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É strano che tanto tempo sia passato

dall’annunzio del grande crac: seppure

quel tempo e quella notizia siano esistiti.

L’abbiamo letto nei libri: il fuoco non li risparmiava
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Abstract

This study is inserted in a research line that aims to access the Nuclear

Matrix Element (NME) involved in the half-life of the 0νββ decay, by mea-

suring the cross sections of heavy-ion induced Double Charge Exchange

(DCE) reactions with high accuracy. The basic point is that the initial

and final state of both 0νββ decay and DCE processes are the same. In

addition, both processes pass through the same intermediate state and the

transition operators have a similar mathematical structure.

This work shows for the first time experimental data on heavy-ion DCE

reaction in a wide range of transferred momenta, with an acceptable sta-

tistical significance and good angular and energy resolution. In particular

(18O,18Ne) reaction at 270 MeV incident energy on 40Ca target was investi-

gated. In order to estimate the contribution of the concurrent channels the

40Ca(18O,18F)40K single charge exchange intermediate channel and the com-

peting processes 40Ca(18O,20Ne)38Ar two-proton transfer and 40Ca(18O,16O)42Ca

two-neutron transfer were also studied.

The experiment was performed at Laboratori Nazionali del Sud (LNS-

INFN) in Catania using a 270 MeV energy 18O Cyclotron beam impinging

on a 279 µg/cm2 thick 40Ca target. The ejectiles were momentum analysed

by the MAGNEX large acceptance magnetic spectrometer and detected by

its focal plane detector.

The energy spectra and angular distributions have been extracted. The

data analysis of experimental results have established that the transition to

40Arg.s. is dominated by the direct processes.

Finally, an innovative technique to infer on the nuclear matrix elements by

measuring the cross section of a double charge exchange nuclear reaction

was proposed. The main assumption are that the DCE reaction is a two-

step charge exchange and a surface localized process. The model adopted to



describe the cross section of the DCE reaction consists in a generalization

of the well-established factorization of the single charge-exchange cross sec-

tion, valid under certain hypothesis, discussed in the thesis. Therefore, the

cross section could be factorized in a nuclear structure term, containing the

matrix elements, and a nuclear reaction one (unit cross section). Despite the

used approximations, the extracted strength and nuclear matrix elements

are reasonable within ± 50%, signalling that the main physics content has

been kept.
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Introduction

After 80 years since the first guess on its existence, neutrino still escapes our insight:

the mass and the true nature (Majorana or Dirac) of this particle is still unknown.

In the past years, neutrino oscillation experiments have finally provided the incontro-

vertible evidence that neutrinos species mix each other and have finite masses [1–3] .

These results represent the strongest demonstration that the Standard Model of elec-

troweak interaction is incomplete and that new physics beyond it exists. None of these

experiments could however shade light on some of the basic features of neutrinos. In

this scenario, a unique role is played by the Neutrinoless Double Beta (0νββ) decay

searches. This decay is a process in which two neutrons change into two protons and

emit two electrons as the sole decay products. These experiments can explore lepton

number conservation, the Dirac/Majorana nature of neutrinos and their absolute mass

scale (hierarchy problem) and might have an impact on the baryon asymmetry in the

Universe via leptogenesis [4–7]. To achieve these goals certain hurdles have to be over-

come.

From the experimental point of view, today, 0νββ decay studies faces a new era

where large scale experiments with a sensitivity approaching the so-called degenerate-

hierarchy region are nearly ready to start. The challenge for the next future is the

construction of detectors characterized by a tonne-scale size and an incredibly low

background, to fully probe the inverted-hierarchy region. A number of new proposed

projects took up this challenge [8–11].

In addition, since the experimental decay rate is proportional to the square of the Nu-

clear Matrix Elements (NME), it is essential evaluating such matrix elements with high

accuracy to be able to extract the neutrino effective mass.

The evaluation of the NMEs is presently limited to state of the art model calculations
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Introduction

based on different methods [12–17]. High precision experimental information from sin-

gle charge exchange, transfer reactions and electron capture are used to constraint the

calculations [18–22]. However, the ambiguities in the models are still too large and the

constraints too loose to reach accurate values of the NMEs. In addition, some common

assumptions, in the different competing calculations, could cause overall systematic

uncertainties [8]. A precision of about 20-30% on the NMEs is considered mandatory

to guarantee a reasonable conversion from half-lives to neutrino masses keeping the

precision high enough to discriminate among the different models and determine the

neutrino mass. For this reason, the enormous experimental efforts for searching 0νββ-

decay should be also oriented towards the experimental determination of the NMEs.

Determining experimentally the NMEs for 0νββ-decay is an important task and an old

dream of many scientist involved in this research field. To reach this goal, the experi-

mental study of other nuclear transitions where the nuclear charge is changed by two

units leaving the mass number unvaried, in analogy to the ββ-decay, could give impor-

tant information. The most similar nuclear processes are the Double Charge Exchange

(DCE) reactions which can be induced by pions or heavy-ions.

Past attempts to use pion DCE reactions [23–26] to probe ββ-decay NMEs were aban-

doned due to the large differences in the momentum transfers and in the nature of the

operators [8]. Early studies on heavy-ion induced DCE were also not conclusive. The

reason was the lack of zero-degree data and the poor yields in the measured energy

spectra and angular distributions, due to the very low cross sections involved, ranging

from about 5-40 nb/sr [27, 28] to 10 µb/sr [29].

The present thesis work is connected to this ambitious task. Indeed, its main purpose

is to demonstrate that it is possible to access the NMEs by measuring the cross sections

of heavy-ion induced DCE reactions with high accuracy. The basic point is that the

initial and final state of both 0νββ-decay and DCE processes are the same and that

transition operators are similar.

In particular, as a first pioneering attempt, the (18O, 18Ne) reaction at 270 MeV incident

energy on 40Ca target is investigated. In order to estimate the contribution of the con-

current channels, the two-proton transfer reaction 40Ca(18O,20Ne)38Ar, the two-neutron

transfer reaction 40Ca(18O,16O)42Ca and the single-charge exchange 40Ca(18O,18F)40K

reaction are also studied.

The experiments have been pursued in Catania at the INFN-LNS laboratories, using

2
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the MAGNEX large acceptance magnetic spectrometer. The use of a modern high

resolution and large acceptance spectrometer, as MAGNEX, allows to face the exper-

imental challenges that limited in the past the experimental study of heavy ion DCE

reactions. The measurement of DCE high-resolution energy spectra with reasonable

statistics is crucial to identify the transitions of interest. The concurrent measurement

of the cross section for other relevant reaction channels allows isolating the direct DCE

mechanism from the competing transfer processes.

These thesis is organized as follows. A general overview of what is currently known

about the neutrino and the properties that have still to be measured is discussed in

Chapter 1. The double beta decay and the nuclear matrix element involved in the

estimation of the half life are also described.

The status of the art regarding the past attempts about heavy-ion DCE and the renewed

interest of the scientific community on it is summarized in Chapter 2. Furthermore,

the similarities among the heavy-ion DCE reaction and 0νββ decay are investigated.

Finally the optimal experimental conditions to study such processes are examined.

Chapter 3 is focused on the description of the experimental set-up used to explore the

above mentioned nuclear reactions. The reaction ejectiles were momentum analysed

by MAGNEX and detected by its focal plane detector. This experiment represents the

first measurement at 0◦ performed by MAGNEX. Thus a detailed description about

the technique used to set the spectrometer is presented.

Chapter 4 is devoted to the description of the adopted data reduction technique. This

is a quite involved procedure made up of several steps. The first one consists in the

identification of the ejectiles. The identification procedure is based on the standard

∆E-E technique for the atomic number (Z), while the mass number (A) is determined

by the correlation between the measured ion positions at the focus and its kinetic en-

ergy. Once the ion tracks are measured at the focal plane detector, it is possible to

optimize the spectrometer transport map up to the 10th order. The whole procedure

completely characterizes the investigated event, providing the ion kinetic energy and

scattering angle in the laboratory reference frame. Starting from these quantities, the

excitation energy spectra and angular distributions are constructed.

Chapter 5 describes the theoretical analysis of the 40Ca(18O,18F)40K single charge ex-

change reaction, which feeds the intermediate channel, in the framework of the Charge-

Exchange Quasiparticle Random Phase Approximation (CEX-QRPA) [30–32]. The re-
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sults of this calculation are used in the simple model adopted to extract the nuclear ma-

trix element, as discussed in Chapter 6. In particular, the double charge exchange cross

sections can be factorized in a nuclear structure term containing the matrix elements

and a reaction factor. It is demonstrated that the model reproduces the experimental

data and it is possible to extract the strengths and matrix elements within a tolerable

accuracy under the hypothesis of a two-step charge exchange process.

4



Chapter 1

Neutrino physics and double beta

decay

Neutrinos play a fundamental role in various areas of modern physics from nuclear and

particle physics to cosmology. Two of the fundamental issues of neutrino physics:

• the nature of the neutrino: whether it is a Dirac or Majorana particle;

• its absolute mass scale.

Neutrinoless double beta decay (0νββ) experiments are the only practical test of the

neutrino nature. If 0νββ experiments are successful and the neutrino is proved to

be a Majorana particle, this discovery will have a profound effect in different area of

physics. For example the Majorana neutrino would have implications for Grand Unified

Theory of fundamental interactions and could explain the observed matter-antimatter

asymmetry in the universe through the leptogenesis scenario [4–7].

An overview of what is currently known about the neutrino and the properties that have

still to be measured, is presented in the first part of this Chapter. Then, the double beta

decay is described, using particular attention on the nuclear matrix element involved

in the estimation of the half life of the decay.

1.1 The neutrino history

The existence of electrically neutral half-spin particle was postulated by Wolfgang Pauli

in 1930, as a “desperate remedy” to save the principle of energy conservation in beta

5
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decay. It was Enrico Fermi in 1934 who named this particle neutrino, within the formu-

lation of his theory of beta decay. Maria Goeppert-Mayer was the first to consider the

double decay in her paper in 1935 [33], acknowledging Eugene Wigner for suggesting

the problem. In 1937 the young Ettore Majorana published his theory of neutrinos,

stating that neutrinos and antineutrinos are the same particle and suggesting an ex-

periment to test his theory [34]. This work was followed by a succession of papers from

Racah, Furry and Primakoff formulating neutrinoless β decay theory [35–37].

After their first attempt in 1952 [38], Frederick Reines and Clyde Cowan made the first

detection of a neutrino at the Savannah River Nuclear Plant in 1956 [39]. In 1957 Bruno

Pontecorvo proposed neutrino-antineutrino oscillations [40, 41], and then in 1962 Ziro

Maki, Masami Nakagawa and Shoichi Sakata introduced the theory of neutrino flavour

mixing and flavour oscillations [42]. Great interest in neutrino physics was raised by

the discovery of lepton flavour non-conservation. The first hints for this phenomenon

date back to the late ’60, with R. Davis Homestake radiochemical experiment [1], when

a deficit in the solar neutrino flux was observed. It took about thirty years to com-

pletely understand the problem. In 1998, the Super-Kamiokande experiment reported

conclusive evidence that a significant fraction of muon-type atmospheric neutrinos dis-

appeared when travelling from the other side of the Earth to their detector. Later,

the conclusive solution of the so called solar neutrino problem came in 2002 thanks

to the Sudbury Neutrino Observatory (SNO) [3], which confirmed that the missing νe

were actually converted into neutrinos of other flavours. These data have led to the

conclusion that the cause for the disappearance is the mixing of the neutrino flavours,

producing the oscillation of one flavour of neutrino into others [2].

One of the strongest consequence of oscillations is that neutrinos must be massive

particles. However, there are several questions that cannot be addressed by neutrino

oscillation experiments: being to the leading term sensitive to the difference of the

squared values of neutrino masses, oscillation experiments are not able to probe the

absolute mass scale. Also the mechanism responsible for the generation of the neutrino

masses cannot be investigated using oscillation experiments.

Exploring the absolute mass scale is currently one of the leading research topics in

neutrino physics.

6
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magnitude of ∆m2
32 is measured to be about 2.43·10−3 eV2 . This situation leaves us

with two possibilities for the three-neutrino mass spectrum:

• If ∆m2
32 > 0, neutrino mass are arranged according to the so called normal

hierarchy and the following relation holds: m1 < m2 < m3;

• if ∆m2
32 < 0, mass eigenstates are arranged to the inverted hierarchy. In this case

the lightest neutrino is v3 and the two other mass eigenstates are almost equal:

m3 < m1 ≈ m2

Fig.1.1 shows a schematic view of the normal and inverted hierarchy models. As al-

ready stated, oscillation experiments give informations concerning specific properties

of neutrinos and reveal aspects of neutrino physics that are blind to their Dirac or

Majorana nature or to their absolute mass scale.

1.3 The neutrino mass and nature

The neutrino scenario is a puzzle. The neutrino is the only elementary particle, whose

basic properties are not known till today. In contrast with the charged fermions the

nature and the masses of the neutrinos has not yet been established experimentally.

The most sensitive mass measurements, involving electron neutrinos, are based on the

study of the shape of the β spectrum end-point. Current best limits on mβ come

from the Mainz [45] and Troitsk [46] tritium β-decay experiments: mβ . 2.1 eV. Such

measurement have demonstrated that the lightest electron-type neutrino is very much

lighter than the charged leptons (m > 0.5 MeV) and quarks (m > few MeV). It appears

that the mechanism responsible for the very light neutrino masses is completely different

from the Higgs mechanism that generates the charged fermion masses in the Standard

Model.

The neutrino can be like a Dirac particle, i.e fermion with two spin states each for

neutrino and anti-neutrino. Another possibility is that only the neutrino exists with

two states available: the left-handed neutrino and the right-handed neutrino. In this

case the neutrino is called Majorana fermion. The existence of a Majorana neutrino

will necessary imply that lepton number is not a conserved quantity [47].

If the neutrino is a Majorana fermion, we also have a natural way to understand

its very light mass, though a mechanism proposed by Yanagida, Gell-Mann, Ramond

8
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and Slansky [48–50] and known as “see-saw” mechanism. This mechanism provide the

existence of heavy right-handed Majorana neutrinos that would produce a mechanism (

“see-saw”) to generate the very light neutrino masses implied in the neutrino oscillation

experiments. Such mechanism means that the light Majorana neutrino mass is deeply

related to the properties of new heavy particles at a mass scale of up to 1015 GeV. This

is very close to the grand unified scale ∆GUT ∼ 1016 GeV above which it is believed

that the electromagnetic, weak, strong and gravitational forces will unify.

The most promising approach to discriminate between these two possibilities is to search

for neutrinolesss double beta decay (0νββ). Observation of neutrinoless double beta

decay would not only imply that neutrinos are Majorana particles, it would also provide

information on the neutrino mass hierarchy and on the absolute scale of neutrino mass.

1.4 Double beta decay

Double beta decay is a rare spontaneous process in which a nucleus (A, Z) decays to

a nucleus (A, Z ± 2) by emitting two electrons (or positrons) and, usually, other light

particles:

(A,Z) → (A,Z ± 2) + 2e∓ + anything (1.2)

Double beta decay has a very low rate and can occur only in nuclei where single β-

decay is forbidden. The parent nuclei (A,Z) must be less bound than final one (A, Z±2)

but more bound than the intermediate nucleus (A, Z±1). This condition is verified in

nature for several nuclei with an even number of protons and neutrons (see Fig.1.2),

as a consequence of the “pairing term” in the nuclear binding energy, that favours

energetically the even-even nuclei with respect to the odd-odd ones.

Double beta decay can be classified in various modes according to the various types of

particles emitted in the decay. For β−β−, the processes 2νββ (see Fig.1.3a):

(A,Z) → (A,Z + 2) + 2e− + 2ν (1.3)

is a second order process allowed in the Standard Model. Indeed, it was detected for the

first time in 82Se in 1987 [51] and it has been now observed in a dozen of nuclei (half-lives

range from ∼ 1018 to ∼ 1022 years). This decay conserves the lepton number, cannot

discriminate between Dirac and Majorana neutrinos and does not depend significantly

on neutrino masses.

9
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3 meV, respectively [47]. Consequently, to record a sizeable number of 0νββ events

over its operation time, an experiment needs to have a large amount of isotope, ranging

from 100 Kg to few tonnes. On the other hand, the decay signature exploited by most

experiments is simply based on monochromatic energy of the two emitted electrons.

Unfortunately, there are several sources that can produce background counts in the

same energy region, such as the natural radioactivity of detector components. The

characteristics that make an ideal 0νββ experiment have been discussed in different

reports [9–11].

Several candidate isotopes are available for neutrinoless double beta decay searches.

The choice of isotope used in an experiment is guided by consideration about Q-value,

nuclear matrix element, natural isotopic abundance, as well as the detector technology

available to study the isotope. The 11 isotopes with a Q-value larger than 2.0 MeV

are 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, 136Xe, and 150Nd. Most

of them are currently part of a 0νββ experimental programs. Table 1.1 reports an

inventory of the some present active 0νββ projects. They are in different phases of

development, ranging from data taking to initial R&D.
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1.5 Experimental aspects of 0νββ decay

Table 1.1: Compilation of the some present active initiatives searching for 0νββ. For

each of them, it is reported the candidate isotope, the used technique, the status and the

location

Project Isotope Technique Status Location

GERDA [58] 76Ge enrGe semicond. det. Upgrade to Phase II LNGS

Cuore-0/Cuore [59] 130Te TeO2 bolometers Data taking LNGS

Commissioning

MAJORANA [60] 76Ge enrGe semicond. det. Commissioning SURF

SuperNEMO [61] 82Se enrSe foils/tracking R&D, Construction LSM

EXO-200 [62] 136Xe Liq. enrXe TPC/scint. Data taking WIPP

KamLAND-Zen [63] 136Xe enrXe in liq. scint. Data taking Kamioka

SNO+ [64] 130Te Nd loaded liq. scint. R&D, Construction SNOLAB

CANDLES [65] 48Ca CaF2 scint. crystals R&D, Construction Kamioka

Cobra [66] 116Cd CZT semicond. det. R&D LNGS

The observation of the 0νββ in different isotopes is mandatory to confirm and

certify a discovery.

If neutrinos are Majorana particles, measuring the effective Majorana mass provides

information on the neutrino mass scale and hierarchy. This is possible because there

is a relationship between the effective Majorana mass and the mass of the lightest

neutrino [8]. Fig.1.6 shows the range of allowed values for mββ for each value of lightest

neutrino masses. There are distinct bands of allowed mββ depending on the hierachy.

