

UNIVERSITÀ DEGLI STUDI DI CATANIA
FACOLTÀ DI INGEGNERIA ELETTRICA ELETTRONICA E

INFORMATICA

XXVII cycle Ph.D. in System Engineering

Antonino Catena

Control Architectures for Heterogeneous Fleets of
Unmanned Vehicle Systems

Ph.D. Thesis

Tutor: Prof. G. Muscato

Coordinator: Prof. L. Fortuna

2014

Preface | I

Preface

The field of aerial robotics, from 20 years ago up to now, has had an
incredible growth. The reasons are several, but surely, the key motivation is the
development of MEMS sensors and microcontroller more and more cheap and
reliable. The “Dipartimento di Ingegneria Elettrica, Elettronica e Informatica”
(DIEEI) at the University of Catania is involved in several research projects
focused on the study and development of Unmanned Aerial Systems (UASs).

The most well-known project of DIEEI in the field of Unmanned Aerial
Vehicles (UAVs) is the Volcan Project, an autonomous aerial platform for
volcano activities monitoring in order to analyze gases and to improve the
forecast of the lava flow during an eruption.

In addition to the Volcan project, many research activities of DIEEI are
focused on problematic related to UAVs that nowadays are still open, such as
cooperation with different type of robotic platforms, inertial navigation, visual
navigation and last but not least, the power management in order to maximize the
autonomy. This Ph.D. course was related to and funded by the Ambition Power
project [64], whose objective was the virtual prototyping of power devices in
avionics field.

II |Acknowledgements

Acknowledgements

First of all, I would like deeply thank my family: had it not been for them,

nothing would have been possible.
My very special thanks go to my Tutor Prof. Eng. Giovanni Muscato, who

believed in me, gave me the possibility to demonstrate my capabilities, supported
me with his scientific knowledge, and to the Ph.D. Coordinator Prof. Eng. Luigi
Fortuna, because he worked as a real team manager, defending and motivating
our group.

I would also like to thank the members of the Service Robots Group for their
being helpful, patient and sapient: Eng. Donato Melita, Eng. Luciano Vito
Cantelli, and Prof. Domenico Longo.

Last but not least, a particular thanks to my Ph.D. colleagues: Viviana, Davide
e Marco, because they have contributed to make these three years unforgettable.

Nomenclature | III

Nomenclature

ACI: AscTec Communication Interface
ACK: Acknowledgement
ADAHRS: Air Data and Attitude Heading Reference System
ADC: Analog to Digital Converter
AGATE: Advanced General Aviation Transport Experiment
AoA: Angle of Attack
ASL: Above Sea Level
AUV: Unmanned Underwater Vehicle
CAN: Controller Area Network
CSMA/CD: Carrier Sense Multiple Access with Collision Detection
DIEEI: Dipartimento di Ingegneria, Elettrica, Elettronica ed Informatica
DLL: Dynamic Link Library
DoF: Degree of Freedom
DSD: Debug Service Data
EAP: Electro-Active Polimer
EKF: Extended Kalman Filter
ENAC: Ente Nazionale Aviazione Civile
EEPROM: Electrically Erasable Programmable Read-Only Memory
FCCS: Flight Control Computer System
FW: FirmWare
GPS: Global Positioning System
GUI: Graphical User Interface
HIL: Hardware In the Loop
HL: High Level (processor)
HMI: Human Machine Interface
I2C: Inter Integrated Circuit
ICAO: International Civil Aviation Organization
IDE: Integrated development environment
IMU: Inertial Measurement Unit
LiPo: Lithium Polymer
LL: Low Level (processor)
LTA: Light then Air

IV |Nomenclature

MEMS: Micro Electro Mechanical Systems
NASA: National Aeronautics and Space Administration
NOD: Normal Operation Data
NSH: High-priority Node Service Data
ODR: Output Data Rate
OS: Operating System
PCB: Printed Circuit Board
PIC: Pilot in Command
ROR: Route Of Robot
RPA: Remotely piloted aircraft
RPV: Remotely Piloted Vehicle
RPY: Roll Pitch Yaw
RS-232: Recommended Standard 232
RTK: Real Time Kinematic
S&R: Search and Rescue
SACS: Servo Actuators Control System
SDK: software development kit
SLAM: Simultaneous Localization And Mapping
SNR: Signal Noise Ratio
SoA: State of Art
SPI: Serial Peripheral Interface
SWD: Serial Wire Debug
UAV: Unmanned Aerial Vehicle
UDP: User Datagram Protocol
UGV: Unmanned Ground Vehicle
USART: Universal Synchronous-Asynchronous Receiver/Transmitter
USB: Universal Serial Bus
UVS: Unmanned Vehicle System
VI: Virtual Instrument
VTOL: Vertical TakeOff and Landing
WP: WayPoint
WPL: WayPoint List

