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Abstract

The purpose of this dissertation is to study some general properties of nuclear

many-body systems, ranging from infinite nuclear matter to finite nuclei.

Our investigations is focused in particular on nuclear systems with neutron

excess, to get a deeper insight in the open issue which concerns the isospin

dependence of the nuclear interaction. The analysis is concentrated on the

behavior of nuclear matter at densities which lie below the saturation one,

with the aim to address several nuclear phenomena, which involve surface

effects in nuclei and clustering processes emerging in nuclear reactions and

compact stellar objects. Our study is devoted also to shed light on the

impact of some relevant interparticle correlations, mainly active in the low

density region of the phase diagram, which occur in fermionic system and

are responsible for the superfluid phenomena: the pairing correlations. Our

goal is therefore to examine the interplay of these correlations with the other

terms of the effective interaction, usually introduced to approach the nuclear

many-body problem.

Wide attention is dedicated to the role of the pairing interaction in the

astrophysical setting of stellar matter, especially when the cooling process

of proto-neutron stars is concerned. Our analysis evidences in fact impor-

tant pairing effects on neutrino emissivity and specific heat, which are two

key ingredients in the thermal evolution of a compact star. On the one

hand, superfluidity turns out to be responsible for a significant modification

of the neutrino emission, for suitable density, asymmetry and temperature

conditions, which can be of interest for the evolution of neutron stars and

supernovae explosion in the pre-bounce phase. Focusing on neutral current

neutrino scattering, we observe an increase of the neutrino differential cross
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section in a paired and low-density nuclear medium, at least close to the

spinodal border, where the matter is characterized by quite large density

fluctuations. This behavior leads to an enhancement of neutrino trapping

and a reduction in the energy flux carried by neutrinos.

On the other hand, we present a calculation of the specific heat in the

inner crust of proto-neutron stars, within an approach based on cluster de-

grees of freedom, that considers the complete distribution of different nuclear

species in thermal and beta-equilibrium. The resulting specific heat brings

to light a strong influence of resonance population at moderate temperatures

and in density regions close to the crust-core transition and the importance

of an accurate treatment of beta-equilibrium for a quantitative determination

of the specific heat and of the neutron star cooling curve.

Since nuclear systems with neutron excess have an essential role also in the

context of nuclear structure, we investigate, within a semi-classical as well as

in a quantal transport model, the structure and small amplitude dynamics

of neutron-rich nuclei, focusing on the mixed isoscalar-isovector character

of their collective excitations. In particular, we address some of the open

questions concerning the nature of the low-lying isovector dipole strength

experimentally observed in neutron-rich nuclei and known in literature as

pygmy dipole resonance (PDR). We show that the relative isoscalar-isovector

weight of the different modes is determined by their intrinsic structure, as well

as by the type of initial perturbation considered so the PDR excitations turns

to be essentially isoscalar-like, i.e., neutrons and protons oscillate in phase

but with different amplitude. Moreover, we explore the relation between

the mixed isoscalar-isovector structure of the dipole collective modes and

the density dependence of the symmetry energy, focusing on its importance

in shaping the neutron skin thickness. Further developments are moreover

enviseged to get a deeper insight on the role of pairing and quantal effects in

characterizing the collective excitations of neutron-rich nuclei.
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Introduction

Atomic nuclei are many-body systems constituted by a strongly interacting

and self-bound ensemble of nucleons with two possible isospin states, protons

and neutrons. Since the last century, the study of such systems has held a

primary importance in modern science, according to the key role that these

objects take in the microscopic world, as well as in the astrophysical context.

Unfortunately, the nuclear many-body problem has revealed one of the most

complex issues existing in nature, owing to the peculiar characteristics of the

strong interaction between the constituent particles, as well as by the large

number of degrees of freedom involved and the related variety of phenomena

produced. A huge amount of investigations have been devoted therefore

to tackle the challenging problem of understanding the behavior of nuclear

matter.

A big interest on the isospin physics, i.e. on charge asymmetric nuclear

systems, has been moreover recently stimulated, triggered by the possibili-

ties offered by new radioactive beam facilities, which have made feasible to

perform measurements of nuclear properties for nuclei which lie far from the

stability valley. At intermediate beam energies, reactions with exotic nuclei

also allow one to explore several regions of the nuclear matter phase dia-

gram and Equation of State (EoS). Furthermore, observational data from

astrophysical objects, such as compact stars, can be crucial in constraining

the nuclear EoS in density ranges and isospin asymmetries unreachable in

terrestrial laboratories.

The knowledge of the isospin dependence of the nuclear interaction is

presently considered one of the most outstanding questions in nuclear physics

and it has demonstrated an active topic of research. A large number of works
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are actually dedicated to the density dependence of the symmetry energy of

the nuclear EoS, owing to its essential contribution to the total energy of

asymmetric matter.

Our efforts are mainly devoted to investigate the behavior, in a broad

sense, of asymmetric nuclear matter, at densities below the saturation one.

Different studies involving this density region will be presented, ranging from

the characterization of surface effects on structure and small amplitude dy-

namics in finite nuclei, to the description of the clustering phenomena oc-

curring even in the crust of compact stars. These phenomena are generally

related to the emergence of a liquid-gas phase transition, for the nuclear

matter at sub-saturation density and relatively low-temperature. The latter

process is also closely linked to the emergence of mechanical instabilities, un-

derlying multifragmentation mechanism experimentally observed in nuclear

reactions at Fermi energies.

The original (and unsolvable) quantal many-body problem is often ap-

proached adopting the mean-field approximation. This choice is based on

the assumption, experimentally confirmed, that the main properties of atomic

nuclei can be described by employing, in place of the bare nucleon-nucleon

interaction, a suitable effective one-body potential which can averagely repro-

duce the mutual interaction between particles and accounts for the neglected

correlations in an effective manner.

Several extensions of mean-field models have been however introduced to

take explicitly into account the effects of relevant interparticle correlations.

This is the case, for instance, of pairing correlations which occur, under suit-

able conditions, in fermionic systems and are responsible for the superfluidity

phenomena observed in finite nuclei and in compact stars.

The theory of superfluidity is based on the Bardeen-Cooper-Schrieffer

(BCS) theorem which states that, in a system of degenerate fermions, the

Fermi surface is unstable due to the formation of pairs if there is an attrac-

tive inter-particle interaction in some spin angular momentum channel. This

leads to a collective reorganization of particles at energies around the Fermi

energy, which manifests itself in the formation of Cooper pairs. Correspond-

ingly, an energy gap emerges in the quasi-particle spectrum, which disappears

14



at high-enough temperature, when the system reverts to its normal state.

Since pairing correlations are mostly active at low-density, they come

out to play an important role in shaping the properties of the sub-saturated

nuclear matter. The aim of this dissertation is to approach several aspects of

the many-body problem in nuclear physics, ranging from nuclei to compact

stars, in order to address the importance of the different terms characterizing

the effective interaction and their interplay with the pairing correlations.

Wide attention, as stressed before, is dedicated to neutron-rich systems.

Nuclei with a strong neutron excess exhibit several fascinating properties

which make them qualitatively different from ordinary nuclei. For instance,

neutron-rich nuclei are characterized by interesting new features for collective

excitations, such as the so-called pygmy dipole resonance (PDR). Whereas

the isovector giant-dipole resonance (GDR) is commonly referred to as neu-

trons and protons moving against each other, the nature of the pygmy reso-

nance is still matter of debate, even if, roughly speaking, this excitation could

be associated with an oscillation of the outermost neutrons (neutron-skin)

against the isospin-symmetric core.

Regardless of their nature, the importance of these collective modes lies

on the fact that the study of the electromagnetic dipole response of the

neutron-rich nuclei potentially allows to shed light on fundamental properties

of the interaction among the constituent particles. Indeed, these collective

excitations are quite sensitivite to the isovector term of the nuclear effective

interaction (or modern Energy Density Functional theory).

In our work, we investigate the dipole response of neutron-rich nuclei,

employing some recently introduced effective interactions, which have been

especially devised to improve the description of spin-isospin properties of

nuclei. This produces a set of interactions of similar quality on the isoscalar

channel and that, approximately, isolate the effects of modifying the isovector

channel in the study of a given observable.

Neutron-rich nuclei are a key ingredient also in the nuclear astrophysics

context, as far as nucleosynthesis processes are concerned, or in the structure

modelization of compact stellar objects. The structure of compact stars (core

collapse supernovae, proto-neutron stars and neutron stars) is still not fully
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understood and is currently under lively research.

Neutron star physics constitutes indisputably a unique laboratory for test-

ing nuclear matter under several conditions. The properties of the neutron

stars are largely influenced by the nuclear EoS in a wide density range. There

are many stellar EoS available in the literature, comprising a large variety of

approaches and deduced by employing a large number of models. Consider-

ing only nucleonic degrees of freedom, at the high densities of the neutron

star core, that is around and above the nuclear saturation density, nuclear

matter is expected to be uniform and mean-field models with neutrons and

protons are usually sufficient. At the lower densities of the crust and at tem-

peratures below a critical value of approximately 15 MeV, nuclear matter

develops instead inhomogeneities with a coexistence of gas and liquid phases

on a macroscopic scale. In stellar matter, however, the transition is driven by

the balance of the short-range nuclear and long-range Coulomb interaction.

At very low temperatures, moreover, a solid phase with a lattice structure

of nuclear clusters emerges. A consistent interpolation between the various

regions is hence needed to cover all aspects in a single model and usually a

combination of different approaches is required to depict a complete scenario.

In the physics of compact stars, also the presence of superfluidity is well

established and has a significant effect on several phenomena related to the

thermal evolution of these compact stellar objects. The cooling process of

(proto-)neutron stars, in particular, seems to be strongly dependent, among

the other features, on the specific heat and the neutrino emission of the star,

which are both influenced by the formation of a fermionic pair condensate.

In particular, the specific heat of the neutron star is known to be strongly

affected by superfluidity effects, which significantly reduce the crust thermal-

ization time. The mean-field theoretical calculations employed so far to study

the superfluidity of the crust however assume that the cluster component can

be represented only by a single representative nucleus, neglecting that at fi-

nite temperature stellar matter is characterized by a whole distribution of

different nuclear species. In our work, we explore the importance of this

distribution on the calculation of the specific heat in the crust.

Moreover, we aim at investigating whether the interaction of neutrinos
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with a low-density nuclear medium can be affected by the formation of

Cooper pairs, thus modifying the cooling mechanism, by neutrino emission,

of proto-neutron stars. We extend our analysis to nuclear matter conditions

where large density fluctuations may develop, associated with the onset of

the liquid-vapor phase transition, and clustering phenomena occur.

In the astrophysical applications presented above, we are going to intro-

duce the pairing correlations in the spirit of the EDF theories, through a

phenomenological effective interaction. Thus our studies on finite nuclei and

compact stars are linked by the low-density behavior of the nuclear effective

interaction and EoS.

The thesis is organized as follows. The first two chapters are entirely ded-

icated to review the main mean-field theories developed in the last century to

approach the N-body problem in nuclear physics. The Hartree-Fock theory

and its extension introduced to include the pairing correlations are presented,

both in their static and dynamical forms. At the same time, we also discuss

other quantal methods, such as the Random Phase approximation, and in-

troduce semi-classical approaches, underlying advantages and drawbacks of

each theory.

In Chapter 2, we also extensively discuss our pairing model and we present

our first application, which concerns the analysis of the pairing effects on the

characterization, along a clusterization process, of the instability exhibited

by nuclear matter. We study in particular the effect on the isospin distilla-

tion mechanism, which is responsible, in a phase separation process, of the

different isotopic content experimentally observed in the liquid and in the

gas phase.

The neutrino emission of a neutron star is discussed in Chapter 3, where

focusing on the neutrino interaction with a homogenous nuclear medium with

electrons, we investigate, within a thermodynamical treatment, the impact

of pairing correlations on the transport of neutrinos in stellar matter at low

density, at the borderline with the occurrence of mechanical instabilities.

The heat capacity of the proto-neutron star crust is instead studied in

Chapter 4. For this purpose, we present a Nuclear Statistical Equilibrium

model which accounts for the simultaneous presence of nuclei, or clusters,
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and homogenous matter, which typifies the (inner) crust of a neutron star.

Within this framework, a given thermodynamical condition corresponds to

a statistical superposition of finite configurations, the so-called Wigner-Seitz

cells, each containing a different cluster embedded in a homogeneous electron

gas, as well as a homogeneous gas of neutrons and protons. The importance

of the cluster distribution and the key role of the β-equilibrium condition are

highlighted, and the relevance of an accurate description of the system free

energy, taking into account also cluster-gas interactions, is discussed.

The fifth chapter is finally focused on the small amplitude dynamics of nu-

clear systems, which often manifests the development of collective patterns.

We investigate the collective modes in both asymmetric nuclear matter and

finite nuclei with a strong neutron excess. We carry out our analysis within a

semi-classical transport model, employing several effective forces, in order to

test the influence of the different terms of the interaction in shaping the char-

acterization of the nuclear response function. We also present a comparison

with the time dependent Hartree-Fock calculations (TDHF), for small am-

plitude dynamics, to stress as well the importance of the quantal corrections.

Finally, we make some calculations in the framework of the BCS extension of

the TDHF theory, introduced to include the formation of the Cooper pairs.

Focusing on the tin isotopic chain, we aim at highlighting the possible role

of the pairing correlations in characterizing the structure and the response

function of these systems, and again the interplay with the other terms of the

effective interaction, also in view of a comparison with experimental results.

Further measurements of pygmy and giant dipole resonances along isotopic

chains are expected in fact to constrain tightly the density dependence of the

symmetry energy of the nuclear EoS.
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Chapter 1

Mean field theories and

effective interactions

The investigation of interacting many-particle systems represents one of the

most fascinating fields of modern science. Indeed understanding the prop-

erties of complex systems in terms of their constituent particles and the

interaction among them is an exciting challenge [71, 150].

In particular, since it involves quantum particles as neutrons and protons,

the study of atomic nuclei arises as a quantal many-body problem. Actu-

ally, as it is known, nucleons themselves reveal an internal structure, being

constituted by quarks, but fortunately the energy scales associated to quark

or to nucleonic degrees of freedom are well separated. So in low-energy nu-

clear physics, neutrons and protons can be regarded as elementary fermionic

particles interacting through the strong nuclear force.

Anyway, the nuclear many-body problem is particularly complex due

mainly to the following reasons: on the one hand, the nuclear interaction,

due to its peculiar behavior, is rather difficult to handle; on the other hand,

nuclei are generally mesoscopic systems, which means that they are neither

few- nor infinite-body systems [107]. This means that only in a very restricted

area of the nuclear chart, one can get the solution of the quantal problem

through ab-initio techniques, but at the same time the number of nucleons

is not enough to take advantage of possible simplifications used in infinite
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1. Mean field theories and effective interactions

systems. To make the situation worse, finite size effects imply interesting

and not-trivial aftermath.

Although for the original quantal many-body problem it does not exist

any general exact solution, in the last decades several theoretical methods

have been developed in order to get a deeper insight of nuclear phenomena.

In particular, while the relativistic quantum field theory is the reference

model for high energy nuclear physics, most of the theoretical studies at

lower energies are addressed within a non-relativistic context.

Surprisingly enough in view of the complexity of the interaction, many

observations in nuclei have been understood by adopting the mean-field the-

ory, which assumes that the nucleons behave as independent particles in an

effective one-body potential, generated by a phenomenologically based effec-

tive interaction.

In this Chapter, we are going to discuss extensively the details of these

effective interactions and to review the main mean-field theories developed

to describe static and dynamic properties of nuclei.

1.1 The nuclear quantal many-body problem

In the theoretical treatment of the nuclear many-body problem, nuclear sys-

tems are in general considered to be composed of nucleons (protons and neu-

trons) which are fermions interacting through some specified forces, without

internal degrees of freedom.

The solution of the general quantal many-body problem consists in finding

the wave function

Ψ(r1, r2, . . . , rN) ≡ Ψ({ri}, t), (1.1)

which is the solution of the Schrödinger equation:

ĤΨ({ri}, t) = i~
∂

∂t
Ψ({ri}, t), (1.2)

where Ĥ represents the N -body Hamiltonian operator.

The knowledge of the interaction between nucleons should be the start-
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1. Mean field theories and effective interactions

ing point to apply the techniques of modern many-body theory to the nu-

clear context. Even considering only two-body forces, the definition of the

nucleon-nucleon interaction in the nuclear medium is really challenging. On

the one hand, in fact, there exists no derivation of the bare nucleon-nucleon

force from first principles. On the other hand, as stressed above, it is rather

difficult in practice to handle with the bare nucleon-nucleon interaction, be-

cause of its strong repulsion at short distances, which makes inapplicable

the usual many-body techniques [150]. In addition, it has also been pointed

out a strong dependence of the nuclear interaction on the spin and isospin

channels [197] and a significant influence of three-body forces [127]. Lastly,

to further complicate the scenario, being charged particles, protons feel also

the Coulomb interaction. Definitely, the solution of the nuclear many-body

problem is extremely tricky and not only from the analytical point of view

but also from the numerical one.

1.1.1 Mean field potential and correlations

In order to solve the complex nuclear many-body problem, one should take

into account that the nucleons within a nucleus do not feel the bare nucleon-

nucleon interaction, because the interaction is strongly renormalized by the

medium effects, if one goes to a restricted description, so reducing the N-body

to a one-body problem.

Despite of the complexity of the problem previously underlined, indeed,

many experimental observations such as electron scattering on nuclei clearly

revealed that nucleons, although they interact in principle with each other,

behave in a good approximation like independent particles [81], occupying

orbits of a single-particle potential. When two nucleons are surrounded by

other nucleons, in fact, the associated wave function looks like an independent

particle case. This can be interpreted as the result of the combined effect of

the Pauli principle which blocks accessible configurations for the two nucleons

and the properties of the force itself.

Due to this reason, one of the approximations commonly adopted to ap-

proach the nuclear many-body problem is the so-called mean-field approxi-
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1. Mean field theories and effective interactions

solution of the time-independent case is important because it allows one to

describe the main static properties of nuclei and to lay the groundwork for

its time-dependent extension.

1.2.1 The Rayleigh-Ritz variational principle

The Hartree-Fock method is based on the Rayleigh-Ritz principle which

restricts the size of the Hilbert space where one seeks the solution of a

variational problem. It is straightforward to demonstrate that solving the

Schrödinger equation Eq. (1.2) in the stationary case, that is:

Ĥ |Ψ〉 = E |Ψ〉 , (1.3)

is equivalent to solve the following variational equation

δE [Ψ] = 0, (1.4)

where

E =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉 (1.5)

labels the total energy E of the system. In such a way, as it is known, it

is possible to connect the solution of Eq. (1.3) to an ordinary variational

problem. Since the variation is usually restricted to a set of trial states |Ψ〉
and not to the whole Hilbert space, if the true state describing the system

is not included in this set, the solution will be just an approximation of

the exact eigenfunction. Anyway, the variational method is well-suited to

determine the ground state of a system, because for any trial state |Ψ〉 it is

easy to show that

E[Ψ] ≥ E0, (1.6)

so that E0 results as the lower limit of the variational calculation.

Once evaluated the approximated state |Φ〉 of the exact ground state

|Ψ0〉, it is possible to get the approximated excited state |Φi〉 just solving

again the variational equation Eq. (1.4) with the supplementary constraint

of orthogonality to the states previously determined. For higher excited state
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1. Mean field theories and effective interactions

the variational principle turns to be rather complicated or even inapplicable

and so it has been applied, for example within the Hartree-Fock theory and

its extensions, mainly to achieve a reliable estimation of the ground state.

1.2.2 Hartree-Fock (HF) theory

The Hartree-Fock (HF) theory assumes that the ground state |HF〉 of a A-

body fermionic system can be represented as a Slater determinant |Φ〉:

|HF〉 = |Φ(1, . . . ,A)〉 ≡
A
∏

α=1

ĉ†α |0〉 , (1.7)

viz it can be considered as the product of A independent single-particle states.

It is possible to demonstrate that the ground state corresponds to the so-

called Fermi sea, where only the A lowest levels are occupied (hole states)

while all the others are left empty (particle states).

Actually, it is more convenient to represent the Slater determinant by

defining the correspondent single-particle density

ρij = 〈Φ|â†j âi|Φ〉 , (1.8)

where â†i and âi are the second-quantized single particle creation and anni-

hilation fermionic operators.1 The one-body density is characterized by the

property to be idempotent, viz:

ρ̂2 = ρ̂, (1.10)

so that its eigenvalues can be either 1, in case of hole states (h), or 0 for the

particle ones (p). In other words, in the basis where ρ̂ is diagonal, it does

not mix particle-hole states.

In order to determine the energy of the system, let us write the two-body

1These operators must obey the following anti-commutation relations:

[â†i , â
†
j ]+ = [âi, âj ]+ = 0, [â†i , âj ]+ = δij ∀i, j (1.9)
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1. Mean field theories and effective interactions

Hamiltonian operator in second quantization as [22]:

Ĥ =
∑

i,j

Tij â
†
i âj +

1

4

∑

i,j,k,l

〈ij| ˆ̄V |kl〉 â†i â†j âlâk. (1.11)

The Hamiltonian is therefore the sum of a first contribution given by the

kinetic energy term and of a second one with

〈ij| ˆ̄V |kl〉 ≡ 〈ij|V̂ |kl〉 − 〈ij|V̂ |lk〉 , (1.12)

which is the antisymmetrized two-body interaction.

The energy of Eq. (1.5), that is the expectation value of the Hamiltonian

Eq. (1.11), making use of the previous definition, becomes:

EHF =
∑

ij

Tij 〈Φ|â†i âj|Φ〉+
1

4

∑

i,j,k,l

V̄ijkl 〈Φ|â†i â†j âlâk|Φ〉 . (1.13)

By using Wick’s theorem [194] and after some algebraic calculations (see

section A.1), finally one gets:

EHF[ρ] =
∑

ij

(

Tij +
1

2
Uij

)

ρji (1.14)

where Û is the self-consistent mean field, defined as:

Uij =
∑

kl

V̄ikjlρlk. (1.15)

The operator Û is a one-body field and averages over all two-body interac-

tions.

Since the variational principle can be formulated either in terms of vari-

ation of single-particle states or of the one-body density [22, 150], in order

to determine the HF-basis, we can choose to minimize the energy for all

the ρ̂ values associated with the Slater determinant, imposing its variation
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1. Mean field theories and effective interactions

vanishes. This variation can be written

δE = E[ρ+ δρ]− E[ρ] =
∑

ij

hijδρji =
∑

m>A,n≤A

hmnδρnm + c.c. (1.16)

where the single particle Hamiltonian ĥ has been defined as

hij =
∂E[ρ]

∂ρij
(1.17)

and taking into account that, because of Pauli blocking of hole states, the only

δρij not vanishing concern ph or hp transitions. Since these ph variations are

arbitrary and using the result of Eq. (1.14), the variational equation Eq. (1.4)

applied to this case, in the basis where ρ̂ is diagonal, leads to:

hmn = Tmn +
A
∑

j=1

V̄mjnj = 0 (for m > A, n ≤ A). (1.18)

This means that, analogously to the single-particle density ρ̂ in the basis

where it is diagonal, the single particle Hamiltonian

ĥ = T̂ + Û , (1.19)

does not mix particle and hole states and so, admitting a set of common

eigenstates, they can be diagonalized simultaneously.

This consideration allows finally to write the following Hartree Fock equa-

tion:
[

ĥ, ρ̂
]

=
[

T̂ + Û [ρ], ρ̂
]

= 0. (1.20)

Since Û (and so also ĥ) depends on the density which is the solution of the

problem, the equation above is self-consistent. Such as any self-consistent

problem, it should be approached by an iterative procedure.

The results obtained after the numerical implementation of this model

will be shown on Chapter 5. The HF theory, as we will see, is in fact a

static model capable to describe, within the same formalism, some basic

properties, such as masses, charge radii and deformations (when extended

26



1. Mean field theories and effective interactions

to the so-called multi-reference framework) [185, 186] of the ground state of

several nuclei, over a wide range of mass.

1.3 Dynamical evolution of the system

The time evolution of the quantal many-body system extends the station-

ary problem presented in the previous section. Several excited states show

however new dynamical phenomena which can be explained only by suppos-

ing that many nucleons are coherently involved in the motion, giving rise to

a collective vibration. In order to correctly address these collective states,

several mean-field based small amplitude dynamical approaches have been

developed in the last century. On the one hand, quantal approaches such as

Random Phase Approximation (RPA) [49, 126] or Time Dependent Hartree-

Fock (TDHF) theory in the small amplitude limit [27, 168], on the other hand,

some semi-classical methods exploiting the corresponding Vlasov equation,

such as for instance the Boltzmann-Nordheim-Vlasov (BNV) model [16, 25].

All these methods will be applied in Chapter 5, in order to describe the

collective modes emerging in the dynamical evolution of nuclei.

1.3.1 Time Dependent Hartree-Fock (TDHF) theory

The stationary Hartree-Fock method described in Section 1.2.2 can be also

formulated in a time-dependent way.

The starting point is an arbitrary vector |Ψ(0)〉 of the Hilbert space rep-

resenting the state which describes the many-body system at the time t = 0.

Since it is not an exact solution of the Schrödinger equation Eq. (1.3), as it

is known, it evolves with the time as a wave packet by the time evolution

operator:2

|Ψ(t)〉 = e−
iĤt
~ |Ψ(0)〉 . (1.21)

2Actually, the same description holds even if |Ψ〉 is the exact solution of the static
problem Eq. (1.3) and an external perturbation is introduced.
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1. Mean field theories and effective interactions

As a consequence, the corresponding one-body density

ρij(t) = 〈Ψ(t)|â†j âi|Ψ(t)〉 , (1.22)

is time dependent as well. So, by making the derivative of Eq. (1.22) with

respect to the time and exploiting the definition in Eq. (1.21), in the same

Schrödinger picture, one achieves the equation of motion:

i~ρ̇ij(t) = 〈Ψ(t)|
[

â†j âi, Ĥ
]

|Ψ(t)〉 . (1.23)

It is possible to demonstrate (see section A.2) that, by neglecting the two-

body correlations which cannot be taken into account by the mean field, the

equation of motion above leads to the well-known TDHF equation:

i~ ˙̂ρ(t) =
[

ĥ[ρ], ρ̂
]

, (1.24)

that is a first-order differential equation in time, where ĥ is defined as in

the static case, with the only one difference that now, since it includes the

density ρ̂(t), it becomes time-dependent.

It is straightforward to observe that in the stationary situation, Eq. (1.24)

is equivalent to the non-linear relation given by Eq. (1.20). For the static

case, moreover, as it has already been pointed out in section 1.2.2, the two-

body correlations are strongly suppressed by Pauli blocking. However, it is

lawful to assume that these 2p-2h processes can be neglected even in the

dynamical case, at least as long as the excitation energies are smaller than

the energy of the last occupied single particle levels, named as Fermi energy.

Under this assumption it is shown that, by supposing the initial state |Ψ(0)〉
coincides with a Slater determinant, this property will be maintained for the

whole time evolution.

The TDHF theory will be applied on Chapter 5 to investigate the main

features of giant resonances in nuclei. The study of these fundamental modes

is really important and it has contributed to our understanding of the bulk

behavior of the nucleus and of the dynamics of its excitations [90].
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1. Mean field theories and effective interactions

1.3.2 Random Phase Approximation (RPA) method

The investigation of collective excitations of nuclear systems can be addressed

not only by employing the small amplitude limit of the TDHF theory de-

scribed above, but also with the equivalent Random Phase Approximation

(RPA) method, which is a technique based on the linearized TDHF equation

and developed also to describe the response of the system to an external

perturbation.

The RPA was introduced in 1953 by Bohm and Pines [24] in their study

on plasma oscillations and it has been later extended to nuclear physics.

The basic idea is to look at the influence on the system of an external time-

dependent field as

F̂ (t) = F̂ e−iωt + F̂ †eiωt (1.25)

where F̂ is a one-body operator, which can be written as

F̂ (t) =
∑

i,j

fij(t)â
†
i âj. (1.26)

Under the hypothesis that the perturbation is weak, this operator introduces

only a tiny variation on the nuclear density, which can be treated in linear

order as:

ρ̂(t) = ρ̂(0) + δρ̂(t) (1.27)

with

δρ̂ = ρ̂(1)e−iωt + ρ̂(1)†eiωt, (1.28)

so it constitutes only a small amplitude oscillation δρ̂, of frequency ω, around

the stationary solution ρ̂(0) of the Hartree-Fock equation for the Hamiltonian

ĥ(0) = ĥ[ρ(0)].

By including Eq. (1.27) in Eq. (1.24) and expanding up to the first order

in the field, one easily gets:

i~δ ˙̂ρ =
[

ĥ(0), δρ̂
]

+

[

δĥ

δρ
· δρ̂, ρ(0)

]

+
[

f, ρ(0)
]

. (1.29)

It is smoothly demonstrated that particle-hole matrix elements are the only
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1. Mean field theories and effective interactions

ones not-identically vanishing and they obey to the so-called linear response

equations (RPA):

{(

A B

B∗ A∗

)

− ~ω

(

1 0

0 −1

)}(

ρ
(1)
ph

ρ
(1)
hp

)

= −
(

fph

fhp

)

(1.30)

where the matrices A and B are

Aminj = (εm − εi)δmnδij +
∂hmi

∂ρnj
, Bminj =

∂hmi

∂ρjn
(1.31)

and the single particle energy εk is defined as:

h
(0)
kl = δklεk. (1.32)

The RPA equation is solvable by inverting the matrix on the left-side hand,

leading to a linear relation between the external perturbation and the corre-

sponding density fluctuation

ρkl =
∑

mn

Rklmn(ω)fmn (1.33)

where the operator R̂ is known in the literature as the response function and,

in the general case, it can operate on all kind of excitations and not just on

particle-hole type. In the RPA theory, it is shown that the response function

has poles when the ω values match the eigenfrequencies of the system, when

an arbitrary small perturbation is able to excite the related mode. Therefore,

these resonances can be finally found simply solving Eq. (1.30) imposing that

the external field vanishes. As a final remark, it is important to stress that,

since this derivation is rather general, it applies also in the case of density

dependent forces that are an essential feature of the mean-field approach.

1.4 Nuclear effective interactions

In the previous sections, it has been discussed how to solve the quantal

many-body problem, in order to catch not only the stationary properties of
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the system but also its dynamical evolution. This analysis highlighted at the

same time the importance of knowing the underlying interaction.

Although in fact many aspects of nuclei can be explained under the

hypothesis that the nuclear system is constituted by particles interacting

through a self-consistent mean-field, unfortunately the natural HF approach,

consisting of starting from the nuclear Hamiltonian to map a many-body into

a one-body problem, does not work in nuclear physics.

Stimulated by this task, nuclear physicists have introduced the idea to

use an effective nucleon-nucleon interaction, which can be considered as the

infinite sum of two-nucleon scattering processes in the nuclear medium.

The effective interactions have been, over the last decades, a powerful

tool to describe the properties and the dynamics of a large number of nuclei.

Indeed, by using this approach, one gets two main advantages: on one side,

it has been displayed that the effective interaction is rather well-behaved

at short distances and so it allows the application of the usual many-body

methods; on the other side, moreover, it consistently includes more many-

body effects than if taking just the bare interaction in one-body approach.

There are many different ways to construct an effective interaction.

These effective forces can be in principle defined microscopically [31],

but in practice it is very challenging to calculate them. Consequently, from

the early days of nuclear physics, rather than make use of these ab-initio

calculations, it has been preferred to adopt phenomenological forces [79, 122,

170], which contain a certain number of parameters adjusted to reproduce

the experimental data. In many cases, this procedure has turned out to be

extremely successful and, by using only a few parameters, many experimental

data covering a quite large range of nuclear masses, have been explained.

The phenomenological method usually employed is to postulate a given

functional form for the effective interaction, determining only a posteriori

the parameters of the model, fixing them to reproduce some selected sets

of nuclear data. The lack of uniqueness for the fit, however, has led to

a large number of different parameterizations, which provide very different

predictions when applied beyond their domain of validity.

Therefore, the most reasonable approach is to fit these phenomenological
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interactions with the largest number of available data, deduced not only by

the experiments but also by microscopic calculations in nuclear matter, as

we will do in Chapter 2.

It is also preferable to choose the analytical form as simple as possible.

For example, since we know that the range of the nuclear force is rather

short, the simplest ansatz consists in using a zero-range force, whose radial

dependence is described by a δ-function. Such forces are in fact simple to

handle and can describe quite well some nuclear properties. However, more

realistic forces need a finite range, which corresponds to the dependence of

the effective interaction on the momentum. Looking in fact at the following

momentum representation of the potential

V (p,p′) =
1

(2π~)3

∫

e−
i
~
(p−p′)·r12 V (r12)d

3r12, (1.34)

we can see that, if the function V of the relative distance r12 = r1 − r2

between the two particles is a δ-function, the corresponding representation

is a constant, otherwise any range represents a momentum dependence.

