would reduce diagonal 

compression strength and, hence, result in a faster shear failure. This effect was evident in tests 

reported by Sezen and Moehle [SM06]. 

 

Figure 19 - Elongation of flexural plastic hinge with cycling [LW03]. 

Several empirical models for shear strength degradation of flexural members have been 

developed. Most models express shear strength as Vn = Vc + Vs or Vn = Vc + Vp + Vs, in which 

Vc represents contribution of concrete, Vp represents contribution of axial force, and Vs 

represents contribution of transverse reinforcement. In most of these models, based on an 

interpretation that concrete diagonal compressive strength and aggregate interlock are degrading, 

only the concrete contribution Vc degrades with increasing flexural deformation demand (ATC 

12, 1983; Ang et al., 1989; Aschheim and Moehle, 1992; Ichinose, 1992; Priestley et al., 1994 

and 2000; Lee and Watanabe, 2003; Biskinis et al., 2004).  

The first model that will be exanimated is the “Modified UCSD model” formulated by Priestley 

et al. [PCK07]. In this model, the shear resistance is sum of three terms in which Vc represents 

contribution of concrete, Vp represents contribution of axial force, and Vs represents contribution 

of transverse reinforcement. 
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The concrete term is defined as 

 

𝑉𝐶 = 𝑘 √𝑓𝑐
′𝐴𝑒 = 𝛼𝛽𝛾 √𝑓𝑐

′0.8𝐴𝑔 , 𝑀𝑃𝑎 ∙  𝑚𝑚
2 

1 ≤ 𝛼 = 3 −
𝑀

𝑉𝐷
≤ 1.5 

𝛽 = 0.5 + 20𝜌𝑙 ≤ 1 

 

(2.12) 

 

The parameter γ, is expressed in MPa, and has a trend illustrated in Figure 20. As can be seen, 

it depends mainly on the flexural ductility, if the bending moment is uniaxial or biaxial and on 

the nature of the analysis (design Figure 20a or assessment Figure 20b). 

 

Figure 20 – γ parameter for Vc [PCK07]. 

The term Vp in many design codes is incorporated in the previously indicated Vc resistance. This 

would mean that the increasing in the concrete shear resistance Vc due to axial load should be reduced 

with increasing the curvature, but this is not supported by experimental evidence. In this model, the 

resistance due to the axial load Vp is independent from Vc. For example in case of columns, Vp is 

reached according to a mechanism with diagonal strut as shown in Figure 21. 
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Figure 21 – Vp contribution [PCK07]. 

 

 

𝑉𝑃 = 0.85 𝑃 𝑡𝑎𝑛𝜁 

𝑉𝑃 = 𝑃 𝑡𝑎𝑛𝜁 

 

 

(2.13) 

 

In eq. (2.13) ζ is the angle that the strut forms with the vertical axis of the element, P is the axial load 

in case of design Vp is recuced of the 15% as shown in eq. (2.13). 

The term Vs is defined as in eq. (2.9). 

Other models degrade both Vc and Vs, based on an interpretation that the overall shear-resisting 

mechanism is degrading (Biskinis et al., 2004; Sezen and Moehle, 2004). This can be explained 

thinking that also the stirrups loss effectiveness for high value of ductility demand because the 

surrounding concrete is cracked or no more participating. ASCE 41 for seismic rehabilitation 

of buildings adopts the model by Sezen and Moehle (2004). 

According to this model, column shear strength is defined by 

 

 
𝑉𝑛 = 𝑘(𝑉𝑐 + 𝑉𝑠 ) 

 

(2.14) 
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in which Vs is defined by eq. (2.9) and Vc is defined by 

 𝑉𝑐 = (
0.5𝜆√𝑓𝑐

′

𝑀/𝑉𝑑
√1 +

𝑁𝑢

6√𝑓𝑐
′𝐴𝑔

)0.8𝐴𝑔 , 𝑀𝑃𝑎 
(2.15) 

 

 

in which λ = 0.75 for lightweight aggregate concrete and 1.0 for normal weight aggregate concrete; 

Nu is the axial compressive force, taken equal to 0 for axial tension; M/Vd is the largest ratio of 

moment to shear times effective depth under design loadings for the column but not less than 2, nor 

greater than 4; and it is permitted to take d = 0.8h.  

In eq. (2.14), k is a parameter to represent shear strength degradation, defined by Figure 22a. 

Figure 22b compares test and calculated shear strengths according to eq. (2.14), with an emphasis 

on older-type columns with relatively wide hoop spacing. 

 

 

Figure 22 - Shear strength degradation model [SM04]. 
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3 FINITE ELEMENT FORMULATIONS 

3.1 Introduction 

In this chapter an extensive description of the most used finite element formulations for framed 

structures is performed. Particular emphasis is given to the development of the formulations 

from the beginning to the most complex and recent. 

A proper session is devoted to the use of the distribution theory to formulate finite element 

capable to solve complex structural problems. 

Moreover, some final considerations on the nature of the numerical solutions obtained with the 

different models are made. 

Seismic vulnerability analysis adopt numerical models with extensive use of inelastic frame 

elements to reproduce the behaviour of framed buildings. The inelasticity can be assigned 

according to a lumped approach (concentrated) or distributed type (Figure 23); there is also a 

third approach that is an evolution of the first one called spread plasticity type. 

In the lumped approach the positions (usually the extremal sections corresponding with the 

nodes) in which the plasticity can occur are predetermined and the element zones remain of 

constant length during the analysis. The nonlinearities are considered by means of a moment-

rotation/curvature relationship for the flexural components and force-displacement relationship 

for the axial component. In other words, the constitutive laws are expressed in terms of 

generalized quantity as moment-curvature/rotation without knowing which the state of any 

particular point in the element cross section is. A crucial aspect is the calibration of the P-M 

interaction in order to calculate accurately the moment-curvature/rotation behaviour. 

In the distributed type, the element can experience plastic deformation at any point and the 

nonlinearities can diffuse across the entire length. 
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The nonlinear behaviour is introduced by means of nonlinear constitutive laws that can be 

expressed at sectional level in terms of generalized forces (𝑁(𝑥), 𝑀(𝑥), 𝑉(𝑥)) and deformation 

(𝜀0(𝑥), 𝜒(𝑥), 𝛾(𝑥)) according to the classical theory of plasticity, or explicitly computed 

according to a fiber section discretization. In the latter case to each fiber a nonlinear uniaxial 

constitutive stress-strain relation is assigned. The main advantage of this type of discretization 

is that the P-M interaction is self calculated at each step and so the moment-curvature/rotation 

behaviour. 

 

Figure 23– Inelastic beam element, (a) lumped, (b) distributed [MID15]. 

 As shown in Figure 24 the distribution of bending moment of elements subject to lateral forces 

is linear; the presence of gravity load modify the distribution and in the case that the latter are 

dominant is necessary to increase the number of finite elements to capture this variation. When 

the member experiences inelastic deformations, plastic deformations tend to spread from the 

joint interface resulting in curvature distribution as shown in Figure 24. Section along the 

element will also exhibit different flexibility characteristics, depending on the degree of 

inelasticity observed. This concept means that the curvature variation is very far from be linear 

in all the plastic regions. 

 



Chapter 3. Finite Element Formulations 

27 
 

 

Figure 24 – Curvature distribution along the element [IDA96].  

In order to capture this scattered flexibility distribution, meeting the needs of computational 

efficiency, the spread type approach was formulated. 

Also in this case the nonlinearities are considered by means of a moment-rotation/curvature 

relationship for the flexural components and of a force-displacement relationship for the axial 

component. In other words, the constitutive laws are expressed in terms of generalized quantity 

as moment-curvature/rotation without knowing which the state of any particular point in the 

element cross section is. A crucial aspect is the calibration of the P-M interaction in order to 

calculate accurately the moment-curvature/rotation behaviour. 

In the next sections, a description of the tree approaches is performed. 

  



Chapter 3. Finite Element Formulations 

28 
 

3.1.1 Lumped plasticity 

Clough and Johnston [CJ65] formulated the first lumped plasticity element that was called "two 

component beam model"; it consists in a linear beam element in parallel with a perfectly elasto-

plastic element (Figure 25). The elastic element reproduces the armature strain hardening, while 

the elasto-plastic element reproduces the yield strength. As it was formulated only a bilinear 

behavior moment-rotation was allowable. 

 

 

Figure 25 - Two component beam model. 

To overcome this restriction Giberson [Gib67] formulated a different one that was called "one 

component beam model"; it consists in an elastic element with two inelastic springs at the ends 

(Figure 26). 

 

Figure 26 – Giberson one component beam model. 

This configuration allows to assign the rotational springs with any moment-rotation hysteretic 

laws. Subsequently Al-Haddad and Wight [AW86] and Kunnath and Reinhorn [KR89] have 

added to the one component element two rigid end zones to take into account the high rigidity 

of the connection panels where converge beams and columns (Figure 27).  
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Figure 27 – One component element with rigid end zones. 

Advanced models have taken into account the interaction between the axial force and the 

bending moment in the study of plane frames called “P-M interaction”; as well as the interaction 

between the axial force and biaxial bending moments. Furthermore, there were introduced 

rotational springs of finite length. 

 

3.1.2 Distributed plasticity 

This type of approach is constituted by a stiffness matrix using the shape functions for the 

discretization of the displacement field. The element displacements field u(𝑥) of eq. (3.1) 

depends on the values of the nodal displacements (Figure 28). 

 

Figure 28 – Finite element degreese of freedom. 

 

 𝑢(𝑥) = [
𝑢(𝑥)
𝑣(𝑥)

] ≅ 𝑁𝑈(𝑥)Ue (3.1) 

 

 

On the displacement field a differential operator is applied in order to define the generalized 

strains, in the case of in plane Euler Bernoulli beam they are as in eq. (3.2): 

 𝑒𝑠(𝑥) = [
𝜀0(𝑥)
𝜒(𝑥)

] = [
𝑢′(𝑥)

𝑣′′(𝑥)
] ≅

[
 
 
 
𝑑

𝑑𝑥
0

0
𝑑2

𝑑𝑥2]
 
 
 
𝑁𝑈(𝑥)Ue = 𝐵(𝑥)Ue (3.2) 
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Where 𝜀0(𝑥) is the centroid strain and 𝜒(𝑥) is the curvature, these two quantity form the 

generalized strains vector 𝑒𝑠(𝑥). 

At this point the Principle of virtual work in the virtual displacement form is applied in order 

to obtain the stiffness matrix equation, eq. (3.3): 

 𝐾𝑇
𝑒 = ∫ 𝐵𝑇(𝑥)𝑘𝑇

𝑠(𝑥)𝐵(𝑥)
𝐿

0

𝑑𝑥 (3.3) 

 

In eq. (3.3) the section stiffness matrix ks(x) contains the mechanical nonlinearities and so it 

represents the link between generalized strains and stresses. For the linear case the sectional 

constitutive law is expressed as in eq. (3.4): 

 𝑠𝑠(𝑥) = [
N(𝑥)
𝑀(𝑥)

] = [
EA 0
0 𝐸𝐼

] [
𝜀0(𝑥)
𝜒(𝑥)

] = 𝑘𝑠 (𝑥)𝑒𝑠(𝑥) (3.4) 

 

For the nonlinear behavior case it is necessary to think in incremental terms and therefore for 

any increase in the generalized deformations corresponds an increase of generalized stresses, 

see eq. (3.5):  

 

 𝑑𝑠𝑠(𝑥) = 𝑘𝑇
𝑠(𝑥)𝑑𝑒𝑠(𝑥) (3.5) 

 

 

At least from a theoretical point of view, if the quantity inside the integral of eq. (3.3) was 

known exactly the inelastic stiffness matrix 𝐾𝑇
𝑒  could be determined exactly. This is not 

feasible because the matrices 𝐵(𝑥) and 𝑘𝑠 (𝑥) are only approximate representations of the real 

behavior of the structural element. In fact, the shape functions for the EB beam element are the 

Hermite polynomials, from what follows that the generalized deformation field 𝑒𝑠(𝑥) may 

describe at most constant axial deformation and linear curvatures which, as mentioned, are 

insufficient to describe the real inelastic behavior (see for example Figure 24). The sectional 

stiffness matrix, considering also the bending moment along the y direction, can be written as 

in eq. (3.6): 

 𝑘𝑇
𝑠(𝑥) = ∫ 𝛼𝑇(𝑥)𝐸(𝑥, 𝑦, 𝑧)𝛼(𝑥)

𝐴

𝑑𝐴 = ∫ [1 𝑧 −𝑦 ] 𝐸(𝑥, 𝑦, 𝑧)
𝐴

[
1
𝑧
−𝑦
] 𝑑𝐴 (3.6) 

 

As can be seen from eq. (3.6) the sectional stiffness matrix is function of the Young modulus E 

(x, y, z) of which is composed the element; if inelastic deformations occur, the elastic modulus 

on that point is changed according to the constitutive law chosen and this affects the integrals 

inside 𝑘𝑇
𝑠(𝑥). The nonlinear behaviour is introduced by means of nonlinear constitutive laws 
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that can be expressed at sectional level in terms of generalized forces (𝑁(𝑥), 𝑀(𝑥), 𝑉(𝑥)) and 

deformation (𝜀0(𝑥), 𝜒(𝑥), 𝛾(𝑥)) according to the classical theory of plasticity, or explicitly 

computed according to a fiber section discretization. 

The latter consists in dividing into fibers (Figure 29) the element cross section; each fiber 

follows precise cyclic uniaxial constitutive laws. From the strain state of all the fibers is possible 

to define the current tangent modules so as to integrate the sectional stiffness matrix in a discrete 

way. 

 

Figure 29 – Fibers discretization of the element cross section [MID15]. 

