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Introduction

The power of mathematics is exploited in almost all areas of research: physics,

engineering, chemistry, economics, computing, sociology, medicine and so on.

In particular, applied mathematics is certainly part of the discipline most

widely used by everyone.

Among its various branches is the Operations Research, which deals with

decision-making problems related to the operation of organized systems with

the aim of determining decisions that optimize their performance. The Op-

erations Research was born during the Second World War: some countries

decided to apply mathematical models to problems related to military op-

erations. The goal was to improve the performance of the war apparatus

by not developing new weapons but improving the use of existing ones. For

this purpose, the British Government set up a group of scientists from sev-

eral disciplinary areas called “operational research section”. That term was

replaced by the present one “operations research” when, in 1943, an organi-

zation which was similar to the British one was born in the United States,

dealing with under water warfare, supply system and logistical support.

Over the years, numerous results have been achieved in the area of Oper-

ational Research thanks to the contribution of several scholars: J.L. von

Neumann, who developed a series of models for studying economic grow thin

conditions of competitive equilibrium, decision-making in a multidisciplinary

environment, and how to run computing programs; P.M.S. Blackett and T.C.

Koopmans studying models for logistic applications; G.B. Dantzig who con-

tributed to the development of linear programming with the introduction of
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a resolution operating method known as the “simplex method”.

Around 1950 the first results in the area of network optimization algorithms

began to appear and in the 1960s the researchers focused the problem of

assessing the efficiency of solving decision-making algorithms. At the end of

the twentieth century, the success of Operational Research was also due to

the development of mathematical models, solving algorithms, and computer

and network technologies.

The typical applications of the Operational Research are: warehouse man-

agement, in which, taking into account production costs, it is necessary to de-

termine the optimal quantities to be retained for future use; portfolio choices,

where you need to decide on the amount to be invested to maximize your

earnings, knowing the initial financial resources and investment opportuni-

ties; the plans for creating and managing activities for the design of a complex

system, in which you have to choose the starting times of the activities in

accordance with their duration and the resources to be used in order to min-

imize the time and cost of realization; the plan of production and industrial

logistics ; and so on.

The decision making process which Operational Research deals with is to

build a mathematical model of the system that represents it. This process

begins with a system analysis, which involves the definition of its compo-

nents, the parameters that characterize it, and the relationships that exist

between them. Next, we identify the decision-making variables and the set of

constraints of the problem. The mathematical model thus formed is solved

by a method or algorithm. The obtained numerical results represent the

optimal solution of the model, that is the optimal quantities of the decision

to be taken. In fact, most decision problems are formulated as optimization

problems whose purpose is to identify the best decisions to take to achieve

the goal.

The choice of which mathematical tools to use is influenced by the type of

model you want to study and the most appropriate approach. The most

used tools are the dynamical systems, the variational inequalities, the game
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theory, etc. In addition, in formulating the mathematical model, defining

the network on which the entire model is based plays a central role. The

network allows us to define the different levels of decision makers involved

in the whole process and its flows. The network concept plays a central role

in decision-making processes and its methods of analysis are applicable not

only to physical networks such as transport networks, energy networks, pro-

duction and logistics, but also to complex networks such as supply chains,

financial networks, social networks, knowledge networks, and economic net-

works.

In this thesis we focus our attention on two mathematical models applied

to two real situations, both studied with the theory of variational inequalities.

The first network-based model describes the organ transplant system with

the aim of minimizing the total costs associated with this process. We find

the related optimality conditions and the variational inequality formulation.

Some existence and uniqueness results as well as the Lagrange formulation

are stated and some numerical examples are studied. The second mathe-

matical model presented is a Generalized Nash Equilibrium model for post-

disaster humanitarian relief, which extends the original model of Nagurney,

Alvarez Flores, and Soylu (see [46]). We identify the network structure of the

problem, with logistical and financial flows, and propose a variational equi-

librium framework, which allows us to then formulate, analyze, and solve the

model using the theory of variational inequalities. We then utilize Lagrange

analysis and finally we illustrate the game theory model through a case study.

The thesis is structured as follows. In Chapter 1, we recall the con-

cept of optimization problems and the two mathematical tools used to study

the models presented above: the theory of variational inequalities and the

Lagrange theory. Finally we present the main results on traffic network equi-

librium. In Chapter 2, we present some mathematical models related to the

transplant process existing in the literature. In Chapter 3 and 4 we analyze,
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respectively, the network model for minimizing the total organ transplant

costs and the variational equilibrium network for humanitarian organizations

in disaster relief. Finally, in Chapter 5 we present the conclusions.
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Chapter 1

Theory and Fundamentals

In real life many problems, studied in different disciplines, consist to find the

maximum value or the minimum value of an assigned amount. Specifically,

you want to determine the maximum when that “amount” represents a ben-

efit or a profit, the minimum when it represents a cost.

The discipline dealing with such problems takes the name of Optimization

Theory. Among the various optimization problems are those where you need

it determine the optimal values of a function, whose decision-making vari-

ables are subject to constraints expressed by equality and/or inequality. Such

types of problems are the subject of so-called mathematical programming,

term introduced by Robert Dorfman in 1949.

An optimization problem can be stated as follows: find x = (x1, x2, . . . , xn)

which minimizes f(x) subject to the constraints gi(x) ≤ 0 for i = 1, . . . ,m,

and lj(x) = 0 for j = 1, . . . , p.

The variable x is the vector of variables, f(x) is the objective function,

gi(x) ≤ 0 are the inequality constraints and lj(x) = 0 are the equality con-

straints. The number of variables n and the number of constraints p+m need

not to be related. If p+m = 0 the problem is called an unconstrained op-

timization problem, otherwise it is called a constrained optimization

problem. Furthermore optimization problems can be classified as linear,
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quadratic, polynomial, non-linear depending upon the nature of the objective

functions and the constraints. Finally depending upon the values permitted

for the variables, optimization problems can be classified as integer or real

valued, and deterministic or stochastic.

1.1 Lagrange Theory

Although modern mathematical programming was born towards the end of

the last century, however, the history of mathematical programming dates

back to the end of 1700, though limited to the case of constraints expressed

by equality. In fact, optimization problems which consist in maximizing or

minimizing a given function, subject to a system of constraints expressed by

equality, were studied by G.L. Lagrange in the second half of the 18th cen-

tury. Lagrange introduced his “multipliers” in 1778, in the fourth section of

the first part of his famous book Mécanique Analytique,as a tool to determine

the stable equilibrium configuration in a mechanical system. In Théorie de

fonctions analytiques (1797) the multiplier method is presented throughout

its generality, not referring to any specific issue of Mechanics but introduced

for optimization problems.

Consider the following optimization problem with equality constraints:

min f(x) (ormax f(x)) (1.1)

subject to:

g1(x) = b1,

g2(x) = b2,

. . . ,

gm(x) = bm.
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A solution can be found using the function:

L(x, λ) = f(x) +
m∑

i=1

λi(bi − gi(x)). (1.2)

This function is called the Lagrangian function of the problem. Note that

(1.2) can also be written as L(x, λ) = f(x)−
∑m

i=1 λi(gi(x)− bi).

The reason L is of interest is the following. Assume x∗ = (x∗1, x
∗
2, . . . , x

∗
n)

maximizes or minimizes f(x) subject to the constraints gi(x) = bi, for i =

1, 2, . . . ,m. Then either

(i) the vectors ∇g1(x
∗),∇g2(x

∗), . . . ,∇gm(x
∗) are linearly dependent, or

(ii) there exists a vector λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
m) such that ∇L(x∗, λ∗) = 0.

I.e.
∂L

∂x1
(x∗, λ∗) =

∂L

∂x2
(x∗, λ∗) = . . . =

∂L

∂xn
(x∗, λ∗) = 0

and
∂L

∂λ1
(x∗, λ∗) =

∂L

∂λ2
(x∗, λ∗) = . . . =

∂L

∂λm
(x∗, λ∗) = 0.

Of course, case (i) above cannot occur when there is only one constraint.

Note that the equation
∂L

∂λi
(x∗, λ∗) = 0

is nothing more than

bi − gi(x
∗) = 0 or gi(x

∗) = bi.

In other words, taking the partial derivatives with respect to λ does nothing

more than returning the original constraints.

Once we have found candidate solutions x∗, it is not always easy to figure

out whether they correspond to a minimum, a maximum or neither. The

following situation is one when we can conclude. If f(x) is concave and all

of the gi(x) are linear functions, then any feasible x∗ with a corresponding

λ∗ making ∇L(x∗, λ∗) = 0 maximizes f(x) subject to the constraints. Simi-

larly, if f(x) is convex and each gi(x) is linear, then any x∗ with a λ∗ making
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∇L(x∗, λ∗) = 0 minimizes f(x) subject to the constraints.

Now consider the following optimization problem with equality and in-

equality constraints:

max f(x)

subject to:

g1(x) = b1,

. . . ,

gm(x) = bm,

h1(x) ≤ d1,

. . . ,

hp(x) ≤ dp.

If you have a problem with ≥ constraints, convert it into ≤ by multiplying

by −1. Also convert a minimization to a maximization. In this case the

Lagrangian function is:

L(x, λ, µ) = f(x) +
m∑

i=1

λi(bi − gi(x)) +

p
∑

j=1

µj(dj − hj(x)).

The fundamental result is the following. Assume x∗ = (x∗1, x
∗
2, . . . , x

∗
n)

maximizes f(x) subject to the constraints gi(x) = bi, for i = 1, 2, . . . ,m and

hj(x) ≤ dj, for j = 1, 2, . . . , p. Then either

(i) the vectors∇g1(x
∗), . . . ,∇gm(x

∗),∇h1(x
∗), . . . ,∇hp(x

∗) are linearly de-

pendent, or

(ii) there exists a vector λ∗ = (λ∗1, . . . , λ
∗
m) and µ

∗ = (µ∗
1, . . . , µ

∗
p) such that

∇f(x∗)−
m∑

i=1

λ∗i∇gi(x
∗)−

p
∑

j=1

µ∗
j∇hj(x

∗) = 0,

µ∗
j(hj(x

∗)− dj) = 0 (Complementarity),

µ∗
j ≥ 0.
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In general, to solve these equations, you begin with complementarity and

note that either µ∗
j must be zero or hj(x

∗) − dj = 0. Based on the various

possibilities, you come up with one or more candidate solutions. If there is

an optimal solution, then one of your candidates will be it. The above condi-

tions are called the Kuhn-Tucker (or Karush-Kuhn-Tucker) conditions. Why

do they make sense? For x∗ optimal, some of the inequalities will be tight

and some not. Those not tight can be ignored (and will have corresponding

µ∗
j = 0). Those that are tight can be treated as equalities which leads to the

previous Lagrangian problem. So µ∗
j(hj(x

∗) − dj) = 0 (Complementarity)

forces either the µ∗
j to be 0 or the constraint to be tight.

A special type of constraint is nonnegativity. If you have a constraint of

the kind xk ≥ 0, you can write this as −xk ≤ 0 and use the above result. This

constraint would get a Lagrange multiplier of its own, and would be treated

just like every other constraint. An alternative is to treat nonnegativity

implicitly. If xk must be nonnegative:

1 Change the equality associated with its partial derivatives to a less than

or equal to zero:

∂f(x)

∂xk
−
∑

i

λi
∂gi(x)

∂xk
−
∑

j

µj
∂hj(x)

∂xk
≤ 0

2 Add a new complementarity constraint:

(∂f(x)

∂xk
−
∑

i

λi
∂gi(x)

∂xk
−
∑

j

µj
∂hj(x)

∂xk

)
xk

3 Don’t forget that xk ≥ 0 for x to be feasible.

The Karush-Kuhn-Tucker conditions give us candidate optimal solutions

x∗. When are these conditions sufficient for optimality? That is, given x∗

with λ∗ and µ∗ satisfying the KKT conditions, when can we be certain that

it is an optimal solution? The most general condition available is:

1 f(x) is concave
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2 the feasible region forms a convex region.

While it is straightforward to determine if the objective is concave by

computing its Hessian matrix, it is not so easy to tell if the feasible region

is convex. A useful condition is as follows: the feasible region is convex if

all of the gi(x) are linear and all of the hj(x) are convex. If this condition is

satisfied, then any point that satisfies the KKT conditions gives a point that

maximizes f(x) subject to the constraints.

1.2 Variational Inequalities Theory

For the analysis of economic phenomena, equilibrium is a central concept.

Methodologies applied to formulation, qualitative analysis, and economic

equilibrium calculation include equation systems, optimization theory, com-

plementarity theory, as well as fixed point theory. We present, in this chapter,

some notes on the theory of variational inequalities; specifically, we define the

problem of variational inequality that binds it to other well-known problems.

The problem of variational inequality is a general formulation of the prob-

lem that includes an overabundance of mathematical problems, including,

among other things, non linear equations, complementarity problems, op-

timization problems and fixed point problems. Originally, variants of in-

equalities have been developed as a tool for studying some classes of partial

differential equations such as those that appear in mechanics and have been

defined over infinite-dimensional spaces.

The first variational inequality problem is the problem with ambiguous

boundary conditions of Antonio Signorini (1959), which consists in finding

the elastic balance configuration of an elastic body, which it rests on a rigid

surface without friction and is only subject to its weight. This problem is

known as Signorini problem (see [59]), name dedicated to it by his student

Gaetano Fichera who resolved it in 1963.
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In 1964 Guido Stampacchia, 20th-century Italian mathematician, known

for his work on the theory of variational inequalities, generalized the Lax-

Milgram theorem (see [60]) and coined the name “variational inequality”.

Further in-depth analysis of previous studies date back to 1965 by Stampac-

chia and Jacques-Louis Lions (see [36]).

Definition 1. (Variational Inequality Problem)

The finite-dimensional variational inequality problem, V I(F,K), is to deter-

mine a vector x∗ ∈ K ⊂ R
n, such that

〈
F (x∗)T , x− x∗

〉
≥ 0, ∀x ∈ K, (1.3)

where F is a given continuous function from K to R
n and K is a given closed

convex set.

The specific objective function of an optimization problem is, depending

on the problem, its maximization or minimization, as well as a certain set

of constraints, in the case of a constrained problem. Possible objective func-

tions include expressions that represent profits, costs, market share, portfolio

risk, and so on. Potential constraints include limited budget, limits on re-

sources, conservation equations, non-negativity constraints on variables, etc.

An optimization problem typically consists of a single function goal.

Both optimization problems, constrained and not, can be formulated as prob-

lems of variational inequality. The following two propositions and theorem

identify the relationship between an optimization problem and a problem of

variational inequality.

Proposition 1. Let x∗ be a solution to the optimization problem:

min f(x)
(1.4)

subject to: x ∈ K,

where f is continuously differentiable and K is closed and convex. Then x∗

is a solution to the variational inequality problem:

〈
∇f(x∗)T , x− x∗

〉
≥ 0, ∀x ∈ K. (1.5)
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Proof. Let φ(t) = f(x∗ + t(x − x∗)), for t ∈ [0, 1]. Since φ(t) achieves its

minimum at t = 0, 0 ≤ φ′(0) = ∇f(x∗)T · (x− x∗), that is, x∗ is a solution to

(1.5).

Proposition 2. If f(x) is a convex function and x∗ is a solution to V I(∇f,K),

then x∗ is a solution to the optimization problem (1.5).

Proof. Since f(x) is convex,

f(x) ≥ f(x∗) +∇f(x∗)T · (x− x∗), ∀x ∈ K. (1.6)

But ∇f(x∗)T · (x− x∗) ≥ 0, since x∗ is a solution to V I(∇f,K). Therefore,

from (1.6) one concludes that

f(x) ≥ f(x∗), ∀x ∈ K,

that is, x∗ is a minimum point of the mathematical programming problem

(1.7).

If the feaible set K = R
n, then the unconstrained optimization problem is

also a variational inequality problem. On the other hand, in the case where

a certain symmetry condition holds, the variational inequality problem can

be reformulated as an optimization problem. In other words, in the case

when the variational inequality formulation of the equilibrium conditions

underlying a specific problem is characterized by a function with a symmetric

Jacobian, then the solution to the equilibrium conditions and the solution to

a, particular optimization problem coincide.

Theorem 1. Assume that F (x) is continuously differentiable on K and that

the Jacobian matrix

∇F (x) =







∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fn

∂x1
· · · ∂Fn

∂xn







is symmetric and positive semidefinite. Then there is a real-valued convex

function f : K 7→ R
1 satisfying

∇f(x) = F (x)
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with x∗ the solution of V I(F,K) also being the solution of the mathematical

programming problem:

min f(x)
(1.7)

subject to: x ∈ K,

Proof. Under the symmetry assumption it follows from Green’s Theorem

that

f(x) =

∫

F (x)Tdx, (1.8)

where
∫
is a line integral. The conclusion follows from Proposition 2.

Thus, a variational inequality problem can be reformulated as a convex

optimization problem only when it maintains the symmetry condition and

the positive semidefiniteness condition, although the variational inequality

problem includes the optimization problem. Therefore, the variational in-

equality is the more general problem in that it can also handle a function

F (x) with an asymmetric Jacobian. Many equilibrium problems, historically,

have been reformulated as optimization problems, under such a symptom hy-

pothesis. However, the assumption in terms of applications was restrictive

and precluded the more realistic modeling of multiple commodities, multiple

modes and/or classes in competition. In addition, the resulting objective

function was sometimes artificial, without a clear economic interpretation

and simply a mathematical device.

1.3 Traffic Network Equilibrium

For users of a congested transport network to determine their travel paths

from their origins to their destinations at the lowest cost is a classic network

equilibrium problem. It appeared in Pigou’s work in 1920: he considered a

two-node transport network, two links (or paths), and was further developed

by Knight in 1924. In this definition of the problem, the demand side coin-

cides with potential travelers or consumers of the network, while the supply
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side is represented by the same network, with the prices corresponding to

travel costs. When the number of trips between an origin and a destination

is equivalent to the travel demand given by the market price, i.e. the travel

time of the trips, the equilibrium occurs.

In 1952 Wardrop stated the traffic equilibrium conditions through two prin-

ciples. First Principle: the travel times of all the routes actually used are

the same and less than those that would be experienced by a single vehicle

on any unused itinerary. Second Principle: Average travel time is minimal.