The bands overlap in the degenerate mass regime. Present neutrinoless double beta

decay experiments set upper limits on mββ [67].
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where for light neutrino exchange

f(mi, Uei) =
< mν >

me
, < mν >=

∑

k=light

(Uek)
2mk

while for heavy neutrino exchange

f(mi, Uei) = mp〈m−1
ν 〉, 〈m−1

νh
〉 =

∑

k=light

(Uek)
2 1

mkh

The operator H(p) consist in a combination of Fermi (F), Gamow-Teller (GT) and

tensor (T) ones:

H(p) =
∑

n,n′

τ †nτ
†
n′ [−hF (p) + hGT (p)~σn · ~σn′ + hT (p)Sp

nn′ ] (1.11)

with the tensor operator:

Sp
nn′ = 3[(~σn · p̂)(~σn′ · p̂)]− ~σn · ~σn′ (1.12)

The Fermi hF , Gamow-teller hGT , and tensor hT are given by [56] and can be further

factorized as:

hF,GT,T (p) = v(p)h̃F,GT,T (p) (1.13)

h̃F,GT,T (p) are the form factor. A list of form factors is given in Ref. [56, 71]. The

v(p) is called the neutrino potential. The expression of v(p) for light neutrino exchange

and right neutrino exchange is reported in Ref.[56, 71]. Therefore, the nuclear matrix

element M0ν consists of the Fermi (F), Gamow-Teller (GT) and tensor parts as:

M0ν = −
(
gv
gA

)2

M0ν
F +M0ν

GT +M0ν
T (1.14)

where gV = 1.0 and gA = 1.25 are the vector and axial coupling constants, respectively.

1.6.2 0νββ-decay nuclear matrix elements

Interpreting existing results as a measurement of | < mν > | and planning new experi-

ments depend crucially on the knowledge of the corresponding nuclear matrix elements

(NMEs) that govern the decay rate. The NMEs for 0νββ-decay must be evaluated using

tools of nuclear structure theory. Till now there are no observables that could be di-

rectly linked to the magnitude of 0νββ-decay nuclear matrix elements and, thus, could
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be used to dermine them in a essentially model independent way. As a consequence,

the the evaluation of the matrix element is presently limited to model calculations.

The calculation of the 0νββ NMEs is a difficult problem because ground and many

excited states (if closure approximation is not adopted) of open-shell nuclei with com-

plicated nuclear structure have to be considered. The frameworks used for estimating

the matrix elements have been largely provided by the Quasi-Particle Random Ap-

proximation (QRPA), the nuclear shell model (NSM), the neutron-neutron Interacting

Boson Model (IBM-2), Projected Hartree-Fock-Bogoliubov Method (PHFB) and En-

ergy Density Functional Method (EDF).

• The QRPA [13, 14] constructs ground state correlations by iterating two-quasiparticle

excitations on top of BCS or HFB vacuum, then imposes a quasiboson approxi-

mation on the excitation. It is successful in describing overall features of nuclear

properties. QRPA depends on some simplifying assumptions and is thus often

not quantitatively accurate in describing the details of nuclear structure. On the

other hand, large model spaces can easily be accommodated.

• In Shell Model calculations [12] the interactions are described by an effective

Hamiltonian which is diagonalized over all configurations of a chosen subset of

valence single-particle states. The shell model can generally describe nuclear

structure more quantitatively, but there are limits in the model space of orbitals

that can be included in the calculations.

• Detailed aspects of nuclear structure can also be described using the so-called

algebraic approaches, where the Interacting Boson Approximation (IBA) [15] has

been found to be very useful. The basic idea of this model is a truncation of the

very large shell model space to states built from pairs of nucleons with J = 0 and

2, followed by a replacement of those pairs with bosons. The boson Hamiltonian

and electromagnetic transition operators are then fit to low-lying collective states

in nuclei near the one of interest. It does an excellent job in reproducing trends

for spectra and E2 transitions involving collective state across isotope and isotope

chains.

• In the PHFB [16] wave functions of good particle number and angular momentum

are obtained by projection on the axially symmetric intrinsic HFB states. In
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application to the calculation of the 0νββ NMEs the nuclear Hamiltonian was

restricted only to quadrupole interaction. The PHFB is restricted in its scope.

With a real Bogoliubov transformation without parity mixing one can describe

only neutron pairs with even angular momentum and positive parity.

• The EDF [17] is considered to be an improvement with respect to PHFB. The

density functional methods based on the Gogny functional are taken into ac-

count [72]. The particle number and angular momentum projection for mother

and daughter nuclei is performed and configuration mixing within the generating

coordinate method is included. A large single paricle basis (11 major oscillator

shells) is considered.

The differences among the listed methods of NMEs calculations for the 0νββ-decay are

due to following reasons:

• The mean field is used in different ways. As a result, single particle occupancies

of individual orbits of various methods differ significantly from each other [73].

• The residual interactions are of various origin and renormalized in different ways.

• Various sized of the model space are taken into account.

• Different many-body approximations are used in the diagonalization of the nuclear

Hamiltonian.

Each of the applied methods has advantages and drawbacks, whose effect in the values

of the NME can be sometimes explored. The advantage of the ISM calculations is their

full treatment of the nuclear correlations, which tends to diminish the NMEs. On the

contrary, QRPA, EDF and IBM underestimate the multipole correlations in different

ways and tend to overestimate the NMEs. The drawbacks of the ISM are related to the

limited number of orbits in the valence space and they are as consequence the violation

of Ikeda sum rule and underestimation of the NMEs.

Accurate determination of the NMEs, and a realistic estimate of their uncertainty is of

great importance. Nuclear matrix elements need to be evaluated with uncertainty of

less than 20 - 30% to establish the neutrino mass spectrum and CP violating phases of

the neutrino mixing.
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1.6.3 Constrains and uncertainties in calculated NMEs

The improvement on the calculation of the 0νββ-decay NMEs is very important and

challenging problem. The uncertainty associated with the calculation of the 0νββ decay

NMEs can be diminished by suitably chosen nuclear probes. Complementary exper-

imental information from related processes like charge-exchange and particle transfer

reactions, muon capture and so on are used [18–22].

Till now, the most helpful experimental constraint comes from measured 2νββ rates.

While certain aspects like the effect of correlations on two-neutrino and neutrinoless

matrix elements are similar, there are fundamental differences between the two pro-

cesses, for example caused by the quite different amount of linear momentum available

in the intermediate channel. Indeed, the matrix elements of the 2νββ decay process

are calculated by allowing for the virtual excitation of states in the intermediate nu-

cleus between the parent and the daughter. Since the momentum provided by one of

the beta decays is of the order of ∼1 MeV/c, only the lowest multipolarities (0+, 1+

states) at the lowest excitation energies can contribute significantly. For 0νββ decay,

the two neutrons decaying into protons emit virtual neutrinos that must annihilate in

a short distance (∼ 2 fm) within the nucleus and such a distance implies high virtual

momenta, up to ∼ 100 MeV/c. Consequently, the multipolarities involved in the in-

termediate virtual excitation can be quite high (up to l = 8) and a broadening of the

excited states of the intermediate nucleus can be quite large (∼ 20-30 MeV). Because

of these differences, it does not seem reasonable to assume that a theory successfully

describing the matrix elements for double beta decay with neutrinos represents any

assurance that the same method can also reliably predict the neutrinoless mode [22].

High precision experimental information from single charge-exchange are used to con-

straint the calculations. But this approach works only if the 0νββ shows single state

dominance in the intermediate channel. Actually it has been shown that the 2νββ pro-

ceeds through low-lying (Fermi Surface) states [74], in agreements with observations

by charge exchange reactions.

In addition some common assumption in the different competing calculations could

causes overall systematic uncertainties [8], above all the closure approximation and

quenching of gA.

The 0νββ-decay matrix elements are usually calculated using the closure approxima-
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tion for intermediate nuclear states. Within this approximation energies of intermediate

states (En − Ei) are replaced by an average value E ∼ 10 MeV, and the sum over in-

termediate states is taken by closure,
∑

n |n >< n| =1. This simplifies the numerical

calculation drastically. The calculations with exact treatment of the energies of the

intermediate nucleus were achieved within the QRPA-like methods [73, 75, 76]. The

effect of the closure approximation was studied in detail in Ref. [77].

Regarding the quenching phenomenon, it is well known that the calculated strengths

of Gamow-Teller β-decay transitions to individual final states are significantly larger

than the experimental ones. That effect is known as the axial-vector current matrix

elements quenching. To account for this, it is customary to quench the calculated GT

matrix elements up to 70%. Formally, this is accomplished by replacing the true value

of the coupling constant gA = 1.269 by a quenched value geffA = 1.0. The origin of the

quenching is not completely known. This effect is assigned to the ∆-isobar admixture

in the nuclear wave function or to the shift of the GT strength to higher excitation

energies due to the short-range tensor correlations. Quenching is very important for

the double beta decay because geffA appears to the fourth power in the decay rate. If it

occurs also for the 0νββ-decay, it could significantly reduce the 0νββ-decay half-life by

as much as a factor of 2-3. The axial-vector coupling constant geffA or, in other words,

the treatment of quenching, is also a source of differences in the calculated 0νββ-decay

NMEs [71].

The estimated matrix elements M0ν for light neutrino exchange are shown in Fig.1.7

[71], where the NMEs obtained though IBM-2, QRPA [76] and ISM [78]. It is possible

to note in Fig.1.7 that the comparison between different models shows discrepancy fac-

tors higher than two [67]. Therefore, it is not at all clear that any of the calculations

is near the truth, the ambiguities in the models are still too large and the constraints

too loose to reach accurate values of the NMEs.
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Chapter 2

The double charge exchange

reactions

As discussed in Chapter 1, the evaluation of the 0νββ-decay nuclear matrix elements

are essential for extracting neutrino masses. The experimental study of nuclear tran-

sitions, where the nuclear charge is changed by two units leaving the mass number

invariant, in analogy to ββ decay, could give important information. In nature the

Double Charge Exchange reactions (DCE) are the only nuclear processes that have

this characteristic and can be investigated in laboratory.

In the past, many attempts to study DCE using pion beams via the (π+, π−) or (π−,

π+) reactions were done [23–26], but all of these were unsuccessful. Despite pion dou-

ble charge exchange, involves the transformation of two neutrons into two protons, like

ββ-decay, the responsible nuclear operators have very different structure in the two

cases [8]. Moreover, the pion has zero spin, therefore pions are unlikely to excite the

fundamental spin-flip GT excitations.

Over the years, only very few explorative studies of DCE processes induceed by heavy-

ion were performed. Most of them were not conclusive because of the very poor yields

in the measured energy spectra and the lack of angular distributions, due to the very

low cross-sections involved. Due to discouraging results the study on DCE and its re-

lation with ββ decay was not carried out. Nowadays the situation is more favourable,

thanks to the advent of new facilities for the detection of the reaction products, which

could allow to face the experimental challenges and to extract quantitative information

from DCE reactions.

23

















2.2 DCE reactions and 0νββ decays

• Parent/daughter states of the 0νββ are the same as those of the target/residual

nuclei in the DCE;

• Short range Fermi, Gamow-Teller and rank-2 tensor components are present in

both the transition operators, being their relative weight tunable in DCE by

changing the incident energy;

• In 0νββ decaying nuclei, the momentum of the neutrino in the intermediate

channel is estimated by the uncertainty principle. Assuming a finite range of

about 2 fm, a momentum spread of the order of 0.5 fm−1 is extracted, which

in turns corresponds to about 100 MeV/c [67]. The momentum available for the

neutrino in the intermediate channel is also available for the nuclear wave function

in order to preserve momentum conservation.

DCE process is also a finite range one, since the same two nucleons converted

in ββ decay are involved, the momentum spread of the same amount is present

for the same reason in the intermediate channel. Therefore, both DCE and 0νββ

operators map the same portion of nuclear wave function in momentum space.

This is a crucial similarity since other processes cannot probe this feature [85].

• The two processes are non-local and are characterized by two vertices localized

in the same pair of valence nucleons. Indeed the ββ-decay is a process where

an even-even nucleus in its 0+ ground state is transformed into another even-

even nucleus in its 0+ ground state. The same kind of nuclear transitions can be

studied by a DCE reaction. The only way to obtain such transition from a 0+

ground state in an initial nucleus to a 0+ ground state in a final nucleus is to act

on a pair of valence nucleus. Otherwise, the final populated state would be either

not 0+ or not the ground state.

• Both processes take place in the same nuclear medium. In medium effects are

expected to be present in both cases, so DCE data could give a valuable con-

straint on the theoretical determination of quenching phenomena (described in

Section.1.6) on 0νββ decay.

• An off-shell propagation through virtual intermediate channels is present in the

two cases. The virtual states do not represent the asymptotic channels of the

reaction and their energies can be different from those (measurable) at stationary
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conditions. Indeed, in the limited time during which they live, the energy-time

uncertainty principle allows that the energy balance can be violated of an amount

given by ∆E∆t ∼ ~ in the sense described in Ref.[86]. In practice, a supplemen-

tary contribution of several MeV to the line width is present in the intermediate

virtual states. This is related to the transit time of a particle (neutrino in one

case and a pair of nucleons in the other) along the distance of the two vertices

of the 0νββ and DCE processes. The situation is very different in single charge

exchange reactions, where intermediate states of 0νββ are populated as station-

ary ones and in 2νββ, where the neutrinos and electrons are projected out from

the nucleus, No effective broadening of the line width is thus probed by this lhe

processes.

Thus, even if the two processes are mediated by different interactions, the involved

nuclear matrix element are connected and the determination of the DCE reaction cross

sections can give important information on the ββ matrix elements. Indeed, the dif-

ference in the coupling constants between weak and strong interaction does not enter

in the NMEs, being part of the G0νββ
0 phase space factor in the expression of the 0νββ

half-life. The description of NMs extracted from DCE and 0νββ presents the same

degree of complexity, with the advantage for DCE to be “accessible” in laboratory.

Despite a detailed study of the relation among ββ decay and the heavy-ion induced

DCE cross section by modern theoretical approach is still missing, a simple relation

between DCE cross sections and ββ-decay half-lives is not trivial and needs to be ex-

plored. In Chapter 6 an innovative technique to infer the nuclear matrix elements

by measuring the cross-section of a double charge-exchange nuclear reaction will be

discussed [87].

2.3 Optimal experimental conditions to study the DCE

processes

As discussed in Section 2.1.1 the past attempts to study heavy-ion induced double

charge-exchange reactions (DCE) were not conclusive. Nowadays the use of modern

high resolution and large acceptance spectrometers allows to face the experimental

challenges and to extract quantitative information from DCE reactions. Indeed, the

measurement of DCE high resolution energy spectra and accurate cross sections at
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This reaction allows to populate target-residual system in the β+β+ kind, while

most of the research on 0νββ is on the opposite side. It is important stressing that

none of the reactions of β−β− kind looks like as favourable as the (18O,18Ne). For

example the (18Ne,18O) requires a radioactive beam, which cannot be available with

comparable intensity. On the other hand, the reaction that use a stable beam, such as

(20Ne,20O) or the (12C,12Be) have smaller B(GT ), so a sensible reduction of the yield

is foreseen in these cases.

2.3.2 The choice of the target

From the target point of view, in principle, it would be convenient that the comple-

mentary double GT channel in the target is as strong as possible. The target used

in the reaction studied in this work is T = 0 40Ca. In this case, the 40Ca → 40Ar

DCE transition is not double analog transition between members of the same isospin

multiplet since T (40Ca) = 0 while T (40Ar) = 2, thus the GT transition are not super

allowed as in the case of the projectile. On the other hand, in order to carry out a

study on DCE process the 40Ca target turns out to be an optimal choice. First and

foremost, the Fermi transition is exhausted by the 0+ at 4.4 MeV [90] and the GT

strength in not much fragmented in the intermediate channel. Indeed the high reso-

lution 40Ca(3He,t)40Sc data not yet published from Y. Fujita et al. [90], show that

the GT strength is manly distributed in the 40K 1+ states up to excitation energy of

∼ 8 MeV. In particular, the state at 2.73 MeV is strongest 1+ state, which carries

a strength of B(GT ; 2.73) = 0.069 ± 0.006, but there are other ten satellites of the

fragmented GT strength. The two largest ones are the states at 2.33 and 4.40 MeV,

which account for B(GT ; 2.33) = 0.014 ± 0.001 and B(GT ; 4.40) = 0.018 ± 0.002,

respectively. These data are in agreement to previous results taken from literature: the

40Ca(p,n)40Sc reaction at 134 MeV from [91] and at 159 MeV from [92]. Chittrakarn

et al. [91] give zero-degree cross section 0.48 mb/sr and a value of B(GT ; 2.73) = 0.084

for the transition to the 1+ state of 40K at 2.73 MeV. Taddeucci et al. [92] also show

that the GT strength is concentrated to the transition 1+ state of 40K at 2.73 MeV

, but the authors give zero-degree cross section 1.2 mb/sr and a value of B(GT ; 2.73)

= 0.21 for the transition to the 1+ state of 40K at 2.73 MeV. To be thorough, the

result of B. K. Park et al [93] should be also cited. The authors extract B(GT ; 2.73)

= 0.14 ± 0.02 from multiple decomposition analysis of the zero-degree cross section of
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18Ne)16C and 12C(18O, 18Ne)12Be ones have a Q-value of about -24.53 MeV and -31.175

MeV, respectively. Therefore the data characterized by a excitation energy of 40Ar up

to 18 MeV are originated only from the reaction on 40Ca.

2.3.3 The choice of beam energy and matching condition

The choice of the proper beam energy is crucial in order to favour the experimental

conditions suitable for studying the direct process involved in DCE reactions. Since

our intent is to explore the double GT and F transitions, it is necessary to work in

conditions where the sequential transfer of the pair is suppressed and the direct charge-

exchange route is dominant. An accurate prediction of the conditions where it happens

is beyond the present possibilities of the theory. Nevertheless, simple estimations of

both the contributions to the cross-section can be done. In particular, to study the

transfer mechanism one can use the well established Brinks kinematical matching con-

ditions that relate the cross section to the reaction Q value and the angular momentum

transferred [96]. Using beam energy of 270 MeV and following the Brink’s kinematical

conditions results that:

• the 40Ca(18O, 18)40Ar reaction proceeding via two proton transfer and two neu-

tron pick-up is matched at Qopt ∼ 50 MeV and favoured at L transfer of Lopt ∼
6.

• the 40Ca(18O, 18)40Ar reaction proceeding via two neutron transfer and two pro-

ton pick-up is matched at Qopt ∼ 55 MeV and favoured at L transfer of Lopt ∼
6.

Therefore, the sequential transfer processes to 40Ar ground and low lying states are

very mismatched.

A simple model describes the direct channel as sequential two single charge-exchange

routes. It is known in single charge exchange reaction that, the shape of the cross

section for a zero angular momentum transfer (L = 0) (Fermi o Gamow-Teller) is in

general given by a square of Bessel function (J0(qR)):

F (q, ω) ∼
∣
∣
∣
∣

sin(qR)

qR

∣
∣
∣
∣

2

(2.1)
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Chapter 3

The Experimental Set-up

In this Chapter the experimental set-up and measurement strategy of 40Ca(18O,18Ne)40Ar

Double charge-exchange (DCE) reaction performed at the INFN-LNS laboratory in

Catania on April 2013 are described.