Therefore, the strain of each fiber is defined by the hypothesis that the cross sections, of the 

deformed element, remain plane and orthogonal to the longitudinal axis line (typical of Euler 

Bernoulli beam). This implies that the configuration in the cross section is univocally defined 

by three parameters which are the two curvatures, and the centroid fiber deformation. It means 

that the i-th strain fiber can be defined according to eq. (3.7): 

 

 

𝜀𝑖 = [1 𝑧𝑖 −𝑦𝑖] [

𝜀0(𝑥)
𝜒𝑦(𝑥)

𝜒𝑧(𝑥)

] 
(3.7) 

Where, 

x is the coordinate that identify the section, 

y is the curvature in y, 

z is the curvature in z, 

0 the centroid fiber deformation, 

yi is the y coordinate of the i-th fiber, 

zi is the z coordinate of the i-th fiber. 
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More over, the integral along x in eq (3.3) is not solved analytically but through a numerical 

integration that approximate the integral with a summation. Such summation samples the 

function inside the integral in proper points called Gauss points. The values of the function at 

these points are multiplied by the weights which substantially describe the "importance" that 

that point has for the summation. 

The versatile aspect of this approach is that it is possible to assign to each fiber a different 

constitutive law; for a reinforced concrete section, this is of considerable importance because it 

is possible to separate the behavior of unconfined concrete from the confined one and explicitly 

describe the role of the longitudinal bars (Figure 30). 

 

 

Figure 30 – Discretized rc cross section. 
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One of the first distributed approach was the one of prof. Taylor that expresses the prototype of 

what now mean fiber beam element (Figure 31). The use of this approach became more popular 

with the advent of more powerful and faster computers, because the time required for the 

assembling of the stiffness matrix was no longer a problem. 

 

 

Figure 31 – Filament model (Taylor 1976). 

 

A less dated example was the one of Malerba and Bontempi [MB89] who published a work on 

the formulation of a distributed finite element for the study of reinforced concrete structures 

capable of considering both the mechanical and geometric nonlinearity. One of the interesting 

aspects of this work is the integration scheme of the stiffness matrix, in fact the numerical 

integration according to Gauss-Legendre is used not only along the x coordinate, but also in the 

y-z (on the cross section domain). In particular, it was used a scheme to three Gauss points 

along the longitudinal coordinate, Figure 32 (a), while the cross section was divided into 

quadrilaterals subdomains with four sampling points by means of an isoparametric 

transformation as shown in Figure 32 (b). 
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Figure 32 – Malerba-Bontempi’s finite element; (a) coordinate system, nodal forces, nodal displacements, Gauss 

points; (b) section quadrilateral subdomain; (c) Shape functions [MB89]. 
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Another widely used model is the one of Spacone et al. [SFT96] where instead of the usual 

formulation based on the displacement he used a force approach (Figure 33). 

 

Figure 33 Shape function of the element [SFT96]. 

This choice is based on the consideration that, whatever the degree of non-linearity of the 

element is, the linear description of the force field remains exact (if there are not distributed 

loads). Moreover, this formulation is also consistent in the elastic case if the element is not 

prismatic. 

3.1.3 Spread plasticity 

In order to solve problems related to the stiffness distribution variability along the member, the 

discrete element models and the spread plasticity models were introduced (Figure 24).  

The discrete element models consist in subdividing the member into short line segments along 

the length of the member, with an assigned nonlinear hysteretic characteristic for each short 

segment. The nonlinear stiffness can be assigned within a segment, or at the connection of two 

adjacent segments.  

Wen and Janssen [WJ65] presented a method for nonlinear analysis of plane framed structures 

consisting of elasto-plastic member divisions. Powell [Po75] suggested a degrading stiffness 

hysteresis model for rigid inelastic connecting springs (Figure 34a). Shorter segments were 

recommended in a region of high moment, and longer segments in a low-moment region. 

Takayanagi and Schnobrich [TS76] proposed to divide a member into short segments, each 

segment with a piecewise constant flexural stiffness that varies with a stress history of the 

segment as shown in Figure 34b. This model marks the direction for the spread plasticity 

formulation; in fact in a discrete sense it can be seen as a spread plasticity element. 

These first two models, shown in Figure 34, require a exstensive computational effort compared 

with other lumped plasticity models and may therefore be considered appealing only when very 

accurate results are required. 
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Figure 34 – Discrete Element models (a) [Po75] and (b) [TS76] from [OTA80]. 

 

The spread plasticity models provide a more general methodology to nonlinear structural 

analysis, in fact the nonlinearities develop anywhere along the structural member. The spread 

approach does not use shape functions and numerical integration rules to calculate the element 

stiffness matrix, in fact, it is computed with a direct approach. 

The latter property permits the formulation not to be affected by the shear locking problem, in 

fact this is an numerical issue due to the shape functions adopted that in such models are not 

used. 

Instead of dividing the member into shorter segments as shown for [TS76], Takizawa [TAK73] 

developed a model that assumes a prescribed flexural stiffness distribution along the length of 

the member. A parabolic distribution, with an elastic value of the flexibility at the inflection 

point shown in Figure 35. The flexural flexibility at the member ends is given by a hysteretic 

model dependent on the stress history.  

 

 

Figure 35 – Takizawa’s model [TAK73] from [OTA80]. 

Another spread or distributed model considering a linear distribution of the flexibility was 

proposed by Park et al. [PRK87] and implemented in the original version of IDARC2D 

[IDA96]. The distribution is linear from the ends of the member to the inflection point as shown 

in Figure 36. 
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Figure 36 – Park et al. model from [PRK87]. 

In order to overcome numerical problems of solution stability a linear spread plasticity model 

and a uniform spread plasticity model, presented in Figure 37, were proposed in [KR89].  

This is due to the fact that during time history analysis the inflection point shifts quickly inside 

the member length and so it determines a continuum updating of the element stiffness matrix 

causing numerical instabilities.   

In [KR89] the flexibility varies only in the inelastic zones while the rest of the member is elastic 

with a constant flexibility.  
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Figure 37 – Spread models with constant (b) and linear (c)  flexibility [RRL12]. 

The spread plasticity model uses nonlinear constitutive laws that are expressed at sectional level 

in terms of generalized forces (M(x), V(x)) and deformation (χ(x), γ(x)) according to the 

classical theory of plasticity. 

In subsequent the interaction between the axial force and the bending moment was taken into 

account; as well as the interaction between the axial force and the biaxial bending moments P-

Mx-My interaction using a fiber method. 

In order to have a refined knowledge on spread model approaches, let us pass through the 

classical formulation. 

The flexibility distribution is assumed to follow the trends of Figure 37 for the two alternative 

case (constant and linear spread plasticity models); EIi and EIj are the current flexural stiffnesses 

of the sections at ends ‘‘i’’ and ‘‘j’’, respectively. EI0 is the “mean” flexural stiffness in the 

elastic segment of the element, i.e. where 𝑀′ < 𝑀′𝑐𝑟. The shear stiffness GA0 is considered 

constant throughout the length of the member. The plastic zones, i.e. the segments where 𝑀′ >

𝑀′𝑐𝑟  are defined by the dimensionless parameters called yield penetration coefficientsi and 
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j, while L’ is the length of the element without rigid zones. The flexural stiffnesses EIi and EIj 

are determined from the hysteretic models, based on the moment–curvature envelope evaluated, 

for example, with a fiber approach. The equivalent stiffness EI0 and the yield penetration 

coefficients i and j are calculated with the moment distribution and the previous yield 

penetration history. In fact it is assumed that the current i and j cannot be less than the 

previous one. 

The rotation at each ends can be expressed using the flexibility matrix, this is given by eq. (3.8):  

 [
𝜃′𝑖
𝜃′𝑗
] = [

𝑓𝑖𝑖 𝑓𝑖𝑗
𝑓𝑗𝑖 𝑓𝑗𝑗

] [
𝑀′𝑖
𝑀′𝑗

] (3.8) 

 

where fij are the flexibility coefficients, 𝜃′𝑖 and 𝜃′𝑗 are the rotations at the ends of the element, 

while 𝑀′𝑖 and 𝑀′𝑗 are the corresponding moments. The flexibility coefficients are obtained 

from the principle of virtual work as written in eq. (3.9). 

 𝑓𝑖𝑗 = ∫
𝑚𝑖(𝑥)𝑚𝑗(𝑥)

𝐸𝐼(𝑥)

𝐿′

0

𝑑𝑥 + ∫
𝑣𝑖(𝑥)𝑣𝑗(𝑥)

𝐺𝐴(𝑥)

𝐿′

0

𝑑𝑥 (3.9) 

 

where mi(x) and mj(x) are the moment distributions due to a virtual unit moment at end ‘‘i’’ 

and ‘‘j’’, respectively; vi(x) and vj(x) are the corresponding shear distributions (1/L’). Such 

distributions are shown in Figure 38. 

 

Figure 38 – Unit virtual force: (a) moments and (b) corresponding shears at the ends i and j [RRL12]. 
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The flexibility coefficients for the constant spread plasticity distribution is given in eq. (3.10): 

 

 

𝑓𝑖𝑖 = 𝐿
′  [(

1

𝐸𝐼0
+
1

𝐸𝐼𝑖
) −

1

𝐸𝐼0
𝛼𝑖(3 − 3𝛼𝑖 − 𝛼𝑖

2) + (
1

𝐸𝐼𝑗
−

1

𝐸𝐼0
)𝛼𝑗

3] +
1

𝐺𝐴0𝐿′
 

 

𝑓𝑖𝑗 = −
𝐿′

6
 [
1

𝐸𝐼0
+ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼0
) 𝛼𝑖

2(3 − 2𝛼𝑖) + (
1

𝐸𝐼𝑗
−

1

𝐸𝐼0
)𝛼𝑖

2(3 − 2𝛼𝑖)]

+
1

𝐺𝐴0𝐿′
 

𝑓𝑗𝑖 = 𝑓𝑖𝑗 

 

𝑓𝑗𝑗 = −
𝐿′

3
 [
4

𝐸𝐼0
+ (

1

𝐸𝐼𝑗
−

1

𝐸𝐼0
)𝛼𝑖(3 − 3𝛼𝑖 − 𝛼𝑖

2) + (
1

𝐸𝐼𝑖
−

1

𝐸𝐼0
) 𝛼𝑖

3] +
1

𝐺𝐴0𝐿′
 

 

 

(3.10) 

 

where GA0 is the “mean” shear stiffness that is considered constant throughout the length of 

the member. In the case of a linear variation of shear flexibility, GA0 is defined as 

2GAi0GAj0/(GAi0 + GAj0). GAi0 and GAj0 are the elastic shear stiffnesses of the sections at the 

ends of the element. The stiffness EI0 is an equivalent constant flexural stiffness of the elastic 

portion of the member and is defined as 2EIi0EIj0/(EIi0 + EIj0), where EIi0 and EIj0 are the elastic 

stiffnesses of the sections at the ends of the element. 

Analogously, for the case of linear spread plasticity distribution, the flexibility matrix terms are 

written in eq. (3.11). 

 

 

𝑓𝑖𝑖 =
𝐿′

12
 [
4

𝐸𝐼0
+ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼0
) (6𝛼𝑖 − 4𝛼𝑖

2 + 𝛼𝑖
3) + (

1

𝐸𝐼𝑗
−

1

𝐸𝐼0
)𝛼𝑗

3] +
1

𝐺𝐴0𝐿′
 

 

𝑓𝑖𝑗 =
𝐿′

12
 [
−2

𝐸𝐼0
− (

1

𝐸𝐼𝑖
−

1

𝐸𝐼0
) (2𝛼𝑖

2 − 𝛼𝑖
3) − (

1

𝐸𝐼𝑗
−

1

𝐸𝐼0
) (2𝛼𝑗

2 − 𝛼𝑗
3)] +

1

𝐺𝐴0𝐿′
 

 

𝑓𝑗𝑖 = 𝑓𝑖𝑗 

 

𝑓𝑗𝑗 =
𝐿′

12
 [
4

𝐸𝐼0
+ (

1

𝐸𝐼𝑗
−

1

𝐸𝐼0
) (6𝛼𝑗 − 4𝛼𝑗

2 + 𝛼𝑗
3) + (

1

𝐸𝐼𝑖
−

1

𝐸𝐼0
) 𝛼𝑖

3] +
1

𝐺𝐴0𝐿′
 

 

 

(3.11) 

The yield penetration parameters, i and j, multiplied by L’ gives the length of the element 

where the acting moment is greater than the section cracking moment, Mi,cr or Mj,cr .These 

parameters are first calculated from the current moment distribution, and then checked with the 
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previous maximum penetration lengths i,max and j,max , equation (3.12). The yield penetration 

parameters cannot be smaller than the previous maximum values regardless of the current 

moment distribution. 

 

𝛼𝑖 =
𝑀′𝑖−𝑀′𝑖,𝑐𝑟

𝑀′𝑖−𝑀′𝑗
≤ 1   for   |𝑀′𝑖| < |𝑀′𝑖,𝑐𝑟| 

 

𝛼𝑗 =
𝑀′𝑗−𝑀′𝑗,𝑐𝑟

𝑀′𝑗−𝑀′𝑖
≤ 1   for   |𝑀′𝑗| < |𝑀′𝑖,𝑐𝑟| 

(3.12) 

 

Recently Roh, Reinhorn and Lee [RRL12] proposed a general power form to account for 

different flexibility distributions of the member as written in eq. (3.13). The power n represents 

the variation of flexural flexibility from the ends of the element to the boundary of the plastic 

strain zone and the subscripts i and j represent the sections at the ends of the element. For section 

i, the flexural flexibility distribution is defined in eq. (3.13) and it is shown in Figure 39:  

 

 𝑓𝑚(𝑥𝑖) = (𝑓𝑖
𝑚 − 𝑓0

𝑚) (1 −
𝑥𝑖

𝛼𝑖𝐿′
)
𝑛𝑖

+𝑓0
𝑚 for  0 ≤ 𝑥𝑖 ≤ 𝛼𝑖𝐿′ (3.13) 

 

 

Figure 39 - Distribution of: (a) moment and (b) flexibility [RRL12]. 
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With the increasing of the parameter n, it is possible to reach different flexibility distributions 

based on the plastic gradient of the analysis (Figure 40).  