McGuire, Beckmann and Winsten were the first in 1956 to formulate rig-

orously these conditions in a mathematical manner; as well as Samuelson in

1952 in the context of space price equilibrium problems where there were,

however, no congestion effects. Particularly, in 1956, McGuire, Beckmann

and Winsten established the equivalence between equilibrium conditions and

Kuhn-Tucker’s conditions of an adequately constructed optimization prob-

lem, assuming symmetry on the under lying functions. In this case, there-

fore, equilibrium linkage and path tracks could be obtained as a solution to

a mathematical programming problem.

In 1969 Dafermos and Sparrow invented the terms “user-optimized” and “sys-

tem optimized” transportation networks to distinguish between two distinct

situations in which users act in a unilateral manner, in their own personal

interest, to select their paths and where users choose optimal social paths,

as the total costs for the system are minimized. In this latter issue, marginal

costs over average costs are balanced. In the last decades a very dynamic

research activity has been seen in both modeling and developing method-

ologies to allow the formulation and calculation of more general patterns

of traffic equilibrium. General templates examples include those that allow

different modes of transport or multiple user classes who perceive cost on a

connection individually. In this problem domain, in fact, the theory of finite-

dimensional variational inequalities has achieved its first success, beginning

with Dafermos’ contributions in 1980.
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1.3.1 Traffic Network Equilibrium Models

This section describes a variety of traffic network equilibrium models, and

provides the variational inequality formulations of the governing equilibrium

conditions. Consider now a transportation network. Let a, b, c, etc., denote

the links; p, q, etc., the paths. Assume that there are J Origin/Destination

(O/D) pairs, with a typical O/D pair denoted by w, and n modes of trans-

portation on the network with typical modes denoted by i, j, etc. The flow

on a link a generated by mode i is denoted by f ia, and the user cost associated

with traveling by mode i on link a is denoted by cia. Group the link flows

into a column vector f ∈ R
nL, where L is the number of links in the network.

Group the link costs into a row vector c ∈ R
nL. Assume now that the user

cost on a link and a particular mode may, in general, depend upon the flows

of every mode on every link in the network, that is,

c = c(f) (1.9)

where c is a known smooth function. These cost functions contain the

linear, separable cost function as a special case. The travel demand of po-

tential users of mode i traveling between O/D pair w is denoted by diw and

the travel disutility associated with traveling between this O/D pair using

the mode is denoted by λiw. Group the demands into a vector d ∈ R
nJ and

the travel disutilities into a vector λ ∈ R
nJ . The flow on path p due to mode

i is denoted by xip. Group the path flows into a column vector x ∈ R
nQ,

where Q denotes the number of paths in the network. The conservation of

flows equations are as follows. The demand for a mode and O/D pair must

be equal to the sum of the flows of the mode on the paths joining the O/D

pair, that is,

diw =
∑

p∈Pw

xip, ∀i, w (1.10)

where Pw denotes the set of paths connecting w. A nonnegative path flow

vector x which satisfies (1.10) is termed feasible. Inoltre, il flusso su un arco
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è dato dalla somma dei flussi sui percorsi che contengono quell’arco, ossia:

f ia =
∑

p

xipδap (1.11)

where δap = 1 if a ∈ p, 0 altrimenti. A user traveling on path p using

mode i incurs a user (or personal) travel cost C i
p satisfying

C i
p =

∑

a

ciaδap (1.12)

in other words, the cost on a path p due to mode i is equal to the sum of

the link costs of links comprising that path and using that mode. The traffic

network equilibrium conditions are given below.

Definition 2. A flow pattern (f ∗, d∗) compatible with (1.10) and (1.11) is

an equilibrium pattern if, once established, no user has any incentive to alter

his/her travel arrangements. This state is characterized by the following

equilibrium conditions, which must hold for every mode i, every O/D pair w,

and every path p ∈ Pw:

C i
p

{

= λiw if xi∗p > 0,

≥ λiw if xi∗p = 0.
(1.13)

where λiw is the equilibrium travel disutility associated with the O/D pair

w and mode i.

1.3.1.1 The Elastic Demand Model with Disutility Functions

In this section assume that there exist travel disutility functions, such that

λ = λ(d), (1.14)

where λ is a known smooth function. That is, let the travel disutility

associated with a mode and an O/D pair depend, in general, upon the entire

demand pattern. Let K denote the feasible set defined by:

K = {(f, d)| ∃x ≥ 0| (1.10), (1.11) hold}. (1.15)

12



The variational inequality formulation of equilibrium conditions (1.13) is

given in the next theorem. Assume that λ is a row vector and d is a column

vector.

Theorem 2. A pair of vectors (f ∗, d∗) ∈ K is an equilibrium pattern if and

only if it satisfies the variational inequality problem

c(f ∗) · (f − f ∗)− λ(d∗) · (d− d∗) ≥ 0, ∀(f, d) ∈ K. (1.16)

Observe that in the above model the feasible set is not compact. There-

fore, a condition such as strong monotonicity would guarantee both existence

and uniqueness of the equilibrium pattern (f ∗, d∗); in other words, if one has

that

[c(f 1)− c(f 2)] · [f 1 − f 2]− [λ(d1)− λ(d2)] · [d1 − d2]
(1.17)

≥ α(||f 1 − f 2||2 − ||d1 − d2||2), ∀(f 1, d1), (f 2, d2) ∈ K,

where α > 0 is a constant, then there is only one equilibrium pattern.

Condition (1.18) implies that the user cost function on a link due to a par-

ticular mode should depend primarily upon the flow of that mode on that

link; similarly, the travel disutility associated with a mode and an O/D pair

should depend primarily on that mode and that O/D pair. The link cost

functions should be monotonically increasing functions of the flow and the

travel disutility functions monotonically decreasing functions of the demand.

1.3.1.2 The Elastic Demand Model with Demand Functions

In this section assume that there exist travel demand functions, such that

d = d(λ) (1.18)

where d is a known smooth function. Assume here that d is a row vector.

In this case, the variational inequality formulation of equilibrium conditions

(1.13) is given in the subsequent theorem, whose proof appears in Dafermos

and Nagurney (1984a).
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Theorem 3. Let M denote the feasible set defined by

M = {(f, d, λ)|λ ≥ 0, ∃x ≥ 0|(1.10), (1.11) hold}. (1.19)

The vector X∗ = (f ∗, d∗, λ∗) ∈ M is an equilibrium pattern if and only if it

satisfies the variational inequality problem:

F (X∗) · (X −X∗) ≥ 0, ∀X ∈ M, (1.20)

where F : M 7→ R
n(L+2J) is the function defined by

F (f, d, λ) = (c(f),−λT , d− d(λ)). (1.21)

1.3.1.3 The Fixed Demand Model

For completeness, the fixed demand model is presented is this section. Specif-

ically, it is assumed that the demand diw is now fixed and known for all modes

i and all origin/destination pairs w. In this case, the feasible set K would be

defined by

K = {f | ∃x ≥ 0| (1.10), (1.11) hold}. (1.22)

It is easy to verify (see also Smith (1979) and Dafermos (1980)) that the

variational inequality governing equilibrium conditions (1.13) for this model

would be given as in the subsequent theorem.

Theorem 4. A vector f ∗ ∈ K, is an equilibrium pattern if and only if it

satisfies the variational inequality problem

c(f ∗) · (f − f ∗) ≥ 0, ∀f ∈ K. (1.23)
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Chapter 2

Some transplant models in the

literature

In this chapter, after a brief introduction about the birth of transplants and

the different research fields, we present some mathematical models related to

the transplant process existing in the literature.

2.1 Organ transplants: birth and studies

The popular fantasy has always been fascinated by the ability to improve

health or lengthen a person’s life through the transplantation of diseased

organs with other healthy individuals taken from individuals of the same

breed or even different breed. Already in mythology, in legends and art

representations this idea was present. Medical saints Cosmas and Damian,

according to an ancient tradition, were the fathers of transplant: they re-

placed the gangrenous leg of their sacristan by the healthy leg of a newly

deceased Ethiopian man. In 1902, Alexis Carrel, made the first crucial step

for organ transplantation, adopting for the first time a technique for joining

blood vessels, thus beginning the scientific history of transplants.

In the 1940, the next step was when Peter Medawar discovered the basis

of “compatibility”, attempting the burned skin transplant on the victims
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severely burned by the bombings in London during the second World War.

But the first real transplant was carried out in 1954 in Boston (US) by sur-

geon Murray which completed the kidney transplant between a living donor

and a consanguineous and genetically identical recipient.

Several research studies confirm the importance of the transplantation theme,

which is evidenced by numerous works in medical literature but also in math-

ematical literature. In this latter area some topics are treated, such as: opti-

mization of times, fundamental in the transplant process; the best allocation

of organs to transplant centers; the management of waiting lists; cost mini-

mization of each stage of the transplant process. In the next paragraphs we

will briefly treat some of these models.

2.2 Optimizing the supply chain design for

organ transplants

Considering the crucial role of organ transplant time in the transplant pro-

cess, in [4] the authors have studied a model to minimize it. The model,

applied to organ transplants in Belgium, is developed as a mixed integer pro-

gramming problem (MIP).

When a potential donor is known in a hospital, the Belgian transplant pro-

cess begins. The hospital of donor works with one of the eight Transplant

Centers in Belgium and informs the center transplant coordinator, who is re-

sponsible for collecting blood samples at the potential donor hospital: these

ones will be transported to the transplant center laboratory. At the same

time, the shipping agent, who is responsible for all the phases of transporting

of the organ to be transplanted, returns to its base.

All data are sent to Eurotrasplant whose database contains the list of all

potential recipients waiting for donor organs. Therefore, Eurotransplant in-

forms of the availability of organs the coordinator of the recipient’s trans-

plant center; if the coordinator agrees, the recipient is notified, while the

16



destination of organ donation is notified to the donor hospital transplant co-

ordinator. The donor organ is withdrawn by the donor hospital transplant

coordinator team. Then the organ is transported and implanted at the trans-

plant recipient center. At the end of the process, all the actors go back to

their locations.

Let c, c′, r, r′ ∈ C be the transplant centers, o ∈ O the organs to be

transplanted, v ∈ V the shipping agents, h, h′ ∈ H the hospitals, m ∈M the

municipalities and a ∈ A the airports. Infact it is also possible that the donor

organ comes from abroad (by plane). In this case, the organ is transported

from the airport to the transplant center of the recipient.

Let Dd
oc be the recipient demand for transplantations of organ o at center c

coming from domestic donors, Da
oc the recipient demand for transplantations

of organ o at center c coming from donors abroad, Sdoh the donor supply of

organ o at hospital h for domestic recipients, Saoh the donor supply of or-

gan o at hospital h for recipients abroad, k the fixed costs for installing a

transplant center, ko the cost of installing a center capable of transplanting

organ o, B the available budget, W the number of required shipping agents,

tisch the maximal cold ischemia time for organ o (time interval in which

the organ remains in good conditions), prc the rth closest center to center

c, r ∈ {1, 2, . . . , |C| − 1}, To the maximal allowed traveling time between any

municipality and an installed center for organ o, tsh→ho
vh the traveling time

from shipping agent v to hospital h, tmu→ce
mc the traveling time from munic-

ipality m to transplant center c, tho→ce
hc and tce→ho

ch the traveling time from

hospital h to transplant center c and viceversa, and tai→ce
ac the traveling time

from airport a to transplant center c.

The decision variables are: yoc ∈ {0, 1} that is 1 if center c is installed for

organ o and 0 otherwise; zc ∈ {0, 1} that is 1 if center c is installed for at

least one organ o; wv ∈ {0, 1} that is 1 if shipping agent v is selected and 0

otherwise. Furthermore let xho→re
ohc be the flow of organ o from hospital h to

receiver center c, xoverohc extra flow of organ o from hospital h to receiver center
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c because of oversupply at hospital h, xho→do
ohc flow of organ o from hospital h

to donor center c, xai→re
oac flow of organ o from airport a to receiver center c,

xsh→ho
vh flow from shipping agent v to hospital h, daoc total recipient demand for

transplantations of organ o at center c coming from donors abroad, dd,shiftoc′c re-

cipient demand for transplantations of organ o coming from domestic donors

shifted from center c′ to c, da,shiftoc′c recipient demand for transplantations of

organ o coming from abroad shifted from center c′ to c.

Therefore the model is:

min

{
∑

v∈V

∑

h∈H

tsh→ho
vh xsh→ho

vh +
∑

o∈O

∑

h∈H

∑

c∈C

(tho→ce
hc + tce→ho

ch )xho→do
ohc

+
∑

o∈O

∑

h∈H

∑

c∈C

tho→ce
hc xho→re

ohc +
∑

o∈O

∑

a∈A

∑

c∈C

tai→ce
ac xai→re

oac

}

(2.1)

subject to the constraints:

yoc ≤ zc ∀o ∈ O, c ∈ C; (2.2)
∑

c∈C

(

kzc +
∑

o∈O

koyoc

)

≤ B; (2.3)

∑

v∈V

wv = W ; (2.4)

xsh→ho
vh ≤

(∑

o∈O

(Sdoh + Saoh)
)

wv ∀v ∈ V, h ∈ H; (2.5)

∑

v∈V

xsh→ho
vh =

∑

o∈O

(Sdoh + Saoh) ∀h ∈ H; (2.6)

∑

h∈H

∑

c∈C

xho→re
ohc =

∑

c∈C

Dd
oc ∀o ∈ O; (2.7)

xho→re
ohc = 0 ∀o ∈ O, h ∈ H, c ∈ C|tho→ce

hc > tischo ; (2.8)

xho→re
ohc =

(Dd
ocyoc +

∑

c′∈C d
d,shift
oc′c

∑

c′∈C D
d
oc′

)

Sdoh + xoverohc

∀o ∈ O, h ∈ H, c ∈ C|tho→ce
hc ≤ tischo ; (2.9)
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d
d,shift
oc′c ≥ (yoc − yoc′ −

r−1∑

r′=1

yopr′c′ )D
d
oc′

∀o ∈ O, c ∈ C, c′ ∈ C, r ∈ {1, 2, . . . , |C| − 1}|prc′ = c; (2.10)

∑

c∈C

xho→do
ohc = Sdoh + Saoh ∀o ∈ O, h ∈ H; (2.11)

∑

c∈C

xho→re
ohc = Sdoh ∀o ∈ O, h ∈ H; (2.12)

xho→re
ohc ≤ Sdohyoc ∀o ∈ O, h ∈ H, c ∈ C; (2.13)

xho→do
ohc ≤ (Sdoh + Saoh)yoc ∀o ∈ O, h ∈ H, c ∈ C; (2.14)

xoverohc ≤ Sdohyoc ∀o ∈ O, h ∈ H, c ∈ C; (2.15)

daoc = Da
ocyoc +

∑

c′∈C

d
a,shift
oc′c ∀o ∈ O, c ∈ C; (2.16)

d
a,shift
oc′c ≥ (yoc − yoc′ −

r−1∑

r′=1

yopr′c′ )D
a
oc′

∀o ∈ O, c ∈ C, c′ ∈ C, r ∈ {1, 2, . . . , |C| − 1}|prc′ = c; (2.17)

daoc =
∑

a∈A

xai→re
oac ∀o ∈ O, c ∈ C; (2.18)

∑

c∈C|tmu→ce
mc ≤To

yoc ≥ 1 ∀o ∈ O,m ∈M ; (2.19)

zc ∈ {0, 1} ∀c ∈ C; (2.20)

yoc ∈ {0, 1} ∀o ∈ O, c ∈ C; (2.21)

wv ∈ {0, 1} ∀v ∈ V ; (2.22)

xho→re
ohc ≥ 0 xoverohc ≥ 0 xho→do

ohc ≥ 0 ∀o ∈ O, h ∈ H, c ∈ C; (2.23)

xai→re
oac ≥ 0 ∀o ∈ O, a ∈ A, c ∈ C; (2.24)

xsh→ho
vh ≥ 0 ∀v ∈ V, h ∈ H; (2.25)

daoc ≥ 0 ∀o ∈ O, c ∈ C; (2.26)

d
d,shift
oc′c ≥ 0 d

a,shift
oc′c ≥ 0 ∀o ∈ O, c ∈ C, c′ ∈ C. (2.27)
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The objective function (2.1) minimizes the total transportation time. The

first term indicates the traveling time from shipping agent to donor hospital.

The second term indicates the traveling time from donor hospital to donor

transplant center and back. The third term contains the traveling time from

donor hospital to recipient transplant center. The fourth term indicates the

traveling time between the airports and recipient transplant centers for or-

gans that come from abroad.

Constraint set (3.2) ensures that a center can only be installed for a par-

ticular organ if the center is opened. Constraint (3.3) defines the budget

restriction. Constraint (3.4) ensures the correct number of selected ship-

ping agents. Constraint set (3.5) guarantees that there is only flow from

a shipping agent to a hospital if that shipping agent is selected. Observe

that
∑

o∈O(S
d
oh+S

a
oh) is the maximal flow between hospital and any shipping

agent, and hence this amount is a kind of big M value. Constraint set (3.6)

ensures that all organs that become available at a particular hospital are

served by a shipping agent. Constraint set (3.7) makes sure that the total

demand for organs at the recipient transplant centers coming from domes-

tic donors equals the total flow out of the donor hospitals. Constraint sets

(3.10) and (3.9) calculate a particular organ flow from a donor hospital to

a recipient transplant center. This flow equals 0 if the travel time between

the hospital and the center is larger than the maximal cold ischemia time.

Otherwise, this flow consists of two parts. The first part is a fraction of the

hospital?s supply (= Sdoh). This fraction equals the demand of the center

increased by the demand from (nearby) closed centers shifted to this center,

determined by constraint set (2.10), divided by the total demand over all

centers. The second part (= xoverohc ) can only be positive, since it refers to a

situation where there is a surplus supply at the hospital (i.e., when the total

demand from all recipient transplant centers within a traveling time smaller

or equal to the maximal cold ischemia time is insufficient to cover the total

supply of the donor hospital).