Contents | V

Contents
Preface .. I

Acknowledgements .. II

Nomenclature ... III

Contents ... V

Chapter I. Introduction .. 1

I.1 The State of the Art .. 1

I.1.1 Normative: UAV, RPA or RPV? ... 1

I.1.2 Classification of UAVs .. 2

I.1.2.1 UAV Dimension ... 2

I.1.2.2 UAV Airframes ... 3

I.1.2.3 Scope ... 8

I.2 Architecture of an UAV .. 10

I.3 Limits and Challenges .. 12

I.4 Development tools ... 14

I.5 Objectives ... 15

Chapter II. The Volcan UAV ... 16

II.1 Introduction ... 16

II.1.1 System architecture overview .. 17

II.2 CAN: Control Area Network ... 18

II.2.1 Rules for bus access ... 19

II.2.2 CANbus Frames .. 20

II.2.2.1 Data Frame (DF) structure .. 21

II.2.3 CANAerospace .. 22

II.2.3.1 Arbitration Field .. 22

VI |Contents

II.2.3.2 Data Field ... 23

II.3 Flight Control Computer System ... 24

II.3.1 Control strategy .. 24

II.3.2 Hardware Design ... 27

II.3.3 Operating modes ... 28

II.3.3.1 Assisted Mode ... 28

II.3.3.2 Navigation .. 29

II.3.4 Autotuning algorithm .. 30

II.3.5 HIL Architecture ... 34

II.3.5.1 Automatic tuning of the roll control loop 36

II.3.5.2 Automatic tuning of the heading control loop 37

II.3.5.3 Parameters validation: mission execution without wind 39

II.3.5.4 Parameters validation: mission execution in windy conditions 41

II.4 Servo Actuators Control System .. 43

II.5 UDP2CAN .. 44

II.6 Air Data and Attitude Heading Reference System 45

II.6.1 Sensors Board ... 45

II.7 IMU board ... 46

II.7.1 Hardware development .. 46

II.7.2 Firmware development ... 47

II.7.2.1 CANAerospace implementation .. 47

II.7.2.2 Extended Kalman Filter implementation 47

II.7.2.3 EKF improvements .. 52

II.7.2.4 Firmware Block Scheme .. 58

II.7.3 HMI development ... 60

II.7.3.1 Kalman HMI.. 60

II.7.3.2 INEMO® M1 HMI ... 62

Contents | VII

II.7.4 Results .. 65

Chapter III. The Asctec Hummingbird .. 68

III.1 Introduction ... 68

III.1.1 Quadrotor Movements ... 69

III.2 The Hardware .. 72

III.3 The Software .. 74

III.3.1 AscTec SDK ... 74

III.3.2 AscTec AutoPilot Control ... 74

III.3.3 ACI Protocol .. 75

III.4 Library development for ACI remote ... 77

III.4.1 Connection initialization ... 77

III.4.2 Variables management .. 78

III.4.3 Commands management .. 81

III.4.4 Parameters management ... 82

Chapter IV. The Multiplatform Drone HMI .. 83

IV.1 Introduction ... 83

IV.2 LabView subVIs .. 85

IV.2.1 CANbus subVIs ... 85

IV.2.1.1 PCAN connection.vi .. 85

IV.2.1.2 PCAN receive.vi ... 86

IV.2.1.3 PCAN Send.vi ... 87

IV.2.2 FTDI subVIs .. 88

IV.2.3 ACI protocol subVIs ... 88

IV.2.4 Datalog subVIs .. 89

IV.2.4.1 Create Header Datalog.vi .. 89

IV.2.4.2 Record Data.vi .. 89

IV.2.5 Instruments subVIs ... 90

VIII |Contents

IV.2.6 Mapping subVIs ... 91

IV.2.6.1 Map provider.vi... 91

IV.2.6.2 Init GmapControl.vi .. 92

IV.2.6.3 Init Gmap Overlays.vi ... 92

IV.2.6.4 Current coordinates.vi ... 93

IV.2.6.5 LAT LON 2 pixel.vi .. 93

IV.2.6.6 Show picture on map.vi ... 93

IV.2.6.7 Show Waypoint.vi... 95

IV.2.6.8 Save and Load Waypoint List.vi ... 96

IV.2.6.9 Update Route.vi .. 96

IV.2.6.10 Show Route.vi ... 96

IV.2.6.11 Save and Load Route.vi ... 97

IV.3 LabView HMI ... 98

IV.3.1 Different drones, one HMI .. 98

IV.3.2 CANbus and ACI connection ... 98

IV.3.3 Telemetry and Datalog ... 99

IV.3.4 Map providers .. 101

IV.3.5 Waypoints and routes ... 102

Conclusions .. 104

Potentialities .. 104

Limits .. 105

Future works ... 105

Appendix A. Volcan control system schematics .. 106

FCCS Schematic ... 106

SACS Schematic.. 107

UDP2CAN Schematic ... 108

Sensor Board Schematic .. 109

Contents | IX

IMU Board Schematic ... 110

Appendix B. IMU Board CANAerospace frames ... 111

NSH Frames .. 111

NOD frames ... 118

DSD frames ... 121

References .. 122

The State of the Art | 1

Chapter I. Introduction

I.1 The State of the Art

The adoption of UVSs (Unmanned Vehicle System) as performing tools to be
used for data gathering, S&R operations, civil protection and safety issues is
rapidly increasing. Generally, the unmanned vehicles are grouped in three
categories:

• UAV, Unmanned Aerial Vehicles

• UGV, Unmanned Ground Vehicles

• AUV, Autonomous Underwater Vehicles

Figure 1 - Examples of UVSs

