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designed according to the provisions of the latest Italian seismic regulations, was subjected
to a series of push and sudden release tests in March 2013. The Augusta isolation system
is hybrid, consisting of 16 High Damping Rubber Bearings (HDRB) and 20 Low Friction
Sliding Bearings (LFSB). The tests were characterized by a long quasi-static phase, where
the building was pushed slowly to the desired displacement amplitude (sliding velocity ~
0.1mm/sec, strain bearing demand v = 0.39—0.78), and a dynamic phase where the building
was left free to oscillate. The duration of the dynamic phase was utmost 1% the duration of
the static phase. The recordings included the displacements at the isolation level and the floor
accelerations. A baseline fitting scheme was developed for the removal of the low frequency
noise in the records. Application of the adjustment scheme provided reliable estimates of the
floor velocities and displacements. The advantage of the proposed signal processing method
other than its simplicity, is its ability to account for boundary conditions, for instance initial
and residual displacements. Once the signals obtained from all eight tests performed were
adjusted, they were used in the identification of the non-linear isolation system and the
flexible superstructure (linear in the range of interest). The identification was performed in
the time domain using the Covariance Matrix Adaptation Evolution Strategy, a stochastic
algorithm for difficult, non linear black-box optimization. The identification of the isolation
system provided the mass of the rigid block, the bi-linear properties used in the mechanical
representation of the rubber bearings and the sliding coefficient of friction for the Coulomb
model used in the modelling of the sliders. The obtained parameters, showed that rubber
bearing properties were closer to the corresponding static laboratory properties, therefore
implying that after the long quasi-static phase the HDRBs did not have time to recover their
dynamic properties. The identified sliding coefficient of friction was in average 1%, leading to
significant energy dissipation. The identified superstructure properties were the distribution
of the floor masses, the modal frequencies, damping ratios and mode shapes. The identified
data for the isolation system and the superstructure were input in a synthesized model of
the isolated Augusta building, for the dynamic response simulation of the structure. A
constrained optimization algorithm was developed ad hoc for the time-step solution of the
coupled equations of motion. The obtained simulated response of the Augusta building
matched the experimental response, in terms of displacements, velocities and accelerations.

A three-story reinforced concrete building in Augusta (IT), isolated at the base and
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Introduction

Base isolation, often cited as seismic or aseismic base isolation, is a passive vibration control
technology for the earthquake protection of buildings, bridges, power plants and other struc-
tures. The basic concept of base isolation lies in the physical decoupling of the structure
from the ground. This is succeeded interposing elements of low lateral and high vertical
stiffness (isolators) between the superstructure and the foundation. The introduction of a
layer of low lateral stiffness between the substructure and the superstructure aims to the
elongation of the fundamental vibration period of the structure to a value that is away from
the dominant frequencies of the expected earthquakes. The period shift to the velocity-
sensitive region of the spectrum results to reduced pseudo-accelerations and consequently
reduced floor acceleration and inter-story drift demands to the superstructure |1, 2|. When
isolation is implemented in bridge construction, the primary design goals are the reduction
of forces in the sub- and super-structures and the force redistribution between the piers
and the abutments [3|. An effective base isolation system has sufficient energy dissipation
capacity to prevent excessive displacement demands on the bearings and is stiff enough to
prevent vibrations under frequent loads. Seismic isolation is also applied for the retrofitting
of existing structures. An early example of seismic retrofitting in Italy by base isolation are

the Solarino buildings [4].
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Historical development of isolation systems

Early seismic protective systems can be found in antiquity. The Mausoleum of Cyrus II
(Persia, 559-29BC) was a primitive sliding isolation system. In ancient Greek temples, the
sliding-rocking motion of columns provided the structural system with flexibility. Wooden
dowels covered by lead were used together with empolia to align the columns; the dowels pro-
vided the structure with the ability to absorb energy [5|. In modern times, early suggestions
of isolation systems are found in the works of Jules Touaillon ( Improvement in buildings: iso-
lation scheme consisting of double concave rolling balls, US Patent, 1870 ), prof. John Milne
(Base isolation of wooden house by ball bearings, Japan, 1876-1895 ), K. Kawai (Base isola-
tion by timber logs, Japan, 1891 ), Jacob Bechtold ( Earthquake-proof building built on a rigid
base-plate which is mounted on balls of hard material, Germany, 1906 ) and Dr. Johannes
Calantarients (Building construction to resist the action of earthquakes, where the sliding
foundation was made of talk, England, 1909). After the catastrophic Messina earthquake
in 1908 in Italy, the Italian authorities considered the possibility of sliding isolation for the
anti-seismic reconstruction of the area; however this option was rejected and the fixed-base
design approach with height limitations and lateral force design requirements prevailed|1].
In 1921, Frank Lloyd Wright designed the Imperial palace hotel in Tokyo; the structure
was supported on soft soil and performed well during the Kanto earthquake of 1923. The
basic concepts and historical review of base isolation systems can be found in [1, 2, 6, 7, 8]
and online at http://nisee.berkeley.edu/lessons/kelly.html (prof. Kelly, University
of California, Berkeley) and http://www.jssi.or.jp/english/ (Japanese Association of
Base Isolation).

Modern applications of base isolation systems include a pendulum system without damp-
ing for the isolation of a three story building suspended from cables (Turkmenistan, 1955)
a natural rubber bearing system for the isolation of a school in Skopje (Yugoslavia, 1969)
and the GAPEC system consisting of steel laminated bearings (south France, 1977). The
first isolated building in the United States was completed in 1986 and it was the Foothill
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Communities Law and Justice Center in California. The building consisted of steel frames
and was isolated by 98 laminated bearings. Nowadays, there are several thousands isolated
buildings around the world, with Japan, USA, People’s Republic of China, Russia and Italy
being the leading countries in seismic isolation applications. In Japan, implementations in-
creased significantly after the 1995 Kobe earthquake |9]. Analyses of seismographic records
from base isolated buildings during recent strong ground shaking, such as the Northridge
1994 and Great Tohoku 2011 earthquakes, demonstrated the effectiveness of the method to
maintain the structure safe and operational during and after the main shock [9, 10, 11, 12,
13]. Warn and Ryan in |7] noted that seismic isolation is being considered for the earthquake

design of nuclear power plants in the United States .

Isolation hardware

A wide class of elastomeric and sliding bearings is available in the international market.

Rubber bearings

Elastomeric bearings consist of alternating layers of rubber and steel. The total thickness
of the rubber provides to the isolator the low lateral stiffness (G = 0.30 — 1.50M Pa [14]),
while the close spacing of the steel shims is responsible for the high vertical stiffness. Rub-
ber is a material characterized by high elastic deformation, large elongation at break and
nearly incompressibility - Poisson’s ratio is between 0.498-0.499 |6]. Initially natural bearings
were not reinforced by steel shims, and as a result horizontal ground motions were exciting
rocking modes in the system [1|. The first evolution of the NRB bearings were the Low
Damping natural and synthetic Rubber Bearings (LDRB). LDRB are characterized by low
damping ratios (< 6% at v = 100% [14]). The Lead Rubber Bearings (LRB) are similar
to the LDRB and were introduced in the late '70s in New Zealand [1]. LRB include a lead

plug that enhances energy dissipation through yielding; their hysteretic behaviour can be
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described sufficiently using the bilinear model. In Japan 65% of the rubber bearings used
are either NRB or LRB [9]. Temperature has a significant effect on the stiffness and energy
characteristics of the LRB [6]. Nowadays, the High Damping Rubber Bearings (HDRB)
have overtaken the LDRB and LRB. HDRB include damping in the elastomer (damping
10 — 20% of critical at v = 100%). The behavior of HDRB is nonlinear viscoelastic at low
strains and becomes nonlinear hysteretic at large strains |[6]. The high stiffness of HDRB
at small v provides the structure with resistance against frequently occurring loads, such
as small to moderate earthquakes and wind excitation. The bearing stiffness softens with
increasing displacement amplitude, providing the system with the desirable flexibility. At
extreme conditions (v > 250 — 300%) the rubber stiffens again; Villaverde describes this
hardening behaviour as a ‘safety valve against unexpectedly severe earthquakes’ [8], while
Becker, with reference to the Triple Friction Pendulum systems, comments that the hard-
ening exhibited by the bearings at extreme loading may be used to reduce the velocity of
the building at impact and to allow controlled yielding in the building immediately before
impact [15]. HDRB combine flexibility with energy dissipation and they are easy to design
and manufacture; however their mechanical properties depend on temperature, frequency
and history of loading |6]. The shear force-displacement relationship in HDRB is usually
described using the bilinear model. A clear advantage of the bilinear model over more com-
plex models comes from its simple piecewise linear definition, that permits its adaptation
to analytical formulations [16]. Naeim and Kelly suggest the combination of the bilinear
model with a viscous damper for a more accurate representation of the hysteretic behavior
relationship of the elastomeric bearing [1|. More complex smooth or polygonal hysteretic
models exist, such as the Bouc-Wen model, models of smoothed plasticity based on the Bouc
Wen model the hysteretic element developed by Kikuchi and Aiken [17, 18, 19, 20|. Due to
their complexity, these models admit themselves substantially to numerical formulations and
therefore have been incorporated in open source and commercial earthquake engineering soft-
ware such as OpenSees(KikuchiLRBMaterial), 3D-BASIS(bi-directional smoothed plasticity
model [19]) and SAP2000(Bouc-Wen model). The vertical force-displacement behaviour is
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usually described by means of linear springs. Uplift is undesirable in isolation systems, how-
ever if expected, the vertical force-displacement behaviour should be modelled by means of

non-linear models (see Figure 7-13 in 6] and Figure 2(b) in |7]).

Sliding bearings

Sliding isolators support the weight of the superstructure and provide seismic protection
through the friction force developed in the sliding interface of the bearing, typically a poly-
tetrafluorethylene (PTFE) - stainless steel interface. The coefficient of friction depends on
the sliding velocity, apparent pressure, temperature, state and composition of the sliding
surface |6, 21]. Several models for friction exist, that vary from the simple friction Coulomb
model where the sliding coefficient is constant, to Stribeck and Constantinou’s sophisticated
models which account for variations in g and stick-slip motion. While flat sliders are effi-
cient in mitigating earthquake forces, they do not provide effective restoring force and hence
may lead to large permanent displacements, especially when significant after-shocks occur
shortly after the main event. Restoring force in pure sliding isolation systems can be achieved
through geometry (Friction Pendulum, Zayas, 1985). 267 Friction Pendulum bearings where
used for the isolation of the San Francisco’s International Airport Terminal. The isolation
system has a period of 3sec and reduced the seismic demand to the structure by 70%. The
bearings were designed for lateral displacement of 508mm (20in) [22]. The most recent evolu-
tions of the Friction Pendulum are the Double and Triple Pendulum bearing [23, 24, 25, 26|.
The Triple Friction Pendulum (TFP) has an inner slider, two inner and two outer concave
sliding surfaces. The adaptive stiffness and damping characteristics provide the system with
independent pendulum response mechanisms (five sliding regimes) which are efficient over a
wide range of strong ground motions |24, 27, 28|. A recent application of the TFP system is
the 12-story San Bernardino Justice Center in California [29].

Additional information on the configuration and the mechanical properties of the rubber
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and sliding bearings can be found in [1, 3, 6, 30]. and in the catalogues of major American,

European and Japanese manufacturers; for a complete list see section 2.6 in [6].

Hybrid isolation systems

Hybrid Base Isolation Systems (HBIS) are common practice in Japan and in Italy, where
flat sliders are combined with rubber bearings to achieve the desired period elongation and
displacement demands. Typical applications of HBIS are the Mackay School of Mines at
the University of Nevada at Reno [1|, the PRADA Boutique Aoyama in Tokyo [31] and the
Solarino and Augusta buildings in Sicily [32, 33|. A hybrid isolation system, consisting of lead
rubber bearings and flat sliders was designed for the test program of a 5-story steel moment
frame at the Hyogo Earthquake Engineering Research Center (E-Defense) of the National
Institute for Earth Science and Disaster Prevention in Japan [34]. The experimental results
indicated redistribution of axial load between the rubber and sliding elements. The hybrid
design proved beneficial for the rubber bearings in terms of stability and post-buckling
behaviour; nevertheless, it led to quite large tensile and compressive demands on the sliding
bearings [34]. Much earlier, Kelly and Beucke demonstrated experimentally that sliding
bearings may server as a fail-safe system for the isolation system if the bearings are subject
to displacements beyond their design capacity [35]. Special attention should be given when
flat bearings are used for energy dissipation, since their stick slip behavior may excite higher
frequencies, potentially causing discomfort and damage to non-structural components and

content |36].

Three dimensional isolation systems

In [7] Warn and Ryan after a detailed review of experimental performance of base isolated
buildings conclude that ‘the modern isolation systems can survive earthquakes larger than

the design one through activation of ultimate limit state behaviours’ and therefore point
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the future research needs towards the 3D protection of the non-structural components and
content of isolation buildings. For instance, the GERB system, a 3D isolation system which
uses large helical springs, was found to be less effective in reducing horizontal accelerations

due to the coupling of horizontal and vertical motion [1].

Dynamic identification

Dynamic identification is a highly effective tool for the detection of damage in Structural
Health Monitoring, with applications to civil, mechanical, aerospace and other branches of
engineering. In Structural Health Monitoring damage is defined as changes in the geometric
and /or material properties of the system. These changes could be the result of extreme load-
ing, aging, temperature, fatigue, manufacture and/ or installation errors etc. In structural
engineering, dynamic identification is often synonymous to the time or frequency domain
identification of the modal parameters of equivalent linear models used for the representa-
tion of the actual systems. The data used in the identification are usually ambient noise
records instead of strong motion records, for the obvious reason that the probability of a
monitored building to be excited by a earthquake during its nominal life is small. How-
ever, identification studies using earthquake data can be found in the literature and date
back to the late '70 - early '80s. Beck and Jennings identified the parameters of a linear
model for a high-rise buidling on the basis of the building’s response during the 1971 San
Fernando earthquake [37]. This study poses questions on the uniqueness of the optimal
solution, the effect of noise on the modal approach, and the efficiency of equivalent linear
models used in the simulation of non-linear system response. In [37] the identification is
performed by means of an output-error method, where the function to be minimized is the
(normalized) distance between identified and recorded response. Nowadays, the function to
be minimized through the black-box optimization is known as the cost or objective or error
function, while the population of trial systems as candidate solutions or offspring. More re-

cently Stewart et al. performed identification analyses using the strong motion records from
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four base-isolated buildings in California [38]. The authors used cumulative and recursive
prediction error identification methods, CEM and RPEM respectively. The RPEM allows
for the use of time-variation of the model used in the identification, while the CEM does not.
The authors used an equivalent linear model to describe the isolation system and hence the
identified parameters included the equivalent modal parameters of the base isolated build-
ing, i.e. fundamental-mode frequencies, damping ratios, and mode shapes. The authors
observed frequency reduction (stiffness softening) with increasing ground motion amplitude
and highlighted that the hysteretic action is strongly dependent on the shaking amplitude;
consequently the fully softened isolator stiffness and damping values obtained from labora-
tory tests do not provide an accurate measure of actual isolator behavior. The same year,
Nagarajaiah published the results he obtained from the modal identification of the base-
isolated University of Southern California (USC) hospital, using the building’s recordings
during the 1994 Northridge earthquake [10, 39]. Nagarajaiah implemented parametric and
non-parametric methods for the identification of an equivalent linear dynamic system. In
[39] the optimal solution was defined as the solution providing the minimum weighted sum
of squares of errors between the absolute magnitudes of the actual and desired frequency
response function points. Oliveto et al. peformed the dynamic identification of a hybrid
base isolated building in Solarino, Italy, using full scale free vibration tests [40|. The iden-
tification was done in the frequency domain and provided the optimal equivalent viscous
models for the isolation system under the considered excitation. However, the identified
linear models were unable to account for the period shortening with the decay of amplitude.
The identification analyses of the Solarino isolation system were repeated in [41| with more
detailed models for the description of the isolators. More specifically, the bi-linear model
was used to model the HDRB and the Constant Coulomb Friction Model (CCFM) was used
for the modelling of the friction sliders. In both [40] and [41] the least squares method was
used for the identification. The least squares method introduced several complications to
the inverse problem, since it required numerical approximation of the gradient and more-

over interaction with the user during the iterative procedure. In the years that followed the
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Covariance Matrix Adaptation Evolution Strategy, a state of the art algorithm for difficult
non linear optimization [42|, was applied to the Solarino identification study. The CMA-ES
outperformed the previously used methods and improved the obtained solutions [43]. The
implementation of the CMA-ES allowed for the consideration of more sophisticated models
regarding the description of the isolation system, such as the trilinear model for the rubber

bearings and the linear Coulomb model for the friction sliders |44].
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Thesis outline

The present dissertation focuses in the dynamic identification of the mechanical properties of
a hybrid base isolated building, in Augusta (Italy), from full scale, push and sudden release
tests performed on the building. Chapter 1 provides information on the building and the
performed tests, while Chapter 2 presents a baseline fitting method for the signal processing
of the Augusta recordings. The proposed method is simple and can provide reliable velocities
and displacements, provided that the signal does not contain significant amount of noise.
Moreover, it ensures that initial and end conditions are met. The adjusted system response
is used in the identification of the Augusta isolated building, see Chapter 3. This is a two
stage identification, performed using the CMA-ES. In the first stage, the non-linear properties
of the hybrid isolation system are identified. A bi-linear model is adopted for the rubber
bearings and the standard Coulomb model is used for the description of the flat sliders. The
optimal solution provided by the CMA-ES, corresponds to an isolation system whose velocity
and displacement response matches the observed one. In the second stage of identification,
the properties of the superstructure are identified. A linear, classically damped, fixed base
model is considered for the description of the superstructure in the linear range of response.
The system is excited at the base by the acceleration developed at the base isolation level.
In this case, the optimal solution obtained by the identification attempts, is a linear system
whose relative acceleration and velocity response matches the observed one. The identified
properties of the isolation system and the superstructure are input in a synthesized model,
which accounts for both the hysteretic base and the flexible superstructure. The response
history analysis of the synthesized system is performed using an constrained optimization
algorithm, developed ad hoc for the 1D dynamic response simulation of hybrid base-isolated
buildings. Conclusive remarks and recommendations for future research are provided in the

last chapter of this dissertation. An appendix relative to Chapter 2, can be found attached.
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Chapter 1

The Augusta release tests

A residential building in the city of Augusta, Italy, was designed to withstand seismic action
by means of a hybrid base isolation system. On March 2013, the Augusta building was
subjected to a series of free vibration tests before being put into use. The release tests
were performed at low amplitudes to ensure that no damage would occur in the building
(v = 0.39 — 0.78). A preliminary simulation of the system response of the building under
the tests can be found in |33]. The experiments provided a handful of information that give
light to the non-linear behaviour of the isolation system under real-time motions. In the
following sections the output of the tests is used for the assessment of the isolation system
and the validation of the existing models that are used to simulate the dynamic response of

the structure.

1.1 The case study

The Augusta building consists of a basement, two storeys above the ground level and a
penthouse. The structure is 35.70 m long and 16.00 m wide, the maximum height above the
ground level is 10.50m and the basement story height is 3.60 m. Pictures of the building

exterior are shown in Figure 1.1. The typical floor plan and sections of the building can be
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Figure 1.1: a) and b) The Augusta building; aerial and South - East view.

seen in Figures 1.2 and 1.3. The foundation lies predominantly on deposits of stiff clay, i.e.
a site of class B according to the Italian and European technical regulations [45, 46]. The
building is isolated at the base; the isolators provide the structure with lateral flexibility so
that the latter can withstand the horizontal forces induced during strong ground motion.
The isolation plane runs along the top of the pillars of the basement storey slightly above
the ground level and is composed by 16 High Damping Rubber Bearings (HDRB) and 20
Low Friction Sliding Bearings (LFSB), Figure 1.4.

The SI-N 500/150 antiseismic isolators and the multidirectional VASOFLONpot bearings
VM 25/600/600 , VM 150/600/600 and VM 200/600/600 from FIP Industriale S.p.A. were
selected for the High Damping Rubber Bearings (HDRB) and the Low Friction Sliding
Bearings (LFSB) respectively. The HDRB (SI-N 500/150) have the following characteristics:
total bearing height 312mm, external diameter 500mm, bonded diameter 480mm, total
rubber thickness 25 x 6 mm = 150 mm, steel height 24 x 3mm = 72mm, end plates 2 x
20mm = 40mm. The primary and secondary shape factors equal S; = 20 and S, = 3.2
respectively. S; is defined as the ratio of the compressed area, wD?/4, divided by the
area of lateral surface free to bulge, mDt. For circular bearings this relation simplifies to
S, = % = 20, where D = 480mm is the bonded bearing diameter and ¢t = 6mm the single
rubber layer thickness. S; is the aspect ratio, i.e. the bearing diameter D = 480mm divided
by the total rubber thickness ¢, = 150mm, S, = g =3.2.

The LFSB (VM 25/600/600 , VM 150/600/600 and VM 200/600/600) are characterized
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Figure 1.2: Typical floor plan of the Augusta building.

Table 1.1: Technical requirements for the seismic isolators of the Augusta isolation system,

shown in Figure 1.4.

High Damping Rubber Bearings

Low Friction Sliding Bearings

Vertical load in seismic condition

Damping ratio at v =1

Secant horizontal stiffness at v =1
Vertical stiffness

Horizontal displacement at v = 2

1000 kN Type Load Displacement
£ =15% 1 2000 kN 300 mm
K. = 1000kN/m 2 1500 kN 300 mm
K, > 800K, 3 250 kN 300 mm
d. = 300mm

by maximum loading capacities that vary from 250 to 2000 kN. Tests performed by the

manufacturer indicate very low values for the start-up, us, and sliding coefficient of friction,

Ha:

e 0.31% < us < 0.98% and 0.24% < pg < 0.50% for VM 25/600/600 at vertical loads

varying from to 125 — 250k N,
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Figure 1.3: Sections of the Augusta building.

e 0.10% < ps < 0.30% and 0.08% < pg < 0.15% for VM 150/600/600 at vertical loads
varying from to 750 — 1500k NV,

e 0.09% < ps < 0.24% and 0.07% < pg < 0.14% for VM 200/600/600 at vertical loads
varying from to 1000 — 2000k N .

Such small values of the friction coefficient are due to the lubrication of the PTFE and the
very low testing velocity (4mm/min). For highly polished stainless steel and normal tem-
perature conditions the coefficient of friction attains values of approximately 0.3%, though
it could be somewhat higher at velocities relevant to seismic motions [6]. The technical
characteristics of the HDRB and the LFSB used for the seismic isolation of the Augusta

building are given in Table 1.1.
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Figure 1.4: Plan view of the Augusta base isolation system. In red notation the High Rubber
Damping Bearings (HDRB); in black, blue and yellow notation the Type 1, 2 and 3 Low
Friction Sliding Bearings (LFSB).

1.2 Test description

A set of ten release tests, were performed on the Augusta building on March 2013 (20/03 —
22/03/13). During the tests the building was displaced statically from its initial position and
then it was left to oscillate. The release tests were performed in low amplitudes to ensure
that no damage would occur in the building; the imposed displacements varied from 5.8 cm
to 11.7cm (v = 0.40 — 0.80). In tests 2 and test 7 there was no release of the building,
therefore those tests shall not be considered herein. The testing timeline can be seen in
Figure 1.5.

The testing apparatus consisted of the loading device, the measurement equipment and
the data acquisition system. The loading device consisted of a reaction wall, a hydraulic jack,
a sudden release device and a load cell [32]. The loading device can apply a maximum force

of approximately 200tons. The force was applied along the long direction of the building
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Figure 1.5: Augusta testing timeline (Days 1-3: 20-22 March 2013).
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Figure 1.6: Loading device used in the Augusta experiments: a) plan and b) side views and
¢) device prototype. Figures are reproduced from [47].

(x-x direction, Figure 1.4) . The pushing and quick-release device was designed and built for
the dynamic testing of another building in Solarino, in Eastern Sicily, retrofitted by means
of base isolation in the beginning of the 215 century. The device is shown in Figure 1.6.
The histories of the loading force, displacements and accelerations were recorded through-
out the experiments. The loading force was measured by a NOVATECH model F205-
CFROKO load cell ', applied between the building and the head of the loading device.
The horizontal and vertical accelerations were measured at the various floor levels using
16 channels, shown in a schematic layout in Figure 1.7 (¢). The accelerometers used for the
recording of the absolute acceleration response were the SA-107LN linear model developed

by COLUMBIA Research Labs Inc. ? and the wireless triaxial model POSEIDON developed

1http://www.novatechloadcells.Co.uk/ds/f205.htm
2http://www.crlsensors.com/product.cfm?cat=force-balance&sub=1linear-accelerometers&
prod=sa-1071n
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Figure 1.7: a) and b) Columbia and Poseidon accelerometers used in the Augusta experi-
ments. c¢) Schematic accelerometers layout.

by LUNITEK 2, see Figures 1.7 (a) and (b). The horizontal displacements were measured
at various positions below and above the isolation level through 15 channels, see Figure 1.9.
The linear displacement sensor SLS320/400 developed by Penny and Giles * was used for

the displacement measurements, see Figures 1.8.

3http://www.lunitek.it/listing/registratore-sismico-per-applicazioni-statichedinamiche/
(in italian)

“http://www.cw-industrialgroup.com/Products/Sensors/Linear-Position-Sensors/
Linear-Displacement-Sensor-SLS320.aspx
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a)
Figure 1.8: Displacement sensors used in the Augusta tests for the measurement of the
building displacements just above the isolation level, photo (a), and the measurement of the

isolators deformations, photo (b).
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Figure 1.9: Locations of the displacement sensors used in the Augusta experiments; (a)
building exterior (see also photo 1.8 (a)) and (b) isolators 25 and 8 (see also photo 1.8 (b)).
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Figure 1.10: Longitudinal and transverse displacements measured at the corners of the Au-
gusta building during free vibration test 10, sub-plots a) and b).

1.3 Displacement records

Figures 1.10 show the longitudinal and transverse displacements measured at the building
corners during test 10 at the measuring stations X1-A, X1-B, Y1-A,Y1-B,Y1-D,Y1-E |, see
Figure 1.9 (a). Test 10 was among the tests with the higher energy input. Observation of
Figure 1.10 (a) shows how the building was pushed statically for about 1000sec ~ 17min
to arrive at a displaced position of 10cm. As soon as the building was released it started
oscillating; the free vibration response was damped rapidly and the system came to a rest
with a residual displacement. The longitudinal displacements measured at the two front
ends of the ground floor slab are somewhat different indicating rotation of the building.
However, observation of sub-plot (b) shows how the transverse displacements are very small
(~ 2mm) with respect to the horizontal ones (~ 100mm); hence the rotation introduced
to the building by the uni-axial excitation can be considered negligible. It can be assumed
that the small rotation of the building due to longitudinal excitation is the result of a small
eccentricity of the loading force with respect to the center of rigidity of the isolation system.
From the typical floor plan view shown in Figure 1.2, it can be seen how the presence of the

reinforced concrete staircases and the elevator core introduces some asymmetry in the long
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Figure 1.11: Experimental force-displacements curves; a) tests 1,3,4 and b) tests 5,6,8,10.
The maximum displacement and force values are given within brackets next to the test
identification number in the legend.

(x) direction.

Figures 1.11 show the loading force - longitudinal displacement® curves measured during
the eight free vibration tests performed in the Augusta building. Sub-plot (a) refers to tests
1,3 and 4 that were tests of smaller initial displacement (ug = 5.8 —6.8cm) while sub-plot (b)
refers to tests 5,6,8 and 10 that were tests of higher initial displacement (uy = 10— 11.7cm).
It is interesting how the F-u curves resemble bilinear curves; in fact the loading force induced
to the structure equals the static non-linear forces developed in the hybrid isolation system.
The initial quasi-vertical branch of the F-u curves could provide an estimate of the start-up
friction force. However this estimate is rather vague, the friction force could be as small as
50 kN and as large as 200 kN, see Figures 1.11.

Figures 1.12 and 1.13 show the displacements as measured at the top of isolators 25 and 8§,
see Figure 1.9, during the free vibration part of the tests. In all tests, the system completed

only one full cycle of motion before coming to rest with some residual displacement. Residual

5The displacement is evaluated as the average of the displacements measured at the building corners
(channels X1-A and X1-B, see Figure 1.9 (a))

12
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displacements vary from 0.27¢m to 1.60cm and occur due to the non-linearity of the isolation
system. A creep behaviour was observed after end of motion - this behaviour could be
attributed to the elastomer. The magnitude of the residual displacement is not related to
the initial input; systems that undergo larger deformations do not necessarily experience
larger residual displacements. After every test the building was re-centred to the initial, zero
displacement, equilibrium position by means of a simple re-centring mechanism.

The displacement diagrams can serve for an estimate of the damped period of vibration
T'p and the equivalent damping ratio (., see Table 1.2. T)p is read easily from the dis-
placement traces as the time elapsed between the first and second positive peak (1st cycle
of motion) or alternatively as the time elapsed between the first and second negative dis-
placement peak. The equivalent damping ratio is evaluated by the logarithmic decrement
method, see Eq. 1.1(a). Eq. 1.1(b) is the approximate solution to Eq. 1.1(a) and it is valid
for damping ratios less than 20% [2|. For higher damping ratios the exact solution should be
considered, see Eq. 1.1 (¢). (.4, as evaluated herein, is the total damping ratio, i.e. the sum

of the equivalent damping ratios due to energy dissipation in the HDRB and the LFSB.

U; 27¢

d=In = logarithmic decrement (1.1a)
Uit (1-2¢2)
J
Capproz = oy approximate solution wvalid for ¢ < 20%
T
(1.1b)
5 approx .
= Carp exact solution (1.1¢)

Cezact = =
\/(471’2 + 52) \/(1 + gpp’ro:v)

where w;, u;41 are two successive maxima (peaks); for the problem at hand that would be
the first and second (positive) displacement peaks as read from the displacement diagrams
shown in Figures 1.12 and 1.13.

Observation of Table 1.2 shows how the damped period of vibration increases with the

displacement amplitude, implying softening of the effective stiffness with increasing strain
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Table 1.2: Periods of vibration and equivalent damping ratios. First column: test number.
Second column: initial displacement wug. Third column: damped period of vibration T;p
measured as the time elapsed between the first and second positive peak (1st cycle of motion).
Fourth column: damped period of vibration 77, measured as the time elapsed between the
first and second negative displacement peak. Fifth column: approximate equivalent damping
ratio (g, evaluated according to Eq. 1.1 (b). Sixth column: exact equivalent damping ratio

cract evaluated according to Eq. 1.1 (c). (eq (or ¢£7*) is the total damping ratio due to
energy dissipation in the rubber and friction devices. The tests are organized in terms of
increasing initial displacement.

uolem| Tip[sec] Tiplsec] Cegl%0] ¢E5* %]

Test 1: 0.83 1.45 20.0 q19.2
Test 3: 6.81 1.75 1.5 26.6 25.7
Test 4: 6.85 1.75 1.55 19.6 19.2
Test 10:  10.02 1.95 1.65 204 20.0
Test 9: 10.11 1.95 1.65 21.3 20.8
Test 8: 10.33 1.95 1.60 26.0 25.2
Test 5: 10.88 1.90 1.55 22.0 214
Test 6: 11.66 1.95 1.65 20.8 204

amplitude, which is typical of isolated structures. On the other hand, the equivalent damp-
ing ratio does not show a clear trend, however it seems that the capacity of the isolation
system to dissipate energy is similar for moderately low input motion (v = 0.5 — 0.8). (.,
values approximately 20%, with the exception of tests 3 and 8 where (., ~ 25%. The simpli-
fied expression 1.1 (b) overestimates the equivalent damping ratio, however the differences
between approximate and exact equivalent damping ratios are less than 4%.

A special comment should be made at this point on tests 3 and 8. Tests 3 and 8 followed
the unsuccessful release tests 2 and 7, see Figure 1.5. The structure was not re-centered after
test 7, and there is no information whether it was so after test 2. Therefore, the reliability

of the results obtained from tests 3 and 8 is highly questionable.
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Longitudinal isolators displacements recorded during

tests 1, 3, 4 and 5 (stations X1-25 and X1-8, see Figure 1.9 (b)). The initial and residual
displacements are given in the plots.
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Figure 1.13: Sub-plots (a) to (d): Longitudinal isolators displacements recorded during
tests 6,8,9 and 10 (stations X1-25 and X1-8, see Figure 1.9 (b)). The initial and residual
displacements are given in the plots.
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1.4 Acceleration records

Figures 1.14 to 1.16 show the longitudinal acceleration histories measured during tests 4 and
6 at the basement, ground floor, first floor, second floor and roof of the Augusta building,
(stations BFL-X, GFL-25X, 1FL-25X, 2FL-25X, 3FL-X, see Figure 1.7). The recorded
response confirms that the introduction of the flexible isolation plane results to a reduction
of the forces induced to the superstructure. In fact, the system response seems to be smaller
at the upper floors. The fundamental period (isolation mode period) is evident in all floor
signals. The signals contain also waveforms of higher frequency - these are generated because
of the flexibility of the superstructure. The roof acceleration does not resemble very much the
lower floor accelerations. The roof response contains wavelets which seem to be of a smaller
frequency, compared to the high frequency wavelets observed in the lower floor signals. This
is probably due to the irregularity of the structure in height and the low stiffness of the
penthouse, Figure 1.1. Test 4 being a test of smaller initial displacement (uo = 6.8cm) result
to lower acceleration records comparing to the ones obtained from test 6 (where ug = 11.7c¢m)
. The foundation, lying beneath the isolation plane, did not experience any significant motion

(maximum acceleration amplitude < 0.10g, see Figures 1.16 (a) and (b)).