Finally, it is important to bear in mind that phenomenological effective

forces can also depend on the density.

1.4.1 Skyrme-type interactions

The most commonly used phenomenological effective interactions are the

zero-range Skyrme-type interactions. To trace their success, it is important

to mention not only their flexible implementation, but also to the fact that

Vautherin and Brink [186], employing Skyrme interactions, succeeded to re-

produce the binding energies and the nuclear radii of the whole periodic table.

Furthermore, the mathematical structure is not complex, because the con-

tact range of the force implies the presence of the δ-function, which greatly

facilitates the calculation.

Following the idea formulated by Skyrme in 1950s [170], the simplest
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version of this kind of interactions assumes the following functional form:

VSky(r1, r2) = t0(1 + x0P̂σ)δ(r12) +
1

2
t1(1 + x1P̂σ)

[

p2
12δ(r12) + δ(r12)p

2
12

]

+ t2(1 + x2P̂σ)p12 · δ(r12)p12 +
1

6
t3(1 + x3P̂σ)ρ

α

(

r1 + r2

2

)

δ(r12)

+ iW0(σ1 + σ2) · [p12 × δ(r12)p12] , (1.35)

where p12 = − i
2
(∇1 −∇2) is the relative momentum, P̂σ = 1

2
(1 + σ1σ2) is

the spin-exchange operator and t0, t1, t2, t3, x0, x1, x2, x3, W0, α are model

parameters.

Each contribution in the previous formula describes a different feature

of the phenomenological effective interaction: the first contribution is the

central term, which depends only on the distance between the particles; the

terms including t1 and t2 simulate the influence of non-local contribution

introducing the dependence on the relative momentum p12; the fourth addend

depends instead on the density of matter and aims to recreate a similar

effect as one would have considering three-body contributions; the last term

describes the spin-orbit two-body interaction.

The parameterization shown in Eq. (1.35) is therefore rather general and

it depends on a considerable number of parameters, which have been added

to get a better description of data. However, despite its simple mathemat-

ical form, for practical implementations some simplifications must be done.

For this reason, it is often adopted a simplified version of Eq. (1.35) where

only some of the parameters listed above are assumed to differ from zero,

according to the functional form required for the interaction. Once the func-

tional dependence is identified, the value of the parameters will depend on

the properties of nuclear matter one wants to consider. The values of the

parameters for some of the Skyrme interactions employed in our work fill out

the Table 1.1.
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1. Mean field theories and effective interactions

Table 1.1: The values of the parameters for some Skyrme interactions employed
in our works.

SAMi-J27 SAMi-J31 SAMi-J35 SLy4

t0[MeV fm3] −1876 −1844 −1799 −2489
t1[MeV fm5] 481.09 460.73 436.23 486.82
t2[MeV fm5] −75.71 −110.2 −145.0 −546.4

t3[MeV fm3+3α] 10185 10112 9955.4 13777
x0 0.4822 −0.024 −0.4439 0.8340
x1 −0.558 −0.459 −0.344 −0.344
x2 0.2131 −0.431 −0.784 −1.000
x3 1.0022 0.0076 −0.882 1.3540
W0 81.937 216.87 273.61 123.00
W ′

0 180.37 −133.6 −275.6 123.00
α 0.25463 0.2684 0.2843 0.1667

1.4.2 Energy Density Functional (EDF) theory

In the last decades, many studies have been devoted to extend the well

known Density Functional Theory (DFT) widely discussed in the context of

condensed matter [61, 136] to the nuclear field [44], whereas the distinctive

assumption of effective interaction has been done.

The aim of the newly born Energy Density Functional (EDF) theory is

to provide an exact reformulation of the initial problem to reproduce the

ground state energy and the one-body local density as close as possible to

the observed ones.

These functional theories keep the simplicity of the independent particle

picture, but they incorporate in an effective way several effects much beyond

the pure HF theory.

Indeed, by fitting directly coefficients of the functional on observables that

contain all the correlations, the functional theory itself goes much beyond the

HF framework. As a result, the functional theory gives more reliable results

with respect to pure HF calculations in nuclear matter, which employ the

bare nucleon-nucleon interaction [62, 107].

In order to obtain the EDF, one can assume an auxiliary Slater determi-

nant |Ψ〉 for the many-body wave function so that the energy can be evaluated
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1. Mean field theories and effective interactions

by performing the expectation value of the effective Hamiltonian, denoted as

Ĥ(ρ), with the independent particle state |Ψ〉 [107]:

E = 〈Ψ| Ĥ(ρ) |Ψ〉 =
∫

E(r)dr, (1.36)

where the energy functional E depends on the parameterization adopted of

the effective interaction.

In particular, by employing a Skyrme-like effective interaction Eq. (1.35),

as it has been done in our works, this energy functional is written as:

E = K + E0 + E3 + Eeff + Efin + Eso + Esg. (1.37)

Each contribution in the equation above can be of course expressed in terms

of the isoscalar ρ = ρn + ρp and isovector ρ3 = ρn − ρp particle density as:

K =
~
2

2m
τ

E0 = C0ρ
2 +D0ρ

2
3

E3 =
(

C3ρ
2 +D3ρ

2
3

)

ρα

Eeff = Ceffρτ +Deffρ3τ3

Efin = Cfin (∇ρ)2 +Dfin (∇ρ3)2

Eso = CsoJ · ∇ρ+DsoJ3 · ∇ρ3
Esg = CsgJ

2 +DsgJ
2
3. (1.38)

The coefficients C and D with different indices given above are combinations

of traditional Skyrme parameters, that is:

C0 =
3

8
t0 D0 = −1

8
t0 (2x0 + 1)

C3 =
1

16
t3 D3 = − 1

48
t3 (2x3 + 1)

Ceff =
1

16
[3t1 + t2 (4x2 + 5)] Deff = − 1

16
[t1 (2x1 + 1)− t2 (2x2 + 1)]

Cfin =
1

64
[9t1 − t2 (4x2 + 5)] Dfin = − 1

64
[3t1 (2x1 + 1)− t2 (2x2 + 1)]
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Cso =
3

4
W0 Dso =

1

4
W0

Csg =
1

32
[t1 (1− 2x1)− t2 (1 + 2x2)] Dsg =

1

32
(t1 − t2) . (1.39)

One can notice that, by denoting with ϕi,s,q the single-particle wave func-

tion of the ith nucleon of the q type, having spin s, in the coordinate space,

the functional constructed by the Skyrme interaction turns to be not a func-

tional of the density ρq =
∑

i,s |ϕi,s,q(r)|2 (q = p, n) only, but it also depends

on the kinetic energy and spin densities, denoted respectively by τq and Jq

and defined as:

τq =
∑

i,s

|∇ϕi,s,q(r)|2

Jq =
∑

i,s,s′

|ϕ∗
i,s′,q(r)∇ϕi,s,q(r)|2 〈s′| σ |s〉 . (1.40)

Analogously to the particle density, one has then also defined the isoscalar

(τ,J) and isovector (τ3,J3) kinetic energy and spin densities in the following

way:

τ = τn + τp τ3 = τn − τp

J = Jn + Jp J3 = Jn − Jp. (1.41)

1.5 The semi-classical model in nuclear physics

The quantal formalism so far adopted doubtless constitutes a powerful tool

to explain a huge number of experimental facts. Actually, performing reliable

calculations by implementing codes based on Hartree-Fock, RPA or TDHF

is very challenging from the computational point of view. Moreover these

methods could not be appropriate to approach some physical situations.

In the last decades, therefore, many theories have been developed to en-

sure a trustworthly reproduction of several gross nuclear properties, such as

the ground state energies, the nuclear radii or the frequencies of the giant

resonances, employing methods which could be less computationally demand-
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ing.

In atomic physics, the Thomas-Fermi theory [70, 176] has demonstrated

to be able to provide truthful results, but it has not been widely applied

to the nuclear context in its original version, because of the shortness of

the range of nuclear forces [150]. However, the Extended Thomas-Fermi

(ETF) version afterwards developed for the stationary case has shown itself

that the corresponding semi-classical expressions, representing the different

observables on the average, can be a viable alternative to the solution of the

full quantum mechanical calculations [29].

The semi-classical procedure can be moreover generalized for the dynam-

ical case, where it can be pointed out that, in the limit for ~ → 0, the TDHF

equation leads to the Vlasov equation, which allows to depict a fluid dynamic

description of the giant resonances.

1.5.1 Thomas-Fermi approximation

The Thomas-Fermi (TF) theory, roughly speaking, assumes that the particles

at each point in space feel the potential as if it was locally equal to a con-

stant [150]. This corresponds to a break-off at the lowest order in the Taylor

series expansion of the self-consistent (Skyrme) Hartree-Fock potential U(r).

Under this assumption, it is demonstrated [29] that the local limit of the

TF density and kinetic energy density are given by

ρTF (r) =
1

3π2
k3FΘ(µ− U(r)) τTF [ρ] =

3

5

(

3π2ρTF
)2/3

(1.42)

where the local Fermi momentum kF has been defined as:

kF (r) =

[

2m

~2
(µ− U(r))

]1/2

. (1.43)

The Lagrangian multiplier µ coincides with the Fermi energy and is fixed by

the conservation of the number of particles N :

N =

∫

d3rρTF (r). (1.44)
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Because the TF approximation, the density matrix loses some feature of the

exact one, such as the property to be idempotent. Moreover, as a difference

with respect to the HF method, when one makes a variational calculation

with semiclassical densities, it is required the additional condition Eq. (1.44)

to fix the number of particles.

Actually, the TF approximation can also be obtained by expanding in

terms of ~ the Bloch function (see [29]) and taking only the lowest order

(~ → 0); retaining all terms up to the second order in ~ one can deduce the

Extended Thomas Fermi mentioned above.

1.5.2 Semi-classical limit of TDHF: the Vlasov equation

In order to develop the semi-classical limit of the TDHF equation Eq. (1.24),

we should recall the fundamental concept of Weyl transform [42, 193], which

converts an arbitrary operator in a function of r and p.

The starting point of this approach is in fact the definition of the so-called

Wigner function f(r, p)

f(r,p) =
1

h3

∫

e−ip·R

~ 〈r+ R

2
| ρ̂ |r− R

2
〉 dR, (1.45)

which is nothing but the Weyl transform of the one-body density operator ρ̂

already defined for example in Eq. (1.8).

By taking the time derivative of Eq. (1.45) and making use of the THDF

equation, one easily gets (see section A.3):

∂f

∂t
=

1

i~

1

h3

∫

e−ip·R

~ 〈r+ R

2
|
[

T̂ + Û , ρ̂
]

|r− R

2
〉 dR

=

(

∂f

∂t

)

1

+

(

∂f

∂t

)

2

(1.46)

where the terms connected respectively with one or two-body contributions

have been distinguished.
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In Appendix A.3, it is found that the one-body term is given by

(

∂f

∂t

)

1

= − p

m
· ∇rf, (1.47)

while the second addend is evaluated as
(

∂f

∂t

)

2

=
2

~
sin

(

~

2
∇rU · ∇pf

)

. (1.48)

The semi-classical approximation consists in taking only the first order

term, in the expansion of the right-hand side of the previous Eq. (1.48) as

power of ~, leading to:

(

∂f

∂t

)

2

=
2

~

(

~

2
∇rU · ∇pf + o (~3)

)

~→0−−→ ∇rU · ∇pf (1.49)

and so definitely, from the Eq. (1.46), one obtains the well-known collisionless

BNV equation [98], i.e. the Vlasov equation [187]

∂f

∂t
+

p

m
· ∇rf −∇rU · ∇pf = 0. (1.50)

In thisl limit, f is real and has the physical meaning of a distribution function

allowing for further semiclassical developements in the direction of adding

correlations in the time dependent picture.

We remark here that, while the one-body part is entirely classical in that

it contains no terms in ~, the two-body contribution has generally a non-

negligible quantum correction. The semi-classical approximation becomes

however exact if all the derivatives of U higher than the second order are

zero, as it happens for example for a free particle, a constant force or an

harmonic oscillator.

One sees that the collisionless BNV equation is equivalent to the Liouville

equation for the classical distribution function in the phase-space

df(r,p, t)

dt
= 0 (1.51)
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which expresses the balance in time between the incoming and the outgoing

amount of particles in a given classical volume of this space.

This is doubtless true for a gas of independent particles interacting with

a mean-field but without any genuine two-body collisions, coherently with

the hypothesis of the starting TDHF theory.

Otherwise, a collision term should be introduced on the right-hand side

of the Eq. (1.50), which returns the following BNV equation

∂f

∂t
+

p

m
· ∇rf −∇rU · ∇pf = Ic(f) (1.52)

where Ic(f) is a nonlinear integral operator in f . This collision term can

be obtained again in the semi-classical limit from the corresponding quantal

term neglected in deriving the TDHF equations [101].

1.6 Thermodynamics and phase transitions of

nuclear matter

Within the framework given by the mean-field treatment, the investigation

of nuclear systems can be even addressed from a thermodynamical point of

view, by exploiting EDF based on Skyrme-like forces [63]. Many efforts have

been dedicated in the last decades to the study of thermodynamics and phase

transitions both in finite nuclei [48, 166] and in (infinite) nuclear matter [167].

In this section, in particular, we investigate the thermodynamical behavior

of this latter nuclear medium by omitting the Coulomb interaction and so

dealing with that as a mixture of neutrons and uncharged protons. Such

idealized systems are indeed useful for understanding the bulk properties of

large nuclei. Although nuclear matter calculations are never realistic for any

nuclear system, they can be extended (in the semiclassical limit) to include

the Coulomb force between protons and treat finite nuclei and thus to be

used in realistic calculations of the neutron star crust (see Chapter 3).
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1.6.1 Equilibrium properties: Equation of State (EoS)

The most important ingredient to describe the equilibrium properties of nu-

clear matter, as for any thermodynamical system, is the knowledge of the

so-called Equation of State (EoS), that is a mathematical relation which

determines the general connection between two or more thermodynamical

quantities, such as energy, density and temperature. 3

The research for an EoS for nuclear matter is essential in many branches

of modern nuclear physics, ranging from nuclear structure [16, 141], to the

modeling of compact stellar objects [65, 147].

It is therefore really interesting to broaden our awareness on the behavior

of the nuclear matter even apart from the density conditions corresponding

to the saturation in nuclei.

In the last decade, in particular, the perspectives offered by nuclear astro-

physics and the possibility to take advantage of the new radioactive beams

for nuclear reactions has stimulated a growing interest in the isospin degree

of freedom and so in the behavior of the asymmetric nuclear matter (ANM).

Many investigations have been in particular concentrated on the isovector

part of the effective interaction, which depends on the difference between the

densities of the two nuclear species, and on the corresponding term in the

nuclear EoS, the so-called symmetry energy [113, 153, 177]. Such a term is

widely discussed in the description of heavy ion collisions [14, 50, 77] and also

in astrophysics, as far as the modeling of supernova explosions and neutron

3Schematically one can define two different situations in nuclear physics where the
temperature is a perfectly well defined theoretical concept:

• temperature and all related thermal quantities naturally emerge in quantum sta-
tistical mechanics when the system is complex enough that the exact quantum
microstate cannot be known exactly, as it occurs for isolated nuclei in the labora-
tory, when they are excited by a nuclear reaction into the continuum well above the
particle separation energy [12];

• the nuclei are in a thermal bath, that is they are immersed in an external hot
environment, as in astrophysical sites in the cosmos. In this case one can safely
assume that the nuclear system is in thermodynamic equilibrium, meaning that the
temperature of the environment can be equalized to the nuclear temperature [87].

Once its definition has been clarified, in the following discussion, the temperature will be
introduced and treated as an external parameter.
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stars is concerned [34, 113, 171].

Symmetry energy. The general expression for the energy per nucleon

in ANM is based on the empirical parabolic dependence on the asymmetry

parameter I = ρn−ρp
ρn+ρp

[123]:

E

A
(ρ, I) ≈ E

A
(ρ, I = 0) +

Esym

A
(ρ)I2, (1.53)

that is it can be seen as an expansion in power of I, where the higher order

terms are usually neglected.

The symmetry energy per nucleon can so be defined as

Esym

A
(ρ) =

1

2

∂2

∂I2
E

A
(ρ, I)

∣

∣

∣

∣

I=0

(1.54)

and, if the parabolic approximation holds, it can be evaluated as the differ-

ence between the energy per nucleon for the pure neutron matter (I = 1)

and symmetric nuclear matter (SNM) (I = 0).

Around a reference density ρ0 moreover, the symmetry energy is usually

expanded in terms of χ = ρ−ρ0
ρ0

as [201]

Esym(ρ) = Esym(ρ0) +
L(ρ0)

3
χ+

Ksym(ρ0)

18
χ2 + o(χ3) (1.55)

where L(ρ0) = 3ρ0
∂Esym

∂ρ
|ρ=ρ0 and Ksym(ρ0) = 9ρ20

∂2Esym

∂ρ2
|ρ=ρ0 are the density

slope and curvature parameters, which characterize the density dependence

of the symmetry energy around ρ0. Unfortunately, the symmetry energy

is not well constrained from experimental knowledge far from the density

values around normal condition at ρ0 ∼ 0.16 fm−3 and hence it exists a large

uncertainty on its value and slope, when one deviates from the saturation

value. The symmetry energy per nucleon for a Skyrme type EoS can be in

fact expressed as

Esym

A
(ρ) =

εF
3

+D0ρ+D3ρ
α+1 +

2m

~2

(

Ceff

3
+Deff

)

εFρ ≡
εF
3

+ Cpot(ρ)

(1.56)
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that is a sum of a kinetic contribution and of a potential part4.
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Figure 1.2: Different density parameterizations for
the potential part of the symmetry energy.

The former, coming from

the Pauli principle, turns

to be model-independent

and can be exactly evalu-

ated. For the latter one,

contrariwise, many func-

tional form have been

proposed, with some con-

traints given by experi-

ments on structure and

reactions. One of these

constraints is that sym-

metry energy has to re-

produce the aI coeffi-

cient of the Bethe-Weizsäcker mass formula [56] (see eq. Eq. (2.2) in sec-

tion 2.1), which is well-known with a reasonable experimental accuracy. As

alarge variety of predictions of its density dependence have been formulated

and many efforts to find some possible sensitive observables (such for in-

stance collective flows, isospin diffusion, light cluster emission) have been

performed [46, 106, 155].

However, the final word seems to be still far from getting. For that rea-

son, many effective interactions, which are rather different in the isovector

channel such as those plotted in Fig. 1.2, have been taken into account so

far. Looking at the Fig. 1.2, one can suddenly notice how, generally speak-

ing, different parameterizations of Cpot(ρ) converge below saturation density

ρ0. This contribution, being positive, is wherever repulsive, so that the sys-

tem will tend to reduce the asymmetry, enhancing the attraction between

neutrons and protons.

4For sake of simiplicity, the kinetic term has been written by considering the zero

temperature case, and by denoting with εF =
~
2k2

F

2m
the Fermi energy at density ρ.
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1.6.2 Stability of the system: free-energy curvature

Regardless of the effective interaction adopted, the EDF theory provides a

way to extract, in a given statistical ensemble, the corresponding thermody-

namical potential. It is known from statistical mechanics that the stability

of a thermodynamical system is completely characterized through the study

of the curvature of its potential [47]. 5

For example, for a nuclear system characterized by a given value of the

temperature T and fixed particle number A, the thermodynamical potential

will be given by the Helmotz free-energy F = E − TS, where S is the total

entropy of the system.6 By fixing the neutron and proton numbers, N and

Z respectively, in the thermodynamical limit, viz:

N

V

N,V→∞−−−−−→ ρn,
Z

V

Z,V→∞−−−−→ ρp, (1.59)

the free-energy comes out to be proportional to the volume and so the chem-

ical potentials can be evaluated, according to their definition, as:

µn ≡ ∂F

∂N
=
∂F
∂ρn

, µp ≡
∂F

∂Z
=
∂F
∂ρp

(1.60)

where F = F/V is the free-energy density. In this framework, if one wants

to analyze the stability of the system in the space of particle density fluctu-

5In order to ensure that an extremum configuration [X̄1, X̄2, . . . , X̄k] be stable for a
given functional W of the thermodynamical parameters {Xi}ki=1, one must insist that it
has a minimum in correspondence of that, which in turn requires the second-order variation
to be positive definite:

0 <
k
∑

i,j=1

∂2Wi

∂Xi∂Xj

∣

∣

∣

∣

Xi=X̄i

δXiδXj , (1.57)

or, equivalently, if and only if the curvature matrix C
W
ij = ∂2Wi

∂Xi∂Xj
has only positive

eigenvalues.
6According to its usual definition in statistical mechanics, denoting by kB the Boltz-

mann constant, the entropy of the system is defined as [98]

S = kB ln
∑

{ni}

Γ{ni}, (1.58)

so it essentially depends on the number of states of the system which corresponds to the
occupation number {ni}.
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ations, one must look at the following curvature matrix C, that is:

C =

(

∂µn/∂ρn ∂µn/∂ρp

∂µp/∂ρn ∂µp/∂ρp

)

. (1.61)

The two eigenvectors of the curvature matrix Eq. (1.61) correspond to the

normal oscillation modes of the system in the space of density fluctuations.

In SNM, these two modes, labeled as isoscalar or isovector mode depending

on whether the two nuclear species move in or out of phase respectively,

are fully decoupled. This characterization does not strictly hold anymore in

ANM case, where because of the asymmetry of the matter, the two species

cannot oscillate with the same amplitude, even if they can still move in phase

(isoscalar-like) or out of phase (isovector-like), and this leads to a coupling

between the two normal modes [13].

1.6.3 Liquid-gas phase transition: spinodal instability

In the general context of many-body systems, another common feature is

the possible occurence of different kinds of phase transitions. Since nuclear

forces have an attractive finite-range part and a repulsive hard core, the

nuclear matter resembles a Van der Waals fluid. As a consequence, in analogy

with the latter system, for homogeneous nuclear matter at sub-saturation

density and relatively low temperature, a liquid-gas phase transition (p.t.) is

expected to appear, driven by the instability exhibited by the mean-field [47].

In ANM at a fixed temperature T, it emerges therefore the occurence of

matter instabilities, associated to the region where the free-energy density is

concave at least in one direction. This ensemble of unstable points where the

lower eigenvalue of the curvature matrix is negative, is known in literature

as spinodal region [14].

In this region of the phase diagram, an homogeneous infinite system ex-

hibits therefore a mechanical instability associated to a region of negative

matter incompressibility K,7 which leads to a phase separation; this can

explain why the liquid-gas phase transition has been considered as a good

7The incompressibility of the nuclear matter is related to the curvature of the EoS and
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candidate to interpret the mechanism responsible for the production of in-

termediate mass fragment (IMF) producted in heavy ion collisions at Fermi

energies (∼ 30÷ 50 MeV/A) [28]. Such a process is also closely linked to the

occurrence of clustering phenomena in the inner crust of neutron stars [86,

110, 179].

Inside the spinodal region of ANM, moreover, the mixing between the

two modes leads also to a re-assembling of the chemical composition of the

two phases on which the system tends to separate, so that the higher density

phase (liquid) becomes more symmetric than the low-density one (gas). This

phenomenon, known as isospin distillation mechanism [13] is significantly

influenced by the symmetry energy and it will be discussed more in detail in

the next chapter. Lastly, it is useful to underline that the spinodal instability

discussed above is a general phenomenon in many-body systems, rather than

merely an artifact of the mean-field approximation adopted in this chapter.

can be defined at saturation density as:

K(ρ0) = 9ρ20
∂2E/A(ρ)

∂ρ2

∣

∣

∣

∣

ρ=ρ0

(1.62)
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Chapter 2

Superfluidity in nuclear matter:

pairing correlations

This chapter is entirely dedicated to the investigation of one characteristic

phenomenon of many-body systems, which has been intensively studied in

several domains of physics: superfluidity. In the next sections, this concept

is analyzed starting from the experimental evidences from which the exis-

tence of pairing correlations is inferred, until the main theoretical schemes

developed for its interpretation.

A modification of the HF theory, presented in Chapter 1, is going to

be introduced, in order to take into account in a consistent formalism this

kind of correlations. Correspondingly, the Hartree-Fock-Bogolioubov (HFB)

theory is discussed, together with an important approximation: the Bardeen-

Cooper-Schrieffer (BCS) theory, that has proven to be extremely successful

in describing the superconducting phenomena in condensed matter.

Similarly to what it was shown in the first chapter, the discussion is then

extended to the dynamical case, in order to highlight the changes that pairing

may establish, albeit incorporating these correlations in a time dependent

mean field theory.

Once the contribution of the pairing interaction to the EDF is determined,

the last part of this chapter is finally focused on the analysis of the pairing

role in characterizing the thermodynamical (spinodal) instability exhibited
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by nuclear matter in the low density region, up to moderate temperatures.

2.1 Experimental evidences of pairing in nuclei

Pairing correlations constitute a kind of particle-particle correlations, which

occur under suitable conditions in fermionic systems and whose existence

have historically been deduced by several experimental facts. It is therefore

useful to have a brief digression on the most relevant results revealing the

emergence of this coupling in nuclear many-body systems.

The gap in the energy spectrum. A first interesting issue which has

been dealt by using the idea of pairing is the energy gap observed in the

spectrum of excitation energies of some nuclei. Considering for example a

nucleus with an even number of protons Z, its spectrum shows remarkable

differences depending on whether its mass number A is odd or even.

Figure 2.1: Spectrum of excitation energies for Sn
isotopes, see [150, p. 218].

It is observed that,

starting from the ground

state, even-even nuclei

have only few collective

levels up to 1.5 MeV of

excitation energy; con-

versely, even-odd nuclei

have many excited states

of both collective and

independent particle na-

ture in the same energy

range. This is clearly

exemplified by Fig. 2.1,

where this gap is shown

for different tin isotopes. Such abnormal behavior has a simple explanation

by admitting the presence of pairing correlations: whereas in even-odd nuclei

the unpaired nucleon can easily be excited above the Fermi surface; in even-

even nuclei, nucleons are coupled and so to excite the system it is necessary
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to provide the energy to break up the couple, or alternatively to excite the

couple itself.

Odd-even effect. Another relevant experimental evidence for the exis-

tence of the pairing interaction is the renowned odd-even effect in the neutron

and proton separation energy.

Figure 2.2: Neutron separation energy Sn(N,Z) as a
function of the neutron number N , taken from [67].

It is experimentally

found that the binding

energy1 of an even-odd

nucleus is lower than

the average binding en-

ergies of the two even-

even neighboring nuclei.

It is known, in fact,

that the binding energies

are well reproduced by

the semi-emipirical mass

formulas, such as that

one tuned by Bethe and

Weizsäcker [56]:

B(A,Z) = aVA+ aSA
2/3 + aC

Z2

A1/3
+ aI

(N − Z)2

A
+∆(A). (2.2)

In the latter expression together with volume, surface, Coulomb and symme-

try term, denoted by aV , aS, aC and aI respectively, one notices the presence

1The binding energy B(A,Z) of a nucleus, in a units reference frame where the light
speed c = 1, as it is known, is given by this formula

B(A,Z) = ZMp +NMn −M(A,Z), (2.1)

with Mn and Mp referring to the neutron and proton mass, respectively, while M is the
total mass of the (A,Z) nucleus.
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couples of nucleons has surely a more compact geometrical shape than one

with unpaired nucleons.

Concerning the deformation, instead, from the experiments it emerges

that nuclei, whose mass number do not deviate too much from the closed shell

configuration still preserve an approximately spherical symmetry in their

ground state, as an evidence of pairing correlations.

In conclusion, all experimental results reviewed in this section indicate the

existence of a two-body attractive interaction, accountable for the forma-

tion of nucleon pairs. These couples, named as Cooper pairs, show a close

resemblance to those determining the phenomenon of superconductivity in

metals.

2.2 Hartree-Fock-Bogolioubov (HFB) theory

It has been already stressed in Chapter 1 that many properties of nuclei can

be explained adopting a model of independent particles moving in an average

potential. Under this assumption, in the first chapter, looking for a wave

function describing the ground state of the nucleus and restricting ourselves

to an independent single-particle product ansatz (Slater determinant), the

Hartree-Fock method was developed just minimizing the total energy of the

system. However, in order to extend this framework and to take into account

the effect of the pairing, one must consider, still within a mean-field approach,

a more general many-body wave function than a Slater determinant.

The Hartree-Fock-Bogoliubov (HFB) theory generalizes the HF method

by introducing the concept of the so-called Bogoliubov “quasi-particles” [23].

The basic idea is to represent the ground state |Φ〉 of a nucleus as a vacuum

for these quasi-particles:

β̂k |Φ〉 = 0, (2.4)

where β̂k and its adjoint β̂†
k are the quasi-particle operators, which are con-

nected to the creation and annihilation operator defined in section 1.2.2 by
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the Bogoliubov linear transformations:







β̂k =
∑

i

(

u∗ikâi + v∗ikâ
†
i

)

β̂†
k =

∑

i

(

vkiâi + ukiâ
†
i

)

.
(2.5)

The latter system can be rewritten in a matrix form as

(

β̂

β̂†

)

=

(

u† v†

vT uT

)(

â

â†

)

= W†

(

â

â†

)

, (2.6)

where the matrix W
W =

(

u v∗

v u∗

)

, (2.7)

must satisfy the unitary constraint: WW† = W†W = 1. Even if the Bogoli-

ubov transformations written in Eq. (2.5) do not uniquely define the HFB

wave function |Φ〉, it is possible to demonstrate [150] that this uniqueness is

preserved in the definition of the following quantities:

ρij = 〈Φ| â†j âi |Φ〉 , κij = 〈Φ| âj âi |Φ〉 , (2.8)

where ρij has the same form identified in Eq. (1.8) and is denominated here-

after as normal density, to be distinguished from κij, which is referred as

abnormal (pairing) density.

The Bogoliubov transformations violate the symmetry related to the

particle number conservation so that, in order to preserve this symmetry,

one should correspondingly modify the Hamiltonian operator Ĥ defined in

Eq. (1.11) as:

Ĥ ′ = Ĥ − µN̂ , (2.9)

where N̂ is the number operator, and µ is a Lagrangian multiplier which, by

its definition, coincides with the chemical potential.

Analogously as it has been done in Eq. (1.14), the total energy of the

system, namely the expectation value of the (grancanonical) Hamiltonian
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Eq. (2.9), can be derived as a functional of both densities defined above:

EHFB[ρ, κ] =
∑

ij

[(

Tij − µδij +
1

2
Uij

)

ρji +
1

2
∆ijκ

∗
ji

]

, (2.10)

where the pairing field ∆̂, added to the self-consistent field Û , is defined as

∆ij =
1

2

∑

kl

V̄ijklκkl. (2.11)

The fields introduced above account for different contributions: the field Û

accounts for all the long range ph-correlations, while ∆̂ contains the short-

range pairing correlations responsible for the superfluid state.

Similarly to the HF case, one can make the variation with respect to the

normal and abnormal densities and, by employing the Rayleigh-Ritz princi-

ple, one finds the well-known HFB equations:

(

h− µ ∆

−∆∗ −h∗ + µ

)(

uk

vk

)

= Ek

(

uk

vk

)

, (2.12)

where this extension of the definition of single particle hamiltonian hij given

in Eq. (1.17) has been applied

hij =
∂E[ρ, κ]

∂ρij

∣

∣

∣

∣

κ

. (2.13)

It could be interesting to put these equations in a more compact form. This

is possible by defining a generalized density matrix R

R =

(

ρ κ

−κ∗ 1 − ρ∗

)

, (2.14)

which is hermitian and idempotent, as a mere algebraic calculation shows.

Denoted as H the matrix involved in the r.h.s. of the Eq. (2.12)

H =

(

h− µ ∆

−∆∗ −h∗ + µ

)

, (2.15)
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in the basis corresponding to the operator β̂k, both matrices H and R are

diagonal, so that the HFB equations become

[H,R] = 0, (2.16)

as in the formulation presented in Eq. (1.20) for the HF theory.

Although HF and HFB equations look formally the same, some impor-

tant differences exist in their resolution. On the one hand, in fact, it has

been already mentioned that HFB equations require an additional constraint

to impose the conservation of the average number of particles, which is au-

tomatically preserved in HF theory. On the other hand, while in the HF

ground state only the first A energy levels are involved and so necessarily

implemented in the resolution, in the HFB one should take into account also

the states above the Fermi level, because they can be populated by the quasi-

particles. The computational time one needs to solve HFB equations is hence

much larger than the corresponding HF one.