The topic of this thesis is strictly related to the first class of robots, which are
the robotic platforms able to fly without pilot.

I.1.1 Normative: UAV, RPA or RPV?

The increasingly frequent use of drones in recent years [2] [3] has made it
essential a legislation concerning them in order to regulate its use. There is a
general legislation drafted by ICAO [15], the International Civil Aviation
Organization, whereas as regards the UAVs with a weight less than 150 Kg there
is a particular normative depending by the nation. In the case of Italy, this

2 |Introduction

normative is drafted by the ENAC [14]. The key aspect of the normative is that
the use of a completely autonomous robotic platform in open field is illegal,
except for very particular cases that, however, require permission by the relevant
authorities. In fact, according to normative, there must be someone that pilots, or
in general supervises, the aircraft. For this reason, the relevant authorities prefer
using the terms such as Remotely Piloted Vehicle (RPV) or Remotely Piloted
Aircraft (RPA) in place of UAV, in order to underline the role, and the
responsibilities, of the operator that controls the plane, which, according to the
normative, is to all effects a pilot. Moreover, still according to the law, anyone
who pilots a drone must have a license, issued after an examination, and an
insurance that covers the risks connected with the activity of the drone.

I.1.2 Classification of UAVs

To make a complete summary of all the models of UAV is a really difficult
operation, because of the huge variety of applications in which they are used. On
the other hand, it's possible to make a comparison between them, on the basis of
particular aspects, such as dimension, airframe and scope [1].

I.1.2.1 UAV Dimension

A first comparison between UAV takes into account their dimension, and
then their mass (Figure 2). As it is shown in the following table, the mass of a
drone is strictly connected to its autonomy and operational range.

Category Acronym Mass[Kg] Max Op.
Range[Km]

Max Flight
Altitude[m]

Max Duration
 of Flight[h]

Nano η <0.0250 1 100 0.5
Micro µ <5 10 250 1
Mini Mini <30 10 300 2
Close Range CR <150 30 3000 4
Short Range SR <200 70 3000 6
Medium Range MR <1250 200 5000 10

Table 1 - UAV classification by dimension

The State of the Art | 3

Figure 2 - Different dimensions of UAVs

I.1.2.2 UAV Airframes

Essentially, the airframe of an UAV may be of five different types. It is worth
to point out that there isn't "the best one" airframe for every application, but each
airframe has advantages and disadvantages, which must be evaluated, in order to
choose the best drone to accomplish a given task.

Fixed wings
This is the most common airframe for big drones, especially for the maturity

of technology (Figure 3). This type of airframe gives great advantages in terms of
efficiency and power consumption, due to the additional lift provided from the
wings. However, the wings require a minimum speed cruising to perform their
tasks. This aspect brings to the main limit of this type of airframe: the incapability
to hover or fly slower, in addition to the fact that they require a runway for
takeoff and landing operations. For these reasons they are unsuitable for indoor
applications.

4 |Introduction

Figure 3 - Fixed wings airframe

Rotary wings
This class of airframe gets the necessary lift to fly directly by the propellers.

Moreover, they are able to hover and to execute vertical takeoff and landing
(VTOL). This makes them perfect for indoor flight. Depending on propellers
number, it is possible to split this class in two groups:

• Helicopters: this type of airframe has one or two rotors (Figure 4). In
relation to this class of aircraft, this structure ensures the best performance in
terms of energy consumption. In fact, the rotor has a practically constant
speed and the aircraft movements are given by the variation of the angle of
attack (AoA) of the blades. In a few words, the speed of a helicopter is not
related to the speed of rotation of the rotor, but essentially to the AoA of the
blades. Anyhow, such a rotor is a very complex system (Figure 5) and, even if
its technology is consolidated, this has an impact on the cost and reliability.