As discussed in Chapter 2 the 40Ca(18O,18Ne)40Ar DCE reaction was studied together

with intermediate reaction 40Ca(18O,18F)40K single charge exchange and the compet-

ing processes: 40Ca(18O,20Ne)38Ar two-proton transfer and 40Ca(18O,16O)42Ca two-

neutron transfer at 270 MeV incident energy.

Key aspects of the measure are:

• The K800 Superconducting Cyclotron (CS) for the acceleration of the required

heavy-ion beams;

• the MAGNEX large acceptance magnetic spectrometer for the detection of the

ejectiles.

The CS accelerator provides beams with an energy resolution of ∼1/1000 and emit-

tance 5π mm×mr as demonstrated in [100]. MAGNEX is a large acceptance magnetic

spectrometer that allows to investigate processes characterized by very low yields. It

conjugates good energy and angular resolutions with a large acceptance both in solid

angle and momentum.

This experiment represents the first measurement at 0◦ performed by MAGNEX, there-

fore particular care was put on the beam transport and spectrometer setting. The ex-

perimental set-up is described in section 3.1 while sections 3.2 and 3.4 are dedicated to

a concise description of MAGNEX and of its Focal Plane Detector (FPD). For further
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hitting the target at the object point of the spectrometer. This request was checked by

the use of a bubble level.

The beam spot and size were periodically checked by several alumina fluorescent tar-

gets located along the transport line and inside the scattering chamber. In particular

the last alumina target (located inside the scattering chamber) was observed through

mirror to estimate the beam spot size at object point of the spectrometer. A picture

of scattering chamber containing the target ladder and the mirror is shown in Fig.3.1.

The spot size was about 2 mm diameter, warranting a good matching with the optical

properties of the spectrometer.

The target used in the experiment was a 279 µg/cm2 40Ca film evaporated on a carbon

backing of 26 µg/cm2. Since 40Ca is an easily oxidizable material, the target foil was

covered by a layer of 15 µg/cm2 carbon. The target was produced at the LNS chemical

laboratory.

The ejectiles were momentum analysed by the MAGNEX spectrometer working in full

acceptance mode (solid angle Ω∼50 msr and momentum range ∆p/p ∼ 24%). The

spectrometer main features will be described in Section 3.2. In the DCE and two-

proton transfer reactions, the optical axis of the spectrometer was centered at θoptlab

= 4◦ in the laboratory reference frame, while in the two-neutron transfer and single

charge-exchange reactions, it was located at θoptlab = 7◦. Considering the large angular

acceptance of MAGNEX (-5.16◦, +6.0◦ horizontal and ±7.16◦ vertical), these settings

correspond to an angular range 0◦<θlab< 10◦ in the first case and 2◦ < θlab <13◦ in

the second one. For the zero degree measurement particular care was taken to stop

the beam (see Sect.3.5): the magnetic field was set in order to stop the beam inside

a “big” Faraday cup (described in Section.3.5.2), placed in the focal plane area aside

the Mylar entrance windows of the FPD. The current signal was then sent to a Digital

Integrator [107] and was stored in the memory of a Latching Scaler [108]. In this way

both the instantaneous beam current and the total collected charge were measured. A

picture of the focal plane area is shown in Fig.3.2, where the “big” Faraday cup and

the valve between the dipole magnet and focal plane are visible.
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3.2 The MAGNEX spectrometer

3.2 The MAGNEX spectrometer

3.2.1 General features

MAGNEX is a large acceptance magnetic spectrometer installed at the INFN-LNS

laboratory in Catania [101, 102]. It is characterized by a high angular, mass and energy

resolution in a large-accepted phase space. MAGNEX was designed to investigate

several processes also characterized by very low yields in different fields of nuclear

physics, ranging from nuclear structure to the characterization of reaction mechanisms

in a wide interval of energies and masses. It is a high-performance device merging the

advantages of the traditional magnetic spectrometry [109] with those of a large angular

(50 msr) and momentum (-14%, +10.3%) acceptance detector.

From the mechanical point of view, MAGNEX is a QD spectrometer composed of two

large aperture magnets, a quadrupole magnet (Q) followed by a 55◦ dipole (D) and a

Focal Plane Detector (FPD) for the detection of the emitted ions. The apparatus is

shown in Fig.3.3.

Figure 3.3: General view of MAGNEX spectrometer. From the left to the right the

scattering chamber, the quadrupole (red) and the dipole (blue) magnets, and the FPD are

visible.

The quadrupole magnet focus in the non dispersive (vertical) direction, while the dipole

magnet provides the dispersion and the focusing strength in the dispersive direction

(horizontal). The horizontal focus is obtained by the inclination of both the entrance

and exit dipole boundaries by an angle of -18◦. The accepted magnetic rigidities range
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from ∼ 0.2 to ∼ 1.8 Tm, corresponding to energies of the detected ions ranging from

∼0.2 to ∼40 AMeV, depending on their mass and charge. A sizeable improvement in

the treatment of aberrations is obtained by using special algorithms to reconstruct the

relation between the initial phase space coordinates of the ions with those measured at

the position of the FPD. The main actual parameter are listed in Table 3.1.

Table 3.1: Main optical characteristics of MAGNEX spectrometer.

Optical characteristics Actual values

Maximum magnetic rigidity (Tm) 1.8

Solid angle (msr) 50

Horizontal angular acceptance (mr) -90,+110

Vertical angular acceptance (mr) ±125

Momentum acceptance (δ) -0.14,+0.1

Central path length (cm) 596

Momentum dispersion (cm/%) 3.68

First order momentum resolution 5400

Focal plane rotation angle (degrees) 59.2

Focal plane length (cm) 92

Focal plane height (cm) 20

3.2.2 Reference frame, matrix formalism and aberrations

The standard description of a beam of charged particles is done choosing one of them

as the reference particle (see, e.g., Ref.[110]). Its momentum and path through the

magnetic elements are the reference momentum p0 and trajectory, respectively. The

positions and momenta of the other particles are defined relative to the reference one.

At any point along the reference trajectory, a longitudinal or t axis lying in the direction

of the reference momentum is defined, while the two transverse axes x and y are chosen

perpendicular to it.

In this reference frame, the momentum of a particle of the beam is decomposed in its px

and py components along the x and y directions respectively and the fractional deviation

δ from the reference momentum, defined as δ = (p − p0)/p0. It is more convenient

to consider the quantities x′ = px/pt and y′ = py/pt, where pt is the momentum

longitudinal component along the reference trajectory. Since px and py are small when
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3.2 The MAGNEX spectrometer

compared to pt, x
′ and y′ can be approximated by the horizontal θ and vertical φ angles

with respect to the reference trajectory. To have a complete phase space coordinate

set it is necessary to have two more quantities: the two transverse distances of the

particles from the central trajectory x and y. Summarizing, the complete phase space

coordinate set for a generic particle can be written as P ≡ (x, θ, y, φ, δ).

In particular, as the charged particle beam moves through the spectrometer, the final

position Pf ≡ (xf , θf , yf , φf , δf ) is connected to the initial one Pi ≡ (xi, θi, yi, φi, δi)

through the relation:

M : Pi → Pf (3.1)

that describes a general non-linear transport relation, characteristic of the particular

optical system. More explicitly:

xf = M1(xi, θi, yi, φi, li, δi)
θf = M2(xi, θi, yi, φi, li, δi)
yf = M3(xi, θi, yi, φi, li, δi)
φf = M4(xi, θi, yi, φi, li, δi)
δf = δi

(3.2)

where the last equation expresses the conservation of the ion momentum modulus in a

magnetic field, when electric fields and degrading elements are absent. Exploiting the

tensor notation, eq.(3.2) can be written in terms of Taylor expansion as:

xf (f) =
∑

k

Rjk(i)xk(i) +
∑

k,l

Tjklxj(i)xl(i) + ...... (3.3)

where xj is the generic phase space coordinate and Rjk and Tjkl are the first and second

order transfer matrix elements, respectively. The coefficients of the second and higher

order terms in eq.(3.3) are typically referred as aberrations, since they determine devia-

tions from the ideal first order optical properties. The first order truncation of eq.(3.3)

gives a good description of the particle dynamics in case of magnetic spectrometers with

very small angular acceptance devices [103]. The crucial problem of aberration is faced

in MAGNEX, using hardware solutions and sophisticated software algorithms. From

the hardware point of view, a minimization of the aberrations has been obtained with

a carefully shaping the magnets and using other specific solutions [103]. For example,

in order to compensate the 2nd order aberration T126, the FPD [111] was installed with

the entrance surface rotated of θtilt=59.2◦ with respect to the central trajectory.

However, hardware solutions did not provide a satisfactory minimization of all the
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3. THE EXPERIMENTAL SET-UP

important aberration terms, so a sophisticated software correction was implemented,

based on a fully algebraic approach to determine the ion trajectory inside the spectrom-

eter [112]. The technique, called Ray-Reconstruction technique, requires an accurate

knowledge of the geometric and magnetic structure of the spectrometer [113–116], the

use of powerful algorithms for solving the high-order transport equation [117] and the

precise measurement of the ions positions and directions at the focus by a suitable

FPD. The FPD detector was conceived in order to provide an accurate measurement

of the final phase space vector Pf ≡ (xf , θf , yf , φf , δf ), as described in the Section 3.4.

3.3 Ray-reconstruction technique

3.3.1 Creation of the direct transport map

The starting point of the ray-reconstruction procedure is the construction of a transport

map which describes the evolution of the phase space parameters from the target point

to the focal plane. Using the matrix formalism introduced in Section 3.2.2, the initial

coordinates Pi ≡ (xi, θi, yi, φi) are connected to the final ones Pf ≡ (xf , θf , yf , φf )

through the relation 3.1. For the MAGNEX spectrometer, this task is achieved using

the COSY INFINITY program [118], in which the solution of equation 3.1 up to the

10th order is obtained by Runge Kutta integration technique, based on the formalism

of the differential algebra [117][119].

The COSY INFINITY input contains the geometry of the spectrometer (distances

between the magnetic elements, length of the drift space, and slits defining the solid

angle), the size and location of the FPD and the values of the quadrupole and the

dipole magnetic fields, which are described as three-dimensional Enge functions [120].

Important input parameters for the creation of the transport matrices are the Effective

Field Boundaries (EFB) of the dipole magnet, which are mathematically represented

as 5th order polynomials. In fact, there is a weak dependence of the shape of the

entrance and exit EFB on the magnetic field strength and therefore they were carefully

optimized for each magnetic setting looking at the resulting transport simulations, as

described in the Section 4.4.1.
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3.4 The MAGNEX Focal Plane Detector

3.3.2 Creation of the inverse transport map

An iterative procedure implemented in COSY INFINITY allows to construct the inverse

transport map M
−1 up to very high order (10th) in the case of MAGNEX. As a result,

each initial phase space parameter, for example θi, is given by:

θi =

10∑

n=1

(

∂nθi
∂xmf ∂θpf∂y

q
f∂φ

r
f

)

opt

· xmf θpfy
q
fφ

r
f with (m+ p+ q + r) = n (3.4)

The application of the inverse map to the final measured parameters allows to compen-

sate the effect of the high order aberrations that affect the spectrometer, because they

are contained in the constructed transport operator

3.4 The MAGNEX Focal Plane Detector

The MAGNEX FPD is a gas-filled hybrid detector followed by a wall of 60 silicon de-

tectors. It measures the horizontal and vertical positions of each incident ion at four

sequential points along the ions trajectory. Also, it allows to measure the energy loss

in the gas region and the residual energy released in the silicon detectors wall. The

FPD design and operation principle are described in details in ref.[111]. In the following

Sections some of the main features are reported. A schematic view of the FPD detector

is shown in Fig.3.4.

3.4.1 FPD layout

The FPD is placed 1.91 m after the exit pole face of the MAGNEX dipole. The FPD

vessel is mounted on a movable carriage that can translate of ±0.08 m along to the

spectrometer optical axis, in order to match the detector position to different focus con-

ditions [101, 103]. As anticipated in Section 3.2.2, the detector is installed such that

the normal to its entrance surface is rotated of 59.2◦ with respect to the MAGNEX

central trajectory.

The drift chamber active volume is 1400 mm wide, 200 mm high, 100 mm deep with

a cathode plate below (usually at applied voltage between -900 V and -1500 V) and

a Frisch grid above (see Fig. 3.4). The typically used gas is 99.95% pure isobutane

at pressure between 5 and 100 mbar, depending on the experiments. The gas purity
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3.4 The MAGNEX Focal Plane Detector

The information about the horizontal position is retrieved thanks to the signal induced

by the electron avalanche on the closest induction pads. These signals are then pre-

amplified and shaped by an analog multiplexed read-out system based on 16 channels

GASSIPLEX chips [123] mounted on the upper side of the induction pads board in the

gas environment [124]. The mutiplexed signals from each of the four DC chains are

read-out and digitally converted by C-RAMS modules [125]. A dedicated algorithm

[126] is used to extract the center of gravity of the charge distribution at each DC sec-

tion. Exploiting the regular pattern of the segmented electrode, it is possible to obtain

a unique correspondence between the measured centroid and the absolute horizontal

position X1, X2,X3,X4 in the MAGNEX reference frame. In this way, four position are

independently determined, allowing the extraction of the horizontal and angle of the ion

track at the spectrometer focal plane. Note that these measured quantities are referred

to the spectrometer optical axis (Xfoc, θfoc) to be used for the ray-reconstruction.

The charged particles crossing the gas section reach the silicon detector wall. Charge

pre-amplifiers [122], typically with sensitivities from 5 to 40 mV/MeV depending on the

experimental needs, are used. The outputs are sent to 16-channel MEGAMP (shaping

amplifier + CFD) module [127]. The shaped outputs are connected to the residual en-

ergy (Eresid) of ions after crossing the gas. The logic signals are used as multi-purpose

timing signals of MAGNEX. The logic OR is used as start signal for the electrons drift

times measurements and also to trigger the data acquisition and to generate the gate

for the ∆E and drift time measurements.

The four vertical positions Y1, Y2, Y3, Y4 are extracted from the measurement of the

electrons drift time in the gas region. This latter is measured by the delay between

the logic signal generated by the silicon detectors (START) and the DC wires (STOP),

using four TAC+ADC read-out chains. The vertical coordinates need an external abso-

lute calibration to be correctly transformed in the optical reference frame, as described

in Section 4.1. In this way, the vertical position Yfoc and angle φfoc of the ion track

at the focal plane are determined. The schematic diagram of the circuit read-out of

Eresid, ∆Ei and Yi measurements is shown in Fig.3.7.
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Figure 3.7: Schematic diagram of the electronics and read-out of the Eresid, ∆Ei and Yi

measurements.
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3.5 Spectrometer setting: the 0◦ measurement

3.5 Spectrometer setting: the 0◦ measurement

In this section the procedure for the spectrometer positioning and setting for the mea-

surement at 0◦ it is described in details.

The magnetic fields for the quadrupole and the dipole are deduced by the focusing con-

dition of the reaction ejectiles at the focal plane detector [105]. These magnetic fields

are calculated using the COSYsetup program [128], specifically designed for searching

the best parameters to set-up the MAGNEX magnetic field. When the kinematic pa-

rameters of the studied reaction and the desired δ are given as input, the COSYsetup

program searches the correct setting of the magnetic fields among a set of tabulated

values, calculated for several configurations. In the quadrupole, four permanent Hall

probes, placed at 0.1815 m from the symmetry axis, are used to monitor long term drifts

and possible hysteresis effects. The dipole magnetic field is measured by a NMR probe

inserted in a socket of the magnet vacuum chamber. A detailed map of the fields given

by the manufacturer and an accurate mathematical interpolation procedure makes it

possible to extract for each magnet, the field at each point of the beam envelope, with

an estimated error of ∼0.1% [114] in the 3D space.

However, in the measurement described in this thesis the choice of the magnetic setting

was constrained by the necessity to stop the beam aside the FPD. In particular, two

possible solution were considered to achieve this purpose:

• stop the beam inside the dipole chamber, where a series of metallic wings are

present for this purpose (see Fig.3.8a);

• stop the beam downstream the dipole in a “safe” place aside the FPD.

The choice of one of the two options, strongly depends on the MAGNEX angular

positioning. Fig.3.8 shows two schematic plan view of the spectrometer: in panel a) it

is rotated by a negative angle with respect to the (fixed) incident beam in the laboratory,

while in panel b) it is rotated by a positive angle. In order to stop the beam inside the

dipole it is appropriated consider the configuration shown in Fig.3.8a, while to stop the

beam in a safe area downstream the dipole the configuration in Fig.3.8b. Two different

options at θopt = -4◦ and θopt = 4◦ were studied.
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3.5 Spectrometer setting: the 0◦ measurement

applied to describe the evolution of the phase space parameters from the target position

to the entrance, half and exit of the dipole and to the focal plane. The transport map

was calculated up to 10th order by COSY INFINITY program as described in Section

3.3. A set of events corresponding to the 18O beam was generated by Monte Carlo

routines [128] and transported through the spectrometer by the application of the

direct map. In the simulations, the beam spot is very important to describe the real

conditions of the transport The Cyclotron beams are characterized by an emittance of

5π mm×mr and a spot of 2 mm (∆θ = 2.5 mrad, ∆φ = 2.5 mrad). In Fig 3.9 a plan

view of the MAGNEX spectrometer is shown. The simulated trajectories are indicated

with a green band. Under the simulated conditions the beam ions stops near the socket

where the NMR probe is inserted. Consequently, the choice of stopping the beam inside

the dipole was considered not convenient because could have interfered with the NMR

probe.

3.5.2 The option at θopt = 4◦.

As discussed above, the second evaluated option consisted in stopping the beam in the

area of the focal plane. In order to obtain the best focusing conditions, the magnetic

fields were calculated for different values of δ. In Table 3.4 the magnetic setting for

each δ are listed.

Table 3.4: Magnetic settings fot the option at θopt = 4◦.

δ θoptlab Bρ (Tm) BQ(T)

0.289 4◦ 0.97604 0.5409

0.239 4◦ 1.01588 0.5629

0.188 4◦ 1.05911 0.5869

For each magnetic setting the procedure described in the previous section was ap-

plied to calculate the trajectory of the beam along the spectrometer. The results in

Fig.3.9 show that the best solution is obtained with δ = 0.239 (blue band) in since the

beam reaches a region of the focal plane where it is possible to place a Faraday cup

without creating a shadow on the FPD.