1.4.1 Fourier amplitude spectra of the registered signals

The Fourier analysis of the recorded acceleration signals provides a valuable insight in the
frequency content of the structural response. The Fourier amplitude spectra of the longi-
tudinal acceleration signals recorded during tests 4 and 6 in the Augusta superstructure
and shown in figures 1.14 and 1.15, are given in Figures 1.17 (a) and (b). Test 4 was one
of the tests with the smallest initial displacement (up = 6.83cm) while test 6 was the test
with the highest initial displacement (uy = 11.66¢m). The Fourier spectrum amplitudes of
the accelerations recorded at the ground floor (just above the isolation plane) and at the
upper floors are very similar in the neighbourhood of the fundamental frequency (isolation

frequency), which is approximately equal to f;; = 0.73 Hz for test 4 and f;s = 0.49Hz
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Figure 1.14: Sub-plots (a) to (d): Longitudinal acceleration signals recorded at the ground
and first floor of the Augusta building during tests 4 and 6 (stations GFL-25X, 1FL-25X,
see Figure 1.7). The peak accelerations are given in the plots.

for test 6. The lengthening of the dominant period (shortening of the fundamental fre-

quency) with increasing strain amplitude was evident also in the measured displacements,

see Figures 1.12, 1.13 and Table 1.2. The following Fourier amplitude peaks, located in the

higher frequency range, correspond to the higher modes of the system. Closer observation

of Figures 1.17 shows that the frequencies that dominate the superstructure response are

mainly four and approximately equal to: f=6.6 Hz, 13.9 Hz, 19.8 Hz, 32 Hz for test 4 and

f=64Hz 129Hz, 188 Hz, 31.8 Hz for test 6. One point seems really relevant here; not
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Figure 1.15: Sub-plots (a) to (d): Longitudinal acceleration signals recorded at the second
floor and roof of the Augusta building during tests 4 and 6 (stations 2FL-25X, S3FL-25X,
see Figure 1.7). The peak accelerations are given in the plots.

only the isolation frequency becomes smaller as the initial displacement increases, but also
the higher frequencies become smaller. The non-linearity of the isolation system causes a
shift of the whole set of system frequencies. The ground floor and the first floor responses
seem to be more sensitive to higher frequencies (f ~ 19 Hz and f ~ 32 Hz), having relatively
high Fourier amplitude peaks in those frequency ranges. These high frequency components
however may be local due to the way the load was applied.

A comparison of the Fourier amplitude spectra of tests 4 and 6, confirms that larger
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Figure 1.16: Longitudinal accelerations recorded at the Augusta basement during tests 4

and 6, sub-plots (a) and (b) (station BFL-X see Figure 1.7). The peak accelerations are
given in the plots.

initial displacements result to larger response amplitudes and shift of the fundamental fre-
quency to the left. The Fourier spectrum of the foundation acceleration response is shown
in Figure 1.18; the spectrum has a sharp peak in the proximity of 7 H z, significantly above
the fundamental frequency. This explains why the foundation did not exhibit any significant

motion during the experiments.
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Figure 1.17: Fourier amplitude spectra of the longitudinal acceleration signals recorded at the
Augusta building during tests 4 and 6. Test 4 was among the tests with the smallest initial
amplitude (up = 6.83cm), while test 6 was the test with the highest initial displacement
(up = 11.66cm). The frequencies corresponding to the peak fourier amplitudes are also
provided in the sub-plots.
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Figure 1.18: Fourier amplitude spectra of the longitudinal acceleration signals recorded at the
Augusta basement during tests 4 and 6. Test 4 was among the tests with the smallest initial
amplitude (up = 6.83cm), while test 6 was the test with the highest initial displacement
(up = 11.66¢m). The frequency corresponding to the peak fourier amplitude is given within
brackets in the legend.
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1.4.2 Record labelling

Not all the information provided by the experiments is relevant to the current study. The

information that shall be used for calculation in the following chapters consists in

e ground floor displacements : namely the displacement measured at the top of isolator

25 (component X1-25,see Figure 1.9 (b))

e floor accelerations : namely the absolute floor accelerations measured at stations GFL-
25X, 1FL-25X, 2FL-25X, 3FL-X (see Figure 1.7). Two digits shall be added in the
component code name to indicate the test number, for instant GFL-25X-09 is the
ground floor acceleration component (GFL) measured along the x axis at the position

25" (-25X) during test 9 (-09).

1.5 Conclusions

The data obtained from the free vibration Augusta experiments were presented briefly in
this introductory section. The raw data will be processed in the following section according
to the developed baseline fitting scheme to provide floor velocities, displacements and drifts
which were not measured during the experiments. The processed data will be then used for

the identification of the properties of the isolation system and the superstructure.
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Chapter 2

Signal Processing

2.1 Introduction

Although the theoretical foundations of signal processing date back in the classical numerical
analysis techniques of the 17th century [48], signal processing algorithms evolved much later,
in the early ‘70s , along with the development of ‘third-generation’ computer hardware and
the digitization of analog records. Signal processing aims to the removal of noise from
the strong motion data and the extraction of valuable information, such as peak ground
characteristics and response spectra. However, considering the arbitrary nature of the noise,
it becomes clear that no method can recover the original, uncontaminated signal.

Noise causes distortion of the signal in a wide frequency range. The influence of noise is
more dramatic in the low (<1Hz) and high (>25Hz) ! frequency range, where the signal to
noise ratio tends to be significantly lower. The signal to noise ratio (SNR) is defined as the
ratio of the signal power to the noise power and it is a measure of the signal contamination.
The lower the SNR, the more contaminated the data. Signals with very low SNR (<2),
for instance signals of low amplitude, recorded from small or long distance earthquakes, are

considered to be highly influenced by noise and therefore might be disregarded, since they

'1Hz and 20H z are indicative low and high frequency limits used in signal processing of strong motion.



42

are prone to provide meaningless information [49).

Low frequency noise originates in instrument errors, constant acceleration drifts, back-
ground noise and manipulation errors [50]. The effect of long period noise, which is basi-
cally the distortion of the reference baseline, cannot be detected easily in the acceleration
record. However, once the acceleration is integrated to provide velocities and displacements
its influence becomes clear; uncorrected accelerations generate un-physical velocities and
displacements. Given the increased engineering interest towards performance based design
strategies and also towards structures that respond in the long period range (high-rise build-
ings, bridges,isolated structures) the correction of records for low frequency noise becomes
of major importance for the production of plausible displacements and realistic response
spectra at the long period range. An overview of signal processing methodologies for the
treatment of long period noise can be found in [51].

Low frequency noise can be treated using
e low cut (or high pass) filters, and/or
e baseline fitting schemes.

When low cut filters are applied to the signal, the signal components with frequencies
below the selected cut-off frequency are removed. The generated response is very sensitive
to the selection of the cut-off frequency. The choise of an appropriate cut-off frequency f.
can be done on the basis of the SNR ratio; the signal should be filtered in the frequency
range [0, f.] where the SNR becomes significantly small [51].

Baseline fitting schemes can be considered as ‘low-cut filters of unknown frequency char-
acteristics’ [51]. They consist in the adjustment of the distorted acceleration, velocity and
displacement reference lines using straight or curved lines. In [50] Chiu presents a combina-
tion of baseline and filtering procedures for the effective removal of the long period noise. His
algorithm provides reliable results and requires less computational effort than the established
processing routine developed in the ‘70s by Trifunac and Lee [52]. Nonetheless, an essential

limitation of the algorithm is its inability to account for permanent displacements.
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2.2 Baseline fitting using higher order polynomial
curves

A baseline fitting procedure is implemented for the adjustment of the acceleration signals
recorded during the free vibration tests performed on the Augusta building. Herein the
term ‘signal adjustment’ shall be used instead of the term ‘signal correction’. The term
‘correction” implies that the real signal is known and therefore can be recovered, that is
seldom the case in reality [51]. The long period noise is removed from the acceleration,
velocity and displacement traces by fitting the baseline with polynomial curves of increasing
order, Eqs 2.1. The motion is adjusted in the time interval when the motion is essential -
the definition of the duration of strong motion is given in section 2.3. The coefficients of the
correction polynomials are evaluated using the boundary conditions, see Eq.2.2. The main
advantage of the procedure suggested is that it accounts for the initial and end conditions,
recovering permanent displacements, provided that the latter have been measured. For
isolation systems, that are highly non-linear,the recovery of residual displacements is of

utmost importance.

((t) = tipaw(t +t1) + 2pa + 6pgt + 12py t* + 20ps t° (2.1a)
t
u(t) = /umw(T +t1)dT +py + 2pat + 3pst? + dpyt® + Sps t? (2.1Db)
0
t T
u(t) = //u‘mw(r + 1) dTd7 +po+ prt+pat® + p3t® 4 pytt + pst (2.1¢)
0 0

where 1,4, (t) is the unprocessed acceleration record, t; is the time when the strong motion

starts ', 4i(t),u(t), u(t) are the processed acceleration, velocity and displacement histories,

!The signal adjustment refers to the time interval (0,¢;) where the motion is significant. Hence the
length of the adjusted response is significantly smaller than the length of the full record, since the full record
includes pre- and post- event memories. The time interval (0, ¢;) where the motion is significant, corresponds
to the time window (¢1,t2) of the full record. t1,ts are the start and end times of strong motion, estimated
according to section 2.3.
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and p; (1 =0,1,..5) are the polynomial coefficients evaluated from the boundary conditions,
Eq.2.2. Since the number of available boundary conditions is equal to the number of the

unknowns, the latter can be defined explicitly.

i(0) = i(ta) = 0, @(0) = i(ta) = 0, w(0) = uo, u(ta) = tres (2.2)

Eqgs 2.2 describe the state of the system at the beginning (¢ = 0) and at the end of
motion (¢ = t;). When the motion starts from rest, the acceleration and velocity are zero.
The displacement can be different than zero if the system starts moving from a displaced
configuration (ug), such as in the case of free vibration. When the motion ends, at time
t = t4, the acceleration and velocity drop back to zero, while the displacement can be non-
7ero (Uyes), if the system is excited to its non-linear range. t4 is the duration of strong motion
and it is defined in the section that follows.

Substitution of Eqs 2.2 in 2.1 leads to the following system of equations:

u(0) = up = po = ug (2.3a)
W(0) = 0= p; =0 (2.3b)
(0) = 0= o =~ Jilpau(t) (2.30)

ta 7
’LL(td) = Ures :>p0 +p1 td +p2 t?i+p3 t2+p4t?l+p5t2 = Upes — / / draw<7—+t1)d7_d’7_
0 0

(2.3d)
tq
U(ty) = 0= py + 2paty + 3psts + dpy t + Sps th = —/0 thyauw (T + t1)dT (2.3¢)

ﬁ(td> =0= 2py + 6p3ty+ 12py t?l + 20ps tz = —Upaw (td + tl) (2.3f)



Eqs 2.3 can be written in matrix form as follows:

A-p=b
where
(10 0 0 0 0 | Do
01 0 0 0 0 p1
00 1 0 0 0 P2
A= P =
1ty 32 3 i 5 D3
0 1 2tg 3t3 43 5t} Pa
|0 0 2 6ty 1287 20t] Ds
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Up

0

— 5 llrau(t1)

Upes — (fd f; Upaw (T + t1)dT dT
o iy (T 4 t)dT

—Upaw (td -+ tl)
(2.5)

Provided that the start and end times of strong motion are known, Eq. 2.4 describes a

linear system of equations which can be solved for p:

p:A_l.b

(2.6)

The implementation of the proposed baseline fitting procedure requires that the initial

and end conditions are known. While for systems responding in their linear range, the

boundary conditions are easy to guess (the response is zero at the beginning and end of

motion); for systems responding in their non linear range it is not so. For the boundary

conditions to be known, the residual displacement should be known, i.e. measured.
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2.3 Duration of strong motion

Accelerograms contain the information from the time that the induced motion exceeds the
threshold trigger of the accelerometer, until the time that the recording returns to the level
of the background noise. However, only some portion of the recorded vibration contributes
significantly to the energy induced to the system and hence influences the system response.
Duration and amplitude are the two major characteristics of any strong motion. The dura-
tion of strong motion plays a major role in the inelastic response of rigid and relatively weak
structures and also in the dynamic response of structures with stiffness and strength degrad-
ing characteristics. While the amplitude of the motion is a property easily quantifiable, for
instance the peak ground acceleration can be read immediately from the accelerogram, the
duration of the motion cannot be determined straightforwardly. During the last 50 years, re-
searchers have developed different methods for the evaluation of the strong motion duration

tq [53]:

e Bracketed durations (D,): t, is defined as the total time elapsed between the first and

last, excursions of a specified level of acceleration.

e Uniform durations (D,,): t4 is the sum of the time intervals during which the acceler-

ation is greater than the selected threshold.

e Significant durations (Ds): t4 is the time interval during which the accumulation of
energy is significant. Trifunac and Brady defined ¢, as the time interval during which
the integral of the squared acceleration, [ a(t)dt, grows from 5 to 95% of its maximum

value [54].

The procedure implemented herein for the evaluation of the durations of the motions
recorded during the Augusta free vibration tests, lies conceptually in the third group of
‘significant durations’ methods. t; is determined as the time interval during which the

cumulative squared acceleration C'SA(t), Eq. 2.7(a), grows rapidly. For convenience, the
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cumulative squared acceleration C'SA(t) is normalized to its maximum value CSA(t,,0z),
Eq. 2.7(b). The motion is considered to be initialized at time ¢;, when the rate of change
of CSA,(t) becomes essentially different from zero, see Eq. 2.8 (a). The motion is thought
to have ceased at time t9, when the rate of change of C'SA,,(t) becomes negligible again, see
Eq. 2.8 (b). The thresholds e, ey are very small quantities, of the order of magnitude of
O(—1) and O(—4) respectively and should be chosen individually for every signal, to ensure

reliable estimates of the times ¢, and ¢s.

CSA(t)/O la(7)]? dr (2.7a)

CSA() = CSA({) [y la(m)dr

" CSA(tmas) [ [a(r) P dr 0<CSA, () <1 (2.7b)

dCSA,(t

motion starts at t =t; when CSTUh_tl > ey, g =0(-1) (2.8a)
dCSA,(t

motion stops at t =ty when CSTUh:tZ < g9, £9=0(—4) (2.8h)

Eqgs 2.8 suggest that e; is several orders of magnitude greater than 5. This can be
justified as follows. &; and &5 represent the slope of the cumulative squared acceleration
curve at times t; and t5. When the free vibration motion starts there is a rapid growth of
the cumulative squared acceleration function, which is indicative of the amount of energy
input to the system. The rapid growth of C'SA or C'SA,, translates to a significant change of
slope at time ¢; (¢; > 0). During motion the initial input energy transforms to kinetic energy,
elastic strain energy in the superstructure and dissipated energy in the isolation system. The
kinetic energy and strain energy of the vibrating system are dissipated by various damping
mechanisms [2]. The dissipation of the initial input energy marks the end of growth of the
cumulative squared acceleration curve. Hence, versus the end of motion, at time t,, the slope

of CSA or CSA,, is expected to be almost zero (g5 ~ 0).
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2.3.1 Duration of the motion recorded at the base floor of the

Augusta building during free vibration test 9

Figure 2.1(a) shows the acceleration trace recorded during test 9 at the ground floor of
the Augusta building (component GFL-25X-09)?. The record is shown in the time interval
[1013.5,1019]sec to facilitate the viewing of the strong part of the motion. The full length
of the acceleration record in time is 1145sec ~ 19min. Figure 2.1(b) shows the correspond-
ing normalized cumulative squared acceleration, C'SA,(t), estimated according to Eq. 2.7.
Figure 2.1(c) shows the rate of change of C'SA,(t). Figures 2.2 (a) and (b) are magnifica-
tions of Figure 2.1(c) in the time intervals where the strong motion starts and ceases. The
time derivative of C'SA, (t) was evaluated approximately, implementing the ‘diff’ function in

MATLAB, [55], with the following syntax:

dC'SA,(t)
dt

=dif f(CSA,,h) (2.9)
where h = 0.001sec is the time step.

The strong motion starts at time ¢; = 1014.088sec when dC'SA, (t)/dt becomes greater
than ¢, = 107!, see Figure 2.3(a). The motion stops at time t, = 1017.419sec, when
dCSA,(t)/dt becomes smaller than 5 = 5 - 107, see Figure 2.2(b).

From Figure 2.2(b) it can be seen that the slope of the cumulative acceleration curve
becomes less than the threshold even before to = 1017.419sec. However, it is only the last

time when the slope becomes less than e that is chosen as the ending time of the strong

motion.

2for the record labelling the reader is referred to subsection 1.4.2
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Figure 2.1: Estimation of the duration of strong motion, t4, of the ground floor accelera-
tion recorded in the Augusta building during test number 9 (component GFL-25X-09). a)
Unprocessed acceleration, d,q,(t), in the time window [1013.5,1019]sec. b) Normalized cu-
mulative squared acceleration, C'SA,(t), evaluated according to Eq. 2.7. ¢) Rate of change
of CSA,(t), evaluated according to Eq. 2.9. The essential part of motion lies between times
t; = 1014.088sec and ty = 1017.419sec, that is when C'S A, (t) grows rapidly. The motion
duration is t; = 3.331sec. The start and end times of the strong part of the motion are
marked in the plots with vertical dashed lines.
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Figure 2.2: Rate of change of the cumulative squared acceleration, presented in larger
time scale in Figure 2.1 (c¢). The plots (a) and (b) show the trace of dC'SA,(t)/dt in the
proximity of the start and end times of strong motion, t; = 1014.088sec and t, = 1017.419sec
respectively. The strong motion starts when dCSA, (t)/dt becomes greater than ; = 107!,
while the motion stops when dC'SA, (t)/dt becomes smaller than g5 = 5-107%.

2.3.2 Calibration of the strong motion end time %

Figure 2.3 shows the velocity trace from integration of the unprocessed ground floor accel-
eration, shown in Figure 2.1 (a), in the time interval [1014, 1030]sec. A straight line is fitted
between times [1020, 1030]sec using the ‘polyfit’ function in MATLAB [55]; application of
the ‘polyfit’ command provides the best fit, in a least-squares sense, for the velocity data in
the range of interest. The linear trend observed in the velocity trace between [1020, 1030]sec

implies that the motion has already ended.

t [sec]
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Figure 2.3: Calibration of the end time of the strong motion recorded at the ground floor
of the Augusta building during test 9. a) Unprocessed ground floor velocity v(t), estimated
as the integral of the raw ground floor acceleration (black line). A straight line is fitted in
the time interval [1020, 1030]sec. The line is extended until the start time ¢; = 1014.088sec
(Viinear(t):red line). b) Distance between the velocity curves, v(t) and Vjpeqr(t) in the time
interval [1017.5,1030]sec, evaluated as d, = |V(t) — Viinear (t)|/maz(v(t)), where max(v(t)) =
0.156m/sec is the peak value of the unprocessed velocity. The motion is considered to cease
at time ¢, = 1018sec, when the distance d,, becomes smaller than a threshold, equal to 2-1073
for the considered record.

After cessation of motion the return of the signal to the background noise level causes a
shift in the acceleration baseline that translates to a linear trend in the velocity. The fitted
line is extended to the time interval [1014,1020]sec. The motion is thought to have stopped
when the velocity trace v(t) distances from the linear trend v;,.q,(t) by a very small quantity,
g,. The distance between the two curves is evaluated as d, = |v(t) — Vinear (t)|/max(v(t)),
where max(v(t)) is the peak unprocessed velocity in the essential time frame of motion.
Setting a threshold of ¢, = 0.002, the end time for the ground floor acceleration recorded
during test 9 is estimated to t; = 1018sec, somewhat greater than ¢ = 1017.419sec, that
was the ending time found before using the C'SA,(t) diagram. This output is considered
more conservative, hence in the calculations that follow t; = 1018sec for the ground floor

acceleration.
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2.4 Background noise

The part of the recorded motion preceding and following the main event is identified as
pre- and post-event noise respectively, see Figures 2.4 (a) and (b). At time ¢t = Osec the
accelerometer is enabled and starts recording the background noise (wind,traffic effects, etc.).
At time t ~ 252sec the pushing device starts moving statically the building. The static
motion influences the background noise; the noise in the interval [252,1014]sec, although
still of a very small amplitude, is amplified and has many acceleration spikes. At time
t ~ 1014sec the system is released and starts vibrating. At time ¢ ~ 1018sec the building
stops vibrating and the record returns to the level of background noise. The pre-event noise
in the interval [0,252]sec is very similar to the post-event noise, interval [1018,1144]sec.
The pre- and post-event noise is characterized by small amplitude (< 10mg) and broadband
frequency content.

The Fourier Amplitude Spectra for the background noises are shown in 2.4 (c¢). For the
evaluation of the FAS of pre- and post- event noise, two samples of records are considered in
the intervals [40, 140]sec and [1040, 1140]sec respectively. The two FAS are almost identical
in the frequency range [0.25,250]Hz. Some differences arise in the low frequency range
[0,0.25] Hz, where the low frequency components of the post-event noise seem to be more
powerful than the low frequency components of the pre-event noise.

The effect of low frequency noise is more critical than the effect of the high frequency
noise in the evaluation of the response quantities of interest (velocities, displacements). High
frequency components attenuate with integration and therefore shall be not treated herein.
It is important to note at this point that the model of the main event noise might be different
than the background noise model.

The need for removal of the low frequency noise becomes clear once the strong motion
acceleration is integrated to provide velocities and displacements. Figure 2.5 shows the
absolute acceleration signal a,(t), recorded at the ground floor of the Augusta building during

free vibration test 9. a,(t) is integrated to generate total velocities v,(t) and displacements
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Figure 2.4: Background noise in the ground floor acceleration record obtained from the

Augusta test 9. a) Pre-event noise (black line) and corresponding means in the intervals
[0, 252]sec (red line) and [252,1014.088]sec (blue line). b) Post-event noise (black line) and
corresponding mean (red line). c¢) Fourier Amplitude Spectra of the pre- and post-event
noise in the intervals [40, 140]sec and [1040, 1140]sec, red and black lines respectively.

ug(t). The initial displacement, uy = 10.1cm, is added to the displacement trace obtained
from integration to account for the displaced configuration of the system at ¢t = 0. While
the acceleration is negligible versus the end of the motion, the velocity is significantly lower
than zero (v(t;) = —1.6cm/sec) and the residual displacement is significantly higher than
the observed one (u(t;) = 4.7cm against u®rerimental — 1 7¢m). The baseline shift in the

acceleration trace after the end of strong motion, due to the presence of the post-event noise,

translates to a linear trend in the velocity and a parabolic trend in the displacement after
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Figure 2.5: Unprocessed strong ground motion response for test 9. The raw acceleration
ay(t) is integrated to provide the velocity and displacement traces v,(t) and wu,(t) . The
initial response at time t = 0 and the estimated residual response at time t4 are provided.

the end of motion. The above results demonstrate how the long period noise, although not
appreciable in the scale of the acceleration, is amplified upon numerical integration and leads
to false velocities and displacements.

In the following section the acceleration response recorded at the ground floor, first floor,
second floor and roof of the Augusta building during test 9, (components GFL-25X-09,
1FL-25X-09, 2FL-25X-09, 3FL-X-09, see Figure 1.7), is adjusted using the baseline fitting
procedure presented in section 2.2. The predicted ground floor displacements are compared

to the experimental ones to validate the effectiveness of the method.
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2.5 Baseline fitting of the Augusta free vibration
motion recorded during test 9

The ninth free vibration test performed on the Augusta isolated building was one of the
tests with higher initial displacement (uo = 10.1em). The longitudinal acceleration histories
recorded at the ground floor and the upper floors during test 9 (components GFL-25X-09,
1FL-25X-09, 2F1-25X-09, 3FL-X-09, see Figure 1.7), are processed herein for the removal of

the long period noise using the baseline fitting scheme presented in section 2.2.

2.5.1 Adjustment of the ground floor response

The longitudinal ground floor acceleration recorded during test 9 in the Augusta building
and the corresponding adjusted acceleration are shown in comparison in Figure 2.6 (a).
The two signals are practically one on the top of the other. The adjusted ground floor
velocity is shown in Figure 2.6 (b). The predicted displacement, u,(t) , is shown against the
experimental one, ugxp(t) in Figures 2.7 ; a very good matching is achieved between the two.

The distance between ugy(t) and uf*™(t) is equal to e* = 0.06% and it is estimated according

to the following formula:

5 (i) — g i)
¢f == (2.10)
; (ug™(i))?

where N is the number of the strong motion data points.

The boundary conditions are also provided in Figures 2.6. The adjusted acceleration
and velocity at the beginning and end of motion are zero, (a,(0) = 0,a,(tqs) = 0,v,(0) =
0,v4(ts) = 0), while the initial and residual displacements are equal to uy = 10.1cm and
Ures = 1.7cm respectively. The processing method ensures that the measured residual dis-
placement is recovered. The noise removed from the main event in terms of acceleration,

velocity and displacement can be seen in Figures 2.8 to 2.10.
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Figure 2.6: Adjusted ground strong motion response for the free vibration Augusta test
number 9. a) Original (red line) and adjusted (black line) acceleration histories. b) Predicted
ground floor velocity, obtained from integration of the adjusted acceleration trace. Black
markers are plotted at the start and end times of motion.
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Figure 2.7: Predicted displacement history for test 9, obtained from integration of the
generated velocity and implementation of initial and end conditions (ug = 10.1em, uyes =
1.7cm). The generated displacement (black line) is compared to the measured displacement
(red line); the two curves are practically one on the top of the other. Black markers are
plotted at the start and end times of motion.
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(a) Raw acceleration recorded at the ground floor of the Augusta building during

test 9 (a;™, red line) and corresponding adjusted acceleration (a%¥, black line). (b) Noise
removed from the raw acceleration signal.
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Figure 2.9: (a) Unprocessed ground floor velocity for test 9 ([ a;*dt, red line) and cor-
responding adjusted velocity (v2%, black line). (b) Noise removed from the unprocessed

velocity trace.

The noise removed from the acceleration is a long period waveform of very small am-

plitude (< 1mg). However once this noise is integrated it results to significant, erroneous

residual velocities and displacements, see also Figure 2.5. Once the main event noise is ex-

tracted from the unprocessed signal, the adjusted response is recovered, see Figures 2.8(a),
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Figure 2.10: (a) Unprocessed ground floor displacement for test 9 (ffa;‘“”det + ug, red
line) and corresponding adjusted displacement (u$%¥, black line). (b) Noise removed from
the unprocessed displacement trace.

2.9(a) and 2.10(a) . The noise removed from the raw signal for the adjustment of accel-
erations, velocities and displacements seems to be quite different from the observed pre-
and post- event noise. While the background noise can provide a model for the main event
noise, this model is incomplete, since the most important component of the noise is usually

associated with the signal itself (‘signal-generated noise’) [51].

2.5.2 Adjustment of the absolute superstructure response

The baseline fitting scheme is applied to the acceleration signals recorded at the upper floors
of the Augusta building during test 9 (components 1FL-25X-09, 2FL-25X-09, 3FL-X-09).
Table 2.1 provides information on the start and end times, t; and t,, and the duration, %,
of longitudinal acceleration records obtained from test 9. The start times ¢; are evaluated
from the corresponding cumulative squared acceleration diagrams, as discussed in section
2.3. The motion starts when the time derivative of C'SA,(t) becomes greater than the

selected threshold ey, that varies in the interval 1 — 12% and is chosen individually for every
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signal to ensure a reasonable estimate of the starting time ¢; 3, see Table 2.1. The end
times t5 are defined on the basis of the unprocessed velocity, to provide a more conservative
estimate of ¢y, as discussed in paragraph 2.3.2. Once the raw signals are integrated and the
unprocessed velocity is retrieved, straight lines are fitted in the interval [1020,1030]. The
lines are extended to time ¢ = 1014sec, see Figure 2.11(d). The distance between velocity
curve and linear trend is calculated and normalized to the peak velocity; the motion is
considered to have stopped when this distance, d,,, becomes smaller than a threshold ¢,. ¢,
varies in the interval 0.1 — 0.2% and as with &1, it is selected individually for each signal to
ensure reliable estimates of ¢5 *, see Table 2.1.

The results of Table 2.1 show :

e A delay of motion as the waveform travels to the upper floors. The building is pushed
statically to ug = 10.1ecm. The base floor responds immediately at ¢; = 1014.087sec,
while the upper floors respond fractions of seconds later, see Figure 2.11 (a). The
same observation holds for the end of motion as well. The base floor stops moving at
ty = 1018sec, while the upper floors continue to vibrate for a little longer. The base
floor stops at ~ 3.9sec while the upper floors stop at about 4sec, see also Figure 2.11
(b). The start times are evaluated on the basis of the diagram of the rate of change of
the normalized cumulative squared acceleration C'SA,(t), see Figure 2.11(c). The end
times are estimated on the basis of unprocessed absolute velocity traces, see Figure

2.11(d).

e The duration of strong motion is longer for the signals recorded at the upper floors

3Due to the motion propagation the ground floor is expected to respond first while the upper floors
are expected to follow, ¢ (ground floor) < ti(first floor) < ti(second floor) < ti(roof). At time ¢, the
acceleration is very small (< 0.01g) but soon after its amplitude starts to increase significantly. The system
undergoes free vibration and builds its maximum response during the first cycle of motion. Therefore, after
initiation of motion, the rate of change of the cumulative squared acceleration becomes essentially higher
than the selected threshold e;.

4The ground floor stops moving first, while the upper floors continue to vibrate until the motion is
damped out. Hence t2(ground floor) < ta(upper floors). After the motion ceases a linear trend is observed
in the velocity trace, i.e. after time to the distance d, tends to zero.
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Table 2.1: Start, end times and duration of the main events recorded during free vibration
test 9 in the Augusta superstructure. First column: acceleration record considered. Second
and third columns: Start and end times ¢; and ¢, of the main event, evaluated according to the
procedure presented in section 2.3. Fourth column: duration of strong motion, t; =ty — t;.
Fifth and sixth columns: thresholds ¢; and ¢, used for the identification of times ¢; and ¢s.

Accelerationrecord — ty]sec] talsec]  tqg =ty —ti[sec] e1[%] e,[%]
ground floor 1014.087 1018.000 3.913 1.0 0.10
first floor 1014.092 1018.049 3.957 2.0 0.10
second floor 1014.109 1018.170 4.061 10.0  0.20
roof 1014.122  1018.220 4.098 12.0  0.20

of the isolated building. This result is plausible; the isolation stops moving while the

superstructure continues to vibrate, until the response is damped out.

e The time delays of the recorded signals can be used for the estimation of the wave propa-
gation velocity v,,. Forinstance v, = 4.25m/(1014.092—1014.087)sec = 4.25m /0.005sec =
850m/sec or v, = 10.25m/(1014.122 — 1014.087)sec = 10.25m/0.035sec = 292m/sec
considering the propagation delays of the first floor and roof signal respectively, where
4.25m and 10.25m are the heights of the first floor and the superstructure. The result-
ing propagation velocities are small and very different to each other, with the larger
velocity to seem more reliable. However, the subjectivity in the selection of the starting
point of motion does not allow any better estimate of v,,. It should be also mentionned
that the position of the recording instruments might have affected the results (see

Figure 1.7, section 1.2).

The adjusted absolute accelerations for the Augusta superstructure are shown in Figures
2.12 (a) to (d). The ground floor acceleration is shown again for completeness. The adjusted
absolute velocities and displacements are shown in Figures 2.13(a) and (b). The total velocity
and displacement response is very similar for all floors; implying that the superstructure

behaves like a rigid body during dynamic motion. In fact, seismic isolation mitigates the
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Figure 2.11: Delay of motion as the waveform travels to the upper floors of the Augusta
isolated structure. Start and end times for the ground floor (black line), first floor (pink
line), second floor (blue line) and roof(red line) acceleration records; sub-plots a) and b).
Dashed lines are plotted at the times when the motion starts and ceases. ¢) Rate of change of
the normalized cumulative squared accelerations . The motion starts when the dCSA,,(t)/dt
becomes greater than the threshold e, see Table 2.1. d)Unprocessed absolute velocities,
evaluated as the integral of the corresponding raw accelerations. Dotted lines indicate the
linear velocity trend present due to noise. The motion stops when the velocity waveform

starts to fit the linear trend.

risk by elongating the fundamental period of the structure and hence reducing the forces
induced in the system and the vibrations of the superstructure.

Table 2.2 shows the peak superstructure response in terms of absolute floor accelerations,
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Figure 2.12: Absolute acceleration response of the Augusta superstructure for test 9: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The raw
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is also given.

velocities and displacements. The peak velocity and displacement response is similar for all
floors; this fact enforces the belief that the superstructure responded as rigid body during
the dynamic motion. The differences in the peak accelerations can be attributed to a wave
propagation phenomenon. This phenomenon may be responsible for the high frequency
content of the response and the spikes observed in the ground floor and first floor records,

see Figures 2.12. It is important to highlight that peak accelerations can be read directly
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Figure 2.13: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 9; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts
somewhat later and ends later at the upper floors.