Figure 4 - Helicopter airframe

The State of the Art | 5

Figure 5 - Helicopter rotor

• Multirotors: to this group belongs airframes that have three or more
(generally, up to eight) rotors (Figure 6). With respect to helicopters, in
these drones the propellers have a fixed AoA, but variable speed. This
means a great simplicity in the mechanical structure, but a worst power
management. It is precisely the mechanical simplicity that has made the
multirotors the most common airframes for small drones, especially in the
field of academic research.

Figure 6 - Multirotors airframe

Tilt rotors
This class of airframes is a hybrid between the two previously discussed

configurations (Figure 7). Such a structure is capable, at the same time, to execute
vertical takeoff and landing, to stay in hovering and to reach a cruise speed
comparable with a fixed wings system. However, it is important to underline that
these features are achieved by means the rotation of the rotors, which causes
reliability problems and a very complex control during the transition phase. In

6 |Introduction

addition, another disadvantage of this airframe resides in the propellers: a
propeller designed for the hovering is not optimized for flying, and viceversa. In
other words, a tiltrotor is capable to hover, but it is worst with respect to a rotary
wing. Moreover it is capable to fly forward for a long range, but consuming more
energy respect to a fixed wing.

Figure 7 - Tiltrotor airframe

Flapping wings
This bio-inspired UAV airframe is the most recent. Its main limit, in fact,

derives from the fact that the technology behind it is not mature yet. There are
still open issues: ignoring for now problems related to control, probably the most
interesting challenge regards the development of linear actuators, capable to
reproduce the muscle motion. A possible solution could be the electro-active
polymers (EAP), but this is not yet a mature technology and some years are still
needed to obtain a commercial product. Depending on the animal to which they
are inspired, there are two classes of flapping wings airframes:

• Ornithopters: bird-like airframes, which generate lift by flapping wings up
and down with synchronized small variations of AoA (Figure 8). As in the
fixed wings airframes, this type of flapping wings requires a forward flight
to generate lift.

• Entomopters: inspired to the insect structure, this airframe generates a
great variation of AoA between the upstroke and the downstroke phases
(Figure 9). Unlike the previous one, this airframe is capable to hover and
to execute vertical takeoff and landing.

The State of the Art | 7

Figure 8 - Flapping wings, bird-like airframe

Figure 9 - Flapping wings, insect-like airframe

Blimp
To this last class of airframe belong drones called Lighter Than Air, or LTA

(Figure 10). It is easy to guess how this airframe has the best efficiency in terms
of energy, since no energy is needed to hover. However, generally these airframes
move slower than the other types of airframes, have a bigger volume, in order to
obtain enough lift force and, above all, have a limited payload. The latter
peculiarity represents the biggest disadvantage of this type of airframe, because a
typical mission with a drone often requires additional equipment such as cameras,
sensors, robotic arms and so on.

8 |Introduction

Figure 10 - LTA airframe

To summarize, in Table 2 the main features of each airframe are compared.

 Fixed Wings Rotary Wings Tilt Rotors Flapping Wings Blimp
Power efficiency Medium Bad Bad Medium Good
Control Good Good Medium Bad Good
Miniaturization Medium Good Bad Medium Bad
Payload Good Medium Good Bad Bad
Hover Bad Good Medium Medium Good
Low Speed Fly Bad Good Medium Medium Good
High Speed Fly Good Bad Medium Bad Bad
Robustness Good Medium Bad Bad Bad
Maneuverability Medium Good Medium Bad Good
Indoor usage Bad Good Bad Bad Medium
Outdoor usage Good Medium Medium Medium Good

Table 2 - UAV airframes comparison

I.1.2.3 Scope

In the last years the number and the diversity of applications regarding the use
of UAVs is increased enormously. A first distinction is usually made between
military and civil applications. Focusing on the second group, the non-military
applications where the UAVs are commonly used are:

• Disaster management [4] [5].

• Agricultural monitoring and management [6].

• Infrastructure inspection [7] [8].

• Law enforcement [9].

• Weather monitoring.

• Environmental monitoring and exploration [10] [11] [12].

• Aerial imaging/mapping.

The State of the Art | 9

• Entertainment: television news coverage, sporting events, moviemaking.

• Freight transport.

• Oil and gas exploration [13].
As regards the DIEEI [52], the research activities are focused mainly on

monitoring and forecasting of volcanic activity. The volcano under examination is
the Mount Etna, one of the most active volcanoes in the world, which is in an
almost constant state of eruption. In the next chapter the developed UAV, i.e. the
Volcan, will be treated.