2.2.1 Bardeen-Cooper-Schrieffer (BCS) approximation

An intermediate approximation between HF and HFB, which can reduce the

complexity of the calculations is given by the well-known Bardeen-Cooper-

Schrieffer (BCS) approximation [17].

The BCS theory has been historically a significant development of the HF

method. Although it is not fully adequate for nuclei, the BCS approximation

is the correct mean-field limit for infinite matter. As provided by this theory,

the state with the lowest energy is constitued only by Cooper pairs, since the

coupling between the two particles leads to a decrease in the energy of the

system; this variation exceeds also the increase in the kinetic energy caused

by the unavoidable occupation of states with energy higher than the Fermi

level.

Because of pairing the occupation numbers for hole and particle states, uk
and vk respectively, are unknown, id est they become variational parameters

one should evaluate, contrarily to the HF case where are known a priori.

The basic idea of the BCS method is to suppose that the pairing field
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matrix ∆ij couples only conjugate states (i, ī), that are states with the same

quantum numbers except for the opposite projection of the angular momen-

tum:

∆ij ≈ ∆i,̄i ≡ ∆i. (2.17)

In order to make easier the discussion, one can limit to even-even nuclei.

Under this assumption, the variational ansatz for the BCS ground state of a

superfluid even-even nucleus can be written as

|BCS〉 =
∏

i>0

(

ui + viâ
†
i â

†
ī

)

|0〉 , (2.18)

where, as anticipated above, ui and vi are arbitrary variational parameters,

with the only one constraint given by the vector normalization:

∣

∣ui
∣

∣

2
+
∣

∣vi
∣

∣

2
= 1. (2.19)

The sign of i is determined by the projection of the angular momentum, so

that for each state with i > 0, it exists a conjugate state ī < 0 and vice versa;

the product in Eq. (2.18) can be therefore restricted only to half of the whole

single-particle space.

In the basis where the density matrix ρij is diagonal, the expected value of

the Hamiltonian Eq. (2.9), in analogy with the corresponding HFB functional

derived in Eq. (2.10) can be written as:

EBCS =
∑

i

(

Tii − µ+
1

2
Uii

)

v2i −
∑

i>0

∆iuivi, (2.20)

where the quantity

∆i = −
∑

j>0

V̄īijj̄ujvj (2.21)

denotes the energy gap of the superfluid state, that means the energy owned

by the Cooper pair as a consequence of the pairing introduced.

As usually the variational parameters are obtained after the energy mini-

mization, that is performed by maintaining constant the normalization given
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in Eq. (2.19). A straightforward algebraic calculation leads to:

v2i =
1

2

(

1− ξi
√

ξ2i +∆2
i

)

(2.22)

u2i =
1

2

(

1 +
ξi

√

ξ2i +∆2
i

)

, (2.23)

with ξi defined by

ξi = Tii − µ∗
i , (2.24)

where Tii is the single-particle kinetic energy, while the effective chemical

potential µ∗
i writes in terms of the mean field Uii as

µ∗
i = µ− Uii. (2.25)

The definitions given above allow us to rewrite the gap in this way

∆i = −1

2

∑

j>0

V̄īijj̄
∆j

√

ξ2j +∆2
j

. (2.26)

The latter equation is known in literature as the gap equation and it is solved

together with that one preserving the conservation of the average number N
of particles:

N = 2
∑

j>0

v2j =
∑

j>0



1− ξj
√

ξ2j +∆2
j



 , (2.27)

where the coefficient 2 in front of the summation accounts for the spin de-

generacy.

The system constituted by the equations Eq. (2.26) and Eq. (2.27) is

closed, since it has a number of equations exactly equal to the number of

quantities one needs to calculate (the gap of each state and the chemical

potential). In spite of it, that system is not easy to solve, because the two

equations are coupled. The self-consistency inherently exhibited by the sys-

tem requires therefore the adoption of an iterative solution, which will be

developed in section 2.4.2 and will lead to several applications in the next

56



2. Superfluidity in nuclear matter: pairing correlations

chapters.

By exploiting the microscopic ab-initio calculations for the gap, the BCS

theory can in fact be used to have a (quasi)-exact treatment of infinite matter

and allow extrapolations to be able to treat dynamics.

2.3 Time Dependent Hartree Fock Bogoliubov

(TDHFB) theory

The derivation of the TDHFB equations fully traces the procedure followed in

Appendix A.2 in the case of the TDHF theory. The only difference obviously

regards the presence of the abnormal pairing density κij and so all the terms

where it is involved.

In Appendix A.4, it is determined the temporal evolution of both normal

and abnormal densities and the result is shown in these equations:

i~ρ̇ = [h, ρ] + κ∆∗ −∆κ∗

i~κ̇ = hκ+ κh∗ +∆(1 − ρ∗)− ρ∆ (2.28)

By repeating the procedure for their hermitian matrices, at the end one

obtains the well-known TDHFB equations:

i~
∂R
∂t

= [H,R] , (2.29)

where H and R are the matrices defined in Eqs. (2.14) and (2.15) and whose

time-independent case trivially coincides with the Eq. (2.16).

A weak point of the TDHFB theory is without any doubt the compu-

tational cost of its implementation. A reasonable estimation of the time

consumed by a TDHFB code is two or three orders of magnitude higher than

the one of a TDHF numerical calculation [163]. As a consequence, very few

TDHFB applications employing realistic interactions have been done so far,

usually adopting restrictions on the model space [92, 175]. Conversely, sev-

eral approximated methods have been developed with the aim to reduce the

computational time.
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2.3.1 Canonical-basis (Cb-TDHFB) approximation

A reliable and successful method to save computational time is for example

based on the Canonical-basis TDHFB (Cb-TDHFB) approximation. Starting

from the TDHFB equations Eq. (2.28), the derivation of the Cb-TDHFB

equations is based on the possibility to express the normal and abnormal

density matrices in the orthonormal canonical basis and, in the same basis,

on taking into account only the diagonal part of the pair potential [68]. Under

these assumptions, the Cb-TDHFB equations are written in the following

way:

i~
∂ϕk(t)

∂t
= (h[ρ](t)− ηk(t))ϕk(t)

i~
∂ηk(t)

∂t
= κk(t)∆

∗
k(t)−∆k(t)κ

∗
k(t)

i~
∂κk(t)

∂t
= κk(t) (ηk(t) + ηk̄(t)) + ∆k(t)(2ηk(t)− 1), (2.30)

where ϕk(t) is single-particle wave function as defined in Eq. (1.40), while

ηk(t) is an arbitrary time-dependent function, whose value does not influence

the evolution of the other observables.2 Moreover, one should underline that,

in the stationary limit, the Cb-TDHFB approach is completely equivalent to

the ordinary BCS approximation.

The resolution of these TDHF+BCS equations will be then faced in Chap-

ter 5, in order to address the dynamical effects of the pairing correlations.

2.3.2 Quasi-particle RPA and semi-classical methods

Although they are not used in the present work, one should mention some

other important methods developed to describe the collective excitations of

atomic nuclei in presence of pairing correlations.

2Actually, in order to minimize the numerical error in the differential equation resolu-
tion, it is usually adopted the suitable choice

ηk(t) = 〈ϕk(t)|h[ρ]|ϕk(t)〉 . (2.31)
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Several extensions of the RPA theory described in section 1.3.2 have been

introduced in the last decades to take into account pairing correlations, in

complete analogy to the normal case. These Quasi-particle RPA (QRPA)

approaches may therefore profitably encapsulate in only one coincise form,

both ph and pp excitations of small amplitude, to provide a microscopic de-

scription of the low-lying collective states [89, 129]. In the small amplitude

limit, in fact, the QRPA is completely equivalent to the TDHFB. For spher-

ical nuclei, there are extensive studies with the QRPA to investigate excited

states in stable and unstable nuclei [175] and the coupling with continuum

states [102]. Furthermore, recently the QRPA calculations have become pos-

sible also for nuclei with axially deformed ground states, allowing to get

a description of quadrupole, octupole and pairing vibrations for these sys-

tems [116]. However, these fully self-consistent QRPA calculations require

yet a massive computational cost.

At the same time, the problem of extending the semi-classical Vlasov

equation derived in section 1.5.2 to superfluid systems has been tackled many

years ago by Di Toro and Kolomietz in the nuclear physics context [58] and,

more recently, by Urban and Schuck [183] to study the dynamics of trapped

systems made of atomic fermions. In these mesoscopic systems, the semi-

classical approach simplifies the fully quantum calculation. Unfortunately,

the application of this method to study the linear response of heavy nuclei has

allowed so far to evaluate pairing effects in low-energy excitations only under

quite drastic approximation [1]. Otherwise, the adoption of the semi-classical

approach does not lead to a concrete simplification of the equations.

2.4 Pairing effective interaction

The formalism adopted in the HFB theory has provided an useful tool to

investigate the nature of a paired many-body system in a very general case.

Nevertheless, in the general context of the nuclear EDF theory discussed in

Chapter 1, the HFB equations could be also obtained simply by minimiz-

ing the energy with respect to the normal and pairing density matrices for

a fixed average number of neutrons and protons [60]. All one needs is the
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specification of the pairing contribution Epair to the nuclear energy density

functional presented in Eq. (1.37) and so it would be desirable to introduce,

rather than the general interaction considered so far, a suitable pairing ef-

fective interaction which allows one to easily perform the calculations and,

at the same time, to well describe the pairing properties of both finite nuclei

and infinite nuclear matter.

The pairing effective interaction most commonly adopted in literature [43]

is a spin-independent and contact range interaction3, viz:

Vpair(r1, r2) =
1

2

(

1− P̂σ

)

vπq [ρn(r), ρp(r)] δ(r12) q = p, n, (2.32)

where vπq is the so far unspecified strenght of the pairing interaction, while

P̂σ is the spin-exchange operator defined in section 1.4.1.

Although the microscopic analysis in semi-infinite nuclear matter sug-

gests the presence of a surface component for the pairing in nuclei [10], the

density dependence of the pairing interaction is still poorly known nowadays.

Despite of it, in the next, the following density dependence of the strength

is adopted [20]:

vπq(ρn, ρp) ≡ vπ(ρq) = V Λ
π

[

1− ηπ

(

2ρq
ρ0

)απ
]

, (2.33)

where V Λ
π , ηπ and απ are parameters one should properly choose.

It is quite interesting to underline that, while interactions with ηπ equal

to 0 or 1 correspond to the extreme cases where the pairing is considered

uniquely a volume or a surface phenomenon, respectively, systematical stud-

ies in nuclei seem to prompt for a mixed nature of the pairing [59, 157].

Moreover, by considering a δ interaction as in Eq. (2.32), the orbital angular

momentum is zero and so only the S-wave scattering is allowed.

3Because of the zero range of the interaction employed, a regularization procedure must
be applied in order to avoid divergency problems [66].
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2.4.1 Energy gap in pure neutron matter

Regardless of the parameterization of the pairing effective interaction one

chooses, the interaction introduced in Eqs. (2.32) and (2.33) has however a

phenomenological nature, with all its benefits and shortcomings. As men-

tioned in Chapter 1, though these forces have been widely applied in nuclear

structure calculations, they have not any immediate connections with realis-

tic nucleon-nucleon interactions and thus their reliability beyond the domain

in which they are fitted is not fully guaranteed.

In order to establish a deeper relation with the real nucleon-nucleon in-

teraction, in the framework of the infinite systems we are interested in, it

has been recently proposed to determine the parameters of the pairing in-

teraction by fitting the gap in nuclear matter as deduced from microscopic

calculations that make use of a realistic force, in the BCS approximation [76]

and in Brueckner-type calculations [39]. In the next sections, in particular,

the calculations which are going to be considered are based on the realistic

nucleon-nucleon interaction Argonne v14 [39]. Anyway, the calculations mak-

ing use of the BCS theory with the single free particle spectrum give back

similar results even employing different interactions [9, 57].

Unluckily, the evaluation of the gap is available only for matter with

extreme values of the asymmetry I, that is for SNM (I = 0) or in the pure

neutron matter (I = 1) case. Moreover, although in principle the pairing

interaction can act between particles belonging to different nuclear species,

it has been observed that in the 1S0 pairing channel we are focusing on,

which characterizes nucleons with zero angular momentum l and opposite

spin projection, the neutron-proton pairing is strongly quenched as soon as

the asymmetry I of the matter exceeds 0.1 [164]. Thus, even a small difference

on the Fermi surfaces of the two species involved destroys the np pairing.

Since in our work we are mainly interested in the behavior of asymmetric

nuclear matter, also in connection with the important astrophysical impli-

cations of superfluidity (see Chapters 3 and 4), it has been decided finally

to extract the 1S0 gap from the pure neutron matter case and therefore to

consider the pairing only in nn or pp channel, by extrapolating to protons
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the results obtained for the neutron-neutron pairing strength.

Moreover, one should mention that, because of the contact range of the

interaction adopted in Eq. (2.32), the 1S0 neutron gap ∆n is momentum-

independent and therefore, by considering its value at the Fermi momentum

pFn = ~kFn , it turns to be only density dependent, greatly simplifying the

resolution of the BCS gap equation Eq. (2.26).
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Figure 2.4: The 1S0 neutron pairing energy gap ∆n evaluated at the Fermi mo-
mentum pFn , as obtained in Brueckner calculations of pure neutron matter, as a
function of the neutron density ρn.

Fig. 2.4 shows the (neutron) density dependence of the 1S0 pairing gap, as

given in [115]. In this figure, it clearly emerges that this kind of correlations in

neutron matter are mostly active in the sub-saturation density region (below

0.1 fm−3). Specifically, the 1S0 pairing gap exhibits a rather extended peak,

with a maximum around 3 MeV for very low density values (∼ ρM = 0.02

fm−3), together with a smooth decrease at higher densities and a quite sharp

vanishing when ρ approaches zero.
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2.4.2 Determination of the strength: gap equations

Once the 1S0 gap is fixed, the density dependence of the pairing strength

Eq. (2.33) can be evaluated, for any value ∆(ρq), by inverting the Eq. (2.26),

together with the equation for the conservation of the number of particles

(Eq. (2.27)). Both equations, still in the zero temperature case, are re-written

below in the thermodynamical limit as:

I∆ ≡ −vπ(ρq)
∫

dp

(2π~)3
1

2E∆
q

= 1

Iρ ≡
∫

dp

(2π~)3

(

1− ξq
E∆

q

)

= ρq, (2.34)

where E∆
q =

√

ξ2q +∆2
q is the single quasi-particle energy, ξq is given by

ξq =
p2

2m∗
q

− µ∗
q, (2.35)

and having denoted with m∗
q the nucleon effective mass. The definition of

this latter quantity, bearing in mind the analytical form of the energy density

functional E given in Eq. (1.37), is expressed by this relation [147]:

m∗
q

m
=

~
2

2

(

∂E
∂τq

)−1

, (2.36)

thus it differs from the bare nucleon mass m only in case of momentum-

dependent interactions.

Let us highlight some general features of Eqs. (2.34). First of all it is

important to underline that the effective masses introduce a connection be-

tween the values of the parameters of the pairing effective interaction and

those of the Skyrme parameterization employed. On the other hand, param-

eterizations with the same effective mass are going to have the same values

for the parameters in Eq. (2.33).4 Another important remark regarding the

effective masses is the coupling produced in the gap equations of the two

4It obviously implies that even all momentum independent interactions present the
same values for V Λ

π , ηπ and απ.
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nucleonic species, whereas Eqs. (2.34) would be fully decoupled in case again

of momentum independent interactions. Finally, let us stress that, in order

to cure the divergency exhibited at high p-values by the gap equation, it has

been decided to put a cut-off on the single particle kinetic energy so that

εΛ =
p2
Λ

2m∗

q
− µ∗

q is equal to 16 MeV [43]. Such a regularization necessarily

affects the value of the strength parameters, especially for V Λ
π . At very low

densities, in fact, both the pairing gap and the effective chemical potential

vanish, so from the gap equation it is easy to demonstrate that:

V Λ
π = lim

ρq→0
vπ(ρq) = − 4π2

√
εΛ

(

~
2

2m

)3/2

, (2.37)

and so the parameter V Λ
π comes out to be strongly dependent (only) on the

energy cut-off εΛ introduced, under the constraint that m∗
q

ρq→0−−−→ m. This

relation between V Λ
π and εΛ has to be taken into account when one fits the

strenght of the pairing interaction.

2.4.3 Inclusion of the pairing in the nuclear EDF

The definition of the pairing effective interaction Eq. (2.32) allows one to

associate to the nuclear EDF the following pairing energy density [44]:

Epair =
1

4

∑

q=n,p

vπ [ρq(r)] ρ̃
2
q(r), (2.38)

where the local pairing density ρ̃ is defined, in the coordinate space, as

ρ̃q(rs, r
′s′) = −2s′κq(rs, r

′ − s′). (2.39)

The local part of the latter, in particular, in the BCS approximation and

by summing up over the spin values and taking into account the relation

Eq. (2.11), can be written as

ρ̃q(r) =
∑

s

ρ̃q(rs, rs) = −κq↑↓(r) + κq↓↑(r) = 2κq↓↑(r) = 2
∆q

vπ(ρq(r))
(2.40)
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2. Superfluidity in nuclear matter: pairing correlations

so that one can achieve the following relations:

Uq =

(

∂E
∂ρq

)

ρ̃q

, ∆q =

(

∂E
∂ρ̃q

)

ρq

. (2.41)

It should be taken into account that, since the Eq. (2.38) depends on the

normal nucleon densities, Epair also contributes to the mean-field potential

Uq.

2.5 Impact of superfluidity on thermodynami-

cal properties of ANM

In this section, making use of the pairing effective interaction introduced in

Eqs. (2.32) and (2.33) and of its contribution to the EDF Eq. (2.38), we are

going to show the effect of the pairing on some thermodynamical properties

of ANM. For the sake of simplicity, we will consider a simplified version of

the Skyrme energy density functional defined in Eqs. (1.37) and (1.38), in

which the momentum dependent terms are neglected (Ceff = Deff = 0) and

the incompressibility modulus K (see Eq. (1.62)) equals 200 MeV [32]. As far

as the symmetry energy is concerned, the parametrizations considered allow

for two different types of density dependence, associated with two different

parametrizations of the potential part of the symmetry energy coefficient,

Cpot(ρ) of Eq. (1.56). For the asy-stiff EoS, Cpot(ρ) = 18 ρ
ρ0

MeV, while the

asy-soft case corresponds to a parametrization with Cpot(ρ) =
ρ
2
(482−1638ρ)

MeV, associated with a small value of the slope parameter L. In this frame-

work, the curve describing the density behavior of the strength function vπ,

as obtained for pure neutron matter, is shown in Fig. 2.5 while the corre-

sponding values of the coefficients V Λ
π , ηπ and απ are given in Table 2.15.

5The value of V Λ
π listed in Table 2.1 is actually not consistent with the analytical

formula given in Eq. (2.37), because the pairing interaction has been fixed in this case to
reproduce the gap in the density range 0.003 fm−3 ≤ ρq ≤ 0.075 fm−3. In the following
chapters, whereas the behavior at very-low density will be considered, we will take into
account the prescription given in Eq. (2.37).
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Figure 2.5: The neutron pairing strength vπ as a function of the neutron matter
density ρn, as evaluated for momentum independent Skyrme interaction.

Table 2.1: The values of the parameters in the pairing effective interaction as
achieved employing a simplified Skyrme interaction, without the momentum depen-
dence.

V Λ
π [MeV fm3] ηπ απ

−1157.51 0.884 0.256

2.5.1 Influence on chemical potential and its derivatives

The solution of the gap equations allows one to evaluate not only the density

dependence of the strength, but also the behavior with respect to ρq of the

effective chemical potential µ∗
q. It may be useful to recall that, in absence

of pairing, the latter quantity coincides with the Fermi energy εFq of the

nucleonic species q. Its modification caused by the coupling between particles

is shown in Fig. 2.6.

The latter figure illustrates that the difference between the two functions

is around 0.4 MeV at very low-density, but smoothly vanishes when increas-

ing the density, until the two quantities converge. As one can expect, the

repulsive pairing effect on µ∗
q, which can be connected to the Pauli blocking,
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Figure 2.6: Difference between the chemical potentials, as evaluated for superfluid
and normal matter respectively, as a function of the nucleonic density ρq (blue
curve). The red curve represents also the difference between µ∗

q in superfluid matter

and the corresponding Fermi energy εFq for the normal case, as a function of the
density ρq. The green curve shows the density behavior of the potential contribution
of the pairing to the chemical potential.

depends on the ratio ∆q

µ∗

q
and so it is more important on the one hand when

the gap is close to its maximum, on the other hand when µ∗
q is smaller.

Actually, keeping in mind the relation Eq. (2.25) and by reminding that,

because of the density dependence of the pairing strength, the mean-field

potential Uq defined in Eq. (2.41) also gets the contribution Uπ q from the

pairing energy density Epair [44], one easily deduces:

µq = µ∗
q + USky q + Uπ q, (2.42)

with

Uπ q =

(

∂Epair

∂ρq

)

ρ̃q

=
∂vπ(ρq)

∂ρq

[

∆q

vπ(ρq)

]2

, (2.43)

where the latter term is the (attractive) potential contribution of the pairing

to the chemical potential and it has been evaluated by using the definition

67



2. Superfluidity in nuclear matter: pairing correlations

Eq. (2.40) of ρ̃q. This quantity partially counterbalances the kinetic correc-

tion, but since the two contributions do not cancel each other, the global

pairing effect on the chemical potential turns to be appreciable in a quite

wide range of density values.

In Chapter 1, it also emerged the importance to study the chemical po-

tential derivative with respect to the density, since this quantity is connected

to the compressibility of the matter and, more generally, to its stability. The

evaluation of the derivative of Eq. (2.42) requires the knowledge of the follow-

ing derivatives: ∂µ∗
q/∂ρq and ∂∆q/∂ρq (the latter appears in the derivative

of the potential Uπ q), which can be obtained by solving the following set of

equations, derived from the gap equations Eq. (2.34):















∂I∆
∂ρq

+
∂I∆
∂µ∗

q

∂µ∗
q

∂ρq
+
∂I∆
∂∆q

∂∆q

∂ρq
= 0

∂Iρ
∂µ∗

q

∂µ∗
q

∂ρq
+
∂Iρ
∂∆q

∂∆q

∂ρq
= 1

(2.44)

Actually, since the Skyrme term is not affected by the pairing, a deeper

insight into the amplitude of the superfluidity effect on the chemical potential

derivatives can be obtained by looking directly at the quantity

δq =
∂µ∗

q

∂ρq
+
∂Uπ q

∂ρq
. (2.45)

The latter is displayed in Fig. 2.7, as a function of the density ρq, together

with the corresponding value of normal nuclear matter (which is the density

derivative of the Fermi energy). The two curves exhibit a larger difference in

two different ranges of density values, where moreover an opposite variation

with respect to the normal matter case is shown. This particular behavior

leads, as it will be seen in the following sections, to very interesting results

and applications.
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Figure 2.7: The quantity δq (see text) as a function of the density, in normal
(dashed line) and superfluid (full line) matter.

2.5.2 Finite temperature: normal-superfluid phase tran-

sition

The impact of superfluidity on the properties of ANM has been so far inves-

tigated in the case of zero temperature. The introduction of the temperature

T , as another degree of fredoom, makes the scenario depicted above more

complicated. First of all, the mofication introduced by temperature on the

particle occupation number determines the following change on the gap equa-

tions Eq. (2.34):

1 = −vπ(ρq)
∫

dp

(2π~)3
1

2E∆
q

tanh
E∆

q

2T

ρq =

∫

dp

(2π~)3

(

1− ξq
E∆

q

tanh
E∆

q

2T

)

, (2.46)

secondly, as a consequence, the energy gap ∆ turns to be now temperature

dependent. Since the solution of the Eq. (2.34) at zero temperature has

fixed the pairing strength, by solving the gap equations Eq. (2.46), one can
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evaluate the gap for any finite temperature T. The results are shown, for

several T values, in Fig. 2.8. Looking at this figure, one notices how, for each
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Figure 2.8: The energy 1S0 pairing gap ∆n, as a function of the neutron density
ρn for several values of the temperature T . The inset show the same quantity,
but as a function of the temperature and for the density ρM = 0.02 fm−3 which
corresponds to the maximum of the gap.

ρ-value, it exists a temperature above which the gap disappears: this is the

so-called critical temperature Tc for the superfluid-normal phase transition.

The critical temperature naturally depends on the density and a reliable

approximation for its value is given by the relation Tc (ρq) = 0.57∆(ρq,

T = 0) [71]. The inset of Fig. 2.8 displays that its maximum value, reached

when ρ = ρM , is 1.8 MeV.

Similarly to what has been done in section 2.5.1 for the zero temper-

ature case, let us move now to discuss the impact of the superfluidity on

the chemical potential derivatives at finite temperature T . Looking at the

Fig. 2.9, one can observe again the quantity δq defined in Eq. (2.45), now

as a function of the temperature, for three fixed densities. Comparing the

calculations including pairing correlations with the results of normal nuclear

matter, as a rather interesting feature, it clearly leaps out the appearance

of a discontinuity in the superfluid curve, in correspondence of the critical
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Figure 2.9: The quantity δq (see text) is represented as a function of the tem-
perature T , for three nucleonic density values. Crosses indicate the calculations
including pairing effects, whereas dashed lines are for normal nuclear matter.

temperature for the superfluid/normal phase transition.

Since the chemical potential derivatives involve the second derivative of

the thermodynamical potential, this jump explicitly manifests the transition

under investigation is a second order one. It is well known that at the critical

temperature of a second order p.t. the heat capacity exhibits a discontinu-

ity [72] (see Chapter 4), but here it is demonstrated that, together with this

widely discussed effect, discontinuities also appear in the behavior of the den-

sity derivative of the chemical potential, which, we remind, is connected to

the matter compressibility.

It is also rather interesting to observe that, according to the opposite trend

with T exhibited by normal and superfluid calculations, the amplitude of the

jump is higher when the curve obtained including pairing correlations lies

below the normal one already at zero temperature (see Fig. 2.7). Moreover,

owing to the features of the gap function illustrated in Fig. 2.8, the jump

disappears at the density ρq = ρM , where the energy gap ∆q is maximum

and so its derivative vanishes at all temperatures.

71
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2.6 Pairing effects on spinodal decomposition

As one can notice, there is an evident overlap between the region of the
1S0 neutron superfluidity and the range of ρ values where nuclear matter

manifests the liquid-vapor phase transition described in the first chapter.

This coincidence reinforces the interest in introducing the pairing on the

study of nuclear systems in low-density region and so it suggests to investigate

how these correlations can affect not only the thermodynamical properties

of nuclear matter, but also the characterization of the instability discussed

in section 1.6.2.

2.6.1 Isospin distillation mechanism in normal matter

It has been already mentioned in section 1.6.2 that, in ANM at low den-

sity, instabilities correspond to isoscalar-like density oscillations, whereas the

two species move in phase but with different amplitudes, according to the

eigenvector components (δρp, δρn).

In particular, denoting θ the angle in the space of proton-neutron density

fluctuations so that tan θ = δρn/δρp, from the diagonalization of the cur-

vature matrix given in Eq. (1.61) and re-written here for sake of simplicity

as

C =

(

a c/2

c/2 b

)

, (2.47)

one obtains [13]:

tan 2θ =
c

a− b
. (2.48)

In normal nuclear matter, it is generally found that the asymmetry of the

density fluctuations, that is

δI =
δρn − δρp
δρn + δρp

, (2.49)

is smaller than the system initial asymmetry I. As it has been anticipated in

Chapter 1, this mechanism, named as isospin distillation, is mainly ruled by

the effect of the symmetry potential, which enhances the neutron-proton at-
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traction. Indeed, the symmetry energy tends to reduce the difference between

proton and neutron chemical potential derivatives, i.e., the term (a − b) in

Eq. (2.48), so that neutrons and protons will oscillate with close amplitudes,

in spite of the system initial asymmetry. This phenomenon experimentally

leads to the formation of more symmetric nuclear clusters [113] and it is more

effective especially in case of a stiffer parameterization of the symmetry en-

ergy behavior with respect to the density.

2.6.2 Role of the pairing on the isospin distillation

The aim of our recent work [32] has been to evaluate the impact of pairing

correlations on the main features of the spinodal instability characterized

above.

Actually, the strength of the instability, i.e., the amplitude of the negative

eigenvalue λs of C, is mainly determined by the isoscalar part of the nuclear

mean field potential, which is by far the dominant term of the interaction.

Thus the pairing interaction has practically no effect on it, at least far away

from the spinodal border where it vanishes.

On the other hand, the distillation mechanism, which is connected to

the strength of the symmetry potential, could be sensitive to the pairing

interaction. Therefore, we focus on the interplay between the pairing force,

coupling particles of the same type in a spin-singlet state, and the isovector

interaction, which on the contrary enhances the attraction between particles

of different kind.

Since the coefficient c, which is related to the mixed density derivative of

the chemical potential, is not affected by pairing in the case of momentum

independent interaction,6 one relevant quantity to evaluate the amplitude

of the pairing effect on the isospin distillation is the difference γ = a −
b of Eq. (2.48). In Fig. 2.10 we thus considered its percentage variation

in superfluid nuclear matter, with respect to the normal matter case, as a

function of the global density ρ, for different global asymmetries, in case of

6Actually, even for momentum dependent interactions, the influence of the pairing on
the coefficient c is introduced only by the effective masses and is pratically negligible.
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Figure 2.10: The percentage variation induced by the pairing on the quantity γ
(see text) as a function of the total matter density ρ, at zero temperature, for
three values of the asymmetry I and in case of an asy-stiff symmetry potential.

zero temperature and a stiff symmetry potential.

From the latter figure, it emerges that the physical conditions where pair-

ing correlations have the largest impact on the isospin distillation are iden-

tified at total densities around 0.08 fm−3 and asymmetries I ≈ 0.1 ÷ 0.2.

These conditions corresponds to density of each nuclear species ρq which lies

around the crossing (≈ 0.04 fm−3) between the two curves of Fig. 2.7, so

where the difference on the slope of the two trends is more important. In

this thermodynamical (ρ, I) state, it is possible to reach hence an effect of

20% for the variation of γ at zero temperature.

This density region coincides also with the ρq values where the chemical

potential derivatives manifest the largest amplitude of the discontinuity at

finite temperature (see Fig. 2.9). Let us move therefore to discuss the impact

of pairing correlations at finite temperature directly on the asymmetry δI

of the unstable density oscillations. Results are displayed in Fig. 2.11, for

nuclear matter again at ρ = 0.08 fm−3 and three values of the asymmetry I.
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Moreover, two parametrizations of the symmetry energy are considered.
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Figure 2.11: The asymmetry of the unstable oscillations δI is plotted as a function
of the temperature, for nuclear matter at total density ρ = 0.08 fm−3 and three
asymmetry values. Results are shown for both superfluid (full lines) and normal
(dashed lines) matter and for asy-stiff (black) and asy-soft (red) parametrizations.

First of all one notices that the overall effect of the isospin distillation-

mechanism is rather important. Indeed δI/I is lower than 0.5 in all cases.

The effect is larger in the asy-stiff case, which is characterized by a steeper

variation of the symmetry energy with the density, in agreement with previ-

ous studies [51].

The asymmetry δI is moreover more sensitive to a variation on the sym-

metry energy parametrization (black vs. red lines) than to the introduction

of pairing correlations (full vs. dashed lines). Thus these results essentially

confirm the leading role of the symmetry energy in the isospin distillation

mechanism.

Nevertheless, new interesting effects appear at a moderate increase of

the temperature. Owing to the trend followed by the chemical potential

derivatives, the calculations including the pairing interaction exhibit two dis-

continuities, in correspondence of neutron and proton critical temperatures,

which may cause important variations of δI. As already stressed above, in

Fig. 2.9 the discontinuity is more pronounced at neutron and proton densities

ρq around 2ρM ≈ 0.04 fm−3, so this explains why the largest effect for δI is

seen, at the total density ρ = 0.08 fm−3, at small asymmetries (panel (a)).
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Hence, one can conclude that, under suitable density and temperature

conditions, pairing correlations may lead to significant deviations of the

asymmetry from its average. In particular, pairing correlations may have

not negligible effects, especially around the transition temperature to the

superfluid phase, on the isotopic features of the density fluctuations leading

to cluster formation. These results might be relevant to the study of pair-

ing correlations in low temperature nuclear fragmentation processes, as far

as effects related to level density and isotopic composition of the primary

fragments are concerned [53]. Moreover, as it will be discussed in Chapters 3

and 4, the presence of pairing correlations may also affect the description of

low-density clustering phenomena occurring in compact stellar objects, such

as in the crust of neutron stars.
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Chapter 3

Cooling process in compact stars:

neutrino emission

In this chapter, in parallel with the next one, we investigate the role of neu-

tron superfluidity and proton superconductivity in the astrophysical setting

of compact stars. We focus on the thermal evolution of these stellar ob-

jects, paying wide attention to the two main ingredients characterizing their

cooling process: the neutrino emissivity and the specific heat. In this third

chapter, in particular, we present a review of the modeling of neutron star

and cooling mechanism, in order to bring out the reason why superfluidity

is considered as a key feature in its understanding. Then we investigate the

neutrino production and emission processes, and concentrating on the analy-

sis of the neutrino interaction with a nuclear medium, we try to highlight the

influence of the pairing correlations on the neutrino-baryon scattering cross

section.