Table 2.2: Peak superstructure response in terms of absolute acceleration, velocity and
displacement under free vibration motion (test 9, ug = 10.1cm). First column: component
considered. Second column: peak absolute acceleration response. Third column: peak
absolute velocity response. Fourth column: peak absolute displacement response. The
strong motion duration is given in the fifth column for completeness.

Peak absolute response

component  accel.[g] wvel.[em/sec| displ.[cm] t4]sec]
ground floor  0.374 15.70 10.11 3.913
first floor 0.252 15.43 10.11 3.957
second floor  0.177 16.12 10.11 4.061
roof 0.265 16.53 10.11 4.098

from the recordings, while peak floor velocities and displacements can be retrieved only after
signal processing. The estimation of reliable velocity and the displacement traces with little

computational effort is a major advantage of the baseline fitting scheme developed.



64

2.6 Estimation of the relative superstructure response

under test 9

2.6.1 Estimation of the relative superstructure response from the

processed absolute response

The adjusted absolute accelerations, velocities and displacements can be used to produce the
relative, with respect to the base, accelerations, velocities and displacements and furthermore
the inter-story drifts. The relative to the base response is evaluated according to the following

formula:

rie(t) = rit () — g (1) (2.11)

where ‘r(t)’ stands for the upper floor displacement, velocity and/or acceleration history.
The superscript ‘rel’ indicates the relative, with respect to the base, response; the superscript
‘abs’ indicates the absolute response; the subscript %’ indicates the floor number (i = 1,2, 3)
and the subscript ‘g’ indicates the base.

The relative accelerations for the Augusta superstructure under test 9 are shown in
Figures 2.14 (a) to (c¢). The baseline fitted relative accelerations are practically on the top
of the raw signals, indicating that the extracted noise is of a very small amplitude. The
relative floor velocities and displacements are shown in Figures 2.15(a) and (b). The relative
response is evaluated from the adjusted absolute response, see Figures 2.12 and 2.13, using
Eq. 2.11.

Table 2.3 shows the peak superstructure response in terms of relative floor accelerations,
velocities and displacements. Observation of Figures 2.14 and 2.15 and Table 2.3 shows that
the motion amplitude increases as we move towards the upper floors; the relative response
of the first floor in terms of acceleration /velocity /displacement is smaller in amplitude than
the relative response of the second floor and so on. This result is in line with the theory;

for such a small event the superstructure is expected to respond in the linear range and



a b
) Test 9 relative accelerations (st floor) ) Test 9 relative accelerations (2nd floor)
0.5 ac]z;v,ruw(v_a;bx,mw(v 7 0.5 a Z:l.v,row(t)_ a;bx,row(t) b
o u?/ljls,adj(t)_(xzbs,adj(t) o a;;ls,adj(t)_ a;bs,adj(z)
= =
E: E
2 ® g 0 &
o o
= 2
= =
1 =
td=3.962sec : td=4. 083sec
—0.5[ % ‘ ‘ ‘ % ] 0.5 % ‘ sl
0 1 2 3 4 0 1 2 3 4
t [sec] t [sec]

Test 9 relative accelerations (roof)

65

abs,row abs,row ,,, |
g _q4bs.
2l ) =att oy
abs,adj abs,adj
- —a
ad)—a 9y
e
3
Q
Q
N ®
o
2
=
E
t d:4.133sec
—05[# ‘ ‘ ‘ matll
1 2 3 4

t [sec]

Figure 2.14: Relative accelerations at the Augusta superstructure under test 9 at first floor,
second floor and roof; sub-plots a), b), c) respectively. The relative response is evaluated
from the adjusted absolute response, see Figures 2.12, using Eq. 2.11. The raw signals are
represented by red lines while the baseline fitted signals are shown by black lines. The times
when motion starts and ceases are indicated by black markers. The motion duration is longer
at the upper floors.

following the first mode. However classical modal analysis is not applicable in the case of
isolated systems, since the damping matrix is non-classical. Non classical damping results to
coupling of modes. The presence of a frequency other than the structural frequency is clear
at the velocity and displacement traces shown in Figure 2.15. The zero reference velocity
line seems to be distorted by a long period wave. This becomes more clear once the velocity

is integrated to produce displacements. Two periods can be read from the displacement



66

Test 9 relative velocities Test 9 baseline fitted displacements
8 ‘ w 0.2 w w :
: abs,adj ;,\__ . abs,adj 1.80 sec
6r +10.14 sec Vlﬂ ® Vg @] :
: abs,adj ;,\___ abs,adj 0.1r:
. 4 VZﬂ ® Vg (t)— ,g : 1.30 sec
® : bs,adj ;- abs,adj :
Z, eyl | Bl AN
= 2
2 0 ~ —&- 88— 5
o 2 01
= b s abs,adj abs,adj
% g —02 — Uy O |
: ] ’ __ absadj,,_ absadj
: | z Uy (O=U (Y
: 03 bs,adj bs,adj .\
0 1 2 3 4 0 1 2 3 4
a) t [sec] b) t [sec]

Figure 2.15: Relative velocities and displacements at the Augusta superstructure under test
9; sub-plots a) and b) respectively. The relative response is evaluated from the adjusted
absolute response, see Figures 2.13, using Eq. 2.11. The times when motion starts and
ceases are indicated by markers. The relative motion starts at the same time at all floors,
however it ends somewhat later at the upper floors.

Table 2.3: Peak relative superstructure response for the free vibration test 9 (ug = 10.1cm).

The relative response is evaluated from the adjusted absolute response using Eq. 2.11.
First column: component considered. Second column: peak relative acceleration response.
Third column: peak relative velocity response. Fourth column: peak relative displacement
response (within brackets the same displacement after application of a low cut filter with
corner frequency f. = 0.30Hz). Fifth column: motion duration.

Test 9: peak relative to the base response
floor  accelerationlg] wvelocity[em/sec] displacement[cm] tq[sec]

first 0.345 3.384 0.129 (0.125)  3.962
second 0.391 5.348 0.208 (0.206)  4.083
third 0.420 6.075 0.278 (0.283)  4.133

diagram : a diminishing long period that can be attributed to the isolation system and
a shorter period, observed easily also in the velocity trace, that can be attributed to the
superstructure.

A proper simulation of the system response would require the evaluation of complex

modes. The real motion deriving from the combination of one mode and its conjugate does
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Figure 2.16: Investigation of the effect of motion duration on the first floor relative displace-
ment under test 9. The start time of relative motion is equal to ¢; = 0. Three end times are
considered: t, = 3.962sec that is the end time of the absolute first floor acceleration motion,
ty + 0.1sec = 4.062sec and ty + 0.5sec = 4.462sec. The effect of the motion duration on the
generated displacements becomes obvious after the 1sec of motion.

not preserve the shape in time. In fact, the relative floor displacements seem reach their
maximum value at the same instant; however they cross zero at different times, see Figure
2.15 (b). Although the obtained relative response seems to be reasonable and justified by
the theory of non classically damped systems, special concerns arise for the reliability of the
obtained response, especially relative displacements. As it has been mentioned before, low
amplitude records are suspectible for low signal to noise ratios. Moreover, low frequency
noise is amplified with integration. For this reason, the need for further correction of the
relative displacements is investigated.

Figure 2.16 shows the effect of time duration on the relative displacement of the first
floor, which was evaluated as the difference between absolute first floor and ground floor
displacements. Small changes in the time duration of the relative motion have drastic im-
pact on the shape of the generated displacements after lsec of motion. Figure 2.17 (b)

shows the superstructure displacements after application of a low cut filter, with corner
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Figure 2.17: Investigation of the effect of low cut filtering on the relative displacements at
the Augusta superstructure during test 9. (a) Relative displacements evaluated from the
adjusted absolute response using Eq. 2.11. (b) Relative displacements of sub-plot (a) after
application of a low cut filter. The corner frequency is chosen equal to f. = 0.30H z.

frequency of f. = 0.30Hz. The filtering was performed in MATLAB using a digital filter
with finite-duration impulse response (FIR) [55]. f. = 0.30Hz is a reasonable choice for
the corner frequency since it is distant enough from the lowest frequency of interest; for the
Augusta isolated building the fundamental frequency is greater than 0.50H z(1.95sec). The
fundamental frequency can be read from the FAS of the acceleration records (see Chapter
1, Figure 1.17). The filtered response seems more familiar since it resembles the response of
classically damped systems responding in their linear range.

Filtering causes distortion of the signal versus the very end of motion [49]. The ringing
of the filtered motion occurs because of the change of the signal from a non zero to a zero
value at time t;. The violation of the end conditions caused by filtering is adjusted by re-
fitting the displacements according to the baseline scheme proposed herein. The practice
of filtering a posteriori the relative displacements results to incompatible relative response
data, i.e. double integration of the relative accelerations does no longer provide the desired
relative displacements.

Unfortunately, the floor displacements were not measured during the tests; hence, one
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Table 2.4: Start, end times and duration of the relative floor accelerations for free vibration
test 9. First column: acceleration record considered. Second and third columns: Start and
end times t; and t; of the main event, evaluated according to the procedure presented in
section 2.3. Fourth column: duration of strong motion, t; = t; — t;. The relative motion
duration as evaluated previously, on the basis of the fitted absolute response, is given within
brackets. Fifth and sixth columns: thresholds ¢; and &, used for the identification of times
tl and t2.

component  ty[sec] tasec]  tq =ty —ti[sec] e1[%] ,[%)]
first floor 1014.087 1018.150  4.063 (3.962) 2 0.60
second floor 1014.087 1018.170  4.083 (4.083) 2 1.20
roof 1014.087 1018.210  4.123 (4.133) 2 0.20

cannot conclude that the displacements of Figure 2.17 (a) are more reliable than the displace-
ments of Figure 2.17 (b). However, the peak relative response at the time interval [0, 1]sec,
where the motion is still relatively strong, is not influenced by filtering or the integration

interval; implying that the peak relative response can be recovered with confidence.

2.6.2 Estimation of the relative superstructure response from the

processing of the raw relative motion

In the previous paragraph the relative superstructure response was generated indirectly,
from the adjusted absolute response, applying Eq. 2.11. Herein the relative response is
evaluated directly, from the baseline fitting of the raw relative records. Table 2.4 provides
information on the start and end times, t; and t,, and the duration, t,;, of the relative
acceleration records for test 9. The start times ¢; are estimated from the corresponding
cumulative squared acceleration diagrams, see section 2.3. The motion starts when the time
derivative of C'SA,,(t) becomes greater than the selected threshold ey, that is equal to 2%
for all the signals considered. The end times ¢, are defined on the basis of the unprocessed
relative velocities. The raw signals are integrated to provide the unprocessed velocities and

straight lines are fitted in the interval [1020, 1030], where the velocities show a clear linear
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trend. The lines are extended to time ¢;. The distance between each velocity curve and the
corresponding linear velocity trend is calculated and normalized to the peak relative velocity.
The motion is considered to have stopped when this distance, d,, becomes smaller than a
threshold ,. The chosen values for ¢, vary from 0.20 — 1.20%.

The results of Table 2.4 show that the relative motion starts simultaneously at time
t; = 1014.087sec at all floors. t; = 1014.087sec is the time when the base starts moving, see
Table 2.1. The fact that the relative motion results initiating at the same time at all floors
can be attributed to the way the raw relative motion is evaluated. The raw relative signals
are evaluated subtracting the ground floor record from the upper floor records, therefore
the effect of the ground floor record is felt when evaluating ¢;. The vibration stops at
to = 1018.15sec at the first floor and somewhat later at the upper floors. As a result, the
duration of strong motion is longer for the relative signals of the upper floors of the isolated
building. The duration of the relative motion is given in the fourth column of Table 2.4. In
the same column and within brackets, the duration of the relative motion as evaluated from
the absolute motions, is provided. The two methods provide very similar motion durations
tq. One result cannot be preferred over the other since, as seen in the previous paragraphs,
there is a lot of subjectivity in the selection of the thresholds and the determination of the
end times of strong motion. Herein, the thresholds for the estimation of the end times were
selected small enough to reassure conservative estimates of ts.

The adjusted relative accelerations and velocities for the Augusta superstructure are
shown in Figures 2.18, left plots and right plots respectively. Figures 2.18 demonstrate that
the relative accelerations and velocities are identical, whichever way calculated. The baseline
fitted relative response (dashed lines) is plotted together with the relative response evaluated
from the fitted absolute response (continuous lines). The adjusted relative displacements are
shown in Figures 2.19. Figures 2.19 show that the two methods lead to the same relative
displacements in the beginning of motion (0, 1)sec; however after 1sec of motion they provide
different results. While the differences are small for the displacements of the first and second

floor, they are significant for the roof displacements. This is probably due to the different time
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durations considered by the two methods and the accumulation of low frequency noise with
numerical integration. Another interesting observation is that once the relative displacements
are low cut filtered at f. = 0.30H z they become essentially the same, see Figure 2.19. This
result confirms the need for further fitting (filtering) of the displacements.

Figure 2.20 shows the inter-story drift histories for the Augusta free vibration test 9, as
evaluated from the adjusted absolute response and the adjusted relative response; sub-plots
a) and b) respectively. The peak drift values occur in the time range (0, 1)sec and are the
same, whichever the method of evaluation. As expected, the drifts are greater at the lower
stories, that are generally subject to greater shear forces.

It should be noted that the maximum drift is 0.03%, substantially less than the 0.33%
limit prescribed in the national specifications under the damage limit state [45]. The experi-
ments were conducted on a finished structure; hence they were performed at low amplitudes
to ensure that non-structural and structural components were not damaged during testing.

Tables 2.5 to 2.7 show the peak relative to the base response, as estimated from the
processing of the raw relative signals. The corresponding peak response obtained from the
processing of the absolute signals is also reported in brackets. It can be seen how the two
methods used for the recovery of the relative response provide essentially the same peak floor
accelerations, velocities, displacements and drifts. This results enforces the reliability of the
method proposed for the processing of raw absolute and relative acceleration signals and the

generation of meaningful velocities, displacements and drifts.
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Table 2.5: Peak relative to the base superstructure response for the free vibration test 9
(up = 10.1em). The relative response is evaluated directly from the baseline fitting of the
raw relative motion. The corresponding peak response evaluated from the fitted absolute
response is given within brackets. First column: component considered. Second column:
peak relative acceleration response. Third column: peak relative velocity response. Fourth

column: motion duration.

peak relative response

floor  accelerationlg] wvelocity[em/sec] ta[sec]

First  0.345 (0.345)  3.402 (3.384) _ 4.063 (3.962)
second  0.391 (0.391)  5.396 (5.348)  4.083 (4.083)
third 0420 (0.420)  6.287 (6.075)  4.123 (4.133)

Test 9 relative accel. (baseline fitted)  Test 9 relative vel. (baseline fitted
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Figure 2.18: Relative floor accelerations and velocities for the Augusta free vibration test 9,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The rela-
tive response was fitted to zero at the beginning and end of motion, since the superstructure
was expected to respond in the linear range under such a small excitation (ug = 10.11cm).
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Table 2.6: Peak relative to the base displacements for the free vibration test 9 (ug = 10.1cm).
The relative response is evaluated directly from the baseline fitting of the raw relative motion.
The corresponding peak response evaluated from the fitted absolute response is given within
brackets. First column: component considered. Second column: peak relative displacement
response. Third column: peak relative displacement after application of a low cut filter with
fe=030Hz.

peak relative response

floor  displacement[cm]  filtered displacement|cm]
first 0.130 (0.129) 0.126 (0.125)
second  0.211 (0.208) 0.207 (0.206)
third  0.290 (0.278) 0.281 (0.283)

Test 9 relative displ. (baseline fitted)

baseline fitted+LC filtered (fc =0.3Hz)
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Figure 2.19: Relative floor displacement histories for the Augusta free vibration test 9, as
evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements were fitted to
zero at the beginning and end of motion, since the superstructure was expected to respond in
the linear range under such a small excitation (ug = 10.11cm). The right sub-plots represent
the same displacements after implementation of a high pass filter with corner frequency
fe=0.30Hz.
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Table 2.7: Peak inter-story drifts for the free vibration test 9 (up = 10.1cm). The corre-
sponding peak drifts evaluated from the fitted absolute response are given within brackets.
First column: component considered. Second column: peak inter-story drifts. Thirf column:
peak inter-story drifts evaluated from the filtered relative displacements.

peak relative response

floor — drift[107]

filtered drift[-1077]

First  0.306 (0.302)
second 0.260 (0.249)
third  0.242 (0.305)

0.295 (0.295)
0.255 (0.254)
0.226 (0.236)
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Figure 2.20: Inter-story drift histories for the Augusta free vibration test 9, as evaluated from
the adjusted absolute response (continuous black lines) and the adjusted relative response
(dashed red lines). The left sub-plots represent the drifts evaluated from the baseline fitted
relative displacements, see Figure 2.19 left sub-plots, while the right sub-plots represent the
drifts evaluated from the filtered relative displacements, see Figure 2.19 right sub-plots. The
drifts are zero at the beginning and end of motion.
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2.7 Signal processing for the full set of the available free
vibration records

The baseline fitting scheme implemented in the previous paragraphs for the adjustment of
the absolute and relative response observed in the Augusta building during test 9, is re-
peated for the adjustment of the full set of available records °. Due to space limitations,
the baseline fitted response for the full set of dynamic tests (absolute and relative accel-
erations/velocities /displacements and inter-story drifts) and the parameters needed for the
implementation of signal processing scheme (thresholds, intervals of strong motion, etc.) are
not shown herein but instead in Appendix A.

Table 2.8 provides basic information on the generated, baseline fitted, displacements
such as the initial and residual displacements uy and wu,.s, the duration of strong motion ¢4
(evaluated according to section 2.3) and the distance between experimental and generated
displacement curves e? (evaluated according to Eq. 2.10). Figures 2.21 and 2.22 show the
matching between measured and generated displacements.

Figures 2.23 show the peak absolute response of the Augusta building during tests 1-
3-4-5-6-8-9-10, in terms of floor accelerations, velocities and displacements. Figures 2.24
show the peak relative displacement response and the peak inter-story drifts of the Augusta
superstructure during the performed tests. The illustrated relative displacements, were first
baseline fitted and then high passed filtered with a FIR filter of corner frequency that varied
from 0.25Hz (test 1) to 0.30Hz (tests 3-4-5-6-8-9-10). The processing of the full set of
raw relative motions showed that the filtering of the relative displacements is essential for
the generation of meaningful responses, see Appendix A. Raw relative motions are of small
amplitude and are suspectible of low signal-to-noise ratios; therefore there is the need for

the removal of the low frequency noise even after the baseline adjustment, since the noise

5These would be the longitudinal records of the base, first, second and roof floor, namely the acceleration
components obtained from the Augusta free vibration tests 1,3,4,5,6,8,9 and 10: components GFL-25X-
TESTNUMBER, 1FL-25X-TESTNUMBER, 2FL-25X-TESTNUMBER, 3FL-X-TESTNUMBER
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Table 2.8: Information on the processed ground floor displacements for all the dynamic tests
performed on the Augusta building. First column: test number. Second and third columns:
Initial and residual displacements uy and u,.s . Fourth column: duration of strong motion,
tq, as evaluated according to section 2.3. Fifth column: distance between experimental and
generated displacement curves, evaluated according to Eq. 2.10. The tests are presented in
order of increasing initial displacement.

Dynamic test uglcm] upes|cm]  tq[sec] €*[%)]

1 5.8 1.5 2205  0.04
3 6.8 0.6 2.867 0.04
4 6.8 1.3 2.880  0.10
10 10.0 1.8 3.961  0.03
9 10.1 1.7 3.913  0.06
8 10.3 0.8 4.035 0.09
D 10.9 1.7 3.228  0.05
6 11.7 1.9 4.023  0.01

can be amplified significantly at any stage of integration.

Observation of Figures 2.21 to 2.24 and Table 2.8 show that:

e The signal processing procedure proposed herein performs very satisfactorily for the
whole set of experimental data, providing a very good match between predicted and

measured displacements.

e The method can account for initial and end conditions, reassuring that the acceleration
and velocity is zero at the beginning and end of motion. Moreover, it can recover

permanent displacements, given that the latter have been measured.

e Although there is some subjectivity involved in the estimation of the times when the
motion starts and ceases, the selection of reasonable time intervals for the strong motion
provides meaningful results (velocities, displacements, drifts) that are in line with

theoretical expectations.

e Tests with higher initial displacement have longer duration; more time is needed for

the damping of stronger motions.
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e Tests with higher energy input produce greater response, i.e. absolute and relative

accelerations/velocities/ displacements and inter-story drifts.

e The absolute floor response, in terms of velocities and displacements, varies very little
from floor to floor, implying almost a rigid superstructure response. In fact seismic
isolation is a risk mitigation design technique that protects the structure from vibra-

tions.

e The absolute floor accelerations are quite different; with the peak ground accelerations
being always greater than the upper floor accelerations. The spikes observed in all the
ground floor records could be attributed to a wave propagation phenomenon; as soon
as the building is released the wave travels from the ground floor to the roof while
attenuating with distance At the beginning of the test responds only the mass of the

ground floor..

e Residual displacements vary from 0.60 — 1.9¢cm. The magnitude of residual displace-
ments is independent of the magnitude of the initial displacement. Tests with higher

ug do not necessarily lead to higher residual displacements ..

e Tests 3 and 8 followed two unsuccessful release tests (tests 2 and 7) and there is evidence
that the building was not recentered before repetition of the tests. This explains why
tests 3 and 8 provide response which are not that similar to the responses obtained

from tests of similar strain amplitude.

e The relative superstructure response is small but not negligible. The superstructure
response in terms of relative to the base displacements resembles the first mode response
of multi-storey buildings responding in their linear range. In fact, for such a small
input the superstructure is expected to respond in the linear range. The relative
displacements are higher at the top floors, while the story drifts are higher at the base

floor (where the shear is more important).
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Figure 2.21: Comparison of measured and predicted displacements for the Augusta free
vibration tests 1,3,4 and 5, sub-plots (a) to (d) respectively. All plots have the same scale
to facilitate comparisons. The initial and residual displacements, uq, .5, are also provided
in the figures. The distance between the two displacement traces, €2, in the time range of
the main event is given in the legend. e? is calculated from Eq. 2.10.
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Figure 2.22: Comparison of measured and predicted displacements for the Augusta free
vibration tests 6,8,9 and 10, sub-plots (a) to (d) respectively. All plots have the same scale
to facilitate comparisons. The initial and residual displacements, uq, .5, are also provided
in the figures. The distance between the two displacement traces, €2, in the time range of
the main event is given in the legend. e? is calculated from Eq. 2.10.
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Figure 2.23: Peak absolute response of the Augusta building for tests 1,3,4,5,6,8,9 and 10, in
terms of floor accelerations, velocities and displacements; sub-plots (a), (b) and (c) respec-
tively. The initial displacements of the dynamic tests were (test,ug):(1, 5.8cm), (3, 6.8cm), (4,
6.8cm), (5, 10.9cm), (6, 11.7cm),(8, 10.3cm),(9, 10.1cm),(10, 10cm).
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Figure 2.24: Peak relative displacement response and inter-story drifts of the Augusta build-
ing for tests 1,3,4,5,6,8,9 and 10; sub-plots (a) and (b) respectively. The initial displace-
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2.8 Conclusions

A simple baseline fitting scheme is proposed herein for the processing of the strong motion
data obtained from the Augusta free vibration tests. The method provides reliable results,
without requiring significant computational effort. One main advantage of the method is
the fact that it accounts for initial and end conditions. The method can recover permanent
displacements, given that the latter have been measured. The baseline fitting procedure
proposed makes use of polynomials of increasing order for the correction of the distorted
acceleration, velocity and displacement baselines. The polynomial coefficients are determined
directly from the boundary conditions; namely the initial and end accelerations, velocities
and displacements. It is clear at this point that implementation of the method requires that
the initial and residual displacements are available. The processing of the recorded data is
performed in the time interval (¢;,¢5), where the motion is essential. The start time of the
strong motion, t; , is evaluated on the basis of the cumulative squared acceleration diagram;
t; is the time when CSA starts growing rapidly. The end time t5 is selected as the time
when the raw velocity trace starts to show a linear trend. The linear velocity trend is an
indication of the presence of post-event noise; the noise causes a shift in the acceleration
baseline which translates to a linear error in the velocity history. Although there is always
subjectivity in the selection of the start and end times of motion, reasonable estimates of
the strong motion duration lead to reasonable velocities and displacements.

The baseline scheme developed was applied for the processing of the absolute and relative
acceleration signals obtained from the full Augusta data-set. The adjusted response included
absolute and relative floor velocities, displacements and inter-story drifts. The generation of
reasonable floor velocities, displacements and story drifts is of utmost importance, since this
is structural information that is not measured during the experiments but is essential for
the assessment of the building structural performance. The relative displacements and drifts
were evaluated in two ways: (i) subtracting the adjusted ground floor response from the

adjusted upper floor response and (ii) processing the raw relative motions. The implemen-
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tation of methodologies (i) and (ii) provided identical relative accelerations and velocities.
However, the two methods yielded different relative displacements. The differences were
more pronounced in the second half period of motion, where the signal amplitude was sig-
nificantly small and probably the noise was predominant. In fact, once high pass filtered,
the displacements and drifts obtained from the two methods became identical, enforcing this

way the reliability of the method.
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Chapter 3

Structural identification from

experimental data

This chapter summarizes recent developments in the system identification of base isolated
structures using free vibration records. System identification is a very useful engineering
practice that permits the assessment of the overall building state. For instance, in the spe-
cial case of seismically isolated structures, it can serve for the detection of changes in the
properties of the isolators and the superstructure. These changes could be due to manufac-
turing and installation imperfections, ageing, damage during earthquake etc. Earthquake
response data, if available, can be also used for the dynamic identification of isolated struc-
tures |56].

Earlier work consisted in the identification of the Solarino isolation system using free
vibration tests performed on one of the buildings in 2004 [41, 43, 57]. The identification
was performed initially by means of the Least Squares Method [41] and subsequently using
Evolution Strategies [43, 57|. The system response was generated using an analytical model
developed for the problem at hand [41|. The bi-linear model was used for the description of
the HDRB, while different friction models were considered for the description of the LFSB.

Nevertheless, the complexity of the friction model was found to have no significant influence
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Task: minimize an objective function (fitness function, loss
function) in continuous domain

[ XCR' SR, x = f(x)
Black Box scenario (direct search scenario)

l

gradients are not available or not useful
problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

Search costs: number of function evaluations

Figure 3.1: Black box optimization - problem statement (figure reproduced from [61]).

on the identification results |43]. However, an improvement of the HDRB model, the tri-
linear model, provided better identification results [43, 44]. A study on the performance of
several Evolution Strategies on the ‘toy problem’; a basic identification problem specifically
designed for HBIS, showed that the Covariance Matrix Adaptation - ES is the most effective
for the problem at hand |43, 58].

3.1 Covariance Matrix Adaptation Evolution Strategy
(CMA-ES)

The Covariance Matrix Adaptation - ES (CMA-ES) is a state-of-the evolutionary algorithm
for difficult non-linear, non-convex optimization problems in continuous domain [42|. CMA-
ES is highly competitive and should be implemented to unconstrained or bounded constraint
optimization problems where derivative based methods, such as the quasi-Newton method,
fail to provide solution [59]. The method was developed by Hansen in 1996 [60|; the problem
statement is described in Figure 3.1.

Such as in any evolution strategy, in CMA-ES, new candidate solutions are sampled
according to a multivariate normal distribution in the R". Pairwise dependencies between
the variables in this distribution are represented by the covariance matrix. The candidate

solutions (offspring) x; are evaluated on the objective function f : R™ — R to be minimized.
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Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6

Figure 3.2: Illustrative application of the CMA-ES on a simple two-dimensional problem.
The spherical optimization landscape is depicted with solid lines of equal f-values. The dots
represent the offspring (population/candidate solutions) while the dotted lines represent the
distribution of the population. Over the generations the distribution is evolved in order
to provide better solutions. (The figure is reproduced from https://en.wikipedia.org/
wiki/CMA-ES.)

A weighted combination of the p best out of A new candidate solutions is used to update the
distribution parameters ((p, A\) CMA-ES). Each iteration includes sampling of new solutions,
re-ordering of the sampled solutions based on their fitness and update of the internal state
variables based on the re-ordered samples. Over the generation sequence, individuals with

better and better f-values are generated, see Figure 3.2. The five state variables are:

e m € R", the distribution mean and current favourite solution to the optimization
problem,

e 0 € RN, the step-size that controls the step length

e C, a symmetric and positive definite n x n covariance matrix that determines the shape
of the distribution ellipsoid

® p,,pc € N”, the evolution paths (i.e. the sequence of successive steps the strategy

takes over a number of generations [42]).
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The basic steps for the (@, \) CMA-ES algorithm are:

e Input: me R", o € Ry, A

e Initialize: C =1, p. =0,p, = 0.
Set: ¢, m 4/n,cy & 4/n,c1 & 2/n% ¢, & /02 e+ e < 1,dy = 1+ \/(jw/n) , and
w; = 1,...A such that u, =1/ iw? ~ 0.3\
w; where @ = 1, ..u are recombf;elxtion weights, c¢1, ¢, ¢o, Cc, ¢, are learning rates for the
update of the covariance matrix and the step size and d, is a damping parameter used
for step-size update.

e While the termination criteria are not met:

— x; =m+ oy, yi ~ N;(0,C) , for i = 1,..., A (sampling)

1 p
— M Y wixpy = M+ 0yy where yy = > w;y;., (update mean)

=1 =1

— update the evolution paths pc, p,'

m
— C< (1 —c1 —¢,)C+c1PePy + iy Wiyinyiy (update the covariance matrix)
i=1

— 00X ewp(;—:(% — 1)) (update the step-size)

The search is terminated when:

e the maximum number of iterations, MaxlIter, is reached (default MaxIter — 10% % (N +
5)2/1/(\), and/or

e the variable change is smaller than the tolerance TolX (default TolX = 10~ xmaz(0(0))),
and /or

e the variable change is greater than the tolerance TolUpX (default TolUpX = 103 x
max(o(0))), and/or

e the function values change less than TolFun (default TolFun = 107'? ), and/or

e the function values are smaller than the tolerance TolHistFun (default TolHistFun —

1071%), and/or

'the equations for the update of the evolution paths are not reported herein since they are rather
cumbersome, but can be found in [42]
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e the fitness stagnates for a long time.

As stated by Hansen in [59], the CMA-ES does not require a tedious parameter tuning
for its application. The default strategy parameters are usually the optimal ones, since
the algorithm is designed to perform well as it is. For the application of the CMA-ES the
user should set an initial solution, an initial standard deviation (step-size) and possibly the
termination criteria. Increasing the population size A usually improves the global search
capacity and the robustness of the method at the price of a reduced convergence speed
[59, 42]. The authors suggest the users to perform independent Darts of the problem with

increasing population size.
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3.2 Laboratory data

Two series of acceptance tests were performed on the isolators used in the Augusta building,
one for the rubber bearings and another for the sliding bearings. The tests were performed
in the FIP S.p.a. laboratories, under the supervision of an accredited third party from
the Construction Materials Testing Laboratory, University of Padova. The laboratory data
are used herein for the identification of the static and dynamic properties of the rubber
bearings under controlled conditions. The identified model parameters shall serve in the
following identifications attempts for the establishment of a search domain where the system

parameters are expected to be.

3.2.1 Evolution of the Italian seismic regulations

Before 2003, the Italian building code, established in 1974, was based on allowable stress
design and left two thirds of the Italian territory without seismic provisions [62]. The 2002
Mwb.7 earthquake in Molise, Southern Italy, triggered the process for the revision of the
existing regulations and the establishment of new seismic ones. The new provisions were
inspired by Eurocode 8 and introduced new criteria for the seismic zonation, probabilistic
definition of the ground motion, smoothed elastic and design response spectra, site amplifica-
tion factors and design rules for the implementation of innovative technologies, such as base
isolation, for the seismic design of new and existing structures [62|. The seismic provisions
OPCM 3274 and successively the OPCM 3431, issued in 2003 and 2005 respectively, were
the passage from the old generation to the new generation of seismic codes, i.e. from the
working stress design to the performance based design of structures. The new code NTC08
was published in 2008 and became obligatory on July 2009. The Ministry of Infrastructures
approved NTC14 in 14/11/14 but the regulations have not yet come into force. NTC14 is
similar to the existing NTCO08 and is in line with the European Norms. This latest Italian
code will introduce simplification procedures for the design and will allow the reduction of

seismic actions for existing structures.
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3.2.2 Current testing protocol for isolation hardware

In 2009 the European Committee for Standardization (CEN) issued a draft of the Norm EN
15129 on anti-seismic devices. On August 1st, 2011, EN 15129 came officially into force in
the European Union, replacing existing national specifications. The EN 15129 covers the
design, manufacturing, testing and validation of the existing seismic hardware (rigid connec-
tion devices, displacement dependent devices, velocity dependent devices and isolators) [14].
The Norm is performance oriented, prescribing no failure and damage limitation require-
ments for the isolation devices under the Ultimate and Service Limit States respectively
(ULS,SLS). EN 15129 prescribes a testing protocol for the manufacturers and accredited
third parties. Manufacturers are responsible for the establishment and maintenance of a
permanent factory production control to ensure that their products are in line with the EN
15129 performance specifications. The factory production control testing is equivalent to the
qualification procedure testing prescribed in earlier Italian standards [45, 63|. The Notified
Body is responsible for a peer review testing for the assessment of the performances of the
anti-seismic device and approval of the factory production control testing, performed previ-
ously by the manufacturer. The peer testing is equivalent to the acceptance tests prescribed
by the Ttalian Standards [45, 63]. There is an on going revision of EN 15129 expected to be
completed by 2016 [64].