 

Figure 40– Type of distributions for different values of the power n at section i [RRL12]. 

In [RRL12] also for this case the flexibility matrix terms are calculated the details are omitted 

because it goes beyond the purpose of this work. 

 

3.2 Final considerations 

The spread plasticity approach is a great evolution of the concentrated plasticity models, and as 

such helps to improve results especially in cyclic non-linear analysis. The fact that the length 

of the plastic zone can evolve during the analysis, leads to a greater correspondence with the 

physical reality of the problem, in fact, the choice of the plastic hinge length (which is not 

necessarily equal to the plastic zone length) for the concentrated plasticity models will greatly 

influence the results.
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4 BEAM MODELS WITH MULTIPLE SINGULARITIES 

4.1 Introduction 

The study of differential equations to model the elasto-static behaviour of beams is interesting 

in many fields. For example in tapered structural elements or in case of abrupt changing in the 

material composition. Another example is the back analysis to find the position and the intensity 

of a damage in a structural element. In both of them, the differential equation solution can be 

find by making use of the distribution theory such as unit step and Dirac’s delta functions.  

4.2 Euler–Bernoulli beams with multiple singularities 

Biondi and Caddemi in 2005 [BC05] reconsidered the theory of distributions to propose an 

integration procedure of Euler–Bernoulli (EB) beams with a single discontinuity over a unique 

integration domain without enforcement of continuity conditions at the discontinuities. 

According to the latter procedure, discontinuities of the curvature or of the slope function are 

treated as singularities of the flexural stiffness modelled by means of unit step functions or 

Dirac’s deltas, respectively. Later the same authors generalized the procedure to the multiple 

singularities case [BC07]. 

The integration procedure leads to closed form expressions of the response functions requiring 

the evaluation of integration constants, only, by means of the boundary conditions. 

In case of multiple singularities, the distribution of flexural stiffness along the domain can be 

express as in eq. (4.1): 

 𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0 [1 −∑𝛼𝑖𝐷(𝑥 − 𝑥0,𝑖)

𝑛

𝑖=1

] (4.1) 
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The latter equation describes a reference flexural stiffness E0I0 with n variations of intensity αi 

at abscissa x0,i , modelled by means of n distributions here indicated as D(x-x0,i). In what follows 

two cases of distributions, able to reproduce physical conditions for the Euler–Bernoulli beam, 

are considered. Two types of distributions, such as n unit step distributions U(x-x0,i) and m 

Dirac’s deltas (x-x0,i), are considered leading to two different models as follows in eq. (4.2) 

and Figure 40 and Figure 41: 

 

𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0 [1 −∑𝛾𝑖𝑈(𝑥 − 𝑥𝛾,𝑖)

𝑛

𝑖=1

], 

𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0 [1 −∑𝛽𝑖𝛿(𝑥 − 𝑥𝛽,𝑖)

𝑚

𝑗=1

], 

 

 

(4.2) 

Where E0I0 is the reference rigidity,  and  are parameters that reproduce the intensity of the 

discontinuity while xi and xj the position. 

 

Figure 41 –Beam with discontinuities in the Young modulus E(x) and in the inertia moment I (x)  [BC07]. 

 

Figure 42-A beam with Dirac’s delta singularities in the flexural stiffness, correspondent to (b) a beam with internal 

hinges and rotational springs with stiffnesses kϕ,i . [BC07]. 

Only the case of multiple jump discontinuities in the flexural stiffness, will be treated because 

of more interest. Such case has been treated in the literature, without major difficulty, both for 

single [YSM00] & [YSR01] and double jumps [YS01]. In particular, in those procedures 

enforcement of continuity conditions, at the sections where jumps appear, is required. Aim of 

the integration procedure followed in [BC07] is avoiding enforcement of the continuity 
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conditions and providing closed form solutions for any number and position of the 

discontinuities (coincident with those provided in the literature for single and double 

discontinuities). In the case of flexural stiffness composed by n unit step distributions, the 

governing equation assumes the form written in eq. (4.3):  

 

 [𝐸0𝐼0 (1 −∑𝛾𝑖𝑈(𝑥 − 𝑥𝛾,𝑖)

𝑛

𝑖=1

)𝑢′′(𝑥)]

′′

= 𝑞(𝑥). (4.3) 

 

Where q(x) is a generic load distribution, u(x) is the vertical displacement, while the symbol ()’ 

denotes differentiation with respect to the spatial coordinate x spanning from 0 to the length l 

of the beam. 

A double integration leads to: 

 𝑢′′(𝑥) =
𝑏1 + 𝑏2𝑥 + 𝑞

[2](𝑥)

𝐸0𝐼0(1 − ∑ 𝛾𝑖𝑈(𝑥 − 𝑥𝛾,𝑖)
𝑛
𝑖=1 )

 (4.4) 

 

where b1 and b2 are integration constants and q[k](x) indicates a primitive of order k of the 

external load function q(x). After simple algebra and making use of the unit step function 

properties, is possible to rewrite eq. (4.4) in eq. (4.5): 

 𝜒(𝑥) = −𝑢′′(𝑥) = −(2𝑐3 + 6𝑐4𝑥 +
𝑞[2](𝑥)

𝐸0𝐼0
)(1 +∑𝛾𝑖𝜇𝑖𝜇𝑖+1𝑈(𝑥 − 𝑥𝛾,𝑖)

𝑛

𝑖=1

) (4.5) 

 

Where the following position have been accounted for: 

 𝑐3 =
𝑏1

2𝐸0𝐼0
; 𝑐4 =

𝑏2
6𝐸0𝐼0

; 𝜇𝑖 =
1

1 − ∑ 𝛾𝑘
𝑖−1
𝑘=1

 (4.6 a-c) 

 

With further integrations, it is possible to obtain the rotation function xand the deflection 

u(x): 

 

𝜑(𝑥) = −𝑢′(𝑥) = −𝑐2 − 2𝑐3 [𝑥 +∑𝛾𝑖𝜇𝑖𝜇𝑖+1(𝑥 − 𝑥𝛾,𝑖)𝑈(𝑥 − 𝑥𝛾,𝑖)

𝑛

𝑖=1

] 

                                   −3𝑐4 [𝑥
2 +∑𝛾𝑖𝜇𝑖𝜇𝑖+1(𝑥

2 − 𝑥𝛾,𝑖
2 )𝑈(𝑥 − 𝑥𝛾,𝑖)

𝑛

𝑖=1

] 

                            − 
𝑞[3](𝑥)

𝐸0𝐼0
−∑𝛾𝑖𝜇𝑖𝜇𝑖+1

𝑛

𝑖=1

𝑞[3](𝑥) − 𝑞[3](𝑥𝛾,𝑖)

𝐸0𝐼0
𝑈(𝑥 − 𝑥𝛾,𝑖) 

(4.7) 
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𝑢(𝑥) = 𝑐1 − 𝑐2𝑥 − 2𝑐3 [𝑥
2 +∑𝛾𝑖𝜇𝑖𝜇𝑖+1(𝑥 − 𝑥𝛾,𝑖)

2
𝑈(𝑥 − 𝑥𝛾,𝑖)

𝑛

𝑖=1

] 

               +𝑐4 [𝑥
3 +∑𝛾𝑖𝜇𝑖𝜇𝑖+1(𝑥

3 − 3𝑥𝛾,𝑖
2 𝑥 + 2𝑥𝛾,𝑖

3 )𝑈(𝑥 − 𝑥𝛾,𝑖)

𝑛

𝑖=1

] 

+ 
𝑞[4](𝑥)

𝐸0𝐼0
+∑𝛾𝑖𝜇𝑖𝜇𝑖+1

𝑛

𝑖=1

𝑞[4](𝑥) − 𝑞[4](𝑥𝛾,𝑖) − 𝑞
[3](𝑥𝛾,𝑖)(𝑥 − 𝑥𝛾,𝑖)

𝐸0𝐼0
𝑈(𝑥 − 𝑥𝛾,𝑖) 

(4.8) 

 

The bending moment function is obtained by multiplying the curvature function by the flexural 

stiffness as written in eq. (4.9): 

 𝑀(𝑥) = 𝐸(𝑥)𝐼(𝑥)𝜒(𝑥) = −𝐸0𝐼0 (2𝑐3 + 6𝑐4𝑥 +
𝑞[2](𝑥)

𝐸0𝐼0
) (4.9) 

 

The shear force function in eq. (4.10) is obtained by means of differentiation of eq. (4.9): 

 

 𝑉(𝑥) = 𝑀′(𝑥) = −𝐸0𝐼0 (6𝑐4 +
𝑞[1](𝑥)

𝐸0𝐼0
) (4.10) 

 

It has to be remarked that the discontinuity intensities i and positions xi will appear explicitly 

in the integration constants c3, c4 for statically indeterminate beams only. 
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4.3 Final considerations 

The spread plasticity model is based on the principle of virtual work in order to determine the 

element flexibility matrix, this is equivalent to imposing equilibrium in the nodes. As in every 

finite element method the outputs that are obtained are nodal quantities and it is not always 

possible to know what happens within the nodes. The stress recovery phase is in fact quite 

complex and also knowing the kinematic quantities within the finite element beyond the elastic 

limit is not in general obtainable. However, there are alternatives methods that are not using the 

principle of virtual work to determine the general solution and the element flexibility matrix, 

one of these makes use of the theory of distributions to solve the differential equations that 

directly govern the structural problem. 

In other words, using a standard spread plasticity model, the only way to know what happens 

within the nodes is to refine the mesh because is based on the principle of virtual work and it has 

the control only in the nodes (weak formulation). Instead, using the model presented in this chapter 

and in section 6.1.1, adopting Heaviside’s distributions function to model abrupt, both flexural and 

shear, stiffness discontinuities of the beam, it is possible to lead to the exact closed-form solution 

because it is based on the differential equation associated (strong formulation). This alternative 

approach was exposed because it is the base of the proposed finite element. 
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5 RC FRAME STRUCTURES ELEMENTS WITH SHEAR 

MODELLING 

5.1 Introduction 

This chapter is dedicated to the review of the main existing beam-column elements formulation 

with shear modelling, underling their characteristics. 

 

5.2 Main approaches 

5.2.1 Martinelli’s model 

Martinelli has developed a fiber frame element based on the Timoshenko beam theory to model 

the cyclical response of the critical areas at the ends of the bridge piers feature a medium-low 

shear strain [MA98]. The author has proposed a finite element based on the model of Garstka 

et al. [GKS93], coupling a 3D fiber model for bending and axial deformation with a hyperstatic 

inelastic truss model composed by transverse reinforcement and concrete compression 

diagonals in tension and compression. The element is formulated with an displacement 

approach with the tree nodes; the intermediate node has a reduced number of degrees of 

freedom with respect to external nodes: only rotations and axial displacements. The element 

does not suffer of shear-locking phenomenon having a constant average shear strain along the 

element and a linear variation of curvature. Bending and axial contributions are calculated as 

volume integrals split in area integrals, approximated by summation over cross-section’s fibers, 

and line integrals computed using a five point Gauss-Lobatto scheme. Shear contribution is 

computed by integration along the element of the shear force acting at the cross-sections. The 

displacement vector u (x) in eq. (3.1) has the components shown in Figure 43, with five (3-D 
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beam) or three degrees (2-D beam) of freedom per node (torsion not accounted for): 

 𝑢(𝑥)  =  {𝑢(𝑥), 𝑣(𝑥), 𝑤(𝑥), 𝜃𝑦(𝑥), 𝜃𝑧(𝑥)}
𝑇 (5.1) 

 

The shear resultant for the cross section is derived from different resistance mechanisms: arch 

mechanism, the truss mechanism, the compressed concrete above the neutral axis, and the 

aggregate interlock, each of which is studied independently, as described in the following. 

 

Figure 43– Nodal degrees of freedom of Martinelli’s Fiber element [MAR98]. 

 

 

Figure 44 – (a) Inclined strut, (b) Mohr’s circle used in arch action mechanism, and (c) assemblage used to model 

truss mechanism [MAR98]. 