Since the beam spot at the focal plane is ∼1 cm horizontally and 0.5 cm vertically, a

large Faraday cup of 105 mm wide, 55 mm high, 245 mm deep was built (see Fig.3.2).
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Figure 3.9: Plane view of the MAGNEX magnetic layout. The green band corresponds

to the trajectory at θoptlab = -4◦ and δ = 0.34. The cyan, blue and orange bands correspond

to θopt = 4◦ and δ = 0.289, 0.239, 0.188 respectively.
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3.5 Spectrometer setting: the 0◦ measurement

A schematic view of the focal plane region is shown in Fig.3.10, in which the trajectory

of the beam and the Faraday cup are also drawn.

Figure 3.10: Plane view of the focal plane region. The FPD acceptance is indicated as

yellow area. The cyan, blue and orange bands are the same shown in Fig.3.3. The ”big”

Faraday cup is represented in scale as the red rectangle.

Using this magnetic setting, the ejectiles of the reactions studied in this thesis are bent

at focal plane positions corresponding to the δ values listed in Table 3.5. The 18F and

16O ejectiles, corresponding to the 40Kg.s. and
42Cag.s. respectively, are bent out the

focal plane detector, so that it was necessary using a specific magnetic setting for these

latter reactions.
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Table 3.5: The position in the focal lane, in terms of relative momentum δ, for each of

the listed reactions.

Reaction δ

40Ca(18O,18Ne)40Ar -0.02
40Ca(18O,18F)40K 0.11
40Ca(18O,20Ne)38Ar 0.06
40Ca(18O,16O)42Ca 0.18

3.5.3 The magnetic setting for the 40Ca(18O,18F)40K and 40Ca(18O,16O)42Ca

reactions.

For the 40Ca(18O,18F)40K and 40Ca(18O,16O)42Ca reactions, the MAGNEX optical axis

was put at θoptlab = 7◦, so that the beam was stopped in the Faraday cup located in the

scattering chamber downstream the target ladder. The procedure used to estimate the

magnetic fields is the standard one described at the beginning of this section. Therefore,

the spectrometer parameter were set in order to bent the ejectiles in the focal plane

position corresponding to a relative momentum δ = -0.01. The spectrometer parameters

set for each reaction are listed in Table 3.6.

Table 3.6: Magnetic setting for each of the listed reactions.

Reaction Bρ (Tm) BQ(T)

40Ca(18O,18F)40K 1.12088 0.6214
40Ca(18O,16O)42Ca 1.21284 0.6727

3.5.4 FPD setting

The FPD shift was fixed at d = -0.08 m for all the runs. The FPD was filled with

99.95% pure isobutan gas (C4H10) at 15.15 mbar pressure. The cathode was supplied

at -1200 V while the Frisch-grid was grounded. The high voltage in the proportional

wires DC1, DC2, DC3, DC4 and PC was +680 V, and the shaping partition grid between

the Frisch-grid and the proportional wires was supplied by a separate generator at -450

V. The silicon detectors were powered with 60 V voltage to work in a full depletion

mode.
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Chapter 4

Data reduction

This chapter is devoted to the detailed description of the data reduction procedure,

made up of several steps. First, an accurate calibration of the ions horizontal and

vertical position measured by the FPD is necessary, since such parameters are used

as input for the 10th order ray-reconstruction procedure. These must be determined

in the spectrometer reference frame, where the transport equations are defined. In

addition, the ejectiles must be identified, in atomic number (Z), mass number (A) and

charge (q) this is obtained by combining two techniques: the usual ∆E-E one for the Z

identification and an innovative identification of the A and q based on the motion of the

ions in the magnetic field of the spectrometer. Once the ions track are measured at the

focal plane position, the spectrometer transport map is optimized up to 10th order. This

procedure completely characterizes the investigated event, providing the ion kinetic

energy and scattering angle in the laboratory reference frame. Moreover, it allows to

take into account the loss of the transmission efficiency through the spectrometer. This

aspect is of fundamental importance in order to extract the absolute cross section of the

investigated reaction. After the application of the ray-reconstruction technique to the

identified data at the focal plane, the excitation energy spectra and the cross section

angular distribution are extracted.

The whole procedure is described for the data collected for the 40Ca(18O,18Ne)40Ar

reaction at 270 MeV. The same procedure was also applied to the other data analysed

in the present work.
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4.1 Calibration of the horizontal and vertical positions

4.1.1 Relative calibration of the pads response

As discussed in Chapter 3, the four horizontal positions X of the ion track inside the gas

region of the FPD are given by the response of the induction pads above each DC wire.

Before extracting the horizontal positions, a relative calibration of the pads response

is necessary. In order to fulfill this request, four pulses of different amplitudes (2, 3, 4

and 5 V), generated by a digital pulser, were sent directly to each DC wire in a specific

calibration run. In this way the same charge is instantly induced in each pad above a

given wire, and the corresponding charge histograms are constructed. A reference pad

is chosen for a given DC wire and a linear fit correlating the amplitudes of the charge

signal for each pad with those of a reference one was performed. An example of this

correlation plot is shown in Fig.4.1.
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Figure 4.1: Linear fit correlating the response of a given pad with that of the reference

one, induced by a common pulse in the wire of 2, 3, 4, 5 V.

After the calibration, the center of gravity of the charge distribution is extracted for each

event of the collected dataset. An algorithm, specifically developed for the MAGNEX
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FPD, is used for this aim. This code described in Ref.[126] takes into account the

large variation of the number of excited pads as a function of the incident angle. This

effect causes very different shapes of the charge distributions, thus making any standard

centroid-finding algorithm [129, 130] quite unreliable.

The horizontal positions X1, X2, X3, X4 are finally determined from the corresponding

centroid positions, considering that each pad is 6.00 ± 0.01 mm wide. Using the known

∆Zi longitudinal distances (downstream the optical axis) of the DC wires with respect

to DC1, it is possible to reconstruct the ion horizontal track inside the detector. An

example of the correlation between the obtained Xi positions and the Zi distances

between the 4 DCs is shown in Fig.4.2.
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Figure 4.2: Linear correlation between the measured Xi positions and Zi distances be-

tween the 4 DCs wires for one event. Z=0 is assumed for DC1

.

The zero for the horizontal positions Xi are extracted by the intersection between the

spectrometer optical axis, determined by a precision theodolite, and the pad-pattern

above each DCi. The Xfoc coordinate at the focal plane is finally obtained taking into

account the measured position at the FPD downstream the optical axis Z (see Fig.4.2).
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Figure 4.4: An example of Y spectrum showing the regularly spaced minima due to the

shadows generated by the silicon coated wires which hold the Mylar windows. The position

of the minima is indicated by the green dashed lines.

The absolute position of such wires was also determined by optical measurements

in the spectrometer frame. Therefore, the final absolute calibration of the Y parameter

was obtained by comparing the position of the holes in each Yi spectrum with the known

projection of the wires positions at each DC. An example of the correlation between

the Yi (ch) and the position of the silicon coated wires is shown in Fig. 4.5.

Following the same procedure adopted for the Xi calibration, the Yi vertical posi-

tions were used to draw the ion track inside the FPD detector in the YZ plane, obtaining

the Yfoc coordinate, while the vertical angle φfoc is extracted from the angular coeffi-

cient of the line. An example of the correlation between the obtained Yi positions and

the Zi distances between the 4 DCs is shown in Fig. 4.6. Both Yfoc and φfoc are used

as inputs for the ray-reconstruction technique.
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Figure 4.5: Linear correlation between the spaced minima in the Y spectrum (see Fig.

4.4 and the silicon coated wires position.
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Figure 4.6: Linear correlation between the Y positions for an event and Zi distances

between the 4 DCs wires. For DC1 Z = 0 is assumed.
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4.2 Ejectile identification

imation, the momentum p is related to the kinetic energy E and, approximately, to

the residual energy measured by the silicon detectors Eresid, by a quadratic relation

p ≃
√
2mEresid, where m is the ion mass. Since the curvature ρ is related to the posi-

tion at the focal plane Xfoc, the relationship between the two measured quantities Xfoc

and Eresid is approximately quadratic with a factor depending on the factor m/q2:

X2
foc ∝

m

q2
Eresid (4.3)

As a consequence, the trajectories of different isotopes of a given ion will be distributed

on separated loci, according to them/q2 ratio, when anXfoc - Eresid plot is constructed.

Theoretically, different groups should be visible corresponding to the different charge

states and inside each group, the different isotopes should be clearly separated [132].

For the present data analysis, only the Ne10
+

charge state is visible, because the ions

are fully stripped at 270 MeV. Therefore, the clear separation between the different

Neon isotopes is evident in Fig. 4.8, where the Xfoc - Eresid matrix is shown for the

data selected with the graphical condition on the ∆Ecorr
CP - Eresid one (Fig. 4.7). It

is therefore possible to sort out only 18Ne10+, as required in order to study the events

corresponding to the double charge-exchange process. The described identification

procedure is then repeated for each silicon detector, using each time the AND condition

between the Neon identification in the ∆Ecorr
CP - Eresid plot and the 18Ne10+ selection

in the Xfoc - Eresid plot. In this way, a unambiguous selection of all the detected ions

of interest is obtained.

The same procedure was used also to identify the other ejectiles originated from each

of the reactions studied in this work. In particular, using the the graphical condition

on the ∆corr
CP - Eresid (Fig. 4.7) and in the Xfoc - Eresid (Fig. 4.8 ) it is possible to

identify the 20Ne10+.

An example of 18F identification is shown in Fig.4.9 . Fig. 4.9a shows a ∆E-E bi-

dimensional plot for a single silicon detectors together with a coarse graphical contour

that includes the Fluorine ejectiles. Fig. 4.9b shows Xfoc - Eresid scatter plot for

a single silicon detector after selecting the F locus in the ∆corr
CP - Eresid. A graphical

contour selecting the 18F is indicated. Finally an example of 16O identification is shown

in Fig. 4.10.
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• E′
18O is used as input of the program CATKIN [134], which calculates by rela-

tivistic kinematic transformations the energy E′′
18Ne of the ejectiles produced in

the 40Ca(18O,18Ne)40Ar reaction at the given angle θopt = 4◦;

• using again LISE++, the energy loss of the 18Ne ejectiles in the remaining half

target crossed with angle θopt is evaluated, obtaining Efin
18Ne

.

• The final energy Efin
18Ne

is then taken as the reference one. Starting from this value

and using CATKIN, the effective beam energy Eeff
18O

is found. This is defined as

the beam energy necessary to generate by the same process 18Ne ejectiles emitted

as θopt = 4◦ with energy Efin
18Ne

, without any energy loss.

The effective energies obtained for each reaction discussed in this work are listed in

Table4.1.

Table 4.1: Effective beams energy for the analyzed data.

output channel θoptlab Ebeam (MeV) Eeff
beam (MeV)

18Ne + 40Ar 4◦ 270 269.35

20Ne + 38Ar 4◦ 270 269.35

18F + 40K 7◦ 270 269.40

16O + 42Ca 7◦ 270 269.45

As mentioned above, the quality of the result is checked comparing the simulated

final phase space parameters with the experimental ones. The results of the performed

simulation are shown in Fig. 4.14 and 4.15 for the dataset already shown in Section 4.3.

Despite the highly non-linear aberrations, the simulated data (red points) give a rather

faithful representation of the experimental ones (black points) both in the horizontal

(θfoc vs Xfoc plot) and vertical (Yfoc vs Xfoc plot) phase spaces. Moreover, a very

accurate modelling of the dipole Effective Field Boundaries was necessary to obtain

such result. The accuracy of the description of final space by the direct transport

matrix is estimated about -0.5 ± 0.9 mm and 3 ± 5 mr in Xfoc and θfoc, respectively,

similarly to what found in Ref.[112].
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case Q0 = -5.905 MeV). The two quantities θlab and Ex, are used to construct bi-

dimensional plots in which the ground and excited states of the residual 40Ar nucleus

become evident, as shown in Fig. 4.17 for the data set of Fig. 4.14. The 40Ar ground

state and the several excited states are well visible as vertical and straight loci, as

expected since Ex parameter does not depend on the scattering angle for transition

to the 40Ar states. The efficiency cut around 40 MeV excitation energy is due to the

acceptance of the spectrometer [135].

4.5 Excitation energy spectra

The excitation energy spectra of 40Ar nucleus are obtained from the Ex - θlab plots

projecting the events on the Ex axis. A projection of the Ex spectrum in the angular

region 0◦ < θlab <2◦ is shown in Fig. 4.18.

The described data reduction procedure was applied to the dataset corresponding to

the other studied reaction. Examples of the obtained 40K, 42Ca and 38Ar spectra are

shown in Figs. 4.19, 4.20 and 4.21.

A Gaussian fit procedure, applied to the observed peaks, gives a mean energy resolu-

tion of about 500 keV (FWHM) in all the shown spectra. This resolution is affected

by three main contributions. The first one is the spectrometer finite energy resolution,

estimated in about 1/1000 [112], corresponding, in this case, to about 270 keV. The

beam resolution, which is about 1/1000, is the second factor to take into account con-

tributing, like in the previous case, for about 270 keV. The straggling effect induced by

the target thickness accounts for about 300 keV, considering 18O ions passing through

the 279 µg/cm2 40Ca target foil.
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4.5 Excitation energy spectra

In the 40Ca(18O,18Ne)40Ar double charge exchange spectrum, shown in Fig. 4.18

ground state is clearly separated from the group of excited states of 40Ar 2+ at 1.460

MeV and 18Ne 2+ at 1.887 MeV. At higher excitation energy the measured yield is

spread over many overlapping states.
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Figure 4.18: Excitation energy spectrum of the residual 40Ar nucleus. The data are

integrated in the angular range 0◦ ≤ θlab ≤ 2◦. The asterisk indicates the first excited

state of 18Ne at 1.887 MeV.

As regards the 40Ca(18O,18F)40K single charge exchange spectrum (see Fig. 4.19) the

strongest transition is to the 2− state at 800 keV, even if higher multipolarities are

visible (4− g.s. and 3− 30 keV state) [136]. The spectrum shows unresolved structure

between 2 - 3 MeV. It is known that several states of 40K are in this particular energy

region [90, 136] which we cannot separate due to the experimental resolution. Therefore

the group of 1+ states at 2.27 and 2.73 MeV is also populated even if other high spin

states could hide them. In particular, it is know from literature [136] the 2−, 3− states

at 2.047 and 2.070 MeV, the 3− state at 2.291 MeV and the 2−, 4− states at 2.397 and
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2.419 MeV and higher spin transition at energy around 2.7 MeV can also contribute.
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Figure 4.19: Excitation energy spectrum of the residual 40K. The data are integrated in

the angular range 2.6◦ ≤ θlab ≤4.6◦. The asterisk indicates the first excited state of 20Ne

at 0.937 MeV.

In the 40Ca(18O,20Ne)38Ar two-proton transfer reaction, the ground state (0+) is well

separated from the excited states of both the 38Ar (first excited state 2+ at 2.167 MeV)

and the 20Ne ejectiles (first excited state 2+ at 1.633 MeV). Furthermore, structures at

4.0, 6.5 and 9.2 MeV are clearly observed. Each peak is formed by many overlapping

states of high spin known in literature [137, 138]. This result indicates the suppression

of low multipolarity transitions due to L-matching conditions (Lopt = 6). The yield

tends to increase with excitation energy as a consequence of the kinematicalQ-matching

conditions (Qopt = 32 MeV).
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4.5 Excitation energy spectra

The structures above Ex ∼ 12 MeV, corresponding to the states of 14C (g.s, 7.1,

8.33, 10.4 and 12.96 MeV) populated in the 16O(18O,20Ne)14C and to the states of 10Be

(g.s, 3.37 and 5.96 MeV) populated in the 12C(18O,20Ne)10Be. The 16O and 12C are

contaminants present in the 40Ca target.
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Figure 4.20: Excitation energy spectrum of the residual 38Ar. The data are integrated

in the angular range 0◦ ≤ θlab ≤ 2◦. Peaks marked with an asterisk are associated to the

excitation of 20Ne at 2.15 MeV. Above Ex ∼ 12 MeV structure coming from the reaction

on 12C and 16O impurities are present in the 40Ca target are labelled and indicated with

hatched area.

Finally in the 42Ca spectrum populated in 40Ca(18O,16O)42Ca (Fig. 4.21) the transition

to the ground state and other low-lying states are strongly suppressed. The yield tends

to increase with excitation energy due to the kinematical Q-matching conditions (Qopt

= 37 MeV). The structures visible at 15 MeV and 19 MeV correspond to the states

populated via 12C(18O,16O)14C, on the carbon impurity in the target.
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Figure 4.21: Excitation energy spectrum of the residual 42Ca. The data are integrated

in the angular range 3◦ ≤ θlab ≤6◦.

4.6 Cross section angular distribution

The final step of the data reduction procedure is the extraction of the absolute cross

section angular distributions.

The advantage of working with a large acceptance spectrometer is that, for a given set of

measurements under identical experimental conditions, a wide range of scattering angles

is covered. As a consequence, a consistent part of a cross section angular distribution

can be measured in a single run in the same experimental conditions, resulting in

a reduction of the uncertainty due to the normalization of runs at different angles.

In particular, as already discussed, the large angular acceptance of the MAGNEX

spectrometer gives the possibility to explore a θopt - 5
◦≤ θlab ≤ θopt + 6◦ for a given

central angle θopt. In the present data, this corresponds to an angular distribution

which covers the range 0◦ ≤ θlab ≤ 10◦ in the case of DCEX and two-proton transfer

reaction, and the range 2◦ ≤ θlab ≤ 13◦ for CEX and two-neutron transfer reactions.
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4.6 Cross section angular distribution

In general, for a given nuclear transition, the differential cross section is defined as:

dσ

dΩ
(θ) =

N(θ)

NbeamNtarget∆Ωtliveǫ
(4.6)

where N(θ) is the number of ejectiles detected at a given angle θ, Nbeam is the number

of incident ions, Ntarget is the number of scattering centers per unit surface, ∆Ω is the

solid angle covered by the detector, tlive is a factor which takes into account the acqui-

sition dead time and ǫ is an overall detection efficiency factor. The number of incident

ions is retrieved integrating the beam current measured by the Faraday cup. A digital

integrator (see Chapter 3) gives the total charge Q collected in each run. At the con-

sidered energy, the 18O ions are totally stripped after passing through the target [139],

therefore the number of the beam ions is simply evaluated as Nbeam = Q/Ze, where

Z = 8 and e = 1.602·10−19C. Actually, a dedicated VME scaler measured directly the

integrated charge Qlive corrected for the acquisition dead time, thus already including

the factor tlive of eq. 4.6. The obtained Nbeam values for each investigated reactions

are listed in Table 4.2.

Table 4.2: Total number of collected ions Nbeam for each investigated reaction.

18O + 40Ca Nbeam(1013 ions)

18Ne + 40Ar 200±10

20Ne + 38Ar 57± 3

18F + 40K 5.0 ± 0.3

16O + 42Ca 2.3 ± 0.1

The number of target nuclei for unit surface Ntarget is calculated from the known target

density and thickness. The obtained value is N
40Ca
target = 4.2 ± 0.1 ·1018 atoms/cm2.