3.2.3 Earlier testing protocol for isolation hardare

On October 2009, FIP S.p.a. performed two series of acceptance tests on the isolators used
in the Augusta building, one for the rubber bearings and another for the sliding bearings.
The tests were performed in conformity with the national specifications OPCM 3431 [63].

The testing protocol prescribed by the Italian norm would be however in line with the later

!The tests were performed in the FIP S.p.a. laboratories, under the supervision of an accredited third
party from the Construction Materials Testing Laboratory, University of Padova.
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European norm EN 15129. A brief outline of the qualification and acceptance tests on rubber

and friction isolators as required by OPCM 3431 is given below.

3.2.3.1 Rubber bearing testing according to OPCM 3431

The qualification tests should be performed at least on four bearings. Before testing two

bearings should be exposed to artificial ageing (21 days under 70°C'). The qualification tests

include:

® N o o

. Compression tests for the evaluation of the vertical stiffness K, between 30% and 100%

of the design vertical load.

. Combined compression and shear tests (cyclic sinusoidal loading) for the evaluation

of the static shear modulus G. G is evaluated from the third cycle data as following:

G = 7(at 0.58te)—7(at 0.27t.)

0580, —0.2700) where 7 is the shear stress and ¢, the total rubber thickness.

Combined compression and shear tests (cyclic sinusoidal loading) for the determina-
tion of the dynamic shear modulus Gyg;, and equivalent damping ratio £ at frequency
0.50H z. G, is evaluated from the third cycle data as follows: Gy, = ;v = Z—f where
Fis the horizontal load acting on the bearing, A is the area of the bearing and d = t,
the maximum displacement. Gy;, should lie in the range 0.35 — 1.40M Pa.

Combined compression and shear tests (cyclic sinusoidal loading) for the determination
of the G — v relation at shear strain amplitudes v = 0.05 — 0.3 — 0.5 — 0.7 — 1.0 — 2.

Creep tests.

Horizontal displacement capacity tests.

Repeated cyclic loading tests for the assessment of the stability of the shear properties.

Shear bond tests at shear strain v > 2.5.

The acceptance tests on the isolation devices are performed with the same methodology

used for the qualification tests. The acceptance tests must be performed on at least 20% of

the devices and in any case on not less than 4 and not more than the total number of the

devices to be used on site. The bearings are considered acceptable whenever they satisfy



92

the requirements specified below and the static shear modulus G does not differ more than

+10% from the value obtained from the qualification tests.

1. The external geometry must satisfy the prescriptions of the standards on rubber bear-
ings.

2. For isolators taller than 100mm the height tolerance is 6mm.

3. The static vertical stiffness should be evaluated between 30% and 100% of the vertical
load.

4. The static shear modulus G, or alternatively, the dynamic shear modulus Gy;,, should
be evaluated by the same methodology adopted for the qualification tests. The deter-
mination of the dynamic shear modulus G, is preferred, since it provides information
on the actual dynamic behaviour of the device.

5. The effectiveness of the steel-rubber adhesion should be assessed by the same method-
ology used for the qualification tests but adopting the value corresponding to the ULS

design displacement dy for the strain ~.

Four elastomeric bearings used in the Augusta building were tested for the evaluation of
the vertical stiffness and the static and dynamic lateral characteristics. The values of the
vertical stiffness obtained were (1167, 1316, 1566, 1299)k N /mm, significantly higher than the
required value K, > 800K, = 800 - 1.05 = 840kN/mm. The bearings were subjected in
combined compression and shear tests in couples (double shear test), see Figure 3.3. The
cyclic tests were performed at a peak shear strain v = 1. The static stress-strain curve for
the first couple of isolators is shown in Figure 3.4 (a). The average static shear modulus
of the couple of isolators tested was evaluated from the third cycle data as described above
and resulted equal to 0.48MPa. This value corresponds to the tangent shear modulus; the
manufacturer also calculated the secant shear modulus at v = 1, this was equal to 0.65M Pa.
The tangent shear modulus for the second couple of isolators tested was 0.51M Pa, while the
secant shear modulus was 0.69M Pa. The bearings were also subjected to cyclic loading at

a frequency of 0.5H z for the evaluation of the dynamic shear modulus Gy, at v = 1. From
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Figure 3.3: Testing apparatus for double shear testing; photos (a) and (b). The figures are
reproduced from the FIP product catalogue.
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Figure 3.4: Load-displacement curves obtained from the shear testing of two HDRBs at
d = 150mm(y = 1). Sub-plot (a) corresponds to a static test while sub-plot (b) corresponds
to a dynamic test at frequency f = 0.50H z. The isolators were tested in parallel, hence the
force measured was twice the force acting on each bearing. The figures are reproduced from
the corresponding report on acceptance testing [65].

the load-displacement curve shown in Figure 3.4(b) the manufacturer evaluated the secant
stiffness K, = 1.0kN/mm at v = 1 and the energy dissipated in the cycle W; = 21,097.J.
From the above values the dynamic shear modulus Gy, = 0.77M Pa and the damping ratio
& = 14.8% were derived. From the test performed on the second couple of isolators, not
shown herein, the following parameters were evaluated:

K, = 1.05kN/mm, Wy = 22,588.J, Gain = 0.81M Pa, £, = 15%.
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Figure 3.5: Load history and load-displacement curves for two HDRBs during adhesion
test at displacement dy = 300mm; sub-plots (a) and (b). The two isolators were tested in
parallel, hence the force measured was twice the force acting on each bearing. The figures
are reproduced from manufacturer’s report on acceptance testing|65].

The shear bond tests were performed in couples on all isolators, typical curves are shown

in Figures 3.5.

3.2.3.2 Friction bearing testing according to OPCM 3431

Following the prescriptions of OPCM 3431, the qualification tests for friction bearings should

be performed at least on two friction elements and include:

1. Combined compression-shear tests for the evaluation of the static coefficient of friction

at three loads, V,,in, V and V,,,.. V is the vertical load obtained in the seismic design

situation. V,in, Viner are the minimum and maximum values of the vertical load V.

. Combined compression-shear tests for the evaluation of the sliding coefficient of friction

at Viin, V and V.. The loading should be performed at three velocities (frequencies)

equal to the design one and varied by £30%.

. Repeated cyclic test for the assessment of the lateral displacement capacity of the

friction slider at minimum displacement amplitude d = 1.2d; (the bearing should be

able to perform at least 10 cycles with amplitude d = 1.2d,).

The acceptance tests on the friction devices are performed with the same methodology

used for the qualification tests. The acceptance tests must be performed at least on 20% of
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the devices and in any case on not less than 4 and not more than the total number of the
devices to be used on site. The devices are considered acceptable whenever they satisfy the

requirements specified below.

1. The external geometry must satisfy the prescriptions of the standards on structural
bearings.
2. The static coefficient of friction under constant pressure should be evaluated by the

same procedure adopted in qualification tests.

One couple of each of the three types of sliding bearings used in the Augusta building
was tested simultaneously for the evaluation of the friction coefficient. The tests were per-
formed at a velocity of 4mm/min and at 0.5V,,4, 0.75V,0e and V.. The results for the
predominant type of LFSB (VM 150/600/600) are shown in Figure 3.6. The start-up friction
coefficient for the isolator considered varies from a maximum of 0.3% (under 0.5V},4,) to a
minimum of 0.15% (under V,,,,). The sliding friction coefficient ranges from a maximum of
0.15% to a minimum 0.08%. Such exceptionally low values of the friction coefficient are due
to the lubrication of the PTFE and, in the case of the sliding friction coefficient, to the very

low testing velocity.
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Figure 3.6: Friction coefficient for the sliding isolators VM 150/600/600 at load 0.5V},4z,
0.75Vmae and V4., where V.. is the maximum vertical load acting on the slider. The
acceptance tests were performed at velocity 4mm/min. The figure is reproduced from the
manufacturer’s report on acceptance testing [66].
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3.3 Model parameter identification from laboratory

data

The static and dynamic force displacement curves obtained from the acceptance tests per-
formed on two couples of the Augusta elastomeric bearings and presented in the previous

section shall be used herein for the identification of the rubber bearing model parameters.

3.3.1 Isolators models

A bi-linear model is adopted for the description of the HDRB constitutive behaviour; this
model is used commonly in research and engineering practice for the description of the non-
linearity of the rubber bearings |1|. Three parameters are needed for the definition of the
bi-linear model: the elastic stiffness kg, the post-elastic stiffness k; and the characteristic
strength @, Figure 3.7(a). For the description of the LFSB the Coulomb friction model is
considered, 3.7(b). Although there are three types of LFSB present in the HBIS of Augusta,
they are all assigned for simplicity the same coefficient of friction. Hence only one parameter
defines the friction model, the coefficient of friction 1 = Fjyo/N, where Fyq is the friction
force and N is the axial load acting on the friction bearings.

The mechanical equivalents for the bi-linear and the Coulomb friction model are also
shown in Figures 3.7. The bi-linear system is represented by two elastic springs, characterized
by stiffnesses k. = ko and ky, = kok1/(ko — k1), and a plastic slider characterized by the
yielding force F,, = () + kyu, (where wu, is the yield displacement). During the elastic phases
the spring k. is deforming, while the spring kj, stays still (|F)| < F, = Q + kju,). As soon as
|F,| = I, the system enters the yielding/ plastic/ post-elastic phase; during the plastic phase
both springs deform and the overall stiffness of the system in series equals k;. The Coulomb
friction model can be interpreted as a plastic slider. While |Fy| < Fjy the element remains
blocked (stop phase); as soon as |Fy| = Fyo the element starts moving (sliding phase). The

friction force in the Coulomb model is a function of the friction coefficient and the sign of
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Figure 3.7: (a) and (b) Load - displacement constitutive model describing the non-linear
behaviour of the HDRB and the LFSB.

the sliding velocity. The model is based on the assumption of constant friction coefficent;
hence while it describes very well the friction force in the sliding phase of motion, it does
not model properly the friction force during the stop phases. According to Constantinou et
al. the stick-slip phenomenon can only occur when there is a natural variation in the friction
force [6]. More elaborate models should be used for the proper modelling of the stick-slip
motion, such as the Stribeck model [67|. For the problem at hand this is not a critical
issue, since the friction bearings selected are not expected to contribute essentially to energy
dissipation. The VM pot bearings series produced by FIP Industriale are characterized
by low sliding coefficients of friction and are used primarily as structural bearings for the
support of vertical loads.

The restoring force developed in the rubber bearings is given in Eqs 3.1(a) and (b) while

the resisting force developed in the friction sliders is given in Eq. 3.1 (c).
Fo(u,u) = kolu — u; — uysign(a)] + ki[u; + uysign(a)] (HDRB : elastic branch) (3.1a)
Fo(u,t) = kouysign(i) + ki[u — u,sign(i)] (HDRB : plastic branch) (3.1b)

Fy(sign(u)) = Frosign(i) = (uN)sign(u) (LFSB) (3.1¢)
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where u, = Q)/(ko — k1) is the yielding displacement and w; is the initial displacement at

the beginning of each elastic branch.

3.3.2 Lab data identification

The identification of the properties of the HDRB on the basis of the lab tests provided by the
manufacturer is performed using the CMA-ES. The system parameter vector to be identified
includes the properties (ko, k1, Q) of the bi-linear model describing the rubber bearings. For
each set of candidate solutions the force-displacement curve is produced according to the
constitutive laws of the the considered model (F, — u)sm, see Figure 3.7(a), and compared

to the experimental curve (F, —u)ezp. The fitness function to be minimized is defined below:

F= 1A= AVAP 4 (e = VTN 4 [y~ 1)/ 4 [l — 12 )/8] T (32)

where A I7 IV I7, are the area and second moments of area of the experimental restoring
force-displacement curve (F,—)eyp, and A, I, Iy, I, are the corresponding quantities from
the model (F, — u) .

The objective is to find a bi-linear model that dissipates equal energies with the bearing.
The minimum value attained by Equation 3.2 provides an optimal set of parameters for each
test. The identified mechanical properties of the Augusta HDRBs under static and dynamic
conditions are given in Table 3.1. The identification results show that the properties of
the HDRB under static conditions are significantly lower than the corresponding properties
under dynamic conditions (65% for ko, 17% for k; and 28% for Q).

The identified bi-linear models are shown against the experimental F-u curves in Figures
3.8 and 3.9. From observation of the figures it becomes clear that while the identification
of the tangent stiffness k; and the characteristic strength @ is quite straight forward, the

identification of the elastic stiffness kg is not so. In common practice, kq is selected by visual

inspection in order to get an energy fit of the experimental loop [1].
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Table 3.1: Mechanical properties of the rubber bearings identified from the third cycle force-
displacement curves obtained from static and dynamic lab tests performed at v = 1. The
identification problem was solved using the CMA-ES. The CMA-ES was ran 10 times on
each identification problem. The optimal solution is shown herein. First row: lab test id.
Second row: number of identification runs that the solution was repeated over the total
number of identification runs performed. Third row: identified elastic stiffness kq. Fourth
row: identified post-elastic stiffness k;. Fifth row: identified characteristic strength Q). Fifth
row: fitness function value (error) corresponding to the optimal solution.

Static test 1 Static test 2 Dynamic test 1 Dynamic test 2

(7/10) (9/10) (9/10) (9/10)

ko (kN/m) 3509 3521 5413 6199

ki (EN/m) 658 708 802 847
Q(kN) 27 28 37 40
error 1.7F — 06 1.3F — 06 3.4F — 06 3.2FE — 06

3.3.2.1 Uniqueness of the optimal solution

The results of Table 3.1 show that the optimal solution is not unique; not all identification
runs lead to the same solution. This fact implies that the CMA-ES provides a local rather
than a global minimum of the objective function. Indeed, in most real applications the search
for the global optimum is not feasible. Table 3.2 shows the identified mechanical properties
of the rubber bearings obtained from the ten identification runs on the F'—wu data available
from the first static lab test. Runs 1,2,3 provide an unrealistic bi-linear system with negative
stiffness and/or characteristic strength and are therefore disregarded. However these results
show that even an unphysical system can be local minimum for the objective function. Figure
3.10 shows the comparison between the experimental and identified static F'—u loops relative
to the first set of HDRB tested. Both the unphysical and physical systems, obtained by the
identification runs 1,3 and 4-10 respectively (see Table 3.2), provide F'—u curves that match

satisfactorily the experimental curve.
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Figure 3.8: Experimental and identified static force-displacement curves for the two sets
of bearings tested, sub-plots (a) and (b). The experimental curves are shown in red while
the identified bilinear curves are shown in black. The values of the identified characteristic
strength (in £NV) and the elastic and post-elastic stiffness (in kN/mm) are also shown.
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Figure 3.9: Experimental and identified dynamic force-displacement curves for the two sets
of bearings tested, sub-plots (a) and (b). The experimental curves are shown in red while
the identified bilinear curves are shown in black. The values of the identified characteristic

strength (in kV) and the elastic and post-elastic stiffness (in kN/mm) are also shown.
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Table 3.2: Identified bilinear parameters for the first set of rubber bearings tested statically
at v = 1. The identification problem was solved 10 times using the CMA-ES. The parameters
obtained from each identification run are shown herein. First row: identification run. Second
row: identified elastic stiffness kg. Third row: identified post-elastic stiffness k;. Fourth row:
identified characteristic strength ). Fifth row: fitness function value (error) corresponding
to the optimal solution.

Static test 1  Runs 1,3 Run 2 Runs 4 to 10

ko (kNJm)  -2202 746 3500

k1 (kN /m) 694 2108 658

Q (kN) 27 400 27

error 1.7 —-06 1.7E — 06 1.7E — 06

150 Augusta RB, STATIC LAB TEST 1 150 Augusta RB, STATIC LAB TEST 1

F [kN]
F [kN]

100 100

—experimental —experimental

50

—identified from runs 1,3 —identified from runs 4 to 10

200 150 - 150 200 | -200 -150 - A 150 200

(a) 150 (b) -150

Figure 3.10: Experimental and identified F' — u curves, corresponding to the first set of
HDRBs tested statically (v = 1).The bilinear curves shown in sub-plots (a) and (b) were
obtained from the identification runs 1,3 and 4-10 respectively.
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3.4 Identification of the isolation system properties

from the Augusta free vibration data
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Figure 3.11: Rigid superstructure isolation model and fixed flexible superstructure model
used in the two stage identification of the Augusta HBIS and the Augusta superstructure
respectively; sub-plots (a) and (b).

The free vibration response obtained from the signal processing of the Augusta records,
is used herein for the assessment of the properties of the isolated structure under dynamic
excitation. The identification is performed in two stages. At the first stage the non-linear
properties of the isolation system are identified; for this reason a simple one degree of freedom
model is considered, see Figure 3.11(a). The flexibility of the superstructure is disregarded
at this point. At the second stage the properties of the superstructure in the linear response
range are identified. The superstructure response is simulated by means of a linear discrete
model, fixed at the base. The superstructure is excited with the acceleration a,(t) developed
at the non-linear isolation system, see Figure 3.11(b). The one way identification of the whole
isolated structure using a more detailed model would provide probably better (more realistic)
results. However this would lead to a considerable increase of the problem dimension and
consequently of the computational effort involved. Considering the increased time required
for the numerical response simulation of a more sophisticate candidate solution (~ 2min)

b

together with the increased number of offspring (A > 10) and the considerable high number of
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Figure 3.12: The physical model: (a) initial configuration, (b) deformed configuration during
earthquake motion, and (c¢) rest configuration after the earthquake motion ceases.

iterations performed per run (~ 250), the waiting time for a single identification run results
excessively long. In fact, identification attempts on HBIS characterized by a larger set of
properties showed that the waiting times per run could result of the order of a working week
|68]. These times are clearly unacceptable where limited computer resources are available.
The mechanical model considered for the identification of the Augusta HBIS is shown
in Figure 3.12. The bi-linear spring and the viscous damper account for the HDRB, while
the plastic slider accounts for friction in the LESB. All HDRBs are of one class and hence
are expected to have the same properties. The same coefficient of friction is assigned to all
the LFSBs. Therefore, the system parameter vector to be identified consists in: the mass of
the ‘rigid’ structure (m), the properties of the bi-linear spring (ko, k1, @), the coefficient of
friction of the sliders (u) and the damping ratio relative to linear viscous damper (¢). The

equation of motion for the one degree of freedom model shown in Figure 3.12 is:
mily + ¢ty + Fe(up, ) + Fr(sign(iy)) = p(t) (3.3)

Eq. 3.3 shows how the external load p(t) is balanced by the inertia force acting on the
mass m, the resisting force in the linear viscous damper, the restoring force in the bi-linear
spring F, and the friction force in the slider F;. In the case of free vibration p(¢) = 0. The
expressions for F, and F; have been already provided in Eqgs 3.1. The restoring force in
the bi-linear spring F, takes different forms according to whether the system experiences an
elastic phase of motion or a plastic one. The dynamic response of a hybrid base isolation

system is thus governed by successive phases of elastic and yielding behaviour, each phase
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described by a linear ordinary differential equation. In the case of free vibration a closed form
solution can be provided in a sequential manner for each phase of motion . The analytic free
vibration response solution can be extended to earthquake excitation, or forced vibration in
general. Given the discrete nature of the sampled strong motion, the input excitation can be
assumed to have a linear variation within the time step. Then, assuming that the properties
of the system do not change within the time step, the analytic solution can be rearranged
properly, see Eq. 3.4. A more detailed description of the solution algorithm can be found in

[16].

up(t) = uc(t) + wep + up(t) (3.4)

where u(t) is the displacement of the HBIS, wu.(t) is the solution of the homogeneous equa-
tion, u., is a particular solution associated to plastic and friction terms and wu,(t) is the
particular solution associated to the linear load. The time ¢ varies from #(7) to ¢(i) + At,
where At the duration of the ¢ — th step. The system may come to a rest any time that the

static equilibrium is satisfied:

Fe(ub = Ur,l.tb = O) + Ff(ub = 0) = O, where ]Ff(ub = O)| S Ffo (35)

where u, is the residual displacement, Fig. 3.12 (c).

3.4.1 Fitness function for the identification of the Augusta

isolation system

The optimization problem for the identification of the Augusta HBIS is formulated as the

minimization of the following functional:

3FL i T(,i 3FL /- < NT (i .
Z Upyyy — U Upyyy — U Z Uy — U Uy — U,
f ( exp b) ( exrp b) ( EeExTp b) ( exp b) (36)

i=GFL (Uéwp) g (uééﬂp) i=GFL (uzezp) r (uzezp)
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where u/, . !, is the experimental free vibration absolute displacement/velocity at the
1 —th floor and wy, 1y is the corresponding simulated response for the model shown in Figure
3.12. The experimental displacements and velocities at all floors are taken into account
in the definition of the fitness function, since the identified rigid model should provide a
response that matches the overall building response. The rigid superstructure response was
simulated for each candidate solution S = [m, ko, k1, @, 11, (] using the analytical algorithm
described briefly above. The CMA-ES was ran 10 times on each set of free vibration data
available. The population size A was doubled in each restart of the algorithm. The remaining
CMA-ES strategy parameters (maximum number of iterations and tolerance, see section 3.1)
were set to their default value, which is also the optimal one according to the developers

[59]. The identification was performed in a bounded search space to avoid the occurrence of

non-physical solutions.

3.4.2 Identified HBIS models and discussion

The eight HBIS identified from the eight free vibration tests are shown in Table 3.3 together
with the start point and the search space considered. The mass identified is the total mass
of the building at test conditions. The HDRB properties obtained refer to a single bearing -
all rubber bearings were assumed to have the same properties. The identified coefficient of
friction p should be multiplied by the vertical load N acting on the friction devices to provide
the total friction force Fyy = N developed in the friction elements during sliding. N was
estimated to be equal to 13,900k N under test conditions; this estimate was made considering
vertical loads 750kN, 900kN, 25kN acting on the friction bearings VM 200/600/600 , VM
150,/600/600 and VM 25/600/600 . The initial guess for the system parameter vector S was
made on the basis of the available data. The mass m was set equal to 2,000tons, somewhat
smaller than the building mass m = 2,400tons provided from the structural designer for the

finished building. The properties of the HDRB (ko, k1, Q) were set equal to the average of the

2N = (4% 750 + 12 % 900 + 4 * 25)kN = 13,900k N
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corresponding values obtained from the identification of the laboratory dynamic hysteresis
loops, see Table 3.1. A conservative guess was made for the friction coefficient, assuming
i = 0.50%. The damping ratio for the linear viscous damper, which together with the bi-
linear spring describes the HDRB, was set initially equal to a small value { = 1%. The search
space for the (ko, k1, Q) was established on the basis of the corresponding static and dynamic
properties identified from the available acceptance tests, see Table 3.1. The lower bounds for
(ko, k1, Q) were obtained varying the static lab properties (kg, k1, Q) by approximately —30%,
while the upper bounds are obtained varying the the corresponding dynamic lab properties by
approximately +20%. The lower bound for kg was further decreased to 2000k N/m since the
first identification attempts showed a tendency of the elastic stiffness to take very low values.
The search space for the building mass was set to [1500,2400]tons. The bounds provided
for the friction coefficient and the damping ratio were [0,4]% and [0, 5]% respectively. The
upper bound 4% for p is also the upper limit prescribed by the Italian seismic code for
friction devices [63|. Table 3.3 gives also the fitness function values (errors) corresponding to
each identified (optimal) solution and the number of times the solution was repeated. The
fitness function values were evaluated according to Eq. 3.6. Some basic statistics on the data
obtained from the identification are provided in the last rows of Table 3.3 (mean, standard
deviation and coefficient of variation of the identified model properties).

Observation of Table 3.3 shows how:

e All tests have been identified successfully leading to optimal solutions with very small
errors (< 10%). The validity of the findings is demonstrated by the fact that indepen-
dent runs of the CMA-ES with increasing population size lead almost always to the
same solution, see last column of Table 3.3.

e The optimal solution is not unique, corresponding to a local rather than a global
minimum of the inverse problem. Hansen in [59] states that ‘the objective of searching
for a global optimum is neither feasible nor relevant in practice’. The repeatability of

the optimal solution is a measure of the reliability of the output.
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Table 3.3: Identified Augusta HBIS from the free vibration data of tests 1,3,4,5,6,8,9 and
10. First row: identified HBIS mechanical properties and error corresponding to the op-
timal solution. The number of times the solution was repeated over the total number or
identification runs performed is given within brackets. Second row: start point of the iden-
tification run. Third and fourth rows: lower and upper bounds provided for the bounded
search. Fifth to twelfth row: identified system parameter vector for tests 1 to 10. The tests
are organized in terms of increasing strain amplitude. Thirteenth to fifteenth row: average,

standard deviation and coefficient of variation of the identified properties.

m(tons) ko(kN/m) ki(kN/m) Q(kN) u(%) ¢(%) error

start point 2000 2806 825 38.5 0.5 1

lower bound 1500 2000 600 25 0 0

upper bound 2400 7000 1000 50 5.0 2.0

fest 1 (7 =0.39) 2226 3269 700 588 077 0 0.064 (2
test 3 (y=0.45) 2326 2794 834 291 096 0 0042 (6)
test 4 (v = 0.45) 2282 2728 683 31.6 0.83 0 0.052 (8)
test 10 (y = 0.67) 2400 2127 600 39.5 1.15 0 0.053 (10)
test 9 (v = 0.67) 2400 2116 600 40.2 1.13 0 0.049 (10)
test 8 (y = 0.69) 2373 2013 701 348 130 0 0.043 (3)
test 5 (v =0.73) 2387 2093 616 41.8 1.23 0 0.042 (9)
test 6 (y = 0.78) 2400 2041 600 44.0 1.33 0 0.054 (10)
avg 2349 2398 667 36.2 1.09 0

st.d. 66 470 82 5.9 0.21 0

c.ov. (%) 3 20 12 6 20 0

The mass of the rigid block was identified with values close to the upper bound
2,400tons, i.e. the mass value provided from the structural designer for the finished
building. The building mass was the model property identified with the highest cer-
tainty (coefficient of variation equals 3%).

The damping coefficient was identified with zero value in all identification runs per-
formed, implying that there is no need for consideration of a pure viscous element -
the hysteretic (bi-linear) model alone can describe satisfactorily the Augusta HBIS free
vibration response at the low strain amplitude range.

The properties of the HBIS change when different dynamic input (free vibration mo-
tion) is considered. This implies that (kg, k1, @, i) are strain dependent.

Tests 3 and 4 were tests of equal energy input; however their identification leads to two
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very different systems. The optimal solution obtained from test 4 seems to be more
realistic in terms of post-yielding stiffness ki, since it is in line with the values obtained
from the remaining tests. Moreover the optimal solution provided by the identification
of test 4 was repeated more times (8 out of 10) compared to the solution of test 3 that
was repeated 6 times out of 10.

e The identification of test 8 yielded the same optimal solution only twice. This fact
together with the fact that the identified properties for test 8 are significantly different
in terms of post-yielding stiffness and coefficient of friction than those provided by
tests 5,9 and 10 which were of similar energy input, raises doubts on the validity of
the obtained solution. In fact, tests 3 and 8 followed the unsuccessful release tests
2 and 7, see for instance Figure 3.13. There is evidence that the structure was not
recentered after the failed released tests. Moreover, it was documented that the residual
displacement for test 8 was of the order of 12mm. The records were not corrected to
account for residual displacements; in fact the residual displacement reported in tests 3
and 8 are rather small compared to the ones documented for tests of similar amplitude,

see Figures 1.12 and 1.13.

2000

test 7 (no release)
| —test 8 (test 7 repeated)

1500

1000

F [kN]

5001

d [cm]

Figure 3.13: Force displacement curves for tests 7 and 8. There was no release under test
7. The test was repeated successfully afterwards (test 8). However the building was no
re-centered before the test was repeated.
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e Test 1 was the first of a series of release tests. The stiffening effect observed in Test
1 could be also due to Mullin’s effect [69]. Mullins observed that rubber samples that
softened over numerous cycles of stretching recovered their initial mechanical properties
over time and noted that recovery of stiffness was accelerated and more complete at
high temperatures. The remaining tests were performed within a short time, hence
there is little change that the initial stiffness observed in Test 1 was recovered.

e The identified elastic stiffness varies from 2041 to 3269kN/m. These values are ap-
proximately one third of the corresponding elastic stiffness under dynamic conditions
and almost two thirds of the corresponding elastic stiffness under static conditions. It
can be argued however that the lab tests were performed under controlled conditions
and refer to a strain amplitude v = 1, so a fair comparison is not straight-forward.
Moreover, while k1 is a property which can be selected straightforwardly Additionally,
ko defines the stiffness under two separate modes of behaviour - the initial stiffness
when the bearing is first loaded and the unloading stiffness after a displacement peak
has been reached |[1].

e ky varies from a maximum of 700kN/m for test 1 (v = 0.39) to a minimum of
600K N/mm for tests 9,10 and 6 (y = 0.67 — 0.78). *

e The characteristic strength ) varies from 28.8 K'N for test 1 (v = 0.39) to 44.0kN for
test 6 (y = 0.78).

e Summarizing, ko and k; show a decreasing trend with increasing strain amplitude
implying a reduction of the effective stiffness at higher displacements. () instead tends
to take greater values under higher amplitudes of motion. These results are typical
of the cyclic behaviour of HDRB, see Figure 3.14. The hysteresis loops provided by
the HDRB are not stable, the characteristic strength tends to increase at higher strain

amplitudes, while the secant and tangent stiffnesses become softer *. The identified

3The results of test 3 provide even higher values for k;, however for the reasons mentioned above, these
results are unreliable.
4These observations are not valid however for v > 2.5 — 3 where the rubber shows stiffening behavior
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force-displacement loops for tests 1, 4, 5, 6 and 9 are shown in Figure 3.15.

e The identified friction coefficients vary from 0.77 — 1.33% and are significantly higher
than those established from the manufacturer on the basis of acceptance tests, see Fig-
ure 3.6. However there are three points to be raised: (i) the friction force-displacement
curves provided by the manufacturer correspond to lab testing performed at very low
velocities (v = 4mm/min < 0.lmm/sec i.e. static conditions), while the velocities
experienced during the experiments were significantly higher (~ 150mm/sec). Several
recent experimental studies have demonstrated the dependence of the sliding coeffi-
cient of friction on the velocity amplitude, air temperature, apparent pressure, lubri-
cation and number of cycles [6, 21]. Dolce et al. performed more than 300 tests on
un-lubricated and lubricated steel-PTFE interfaces. Their experimental findings on lu-
bricated steel-PTFE interfaces, provided u = 1—2.5% for sliding velocities of the order
of 150mm/sec and pressure p = 9.38 — 21 M Pa(Figure 10 in |21]). They also observed
that the dependence of 1 on velocity is smaller in lubricated interfaces than in the case
of un-lubricated interfaces. (ii) The manufacturer at their relative product site states
that the friction elements VM are structural elements characterized of low dissipation
capacity, with sliding coefficient of friction of the order of 1%. °. (iii) The identification
of another building isolated at the base by means of a similar HBIS from free vibration
tests (Solarino building) yielded similar values for the friction coefficients, of the order

of 1% [41].

Shttp://www.fipindustriale.it/index.php?area=106&menu=69&1ingua=1
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Figure 3.14: Typical hysteresis loops of HDRB at different strain amplitudes (the figure is
reproduced from the manufacturer’s catalogue).
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Figure 3.15: Hysteresis loops for the Augusta HDRB as obtained from the identification of
tests 1,4,5,6 and 9.
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3.4.3 Further discussion on the identified HBIS

The identified HBIS model properties can be used for the evaluation of the effective stiffness
and period, kcsg, Tery, the periods Ty, T relative to the elastic and yielding phase, the fre-
quencies fe¢f, fo, f1, the yield displacement D,, the energy dissipated per cycle by the rubber
and sliding bearings WAP and W5P and the equivalent damping ratios (.4, see expressions
3.7.(ko, k1, Q) refer to the single rubber bearing; for the evaluation of the isolation system
periods, energies, damping ratios all 16 HDRBs used in the Augusta isolation system should

be considered.