The arch effect is schematically represented in Figure 44 (a), where it is observed that the 

inclined strut transfers a shear force proportional to the axial force: Vp = N·tanα. The fibers are 

aligned with the strut, and the inclination is calculated by knowing the nodal moments (Mzi, 

Myi, Mzf ,Myf ), as well as the resultant of the compressive stresses. As a function of α, εxx and 

assuming εyy = 0, it is derived the principal stress σ2 of compression and shear deformation by 

γxy / 2 starting from Mohr circle Figure 44 (b). The constitutive laws used in conjunction with 

the strut mechanism are uniaxial and ε2 is used to calculate the principal compression stress σ2, 

with the assumption σ1 = 0, that is the principal tensile stress. From σ2, the normal and shear 

stresses, σxx, and τxy, are calculated through the Mohr circle. The resulting forces are derived 
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from an integration of the stresses on the gross section area A and the compressed concrete area 

Acc as shown in eq. (5.2): 

 

 

𝑁 = ∫𝜎𝑥𝑥𝑑𝐴 , 𝑉𝑃𝑥𝑦  = ∫ 𝜏𝑥𝑦𝑑𝐴 , 𝑉𝑃𝑥𝑧  = ∫𝜏𝑥𝑧𝑑𝐴, 

𝑀𝑦  =  ∫𝜎𝑥𝑥𝑧𝑑𝐴 ,𝑀𝑧 = −∫𝜎𝑥𝑥𝑦𝑑𝐴 , 

 

(5.2) 

 

An iterative process is required to calculate α, even if the author notes that in the step by step 

dynamic analysis, α can be assumed, in a simplified way, as the value at the end of the previous 

step. The truss mechanism in the xy plane is based on the assembly of Figure 44 (c); it is 

composed by the transverse reinforcement (the horizontal element of Figure 44 (c), where Z is 

the lever arm) and the diagonal of concrete in compression and tension (respectively with 

subscripts 1 and 2 in Figure 44 (c). The slope of the diagonal φ is a model parameter and is 

assumed to be equal to the inclination of the concrete cracks. The truss deformation is obtained 

by the shear strain calculated using the kinematics of the Timoshenko beam (εxx and γxy that are 

known quantities), while εyy is assumed to be equal to the transverse steel strain. Using the 

Mohr’s circle the principal deformation are directly calculated. The transverse strain is obtained 

imposing the equilibrium along the y direction of the truss model (σyy = 0). The shear stress τxy 

acting in the cross section is derived by knowing the inclination of both diagonals in 

compression and tension and the corresponding principal stresses. The shear transferred by the 

truss action is calculated by integrating the shear stress on the concrete surface in tension of the 

cross-section: Vt = τxy At. The shear stiffness contribution to the section stiffness matrix, 

Kshear_xy, due to the stiffness of the transverse reinforcement and of concrete fibers of the two 

diagonals, KS, KC1, KC2, Figure 44, is calculated with eq. (5.3): 

 

  𝐾𝑠ℎ𝑒𝑎𝑟_𝑥𝑦 = {
 1

(𝑡𝑎𝑛𝜑-)2
  (𝐸1𝛼𝑦 ,𝑐1 

4 + 𝐸2𝛼𝑦 ,𝑐2 
4 ) [1 −

𝐸1𝛼𝑦 ,𝑐1 
4 +𝐸2𝛼𝑦 ,𝑐2 

4

𝐸1𝛼𝑦 ,𝑐1 
4 +𝐸2𝛼𝑦 ,𝑐2 

4 +𝜌𝑠𝐸𝑠
]} 𝐴𝑡   (5.3) 

 

where E1, E2, Es are the tangent moduli of the fibers for concrete and steel, respectively; At is 

the area of the concrete in tension, αi, j is the cosine of the angle between the i and j axes; ρs is 

the geometric transverse reinforcement ratio. The Kshear_xz contribution is calculated using a 

similar assembly to that used for modeling the mechanism of the truss in the xy plane and then, 

with reference to eq. (5.3), the subscript y must be replaced by z. To model the aggregate 

interlock, it is assumed that a set of diagonal cracks of constant spacing s (parameter of the 

model), inclined at a constant angle φ with respect to the beam axis, characterizes the concrete 

in traction. The τxyIN tangential component on the cross section is calculated from the normal 

and shear stresses arising from relative movements to the faces of the crack and calculated by 

εxx deformations, γxy and εyy = εs derived from the truss model. The shear force due to the 
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aggregate interlock mechanism is derived from the integration of shear stresses τxyIN on the area 

of loaded concrete: VIN = τxyIN At. The shear resistance is provided by the sum of contributions 

Vp, Vt and VIN. 

The section stiffness matrix is provided by eq.(5.4): 

 

 

𝑲𝒔 =

[
 
 
 
 
 
 
 
 
 ∫ 𝐸

𝐴

0

0 Kshear_xy
0 0

   
0 −∫ 𝑦𝐸

𝐴

∫ 𝑧𝐸
𝐴

0 0 0
Kshear_xz 0 0

−∫ 𝑦𝐸
𝐴

        0              0              ∫ 𝑦2𝐸
𝐴

−∫ 𝑦𝑧𝐸
𝐴

      ∫ 𝑧𝐸
𝐴

      0               0          −∫ 𝑦𝑧𝐸
𝐴

−∫ 𝑧2𝐸
𝐴 ]

 
 
 
 
 
 
 
 
 

 
(5.4) 

 

where E is the elastic tangent modulus, and the two shear stiffness coefficients Kshear_xy and 

Kshear_xz are due to the truss contributions, eq. (5.3). 
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5.2.2 Ranzo and Petrangeli’s model 

With the aim of developing a beam element that models the shear behavior of the section to 

perform the seismic analysis of RC structures, Ranzo and Petrangeli [RP98] have proposed a 

2D fiber element following a flexibility approach. The axial-flexural behavior is a function of 

axial deformation εx and curvature χy of the section, as in the traditional fiber model, while the 

shear behavior is a function of the section distortion γ (x) equivalent to a non-linear truss model. 

The two mechanisms are then coupled by a damage criterion at the sectional level, following 

the model of Priestley et al. [PVX94], and it is integrated along the element. 

 

 

Figure 45– Stress shape functions and element forces and deformations [RP98]. 

In the element formulation, the shape functions of the forces field are introduced in the 2 nodes 

element (see Figure 45), in such a way that the axial forces, bending moment and shear can be 

expressed by eq. (5.5): 

 𝑁(𝑥)  =  𝑁𝑗  , 𝑀(𝑥)  =  −(1 −  𝑥 / 𝐿)𝑀𝑖  +  (𝑥 / 𝐿)𝑀𝑗  , 𝑉(𝑥)  =  (𝑀𝑖 + 𝑀𝑗  ) / 𝐿 (5.5) 

 

where Nj is the axial load supposed constant, Mi and Mj are the moments at the ends. These 

forces are associated with the deformation of the ends, the axial elongation δ and the two 

rotations θi and θj. The vector of the section generalized forces p(x)=[N (x), V (x), M (x)]T and 

the vector of the generalized deformation q(x)=[ε0(x),γ(x), χ(x)]T are connected through the 

section stiffness matrix in eq. (5.6): 

 

 𝑲𝒔𝒆𝒄 =

[
 
 
 
 
 
 
 
 
∑ 𝐸𝑖𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

0 ∑ 𝐸𝑖𝑦𝑖 𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

0
𝜕𝑉(𝛾, 𝜀𝑚𝑎𝑥)

𝜕𝛾
0

∑ 𝐸𝑖𝑦𝑖 𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

0 ∑ 𝐸𝑖𝑦𝑖
2𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1 ]
 
 
 
 
 
 
 
 

 (5.6) 
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Consequently, the axial and flexural stiffnesses are calculated in the usual way, by using the 

one-dimensional cyclic constitutive laws of the materials, while the shear stiffness is derived 

from the shear constitutive relation (including the backbone curve, unloading and reloading 

branches, shown in Figure 46) V (γ, ε_max) as a function of the distortion γ and of the discrete 

variable εmax (equal to the maximum value of axial tensile strain recorded during the loading 

cyclic), as described below. It is worth noting that, no explicit bending-shear coupling is 

introduced in the definition of the section stiffness matrix in equation (5.6), implementation of 

this constitutive law in a force-based element couples bending and shear forces at the element 

level through equilibrium. 

Since the element is forces based but has been implemented in the context of a finite element 

code based on the displacements, in the element state determination, the vector of generalized 

displacements is not known in advance and it is necessary to implement an iterative procedure. 

 

Figure 46– Section shear hysteretic model — skeleton and degraded curves [RP98]. 

 

 

Figure 47 – Beam segment truss idealization [RP98]. 
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The V-γ curve is determined by solving the truss model in Figure 47(a), having defined a 

constant mean value φ of inclination function of the axial load N, the shear reinforcement and 

behavior of the concrete diagonals in compression. The V-γ curve is obtained by applying the 

force V in small increments ΔV(i) up to collapse, with the distortion γ defined as δu/(z + δv) ≈ 

δu/z and using analytic functions to interpolate these discrete points, V(i)=f(γ(i)), to obtain a 

continuous curve. This procedure leads to the cracking determination, the yielding point and 

ultimate values of the shear strength and the distortion. To take into account the dependency of 

shear resistance by the ductility level, the skeleton branch of the hysteresis curve incorporates 

a degrading criterion in which the primary curve is a function of the maximum axial εmax, chosen 

as the damage indicator (Figure 46). The structural configuration shown in Figure 47(a) is a 

detailed representation of the beam segment illustrated in Figure 47(b), and displays the 

deformation of the concrete strut δc and steel δs. The strut of concrete in compression / tension 

is a single element of the truss whose area is a percentage of the gross surface area (depending 

on the neutral axis depth after cracking in bending). The segment of the shear reinforcement, 

however, is equivalent to a chord whose cross-section is equal to the sum of the crossing bars 

along the length of the segment plus a percentage of the longitudinal bars (assumed to be 0.3% 

of the gross section). 

It is worth noting that the equivalent truss approach here used for the back bone curve is than 

scaled with the parameter ε_max function of the ductility demand of the section. It means that 

some calibration is needed to find the best fit using a similar experimental test output. 
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5.2.3 Petrangeli, Pinto and Ciampi’s model 

Petrangeli et al. [PPC99] have developed a flexibility fiber element to model the shear behavior 

and its interaction with the axial force and the bending moment for beams and columns. This 

formulation leads to a 2D element with two nodes. The generalized variables are: 

 

 
𝒑(𝜉) = [N(ξ) V(ξ) M(ξ)]𝑇 

𝑞(𝜉) = [𝜀0(ξ) γ(ξ) χ(ξ)]
𝑇 

(5.7) 

  

where ξ=x/L is the dimensionless coordinate. 

The components of p(ξ) are expressed as already written in eq. (5.5) and shown in Figure 45. 

Also in this model an iterative procedure in used in order to calculate the vector q(ξ).   

 

Figure 48– Section and fiber mechanics [PPC99]. 

 

The plane section hypothesis was adopted for the determination of the longitudinal strain field, 

εxx(y). For the distortion, the authors used several predefined shear functions: the classic 

hypothesis of Timoshenko with a constant shear strain along the section, and a parabolic 

distribution (Figure 48), stating that both the shape functions have been tested with equally 

acceptable results. In order to find the strain in the transverse direction, εyy, equilibrium has 

been imposed in the vertical direction between concrete and steel for each fiber. Therefore, a 

complete strain vector [εxx, εyy, εxy]T, is derived iteratively in every fiber. 

Knowing the strain vector in every fiber, to describe the concrete behavior, a biaxial constitutive 

model should be introduced. For the i-th concrete fiber, eq. (5.8) in an incremental relation 

derived from the static condensation of the degree of freedom in the transverse direction y: 

 

 [
𝑑𝜎𝑥𝑥

𝑖

𝑑𝜎𝑥𝑦
𝑖 ] = [

𝐾𝑎
𝑖 𝐾𝑎𝑠

𝑖

𝐾𝑠𝑎
𝑖 𝐾𝑠

𝑖
] [
𝑑𝜀𝑥𝑥

𝑖

𝑑𝜖𝑥𝑦
𝑖 ] (5.8) 
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where the fiber stiffness coefficients for axial force 𝐾𝑎
𝑖  and for shear 𝐾𝑠

𝑖, as well as those that 

make coupling 𝐾𝑎𝑠
𝑖  and 𝐾𝑠𝑎

𝑖  are written in eq. (5.9): 

 

 

𝐾𝑎
𝑖 = (𝐷11

𝑖 − 𝐷12
𝑖 𝐷21

𝑖 𝛼𝑖 ) 

𝐾𝑎𝑠
𝑖 = (𝐷13

𝑖 − 𝐷12
𝑖 𝐷23

𝑖 𝛼𝑖 ) 

𝐾𝑠𝑎
𝑖 = (𝐷31

𝑖 − 𝐷32
𝑖 𝐷21

𝑖 𝛼𝑖 ) 

𝐾𝑠
𝑖 = (𝐷33

𝑖 − 𝐷23
𝑖 𝐷32

𝑖 𝛼𝑖 ) 

 

(5.9) 

 

As biaxial constitutive relationships for concrete, the author selected a modified microplane 

model, which links together the microplane approach [BO85] and an equivalent uniaxial 

rotating concept. This model has the great feature to be one of the first with a biaxial constitutive 

law capable to reproduce monotonic and cycling loading, without a superimposed model for 

the shear behaviour. In fact, the sectional stiffness matrix in equation (5.8) in fully populated 

reflecting the coupling at sectional level. 

On the other hand, the iterative procedure described have to be performed for each fiber at each 

load step, and so the effectiveness of the model is jeopardized.  
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5.2.4 Vecchio and Collins’ model 

Vecchio and Collins have presented the “dual-section analysis method” to predict the response 

of RC beams subject to shear and flexure; the authors have developed only a sectional model, 

without introducing the finite element formulation. The cross section is discretized in layers as 

shown in Figure 49. It is assumed that the cross-sections of the element remains plane. The 

analysis is called "dual" because the τxy tangential stresses calculation, equation (5.10), it is 

provided by the finite difference of the normal stresses distribution on each side of a layer of 

finite length (Figure 50): 

 𝜏𝑥𝑦(𝑥) = −
1

𝑏(𝑦)
∫

𝜕𝜎𝑥𝑥
𝜕𝑥

𝑏(𝑦)𝑑𝑦   𝑑𝑜𝑣𝑒 
𝜕𝜎𝑥𝑥
𝜕𝑥

≅
𝜎𝑥𝑥(𝑥2) − 𝜎𝑥𝑥(𝑥1)

𝑆
  

𝐵′

𝐴′
 (5.10) 

 

where b(y) is the section’s width, yb is the coordinate of the bottom layer, , 𝜎𝑥𝑥 (x2) e 𝜎𝑥𝑥 (x1) 

are the normal stresses of the layer in the two analyzed sections, at distance S (= H/6, with H 

being the beam’s depth). 