3.1 Essential physics of neutron stars

Since its discovery, neutron stars have been recognized as promising labora-

tories for studying nuclear matter under diverse conditions. As one deduces

from the theoretician’s view of a neutron star illustrated in Fig. 3.1, the study

of these compact stellar objects involves a large variety of topics, character-
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3. Cooling process in compact stars: neutrino emission

izing the research in modern nuclear physics.

3.1.1 Neutron star envelope and crust

Figure 3.1: Structure of a neutron star.

A neutron star can be naively described as a giant and compressed nu-

cleus, with a radius of 10÷20 km. In the outer part of the star, above the

surface, one expects the presence of an atmosphere, lying above a solid sur-

face. A few meters below the surface, ions are completely pressure-ionized

and matter consists of a solid lattice of nuclei in the Fe-Ni immersed in a quan-

tum liquid of relativistic electrons. Here, and at higher densities, electrons
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form an almost perfect Fermi gas. These low-density layers are commonly

referred to as the envelope or the outer crust.

With growing ρ, lattice nuclei become progressively neutron-rich and one

achieves the neutron drip point at which the neutron density is so large

that some neutrons become unbound. Matter then consists of a crystal of

nuclei immersed in a Fermi gas of electrons and a quantum liquid of dripped

neutrons. This region is usually called inner crust and, in most part of it, the

dripped neutrons are predicted to be superfluid. Furthermore, in the whole

crust which has a thickness of . 1 km, if the matter was constitued only

by an homogeneous liquid of nucleons, the system would be located inside

the spinodal region, being mechanically unstable (see Chapter 1). Stability

is, however, restored by the formation of nuclei, or nuclear clusters [133].

Moreover, the composition of the crust and the characteristics of the crust-

core phase transitions depend very strongly on the symmetry energy. As a

consequence, these objects are considered as a laboratory for testing the EoS.

As ρ ∼ 0.3ρ0, the shapes of nuclei can undergo drastic changes: from

spherical shapes nuclei are expected to deform, becoming elongated into 2D

or 1D structures named pasta phases, still surrounded by the superfluid neu-

tron gas which occupies an increasing portion of the volume. The homoge-

neous phase is finally reached in the core of the star, when ρ & 0.5ρ0.

3.1.2 Neutrinos in neutron star interior

A “pure neutron star” as originally conceived by Oppenheimer and Volkoff [128],

cannot really exist. Neutrons in a ball should β-decay into protons through

n→ p+ e− + ν̄e. (3.1)

Therefore, starting with a ball of nearly degenerate neutrons, the β-decay

(3.1) will briefly create a degenerate sea of protons, electrons and anti-

neutrinos. The inverse reaction

p+ e− → n+ νe. (3.2)
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also occurs since not all particles are in their lowest energy states at all times.

The mean free paths of anti-neutrinos (and neutrinos) exceed by far the

size of the star. In a neutron star, these can be assumed to immediately

vacate the star, implying µν = 0. Thus, these reactions will ultimately result

in the neutrino-less β-equilibrium condition

µn = µp + µe. (3.3)

A neutron star, however, is not born from the collapse of a “ball of neu-

trons”, but rather from the collapse of the iron core of a massive star. During

the collapse, the reaction Eq. (3.2) therefore initially dominates over Eq. (3.1)

in order to reduce the proton fraction. As the density increases, moreover,

the neutrino mean free paths become smaller than the collapsing core’s size,

so the neutrinos νe are temporarily trapped within the core. In this case

µν > 0, altering β-equilibrium and permitting to the proton fraction to re-

main relatively large. Only after neutrinos are able to diffuse away, the final

β-equilibrium condition Eq. (3.3) can be achieved.

3.1.3 Superfluidity in stellar matter

Soon after the introduction of the BCS theory, Migdal proposed to extend the

idea of Cooper pair of fermions to the astrophysical context and specifically

to the interior of neutron stars [121]. Since it has been introduced in the

study of compact stellar objects, a huge amount of works has been dedicated

to stellar superfluidity and various types of pairing of nucleons, hyperons or

quarks have been considered.

The onset of nucleon pairing is expected to take place in some parts of

a neutron star’s interior within minutes to thousands of years after its birth

and, as we will see, leads to the alteration of several important properties

of matter. As a two-particle correlation, the Cooper pair can appear in

many spin-orbital angular momentum states, as already stressed before. In

a neutron star, in particular, one expects that nucleons could pair in a spin

singlet state, 1S0, at low densities, whereas a spin-triplet 3P2 pairing should

occur at high densities. The gap in the 1S0 pairing channel, as deduced in
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Chapter 2 in the case of homogeneous nuclear matter, is mainly active for

the dripped neutrons in the inner crust. However, one should consider that

the presence of nuclear clusters, especially in the pasta phase region, may

modify the uniform matter value.

Although pairing does not affect significantly the pressure-density relation

and, therefore, the overall structure of neutron stars, the specific heat of dense

matter and the emissivity of neutrinos are dramatically influenced up to the

pairing critical temperature [133].

Superfluidity can also be important in dynamical phenomena concerning

neutron stars. It has long been suspected, for example, that the so-called

glitch phenomenon observed in pulsars is due to the existence of superfluids

within the neutron star crust and perhaps the outer core.

In this thesis, we are focusing on the important consequences that super-

fluidity implies mainly for the thermal evolution of neutron stars.

3.2 Thermal evolution of a compact star

The challenging study of neutron star cooling is tackled following the tem-

poral evolution of the stellar energy balance. At its birth, a huge amount of

gravitational energy is converted into thermal energy: almost its totality is

emitted in neutrinos during the first minutes, the proto-neutron star phase,

while the remaining part is transferred to the supernova eject or is left as

thermal energy in the new-born neutron star.

Most thermal evolution calculations involve the heat transport and energy

balance equations, in their fully general-relativistic form [132]. However the

main features can be illustrated, in a simplified way, under the hypothesis

that the star’s interior is isothermal, by the global energy-balance as [133]:

dEth

dt
= CV

dT

dt
= −Lν − Lγ +Qdiss (3.4)

where Eth is the star total thermal energy, CV its heat capacity, Lν and

Lγ its neutrino and photon luminosity, respectively, while Qdiss denotes the

contribution given by some other heating dissipative processes, which will
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be neglected hereafter. Within the isothermal approximation, which is a

resonable state in a core-collapse supernova few decades after its birth, the

three major ingredients of this study are therefore CV , Lν and Lγ.

The surface photon luminosity is essentially described by the Stefan-

Boltzmann equation, by introducing instead of T a much lower effective

temperature, which essentially depends on the gradient existing, even in the

isothermal interior case, with the outermost layers [133]. The heat capacity

and neutrino emission require instead a more detailed discussion since, as we

already mentioned, they are strongly affected by the pairing correlations.

3.2.1 Heat capacity and pairing correlations

The stellar matter is constituted by leptons, baryons, mesons, and, possi-

bly, deconfined quarks at the highest densities. Since the heat capacity at

constant volume CV is an extensive quantity, one has:

CV =
∑

i

CV,i with CV,i =

∫

cV,i dV (3.5)

where cV,i is the specific heat of the constituent i (i = e, µ, n, p, nuclei,

hyperons, quarks). In the theory of quantum fluids, for a normal (i.e., un-

paired) degenerate fermion system at low temperature, one naturally has

cV,i ∝ T , but since most part of these components are superfluid, the pairing

significantly reduces CV . However this reduction is no more than a factor of

the order of ten because leptons do not pair in any case.

Regarding the crust thermalization time, it is known that the cooling

time is essentially determined by the inner-crust matter. The crustal specific

heat should be, in principle, dominated by the unbound neutrons in the inner

crust but, as these are certainly extensively paired, also the contribution of

electrons and nuclear cluster lattice can be relevant.

In Chapter 4, we propose a stellar matter model which includes pairing

correlations and clusters as degrees of freedom, in order to accurately evaluate

the heat capacity of the inner crust.
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3.2.2 Neutrino emission processes

The thermal evolution of neutron stars with ages . 105 yrs is driven by neu-

trino emission. The main neutrino production processes involving nucleons

are listed and classified in table 3.1.

Table 3.1: A sample of neutrino emission processes involving nucleons [131].

Name Process Efficiency

Direct Urca

{

n→ p+ e− + ν̄e

p+ e− → n+ νe
Fast

Cooper pair

{

n+ n′ → [nn′] + ν + ν̄

p+ p′ → [pp′] + ν + ν̄
Medium

Brehmsstrahlung











n+ n′ → n+ n′ + ν + ν̄

n+ p→ n+ p+ ν + ν̄

p+ p′ → p+ p′ + ν + ν̄

Slow

Modified Urca (neutron branch)

{

n+ n′ → p+ n′ + e− + ν̄e

p+ n′ + e− → n+ n′ + νe
Slow

Modified Urca (proton branch)

{

n+ p′ → p+ p′ + e− + ν̄e

p+ p′ + e− → n+ p′ + νe
Slow

The simplest neutrino emitting processes in the table are given by Eqs. (3.1)

and (3.2), which collectively are generally referred to as the nucleon Direct

Urca (DU) cycle. The conditions for the DU process are likely reached at

some supra-nuclear density [131], but they strongly depend on the density

behavior of the symmetry energy. At densities below the threshold, where

the DU process is forbidden at low temperatures, a variant of this process,

the Modified Urca (MU) process can operate. As it involves the participa-

tion of five degenerate particles, the MU process is much less efficient than

the DU process. Unlike the nucleon DU process, both branches of the MU

process operate at any density when neutrons and protons are present. The

class of brehmsstrahlung processes differs from the MU cycle in that each

reaction results in the production of a pair νν̄ having any neutrino flavor.

Bremsstrahlung reactions are less efficient than the MU processes, but may
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make important contributions in the case that the MU process is suppressed

by pairing of neutrons or protons. Bremsstrahlung involving electron-ion

scattering is also an important source of neutrino emission in the neutron

star crust:

e− + (A,Z) → e− + (A,Z) + ν + ν̄ (3.6)

where (A,Z) designates the participating ion.

The formation of the fermonic pair condensate also triggers a new neu-

trino emission process [165] which has been denominated Pair Breaking and

Formation (PBF) process. Whenever any two fermions form a Cooper pair,

the binding energy can be emitted as a ν-ν̄ pair. Under the right conditions,

this PBF process can be the dominant cooling agent in the evolution of a

neutron star [133]. Such efficiency is due to the fact that during the cooling of

the star, the pairing phase transition starts when the temperature T reaches

Tc and the pairs begin to form, but thermal agitation will constantly induce

the breaking of pairs with subsequent re-formation and possible neutrino pair

emission.

3.3 Neutrino interaction with a nuclear medium

Regardless the mechanism responsible for its production, neutrino interac-

tions in a neutron-rich nuclear medium play a crucial role in core-collapse

supernovae [96] and in the early thermal relaxation phase of newly formed

neutron star [119]. The neutrino flux is moreover the only direct probe of

the mechanism of supernovae and the structure of proto-neutron stars [11,

21, 35, 100, 145].

Recently, many efforts have been devoted in describing neutrino produc-

tion and interactions in great detail [95, 119, 134, 192]. In such a context,

the most important ingredient in transport calculations is the neutrino opac-

ity, essentially determined by charged current absorption and neutral cur-

rent scattering reactions. In the next sections we are going to investigate

in particular the latter mechanism, hence focusing on the (elastic) neutrino

scattering process on an homogeneous nuclear medium, owing to its strong
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connection with the characterization of the unstable region exhibited by the

nuclear mean-field and pointed out in the previous chapters. At the onset

of spinodal instabilities, in fact, it is emerged that, according to the global

isoscalar-like character of the instability, the density response function is

enhanced, thus modifying the neutral current neutrino opacity [118]. The

assumption of homogeneous matter implies anyway some drawbacks which

will be underlined in the following.

3.3.1 Neutral current neutrino scattering

Let us consider nonrelativistic nucleons coupled to neutrinos through only

the vector neutral current, neglecting contributions from the axial current.

The weak-interaction Lagrangian density is

LW =
GF√
2
ψ̄ν(x) (1− γ5) γ0ψν(x)J

(N)
0 (x), (3.7)

where GF is the weak coupling costant, ψν(x) the neutrino field operator, γ0
and γ5 the Dirac matrices, as in their standard notation, and

J
(N)
0 (x) =

∑

i=n,p

c
(i)
V ρi(x), (3.8)

with c(n)V = −0.5 and c(p)V = 0.036, is the nucleon density operator.

Then the differential cross section (per unit of volume V ) for scattering in

a nuclear medium of neutrinos with energy Eν , as a function of the neutrino

final energy E ′
ν and scattering angle θ, is given by [36, 99]:

1

V

d3σ

dE ′
νdΩ

2
=
G2

F

8π3
(E ′

ν)
2(1 + cos θ)S00

V (ω,q), (3.9)

where1 ω = Eν − E ′
ν denotes the energy transfer to the medium, q is the

momentum transfer and S00
V identifies the dynamic form factor, which can

1We use the natural units: ~ = c = kB = 1.
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be expressed in terms of the nucleon density-density correlation factor as:

S00
V (ω,q) =

∫

dt dr eiωt e−iq·r〈J (N)0(t, r)J (N)0(0, 0)〉. (3.10)

The momentum transfer q is related to ω and to the neutrino scattering angle

θ as:

q =
[

E2
ν + (Eν − ω)2 − 2Eν (Eν − ω) cos θ

]1/2
. (3.11)

Considering the heavy nucleon mass, when we integrate the differential cross

section over a range of ω values, the other factors in the integrand can be

evaluated at ω = 0, so that:

S00
V (ω,q) → δ(ω)

∫

dω′S00
V (ω′,q) = 2πδ(ω)S00

V (q), (3.12)

where S00
V (q) is the static structure factor, which, according to Eq. (3.10),

corresponds to n− n, p− p and n− p density fluctuation correlations taken

at equal time:

S00
V (q) = 〈δJ (N) 0(q)δJ (N) 0(−q)〉. (3.13)

Exploiting the fluctuation-dissipation theorem [109] and neglecting quantum

fluctuations, the static structure factor can be expressed, for a system at

temperature T, as:

S00
V (q) = T

[

c
(n)
V

2
C−1

nn(q) + c
(p)
V

2
C−1

pp (q) + 2c
(n)
V c

(p)
V C−1

np (q)
]

, (3.14)

where the matrix C−1 is the inverse of curvature matrix of the system free

energy density [36].

It has been evidenced that the static structure factor, and so the neu-

trino interaction, is clearly affected by general phenomena, such as phase

transitions manifesting in interacting many-body systems. It emerged, in

particular, that large density fluctuations, associated with the first order

nuclear liquid-gas phase transition, could hugely increase the scattering of

neutrinos [118], thus quenching their emissivity processes in low density re-

gions.
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3.3.2 Free-energy density matrix in stellar matter

Homogenous stellar matter can be considered as a nuclear medium where

the proton charge is globally neutralized by a Fermi gas of electrons. A way

to address such a system is to study its stability against finite-size density

fluctuations [64]. The local energy density, which is a function of the total

density ρ = ρn + ρp, the proton fraction yp = ρp/ρ and the electron density

ρe, can be written as:

Etot(ρ, yp, ρe) = EHM + Ef
HM + ECoul + Ee(ρe), (3.15)

where Ee is the energy density associated with the electron kinetic energy

and the contributions of the Coulomb term, ECoul, related to the interaction

between all charges (protons and electrons), and of nuclear matter surface

terms, Ef
HM , are explicitly evidenced.

The electron term is readily evaluated in the approximation of a degen-

erate, ultrarelativistic Fermi gas. The spin-saturated homogeneous nuclear

matter energy density, EHM , at finite temperature T and in the BCS approx-

imation, as determined in Chapter 2, reads:

EHM(ρ, yp) =
∑

i=n,p

[

2

∫

dp

(2π)3
fi

p2

2m∗
i

+
1

4
vπ(ρi)|ρ̃i|2

]

+ ESky, (3.16)

where the occupation number for a nucleon of species i with momentum p,

according to Eqs. (2.22) and (2.46), is:

fi(p) =
1

2

(

1− ξi
E∆

i

tanh
E∆

i

2T

)

, (3.17)

while the other quantities have been already defined in Chapter 2.

Within this framework, one can then determine the derivatives of µi with

respect to ρi and so evaluate the curvature matrix [64], which is needed in
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the calculation of the cross section:

C(q) =







∂ρnµn ∂ρpµn 0

∂ρnµp ∂ρpµp 0

0 0 ∂ρeµe






+2q2







Cf
nn Cf

np 0

Cf
pn Cf

pp 0

0 0 0






+
4πe2

q2







0 0 0

0 1 −1

0 −1 1






,

(3.18)

where e2 = 1.44 (MeV·fm) and the coefficients Cf
ij are combinations of the

Skyrme surface parameters [64].

3.4 Pairing effect on ν-transport in star matter

In Chapter 2, we have stressed that, since pairing correlations are mostly ac-

tive at low density and relatively low temperature, in a certain region of the

nuclear matter phase diagram volume instabilities may co-exist with strong

pairing effects. Pairing interaction modifies in fact neutron and proton chem-

ical potentials and their derivatives, which appear in the curvature matrix in

Eq. (3.18), and thus in suitable conditions of density, asymmetry and tem-

perature, we can expect a non–negligible impact on the neutrino differential

cross section [33].

As stressed before, neutrino trapping is quite influenced by large density

fluctuations of the nuclear density, which develop close to the spinodal border

and may lead to clustering phenomena. Within the approach adopted here,

the amplitude of neutron and proton density fluctuations is essentially related

to the inverse of the eigenvalues of the curvature matrix and in particular

becomes quite large when the isoscalar-like one, λS(q), is small. In this

case, we expect pairing correlations to have a large relative weight on the

curvature matrix elements, especially close to the critical temperature, Tc,

for the transition from normal to superfluid matter, where discontinuities

appear in the chemical potential derivatives (see section 2.5.2).

3.4.1 Spinodal border and superfluid phase transition

In order to bring out possible pairing effects, we investigate stellar matter at

moderate temperature (below 2 MeV), at density and asymmetry conditions
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close to the spinodal border, where λS vanishes. In the following numeri-

cal applications, we make use of the SAMi-J35 parametrization [151] of the

Skyrme energy functional for the local energy density Esky and the effective

nucleon mass m∗
i . For the pairing term, the parameters of the effective inter-

action introduced in Eq. (2.33) are correspondingly deduced. For the sake of

simplicity, moreover, we consider only neutron pairing, since as it is shown

in the following, the latter leads in any case to the largest effects.
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Figure 3.2: Left panel: critical temperature for the transition from superfluid to
normal matter, as a function of the reduced neutron density ρn/ρ0, as obtained
in the strong pairing (full line) and weak pairing (dot-dashed line) cases. Right
panel: spinodal border (full line), in the (ρ, yp) plane, associated with temperature
T = 0.5 MeV and momentum transfer q = 30 MeV. The inset shows a zoom in
the low-density region. The dashed lines are curves of constant neutron density,
corresponding to the values associated with the circles in the left panel (see text
for more details).

In Fig. 3.2 (left panel) we represent the critical temperature Tc as a func-

tion of the neutron density. Since the magnitude of the gap in neutron matter

is not clear yet, we considered, together with the case of the bare nucleon-
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nucleon interaction (already introduced in Chapter 2 and denoted as strong

pairing hereafter), another possible scenario for the pairing, obtained by tak-

ing into account in-medium effects on two-body interaction and self-energy,

which lead to a considerable reduction of the pairing gap (denoted as weak

pairing) [39]. The parameters of the pairing effective interaction, as deter-

mined for SAMi-J35 parameterization are listed in Table 3.2, for both strong

and weak pairing cases.2

Table 3.2: The parameters of the pairing
effective interaction as achieved employing
SAMi-J Skyrme parameterizations.

V Λ
π [MeV fm3] ηπ απ

Strong −931.83 0.830 0.366

Weak −931.83 0.842 0.265

The right panel shows the spin-

odal border (full line), in the (ρ, yp)

plane, at temperature and q values

of interest for our study. It should

be noticed that, because of Coulomb

and surface effects, the spinodal bor-

der depends on q, but it is not very

sensitive to the temperature, within

the range considered in our study.

For a fixed value of the temperature T, the plot on the left panel allows one

to identify two values of the neutron density ρn (see the circles) for which

the temperature considered corresponds to the critical one, so pairing effects

could be large. Each value of the neutron density defines an hyperbole in the

(ρ, yp) plane (see the dashed lines on the right panel). Then the crossing of

the dashed lines with the spinodal border identifies the density-asymmetry

regions where large density fluctuations can coexist with important pairing

contributions. It appears that a variety of conditions, from very small densi-

ties up to ρ ≈ 0.4ρ0 and with proton fraction ranging from quite low values

up to yp ≈ 0.5, are good candidates for our study. These conditions may

occur in the inner crust of a neutron star or in the pre-bounce phase of a

supernova explosion, when the temperature is still low (see e.g. refs. [34, 37,

120, 145]).

However, since our pairing interaction has been fitted to reproduce the

gap in neutron matter, we concentrate our analysis mainly to thermodynam-

2Actually, the same values hold also for the other SAMi-J parameterizations presented
in Table 1.1, since they have the same effective mass.
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ical conditions involving a rather small value of the proton fraction. If one

wants to apply our study to the supernova matter in the pre-bounce phase,

whereas the proton fraction is known to be large (yp ∼ 0.3) [146], then it

would be better to extrapolate the results obtained trying to reproduce the

pairing gap also for symmetric matter. Moreover, as it will be underlined

in the next chapter, the clusterization of the stellar matter can significantly

affect the thermodynamical conditions of these systems. The latter issue will

be discussed in the last part of this chapter.

3.4.2 Impact on neutrino-nucleon cross section

Guided by the previous analysis, in the following we discuss the results ob-

tained for the two opposite density regimes:

(1) ρ = ρ0/100;

(2) ρ = ρ0/4.

Several yp values will be tested, close to the points suggested by Fig. 3.2.

Dependence on neutrino energy and scattering angle. To stress

the impact of superfluidity, in the two opposite density regimes considered

above, we focus on temperatures where we expect large pairing effects, that

is T = 0.5 MeV in case (1) and T = 1.4 MeV in case (2). For the conditions

considered now, only neutrons are paired, because the temperature values are

always above the proton critical temperatures. Fig. 3.3 (left panel) illustrates

the neutrino differential cross section

σV E ≡ 1

V E2
ν

d2σ

dΩ2
, (3.19)

as a function of the neutrino energy Eν and at a scattering θ angle such

that q = Eν . To stress pairing effects, the results related to the complete

calculation (full lines) are shown together with those obtained by neglecting

the pairing interaction (dashed lines).
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One can observe that, due to Coulomb repulsion, at small momentum

transfer q values, the eigenvalue λS(q) is always positive and so the density

oscillations are stable. Actually, at the lowest density considered (case (1),

panel (a)), the proton fraction yp = 0.045 corresponds to stable conditions

for all q values. Within such a thermoynamical configuration, the density os-
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Figure 3.3: Left panels: neutrino differential cross sections, σV E (see text), as a
function of the neutrino energy Eν , obtained in the full calculation (strong pairing
case, full lines) or neglecting the pairing interaction (dashed lines). Right panels:
ratio R between the full calculation and the results obtained neglecting the pairing
interaction, as a function of the cosine of the neutrino scattering angle θ, for selected
neutrino energies. Results are shown for the following conditions: ρ = ρ0/100 - T
= 0.5 MeV (panels (a) and (c)) and ρ = ρ0/4 - T = 1.4 MeV (panels (b) and (d)).
The proton fractions considered are indicated inside the figure.

cillations are not much influenced by Coulomb (acting at small qs) or surface

(acting at large qs) effects, so that λS remains close to zero for an appreciable

range of the momentum transfer and the relative weigth of pairing effects is
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clearly enhanced. As a consequence, an important influence of superfluidity

emerges on the cross section, especially for intermediate neutrino energies,

where a bump is observed. On the contrary, for the higher proton fraction

case (see the result for yp = 0.1), the matter crosses the spinodal border

already for oscillations having low momentum transfer and a divergent be-

havior is observed for density fluctuations and neutrino cross section.

Clearly here one should carefully evaluate these density fluctuations going

beyond the curvature of the free energy, but it is important to remark that,

already at this level, a strong pairing effect on the neutrino opacity comes out.

As a quite general result, in fact, one can observe that pairing interaction

significantly reduce the curvature of the free energy density, leading to an

increase of density fluctuations and related neutrino cross section. This effect,

associated with neutron pairing, indicates that neutron correlations favour

matter clustering. One can notice, moreover, that pairing correlations cause

a not negligible shift to smaller values of the neutrino energy associated with

the divergency in the full calculations. This implies that also less energetic

neutrinos have more chances to be trapped, so that the energy flux carried

away by neutrinos is necessary damped.

For yp = 0.1, larger transfer momenta qs correspond instead to unstable

oscillations and, since λS(q) is negative, the prescription given in Eq. (3.14)

does not hold to evaluate neutron and proton density fluctuations. Indeed,

while the variance associated with isoscalar-like stable fluctuations reads as

σS(q) = T/λS(q), in presence of instabilities it grows exponentially with

time to reach a new equilibrium condition, corresponding to clustered mat-

ter [47]. Therefore, the correct equilibrium fluctuations inside the spinodal

region cannot be estimated within our framework. However assuming, as a

first order approximation, that they are close to the value obtained, for each

q, at a time of the order of the instability growth time (see [51]), one gets

σS(q) ≈ T/|λS| and so the curvature matrix components Eq. (3.18) are mod-

ified accordingly. The corresponding neutrino cross sections are indicated by

thin lines in Fig. 3.3. A similar behavior is observed at the higher proton

fraction yp = 0.3 (not shown on the panel (a)). The panel (b) displays the

results obtained for case (2), where, as indicated by the analysis shown in
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Fig. 3.2, we take smaller proton fractions yp. We note that this also corre-

sponds to the trend predicted for the proton fraction in the inner crust of

neutron stars (see Table 4.1 in Chapter 4) [34, 64]. The same considerations

made above for the lower density case hold. However here pairing effects,

though still quite significant, are reduced with respect to the previous case,

just because they are linked to the derivative of the pairing gap (and thus

of the critical temperature) with respect to the density [32], which is steeper

for case (1) (see Fig. 3.2). To emphasize the role of pairing effects, panels

(c),(d) of Fig. 3.3 represent the ratio R between the cross section associated

with the full calculations and the results obtained neglecting the pairing in-

teraction, as a function of cos θ, for selected neutrino energies, representative

of β–equilibrium conditions and for stable oscillations only. From this rep-

resentation, it clearly emerges again how important pairing effects become

approaching the spinodal border.
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Figure 3.4: Same as in Fig. 3.3, for ρ = ρ0/100 - T = 0.4 MeV, but employing the
full calculation with the strong pairing (full lines) or weak pairing (dashed-dotted
line) case, respectively.

Sensitivity to the strength of the pairing interaction. To explore the

sensitivity of our results to the strength of the pairing interaction, calcula-
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tions have been performed also for the weak pairing case. Results are shown

in Fig. 3.4 for the lowest density case. Since, as one can observe in Fig. 3.2,

the density derivative of the critical temperature is smaller in the case of

the weak pairing, the influence of the pairing correlations on the neutrino

cross section is reduced, though still appreciable. Clearly, the most impor-

tant consequence of the weak pairing assumption is the strong reduction of

the maximum critical temperature (see Fig. 3.2), which restricts considerably

the range of applicability of our calculations.

10
-23

10
-22

10
-21

σ
V

E
 [

M
eV

-2
 f

m
-1

]

y
p
 = 0.3

y
p
 = 0.1

10
-22

10
-21

10
-20

y
p
 = 0.015

y
p
 = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T [MeV]

0

1

2

3

4

R
at

io
 R

0.4 0.6 0.8 1 1.2 1.4 1.6

T [MeV]

0

1

2

3

4

q = E
ν
 = 10 MeV q = E

ν
 = 35 MeV

(a) (b)

(d)(c)

Figure 3.5: Top panels: Neutrino differential cross sections, σV E (see text), as a
function of the temperature T, obtained in the full calculation (strong pairing case,
full lines) or neglecting the pairing interaction (dashed lines).Results are shown for
the following conditions: ρ = ρ0/100 (panels (a) and (c)) and ρ = ρ0/4 (panels (b)
and (d)). The proton fractions considered are indicated inside the figure.

Temperature behavior of the cross section The influence of the tem-

perature on our results is discussed in Fig. 3.5, where the quantity σV E is
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displayed, for selected neutrino energies and q = Eν , as a function of T, for

density conditions as in case (1) (panel (a)) and case (2) (panel (b)). The full

calculations, performed for the strong pairing case, are compared to those

obtained neglecting the pairing interaction.

The momentum transfer considered in panel (a) corresponds to stable

oscillations. Pairing effects are quite important already at very low temper-

ature, where pp pairing is also present, but they increase approaching the

neutron critical temperature, Tc ≈ 0.65(0.55) MeV for yp = 0.1(0.3) , and

then vanish. Indeed, quite interestingly, we observe a jump in the cross sec-

tion at T = Tc, which suddenly reaches the value of normal nuclear matter.

A small jump also occurs, for both proton fractions, at a lower tempera-

ture, due to the disappearance of proton pairing. The jumps observed are

related to the discontinuity emerging in the density derivative of the chemical

potential, ∂µi/∂ρi, which has been addressed in section 2.5.2.

The conditions of panel (b) of Fig. 3.5 are such that the q value consid-

ered corresponds to fluctuations which are unstable at zero temperature. A

divergency occurs for the cross sections at the temperature associated with

the crossing of the spinodal border, whereas at higher temperature, density

oscillations become stable. Also in this case a discontinuity is observed at

the neutron critical temperature.

Final remarks. Some important final remarks are in order to conclude

this chapter.

First of all, it should be noticed that our calculations are performed within

the mean-field approximation. In this context, focusing on neutral current

neutrino scattering and on the behavior of low-density matter, close to the

spinodal border, we generally observe an increase of the neutrino differential

cross section in paired matter, which enhances neutrino trapping and reduces

the energy flux carried out by neutrino emission. In this way, new hints

emerge about a significant impact of pairing effects on the cooling mechanism,

by neutrino emission, of low-density stellar matter at moderate temperature.

However, it is important to make some warnings about our results and

the approach adopted. First of all, in fact, one should consider that the
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presence of large clusters, as the ones associated with the occurrence of spin-

odal instabilities, may influence significantly the evaluation of pairing effects

in the inner crust of a neutron star [72]. Furthermore and probably more

important, as shown by sophisticated analyses, clustering phenomena can

affect the thermodynamical conditions of the low-density matter interact-

ing with the neutrinos [147, 180]. Many-body correlations, going beyond

our mean-field approach, are indeed responsible for the emergence of light

clusters and extremely neutron-rich resonances, whose formation cannot be

addressed within the spinodal mechanism. As it will be shown in the next

chapter, this clusterization can significantly modify the global asymmetry of

the matter and, correspondingly, the range of applicability of our results.

Horowitz and coworkers, in particular, have calculated both the static and

the dynamic response function for the realistic case of clusterized matter [95,

96]. In these works, they have shown that the increase of the density fluctua-

tion exists but is smaller than the one predicted by the mean field; clustered

matter, in fact, does not exhibit the instability associated to the homoge-

neous mean-field approximation. Therefore, our hypothesis of homogeneous

matter should be reconsidered. However, work is in progress to include these

effects in our analysis, in order to find some configurations where also clus-

terized stellar matter is soft enough to allow an important relative weight for

the pairing effect.