(3.7a)
(3.7b)
(3.7¢)
16
WiP =Y 4Q(D - D,), W5P = 4uND, (3.7d)
i=1
WEB WSB
RB D SB D
€q = 16 ’ Seq = 16 ) (376)
z QWkeffD2 Z27TkeffD2
i=1 i=1
Ceq =GP + G (3.71)

The properties estimated from Eqs 3.7 are shown in Table 3.4. The results of the table

show how:

e The ratios ko/k; tend to be essentially small varying between a minimum of 3.3 (test 6,
v = 0.78) to a maximum of 4.7 (test 1, v = 0.39). The identification of the static and
dynamic lab loops provided ratios ko/k; that are significantly larger (5 — 7). Naeim
and Kelly in [1] provide ratios ko/k; for typical HDRB equal to 3 and 6. In the light of

the soft elastic stiffness kg identified by the Augusta tests, it was already discussed how
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Table 3.4: Mechanical properties evaluated from the identified model parameters of the
Augusta HBIS. First row: test number. Second row: strain amplitude. Third row: displace-
ment amplitude. Fourth row: yield displacement. Fifth row: Elastic to post-elastic stiffness
ratio. Sixth row: effective stifness of the HBIS. Seventh to ninth row: elastic, effective
and post-elastic periods. Tenth to twelfth rows: elastic, effective and post-elastic frequen-
cies. Thirteenth and fourteenth rows: energy dissipated per cycle by the rubber and friction
devices. Fifteenth to seventeenth rows: equivalent damping ratios for the rubber, friction
bearings and the overall HBIS. Eighteenth row: ratio of the equivalent damping ratios at ~
and at v = 1. Nineteenth row: ratio of the effective stiffness at v and at v = 1. The results
of tests 3 and 8 are also presented, however they are probably unreliable, for the reasons
mentioned above.

test 1 test 3 test / test 10 test 9 test 8 testdH test 6

v=D/t. 039 045 045 067 067 069 073  0.78
D 5.8 6.8 6.8 10 101 103 109  11.7  (cm)
D, 1.1 1.5 1.5 2.6 2.7 27 2.8 0.0305 (cm)
ko/k1 4.7 3.3 4.0 3.5 3.5 2.9 3.4 3.4 (kN/m)
keps 1197 1262 1148 995 998 1040 1000 976  (kN/m)
Ty 130 143 144 167 167 144 168 170  (sec)
T.ty 214 213 221 244 244 237 243 25  (sec)
T 2.80 262 287 314 314 287 3.09 314 (sec)
fo 0.77 070 070 060 060 0.59 060 059 (Hz)
fery 047 047 045 041 041 042 041 041 (Hz)
fi 036 038 035 032 032 035 032 032 (Hz)
Wik 86.2  99.0 106.3 187.4 191.7 170.5 2158 2434 (kN -
Wsb 24.7 362 314 641 636 747 746 867 (k

Iib 21.3 169 199 187 187 154 181 181 (%
gng 61 62 59 6.4 6.2 67 62 6.5 (%
Gtotal 274 230 258 251 249 221 243 246 (%
Ceg(7)/Cea(v = 1) 136 093 131 113 114 085 1.14  1.11

kerr(V)/kess(y=1) 118 080 1.10 103 1.03 065 1.0 1.0

the elastic stiffness is not a property with a clear physical interpretation, and therefore
how ko and consequently the ratio ky/k; are not easy to quantify.

e The effective stiffness k. varies from 900kN/m to 1197kN/m, and tends to decrease
with increasing displacement amplitude. This behavior is typical of HDRB. The iso-
lation system should provide the necessary rigidity to prevent displacements and vi-

brations under frequently occurring loads such as wind and minor earthquakes, and



116

moreover the necessary flexibility to prevent the transmission of earthquake forces to
the structure above a certain level [8].

The effective period T, ;¢ of the HBIS lies in the range 2.14 — 2.5sec and, as expected,
tends to be longer under stronger motion. The effective period of the system is less
than the period relative to the elastic phases, T, and smaller than the period relative
to the yielding phases, T}. Consequently fi; < ferr < fo.

The non-linear isolation system is not characterized by a single frequency; its bi-linear
idealization shows how the system response is controlled by kg in the elastic phases
and by kq in the yielding phases. The real period of the system will be somewhere in
between (Ty,T}). In fact, the fundamental period of the isolation system, as read from
the displacement diagrams (Table 1.2, section 1.3) are within the range (7p,7}) and
tend to be closer to the lower limit 7. The identification of only one yielding branch
and three elastic branches in the observed system response of test 9 might explain why
Ty dominates the system response, see Figure 3.21(a).

The energy dissipated per cycle of motion, Wp increases with increasing amplitude,
while the equivalent damping ratios are decreasing. This result is also confirmed in the
literature [1]. The energy dissipated by the rubber bearings, WA is in average three
times greater than the energy dissipated in the LFSBs, WEP. It should be highlighted
however, that the main contribution of the sliders should be that of supporting a
significant part of the weight of the superstructure and not dissipating energy. Given
the identified building mass m = 2,400tons, the weight carried by the LFSB results
equal to N/W = 13,900/(2,400 % 9.807) ~ 60% of the total weight of the building.

A brief comment should be included herein on the dependence of the equivalent damp-
ing ratio (., on the ratio of the elastic and post-elastic stifnesses o = ko/k1. Kelly and
Naeim in |1] proved that (., and moreover its maximum value, depends directly on the

ratio of the elastic and post-elastic stifnesses o = ko/ky, see Eq. 3.8.

200 y—1 D Q ko
= —————, where y= >1l,a= =——1 3.8a
T (y+a)y Y Yy k1D, ky ( )

Ceq
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Figure 3.16: Identified (.4(7)/Ceq(y = 1) and kepp(y)/kess(y = 1) ratios for the HDRB
used in the Augusta system (red points), sub-plots (a) and (b). In blue colour, typical
Ceq(V)/Ceq(y =1) - v and kepp(y)/kers(y = 1) - v curves for the HDRB produced by FIP, as
found in the manufacturer’s catalogue.
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+2+a) ™, at y=1+(1+a) (3.8b)

In fact the results of the table show that the smaller the kq/k; ratio, the smaller the
equivalent damping ratio.

e The last two rows of Table 3.4 provide the ratios of the identified equivalent damping
ratio and effective stiffness at strain amplitude v with respect to their corresponding
value at v = 1. (o(y = 1) = 18.1% and kesp(y = 1) = 1590kN/m, and are evaluated
from the extrapolation of the corresponding identified data at v = 1. Figures 3.16 show
the identified kesr(7)/kesr(v = 1) — 7, Ceq(7)/Ceq(y = 1) — 7 relations in comparison
to relative characteristic curves provided by the manufacturer in their catalogue. The
corresponding ratios for tests 3 and 8 are not included in the graphs. The identified
ratios Cerr(7)/Cerr(y = 1) are always above the curve proposed by FIP, while the
identified ratios kesr(7y)/kess(y = 1) are always below the corresponding curve by
FIP, indicating that the identified system is softer. The difference between suggested

and identified ratios is maximum 13%. Unfortunately, there is no feedback on how
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the curves were produced and to which elastomer they may refer, hence no further
conclusions can be drawn on how the identified rubber bearing properties at different

strain amplitudes compare to their expected values.

3.4.4 Matching of identified and experimental isolation system

response for test 9 and energy equilibrium

The displacement response of the identified HBIS under test 9 is shown against the measured
displacement in Figure 3.17. There is clearly a very good matching between experimental
and identified displacements traces. This result demonstrates how the unidirectional system
response of a symmetric isolation system can be successfully reproduced considering a simple
one degree of freedom model. The ground floor and roof displacements of the identified
rigid model are shown against the corresponding processed experimental displacements in
Figures 3.18. The matching between identified and experimental traces is always good,
however it appears that the identified system comes earlier to rest with a somewhat smaller
residual displacement (1.59c¢m instead of 1.66cm). The time when the system comes to
rest can be seen properly in the velocity and acceleration diagrams, see Figures 3.19 and
3.20. The identified system completes only one full cycle of motion due to energy dissipation
by the friction damper and the bi-linear spring. Clearly, the observed floor accelerations
are significantly different than the identified acceleration; the one degree of freedom rigid
superstructure model cannot capture the effect of any mode higher than the fundamental
isolation mode. However, the objective of the first stage identification was to find the non-
linear properties of the isolation system. The properties of the superstructure in the linear
response range are identified in the following.

The identified hysteretic loops for the rubber and friction devices are shown in Figure
3.21. Figure 3.21 (a) shows how the first branch of motion is characterized by an elastic
and a yielding phase, while the last two branches of motion are purely elastic. In fact,

slope discontinuities are visible in the acceleration history of the rigid model when there is a
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Figure 3.17: Comparison of experimental and identified deformation histories obtained from
the identification of test 9.

transition from elastic to yielding phase. Slope discontinuities are also visible in the simulated
velocity history every time that the velocity goes to zero and hence the friction force changes
sign. These velocity slope discontinuities translate into jumps in the acceleration response

history. The equation of motion 3.3 soon before and after the velocity drops to zero becomes:

mii, + F. + Frsignu, = 0and miy + F, — Fposignii, =0 (3.9)

Hence the acceleration jumps equals :

|Aub] = 2Ff0/m (310)

For test 9 the acceleration jump noticed in the acceleration plots 3.20 would be 0.013g.
When the system comes to a rest the resisting force in the rubber bearings F.(u,,0) =
—16 % 2.5 = —40kN is equilibrated by the force developed in the friction devices Fy(u, =
up, Uy = 0), with |Fy(u, = 0)] < Fpo = uN = 157kN.
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Figure 3.18: Comparison of experimental and identified displacement histories obtained from
the identification of test 9. The identified HBIS displacement response is shown in red colour
while the experimental ground floor and roof velocities are shown in blue colour; sub-plots

(a) and (b).
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Figure 3.19: Comparison of experimental and identified velocity histories obtained from the
identification of test 9. The identified HBIS velocity response is shown in red colour, while
the experimental ground floor and roof velocities are shown in blue colour; sub-plots (a) and

(b).
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Figure 3.20: Comparison of experimental and identified acceleration histories obtained from
the identification of test 9. The identified HBIS acceleration response is shown in red colour,
while the experimental ground floor and roof accelerations are shown in blue colour; sub-plots
(a) and (b).
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Figure 3.21: Hysteretic loops for the identified bi-linear model (HDRB) and the identified
Coulomb Friction model (LFSB) obtained from the identification of test 9; sub-plots (a) and

(b).
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To obtain the energy equilibrium, the equation of motion 3.3 is multiplied by an admis-

sible displacement du, and integrated in the time range (0,%), see Eqs 3.11.

/milbdub—l—/cubdub—i—/Fedub—l—/Ffdub /pdub (3.11a)

t t t t

t
/mﬂbﬂbd7+/Cubﬂde+/Feude+/Ffude: /pude (311b)
0 0 0 0 0

After making use of integration by parts the dynamic equilibrium 3.11 can be re-written

Ex(t)+ Es(t) + Eyvp(t) + Euprs(t) + Errss(t) = Es(0) + Eft (3.12a)
where (3.12Db)
Ex(t) = %mug(t) (3.12¢)
Es(t) = %F (ZZ ) %F" (ZZ ) (3.12d)
Eyp(t) = /cub(T)sz (3.12e)
ERB(t) = WEB(t) + Es(0) — Es(t) (3.12f)
WEP(E) = [ P, in)in(r)r (3.12¢)
E2B(t) = /Ff(sign(ub))ub(T)dT (3.12h)
Ey(t) = / p(7)in(T)dT (3.12i)

where Ex(t) is the kinetic energy of the system, Fg(t) is the stain energy stored in

the elastic springs used for the description of the elastomeric bearings, see Figure 3.7(a).
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Test 9: Energy equilibrium
E (0) ]

D
S

W
(e
|

Energy [kNm]

[}
()

N
S

(O8]
(e

E( (+Eg ()

0 0.5 1 1.5 2 2.5
t [sec]

Figure 3.22: Energy dissipation in the identified Augusta HBIS.

Eyvp(t), BEB(t), E2P(t) are the energies dissipated in the linear viscous damper, the bi-
linear spring and the friction slider respectively. F;(t) is the input energy; in the case of free
vibration this equals zero. F,, F} are the restoring forces developed in the elastic springs of
stiffness ke, kj, used in the representation of the HDRB, see Figure 3.7(a). More information
on the definition of Eg(t), EEB(t), E2B(t) and the resisting forces F., F}, can be found in [56,
70].

Figure 3.22 shows the history of the kinetic, strain energy and the energy dissipated in the
HBIS during the release test 9. The plot shows how the energy input initially to the system
(Es(0)), is transformed to kinetic (Ex(¢)) and strain energy (FEg(t)) and energy dissipated
by the rubber and friction bearings ( EEB(t), E2P(t)). Since the viscous damping obtained
from the identification of test 9 was zero, Eyp(t) = 0. The rubber bearings provide major
contribution to energy dissipation through their non-linear behavior, see Figure 3.21(a).
During elastic phases there is no energy dissipation in the HDRB, in fact elastic phases
are translated to constant lines in the energy plot. The friction bearings are also involved
in energy dissipation through their non-linear behavior, see Figure 3.21(b), although LFSB

were identified by a small coefficient of friction p ~ 1%. Increased dissipation in the sliders
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could result to the excitation of higher modes through their stick-slip behaviour; this being

an important disadvantage of sliding bearings |

36).

3.4.5 Matching of identified and experimental isolation system

response for tests 1,3,4,5,6,8 and 10

The response match in terms of HBIS displacement histories for the remaining tests identified

can be seen in Figures 3.23 to 3.24. The identified one degree-of-freedom isolation systems

provide displacement responses that match very satisfactorily the experimental ones. A trend

observed in the identified responses is that of coming to rest earlier than what indicated by

the experimental response, moreover with a smaller residual displacement than the observed

one (of the order of 10% or less). A possible explanation could be the following. While the

overall energy dissipated during the tests seems to be identified properly; a larger amount of

hysteretic energy seems to be attributed to friction devices (higher g, shortening of motion

duration) and a smaller one to the rubber bearings (smoother stiffness, smaller residual

test 3
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Figure 3.23: Comparison of experimental and identified HBIS displacements obtained from

the identification of tests 1 and 3; sub-plots (a)

and (b).
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3.5 Identification of the flexible superstructure

properties from the Augusta free vibration data
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| ’— test 9‘, input motio)p
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A @) Q) 0 1 2 3 4
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Figure 3.25: (a) Flexible superstructure model used for the identification of the Augusta
building and (b) input motion a,(t) = ii,(t) for the fixed model under test 9.

The Augusta superstructure was designed to respond elastically at excitations that do
not exceed the design level following the prescriptions of the Italian regulations [45, 63| °.
Therefore, it is reasonable to assume that the superstructure responded within the linear-
elastic range under the Augusta free vibration tests, since those were performed at very
low amplitudes to ensure no damage to the finished building [33]. For the purposes of the
identification, the superstructure is modeled as a viscously damped linear structural system
fixed at the base, see Figure 3.25(a) . The non-linear contribution of the isolation system
is considered indirectly, exciting the superstructure by the acceleration developed at the
isolation system i, (t). i,(t) is the absolute acceleration recorded at the ground floor, just

above the isolation system, during the experiments, see Figure 3.25(b).

6In terms of design spectrum, for reinforced concrete structures this implies a strength reduction factor
q=1.5.



127

The equation of motion for the linear superstructure model takes the following form:

Mgsiis + Cos s + Kosus = — M ¢ iip(t) (3.13)
my €11 Ci2 C13 ki ke ks

Mg, = mo ; Css = Cla o Coz |5 Kss= | ki koo kos (3-14)
ms3 C13 C23 (33 ki Koz ka3

where ul = [uy, ug, uz]” are the relative longitudinal displacements of the superstructure
(relative with respect to the base, see Figure 3.25(a). Mg, Css, K45 are the mass, damping
and stiffness matrices of the superstructure and 7 = [1,1,1]7 is the influence vector. M,
is a diagonal matrix, with the lumped floor masses m; (i = 1,2, 3) as diagonal entries, while
C,s and K, are full matrices, see Eq. 3.14.

Eq. 3.13 represents a coupled system of second order differential equations in which the
independent variable is the time ¢ and the dependent variables are the horizontal displace-
ments u,. If the damping is classical, i.e. if the modes are orthogonal with respect to the
system’s damping matrix (other than orthogonal with respect to the mass and stiffness ma-
trix), the equations of motion can be transformed to an uncoupled set of modal equations,
Eq. 3.15(a), |2]. Each modal equation is solved for the modal coordinate ¢, (t) applying any
known analytical or numerical method to determine the modal contributions to the response
Usn(t) = ¢Pnqn(t). The modal responses us,(t) are then combined to obtain the total
response u(t), Eq 3.15(b).

Qn(t) + 2wy Qn<t) + wrzz Qn<t) =-Iy ub(t) (n =1,2, 3) (3-153)
us(t) =Y b gu(t) (3.15b)

where ¢,, is the n—th mode of the undamped system and w,,, (, the corresponding modal

frequency and damping ratio.
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3.5.1 System parameter vector for the linear superstructure model

Eqs 3.15 imply that the model parameters required for the description of the superstructure

response are the following 18:

e 3 modal participation factors I'y, I's, I's;

3 modal periods T3, 15, T3;

3 modal damping ratios (i, (o, (3;

3 first mode components ¢11, ¢91, P31;

3 second mode components ¢1a, Poo, P39;

3 third mode components ¢13, a3, (P33.

However the essential model parameters required for the simulation of the system response

can be reduced to the following 12:

e 3 floor masses my, ma, Mms;
e 3 modal periods 17, Ts, T3;
e 3 modal damping ratios (y, (o2, (3;

e 3 first mode components ¢q1, ¢a1, O31.

In the reduced system parameter vector, the modal participation factors have been re-
placed by the floor masses, which physically are more meaningful and easily quantifiable .
Given the mass distribution and the mode shapes the modal participation factors can be

evaluated from the following expression:

M, $LM.bn (3.16)

The reduced system parameter vector includes only the first mode shape ¢1 = [b11, da1, ¢d31]7.

excluding the two higher modes @ = [d12, Po2, d32]T and L = [d13, Po3, ¢33]7. In fact,

"An interesting commentary on I',, can be found in [2]:T,, is usually referred to as a modal participation
factor, implying that it is a measure of the degree to which the n — th mode participates in the response.
This terminology is misleading, however, because I';, is not independent of how the mode is normalized, nor
a measure of the modal contribution to a response quantity ’.
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if @1 is known, ¢5 and ¢3 can be found solving the following constrained non-linear mini-

mization problem:

Minimize: fmzn = ¢{Mss¢2 + ¢§Mss¢3 + ¢§'Mss¢1 (317&)
subject to: ¢1 = P12 32 <0, o = P13¢P23 <0, 3= Pa3 P33 <0 (3.17b)
and: Ceq1 = ¢2 ss¢2 = 1 Ceq2 = ¢’§Ms¢3 =1 (317C>

The solution to the minimization problem described in Eqs 3.17 provides a set of mode
vectors which are orthonormal with respect to the mass matrix ((b;rMssqu = 0;;, where
i,j = 1,2,3). The inequality constraints, Eq. 3.17 (b), control the mode shape; for the
typical 3 degree-of-freedom uni-dimensional system considered herein, the first mode has no
nodes (all components have the same sign), the second mode has one node (one component
is of different sign) and the third mode has two nodes (two components are of different sign).

The constrained optimization problem is solved in MATLAB using the fmincon function.
The algorithm does not suffer from accuracy and stability issues. Extension of the algorithm
to higher dimension problems would require the establishment of more inequality constrains,
to ensure that the solution is reliable and unique. However this implies that the signs of the

modal components, i.e. essentially the node positions, are known.

3.5.2 Fitness function for the identification of the Augusta

superstructure model

The optimization problem for the identification of the Augusta superstructure was formulated

as the minimization of the following fitness function:

rel,i re K T . relyi s rel,t rel,: re K T oreli rel,i
Z f eaclp - : ) (uexlﬁ — " )dt Z f eacin - : ) (uexfz; — i ) dt
f== +° (3.18)
z Jacs ey dr z J iz iy dr
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rel,i urel,i

where ug", g

are the relative to the base i-floor velocity and acceleration histories
obtained from the processing of the Augusta free vibration records. "¢, ii"*"* are the corre-
sponding simulated relative velocity and acceleration histories. The relative superstructure
response was generated for each candidate system parameter vector S = [my, ma, ms, 11, T5,
T3, (1, o, (35 011, P21, ¢31] implementing classical modal superposition, Eqs 3.15. The optimal
solution is the solution providing floor velocities and accelerations which match the observed
ones. The reason why the relative displacements were not included in the fitness function Eq.
3.18 is some uncertainty on the reliability of the processed relative displacements, an issue
discussed in detail in Chapter 2 (Signal Processing). Another relevant point that should be
mentioned is that only the response in the first two seconds of motion was considered in the
evaluation of the fitness function. The observed relative free vibration response is damped
significantly after 2sec, thus little and probably meaningless information can be retrieved
from the last segment of motion.

The CMA-ES was ran 10 times on the free vibration data of tests 4,5,9 and 10. Test 1
was a test of a very small amplitude and hence was not considered herein. Tests 3 and 8
provided doubtful results in the identification of the HBIS and thus were not included in the
superstructure system identification ®. The population size was doubled in every restart of
the algorithm, while all remaining CMA-ES parameters were set to their default value. The
identification was performed in a bounded search space to ensure the occurrence of feasible
solutions. The start point and the search space considered are given in Table 3.5. An extra
parameter was added to the identification problem, i.e. the total superstructure mass ms.
The algorithm was restrained to look for solutions for which m, = m; + my + ms. This was
done by adding the penalty term (m, — m; — my — m3)*/m? to the fitness function f, Eq.

3.18.

8Tests 3 and 8 followed the unsuccessful release tests 2 and 7; the building was not recentered upon
repetition of 7, and probably was not recentered after upon repetition of test 2.
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Table 3.5: Start point and search space considered in the identification of the Augusta
superstructure model. First column: model parameters. Second column: initial point for
the identification. Third column: lower bound properties. Fourth column: upper bound
properties. The periods are expressed in sec, the corresponding frequency value in Hz is
given within brackets.

start value  lower bound upper bound

my (tons) 571 400 1390
my (tons) 571 400 1390
mg (tons) 248 175 1390
mg (tons) 1390 1180 1600
T, (sec)  0.15 (6.6 Hz) 0.10 (10 Hz) 1 (1 Hz)
Ty (sec) 0.07 (13 Hz) 0.05 (20 Hz) 1 (1 Hz)
T; (sec) 0.05 (20 Hz) 0.02 (50 Hz) 1 (1 Hz)
G (%) 1 0 10
G (%) 1 0 10
Gs (%) 1 0 10
0.014 0 1
b1 0.028 0 1
0.042 0 1

3.5.3 Identified Augusta superstructure models

The initial guess for the total mass was m, = 1,390tons, i.e. the superstructure mass for
the finished building as estimated by the structural designer. This mass was distributed
to the floors according to their areas, resulting to m; = my = 571tons for the two bot-
tom floors and mgz = 248tons for the appendix. The structural periods were estimated to
0.15sec, 0.07sec, 0.05sec (6.6Hz,13Hz,20H z in terms of frequencies); values corresponding
to the Fourier Amplitude Spectra peaks of the recorded accelerations, see Figures 1.17. The
modal damping ratio was taken 1% for all modes. The first mode shape was assumed to be
linearly increasing with height and was approximated to ¢1 = [0.014,0.028, 1] (the initial
guess for ¢p; was normalized so that the first modal mass takes unit value). The lower bounds
for the floor masses were 400tons for the first and second floor masses and 175tons for the
roof mass. The corresponding upper bound was 1,390tons for all m;. The superstructure

mass m, was allowed to vary +15% with respect to the design estimate 1,390tons. The lower
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bounds for T}, Ty, T3 were 0.1, 0.05,0.02sec (10, 20, 50H z) respectively. The upper bound was
lsec (1Hz) for all modal periods. Finally, the search space for the modal damping ratios
was [0, 10]%, while the search space for first modal components ¢;; was [0, 1].

The superstructure model parameters obtained from the identification of tests 4,5,6,9 and
10 are provided in Table 3.6. The mode shapes corresponding for the identified system are
shown in Figure 3.26. ¢, was obtained from the identification, while ¢4, ¢3 where evaluated
a posteriori from the solution of the minimization problem shown in Eq. 3.17. The identified
system vector reported herein corresponds to the optimal solution provided by the CMA-ES.
Asin the case of the identified HBIS, the solution provided by the CMA-ES is not unique; the
identification of different tests results to somewhat different systems. Moreover, independent
identification runs on the same set of data provide often different system parameter vectors.
The solution reported herein is the optimal solution, i.e. the one which corresponds to a
local minimum of the fitness function Eq. 3.18 and shows increased repeatability.

Observation of Table 3.6 and Figure 3.26 show that:

e The superstructure mass my, the two first modal periods 77,75 and the second modal
damping ratio (s are the identified properties with the lowest scatter. On the contrary,
the first and third damping ratios (; and (3 are the identified properties with the largest
scatter (> 20%).

e The identified superstructure mass seems to be somewhat larger than the one estimated

by the structural designer, approximately 7 — 15%.

e Tests 5, 6, 9 and 10, which are tests of similar amplitude, yield the same modal periods
(frequencies); with one exception however. T3 = 0.03sec (f3 = 33Hz) for test 10 and
T3 = 0.06sec (f; = 18H z) for the remaining tests. This is a very interesting output;
the Fourier Amplitude Spectra of the recorded accelerations, shown in Figures 1.17,
imply that there are essentially 4 structural frequencies. The model adapted herein is

a 3DOF model unable to catch more than three modal frequencies. Test 4, being a
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Table 3.6: Identified Augusta superstructure models. First column: model properties. Sec-
ond to sixth column: optimal solutions (system parameter vectors) obtained from the iden-
tification of tests 4,5,6,9 and 10. Herein, the modal shape ordinates are normalized so that
¢31 = 1 The tests are organized in terms of increasing amplitude (peak base floor acceleration-
PBA). Seventh to ninth column: statistics on the obtained properties (mean, standard de-
viation and coefficient of variation). The fitness value (error) corresponding to the optimal
solution is given in the last row of the table. The number of times the solution was repeated
over the total number of identification runs are given in the last row within brackets.

test 4 test 10 test 9 test 5 test 6 avg stdev  cov(%)
PBA(g) 0.329 0.363 0.374 0.419 0.425
my (tons) 710 400 667 690 784 650 146.5 23
my (tons) 544 840 536 466 446 567 158.7 28
ms (tons) 282 248 254 291 363 288 45.6 16
my (tons) 1544 1488 1459 1453 1594 1508 60.1 4
T, (sec) 0.26 0.27 0.27 0.27 0.27 0.27 0.00 1
Ty (sec) 0.08 0.09 0.09 0.09 0.09 0.09 0.00 2
Ts (sec) 0.05 0.03 0.06 0.06 0.06 0.05 0.01 22
fi (Hz) 3.9 3.7 3.7 3.8 3.7 3.77 0.05 1
fa (H2) 12.1 11.7 11.6 11.6 11.4 11.70 0.28
fs (Hz) 18.8 33.2 18.1 18.1 18.0 21.23 6.70 32
¢ (%) 1.1 1.8 3.2 4.2 2.5 0.03 0.01 46
G (%) 6.0 5.4 6.3 6.4 5.4 0.06 0.00 8
G (%) 1.8 4.0 2.5 2.7 2.4 0.03 0.01 30

0.446 0.471 0.452 0.456 0.467 0.456 0.01 2
o 0.471 0.724 0.812 0.817 0.821 0.798 0.04 5

1.0 1.0 1.0 1.0 1.0 1.0 0 0

error 0.0773/10) 0.081G/10)  0.067%/19  0.0636/10  (.063(6/10)

test of lower amplitude, resulted to somewhat smaller modal periods with respect to

tests 5,6, and 9.

e The first mode shapes identified from tests 4,5,6 and 9 are essentially the same, see
also Figure 3.27. Small variations are found in the second mode shapes of the identified
systems. These differences become larger in the third mode shapes. Once more test
10 is the test providing different results. The differences in the obtained mode shapes
can be attributed to the different mass distributions obtained from the identification

of the single tests, see Table 3.7. All tests but test 10 indicate a decrease of the mass
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Figure 3.26: Vibration mode shapes of the Augusta superstructure obtained from the iden-
tification of tests 4,5,6,9 and 10.

Table 3.7: Identified floor mass ratios m;/ms, where m; (i = 1,2,3) is the identified lumped
mass at floor-i and my the identified superstructure mass. The tests are ordered in terms of
increasing Peak Base floor Acceleration (PBA).

test 4 test 10 test 9 test b test 6

PBA(g) 0329 0.363 0.374 0419 0.425
my /m 046 027 046 047 0.49
ma,/m 035 056 037 032 028
ms,/m 0.18 0.7 017 020 0.23

(my + mg +m3)/ms  1.00 1.00 1.00 1.00 1.00

with the superstructure height : m; ~ 0.45mg, mo ~ 0.35m,, m3 ~ 0.20m,. The roof
lies at the top of the building and occupies a significant smaller area than any other
floor hence it is reasonable to be identified with the lowest mass, see building exterior
photo 1.1 . The second floor has the same area as the first one, however there is a

terrace on this floor, and there dead and live load is reduced.
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e The first and third modal damping ratios are identified with an average value of 3%
for all tests considered. This is a common value used in the design of RC structures
at the working stress levels [2]. Most building codes make reference to a 5% damping
ratio in the code-specified earthquake forces and design spectrum. Test 4, being a test
of smaller energy input, provides first and third modal damping ratios of the order of

1%, implying a decreasing energy dissipation capacity with decreasing amplitude.

e The identification of all tests provided high damping ratios for the second mode, of the

order of 6%. This output is discussed in greater detail in section 3.5.5.

All tests considered were identified successfully, providing systems whose response matches
very closely the observed one - in fact the error for the optimal solutions was much less than
10%. Figures 3.27 to 3.30 show the matching between experimental and identified relative
response (first floor and roof velocities, accelerations, displacements and drifts) for test 9.
The matching is very satisfactory in terms of relative velocities and accelerations, however
it is less satisfactory in terms of displacements and drifts. The identified displacements re-
semble very well the experimental ones in the initiation of motion, when the peak response
occurs, but the traces become somewhat different ever after. The distance between exper-
imental and identified displacements becomes more evident when the drifts are evaluated.
Two possibilities can be considered at this point (i) either the identified model is not able to
simulate properly the system displacement response and/or (ii) the relative displacements
recovered by the processing of the relative accelerations contain some error (noise). Proba-
bly there is truth in both points raised. The implementation of a unidirectional, viscously
damped linear system for the simulation of the superstructure might be limiting. Moreover,
the processing of low amplitude motions, which tend to suffer from low SNR, could lead to
unreliable displacement estimates, see Chapter 2 on Signal Processing.

Figure 3.31 (a) shows the time variations of the kinetic, strain and viscously damped

energies for the identified system under test 9. The sum of Ey(t), Es(t) and Ep(t) equals
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Figure 3.27: Comparison of identified and experimental relative accelerations under test 9:
(a) first floor and (b) roof responses.
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Figure 3.28: Comparison of identified and experimental relative velocities under test 9: (a)
first floor and (b) roof responses.

the energy input in the system FE;(t), see Eq. 3.19.

Erc(t) + Bs(t) + En(t) = Bi(t),

Eiclt) = 5

t

Ep(t) = /iLS(T)TC’SS'ds(T)dT, Ei(t) = —/ﬁs(T)TMsLilb(T)dT

0

0

= —il,s(t)TMss’l:l,S(t), Es(t) = %us@)TKssus(t)a

(3.19a)

(3.19b)

(3.19¢)
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Figure 3.29: Comparison of identified and experimental relative displacements under test 9:
(a) first floor and (b) roof responses.
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Figure 3.30: Comparison of identified and experimental drifts under test 9: (a) first floor
and (b) roof responses.

Figure 3.31 (b) shows the modal energy histories, defined in Eq. 3.20. The concept of
modal energies provides an energy perspective to the evaluation of the dominant modes.
Modal energy criteria find application in structural control problems. Pang et al. in [71]
propose a modal energy control algorithm for the reduction of the response of a structure
to strong motion. Figure 3.31 (b) clearly shows how that the energy input is predominant

in the first structural mode. The energy contribution of the second mode is by no means
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Test 9: Energy equilibrium Test 9: Modal energies
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Figure 3.31: (a) Time variation of energy dissipated by viscous damping and of kinetic plus
strain energy for the identified system under test 9. (b) Time variation of the input energy
and the corresponding modal energies.

negligible. The energy input to the third mode is trivial, implying small participation of the

highest mode to the system response.

BE,(t) = — / Phite(T)T Mystiiy(T)dr, > En(t) = Ei(t) (3.20)

3.5.4 Stiffness and damping matrices

The stiffness and damping coefficients k;; and ¢;; where not among the identified system pa-
rameters, nevertheless they can be easily evaluated in a post-processing level of the obtained
properties. The damping matrix can be constructed from the identified damping ratios (,
by superposition of modal damping matrices, according to Eq. 3.21. The damping matrix
provided by this expression is classical, i.e. the modes are orthogonal with respect to Cls.
This is a necessary condition for the decoupling of the system equations of motion 3.13 and
the application of classical modal superposition method. As mentioned by Chopra |2| : ‘Clas-
sical damping is an appropriate idealization if similar damping mechanisms are distributed
throughout the structure (e.g., a multistory building with a similar structural system and

structural materials over its height).” Of course, for the reduced, fixed base superstructure
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model subjected to moderate to low ground motion this is a reasonable assumption. The
assumption of classical damping is debatable for the study of the overall base isolated struc-
ture, even if the structure itself has classical damping. This is because in the common DOFs
there is contribution from both subsystems; contribution of the isolation system, which is
characterized by increased hysteretic capacity and the superstructure.