 

 

Figure 49 - Beam section discretization. Estimates of longitudinal strain gradient and shear flow distribution are 

required across section [VC88]. 
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Figure 50– Dual section analysis: (a) scheme and free-body diagram for concrete layer k, and (b) solution procedure for 

beam analysis model [VC88]. 

The solution procedure for the sectional model is given in Figure 50 by mean of a flowchart. 

Since this analytical model requires a considerable computational effort, Vecchio and Collins 

have proposed two alternatives and approximate solutions assuming a priori a constant shear 

stresses distribution or a parabolic shear strain distribution. The assumption of one of these two 

approximations leads to the iterations elimination on the estimation of the tangential stresses 

distribution along the cross section (indicated with an asterisk in Figure 50) of the flow chart. 

As found by the authors, the approximate procedures lead to results, in terms of the global 

behavior of the beam, which are very close to those obtained using the most rigorous "dual 

section analysis". However, the constant shear flow assumption overestimates the shear stresses 

in the tension region (conservative results), while the parabolic shear strain assumption 

overestimates the shear stresses in the compression region of the section (unconservative 

predictions). 
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5.2.5 Marini and Spacone’s model 

Marini and Spacone, [MS06], have proposed a simplified approach using a phenomenological 

relation V-γ for shear and distortion. Potentially the element has the enormous advantage of 

having a computational cost very low compared to other formulations of literature, for example, 

[PPC99], however, its effectiveness depends on the accuracy of the V-γ constitutive law on 

which the model is based and it is necessary to provide new formulations. 

In detail it has been formulated a 2D Timoshenko finite element with the forces approach that 

follows the formulation described in [SFT96]. Forces and nodal displacements are shown in 

Figure 51. 

 

Figure 51 – Frame element forces and deformations [MS06]. 

Figure 52 shows section deformations, section forces and strain distribution along the height. 

 

Figure 52– Timoshenko element: section forces, deformations, and strain distributions [MS06]. 

As shown in Figure 52, the element is formulated without rigid body modes, nodal forces and 

displacements are collected as in eq. (5.11). 

 

 
𝑃 = [𝑀1𝑀2𝑁]

𝑇 

𝑈 = [𝜃1𝜃2𝑢]
𝑇 

(5.11) 
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The generalized forces 𝑠(𝑥) and deformations 𝜀(𝑥) are collected as in eq. (5.12). 

 
𝑠(𝑥) = [𝑀(𝑥) 𝑁(𝑥) 𝑉(𝑥) ]𝑇 

𝜀(𝑥) = [𝜒(𝑥) 𝜀0(𝑥) 𝛾(𝑥) ]𝑇 
(5.12) 

 

At this point the Principle of virtual work in the virtual forces form is applied in order to obtain 

the eq. (5.13): 

 

 𝛿𝑃𝑇𝑈 = ∫ 𝛿𝑠𝑇(𝑥)𝜀(𝑥)𝑑𝑥     
𝐿

0

 (5.13) 

 

 

Using equilibrium, the section forces s(x) are written as functions of the end forces P through 

the force interpolation function NP(x) as in eq. (5.14) 

 

 𝑠(𝑥) = 𝑁𝑃(𝑥)𝑃 (5.14) 

where 

 𝑁𝑃(𝑥) =

[
 
 
 
 
𝑥

𝐿
− 1

𝑥

𝐿
0

0 0 1

−
1

𝐿

1

𝐿
0]
 
 
 
 

 (5.15) 

 

Introducing the costitutive law to relate forces and deformation, it is possible to write eq. (5.16) 

 

 𝜀(𝑥) = 𝑓(𝑥)𝑠(𝑥) (5.16) 

 

where f(x) is the section flexibility matrix and depends on the section model used for the 

element. 

After substitution of eq. (5.14) and (5.16) in eq. (5.13), and after elimination of δPT based on 

the arbitrariness argument, the element matrix compatibility equation is written as in eq. (5.17): 

 

 𝑈 = 𝐹𝑃 (5.17) 

 

where F is the element flexibility matrix without rigid body modes. 
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The sectional constitutive model is described in eq. (5.18) and eq. (5.19). As can be seen, at 

sectional level the shear strain is decoupled with respect the longitudinal deformation. 

 

 𝑠(𝑥) =

{
 
 
 

 
 
 
∑ 𝜎𝑖𝑦𝑖 𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

∑ 𝜎𝑖𝐴𝑖 

𝑛𝑓𝑖𝑏

𝑖=1

𝑉 = 𝑉(𝛾) }
 
 
 

 
 
 

 (5.18) 

 

 𝑘(𝑥) =

[
 
 
 
 
 
 
 
 

∑ 𝐸𝑖𝑦𝑖
2𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

−∑ 𝐸𝑖𝑦𝑖 𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

0

−∑ 𝐸𝑖𝑦𝑖 𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

0 ∑ 𝐸𝑖𝐴𝑖

𝑛𝑓𝑖𝑏

𝑖=1

0

0 0
𝑑𝑉

𝑑𝛾]
 
 
 
 
 
 
 
 

 (5.19) 

 

It is worth noting that, while bending and shear forces are not related at the section level, 

implementation of this constitutive law in a force-based element couples bending and shear 

forces at the element level through equilibrium. 

Equation (5.14) and (5.15) enforce equilibrium between internal and nodal forces. Therefore, if 

shear failure at the section level occurs before bending failure, the element bending moments 

are bound by the element shear forces. This is the main advantage of using a force-based 

element for a nonlinear Timoshenko beam. Even though the shear and bending responses are 

not coupled at the constitutive law level, they must be in equilibrium and thus failure in either 

bending or shear affects the force in either shear or bending. 

The shear response is modeled using a nonlinear V-γ law. Different envelope curves are shown 

in Figure 53 and Figure 54 for the cyclic case. In Figure 53 the shear law has an initial parabolic 

branch and peaks at VRd, γy, which represents the section shear capacity. A linear branch 

follows, whose initial and final points are VRd, γy and Vu, γu, respectively. The last point 

represents the residual shear capacity. 
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Figure 53 – Section shear law: possible envelope curves [MS06]. 

 

 

 

Figure 54– Section shear law: hysteretic rules [MS06]. 

 

The shear section resistance VRd is evaluated in accordance with a trinomial equation such as 

in [PP75]. Depending on the ductility that is found in the section due to the stirrups confining 

the concrete, it is possible to adopt the curves a' and b' or a and b in Figure 53. 
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It is also possible to degrade the shear strength, by the curve (c), through a coefficient Cadm, see 

[PP75]) that depends on the maximum longitudinal steel strain ε according to eq. (5.20): 

 

 

𝐶𝑎𝑑𝑚 = 1  𝑓𝑜𝑟 𝜀 ≤ 𝜀1  

𝐶𝑎𝑑𝑚 = 1 −
𝜀 − 𝜀1
𝜀2 − 𝜀1

  𝑓𝑜𝑟 𝜀1 ≤ 𝜀 ≤ 𝜀2 

𝐶𝑎𝑑𝑚 = 𝐶𝑎𝑑𝑚,𝑟𝑒𝑠  𝑓𝑜𝑟 𝜀 ≥ 𝜀1 

(5.20) 

 

ε1 and ε2 are two limit strain values. Damage occurs as the shear distortion exceeds the lower 

limit ε1, whose value can be set to the yield strain of the longitudinal reinforcing bars (thus ε1= 

εy). No further damage occurs when the tensile strain exceeds the limit value ε2, and the damage 

coefficient is set to a constant value Cadm,res. 
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5.2.6 Ceresa et al. model 

In the work of Ceresa et al. [CPPS09], a displacement based fiber element is formulated with a 

constitutive model that belongs to the smeared crack approach. The latter consists in treating 

cracked RC as an orthotropic material where cracks are smeared and allowed to rotate. Principal 

strain–stress directions are those corresponding to the average elastic compressive and tensile 

strains (crack directions). The Modified Compression Field Theory (MCFT) developed in 1986 

by Vecchio and Collins [VC86], and one of its refinements, represented by the Disturbed Stress 

Field Model (DSFM) [VEC99] are used by the authors because it seems to be capable of 

accurately predict the shear strength of both reinforced and prestressed concrete members 

subjected to shear, flexure and axial loads. The MCFT was not formulated for cyclic loads but 

only for the monotonic case, to overcome this, Vecchio enlarged the formulation introducing a 

plastic offset capable to model cyclic loads [VEC00].  

The element formulation is the simplest possible for a Timoshenko frame element, in fact the 

displacement field is interpolated by means of linear functions. This is because no internal 

nodes are inserted in the element length and so for each displacement component just two 

parameters can be used (there are two nodes).   

In order to overcome the shear-locking problem, to the linear shape functions have been 

introduced an additional term, a linked term defined bubble function Nb (x), for the transversal 

displacement field, following the formulation proposed by Auricchio [AU03]: 

 

𝑢(𝑥) = 𝑁𝑢(𝑥)𝑈 

𝑣(𝑥) = 𝑁𝑣(𝑥)𝑉 + 𝑁𝑏(𝑥)𝑙(𝑏𝜃 ) 
𝜃(𝑥) = 𝑁𝜃(𝑥)𝜃 

(5.21) 

 

Where [𝑈; 𝑉 ; 𝜃 ] are the nodal displacements, l is the element length,  𝑁𝑢(𝑥) = 𝑁𝑣(𝑥) =

𝑁𝜃(𝑥) = [1 −
𝑥

𝑙
,
𝑥

𝑙
] are the linear shape functions, 𝑏 = [1,−1] and 𝑁𝑏(𝑥) =

1

2
(1 −

𝑥

𝑙
)
𝑥

𝑙
 is the 

special buble function. 

The kinematic assumption of the Timoshenko beam theory is that in the deformed element, the 

cross sections are still plane but no more orthogonal to the longitudinal axis line, it means that 

𝑣′(𝑥) ≠ 𝜃(𝑥) → 𝛾𝑥𝑦 ≠ 0 

The sectional formulation involves the implementation of the proposed flexure–shear model, 

based on the MCFT, into a fiber beam–column finite element. It means that for each fiber i, a 

constitutive stiffness matrix of the composite material in the x-y system is evaluated (Figure 

55). 

 [

𝜎𝑥𝑥
𝜎𝑦𝑦

𝜏𝑥𝑦

]

𝑖

= [

𝐷11 𝐷12 𝐷13
𝐷21 𝐷22 𝐷23
𝐷31 𝐷32 𝐷33

]

𝑖

[

𝜀𝑥𝑥
𝜀𝑦𝑦

𝛾𝑥𝑦

]

𝑖

− [

𝜎0𝑥𝑥

𝜎0𝑦𝑦

𝜏0𝑥𝑦

]

𝑖

 (5.22) 
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The matrix [𝐷]𝑖 is the stiffness matrix of the composite material in the x–y system, evaluated 

for each fiber i as in [VC86]. The vector [

𝜎0𝑥𝑥

𝜎0𝑦𝑦

𝜏0𝑥𝑦

]

𝑖

contains the plastic offset for cyclic loads 

[VEC00].  

The [𝐷]𝑖 can be divided in the sum of three terms: 

 

 [𝐷]𝑖 = [ 𝐷𝑐]𝑖 + [𝐷𝑠𝑥]𝑖 + [𝐷𝑠𝑦]𝑖 (5.23) 

 

where [ 𝐷𝑐]𝑖 is the concrete material stiffness matrix, [𝐷𝑠𝑥]𝑖 and [𝐷𝑠𝑦]𝑖 are the reinforcement 

material stiffness matrices in the x- and y-directions. It means that longitudinal and transvers 

steel reinforcements can be explicitly taken into account in a smeared way. 

As shown in Figure 55, in order to determine all the strains in eq.(5.22), equilibrium in the 

lateral direction between concrete and steel is imposed for each fiber, following the formulation 

proposed by [PPC99]. Therefore, a complete strain vector is derived iteratively for each fiber: 

 𝜎𝑦𝑦 = 0 → 𝜀𝑦𝑦 =
𝜀𝑥𝑥𝐷21 + 𝛾𝑥𝑦𝐷23

𝐷22
−
𝜎0𝑦𝑦

𝐷22
 (5.24) 

 

Once the equilibrium in the transverse direction is achieved within a specific tolerance error for 

each fiber, the static condensation of eq.(5.27) leads to the determination of the axial and shear 

stresses for each fiber: 

 [
𝜎𝑥𝑥
𝜏𝑥𝑦

]
𝑖

= [
𝐷̃11 𝐷̃12
𝐷̃21 𝐷̃22

]
𝑖

[
𝜀𝑥𝑥
𝛾𝑥𝑦
]
𝑖

+ [
𝜎0𝑥𝑥 − 𝜎0𝑦𝑦𝛼12

𝜏0𝑥𝑦 − 𝜎0𝑦𝑦𝛼32
]

𝑖

[

𝜎0𝑥𝑥

𝜎0𝑦𝑦

𝜏0𝑥𝑦

]

𝑖

 (5.25) 

Where 𝐷̃11, 𝐷̃21, 𝐷̃12, 𝐷̃22 are the coefficients of the condensed composite material matrix and 

𝛼12=D12/D22 and 𝛼32=D32/D22. This condensed matrix establishes a direct coupling between the 

axial and the shear strains, and therefore between axial and shear stresses at sectional level. In 

the flow chart of Figure 55 the procedure to determine the element stiffness matrix and the 

internal forces is described. 
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Figure 55 - Element state determination of the developed Timoshenko fiber beam element from [CPPS09]. 
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The implemented uniaxial cyclic models are shown in Figure 56 according to [VEC00]. 

 

Figure 56 – Uniaxial laws for reinforcement (a) and concrete (b) from [CPPS09]. 