One advanced beyond-mean field model, which accounts for the nuclear

clusters as degrees of freedom, will be instead employed in the next chapter,

in order to give an estimation of the other key ingredient of the neutron star

cooling process: the heat capacity.
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Chapter 4

NSE cluster model: heat capacity

of neutron stars

From Chapter 3, it has been mentioned that the crust thermalization time,

which basically depends only on the cooling of the inner part, is strongly in-

fluenced by pairing correlations [72]. The specificity of the inner crust is the

simultaneous presence of clusters and homogeneous matter, which are both

influenced by pairing interactions. In Chapter 2, it has been shown how pair-

ing correlations can affect the properties of clusterized matter. In a similar

way, the occurrence of inhomogeneities has a non-negligible influence on the

pairing properties of the inner crust [18, 45, 72, 137, 158], and consequently

on the time evolution of the surface temperature of the neutron star. Hence,

the study of the inner crust cooling and, in particular, the evaluation of its

heat capacity is a problem far from trivial.

In this chapter, we are going to deal with this question, in the frame-

work of an extended version of the Nuclear Statistical Equilibrium (NSE)

model [147], which accounts for both mean-field and pairing correlations [34].

4.1 Beyond mean-field and cluster approach

Present studies of crust superfluidity at finite temperature are typically done

by solving the mean-field Hartree-Fock-Bogoliubov (HFB) equations in the
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4. NSE cluster model: heat capacity of neutron stars

so-called single nucleus approximation [125], i.e., assuming that the cluster

component is given by a single representative quasi-particle configuration,

corresponding to a single representative nucleus immersed in a neutron gas.

These works do not consider the fact that at finite temperature a wide dis-

tribution of nuclei is expected to be populated at given crust pressure and

temperature conditions.

Furthermore, at the extremely low proton fractions associated to the inner

crust, deformed nuclear structures and light nuclear resonances beyond the

drip-line can appear, which might be too exotic to be well described by

standard mean-field calculations. At sufficiently high temperatures, light

particles can even become dominant in the composition of matter [6, 153],

modifying the local distribution of neutron density and the associated pairing

field.

A way to include these beyond-mean field effects is given by finite tem-

perature Nuclear Statistical Equilibrium (NSE) models.

4.1.1 Extended Nuclear Statistical Equilibrium model

The most recent NSE implementations [37, 74, 93, 94, 147, 148] are based

on a full distribution of clusters, obtained self-consistently under conditions

of statistical equilibrium. In the following, we discuss in particular the main

features of the NSE model developed by Gulminelli and Raduta [148], where

a statistical distribution of compressible nuclear clusters immersed in a ho-

mogeneous background of self-interacting nucleons and electrons is taken into

account.

This approach, however, was not adequate to describe the heat capacity

of the crust because it did not consider the presence of pairing correlations.

The aim of our recent work has been therefore to extend the NSE model, by

introducing pairing correlations both in the cluster and homogeneous matter

components and to study the effect of the cluster distribution on the heat

capacity of the inner crust.

At the same time, it is interesting to analyze how the non-homogeneity

of the crust matter and the associated wide distribution of nuclear species
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4. NSE cluster model: heat capacity of neutron stars

can affect the superfluid properties of the crust.

Density and bulk asymmetry. We label each nuclear species by its mass

number and bulk asymmetry (A, δ). Even below drip, the asymmetry in the

bulk for a nucleus in the vacuum, δ0 differs from the global asymmetry I of

the nucleus because of the presence of a neutron skin and Coulomb effects.

The relation between δ0 and I is given in Refs. [123, 190]:

δ0 =
I + 3aC

8Q
Z2

A5/3

1 + 9Esym

4Q
1

A1/3

, (4.1)

where Esym is the symmetry energy (Eq. (1.54)) at saturation, Q is the

surface stiffness coefficient extracted from a semi-infinite nuclear matter cal-

culation [124] and aC is the Coulomb parameter of Eq. (2.2).

The continuum states leading to the existence of a free nucleon gas can

in first approximation be modelled as a constant density contribution. As a

consequence, the bulk asymmetry inside the clusters can be decomposed into

the asymmetry of the gas δg weighted by the gas fraction xg = ρg/ρ
b
0 inside

the cluster, plus the asymmetry of the cluster in the vacuum δ0 weighted by

the complementary mass fraction xcl = (ρb0 − ρg)/ρ
b
0, namely

δ =

(

1− ρg
ρb0

)

δ0 +
ρg
ρb0
δg. (4.2)

In the previous equation ρb0 denotes the bulk density, which corresponds to

the saturation density at the corresponding bulk asymmetry. This means

that, at the second order in asymmetry, the following expression can be used

for the bulk density [135]:

ρb0 = ρ0

(

1− 3Lδ2

K +Ksymδ2

)

, (4.3)

where L and Ksym are the slope and the curvature of the symmetry energy at

saturation density, as defined in Eq. (1.55), whereasK is the incompressibility

modulus defined in Eq. (1.62). Then, solving the coupled Eqs. (4.2) and (4.3),
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it is possible to extract the bulk density and asymmetry.

Free energy density of the superfluid nucleon gas. The free energy

density of the nucleon gas of density ρg and asymmetry δg is obtained in

the mean-field approach adding the entropy term SHM to the energy density

EHM as deduced in the local BCS approximation in Eq. (3.16):

FHM(ρg, δg) = EHM(ρg, δg)− TSHM(ρg, δg). (4.4)

According to the definition given in Eq. (1.58), the entropy density is given

by :

SHM(ρg, δg) = −2
∑

q=n,p

∫

dp

(2π)3
[nq lnnq + (1− nq) ln (1− nq)], (4.5)

where nq =
1

1+exp(E∆
q /T )

is the Fermi distribution for the quasi-particles.

The cluster distribution. A given thermodynamic condition in terms of

temperature, baryonic density and proton fraction (T, ρB, yp) is characterized

by a mixture of configurations defined by k = {V (k)
WS, A

(k), δ(k), ρg, δg} with a

free energy given by [88]:

F
(k)
WS = Fcl(A

(k), δ(k), ρg, δg) + V
(k)
WSFHM(ρg, δg) + V

(k)
WSFel(ρp). (4.6)

In the latter expression, Fel is the electron free-energy density, ρp is the total

proton density, V (k)
WS denotes the Wigner Seitz cell volume and Fcl is the free

energy of the cluster immersed in the nucleon gas:

Fcl(A, δ, ρg, δg) = E0(A, δ)− TSt + δFbulk + δFsurf + δFCoul. (4.7)

We can observe that the cluster energy is modified with respect to the corre-

sponding vacuum energy E0 owing to both nuclear and Coulomb in-medium

effects. The modification of the nuclear free-energy consists of a bulk term

δFbulk = −FHM(ρg, δg)Vcl, (4.8)
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due to the presence of the gas in the same effective spatial volume Vcl = A
ρ0(δ)

occupied by the cluster, and a surface term δFsurf which accounts for the

modification caused by the gas at the surface of the cluster. The calculation

of the latter term will be in particular detailed in section 4.4. The screening

effect of electrons which neutralize the Wigner-Seitz cell leads to a modifica-

tion of the cluster free-energy according to:

δFcoul = acfWS(ρp, ρ0p)A
5/3 (1− I)2

4
, (4.9)

with ρ0p = ρ0(1 − δ)/2 and the Coulomb screening function in the Wigner-

Seitz approximation written as

fWS(ρp, ρ0p) =
3

2

(

ρp
ρ0p

)1/3

− 1

2

(

ρp
ρ0p

)

. (4.10)

In Eq. (4.7), we have also introduced the translational entropy

St = ln
(

gTV A
3

2
e

)

. (4.11)

In the latter expression, we label with V the total volume, while gT represents

the temperature dependent degeneracy factor, which includes the sum over

the cluster excited states as:

gT =

(

mT

2π

)3/2 ∫ <S>

0

dE
[

%A,δ(E)e
−E/T

]

, (4.12)

where %A,δ is the density of states of the cluster, while 〈S〉 is the minimum

of the average particle separation energies of neutrons and protons. How-

ever, mean-field models are known to be far off in the reproduction of these

observables, and empirical adjustements have to be done. For this reason

we use a back-shifted Fermi gas model with parameters fitted from experi-

mental data [188] (see [88] for more details). Moreover, to insure additivity

of the cluster and the gas component, only the bound part of the cluster

Ae = A (1− ρg/ρ0) appears in the translational term of Eq. (4.7).

Concerning the cluster binding energy E0(A, δ), theoretical coherence
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with the treatment of the gas demands that it is evaluated with the same

EDF employed for the gas component. So, we adopt the analytical expression

proposed in [54]:

E0 = aVA− aSA
2/3 − aI(A)AI

2 − aCA
5/3 (1− I)2

4
, (4.13)

with the asymmetry energy coefficient:

aI(A) =
aIV

1 +
aIV

aISA
1/3

, (4.14)

where the parameters are fitted from numerical Skyrme calculations in slab

geometry [54]. The pairing contribution to the cluster energy is evaluated

according to the phenomenological expression: ∆(A) = ±12/
√
A, where the

+(-) sign refers to even-even (odd-odd) nuclei. It is important to observe that

the formula in Eq. (4.13), similarly to any other mean-field model, systemati-

cally underbinds light particles, which will then tend to be underestimated in

the calculations. We will discuss the effect of this limitation in section 4.3.3.

Analogously to the definition of Ae, one may also introduce the bound

charge fraction of the cluster as Ze = Z (1− ρgp/ρ0p), so that the volume

of the Wigner-Seitz cell associated to each nuclear species turns out to be

univocally defined by the charge conservation constraint:

ρp = ρe =
Ze

VWS

+ ρgp, (4.15)

which leads to

VWS =
Z

ρ0p

ρ0p − ρgp
ρp − ρgp

. (4.16)

The equilibrium distribution is obtained by minimizing the total free en-

ergy corresponding to an arbitrary collection of different cells k, subject to

the constraints of total baryonic and charge density conservation [88]:

ρB =

∑

k n
(k)(A

(k)
e + V

(k)
WSρg)

∑

k n
(k)V

(k)
WS

, (4.17)
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ρp =

∑

k n
(k)(Z

(k)
e + V

(k)
WSρgp)

∑

k n
(k)V

(k)
WS

. (4.18)

The result is a NSE-like expression for the cluster multiplicities n(k) [88]:

lnn(k) = − 1

T

[

Fcl(A
(k), δ(k), ρg, δg)− µBAe − µpZe

]

, (4.19)

where the chemical potentials can be expressed as a function of the gas

densities only:

µB ≡ ∂FHM

∂ρg
, (4.20)

µp ≡
∂FHM

∂ρgp
. (4.21)

The numerical solution of the two Eqs. (4.18) for the two unknowns ρg, ρgp
closes the model. The results obtained with the improved model described

above are presented in the next section.

4.2 Composition of the inner crust

In order to facilitate a quantitative comparison with previous works, we have

chosen ten representative values for the baryonic density which have been

proposed in the seminal paper by Negele and Vautherin [125]. These values

cover the inner crust of the neutron star, approximately from the emergence

of the neutron gas close to the drip point (cell 10) to a density close to the

crust-core transition (cell 1), where bubbles and possibly other exotic nuclear

shapes, not included in our model, start to form.

The corresponding values of the baryonic density, as well as the proton

fraction, the gas density and the average value of the Wigner-Seitz cell radius

we obtain by imposing the neutrino-less β-equilibrium condition (Eq. (3.3))

at the lowest temperature (T = 100 keV) considered in this study, are given

in Table 4.1. For comparison, proton fraction, gas density and radius of

Wigner-Seitz cell obtained at zero temperature in the full HFB calculation
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4. NSE cluster model: heat capacity of neutron stars

Table 4.1: From left to right are given: the total baryonic density, the proton
fraction at T=100 keV, the proton fraction at T=0 considered in [72], the gas
density at T=100 keV, the gas density obtained at T=0 in [72], the radius (in fm)
of the average Wigner-Seitz volume calculated at T=100 keV and the radius (in fm)
of the cell at T=0 calculated in [72].

Cell ρB [fm−3] y0p yHFB
p ρ0g [fm−3] ρHFB

g [fm−3] 〈R0
WS〉 RHFB

WS

1 4.8× 10−2 0.032 0.027 3.9× 10−2 3.8× 10−2 9 20
2 2.0× 10−2 0.035 0.028 1.7× 10−2 1.7× 10−2 22 28
3 9.0× 10−3 0.040 0.037 7.5× 10−3 7.5× 10−3 30 33
4 5.8× 10−3 0.045 0.045 4.8× 10−3 4.6× 10−3 33 36
5 3.7× 10−3 0.054 0.053 3.0× 10−3 3.0× 10−3 36 39
6 1.6× 10−3 0.083 0.080 1.2× 10−3 1.1× 10−3 41 42
7 9.0× 10−4 0.122 0.125 5.4× 10−4 5.3× 10−4 44 44
8 6.0× 10−4 0.162 0.160 2.8× 10−4 2.8× 10−4 46 46
9 4.0× 10−4 0.220 0.200 1.2× 10−4 1.3× 10−4 47 49
10 2.8× 10−4 0.284 0.222 2.8× 10−5 7.4× 10−5 48 54

employing the single nucleus approximation in [72] are also given in the same

table. As in [72], the SLy4 Skyrme parametrization (see Table 1.1) for the

energy density functional of the gas is adopted. This parameterization is in

fact specifically fitted to reproduce heavy neutron-rich nuclei ground states

and properties of neutron matter. The parameters for the pairing effective

interaction in Eq. (2.33), obtained by assuming a strong pairing scenario (see

Fig. 3.2 or Fig. 2.4), are correspondingly deduced and listed in the following:

V Λ
π = -931.83 MeV fm3, ηπ = 0.815 and απ= 0.364.

As a general feature, we notice that the proton fraction increases, whereas

the gas density decreases moving from cell 1 to cell 10.

Comparing the results from the two different models, as far as the gas

density is concerned, the difference between the HFB values and our results,

at the lowest temperature considered, is of the order of 2% or less, except for

the lowest density case. This residual variation can be partly due to the dif-

ferent description of the cluster energy. Our simplified mass model from [54]

is augmented of a phenomenological pairing term [88] but does not contain

shell effects. Neutron shell effects do not play any role above drip, but proton

shell closures are known to be still effective at zero temperature in the inner
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crust [138]. This contribution can then slightly affect the neutron gas density

close to the drip condition. More important, a quite significant difference in

the density dependence of the pairing gap employed in the two calculations

is the main origin of the variation observed, as it will be highlighted in the

next section. Concerning the radius of the average volume of the Wigner-

Seitz cell, again our results are in good agreement with HFB, except at the

highest density (Cell 1). As it is shown in the following, this difference is

due to the dominance of light resonances in our calculation, which are not

included in a mean-field approach.

4.2.1 Proton fraction evolution with the temperature

In most HFB calculations related to the cooling problem [18, 45, 72, 137,

158], an approximation made is that the proton fraction does not evolve

with the temperature and can be estimated by the value imposed, at each

baryonic density, by the condition of neutrino-less chemical equilibrium at

zero temperature in reference calculations [125]. Even with the inclusion of

pairing, the NSE model is still much less numerically demanding than a full

HFB calculation at finite temperature. For this reason, we have released

this approximation and imposed Eq. (3.3) at each finite temperature. This

condition is justified by the fact that the time scale of neutron star cooling

is sufficiently slow to insure the chemical equilibrium of weak processes at all

times [78].

The global proton fraction evolution with the temperature obtained by

imposing consistently the neutrino-less β-equilibrium condition at each T

value is illustrated in Fig. 4.1, for four representative cells spanning the den-

sity and temperature interval concerned by this study.

One can notice that the change of the proton fraction is very small close

to the crust-core transition (up to cell 4), but it cannot be neglected at lower

densities (cells 5 to 10), so important effects can be expected close to the

drip point because of the temperature evolution of yp along a β-equilibrium

path of the star.
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Figure 4.1: Temper-
ature evolution of the
global proton fraction
yp obtained by impos-
ing the neutrino-less
β-equilibrium condi-
tion Eq. (3.3) for four
representative cells.

4.2.2 Temperature behavior of the unbound component

The density corresponding to the unbound neutron component is shown in

Fig. 4.2 for the same baryonic density conditions as in Fig. 4.1. One can

appreciate the impact of the β-equilibrium condition on the gas density by

comparing full and dashed lines. It clearly emerges that the β-equilibrium

condition should be consistently implemented at each temperature, especially

in the outer layers of the inner crust.

In order to evidence some possible superfluid effects, the full calculation

has been repeated neglecting the pairing interaction (dotted curve). Pairing

comes to be responsible for the most striking feature observed in Fig. 4.2:

the appearance of a discontinuity at the highest densities (up to cell 4 in the

present calculation), corresponding to the transition point from superfluid to

normal matter. At first sight it is surprising to observe a density disconti-

nuity, which is characteristic of first order phase transitions, at the pairing

transition, which, as it has been stressed in section 2.5.2, is a second order

one. Actually, this behavior is due to the fact that we are not observing an

equation of state but a specific thermodynamic transformation implied by

the minimization of the total free energy of the system.

Specifically, one should consider that the pairing gap jumps, in a con-

tinous but abrupt way, to zero at the critical temperature. This behavior
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Figure 4.2: Temperature evolution of the unbound component density ρg in the
same representative cells as in Fig. 4.1. Full line: complete NSE calculation.
Dashed line: the value of the global proton fraction is assumed equal to the one
calculated from β-equilibrium at the lowest temperature, yp(T ) = yp(0.1MeV).
Dotted line: as the full line, but neglecting the pairing interaction.

influences the energetics of the system and hence may create discontinuities

in the solution obtained for the gas density. This is particularly evident in

the cells where, as in Cell 1, the gas density is larger than the value associated

with the maximum gap (see Fig. 2.8). In this case, the gas density solution

corresponding to zero temperature in the full NSE calculation is lower than

the one obtained neglecting the pairing interaction (dotted line in Fig. 4.2),

because it corresponds to a larger gap energy. As the temperature increases,

in the regime where pairing is still active, the gas density decreases because

the (negative) pairing contribution to the gas energy reduces. At the critical

temperature the non-superfluid solution is recovered as it should, then this

corresponds to a higher density value and may lead to a discontinuity.
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4.2.3 Mass and isotopic distribution of clusters

The mass distribution of clusters as a function of the temperature is displayed

in Fig. 4.3, where p(k) = n(k)/ntot denotes the normalized cluster multiplicity,

with ntot =
∑

k n
(k) the total cluster multiplicity.
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Figure 4.3: Normalized mass cluster distribution at different temperatures in the
same four representative cells as in Fig. 4.1 and along a β-equilibrium trajectory.

We can see that at the lowest densities and temperatures the distribution

is strongly peaked and can be safely assumed to be constituted only by a

unique nucleus. However increasing the temperature and/or moving towards

the inner part of the crust, many different nuclear species can appear with

comparable probability. Light particles in particular systematically dominate

at the highest temperatures. Close to the crust-core transition, instead, the

matter is so neutron rich (see Fig. 4.1) that standard heavy clusters are not

favored anymore even at very low temperature. In these thermodynamic

conditions, the mass distribution extends up to A ≈ 100 but light resonances

prevail by far.

These clusters, which cannot be addressed in mean-field based formalisms

like HFB, may be really exotic objects at the limit of the nuclear binding, as
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Figure 4.4: Normalized isotopic cluster distribution in the same four representative
cells as in Fig. 4.1, as obtained at the highest temperature considered, T = 2 MeV.
The different symbols indicate results at β-equilibrium (triangle) or assuming a
global proton fraction equal to that one corresponding to β-equilibrium but at the
lowest temperature, yp(T ) = yp(0.1MeV).

one can deduce looking at the Fig. 4.4, where the normalized isotopic cluster

distribution is plotted, for the same four cells and at the highest temperature

considered in our study. In the same figure, the results obtained neglecting

the proton fraction wvolution with the temperature are also shown. In such

a way one can observe that, especially for the lowest density cells (Cells 7 and

10), the cluster asymmetry is significantly larger when the β-equilibrium con-

dition is imposed. It is also interesting to notice that, at the high limits of the

N/Z distribution, the yield is higher than the corresponding value obtained

in absence of β-equilibrium. These N/Z values are obtained from the light-

est clusters (see Fig. 4.3), which dominate at the temperature considered.

Thus, the contribution of the most unbound clusters increases properly ac-

counting for the β-equilibrium condition. From these results, one can foresee

on the one hand that the Single Nucleus Approximation (SNA) is perfectly
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adequate in some regions of the inner crust, but non-negligible effects of the

cluster distribution are expected to appear especially close to the crust-core

transition. On the other hand, neglecting the temperature evolution of β-

equilibrium will lead to a strong underestimation at high temperature of the

energy density and the associated specific heat, discussed in the next section.

4.3 Baryonic energy density and specific heat

In some early studies [112, 143], for the calculation of energy density and spe-

cific heat, the cluster contribution was completely ignored, and the nonuni-

form distribution was replaced with a uniform gas formed by the total number

of neutrons in the cell or only by the number of the unbound neutrons. It

has been shown in [72] that these approximations reproduce very poorely the

baryonic specific heat of a complete HFB calculation: the shape of the peak

is too sharp, and the transition temperature is underestimated.

In this section, we evaluate both energy density and specific heat con-

sidering the full NSE distribution but approximating the contribution of the

cluster and the gas as simply additive, which corresponds to neglecting the

term δFsurf in Eq. (4.7). The in-medium effects will be then introduced in

section 4.4.

4.3.1 Excluded volume method

To compute the contribution of the gas to the energy density in the simplified

hypothesis δFsurf = 0, we have to consider the volume Vg accessible to the

gas, i.e., the volume left after excluding the volume of the clusters, and

evaluate the corresponding gas volume fraction xg = limV→∞
Vg

V
. In the

SNA employed in HFB calculations, we can consider a single representative

Wigner-Seitz cell and write xSNA
g = 1− Vcl/VWS.

Since in the NSE model the full distribution of clusters is accounted for,

111



4. NSE cluster model: heat capacity of neutron stars

the volume fraction xg accessible to the gas results as

xg = 1− lim
V→∞

1

V

∑

k

n(k) A(k)

ρ0(δ(k))
, (4.22)

so the gas contribution to the energy density becomes:

Eg = EHM xg = EHM

(

1− 1

〈VWS〉
∑

k

p(k)
A(k)

ρ0(δ(k))

)

, (4.23)

where the total volume has been written as V = ntot〈VWS〉, being 〈VWS〉 the

average size of the Wigner-Seitz volume.

In this way, we finally get the following total baryonic energy density of

star matter:

Etot = Eg + Ecl = Eg +
1

〈VWS〉
∑

k

p(k)〈E(A(k), δ(k))〉, (4.24)

where the energyE(A, δ) is given by the vacuum energy valueE0 of Eq. (4.13),

shifted by the electron screening effect δECoul = δFCoul, and augmented of the

average translational energy 3
2
T and excitation energy 〈E∗〉 corresponding to

the considered temperature and cluster density of states [88], so

〈E(A, δ, ρp, T )〉 = E0(A, δ) + δECoul(A, δ, ρp) +
3

2
T + 〈E∗(A, δ, T )〉. (4.25)

As shown by Eq. (4.7), this excluded volume effect can be simply formulated

as the additivity of the gas with the bound part of the clusters.

4.3.2 Temperature behavior of energy and its derivative

The variation with temperature of the energy density is displayed, for the

same density conditions as in the previous figures, in Fig. 4.5.

The effect of the temperature dependence of the β-equilibrium condition

can be appreciated comparing the full thin lines with the dashed lines. As

expected, we can see that the temperature evolution of the proton fraction

has a strong effect on the energy density, especially at the lowest densities.
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Figure 4.5: Temperature evolution of the baryonic energy density for the same
representative cells as in Fig. 4.1. Full line: complete NSE calculation. Dashed line:
as the full line, but the value of the global proton fraction is assumed equat to that
one calculated from β-equilibrium at the lowest temperature, yp(T ) = yp(0.1MeV).
Lines with symbols: as the full line, but the NSE distribution is replaced with the
most probable Wigner-Seitz cell.

The lines with symbols show instead the energy density of the most prob-

able Wigner-Seitz cell, to be compared to the complete result (full lines)

where the whole distribution of cells is taken into account. We can see that

the effect of properly accounting for the cluster distribution is very important

at the highest densities, but also at the lowest ones when the temperature

gets higher; these situations are indeed dominated by the emergence of light

clusters.

The energy density associated with the full distribution is very different

from the one associated with the most probable cluster. Specifically, the

discontinuities observed in the lines with symbols in Fig. 4.5 appear at the

temperatures where a variation on the most probable element in the Wigner

Seitz cell occurs.

This is more pronounced in Cell 1, where several peaks emerge in the
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temperature evolution of the energy density, for the most probable case.

Actually, it is important to remark that in this density region in principle

non-spherical pasta phases, which are not included in our work, could dom-

inate over the light resonances. This is certainly true for low temperatures

and almost isospin-symmetric matter where the breaking of spherical sym-

metry leads to an important gain in binding energy [191]. However finite

temperature calculations tend to show that non-spherical pasta phases are

only marginally populated in β-equilibrium [6], meaning that the energy be-

havior displayed in Fig. 4.5 might be physical. A similar transition, from

heavy cluster to light resonance dominated configurations is then observed

at higher temperature in each other cell, where anyway the density is too low

for pasta phases to be present. This transition, leading to a sharp disconti-

nuity in the energy density of the most probable Wigner-Seitz cell, physically

corresponds to the melting of clusters inside a hot medium. In a mean-field

treatment, cluster disappearence can only lead to an homogeneous medium,

because small wavelength fluctuations cannot be treated in these approaches.

However, the NSE treatment clearly demonstrates that such fluctuations are

entropically favored and naturally appear at high temperature.

The transition temperature from the superfluid to the normal fluid phase

is signaled by a kink in the behavior of the energy density, which will lead

to a peak in the associated specific heat. This transition occurs at the same

point, for full NSE calculations or considering only the most probable Wigner-

Seitz cell, because electron and nucleon gases are uniform along the different

Wigner Seitz cells, meaning that by construction the density and isospin

characteristics of the gas are the same in the two calculations. On the con-

trary, it is interesting to observe that a shift in the critical temperature of

the superfluid phase transition would be observed if a SNA calculation is

performed [88], as in the well-known Lattimer-Swesty model [111]. Indeed

the baryonic density of the gas associated to the Wigner-Seitz cell of the

single representative cluster is not the same as the total distribution. This

is a consequence of the fact that, especially at high temperature, the most

probable cluster can be very different from the average cluster, thus it is very

important to consider the full cluster distribution, as in the NSE calculations.
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This means that the consideration of the cluster distribution could modify

the transition temperature, though the effect is expected to be small.
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Figure 4.6: Temperature evolution of the baryonic specific heat for the same rep-
resentative cells as in Fig. 4.1. Full line: complete NSE calculation. Dashed line:
as the full line, but the value of the global proton fraction is assumed equal to that
one calculated from β-equilibrium at the lowest temperature, yp(T ) = yp(0.1MeV).

The temperature behavior of the total baryonic energy derivative with

respect to temperature is shown in Fig. 4.6, in four different cells. The

temperature derivative was performed numerically following the trajectory

of β-equilibrium: this means that, in the full calculation, only the total

baryonic density is constant, but the proton fraction is not. As we have

anticipated observing the energy density behavior of Fig. 4.5, the temperature

dependence of the β-equilibrium condition is seen to have a dramatic effect on

the baryonic specific heat. In particular the peak due to the phase transition

is strongly smeared out in the outer region of the inner crust, from cell 7 to

10, due to the rapid variation of the unbound component with temperature

implied by the β-equilibrium condition (see Fig. 4.2). On the contrary, at the

highest densities (cells 1 to 3) the consideration of the temperature variation
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of the proton fraction increases the size of the peak. Indeed, in this case

the β-equilibrium path favors a discontinuous trend of all thermodynamic

quantities at the transition point (see Fig. 4.2).

4.3.3 Mass functional and experimental masses

In all the calculations presented in the previous sections, we have system-

atically used the Skyrme-based Liquid Drop Model (LDM) formula given in

Eq. (4.13). This choice allows a consistent treatment of the bound and un-

bound matter component within the same energy functional. However, as

already stressed, light clusters are systematically underbound with respect

to heavier ones. To give an example, employing the parameters extracted

in [54] for SLy4, the binding energy of an α particle is underestimated of
(

∆B
B

)

α
= 20 % while it is overestimated of

(

∆B
B

)

Pb
= 13 % for 208Pb. This

effect is even more dramatic for the most neutron rich light resonances, at

the limit of nuclear binding, which can in principle be excited in the ex-

tremely neutron rich β-equilibrated matter of proto-neutron stars at finite

temperature: the last bound hydrogen isotope is 3H according to the simplis-

tic formula of Eq. (4.13), while controlled extrapolations from experimental

mass measurements predict that 7H should be bound by 6.58 MeV [4].

In Fig. 4.3, we have seen that at sufficiently high temperature, the last

bound isotopes of light elements can become dominant in the composition

of matter. It is therefore interesting to see how much our results depend

on the poor energy description of light clusters of our mass formula. We

have therefore repeated the same calculations, replacing the energy given by

Eq. (4.13) with the experimental value of the binding energy, whenever this

value is known [4].

In the inner crust, in fact, many nuclei populated with non-negligible

probability in the different density and temperature conditions explored here

are beyond the dripline. This means that their experimental binding energy

is typically not known, hence Eq. (4.13) is still used for those nuclei in the

new calculation. However experimental or extrapolated mass values exist for

all bound isotopes of the lightest elements Z ≤ 3, and in those cases the
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experimental values are used.

We find that, in the range of temperatures considered, the results are

similar to the ones presented in Fig 4.6 both for the highest (cells 1-2) and

lowest (cells 7 to 10) densities. This means that the underbinding of light

clusters does not influence the specific heat calculation. However, as shown
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Figure 4.7: Temperature evolution of specific heat for four intermediate cells. Full
lines: complete NSE calculation making use of the analytical expressions Eq. (4.13)
for binding energies (labeled as LDM in the figure). Line with symbols: as the
full line, but experimental binding energies, from [4], are used whenever available
(EXP+LDM in the figure).

in Fig. 4.7, in the cells from 3 to 6 the situation is very different and the

effect of accounting for the experimental binding energy of light clusters has

a dramatic consequence. Indeed we see that the height of the specific heat

peak and also its position in temperature are modified. Moreover, an extra

peak appears, which was not present in the calculations of Fig. 4.6. This

peak depends on the thermodynamical conditions of the cell and, as already

anticipated, coincides with the temperature at which the nuclei melt into

a gas of free particles and resonances. If resonances correspond to bound

states, they will dominate over the standard nuclei component at much lower
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temperatures than if they lie high in the continuum. The dominance of light

clusters and resonances induces a change in the temperature dependence of

the energy density, leading to an additional peak in the specific heat.
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Figure 4.8: Normalized cluster size distribution at different temperatures, as ob-
tained from complete NSE calculation using experimental binding energies from [4],
whenever available. Results are shown for two representative cells where the tran-
sition to a dominance of light clusters is observed in the range of temperatures
considered.

To better illustrate this point, Fig. 4.8 shows the cluster distribution

obtained considering the experimental binding energies, whenever available,

in the case of cells 3 and 4, where the second peak in the specific heat is

observed. One can appreciate that the cluster distribution is quite different

with respect to the results shown in Fig. 4.3. Moreover, we observe that the

location of the second extended peak of the specific heat, shown in Fig. 4.7,

exactly corresponds to the temperature where the cluster distribution starts

to be dominated by light clusters. It should also be noticed that the same

features could also appear in cells at lower densities, but at temperature

values that are beyond the range considered in the present study.

4.3.4 Extended NSE model vs HFB calculation

Resorting to the experimental binding energies enhances therefore the light

cluster dominance, which cannot be addressed by mean-field HFB calcula-

tions. Nevertheless, even employing the LDM functional parameterization

of masses, the value of specific heat, as shown in Fig. 4.6, is different with

118





4. NSE cluster model: heat capacity of neutron stars

pearance of the pairing in the surface of the cluster. It has been proved in

a recent HFB analysis [137] that this peak cannot be reproduced by simply

decomposing the Wigner-Seitz cell into cluster and gas, accounting for the

excluded volume effect. These observations show the importance to release

the hypothesis of energy additivity adopted so far and, as we examine in the

next section, to take into account the in-medium pairing corrections of the

interface between cluster and gas.

4.4 In-medium effects to the cluster energy

The hypothesis that the bound part of the cluster and the gas contribution

are additive, which leads to Eq. (4.24), neglects the modification of the cluster

surface tension due to the presence of an external neutron gas. This residual

in-medium modification of the cluster energy δEsurf can be computed by

subtracting to the total energy in each Wigner-Seitz cell the contribution of

the gas alone and of the nucleus alone, following [8]:

δEsurf = Etot − E(A, δ, ρp, T )−
(

VWS − A

ρ0(δ)

)

EHM(ρg, δg). (4.26)

Considering that this correction is expected to be a surface effect, it appears

reasonable to compute it in the Local Density Approximation (LDA).