10 |Introduction

I.2 Architecture of an UAV

The design of an UAV control system is a very complex mission and, as it
often happens in engineering topics, there is no a single way to accomplish this
task. Listing all the possible architectures goes beyond the scope of the thesis,
therefore in the next chapters we will focus only on the control architectures of
the UAVs used. However, some milestones are always present in the
development of an UAV control system.

The choice of the model
This is the first and probably the most important step. A good modeling

represents the key phase in order to obtain satisfactory dynamic performances.
The expression "good modeling" is not intended as a perfect modeling, where
every dynamic effect is considered, but as a modeling where only the most
important dynamic modes are taken into account.

The control strategies
Once the model has been developed, it is necessary to ensure the system

stability and, as far as possible, the immunity to noise and to unmodeled
dynamics. The most used control strategies use PID [17] controllers or digital
filters such as EKF [40] [41] and complementary filters [42] [43]. Once the
stability is obtained, the next step is focusing on high level control tasks such as
collision avoidance, cooperation, fault detection and so on.

Sensors
Sensors are fundamental in order to obtain information about the state of the

drone. As regards the stability, an Inertial Measurement Unit (IMU) is needed.
This system returns roll and pitch resulting by a sensors fusion of a three axial
accelerometer and of a three axial gyroscope. Often a three axial magnetometer is
added in order to obtain also the yaw angle. For navigation, generally GPS and
pressure sensors are used. Finally, for high level tasks as obstacle avoidance or
object tracking, cameras, laser scanners and ad hoc sensors are used. For the
choice of the sensors, in addition to the precision, the other parameters to take
into account are the bandwidth, the power consumption, the immunity to noise
and last but not least, the easy of interfacing to a microprocessor.

Architecture of an UAV | 11

Motors and actuators
Motors and actuators connected to the mobile parts of the drones are

necessary to transduce the commands coming from control unit. As for the
sensors, precision and bandwidth are important parameters to consider in their
choice. Moreover, it is extremely important to underline that this is the part of
the whole architecture that consumes more energy. So, if in one hand more
power means more torque, on the other hand it means more weight and less
autonomy.

CPUs
The core of the control architecture computes data coming from sensors and

in according to the task, sends commands to actuators. If to execute a stability
control by means a set of PID controllers is adequate a commercial
microprocessor that costs a few Euros, to accomplish complex tasks in real time
such as SLAM or recognize a target by means of an HD camera it is necessary a
dedicated PC with a real time OS. Also in this case it is mandatory the monitoring
of the energy consumption, since the computational load of the control algorithm
is strictly related to the energy necessary to execute it.

Communication Protocols
As discussed in the section I.1.1, for normative reason a drone always has to

be connected to a remote station, where an operator can monitor and supervise
its mission. Moreover, the control systems are becoming more and more complex
and often they are realized as a combination of subsystems connected each other.
For this reason the choice of the communication protocol is dual: to
communicate to remote station and to interconnect the various subsystems of the
control architecture. As regards the former, generally this link is used also to send
the drone telemetry. In most cases this connection is made by a WiFi link. As
concern the latter, is mandatory to choose a communication protocol that
guarantees a data rate at least an order of magnitude greater than the bandwidth
of the sensors and actuators used and also an SNR as small is possible. A
differential communication with a good bandwidth, like the CANbus, is suitable
for this purpose. However, generally also a normal serial communication could be
suitable.

12 |Introduction

I.3 Limits and Challenges

From now on, this thesis will be focused exclusively on fixed wings and
multirotors, i.e. those airframes mainly used for both civilian and research
activities. As mentioned in the previous pages, the progress in this field has been
enormous, especially in the last 5 years. However, there are still some aspects
where some improvement and clarifications are needed. Probably, the key
limitation resides on the current normative. If on the one hand, the scientific
community tries to develop a completely autonomous UAV [2], on the other
hand actual rules generally require a human supervisor responsible for the actions
of the robot. Surely, this is a difficult aspect to solve and even if a normative
exist, these are destined to be modified in accordance with the technological
growth. As regards the technical aspect, the most evident bottleneck is the energy
management. Generally, even if the energy density of the batteries has steadily
increased during the last years, the autonomy of a commercial UAV with
brushless motors is less than 30 minutes. This is a limit extremely incapacitating,
when you consider a complex task to accomplish, such as mapping an area or
search a target, which generally requires a lot of time. Moreover, a complex task
requires a high computational load, which obviously consumes a lot of energy,
further reducing the autonomy. At present, the most common batteries used are
of LiPo type. A good alternative could be fuel cells, i.e. a sort of battery in which
the fuel is transformed into electric current through an electrochemical process.
However also fuel cells have an energy density lower than other sources, such as
gasoline or methanol [1]. Increasing the autonomy of an UAV is without doubt
the main challenge that the scientific community have to face in the next years.
Concerning the control algorithms, the results so far are more than satisfactory,
even if the best performance are generally obtained indoor, thanks to the
feedback provided by motion detection systems, as the Vicon [59] . The ETH of
Zurich [62] and the CATEC in Seville [63] are among the best European research
centers in this field. However, to get a level of control comparable in outdoors
conditions is a hard challenge. The main reasons are two:

• First of all, motion tracking systems are unsuitable for outdoor
applications, in particular in the case of unstructured environments.
Normally MEMS sensors are used, such as accelerometers, gyroscopes
and magnetometers to help localization. These sensors are less precise and

Limits and Challenges | 13

noisier respect to a motion tracking system, and then the feedback of the
control architecture is less reliable.

• Secondly, an unstructured environment introduces dynamics that degrade
the accuracy of the mathematical model of the aircraft.

14 |Introduction

I.4 Development tools

The testing phase during the design of the control architecture of an UAV is
the longest phase in terms of time. This is because, despite other robotics
platform such as UGVs, a bug in the control algorithm most of the times means
the destruction of the drone itself. A powerful method to test the control
algorithm is the Hardware In the Loop (HIL) architecture [32] [33], where the
real aircraft is substituted with a virtual one, generally within a flight simulator. In
this way it is possible to test and tune the control architecture, under the
assumption that the aircraft model of the flight simulator reflects satisfactorily the
dynamic behavior of the real one. However, in HIL architecture it is not possible
to test other fundamentals parts of the whole system, such as sensors and
actuators. A step ahead in this direction is represented by the Motion Capture
technique. In this scenario, the drone operates inside an arena, where a set of
high speed cameras provide an extremely precisely feedback regarding pose and
position. In this way, in addition to the control algorithm, it is possible to test the
actuators and compare the telemetry coming from the sensors, with the other
measurements one coming from the cameras. The only limitation in this case is
that within the arena the environment is perfectly structured, so it is not possible
to test the robustness of the control algorithm, i.e. its dynamic performance when
the drone operates in noisy and not structured environments.

Objectives | 15

I.5 Objectives

In the previous paragraphs the UAV SoA was briefly presented, underlining as
several research field are evolving. In particular, as regards the UAV features, it is
clear as there isn't "a general purpose" drone, capable to accomplish whatever
task. For this reason, a keyword in the next years for the researchers will be the
cooperation between heterogeneous robotic platforms. More and more often
complex tasks require features that a single drone doesn't have. For example, to
patrol a huge area, it is required a drone suitable to fly forward with high speed,
to be capable to hover and to have a good autonomy. In a few words, it is
impossible for a single drone, but also for a homogeneous fleet.

From this consideration is born the objective of this thesis: to develop a fleet
of heterogeneous UAV, composed by the following parts:

• A fixed wing aircraft, represented by the Volcan UAV [16].

• A quadrotor, represented by the Hummingbird produced by Asctec
[60].

• A multiplatform HMI developed in LabView [48], in order to
monitor and supervise the heterogeneous fleet.

The next chapters are organized in the following way: the second one
describes the Volcan. The third chapter treats the Hummingbird by Asctec. The
fourth chapter presents the HMI developed and finally, the last one discusses
about the conclusions.

16 |The Volcan UAV

Chapter II. The Volcan UAV

II.1 Introduction

As mentioned before, the Volcan UAV is the fixed wing developed for the
mission related to volcano monitoring. In order to accomplish missions in hard
environments and conditions, the project designed is a V-tail fixed wings very
similar to the famous Aerosonde [18] (Figure 11), with the following features:

• Fuselage in carbon fiber and fiberglass

• Wooden wing and V-tail

• A wing span of 3m

• A total weight of 13kg

• A 2000W brushless motor

• A maximum cruise speed of 150km/h

Figure 11 - Volcan UAV

The choice to develop a fixed wing is given by the fact that on the Etna the
weather conditions are really adverse, not to mention the reduction of the air
density, which at 3000m reduces drastically the lift of the airframe. The use of an
electric engine is given by two factors:

• First of all, because the reduced air density has a negative effect on
the carburetion of a stroke engine.

• Secondly, gases produced by the motor would distort the measures of
the gas sensors.

Introduction | 17

The Volcan has been entirely designed in the DIEEI laboratories. In
particular, during this Ph.D. activity a new control architecture has been
developed [17]. In the following sections the steps that have led to the
development the whole system will be discussed.

II.1.1 System architecture overview

The core of the control architecture is based on the interaction between
different sub-systems developed in DIEEI laboratories (Figure 12):

• ADAHRS, the Air Data and Attitude Heading Reference System, is the
sensors board and manages all the sensors in order to compute the pose
and the position of the vehicle

• SACS, the Servo Actuators Control System, controls the engine and the
actuators connected to the mobile parts of the drone.