Constraint set (2.10) calculates the shifted demand from each closed center
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to each opened center . Obviously, the demand from c′(= Dd
oc′) can only be

shifted from c′ to c if c′ is closed and c is open, a situation which is described

by the first two terms, yoc−yoc′ , in the right hand side. Furthermore, since de-

mand is only shifted to the closest open center, the shifted demand can again

be zero if there is any center open closer to center c′ than center c, a factor

which explains the last term, −
∑r−1

r′=1 yopr′c′ . Constraint set (2.11) ensures

that the total flow out of a donor hospital to the donor transplant centers

equals the total organ supply (for domestic transplantations and transplan-

tations abroad) at that hospital. Recall that each organ, whether it will be

transplanted by a domestic center or a center abroad, generates a flow from

the donor hospital to the donor transplant center (blood samples) and back

(transplant coordinator and transplant team). Constraint set (2.13) ensures

that all supply at each donor hospital is sent out to the recipient transplant

centers. Constraint sets (2.13) and (2.14) guarantee that there is no flow

to a closed center, that is to say, neither to a recipient transplant center,

see (2.13), nor to a donor transplant center, see (2.14). In these constraints,

Sdoh and (Sdoh + Saoh) acts as big M . Constraint set (2.15) ensures that there

can only exist an extra flow of an organ from a hospital to a receiver cen-

ter because of oversupply at that hospital, if this receiver center is opened.

Constraint set (2.16) calculates, for each organ, the number of transplan-

tations in a particular center from donors abroad. This number equals the

center’s international demand, increased by the shifted international demand

of (nearby) closed centers. The latter is determined by constraint set (2.17),

which is similar to the shifted domestic demand calculated in constraint set

(2.10). Constraint set (2.18) ensures that this international demand results

in a flow from a chosen airport to the center. Note that, in order to minimize

the objective function, the model will always select the closest airport, which

is conform to reality, as international organs enter the country through the

airport closest to the transplant center of the recipient. Constraint set (2.19)

models the covering restriction: for each organ, at least one transplant center

must be installed within a particular travel time of each municipality in the
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country. Finally, constraint sets (2.20) to (2.27) define the decision variables.

2.3 A new organ transplantation location−

allocation policy: a case study of Italy

The localization model for the optimal organization of the transplant sys-

tem developed in [8] by the authors, uses an approach based on a mathe-

matical programming formulation. The authors focused on the critical role

played by time in the transplantation process and on the territorial distri-

bution of transplantation centers. The aim of this document is to allocate

transplantable organs between regions, seeking to achieve maximum regional

equity in health care.

In the USA there are some organizations in the transplant system called

OPO (Organ Procurement Organization) which play a fundamental role in

the design of a fair end equitable transplant system. The aforementioned

organizations are responsible for procuring all organs donated in their region

and allocating them to the candidates registered on their transplant waiting

lists, operating in geographically distinct regions. Each of them may serve

none, one or more than one transplant center, considering that each OPO has

a single main transplant center. This organization leads to an equivalence

between the location of OPOs and the location of the Transplant Centers.

Let I = {i : i = 1, 2, . . . ,M} represent the set of explantation centers and

J = {j : j = 1, 2, . . . , N} be the set of potential transplant centers. Each

explantation center i ∈ I will belongs to one OPO j ∈ J and will refer to one

transplant center. We fix the number p of OPOs to be opened. We assume

potential recipients of explanted organs (demand points) aggregated to P

locations; let L = {l : l = 1, 2, . . . , P} be the set of potential recipients with

the associated annual demand hl with l ∈ L. Once an organ is available and

a clinical allocation policy assigns the organ to the first ranked waiting host,
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this has to travel to the transplant center. The distance the patient travel to

reach the transplant facility is crucial. The organ quality and the likelihood

of a successful transplant decrease as the elapsed time from organ retrieval

to organ transplantation increases. A measure of travel time between the

patient l ∈ L and the transplant facility j ∈ J is measured by means of

terrestrial distance dlj. The distance traveled by the organ from the donor

hospital i ∈ I to the transplant center j ∈ J is the aerial distance aij. This

is motivated by the fact that transportation of explanted organ is usually

performed with the hospital emergency helicopter.

The mathematical programming formulation for the location model (TRALOC:

Tansplant Location Allocation Model) is:

min

{
M∑

i=1

N∑

j=1

aijxij +
P∑

l=1

∑

j∈Tl

hldljylj + E

}

(2.28)

subject to the constraints:

N∑

j=1

xij = 1, i = 1, . . . ,M ; (2.29)

∑

j∈Tl

ylj = 1, l = 1, . . . , P ; (2.30)

ylj ≤ zj, l = 1, . . . , P, j = 1, . . . , N ; (2.31)

xij ≤ zj, i = 1, . . . ,M, j = 1, . . . , N ; (2.32)

N∑

j=1

zj = p; (2.33)

E ≥
P∑

l=1

hlylj, j = 1, . . . , N ; (2.34)

xij ∈ {0, 1}, i = 1, . . . ,M, j = 1, . . . , N ; (2.35)

ylj ∈ {0, 1}, l = 1, . . . , P, j = 1, . . . , N ; (2.36)

zj ∈ {0, 1}, j = 1, . . . , N ; (2.37)

23



Here Tl = {j ∈ J |dlj ≤ r}, where r is a coverage distance related to

the cold-ischemia time t. Note that Tl is the set of all those candidates that

are within an acceptable distance of the transplant center j. The maximum

value preset for the travel time is the cold-ischemia time. Because the cold-

ischemia time is different for different organs, this data cannot be aggregated.

This implies that we have to solve different problems depending on the organ

we are considering. The binary decision variables are xij, ylj, zj. If the donor

center i belongs to the OPO j this implies xij = 1. In particular ylj = 1 if

the demand point l belongs to the OPO/transplant center j. The number of

OPO to be located (zj = 1 if OPO j is activated) is fixed to p (see constraint

(2.33)). Constraint sets (2.29) and (2.30) require that each demand node, as

well as each donor center, has to be assigned to exactly one OPO. Constraint

sets (2.31) and (2.32) restrict these assignments only to open OPOs.

The objective function, to be minimized, is composed by three terms. The

first term
∑M

i=1

∑N

j=1 aijxij minimizes the total distance between explantation-

performing centers and transplant centers. This term reflects the first com-

ponent of the waiting time. The second term
∑P

l=1

∑

j∈Tl
hldljylj minimizes

the demand weighted total distance traveled by the patients to the transplant

center in order to receive an explanted organ. The third part of the objective

minimizes the maximum size of waiting list given that a patient belonging

to the OPO j is also part of the OPO’s waiting list. In fact the decision

variable E is the maximum over j of the sum of requests arising from OPO j

(see constraint (2.34)). Since the maximum waiting list size across OPOs is

to be minimized, we want to find a set of locations that will give the smallest

maximum waiting list size possible when evaluated for all OPOs.
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2.4 Redesigning Organ Allocation Boundaries

for Liver Transplantation in the United

States

To construct alternative liver allocation boundaries that achieve more geo-

graphic equity in access to transplants than the current system, the authors

in [32] apply mathematical programming. In the United States, in fact,

the alleged causes of disparities is the administrative boundaries of organ

allocation that limit the sharing of organs between the regions. Optimum

boundary performance were evaluated and compared to that of current allo-

cation system using discrete event simulation. The mathematical program-

ming approach has the dual objective of identifying optimal positions for

liver transplant centers and identifying new boundaries for Organ Procure-

ment Organizations replacing the existing boundaries of the OPO, which are

predominantly determined by political issues.

The model addresses the clustering problem of a set of transplant centers

selected for activation into a predefined number of clusters. Each of these

clusters represents an OPO. The resulting OPOs are determined so that they

are balanced both in terms of organ supply / demand ratio and in terms of

total number of transplant centers belonging to the OPO. Each of OPO

boundary is determined by the union of the service areas associated with

the transplant centers belonging to the OPO. Therefore, an important con-

straint to consider when defining the cluster is the service areas contiguity.

To achieve the target, the model assumes a graph G = (V,E) as an input,

where each vertex i ∈ V is associated with a transplant center and there

exists an arc (i, j) ∈ E between vertex i and j if the corresponding service

areas have a common boundary. Each vertex i of this graph is associated

with two weights: wi and hi represent respectively the total supply and the

total demand associated with the transplant center represented by the ver-

tex. A super vertex s is added to the graph and is connected to each vertex

of the graph with the set of arcs (s, i), ∀i ∈ V . Then the resulting graph is
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such that the total number of vertices is equal to p + 1, where p is a fixed

number of transplant centers to open between a set of possible candidates.

The model seeks a spanning tree Ts of G rooted in s such that the total num-

ber of root children is equal to the total number of clusters to be defined. In

this way, the vertices of each Ti rooted at vertex i, i.e. one of the supervertex

children, represent the whole of the transplant centers belonging to the clus-

ter. The subtree connection ensures contiguity of the service area associated

with the cluster. In addition, each subtree is such that the ratio of the sum

of the weights wi associated with the vertices of the subtree and the sum of

weights hi associated with the vertices of the subtree is greater than or equal

to a predetermined threshold α. The objective function of the model is to

minimize the maximum number of vertices in each of the resulting subtrees,

ensuring that the resulting clusters are also balanced in terms of the total

number of belonging transplantation centers.

Let O = 1, 2, . . . , l be the index set of the clusters that need to be defined.

Then let yik be a binary variable that is equal to 1 if vertex i ∈ V belongs to

cluster k ∈ O and is equal to 0 otherwise; xijk a binary variable that is equal

to 1 if arc (i, j) ∈ E, that connects vertices i and j in the cluster k, is selected

to be in the spanning tree and is equal to 0 otherwise; ui defined on each

vertex i ∈ V , assigns a label to each vertex of the graph. In particular, such

a labeling ensures any directed arc that belongs to the optimum spanning

tree goes from a vertex with a lower label to a vertex with a higher label.

Hence, variables yik are used to define the clusters, while variables ui and

xijk are used to define the final spanning tree.

The mathematical formulation is:

minmax

(
∑

i∈V

yik

)

(2.38)

subject to the constraints:
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∑

(s,j)∈E

xsjk = 1, ∀k ∈ O; (2.39)

∑

k∈O

∑

(i,j)∈E

xijk = 1, ∀j ∈ V, j 6= s; (2.40)

∑

k∈O

xijk ≤ 1, ∀(i, j) ∈ E; (2.41)

xijk ≤ yik, ∀(i, j) ∈ E, i 6= s, ∀k ∈ O; (2.42)

yik ≤
∑

(i,j)∈E

xijk, ∀i ∈ V, i 6= s, ∀k ∈ O; (2.43)

us = 0; (2.44)

1 ≤ ui ≤ p, ∀i ∈ V, i 6= s; (2.45)

(p+ 1)xijk + ui − uj + (p− 1)xjik ≤ p, ∀(i, j) ∈ E, i 6= s, ∀k ∈ O; (2.46)
∑

k∈O

yik = 1, ∀i ∈ V, i 6= s; (2.47)

∑

i∈V,i 6=s

wiyik ≤ α
∑

i∈V,i 6=s

hiyik, ∀k ∈ O; (2.48)

∑

i∈V,i 6=s

yik ≥ 1, ∀k ∈ O; (2.49)

The objective function (2.38) minimizes the maximum cardinality of the

resulting clusters. Constraints (2.39) ensure that the total number of children

of the root s is equal to the total number of clusters that need to be defined.

Constraints (2.40) ensure that each vertex has exactly one entering arc. Each

arc can be associated with at most one cluster, which is ensured by constraints

(2.41). Constraints (2.42) and (2.43) are logical constraints linking the binary

variables. The spanning tree is defined by the classical MTZ constraints

(2.44, 2.45, 2.46). Constraints (2.47) ensure that each vertex belongs exactly

to one cluster. The structure of the cluster is defined by constraints (2.48)

and (2.49). In particular, each cluster must not be empty (constraints (2.49))

and total supply/demand ratio at each cluster must be greater than or equal

to a predefined threshold α (constraints (2.48)).
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Chapter 3

A Network Model for

Minimizing the Total Organ

Transplant Costs

Nowadays, many organs such as kidney, liver, pancreas, intestine, heart, as

well as lungs, can be safely transplanted. Sometimes organ transplantation

is the only possible therapy, for instance for patients with end-stage liver

diseases, and the preferred treatment, for instance for patients with end-

stage renal diseases. As a consequence, the demand of organs has greatly

exceeded the offer and has become a key tool to cure diseases. In many

countries the costs to receive an organ, which are often very expensive, are all

charged by the National Health Service. In our paper, we aim at presenting

a mathematical model, based on networks, which allows us to minimize the

total costs associated with organ transplants. We find the related optimality

conditions and the variational inequality formulation. Some existence and

uniqueness results as well as the Lagrange formulation are stated and some

numerical examples are studied.
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3.1 Introduction

The first kidney transplant was successfully performed in 1954 by Joseph

Murray in Boston. Starting from this surgery, the organ transplantations

have become the most important therapy for many diseases (see [1]). The

improvement of surgical techniques and medicines has reduced the number

of organ transplants, but still the demand far exceeds the amount of donated

organs and therefore waiting lists are very long. Furthermore, it is worth

remarking that not all the donated organs are compatible with the body of

a recipient. Several studies have been done on the management of waiting

lists (see [7], [19], [55]).

Moreover, once the organ is extracted from the donor’s body, it remains

in good conditions only for a short time interval, called cold ischemia time.

So the transport times cannot be neglected, as well as the allocation of the

hospitals and of the transplant centers. In the literature you can find some

papers on the time minimization and on the optimal allocation of transplant

centers (see, for instance, [4], [8], [69]).

The existing literature on organ transplant problems is very rich. In [4]

Beliën, De Boeck, Colpaert, Devesse, and Van den Bosschehas develop a

model for the minimization of the transport time, since it plays a crucial role

in the transplant process. The model is studied as a mixed integer program-

ming problem (MIP) and is applied to organ transplants in Belgium. In [8]

Bruni, Conforti, Sicilia, and Trotta present a location model for the optimal

organization of the transplant system. The approach is based on a math-

ematical programming formulation. The authors focus both on the critical

role of time in transplantation process as well as on a spatial distribution of

transplant centers. Thir aim is the allocation of transplantable organs across

regions with the objective of attaining regional equity in health care. In [1]

Alagoz, Schaefer, and Roberts describe a mixed integer linear programming

(MILP) long-term decision model to optimize the location of organ trans-

plant centers. Their objective is to minimize the sum of the weighted time

components between the moment a donor organ becomes available and its
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transplantation into the recipient’s body. The model is applied to the Bel-

gian organ transplant path. In [56] the authors study the optimization of the

effectiveness of organ allocations. The mathematical model simulates and

analyzes the Organ Procurement and Transplantation Network, which is a

system for organ distribution established by the National Organ Transplant

Act. It analyzes the organ matching process and its important factors includ-

ing compatibility, region, age, urgency of patient, and waitlist time. In [?] the

authors apply a mathematical programming model to construct alternative

liver allocation boundaries that achieve more geographic equity in access to

transplants than the current system. In [33] the authors consider the problem

of maximizing the efficiency of intra-regional transplants through the design

of liver harvesting regions. Cadaveric liver transplantation is hindered in the

United States by donor scarcity and rapid viability decay. Given these diffi-

culties, the current U.S. liver transplantation and allocation policy attempts

to balance allocation likelihood and geographic proximity by allocating ca-

daveric livers hierarchically. They formulate the problem as a set partitioning

problem that clusters organ procurement organizations (OPOs) into regions

and formulate the pricing problem as a mixed-integer program. Since the

optimal solution depends on the initial design of geographic decomposition,

they develop an iterative procedure that integrates branch and price with

local search to alleviate this dependency.

Another important feature of organ transplantations is represented by the

costs associated with each transplant, including hospital and surgery costs,

medical teams and organs transportation costs, and disposal costs.

In this paper we focus our attention on such costs and present a network

model for the minimization of the total costs associated to organ transplant.

The underlying network structure constituted by three levels: the first

tier of nodes is represented by the transplant centers from which the medical

teams reach the donor hospitals (the second tier of nodes) where they perform

the organ explant and then the medical teams and the organs go back to the

30



transplant centers (the third tier of nodes) where the organ transplant is

performed.

In Italy the transplant system is the result of a complex organizational

path that begins with the identification of the potential donor and ends with

the surgery. It represents the conclusion of a long process that involves ex-

perts from different disciplines. Therefore it is important to have an efficient

organizational model which can meet the different needs. The first organiza-

tional structure dedicated to the development and coordination of donations

procedures associated with them dates back to 1976 with the foundation of

the Nord Italia Transplant program (NITp). Afterwards other interregional

structures were created in the national territory: in 1987 the Coordinamento

Centro Sud Trapianti (CCST) was founded and in 1989 the Associazione In-

terregionale Trapianti (AIRT) and the Sud Italia Transplant (SIT). Finally in

1998 the majority of the regions that had joined the CCST and SIT merged

into one organization, the Organizzazione Centro Sud Trapianti (OCST) (see

Fig. 3.1).

Figure 3.1: Italian System

Such organizations, whose tasks are different, have the common aim of
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responding adequately to the needs of patients in waiting lists. Two orga-

nizations have then joined this organizational system: in 1994 the Consulta

Tecnica Permanente and in 1999 the Centro Nazionale Trapianti. The lat-

ter, in particular, reviewed the existing organizational network, representing

one of the most important novelties of the national transplant system. Re-

cently, in 2014, the system has undergone a metamorphosis (see Fig. 3.4):

the regions were merged into two macro interregional areas (north-central

and south-central areas).

Figure 3.2: Italian System

In Italy the network that manages the explant and transplant activities

consisted of four levels.

• Local coordination level. The local coordination immediately reports

the donor information to the regional or interregional center and to the

National Transplant Center, for the organs allocation; it establishes

relationships with the donors’ families, organizes the activities for the

information, the education and the cultural growth of the population
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in the field of transplantation. The local coordinator’s task consists in

implementing strategies for the identification of all potential donors.

• Regional coordination level. The regional coordination has the task

of collecting and transmitting the data of the patients waiting for a

transplant, the removal activity and the relationships with the reanima-

tion department. The regional center employs one or more immunology

laboratories where the immunological tests are performed. It takes care

of the relations with the interregional center, with the regional health

authorities and with the voluntary associations.