Actually, these in-medium corrections were evaluated in [8] adding to the

LDA also higher orders in ~ in the semi-classical Thomas-Fermi development

of the energy functional, but neglecting the pairing interaction and the tem-

perature dependence. It was shown that δEsurf is indeed a surface term

∝ A2/3, but it displays a very complex behavior with the cluster bulk asym-

metry δ, the gas density ρg and the gas asymmetry δg. In our work therefore

we include the effect of the temperature and of the pairing gap according to

Eq. (3.16), but we limit ourselves to the simple LDA. Gradient and spin-orbit

terms are thus neglected in the surface correction.
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4.4.1 Local Density Approximation (LDA)

In order to evaluate the in-medium surface correction in LDA a model for the

density profiles has to be assumed. We use the simple Wood-Saxon analytical

profiles proposed in [135] and successfully compared to full Hartree-Fock

calculations in spherical symmetry [8, 135]:

ρ(r) ≡ ρ0 − ρg
1 + exp(r −R)/a

+ ρg,

ρp(r) ≡
ρ0p − ρgp

1 + exp(r −Rp)/ap
+ ρgp, (4.27)

such that the local asymmetry is given by δ(r) = 1−2ρp(r)/ρ(r). The radius

parameters R and Rp entering the density profile Eq. (4.27) are related to

the equivalent hard sphere Rcl radius by

R = Rcl

[

1− π2

3

(

a

Rcl

)2
]

, (4.28)

and a similar relation holds for Rp. The diffuseness parameters a and ap

of the total density profile are assumed to depend quadratically on the bulk

asymmetry δ, ai = αi+βiδ
2, where αi and βi were fitted from HF calculations

in [135].

Using the two quantities defined in Eq. (4.27), the in-medium surface

correction can be finally expressed as

δELDA
surf = 4π

∫ RWS

0

drr2 [EHM(ρ(r), δ(r))− EHM(ρcl(r), δcl(r))]−EHMxgVWS,

(4.29)

where δcl(r) = 1−2ρp,cl(r)/ρcl(r), with ρcl(r) and ρp,cl(r) the total and proton

densities, respectively, as defined in Eq. (4.27) but evaluated in absence of

the gas and corresponding to the same (A, δ) cluster, and RWS is the radius

of the Wigner-Seitz cell.

For the low temperatures which are of interest in our study, the in-medium

surface energy correction computed here is expected to give a small effect

to the composition of the inner crust [147]. The effect of the in-medium
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correction will therefore be estimated perturbatively. We assume that, for a

given thermodynamic condition (ρB, yp, T ), the in-medium surface correction

δEsurf (A, δ, ρg, δg) affects only slightly the gas density and composition, and

consequently the chemical potentials. This correction will then be taken us-

ing the values for ρg, δg obtained from a NSE calculation where the in-medium

effects are not considered. With this assumption, the modified binding ener-

gies solely depend on the cluster and on the thermodynamic condition and

can therefore be simply added a-posteriori to the energy density.

The final expression for the total baryonic energy density at finite tem-

perature is then given by:

Etot = Eg +
1

< VWS >

∑

k

p(k)[〈E(A(k), δ(k))〉+ δEs(A
(k), δ(k))], (4.30)

where all terms depend on the temperature, and on the gas density and

composition.

4.4.2 Surface corrections on the specific heat

The effects of the surface corrections, as described above, are evidenced in

Fig. 4.10. In the calculation illustrated by dashed lines, the total energy

is simply given by the sum of the cluster and uniform gas components ac-

cording to Eq. (4.24), as suggested in early papers [112, 143]. The energy

contribution of the cluster-gas interface, according to Eq. (4.30), is shown

by full lines. One observes a small, though appreciable, effect of the in-

medium corrections on the specific heat. In particular, we notice that, in

the calculations neglecting the surface effects (dashed line), the transition

temperature from superfluid to normal matter is more sharply defined. This

is due to the fact that the gas density is characterized by a single value at

each temperature point. Our procedure to introduce surface corrections can

partially cure this problem and leads , as expected and as it is observed in

HFB calculations [72], to a smoothed peak at the transition temperature.

Moreover a third small peak appears, at least in Cell 3 and at T ≈ 1.8 MeV,

due to the disappearance of pairing effects on the surface of the clusters, as
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Figure 4.10: Temperature evolution of specific heat for the same two cells as in
Fig. 4.8. Full line with symbols: complete NSE calculation using experimental
binding energies, from [4], whenever available. Dashed line: as the full line but
neglecting in-medium effects.

observed again in the temperature evolution of the specific heat evaluated by

HFB models (see Fig. 4.9, panel (b)). To conclude, we argue that the effect of

density fluctuations is not generally negligible, even if it represents just a cor-

rection of the total energy density, thus globally justifying the perturbative

treatment developed so far.

However, a few words of caution are in order. Contrary to bulk in-medium

effects of Eq. (4.8) which increase systematically the binding energy of the

cluster, surface interaction with the surrounding gas is strongly dependent

on the cluster asymmetry, as well as on the density and proton fraction of

the gas. Surface in-medium shifts for very neutron rich species immersed

in a neutron gas tend in particular to decrease the binding energy of the

cluster [147]; it is therefore possible that a self-consistent inclusion of this

energy term in the statistical calculation will reduce the contribution of the

light resonances, especially when experimental masses are employed.

Moreover, our local density BCS approximation to evaluate the pairing

contribution of an inhomogeneous density distribution, including the popu-

lation of light resonances, is certainly a quite crude approximation. Indeed,

the Local Density Approximation (LDA) so far adopted has been already

compared to HFB calculations in the case of trapped fermionic atoms in [84]

and it has been shown that even if it nicely works in small systems at zero
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ture close to the lowest one considered in our study (100 keV). If the unbound

neutrons were not superfluid, their contribution to the specific heat will dom-

inate in the inner crust, at least at the temperatures of interest for the cooling

of the neutron star. However, since neutrons are extensively paired, as it has

been shown in the previous sections, in the superfluid regime the specific heat

for the gas comes to be strongly suppressed, so that the relative contribution

of ions and electrons is enhanced. Moreover, beyond the drip point, that is

in the outer crust, these two contributions are the only relevant ones, so they

should be taken into account for a reliable calculation of the cooling curve.

In our work, we have also underlined the importance of the temperature

evolution of the β-equilibrium condition. We show here that a proper treat-

ment of the modification with the temperature of the proton fraction could

affect at moderate T -values not only the baryonic term of the specific heat,

but also the electronic one.

4.5.1 Contribution of the electron plasma

In the neutron star crust, the electrons form an ultra-relativistic highly degen-

erate Fermi gas and their contribution to the heat capacity per unit volume

is simply given by [144]

cV,e =
1

3

(

3π2ρyp
)2/3

T, (4.31)

where the proton fraction yp should be determined consistently along a β-

equilibrium trajectory of the matter. The temperature evolution of the elec-

tronic specific heat cV,e, as given by the Eq. (4.31), making use of the temper-

ature dependent proton fraction evaluated within the extended NSE model,

is illustrated in Fig. 4.12, for four representative values of the total baryonic

density of the inner-crust matter.

The effect of β-equilibrium appears pronounced again especially in the

external layers of the inner crust and goes in the opposite direction observed

for the baryonic term (see Fig. 4.6). However, the two contributions do not

cancel each other, because the modification of the electron term is rather
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Figure 4.12: Temperature evolution of the electronic specific heat for the same
representative cells as in Fig. 4.1. Full line: complete NSE calculation. Dashed
line: as the full line, but the value of the global proton fraction is assumed equal
to that one calculated from β-equilibrium at the lowest temperature, yp(T ) =
yp(0.1MeV).

small.

4.5.2 Thermal evolution of the outer crust

More recently, our attention has been directed also to the thermalization

of the proto-neutron star outer crust. In these layers, the specific heat has

contributions from the electrons and the ions (see Fig. 4.11). While, making

use of Eq. (4.31), it is easy to get the electron contribution, the evaluation

of the ion term is not trivial. The thermodynamic state of the ions goes

from liquid to solid as the star cools down, and in the solid state from a

classical to a quantal crystal [144]. The simplest model for the electron-ion

plasmas is the one component plasma (OCP), where each ion thermodynamic

state is determined, for each Wigner Seitz cell k, only by Coulomb coupling
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parameter:

ΓC =
(Ze)2

RWST
. (4.32)

Monte-Carlo simulations in OCP approximation show that crystallization

occurs at ΓC > Γm ≈ 175 [72, 144]. The specific heat per ion increases from

the ideal-gas value, c(k)V = 3
2

at T � Tm to the Dulong-Petit law for a classical

harmonic crystal value c(k)V = 3 at T . Tm. With further cooling, quantum

effects suppress the specific heat and into the deep quantum regime its value

will be given by the Debye result:

c
k(D)
V =

12π4

5

(

T

ΘD

)3

, (4.33)

where ΘD is the Debye temperature. Work is in progress to include these

corrections in our model.

As a final remark, we would like to mention another improvement that we

are going to implement in the extended version of the NSE model described

so far.

In the outer crust of the neutron star shell effects, which are not included

in the LDM functional here adopted, are known to play a non-negligible

role. However, the parameterization EXP+LDM, which substitutes the value

given by the functional with the experimental mass of the nuclear cluster

whenever it is available, could lead to discontinuities in the treatment of

ordinary and beyond dripline nuclei. Therefore, we are trying to use some

Skyrme models which require additional parameters and could significantly

improve the matching between the two different parameterizations of the

masses. In particular, we are adopting the BSk functionals [82], which have

been recently proposed by the Bruxelles group and are specifically optimized

to astrophysical applications.

This work is expected to provide a more accurate estimation of the crust

thermalization time of proto-neutron stars.
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Chapter 5

Structure and small amplitude

dynamics in neutron-rich nuclei

Neutron-rich nuclei, as stressed in Chapter 3 and 4, play a crucial role in

nuclear astrophysics as well as for constraining the nuclear energy density

functional. In particular, the isovector term of the nuclear effective inter-

action is widely studied not only in the modelization of the compact stellar

objects, but also in nuclear reactions, according to the possibilities offered by

the new radioactive beam facilities which allow to investigate several prop-

erties connected with the isospin degree of freedom.

From these studies, it has emerged that neutron-rich nuclei exhibit some

fascinating properties which make them different from ordinary nuclei. For

instance, neutron-rich nuclei are characterized by new kinds of collective

motion which are absent in those without neutron excess [130, 182].

Therefore hereafter we are going to explore the nuclear structure and the

collective phenomena emerging in the small amplitude dynamics of nuclei.

Actually, to make a bridge with the previous chapters, in the first part we

investigate the collective modes in asymmetric nuclear matter. This analy-

sis should lead in fact to a better understanding of the dipole response of

neutron-rich nuclei, which is initially addressed within a semi-classical trans-

port model employing some new Skyrme effective interactions for the nuclear

mean field [202] (see Chapter 1), in order to evidence the isoscalar-isovector
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mixing of the collective excitations developing in such systems. The sec-

ond part is dedicated to the comparison of these semi-classical results with

quantal calculations; both these investigations are going to connect the char-

acteristics of nuclei to the low density behavior of the symmetry energy.

Finally, the Canonical basis extension of the TDHF theory should allow one

to evaluate also the effect of pairing correlations on the properties of the

dipole modes.

5.1 New Skyrme interactions: SAMi-J

In all numerical calculations of this chapter, for the mean-field representa-

tion, we employ the recently introduced SAMi-J Skyrme effective interactions

which have been fitted according to the SAMi protocol [151]:

• binding energies and charge radii of some doubly magic nuclei to predict

reasonable saturation properties of symmetric nuclear matter (ρ0 =

0.159 fm−3, energy per nucleon E/A = -15.9 MeV and incompressibility

K = 245 MeV);

• some selected spin-orbit splittings;

• spin and spin-isospin sensitive Landau-Migdal parameters [38];

• neutron matter EoS of [198].

These features allow the new SAMi interactions to give a reasonable descrip-

tion of spin-isospin resonances, keeping a good reproduction of well known

empirical data such as masses, radii and important nuclear excitations. The

main difference between SAMi and the SAMi-J family is that the latter has

been produced by systematically varying the value of J = C(ρ0) from 27 to

35 MeV, keeping fixed the optimal value of the incompressibility and effective

mass predicted by SAMi and fitting again the parameters for each value of

J. This produces a set of interactions of similar quality on the isoscalar chan-

nel and that, approximately, isolates the effects of modifying the isovector

channel in the study of a given observable. In our calculations, we employed,

129



5. Structure and small amplitude dynamics in n-rich nuclei

0.5 1 1.5

ρ / ρ
0

SAMi-J27
SAMi-J31
SAMi-J35

0 0.5 1 1.5

ρ / ρ
0

0

5

10

15

20

25

C
p
o
t (

ρ
) 

[f
m

-3
]

Asysoft

Asystiff

Asysuperstiff

(a) (b)

Figure 5.1: Density de-
pendence of the potential
part of the symme-
try energy for three
SAMi-J Skyrme param-
eterizations and some
momentum independent
interactions with simi-
lar behavior at density
saturation ρ0.

in particular, three SAMi-J parameterizations: SAMi-J27, SAMi-J31, and

SAMi-J35 [151], whose density behavior of Cpot(ρ) (see Fig. 1.2) is illustrated

in Fig. 5.1, panel (b). Since, as mentioned above, the SAMi-J interactions

have been fitted in order to also reproduce the main features of finite nu-

clei, for the three parameterizations the symmetry energy coefficient gets the

same value,
Esym

A
(ρc) ≈ 22 MeV at ρc = 0.65ρ0, which can be taken as the

average density of medium-size nuclei. Thus the curves representing the den-

sity dependence of Cpot(ρ) cross each other at ρ = ρc, i.e., below saturation

density, contrarily to the other simplified Skyrme parameterizations (see for

example Fig. 5.1, panel (a)).

5.2 Collective modes in asymmetric matter

In the astrophysical applications of Chapter 3, within the general framework

of thermodynamics, we discussed the equilibrium properties of the asymmet-

ric nuclear matter. In order to address the elementary (resonant) excitations

of nuclear systems, we are going to review now the linear response mean-field

methods adopted to describe the collective modes [142], which are modes

physically involving a coherent motion of many particles of the system,so

that the individual constituents loose their meaning.

To make the connection with thermodynamics, we first consider the col-
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5. Structure and small amplitude dynamics in n-rich nuclei

lective modes in the bulk matter, where the density fluctuations generally

propagate and form sound waves [47]. Since nucleons are fermions, the den-

sity fluctuations should be investigated in Landau’s fluid theory, but for

comparison, before embarking on the specific description of Fermi liquids,

we recall the hydrodynamical approach usually adopted to describe the be-

havior of a classical fluid.

5.2.1 Hydrodynamical theory for bulk matter

The dynamics of a classical fluid is dominated by (quasi-)particle binary

collisions [142]. In this regime, the solution of the Boltzmann-Nordheim-

Vlasov transport equation Eq. (1.52) is then completely determined by the

pressure P , which accounts for the contribution of the mean-field, and by the

collision integral Ic so that ordinary hydrodynamic waves are possible. Under

these circumstances, by denoting with v the velocity field, the dynamics of

density fluctuations can be described by the Eulero equations:

d(ρv)

dt
=
∂(ρv)

∂t
+ v · ∇(ρv) = − 1

m
∇P

∂ρ

∂t
= −∇ · (ρv). (5.1)

These equations can be linearized around an uniform initial density ρ̄ by

considering the small amplitude fluctuation δρ = ρ(r, t) − ρ̄, leading to the

following relations:

ρ̄
dv

dt
= − 1

m
∇P

∂δρ

∂t
= −ρ̄∇ · v, (5.2)

which can be combined to yield

∂2δρ

∂t2
=

1

m
∇2P ≈ 1

m

(

∂P

∂ρ

) ∣

∣

∣

∣

ρ=ρ̄

∇2δρ, (5.3)

where the linearization of the pressure has been taken into account.
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Performing the Fourier transform and exploiting the thermodynamical

relation between pressure and chemical potential derivatives with respect to

the density
∂P

∂ρ
= ρ

∂µ

∂ρ
, (5.4)

one finally gets the following dispersion relation

ω2
k =

(

ρ

m

∂µ

∂ρ

)

k2 ≡ v2sk
2, (5.5)

where ωk and k denote the frequency and the wave number, respectively, of

the perturbation considered and the speed of sound vs has been introduced.

The latter expression brings out the connection existing between sound waves

and thermodynamics [47]. The development introduced above can be easily

generalized to two-component systems and therefore we are going to apply

it to the asymmetric nuclear matter (ANM) case.

However, in the two-dimensional framework of ANM, in place of the chem-

ical potential derivative in Eq. (5.5), one should consider the two eigenvalues

(isoscalar λS and isovector λV , respectively) of the curvature matrix defined

in Eq. (1.61), in order to get the corresponding dispersion relations. We

remind that these two eigenvalues correspond to the normal modes of os-

cillation of the system in the space of density fluctuations and completely

characterize the thermodynamical stability of the system itself. In Chapter

1, it has been also stressed that the two modes are fully decoupled only in the

case of symmetric nuclear matter (SNM), whereas in ANM a coupling is in-

troduced in the linearized equations and, as a consequence, the two nucleonic

species oscillate with different amplitudes.

The square phase velocities ωk/k of both modes are illustrated in Fig. 5.2,

in case of symmetric nuclear matter (I = 0) and for density fluctuations of

infinite wavelength (k = 0), as a function of the density. One observes that, as

it is expected, the isoscalar mode (top panel) reproduces the density behavior

of the nuclear matter incompressibility K, while the isovector one (bottom

panel) is ruled by the symmetry term (see Fig. 5.1). Within the density region

characterized by positive values of the compressibility, known in literature
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as first sound regime, the isoscalar density fluctuations propagate. However,

whereas the square frequency of the isovectore mode is always positive, there

is a density region where the corresponding quantity for the isoscalar mode

becomes negative. This region, characterized by a negative value of the

compressibility, is nothing but the spinodal region addressed in Chapter 1

and 2. Then, the corresponding speed of sound comes out to be imaginary

and the system is unstable against density undulations.
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Figure 5.2: Top panel: square of the phase velocity for the isoscalar mode as
determined in symmetric nuclear matter (SNM), for SAMi-J27 parameterization
and for several k-values, as a function of the reduced density ρ̃ = ρ/ρ0. Bottom
panel: the same as in the top panel, but for the isovector mode, for k = 0 and
three SAMi-J parameterizations of the effective interaction here considered. The
dashed-dotted line illustrates, for SAMi-J27 interaction, also the result at finite k.

The top panel of Fig. 5.2 illustrates, for the SAMi-J27 parameterization,

the density behavior of the isoscalar mode also for finite-size density fluctua-

tions. The analysis at finite k-values allows one to appreciate the modification

introduced by the surface terms of the effective interaction, which increase
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the frequency of the mode. Actually, the surface term slightly affects also

the isovector mode, as one can deduce looking at the dashed-dotted curve in

the bottom panel of Fig. 5.2. The latter variation is however small and its

sign depends on the parameterization of the effective interaction adopted.
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Figure 5.3: Top panel: square phase velocity for the isoscalar-like mode as deter-
mined at the crossing density ρc, for SAMi-J27 parameterization and for several
asymmetry values, as a function of the wave number k. Bottom panel: the same
as in the top panel, but for SAMi-J35 interaction.

The effect of the surface contributions on the isoscalar-like mode is shown

also in Fig. 5.3, where its square phase velocity, as obtained at the density

crossing ρc, for SAMi-J27 (top panel) and SAMi-J35 (bottom panel), is plot-

ted as a function of k, for several asymmetry values I. Quite interestingly,

it emerges that the symmetry energy and its slope, which rule mostly the

behavior of the isovector mode, influence also the compressibility of the mat-

ter, leading to a larger frequency (at small k values) for ANM. However, this

effect reduces at larger k values, since as observed also in Fig. 5.2, the isovec-
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tor finite term Dfin defined in Eq. (1.38) is smaller than the corresponding

isoscalar surface contribution Cfin. This explains the trend shown in Fig. 5.3,

especially in case of SAMi-J27 parameterization, where, for large values of

the wave number, the square phase velocity becomes smaller for matter with

a stronger neutron excess.

It should be noted however that the fermionic nature of the nucleons re-

flects in a more complex scenario with respect to the one depicted here. The

exclusion Pauli principle in fact guarantees that at low temperature collisions

between thermally excited particles play a negligible role, questioning there-

fore the applicability of the results deduced in the hydrodynamical approach.

5.2.2 Linearized Vlasov equations: semi-classical RPA

The propagation of density waves in Fermi liquids has been considered al-

ready long time ago by Landau [108]. For a fermionic system at zero tem-

perature the Pauli-blocking strongly suppresses collisions, thus reinforcing

the role of the mean field, and reduces the number of active particles to

those near the Fermi surface, hence affecting the propagation of waves [47].

At finite temperature, on the contrary, several collisions act to disrupt the

collective motion and hence to damp the waves [142].

In order to obtain the dispersion relation of the collective modes in asym-

metric nuclear matter, one should consider therefore the opposite (collision-

less) regime, thus applying the linear response analysis to the Vlasov equation

Eq. (1.50), where the residual collisions Ic in Eq. (1.52) are entirely neglected.

This is the so-called zero sound regime.

Let us consider a small amplitude perturbation δfq of the distribution

function fq of each nucleonic species, that is

fq ≈ f 0
q + δfq q = n, p, (5.6)

then the linearized Vlasov equation, for any nucleonic species q assumes this

form:
∂(δfq)

∂t
+∇r(δfq) · ∇pε

0
q −∇pf

0
q · ∇r(δεq) = 0, (5.7)
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where a modification has been introduced with respect to Eq. (1.50) also to

take into account the momentum dependence of the effective interaction. The

derivations of the single particle energy εq, already defined in Eq. (1.32), and

of its fluctuation δεq are detailed in section A.5. In deriving the Eq. (5.7), it

is taken into account that, considering a space-uniform distribution function

at equilibrium f 0
q and in the case of homogeneous nuclear matter, one obtains

∇rf
0
q = ∇rε

0
q = 0.

We are interested in particular in plane-wave solutions δfq, periodic in

time with frequency ωk and wave number k such as:

δfq(r,p, t) ∼
∑

k

δf k
q e

i(k·r+ωkt). (5.8)

Under this assumption, it is possible to demonstrate (see section A.6) that

the two coupled Vlasov equations lead to the following dispersion relations:

c0α
0
q = −

∑

l=0,1

cl s
l
q χq

∑

q′=n,p

αl
q′Ll qq′

c1α
1
q = −

∑

l=0,1

cl s
l+1
q χq

∑

q′=n,p

αl
q′Ll qq′ − c1γ, (5.9)

where αl
q are the coefficients of the l-expansion of δfq in terms of Legendre

polynomials, Ll qq′ the usual Landau parameters and γ is related to L1 qq′ by

γ =
1

3

∑

q′=n,p

α1
q′L1 qq′ . (5.10)

Moreover, sq denotes the (dimensionless) zero sound velocity vs in units of

the Fermi velocity modified by the effective mass, v∗Fq, that is:

sq ≡
vs
v∗Fq

=
ωk

kv∗Fq

, (5.11)

χ(sq) is the Lindhard function defined as

χ(sq) ≡ 1− sq
2
ln

(

sq + 1

sq − 1

)

, (5.12)
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and lastly, c0 = −1 and c1 =
√
3
3

. The equations in Eq. (5.9) are equivalent

to the linear and homogeneous system Aα = 0, where the matrix A is:

A =













c0(1 + L0
nnχn) c0L

0
npχn c1L

1
nnsnχn c1L

1
npsnχn

c0L
0
pnχp c0(1 + L0

ppχp) c1L
1
pnspχp c1L

1
ppspχp

c0L
0
nnsnχn c0L

0
npsnχn c1

[

1 + L1
nn

(

1
3
+ s2nχn

)]

c1L
1
np

(

1
3
+ s2nχn

)

c0L
0
pnspχp c0L

0
ppspχp c1L

1
pn

(

1
3
+ s2pχp

)

c1
[

1 + L1
pp

(

1
3
+ s2pχp

)]













while α = (α0
n, α

0
p, α

1
n, α

1
p). Since we are looking for nontrivial α solutions of

this system, one must impose that the determinant of A vanishes.
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Figure 5.4: Dependence of the determinant of A (see text) on the phase velocity
of the collective mode, for asystiff and SAMi-J parameterizations, k = 0 and sym-
metric nuclear matter (dashed lines). The full lines are instead evaluated at the
maximum value of the asymmetry compatible with at least one ω/k value which
allows the determinant to vanish.

In such a framework, therefore, the eigenfrequencies of the system corre-

spond to the ωk/k values matching zeros of the determinant. Our searching

for the solution is illustrated in Fig. 5.4, for the three SAMi-J parameteriza-

tions previously considered, at the density ρc and for k = 0. The dashed lines

are related to the SNM case and clearly manifest the dependence of the result
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on the slope of the symmetry energy. The three curve are however quite close

each other since, as already stressed, the SAMi-J parameterizations cross at

ρc. The full curves are instead evaluated at the maximum value of the asym-

metry Imax which allows one to find a solution. For higher asymmetry, the

single particle motion prevails and the collective motion looses its meaning.

One can observe that, for the SAMi-J parameterizations, the more robust is

the mode in case of SNM, the higher is the Imax value up to which the mode

resists.

The comparison with the orange curves puts in evidence the effect of

the momentum dependence. We can see that, accounting for the effective

mass and for the momentum dependent contributions, leads to a significant

displacement of the solution towards higher values of the eigenfrequencies.

On the other hand, however, the momentum dependence seems to reduce the

range of asymmetry values where one can finds the solution.

The phase velocities corresponding to zero determinant are also plotted in

the top panels of Fig. 5.5, as a function of the asymmetry I, for several ρ values

and for SAMi-J27 (left panel) and SAMi-J35 (right panel), respectively. The

solutions obtained by solving the linearized Vlasov equations at I = 0 appear

close to those deduced by the hydrodynamical approach, when the isovector

mode is considered (see Fig. 5.2, bottom panel). These figures also reveal, as

in the hydrodynamical case, how the frequency associated to the collective

mode behaves like the symmetry term Cpot(ρ), which is always an increasing

function of ρ, in the density range considered. Moreover, it clearly emerges

how the robustness of the collective mode and so the value of Imax, for each

ρ value, depends on the evaluation of the symmetry energy at that density.

As a consequence, one observes an opposite trend in the behavior with the

asymmetry I, for the two effective interactions, when considering density

values which lie below or above the density of the crossing ρc.

Looking at the ratio
δρn
δρp

, one gets also the characterization of the nature

of these modes, as it is displayed in the bottom panels of Fig. 5.5. Concerning

the results for SNM (I=0), one evidently deduces that these eigenfrequencies

correspond to purely isovector modes. Furthermore, owing to the isospin
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Figure 5.5: Top panels: Square phase velocity of the isovector-like mode (solid
lines) and square neutron Fermi velocity (dashed lines), as functions of the asym-
metry I, as obtained by solving the linearized Vlasov equations, for several density
values. Bottom panels: Ratio between neutron and proton density fluctuations as
a function of the asymmetry I, for the same density values as in the top panels.
Left panels represent results for SAMi-J27 parameterization, right panels for the
SAMi-J35 one.

asymmetry exhibited by the matter, the absolute value of the ratio between

neutron and proton density fluctuations becomes larger when increasing the

neutron excess. However, this ratio, as it has been widely discussed in sec-

tion 2.6.1, is mainly ruled by the density behavior of the slope of the sym-

metry energy. In particular, the higher is the value of the slope, the closer

to one is the ratio between the density fluctuations, according to the larger

degree of mixing with the isoscalar-like mode [13].

Actually, by solving the linearized Vlasov equations with the SAMi-J

parameterizations, one determines only the isovector-like eigenfrequencies,

whereas the isoscalar-like solutions, being damped, are not found in this ap-
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proach. However, one should remind that the isoscalar-like modes, which

have been investigated in the hydrodynamical framework, are anyway recov-

ered in the context of finite nuclei.

5.3 Collective modes in finite nuclei

The investigation of collective phenomena in the dynamics of nuclei repre-

sents one of the most challenging and lively research fields in nuclear physics.

The goal of these studies is to shed light on the main features of some well

established collective states, which have an energy larger than the particle

separation energy, such as the giant resonances [90, 169] and to evidence

their connection with the properties of the effective interaction.

5.3.1 Strength function and transition densities

The collective modes in a finite nuclear system can be generally described as

time-dependent oscillations of the nucleus after a perturbation of the ground

state [182] or an excited state. One can therefore consider an (instantaneous)

perturbation at t = t0 such that:

V̂ext(t) = ηkδ(t− t0)D̂k, (5.13)

where D̂k is the operator corresponding to the excitation one wants to study

and ηk is a constant which is supposed to be small. According to basic

quantum mechanics, if |Φ0〉 is the state before perturbation, then the excited

state becomes |Φk(t0)〉 = eiηkD̂k |Φ0〉 and the value of ηk can be related to

the initial expectation value of the collective dipole momentum Π̂k, which is

canonically conjugated to the collective coordinate D̂k, i.e., [D̂k, Π̂k] = i~.

Within the linear response theory, the expectation value of the operator

D̂k as a function of time is given by [71]:

δ〈D̂k〉(t) = 〈D̂k〉(t)− 〈Φ0|D̂k|Φ0〉

= −2ηkΘ(t− t0)

~

∑

n

| 〈Φn|D̂k|Φ0〉 |2 sin
(En − E0) t

~
, (5.14)
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where E0 is the energy of the ground state of the unperturbed Hamiltonian,

|Φn〉 is an excited state and En its corresponding energy. Defining then the

strength response function as usual by

Sk(E) =
∑

n>0

| 〈Φn|D̂k|Φ0〉 |2δ (E − (En − E0)) , (5.15)

it is easy to show that one can also obtain Sk(E) from δ〈D̂k〉(t) by taking

the imaginary part of its Fourier transform, viz

Sk(E) = − 1

πηk

∫ ∞

t0

dtδ〈D̂k〉(t) sin
Et

~
=

ImDk(E)

πηk
, (5.16)

being Dk(E) =
∫∞
t0
Dk(t)e

− iEt
~ dt.

In addition to the investigation of the response function, the analysis of

the transition densities associated with the different excitation modes of the

system is very instructive in the study of the collective modes, since it delivers

important information about the spatial structure related to the dynamics of

every excitation. The overall spatial structure of the transition densities also

indicates which part of the system (internal part, surface) is more involved

in the oscillation.

However, the perturbation V̂ext agitates simultaneously all modes which

can be excited by the operator D̂k. Thus the corresponding density oscil-

lations observed along the dynamical evolution will appear as the result of

the combination of the different excitation modes. In order to pin down the

contribution of a given mode to the density oscillations, one can consider the

energy E associated, for instance, with a peak in the strength function and

compute the transition density as the Fourier transform of δρ(r, t):

δρ(r, E) ∝
∫ ∞

t0

dtδρ(r, t) sin
Et

~
. (5.17)

So, in order to undertake this analysis, one needs to evaluate the local spatial

density as a function of time.
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5.4 Dipole excitations in neutron-rich systems

With the advent of the first-generation exotic-beam facilities, much attention

has been in particular directed towards the study of the collective (multipole)

response of nuclei far from the stability. Many investigations have been de-

voted for example to the evolution of the well-known Giant Dipole Resonance

(GDR), which is still the object of intense research.

5.4.1 Giant and Pigmy Dipole Resonance

Restricting the discussion to dipole excitations of neutron-rich systems, one

generally observes a stronger fragmentation of the response than in stable

nuclei, with significant components located in an energy domain well below

that of the GDR [2, 41, 91, 104, 105, 154, 174, 195]. The nature of these

low-lying excitations is still a matter of ongoing discussions [5, 52, 130].

Unlike the GDR, where neutrons and protons move against each other, the

strength of these modes could be associated with an oscillation of the neutron

excess at the nuclear surface (neutron skin) against the isospin-symmetric

core. This mode is commonly referred to as Pygmy Dipole Resonance (PDR).

This interpretation was already discussed in the early 1990s [173, 184] and is

supported by recent calculations based on relativistic random phase approx-

imation (and its extensions) [114, 200].

On the other hand, some microscopic studies predict, for 132Sn, a large

fragmentation of the GDR strength and the absence of collective states in

the low-lying excitation region [159, 160], thus relating the observed strength

to a particular structure of the single-particle levels. Therefore a number of

critical questions concerning the nature of the PDR still remain.