• FCCS, the Flight Control Computer System, receives data from the
sensors and, according with the flight plan, sends commands to the
interface board.

• UDP2CAN, the data link board, connects the drone with a remote
station, in order to send telemetry and to permit to the operator to
supervise it.

Figure 12 - Volcan control system

The whole architecture has been divided in various subsystems in order to
maximize flexibility and modularity.

18 |The Volcan UAV

II.2 CAN: Control Area Network

The different subsystems forming the UAV control system need to exchange
data constantly. Therefore it is necessary to use a communication protocol which
gives wide guarantees of reliability and immunity to noise, moreover with a
bandwidth such as to permit a real-time control of the drone. For these reasons
the CANbus protocol (Controller Area Network) was chosen. CANbus is a
broadcast serial bus, introduced by Bosch in the early 80s [19]. Initially designed
for automotive applications, now the CANbus is used in many industrial sectors,
including avionics. Its success is due to the considerable technological advantages
it offers:

• Rigid Response time. This feature is fundamental for the control process.

• Simplicity and flexibility of wiring: the CAN is a serial bus which is
typically implemented on a twisted pair (shielded or not, depending on the
requirements).

• Multi-Master architecture, where all nodes of the network can transmit
and multiple nodes of the network can request to transmit data
simultaneously. They are characterized by network addresses different by
the conventional sense. In fact the messages are routed on the basis on
the importance of the variable to be sent and not on the basis of the
address of the transmitter. Each variable has an identifier, which indicates
the priority for the access to the bus. Thanks to this peculiarity, the nodes
don't have an address that identifies them, so in this way they can then be
added or removed to the network without reorganizing it.

• High noise immunity: the standard ISO11898 [20] imposes that the
transceiver chip can continue to communicate even in extreme
conditions, such as the interruption of one of the two wires or short
circuit of one of them with ground or with the power supply.

The transmission rate depends on the size of the maximum length of the bus
(Figure 13). In case of short distances, as in the case under exam, it is possible
obtaining a bit-rate up to 1Mbit/s

CAN: Control Area Network | 19

Figure 13 - CANbus data rate

II.2.1 Rules for bus access

In order to manage a multi-master architecture, the CANbus uses a modified
CSMA/CD protocol, which uses the concept of dominant and recessive bits.
When two or more nodes are transmitting simultaneously, the conflict is resolved
with an arbitration mechanism that avoids both loss of information and time.
During each transmission, the transmitting node monitors the channel and
compares the level of the bit transmitted with the level on the monitored channel.
If the two bits coincide, the node continues transmitting. If the level associated
with the bit is recessive and in the channel there is a dominant level, the node
immediately stops the transmission. Through this mechanism it is possible to
assign to each CAN frame a priority level, through the Arbitration Field. For
example, in Figure 14 three nodes try to transmit simultaneously. During the
transmission of the fourth bit, node A notifies an inconsistency between what
transmits and what is present on the bus, and hangs up. This is because the node
A is transmitting a recessive bit, while nodes B and C a bit dominant. The same
considerations applies during the transmission of the eighth bit, in which the
node C hangs up and leaves the channel to node B, having an ID with a higher
priority.

20 |The Volcan UAV

Figure 14 - Example of bus access

II.2.2 CANbus Frames

In the CANbus protocol there are five different message structures:

• Data Frame (DF): it allows the transmission of data from one transmitter
node (TX) to all the others (RX). Each node decides if consider relevant
or discard the received data.

• Remote Frame (RF): it has a structure similar to the Data Frame, but is
devoid of the data field; it is used to request the sending of a determined
Data Frame by the interrogated node.

• Error Frame: it is sent from a node that reveals an error and causes the
retransmission of the message from the transmitter node.

• Overload Frame: it is sent from a node that is busy in order to delay the
transmission of the next packet.

• Interframe Space: it precedes any Data and Remote Frame and has a
separating function.

The last three frames are automatically generated, owing to special conditions.
The implementation of the CAN protocol to communicate between the various
UAV subsystems doesn't require the use of remote frames. In a few words, only
the DFs will be used, which are explained in the next paragraph.

CAN: Control Area Network | 21

II.2.2.1 Data Frame (DF) structure

A CANbus DF consists of seven fields:

• Start of Frame (SoF): it consists of a single dominant bit and signals the
start of the message. It also provides a sync function for all other nodes
that detect the start of transmission.

• Arbitration Field: it contains the identifier of the content of the message.
The identifier has 11 bits in the CAN protocol 2.0A (Standard CAN) or
29 bits in the CAN 2.0B (Extended CAN).