• Interregional coordination level. In the past it consisted of three orga-

nizations having relationships with the regional centers in order to re-

port the possible donors and to allocate the excesses of organs; also,

they managed emergencies, relationships with the other interregional

centers and with the Centro Nazionale Trapianti. These organizations

were: AIRT, consisting of the regions Valle d’Aosta, Piemonte, Emilia

Romagna, Tuscany, Puglia and the autonomous province of Bolzano;

NITp, consisting of the regions Lombardia, Liguria, Friuli Venezia Giu-

lia, Veneto, Marche and the autonomous province of Trento; OCST,

consisting of the regions Abruzzo, Molise, Umbria, Lazio, Campania,

Basilicata, Calabria, Sicily and Sardinia. Only recently, such organiza-

tions were merged into two main interregional areas (see Fig.3.4).

• National coordination level. It consists of the Centro Nazionale Tra-

pianti which coordinates the explants and the transplants throughout

the national territory, manages the waiting lists and guarantees the

quality of services. Also it deals with the organ allocation and is sup-

ported by the Consulta Tecnica Permanente.

The National Transplant Network, which was designed about 20 years

ago and was progressively renewed in some respects, has undergone a major

transformation from the 4-tier system described above to a 3-level system

33



of coordination (national, regional, local/hospital) by means of the institu-

tion, at the Istituto Superiore di Sanità, of the National Center for Oper-

ational Transplantation (CNTO). The CNTO manages all the emergencies,

the reports from Italian donors, all the national transplant programs and

the exchanges with European countries. Thanks to the system’s national

vision and to the synergies with the Regional Centers, the CNTO has made

the compensation system for the organ restraint program more efficient and

slender, allowing for significantly reducing the number of transports carried

out by the surgical teams and generating a total cost-effective annual savings

of at least one million euros over the average of previous years.

For the success of a transplant it is fundamental an excellent management

of the coordination centers. To understand the complex system managed by

these centers, we analyze in detail the donation-transplant process, which be-

gins with the identification of a potential donor and ends with the transplant

itself.

In some cases, such as in kidney and liver transplants, living donors can

offer their organs for transplants (see, for instance, [6] and [61]), but in our

model we assume that it is necessary to determine the brain death of the

patient before working with the removal of his/her organs.

In Italy the mean time which elapses from the reporting of the donor pa-

tient to the transplant surgery is approximately 10 hours. During this time

there are about 100 people from different sectors and structures interact-

ing with the donation-transplant process. In this period, it is necessary to

certify the death according to the criteria established by the law, to ver-

ify the suitability of the donor and his organs, to consult the waiting lists,

to identify the possible recipients, to check the compatibility between the

donor and the recipient, to allocate the available organs to selected patients

while guaranteeing emergencies, to identify the most suitable transport for

biological samples and medical teams, to call recipients in transplant cen-

ters, to remove and to transplant the organs, and ultimately to take care of

the patient during the postoperative phase. The total donation-transplant
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process involves different structures (hospitals, coordination centers, immu-

nology laboratories, transplant centers, transport companies, etc.) and skills

(medical, surgical, logistics, etc.) who must be able to interact each other

for the success of the transplant.

We now describe the main stages of the donation-transplant process.

The first important step is the identification of the potential donor. To this

end, it is necessary to monitor the subjects in the health facilities. Hence,

the partnership with the Health Department and with the diagnostic imaging

services is fundamental. In addition, very important are also the campaigns

promoting organ donation in order to inform citizens about the willingness to

donate, to raise awareness on the riability of the Italian system for transplants

in terms of transparency of the criteria for inclusion on the waiting list, of

the safety of the explant and transplant procedures and of death verification

rules.

Official data confirm an increase of transplants and donations in Italy. In

2015 a total of 3317 organ transplants have been operated (67 more than

2014 and 228 more than 2013). The entire transplant activity is growing and

the percentage of oppositions to donation in 2015 is decreasing, reaching 30.6

% instead of 31 %.

An extremely delicate phase concerns the diagnosis, the assessment and

the certification of death. In subjects suffering from encephalic lesions who

satisfy the conditions laid down by the law (no. 578 - December 29, 1993

and no. 582 - August 22, 1994), the doctor of the hospital which is in charge

of the subject must immediately communicate to the Health Department the

existence of a case of death with irreversible cessation of all brain functions.

Then, a medical team is activated, consisting of a resuscitator, a forensic

doctor and a neurologist, who will proceed with the death certification by

neurological criteria.

The indication of the potential donor to the Regional Transplant Center

is done by the resuscitator or by the local coordinator of the structure that

is in charge of the subject. All the available information, such as cause of
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death, age, medical history, blood type, and so on, is then transmitted. A

first fitness assessment of the potential donor with a series of medical tests

follows. To avoid alterations and to ensure a good functionality of the organs,

the subject’s brain-dead must be preserved by the resuscitator.

The most delicate phase is surely the interview with the potential donor’s

family. The dialogue must be clear, transparent and consistent, and the news

of the death must always precede the donation proposal.

Simultaneously, the consultation of waiting lists and the allocation of or-

gans take place. The consultation is carried out by the Regional and/or

Interregional Centre which manages the waiting lists. Each transplant cen-

ter transmits to its Regional Centre any new patient inclusion as well as any

clinical update of the patients already included in the waiting list. Each

regional or interregional center may use its own allocation algorithm, whose

criteria can be different in the different regions, but satisfy common princi-

ples. Generally the same centers take charge of the organ removal operations.

In addition, after checking the presence of priorities on a national basis, the

Regional Centre of the donor allocates available organs in its own region.

The organ removal is a critical step for the success of the transplant. The

medical teams may come from different centers, and are generally expected

in the operating room by the local coordinator who guides them throughout

the entire process of explant. In addition, such teams are required to make

a second fitness evaluation. Each team checks for all the necessary tools and

provides independently the material for the storage and the organ transport.

The last phase for the success of a transplant is a careful surgical prepa-

ration of the organ, which allows a final fitness evaluation and the correction

of any anatomical abnormalities.

The main part of the whole process is the transplant, a complex surgical

procedure that consists in removing a diseased organ and replacing it with a

healthy organ. It is a moment of great responsibility for the entire transplant

system. The surgery duration varies depending on the organ between 2 up

to 15 hours. Not only the medical team is involved in the transplant, but
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the entire transplant center. Not less important is the phase of follow-up, i.e.

the planning and the execution of controls on the patient after the transplant

operation and for all the time necessary for the complete stabilization of the

clinical conditions.

An important aspect throughout all the donation-transplant process is

the logistics. Indeed it is used to plan and to coordinate all activities which

are necessary to reach the goal as quickly as possible. These activities are

concerned with the medical team, the organs, and the biological materials

transport. Logistics is surely one of the most important aspects because an

improper management can lead to delays and problems during the whole

process. As a consequence, vehicles and aircrafts must be available next to

every transplant center.

The theoretical contribution of the paper consists in formulating the net-

work model associated to the translpant process and to find the optimality

conditions for the minimization of the total related costs which are charged

by the National Health Service. Moreover, we are able to express these equi-

librium conditions in terms of a variational inequality formulation.

Notably, the Lagrange multipliers associated with the constraints allow

for an elegant economic interpretation.

The paper is organized as follows. In Section 3.2 we present the organ

transplant network consisting of transplant centers and donor hospitals. We

introduce the cost functions associated with transportations, with organ re-

movals, with waste disposals, and with post-transplants. We determine the

optimality conditions for the national health service and derive the varia-

tional inequality formulation. In Section 3.3 we study the Lagrange theory

related to the model in order to better understand the behavior of the trans-

plant process, providing an interpretation of the Lagrange multipliers. In

Section 3.4 we recall the Euler method which has been applied in Section 3.5

to solve numerical examples. Section 3.6 is devoted to the conclusions.

37



3.2 The mathematical model

The organ transplant network we are examining consists ofm transplant cen-

ters, with a typical one denoted by i, and n donor hospitals, with a typical

one denoted by j. In addition, there are v different transportation services

given, such as ambulance, airplane, helicopter, etc., with a typical one de-

noted by k. In the network we model the different transportation services

as parallel links connecting a given transplant center node to a given donor

hospital node and viceversa.
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Figure 3.3: Organ transport network

In Figure 3, the underlying network structure of the optimization problem

is depicted. The nodes at the highest and at the lowest levels represent the

transplant centers, the intermediate level nodes stand for the donor hospitals.

The uppermost links, in turn, correspond to the medical teams transporta-

tion whereas the lowermost links correspond both to the organs and to the

medical teams transportation. Such a network topology arises from the real

situation. Indeed, once an organ is available at a donor hospital, the teams

of transplant centers take charge of its removal and transplant.
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Let gijk be the quantity of medical teams moving from the transplant

center i to the donor hospital j using the k−th transportation service and we

group such flows into the vector G1 ∈ R
mnv
+ . Let cTEijk be the transportation

costs associated to the medical teams from the transplant center i to the

donor hospital j using the k−th transportation service and we assume cTEijk

as a function of gijk:

cTEijk = cTEijk (gijk), ∀i = 1, . . . ,m, ∀j = 1, . . . , n, ∀k = 1, . . . , v.

Let gj be the quantity of organs available at the donor hospital j and we

group such quantities into the vector G2 ∈ R
n
+. Let cSj be the health costs

due to the organ removal at the hospital j and we assume such costs as a

function of gj:

cSj = cSj (gj), ∀j = 1, . . . , n.

Let g̃jik be the quantity of organs sent from the donor hospital j to the trans-

plant center i using the k−th transportation service and we group such flows

into the vector G3 ∈ R
nmv
+ . Let cTOjik be the transportation costs associated

to the organs from the donor hospital j to the transplant center i using the

k−th transportation service and we assume cTOjik as a function of g̃jik:

cTOjik = cTOjik (g̃jik), ∀j = 1, . . . , n, ∀i = 1, . . . ,m, ∀k = 1, . . . , v.

Let g̃i be the quantity of organs transplanted at the center i and we group

such quantities into the vector G4 ∈ R
m
+ . Let c̃Si be the health costs due to

the transplant at the center i and we assume such costs as a function of g̃i:

c̃Si = c̃Si (g̃i), ∀i = 1, . . . ,m.

Let cPOSTi the costs incurred in the center i during the post-transplant and

we assume they are a function of g̃i:

cPOSTi = cPOSTi (g̃i), ∀i = 1, . . . ,m.

Let cWj be the unit special waste disposal cost at the donor hospital j (for

instance, explanted organs which are unfit for transplant). Let βj ∈ [0, 1] be
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the portion of explanted organs discarded in the donor hospital j. Further,

let c̃Wi be the unit special waste disposal cost at the transplant center i (for

instance, diseased organs to be replaced).

We recall that every organ has a cold ischemia time. Specifically, “cold

ischemia time during organ transplantation begins when the organ is cooled

with a cold perfusion solution after organ procurement surgery, and ends

after the tissue reaches physiological temperature during implantation proce-

dures” (http://www.reference.md/files/D050/mD050377.html). Hence, let

γi ∈ [0, 1] be the portion of organs reaching the transplant center i, but which

cannot be transplanted because of delays in the transportation (exceeding

the cold ischemia time) or because they result to be not compatible with

the recipient patients. As a consequence, in every transplant center i the

quantities of organs which must be wasted is given by g̃i + γi

n∑

j=1

v∑

k=1

g̃jik, as

well as the relationship among g̃i, g̃jik and γi is given by:

g̃i = (1− γi)
n∑

j=1

v∑

k=1

g̃jik,

namely the number of transplanted organs is the same as the number of

transported organs minus the wasted ones.

Finally, we denote by c̃Wi and cWj the unit special waste disposal costs at

the transplant center i, i = 1, . . . ,m and at the donor hospital j, j = 1, . . . , n,

respectively.

In this model our aim is to minimize the total costs incurred by the

National Health Service for transplants. So the optimality conditions are as
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follows:

min

{
m∑

i=1

n∑

j=1

v∑

k=1

2cTEijk (gijk) +
n∑

j=1

cSj (gj) +
n∑

j=1

m∑

i=1

v∑

k=1

cTOjik (g̃jik)

+
m∑

i=1

c̃Si (g̃i) +
m∑

i=1

cPOSTi (g̃i) +
n∑

j=1

βjc
W
j gj (3.1)

+
m∑

i=1

c̃Wi

(

g̃i + γi

n∑

j=1

v∑

k=1

g̃jik

)}

subject to the constraints:

gijk ≥ 0 ∀i = 1, . . . ,m, ∀j = 1, . . . , n, ∀k = 1, . . . , v; (3.2)

gj ≥ 0 ∀j = 1, . . . , n; (3.3)

g̃jik ≥ 0 ∀j = 1, . . . , n, ∀i = 1, . . . ,m, ∀k = 1, . . . , v; (3.4)

g̃i ≥ 0 ∀i = 1, . . . ,m; (3.5)

m∑

i=1

v∑

k=1

gijk ≤ gj ∀j = 1, . . . , n; (3.6)

g̃i ≤
n∑

j=1

(1− βj)gj ∀i = 1, . . . ,m; (3.7)

g̃i ≤

n∑

j=1

v∑

k=1

g̃jik ∀i = 1, . . . ,m; (3.8)

g̃i = (1− γi)
n∑

j=1

v∑

k=1

g̃jik ∀i = 1, . . . ,m; (3.9)

m∑

i=1

v∑

k=1

g̃jik = (1− βj) gj ∀j = 1, . . . , n. (3.10)

It is worth remarking that the objective function in (3.1) does not attain its

minimum value in (G1∗, G2∗, G3∗, G4∗) = (0, 0, 0, 0), since the marginal cost

functions (which are greatly influenced by the fixed costs) decrease when a

large number of transplants is performed.
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Constraints (3.2), (3.3), (3.4) and (3.5) ensure that the flows of medical

teams, of available organs, of transported organs and of transplanted organs,

respectively, are nonnegative.

Constraint (3.6) ensures that the number of medical teams moving from every

transplant center and using every transmission service does not exceed the

number of available organs at the donor hospital.

Constraint (3.7) states that the number of transplanted organs does not

exceed the sum of the portions of available organs in all donor hospitals

which are not discarded.

Constraint (3.8) states that the number of transplanted organs does not

exceed the number of transported ones, for every transplant center.

Constraint (3.9) ensures that the number of transplanted organs is the same

as the number of transported organs minus the wasted ones.

Finally, constraint (3.10) ensures that at any donor hospital j the explanted

organs which are not discarded are exactly the same as the ones transported

from j to every transplant center using every transmission service.

Problem (3.1) can be characterized by the following variational inequality:

Find (G1∗, G2∗, G3∗, G4∗) ∈ K such that:

m∑

i=1

n∑

j=1

v∑

k=1

2
∂cTEijk (g

∗
ijk)

∂gijk
× [gijk − g∗ijk]

+
n∑

j=1

[
∂cSj (g

∗
j )

∂gj
+ βjc

W
j

]

× [gj − g∗j ] (3.11)

+
n∑

j=1

m∑

i=1

v∑

k=1

[
∂cTOjik (g̃

∗
jik)

∂g̃jik
+ γic̃

W
i

]

× [g̃jik − g̃∗jik]

+
m∑

i=1

[
∂c̃Si (g̃

∗
i )

∂g̃i
+
∂cPOSTi (g̃∗i )

∂g̃i
+ c̃Wi

]

× [g̃i − g̃∗i ] ≥ 0,

∀(G1, G2, G3, G4) ∈ K,
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where:

K =

{

(G1, G2, G3, G4) ∈ R
mnv+n+nmv+m
+ :

m∑

i=1

v∑

k=1

gijk ≤ gj ∀j = 1, . . . , n;

g̃i ≤

n∑

j=1

(1− βj)gj ∀i = 1, . . . ,m;

g̃i ≤
n∑

j=1

v∑

k=1

g̃jik ∀i = 1, . . . ,m;

g̃i = (1− γi)
n∑

j=1

v∑

k=1

g̃jik ∀i = 1, . . . ,m;

m∑

i=1

v∑

k=1

g̃jik = (1− βj)gj ∀j = 1, . . . , n

}

.

Now we make the following assumptions:

Hp.1 Let all the involved functions (such as the transportation costs, the

health costs, the post-transplant costs, the special waste disposal costs) be

continuously differentiable and convex.

Variational inequality (3.11) can be put in a standard form (see [42]) as

follows:

Find X∗ ∈ K such that:

〈F (X∗), X −X∗〉 ≥ 0 ∀X ∈ K, (3.12)

where:

• 〈·, ·〉 denotes the inner product in the mnv+n+nmv+m- dimensional

Euclidean space;

• K ≡ K;

• X ≡ (G1, G2, G3, G4);
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• F (X) ≡ (F1(X), F2(X), F3(X), F4(X)), where

F1(X) =

[

2
∂cTEijk (g

∗
ijk)

∂gijk
; i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , v

]

,

F2(X) =

[

∂cSj (g
∗
j )

∂gj
+ βjc

W
j ; j = 1, . . . , n

]

F3(X) =

[
∂cTOjik (g̃

∗
jik)

∂g̃jik
+ γic̃

W
i ; j = 1, . . . , n, i = 1, . . . ,m, k = 1, . . . , v

]

,

F4(X) =

[
∂c̃Si (g̃

∗
i )

∂g̃i
+
∂cPOSTi (g̃∗i )

∂g̃i
+ c̃Wi ; i = 1, . . . ,m

]

.

Since the feasible set K is closed and convex, because of constraints (3.2)-

(3.10), we can obtain the existence of a solution to (3.12) based on the

assumption of the continuity of F and requiring a coercivity condition.

Therefore, following [31], we have the following theorem:

Theorem 5 (Existence). Let us assume that assumptions (Hp.1) are satis-

fied and that the following coercivity assumption is fulfilled:

lim
‖X‖→∞

X∈K

〈F (X), X〉

‖X‖
= ∞.

Then, there exists at least one solution to variational inequality (3.12).

In addition, we now provide a uniqueness result.

Theorem 6 (Uniqueness). Under the assumptions of Theorem 5, if the func-

tion F (X) in (3.12) is strictly monotone on K, that is:

〈
(
F (X1)− F (X2)

)T
, X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2,

then variational inequality (3.12) and, hence, variational inequality (3.11),

admits a unique solution.