It is worth noting that the low-lying electric dipole E1 strength in unstable

neutron-rich nuclei is currently discussed also in the astrophysical context,

in connection with the reaction rates in the r-process nucleosynthesis. It

appears that the existence of the pygmy mode could have a strong impact

on the abundances of the elements in the Universe [83, 178]. Moreover, as it

has been evidenced in mean-field based calculations, the features of neutron-

rich nuclei, such as pygmy mode and neutron skin, are clearly related to the
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isovector terms of the nuclear effective interactions, discussed in Chapter 1.

In view of the importance of these dipole excitations, in the following we

will focus only on the E1 dipole response of nuclei with a strong neutron

excess.

5.4.2 Isoscalar and isovector dipole perturbation

The E1 (isoscalar and isovector) response of nuclear systems can be generally

investigated by introducing dipole excitations along a given z direction with

the following D̂k operators [15, 202]:

D̂S =
∑

i

(

r2i −
5

3
〈r2〉

)

zi, D̂V =
∑

i

[

τi
N

A
zi − (1− τi)

Z

A
zi

]

, (5.18)

where k = S, V for isoscalar (IS) or isovector (IV) perturbation, respectively,

τi = 1(0) for protons (neutrons) and

〈r2〉 = 1

A

∫

d3rr2ρ(r, t) (5.19)

denotes the mean square radius of the nucleus considered. We note that the

operator DV actually contains also an isoscalar component, which vanishes

only for symmetric (N = Z) systems. By considering both IS and IV per-

turbations one gets a complete investigation of the dipole excitations, which

could evidence the mixing in the isoscalar-isovector character of the collective

modes, expected in neutron-rich nuclei in analogy with some features already

discussed in the context of infinite nuclear matter [14, 50].

As far as the transition densities are concerned, we exploit the cylin-

drical symmetry of the initial perturbation. In order to reduce numerical

fluctuations in evaluating the time evolution of the spatial density, one can

average over the azimuthal φ angle and extract the density ρq(r, cos θ, t) of

the nucleonic species q and the corresponding fluctuation δρq(r, cos θ, t) =

ρq(r, cos θ, t)− ρq(r, t0) of Eq. (5.17), where cos θ = z/r and ρq(r, t0) denotes

the ground state density profile which, for spherical nuclei, only depends on

r. As suggested in [182], assuming that the amplitude of the oscillation is
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weak (linear response regime), the spherical symmetry of the ground state

and the dipole form of the excitation operator imply that the transition den-

sity can be written, at each time, as: δρq(r, cos θ, t) = δρq(r, t) cos θ. In such

a way, one can finally extract the transition density used as a function of the

radial coordinate r, just by averaging over cos θ the quantity δρq(r, t).

5.5 Semi-classical Vlasov model

In the past, studies based on semi-classical approaches, such as Goldhaber-

Teller (GT) [80] or Steinwedel-Jensen (SJ) [172] models, have given an im-

portant contribution to the understanding of the main features of giant res-

onances and of their link to important nuclear properties, such as incom-

pressibility and symmetry energy. In particular, the models based on the

Vlasov equation Eq. (1.50) have already been shown to describe reasonably

well some relevant properties of different collective excitations of nuclei [1,

30]. It is clear that, within such a semi-classical description, shell effects,

certainly important in shaping the fine structure of the dipole response [152],

are absent. However, the genuine collective features of the nuclear excita-

tions should naturally come out from this analysis and therefore this kind of

studies reveal crucial in the understanding of the nature of these modes. In

particular, our investigation contributes in bringing to light the collective be-

havior exhibited by the PDR, as well as in establishing a connection between

the properties of this resonance and the details of the interaction.

5.5.1 Effective interaction and test-particle method

The aim of our work has been therefore to investigate the dipole response of

neutron-rich nuclei, by solving the two coupled Vlasov kinetic equations for

the neutron and proton distribution functions fq(r,p, t), with q = n, p, bear-

ing in mind the modification introduced in Eq. (1.50) since SAMi-J effective

interaction are momentum dependent (MD). However, in order to make a

connection with previous studies, we also consider the momentum indepen-

dent (MI) Skyrme interactions described in section 2.5, with the addition of
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the asysuperstiff EoS (see Table 1.1), Cpot(ρ) = 18 ρ
ρ0

2ρ
(ρ+ρ0)

MeV, where the

symmetry term increases rapidly around saturation density, being character-

ized by a large value of the slope parameter. The density behavior of the

symmetry energy for these MI interaction is shown in panel (a) of Fig. 5.1, to

be compared with the trend observed for the SAMi-J parameterizations. In

both cases, we neglect the spin-orbit term in the Eq. (1.38), while we include

the Coulomb interaction.

The integration of the transport equations is based on the test-particle

(t.p.) (or pseudoparticle) method [199], which is able to reproduce accurately

the equation of state of nuclear matter and provide reliable results regarding

the properties of nuclear surface and ground state energy for finite nuclei [16].

We choose to consider 1500 t.p. per nucleon in all cases, ensuring in this way a

good spanning of the phase space. Because test particles are often associated

with finite width wave packets (we use triangular functions [85]), some surface

effects are automatically included in the initialization procedure and in the

dynamics, even though explicit surface terms, such as those contained in

the effective Skyrme interactions, are not considered. This implies that, for

the surface terms, one cannot simply use the coefficients associated with the

SAMi-J parameterizations, while we observe that a good reproduction of

the experimental values of the proton root-mean-square radius and binding

energy, for the nuclei selected in our analysis, is obtained when taking Csurf =

Dsurf = 0 in our parameterizations. Thus this choice has been adopted here.

5.5.2 Ground state properties and density profile

Here and in the next sections, as in our recent work [202], we concentrate our

analysis on three mass regions, considering the following neutron-rich nuclei:
68Ni (N/Z = 1.43), 132Sn (N/Z = 1.64), 208Pb (N/Z = 1.54).

In order to determine the ground state configuration of the nuclei under

study, one should find the stationary solution of Eq. (1.50). We adopt the

following numerical procedure: neutrons and protons are distributed inside

spheres of radii Rn and Rp, respectively and, accordingly, in the Thomas-

Fermi approximation, particle momenta are initialized inside Fermi spheres
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associated with the local neutron or proton densities. Then Rn and Rp are

tuned in order to minimize the corresponding total energy, associated with

the effective interaction adopted in the calculations.

The values of binding energy and of neutron and proton root-mean-square

radii correspondingly deduced are reported in Table 5.1 for the SAMi-J in-

teractions.

Table 5.1: Neutron and proton root mean square radii, and their difference, and
binding energy for three nuclei under study, as obtained in semi-classical model with
the SAMi-J interactions. The experimental values are also indicated.

√

〈r2〉n [fm]
√

〈r2〉p [fm]
√

〈r2〉n −
√

〈r2〉p [fm] B
A

[MeV]
68Ni

SAMi-J27 4.043 3.889 0.154 9.130

SAMi-J31 4.102 3.898 0.204 9.050

SAMi-J35 4.143 3.900 0.243 8.971

Exp (64Ni) — 3.857 — 8.682
132Sn

SAMi-J27 4.940 4.728 0.212 8.637

SAMi-J31 5.035 4.741 0.294 8.552

SAMi-J35 5.150 4.753 0.397 8.405

Exp — 4.709 — 8.354
208Pb

SAMi-J27 5.648 5.513 0.135 8.105

SAMi-J31 5.735 5.536 0.198 8.042

SAMi-J35 5.813 5.549 0.264 7.930

Exp — 5.5012 — 7.867

In Fig. 5.6, we show the neutron and proton density profiles, obtained

for example for the system 132Sn, with the three SAMi-J parameterizations

considered in our study. As expected, the neutron skin thickness increases

with the slope parameter L: this effect is indeed related to the derivative of

the symmetry energy around saturation density.
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Figure 5.6: Neutron (full lines) and proton
(dashed lines) density profiles of 132Sn for
the SAMi-J parameterizations, as obtained in
Thomas-Fermi approximation.

When the symmetry energy

decreases significantly below

ρ0, as in the case of the asy-

superstiff EoS or the SAMi-

J35 interaction, it is energet-

ically convenient for the sys-

tem to push the neutron ex-

cess towards the nuclear sur-

face.

The same trend is ob-

served for the 68Ni and 208Pb

ground state configuration

(see Table 5.1) and also

for the MI interactions [16].

However, it should be no-

ticed in Fig. 5.6 that, in the

case of the SAMi-J interac-

tions, the different value of

the symmetry energy at saturation induces a quite different behavior of the

neutron density also in the bulk.

5.6 Collective dipole response in Vlasov model

Dipole oscillations and response functions can be investigated, considering

an initial IS or IV perturbation of the ground state configuration of the

nucleus under study and then looking at its dynamical evolution. In our

Vlasov calculations, according to Eq. (5.18), we assume ηS = 0.5 MeV fm−2,

ηV = 25 MeV and we run the time evolution until tmax = 1800 fm/c. A

filtering procedure, as described in [149], was applied in order to eliminate the

artifacts which result when extracting oscillations of the dipole moments from

a finite time domain analysis of the signal. Thus a smooth cut-off function

was introduced such that Dk(t) → Dk(t) cos
2
(

πt
2tmax

)

. Correspondingly, also

the sine function in Eq. (5.17) comes out to be multiplied by a damping factor.
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In this section we are going to examine the results concerning the isoscalar

and isovector dipole response for the selected nuclei in three different mass

regions considered in section 5.5.2.

5.6.1 Coupling between IS and IV mode

As it has been already mentioned in Chapter 1, as well as in section 5.2, in

symmetric nuclear matter isoscalar and isovector modes are fully decoupled.

We have stressed, moreover, how in neutron-rich systems, neutrons and pro-

tons may oscillate with different amplitudes, inducing a coupling of isoscalar

and isovector excitations. One of the goals of the analysis we have carried

out in a recent work [202] has been to get a deeper insight into this effect.

In Fig. 5.7, we represent dipole oscillations (left panels) and correspond-

ing strength, as a function of the excitation energy E = ~ω (right panels)

for the system 132Sn and the SAMi-J31 interaction. One can observe that,

when introducing an IS perturbation at the initial time t0 (Fig. 5.7, pan-

els (a)-(b)), also isovector-like modes are excited, as it is evidenced from

the analysis of the corresponding isovector dipole oscillations and associated

strength (panels (c)-(d)). Similarly, an initial IV perturbation (panels (e)-(f))

also generates an isoscalar response (panels (g)-(h)).

In the isovector response (panel (f)) one can easily recognize the main IV

GDR peak, with EGDR ≈ 14 MeV.

Some strength is also evidenced at lower energy (mostly in the range be-

tween E1 = 9 MeV and E2 = 11 MeV), which could be associated with the

PDR. These low-energy modes contribute significantly to the corresponding

isoscalar projection (panel (h)), now acquiring a larger strength, compara-

ble to that associated with the robust GDR mode, thus manifesting their

isoscalar-like nature. A (negative) peak is seen at higher energy (around 29

MeV), which corresponds to the giant isoscalar-like dipole mode (IS GDR)

which is also excited, owing to its mixed character, by the initial perturbation.

When agitating the system with an initial isoscalar excitation, essentially the

same oscillation modes emerge, with a larger strength for the isoscalar-like

ones in this case.
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Figure 5.7: Dipole oscillations (left panels) and cor-
responding strength (right panels), as obtained in
semi-classical Vlasov model for 132Sn and SAMi-J31
interaction. Panels from (a) to (d) are deduced em-
ploying an initial IS perturbation, while panels from
(e) to (h) are obtained with an initial IV one.

Indeed, in the isoscalar

response (panel (b)) two

main peaks, whose posi-

tions are quite close to

the E1 and E2 energies

evidenced in panel (h),

are observed in the low

energy region, together

with some strength lo-

cated around the IV GDR

region. A quite large

contribution appears also

in the high energy region

of the spectrum. Pro-

jecting onto the isovec-

tor direction (panel (d))

the strength of the IV

GDR mode is enhanced,

as expected according to

its isovector-like nature,

becoming comparable to

that of the low-energy

isoscalar-like modes ex-

cited by the initial per-

turbation. On the other

hand, the high energy

mode exhibits a quite

small (negative) strength,

pointing again to its isoscalar-

like character.

To summarize, we ob-

serve that the same en-

ergy modes, which are ac-
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tually the normal modes of the system and are of mixed nature, appear at

the same time in the isoscalar and isovector responses of the system, but

with a different weight, depending on their intrinsic structure and on the ini-

tial perturbation type. In particular, the low-energy modes, lying below the

GDR peak, have predominant isoscalar nature, but they may also contribute

to the isovector response, in the PDR region.

5.6.2 Dependence on the effective interaction

We move now to investigate how the response of the system depends on

the effective interaction adopted, in the three mass regions considered in

our work. Hereafter we will only examine the isoscalar (isovector) response

connected to an initial isoscalar (isovector) perturbation.

In the left panels of Fig. 5.8, we show, for the three nuclei considered, the

strength function as a function of the excitation energy E corresponding to

the IS dipole response, while in the right panels the same quantity is shown

for the IV one. In all panels, the predictions of the three selected SAMi-J

interactions are shown.

For 68Ni and 132Sn, the isoscalar strength appears quite fragmented in

the low-energy domain. However one can recognize two main regions of

important contribution for all the interactions considered (see in particular

the SAMi-J35 results) and identify a smaller peak centered at the energy

of the IV GDR (originating from its mixed nature in neutron-rich systems,

as stressed above). It is worth noting that the observation of two main

low-energy peaks in the isoscalar response is in agreement with the semi-

classical studies of [182], where isoscalar toroidal excitations are investigated.

In particular, in [182] it is shown that the lowest energy mode is associated

mostly with surface oscillations and, in the case of neutron-rich systems, is

responsible for the low-lying strength observed in the isovector response (in

the PDR region). For the largest system considered, 208Pb, our calculations

show instead essentially just one main peak, of significant strength, in the

low-energy region. In any case, the low-energy peaks of the IS response

appear connected to the low-lying strength observed in the IV response.
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Neverthless, since the different peaks are quite close to each other, only one

main peak, resulting from two interfering contributions, may appear in the

PDR region.

Let us concentrate now on the details of the isovector response. In the
208Pb case, the centroid energies of the PDR as well as the energy peak of

the isovector GDR predicted by the employed interactions (E = 8 - 10 MeV

and E = 12.5 - 13 MeV, respectively) are close to the experimental data (E

= 7.37 MeV within a window of 6 - 8 MeV [156] and E = 13.43 MeV with a

total width of 2.42 MeV [19] respectively).

The predictions of the three SAMi-J interactions for the PDR, for 132Sn

(E = 9.0 - 11.0 MeV) and for 68Ni (E = 11.5 - 13.5 MeV), are also close, but

still a little higher than the measured data (E = 9.1 - 10.5 MeV for 132Sn [2]

and E =11 MeV with an energy width estimated to be less than 1 MeV for
68Ni [154, 196]). The overestimation of the PDR energy in our calculations

may be connected to the semi-classical treatment of surface effects and, for

that reason, it appears more critical in smaller systems, where the relative

importance of surface to volume effects increases. Indeed the PDR region is

essentially populated by low-lying isoscalar-like oscillations, whose structure

is significantly affected by surface effects. This result can be probably im-

proved through a fine tuning of the coefficients Cfin and Dfin in the Skyrme

parameterizations.

Qualitatively, in the three nuclei it appears that the larger the value of

L, the higher the different peaks arising in the low-energy region of the IV

dipole response (see Fig. 5.8, right panels). Moreover, as it clearly appears

from left panels, the strength of the lowest energy mode in the IS response

increases (except for 208Pb) when increasing the slope L of the parameteriza-

tion considered. On the basis of nuclear matter calculations in neutron-rich

systems, as it has been shown in section 5.2, we expect in fact a larger de-

gree of mixing between isoscalar and isovector modes, for symmetry energy

parameterizations with larger slope L [13]. Since this corresponds also to a

more extended neutron skin (see Fig. 5.6), one can conclude that surface and

isospin effects are both enhanced.

Finally, we observe for all nuclei that the IV projection of the PDR is an
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(see Fig. 5.1, panel (a)), thus exhibitng a larger difference of the symme-

try energy value below ρ0, the energy centroid is clearly more sensitive to

the parameterization employed, being smaller in the asysuperstiff case (see

Fig. 5.9, panel (b)). We also stress that the GDR energy appears always un-

derestimated by the MI interactions, whereas it is close to the experimental

observation when the SAMi-J interactions are considered, as expected from

nuclear matter calculations (see Fig. 5.4). In particular, the SAMi-J31 and

the asystiff parameterizations are characterized by a quite similar behavior

of the symmetry energy (compare the two panels of Fig. 5.1), nevertheless

the results of the dipole response are different in the two cases. Moreover

in the isovector dipole response obtained with the SAMi-J, we also observe

a quite pronounced peak at higher energy, with respect to the GDR, whose

strength decreases with the stiffness of the interaction, in agreement with

RPA calculations [152]. This peak is however less pronounced in the MI

case, highlighting also the role of momentum dependent effects in shaping

the features of the nuclear response.

5.6.3 Spatial structure of low-lying energy modes

In section 1.6.2 of Chapter 1 as well as in section 5.2, we already discussed

how in symmetric matter neutrons and protons oscillate with exactly equal

(isoscalar) or opposite (isovector) amplitudes. Although in neutron-rich sys-

tems the picture is more complex, it has been argued that one can still iden-

tify isoscalar-like modes, when the two nuclear species oscillate in phase, and

isovector-like modes, with neutrons and protons oscillating out of phase. To

further analyze the isoscalar or isovector character of each excitation mode

and their overall spatial structure, we evaulate here neutron and proton tran-

sition densities, according to the definition given in Eq. (5.17).

In Fig. 5.10, in particular, we represent the transition density associated

with the low energy peaks, as observed in the isoscalar response, for the

three systems considered and the three SAMi-J parameterizations adopted.

Actually the transition density associated to these peaks could also be ex-

tracted from the isovector response, but since the IV strength is quite small,
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numerical fluctuations would spoil the signal.

We observe that neutrons and protons oscillate in phase, but with differ-

ent amplitudes, with neutrons having generally larger amplitude than pro-

tons. The nuclear surface is significantly involved in these oscillations. More-

over, when considering interactions with increasing slope L (from SAMi-J27

to SAMi-J35), one can see that neutron oscillations become larger, with re-

spect to proton oscillations, especially in the surface region, whereas the

opposite seems to hold for the interior of the system. This can be explained

by the fact that, for increasing L, the system asymmetry is more pushed

towards the surface, corresponding to the development of the neutron skin,

whereas the internal part of the system becomes more symmetric. As one

can see from the right-bottom panel of Fig. 5.10, where the surface region of

the transition density is better evidenced, surface effects are less pronounced

in the 208Pb case. However, a significant contribution to the dipole strength

may also come from the intermediate spatial region, where the transition

densities are positive1. This determines an overall increase of the mixed

character of the mode, mainly determined by the surface behavior, but also

by the internal part of the system, leading to a larger strength observed in

the isovector response, see Fig 5.8.

Transition densities for the other modes. We also extend our analysis

to the other modes giving a relevant contribution to the isoscalar and the

isovector responses. This is illustrated in Fig. 5.11, for the system 132Sn, in

the case of the SAMi-J31 interaction, and for IS (left panels) and IV (right

panels) excitations, respectively.

As it is observed from the analysis of the isoscalar response (see Fig. 5.8),

there exists a second mode, around E2 = 11 MeV, which gives an important

contribution in the low-energy region. Looking at the associated transition

density generated by an IS perturbation of the system, it appears that neu-

trons and protons essentially move in phase, but still with different ampli-

1According to the definition of the IV dipole operator Eq. (5.18), the dipole strength
increases when δρn

δρp
> N

Z
, for negative transition densities, or when δρn

δρp
< N

Z
, for posi-

tive transition densities. Both conditions are better satisfied, in the surface and in the
intermediate region respectively, with increasing L.
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Figure 5.11: Transition densities, as obtained in semi-classical Vlasov model, for
all the modes with a peak in the strength as a function of the radial distance
r. An IS (left panels) or IV (right panels) initial perturbation is considered, for
132Sn and with SAMi-J31 interaction. Full black lines are for protons, dashed red
lines for neutrons.

tudes. Thus the oscillation has a mixed character and this is why it presents

some strength in the isovector response. Now the interior of the system is

more involved in the oscillation, though the surface is still affected. It is

worth noting that, also for this transition density, the asymmetry increases,

with L, at the surface and diminishes in the internal part.

We observe that, when this energy region is excited from the IV oper-

ator, though the structure of the mode keeps similar (apart from the sign,

which is not relevant), the difference between neutrons and protons becomes

more pronounced. This effect could be due to the influence of the strong

isovector oscillations associated with the IV GDR region, whose contribution

may extend to the considered energy, so that GDR and PDR may overlap.

Indeed, as it has been already stressed in section 5.3.1, even if the energy E

corresponds to a peak in Sk(E), the transition densities obtained with the

method employed here may still contain contributions from other modes if

those have a width which makes their spectrum extend to the energy E [182].

It is moreover interesting to underline that the splitting of the PDR into a

157



5. Structure and small amplitude dynamics in n-rich nuclei

low-energy, mostly isoscalar contribution and a higher energy region with a

more pronounced isovector character has been pointed out in recent experi-

mental and theoretical analyses [52, 69].

The highest energy isoscalar mode, that should be associated with the

isoscalar giant dipole compression mode, corresponds to transition densities

which affect significantly the interior of the system (Fig. 5.11, panels (d)) and

its features do not depend much on the type of initial perturbation. Moreover

it appears of quite robust isoscalar nature, with a tiny isoscalar/isovector

mixing at the surface.

It is also interesting to look at the modes which are isovector-like. In

this case neutrons and protons oscillate mostly out of phase, with protons

having larger amplitude. As one can deduce comparing panels (b) and (c)

in Fig. 5.11, the transition densities extracted from the isoscalar or from

the isovector responses exhibit similar features. It appears that the main

IV GDR mode (panels (b)) corresponds essentially to one oscillation, with

a maximum close to the nuclear surface. This result is compatible with GT

picture of neutron and proton spheres oscillating against each other. On the

other hand, the higher energy peak, E ≈ 16.5 MeV (panels (c)), corresponds

to a kind of double oscillation, which is typical of SJ modes, i.e. volume

oscillations, involving also the internal part of the system.

The full energy spectrum of transition densities, as obtained considering

an initial IS [panels (a) and (b)] or IV [panels (c) and (d)] perturbation, at

two radial distances is shown in Fig. 5.12 for the system 132Sn and the SAMi-

J31 interaction. One can observe again that the low-energy region, on the

left of the GDR peak, corresponds mostly to isoscalar-like excitations, where

neutrons and protons move in phase. The same is seen at energies greater

than E ≈ 17 MeV. On the other hand, the energy region E ≈ 13–17 MeV is

clearly characterized by isovector-like excitation modes.

Final remarks. In order to conclude this section, let us stress the impor-

tant result one gets from our analysis: the evidence of a relevant degree of

isoscalar-isovector mixing of the collective excitations developing in neutron-

rich systems, in analogy with some features underlined in the nuclear matter
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Figure 5.12: Tran-
sition densities,
as obtained in
semi-classical
Vlasov model
considering an
initial IS [(a)
and (b)] or IV
[(c) and (d)]
perturbation, as
a function of the
excitation energy
E, for 132Sn and
the SAMi-J31 in-
teraction, at two
radial distances:
r = 1.75 fm and
r = 4.75 fm.

context. Focusing in particular on the low-lying strength emerging in the

isovector response, we show that this energy region essentially corresponds

to the collective excitation of isoscalar-like modes, which also contribute to

the isovector response owing to their mixed character. Considering effective

interactions which mostly differ in the isovector channels, we observe that

these mixing effects increase with the slope L of the symmetry energy, lead-

ing to a larger strength in the low-energy region of the isovector response.

This result appears connected to the increase, with L, of the neutron-proton

asymmetry at the surface of the considered nuclei, i.e., to the neutron skin

thickness.

5.7 Comparison with quantal calculations

The semi-classical model investigated in this chapter has demonstrated re-

liable in describing the ground state properties and in shaping the main

features of the collective response of the nuclei under study. To confirm the
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Table 5.2: Neutron and proton root mean square radii, and their difference, and
binding energy for the three closed shell nuclei under study, as obtained with the
SAMi-J interactions in HF calculations.

√

〈r2〉n [fm]
√

〈r2〉p [fm]
√

〈r2〉n −
√

〈r2〉p [fm] B
A

[MeV]
68Ni

SAMi-J27 3.974 3.824 0.150 8.741

SAMi-J31 4.001 3.831 0.170 8.845

SAMi-J35 4.025 3.823 0.203 8.911
132Sn

SAMi-J27 4.837 4.656 0.181 8.472

SAMi-J31 4.927 4.664 0.263 8.448

SAMi-J35 4.990 4.658 0.331 8.437
208Pb

SAMi-J27 5.558 5.438 0.120 7.951

SAMi-J31 5.652 5.455 0.197 7.917

SAMi-J35 5.720 5.455 0.265 7.882

validity of the semi-classical method and to check also the role of shell effects

and single particle structure on the results, in the following sections we are

going to investigate the collective dipole modes by performing some quan-

tal calculations, which are based on TDHF approach (see Chapter 1), to be

compared with the previous results.

5.7.1 Modifications on the static properties

In order to appreciate the quantal modifications on the static properties, for

each nucleus given in Table 5.1, we employ a code based on the Hartree-

Fock equation Eq. (1.20). In particular, we obtain the initial single particle

wave functions using the ev8 code [26] that solves the HF equation in r-

space with the Skyrme functional in the mean-field term. The ground state

properties of the three nuclei under study, as extracted by the HF energy

minimization, fill out the Table 5.2 and should be related with the analogous

semi-classical results listed in Table 5.1. The data compare rather well,
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but evidently the quantal approach gives back values which are closer to

the experimental results. The two sets of data overlap especially in the

case of 208Pb, confirming the reliability of the semi-classical approach in the

reproduction of the heavy ion properties.
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Figure 5.13: Neutron (full lines) and proton
(dashed lines) density profiles as in Fig. 5.6, but
deduced by performing HF calculations.

The neutron and proton

density profiles deduced by

adopting the SAMi-J param-

eterizations are instead il-

lustrated in Fig. 5.13 for

the system 132Sn. By com-

parison with the result of

Fig. 5.6, it clearly emerges

that the bulk density of the

nucleus in the HF case is

higher than the one deduced

in the semi-classical model.

According to the conserva-

tion of the total number of

particles, this also reflects in

a larger compactness of the

system, which implies a re-

duction of the surface diffuseness and of the neutron skin thickness, as one

infers from Table 5.2. The same considerations made in the previous sec-

tion hold instead for the dependence of this thickness on the slope of the

symmetry energy.

Also the behavior of the density profiles in the internal part shows a

remarkable difference with respect to the one in Fig. 5.6, which is trivially

constant in the bulk region. The quantal HF approach allows in fact to

involve shell effects and so more degrees of freedom than the simple Thomas-

Fermi approximation and this also reflects into the oscillations observed at

intermediate radial distances in Fig. 5.13.
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5.7.2 Strength function in quantal approach

To underline if, and eventually how, the difference observed in the density

profiles of Figs. 5.6 and 5.13, together with the surface and the shell effects,

influence also the response function of the system, one could investigate the

small amplitude dynamics of the nuclei under study within the TDHF ap-

proach. In this framework, the analysis of the collective dipole modes has

been addressed by making use of the three-dimensional code developed by

P. Bonche and coworkers [103] and recently adopted also by the IPN-Orsay

theory group [162]. The corresponding strength function one obtains, for
132Sn and SAMi-J31 interaction, are illustrated in Fig. 5.14, for an initial IS

(ηS/~ =10−4 fm−3, panel (a)) or IV perturbation (ηV /~ =10−4 fm−1, panel

(b)), respectively.2
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Figure 5.14: Comparison between the strength functions versus excitation energy,
as obtained in TDHF calculations and the corresponding result extracted with
the semi-classical Vlasov model, for 132Sn and SAMi-J31 interaction. Panel (a) is
for the initial IS perturbation and panel (b) for the initial IV one.

Looking at the two panels of Fig. 5.14, the most striking feature one can

observe in both panels is the splitting of the peak associated to the PDR

2We have adopted here a smaller value of ηk, k = S, V with respect to that one used
in the semi-classical Vlasov model, because in TDHF calculation it is possible to get the
dipole oscillation, even if a so tiny perturbation is employed. Moreover, we remind that
in this small amplitude limit the results should be equivalent with those obtained within
the RPA approach.
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in two different peaks which, according to their mixed nature, appear both

in the isoscalar and isovectore response. Similarly to what it is observed in

RPA calculations [152], the TDHF results exhibit a more isolated peak in the

low-energy region of the IS strength function SS(E), but some contributions

appear also at higher energy, with respect to Vlasov calculations, in a region

around the domain of the IV GDR. This latter component of the IS dipole

response has been the object of several experimental and theoretical analy-

ses [49, 117, 181]. These studies have pointed out the non-compressional na-

ture of this excitation, in agreement with the findings, based on semi-classical

studies of [182]. The discrepancy with respect to the Vlasov calculations may

be probably attributed to the lack of intrinsic gradient terms of quantal na-

ture in the semi-classical approach as well as to the numerical treatment of

surface effects [7].
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Figure 5.15: Transition densities, as obtained in TDHF approach, for PDR (left
panel) and GDR (right panel) as a function of the radial distance r. An IS
(left panel) or IV (right panel) initial perturbation is considered, for 132Sn and
with SAMi-J31 interaction. Full black lines are for protons, dashed red lines for
neutrons.

However, looking at the transition densities in Fig. 5.15, as obtained for

the pygmy and the giant dipole resonances, by introducing an initial IS or

IV perturbation, respectively, one can observe that the genuine properties

which characterize the structure of the two modes are well reproduced in

both models. Similarly to semi-classical calculations, the transition densities

deduced in the TDHF approach show for the PDR a quite large contribution
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in the external part close to the surface, which is mostly isoscalar-like, also

in agreement with RPA calculations [152], whereas a more complex behavior

is exhibited in the bulk region. The transition densities associated to the

main IV GDR peak clearly reveal the isovector-like nature of this mode and,

analogously to the ones deduced by the Vlasov model, significantly involve

the nucleons of the surface but get important contributions also from the the

internal part.

5.8 Pairing effects on the giant resonances

In section 2.3.2, we have already mentioned that the introduction of pairing

correlations in semi-classical approaches complicates significantly the study

of the small amplitude dynamics of nuclear systems. As a consequence,

since we would like to investigate pairing effects on the collective dipole res-

onances, we resort to the Cb-(TDHFB) extension of the TDHF approach

(see section 2.3.1), which include pairing correlations in the BCS approxima-

tion [68]. In particular, we would like to analyze the influence of pairing for

the tin isotopes chain, according to the importance that these nuclei take on

also in the experimental activity research for the pygmy and the giant dipole

resonances [2].

A functional form similar to the one given in Eq. (2.33) is adopted for the

pairing effective interaction, whose parameters have been fitted in order to

reproduce the two particle separation energy S2n for some nuclei of the tin

isotopes chain (from 128Sn to 136Sn). We present preliminary results for the

axially deformed even-even isotopes 130Sn and 128Sn, since the spherical one
132Sn, being a double-magic nucleus, is not affected by pairing correlations.

The strength functions extracted by the dynamical evolution following an

initial IS or IV perturbation are plotted, for both TDHF and TDHF+BCS

calculations, in Fig. 5.16. The right panels of the latter figure, which are

related to the IV response to an initial IV perturbation, clearly manifest

that, whereas for both nuclei the two curves are almost indistinguishable

in the PDR region, the excitation energies of the GDR peak is modified

by the introduction of the pairing correlations. This effect is even more
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pronounced in the case of 128Sn, which moving more away from the closed-

shell configuration, presents a larger deformation with respect to 130Sn.
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Figure 5.16: Comparison between the strength functions versus excitation energy,
as obtained in TDHF+BCS calculations and the corresponding TDHF result ex-
tracted neglecting pairing correlations, for two even-even nuclei of the tin isotopes
chain and SAMi-J31 interaction. Left panels are related to an initial IS pertur-
bation, right panels to an initial IV one.

It has been pointed out that the difference observed in the dipole response

between TDHF and TDHF+BCS calculations comes out exclusively from the

initial condition [161], i.e., from the shape exhibited by the nuclei in their

ground state. Therefore, we deduce here that, while in absence of pairing

correlations the ground states of the two tin isotopes here considered are
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deformed, taking into account the formation of Cooper pairs, more spherical

shapes become favoured.