As regards the evaluation of the solid angle ∆Ω, the geometry relevant for its deter-

mination is show in Fig. 4.22. In principle, the spectrometer solid angle acceptance is

defined by 4 slits located 260 mm downstream the target and upstream the quadrupole

entrance (green line in Fig. 4.22b). However, the overall efficiency losses in the spec-

trometer correspond to an effective reduction of the solid angle, as demonstrated in
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The number of counts N(θ) for these transitions was determined using the graphical

selections in the (Ex, θlab) plot (as shown in Fig. 4.23) and projecting on the θlab axis

choosing an angular bin of ∆θlab = 0.4◦. Once the N(θ) were extracted at each θ the

angular distribution of the absolute cross sections were built following eq. 4.6. The

resulting angular distributions are shown in Fig. 4.24.
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Figure 4.24: Angular distributions for transitions to the 40Ar g.s., to the 1.46 MeV and

2.89 MeV excited states. The excited states are contaminated by the excitation of the

ejectile.

In the angular distributions plots, the error bars are drawn for the vertical axis (see

Section 4.6.4 for their evaluation), since the uncertainty on the angle determination is
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The result for the distribution is shown in Fig. 4.26.
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Figure 4.26: Angular distributions for transitions to the 38Ar g.s.

4.6.3 The 40Ca(18O,18K)40K case

In the case of the 40Ca(18O, 20Ne)38Ar reaction the transition to the 1+ states was

studied. As discussed in Section 4.5, the group of 1+ states at 2.27 and 2.73 MeV [136]

could be hide by other high spin states. In order to do an approximate estimation of

the cross section of them, a Gaussian fitting model was applied in the one-dimensional

energy spectra in a energy region between 2-3 MeV. The routines of MINUIT [140] were

used for this purpose. The results are shown in Fig. 4.27. The area of the obtained

Gaussian function gives the number of counts for each angular bin (∆θ = 1◦). The

angular distribution for the transition to the energy region of 2-3 MeV of 40K is shown

in Fig.4.28.
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Figure 4.27: Excitation energy spectrum of the residual 40K. The data are integrated

in the angular range 2.6◦ ≤ θlab ≤3.6◦. The fitted peak is shown within a red Gaussian

function.

4.6.4 Cross section uncertainties

The cross section uncertainties were determined by applying the error propagation on

eq.4.6, The uncertainties on the parameter Nbeam, Ntarget, and ǫ are common to all the

points of the angular distribution. They determine an overall uncertainty of about 10%

in the absolute scale of the cross sections, which was not included in the error bars. The

error on ∆Ω depends on the uncertainties on the reconstructed vertical and horizontal

angles φi and θi, respectively. The former is about ∆φi = ± 0.4◦ [112], and corresponds

to a common factor for all the angular distribution bins. The latter is affected by an

uncertainty of about ∆θi = ± 0.2◦ [112], and this influences more the bin corresponding

to the border of the acceptance. The effect was evaluated considering the variation of

the area (shown in Fig.4.22b) caused by variation of the θi within ±0.2◦. The error

on N(θ) is the statistical one ∆N(θ) =
√

N(θ), evaluated for each angular bin ∆θlab
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chosen in the cross section extraction procedure.
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Figure 4.28: Angular distributions for 40K transitions to 2-3 MeV energy region.

In the case of the angular distribution of 40K the number of counts N were evaluated

calculating the area (A) of the corresponding Gaussian function fit, given by:

A = 2πhσ (4.7)

Considering that the error on the estimation of N is dominated by the error on the

Gaussian height, since the σ parameter was fixed in each fit, and the statistical error

is dominant, the error on N becomes:

∆N ≈ 2πσ∆h (4.8)

In summary, the cross section were extracted with typical uncertainties of about 15-

25%, which is enough to learn about details of the reaction mechanism, as discussed in

the following Chapters.
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Chapter 5

Theoretical analysis of

the40Ca(18O,18F)40K reaction in

the CEX-QRPA approach

In the present chapter, the theoretical analysis of the 40Ca(18O,18F)40K reaction is de-

scribed and discussed in the fully quanto-mechanical framework of the Charge-Exchange

Quasiparticle Random Phase Approximation (CEX-QRPA)[30–32] .

As already underlined in the previous Chapter, the 40Ca(18O,18F)40K reaction rep-

resents the intermediate channel for the 40Ca(18O,18Ne)40Ar DCE one. A consistent

description of the intermediate reaction is the first step in order to develop a complete

description of the more complex DCE reaction.

Moreover several results of the present CEX-QRPA analysis will be key ingredients for

the simple model adopted to extract the DCE nuclear matrix element, as discussed in

the next Chapter.

In the past, the CEX-QRPA approach was successfully used to describe the 11Be, 15C

and 19O nuclei studied via (7Li, 7Be) reactions [104, 141–143]. In the present case,

this approach is applied to describe both the 18F and 40K nuclear structure. Then

the nuclear structure calculation results are directly inserted into the Distorted Wave

Born Approximation (DWBA) to calculate the cross sections. Consistency between

structure and reaction mechanism calculations is achieved through the use of the same

effective nucleon-nucleon (N-N) interaction in every step of the calculations. In fact,

following the semi-phenomenological approach of refs. [144, 145], both the static mean
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and pairing fields derive from the residual interaction of Hofmann and Lenske [145],

which is also used in the QRPA and DWBA calculations. The Chapter is organized

as follows: Sections 5.1 and 5.2 are devoted to the description of the QRPA formal-

ism and give the details of the structure calculations, needed for the determination of

the response functions based on the RPA-Greens function method [144]. The residual

NN-interaction [145] is described in Section.5.3. The results of the QRPA calculations

are shown in Sect. 5.4. The DWBA calculations are described in Section5.6 and their

results are given in Section5.7.

5.1 The Quasi-particle Random Phase approximation

Basic mean filed models of the nuclear many-body problem, such as the shell or Hartree-

Fock (HF) ones, describe the low-lying excited states of nuclei as combinations of in-

dependent single particle excitation in a mean field.

The Random Phase Approximation (RPA) theory [30], introducing correlations be-

tween particles and holes, represents the next step with respect to the mean field

approach. In this model, a more careful description of the nuclear states is achieved in

term of correlated 1p-1h excitations, a description which also should be valid for states

at higher excitation energy and for nuclei that are not spherically symmetric.

The main finding is that a strong attractive residual interaction between particle-hole

pairs reduces the energy of a highly correlated state, while a repulsive interaction has

the opposite effect. This energy shift constitutes the real part of a complex quantity,

called self-energy, and depends on the strength of the residual interaction and correla-

tions. The imaginary part of the self-energy accounts for the possible broadening of the

state due to the energy shift, since the decay width may change. This model practically

includes weak perturbations of the mean field in the continuum.

The Quasiparticle Random Phase Approximation (QRPA) allows a treatment of the

weakly bound systems in a equivalent way compared to RPA, using the quasiparticle

formalism that is connected to the particle-hole formalism by the Bogoliubov-Valantin

transformations. The QRPA providing that an appropriate residual interaction is used,

allows to take into account the pairing correlations.

In the present case, the QRPA model is used to describe charge-exchange processes

in which a quasi-proton is transformed in a quasi-neutron. As a consequence, the
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CEX-QRPA operator describes the creation and annihilation of the quasi-proton and

quasi-neutron, through an isovector residual interaction.

5.2 The CEX-QRPA formalism

The basic elements needed to define a RPA problem are the ground state system (GS),

characterized by a N0 neutron and Z0 proton (or vacuum state):

|0〉 = |N0, Z0; GS〉 (5.1)

and the residual interaction. In RPA model the Hilbert space of the excited states

is truncated to include only 1p-1h excitations on the (correlated) ground state. The

general Hamiltonian for a nucleus is:

H = T + V = T + U + (V − U) = H0 + Vres (5.2)

where T represents the kinetic energy and V the NN -interaction. A static mean field

potential U is introduced in order to separate H in two parts: the residual particle-hole

interaction Vres = (V − U) and the mean field Hamiltonian H0.

Starting from the single particle creation and annihilation operators for fermions a+jm(p, n)

and ãjm(p, n) = (−1)j+maj−m(p, n), the one-quasiparticle (1-QP) annihilation αjm and

creation α+
jm operators are obtained through the linear Bogoliubov-Valatin transforma-

tion:

αjm = ujajm − (−1)j+mvja
+
j−m

α+
jm = uja

+
jm − (−1)j+mvjaj−m

(5.3)

where uj and vj are the emptiness and occupation amplitudes, respectively, for the

orbital with total angular momentum j, with u2j + v2j = 1. It is important stressing

that αjm and α+
jm operators obey to standard commutation relations for fermion.

The two-quasiparticle (2-QP) creation operators are then constructed in the second

quantisation formalism in terms of the 1-QP αjm and α+
jm operators:

Q+
JM (jn, jp) =

∑

mn,mp

〈jnmnjpmp|JM〉α+
jnmn

α+
jpmp

(5.4)

A similar formula gives the 2-QP destruction operators QJM . In eq. 5.4 the α+
jm

operators describe the creation of a quasi-neutron and a quasi-proton with angular
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momentum jn and jp and magnetic quantum number mn and mp respectively. Since

the QJM and Q+
JM operators describe charge exchange transitions in which a proton

is transformed into a neutron or vice versa, they depend on the Clebsch-Gordan coef-

ficients giving the angular momentum coupling, which have to satisfy the conditions

jp + jn = J and mp +mn = M .

The complete operator for the CEX excitations ω+
JM is finally obtained in the QRPA

formalism considering the superposition Q+
JM operator and its time reversal:

ω+
JM ≡

∑

jnjp

[

XJ
jnjpQ

+
JM (jn, jp)− Y J

jnjp(−1)J−MQJ−M (jnjp)
]

(5.5)

In an analogous way the destruction CEX operator ωJM is defined. The quantities XJ

and Y J represent the QRPA amplitudes for the direct and time reversed exchange of

such quasiparticles. These amplitudes are simply related to the emptiness uj and oc-

cupation vj ones and will be deduced from them, i.e., from the state-dependent pairing

field of Section5.4.2.

In the quasiparticle representation there is isospin mixing: the τ+ and τ− type ex-

citation (where τ indicates the isospin operator) are mixed as much as the softness

of the Fermi surface increases. However, projecting on the τ+ subspace, it is always

possible to separate the two contributions in the matrix elements. The action of the

CEX operator ω+
JM on the vacuum state of eq.5.1 leads to:

ω+
JM |0〉 = |JM ;N0 ± 1, Z0 ∓ 1〉

ω+
JM |0〉 = 0

(5.6)

The CEX operator ω+
JM takes into account only the 2-QP excitations. However, also

higher order configurations (4-QP and so on) contribute to the eingestates of the pop-

ulated nucleus. Separating all these contributions from the 2-QP component and as-

sembling them in the operator η+JM (orthogonal to ω+
JM ), the state operator which

generates the true eingestates can be written as:

Ω+
JM (α) =

∑

a

zJa (Eα)ω
+
JM (a) + η+JM (a) (5.7)

where the summation represents the mixing of the 2-QP configurations. The spectro-

scopic amplitudes zJa (Eα) determine the probability to find the model states ω+
JM (a) |0〉

with eigenvalue Ea distributed over the eigenstates Ω+
JM (a) |0〉 which in general have

excitation energy Eα 6= Ea.
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5.2.1 The RPA Greens function method

The QRPA equations may be found in a similar way as in the RPA theory [30]. But,

the conventional RPA approach, becomes impracticable for huge configuration spaces.

When it is not required to determine with high precision features of individual states,

a method that allows calculating reliably the energy averaged response functions is the

RPA-Green’s function method [146].

5.2.1.1 The nuclear response function

A practical definition of response of a nucleus is essentially the measured differential

cross section for inelastic scattering normalized by the free scattering one [144]. As-

suming that all the effects not directly related to the intrinsic nuclear structure are

negligible or have been removed from measured cross section σPT = FσPN , where σPT

is the differential cross section for the reaction between projectile P and the target T,

while σPN for the corresponding processes in free projectile-nucleon (PN) scattering,

therefore the quantity F is closely related to the nuclear response. Since F effectively

represents a sum over nuclear response in different spin-isospin channels (weighted de-

pending on the probe), it has no meaning until the operator is specified. The nuclear

response depends only on nuclear structure and, once the particular channel is specified

also, it is probe independent. This means that the nuclear response in a specific channel

(S, T )≡ α should be the same for different probes.

In general, the probe is defined by a function Pα(α : 1, σ, στ ....) [144], characterized

by a precise structure (S, T ), which contains the effects of the NN-interaction and dis-

torted wave potential. For the CEX reaction, the probe function contains only isovector

operators: α = τ, στ , .....

The basic hypothesis of the following discussions is that the cross section can be written

as:

σ(ω, q) =
∑

α

|Tα(ω,q)|2Rα(ω,q) (5.8)

where ω and q indicate the transferred energy and momentum, respectively. eq. 5.8

means that it is possible to separate the structure part from the dynamics one, which

are represented respectively by the response function Rα(ω,q) and free scattering T -

matrix. The total value of the integral of the response function Rα(ω) is determined
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by the sum rules, depending on the specific operator P:

Sn(Pn) =

∫

dωωnRα(ω, Pα) (5.9)

where n =0,1 represent the Non-Energy (NEWS) and Energy Weighted Sum (EWS),

respectively. These are of great practical importance since are independent on the

model used for Rα. In particular, the difference of the NEWS for β± transitions lead to

the well known Ikeda sum rules [88], which relate the response of a nucleus to ground

state properties.

The RPA nuclear response function to an incoming probe Pα is precisely defined in

terms of the transition matrix elements between the vacuum state |0〉 and the excited

state |N〉 of energy ωN , for a transition induced by an external field Pα:

RRPA(ω,q) ≡
∑

N 6=0

|〈N |Pα|0〉 |2δ(ω − ωN ) (5.10)

5.2.1.2 The RPA-Green’s function method: the Dyson equation

Introducing the many-body Green function GRPA(ω) of the Hamiltonian of eq.5.2:

GRPA(ω) = (HA − ω − iη)−1 + (HA + ω − iη)−1 (5.11)

ther RPA nuclear response function of eq.5.10 may be rewritten as a ground state

expectation value:

RRPA
α (ω,q) =

1

π
Im〈0|P+

α GRPA(ω)Pα|0〉 (5.12)

Inserting a complete set of eigenstates |N〉:

RRPA
α (ω, q)

1

π
Im

∑

N=0

|〈N |Pα|0〉|2 ·
[
(ωN − ω − iη)−1 + (ωN + ω − iη)−1

]
(5.13)

A convenient way to determine R(ω, q) in RPA is to solve the coupled Dyson equation

for G:

GRPA = G0 +G0VresGRPA (5.14)

where:

G0(ω) = (H0 − ω − iη)−1 + (H0 + ω − iη)−1 (5.15)

It represents the Green function for the independent particle model, which describes

the uncorrelated 2-QP excitations. The solution of the Dyson equation is based on the
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knowledge of the G0 propagator and the particle-hole interaction Vres, for which the

interaction of Ref.[145], described in Section (5.3), is used.

In coordinate space, the Dyson equation (eq.5.14) becomes an integral equation:

G
(α)
RPA(r, r

′ω) = G
(α)
0 (r, r′ω) +

∫

dr1

∫

dr2G
(α)
0 (r, r1, ω)V

(α)
res (r1, r2)G

(α)
0 (r2, r

′, ω)

(5.16)

In this representation the response function is written as:

RRPA
α (ω,q) =

1

π
Im

∫

d(r′)

∫

d(r)P(r)G(α)RPA(r, r
′ω)P ∗(r′) (5.17)

Finally, the transition densities which will be used in DWBA calculations obtained is:

ρ(α)(r, ω) =
1

π

∫∞

0 dr′(r, r′ω)M∗
α((r

′)
√

dωRRPA
α (ω)

(5.18)

where Mα denotes an auxiliary external field, used only for a computational necessity

and chosen such that it accounts for the essential (S, T ) properties of the probe function

Pα. Indeed, since also RRPA
α (ω) in the denominator of eq.5.18 is calculated using the

same field, the dependence of the transition densities on Mα is negligible.

Of practical interest are solutions of eq.5.17 for multipole operators of Fermi-type,

Pα ∼ P±
LM = τ±r

LYLM , and the Gamow-Teller type Pα ∼ P±
JM = τ±r

L[YL ⊗ σ]JM ,

where J = L, L ± 1 and τ± are the isospin operators. The (reduced) matrix elements

of these operators determine the β-decay properties of nuclear state.

5.3 The residual interaction

A realistic NN-interaction, including the tensor contribution, is used in both structure

and dynamics calculations, as well as in the determination of the mean and pairing

fields. It is the isovector part of the D3Y G-matrix interaction of Hofman and Lenske

[145], which consists of direct and exchange terms with central (scalar and vector),

rank-2 tensor and spin-orbit components. The latter has a small effect only, thus was

neglected in the calculations. This interaction, depend on the nuclear density and the

charge asymmetry is found to be well suited for light neutron-rich nuclei such as 11Li

and 19C [147, 148], 11Be [141, 142], 15C and 19O [104, 143].

A proper treatment of the medium effect is essential for a fully microscopic description

of finite-nuclei. A well proved approach to derive in-medium NN-interactions starting
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from the NN-interaction in free space is the Brueckner theory [149]. The Brueckner G-

matrix for infinite nuclear matter is then applied in the Local Density Approximation

(LDA) to finite nuclei [149]. However, in this way the empirical saturation properties

of the nuclear matter are generally missed, at least when only 2-body correlations are

included.

The solutions of the Dirac-Brueckner (DB) integral equations for asymmetric matter are

parametrized in terms of appropriate meson-nucleon coupling constants acting at each

vertex of the in-medium NN-interaction [147]. For finite nuclei, a phenomenological

density dependence is supplemented to avoid the collapse of the nuclear matter at high

densities [145]. Density dependent vertex functions are introduced as follows:

fγ(ρ) = s(1 +

Nγ∑

n=1

aγnz
nβ) (5.19)

where z = ρ/ρ0, the base exponent β = 1/3 and γ = (0 , τ) indicates isoscalar and

isovector vertex functions, respectively. The scaling factors sγ and the coefficients aγn

are fitted to the saturation properties of infinite symmetric nuclear matter. These al-

low a first (Nτ=1) and a third (N0=3) order approximation for fτ and f0, respectively.

The vertices fγ(ρ) are used to calibrate the strength of the effective potential obtained

from the DB coupling constants, leaving the intrinsic momentum structure unchanged.

The latter is defined by a parametrization of the M3Y G-matrix with three Yukawa

functions. Their ranges are chosen to represent the long-range tail (1.414 fm) if the

One Pion Exchange Potential (OPEP) and medium and short-range parts, which cor-

responds to σ (0.40 fm) and ω,ρ,δ (0.25 fm) meson exchange, respectively. The meson

δ appears to be important in nuclear asymmetric matter because it introduces an in-

creased isovector strength at low density [147].