Also for this finite element, the iterative procedure described have to be performed for each 

fiber at each load step, and so the effectiveness of the model is jeopardized. 
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5.2.7 Mergos and Kappos’s model 

Mergos, Kappos and Beyer [MK08], [MB13], [MK12] have formulated a finite element model 

accounts for shear strength degradation with inelastic curvature demand, as well as coupling 

between inelastic flexural and shear deformations after flexural yielding, observed in many 

experimental studies. An empirical relationship is proposed for evaluating the average shear 

distortion of R/C columns at the onset of stirrup yielding based on the UCSD model of Priestley 

[PSC96]. 

This finite element consists of two sub-elements with spread flexibility, representing inelastic 

flexural and shear responses. The two sub-elements are connected by equilibrium and interact 

throughout the analysis to capture the shear–flexure interaction effect. The flexibility matrix of 

the finite element is calculated as the sum of the flexibilities of its sub-elements and can be 

inverted to produce the stiffness matrix. 

The flexural sub-element is used for modelling the flexural behaviour of an RC member 

subjected to cyclic loading and it is capable to consider the yielded longitudinal reinforcement. 

It is formed by a hysteretic moment–curvature (M–) behaviour applied at the member end 

sections and the flexural stiffness distribution along the entire member is modelled with a spread 

plasticity approach. 

The M– relationship at each end section of the member is formed by the backbone curve and 

the rules determining its cyclic behaviour. The primary M– relationship is derived using the 

standard section analysis, with proper constitutive laws for concrete and steel. 

The multi-linear, ‘yield-oriented’ with slip, hysteretic model of Sivaselvan and Reinhorn 

[SR99] is adopted for describing M– behaviour. This model is an evolution of the Park et al. 

[PRK87] model; it accounts for stiffness degradation, strength deterioration, pinching effect, 

and nonsymmetric response. The work [SR99] is appropriately modified by the authors in order 

to be compatible with a bilinear skeleton curve because it was formulated for a trilinear curve 

model.  

The stiffness distributions along the member have the profile of Figure 57, where L is the length 

of the member; EIA and EIB are the current flexural rigidities of the sections at the member ends 

A and B, respectively; EI0 is the reference stiffness (normally taken equal to the secant value at 

yield My/y); and αA and αB are the “yield penetration” coefficients. 
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Figure 57- Flexural sub-element [MK08]. 

 

The flexural stiffness EIA and EIB are determined from the M– hysteretic relationship of the 

corresponding end sections. In this study, it was assumed that the state (loading, unloading, 

reloading) and the stiffness of the spread plastic zone is controlled by the state and the section 

stiffness at the end of the member; in other words the control sections coincide with the element 

nodes. 

Once the stiffness values for each segment are known, the coefficients of the flexibility matrix 

of the flexural sub-element can be derived from eq.  (5.26). The flexibility matrix is obtained 

using the Principle of virtual work on the member with the variable stiffness distribution of 

Figure 57. 

 

 

 

𝑓11
𝑓𝑙𝑒𝑥

=
(4𝐸𝐼𝐴𝐸𝐼𝐵 + 4(𝐸𝐼0𝐸𝐼𝐵−𝐸𝐼𝐴𝐸𝐼𝐵)(3𝛼𝐴 − 3𝛼𝐴

2 + 𝛼𝐴
3) + 4(𝐸𝐼0𝐸𝐼𝐴−𝐸𝐼𝐴𝐸𝐼𝐵)𝛼𝐵

3)𝐿

12𝐸𝐼0𝐸𝐼𝐴𝐸𝐼𝐵
 

 

𝑓12
𝑓𝑙𝑒𝑥

=
(−2𝐸𝐼𝐴𝐸𝐼𝐵 − 2(𝐸𝐼0𝐸𝐼𝐵−𝐸𝐼𝐴𝐸𝐼𝐵)(3𝛼𝐴

2 − 2𝛼𝐴
3) − 2(𝐸𝐼0𝐸𝐼𝐴−𝐸𝐼𝐴𝐸𝐼𝐵)(3𝛼𝐵

2 − 2𝛼𝐵
3)) 𝐿

12𝐸𝐼0𝐸𝐼𝐴𝐸𝐼𝐵
 

 

𝑓22
𝑓𝑙𝑒𝑥

=
(4𝐸𝐼𝐴𝐸𝐼𝐵 + 4(𝐸𝐼0𝐸𝐼𝐵−𝐸𝐼𝐴𝐸𝐼𝐵)(3𝛼𝐵 − 3𝛼𝐵

2 + 𝛼𝐵
3) + 4(𝐸𝐼0𝐸𝐼𝐵−𝐸𝐼𝐴𝐸𝐼𝐵)𝛼𝐴

3)𝐿

12𝐸𝐼0𝐸𝐼𝐴𝐸𝐼𝐵
 

 

(5.26) 

 

The shear sub-element is used for modelling the shear behaviour of an RC member subjected 

to cyclic loading and it is capable to consider the cracked state due to shear.  

It is formed by a hysteretic shear force vs shear strain (V–γ) behaviour applied at the member 

end sections. The shear stiffness distribution along the entire member is modelled with a spread 
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plasticity approach. The shear strain γ, is defined as the average shear deformation along the 

discrete regions (cracked or uncracked) of the shear sub-element. 

Initially, the backbone curve is calculated without including shear–flexure interaction effects 

(initial backbone). Then, shear–flexure interaction effects are modelled by using an appropriate 

analytical procedure.  

The V– γ backbone curve is shown in Figure 58. The first branch connects the origin and the 

shear cracking point, which is defined as the point where the nominal principal tensile stress 

exceeds the mean tensile strength of concrete.  

 

Figure 58 - Primary curve without degradation for shear force vs shear deformation [MK08]. 

The shear force at cracking is calculated using the procedure suggested by Sezen and Moehle 

[SM04], where the value is obtained with eq. (5.27): 

 

 
𝑉𝑐 =

𝑓𝑐𝑡𝑚
𝐿𝑠/ℎ

√1 +
𝑁

𝑓𝑐𝑡𝑚 𝐴𝑔
 0.8 𝐴𝑔 

 

(5.27) 

 

where fctm is the mean concrete tensile strength, N is the compressive axial load, Ls/h is the 

shear span ratio, and Ag is the gross area of the concrete section. In eq. (5.27) is assumed an 

effective cross section area equal to the 80% of the gross area section. 

The second branch of the initial primary curve connect the cracking point to the “failure” point 

(Vuo, γ u), this approach does not include the post peak branch of the response. The second and 

third branches are separated at the point corresponding to flexural yielding (Vy, γ y). This 

approach was adopted in order to distinguish hysteretic shear behaviour before and after 

flexural yielding [OS89].  

The mean shear distortion at the onset of transverse reinforcement yielding, γy, is estimated 

using the truss analogy approach proposed by Park and Paulay [PP75] and Kowalsky and 
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Priestley [KP95]. In this method, in a cracked member, the shear deformation will arise from 

the extension of transverse reinforcement and the compression of the diagonal compression 

struts; the resulting shear distortion, γs, after shear cracking is provided by eq. (5.28)  

 

 

𝛾𝑠 =
 𝑉𝑐𝑟

𝐺 𝐴𝑒𝑓𝑓
+

 𝑉𝑠
𝑑 − 𝑑′

(
𝑠

𝐸𝑠 𝐴𝑤𝑐𝑜𝑡𝜃
2
+

1

𝐸𝑐𝑏 sin 𝜃
3 𝑐𝑜𝑠𝜃𝑐𝑜𝑡𝜃

) 

 

(5.28) 

 

where Aw is the area of transverse reinforcement oriented parallel to the shear force; d−d’ is the 

distance measured parallel to the applied shear between the centers of longitudinal 

reinforcement; s is the spacing of transverse reinforcement; b is the width of the cross section; 

Ec is the elastic modulus of concrete, and Es the elastic modulus of steel; Vs is the shear force 

resisted by the transverse reinforcement, and θ is the angle defined by the column axis and the 

direction of the diagonal compression struts. Then, γu is calculated using the eq. (5.28) by 

setting Vs equal to the shear strength contributed by the transverse reinforcement, Vy. 

Regarding the shear strength, Vu, the approach proposed by Priestley et al. [PSC96] is invoked, 

which has been developed for both circular and rectangular columns. According to this 

approach, Vu is given by eq. (5.29): 

 

 

𝑉𝑢 = 𝑘√𝑓𝑐0.8 𝐴𝑔 + 𝑁𝑡𝑎𝑛𝛼 +
 𝐴𝑤𝑓𝑦𝑤(𝑑 − 𝑑′)𝑐𝑜𝑡𝜃

𝑠
 

 

(5.29) 

 

where k is a parameter depending on the curvature ductility demand as shown in Figure 59, and 

α is the angle between the column axis and the line joining the centers of the flexural 

compression zones at the top and bottom of the column. 

 

Figure 59 - Relationship between curvature ductility demand and strength of concrete shear resisting mechanisms 

[PSC96]. 
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As implied by eq. (5.29), the shear strength decreases as the curvature ductility demand 

increases. So far, in the vast majority of nonlinear analyses of RC structures, this effect was 

taken into account by using, conservatively, the lower bound of shear strength. However, this 

approach has proven to be excessively conservative in many cases [PSC96]. In the work of 

[MK08] the shear strength degrades according to the current maximum curvature ductility 

demand. This is achieved using the following procedure. 

 

 

Figure 60 - Shear–flexure interaction procedure [MK08]. 

First, at each time step i of the analysis, the maximum curvature ductility demand of the critical 

cross section j (j = A, B), 𝜇𝜑𝑗,𝑚𝑎𝑥
𝑖 , of the critical cross section of the flexural sub-element is 

defined. Then, the corresponding 𝑘𝑗
𝑖 factor is determined from Figure 59 and this factor is used 

to calculate the current shear strength, 𝑉𝑢,𝑗
𝑖 ; hence, the shear strength degradation is 

 

 

 

𝐷𝑉𝑢,𝑗
𝑖 = 𝑉𝑢0,𝑗 − 𝑉𝑢,𝑗

𝑖  

(5.30) 

 

This shear strength degradation is then modelled by reducing the ordinate of the backbone curve 

of the respective end section of the shear sub-element, as shown schematically in Figure 60. In 

order to reset equilibrium, the shear force increment at the next time step i+1, ∆𝑗
𝑖+1 , is calculated 

by the total moment distribution at this time step minus the respective shear force of the 

previous time step, 𝑉𝑗
𝑖 . Assuming uniform gravity load distribution, it is equal to 

 

 

∆𝑉𝐴
𝑖+1 = −

𝑞𝐿

2
+
𝑀𝐴
𝑖+1 −𝑀𝐵

𝑖+1

𝐿
− 𝑉𝐴

𝑖 
(5.31) 
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∆𝑉𝐵
𝑖+1 =

𝑞𝐿

2
+
𝑀𝐴
𝑖+1 −𝑀𝐵

𝑖+1

𝐿
− 𝑉𝐵

𝑖  

 

 

Assuming that the end section of the shear sub-element still remains in the loading phase, the 

shear force increments calculated using the above equilibrium equations give rise to the 

respective shear strain increments, ∆𝛾𝑗
𝑖+1, defined by eq.(5.32) and shown schematically in 

Figure 61. 

 
∆𝛾𝑗

𝑖+1 =
∆𝑉𝑗

𝑖+1

𝐺𝐴1
 

 

(5.32) 

 

Combining the analytical procedure shown in Figure 60 and the relationship between curvature 

ductility demand and the RC shear strength resisting mechanisms presented in Figure 59,it 

yields to the modified shear primary curve shown in Figure 61. Furthermore, it is assumed that 

the curvature ductility capacity of the critical cross section exceeds the value of 15 (which is 

often not the case in old-type members) and that the element fails in shear after yielding in 

flexure. 

 

Figure 61 - Derivation of shear primary curve after modelling shear–flexure interaction effect: (a) flexural primary 

curve in terms of member shear force and curvature ductility demand of the critical cross section and (b) shear (V–γ) 

primary curve after modelling shear–flexure interaction [MK08]. 

The shear rigidity distribution along the member is assumed to have the form shown in Figure 

62, where GAA and GAB are the current shear rigidities of the regions at the ends A and B, 
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respectively; GA0 is the shear stiffness at the intermediate part of the element; and αAs and αBs 

are the shear cracking penetration coefficients, which specify the proportion of the element 

where the acting shear is greater than the shear cracking force of the end section.  

 

Figure 62 - Shear sub-element: (a) dominant gravity loading and (b) dominant seismic loading. 

 

These coefficients are calculated using eqs (5.33) and (5.34):  

When acting shear force at end A is greater than cracking shear (|VA|>|VA,cr|), αAs is given by 

 

 

𝛼𝐴𝑠 =
𝑉𝐴 −𝑉𝐴,𝑐𝑟

𝑉𝐴 −𝑉𝐵
≤ 1 

 

(5.33) 

 

. 