3.3 Lagrange Theory

In this section we explore the Lagrange theory associated with variational

inequality (3.11), so that we better understand the behavior of the transplant
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process (see also [3], [13], [14], [15], [16], [28], [18], [49], [63], for an application

of the Lagrange theory to financial networks, to spatial economic models, to

random traffic networks, to elastic-plastic torsion problems, to cybersecurity

investment supply chain game theory models, and to end-of-life products

networks, respectively). To this aim, we set:

aj =
m∑

i=1

v∑

k=1

gijk − gj ≤ 0, ∀j = 1, . . . , n;

bi = g̃i −
n∑

j=1

(1− βj)gj ≤ 0, ∀i = 1, . . . ,m;

pi = g̃i −

n∑

j=1

v∑

k=1

g̃jik ≤ 0 ∀i = 1, . . . ,m;

dj = (1− βj)gj −
m∑

i=1

v∑

k=1

g̃jik = 0, ∀j = 1, . . . , n;

qi = g̃i − (1− γi)
n∑

j=1

v∑

k=1

g̃jik, ∀i = 1, . . . ,m;

eijk = −gijk ≤ 0,
∀i = 1, . . . ,m, ∀j = 1, . . . , n,

∀k = 1, . . . , v;

fj = −gj ≤ 0, ∀j = 1, . . . , n;

hjik = −g̃jik ≤ 0
∀j = 1, . . . , n, ∀i = 1, . . . ,m,

∀k = 1, . . . , v;

li = −g̃i ≤ 0, ∀i = 1, . . . ,m;

and

Γ(X) = (aj, bi, pi, dj, qi, eijk, fj, hjik, li)i=1,...,m, j=1,...,n, k=1,...,v .

As a consequence, we remark that K can be rewritten as

K =
{
X ∈ R

2mnv+n+m
+ : Γ(X) ≤ 0

}
.
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We can now consider the following Lagrange function:

L(X,ω, ϕ, ϑ, ψ, ε, λ, ν, µ, σ) = 〈F (X∗), X −X∗〉+
n∑

j=1

ωjaj +
m∑

i=1

ϕibi

+
m∑

i=1

ϑipi +
n∑

j=1

ψjdj +
m∑

i=1

εiqi +
m∑

i=1

n∑

j=1

v∑

k=1

λijkeijk

+
n∑

j=1

νjfj +
n∑

j=1

m∑

i=1

v∑

k=1

µjikhjik +
m∑

i=1

σili (3.13)

∀X ∈ R
2mnv+n+m
+ , ∀ω ∈ R

n
+, ∀ϕ ∈ R

m
+ , ∀ϑ ∈ R

m
+ , ∀ψ ∈ R

n, ∀ε ∈ R
m,

∀λ ∈ R
mnv
+ , ∀ν ∈ R

n
+, ∀µ ∈ R

nmv
+ , ∀σ ∈ R

m
+ .

Variational inequality (3.12) can be written as:

min
X∈K

〈F (X∗), X −X∗〉 = 0. (3.14)

Indeed, we have 〈F (X∗), X −X∗〉 ≥ 0 in K and 〈F (X∗), X∗ −X∗〉 = 0.

Its dual problem is:

max
(Π,ψ,ε)∈R2n+3m+2mnv

+
×Rn×Rm

inf
X∈R2mnv+n+m

+

L(X,Π, ψ, ε) (3.15)

where (Π, ψ, ε) = (ω, ϕ, ϑ, λ, ν, µ, σ, ψ, ε). We recall that the problem of the

strong duality between (3.14) and (3.15) is to find

min
X∈K

〈F (X∗), X −X∗〉 = max
(Π,ψ,ε)∈R2n+3m+2mnv

+
×Rn×Rm

inf
X∈R2mnv+n+m

+

L(X,Π, ψ, ε).

(3.16)

The following result holds true.

Theorem 7. Problem (3.14) satisfies the Karush-Khun-Tucker conditions.

Proof Let us recall that the KKT conditions for the existence of the Lagrange

multipliers can be written as follows (see [29]). Let X∗ be the solution to
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variational inequality (3.14) and let us set:

Iaj(X
∗) = {j ∈ {1, . . . , n} : aj = 0} ;

Ibi(X
∗) = {i ∈ {1, . . . ,m} : bi = 0} ;

Ipi(X
∗) = {i ∈ {1, . . . ,m} : pi = 0} ;

Ieijk(X
∗) = {(i, j, k) ∈ {1, . . . ,m} × {1, . . . , n} × {1, . . . , v} : eijk = 0} ;

Ifj(X
∗) = {j ∈ {1, . . . , n} : fj = 0} ;

Ihjik(X
∗) = {(j, i, k) ∈ {1, . . . , n} × {1, . . . ,m} × {1, . . . , v} : hijk = 0} ;

Ili(X
∗) = {i ∈ {1, . . . ,m} : li = 0} .

Then the existence of the Lagrange multipliers is ensured if there exists

a vector X ∈ R
2mnv+n+m
+ such that the KKT conditions are verified, namely:

m∑

i=1

v∑

k=1

gjik − gj < 0, ∀j ∈ Iaj(X
∗);

g̃i −

n∑

j=1

(1− βj)gj < 0, ∀i ∈ Ibi(X
∗);

g̃i −

n∑

j=1

v∑

k=1

g̃jik < 0, ∀i ∈ Ipi(X
∗);

g̃i − (1− γi)
n∑

j=1

v∑

k=1

g̃jik = 0, ∀i = 1, . . . ,m; (3.17)

(1− βj)gj −
m∑

i=1

v∑

k=1

g̃jik = 0, ∀j = 1, . . . , n;

−gijk < 0, ∀(i, j, k) ∈ Ieijk(X
∗);

−gj < 0, ∀j ∈ Ifj(X
∗);

−g̃jik < 0 ∀(j, i, k) ∈ Ihjik(X
∗);

−g̃i < 0, ∀i ∈ Ili(X
∗).

It is easy to verify that the systems (3.17) admits a solution and that the

vectors ∇dj, j = 1, . . . , n, and ∇qi, i = 1, . . . ,m are linearly independent. 2
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As a consequence, we get the following result.

Theorem 8. Let X∗ be the solution to variational inequality (3.12), then

the Lagrange multipliers ω∗ ∈ R
n
+, ϕ

∗ ∈ R
m
+ , ϑ

∗ ∈ R
m
+ , ψ

∗ ∈ R
n, ε∗ ∈ R

m,

λ∗ ∈ R
mnv
+ , ν∗ ∈ R

n
+, µ

∗ ∈ R
nmv
+ , σ∗ ∈ R

m
+ associated with the constraints

aj ≤ 0, bi ≤ 0, pi ≤ 0, dj = 0, qi = 0, eijk ≤ 0, fi ≤ 0, hjik ≤ 0, li ≤ 0 do

exist.

Also the following result holds true.

Theorem 9. Let us assume that assumptions (Hp.1) are satisfied. Then a

vector X∗ ∈ K is a solution to variational inequality (3.12) if and only if the

vector (X∗, ω∗, ϕ∗, ϑ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗) is a saddle point of the Lagrange

function (3.13), namely:

L(X∗, ω, ϕ, ϑ, ψ, ε, λ, ν, µ, σ) ≤ L(X∗, ω∗, ϕ∗, ϑ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗)

≤ L(X,ω∗, ϕ∗, ϑ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗)(3.18)

∀X ∈ K, ∀ω ∈ R
n
+, ∀ϕ ∈ R

m
+ , ∀ϑ ∈ R

m
+ , ∀ψ ∈ R

n, ∀ε ∈ R
m,

∀λ ∈ R
mnv
+ , ∀ν ∈ R

n
+, ∀µ ∈ R

nmv
+ , ∀σ ∈ R

m
+ ,

and
ω∗
ja

∗
j = 0, ν∗j f

∗
j = 0, ∀j;

ϑ∗
i p

∗
i = 0, σ∗

i l
∗
i = 0, ϕ∗

i b
∗
i = 0, ∀i;

λ∗ijke
∗
ijk = 0, µ∗

jikh
∗
jik = 0, ∀i, ∀j, ∀v.

(3.19)

Proof See Theorem 5 in [17], since the KKT conditions imply that Assump-

tion S is verified. 2

In virtue of Theorem 9, we can calculate the Lagrange multipliers ω∗ ∈

R
n
+, ϕ

∗ ∈ R
n
+, ψ

∗ ∈ R
n
+, ε

∗ ∈ R
m
+ , λ

∗ ∈ R
mnv
+ , ν∗ ∈ R

n
+, µ

∗ ∈ R
nmv
+ , σ∗ ∈ R

m
+

associated with the constraints and the solution X∗ to variational inequality

(3.12).
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From the right-hand side of (3.18) it follows that X∗ ∈ R
2mnv+n+m

is a minimal point of L(X,ω∗, ϕ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗) in the whole space

R
2mnv+n+m and hence, for all i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , v, we get:

∂L(X∗, ω∗, ϕ∗, ϑ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗)

∂gijk
= 2

∂cTEijk (g
∗
ijk)

∂gijk
+ ω∗

j − λ∗ijk = 0,(3.20)

∂L(X∗, ω∗, ϕ∗, ϑ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗)

∂gj
=

∂cSj (g
∗
j )

∂gj
+ βjc

W
j − (1− βj)ϕ

∗
i

+(1− βj)ψ
∗
i − ν∗j = 0, (3.21)

∂L(X∗, ω∗, ϕ∗, ϑ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗)

∂g̃jik
=

∂cTOjik (g̃
∗
jik)

∂g̃jik
+ γic̃

W
i − ϑ∗

i

−ψ∗
i − (1− γi) ε

∗
i − µ∗

jik = 0,(3.22)

∂L(X∗, ω∗, ϕ∗, ϑ∗, ψ∗, ε∗, λ∗, ν∗, µ∗, σ∗)

∂g̃i
=

∂c̃Si (g̃
∗
i )

∂g̃i
+
∂cPOSTi (g̃∗i )

∂g̃i
+ c̃Wi

+ϑ∗
i + ε∗i + ϕ∗

i + σ∗
i = 0, (3.23)

together with conditions (3.19).

It is easy to see that conditions (3.19)-(3.23) are equivalent to variational

inequality (3.11).

The importance of the Lagrange function consists in the fact that con-

straints are included in such a function and it allows us, when the strong

duality holds, to express the solution to the variational inequality by means

of the system of equations derived from the KKT conditions. The existence

of the solution to the variational inequality is guaranteed by Theorem 5.

Remark 1.

Now we can interpret the meaning of some Lagrange variables. Let us

consider, first, the case when ω∗
j > 0. Then, from (3.19), we get:

a∗j = 0 ⇐⇒

m∑

i=1

v∑

k=1

g∗ijk = g∗j ,

which means that the number of medical teams reaching the donor hospital

j equals the number of available organs in j. Also, let us assume that all the
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medical teams are active, namely g∗ijk > 0 which implies, from (3.19), that

λ∗ijk = 0. Hence (3.20) becomes:

∂cTEijk (g
∗
ijk)

∂gijk
= −

ω∗
j

2
< 0.

On the contrary, if
m∑

i=1

v∑

k=1

g∗ijk < g∗j and g∗ijk > 0, then, from (3.19), we get

ω∗
j = 0, and λ∗ijk = 0. Hence, (3.20) becomes (although we use the same

symbol g∗ijk for the solutions, g∗ijk assumes different values for the different

cases under consideration):

∂cTEijk (g
∗
ijk)

∂gijk
= 0.

So, in the last case, in g∗ijk the cost function c
TE
ijk attains the minimum value,

which means that, when the number of medical teams reaching the donor

hospital j is less than the number of available organs in j, the transport

costs for the medical teams reach the minimum values.

Analogously, from (3.19), we get:

ϕ∗
i

(

g̃∗i −

n∑

j=1

(1− βj)g
∗
j

)

= 0 and ν∗j (−g
∗
j ) = 0 (3.24)

If we assume that there available organs at the donor hospital j, namely

g∗j > 0, then ν∗j = 0. Also, if we assume g̃∗i <
n∑

j=1

(1 − βj)g
∗
j , then ϕ∗

i = 0.

Hence (3.21) becomes:

∂cSj (g
∗
j )

∂gj
+ βjc

W
j = −(1− βj)ψ

∗
i , ∀j = 1, . . . , n.

Summing up with respect to j, we obtain:

n∑

j=1

(

∂cSj (g
∗
j )

∂gj
+ βjc

W
j

)

= −

n∑

j=1

(1− βj)ψ
∗
i .

As a consequence, −
n∑

j=1

(1− βj)ψ
∗
i represents the sum of the marginal costs

associated to the explantation and to the special waste disposal. On the

50



contrary, if ϕ∗
i > 0, then g̃∗i =

n∑

j=1

(1− βj)g
∗
j and (3.21) becomes:

∂cSj (g
∗
j )

∂gj
+ βjc

W
j − (1− βj)ϕ

∗
i = −(1− βj)ψ

∗
i , ∀j = 1, . . . , n,

which yields:

n∑

j=1

(

∂cSj (g
∗
j )

∂gj
+ βjc

W
j

)

=
n∑

j=1

(1− βj) (ϕ
∗
i − ψ∗

i ) .

Hence, the total marginal cost increases, since a greater number of transplants

is performed.

Analogous considerations hold for (3.22) and (3.23).

3.4 The algorithm

We now recall the Euler method (see the general scheme in [21]). For every

iteration k, we calculate:

Xk+1 = PK

(
Xk − akF

(
Xk
))
, (3.25)

where PK is the projection on the feasible set K defined as

PK(ξ) = argmin
z∈K

||ξ − z||

and F is the function that enters the variational inequality problem (3.12)).

In order to get the convergence of the iterative scheme, we need the sequence

{ak} to be such that:

∞∑

k=0

ak = ∞, ak > 0, ak → 0, as k → ∞. (3.26)

Now we describe the method.

Step 0: Initialization

Set X0 ∈ K. Let k denote an iteration counter and set k = 1. Set the

sequence ak such that condition (3.26) is satisfied.
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Step 1: Computation

Calculate Xk ∈ K solving the following variational inequality subprob-

lem:

〈Xk + akF (X
k−1)−Xk−1, X −Xk〉 ≥ 0, ∀X ∈ K.

Step 2: Convergence

Fix a tolerance ε > 0 and check whether |Xk −Xk−1| ≤ ε, then stop;

otherwise, set k := k + 1, and go to Step 1. The explicit formulas for

the Euler method used in the transplant model are as follows:

Xk = max
{
0, Xk−1 − ak−1F (X

k−1)
}
.

3.5 Numerical Examples

In this section we present some numerical examples using the model described

in Section 3.2.

According to SIT - Sistema Informativo Trapianti (Information Trans-

plant System), in Italy in the last years the number of donors has greatly

increased passing from 329 in 1992 to 1303 in 2016, as you can see in Figure

4.

Moreover, comparing the years 2015 and 2016, as in Table 1, in almost all

cases the percentage increase has exceeded 10% and sometimes even 30%.

Kidney Liver Hearth Lung Pancreas

2015 1580 1071 246 112 50

2016 1813 1215 267 154 69

Table 3.1: Number of transplants

According to the Italian DRG, which is the system that gives a cash value

to the diagnosis and medical and surgical procedures, the process of an organ

transplant, including withdrawal from the donor, transportation, storage and

implantation into the recipient, have the following costs:
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Figure 3.4: Number of used donors

Kidney Liver Hearth Lung Pancreas

e 43,000 83,000 62,000 72,000 70,000

Table 3.2: Costs of organ transplants

In the following examples we consider some quadratic cost functions which

in some sense represent the reality, since the marginal cost functions decrease

when a large number of transplant is performed.

The costs are in thousands of euros and the organs are in hundreds of

units.

The optimal solutions are calculated by applying the Euler method de-

scribed in Section 3.4. The calculations were performed using the Matlab

program. The algorithm was implemented on a laptop with an Intel Core2

Duo processor and 4 GB RAM. For the convergence of the method a tol-

erance ε = 10−4 was fixed. Specifically, the method has been implemented

with a constant step α = 0.1.

For all the analyzed cases, we have depicted the underlying network and

specified the cost functions. We have also presented some small variations of

examples 2 and 3 with equal or different link costs.
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3.5.1 Example 1

In the first example we consider a simple network consisting of one transplant

center, one donor hospital and only one transportation mode, as depicted in

Figure 5.
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Figure 3.5: Organ transport network: Ex. 1

We assume the following cost functions are given:

cTE111(g111) = 0.25g2111 − 0.2g111 + 8,

cS1 (g1) = 0.7g21 − 0.5g1 + 3,

cTO111(g̃111) = 0.75g̃2111 − 0.4g̃111 + 25,

c̃S1 (g̃1) = 1.3g̃21 − g̃1 + 7,

cPOST1 (g̃1) = 1.5g̃21 − 1.1g̃1 + 17.

Further, let the portion of explanted organs discarded in the donor hospital

be β1 = 0.5, the portion of organs reaching the transplant center, but which

cannot be transplanted, be γ1 = 0.1 and the unit special waste disposal costs
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be:

cW1 = 3, c̃W1 = 3.5.

Solving the associated variational inequality, we get the following optimal

solution:

g∗111 = 0.80, g∗1 = 2.65, g̃∗111 = 1.32, g̃∗1 = 1.19.

3.5.2 Example 2

We now consider a network consisting of one transplant center, two donor

hospitals and only one transportation mode, as depicted in Figure 6.
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Figure 3.6: Organ transport network: Ex. 2

In this first case, we assume to have different link costs. Specifically, the
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following cost functions are given:

cTE111(g111) = 0.3g2111 − 0.25g111 + 14,

cTE121(g121) = 0.4g2121 − 0.3g121 + 32,

cS1 (g1) = 0.1g21 − 0.09g1 + 16,

cS1 (g2) = 0.6g22 − 0.5g2 + 14,

cTO111(g̃111) = 0.2g̃2111 − 0.15g̃111 + 6,

cTO211(g̃211) = 0.7g̃2211 − 0.6g̃211 + 7,

c̃S1 (g̃1) = 0.35g̃21 − 0.3g̃1 + 12,

cPOST1 (g̃1) = 0.6g̃21 − 0.5g̃1 + 16.

Further, let the portion of explanted organs discarded in the donor hospital

1 be β1 = 0.5 and in the donor hospital 2 be β2 = 0.7, the portion of organs

reaching the transplant center, but which cannot be transplanted, be γ1 = 0.1

and the unit special waste disposal costs be:

cW1 = 1.5, cW2 = 2.5, c̃W1 = 1.7.