In the approach of Ref.[145], the total HF energy of a nucleus A is given by:

E = T +
1

2

〈
V
〉

(5.20)

with kinetic energy:

T =
∑

k<A

〈

k

∣
∣
∣
∣

p2

2m

∣
∣
∣
∣
k

〉

=

∫

dr
~
2

2m
[tp(r) + tn(r)] (5.21)

and potential energy of a two-body interaction V :

〈
V
〉
=




∑

k1,k2

〈k1k2|V |k1k2〉 − 〈k2k1|V |k2k1〉



 (5.22)
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where |k〉 represents single particle states and tq(r) is the kinetic energy density (where

q = p, n denotes protons and neutrons). V is expressed in terms of interactions for like

(q = q′) and unlike (q 6= q′) particles, with direct and exchange contributions shown

separately:

〈V 〉 = 〈V d〉+ 〈V e〉 =
∑

qq′

∫

dr1

∫

dr2 {ρq(r1)

ρq′(r2)V
d
qq′(r12) + ρq(r1, r2)ρq′(r1, r2)V

e
qq′(r1, r2)}

(5.23)

Here r1,2=r1 − r2 is the relative coordinate and the density matrices are defined in

terms of the single particle wave functions Φk:

ρq(r1, r2) =
∑

kσ

Φ∗(r1, σ, q)Φk(r2, σ, q) (5.24)

Due to the Pauli principle, the exchange term is non local. Its exact treatment in the

HF functional leads to a coupled system of integro-differential equations. A convenient

approach, especially for large charge asymmetry and variable density, is the Density

Matrix Expansion (DME), invented by Negele and Vautherin [150]. This method pro-

vide a systematic expansion of the non local exchange parts of any given finite range

effective N-N interaction. The basic features of interaction are retained, but results will

depend on the expansion order. After a coordinate transformation into the center of

mass reference system, the density matrix is expanded in Taylor series in terms of the

one-body local density, where the first two terms are:

ρ
(

r+
s

2
, r− s

2

)

= ρSL(sqF )ρ(r) +
35

2sq3F
j3(sqF )

[
1

4
∇2ρ(r)− t(r) +

3

5
q2Fρ(r)

]

+ ....

(5.25)

Here ρSL is the Slater density, qF the average relative momentum between the two

interacting particles, jn the spherical Bessel of order n, r and s are the centre of mass

and relative coordinates, respectively. The separation variable is achieved with this

method. An even simpler formulation can be obtained [145] by defining an effective

Fermi momentum:

q2F (r) =
5

3

t(r)− 1/4∇2ρ(r)

ρr
(5.26)

With this choice, the DME eq. 5.25 reduces to the Slater approximation:

ρ(r+
s

2
, r− s

2
) = ρSL(sqF )ρ(r) (5.27)
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but with a modified Fermi momentum which accounts for surface corrections. Separat-

ing the r and s coordinates and integrating on s, the exchange part becomes:

〈V e〉 =
∑

qq′

∫

drρq(r)ρq′(r)Ṽ
e
qq′(r) (5.28)

where Ṽ e
qq′(qFq, qFq′ ; r) is the interaction strength.

Once the pairing interaction (calculated as in Section 5.4.2) is introduced, to which

the DME method can be equally well applied, the obtained G-matrix interaction is

renormalized by the in-medium vertex functions of eq.5.19. Thus, the density dependent

in-medium interaction is given by:

V ∗
γ (r1, r2; ρ) = gγ(r1)V

d
γ (r1 − r2)gγ(r2) (5.29)

V ∗
γ (s, r2; ρ) = g2γ(s) (5.30)

where gγ(r) = gγ [ρ(r)] and g2γ = fγ(ρ) with γ = 0, τ for isoscalar and isovector compo-

nents, respectively. V d and V e represent ”bare” interaction, i.e., without in-medium

effects. This approach ensures a reliable treatment of the density dependence also in

the surface region (where the vertices vary rapidly) i.e., for finite nuclei.

5.4 Description of the structure calculations

5.4.1 The construction of vacuum state

In the QRPA theory, a description of the single-particle states is needed to generate

the vacuum state |0〉 over which the QRPA operators will act.

In this work the QRPA approach is applied to study both the projectile and the target

transitions. In the case of target transition, the |40Cag.s.〉 is the vacuum state, while in

the case of the projectile, the vacuum state is |18Og.s.〉.
The single particle wave function φ were obtained as eingefunctions of a Wood-Saxon

potential with nuclear, spin-orbit and Coulomb terms:

U(r) = V0f(r) + VLSσ · L1

r

df

dr
+

1

2
(1− τz)VC(r) (5.31)

where Vc is the Coulomb potential of a uniform sphere of radius Rc =R0A
−1/3, with R0

radius of the central part of the potential, and f(r) is the Wood-Saxon function with
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reduced radius r0 and diffuseness a.

f(r) =

[

1 + e
r−r0A

1/3

a

]−1

(5.32)

The parameters of the mean field were calculated by fitting the single particle energies

in the region near the Fermi surface, obtained or through an Hartree-Fock-Bogoliubov

(HBF) calculation [151] or from experimental value.

The single particle wave function were calculated solving the eingenvalue problem in

the mean filed for excitation energies Ex ≤100 MeV and angular momenta L ≤6 in a

box with radius of 60 fm.

5.4.2 The state-dependent pairing field

In the QRPA theory, the effective particle-hole correlations are described in terms of

quasiparticle interactions, which may be taken into account by a state-dependent pair-

ing field. As discussed, in Section 5.2, the emptiness and occupation amplitudes uj

and vj necessary to construct the 1QP operators, are determined by pairing correla-

tions between nucleons. In the pairing theories, like that of Bardeen-Cooper-Schieffer

(BCS), these amplitudes provide the probability that a singlet even pair of particles

occupies the orbital with angular momentum j. Unfortunately in the BCS theory the

pairing field is independent of the state and thus not suitable for an application where

the pairing interaction is expected to be not negligible.

In the present model, a state-dependent pairing field is calculated with a density depen-

dent interaction, obtained by projection of the NN-interaction of Ref.[145] (described

in Section 5.3) to the Singlet Even particle-particle channel (S = 0, L = 0,T = 1). The

strength used as input is G=17.5 MeV both in target and in the projectile. The occu-

pation probabilities |vj |2 and energy shift EBCS produced by the pairing on different

orbitals are shown in Table 5.1 both for 18O and 40Ca and for protons and neutrons.

The 18O is well described both in terms of level order and occupation probability ac-

cordingly to what known for literature [152].
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Table 5.1: Parameters obtained, in the case of 18O, from a state-dependent pairing field

with input strength G=17.5 MeV. |vj |2 represent the occupation probabilities and EBCS

(MeV) the energy shifts produced by the pairing on different proton and neutron states.

18O

Protons Neutrons

n l j |vj |2 EBCS n l j |vj |2 EBCS

1s1/2 1.0 19.269 1s1/2 0.999 24.813

1p3/2 0.999 9.187 1p3/2 0.998 13.948

1p1/2 0.999 3.611 1p1/2 0.996 9.029

1d5/2 0.008 4.602 1d5/2 0.572 1.458

2s1/2 0.003 7.528 2s1/2 0.177 2.581

40Ca

Protons Neutrons

n l j |vj |2 EBCS n l j |vj |2 EBCS

1p1/2 1.0 17.334 2p1/2 0.999 10.759

1d5/2 0.999 8.319 1d5/2 0.999 9.214

2s1/2 0.999 3.733 2s1/2 0.999 4.595

1d3/2 0.999 2.020 1d3/2 0.999 2.731

2p3/2 0.012 2.445 1f7/2 0.010 5.109

2p1/2 0.008 3.825 2p3/2 0.005 9.337

1f7/2 0.006 3.886 2p1/2 0.002 11.198

On the other hand, the 40Ca is not well described. 40Ca is a doubly closed-shell

nucleus where the wave function of the ground state is composed for 88% by d3/2, for

6% by f7/2 and for 6% by f5/2 [94, 95]. The results of the present calculation are not

consistent with this picture of the 40Cag.s.. In particular the 1f7/2 shell is found to be

less bound than the p-shell and displays an occupation probability of only 1.2%. In

the past, this problem was debated [153]. In order to simulate the softening of the N

= Z = 20 shell closure, the pairing strength G was increased. This increasing adds a

polarization contribution to the pairing interaction [151]. A value of GP = 35 MeV for

protons and GN = 29.2 MeV for neutron were chosen. In Table 5.2 the parameters for

the 40Ca obtained in this conditions are listed:

The obtained 40Ca structure is consistent to the result shown in Ref. [153] and is

compatible to the ground wave function of 40Ca, mentioned above.
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Table 5.2: Parameters obtained, in the case of 40Ca. |vj |2 represents the occupation

probabilities and EBCS (MeV) the energy shifts produced by the pairing on different proton

and neutron states.

40Ca

Protons Neutrons

n l j |vj |2 EBCS n l j |vj |2 EBCS

1p1/2 1.0 14.502 2p1/2 0.999 10.76

1d5/2 0.999 9.490 1d5/2 0.999 9.221

2s1/2 0.999 4.916 2s1/2 0.999 4.607

1d3/2 0.999 3.208 1d3/2 0.999 2.752

1f7/2 0.051 3.883 1f7/2 0.049 5.118

2p3/2 0.034 4.314 2p3/2 0.026 9.341

5.4.3 The 4-QP excitation

The 4QP excitations, not included in the 1p-1h (2QP) QRPA theory, are crucial for

a correct description of the decay width of giant resonances. In fact, the theoretical

values obtained by RPA underestimate systematically the measured widths, especially

for heavy nuclei. To account for this collisional broadening of the RPA modes, the

Hilbert space has to be extended to include both 1p-1h and 2p-2h excitations [154, 155].

Because of the large number of 2p-2h excitations, a complete treatment in the enlarged

4-QP space is extremely difficult, if not numerically impossible in most cases. Therefore

a number of semiempirical approximations have been specifically developed for the

description of the excitation energy continuum, obtaining an average 2p-2h contribution

[144]. It is important to note that the equations formulated in the extended space are

projected on the 1p-1h subspace, where the 2p-2h contributions are described by the

matrix elements of a complex energy-dependent effective potential. In this way, the

effect of the 2p-2h excitations appears as additional 1p-1h self-energy, producing an

energy dependent shift and broadening of the RPA response functions and transition

densities. The real and imaginary part of the matrix elements are related by a general

dispersion relation [144], accounting for the larger broadening effect on the more shifted

structures.

It is seen that this approach does not introduce further ground state correlations. In

fact, no extra strength is associated to the enlarged space, so that the final results is
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a state-dependent redistribution of the strength and the Energy Weighted Sum Rule

(EWSR) remains valid.

In the present case, an empirical formula was derived for the imaginary part of the

2p-2h self-energy by imposing that the broadening is zero on the 18F and 40K ground

state and 0.6 MeV at the energy typical for the Giant Dipole Resonance (GDR). The

real part is then deduced from the dispersion relation of Ref.[144].

5.5 The results of the CEX-QRPA calculations

CEX-QRPA calculations have been performed, as illustrated in the previous sections,

in order to describe the 18F and 40K 1p-1h (2QP) states. In both cases, the allowed

energy range for the 2QP excitations is maintained up to 80 MeV to avoid the cut-off

of important correlations determined by the off-the energy shell components.

The QRPA level density distributions (per MeV) for charge exchange transitions from

18Og.s. to excited states of 18F and from 40Cag.s. to excited states of 40K are shown in

Fig.5.1 and 5.2 respectively. They are calculated for Ex ≤ 15 MeV and multipolarities

from 0+, 0− to 5+, 5−, both for natural and unnatural parities. These quantities are

obtained by normalizing the QRPA multipole response functions to the NEWSR of the

same operator:

dQRPA(ω, Pα) =
RQRPA

α (ω, Pα)

S0(Pα)
,

∫

dωdQRPA(ω, Pα) = 1 (5.33)

The presence of peaks at certain excitation energies and transferred angular momenta

(jπ) indicates that finite probabilities are calculated for the 18Og.s. → 18F and 40Cag.s.

→ 40K transitions.
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5.5.1 The results for the 18Og.s. →18F transition
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Figure 5.1: QRPA level densities for CEX transitions from 18Og.s. to excited states of
18F. These quantities represent, for each multipolarity the ratio between each response

function and the respective sum rule at each energy. The bin is 50 keV. In the upper

panel, the natural parity transitions are shown, while in the lower panel, the unnatural

parity ones.

Transitions to different discrete levels of 18F are observed. The simultaneous pres-

ence of one peak at a fixed energy, in different Jπ transitions, indicates which orbitals

are involved in the transitions.

The 18O(d5/2) → 18F(d5/2) transition is expected to be the lowest energy level for mul-

tipolarities 0+, 1+, 2+, 3+, 4+, 5+. Indeed, a peak at 1 MeV for such transitions is
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observed. It is compatible with the 18F ground state, that it know to be a 1+ state

[156].

Two transitions are observed in the calculated level densities for the 2+, 3+ multipolar-

ities at about 2 and 3 MeV. These can be only associated to the 18O(d5/2) → 18F(s1/2)

and 18O(s1/2) → 18F(d5/2) transitions.

The presence of a peak in the 0+, 1+ transitions at about 4 MeV is associated to the

18O(s1/2) → 18F(s1/2) transition.

Furthermore, the response functions to the Fermi and Gamow-Teller like operators were

calculated according to the eq. 5.17. These allow a comparison with known experi-

mental Gamow-Teller strength B(GT ) [89]. We obtain B(GT ) = 2.79, it is compatible

with the known experimental value of about 3.27 [89].

5.5.1.1 The results for the 40Cag.s. →40K transitions

The obtained spectrum for the 40Cag.s. →40K transitions is much more complicated

than that for the 18Og.s. →18F. Indeed, several peaks are populated in agreement with

the high level density characteristic of the 40K structure [137, 138].

A peak at 0.4 MeV is observed for the 2−,3−,4−,5− multipolarities, it is related to

the 40Ca(d3/2)→40K(f7/2) transition and is compatible with the states multiplet that

corresponded to the ground state and first excited states of 40K.

A peak at about 1.8 MeV is presented for the multipolarities ,0−, 1−, 2−, 3−, and can

be associated to the transition 40Ca(d3/2) →40K(p3/2). A level at about 2.5 MeV is

obtained in 3− and 4− and it is compatible to the transition 40Ca(2s1/2) →40K(f7/2).

The Gamow-Teller strength is distributed in the peak at 0.0 , 0.8 and 2.5 MeV. In

fact, the first peak is present at 0+, 1+, 2+, 3+ and involved a transition 40Ca(d3/2)

→40K(d3/2). The second peak is observed in the multipolarities 0+, 1+, 2+, 3+,

4+, 5+ and can be associated within a transition 40Ca(f7/2)→40K(f7/2) or 40Ca(f5/2)

→40K(f5/2). The last peak is populated at 0+, 1+ and it can involve a 40Ca(s1/2)

→40K(s1/2) transition. the response functions to the Fermi and Gamow-Teller like

operators were calculated ( eq.5.17). The obtained value is B(GT ) = 0.046, it is com-

patible with the known experimental value of about 0.069[90].
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Figure 5.2: QRPA level densities for CEX transitions from 40Cag.s. to excited states of
40K. The bin is 50 keV. In the upper panel, the natural parity transitions is shown, while

in the lower panel, the unnatural parity ones.

5.6 The DWBA cross section calculations

Assuming that the considered charge-exchange reaction proceeds mainly through a

direct one-step process, its transition amplitude can be described by the first order

DWBA T-matrix element:

T
(1)
βα =< χ

(−)
β |F (τ)

βα |χ(+)
α > (5.34)
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The distorted waves in the incident α = (a,A) and final β = (b, B) channel are denoted

by χ
(+)
α e χ

(−)
β , respectively. The charge exchange form factor F τ

βα = 〈bB|V (τ)|aA〉 is

calculated in a double-folding model, as following:

F
(τ)
βα =

∫

dξadξAρab(ξa)ρAB(ξA)V
(τ)(R, ξaξA) (5.35)

where ρab and ρAB are the charge-exchange transition densities for projectile-ejectile

(a → b) and target-product (A → B) transitions, respectively. V (τ) is the isovector

part of the nucleon-nucleon effective interaction, which is the component acting in a

charge-exchange reaction and determining the exchange of one isospin unit between the

target and the projectile.

DWBA calculations, based on the CEX-QRPA transition densities, give the cross sec-

tions for the transitions to the 40K single particle states that are overall reproduced by

the QRPA calculations. The results of these calculations for the 40Ca(18O,18F)40K re-

action and the comparison with the experimental data will be described in the following

section.

5.6.1 The T-matrix interaction

The effective NN-interaction used to calculate the charge exchange form factors is

taken form the isovector part of the D3Y G-matrix interaction of Hofman and Lenske

[145]. The full T-matrix in momentum space can be obtained at low incident energy

by extrapolating the density dependent G-matrix interaction, as, e.g. in Ref.[157]. The

T-matrix isovector interaction consists of central (scalar and vector), spin-orbit and

tensor components, each of them including direct and exchange terms:

tτNN =






tCτ (r) + tCστ (r)σ1 · σ2
︸ ︷︷ ︸

central

+ tLSτ (r)(L · s1 + L · s2)
︸ ︷︷ ︸

spin-orbit

+ tTτ(r)S12
︸ ︷︷ ︸

rank-2tensor






τ1 · τ2 (5.36)

It is remarked that the same interaction as in the HFB ground state and QRPA cor-

related excitations calculations is used. This assures the consistency of structure and

reaction calculations. The density dependence of the D3Y G-matrix gives rise to a den-

sity dependent T-matrix. The numerical calculations are simplified by using a separable

LDA [145, 157] to express this dependence. The global properties of the T-matrix in-

teraction obtained in the various (S, T ) channels are given in Table 5.3. The spin-orbit
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Table 5.3: Volume integrals for the T-matrix interaction in the various (S, T ) channels

at vanishing density, calculated in the (A,B) rest frame. The interaction used in the CEX

form factor calculations is given by the isovector components (S, T = 1).

Central (S, T ) interaction [MeV·fm3]

(S, T ) (0,0) (0,1) (1,0) (1,1)

Direct real -1082.1 787.3 782.3 -419.2

Direct Imaginary 245.7 159.2 29.2 146.6

Exchange real 440.6 -568.5 -573.5 568.8

Exchange Imaginary -652.4 69.2 -11.6 -60.8

Modulus 597.6 254.8 117.0 164.8

Tensor (S, T ) interaction [MeV·fm5]

(S, T ) (0,0) (0,1) (1,0) (1,1)

Direct 17.6 149.0

Exchange 44.4 -17.7

Modulus 26.8 166.7

5.6.3 The optical potential

For the calculation of the scattering amplitudes in the DWBA framework(eq. 5.34), the

form factors (eq. 5.37) and the distorted waves χ(+)α(kα,r) and χ(−)β(kβ ,r) in the incident

α = (a,A) and final β = (b, B) channels are needed. The choice of the optical potentials

to use in the initial and final channels is important. A double folding approach has been

used in order to describe the elastic scattering both in ingoing and outgoing channels.