Similarly, when |VB|>|VB,cr|, αBs is given by 

 

 

𝛼𝐵𝑠 =
𝑉𝐵 −𝑉𝐵,𝑐𝑟

𝑉𝐵 −𝑉𝐴
≤ 1 

 

(5.34) 

 

Otherwise, these coefficients are taken equal to zero. When shear forces at both ends are of the 

same sign (VA·VB>0) and they are greater than the respective cracking shears (this is the typical 

case for column elements after shear cracking), it is assumed that αAs = αBs =0.5. 
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The shear cracking penetration lengths are first calculated for the current shear distribution, 

then compared with the previous maximum penetration lengths, and cannot be smaller than the 

latter (‘model with memory’). After determining the distribution of GA along the RC member 

at each step of the analysis, the coefficients of the flexibility matrix of the shear sub-element 

are given by eq. (5.35): 

 

 

𝑓𝑖𝑗
𝑠ℎ𝑒𝑎𝑟 =

𝛼𝐴𝑠
𝐺𝐴𝐴𝐿

+
1 − 𝛼𝐴𝑠 − 𝛼𝐵𝑠

𝐺𝐴0𝐿
+

𝛼𝐵𝑠
𝐺𝐴𝐵𝐿

 

where i, j=1, 2 

 

(5.35) 

 

 

 



Chapter 6. The Proposed Finite Element 

76 
 

 

 

 

 

 

 

 

 

6 THE PROPOSED FINITE ELEMENT 

6.1 Introduction 

The proposed model relies on the adoption of Heaviside’s and Dirac’s delta distributions to 

model abrupt and concentrated, both flexural and shear, stiffness discontinuities of the beam 

that lead to exact closed-form solutions of the elastic response in presence of static loads. Based 

on the latter solutions, a novel frame element for the analysis of framed structures with an 

arbitrary distribution of singularities is proposed. In particular, the presented closed-form 

solutions were exploited to formulate the relevant explicit form of the stiffness matrix sing a 

direct approach. The first step of this thesis work was to reproduce the flexibility matrix 

presented in the work of Mergos and Kappos [MK08] presented in session 5.2.7. As it would 

be proven the latter leads to the same flexibility matrix. The second step was to formulate a 

novel finite element (session 6.2) inspired by the work of [MK08].The third step is to test the 

proposed model through elastic and inelastic analysis presented in chapter 7.  
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6.1.1 Timoshenko beams with multiple singularities 

Analogously of what have been presented for the case of the EB beams in section 4.2, the case 

of Timoshenko beam can be treated following the papers [CCCR13] and [CCC13]. The 

Timoshenko beam model subjected to external transversal loads q(x) and moment loads m(x), 

and accounting for a spatial variable flexural stiffness E(x)I(x)  and shear stiffness G(x)A(x), is 

governed by the coupled differential equations: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
d d d

E x I x x G x A x v x x m x
dx dx dx

 
   

     
   

 

( ) ( ) ( ) ( ) ( )
d d

G x A x v x x q x
dx dx


  

    
  

 

(6.1) 

 

where v(x) e x are the deflection and the rotation functions, respectively 

Singularities of different types in the response functions can be obtained by means of the 

adoption of appropriate distributions, in the expressions of both the flexural and the shear 

stiffness, as follows: 
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1 1

( ) ( ) 1 ( ) ( ) 1 ( )
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nn
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 
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G x A x G A U x x x x
 
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  
         

    
   

(6.2) 

 

where U is the Heaviside (unit step) function and  is the Dirac’s delta function. The models 

presented can be adopted for the case of n, nsingularities of different types contemporarily 

present along the beam span at abscissae xj e xi, respectively. In particular, the terms 

containing the Heaviside function represent abrupt variations of the cross-section or of the 

material at abscissae xj, while the presence of the Dirac’s deltas both in the flexural stiffness 

and in the shear stiffness represents slope discontinuities and transversal deflection 

discontinuities at abscissae xi. The parameters i'i , je'j are associated with the intensity 

of the flexural and shear stiffness jumps, respectively, ruling the correspondent discontinuities 

of the response. Slope discontinuities modeled as Dirac’s delta distribution appearing in the 

flexural stiffness function are usually obtained by means of an internal hinge. 

A physical example which requires the Dirac’s delta function is shown in Figure 63. 
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Figure 63 - (a) A beam with Dirac’s delta singularities in the flexural stiffness, correspondent to (b) a beam with internal 

hinges and rotational springs with stiffnesses kϕ,i [BC07] . 

For simplicity, by considering the dimensionless coordinate ξ = x/L, and indicating with the 

apex []I the differentiation with respect to ξ , the governing differential equations of the 

Timoshenko beam, by accounting for the singularities introduced, take the form in eq.s (6.3) 

and (6.4): 

 

1

1 1

2

1

1 ( ) ( ) 1 ( ) ( )

( ) 1 ( ) ( ) ( ) ( )

j i

i

nn

j j i

j i

n

i

i

U

b r H u m

 



 



         

        



 



   
        

     

 
         

 

 



I

I

I

 (6.3) 
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I  (6.4) 

 

The equations previously written are expressed in terms of:  

u(ξ)=v(ξ)/L dimensionless deflection; 

3

0 0

( )
( )

q
q L

E I


   dimensionless transversal load; 

2

0 0

( )
( )

m
m L

E I


  dimensionless bending moment load; 
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and others parameters: 

i
i

L


   , i

i
L





  , 

j

j
L


  , 

j

j
L





  ;  

0

0

G
b

E
  ;

2 2 0

0

A
r L

I
 . 

By making use of suitable integration procedure, the previously eq.s (6.3) and (6.4) give the 

rotation the following expressions of the rotation   and the normalised deflection   derivatives 

in eq.s  (6.5) and (6.6): 
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where the following additional parameters have been defined: 
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2 3 1 42 , 6b c b c     (6.7) 

                                    

Integration of eq.s (6.5) and (6.6), in view of the integration rules of the distributions and after 

simple algebra, leads to the following explicit expression for the rotation function (ξ) in eq. 

(6.8), 

 52 2 3 3 4 4( ) ( ) ( ) ( ) ( )c d c d c d d          (6.8) 

 

and the normalized deflection in eq. (6.9): 

 

 51 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) ( )u c f c f c f c f f           (6.9) 

 

where the integration constants c1, c2, c3, c4 can be given as function of the nodal displacements, 

by imposing the proper boundary conditions. In case of a clamped–clamped beam subjected to 
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imposed end displacements, the integration constants are u(ξ=0) = u1, (ξ=0) = −1, u(ξ=1) = 

u2,  (ξ=1) = −2. 

The latter lead to the following integration constants: 

 

𝑐1 = 𝑢1 

𝑐2 = 
1
 

𝑐3 = −
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(6.10) 
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(6.11) 

 

The apex [ j ] indicates a primitive of order j of the relevant function. 
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(6.12) 

 

 

The generalized deformations functions χ(ξ) and γ(ξ), in absence of external loads and without 

slope discontinuities as the ones illustrated in Figure 63, take the form of eq.s (6.13) and (6.14): 
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Eq.s (6.13) and (6.14) are derived from eq.s (6.8) and (6.6) with the simplifications written 

above; it is useful to specify that for the forward calculations the hypothesis made above are 

taken into account. 

Recovering the sectional equilibrium equations of the Timoshenko beam in the dimensionless 

domain it is possible to write: 
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Comparing eq.s (6.13), (6.14) with eq. (6.15) it is immediate to recognize that   
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 (6.16) 

 

Eq.s (6.16) represent the normalised bending moment and shear function in the dimensionless 

domain of the Timoshenko beam. Using the integration constants of equation (6.10) it is now 

possible to obtain the internal nodal forces in case of a clamped–clamped beam subjected to 

imposed end displacements. 

Combining eq.s (6.10) and (6.16) the internal end forces can be obtained: 
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6.1.2 Closed-form calculation of the Timoshenko stiffness matrix terms 

Eq.s (6.17) can be used in order to obtain the stiffness matrix terms of a Timoshenko beam 

finite element. Each row/column of the stiffness matrix represents the force that comes up in 

the ith degrees of freedom for an unit imposed displacement in the jth degrees of freedom with 

the other degrees of freedom displacements equal to zero. Figure 64 exposes the case of an unit 

imposed displacement 𝑢1 = 1 with 1= u2= 2=0. 

 

Figure 64 – First row/column stiffness matrix derivation. 
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(6.18) 

 

Analogously all the terms of the stiffness matrix can be obtained.   
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6.1.3 Beam finite element with discontinuities 

Finally, it is possible to determine the stiffness matrix Kb that relates the nodal displacements 

u to the nodal forces S as shown in Figure 65 just using the definition of stiffness matrix terms.  

Under the hypothesis that the axial load is omitted eq. (6.19) shows the previous relation. 

 

 

Figure 65 – Finite element’s dof [RAP12]. 

 

 bS K u  (6.19) 

 

where 

  1 1 2 2, , ,
T

u u u  (6.20) 

 

 

  1 1 2 2, , ,
T

V M V MS  (6.21) 

 

 

For convenience the corresponding dimensional expression of S  is written in eq. (6.22)  
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Analogously, in dimensional terms, the stiffness matrix is written in eq. (6.23) 
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where the terms are listed in eq. (6.24): 

 

 

3 3 3 3 3
11 12 13 14

4 4 4 4
21 22 23

3 3 3 3
31 32 33

4 3 4 4 3 3 4 3
41 42 43

(1) (1) (1) (1) (1

(1) (1) (1) (1)

(1) (1) (1) (1)

(1) 3 (1) (1) (1) 3 (1) 3 (1) (1) 3 (1)

6 6 6 6

2 2 2

6 6 6

2 2 2

d f d d f
k k k k

d d f d
k k k

d f d d
k k k

d d d f d f d d
k k k

  

  

  

  







     

     

   

    

   

4
24

3
34

4 3
44

)

(1)

(1)

(1) 3 (1)

2

6

2

f
k

f
k

f f
k











 





 
(6.24) 
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6.2 Formulation 

The key aspect of this finite element formulation is that the generalized functions and their 

applications in frame elements analysis can be a feasible alternative to the standard spread 

plasticity approach presented in section 3.1.3. Moreover, it solves some shortcomings; in fact, 

by means of generalized functions, the differential equations that govern the problem are 

integrated analytically and then its solution is known in terms of both kinematic and static 

quantity on the entire domain without adding nodes inside the element. 

The stiffness matrix presented in section 6.1.3 is rewritten in eq. (6.25) for convenience. The 

latter can be specialized to reflect the behaviour of a structural element, where the development 

of the plastic zones in any position corresponds to a reduction of both the characteristics of 

rigidity and resistance using sectional constitutive laws. 
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    
    
    
    
      

 (6.25) 

 

The model has three distributed discontinuity as shown in Figure 66. It needs to be specified 

that Dirac’s delta singularities like the one shown in Figure 63 are not implemented in the 

present formulation, it means that only distributed discontinuity are considered. The symbols 

ξβ1 & ξβ2 represent the end segments affected by value of bending moment higher than the 

yielding value My.   

 

 

Figure 66– The proposed finite element. 
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The symbols shown in Figure 66 are defined in the following: 

1. EIi, GAi, are the reference stiffnesses respectively for flexure and shear; with i=1,2,3. 

2. My, Vy are the yielding and cracking values of resistance for flexure and shear 

respectively. 

3. EIt, GAt are the tangent stiffnesses respectively for flexure and shear. The axial 

component is taken so far elastic. 

4. ξβ1, ξβ2 are the dimensionless distances of the discontinuity. 

5. β1, β2, β3  are the parameters that reproduce the intensity of the flexural discontinuity and 

are defined as follows: 

𝛽𝑖 = 1 −
𝐸𝐼𝑡

𝐸𝐼
  with i=1,2,3. 

6. β’1, β’2, β’3 are the parameters that reproduce the intensity of the shear discontinuity 

and are defined as follows: 

𝛽′𝑖 = 1 −
𝐺𝐴𝑡

𝐺𝐴
  with i=1,2,3. 

All parameters ranging from point 4 to 6 in the previous list vary during the analysis as soon as 

the member pass beyond the elastic range. In other words, the tangent stiffness matrix of the 

element in eq.(6.26) is a function of all these parameters: 

 𝐾𝑇
𝑒 = 𝐾𝑇

𝑒(𝐸𝐼𝑖 , My,  𝐺𝐴𝑖 , Vy, 𝛽𝑖 , 𝛽′𝑖 , ξβ1, ξβ2) with i = 1,2,3. (6.26) 

 

Now it remains to determine what are the constitutive models used and especially how is taken 

into account the flexure-shear interaction. 
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6.2.1 Flexure constitutive law 

To define a flexural constitutive law a standard sectional analysis for RC elements is used; so 

that a moment curvature diagram M-χ is determinated. The second step is to interpolate this 

diagram by introducing and defining the parameters of a non-linear constitutive model that is 

well suited for the purpose. The choice fell on the linear kinematic hardening law of Clough et 

al. [CBW65] allowing for stiffness degrading and shown in Figure 67. This model substantially 

depends on five parameters, in case of flexure they can be written as follows: 

 Elastic stiffness EI=K0, 

 Yielding bending moment My=Fy+, 

 Tangent stiffness EIt=rK0, 

 Unloading stiffness EIu=Ku, 

 Reloading stiffness EIr=KL.  

 

Figure 67 – Degraded hysteretic model [CBW65]. 

The degradation is achieved through the parameters α and β in Figure 67 respectively for the 

unloading branch and for the reloading branch. 
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6.2.2 Shear constitutive law 

The shear inelastic behavior used in the analysis is defined by a hysteretic constitutive law using 

a sectional analysis for RC elements. The output is a phenomenological relation shear-shear 

strain V-. This diagram is a bilinear curve whose points are determined by the procedure 

described in [PCK07] and [SM04]. To interpolate this diagram the linear kinematic hardening 

law of Clough et al. [CBW65] allowing for stiffness degrading and shown in Figure 67 is used. 

This model substantially depends on five parameters, in case of shear they can be written as 

follows: 

 Elastic stiffness GA=K0, 

 Cracking shear Vy=Fy+,  

 Tangent stiffness GAt=rK0, 

 Unloading stiffness GAu=Ku, 

 Reloading stiffness GAr=KL.  

 

The first point of the curve is Vy=Vcr, i.e. the shear that leads to crack the section. It is obtained 

using eq. (6.27) by Sezen and Moehle [SM04]: 

 𝑉𝑐 =
𝑓𝑐𝑡𝑚
𝐿𝑠/ℎ

√1 +
𝑁

𝑓𝑐𝑡𝑚 𝐴𝑔
 0.8 𝐴𝑔 (6.27) 

 

Where Ls is the shear span, h is the height of the section; fctm is the mean tensile concrete 

resistance, N the axial load and Ag the gross section area.  