Solving the associated variational inequality, we get the following optimal

solution:

g∗111 = 0.83, g∗121 = 0.87, g∗1 = 6.96, g∗2 = 3.18,

g̃∗111 = 3.48, g̃∗211 = 0.95, g̃∗1 = 3.99.

Keeping the same structure as the one depicted in Figure 5, we suppose now

that the link costs are symmetrically the same. Specifically, we assume the
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following cost functions and the unit special waste disposal costs are given:

cTE111(g111) = 0.3g2111 − 0.25g111 + 14,

cTE121(g121) = 0.3g2121 − 0.25g121 + 14,

cS1 (g1) = 0.1g21 − 0.09g1 + 16,

cS2 (g2) = 0.1g22 − 0.09g2 + 16,

cTO111(g̃111) = 0.2g̃2111 − 0.15g̃111 + 6,

cTO211(g̃211) = 0.2g̃2211 − 0.15g̃211 + 6,

c̃S1 (g̃1) = 0.4g̃21 − 0.3g̃1 + 11,

cPOST1 (g̃1) = 0.7g̃21 − 0.6g̃1 + 14,

cW1 = 1.5,

cW2 = 1.5,

c̃W1 = 1.7.

In this case, we get the following optimal solution:

g∗111 = 0.83, g∗121 = 0.83, g∗1 = 5.32, g∗2 = 5.75,

g̃∗111 = 2.66, g̃∗211 = 1.72, g̃∗1 = 3.94.

The optimal solution of the second case clearly shows the symmetry of the

network, since the same number of medical teams reaches the two donors

hospitals, which offer the same number of organs. Comparing the two sit-

uations, we note that in the first case only one organ is lost during the

transport, whereas in the second case only one half of the transported organs

is transplanted.

3.5.3 Example 3

We now consider a network consisting of two transplant centers, two donor

hospitals and only one transportation mode, as depicted in Figure 7.

In this first case, we assume to have different link costs. Specifically, the

following cost functions are given:
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Figure 3.7: Organ transport network: Ex. 3

cTE111(g111) = 0.25g2111 − 0.2g111 + 17,

cTE121(g121) = 0.3g2121 − 0.25g121 + 21,

cTE211(g211) = 0.35g2211 − 0.3g211 + 26,

cTE221(g221) = 0.4g2221 − 0.35g221 + 31,

cS1 (g1) = 0.1g21 − 0.09g1 + 25,

cS2 (g2) = 0.6g22 − 0.5g2 + 13,

cTO111(g̃111) = 0.2g̃2111 − 0.15g̃111 + 6,

cTO211(g̃211) = 0.7g̃2211 − 0.6g̃211 + 6,

cTO121(g̃121) = 1.2g̃2121 − 1.1g̃121 + 2,

cTO221(g̃221) = 1.7g̃2221 − 1.6g̃221 + 3,

c̃S1 (g̃1) = 0.35g̃21 − 0.3g̃1 + 12,

c̃S2 (g̃2) = 0.45g̃22 − 0.4g̃2 + 28,

cPOST1 (g̃1) = 0.6g̃21 − 0.5g̃1 + 16,

cPOST2 (g̃2) = 0.75g̃22 − 0.6g̃2 + 13.

Further, let the portion of explanted organs discarded in the donor hospital

1 be β1 = 0.5 and in the donor hospital 2 be β2 = 0.7, the portion of
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organs reaching the transplant centers, but which cannot be transplanted,

be γ1 = 0.1 and γ2 = 0.2 respectively, and the unit special waste disposal

costs be:

cW1 = 1.5, cW2 = 2.5,

c̃W1 = 1.7, c̃W2 = 1.9.

Solving the associated variational inequality, we get the following optimal

solution:

g∗111 = 0.80, g∗121 = 0.83, g∗211 = 0.86, g∗221 = 0.87,

g∗1 = 10.89, g∗2 = 3.92, g̃∗111 = 3.44 g̃∗211 = 0.05,

g̃∗121 = 2.01, g̃∗221 = 1.12, g̃∗1 = 3.14, g̃∗2 = 2.51.

As in the case of Example 2, now we keep the same structure as the one

depicted in Figure 6, but we suppose that the link costs are the same on

some links. Specifically, we assume the following cost functions and the unit

special waste disposal costs are given:
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cTE111(g111) = 0.25g2111 − 0.2g111 + 17,

cTE121(g121) = 0.3g2121 − 0.25g121 + 21,

cTE211(g211) = 0.25g2211 − 0.2g211 + 17,

cTE221(g221) = 0.3g2221 − 0.25g221 + 21,

cS1 (g1) = 0.1g21 − 0.09g1 + 25,

cS2 (g2) = 0.1g22 − 0.09g2 + 25,

cTO111(g̃111) = 0.2g̃2111 − 0.15g̃111 + 6,

cTO211(g̃211) = 0.7g̃2211 − 0.6g̃211 + 6,

cTO121(g̃121) = 0.2g̃2121 − 0.15g̃121 + 6,

cTO221(g̃221) = 0.7g̃2221 − 0.6g̃221 + 6,

c̃S1 (g̃1) = 0.35g̃21 − 0.3g̃1 + 12,

c̃S2 (g̃2) = 0.35g̃22 − 0.3g̃2 + 12,

cPOST1 (g̃1) = 0.6g̃21 − 0.5g̃1 + 16,

cPOST2 (g̃2) = 0.6g̃22 − 0.5g̃2 + 16,

cW1 = 1.5,

cW2 = 1.5,

c̃W1 = 1.7,

c̃W2 = 1.7.

In this case, we get the following optimal solution:

g∗111 = 0.80, g∗121 = 0.83, g∗211 = 0.80, g∗221 = 0.83,

g∗1 = 10.46, g∗2 = 8.62, g̃∗111 = 2.55 g̃∗211 = 1.28,

g̃∗121 = 2.67, g̃∗221 = 1.31, g̃∗1 = 3.45, g̃∗2 = 3.19.

In this version of Example 3, the structure of the network is still the

one depicted in Figure 6, but the cost functions and the unit special waste
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disposal costs are now given by:

cTE111(g111) = 0.3g2111 − 0.25g111 + 21,

cTE121(g121) = 0.3g2121 − 0.25g121 + 21,

cTE211(g211) = 0.4g2211 − 0.3g211 + 31,

cTE221(g221) = 0.4g2221 − 0.3g221 + 31,

cS1 (g1) = 0.6g21 − 0.5g1 + 13,

cS2 (g2) = 0.6g22 − 0.5g2 + 13,

cTO111(g̃111) = 0.7g̃2111 − 0.6g̃111 + 6,

cTO211(g̃211) = 0.7g̃2211 − 0.6g̃211 + 6,

cTO121(g̃121) = 1.7g̃2121 − 1.6g̃121 + 3,

cTO221(g̃221) = 1.7g̃2221 − 1.6g̃221 + 3,

c̃S1 (g̃1) = 0.45g̃21 − 0.4g̃1 + 28,

c̃S2 (g̃2) = 0.45g̃22 − 0.4g̃2 + 28,

cPOST1 (g̃1) = 0.75g̃21 − 0.7g̃1 + 13,

cPOST2 (g̃2) = 0.75g̃22 − 0.7g̃2 + 13,

cW1 = 2.5,

cW2 = 2.5,

c̃W1 = 1.9,

c̃W2 = 1.9.

Solving the associated variational inequality, we get the following optimal

solution:

g∗111 = 0.83, g∗121 = 0.83, g∗211 = 0.87, g∗221 = 0.87,

g∗1 = 5.50, g∗2 = 4.64, g̃∗111 = 1.56 g̃∗211 = 0.60,

g̃∗121 = 1.19, g̃∗221 = 0.79, g̃∗1 = 1.94, g̃∗2 = 1.59.

By analyzing the optimal solutions of the three proposed cases, we observe

that only in one case the number of medical teams is equal to the number of

offered organs. In particular, the symmetry of the network in the second case,
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together with the proposed cost functions, allow us to obtain the greatest

number of performed transplants. Furthermore, we observe that in the second

case one organ is lost during the transport, whereas in the first and in the

third cases all the transported organs are actually transplanted.

3.6 Conclusions

In the last decades the surgical techniques and medicines have undergone

an extraordinary improvement, so that the number of organ transplants has

reduced, but the demand is still much higher than the supply and the costs

associated with the transplant process, including hospital and surgery costs,

medical teams and organs transportation costs, and disposal costs are very

expensive for the National Health Service. In this paper, we present a model

which captures this significant issue and provide a variational formulation

which characterizes the optimality conditions consisting in the minimization

of the total costs. Existing results for the solution to the variational inequali-

ty are also stated.

The application of the Lagrange theory to the transplant model allows us to

explain the meaning of some Lagrange multipliers in order to better under-

stand the behavior of the entire process.

The theoretical framework is then further illustrated through some numerical

examples for which the equilibrium amount of medical teams, of organs of-

fered by the donor hospitals, of organs transported from the donor hospitals

to the transplant centers, and of organs actually transplanted are computed.

The results in this paper add to the existing literature of operations research

techniques for transplant modeling and analysis.
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Chapter 4

A Variational Equilibrium

Network Framework for

Humanitarian Organizations in

Disaster Relief: Effective

Product Delivery Under

Competition for Financial

Funds

In this chapter, we present a new Generalized Nash Equilibrium (GNE) model

for post-disaster humanitarian relief by introducing novel financial funding

functions and altruism functions, and by also capturing competition on the

logistics side among humanitarian organizations. The common, that is, the

shared, constraints associated with the relief item deliveries at points of need

are imposed by an upper level humanitarian organization or regulatory body

and consist of lower and upper bounds to ensure the effective delivery of

the estimated volumes of supplies to the victims of the disaster. We iden-
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tify the network structure of the problem, with logistical and financial flows,

and propose a variational equilibrium framework, which allows us to then

formulate, analyze, and solve the model using the theory of variational in-

equalities (rather than quasivariational inequality theory). We then utilize

Lagrange analysis and investigate qualitatively the humanitarian organiza-

tions’ marginal utilities if and when the equilibrium relief item flows are

(or are not) at the imposed demand point bounds. We illustrate the game

theory model through a case study focused on tornadoes hitting western

Massachusetts, a highly unusual event that occurred in 2011. This work sig-

nificantly extends the original model of Nagurney, Alvarez Flores, and Soylu

(2016), which, under the imposed assumptions therein, allowed for an opti-

mization formulation, and adds to the literature of game theory and disaster

relief, which is nascent.

4.1 Introduction

Disaster relief is fraught with many challenges: the infrastructure, from

transportation to communications to energy delivery, may be damaged or

destroyed, and services, from healthcare to governmental ones, impacted,

all while victims are in desperate need of relief items such as water, food,

medicines, and shelter. A timely response to a disaster, hence, can save lives,

reduce suffering, and assist in recovery. Moreover, it can also enhance the

reputations of humanitarian organizations and their very sustainability in

terms of financial donations.

The number of disasters is growing as well as the number of people af-

fected by them (Nagurney and Qiang (2009)) with additional pressures com-

ing from climate change, increasing growth of populations in urban environ-

ments, and the spread of diseases brought about by global air travel. The

associated costs of the damage and losses due to disasters is estimated at

an average $100 billion a year since the turn of the century (Watson et al.

(2015)).
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Disasters come in many forms, from natural disasters, such as tornadoes,

earthquakes, and typhoons, which are often sudden-onset, to famines, which

are slow-onset, and can occur not only from changes in weather patterns, re-

sulting in droughts, for example, but also from political situations, including

war (cf. Van Wassenhove (2006)). Hence, certain disasters are man-made, as

in the case of the Syrian refugee crisis (cf. Sumpf, Isaila, and Najjar (2016)),

and terrorist attacks, such as 9/11 (Cox (2008)).

Notable sudden-onset natural disasters have included Hurricane Katrina

in 2005, which was the costliest natural disaster in the US, the Haiti earth-

quake in 2010, the triple disaster in Fukushima, Japan in 2011, consisting of

an earthquake, followed by a tsunami and a nuclear meltdown technological

disaster, Superstorm Sandy in 2012, tropical cyclone Haiyan in 2013, which

was the strongest cyclone ever recorded, the earthquake in Nepal in 2015,

and Hurricane Matthew in 2016.

The challenges to disaster relief (humanitarian) organizations, including

nongovernmental organizations (NGOs), are immense. The majority operate

under a single, common, humanitarian principle of protecting the vulnerable,

reducing suffering, and supporting the quality of life, while, at the same time,

competing for financial funds from donors to ensure their own sustainabil-

ity. As noted in Nagurney, Alvarez Flores, and Soylu (2016), competition is

intense, with the number of registered US nonprofit organizations increas-

ing from 12,000 in 1940 to more than 1.5 million in 2012. Approximately

$300 billion are donated to charities in the United States each year (Zhuang,

Saxton, and Wu (2014)). At the same time, many stakeholders believe that

humanitarian aid has not been as successful in delivering on the humanitar-

ian principle as might be feasible due to a lack of coordination, which results

in duplication of services (see Kopinak (2013)).

We believe that some of the challenges that humanitarian organizations

engaged in disaster relief are faced with can be addressed through the use of

game theory. Game theory is a methodological framework that captures com-

plex interactions among competing decision-makers (noncooperative games)
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or cooperating ones (cooperative games). The contributions of John Nash

(1950, 1951), in particular, are highly relevant and established some of the

foundations of game theory. Specifically, we note that, in the case of non-

cooperative games, in which the utilities of the competing players, that is,

the decision-makers, in the game, depend on the other players’ strategies,

the governing concept is that of Nash Equilibrium. If, however, the feasible

sets, that is, the constraints, are not specific to each player, but, rather, de-

pend also on the strategies of the other players, then we are dealing with a

Generalized Nash Equilibrium, introduced by Debreu (1952) (see, also, von

Heusinger (2009), Fischer, Herrich, and Schonefeld (2014), and the references

therein).

In particular, in this paper, we construct a new Generalized Nash Equi-

librium (GNE) network model for disaster relief, which models competition

among NGOs for financial funds post-disaster, as well as for the delivery of

relief items. The utility function that each NGO seeks to maximize depends

on its financial gain from donations plus the weighted benefit accrued from

doing good through the delivery of relief items minus the total cost associ-

ated with the logistics of delivering the relief items. The model extends the

earlier model of Nagurney, Alvarez Flores, and Soylu (2016) in the following

significant ways, which means that the optimization reformulation, as done

in that paper, no longer applies:

1. The financial funds functions, which capture the amount of donations

to each NGO, given their visibility through media of the supplies of relief

items delivered at demand points, and under competition, need not take on

a particular structure.

2. The altruism or benefit functions, also included in each NGO’s utility

function, need not be linear.

3. The competition associated with logistics is captured through total cost

functions that depend not only on a particular NGO’s relief item shipments

but also on those of the other NGOs.

In order to guarantee effective product delivery at the demand points, we re-
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tain the lower and upper bounds, as introduced in Nagurney, Alvarez Flores,

and Soylu (2016). Such common, or shared constraints, assist in coordination

(cf. Balcik et al. (2010)) and would be imposed by a higher level humanitar-

ian organization or regulatory authority in order to ensure that the needed

volumes of relief items are delivered but are not oversupplied, which can re-

sults in congestion, materiel convergence, and wastage. We assume that the

NGOs have prepositioned the supplies of the disaster relief items and that

the total amount available across all NGOs is sufficient to meet the needs of

the victims.

It is important to emphasize that Generalized Nash Equilibrium prob-

lems are more challenging to formulate and solve and are usually tackled via

quasivariational inequalities (cf. Bensoussan (1974)), the theory of which, as

well as the associated computational procedures, are not in as an advanced

state as that of variational inequalities (see Kinderlehrer and Stampacchia

(1980) and Nagurney (1999)). Here we utilize, for the first time, in the con-

text of humanitarian operations and disaster relief, a variational equilibrium.

As noted in Nagurney, Yu, and Besik (2017)), a variational equilibrium is

a specific kind of GNE (cf. Facchinei and Kanzow (2010), Kulkarni and

Shanbhag (2012)). The variational equilibrium allows for alternative vari-

ational inequality formulations of our new Generalized Nash Equilibrium

network model. What is notable about a variational equilibrium (see also

Luna (2013)) is that the Lagrange multipliers associated with the shared or

coupling constraints of the NGOs are the same for all NGOs in the disas-

ter relief game. This also provides us with an elegant economic and equity

interpretation.

The only other game theory model for disaster relief that includes ele-

ments of logistics plus financial funds is that of Nagurney, Alvarez Flores, and

Soylu (2016). Zhuang, Saxton, and Wu (2014) proposed a model that showed

that the amount of charitable contributions made by donors is positively de-

pendent on the amount of disclosure by the NGOs. The authors emphasized

that there is a dearth of existing game-theoretic research on nonprofit orga-
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nizations. Toyasaki and Wakolbinger (2015) developed game theory models

to analyze whether an NGO should establish a special fund after a disas-

ter (in terms of earmarked donations) or allow only unearmarked donations.

Nagurney (2016), in turn, presented a network game theory model in which

multiple freight service providers are engaged in competition to acquire the

business of carrying disaster relief supplies of a humanitarian organization

in the amounts desired to the destinations. Coles and Zhuang (2011), on

the other hand, argued for the need for cooperative game theory models for

disaster recovery operations by highlighting a stream of post-disaster oper-

ations. Muggy and Stamm (2014) give an excellent review of game theory

in humanitarian operations and note that there are many untapped research

opportunities for modeling in this area. See also the dissertation of Muggy

(2015). The research in our paper adds to the still nascent literature on game

theory and disaster relief / humanitarian operations.

This paper is organized as follows. In Section 2, we construct the novel

Generalized Nash Equilibrium model for disaster relief, which captures com-

petition both on the financial funds side as well as on the logistics side and

we identify the network structure. We present the variational equilibrium

framework and also prove the existence of an equilibrium solution. In ad-

dition, we provide, for completeness, the variational inequality formulation

of a special case of the model, under the Nash equilibrium solution, in the

absence of imposed common demand constraints. In Section 3, we then ex-

plore, through Lagrange analysis, the humanitarian organizations’ marginal

utilities when the equilibrium disaster relief flows are at the upper or the

lower bounds of the imposed demands of the regulatory body or lie in be-

tween. In order to illustrate the framework developed here, Section 4 presents

both an algorithmic scheme and a case study, inspired by tornadoes that hit

western Massachusetts in June 2011, with devastating impact (cf. Western

Massachusetts Regional Homeland Advisory Council (2012)). We summarize

our results and present our conclusions in Section 5.
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4.2 The Variational Equilibrium Network Frame-

work for Humanitarian Organizations in

Disaster Relief

We now present the new Generalized Nash Equilibrium model for disaster

relief, along with the variational equilibrium framework. As mentioned in

the Introduction, the model extends the earlier model of Nagurney, Alvarez

Flores, and Soylu (2016), which, under the imposed assumptions therein,

allowed for an optimization reformulation. Our notation follows closely the

notation in the above paper but here we utilize, in contrast, a more general

variational equilibrium framework.