More in detail, since both nuclei present a prolate shape along the same

z-direction of the perturbation given in Eq. (5.18), the reduction of the axial

deformation induced by the pairing leads to an increase in the excitation

energy of the GDR peak, analogously as one gets for a nucleus with a smaller

size. The inclusion of pairing correlations appears hence rather important to

perform realistic calculations to be compared with experimental results.

Regarding the peak associated with the PDR, we have already discussed

how its IV projection is actually more sensitive to the surface oscillations

and hence to the neutron skin thickness, which is not much affected by pair-

ing correlations for the nuclei considered. However, the IS projection (left

panels) of the PDR appears to be significantly influenced by the formation

of Cooper pairs, since the corresponding peak in the strength function man-

ifests a larger relative importance with respect to the case without pairing

correlations, when one makes a TDHF+BCS calculation. In order to analyze

the dependence of the IV PDR peak on the pairing, one should instead inves-

tigate nuclei which lie far from the closure of the shell, where the pairing gap

is expected to be larger and can accordingly modify the surface diffuseness.

Work is in progress to explore the dipole response of these isotopes, with

the aim to improve our understanding of the nature of the pygmy dipole

resonance and, in connection with the experimental measurements, its de-

pendence on the symmetry energy.
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The purpose of this dissertation has been to study some general properties

of nuclear many-body systems, ranging from infinite nuclear matter to finite

nuclei. Our investigations have been focused in particular on nuclear systems

with neutron excess, with the aim to get a deeper insight in the open issue

which concerns the isospin dependence of the nuclear interaction.

The analysis has been concentrated especially on the behavior of nuclear

matter at densities which lie below the saturation one. This density region

allows in fact to address several nuclear phenomena, which involve surface

effects in nuclei as well as clustering processes emerging in nuclear reactions

and compact stellar objects.

Since we limit ourselves to aspects which manifest in the low density re-

gion of the phase diagram, our study has been devoted also to shed light on

the impact of some relevant interparticle correlations which occur in fermionic

system and are responsible for the superfluid phenomena: the pairing corre-

lations.

Our goal has been therefore to examine the interplay of these correlations

with the other terms of the effective interaction, usually introduced within

the mean-field approximation to approach the nuclear quantal many-body

problem.

Wide attention has been dedicated in our work to the role of the pairing

interaction in the astrophysical setting of stellar matter, especially when the

cooling process of proto-neutron stars is concerned. Our analysis evidences in

fact important pairing effects on neutrino emissivity and specific heat, which

are two of the key ingredients of the thermal evolution of a compact star.

On the one hand, superfluidity turns out to be responsible for a significant
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modification of the neutrino emission, for suitable density, asymmetry and

temperature conditions, in the simplifying approximation of homogeneous

nuclear matter, which can be of interest for the evolution of neutron stars

and supernovae explosion in the pre-bounce phase. In this context, focus-

ing on neutral current neutrino scattering, we have generally observed an

increase of the neutrino differential cross section in a paired and low-density

nuclear medium, at least close to the spinodal border, where the matter is

characterized by quite large density fluctuations. If these schematic treat-

ment is confirmed by realistic simulations in stellar matter, it would imply

an enhancement of neutrino trapping and a reduction in the energy flux car-

ried by neutrinos. This behavior, essentially due to neutron-neutron pairing

attraction which favour low-density clustering, leads to the emergence of new

effects about the impact of superfluidity on the cooling mechanism.

On the other hand, in order to improve the understanding of the thermal

evolution of compact stars, we have also presented a calculation of the specific

heat in the inner crust of proto-neutron stars, within an approach based

on cluster degrees of freedom, that considers the complete distribution of

different nuclear species in thermal and β-equilibrium. This has produced the

first modelization of stellar matter containing at the same time a statistical

distribution of different nuclear clusters at finite temperature and pairing

correlations in the unbound neutron component.

The resulting specific heat appears compatible with complete mean-field

Hartree-Fock-Bogoliubov calculations, which assume a single cluster com-

ponent. However, our study brings to light a strong influence of resonance

population at moderate temperatures and in density regions close to the

crust-core transition. This feature considerably affects the specific heat, since

the cluster disappearence at high temperature does not lead in this model to

a uniform gas of nucleons, as in other mean-field models, but allows the cor-

relations to survive in the form of exotic neutron-rich resonant states at the

limit of nuclear binding. Further work will be necessary to get to quantita-

tive results including in-medium effects on the light cluster self-energies [153,

179], but our preliminary calculations in the semiclassical Extended Thomas-

Fermi (ETF) formalism suggest that these effects will not drastically modify
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the present picture.

Furthermore, in our work we show that an accurate treatment of β-

equilibrium is important for a quantitative determination of the specific heat

and consequently of the neutron star cooling curve.

As stressed before, our activity research has been focused mainly on

isospin-asymmetric nuclear matter. Nuclear systems with neutron excess

have in fact an essential role not only for astrophysics, but also in the con-

text of nuclear structure.

In the second part of the thesis, we move therefore to the investigation of

structure and small amplitude dynamics of neutron-rich nuclei, focusing on

the mixed isoscalar-isovector character of their collective excitations. In par-

ticular, we have addressed some of the open questions concerning the nature

of the low-lying isovector dipole strength experimentally observed in neutron-

rich nuclei and known in literature as pygmy dipole resonance. Then, we have

showed that the relative isoscalar-isovector weight of the different modes, as

observed in the nuclear response, is determined by their intrinsic structure,

as well as by the type of initial perturbation considered. As a result, within

our framework, the low-lying strength arising in the isovector dipole response

reveals that the corresponding excitations are essentially isoscalar-like, i.e.,

neutrons and protons oscillate in phase but with different amplitude. This

mechanism induces however a finite, though small, isovector dipole moment

oscillation, which is indeed revealed in the isovector strength.

By performing a systematic investigation over three mass regions and

employing effective interactions which differ in the isovector channel, we have

also explored the relation between the mixed isoscalar-isovector structure of

the dipole collective modes and the density dependence of the symmetry

energy. Since the latter quantity also affects the size of the neutron skin,

our analysis has aimed at elucidating the possible connection between the

strength observed, for selected nuclei, in the pygmy dipole response region

and the corresponding neutron skin thickness. The results are moreover in a

good qualitative agreement with full quantal Random Phase Approximation

(RPA) calculations [40, 55, 75, 140, 189].

All these features have been investigated in a semi-classical as well as in
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a quantal mean-field transport model. The latter has been also extended to

include pairing correlations, in order to underline the effect of the formation

of Cooper pair in shaping the dipole response of some neutron-rich systems.

One should remark that the findings presented here can be useful for fur-

ther, systematic experiments searching for the pygmy dipole resonance and

can be even extended to other collective modes, such as the recently observed

pygmy quadrupole resonance (PQR) [139]. In particular, the features emerg-

ing from the analysis of the structure of the modes may help to select the

best experimental conditions to probe this quite elusive mode. Moreover,

a precise estimate of the strength acquired by the pygmy resonance in the

dipole response can provide indications about the neutron skin extension,

helping to better constrain yet unknown properties of the nuclear effective

interaction, namely the density dependence of the symmetry energy.

Further developments to extend our work can be hence enviseged to get

a deeper insight on the role of pairing and quantal effects in characterizing

the collective excitations of neutron-rich nuclei.

As a perspective, also our understanding of the cooling process of com-

pacts stars can be improved. Concerning our study on neutrino emissivity,

first of all it is important to assess how our results modify accounting for the

presence of a cluster component inside the nuclear medium. Moreover, one

should explore other regions of the phase diagram, with the aim to address

the supernova matter and, therefore, to investigate the effect of pairing cor-

relations in more isospin-symmetric conditions. With regard to the realistic

cluster model adopted so far to evaluate the specific heat, we would like to

investigate in more details the sensitivity to the energy density functional

employed. In such a way, we aspire to provide a better understanding of

the mechanisms ruling the thermalization of the neutron stars and a more

reliable simulation of the cooling process.

To conclude this dissertation, let us stress once more the challenging pur-

pose tackled by our work and, generally speaking, by the current nuclear

physics research, to make a bridge between the microscopic world and the

astrophysical context. Despite of the huge number of orders of magnitude

which separates these objects, nuclei and stars are indeed intimately con-
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nected by the behavior of nuclear matter. Several features that have been

widely discussed in the present thesis, such as effective interactions, EoS and

pairing correlations, characterize indeed both systems. As a result, atomic

nuclei and stellar objects turn out to be deeply bond.

Furthermore, the two studies appear strictly complementary. In our work,

for example, we have addressed clustering phenomena and superfluidity ef-

fects in the stellar matter scenario, whereas the context of finite nuclei has

been more exploited to explore the density dependence of the symmetry en-

ergy. However, one could concentrate on the role of the pairing effects also

focusing on finite nuclear systems, not only looking at their structure and

small amplitude dynamics as it has been partially done in our work, but

also dealing with the study of nuclear reactions. Also, one should consider

that constraints on the symmetry energy and, in general, on the nuclear

EoS, are even imposed by astrophysical observations. Valuable informations

in this sense may come also from the study of heavy ion collisions (HIC),

which constitute one of the tools adopted to probe the symmetry energy [97]

and the framework for the emergence of clusters in finite systems, as it is

experimentally observed in multifragmentation processes [28].
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Appendix A

Appendix

A.1 Hartree-Fock energy

Starting by eq. Eq. (1.13) and by exploiting the Wick’s theorem and the

antisymmetrization of the two-body interaction, it is trivial to get

EHF[ρ] =
∑

ij

Tijρji +
1

4

∑

i,j,k,l

V̄ijkl (ρljρki − ρliρkj)

=
∑

ij

Tijρji +
1

4

∑

i,j,k,l

V̄ijklρljρki +
1

4

∑

i,j,k,l

V̄ijlkρliρkj

=
∑

ij

Tijρji +
1

4

∑

i,j,k,l

V̄ijklρljρki +
1

4

∑

i,j,k,l

V̄ijklρkiρlj

=
∑

ij

Tijρji +
1

2

∑

i,j,k,l

ρkiV̄ijklρlj

=
∑

ij

Tijρji +
1

2

∑

i,j,k,l

ρjiV̄ikjlρlk

=
∑

ij

(

Tij +
1

2
Uij

)

ρji, (A.1)

which, bearing in mind the definition of the mean-field potential given in Eq. (1.15),

is the result quoted in Eq. (1.14).
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A.2 TDHF equations

Bearing in mind that the hamiltonian operator Ĥ can be represented as

in Eq. (1.11), the equation of motion Eq. (1.23) requires to evaluate the

expectation values of the following algebraic commutators:

[

â†j âi, â
†
mân

] [

â†j âi, â
†
kâ

†
l âmân

]

, (A.2)

which are related to the kinetic energy term and to the potential part of Ĥ,

respectively.

Let us consider only the first contribution, since the derivation for the

second one is longer but altogether similar. By taking into account the

following relation which applies for the algebraic commutator:

[

ÂB̂, ĈD̂
]

= Â
[

B̂, Ĉ
]

D̂ + ÂĈ
[

B̂, D̂
]

+
[

Â, Ĉ
]

B̂D̂ + Ĉ
[

Â, D̂
]

B̂ (A.3)

and reminding, together with the anti-commutation relations for the fermionic

operator, that
[

Â, B̂
]

= 2ÂB̂ −
{

Â, B̂
}

, (A.4)

one can easily carry out this simple algebra:

[

â†j âi, â
†
mân

]

= â†j
[

âi, â
†
m

]

ân + â†j â
†
m [âi, ân] +

[

â†j, â
†
m

]

âiân + â†m

[

â†j, ân

]

âi

= 2â†j âiâ
†
mân − â†j ânδim + 2â†j â

†
mâiân + 2â†j â

†
mâiân + 2â†mâ

†
j ânâi − â†mâiδjn

= −2â†j â
†
mâiân + 2â†j ânδim − â†j ânδim + 6â†j â

†
mâiân − â†mâiδjn

= 4â†j â
†
mâiân + â†j ânδim − â†mâiδjn. (A.5)

Therefore, by denoting the expectation value given in Eq. (1.23) as
〈[

â†j âi, Ĥ
]〉

Ψ
,

one finally get:

〈[

â†j âi, â
†
mân

]〉

Ψ
=
〈

â†j ân

〉

Ψ
δim −

〈

â†mâi
〉

Ψ
δjn, (A.6)

since the other contribution vanishes.

In a completely similar way, one then also finds that the second commu-
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tator can be written like

〈[

â†j âi, â
†
kâ

†
l ânâm

]〉

Ψ
=
〈

â†j â
†
l ânâm

〉

Ψ
δik −

〈

â†j â
†
kânâm

〉

Ψ
δil

−
〈

â†kâ
†
l âiâm

〉

Ψ
δjn +

〈

â†kâ
†
l âiân

〉

Ψ
δjm. (A.7)

By inserting now the formulas obtained in Eq. (A.5) and Eq. (A.7) in the

equation Eq. (1.23), one suddenly gets for the first contribution:

[i~ρ̇ij(t)]1 =
∑

m,n

(Tmnρnjδim − ρimTmnδjn)

=
∑

n

Tinρnj −
∑

m

ρimTmj (A.8)

while for the second one, as in Appendix A.1, again the application of the

Wick’s theorem and the antisymmetrization of the two-body interaction allow

to achieve

[i~ρ̇ij(t)]2 =
1

4

[

∑

l,m,n

V̄ilmn (ρnlρmj − ρmlρnj)

]

− 1

4

[

∑

k,m,n

V̄kimn (ρnkρmj − ρmkρnj)

]

− 1

4

[

∑

k,l,m

V̄klmj (ρilρmk − ρikρml)

]

+
1

4

[

∑

k,l,n

V̄kljn (ρilρnk − ρikρnl)

]

=
1

2

[

∑

l,m,n

V̄ilmn (ρnlρmj − ρmlρnj)

]

− 1

2

[

∑

k,l,m

V̄klmj (ρilρmk − ρikρml)

]

=
∑

n

Uinρnj −
∑

m

ρimUmj, (A.9)

whereas in the last line it has been introduced the definition of mean-field

potential given in Eq. (1.15). By exploting the results deduced in Eq. (A.8)

and Eq. (A.9), one finally gets the TDHF equations:

i~ρ̇ij(t) =
∑

m

[(Tim + Uim) ρmj − ρim (Tmj + Umj)] = [h, ρ]ij . (A.10)
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A.3 Vlasov equation

The Wigner function, as given in the r-basis in Eq. (1.45), can be also equiv-

alently defined in terms of matrix elements of the density operator in the

momentum basis as:

f(r,p) =
1

h3

∫

e+iq·r
~ 〈p+

q

2
| ρ̂ |p− q

2
〉 dq. (A.11)

With this definition, the one-body contribution of the TDHF equation (Eq. (1.24))

can be written as:
(

∂f

∂t

)

1

=
1

i~

1

h3

∫

e−ip·R

~ 〈r+ R

2
|
[

T̂ , ρ̂
]

|r− R

2
〉 dR

=
1

i~

1

h3

∫

e+iq·r
~ 〈p+

q

2
|
[

T̂ , ρ̂
]

|p− q

2
〉 dq

=
1

i~

1

h3

∫

e+iq·r
~ 〈p+

q

2
|
[

T̂ ρ̂− ρ̂T̂
]

|p− q

2
〉 dq

=
1

i~

1

h3

∫

e+iq·r
~

[

(p+ q

2
)2

2m
− (p− q

2
)2

2m

]

〈p+
q

2
| ρ̂ |p− q

2
〉 dq

=
1

i~

1

h3

∫

e+iq·r
~

p · q
m

〈p+
q

2
| ρ̂ |p− q

2
〉 dq

=
p

m
· 1

i~

1

h3

∫

e+iq·r
~ q 〈p+

q

2
| ρ̂ |p− q

2
〉 dq

= − p

m
· ∇rf. (A.12)

At the same time, the two-body contribution is easily evaluated employing

these simple algebraic calculations:

(

∂f

∂t

)

2

=
1

i~

1

h3

∫

e−ip·R

~ 〈r+ R

2
|
[

Û , ρ̂
]

|r− R

2
〉 dR

=
1

i~

1

h3

∫

e−ip·R

~ 〈r+ R

2
|
[

Û ρ̂− ρ̂Û
]

|r− R

2
〉 dR

=
1

i~

1

h3

∫

e−ip·R

~

[

U

(

r+
R

2

)

− U

(

r− R

2

)]

〈r+ R

2
| ρ̂ |r− R

2
〉 dR

=
∞
∑

n=0

1

n!

∂Un(r)

∂rn
1

i~

1

h3

∫

e−ip·R

~

[(

R

2

)n

−
(

−R

2

)n]

〈r+ R

2
| ρ̂ |r− R

2
〉 dR
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=
∞
∑

l=0

1

(2l + 1)!

∂2l+1U

∂r2l+1

1

i~

1

h3

∫

e−ip·R

~

R2l+1

22l
〈r+ R

2
| ρ̂ |r− R

2
〉 dR

=
2

~

∞
∑

l=0

(−1)l

(2l + 1)!

(

~

2

)2l+1
∂2l+1U

∂r2l+1

∂2l+1f

∂p2l+1

=
2

~
sin

(

~

2
∇rU · ∇pf

)

~→0−−→ ∇rU · ∇pf. (A.13)

The sum of the two contributions derived in Eqs. (A.12) and (A.13) leads to

the Vlasov equation (Eq. (1.50)), as one wants to proof.

A.4 TDHFB equations

The temporal evolution of the normal density ρ̂ as determined in Eq. (A.10)

in case of TDHF theory modifies now to take into account the contribution of

the abnormal density κ̂, defined in Eq. (2.8). In particular, while the kinetic

part Eq. (A.8) is not affected by the pairing density, one should notice that it

is possible to make other contractions which involve κ̂ in applying the Wick’s

theorem to the commutator in Eq. (A.7). So the potential term Eq. (A.9)

modifies now in this way:

[i~ρ̇ij(t)]2 =
1

2

[

∑

l,m,n

V̄ilmn

(

ρnlρmj − ρmlρnj − κmnκ
∗
jl

)

]

− 1

2

[

∑

k,l,m

V̄klmj (ρilρmk − ρikρml − κmiκ
∗
kl)

]

=
∑

n

(

Uinρnj +∆inκ
∗
jn

)

−
∑

m

(

ρimUmj + κmi∆
∗
mj

)

, (A.14)

where the definition of ∆̂ expressed in Eq. (2.11) has been used. Since the

matrix κij is antisymmetric, definitively it gets:

i~ρ̇ij(t) =
∑

m

[(Tim + Uim) ρmj − ρim (Tmj + Umj)]−∆imκ
∗
mj + κim∆

∗
mj

= [h, ρ]ij + κ∆∗ −∆κ∗, (A.15)
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which is exactly the first of the TDHFB equations written in Eq. (2.28). The

equation of motion for the abnormal density κ̂ requires instead to evaluate,

analogously as it has been done in Appendix A.2 for the normal density

contributions, these algebraic commutators:

[

âj âi, â
†
mân

]

[

âj âi, â
†
kâ

†
l âmân

]

, (A.16)

whose expectation values are given by these formulas:

〈[

âj âi, â
†
mân

]〉

Ψ
= 〈âj ân〉Ψ δim − 〈âiân〉Ψ δjm

〈[

âj âi, â
†
kâ

†
l ânâm

]〉

Ψ
=
〈

â†kâj ânâm

〉

Ψ
δil −

〈

â†kâiânâm

〉

Ψ
δjl

+
〈

âj â
†
l ânâm

〉

Ψ
δik −

〈

âiâ
†
l ânâm

〉

Ψ
δjk. (A.17)

The two-body contribution on the equation of motion for κ̂ results to be

given therefore by:

i~κ̇ij(t)2 =
∑

m

[

(Tim + Uim)κmj + κim (Tmj + Umj) + ∆im

(

δmj − ρ∗mj

)

− ρim∆mj

]

= hκ+ κh∗ +∆(1 − ρ∗)− ρ∆, (A.18)

which is nothing but the second equation of the Eq. (2.29).

A.5 Single particle energy functional

The single particle energy εq, for each nuclear species q = n, p, can be defined

as the distributional derivative of the energy density functional E introduced

in Eq. (1.37) with respect to the distribution fuction fq:

εq ≡ A DE [fn, fp]
Dfq

, (A.19)

where A is a suitable constant, which will be fixed later. By exploiting the

following expressions for the single particle density ρq and kinetic energy den-

sity τq, which manifest the dependence of these quantities on the distribution
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function fq:

ρq[fq] =

∫

d3p

h3/2
fq(p) (A.20)

τq[fq] =
1

~2

∫

d3p

h3/2
p2fq(p) q = n, p, (A.21)

one can easily evaluate the single particle energy functional as

εq = A
∑

q′=n,p

[

∂E
∂ρq′

Dρq′

Dfq
+

∂E
∂τq′

Dτq′

Dfq

]

= A
∑

q′=n,p

[

∂E
∂ρq′

δqq′

∫

d3p′

h3/2
δ(p− p′) +

∂E
∂τq′

δqq′
1

~2

∫

d3p′

h3/2
p′2δ(p− p′)

]

=
∂E
∂ρq

+
p2

~2

∂E
∂τq

, (A.22)

having adopted for the δ-function the normalization:

∫

d3p′

h3/2
δ(p− p′) =

1

A . (A.23)

For sake of simplicity, let us neglect the finite terms in E , since their con-

tribution is straightforwardly evaluated. Under this assumption, the energy

density functional for the (asymmetric) nuclear matter case can be written

as:

E(ρ, ρ3, τ, τ3) = K + Epot + Eeff , (A.24)

where we isolate the momentum dependent contribution Eeff from the re-

maining part Epot = E0 + E3. For the kinetic term, we have a contribution

only by the derivative with respect to the kinetic energy density, so:

ε ≡ A DK
Dfq

=
p2

~2

∂K
∂τq

=
p2

~2

~
2

2m
=

p2

2m
(A.25)

while, for the momentum independent part of the potential, we have to con-

sider only the terms which come out from the derivative with respect to the
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density:

Uq(ρ, ρ3) ≡ ADEpot
Dfq

=
∂Epot
∂ρq

. (A.26)

Since ρq and τq depend on the momentum, in order to maintain the trans-

lational invariance, the momentum dependent part of the potential has to be

changed, according to this expression:

ρqτq[fq] =
1

2~2

∫

d3p

h3/2

∫

d3p′

h3/2
(p− p′)2fq(p)fq(p

′). (A.27)

As a consequence, the functional Eeff can be rewritten as

Eeff = Ceffρτ +Deffρ3τ3

=
Ceff

2~2

∫

d3p

h3/2

∫

d3p′

h3/2
(p− p′)2 [fn(p) + fp(p)] [fn(p

′) + fp(p
′)]

+
Deff

2~2

∫

d3p

h3/2

∫

d3p′

h3/2
(p− p′)2 [fn(p)− fp(p)] [fn(p

′)− fp(p
′)]

=
Ceff

2~2

∫

d3p

h3/2

∫

d3p′

h3/2
(p− p′)2

∑

q,q′=n,p

fq(p)fq′(p
′)

+
Deff

2~2

∫

d3p

h3/2

∫

d3p′

h3/2
(p− p′)2

[

∑

q=n,p

fq(p)fq(p
′)−

q 6=q′
∑

q,q′=n,p

fq(p)fq′(p
′)

]

(A.28)

Under the previous position, the contribution to the single particle energy

will be given by

Ũq(ρ, ρ3, τ, τ3) ≡ ADEeff
Dfq

=
1

~2

∫

d3p′

h3/2
(p− p′)2 {Ceff [fn(p

′) + fp(p
′)]±Deff [fn(p

′)− fp(p
′)]}

=

∫

d3p′

h3/2
(p− p′)2 [g±fn(p

′) + g∓fp(p
′)] q = n, p

(A.29)

where the upper sign refers to neutrons and the lower sign to protons. More-
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over, we defined he two constants g+ and g− as

g+ ≡ Ceff +Deff

~2
g− ≡ Ceff −Deff

~2
. (A.30)

Finally, including all contibutions obtained in Eq. (A.25), Eq. (A.26), Eq. (A.29),

we can write the single particle energy εq as

εq = ε+ Uq(ρ, ρ3) + Ũq(ρ, ρ3, τ, τ3) (A.31)

Under a small amplitude perturbation of the distribution function of each

nuclear species δfq as in Eq. (5.6),the single particle energy functional εq is

correspondingly modified as:

εq ≡ εq[fn, fp] ≈ εq[f
0
n, f

0
p ] + εq[δfn, δfp] = ε0q + δεq (A.32)

where the quantity δεq is given by:

δεq = A
∫

d3p′

~3/2

∑

q′=n,p

Dεq
Dfq′

δfq′

= A
∫

d3p′

~3/2

∑

q′,q′′=n,p

(

∂εq
∂ρq′′

Dρq′′

Dfq′
+

∂εq
∂τq′′

Dτq′′

Dfq′

)

δfq′

=
∑

q′=n,p

∫

d3p′

~3/2

(

∂εq
∂ρq′

+
p2

~2

∂εq
∂τq′

)

δfq′ . (A.33)

A.6 Linearized Vlasov equations

Let us to find the various contributions of the linearized Vlasov equations,

Eq. (5.7). For the ∇pε
0
q and ∇pf

0
q , making use of the definition of effective

mass, we easily get

∇p ε
0
q =

p

m
+∇p Ũ =

p

m
+

p

m

(

m

m∗
q

− 1

)

=
p

m∗
q

∇pf
0
q =

df 0
q

dεq
∇p ε

0
q =

df 0
q

dεq

p

m∗
q

. (A.34)
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Since we are looking for plane-wave solutions δfq as in Eq. (5.8), replacing the

latter expressions, together with the one we found in Eq. (A.33), in Eq. (5.7),

after some algebraic calculations, we obtain:

(

ωk +
p · k
m∗

q

)

δf k
q =

df 0
q

dεq

p · k
m∗

q

∑

q′=n,p

(∫

d3p′

~3/2

∂Uq

∂ρq′
δf k

q′ + δŨk
q′

)

∀k.

(A.35)

Owing to the requirement of translational invariance, the contribution of Ũq

cannot be evaluated from the Eq. (A.33). But looking at the result we got

in Eq. (A.29), it is immediate to obtain its variation as:

δŨq =

∫

d3p′

h3/2
(p− p′)2 [g±δfn(p

′) + g∓δfp(p
′)] q = n, p (A.36)

where, as in Eq. (A.29), the upper sign refers to neutrons and the lower sign

to protons. By introducing this expression in Eq. (A.35), we finally get:

δf k
q =

df 0
q

dεq

( p·k
m∗

q

ωk +
p·k
m∗

q

)

∑

q′=n,p

∫

d3p′

h3/2

{

∂Uq

∂ρq′
+ (p− p′)2[g+δq,q′ + g−(1− δq,q′)]

}

δf k
q′

=
df 0

q

dεq

( p·k
m∗

q

ωk +
p·k
m∗

q

)

∑

q′=n,p

∫

p′2dp′

h3/2
d2Ω

{

∂Uq

∂ρq′
+ (p− p′)2[g+δq,q′ + g−(1− δq,q′)]

}

δf k
q′ .

(A.37)

Performing now a change in the integration variable

p′ → ε′ =
p′2

2m
(A.38)

the equation Eq. (A.37) becomes

δf k
q =

df 0
q

dεq

( p·k
m∗

q

ωk +
p·k
m∗

q

)

∑

q′=n,p

∫

√
ε′dε′

2
3

ε
3/2
Fq

ρq

d2Ω

4π

{

∂Uq

∂ρq′
+ (p− p′)2[g+δq,q′ + g−(1− δq,q′)]

}

δf k
q′ ,

(A.39)
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where the following identity, deduced by the definition of the Fermi energy,

has been introduced
h3

2
=

4

3
π
(2mεFq)

3/2

ρq
. (A.40)

Let us consider now, as distribution function at equilibrium, the Fermi-

Dirac distribution at zero temperature, that is the Heaviside step function

f 0
q (p) ≡ f 0

q (εq) = Θ(ε− ε∗Fq), (A.41)

where ε∗Fq is the modified Fermi energy of the nuclear species q defined as

ε∗Fq =
m

m∗
q

εFq. (A.42)

With this assumption, the f 0
q derivative which appear previously become

df 0
q

dεq
= −δ(εq − ε∗Fq) (A.43)

and integrating both sides of the relation Eq. (A.37) in the variable ε and

then in ε′, we finally obtain:

δφ k
q = −

( pF ·k
m∗

q

ωk +
pF ·k
m∗

q

)

∑

q′=n,p

1

2
3

ε∗Fq

ρq

d2Ω

4π

{

∂Uq

∂ρq′
+ 2p2F (1− cos θp,p′)[g+δq,q′ + g−(1− δq,q′)]

}

δφ k
q′ ,

(A.44)

where δφ k
q has been defined as

δφ k
q (Ω) ≡

∫

dεδf k
q . (A.45)

In terms of the average level density at zero temperature

Nq(0) =
2

3

ε∗Fq

ρq
, (A.46)
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one can also define, as usually, the Landau parameters as it follows:

L0 qq′ = N−1
q (0)

{

∂Uq

∂ρq′
+
[

g+δq,q′ + g−(1− δq,q′)
] (

p2Fq + p2Fq′

)

}

L1 qq′ = −2N−1
q (0)

[

g+δq,q′ + g−(1− δq,q′)
]

pFq pFq′ , (A.47)

so that, by denoting with v∗
Fq =

pF

m∗

q
, the modified Fermi velocity, the Eq. (A.44)

can be rewritten as:

δφ k
q = −

(

v∗Fqk cos θp,k

ωk + v∗Fqk cos θp,k

)

∑

q′=n,p

∫

d2Ω

4π
Lqq′δφ

k
q′

= −
(

cos θp,k
sq + cos θp,k

)

∑

q′=n,p

∫

d2Ω

4π
Lqq′δφ

k
q′ , (A.48)

where the parameter Lqq′ are defined as

Lqq′ = L0 qq′ + L1 qq′ cos θp,p′ (A.49)

while sq is the (dimensionless) sound velocity in unit of modified Fermi ve-

locity, that is:

sq ≡
vs
v∗Fq

=
ωk

kv∗Fq

. (A.50)

Let us consider now a decomposition of δφk
q into spherical harmonics Y m

l (θ, φ),

with m = 0 (Legendre polynomials Y 0
l (θ)):

δφk
q =

∑

l=0,1

αl
qY

0
l = α0

q

1√
4π

+ α1
q

√

3

4π
cos θp,k. (A.51)

By replacing this development on Eq. (A.48), we have:

∑

l=0,1

αl
qY

0
l = −

(

cos θp,k
sq + cos θp,k

)

∑

q′=n,p

∫

d2Ω

4π

(

Lqq′

∑

l=0,1

αl
q′Y

0
l

)

(A.52)
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and so, by integrating on Ω and noting that

∑

l=0,1

∫

d2Ω

4π
Lqq′Y

0
l =

∑

i=0,1

βiLi qq′Y
0
i , β0 = 1, β1 =

1

3
(A.53)

it is possible to obtain finally the following relation:

∑

l=0,1

αl
qY

0
l = −

(

cos θp,k
sq + cos θp,k

)

∑

i=0,1

βiY
0
i

∑

q′=n,p

αi
q′Li qq′ . (A.54)

In order to get the four coefficients αl
q, with q = p, n and l = 0, 1, we need to

integrate twice, for each q, the previous equation. So, by integrating a first

time on cos θp,k, taking into account that

∫ π

0

d cos θp,k
cos θp,k

sq + cos θp,k
= 2

[

1− sq
2
ln

(

sq + 1

sq − 1

)]

≡ 2χ(sq)

∫ π

0

d cos θp,k
cos2 θp,k

sq + cos θp,k
= −2sq

[

1− sq
2
ln

(

sq + 1

sq − 1

)]

= −2sqχ(sq)

(A.55)

with χq = χ(sq) defined as the Lindhard function and by multiplying both

of sides for
√
4π
2

we achieve the first dispersion relation of Eq. (5.9), that is:

c0α
0
q = −

∑

l=0,1

cl s
l
q χq

∑

q′=n,p

αl
q′Ll qq′ c0 = −1, c1 =

√
3

3
(A.56)

On the other hand, by multiplying both sides of Eq. (A.54) for cos θp,k and

performing the same integration and simplification as before, one achieves

the second one of Eq. (5.9)

c1α
1
q = −

∑

l=0,1

cl s
l+1
q χq

∑

q′=n,p

αl
q′Ll qq′ − c1γ (A.57)

with γ defined as in (5.10) and having considered the result obtained in Eq. (A.55)
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and the following last one

∫ π

0

d cos θp,k
cos3 θp,k

sq + cos θp,k
= 2

[

1

3
+ s2qχ(sq)

]

. (A.58)
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