3
Css = Mss(z 25\7;;% ¢n¢£)Mss (3-21)

1

where M,, = 1 is the n** modal mass
The stiffness matrix can be evaluated from Eq. 3.23. For this expression to be valid, the

modes should be normalized so that the modal masses take unit values.

Kopga = IQ2 - 'K, &, = Q2 —» K,, = (®1)'Q%(®,) ! (3.22)

where K40 is the modal stiffness matrix and €2 a diagonal matrix with entries the

modal frequencies.Eq. 3.22 can be re-written as:

3

Kss - Mss (Z ]L\}_iqbn ¢nT> Mss (323)

n=1
Substituting in Eqs 3.21, 3.23 the superstructure properties identified by test 9, we obtain

the following stiffness and damping matrices:

465 —0.62 —1.14 4922 —245 0.25
Ces=| —062 202 —070 | (*10°kNs/m), Kes= | —2.45 373 —1.68 | (x10°%kN/m)
~1.14 —0.70 1.47 0.25 —1.68 1.39

(3.24)

3.5.5 Discussion

An intriguing result obtained from the identification of the Augusta superstructure was the
high second modal damping ratio, (, &~ 6%. Figures 3.32 show the peak relative superstruc-

ture response in terms of relative to the base displacements, velocities and accelerations, as
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Figure 3.32: Peak relative displacement, velocity and acceleration; sub-plots (a), (b) and
(c). The peak response is approximated considering N=1,2 or 3 modes. When all modes are
considered (N—3) the response is the exact one.

identified from the data of test 9. The peak response is built considering N = 1,2, 3 modes.

9 Observation of

When N = 3 all modes are considered and the response is the exact one
the figures shows that the first mode response can fit the exact peak floor displacement and
velocity responses with error less than 10%. However, at least 2 modes should be consid-
ered for a good approximation of the acceleration responses, i.e. of the inertia forces (shear
forces). The contribution of the higher modes seems to be more prominent for the first floor
acceleration.

Figure 3.33 shows the time variation of three modal accelerations at the first floor of the
fixed base building model. The first floor acceleration is shown for completeness at the last
sub-plot. Observation of the figure reveals that the second modal acceleration is important
for building up the peak acceleration response within the first instants of motion, however
its contribution to the system response becomes trivial in the following time span.

Exciting higher frequencies serves for increased energy dissipation, since the energy is

dissipated faster at higher frequencies. Consider for instance a SDOF oscillator characterized

9Exact because a linear, classically damped model is assumed herein.
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Figure 3.33: Modal contributions to the first floor relative acceleration for test 9: sub-plots

(a), (b) and (c¢). The first floor acceleration, obtained from modal superposition is shown in
sub-plot (d).

by natural frequency w and damping ratio (. The displacement, velocity and acceleration
response u(t) of the oscillator to an impulsive load which translates to an initial velocity vy

1S:

u(t) = ;}—Zemp(—{wt)smw,gt (3.25a)
u(t) = ﬁexp(—{wt)cos(wm —0) (3.25b)
i(t) = wpvpexrp(—(wt)sin(wpt — 20) (3.25¢)

where wp = wy/1— (? is the damped frequency and 6 = arctan((/+/1 — (?) the phase

angle.

Figure 3.34 shows the time variation of the energy (per unit mass) dissipated by three
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Energy per unit mass

time [secl

Figure 3.34: Energy dissipation under impulse load (vy = 1m/sec) in single-degree-of-
freedom oscillators characterized by frequencies f = 1,5, 10H z and damping ratio ¢ = 5%.

SDOF oscillators subjected to vy = 1m/sec and characterized by frequencies w = 2m, 107, 207rad/sec
(or 1,5,10H z) and damping ratio ¢ = 5%. Figure 3.34 confirms that the rate of energy dissi-

pation is greater at higher frequencies. Although not examined in this simple application, it

is well known that an increased damping ratio may reduce the system response and accelerate

the decay of this response |2, 8|.

Summarizing, the relative acceleration response observed during the Augusta experiments
implies high rates of energy dissipation upon initiation of motion. A model which can capture
this behaviour is a multi-degree-of-freedom model with an increased damping capacity at
higher frequencies.

The observed structural behaviour, i.e. large acceleration/energy amplitudes upon initi-
ation of motion that decay very fast in time or in simple words excitation of higher modes,
occurs because of the way the test was performed. A proper set-up of the free vibration
test would require that a uniform displacement (force) is applied to the building before the

building was released and set into free vibration motion, see Figure 3.35 (a). This test
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configuration is by no means feasible for the excitation of multi-story structures. For this
reason, in the Augusta tests the structure was pushed to the desired amplitude level by
applying a concentrated load above the isolation plane, see Figure 3.35 (a). The sudden
release of the load resulted to an impulse load induced at the system. The impulse load,
characterized by a broadband frequency content excited all modes, causing vibrations to the
superstructure. The non-linearity of the isolation system contributed also to the excitation
of higher modes. In fact, the tendency of the pot bearings to evoke higher modes in the
system response through their stick-slip behavior is one of their major drawbacks as seismic

protection systems [36].

Figure 3.35: (a) Ideal and (b) actual release test configuration.

A last observation is made on the identified frequency content of the superstructure re-
sponse. The Fourier Amplitude Spectra (FAS) of the experimental and identified first floor
accelerations for test 9 together with the the Fourier Amplitude Spectrum of the input mo-
tion are shown in Figure 3.36. The FAS of the experimental superstructure response has
four peaks at frequencies 6.5,13.2,18.9,31.7H 2. Instead the FAS of the identified accelera-
tion response has three peaks at frequencies 6.5,13.2,31.7H z. These frequencies are almost
double the identified modal frequencies for test 9 (3.7,11.6, 18.1H z).

The peak Fourier amplitudes of the identified superstructure response occur at frequencies
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other than the identified modal frequencies. This is because herein, the fixed base model was
subjected to the ground floor displacement ii,(t). As consequence, the modal components
of the response were characterized by both the frequency content of the excitation and the
superstructure (i.e. the identified modal frequencies). Take for instance Figures 3.33, more
than one frequency can be read in each modal acceleration response. The FAS of the input
motion () is also shown in Figure 3.36; in fact the peaks of the identified superstructure

response and the input motion occur at the same frequencies.

20 T T T T LA T T T T T T T T
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Figure 3.36: Comparison of the Fourier Amplitude Spectra (FAS) of the experimental and
identified first floor relative accelerations under test 9 (red and blue lines respectively).
The FAS of the ground floor acceleration, used as input motion for the excitation of the
fixed base superstructure model is shown in black. The peaks of the FAS are found at
frequencies 6.5,13.2,31.7H z; the identified modal frequencies of the superstructure were
3.7,11.6,18.1H z.
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3.5.6 Matching of identified and experimental superstructure

response for tests 4,5,6 and 10

The comparison between identified and observed peak response for tests 4, 5, 6 and 10 is
provided in the following figures for completeness. The matching is very satisfactory in all
cases. The identified systems tend to underestimate the peak floor response, the error in the
peak response is no great than 15%. The real system is definitely more complicated than

visualized herein and probably more flexible and/or less damped.

Test 4 Test 4 Test 4
3t 3 3
2t 2 2
g g 8
3 <) o)
= o= o=
1t 1 1
B jdentified
B experimental
0 ‘ ‘ ‘ 0 ‘ ‘ ‘ ] 0 ‘ 1
0 0.1 02 03 0 2 4 6 8 0 0.25 0.5
a) peak relative displ. [cm] b) peak relative vel. [cm/s] (;) peak relative accel. [g]

Figure 3.37: Comparison between identified and experimental peak relative displacement,
velocity and acceleration for test 4; sub-plots (a), (b) and (c).
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Figure 3.38: Comparison between identified and experimental peak relative displacement,
velocity and acceleration for test 5; sub-plots (a), (b) and (c).
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a) peak relative displ. [cm] b) peak relative vel. [cm/s] C) peak relative accel. [g]

Figure 3.39: Comparison between identified and experimental peak relative displacement,
velocity and acceleration for test 6; sub-plots (a), (b) and (c).
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Figure 3.40: Comparison between identified and experimental peak relative displacement,
velocity and acceleration for test 10; sub-plots (a), (b) and (c).

3.6 Conclusions

A two stage implementation of the CMA-ES was made herein for the identification of the
isolation system and superstructure properties of the Augusta building. The free vibration
data recorded during the Augusta release tests were used in the identification. The HBIS
and the superstructure models obtained from the identification reproduce satisfactorily the
observed experimental response. In the following section the identified model parameters
will serve as input data for the response simulation of the isolated building by means of a
more sophisticated model, which accounts for both the non-linearity of the isolation system

and the flexibility of the superstructure.
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Chapter 4

Constrained optimization procedure for
the 1-D strong motion response
simulation of hybrid base isolated

buildings

This chapter presents a constrained non-linear optimization algorithm for the 1-D response
simulation of hybrid base isolated structures subject to strong motion. The constrained op-
timization procedure (COP) was first developed for the 1-D dynamic response simulation of
non-linear hybrid base isolation systems [72|. The performance of the algorithm was tested
on the one-degree-of-freedom model, for which analytical solutions are available. Once the
robustness and accuracy of the algorithm was verified, the numerical solution was extended
to account for bi-directional excitation and multi-degree-of-freedom systems. The theoret-
ical bases of the algorithm lie on earlier research work by Reinhorn and Sivaselvan on the
generalized Lagrangian formulation for the structural collapse simulation of large-scale struc-
tural systems |70, 73|. Reinhorn and Sivaselvan observed that dynamic models of structural

systems, whose constituent material and component constitutive behaviors can be derived
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from stored energy functions and dissipation potentials, can be represented using a mixed
Lagrangian formalism (MLF). In the MLF, the action integral is defined on the basis of the
Generalized Standard Material Framework (stored energy and dissipation functions) and the
governing equations are derived as the Fuler-Lagrange equations of a generalized Hamilton’s
principle [73]. The evolution of the structural state in time is provided by a weak formulation.
For non-conservative systems, such as elastic-plastic systems, only the weak form is applica-
ble. In fact, Hamilton’s variational principle relies on a Lagrangian formulation of a system
which accounts for conservative dynamics but cannot describe generic non-conservative in-
teractions [74] . After the governing equations are recovered and discretized in time, the

time step response is addressed as a convex optimization problem.

4.1 Multi-degree-of-freedom model for hybrid base
isolated buildings under 1-D excitation

The constrained non-linear optimization algorithm was developed for the response simulation
of hybrid base isolated systems under 1-D excitation. The structural model accounts for the
non-linearity of the isolation system and the flexibility of the linear superstructure, see Figure

4.1. The basic assumptions considered in modelling the system are:

A plane model describing the behaviour of the isolated building along the longitudinal

direction X is considered.

e The ground floor slab that connects all the isolation elements is assumed to be rigid,
hence one degree of freedom is associated to the base, the translational displacement
Up.

e Bach floor ¢ has one degree of freedom u'.

e The bi-linear and Coulomb models are used for the description of the non-linear be-

havior of the rubber and sliding bearings, see Figure 4.1(c).
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Figure 4.1: Structural models for the response simulation of base isolated buildings to 1D
excitation. (a) Rigid superstructure model accounting only for the non-linearity of the
isolation system, see sub-plot (c). (b) Updated model describing the non-linear behaviour
of the isolation system, see sub-plot (c), and the linear behaviour of the superstructure, see
sub-plot (d).

e A linear model is considered for the description of the superstructure, since this should
remain in the elastic range under the design earthquake, Figure 4.1(d).

e Bi- or tri-directional excitation, 3-D modeling of the isolated structure, the hardening
of the HDRB and the non-linearity of the superstructure for motions beyond the design
level earthquake are significant aspects of the assessment practice but are not examined
herein. The constrained non-linear optimization algorithm procedure developed serves
for the validation of the identified model used in the free vibration simulation of the
Augusta building. Extensions of the procedure for bi-directional effects can be found

in [75, 76].
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4.2 Governing equations of motion

The dynamic equilibrium for the base isolated system illustrated in Figure 4.1(b) is:

Mu(t) + Cu(t) + K u(t) + B F(u(t), w(t)) = P(t) (4.1)
or
[mb 0 ](%) |:Cbb Cis (%) Ky, Kbs](ub) (Fb) (Pb>
+ + + =
0 Mss I)s Csb Css Vg Ksb Kss Ug 0 Ps
(4.2a)
where
F, Fe
1 0 1 F.+ F I
BF=[B..0,Bf]| F, | = mo| = _
0N><1 0N><1 0N><1 0N><1 0N><1
Fy Ey
(4.21)

up and v, are the displacement and velocity at the isolation level (ground floor), while
us and v, are the vectors of the upper floor displacements and velocities, see Figure 4.1(b).
up and ug are relative to the ground. F, and Fj are the resisting forces provided by the
elastic springs k. and £, used in the representation of the rubber bearings. F% is the friction
force provided by the friction sliders. The transformation matrix B, or equivalently the
transformation matrices B, By, map the resisting forces F' developed in the isolation system
to the resultant forces (I, 01X")T acting at the considered degrees-of-freedom (uy, ul)?.
More specifically, the non-linear forces developed at the HBIS are felt at the isolation level,
yet not at the superstructure. my is the mass at the base floor, just above the isolation
level. The damping and stiffness properties of the isolation system are denoted with the
sub-script “bb”. In reality, these contain also the stiffness coming from the substructure, see
section 4.2.1. Mg, Css, Kgs are the superstructure mass, damping and stiffness matrices

associated to the N degrees of freedom of the superstructure. P is the vector of the external

forces applied along the considered degrees of freedom wu, and us. Interaction between
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superstructure and isolation system is considered through the coupling terms taking the
sub-script “bs” (or “sb”). As it is shown in the following section, section 4.2.1, the coupling
terms derive only from the superstructure, since the response of the isolation system depends

only on the degree of freedom of the isolation system.

4.2.1 Assembly of the global matrices

M, C, K are the global mass, damping and stiffness matrices associated to the absolute
degrees of freedom shown in Figure 4.1(b). M, C, K can be easily assembled from the local
mass, damping and stiffness properties of the isolation (my,cp, k) and the superstructure
M., Css, Ky, see Eq. 4.3. Herein the contribution of the rubber bearings to energy
dissipation is considered through the non-linear forces Fj, hence the equivalent stiffness ky

will be zero.

my k11 ki ... Fkin C11 Cii - CIN
m; kii . k’l‘ Ci; .. C;
Mss - 5 Kss = N 5 Css - N
I my | I (sym) knn | I (sym) NN |
(4.3)

The transformation matrices Ty, T transform the base isolation and superstructure dis-
placements from the local coordinate system where the stiffness &, (or Ksg) is known to the

global coordinate system where the stiffness matrix K is unknown, see Eqs 4.4.

Up
Up = Tb’U, = (1 01><N> = Up (44&)
Us
Up
Us,rel = Tsu= (_1N><1 IN><N) =us — luy (44b)

Us
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where ug ¢ are the relative to the base displacements of the superstructure associated
to the superstructure mass, stiffness and damping matrices.

The relation between the local and the global stiffness matrices can be easily found,
recalling that the work performed by the internal forces should be the same, either evaluated

in the local or the global coordinate system:

Wit = u' Ku = 5ubT kyup, + 6u£rel K sus rel (4.5a)
SuTKu=0(Tyu) ky (Tyw) + 6(Tyu)" Ky (T, u) (4.5b)
u'Ku=du" (T Ty + T K Ts ) u (4.5¢)

Eq. 4.5(c) holds for any admissible displacement w or virtual displacement du, hence the

global stiffness matrix equals:
K =T kT, + TTK,,T, (4.6)

Substitution of the the expressions 4.4 for the transformation matrices Ty, Ts into Eq.

4.6 results to the following global stiffness matrix K:

Kbb Kbs 1 —]_T
K = = ky (1 0) + K, (—1 1) (4.7a)
Kbs Kss OT I
Ky K | | b+ 17K —1TK,,
K — bb b _ b (47b)
Kbs Kss _Kss]- Kss

The global damping matrix can be evaluated accordingly:

cp + ].TC 1 —1TC Cbb Cb

C=Tc,Ty+Ts ' Css Ty = * - ° (4.8)
_CSS]' Css Cbs CSS

K, C are symmetric, semi-positive definite matrices; K, C have one eigenvalue equal

to zero, this is due to the fact that they describe the rigid body motion. M is diagonal,

with entries the ground floor mass my, (just above the isolation system) and the floor masses
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Figure 4.2: Mechanical model for HDRB isolators: (a) undeformed model; (b) deformed
model under force Fy; (¢) undeformed model after rigid body translation; (d)-(f) equilibrium
conditions.

4.2.2 Equilibrium equations for the isolation system

As seen in the previous chapter, the non-linear behavior of each HDRB is modelled using

two elastic springs characterized by stiffness k! = ki and ki = ok

= i respectively, and a

plastic slider with yield force Fyl The two springs work in series, therefore the restoring
force provided by the i — th HDRB equals the restoring force F’ provided by the elastic
spring k! or equivalently the sum of the restraining forces provided by the spring £} and the
plastic slider, i.e. F,’ + F,’, see Figure 4.2. Thus, the equilibrium equation for the rubber
bearings becomes:

F.=F,+F, (4.9)

F,, F,, F}, are the resultants of the corresponding forces F}, !, F} developed at the single

NR NR NR
HDRBs, ie. F, = > F!,F, =) F, F, = ) F;, where NR is the number of the HDRB
i=1 i=1 i=1

NR NR

used in the isolation system. Similarly k. = > k!, k, = > kj are the stiffnesses provided by
i=1 i=1

the N R rubber bearings. In the considered case study, all isolators are of the same class,

hence provide the same resisting forces.
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Figure 4.3: Friction slider in neutral position and in displaced position, sub-plots (a) and

(b).

4.2.3 Compatibility equations, elastic constitutive equations and
flow rules

The compatibility equations 4.10 relate the velocities at the elastic springs (v, = te, v, = ty),

the velocities at the plastic and friction sliders (v, = 4,,v; = 4y) to the velocities at the

considered degrees of freedom (v = ), see Figures 4.2 and 4.3.

Ve+v, =B v (4.10a)
Vp =1, (4.10Db)
vi=B; v (4.10c)

where B, v = BfT vV = 1, U being the velocity at the isolation system.
The constitutive equations 4.11 associate the velocities v,, v}, to the rates of the corre-
sponding elastic forces F,, Fj:

Ve = AE, (4.11a)

vy = AhFh (411b)

where A, = =~ and A, = é
e

The plastic and sliding velocities v, v¢, related to the yielding and friction forces F,, Fy,



156

can be defined through the dissipation function ¢(F,, Fy):

_aSO(FIMFf) _a(p(Fme)
vy = 9F, vy = oF; (4.12a)
(Fp, ) = wp(Fp) + 05 (Fy) (4.12b)
ep(Fy) = U, @p(Fy) = Uc (4.12¢)

Ug and Ug are the indicator functions of the polyhedral sets defining the feasible domains

for the plastic force F), and the friction force F; |72, 73].

E={F,:|F,| < F,} (4.13a)
C = {Fy: [Fs| < Fyo} (4.13b)

4.2.4 Rearranged compatibility equations

The compatibility equations 4.10 can be rewritten in the following form:

Ao 0 0 E, vy BT
0 A, 0 B |+ =v, [ =] 0T |v (4.14)
0 0 0 Fy vy BT
. &p T
or AJ+—==B"v (4.15)
oJ
where JT = FT = (F,, F},, Fy) (4.16)

Eq. 4.15 shows how the sum of the elastic and the plastic strain rates AJ and %

respectively, equals the total strain rate BT v.
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4.3 Lagrangian formalism

For convenience, the dynamic equilibrium 4.1 and the compatibility equations 4.15 are re-

peated herein:

Mii+Ciu+Ku+BJ—-P=0 (4.17a)
A+ _pra_o (4.17b)
oJ

where A, B, J, ¢ where defined in Eqs 4.12, 4.14 and 4.16.
Pre-multiplying Eq. 4.17(a) by a kinematically admissible virtual displacement du sat-
isfying compatibility, and Eq. 4.17(b) by an admissible virtual impulse §J satisfying equi-

librium, we obtain:

ul Mii+ou"Cu+du" Ku+ou' BJ —6u” P =0 (4.18a)
5JTAJ"+5JT% —0J"BTu =0 (4.18D)

The variation of the action integral for the entire structure is obtained after adding Eqs
4.18(a) and (b), integrating over the time interval (0,¢) and making use of integration by
parts:

¢
5I:—6/<%'TMa—%uTKqu%J'TAJ'JrJTBTu) dr (4.19a)

t t t

+/(5uTC'&) d7+/ <5JT %ﬁ) dT—/((SuTP) dr =0 (4.19h)

0 0
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The variation of the action integral, Eq. 4.19, can be rewritten as:

¢ t . t . t
. o(t, JJ o, J
0T = —5/£(u, gy, J) d7'+/ ((5uT M) d7+/ <5JT M) dT—/éuTPdT =0
ou oJ
0 0 0 0
(4.20)
with the Lagrangian £ and the dissipation function ¢ given by
_— L. 1o Lap o T RT -
E(u,J,u,J)ziu Mu—iu Ku+§J AJ+J B'u (4.21a)
. 1 .
p(a,J) = §aTca+<p(J) (4.21b)

In the definition of the generalized Lagrangian we recognize the kinetic energy of the
system, Fx = $4T M 1 , the strain energy of the superstructure, £ = 1u” K u and the
elastic strain energy in the isolation system, ELP = %JT AJ = ﬁFez + ﬁFhQ. The work
teem W, = JT BTu = be dt, = Fydu is related to the impulse of the forces in the
isolation system. It follows that EFP + 1, is the opposite of the energy dissipated in the
isolation system.

Conversely, the Lagrangian and dissipation functions shown in Eqs 4.21 can be used in

the Euler - Lagrange equations to recover the governing equations of motion 4.17.

E % + = = (4.22&)

d (0L _% 0P
ou Ju

d (0L oL  0¢ B
E (5) — ﬁ + 5 =0 (4.22b)
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Table 4.1: Time discretization formulae.

U v v F F

ui + %(Vi-i-l 4 Vi) %(Vi—i-l 4 Vi) %(Vi—i-l o Vi) %(Fi—s-l 4 Fz) %(Fi—rl o Fz)

4.4 Discretization of governing equations of motion

Implementation of classical modal analysis, or complex modal analysis in the case of non-
classical damping, is not applicable for the decoupling of the equations of motion 4.17, due
to the presence of the non-linear forces B F. There is therefore the need for implemen-
tation of a direct integration scheme, for example Newmark’s method [2]. In traditional
non-linear numerical methods, the displacement method is combined with an incremental
iterative scheme to provide the non-linear structural response; the system displacements are
thus the primary unknowns. The Mixed Lagrangian Approach followed herein, allows the
restatement of the structural response problem as a constrained optimization-based prob-
lem, where the primary unknowns are the dissipative forces and/or the irreversible strain
rates. For the formulation of the time step optimization problem, the governing equations of
motions are discretized in time and rearranged accordingly to provide the relationship be-
tween the primary unknowns F},, Fy (or equivalently the velocities v, v;) and the remaining
system parameters, i.e. displacements, velocities and accelerations. Central differences and
the mid-point rule are used for the time discretization of the governing equations, see Table

4.1. Throughout this chapter the time step shall be denoted by h = t(i + 1) — ¢(7).



160

4.4.1 Discretization of equations of motion

Discretization of the equations of motion 4.1 leads to the following equation:

i+l _ i i1 i o . Fitl L pi pitl . pi

M~ G L LAY 3 u' + - ) )+ B R il (4.23)
h 2 4 2
Eq. 4.23 can be solved for the vector velocities v+
i _;  ho— i i
vVl = — §M Y (B FI' + By Fi) (4.24a)
o _ o , ‘
where v'= M1 (MV’ —hKu'+ E(Perl +P -B F’)) (4.24D)
- h h? = h h?

M—M+5C+=K M=M-3C-—K (4.24¢)

In Eq. 4.24 (a) the product B F was replaced by the sum [Be,0, By][F., Fy, Fy]T =
B.F.+ By F}.

4.4.2 Discretization of the compatibility equations

The compatibility equations 4.14 can be discretized in the form given below:

FAL gt oyt 4yt A
A== = P P — BeT _ 4.25
n 2 2 (4.250)
F i+1 F 7 i+1 7
At L ) (4.25D)
h 2
i+1 i i+1 i
il vy B,” vT v (4.25¢)
2 2
Using Eq. 4.9 into Eq. 4.25(b) and solving for F,""' we obtain:

i+1 i+1 h i+1 ik

FJt = Bty S A4,y (4.26a)

2
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where Fpi =F'—F/'— EA;fl v (4.26h)

4.4.3 Discrete governing equations

The expression for the velocities vt Eq. 4.24(a), is used in the discretized compatibility

Eqs 4.25(a) and (c) and the latter are solved for the plastic strain rates v/, V}H, providing:

it i A Ay | B
= . (4.27a)
ij 17} Afe Aff FfH_
where o
172 iei A’Zlee Aef Fei
= |+ . - ‘ (4.27b)
vy vyt Ase Agy Fy!
_ _ 1= . . h _ ) ) )
ve' = (B + BIM M)V — v/ + B MY (P 4 P 2K o) (4.27¢)
_ _ 4= . . h _ ) ) )
7 = (Bf + B{M "M)v' —vj' + 5B M (P 4 P! 2K u) (4.27d)
1 2 [ 1 1 [ 1 Ly
Aee = EA€—|— EBE M~ B, Aef = Afe = §Be M Bf, Aff = §Bf M Bf (4276)
T 2 h ot -1 A 1 1 A A
Aee = EAE — EBB M Be, Aef = Afe = _Aef7 Aff = _Aff (427f)
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4.4.4 Dual forces and velocities

The forces and velocities related by Eq. 4.27 are not dual in a power sense. While the friction
velocities vy are combined with the corresponding friction forces F, the plastic strain rates
v, are combined with the elastic forces F,. Nevertheless, if the expression 4.26 for F,"™ s

replaced in Eq. 4.27(a), after trivial manipulations those can be re-written as:

l/;+1 i ~Ii) B Dpp Dpf Fpi-‘rl (4 28)
i+1 ~i Ds D P+l '
Vi Vi o Prr f
or Dl =5 — D FH! (4.29)
L o -1 7
where D,, = | A_. + §Ah , Dpy = Dpp Asl Acy = Dyp (4.30a)
fo = Dfpzzl;el Aef—fifezzlgel Aef—}—Aff (4.30b)
~j -1 i mio~i i P ~1 A-1 i n
U, =Dy Ao Vo + Dyp By, U = Uy — §Afe A~ Dpy Al Ve + Dy (4.30¢)

The expressions for 7, 7}, Ace, Acy, Age, Ay are provided in Eqs 4.27 (b) to (f).

4.5 Time step solution

The solution to Eq. 4.29 can be addressed as a constrained optimization problem [72|. Eq.
4.29 sets the stationary conditions for the following functional:
Minimize ®(F*Y) = L(FH)TD(FiH+Y) — Fitly

(4.31)
subject to the non linear constraints |F|—U <0
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The optimization problem 4.31 may be formulated in terms of velocities, making use of
the force-velocity relationship 4.29 :
Minimize (D) = %(19’”rl - )I'D Yo — Y — (0 — T DDt

(4.32)
subject to the non linear constraints |F|—U <0

Once the force vector F'*! is obtained by solving the optimization problem 4.31, the
velocity vector v**! is obtained from Eq. 4.29. Similarly, once the velocity vector vi*! is
obtained by solving the optimization problem 4.32 the corresponding forces are obtained by
inverting Eq. 4.29. Table 4.2 shows how to evaluate the remaining response parameters at
the end of the time step, given the velocities **! and the forces Ft!.

General methods for the solution of constrained optimization problems can be found
in classical textbooks on optimization |77, 78, 79]. In their work on numerical collapse
simulation of large-scale structural systems, Sivaselvan et al. used an augmented Lagrangian
approach coupled with Newton’s method [70, 73]. Herein the Matlab function fmincon is

used for the solution of the optimization problem.

Note: The demonstration of the positive definiteness of the matriz D was straight-forward
in the case of the one-degree-of-freedom system [72]; however it becomes rather cumbersome
in the multi-degree-of-freedom case. In the numerical applications of the algorithm performed
on the identified isolated structure, the matriz D was found to be positive definite; therefore

the functional ® (or V) was convexr and admitted a global minimization.
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Table 4.2: Evaluation of kinematic and mechanical unknowns at the end of each time-step.

Velocities vt =pt — At <Be FiBs Ffm) (Eq. 4.24)

vyt = it
y it = BT pitl i

Displacements — u'™ = u’ 4+ 21"+ + 1)
up =y =yt B, )
e = BT it gyt

Forces F = A,

Fi+l = R+l { i+l

Accelerations &l =0, if vt =0 and |Fy"!| < Fy

Pt = M-1[PiH — Cut — K it — B F otherwise
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4.6 Energy equilibrium

The equation of motion 4.17(a) is pre-multiplied by a kinematically admissible virtual dis-
placement du satisfying compatibility, see Eq. 4.18(a), and then integrated over the time
range (0,1):
t t t t t
/O z},TMildT+/O uTcudT+/o iLTKudT+/O W"BFdr :/0 W'Pdr  (4.33)

Eq. 4.33 can be rewritten as:

Ex(t) 4+ Eyp(t) + E5(t) — E5(0) + Wy(t) = Ep(t) (4.34a)

where Ex(t) = /0 t ' M i dr = %ﬂ(t)TM u(t) (4.34b)
Eyp(t) = /0 t a’Cadr (4.34c)

Es(t) — Es(0) = /0 WK wdr = %u(t)TKu(t) - %u(O)TKu(O) (4.34d)
Wy(t) = /0 t W' B Fdr (4.34e)

Ep(t) = /0 t ' Pdr (4.34f)

Ek(t) is the kinetic energy, E%(t)the strain energy stored in the linear superstructure
and Eyp(t) the energy dissipated by linear viscous damping during motion. FEp(t) is the
energy input to the system by the strong motion. The term W,(t) represents the work of

the non-linear forces developed in the isolation system and is further developed making use
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of the equilibrium, compatibility and constitutive equations 4.9, 4.10 and 4.11:

Wi(t) = f(f [Feve + Fevy + Frvgldr
Wi(t) = [ (Feve + Fup) dr + [ Fyupdr + [y Frupdr
Wilt) = Jy (A, + FuAwBy) dr + [y Byuydr + [y Fyugdr
Wy(t) = SA, F.(t)? + 1A, F(t)? — LA, F.(0)2 — LA, F(0)2 + [J Fyupdr + [ Fyupdr
(4.35)
Eq. 4.35 can be rewritten as following:
Wi(t) = BP(t) — BP(0) + E5°(t) + Ep°(¢) (4.36a)
where E&P(t) = %Fel§:>2 + Fhk(j)Q (4.36h)
EEB(t) = /Ot E,(T)vy(1)dr, E3B(t) = /Ot Fe(m)vs(r)dr (4.36¢)

In the expression 4.36 for the work of the resisting forces of the isolation system W,(t) we
recognize the strain energy EFP(t), which is the energy stored in the elastic springs ko, ky,
used in the mechanical representation of the elastomeric bearings and the energy dissipated
by the rubber and sliding bearings, E25(t) and E3P(t) respectively.

Summarizing, the energy equilibrium for the structural system considered herein becomes:

Ex(t) + Bvp(t) + Es(t) + E5P () + Ep°(t) = Ex(t) (4.37a)

where Es(t) = E5(t) + EEP(t), Ei(t) = Ep(t) + Es(0) (4.37b)

The equilibrium equation 4.37 shows how the kinetic and stain energy stored in the
linear superstructure and the elastic springs of the bi-linear HBIS, FE(t), Es(t), together
with the energy dissipated by damping and non-linear resisting forces in the rubber and

friction bearings, Fyp(t), EEB(t), E2P(t), balances the energy input to the system Fr(t).
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4.7 Numerical application 1: free vibration response
simulation of the Augusta isolated building

The constrained optimization procedure, described in section 4.5, is applied for the free

vibration response simulation of the isolated Augusta building under test 9 (up = 10.1cm).

4.7.1 Input properties

The input properties for the four-degree-of-freedom model are the ones obtained from the

individual identifications of the HBIS and the superstructure under test 9, see Table 4.3.
The damping and stiffness matrices of the superstructure are constructed by superposition

of the corresponding modal matrices é’, K', see Eqs 4.38. C’, K are diagonal matrices with

entries C’nn = 2Cwn, M, f(nn = w2M,, where M, is the modal mass.