We considerm humanitarian organizations, here referred to as nongovern-

mental organizations (NGOs), with a typical NGO denoted by i, seeking to

deliver relief supplies, post a disaster, to n demand points, with a typical de-

mand point denoted by j. The relief supplies can be water, food, or medicine.

We assume that the product delivered can be viewed as being homogeneous.

We denote the volume of the relief item shipment (flow) delivered by NGO

i to demand point j by qij. We group the nonnegative relief item flows from

each NGO i; i = 1, . . . ,m, into the vector qi ∈ Rn
+ and then we group the

relief item flows of all the NGOs to all the demand points into the vector

q ∈ Rmn
+ . The vector qi is the vector of strategies of NGO i.

The NGOs compete for financial funds from donors, while also engaging

in competition on the logistic side in terms of costs, since there may be

competition for freight services, etc., as well as congestion at the demand

sites. The network structure of the problem is given in Figure 1. Note that

the links from the first tier nodes representing the NGOs to the bottom tier

nodes, corresponding to the demand points, are the shipment links and have

relief item flows associated with them. The links from the demand nodes to

the NGO nodes (in the opposite direction) are the links with the financial

flows from the donors reacting to the visibility of the NGOs in their delivery

of the needed supplies through the media. The network structure of this
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problem differs from the network underlying the model given in Nagurney,

Alvarez Flores, and Soylu (2016) since in that model, the financial flows,

once collected, were partitioned to each NGO, using a factor representing the

portion of the financial funds each humanitarian organization was (likely) to

get of the total amount donated.

We emphasize that, in terms of the sequence of events, the humanitarian

organizations first decide on the level of relief items to be provided at each

demand point and deliver the amounts. Then they receive the corresponding

financial flows. Therefore, the financial flows are received after the supplies

arrive. As noted in Nagurney, Alvarez Flores, and Soylu (2016), empirically,

these funds are realized and made available quickly, and these two events are

almost concurrent in many cases. The justification of this assumption is also

provided by the nature of the incentives of the decision-makers in our model,

which is to provide humanitarian relief as quickly as possible whenever a

disaster strikes.
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Figure 4.1: The Network Structure of the Game Theory Model

Each NGO i encumbers a cost, cij, associated with shipping the relief

items to location j, where we assume that

cij = cij(q), j = 1, . . . n, (4.1)
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with these cost functions being convex and continuously differentiable. These

costs also include transaction costs (see also Nagurney (2006)). Note that

the cost functions (4.1) are associated with the logistics aspects and, hence,

the cost on a shipment link can depend not only on its flow but also on the

flows on the other shipment links associated with the same NGO or with

other NGOs.

Each NGO i; i = 1, . . . ,m, based on the media attention and the visibility

of NGOs at demand point j; j = 1, . . . , n, receives financial funds from donors

given by the expression
n∑

j=1

Pij(q), (4.2)

where Pij(q) denotes the financial funds in donation dollars given to NGO

i due to visibility of NGO i at location j. Hence, Pij(q) corresponds to

the financial flow on the link joining demand node j with node NGO i in

Figure 1. Observe that, according to (4.2), there is competition among all

the NGOs for financial donations since the financial amount of donations

that an NGO receives depends not only on its relief item deliveries but also

on those delivered by other NGOs. Indeed, according to (4.2), an NGO may

benefit from donations even through visibility of other NGOs providing the

product because of, for example, loyalty and support for a specific NGO.

We assume that the Pij functions are increasing, concave, and continuously

differentiable. Hence, we have positive but decreasing marginal utility of

providing aid (in terms of the NGO’s effect on attracting donations). It is

important to mention that the Pij(q) function contains, as a special case, the

financial funds donor function of Nagurney, Alvarez Flores, and Soylu (2016),

with Pij(q) = βiPj(q); i = 1, . . . ,m; j = 1, . . . , n. Furthermore, Natsios

(1995) noted that the cheapest way for relief organizations to fundraise is to

provide early relief in highly visible areas. In our case study in Section 4 we

construct explicit Pij(q) functions for all NGOs i and demand points j.

Also, since the NGOs are humanitarian organizations involved in disaster

relief, each NGO i also derives some utility from delivering the needed relief

71



supplies. We, hence, introduce an altruism/benefit function Bi; i = 1, . . . ,m,

such that

Bi = Bi(q), (4.3)

and each benefit function is assumed to be concave and continuously differen-

tiable. Previously utilized benefit functions in this application domain were

of the form: Bi =
n∑

j=1

γijqij; j = 1, . . . , n. Furthermore, when we construct

each NGO’s full utility function we will also assign a weight ωi before each

Bi(q); i = 1, . . . ,m, to represent a monetized weight associated with altru-

ism of i. Such weight concepts are used in multicriteria decision-making; see,

e.g., Fishburn (1970), Chankong and Haimes (1983), Yu (1985), Keeney and

Raiffa (1993), and Nagurney, Alvarez Flores, and Soylu (2016).

Each NGO i; i = 1, . . . ,m, has an amount si of the relief item that it can

allocate post-disaster, which must satisfy:

n∑

j=1

qij ≤ si. (4.4)

We assume that the relief supplies have been prepositioned so that they

are in stock and available, since time is of the essence. According to Roopa-

narine (2013), prepositioning of supplies can make emergency relief more

effective and this is a strategy followed not only by the UNHRD (United

Nations Humanitarian Response Depot) but also by the Red Cross and

even some smaller relief organizations such as AmeriCares. Gatignon, Van

Wassenhove, and Charles (2010) also note the benefits of proper preposition-

ing of supplies in the case of the International Federation of the Red Cross

(IFRC) in terms of cost reduction and a more timely response.

In addition, the relief item flows for each i; i = 1, . . . ,m, must be non-

negative, that is:

qij ≥ 0, j = 1, . . . , n. (4.5)

Each NGO i; i = 1, . . . ,m, seeks to maximize its utility, Ui, with the

utility consisting of the financial gains due to its visibility through media of
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the relief item flows,
n∑

j=1

Pij(q), plus the utility associated with the logisti-

cal (supply chain) aspects of delivery of the supplies, which consists of the

weighted altruism/benefit function minus the logistical costs. For additional

background on utility functions for nonprofit and charitable organizations,

see Rose-Ackerman (1982) and Malani, Philipson, and David (2003).

Without the imposition of demand bound constraints (which will follow),

the optimization problem faced by NGO i; i = 1, . . . ,m, is, thus,

Maximize Ui(q) =
n∑

j=1

Pij(q) + ωiBi(q)−
n∑

j=1

cij(q) (4.6)

subject to constraints (4.4) and (4.5).

Before imposing the common constraints, we remark that the above

model, in the absence of any common constraints, is a Nash Equilibrium

problem, which we know can be formulated and solved as a variational in-

equality problem (cf. Gabay and Moulin (1980) and Nagurney (1999)). In-

deed, although the utility functions of the NGOs depend on their strategies

and those of the other NGOs, the respective NGO feasible sets do not. How-

ever, the NGOs may be faced with several common constraints, which make

the game theory problem more complex and challenging. The common con-

straints, which are imposed by an authority, such as a governmental one or a

higher level humanitarian coordination agency, ensure that the needs of the

disaster victims are met, while recognizing the negative effects of waste and

material convergence. The imposition of such constraints in terms of effec-

tiveness and even gains for NGOs was demonstrated in Nagurney, Alvarez

Flores, and Soylu (2016). Later in this section, we present the variational in-

equality framework. Hence, we will not need to make use of quasivariational

inequalities (cf. von Heusinger (2009)) for our new model.

Specifically, the two sets of common imposed constraints, at each demand

point j; j = 1, . . . , n, are as follows:

m∑

i=1

qij ≥ dj, (4.7)
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and
m∑

i=1

qij ≤ d̄j, (4.8)

where dj is the lower bound on the amount of the relief item needed at

demand point j and d̄j is the upper bound on the amount of the relief item

needed at demand point j. The constraints (4.7) and (4.8) give flexibility for a

regulatory or coordinating body, since it is not likely that the demand will be

precisely known in a disaster situation. It is, however, reasonable to assume

that, as represented in these equations, estimates for needs assessment for

the relief items will be available at the local level.

We assume that
m∑

i=1

si ≥

n∑

j=1

dj. (4.9)

Hence, the total supply of the relief item of the NGOs is sufficient to meet

the needs at all the demand points.

We define the feasible set Ki for each NGO i as:

Ki ≡ {qi| (4.4) and (4.5) hold} (4.10)

and we let K ≡
m∏

i=1

Ki.

In addition, we define the feasible set S consisting of the shared con-

straints as:

S ≡ {q| (4.7) and (4.8) hold}. (4.11)

Observe that now not only does the utility of each NGO depend on the

strategies, that is, the relief item flows, of the other NGOs, but so does the

feasible set because of the common constraints (4.7) and (4.8). Hence, the

above game theory model, in which the NGOs compete noncooperatively is

a Generalized Nash Equilibrium problem. Therefore, we have the following

definition.

Definition 1: Disaster Relief Generalized Nash Equilibrium
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A relief item flow pattern q∗ ∈ K =
m∏

i=1

Ki, q
∗ ∈ S, constitutes a disaster

relief Generalized Nash Equilibrium if for each NGO i; i = 1, . . . ,m:

Ûi(q
∗
i , q̂

∗
i ) ≥ Ui(qi, q̂

∗
i ), ∀qi ∈ Ki, ∀q ∈ S, (4.12)

where q̂∗i ≡ (q∗1, . . . , q
∗
i−1, q

∗
i+1, . . . , q

∗
m).

Hence, an equilibrium is established if no NGO can unilaterally improve

upon its utility by changing its relief item flows in the disaster relief network,

given the relief item flow decisions of the other NGOs, and subject to the

supply constraints, the nonnegativity constraints, and the shared/coupling

constraints. We remark that both K and S are convex sets.

If there are no coupling, that is, shared, constraints in the above model,

then q and q∗ in Definition 1 need only lie in the set K, and, under the as-

sumption of concavity of the utility functions and that they are continuously

differentiable, we know that (cf. Gabay and Moulin (1980) and Nagurney

(1999)) the solution to what would then be a Nash equilibrium problem (see

Nash (1950, 1951)) would coincide with the solution of the following varia-

tional inequality problem: determine q∗ ∈ K, such that

−
m∑

i=1

〈∇qiÛi(q
∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K, (4.13)

where 〈·, ·〉 denotes the inner product in the corresponding Euclidean space

and ∇qiÛi(q) denotes the gradient of Ûi(q) with respect to qi.

As emphasized in Nagurney, Yu, and Besik (2017), a refinement of the

Generalized Nash Equilibrium is what is known as a variational equilibrium

and it is a specific type of GNE (see Kulkarni and Shabhang (2012)). Specifi-

cally, in a GNE defined by a variational equilibrium, the Lagrange multipliers

associated with the common/shared/coupling constraints are all the same.

This feature provides a fairness interpretation and is reasonable from an eco-

nomic standpoint. More precisely, we have the following definition:

Definition 2: Variational Equilibrium
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A strategy vector q∗ is said to be a variational equilibrium of the above Gener-

alized Nash Equilibrium game if q∗ ∈ K, q∗ ∈ S is a solution of the variational

inequality:

−

m∑

i=1

〈∇qiUi(q
∗), qi − q∗i 〉 ≥ 0, ∀q ∈ K, ∀q ∈ S. (4.14)

By utilizing a variational equilibrium, we can take advantage of the well-

developed theory of variational inequalities, including algorithms (cf. Nagur-

ney (1999) and the references therein), which are in a more advanced state of

development and application than algorithms for quasivariational inequality

problems.

We now expand the terms in variational inequality (4.14).

Specifically, we have that (4.14) is equivalent to the variational inequality:

determine q∗ ∈ K, q∗ ∈ S, such that

m∑

i=1

n∑

j=1

[
n∑

k=1

∂cik(q
∗)

∂qij
−

n∑

k=1

∂Pik(q
∗)

∂qij
− ωi

∂Bi(q
∗)

∂qij

]

×
[
qij − q∗ij

]
≥ 0, ∀q ∈ K, ∀q ∈ S.

(4.15)

4.3 Lagrange Theory and Analysis of the Marginal

Utilities

In this section we explore the Lagrange theory associated with variational

inequality (4.15) and we provide an analysis of the marginal utilities at the

equilibrium solution. For an application of Lagrange theory to other mod-

els, see: Daniele (2001) (spatial economic models), Barbagallo, Daniele, and

Maugeri (2012) (financial networks), Toyasaki, Daniele, and Wakolbinger

(2014) (end-of-life products networks), Daniele and Giuffrè (2015) (random

traffic networks), Caruso and Daniele (2016) (transplant networks), Nagur-

ney and Dutta (2016) (competition for blood donations).

76



By setting:

C(q) =
m∑

i=1

n∑

j=1

[
n∑

k=1

∂cik(q
∗)

∂qij
−

n∑

k=1

∂Pik(q
∗)

∂qij
− ωi

∂Bi(q
∗)

∂qij

]

(qij−q
∗
ij), (4.16)

variational inequality (4.15) can be rewritten as a minimization problem as

follows:

min
K
C(q) = C(q∗) = 0. (4.17)

Under the previously imposed assumptions, we know that all the involved

functions in (4.17) are continuously differentiable and convex.

We set:
aij = −qij ≤ 0, ∀i, ∀j,

bi =
n∑

j=1

qij − si ≤ 0, ∀i,

cj = dj −
m∑

i=1

qij ≤ 0, ∀j,

ej =
m∑

i=1

qij − dj ≤ 0, ∀j,

(4.18)

and

Γ(q) = (aij, bi, cj, ej)i=1,...,m; j=1,...,n . (4.19)

As a consequence, we remark that K can be rewritten as

K = {q ∈ Rmn : Γ(q) ≤ 0}. (4.20)

We now consider the following Lagrange function:

L(q, α, δ, σ, ε) =
n∑

j=1

cij(q)−
n∑

j=1

Pij(q)− ωiBi(q)

+
m∑

i=1

n∑

j=1

αijaij +
m∑

i=1

δibi +
n∑

j=1

σjcj +
n∑

j=1

εjej,

(4.21)

∀q ∈ Rmn
+ , ∀α ∈ Rmn

+ , ∀δ ∈ Rm
+ , ∀σ ∈ Rn

+, ∀ε ∈ Rn
+,

where α is the vector with components: {α11, . . . , αmn}; δ is the vector with

components {δ1, . . . , δm}; σ is the vector with elements: {σ1, . . . , σn}, and ε

is the vector with elements: {ε1, . . . , εn}.
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It is easy to prove that the feasible set K is convex and that the Slater

condition is satisfied. Then, if q∗ is a minimal solution to problem (4.17),

there exist α∗ ∈ Rmn
+ , δ∗ ∈ Rm

+ , σ
∗ ∈ Rn

+, ε
∗ ∈ Rn

+ such that the vector

(q∗, α∗, δ∗, σ∗, ε∗) is a saddle point of the Lagrange function (4.21); namely:

L(q∗, α, δ, σ, ε) ≤ L(q∗, α∗, δ∗, σ∗, ε∗) ≤ L(q, α∗, δ∗, σ∗, ε∗), (4.22)

∀q ∈ Rmn
+ , ∀α ∈ Rmn

+ , ∀δ ∈ Rm
+ , ∀σ ∈ Rn

+, ∀ε ∈ Rn
+,

and

α∗
ija

∗
ij = 0, ∀i, ∀j,

δ∗i b
∗
i = 0, ∀i,

σ∗
j c

∗
j = 0, ε∗je

∗
j = 0, ∀j. (4.23)

From the right-hand side of (4.22), it follows that q∗ ∈ Rmn
+ is a minimal point

of L(q, α∗, δ∗, σ∗, ε∗) in the whole space Rmn, and hence, for all i = 1, . . . ,m,

and for all j = 1, . . . , n, we have that:

∂L(q∗, α∗, δ∗, σ∗, ε∗)

∂qij

=
n∑

k=1

∂cik(q
∗)

∂qij
−

n∑

k=1

∂Pik(q
∗)

∂qij
− ωi

∂Bi(q
∗)

∂qij
− α∗

ij + δ∗i − σ∗
j + ε∗j = 0, (4.24)

together with conditions (4.23).

Conditions (4.23) and (4.24) represent an equivalent formulation of vari-

ational inequality (4.15). Indeed, if we multiply (4.24) by (qij − q∗ij) and sum

up with respect to i and j, we get:

m∑

i=1

n∑

j=1

[
n∑

k=1

∂cik(q
∗)

∂qij
−

n∑

k=1

∂Pik(q
∗)

∂qij
− ωi

∂Bi(q
∗)

∂qij

]

(qij − q∗ij)

=
m∑

i=1

n∑

j=1

α∗
ijqij −

m∑

i=1

n∑

j=1

α∗
ijq

∗
ij

︸ ︷︷ ︸

=0

−

m∑

i=1









δ∗i

n∑

j=1

qij − δ∗i

n∑

j=1

q∗ij

︸ ︷︷ ︸

=δ∗i si









78



+
n∑

j=1









σ∗
j

m∑

i=1

qij − σ∗
j

m∑

i=1

q∗ij

︸ ︷︷ ︸

=σ∗
j dj









−

n∑

j=1










ε∗j

m∑

i=1

qij − ε∗j

m∑

i=1

q∗ij

︸ ︷︷ ︸

=ε∗jdj










=
m∑

i=1

n∑

j=1

α∗
ijqij
︸ ︷︷ ︸

≥0

−
m∑

i=1

δ∗i









n∑

j=1

qij − si

︸ ︷︷ ︸

≤0









+
n∑

j=1

σ∗
j









m∑

i=1

qij − dj

︸ ︷︷ ︸

≥0









−
n∑

j=1

ε∗j









m∑

i=1

qij − dj

︸ ︷︷ ︸

≤0









≥ 0. (4.25)

We now discuss the meaning of some of the Lagrange multipliers. We

focus on the case where q∗ij > 0; namely, the relief item flow from NGO

i to demand point j is positive; otherwise, if q∗ij = 0, the problem is not

interesting. Then, from the first line in (4.23), we have that α∗
ij = 0.