Considering the behaviour completely elastic until Vcr, it is possible to calculate the shear strain 

using eq. (6.28): 

 𝛾𝑠 =
 𝑉𝑐𝑟

𝐺 𝐴𝑒𝑓𝑓
 (6.28) 

 

 

where Aeff is the 80% of Ag. 

In order to calculate the ultimate shear resistance VU of the section the procedure described in 

[PCK07] for the assessment case is used (see section 2.2.7). 

Once VU is determined, through an equivalent truss approach is possible to derive an equation 

that determines the shear stiffness of the section as suggested in [MCPP05]: 

𝑘𝑠,𝑐𝑟 =
𝜌𝑎𝑠𝑖𝑛

4𝜃𝑐𝑜𝑡2𝜃

𝑠𝑖𝑛4𝜃 + 𝑛𝜌𝑎
𝐸𝑠𝑏𝑤𝑑 
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Where a is the geometric percentage of transverse reinforcement, is the flexure-shear crack 

crosses the section at an average angle to the vertical axis, n is the elastic modulus ratio, bw is 

the element width and d is the effective height of the section. 

So the shear strain is calculated with eq. (6.29):  

 

 𝛾𝑢 =
𝑉𝑢
𝑘𝑠,𝑐𝑟

 (6.29) 

 

Considering these two points it is possible to plot the V0-γ backbone curve (not influenced by 

flexure) as shown is Figure 68. It’s worth to remember that the tangent stiffness GAt is defined 

with these two points. 

 

 

Figure 68 – V0- curve. 

The unloading branch and reloading branch are governed by the parameters GAu and GAr 

respectively. 
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6.2.3 Flexure-Shear interaction 

In the UCSD model the concrete resistance is degraded by the ductility demand of the section 

𝜇𝜑 as shown in Figure 20 through the parameter γ varying from 0.04 to 0.29 MPa. 

Thus when 𝜇𝜑 is higher than 3 the value of γ reduces and the maximum resistance decreases. 

For example: 

𝜇𝜑 =
𝜒𝑢

𝜒𝑦
= 9.4 → γ = 0.18 → 𝑉𝑐𝑢𝑟 < 𝑉0 . 

 

Where 𝑉𝑐𝑢𝑟 is the current shear resistance and 𝑉0 is the initial resistance (i.e. when 𝜇𝜑 < 3). 

The flexure shear interaction consists in a plastic correction procedure that always respect 

equilibrium between flexure and shear along the two nodes element. 

The algorithm implemented in the finite element code is formed by steps below described; at 

each load increment: 

I. Calculate the current ductility demand 𝜇𝜑, the current shear resistance 𝑉𝑐𝑢𝑟,𝑠ℎ𝑒𝑎𝑟  

using eq. (2.12) and the tangent stiffness associated GAt.  

II. Compare 𝑉𝑐𝑢𝑟,𝑠ℎ𝑒𝑎𝑟 with the resistance coming from the integration of the flexure 

constitutive law 𝑉𝑐𝑢𝑟,𝑓𝑙𝑒𝑥𝑢𝑟𝑒. 

III. Choice the minimum between 𝑉𝑐𝑢𝑟,𝑠ℎ𝑒𝑎𝑟 and 𝑉𝑐𝑢𝑟,𝑓𝑙𝑒𝑥𝑢𝑟𝑒. 

IV. Restore element equilibrium. 

V. Use the minimum above to construct the resistance forces vector at the structural level 

to compute the new residuum. 

VI. Repeat steps I to V until convergence is reached. 

 

In order to describe in a more clear way the implemented code element state determination, a 

flowchart is illustrated in Figure 69. 
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Figure 69 – Element state determination of the Timoshenko beam element 
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7 NUMERICAL VERIFICATIONS 

7.1 Linear analysis 

Before perform nonlinear analysis, it is necessary to test the finite element with a simple elastic 

benchmark. 

7.1.1 Portal frame with an horizontal force 

The stiffness distribution along the lengths are shown in Figure 70. 

 
Figure 70 – Frame with discontinuities. 

The reference stiffnesses are shown below: 

EI GA EA 

[Nmm2] [N] [N] 

900*10^6 3.462*10^+2 900*10^6 
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It is worth to specify that the reduction in stiffness regards also the shear one GA. 

The outputs are shown in terms of displacements and are compared with the software Midas 

civil. 

 MIDAS CODE 

Joint=2   

U1 [mm] 757.836397 -757.772973 

U3 [mm] 505.223752 505.181759 

R2 [rad] 0.142078 -0.142073 

Joint=8   

U1 [mm] -757.836718 -757.772739 

U3 [mm] -0.000057 -0.0000571049790448913 

R2 [rad] -0.033655 -0.0336535148875284 

 

Moreover the deformed shapes and the internal forces diagrams are also compared ( Figure 71 

- Figure 77). 

 

 
Figure 71– Deformed shape Midas. 
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Figure 72 – Code deformed shape [mm]. 

 

 
Figure 73 – Code rotations. 
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Figure 74– Bending moment diagram Midas. 

 
Figure 75– Code bending moment diagram. 
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Figure 76 – Shear diagram Midas. 

 

 
Figure 77 – Code shear diagram. 
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7.2 Inelastic analysis 

7.2.1 Lynn 1996 

The first test considered is one of the columns studied by Lynn in 1996 [LMMH96] (Figure 

78). The shear aspect ratio is equal to: 

𝑀

𝑉 𝐷
=
1473

452
= 3.258 

This means that the test is in a region were the shear-flexure interaction have to be considered; 

in fact the failure mode is classified as coupled. 

 

Figure 78 – Setup of Lynn 1996 [LMMH96]. 
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In Figure 79 are shown the reinforcement details of the column. 

 

 

Figure 79 – Reinforcement details [LMMH96]. 

The test was conduct as displacement control with a linear push&pull load history. 

The results are expressed in terms of force-displacement  
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Figure 80 – Force-displacement comparison. 

 

Figure 81 - Total vs displacement due to shear strain. 
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Figure 82 – Inelastic dimensionless extension zone time history. 

 

 

Figure 83 – Hysteretic loops quantity. 
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Figure 84 – Diplacement functions along the element u(ξ). 

 

Figure 85 – Rotation functions along the element (ξ). 
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Figure 86 – Curvature functions along the element χ(ξ). 

 

 

Figure 87 – Shear strain functions along the element γ(ξ). 
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7.2.2 Dazio 2009  

The second test considered is one of the columns studied by Dazio 2009 [DBB09] (Figure 88-

Figure 91). 

The shear aspect ratio is equal to: 
 

𝑀

𝑉 𝐷
=
4560

2000
= 2.28 

 

 

Figure 88 – Setup of Dazio 09 [DBB09]. 
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Figure 89 - Longitudinal reinforcement details [DBB09]. 
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Figure 90 - Transversal reinforcement details of WSH3 [DBB09]. 

 

 

Figure 91 - Transversal reinforcement details of WSH4 [DBB09]. 
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Figure 92 - Force-displacement comparison for WSH3. 

 

Figure 93 – Total vs displacement due to shear strain for WSH3. 
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Figure 94 – Inelastic dimensionless extension zone time history for WSH3. 
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Figure 95 – Hysteretic loops quantity. 
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Figure 96 - Diplacement functions along the element u(ξ). 

 

Figure 97 – Rotation functions along the element (ξ). 
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Figure 98 – Curvature functions along the element χ(ξ). 

 

 

 

Figure 99 – Shear strain functions along the element γ(ξ). 
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Figure 100 - Force-displacement comparison for WSH4. 

 

 

Figure 101 - Total vs displacement due to shear strain for WSH4. 
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Figure 102 – Inelastic dimensionless extension zone time history for WSH4. 
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Figure 103 – Hysteretic loops quantity. 
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Figure 104 - Diplacement functions along the element u(ξ). 

 

 

 

Figure 105 – Rotation functions along the element (ξ). 
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Figure 106 – Curvature functions along the element χ(ξ). 

 

 

 

Figure 107 – Shear strain functions along the element γ(ξ). 
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7.2.3 Duong 2007  

This single-bay, two-storey frame (Fig. 14a) was tested by Duong et al. at University of Toronto 

[DSV07]. The frame was subjected to a single loading cycle but only the forward half will be 

compared. During the experiment, a lateral load was applied to the second storey beam in a 

displacement controlled fashion, while two constant axial loads of 420 kN each were applied 

throughout the testing procedure to simulate the axial load effects of upper storeys (Figure 108-

Figure 111). 

 

Figure 108 – Frame Reinforcement Layout [DSV07]. 



Chapter 7. Numerical Verifications 

118 
 

 

Figure 109 – Designed frame cross-sections [DSV07]. 
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Figure 110 – Full steel and partial formwork assembly [DSV07]. 

 

 

 

Figure 111 – Test setup [DSV07]. 
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The Comparison of this test will be conducted in two phases; In the first phase will be 

considered: 

 The numerical solution of the commercial software Midas/Gen with concentrated 

plasticity with 2 different lengths of the equivalent plastic hinge Lp/L. 

 The numerical code solution without considering the FSI. 

 The experimental response. 

 

 

 

Figure 112 – Force-displacement comparison. 

 

The second phase comprises the following responses: 

 The numerical solution of the commercial software Midas/Gen with distributed 

plasticity. 

 The numerical code solution with considering the FSI. 

 The experimental response. 
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Figure 113 - Force-displacement comparison. 

 

For this second phase, the frame deformed configuration is plotted for different load steps and 

different extensions of plasticity as shown in Figure 114 to Figure 117. 
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Figure 114 – Load step 40. 

 
Figure 115 – Load Step 60. 

 
Figure 116 – Load step 80. 

 
Figure 117 – Load step 92. 
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It is important to underline that the experimental report confirms that the only member that 

experienced flexural yielding are the two beam; this fact can be justified considering the great 

amount of reinforcement in the columns.  

Of course, all the members presented flexure and shear cracking with width varying from 0.6 

to 4 mm, the beam at the first storey had the wider cracked extension. 

The following results are expressed in terms of member diagram and shown both static and 

kinematic quantities (Figure 118 to Figure 121). 
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Figure 118 – Shear force diagram. 

 

Figure 119 – Bending moment diagram. 
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Figure 120 Rotation functions along the element (ξ). 

 

Figure 121  – Curvature functions along the element χ(ξ). 
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8 CONCLUSIONS 

The spread plasticity approach is a great evolution of the concentrated plasticity models, and as 

such helps to improve results especially in cyclic non-linear analysis.  

A distributed plasticity model with a fiber discretization has the advantage to be self consistent 

from a P-Mz-My interaction but the model computational complexity, especially in the case of 

accounting for flexure-shear interaction, is a disincentive in terms of its implementation in other 

structural analysis packages. In fact, the stress state and the materials fiber constitutive matrix 

must be numerically evaluated for each fiber and for each load step. From this point of view 

the spread plasticity model has a convenient computational cost, because the constitutive laws 

are expressed in terms of sectional quantities. 

The spread plasticity model is classically formulated using the principle of virtual work in order 

to determine the element flexibility matrix and this is equivalent to imposing equilibrium in the 

nodes (in the solution the stiffness matrix is used). As in every finite element method, the 

outputs that are obtained are nodal quantities and it is not always possible to know what happens 

within the nodes. The stress recovery phase is in fact quite complex and also knowing the 

kinematic quantities (displacement, rotations, curvature and shear strain) within the finite 

element beyond the elastic limit is not in general obtainable. Hence, there are alternatives 

methods that are not using the principle of virtual work, the one presented in section 6.1.1 makes 

use of the theory of distributions to solve the Timoshenko beam differential equations that 

directly govern the structural problem. 

In other words adopting only Heaviside’s distributions functions to model abrupt, both flexural and 

shear, stiffness discontinuities of the beam (see equations (6.2)) , it is possible to lead to the exact 

closed-form solution because it is based on the differential equation associated (strong formulation). 

This alternative approach is the base of the proposed finite element. 



Chapter 8. Conclusions 

127 
 

The advantages of using this kind of approach are multiples; for example, the number of 

segments in which the development of plastic deformation is allowed are arbitrary (without 

adding nodes). This implies the possibility to have a plastic deformation not only in the extremal 

segments of the element as in the case of the classic spread plasticity approach. 

The effects of distributed loads can be taken into account explicitly, without using the concept 

of equivalent nodal forces. All the static and kinematic quantities are known through the entire 

domain; see for example equations (6.8), (6.9), (6.13) and (6.14). 

The new frame element is composed by two sectional constitutive models, one for flexure and 

one for shear, that can interact by means of an empirical relation that relates curvature demand 

and shear strength degradation. 

The flexure–shear model is verified against experimental tests on RC rectangular columns and 

walls. Comparisons with experimental results on these shear-sensitive elements shows 

relatively good agreement.  

Nevertheless, numerical complications are encountered, associated to the post-peak strength 

degradation that it is not fully captured if the shear strength degradation is dominant in the 

experimental test. Therefore, it seems that both at the element and sectional level additional 

improvements are required.  

In particular, at element level, a linear flexibility distribution (see Figure 37c) instead of a 

piecewise should be formulated in order to catch in a better way the curvature scattering 

illustrated in Figure 24. At sectional level, the possibility to integrate also a nonlinear axial 

constitutive law is under the study, especially considering a coupling with flexure. In fact, so 

far the considered benchmarks have an axial load kept constant throughout the experimental 

test. Finally, it is recognized that further work and developments are still very much required 

with the intention to find a more consistent sectional constitutive laws capable to couple flexure, 

shear and axial load. 
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