3
_ ™1~ x5-1_ § : ZCan T
Css - (@ ) C(I) - Mss (nl Mn d)n ¢n > Mss (4388‘)
K= (®") 'K®'=M f j w—’%d) 6.7 | M (4.38b)
88 - Ss — Mn n n Ss -

The superstructure mass given in Table 4.3 is 10% greater than the one obtained by the
identification of the superstructure for test 9 (m, = 1602.5tons against m, = 1456.8tons).
The need for calibration of the superstructure mass derives from the following fact. For any
positive real number A, the system (AM, 4, AK,s) has the same frequencies and modes of
vibration of the system (Mg, Kss) , see Eqs 4.39. However, for one A the superstructure sys-
tem will lead to the observed response when combined with the isolation system (my, ko, k1)
and input in the four-degree-of-freedom isolated building model. Figures 4.4 show the com-
parison of the observed and simulated response, in terms of the relative roof velocity (relative

with respect to the base), before and after calibration of the superstructure mass m,. As



168

Table 4.3: Input model properties for the response simulation of the Augusta building under
test 9. The input isolation system properties are the total mass m, the bi-linear model pa-
rameters for the individual HDRB, kg, k1, QQ and the friction coefficient for the friction sliders
. The yielding force F), and the friction forces Fly for the single isolators are also provided
(three values are given for Fy since there are three types of sliders, assigned for simplicity
the same p, but experiencing different axial loads). The input superstructure system prop-
erties are the superstructure mass matrix M,,, the modal frequencies f,,, damping ratios ¢,
and modes ¢,,.

isolation system properties

m(tons)  ko(kN/m) ki (kN/m)  Q(kN)  u(%)  F,(kN)  Fjo(kN)

2400 2116 600 40.2 1.13 56.15 [7.93,10.29,0.28]

superstructure properties

Mss(tOTLS) [f17f27f3](HZ) [C17C27C3](%) [¢17¢2a ¢3]
046 0 0 0.452 —0.713 0.638
160251 o 037 0 [4.1,12.8,19.9] [3.52,6.97,2.80] 0.812 —0.090 —1.026
0 0 0.17 1.0 1.0 1.0

seen in the first sub-plot, the non-calibrated model has different frequency characteristics

than the actual system.

AN Kss — Q2M,,) =0 (4.39a)

3

Gin(8) + 2 G wn (1) + Wi ga(t) = —Triip(t), ws(t) = D ¢ au(?) (4.39b)

n=1
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floor 3 relative velocity floor 3 relative velocity
6 — simulated ] 61 — simulated
4 — experimental, — experimental
| 4l |
T 2 T 2
s S
S Op il S ol NN LN SN S
NG NG
-2 il
_4, _4,
-G 4 i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a) t [sec] b) t [sec]

Figure 4.4: Comparison between simulated and experimental relative velocity response (floor
3, test 9) before and after calibration of the superstructure mass; sub-plots (a) and (b).

The global mass, damping and stiffness matrices are built on the basis of the identified

properties of the isolation system and the superstructure, see Eqs 4.40.

7975 0 0 0
0 7333 0 0
M = (tons),
0 0 5895 0

0 0 0 279.6

425 —-384 —0.92 0.50
-3.84 6.19 —-0.83 —1.52
C = (x10°kNsec/m), (4.40)
—-0.92 -0.83 2.69 —-0.94

0.50 —1.52 —-0.94 1.96

210 =269 0.54 0.05
—-2.69 5.63 =327 0.33 6
K = (*10°kN/m)
0.54 =327 496 —2.23

0.05 035 =223 1.85
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4.7.2 Test 9 free vibration response simulation

For the response simulation of test 9 an initial displacement «(0) = 10.1cm is given at all
degrees-of-freedom together with a load P(t) at the base. The load P(t) is added for a more

realistic simulation of the unloading phase of the test.

0

_50 »

—1500

(0.012sec,1771 kN)

0 0.02 0.04 0.06 0.08 0.1
time [sec]

Figure 4.5: Sub-plots (a) and (b). Initial displacement (w(0) = 10.1e¢m) and load conditions
used in the free vibration response simulation of the Augusta isolated building under test 9.

Figures 4.6 to 4.8 show the matching between experimental, identified and simulated re-
sponses for test 9, in terms of floor accelerations, velocities and displacements. All responses
are relative to the ground. The experimental response includes the measured floor acceler-
ations and the corresponding velocities and displacements obtained after the processing of
the acceleration signals, see Chapter 2 on signal processing. The identified absolute response
is evaluated from the superposition of the responses of the identified HBIS (rigid superstruc-
ture model) and the identified fixed base superstructure model, shown in Figures 3.18 to
3.20 (section 3.4.2) and Figures 3.27 to 3.29 (section 3.5.3) respectively. The simulated free
vibration response is the response evaluated using the identified HBIS and superstructure
properties, Table 4.3, and the four-degree-of-freedom isolated model, see Figure 4.1. The
simulated and identified response show a very good matching with the observed response.
The considered models tend to underestimate the residual displacement and the duration

of strong motion (at the base floor). Observation of the absolute responses obtained from
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the simulation of the whole isolation structure, show how the algorithm can account for the

fact that while the base stops moving at t = 2.73sec, the upper floors continue to vibrate

until the motion is damped out. The four-degree-of freedom model, having 4 frequencies,

can describe very well the high frequency characteristics of the acceleration responses of the

lower floors. However, it seems that the model does not damp sufficiently the response after

the first half cycle of motion.

base floor absolute acceleration

— identified
—— simulated
—— experimental

2
t [sec]

floor 2 absolute acceleration

— identified
— simulated
—— experimental

2
t [sec]

d)

floor 1 absolute acceleration

0.4 ‘
— identified
—— simulated

0.2 —— experimental |

a, gl

2 3 4
t [sec]
floor 3 absolute acceleration
0.47 ‘ ‘ ‘
— identified
— simulated
0.2 —— experimental

2
t [sec]

Figure 4.6: Comparison of experimental, identified and simulated absolute base floor, first
floor, second floor and roof accelerations of the Augusta building under test 9.
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§ Off e N § O N
< <
5 -5 5 -
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© 10 = -10f
—15¢ —15¢
20 —20
0 1 2 3 4 0 1 2 3 4
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Figure 4.7: Comparison of experimental, identified and simulated absolute base floor, first
floor, second floor and roof velocities of the Augusta building under test 9.
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Figure 4.8: Comparison of experimental, identified and simulated absolute base floor, first
floor, second floor and roof displacements of the Augusta building under test 9.
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Figures 4.9 to 4.11 show the matching between experimental, identified and simulated
relative to the base floor responses for test 9. The relative identified response is evaluated
using the identified fixed superstructure model, see Figures 3.27 to 3.29 (section 3.5.3). Both
the fixed and the isolated base models, reproduce very well the observed response, especially
in terms of relative floor velocities and accelerations. The isolated building model provides
relatively high responses at times ¢t &~ 1sec and t = 2sec, when the velocity changes sign. This
occurs because of the relatively high friction forces developed in the isolation system; the
change of sign in the velocity, causes a jump at the Coulomb friction force, which translates
to a jump in the acceleration and a pulse in the relative velocity history. The four-degree-
of-freedom model tends to underestimate the peak relative response, which occurs at the
beginning of the motion. So does the identified fixed superstructure model. This is probably
due to the limitation of the models to account for 3 structural freqeuncies only. The relative

simulated response is damped more slowly than what observed in the experiments.
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Figure 4.9: Comparison of experimental, identified and simulated relative to the base first
floor, second floor and roof accelerations of the Augusta building under test 9.
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Figure 4.10: Comparison of experimental, identified and simulated relative to the base first
floor, second floor and roof velocities of the Augusta building under test 9.
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Figure 4.11: Comparison of experimental, identified and simulated relative to the base first
floor, second floor and roof displacements of the Augusta building under test 9.
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— At=0.01sec

2 —At=0.001sec

\2 [cm/sec]

time [sec]

Figure 4.12: Effect of the selection of the time step on the performance of the constrained
optimization algorithm. The figure shows the comparison of free vibration response under
test 9, in terms of the first floor relative to the base velocity, considering increasing time
steps At = 0.001sec, 0.01sec, 0.05sec.

Before closing this section a brief comment is included on the stability and accuracy of
the numerical results. As shown in Figure 4.12, the selection of a relatively small time step
is essential for the precise description of the input load and the corresponding response.
However, even for larger time steps the constrained optimization procedure converges to a
solution, without suffering stability issues. In the free vibration simulations shown in this

section the time step was equal to h = 0.001sec.
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4.8 Numerical application 2: earthquake response

simulation of the Augusta isolated building

4.8.1 Input ground motions

—— equake 1
—— equake 2

equake 3

equake 4 -

equake 5
—— equake 6
equake 7
= mean spectrum

S_lg]

Figure 4.13: Set of ground motions compatible with the NTCO08 life safety limit state spec-
trum (probability of exceedance P = 10%). Vertical lines are drawn at periods 7' = 0.15sec
and T = 1.2 x T;;, = 2.90sec; NTCO08 requires that the mean spectrum of the selected
ground motions does not fall more than 10% below the design spectrum in the period range
T = 0.15 — 2.90sec. More information on the selected events is provided in Table 4.4.

The structure was subjected to a set of 7 motions, compatible with the NTCO08 design
spectrum at the life safety limit state (SLV: probability of exceedance P = 10%, a, = 0.289g,
return period Ty = 712yrs|33]), see Figure 4.13 and Table 4.4. The Italian Standards require
that the average spectrum of the selected set of motions does not fall more than 10% below

the design spectrum in the period range 7' = 0.15sec to T' = 1.2xT;,, where T}, is the effective
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Table 4.4: Characteristics of the selected STV spectrum compatible motions. Second column:
event id. Third column: station and component. Fourth column: moment magnitude. Fifth
and sixth columns: depth and epicentral distance.

No Earthquake Station|component]  Mw  D(km)  R(km)
1 Montenegro 1979 BUD |[EW] 6.2 5 8.3
2 L' Aquila 2009 AQK|NS] 6.1 8.3 1.8
3 I’ Aquila 2009 AQV [EW] 6.1 8.3 49
4 Irpinia 1980 BGI [EW] 6.9 8.3 21.9
D Irpinia 1980 STURNO [EW] 6.9 15 33.3
6 Irpinia 1980 STURNO [N§] 6.9 15 33.3
7 Friuli 1976 GMN[EW]| 6.0 11.3 4

period of the isolation system. Herein T;, = 2.44sec, as obtained from the identification of
the HBIS model for test 9.

The spectrum compatible motions were obtained using the REXELite application within
ITACA', which allows to search combinations of seven 1- or 2-components strong motion
records, compatible in average with a specified code spectrum [80].

The input motions include the 1979 Montenegro, the 1976 Friuli, the 1980 Irpinia and
the 2009 I’ Aquila mainshocks, see Table 4.4. An earlier study on the earthquake response
simulation of isolated systems showed that the registrations at the Bagnoli, Sturno (Irpinia
1980) and AQK stations (L’Aquila 2009) have near fault characteristics, thus inducing high
displacement demands at systems responding to their long period range [16]. The selected

scaled motions are shown in Figure 4.14.

TACA (ITalian ACcelerometric Archive): http://itaca.mi.ingv.it/ItacaNet/CadmoDriver?
_action_do_menu=1&_page=REX_rexel_homepage&_rock=INVALID&_state=find&_tabber=5&_token=
NULLNULLNULLNULL
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Figure 4.14: Set of 7 ground motions compatible with the NTCO08 design spectrum at the
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4.8.2 Isolated structure response to strong motion 4

The system response under one of the selected spectrum compatible motions (event 4, scaled
Iprinia 1980-BGI) is shown in this section. Figure 4.15 shows the acceleration histories at
the base and the upper floors of the Augusta building together with the input motion for
event 4. Figure 4.16 shows the corresponding floor displacements (relative to the ground).
The inter-story drift histories for the strong motion 4 are shown in Figure 4.17. The obtained
response demonstrates the effectiveness of the base isolation. The introduction of the flexi-
ble bearings ‘isolates’ the building from the shaking ground; the energy input in the system
by the earthquake is dissipated essentially in the non-linear isolation system. The bearings
accommodate the largest part of the displacement demand induced by the motion, while the
superstructure responds essentially as a rigid body (similar floor acceleration and displace-
ment histories and very small inter-story drifts, see Figures 4.15 to 4.16). The maximum
shear strain demand on the rubber bearings is Y4, = 21.51/15 = 1.43. The non-linearity
of the isolation system results to a residual displacement at the end of the motion, however
this is very small of the order of 0.50cm.

Figures 4.18 show the resisting forces developed in the isolation system during the ground
motion considered. The F-u hysteresis loops are shown only for one rubber bearing, since
they are all of one class. The F-u loop for the sliding elements are shown only for sliders of
type 2, which are the ones experiencing larger vertical loads (V' = 900kN). Figure 4.18(c)
shows the time intervals when the elastomer undergoes yielding. Yielding (or plastic) phases
occur in the first ten seconds of motion, when the motion is stronger.

Finally, figure 4.19 shows the evolution of the kinetic and strain energies together with
the energy dissipated in the isolation system during motion 4. Eg, Eg, EEE ESB E; were
evaluated according to section 4.6. The dissipation of the energy input by the ground motion
is made in the rubber and friction sliders, while the contribution of damping to energy

dissipation is negligible.
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Figure 4.15: Acceleration histories at the ground, the base floor and the upper floors of the
Augusta building during motion 4 (Irpinia 1980-BGI, scaled).
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displacement demands, strong motion 4
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Figure 4.16: Displacement histories at the base and the upper floors of the Augusta building
during strong motion 4 (Irpinia 1980-BGI, scaled). The maximum shear strain demand on
the rubber bearings is v, = 21.51/15 = 1.43.
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inter—story drifts, strong motion 4
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Figure 4.17: Inter-story drift histories at the Augusta superstructure during strong motion
4 (Irpinia 1980-BGI, scaled). The obtained drifts are significantly smaller than the NTCO08
limit § = 2/3 % 0.5% = 0.33% for SLS.
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slider 4: response to strong motion 4
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Figure 4.18: (a), (b) Force-displacement loops for one rubber bearing (no 1, see Figure 1.4)
and one friction slider (no 4, see Figure 1.4) during earthquake 4 (Irpinia 1980-BGI, scaled).

(c) Time intervals of yielding for the elastomers.
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Figure 4.19: Evolution of the kinetic and strain energies together with the energy dissipated
in the isolation system during motion 4.

4.8.3 Peak response to the selected ground motions

Figures 4.20 show the peak acceleration, displacement and inter-story drift demands imposed
to the structure by the seven SLV spectrum compatible strong motions. The average response
is also provided. The seven motions are characterized by different intensity and frequency
content, thus leading to very different demands. In particular, motion 5, i.e. the scaled
Irpinia 1980, station Sturno, component EW record, calls for the maximum displacement
demand for the isolation system (u, ~ 66¢m). This occurs because the fundamental period
of the isolated structure lies in the long period range, where the dominant components of
the motion are found, see Figure 4.13. A previous study by Oliveto et al. showed that
the Sturno-EW record has near fault characteristics, resulting to excessive demands for long
period systems |[16]. The average peak displacement demand, induced by the SLV spectrum
compatible motions is only slightly smaller than the displacement demand prescribed by the

Italian Standards [33, 45]:

dspv(Tis = 2.44sec, ¢ = 18.7%) = 24.5¢m (4.41)
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Figure 4.20: Acceleration, displacement and drifts demands for the SLV spectrum compat-
ible motions; sub-plots (a), (b) and (c).
NTCO08 is also shown in sub-plot (b).

The displacement demand as evaluated from the

where T;, = 2.44sec and ( = 18.7% are the identified effective period and damping of the

isolation system obtained from the identification of test 9, see Table 3.4 in section 3.4.3.

The maximum inter-story drifts for the seven motions considered, are very small with

respect to the limits imposed by the NTCO8 for the serviceability limit states (6V1¢08 =

2/3-0.005 = 0.33%).

max

The 1D earthquake response simulation of the building is mainly illustrative and has the



189

purpose of demonstrating the effectiveness of the algorithm proposed to provide meaningful
results. In reality, the properties of the rubber bearings under earthquake excitation will not
be the quasi-static properties obtained from the identification of the Augusta tests, but the
corresponding dynamic lab properties (which are essentially higher). Moreover, for strong
motions like the one recorded at Sturno, the hardening behaviour of the rubber shall be
activated. The hardening of the rubber at extreme load conditions cannot be captured with
the bilinear model considered herein.

Within this section, very few information was provided on the corresponding equivalent
lateral force procedure prescribed by the Italian Standards. For the interested reader, more
information on the NTCO08 design procedures for the isolation system design at the ultimate

limit states, using linear static analysis can be found in [33].

4.9 Conclusions

This chapter presented an energy based constrained optimization procedure for the one di-
mensional dynamic response simulation of hybrid base isolated systems with flexible super-
structure responding in the linear range. The method provides the time step system response
to any dynamic load, as the solution of a minimization problem, where the function to be
minimized describes the dissipation power, i.e. the rate of the work of the non-conservative
forces developed in the isolation system. Implementation of the algorithm for the free vi-
bration response simulation of the Augusta building, using the identified properties for the
isolation system and the superstructure provided very good results, which matched satis-
factorily the experimental ones. That leads to the conclusion that the identified isolated
building properties, obtained from the two stage identification of the non-linear HBIS and
the linear superstructure are physically meaningful and serve as a reliable input for the more

realistic modelling of the structure.
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Chapter 5

Conclusions

This dissertation investigates the behaviour of an isolated building in Augusta, Italy, under a
series of full scale push and sudden release tests, performed on the building upon completion
(March 2013). The isolation system consisted of 16 high damping rubber bearings and
20 low friction sliding bearings. FEight release tests were performed on the building, with
displacement amplitudes that varied from 5.8 to 11.7¢m - in terms of shear strain amplitude in
the rubber that translates to v = 0.39 — 0.78. The tests were characterized by a long quasi-
static loading phase, and a short dynamic phase where the building was left to oscillate.
The static phase was at least 100 times longer than the dynamic one. The test records
included the displacements at the isolation level and the floor accelerations. The recorded
transverse displacements were negligible, implying that the unidirectional excitation did
not cause appreciable rotation. The longitudinal free vibration records where significant but
short, indicating that the system came to rest soon (within the second cycle of motion). This
was due to the low initial amplitude and the presence of friction. The obtained acceleration
records were processed by means of a baseline fitting scheme developed for the problem at
hand. Once adjusted, the floor response was used in the identification of the isolation system
and superstructure properties. The identified parameters were then used for the simulation

of the overall system response. A constrained optimization procedure was developed for the
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time step solution of the non-linear differential equations.

5.1 Baseline fitting using increasing order polynomials

(Chapter 2)

A simple baseline fitting scheme was proposed herein for the removal of the low frequency
noise from the Augusta records. The method does not require significant computational ef-
fort and accounts for boundary conditions, provided that those are known. The polynomial
coefficients used in the baseline fitting are determined from the boundary conditions; namely
the initial and end accelerations, velocities and displacements. The deterministic definition
of the polynomial coefficients and the recovery of permanent displacements enforces the re-
liability of the method and makes it an attractive alternative to high pass filtering, which
instead requires proficient users and includes a lot of subjectivity in the filter parameter
selection. The baseline scheme developed was applied for the processing of the absolute and
relative acceleration signals obtained from the full Augusta data-set and provided the ad-
justed response in terms of absolute and relative floor accelerations, velocities, displacements
and inter-story drifts. The predicted ground floor displacements matched very satisfactorily
the observed ones. There was some uncertainty in the reliability of the predicted relative dis-
placements and drifts versus the end of motion, however such uncertainty cannot be avoided

since the signal-to-noise ratio tends to be significantly low for small amplitude motions.

5.2 Dynamic identification of the non-linear isolation
system and the linear superstructure (Chapter 3)

The dynamic identification of the system was performed in the time domain using the Co-
variance Matrix Adaptation Evolution Strategy, a stochastic algorithm used in difficult,

non-linear optimization where commonly used gradient methods fail to provide a minimum.
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The excessive computational times related to the increased problem dimensionality did not
allow the identification of the overall isolated system parameters. Instead, the identification
was performed at two stages, for the separate identifications of the isolation system and the
superstructure. The objective function was defined as the distance between simulated and
experimental response. In the identification of the isolation system, the rubber bearings were
modelled using a bilinear system, while the friction sliders were modelled using the Coulomb
model. The dynamic identification of the isolation system and the superstructure reveiled

that:

e The solution to the minimization problem is not unique and corresponds to a local
rather than a global minimum of the optimization. The optimal solution is the one

which is physically meaningful and shows increased repeatability.

e The optimal solution varies from test to test, implying that the rubber and friction

properties depend on the motion amplitude.

e The elastic and post-elastic stiffnesses, kg, k1 and consequently the effective stiffness
kess of the rubber decrease with increasing displacement amplitude indicating period
elongation under stronger motions. The characteristic strength ) tends to increase
with increasing v, while the equivalent viscous damping (., tends to decrease with
v. The softening of the rubber at higher strain amplitudes is well documented in the
literature. This observation is not valid for extreme loading, where rubber hardening

occurs.

e The identified rubber properties lie significantly below the corresponding dynamic lab
properties and are in average lower than the static lab ones. A direct comparison of
identified and lab properties is not applicable since the lab tests correspond to a higher
strain amplitude (v = 0.39 — 0.79 against v = 1). The identified softened stiffnesses
lead to the conclusion that the bearings could not recover their dynamic properties

after experiencing a very long static phase (loading history dependence of the rubber).
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e The sliding coefficient of friction obtained from the identification is in average 1% and
shows increasing trend with increasing velocity amplitude. While the value obtained
is consistent with the suggestions of the manufacturer for p, when multiplied by the
axial load acting on the isolators and integrated over the displacement domain results
to significant energy dissipation. The friction force identified for the first cycle of

motion (where the velocity is large) is too probably too large for the successive cycles.

e The simplicity of the bi-linear and Coulomb model is not considered to have affected
significantly the results. The bi-linear model describes with sufficient accuracy the
hysteretic behaviour of the rubber at moderate strain range. Moreover it allows for
the analytical solution of the equation of motion. The use of strain-adaptive models
for the rubber and more detailed friction models [20, 6] would be rather recommended
when considering strong motion, where the system exhibits several cycles of motion

and there is significant redistribution of axial load, heating and stick-slip motion.

e The identification of the superstructure provided the floor mass distribution and the
modal properties of the considered three-degree-of-freedom viscously damped linear
model (modal frequencies, damping ratios, modes of vibration). All tests, but one,
provided very similar results, showing that the inherent properties of the superstructure
do not depend on the input excitation (in the linear range). There was evidence
that the second mode provided significant contribution to the flexible superstructure
response. Higher frequencies can be detected in any acceleration record obtained from
the Augusta tests. The excitation of higher frequencies is related more to the type
of induced excitation and less to the non-linearity of the isolation system. When the
building was released, an impulsive force acted at the base. This force was transmitted

to the superstructure, however it attenuated with distance and time.
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5.3 1D dynamic response simulation of the hybrid base

isolated building (Chapter 4)

The identified properties of the system were input in a synthesized model of the isolated
structure which was used in the response simulation of the experiments. The matching
between simulated and experimental response was very satisfactory, both in terms of absolute
and relative response. The coupled non-linear equations of motion were solved using a
constrained optimization procedure developed for the 1D dynamic response simulation of
isolated buildings. In the numerical algorithm proposed, the function to be minimized was
defined on the basis of the energy dissipated in the isolation system, while the optimization
constraints corresponded to the feasible domains of the non-conservative forces developed in

the isolation system.

5.4 Limitations and needs for further investigation

The push and sudden release tests used to provide dynamic data for the identification of
the mechanical properties of base isolated buildings, such as the Solarino buildings in 2004
and the Augusta building in 2013, have advantages and disadvantages over laboratory tests
conducted on single isolators or on scaled down models of substructures. The main advantage
is that the overall behavior of the actual building and of its complete isolation system is
tested. Also the way the tests are performed enables the excitation of high frequencies
in the superstructure which may be useful in the identification of the properties of the
superstructures besides those of the isolation system. The main disadvantage is that, unless
a strong power unit is available, the initial displacement can be applied only in a quasi-
static fashion. The long duration of the pushing phase, because of creep in the elastomers,
determines a softening of the load-displacement curve as compared to the one that would be
obtained by applying the displacement at a much higher speed as that corresponding to the

fundamental period of the system. These stiffness properties are retained in the following
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dynamic phase of free vibration with the result that the identified properties of the isolation
system are closer to those obtained by quasi-static laboratory tests on single isolators than by
dynamic tests. The obvious recommendation for the repetition of full-scale push and release
tests of the type of the Solarino and Augusta ones is to increase the velocity of application
of the initial displacement to a level where creep of the elastomer is negligible.

Another lesson learned from the tests performed on the Augusta building is that the floor
slab just above the isolation system should be stiff enough to be considered as axially rigid.
In this way all isolators would undergo the same displacement and high frequency motions
within the slab would be avoided. These motions could determine also complex interactions
between perimeter elastomeric isolators and internal sliding isolators.

A limitation of the results of the present work derives from the amplitude of the applied
displacements. This was constrained by the need not to cause damage to the non-structural
elements of the building and by the limited power available for the application of the initial
displacement. Identification of the properties of the isolation system with the same model
at larger amplitudes of imposed displacements would have provided different results.

Elastomeric bearings exhibit different properties at small, intermediate and large shear
strains; the model used in the present work is more appropriate for shear strains not much
larger than 1. When, as is the case with large earthquakes, the expected strains are expected
in the full range from small to large, say from 0 up to 2 or more, more complete models than
the bi-linear one would be required. However, given an improved model, the identification
procedure introduced herein could still be applied.

In modelling the sliding bearings the simple Coulomb friction model was used, although
in the literature more sophisticated models exist that allow for the change of the friction
coefficient with velocity and possibly pressure and temperature. In the present study the
simple model was used in consideration that the effect of friction from the low-friction sliding

bearings was expected to be small.
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Appendix A

Signal processing of the Augusta records

The processed motion data for the full set of the Augusta tests are shown herein. The
baseline fitting scheme is implemented for the adjustment of the longitudinal records of
the base, first, second and roof floor, namely the acceleration components obtained from
the Augusta free vibration tests 1,3,4,5,6,8,9 and 10 : components GFL-25X-01, 1FL-25X-
01, 2FL-25X-01, 3FL-X-01, GFL-25X-03, 1FL-25X-03, 2FL-25X-03, 3FL-X-03, GFL-25X-
04, 1FL-25X-04, 2FL-25X-04, 3FL-X-04, GFL-25X-05, 1FL-25X-05, 2FL-25X-05, 3FL-X-05,
GFL-25X-06, 1FL-25X-06, 2FL-25X-06, 3FL-X-06, GFL-25X-08, 1FL-25X-08, 2FL-25X-08,
3FL-X-08, GFL-25X-09, 1FL-25X-09, 2FL-25X-09, 3FL-X-09, GFL-25X-10, 1FL-25X-10,
2FL-25X-10, 3FL-X-10.

The Appendix is organized as follows:

e Section A.1 provides information on the start times ¢, end times ¢5 and motion dura-
tions t4 for the absolute and relative records obtained from the free vibration Augusta
tests, see Tables A.1 to A.3. The thresholds ¢; and ¢, and the time interval used for
the identification of the linear velocity trend, which are needed for the estimation of

times t; and 5 are given in Tables A.1 and A.3.

e Section A.2 provides the peak free vibration response in terms of absolute floor accel-

erations, velocities and displacements, see Tables A.6 and A.7.



e Section A.3 provides the peak relative superstructure response in terms of absolute

floor accelerations, velocities and displacements, see Tables A.6 to A.7.

e Sections A.4 to A.10 show the plots of the baseline fitted absolute response, the baseline
fitted relative response evaluated indirectly from the adjusted absolute response and
the baseline fitted relative response evaluated directly from the processing of the row
relative signals for tests 1, 3, 4, 5, 6, 8 and 10. The results for test 9 can be found in the
main text and are not repeated herein. The absolute response presented in the above
mentioned sections includes absolute floor accelerations, velocities and displacements.
The relative response consists in relative floor accelerations, velocities, displacements

and inter-story drifts.



A.1 Motion duration - tables

Table A.1: Duration of strong motion for tests 1, 3 and 4. First column: start time of
absolute motion #¢**. Second column: end time of absolute motion #$°*. Third column:
duration of absolute motion t4** = 5% — ¢{%. Fourth column: start time of absolute motion
trel. Fifth column: end time of absolute motion #¢. Sixth column: duration of relative
motion 7% = 1€l — 7 (within brackets the relative motion duration as evaluated from the
absolute motion start and end times, i.e. ¢7¢ = ¢abs — ¢4bsgroundiioor)

Test1 (ug = 5.83cm) 1" [sec] 15" [sec] t3"[sec] t7%[sec] 15 [sec] 7! [sec]
ground floor record 415.075  417.280  2.205

first floor record 415.081 417.290  2.209  415.075 417.200 2.125 ( 2.215)
second floor record 415.099 417.300  2.201  415.075 417.210 2.135 ( 2.225)
roof record 415.103 417.310  2.207  415.075 417.220 2.145 ( 2.235)
Test3 (ug = 6.81em)  t§%[sec] 15%[sec] t3[sec] t7[sec] 15![sec] 7 sec]
ground floor record 470.133 473.000  2.867

first floor record 470.138 473.010  2.872  470.133 473.060 2.927 ( 2.877)
second floor record 470.145 473.020  2.875  470.133 473.060 2.927 ( 2.887)
roof record 470.164 473.050  2.886  470.133 473.070 2.937 ( 2.917)
Test4 (ug = 6.83cm)  t9%[sec] 15" [sec] t%[sec] t[sec] t5![sec] tsec]
ground floor record 463.620 466.500  2.880

first floor record 463.624 466.530  2.906  463.620 466.560 2.940 ( 2.910)

second floor record 463.632 466.560  2.928  463.620 466.590 2.970 ( 2.940)
roof record 463.651 466.580  2.929  463.620 466.600 2.980 ( 2.960)




Table A.2: Duration of strong motion for tests 5, 6 and 8. First column: start time of

absolute motion #¢**. Second column: end time of absolute motion #5%.

Third column:

duration of absolute motion t3** = 5% — ¢{%. Fourth column: start time of absolute motion
trel. Fifth column: end time of absolute motion ¢4
motion 7% = 5l — 7 (within brackets the relative motion duration as evaluated from the

absolute motion start and end times, i.e. ¢ = 35 —

Sixth column: duration of relative

tabs, groundfloor
| )-

Test5 (ug = 10.88cm)  t{%[sec]  t3[sec| t%%[sec|] t7%[sec] — t5%[sec] e [sec]
ground floor record 1067.992 1071.220  3.228

first floor record 1067.997 1071.228  3.231  1067.992 1071.955 3.963 ( 3.236)
second floor record 1068.004 1071.233  3.229  1067.992 1071.956 3.964 ( 3.241)
roof record 1068.024 1071.234  3.210  1067.992 1071.957 3.965 ( 3.242)
Test6 (ug = 11.66cm)  t{%[sec]  t3[sec] t%%[sec] t7%sec] 5% [sec] 7 sec]
ground floor record 1215.377 1219.400  4.023

first floor record 1215.383 1219.430  4.047 1215377 1219.430 4.053 ( 4.053)
second floor record 1215.389 1219.440  4.051 1215377 1219.440 4.063 ( 4.063)
roof record 1215.409 1219.460  4.051 1215.377 1219.440 4.063 ( 4.083)
Test8 (ug = 10.33cm)  t9%[sec] t3%[sec] t%%[sec] /% sec] t5%[sec] tsec]
ground floor record 385.165 389.200  4.035

first floor record 385.171 389.240  4.069  385.165 389.220 4.055 ( 4.075)
second floor record 385.177 389.250  4.073  385.165 389.240 4.075 ( 4.085)
roof record 385.200 389.260  4.060  385.165 389.320 4.155 ( 4.095)




Table A.3: Duration of strong motion for tests 9 and 10. First column: start time of
absolute motion #¢**. Second column: end time of absolute motion #4°*. Third column:
duration of absolute motion t3** = 5% — ¢{%. Fourth column: start time of absolute motion
trel. Fifth column: end time of absolute motion #;¢. Sixth column: duration of relative
motion 7% = 5l — 7 (within brackets the relative motion duration as evaluated from the

absolute motion start and end times, i.e. ¢ = 35 —

tabs, groundfloor
| )-

Test9 (ug = 10.11cm)  t{%[sec]  t3%[sec| t%%[sec|] t7%[sec]  t5%[sec] e [sec]
ground floor record 1014.087 1018.000  3.913

first floor record 1014.092 1018.049  3.957  1014.087 1018.150 4.063 ( 3.962)
second floor record 1014.109 1018.170  4.061  1014.087 1018.170 4.083 ( 4.083)
roof record 1014.122 1018.220  4.098  1014.087 1018.210 4.123 ( 4.133)
Test 10 (ug = 10.02cm)  t{%[sec]  t§%%[sec] t%[sec] t1%[sec]  15![sec] tsec]
ground floor record 1052.849 1056.810  3.961

first floor record 1052.855 1056.820  3.965  1052.849 1056.920 4.071 ( 3.971)
second floor record 1052.862 1056.840  3.978  1052.850 1056.920 4.070 ( 3.991)
roof record 1052.878 1056.920  4.042  1052.849 1056.940 4.091 ( 4.071)

Table A.4: Intervals of time where there is a clear linear trend in the row absolute and/or
relative velocity trace. A straight line is drawn in this interval and extended until time ;.

Test 1:
Test 3:
Test 4:
Test 5:

[420, 430]sec

[480, 490]sec

[470, 480]sec
[1075, 1085]sec

Test 6:  [1225, 1235]sec
Test 8: [395, 405]sec

Test 9: [1020, 1030]sec
Test 10: 1060, 1070]sec




Table A.5: Thresholds e; and &, used for the determination of start and times times of strong
absolute and relative motion (sub-scripts ‘abs’ and 'rel’ respectively).