Let us consider the situation when the constraints are not active, that is,

b∗i < 0 and dj <
m∑

i=1

q∗ij < dj.

Specifically, b∗i < 0 means that
n∑

j=1

q∗ij < si; that is, the sum of relief

items sent by the i-th NGO to all demand points is strictly less than the

total amount si at its disposal. Then, from the second line in (4.23), we get:

δ∗i = 0.

At the same time, from the last line in (4.23), dj <
m∑

i=1

q∗ij < dj, leads to:

σ∗
j = ε∗j = 0.

Hence, (4.24) yields:
n∑

k=1

∂cik(q
∗)

∂qij
−

n∑

k=1

∂Pik(q
∗)

∂qij
− ωi

∂Bi(q
∗)

∂qij
= α∗

ij − δ∗i + σ∗
j − ε∗j = 0

⇐⇒
n∑

k=1

∂Pik(q
∗)

∂qij
+ ωi

∂Bi(q
∗)

∂qij
=

n∑

k=1

∂cik(q
∗)

∂qij
. (4.26)
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In this case, the marginal utility associated with the financial donations plus

altruism is equal to the marginal costs.

If, on the other hand,
m∑

i=1

q∗ij = dj, then σ
∗
j > 0. Hence, we get:

n∑

k=1

∂Pik(q
∗)

∂qij
+ ωi

∂Bi(q
∗)

∂qij
+ σ∗

j =
n∑

k=1

∂cik(q
∗)

∂qij
, with σ∗

j > 0, (4.27)

and, therefore,

n∑

k=1

∂cik(q
∗)

∂qij
>

n∑

k=1

∂Pik(q
∗)

∂qij
+ ωi

∂Bi(q
∗)

∂qij
, (4.28)

which means that the marginal costs are greater than the marginal utility

associated with the financial donations plus altruism and this is a very bad

situation.

Finally, if
m∑

i=1

q∗ij = dj, then ε
∗
j > 0, we have that:

n∑

k=1

∂Pik(q
∗)

∂qij
+ ωi

∂Bi(q
∗)

∂qij
=

n∑

k=1

∂cik(q
∗)

∂qij
+ ε∗j , with ε

∗
j > 0. (4.29)

Therefore,
n∑

k=1

∂cik(q
∗)

∂qij
<

n∑

k=1

∂Pik(q
∗)

∂qij
+ ωi

∂Bi(q
∗)

∂qij
. (4.30)

In this situation, the relevant marginal utility exceeds the marginal cost and

this is a desirable situation.

Analogously, if we assume that the conservation of flow equation is active;

that is, if
n∑

j=1

q∗ij = si, then δ
∗
i > 0. As a consequence, we obtain:

n∑

k=1

∂Pik(q
∗)

∂qij
+ ωi

∂Bi(q
∗)

∂qij
=

n∑

k=1

∂cik(q
∗)

∂qij
+ δ∗i , with δ

∗
i > 0, (4.31)

which means that, once again, the marginal utility associated with the fi-

nancial donations plus altruism exceeds the marginal cost and this is the

desirable situation.
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From the above analysis of the Lagrange multipliers and marginal utili-

ties at the equilibrium solution, we can conclude that the most convenient

situation, in terms of the marginal utilities, is the one when
m∑

i=i

q∗ij = dj and

n∑

j=1

q∗ij = si.

Taking into account the Lagrange multipliers, an equivalent variational

formulation of problem (4.6) under constraints (4.4), (4.5), (4.7), and (4.8)

is the following one:

Find (q∗, δ∗, σ∗, ε∗) ∈ Rmn+m+2n
+ :

m∑

i=1

n∑

j=1

[
n∑

k=1

∂cik(q
∗)

∂qij
−

n∑

k=1

∂Pik(q
∗)

∂qij
− ωi

∂Bi(q
∗)

∂qij
+ δ∗i − σ∗

j + ε∗j

]

(qij − q∗ij)

+
m∑

i=1

(

si −

n∑

j=1

q∗ij

)

(δi − δ∗i )

+
n∑

j=1

(
m∑

i=1

q∗ij − dj

)

(
σj − σ∗

j

)
+

n∑

j=1

(

dj −

m∑

i=1

q∗ij

)

(
εj − ε∗j

)
≥ 0,

(4.32)

∀q ∈ Rmn
+ , ∀δ ∈ Rm

+ , ∀σ ∈ Rn
+, ∀ε ∈ Rn

+.

4.4 The Algorithm and Case Study

Before we present the case study, we outline the algorithm that we utilize for

the computations, notably, the Euler method of Dupuis and Nagurney (1993),

since it nicely exploits the feasible set underlying variational inequality (4.32),

which is simply the nonnegative orthant.

Recall that, as established in Dupuis and Nagurney (1993), for conver-

gence of the general iterative scheme, which induces the Euler method, the

sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞.

Conditions for convergence for a variety of network-based problems can be

found in Nagurney and Zhang (1996) and Nagurney (2006).
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Specifically, at iteration τ , the Euler method yields the following closed

form expressions for the relief item flows and the Lagrange multipliers.

Explicit Formulae for the Euler Method Applied to the Game The-

ory Model

In particular, we have the following closed form expression for the relief item

flows i = 1, . . . ,m; j = 1, . . . , n, at each iteration:

qτ+1
ij = max{0, qτij+aτ (

n∑

k=1

∂Pik(q
τ )

∂qij
+ωi

∂Bi(q
τ )

∂qij
−

n∑

k=1

∂cik(q
τ )

∂qij
−δτi +σ

τ
j−ε

τ
j )};

(4.33)

the following closed form expressions for the Lagrange multipliers associated

with the supply constraints (4.4), respectively, for i = 1, . . . ,m:

δτ+1
i = max{0, δτi + aτ (−si +

n∑

j=1

qτij)}; (4.34)

the following closed form expressions for the Lagrange multipliers associated

with the lower bound demand constraints (4.7), respectively, for j = 1, . . . , n:

στ+1
j = max{0, στj + aτ (−

m∑

i=1

qτij + dj)}, (4.35)

and the following closed form expressions for the Lagrange multipliers as-

sociated with the upper bound demand constraints (4.8), respectively, for

j = 1, . . . , n:

ετ+1
j = max{0, ετj + aτ (−d̄j +

m∑

i=1

qτij)}. (4.36)

Our case study is inspired by a disaster consisting of a series of tornados

that hit western Massachusetts on June 1, 2011 in the late afternoon. The

largest tornado was measured at EF3. It was the worst tornado outbreak in

the area in a century (see Flynn (2011)). A wide swath from western to cen-

tral Massachusetts was impacted. According to the Western Massachusetts

Regional Homeland Security Advisory Council report (2012): “The tornado

caused extensive damage, killed 4 persons, injured more than 200 persons,
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damaged or destroyed 1,500 homes, left over 350 people homeless in Spring-

field’s MassMutual Center arena, left 50,000 customers without power, and

brought down thousands of trees.” The same report notes that: FEMA es-

timated that 1,435 residences were impacted with the following breakdowns:

319 destroyed, 593 sustaining major damage, 273 sustaining minor damage,

and 250 otherwise affected. FEMA estimated that the primary impact was

damage to buildings and equipment with a cost estimate of $24,782,299. To-

tal damage estimates from the storm exceeded $140 million, the majority

from the destruction of homes and businesses.

Especially impacted were the city of Springfield and the towns of Mon-

son and Brimfield. It has been estimated that in the aftermath, the Red

Cross served about 11,800 meals and the Salvation Army about 20,000 meals

(cf. Western Massachusetts Regional Homeland Security Advisory Council

(2012)).

The network topology for our case study, Example 1, is depicted in Figure

2. The NGO nodes consist of the American Red Cross and the Salvation

Army, respectively. The demand points correspond to Springfield, Monson,

and Brimfield, respectively.
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Figure 4.2: The Network Topology for the Case Study, Example 1
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4.4.1 Example 1

The data for our case study, Example 1, are given below. The supplies of

meals available for delivery to the victims are:

s1 = 25, 000, s2 = 25, 000,

with the weights associated with the altruism benefit functions of the NGOs

given by:

ω1 = 1, ω2 = 1.

The financial funds functions are:

P11(q) = 1000
√

(3q11 + q21), P12(q) = 600
√

(2q12 + q22),

P13(q) = 400
√

(2q13 + q23), P21(q) = 800
√

(4q21 + q11),

P22(q) = 400
√

(2q22 + q12), P23(q) = 200
√

(2q23 + q13).

The altruism functions are:

B1(q) = 300q11 + 200q12 + 100q13, B2(q) = 400q21 + 300q22 + 200q23.

The cost functions, which capture distance from the main storage depots

in Springfield, are:

c11(q) = .15q211 + 2q11, c12(q) = .15q212 + 5q12, c13(q) = .15q213 + 7q13,

c21(q) = .1q221 + 2q21, c22(q) = .1q222 + 5q22, c23(q) = .1q223 + 7q23.

The demand lower and upper bounds at the three demand points are:

d1 = 10000, d̄1 = 20000,

d2 = 1000, d̄2 = 10000,

d3 = 1000, d̄3 = 10000.

The Euler method was implemented in FORTRAN and a Linux system

at the University of Massachusetts Amherst was used for the computations.
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The algorithm was initialized as follows: all Lagrange multipliers were set to

0.00 and the initial relief item flows to a given demand point were set to the

lower bound divided by the number of NGOs, which here is two.

The Euler method yielded the following Generalized Nash Equilibrium

solution:

The equilibrium relief item flows are:

q∗11 = 3800.24, q∗12 = 668.64, q∗13 = 326.66,

q∗21 = 6199.59, q∗22 = 1490.52, q∗23 = 974.97.

Since none of the supplies are exhausted, the computed Lagrange multi-

pliers associated with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00.

Since the demand at the first demand point, which is the city of Springfield,

is essentially at its lower bound, we have that:

σ∗
1 = 835.22,

with

σ∗
2 = 0.00, σ∗

3 = 0.00.

All the Lagrange multipliers associated with the demand upper bound

constraints are equal to zero, that is:

ε∗1 = ε∗2 = ε∗3 = 0.00.

In terms of the gain in financial donations, the NGOs receive the following

amounts:

3∑

j=1

P1j(q
∗) = 180, 713.23,

3∑

j=1

P2j(q
∗) = 168, 996.78.

This is reasonable since the American Red Cross tends to have greater

visibility post disasters than the Salvation Army through the media and that

was the case post the Springfield tornadoes.
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We then proceeded to solve the Nash equilibrium counterpart of the above

Generalized Nash Equilibrium problem formulated as a variational equilib-

rium. The variational inequality for the Nash equilibrium is given in (4.13)

and does not include the upper and lower bound demand constraints. We

solved it using the Euler method but over the feasible set K as in (4.13).

The computed equilibrium relief item flows for the Nash equilibrium are:

q∗11 = 1040.22, q∗12 = 668.64, q∗13 = 326.66,

q∗21 = 2054.51, q∗22 = 1490.52, q∗23 = 974.97.

The Lagrange multipliers associated with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00.

Observe that, without the imposition of the bounds on the demands,

Springfield, which is demand point 1 and is a big city, receives only about

one third of the volume of supplies (in this case, meals) as needed, and as

determined by the Generalized Nash equilibrium solution.

The American Red Cross now garners financial donations of: 119,985.66,

whereas the Salvation Army stands to receive financial donations equal to:

110,683.60. These values are significantly lower than the analogous ones for

the Generalized Nash equilibrium model above. Hence, NGOs, by coordi-

nating their deliveries of needed supplies, such as meals, can gain in terms

of financial donations and attend to the victims’ needs better by delivering

in the amounts that have been estimated to be needed in terms of lower and

upper bounds. This more general model, for which an optimization reformu-

lation does not exist, in contrast to the model of Nagurney, Alvarez Flores,

and Soylu (2016), nevertheless, supports the numerical result findings in the

case study for Katrina therein.

4.4.2 Example 2

We now investigate the possible impact of the addition of a new disaster

relief organization, such as a church-based one, or the Springfield Partners
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for Community Action, which also assisted in disaster relief, providing meals

post the tornadoes. Hence, the network topology for case study, Example

2, is as in Figure 3. We refer to the added NGO as “Other.” It is based in

Springfield.
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Figure 4.3: The Network Topology for the Case Study, Example 2

The data are as in Example 1 but with the original Pij(q) functions for

the America Red Cross and the Salvation Army expanded as per below and

the added data for the “Other” NGO also as given below.

The financial funds functions for are now:

P11(q) = 1000
√

(3q11 + q21 + q31), P12(q) = 600
√

(2q12 + q22 + q32),

P13(q) = 400
√

(2q13 + q23 + q33), P21(q) = 800
√

(4q21 + q11 + q31),

P22(q) = 400
√

(2q22 + q12 + q32), P23(q) = 200
√

(2q23 + q13 + q33),

with those for the new NGO:

P31(q) = 400
√

(2q31 + q11 + q21), P32(q) = 200
√

(2q32 + q12 + q22),

P33(q) = 100
√

(2q33 + q13 + q23).
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The weight ω3 = 1 and the altruism/benefit function for the new NGO

is:

B3(q) = 200q31 + 100q32 + 100q33.

The cost functions associated with the added NGO are:

c31(q) = .1q231 + q31, c32(q) = .2q232 + 5q32, c33(q) = .2q233 + 7q33.

The Euler method converged to the following Generalized Nash Equilib-

rium solution:

The equilibrium relief item flows are:

q∗11 = 2506.97, q∗12 = 667.85, q∗13 = 325.59,

q∗21 = 4259.59, q∗22 = 1489.98, q∗23 = 974.45,

q∗31 = 3233.35, q∗32 = 242.42, q∗33 = 235.52.

Since none of the supplies are exhausted, the computed Lagrange multi-

pliers associated with the supply constraints are:

δ∗1 = 0.00, δ∗2 = 0.00, δ∗3 = 0.00.

The demand at the first demand point, which is the city of Springfield, is at

the lower bound of 10000.00. Hence, we have that:

σ∗
1 = 446.70,

with

σ∗
2 = 0.00, σ∗

3 = 0.00.

All the Lagrange multipliers associated with the demand upper bound

constraints are equal to zero, that is:

ε∗1 = ε∗2 = ε∗3 = 0.00.

In terms of the gain in financial donations, the NGOs receive the following

amounts:

3∑

j=1

P1j(q
∗) = 173, 021.70,

3∑

j=1

P2j(q
∗) = 155, 709.50,

3∑

j=1

P3j(q
∗) = 60, 504.14.
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The volumes of relief items from the American Red Cross and the Salva-

tion Army to Springfield are greatly reduced, as compared to the respective

volumes in Example 1 and both original NGOs in Example 1 now experience

a reduction in financial donations because of the increased competition for

financial donations.

For completeness, we also solved the Nash equilibrium counterpart for

Example 2.

The Nash equilibrium relief item flows are:

q∗11 = 1036.27, q∗12 = 667.85, q∗13 = 325.59,

q∗21 = 2051.17, q∗22 = 1489.98, q∗23 = 974.45,

q∗31 = 1009.61, q∗32 = 242.42, q∗33 = 235.52.

The financial donations of the NGOs are now the following:

3∑

j=1

P1j(q
∗) = 129, 037.42,

3∑

j=1

P2j(q
∗) = 115, 964.80,

3∑

j=1

P3j(q
∗) = 43, 07.16.

In Example 2 of our case study, we, again, see that the NGOs garner

greater financial funds through the Generalized Nash Equilibrium solution,

rather than the Nash equilibrium one. Moreover, the needs of the victims

are met under the Generalized Nash Equilibrium solution.

4.5 Conclusions

In this chapter, we constructed a new Generalized Nash Equilibrium (GNE)

model for disaster relief, which contains both logistical as well as financial

funds aspects. The NGOs compete for financial funds through their visibility

in the response to a disaster and provide needed supplies to the victims. A

coordinating body imposes upper bounds and lower bounds for the supplies at

the various demand points to guarantee that the victims receive the amounts

at the points of demand that are needed, and without excesses that can add

to the congestion and materiel convergence. The model is more general than
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the one proposed earlier by Nagurney, Alvarez Flores, and Soylu (2016) and

no longer is it possible to reformulate the governing equilibrium conditions

as an optimization problem.

90



Chapter 5

Conclusions

In this thesis we have focused our attention on two mathematical models.

In chapter 3 we proposed a mathematical model for the minimization of the

total costs associated with organ transplants. In particular we presented the

organ transplant network consisting of transplant centers and donor hospi-

tals. We introduced the cost functions associated with transportations, with

organ removals, with waste disposals, and with post-transplants. We deter-

mined the optimality conditions for the national health service and derived

the variational inequality formulation. Then we studied the Lagrange the-

ory related to the model in order to better understand the behavior of the

transplant process, providing an interpretation of the Lagrange multipliers.

Finally, we recalled the Euler method which has been applied to solve nu-

merical examples.

In chapter 4 we presented a Generalized Nash Equilibrium model for post-

disaster humanitarian relief. In particular we constructed the novel Gener-

alized Nash Equilibrium model for disaster relief, which captures competi-

tion both on the financial funds side as well as on the logistics side and we

identified the network structure. We presented the variational equilibrium

framework and also proved the existence of an equilibrium solution. In addi-

tion, we provided the variational inequality formulation of a special case of

the model, under the Nash equilibrium solution, in the absence of imposed
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common demand constraints. Then we explored, through Lagrange analy-

sis, the humanitarian organizations’ marginal utilities when the equilibrium

disaster relief flows are at the upper or the lower bounds of the imposed

demands of the regulatory body or lie in between. Finally, we presented an

algorithmic scheme and a case study, inspired by tornadoes that hit western

Massachusetts in June 2011, with devastating impact.

In this thesis we have studied models without any time dependency, but in

future works it is extremely important to take into account how the demands

and the flows vary over time or to introduce uncertainty in the demands.
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