Since the density dependence of the elastic scattering at forward angles is small, the

free NN-interaction obtained by Franey and Love at Einc ≥ 50MeV/u [158, 159] is

used to derive the optical potential (both real and imaginary part). The isoscalar and

isovector projectile and target ground state densities are folded with a complex T-

matrix, which is obtained at the appropriate incident energy by spline extrapolation of

the phenomenological Franey and Love potential using the value of the D3Y G-matrix

of Ref. [145] at 0 MeV as reference. The folding is made in momentum space using the

Fourier transforms of the ground state densities (with (a,A) = (18O, 40Ca) and (b,B)

= (18F, 40K) in ingoing and outgoing channel, respectively):

Uopt(r, E) =
∑

τ=0,1

∫

dqρτa(q)t
τ
NN (q, E)ρτA(q)e

iq·r/(2π)3 (5.38)
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5.6.4 The CEX cross sections

The CEX cross sections of the 40Ca(18O,18F)40K reaction are obtained by DWBA

calculations, performed with the HIDEX code [151]. The form factors of eq. 5.37 are

used as input to solve the scattering equations. The one-step scattering amplitudes

of eq. 5.34 are calculated for the transitions to 40K involved in the range energy

region between 2-3 MeV. Finally, the double differential direct CEX cross sections are

constructed:

d2σ

dΩdE
=
∑

JP JT

∫

dETS
JP
P (E − ET )S

JT
T (ET )

dσJP JT

dΩ
(5.39)

where the sum extends over all the transition multipolarities JP , JT of the target and

projectile, respectively. Each reduced DWBA cross section
dσJP JT

dΩ is weighted by the

target SJT
T (ET ) and projectile SJP

P (E) response function per energy. In particular, for

the projectile, an average response function for the transition 1+ in the energy region

of 1 MeV was taken into account. One should notice that the region around 1 MeV

correspond to the QRPA ground state (see Section 5.5.1 and fig 5.1). The angular

distributions have been obtained by adding the double differential cross section eq.

5.39 at each energy step.

5.7 Results of the DWBA calculations

The DWBA calculations were performed for the excited states of 40K in the range

between 2-3 MeV. As discussed in Section 4.5, this energy region is characterized by

the group of 1+ states at 2.27 and 2.73 MeV [136] but also other possible higher spin

states (e.g. 2−, 3−, 4−).

The calculations were performed for the allowed multipolarities: 1+, 1−, 2+, 2−, 3+,

3−, 4− in the 40Ca(0+) target. As discussed before, the hypothesis that the reaction in

the projectile channel proceeds via 18O(0+)→18F(1+) was assumed.

In Fig.5.4, the experimental angular distribution is shown together with the results of

the calculations for the different multipolarities.
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Figure 5.4: Experimental and theoretical angular distribution for the
40Ca(18O,18F)40K

2−3MeV transition. In the calculation the Jπ
proj=1+ is assumed

for the projectile transition. The lines show the decomposition of the calculated cross

section in terms of the angular momentum Jtr transferred in the target.

One can easily note that the unnatural parity components 2− and 4− are predom-

inant. In Fig. 5.5, the incoherent sum of the cross section contributions is shown. It

underestimate the experimental cross section by a factor about 2. This is possibly due

to the fact that the ejectile excitation contribution was not considered in present cal-

culations, while it is known that it is not negligible as evident from the 40K spectrum

shown in Fig. 4.19 (the peak referred to the ejectile excitation are labelled with the

symbol *). However, the 1+ transition contributes to the incoherent sum by a factor

∼1/10. The next step of this analysis is to take into account also other transitions in

the projectile.
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Figure 5.5: Calculated angular distribution for the 40Ca(18O,18F)40K
2−3MeV transition.

The calculated cross sections are not scaled. The experimental angular distributions is

shown.

5.8 Future development

A future development of the present theory in order to describe the DCE cross-section is

planned. The 40Ca(18O,18Ne)40Ar DCE reaction will be studied, following an approach

based on the Multi-step Direct theory (MSD) originally proposed by Tamura, Udagawa

and Lenske [160]. In the MSD theory, the evolution of the projectile-target system

is described by a combination of direct reaction formalism and microscopic nuclear

structure calculations within a statistical method. For this reason it is important

not only to have a good description in terms of structure and dynamic of the first

step channel but also of the second step (40Ar(18Ne,18F)40K reaction) involved in the

40Ca(18O,18Ne)40Ar DCE reaction. Thus, also the second step will be studied in the

framework of the CEX-QRPA approach, as described above.
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Chapter 6

A new model to extract the

0νββ-NMEs

As discussed in Chapter 1, the nuclear matrix elements play a key role in the knowledge

of 0νββ decay. In this Chapter, an innovative method to infer the nuclear matrix

elements by measuring the cross-section of a DCE reaction is proposed [87].

The basic idea is that the heavy-ion DCE mimics the full decay process. Indeed, as

already explained in Chapter 2, the DCE reactions proceed from the same initial to the

some final state as the ββ decay, and pass via the same intermediate nuclei. Another

similarity is that they involve Fermi-like (∆L = 0,1,2...; ∆S= 0; ∆T = 0) or Gamow-

Teller-like (∆L = 0,1,2...; ∆S= 1; ∆T = 1) short-range operators. The particular

states of the intermediate channels through which the DCE and 0νββ proceed depend

to a large extent on the momentum available.

The experimental results which demonstrate that the DCE reaction manly proceed via

a direct process will be presented in the first part of this Chapter. After, the simple

factorization of the DCE cross section will be discussed. In conclusion, the NME for

40Ar will be exstracted.
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6.1 Experimental results

In order to compare the cross sections of the different channels involved in the studied

DCE reaction, the spectra counts of 40Ar, 40K, 38Ar, 42Ca are converted in differential

cross section by integrating in the solid angle:

dσ

dE
=

∫

f(θ, φ, E)dΩ =

∫ 2π

0
dφ

∫ θmax

θmin

f(θ, φ,E)dθ (6.1)

where

f(θ, φ,E) =
d2σ(θ)

dEdΩ

The resulting spectra are shown in Fig.6.1 and 6.2.

In the 40Ca(18O,20Ne)38Ar 2p-transfer spectrum in Fig.6.1a, the cross section tends

to increase with excitation energy as a consequence of the kinematical Q-matching

conditions (Qopt=32 MeV). Known low-lying states are identified [137, 138] indicating

the suppression of low multipolarity transitions due to the L-matching conditions (Lopt

= 6). In Fig.6.1, for each observed peak, the maximum angular momentum (Jmax) is

indicated according to [138]. The L- and Q-optimum for the second step 2n-transfer

38Ar(20Ne,18Ne)40Ar are similar. Thus, multistep transfer reactions are expected to be

strongly suppressed in the population of the mismatched (L = 0, Q = -2.9 MeV) 40Ar

ground state.
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Figure 6.1: Panel a) 38Ar energy spectrum populated in the 40Ca(18O,20Ne)38Ar 2p-

transfer. The peak are labelled according to [138]. Panel b) 42Ca enegy spectrum from the
40Ca(18O,16O)42Ca 2n-transfer.
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6.1 Experimental results

The transition probability B(Ii → If ) from an initial state Ii with spin Ji to a final

state If with spin Jf through the operator V is:

B(Ii → If ) =
C2

2Ji + 1
〈If ||V ||Ii〉 (6.2)

where C is the Clebsh-Gordan coefficient. For the transition from high spin initial

states to a final 0+ state, the corresponding Clebsh-Gordan coefficient will be very

small (e.g. for a transition 5+ → 0+ C ∼ 1/
√
11). Therefore, the required condition

of a final two-neutron transfer to the 0+ 40Arg.s. gives a supplementary reduction due

to the vanishing Clebsh-Gordan coefficients, especially for the high-spin intermediate

states.

The cross section for the 40Ca(18O,20Ne)38Arg.s. is ∼ 3 µb/sr (see Sect.4.6.2) and

fig.6.1a), not larger than the 40Ca(18O,18Ne)40Arg.s. (∼ 11 µb/sr) (see Sect.4.6.1 and

fig.6.2). This is very different from what found in 14C + 40Ca at 51 MeV [27]. As

discussed in Sect.2.1.1, Drake at al. found for the 40Ca(14C,16O)38Ar 2p-transfer cross

section of about 1 mb/sr, i.e. almost two orders of magnitude larger than the corre-

sponding 40Ca(14C,14O)40Ar DCE [27]. Bes et al. [161] and Dasso and Vitturi [80]

conclude that the 14C + 40Ca → 16O + 38Ar → 14Og.s. +
40Arg.s. transfer route is the

leading mechanism feeding the 40Arg.s in that experiment. The reason is the much bet-

ter matching of the 2p-transfer in the 14C + 40Ca (Qopt = 10 MeV, Lopt = 3) compared

to the present case. Assuming a similar scaling between 2p-transfer and DCE for the

present data, an upper limit of 30 nb/sr in the (18O,18Ne) reaction channel is estimated

for the 18O + 40Ca → 20Ne + 38Ar → 18Negs + 40Args multi-step route. This could

give a contribution at most at large angles. Even possible interference of this channel

with the direct DCE are thus small (∼ 10%).

The 2n-pickup 2p-stripping channel 18O + 40Ca → 16O + 42Ca → 18Neg.s. +
40Arg.s. is

unlikely to contribute significantly since the first step is already very suppressed in our

experiments, with cross sections (see Fig.6.1b) which are about half the cross section

of the 2p-transfer.
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Figure 6.2: Panel a) 40K energy spectrum populated in the 40Ca(18O,18F)40K single

charge exchange. The peaks are labelled according to [136, 162]. The symbol g.s∗ indicates

the 40Ca(18O,18F0.937)
40K transition. Panel b) the 40Ar energy spectrum populated in the

40Ca(18O,18Ne)40Ar DCE. The g.s∗ and 1.46∗ symbol indicate the 40Ca(18O,18Ne1.87)
40Ar

and 40Ca(18O,18Ne1.87)
40Ar1.46 transitions, respectively

The 40Ca(18O,18F)40K single charge-exchange spectrum is shown in Fig. 6.2a. The

group of 1+ states at 2.27 and 2.73 MeV is also populated even if other high spin states

could hide them. The cross section for these GT transitions is about 500 times larger

than the DCE transition to the 40Ar ground state (see Section 4.6.3).

These results indicate that the DCE reaction proceed mainly through the direct mecha-

nism, whereas the concurrent channel (2n-pickup 2p-stripping channel and 2p-stripping

2n-pickup one) are very suppressed.

The angular distribution for the selected transition to the 40Ar 0+ ground state, shown

in Fig. 6.3 is another evidence in support of the direct mechanism.

It shows a slope very similar to that predicted in Section 2.3.3. A clear oscillating

pattern is observed. The location of the first minimum at about 2◦ and the period of

the oscillations agree with a pure L = 0 angular momentum transition, which is ex-

pected due to the 0+ to 0+ transitions in both the projectile and target systems. Such

an oscillating pattern is not expected in complex multistep transfer reactions, due to

the many angular momenta involved in the intermediate channels, which determine a

structure-less cross section slowly decreasing at larger angles [80].
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6.2.1 Factorization of the single charge exchange cross section

A well defined and nuclear structure independent proportionality between single charge

exchange reaction cross sections, such as (n,p) or (p,n) [97, 164, 165], and beta decay

transition strengths is firmly established. The basic idea behind the proportionality is

the similarity of the operators involved in each type of reaction. The central isovector

terms in the effective nucleon-nucleon interaction, that mediate low momentum transfer

spin-flip (S = 1):
∑

i

Vστ (rip)σi · σpτ i · τ p

and non-spin flip (S = 0) transitions,

∑

i

Vσττ i · τ p

are similar to the corresponding operators:

GA

∑

i

σit
±
i and GV

∑

i

t±i

for Gamow-Teller (GT) and Fermi (F) beta decay, respectively.

A typical formulation of this property is given as follows:

dσ

dΩ
(q, ω) = σ̂α(Ep, A)Fα(q, ω)BT (α)BP (α) (6.3)

where q is the linear momentum transfer and ω = Q−Q0 is the excitation energy. BT

and BP are the target and projectile β-decay transition strengths (also called reduced

matrix elements) for α operators, where α = Fermi (F) or Gamow-Teller (GT). In

particular the reduced GT transition strength B(GT ) for the transition from the initial

state with spin ji, isospin Ti and z-component of isospin Tzi to the final state with jf ,

Tf and Tzf is given by [166]:

B(GT ) =
1

2Ji + 1

1

2

C2
GT

2Tf + 1

∣
∣
∣
∣
∣
∣

〈JfTf |||
A∑

j=1

(σjτj)|||JiTi〉

∣
∣
∣
∣
∣
∣

2

=

1

2Ji + 1

1

2

C2
GT

2Tf + 1
[MGT (στ)]

2

(6.4)

where CGT is the isospin ClebschGordan (CG) coefficient and the MGT is the GT

matrix element.
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6.2 Factorization of DCE cross section

The quantity σ̂α, called “unit cross section”, is of primary interest since it almost

behaves as an universal property of the nuclear response to F and GT probes. The

dependence on the projectile energy Ep and on the target mass number A is in fact

quite smooth and calculable all along the nuclear chart. In a rigorous Distorted Wave

approach as that proposed by F. Osterfeld [164] or T.N. Taddeucci [97] the unit cross

section for a single charge exchange process is found to be factorized as:

σ̂(Ep, A) = K(Ep′ , 0)|JST |2ND
ST (6.5)

where K(Ep, ω) is a kinematic factor:

K(Ep, ω) =
EiEf

~2c2π2

kf
ki

Ei,f and ki,f represent the reduced energy and the wave number in the entrance and

exit channel, respectively. JST represents the volume integral of the relevant nucleon-

nucleon interaction component Vστ (r) or Vτ (r). The N
D
ST , called “distortion factor”, is

defined by the ratio of distorted waves over plane waves cross sections:

ND(q, ω) =
σ(DW;q, ω)

σ(PW; 0)

This term expresses the distortion of the incoming and outcoming waves in the scat-

tering. In basic heavy-ion scattering theory this distortion is determined by the action

of a complex optical potential, where the real part accounts for the direct elastic scat-

tering of the two colliding systems and the imaginary part is needed to describe the

absorption of incoming flux into the many channels open in the reaction.

The factor F (q, ω) describes the shape of the cross section distribution as a function of

the linear momentum transfer q and the excitation energy ω. For L = 0 transitions, it

depends on the square of the J0(qR) spherical Bessel function (as discussed in Section

2.3.3) [97]. In order to apply the factorization of the cross section (eq.6.3) for accu-

rate determination of the reduced matrix elements B, it is required that the two-step

multi-nucleon transfers are negligible, a minimum amount of linear momentum is trans-

ferred and the tensor components in the strong interaction are small compared to the

central. The latter two conditions are set to better emulate the properties of β-decay

operators. These constraints can be experimentally satisfied, especially for light-ion

induced reactions such as (n,p), (p,n), (3He,t), (t,3He) at bombarding energies above

100 MeV/u [85, 166]. Thus single charge exchange reactions are routinely used as a
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tool to determine B(GT ) and B(F ). For heavy-ion induced reactions, the data analy-

ses are typically more complicated, due to the introduction of the projectile degrees of

freedom and the sizeable amount of momentum transfer. However, a relevant simplifi-

cation is determined by the strong absorption of the scattering waves in the interior of

the colliding systems and the consequent surface localization of these reactions. As a

consequence also in these cases the use of fully consistent microscopic approaches with

double folded potential for the reaction form factors still allows the determination of

B(α) within 10-20% [141].

6.2.2 Generalization to the Double Charge Exchange

As discussed above, the specificity of the single charge exchange process is expressed in

the unit cross section (eq. 6.5) through the volume integrals of the στ and τ potentials,

while the other factors are general features of the scattering processes. In particular

for heavy-ion colliding systems the factorization of the cross section in a reaction and

a nuclear structure part is a good approximation thanks to the surface localization of

the direct reaction as a consequence of the strong absorption in the inner region. The

quasi-elastic reactions tend to be in fact originated in a narrow portion of the target and

projectile surfaces, where the complicated effects of polarization of the nuclei and Pauli

repulsions of the overllaping densities are small [163, 164]. As a consequence, the effect

of the many-body nucleus-nucleus potential can be expressed in terms of an optical

potential (mapped at the surface) giving the direct elastic scattering of two frozen

densities and a small perturbation describing the reaction operator. Small deviations

from locality, due for example to the Pauli non locality induced by the exchange of

nucleon coordinates, are accurately accounted for as effective velocity dependences in

modern state of the art double folding optical potentials [99, 167].

Under the hypothesis of a surface localized process, a generalized version of eq.6.3 could

be extracted also for double charge exchange reaction within a similar distorted wave

approach. In this case a model for two-vertices interaction is needed to extract physical

information from measured DCE cross sections. A complete and coherent theory of such

an interaction is not existing at the present time.

In a simple model of DCE reaction one can assume that the process is just a second

order charge exchange, where a two proton jπ = 0+ pair in the target is converted in

a jπ = 0+ a two-neutron pair in the projectile by the exchange of two uncorrelated
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mesons, which is consequently converted in a two-proton jπ = 0+ pair. The lack of

correlation between the two exchanged mesons is an approximation that is needed just

as guideline for simple estimations. In this model the exchange of each single meson

generates the same nuclear transitions as the single charge exchange operators. These

are represented by the B(α) strengths of eq. 6.3 for angular momentum part of the

matrix elements and by the volume integrals for the radial part. Since there are two

mesons the action on the nuclear structure is repeated two-times.

The generalized version of eq. 6.3 is extracted also for DCE is:

dσ

dΩ
(q, ω)DCE = σ̂DCE

α (Ep, A)F
DCE
α (q, ω)BDCE

T (α)BDCE
P (α) (6.6)

where the superscripts indicate that the factors refer to the DCE process. The BDCE
T,P (α)

are directly connected to the nuclear matrix elements of the ββ-decay [168]. Simple

relations hold in the very relevant case of 0+ → 0+ transitions connecting the ground

states of even-even nuclei. For example in a double Fermi transition, i.e. a transition

where a Fermi operator acts twice, one obtains:

B(2F ) = B+(F )B−(F )

In the case of double Gamow-Teller one gets:

B(2GT ) =
1

3
B+(GT )B−(GT )

where the 1/3 factor accounts for the 1/(2jn + 1) factor of one of the GT transitions

(see eq. 6.4), which determines a 1+ → 0+ from the intermediate odd-odd to the final

even-even nucleus. A DCE unit cross section can be defined:

σ̂DCE(Ep, A) = K(Ep′ , 0)|JDCE
α |2NDCE

α (6.7)

As discussed above, the specificity of the single or double charge exchange processes

is expressed in the σ̂α through the volume integrals of the potential. One also needs

to describe the off-shell propagation in the intermediate nuclear state |n〉 involved in

the transition. This gives rise to a V GV -like term in the volume integral |JDCE
α |2

which describes the action of the interaction V in two vertices. It has a non-vanishing

contribution in a region that depends on the neutron-proton correlation length [169].