Test 1 : thresholds in %

Test &8 : thresholds in %

Test 4 : thresholds in %

flOOT’ gtlzbs 6fb}bs gvl"el 8zel 8iLbs 8gbs énl"el gzel gclbbs ggbs 871"61 8zel
ground 1.00 0.90 1.00 0.30 2.00 0.10
first 0.10 1.00 1.00 1.00 8.00 0.30 8.00 1.00 2.00 0.10 2.00 0.40
second 1.00 1.00 1.00 0.90 8.00 0.30 8.00 1.00 10.00 0.10 2.00 0.40
roof 1.00 1.10 1.00 1.00 8.00 0.30 8.00 0.40 10.00 0.10 2.00 0.40
Test 5 : thresholds in % Test 6 : thresholds in % Test 8 : thresholds in %
flOOT g?bs ggbs €7l“el 8£el gtlzbs Egbs 671“el é:Zel E(fbs 831)5 671“61 gzel
ground 2.00 1.00 2.00 0.28 2.00 0.20
first 2.00 1.00 2.00 0.28 2.00 0.25 2.00 0.10 2.00 0.30 2.00 0.40
second 2.00 1.00 2.00 0.16 2.00 0.26 2.00 0.01 2.00 0.45 2.00 0.80
roof 5.00 1.00 2.00 0.28 5.00 0.26 2.00 0.01 8.00 0.15 2.00 0.20
Test 9 : thresholds in % Test 10 : thresholds in %
flOO?“ 8tlz,bs E_:gbs 71‘el 8Zel gzlzbs Egbs €7l“el E_:Zel
ground 1.00 0.10 2.00 1.50
first 2.00 0.10 2.00 0.60 2.00 1.70 2.00 0.80
second 10.00 0.20 2.00 1.20 2.00 1.65 2.00 0.70
roof 12.00 0.20 2.00 0.20 2.00 1.50 2.00 0.25




A.2 Peak absolute free vibration response - tables

Table A.6: Peak free vibration response of the Augusta building in terms of absolute floor
acceleration, velocity and displacement during tests 1, 3, 4, 5 and 8.

Test 1 : Peak absolute response Test 8 : Peak absolute response
accel.[g] wel.[em/sec]  displ.[em] accel.[g] wel.[em/sec] displ.[em]
ground floor  0.126 9.54 5.83 0.320 12.42 6.81
first floor 0.118 9.43 5.83 0.231 12.25 6.81
second floor 0.106 9.66 0.83 0.161 12.87 6.81
roof 0.100 9.56 5.83 0.219 13.04 6.82
Test 4 : Peak absolute response Test 5 : Peak absolute response
accel.[g] wel.[em/sec] displ.[em] accel.[g] wel.[em/sec] displ.[em]
ground floor  0.329 11.47 6.85 0.419 17.29 10.88
first floor 0.195 11.27 6.85 0.268 16.81 10.88
second floor  0.158 11.85 6.85 0.199 17.69 10.88
roof 0.214 11.97 6.85 0.286 18.25 10.88
Test 6 : Peak absolute response Test 8 : Peak absolute response
accel.[g] wel.[em/sec] displ.[em] accel.[g] wel.[em/sec] displ.[em]
ground floor  0.425 18.13 11.66 0.419 17.57 10.33
first floor 0.261 17.66 11.66 0.279 17.26 10.33
second floor 0.218 18.42 11.66 0.205 18.10 10.33
roof 0.295 19.06 11.66 0.291 18.68 10.34

Table A.7: Peak free vibration response of the Augusta building in terms of absolute floor
acceleration, velocity and displacement during tests 9 and 10.

Test 9 : Peak absolute response

Test 10 : Peak absolute response

accel.[g] wel.[em/sec] displ.[em] accel.[g] wel.[em/sec] displ.[em]
ground floor  0.374 15.70 10.11 0.363 15.41 10.02
first floor 0.252 15.43 10.11 0.257 15.25 10.02
second floor 0.177 16.12 10.11 0.174 16.05 10.02
roof 0.265 16.53 10.11 0.261 16.30 10.03




A.3 Peak relative superstructure response - tables

Table A.8: Peak relative to the base response for tests 1, 3 and 4. The relative response is
evaluated directly from the baseline fitting of the row relative motion. The corresponding
peak response evaluated from the fitted absolute response is given within brackets. First
column: component considered. Second column: peak relative floor accelerations. Third
column: peak relative floor velocities. Fourth column: peak relative floor displacements.
Fifth column: peak relative floor displacements after application of a low cut filter with
fe=025H~z (testl) and f. = 0.30Hz (tests 3 and 4). Sixth column: peak inter-story drifts.
Seventh column: peak inter-story drifts evaluated from filtered displacements.

Test 1 : Peak relative to the base response

floor acceleration velocity displacement  filtered displ. drift filtered drift
9] [em/sec] [cm] [cm] [10~7] [107]
first 0.120 ( 0.120) 1.680 ( 1.679) 0.072 ( 0.072) 0.076 ( 0.076) 0.169 ( 0.169) 0.178 ( 0.179)
second 0.173 ( 0.173) 3.009 ( 2.989) 0.125 ( 0.138) 0.132 ( 0.132) 0.187 ( 0.213) 0.175 ( 0.174)
third 0.167 ( 0.167) 3.055 ( 3.057) 0.128 ( 0.128) 0.132 ( 0.133) 0.118 ( 0.139) 0.064 ( 0.073)
Test 3 : Peak relative to the base response
floor acceleration velocity displacement  filtered displ. drift filtereddrift
9] [em/sec] [cm] [em] [10~7] [10~7]
first 0.297 ( 0.297) 2.701 ( 2.686) 0.103 ( 0.110) 0.098 ( 0.098) 0.242 ( 0.260) 0.232 ( 0.231)
second 0.336 ( 0.336) 4.234 (4.217) 0.153 ( 0.152) 0.161 ( 0.161) 0.195 ( 0.195) 0.196 ( 0.197)
third  0.370 ( 0.370) 5.056 ( 4.961) 0.215 ( 0.210) 0.220 ( 0.221) 0.191 ( 0.180) 0.182 ( 0.185)
Test 4 : Peak relative to the base response
floor acceleration velocity displacement  filtered displ. drift filtereddrift
9] [em/sec] [cm)] [cm] [10~7] [10~7]
first 0.304 ( 0.304) 2.739 ( 2.742) 0.086 ( 0.086) 0.089 ( 0.089) 0.202 ( 0.202) 0.209 ( 0.209)
second 0.338 ( 0.336) 4.100 ( 4.086) 0.144 ( 0.143) 0.151 ( 0.151) 0.185 ( 0.195) 0.195 ( 0.194)
third 0.349 (1 0.349) 4.753 ( 4.651) 0.203 ( 0.198) 0.207 ( 0.207) 0.182 ( 0.169) 0.173 ( 0.175)




Table A.9: Peak relative to the base response for tests 5, 6 and 8. The relative response is
evaluated directly from the baseline fitting of the row relative motion. The corresponding
peak response evaluated from the fitted absolute response is given within brackets. First
column: component considered. Second column: peak relative floor accelerations. Third
column: peak relative floor velocities. Fourth column: peak relative floor displacements.
Fifth column: peak relative floor displacements after application of a low cut filter with
fe = 0.30H z. Sixth column: peak inter-story drifts. Seventh column: peak inter-story drifts

evaluated from filtered displacements.

Test 5 : Peak relative to the base response

floor acceleration velocity displacement  filtered displ. drift filtereddrift
9] [em/sec] [cm] [em] [10~7] [10~7]
first 0.403 ( 0.403) 3.688 ( 3.674) 0.144 ( 0.143) 0.136 ( 0.138) 0.339 ( 0.336) 0.321 ( 0.324)
second 0.437 (1 0.419) 5.920 ( 5.898) 0.231 ( 0.230) 0.229 ( 0.231) 0.273 ( 0.272) 0.288 ( 0.289)
third 0.467 ( 0.467) 7.077 ( 6.970) 0.319 ( 0.313) 0.313 ( 0.316) 0.269 ( 0.256) 0.256 ( 0.261)
Test 6 : Peak relative to the base response
floor acceleration velocity displacement  filtered displ. drift filtered drift
9] [em/sec] [cm] [em] [107] [10~7]
first 0.402 ( 0.402) 3.806 ( 3.790) 0.140 ( 0.138) 0.148 ( 0.148) 0.329 ( 0.326) 0.349 ( 0.349)
second 0.443 ( 0.432) 5.965 ( 5.947) 0.231 ( 0.230) 0.240 ( 0.241) 0.288 ( 0.288) 0.289 ( 0.290)
third 0.483 (10.483) 7.104 ( 7.008) 0.322 ( 0.317) 0.324 ( 0.326) 0.281 ( 0.268) 0.257 ( 0.262)
Test 8 : Peak relative to the base response
floor acceleration velocity displacement  filtered displ. drift filtereddrift
9] [em/sec] [cm] [cm] [10°] [10°]
first 0.358 (1 0.358) 3.703 ( 3.695) 0.206 ( 0.213) 0.152 ( 0.152) 0.484 ( 0.501) 0.358 ( 0.358)
second 0.403 ( 0.403) 5.891 ( 5.886) 0.228 ( 0.227) 0.243 ( 0.243) 0.283 ( 0.284) 0.285 ( 0.285)
third 0.485 ( 0.485) 6.840 ( 6.706) 0.316 ( 0.309) 0.325 ( 0.328) 0.272 ( 0.251) 0.254 ( 0.262)




10

Table A.10: Peak relative to the base response for tests 9 and 10. The relative response is
evaluated directly from the baseline fitting of the row relative motion. The corresponding
peak response evaluated from the fitted absolute response is given within brackets. First
column: component considered. Second column: peak relative floor accelerations. Third
column: peak relative floor velocities. Fourth column: peak relative floor displacements.
Fifth column: peak relative floor displacements after application of a low cut filter with
fe = 0.30H z. Sixth column: peak inter-story drifts. Seventh column: peak inter-story drifts
evaluated from filtered displacements.

Test 9 : Peak relative to the base response

floor acceleration velocity displacement  filtered displ. drift filtereddrift
9] [em/sec] [em] [em] [10~7] [10~7]
first 0.345 ( 0.345) 3.402 ( 3.384) 0.130 ( 0.129) 0.126 ( 0.125) 0.306 ( 0.302) 0.295 ( 0.295)
second 0.391 (1 0.391) 5.396 ( 5.348) 0.211 ( 0.208) 0.207 ( 0.206) 0.260 ( 0.249) 0.255 ( 0.254)
third ~ 0.420 ( 0.420) 6.287 ( 6.075) 0.290 ( 0.278) 0.281 ( 0.283) 0.242 ( 0.305) 0.226 ( 0.236)
Test 10 : Peak relative to the base response
floor acceleration velocity displacement  filtered displ. drift filtered drift
1) [em/sed] [cm) [em) 109 109
first 0.332 (1 0.332) 3.252 ( 3.250) 0.116 ( 0.116) 0.123 ( 0.123) 0.273 ( 0.273) 0.290 ( 0.291)
second 0.394 ( 0.394) 5.172 ( 5.180) 0.194 ( 0.195) 0.208 ( 0.208) 0.271 ( 0.252) 0.264 ( 0.264)
third ~ 0.415 ( 0.415) 6.002 ( 5.951) 0.272 ( 0.269) 0.278 ( 0.279) 0.349 ( 0.230) 0.216 ( 0.218)
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A.4 TEST 1-graphs

A.4.1 Baseline fitted absolute free vibration response

Test 1 absolute accelerations Test 1 absolute accelerations
0.15— ‘ ‘ ‘ ‘ 0.15— : ‘ : :
; —— measured accel. —ground floor : —— measured accel —first floor
0.1t - - - fitted accel. —ground floor i 011 - - - fitted accel.—first floor
=5 0.05 =i 0.05
g g
g 0 g0
2 =2
[} Q
g 005} g 005} :
I t d:2‘205sec | | t d:2.209sec |
—0.11 1 —0.11 1
| | l |
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
a) t [sec] b) t [sec]
Test 1 absolute accelerations Test 1 absolute accelerations
0.15— ; ; ; ; 0.15— ; ; ; ;
: — measured accel.—second floor : — measured accel —third floor
01+ - - - fitted accel.—second floor i 0.1k - - - fitted accel —third floor
=g 0.05¢ =8 0.05
= =
g .8
® 0 s 0
=2 : =z :
[5) - (5] :
g 005t 1 8005t
| td=2.201sec | | td=2.2()7sec |
—0.1F 1 —0.1F
I | | |
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
C) t [sec] d) t [sec]

Figure A.1: Absolute acceleration response of the Augusta building during test 1: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The row
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is given.
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Test 1 absolute velocities Test 1 absolute displacements
15— T T 8 - .
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Figure A.2: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 1; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts and
ends somewhat later at the upper floors.
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A.4.2 Test 1: Relative superstructure response evaluated from the

processed absolute response
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Figure A.3: Relative acceleration response at the Augusta superstructure under test 1 at first
floor, second floor and roof; sub-plots a), b), ¢) respectively. The row signals are represented
by red lines while the baseline fitted signals are shown by black lines. Sub-plot d) shows the
relative floor velocities. The times when motion starts and ceases are indicated by markers.
(‘abs’: absolute response, ‘row’: unprocessed response, ‘adj’: adjusted response, ‘Ifi, 2fi,
roof ’: first floor, second floor and roof response)
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Figure A.4: Relative displacements at the Augusta superstructure during test 1; sub-plot
a). Sub-plot b) shows the relative floor displacements of sub-plot a) after application of a

low cut filter with corner frequency equal to f, = 0.25Hz .
and ceases are indicated by markers.

The times when motion starts

(‘abs’: absolute response, ‘row’: unprocessed response,

‘adj’: adjusted response, ‘1fl, 2fl, roof’: first floor, second floor and roof response)



15

A.4.3 Test 1: Relative superstructure response evaluated from the

baseline fitting of the row relative motion

Test 1 relative accel. (baseline fitted)  Test 1 relative vel. (baseline fitted)

0.2 4r
0.1} 2t roof
ol :
—0.11}
-0.2L
o 0.2r g
g 0 z
78) —-0.1 | %)
" 02, 1 2 3 g
02 ‘ 4 ‘
011 Ist floor ol st floor |
04 s o?ﬂ/\/\/mw’——H
—0.1¢] =2 1
-0.2L —4L
0 1 2 3 0 1 2 3
t [sec] t [sec]

Figure A.5: Relative floor accelerations and velocities for the Augusta free vibration test 1,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The
relative response is zero at the beginning and end of motion, since the superstructure is
expected to respond in the linear range under such a small excitation. The times when
motion starts and ceases are indicated by markers.
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Figure A.6: Relative floor displacement histories for the Augusta free vibration test 1, as
evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements are zero at
the beginning and end of motion, since the superstructure is expected to respond in the linear
range under such a small excitation. The right sub-plots represent the same displacements
after implementation of a low cut filter with corner frequency f. = 0.25Hz. After filtering,
the relative displacement responses obtained by the two procedures become essentially the
same. The times when motion starts and ceases are indicated by markers.
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Figure A.7: Inter-story drift histories for the Augusta free vibration test 1, as evaluated from
the adjusted absolute response (continuous black lines) and the adjusted relative response
(dashed red lines); left sub-plots. The drifts are zero at the beginning and end of motion,
since the superstructure is expected to respond in the linear range under such a small ex-
citation. The right sub-plots represent the drifts evaluated from the corresponding filtered
displacements. After filtering, the drifts obtained by the two procedures become essentially
the same. The times when motion starts and ceases are indicated by markers.
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A.5.1 Baseline fitted absolute free vibration response
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Figure A.8: Absolute acceleration response of the Augusta building during test 6: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The row
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is given.
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Figure A.9: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 6; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts and
ends somewhat later at the upper floors.
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Test 3: Relative superstructure response evaluated from the

Test 3 relative accelerations
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Relative acceleration response at the Augusta superstructure under test 6

at first floor, second floor and roof; sub-plots a), b), c) respectively. The row signals are
represented by red lines while the baseline fitted signals are shown by black lines. Sub-plot
d) shows the relative floor velocities. The times when motion starts and ceases are indicated

(‘abs’:

by markers.

absolute response, ‘row’:

unprocessed response,

‘ady’: adjusted response,

‘1fi, 2fl, roof ’: first floor, second floor and roof response)
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Test 3 baseline fitted displacements baseline fitted + low cut filtered 02 =0.25 Hz) rel. displ.
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Figure A.11: Relative displacements at the Augusta superstructure during test 3; sub-plot
a). Sub-plot b) shows the relative floor displacements of sub-plot a) after application of a
low cut filter with corner frequency equal to f, = 0.30Hz . The times when motion starts
and ceases are indicated by markers. (‘abs’: absolute response, ‘row’: unprocessed response,
‘adj’: adjusted response, ‘1fl, 2fl, roof’: first floor, second floor and roof response)
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A.5.3 Test 3: Relative superstructure response evaluated from the

baseline fitting of the row relative motion
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Figure A.12: Relative floor accelerations and velocities for the Augusta free vibration test 3,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The
relative response is zero at the beginning and end of motion, since the superstructure is
expected to respond in the linear range under such a small excitation. The times when
motion starts and ceases are indicated by markers.
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Test 3 relative displ. (baseline fitted) baseline fitted+LC filtered (fCZO. 3Hz)
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Figure A.13: Relative floor displacement histories for the Augusta free vibration test 3,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements are zero at the
beginning and end of motion, since the superstructure is expected to respond in the linear
range under such a small excitation. The right sub-plots represent the same displacements
after implementation of a low cut filter with corner frequency f. = 0.30Hz. After filtering
the relative displacement responses obtained by the two procedures become essentially the
same. The times when motion starts and ceases are indicated by markers.



24

Test 3 drifis (baseline fitted) baseline fitted+LC filtered (fc=0.3Hz)
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Figure A.14: Inter-story drift histories for the Augusta free vibration test 3, as evaluated
from the adjusted absolute response (continuous black lines) and the adjusted relative re-
sponse (dashed red lines); left sub-plots. The drifts are zero at the beginning and end of
motion, since the superstructure is expected to respond in the linear range under such a
small excitation. The right sub-plots represent the drifts evaluated from the corresponding
filtered displacements. After filtering, the drifts obtained by the two procedures become
essentially the same. The times when motion starts and ceases are indicated by markers.
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A.6 TEST 4-graphs

A.6.1 Baseline fitted absolute free vibration response
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Figure A.15: Absolute acceleration response of the Augusta building during test 4: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The row
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is given.
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Figure A.16: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 4; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts and
ends somewhat later at the upper floors.
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A.6.2 Test 4: Relative superstructure response evaluated from the

processed absolute response
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Figure A.17: Relative acceleration response at the Augusta superstructure under test 6
at first floor, second floor and roof; sub-plots a), b), c) respectively. The row signals are
represented by red lines while the baseline fitted signals are shown by black lines. Sub-plot
d) shows the relative floor velocities. The times when motion starts and ceases are indicated
by markers. (‘abs’: absolute response, ‘row’: unprocessed response, ‘adj’: adjusted response,
‘1fi, 2fl, roof ’: first floor, second floor and roof response)
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Test 4 baseline fitted displacements baseline fitted + low cut filtered (fc =0.3 Hz) rel. displ.
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Figure A.18: Relative displacements at the Augusta superstructure during test 4; sub-plot
a). Sub-plot b) shows the relative floor displacements of sub-plot a) after application of a
low cut filter with corner frequency equal to f, = 0.30Hz . The times when motion starts
and ceases are indicated by markers. (‘abs’: absolute response, ‘row’: unprocessed response,
‘adj’: adjusted response, ‘1fl, 2fl, roof’: first floor, second floor and roof response)
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A.6.3 Test 4: Relative superstructure response evaluated from the

baseline fitting of the row relative motion
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Figure A.19: Relative floor accelerations and velocities for the Augusta free vibration test 4,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The
relative response is zero at the beginning and end of motion, since the superstructure is
expected to respond in the linear range under such a small excitation. The times when
motion starts and ceases are indicated by markers.
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Test 4 relative displ. (baseline fitted) baseline fitted +LC filtered (fCZO. 3Hz)
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Figure A.20: Relative floor displacement histories for the Augusta free vibration test 4,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements are zero at the
beginning and end of motion, since the superstructure is expected to respond in the linear
range under such a small excitation. The right sub-plots represent the same displacements
after implementation of a low cut filter with corner frequency f. = 0.30Hz. After filtering
the relative displacement responses obtained by the two procedures become essentially the
same. The times when motion starts and ceases are indicated by markers.
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Figure A.21: Inter-story drift histories for the Augusta free vibration test 4, as evaluated
from the adjusted absolute response (continuous black lines) and the adjusted relative re-
sponse (dashed red lines); left sub-plots. The drifts are zero at the beginning and end of
motion, since the superstructure is expected to respond in the linear range under such a
small excitation. The right sub-plots represent the drifts evaluated from the corresponding
filtered displacements. After filtering, the drifts obtained by the two procedures become
essentially the same. The times when motion starts and ceases are indicated by markers.
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A.7 TEST 5-graphs

A.7.1 Baseline fitted absolute free vibration response
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Figure A.22: Absolute acceleration response of the Augusta building during test 5: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The row
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is given.
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Figure A.23: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 5; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts and
ends somewhat later at the upper floors.
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A.7.2 Test 5: Relative superstructure response evaluated from the

processed absolute response
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Figure A.24: Relative acceleration response at the Augusta superstructure under test 5
at first floor, second floor and roof; sub-plots a), b), c) respectively. The row signals are
represented by red lines while the baseline fitted signals are shown by black lines. Sub-plot
d) shows the relative floor velocities. The times when motion starts and ceases are indicated
by markers. (‘abs’: absolute response, ‘row’: unprocessed response, ‘adj’: adjusted response,
‘1fi, 2fl, roof ’: first floor, second floor and roof response)
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Figure A.25: Relative displacements at the Augusta superstructure during test 5; sub-plot
a). Sub-plot b) shows the relative floor displacements of sub-plot a) after application of a
low cut filter with corner frequency equal to f, = 0.30Hz . The times when motion starts
and ceases are indicated by markers. (‘abs’: absolute response, ‘row’: unprocessed response,
‘adj’: adjusted response, ‘1fl, 2fl, roof’: first floor, second floor and roof response)
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A.7.3 Test 5: Relative superstructure response evaluated from the

baseline fitting of the row relative motion
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Figure A.26: Relative floor accelerations and velocities for the Augusta free vibration test 5,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The
relative response is zero at the beginning and end of motion, since the superstructure is
expected to respond in the linear range under such a small excitation. The times when
motion starts and ceases are indicated by markers.
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Test 5 relative displ. (baseline fitted) baseline fitted+LC filtered (fCZO. 3Hz)
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Figure A.27: Relative floor displacement histories for the Augusta free vibration test 5,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements are zero at the
beginning and end of motion, since the superstructure is expected to respond in the linear
range under such a small excitation. The right sub-plots represent the same displacements
after implementation of a low cut filter with corner frequency f. = 0.30Hz. After filtering
the relative displacement responses obtained by the two procedures become essentially the
same. The times when motion starts and ceases are indicated by markers.
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baseline fitted+LC filtered (fc =(0.3Hz)
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Figure A.28: Inter-story drift histories for the Augusta free vibration test 5, as evaluated
from the adjusted absolute response (continuous black lines) and the adjusted relative re-
sponse (dashed red lines); left sub-plots. The drifts are zero at the beginning and end of
motion, since the superstructure is expected to respond in the linear range under such a
small excitation. The right sub-plots represent the drifts evaluated from the corresponding
filtered displacements. After filtering, the drifts obtained by the two procedures become
essentially the same. The times when motion starts and ceases are indicated by markers.
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A.8.1 Baseline fitted absolute free vibration response
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Figure A.29: Absolute acceleration response of the Augusta building during test 6: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The row
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is given.
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Figure A.30: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 6; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts and
ends somewhat later at the upper floors.
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A.8.2 Test 6: Relative superstructure response evaluated from the

processed absolute response
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Figure A.31: Relative acceleration response at the Augusta superstructure under test 6
at first floor, second floor and roof; sub-plots a), b), c) respectively. The row signals are
represented by red lines while the baseline fitted signals are shown by black lines. Sub-plot
d) shows the relative floor velocities. The times when motion starts and ceases are indicated
by markers. (‘abs’: absolute response, ‘row’: unprocessed response, ‘adj’: adjusted response,
‘1fi, 2fl, roof ’: first floor, second floor and roof response)
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Figure A.32: Relative displacements at the Augusta superstructure during test 6; sub-plot
a). Sub-plot b) shows the relative floor displacements of sub-plot a) after application of a

low cut filter with corner frequency equal to f, = 0.30Hz .
(‘abs’: absolute response, ‘row’: unprocessed response,

and ceases are indicated by markers.

The times when motion starts

‘adj’: adjusted response, ‘1fl, 2fl, roof’: first floor, second floor and roof response)
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A.8.3 Test 6: Relative superstructure response evaluated from the

baseline fitting of the row relative motion
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Figure A.33: Relative floor accelerations and velocities for the Augusta free vibration test 6,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The
relative response is zero at the beginning and end of motion, since the superstructure is
expected to respond in the linear range under such a small excitation. The times when
motion starts and ceases are indicated by markers.
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Figure A.34: Relative floor displacement histories for the Augusta free vibration test 6, as
evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements are zero at
the beginning and end of motion, since the superstructure is expected to respond in the
linear range under such a small excitation. The right sub-plots represent the drifts evaluated
After filtering the drifts obtained by the
two procedures become essentially the same. The times when motion starts and ceases are
indicated by markers.

from the corresponding filtered displacements.
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Test 6 drifis (baseline fitted) baseline fitted+LC filtered (fc=0.3Hz)
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Figure A.35: Inter-story drift histories for the Augusta free vibration test 6, as evaluated
from the adjusted absolute response (continuous black lines) and the adjusted relative re-
sponse (dashed red lines); left sub-plots. The drifts are zero at the beginning and end of
motion, since the superstructure is expected to respond in the linear range under such a
small excitation. The right sub-plots represent the drifts evaluated from the corresponding
filtered displacements. After filtering, the drifts obtained by the two procedures become
essentially the same. The times when motion starts and ceases are indicated by markers.
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A.9 TEST 8-graphs

A.9.1 Baseline fitted absolute free vibration response
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Figure A.36: Absolute acceleration response of the Augusta building during test 8: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The row
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is given.
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Figure A.37: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 8; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts and
ends somewhat later at the upper floors.



A.9.2 Test 8 Relative superstructure response

processed absolute response

Test 8 relative accelerations
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evaluated from the

Test 8 relative accelerations

0.5 , Ocj;v row(t) O(ab&‘ row(t) 0.5 , aabs“mw(t) 0Lahs row(t)
o z]zbls ad/(t) a:bs ad/(t) o czlbls ad](t) a;bs ad](t)
=4 &
o o
o Q
2 & g 0 &
o 2]
2z 2
= =
O 5]
- -
td=4. 075sec td:4. 085sec
—05[# ‘ ‘ ‘ * —05[% ‘ ‘ ‘ Al
0 1 2 3 4 0 1 2 3 4
a) t [sec] b) t [sec]
Test 8 relative accelerations Test 8 relative velocities
0.5r a(:(l);jfrow (t) agbs row (v th‘ls Ladj (t) abs adj (t)
_ Z[)};fadj(t) agb? adj(t) ;;Zs adj(t) vabs ad/(t)
e E abs adj abs adj
; g mof () (t)
Q —
S 0 o o ®
2 2
2 e
: t d=4. 095sec ’
—05[# ‘ ‘ ‘ Rl ‘ ‘ ‘
0 1 2 3 4 2 3 4
C) t [sec] d) t [sec]

Figure A.38: Relative acceleration response at the Augusta superstructure under test 5
at first floor, second floor and roof; sub-plots a), b), c) respectively. The row signals are
represented by red lines while the baseline fitted signals are shown by black lines. Sub-plot
d) shows the relative floor velocities. The times when motion starts and ceases are indicated

by markers. (‘abs’: absolute response, ‘row’: unprocessed response, ‘adj’: adjusted response,

‘1fi, 2fl, roof ’: first floor, second floor and roof response)
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Figure A.39: Relative displacements at the Augusta superstructure during test 8; sub-plot
a). Sub-plot b) shows the relative floor displacements of sub-plot a) after application of a

low cut filter with corner frequency equal to f, = 0.30Hz .

and ceases are indicated by markers.

The times when motion starts

(‘abs’: absolute response, ‘row’: unprocessed response,
‘adj’: adjusted response, ‘1fl, 2fl, roof’: first floor, second floor and roof response)
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A.9.3 Test 8 Relative superstructure response evaluated from the

baseline fitting of the row relative motion
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Figure A.40: Relative floor accelerations and velocities for the Augusta free vibration test 8,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The
relative response is zero at the beginning and end of motion, since the superstructure is
expected to respond in the linear range under such a small excitation. The times when
motion starts and ceases are indicated by markers.
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Figure A.41: Relative floor displacement histories for the Augusta free vibration test 8,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements are zero at the
beginning and end of motion, since the superstructure is expected to respond in the linear
range under such a small excitation. The right sub-plots represent the same displacements
after implementation of a low cut filter with corner frequency f. = 0.30Hz. After filtering,
the relative displacement responses obtained by the two procedures become essentially the
same. The times when motion starts and ceases are indicated by markers.
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Figure A.42: Inter-story drift histories for the Augusta free vibration test 8, as evaluated
from the adjusted absolute response (continuous black lines) and the adjusted relative re-
sponse (dashed red lines); left sub-plots. The drifts are zero at the beginning and end of
motion, since the superstructure is expected to respond in the linear range under such a
small excitation. The right sub-plots represent the drifts evaluated from the corresponding
filtered displacements. After filtering, the drifts obtained by the two procedures become
essentially the same. The times when motion starts and ceases are indicated by markers.



A.10 TEST 10-graphs
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Figure A.43: Absolute acceleration response of the Augusta building during test 10: ground
floor, first floor, second floor and roof response; sub-plots a), b), ¢), d) respectively. The row
signals are represented by red lines while the baseline fitted signals are shown by black lines.
The times when motion starts and ceases are indicated by black markers. The duration of
strong motion is given.
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Figure A.44: Adjusted absolute velocities and displacements at the ground floor, first floor,
second floor and roof of the Augusta building during test 10; sub-plots a) and b) respectively.
The times when motion starts and ceases are indicated by markers. The motion starts and
ends somewhat later at the upper floors.
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A.10.2 Test 10: Relative superstructure response evaluated from

the processed absolute response
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Figure A.45: Relative acceleration response at the Augusta superstructure under test 10
at first floor, second floor and roof; sub-plots a), b), c) respectively. The row signals are
represented by red lines while the baseline fitted signals are shown by black lines. Sub-plot
d) shows the relative floor velocities. The times when motion starts and ceases are indicated
by markers. (‘abs’: absolute response, ‘row’: unprocessed response, ‘adj’: adjusted response,
‘1fi, 2fl, roof ’: first floor, second floor and roof response)



Test 10 baseline fitted displacements

el
2,
£
2
o
2 j j
E uabs,adj(t)_uabsradj(t)
2 02t oo e |
— Uy (1 t)*ug (¥
03 — - )]
0 1 2 3 4
t [sec]

b)

relative displ. [cm]

56

baseline fitted + low cut filtered 02 =0.3 Hz) rel. displ.

T

2
t [sec]

Figure A.46: Relative displacements at the Augusta superstructure during test 10; sub-plot
a). Sub-plot b) shows the relative floor displacements of sub-plot a) after application of a

low cut filter with corner frequency equal to f, = 0.30Hz .
(‘abs’: absolute response, ‘row’: unprocessed response,

and ceases are indicated by markers.

The times when motion starts

‘adj’: adjusted response, ‘1fl, 2fl, roof’: first floor, second floor and roof response)
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A.10.3 Test 10: Relative superstructure response evaluated from

the baseline fitting of the row relative motion
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Figure A.47: Relative floor accelerations and velocities for the Augusta free vibration test 10,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots and right sub-plots respectively. The
relative response is zero at the beginning and end of motion, since the superstructure is
expected to respond in the linear range under such a small excitation. The times when
motion starts and ceases are indicated by markers.
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Test 10 relative displ. (baseline fitted) baseline fitted+LC filtered (fCZO. 3Hz)
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Figure A.48: Relative floor displacement histories for the Augusta free vibration test 10,
as evaluated from the adjusted absolute response (continuous black lines) and the adjusted
relative response (dashed red lines); left sub-plots. The relative displacements are zero at the
beginning and end of motion, since the superstructure is expected to respond in the linear
range under such a small excitation. The right sub-plots represent the same displacements
after implementation of a low cut filter with corner frequency f. = 0.30Hz. After filtering
the relative displacement responses obtained by the two procedures become essentially the
same. The times when motion starts and ceases are indicated by markers.
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Test 10 drifis (baseline fitted) baseline fitted+LC filtered (fc=0.3Hz)
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Figure A.49: Inter-story drift histories for the Augusta free vibration test 10, as evaluated
from the adjusted absolute response (continuous black lines) and the adjusted relative re-
sponse (dashed red lines); left sub-plots. The drifts are zero at the beginning and end of
motion, since the superstructure is expected to respond in the linear range under such a
small excitation. The right sub-plots represent the drifts evaluated from the corresponding
filtered displacements. After filtering, the drifts obtained by the two procedures become
essentially the same. The times when motion starts and ceases are indicated by markers.
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