The explicit form of the propagator is:

G =
∑

n

|n >< n|
En − (Ei + Ef )/2

(6.8)
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where Ei,n,f indicates the energies of the initial, intermediate and final states. In par-

ticular, En is a complex number whose imaginary component represents the off-shell

contributions due to the short living virtual intermediate states. When referring to a

virtual state, we indicate a state which lives for a transit time and does not represent

the asymptotic state of the reaction. It is not observable and can be accessed only

during the reaction. In the limited time during which it lives the energy-time uncer-

tainty principle allows that the energy balance can be violated of an amount given by

∆E∆t ∼ ~ in the sense described in Ref. [86]. The intermediate virtual state can

have energies that are different from those (measurable) at stationary conditions. In

practice, a supplementary contribution to the line width appears for the intermediate

virtual states. This energy interval is called off-shell energy.

One can notice that σ̂α is related to the corresponding quantity for single charge ex-

change of the same nuclei at the same incident energy, expressed in eq. 6.7. In particular

all the three factors can be directly connected and compared in the single and double

charge exchange.

6.3 Cross section analysis

In order to demonstrate the validity of the factorization in eq. 6.6, the unit cross section

and matrix element for the DCE process are deduced, assuming either a pure double

GT or F transition.

6.3.1 Double Gamow-Teller transition

The first calculated ingredient is the JDCE
GT volume integral for the 18O + 40Ca →

18Fg.s.(1
+) + 40K0−8MeV(1+) → 18Neg.s. +

40Arg.s. at 270 MeV incident energy. It

has been estimated starting from the single charge exchange volume integral, calculated

within the CEX-QRPA approach described in the previous Chapter. We get JGT = 214

Mev·fm3 using the isovector parts of the D3Y G-interactions [145], which includes spin-

dependent and spin-independent direct and exchange central interactions (see Table

5.3).

The G propagator of eq. 6.8 is calculated summing over the on-shell energy distribution

of 40K 1+ states observed in high resolution (3He,t) data on 40Ca target [90] and on 18F
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This is compared to the value obtained combining the strengths for the transitions

in the projectile and target sketched in Fig. 6.4 and listed in Table 6.1, taken from

literature:

B(2GT ) = BP (2GT ) ·BT (2GT ) = 0.11 (6.10)

It is important to stress that the reduced B transition strengths for spin and isospin

are used according to eq. 6.4. For the projectile we consider:

BP (2GT ) = B[GT ;18Og.s.(0
+) →18 Fg.s.(1

+)][GT ;18 Fg.s.(1
+) →18 Neg.s.(0

+)] = 3.50

(6.11)

where only the population of the 18Fg.s. is taken into account, as found in Ref.[89] and

the B(GT ) for the second step from [170]. For the target:

BT (2GT ) =
∑

B[GT ;40Cag.s.(0
+) →40 K(1+)][GT ;40K(1+) →40 Arg.s.(0

+)] = 0.031

(6.12)

where the sum refers to the transitions to the 40K 1+ states up to 8 MeV observed

in Ref. [156]. The strength of the second step (B[GT ;40K(1+) →40 Arg.s.(0
+)]) are

taken from Ref.[156], after correction for the factor 1/(2Ji + 1) = 1/3 which takes into

account the multipolarity J = 1+ of the target (see eq. 6.4).

Under the same hypothesis of pure GT transition, the magnitude of the NME can be

derived from the Gamow-Teller strength BDCE(GT ):

MDCE
T (α) =

√
B

DCE

T (α) = 0.27 (6.13)

Table 6.1: Extracted strengths for pure Gamow-Teller transitions and comparison with

the literature.

BP BP BP (2α) E(40K) BT BT BT (2α)

(18O→
18F) (18F→18Ne) MeV (40Ca→40K) (40K→

40Ar)

2.33 0.014a 0.34b

3.27a 1.07b 3.50 2.73 0.069a 0.31b 0.031

4.40 0.018a 0.18b

4.50-8 8·0.007a 0.03b

a) From Ref.[90].

b) From Ref.[156].
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6.3.2 Double Fermi transition

A similar procedure was applied assuming a pure double Fermi operator for the DCE

to the 40Arg.s.. The single charge exchange volume integral has been evaluated as in

the Gamow-Teller case (see Section 5.6.1) obtaining JF = 208 Mev·fm3, very close to

the GT case.

Only the 40K 0+ state at 4.38 MeV and the 18F 0+ state at 1.04 MeV are considered

in the intermediate channel. We obtain σ̂ ∼ 39 µb/sr from eq. 6.7 and:

BDCE(F ) = BDCE
T (F )BDCE

P (F ) ∼ 0.37

where FDCE
F ∼ 0.77 at θCM ∼ 0◦.

Even in this case the value is not far from B(2F ) = 0.42 expected under the hypothesis

of:

B(2F ) = BP (F ) ·BT (F )

where BP,T (F ) are the strengths for the projectile and target transitions through the

1.04 MeV and 4.38 MeV 0+ state of 18F and 40K, respectively. The strengths take into

account for the comparison are listed in Table 6.2:

Table 6.2: Extracted strengths for pure Fermi transitions and comparison with the liter-

ature.

BP BP BP (2α) BT BT BT (2α)

(18O→
18F) (18F→18Ne) (40Ca→40K) (40K→

40Ar)

2 2 4 0.053a 2 0.106

a) From Ref.[90].

Here BP (2F ) = 4 is taken from the Fermi sum rule, while the BT (2F ) = 0.106 is

extracted by [156] and [90]

In the case of pure Fermi process, the magnitude of the NME is:

MDCE
T (F ) = 0.30

6.3.3 DCE nuclear matrix elements

The uncertainty in the determination of MDCE
T is about ±50% estimated by checking

the sensitivity of the results to the used parameters.
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Both F and GT contribute to the total cross section at θCM = 0◦. Their size can be

predicted by

B(2GT )σ̂DCE
GT FDCE

GT ∼ 5µb/sr

for Gamow-Teller and

B(2F )σ̂DCE
F FDCE

F ∼ 13µb/sr

for Fermi. The comparison is much more accurate than the single estimation due

to the common assumptions done. In Fig. 6.3 the Bessel function has been scaled

to experimental angular distribution of a quantity equal to the incoherent sum of the

predicted F and GT cross sections. This result indicates that both pure F and GT -like

extreme models give comparable contributions to the final cross section, and it is a

direct consequence of the similar volume integrals for both operators. It is important

to stress that the relation between these volume integrals looks like that for nucleon-

nucleon interaction at 15 MeV. This indicates that the reaction mechanism is, to a

large extent, determined by the effective nucleon-nucleon interaction. Experiments at

different incident energies are envisaged in order to explore condition characterized by

different weights of Fermi and Gamow-Teller contributions and disentangle the role of

each operator.

6.4 Neutrinoless double beta decay matrix elements

As reported in Section 1.6, in 0νββ NMEs a combination of Fermi and Gamow - Teller

appears (see eq. 1.14), ignoring for simplicity tensor components.

If the cross section in heavy-ion DCE reactions can be factorized, as demonstrated

in this work, then the nuclear matrix element measured for DCE reaction will be a

different combination of MF and MGT through the weigths fF and fGT , respectively:

MDCE = fFM
DCE
F + fGTM

DCE
GT (6.14)

where the coefficients fF and fGT depend on the projectile energy Ep and the momen-

tum transfer q of the reaction.

In the case studied in this work, it turned out that ∆L = 0 Fermi and Gamow-Teller

operators give an passing description of the process, as demonstrated in Section 6.3.3.

To extract each of them singularly it is necessary to measure two different cross sec-

tion where F and GT operators contribute differently. Thus the single BDCE(2F ) and
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6.4 Neutrinoless double beta decay matrix elements

BDCE(2GT ) and consequently MF and MGT can be extracted. Therefore, combining

them with the gA and gV , it is possible obtaining the M(0νββ). In this work, it is

not possible performed that rigorously treatise since the experiment was performed at

a single incident energy. However, in the extreme hypothesis of pure Gamow-Teller or

Fermi transition the extracted matrix elements are:

MDCE
T (GT ) = 0.27, MDCE

T (F ) = 0.3

They are very similar, so even the weighted average, representing a more realistic

combination of both contributions, will be.

Assuming the F and GT strengths from literature (see Tables 6.1 and 6.2 respectively),

as estimate of the weights in the expression of the DCE 0◦-cross section one finds:

dσ

dΩ
(0◦, Ex = 0) =σ̂DCE

F FDCE
F B(2F ) + σ̂DCE

GT FDCE
GT B(2GT ) =

13µb/sr + 5µb/sr = 18µb/sr
(6.15)

It follows that the Fermi weight is
√

13/18, while the Gamow-Teller contribution is
√

5/18. The matrix elements weighted in this way are:

M ′DCE
T (GT ) = 0.14, M ′DCE

T (F ) = 0.25

It is possible to deduce the matrix element for the 0νββ decay of 40Ca, using the

following relation (see eq. 1.14 ignoring for simplicity the tensor components)[54]:

M(0νββ) =
gV
gA

2
M ′DCE(F ) +M ′DCE(GT ) (6.16)

where gV and gA are the vector and axial coupling constants for the weak interaction,

taken from the Ref. [15].

The obtained value, using eq.6.16 is:

M(0νββ;40Ca) = 0.62 · 0.25 + 0.14 = 0.29

In the lack of theoretical predictions for 40Ca NME, it is worth to compare this value

with the well studied 48Ca. The estimated values of 48Ca NME are in a ranges from

0.76 [78] to 1.98 [71] depending on different models.

The obtained small value of NME for 40Ca reflects the Pauli blocking, which accounts

for an overall a factor of about 7, coming from the 14% of the wave function which
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can determine the GT and F in 40Ca in comparison to about 40% in 48Ca. In order

to compare the obtained matrix element to the NME of 0νββ decay of 48Ca, one can

remove the Pauli blocking:

M(0νββ) · 7 = 2.03

It is noteworthy that the obtained number (0.29) is compatible with literature for the

calculation 48Ca 0νββ NME.
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This study is inserted in a research line that aims to access the Nuclear Matrix Element

(NME) involved in the half-life of the 0νββ decay, by measuring the cross sections of

heavy-ion induced Double Charge Exchange (DCE) reactions with high accuracy. The

basic point is that the initial and final state of both 0νββ decay and DCE processes

are the same. In addition, both processes pass through the same intermediate state

and the transition operators have a similar mathematical structure.

Determining experimentally the NMEs for 0νββ-decay is an important task and an

old dream of many scientist involved in this research field. To reach this goal, past

attempts to use DCE induced by pion or heavy-ions were done, but neither of them

was successful.

Nowadays, the evaluation of the NMEs is limited only to state of the art theoretical

calculations. But the ambiguities in the models are still too large and the constraints

too loose to reach accurate values of the NMEs.

This work shows for the first time experimental data on heavy-ion DCE reaction in

a wide range of transferred momenta, with an acceptable statistical significance and

good angular and energy resolution. In particular ,(18O,18Ne) reaction at 270 MeV

incident energy on 40Ca target was investigated. In order to estimate the contribution

of the concurrent channels the 40Ca(18O,18F)40K single charge exchange intermedi-

ate channel and the competing processes 40Ca(18O,20Ne)38Ar two-proton transfer and

40Ca(18O,16O)42Ca two-neutron transfer were also studied.

The experiment was performed at Laboratori Nazionali del Sud (LNS-INFN) in Cata-

nia using a 270 MeV energy 18O Cyclotron beam impinging on a 279 µg/cm2 thick

40Ca target. The ejectiles were momentum analysed by the MAGNEX large accep-

tance magnetic spectrometer and detected by its focal plane detector. This is an ideal
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instrument in order to perform such kinds of reaction characterized by very low cross-

section and by the need to identify and measure heavy ion at high resolution and at

zero degree. It conjugates good energy and angular resolution with a large acceptance

both in solid angle and momentum. Since the measurement was performed at 0◦ a

particular care was put on the beam transport and spectrometer setting. Applying

the ray-reconstruction procedure the energy spectra and cross section were extracted.

An overall energy and angular resolution of about ∼ 500 keV and 0.3◦ were obtained,

respectively.

The data analysis of experimental results was aimed to establish whether the transition

to 40Arg.s. is dominant by the direct process.

In the 40Ca(18O,18Ne)40Ar spectrum, the ground state is clearly separated from the

group of excited states of 40Ar at 1.460 MeV and 18Ne at 1.887 MeV. Therefore, the

angular distribution for the transition of interest to the 40Ar 0+ ground state was ex-

tracted. The transition has a cross section at 0◦ of 11 µb/sr and a clear oscillating

pattern is observed. The location of the first minimum at about 2◦ and the period of

the oscillations agree with a pure L = 0 angular momentum transition, as expected

from the 0+ to 0+ transitions in both the projectile and target systems. Such an oscil-

lating pattern is not expected in complex multistep transfer reactions, due to the many

angular momenta involved in the intermediate channels, which determine a structure-

less cross section slowly decreasing at larger angles.

In the 40Ca(18O,20Ne)38Ar two-proton transfer, the cross section tends to increase with

excitation energy as a consequence of the kinematical Q-matching conditions. Known

low-lying states were identified indicating the suppression of low multipolarity tran-

sitions due to L-matching conditions. The cross section for the the transition to the

ground state is ∼ 3 µb/sr smaller than the 40Ca(18O,18Ne)40Arg.s. one.

The 40Ca(18O,16O)42Ca reaction channel is very suppressed in the experiments, in fact

the cross section involved for the transition to 42Cag.s. are about half the cross section of

the 2p-transfer. These results indicate that the DCE reaction proceeds mainly through

the direct mechanism, whereas the concurrent channels (2n-pickup 2p-stripping chan-

nel and 2p-stripping 2n-pickup one) are very suppressed.

In the 40Ca(18O,18F)40K single charge exchange, the group of 1+ states (2.27 MeV and

2.73 MeV) is also populated even if other high spin states could hide them. However,

130



Conclusions

the cross section angular distribution in the energy region between 2 - 3 MeV was ex-

tracted. One can deduced that the Gamow-Teller (GT) transitions is about 500 times

larger than the DCE transition to the 40Ar ground state.

A microscopic many-body theory for heavy-ion charge exchange reactions was used

in order to analyse the 40Ca(18O,18F)40K single charge exchange reaction. The CEX-

QRPA approach was used to describe both the 40K and 18F nuclear structure. The

CEX-QRPA transition densities were used in the one-step DWBA calculations per-

formed for the excited states of 40K in the range between 2 - 3 MeV. The calculations

were based on the hypothesis that the reaction in the projectile channel proceeded

via 18O(0+) →18F(1+). The allowed multipolarities 1+, 1−, 2+, 2−, 3+, 3−, 4− were

considered. Comparing the experimental angular distribution and theoretical calcula-

tions, the unnatural parity component 2− and 4− results to be predominant, while the

1+ transition contributes to the total cross section by a factor ∼ 1/10. Furthermore,

the incoherent sum of the multipolarities cross section understimates the experimental

cross section by a factor 2. It is due to the lack of the ejectile excitation contribution

in the present calculation. The results of the CEX-QRPA calculations were also used

for the simple model adopted to extract the DCE nuclear matrix element. A future de-

velopment of the present theory in order to describe the DCE cross section is planned.

Finally, an innovative technique to infer on the nuclear matrix elements by measuring

the cross section of a double charge exchange nuclear reaction was proposed. The main

assumption are that the DCE reaction is a two-step charge exchange and a surface

localized process. The model adopted to describe the cross section of DCE consists in

a generalization of the well-established factorization of the single charge-exchange cross

section, valid under certain hypothesis, discussed in the thesis. Therefore, the cross

section could be factorized in a nuclear structure term, containing the matrix elements,

and a nuclear reaction one (the unit cross section).

In order to demonstrate the validity of the factorization, the unit cross section and

strengths were deduced, assuming either a pure double GT or F transition. In the pure

GT assumption, the 18O to 18Ne double GT transition through the intermediate 1+

18F ground state was considered. For the target, the 40Ca to 40Ar double GT transition

through the intermediate 1+ 40K states was taken into account.

When considering a pure F transition, the only 0+ 40K state at 4.38 MeV and the 18F

0+ state at 1.04 MeV were considered in the intermediate channel.
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The comparison among the calculated strength for Gamow-Teller and Fermi and the

values known in literature were encouraging. These demonstrate that the assumptions

done on the target and projectile transitions ware reasonable. Indeed in the projec-

tile, the 1+ ground state of 18F exhausts practically all the GT sum rule and the 0+

state at 1.05 MeV exhausts the Fermi one. Similarly for the target, where the transi-

tion through the 2.73 MeV state largely dominates over the other 1+ and the transition

through 4.4 MeV is the unique 0+ present. Transitions through other states with higher

multipolarities in the intermediate channel are also observed. However, although the

cross section could be not negligible, the matrix elements for these transitions require

a 1/(2Ji+1) factor that severly reduces the matrix elements in the transition from the

intermediate state with Ji angular momentum to the final 0+ state of the daughter.

Furthermore, the comparison between the experimental angular distribution for the

transition to the 40Arg.s. and the predicted cross section was also very encouraging.

This result indicated that both pure F and GT-like extreme models give a comparable

contributions to the final cross section, and it was a direct consequence of the simi-

lar volume integrals for both operators. The relation between these volume integrals

resembles that for nucleon - nucleon interaction at 15 MeV. This indicates that the

reaction mechanism is largely determined by the effective nucleon -nucleon interaction.

Finally, the nuclear matrix element for the 40Ca was calculated. After removing the

Pauli blocking effect, it was compared to the NMEs values found in literature in the

case of 48Ca. The obtained value is consistent with the calculation of the 48Ca 0νββ

NME.

Despite the approximations used in the comparison, the extracted strength and nu-

clear matrix elements are reasonable within ± 50%, signalling that the main physics

content has been kept. A deeper investigation of DCE reactions will be performed in

the future, studying other systems of interest as candidate nuclei for the 0νββ-decay

and using different bombarding energies. Experiments at different incident energies are

envisaged in order to explore conditions characterized by different weights of Fermi and

Gamow-Teller contributions and disentangle the role of each operator.
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