• Control Field: it consists of 6 bits, 4 are used to specify the number of
bytes of the Data Field (DLC) and 2 are reserved for future expansion of
the protocol.

• Data Field: it contains the data, ranging from a maximum of 8 bytes to a
minimum of 0. The bytes are sent from the most significant to the least
significant.

• CRC Field: it consists of 16 bits, the first 15 contain the control sequence
(cyclic redundancy check) and the last bit is a recessive delimiter. If the
cyclic redundancy code does not reveal the presence of errors, the node
puts a recessive bit in the ACK field of the current Data Frame.

• ACK Field: it is constituted by an ACK bit and another delimiter bit.
They are both sent as recessive, but ACK Slot is overwritten as a
dominant by every node that receives the message correctly. In this way
the TX node knows that at least one node has received the message
correctly.

• End of Frame (EoF): it is made up of 7 recessive bits that indicate the
end of the Frame.

A graphical representation of the DF structure is shown in Figure 15

Figure 15 - DF structure

22 |The Volcan UAV

II.2.3 CANAerospace

The CANbus covers only the first two levels of the ISO/OSI protocol, the
physical layer and the data link layer. CANaerospace [21] is a specification that
defines the application level, specifically for use in avionics and aerospace field. It
was introduced in 1997 by Stock Flight Systems, a German company founded in
1993, now partner of many leading international aerospace companies. A subset
of the specification has been standardized by NASA in 2001 as AGATE
(Advanced General Aviation Transport Experiment) Avionics Databus. The
specifications dictated by CANAerospace are used to arrange the Arbitration
Field and Data Field of the data frame previously treated. CANAerospace
supports both the CAN 2.0A (11bit) and CAN 2.0B (29bit) identification, with
whatever bit-rate. For the Volcan control system a standard identifiers to 11bit
and a bit-rate equal to 1 Mbit/sec have been chosen.

II.2.3.1 Arbitration Field

In according with CANAerospace directives, the ID of a given DF has the
priority summarized in Table 3:

Message Type ID range Description
Emergency Event Data
(EED)

0 - 127
0x000-0x07F

Transmitted asynchronously whenever a
situation requiring immediate action occurs.

High-priority Node Service
Data (NSH)

128 – 199
0x080-0x0C7

Transmitted asynchronously or cyclic with
defined transmission intervals for operational
commands

High-priority User-defined
Data (UDH)

200 - 299
0x0C8 - 0x12B

Message/data format and transmission
intervals entirely user-defined

Normal Operation Data
(NOD)

300 - 1799
0x12C – 0x707

Transmitted asynchronously or cyclic with
defined transmission intervals for operational
and status data.

Low-priority User-defined
Data (UDL)

1800 - 1899
0x708 – 0x76B

Message/data format and transmission
intervals entirely user-defined

Debug Service Data (DSD) 1900 - 1999
0x76C - 0x7CF

Transmitted asynchronously or cyclic for
debug communication &software download
actions.

Low-priority Node Service
Data (NSL)

2000 - 2031
0x7D0 -0x7EF

Transmitted asynchronously or cyclic for test
& maintenance actions

Table 3 – Arbitration field CANAerospace

CAN: Control Area Network | 23

II.2.3.2 Data Field

The data field of a DF conforms to the specifications of the CANAerospace
consisting of 8 bytes, 4 bytes form a header and the remaining 4 form the real
data field (Figure 16). The header includes the following fields:

• Node ID, indicates the address of the node transmitter in the case of
messages EED / NOD or the receiver address for messages NSL / NSH
(the identifier 0x00 is reserved for broadcast transmissions).

• Data Type, specifies the data type of the last four byte. Are supported
both standard data types and types specified by the user depending on the
application.

• Service Code, reserved for specific purposes in the case of messages
EED/NOD, or used to define the type of service in case of messages
NSL/NSH.

• Message Code, is essentially a counter message used for debugging
purposes in case of message EED/NOD.

Figure 16 - Data field of a CANAerospace DF

A complete description of the CANAerospace frames used in the Volcan
UAV is available in [22].

24 |The Volcan UAV

II.3 Flight Control Computer System

The FCCS subsystem is the core of the control architecture. It is responsible
of the stability of the aircraft, in addition to the management of a given flight
plan. In other word, the FCCS is the controller of the whole system, since it
provides two level of control:

• A low level control, in order to ensure the stability of the aircraft. In this
case, the FCCS needs to receive roll and pitch data from an IMU, and it
acts only on the ailerons and the elevator.

• A high level control, to accomplish a given flight plan, generally formed
by a set of waypoints. In this scenario, in addition to the IMU,
magnetometers, GPS and pressure sensors are needed.

II.3.1 Control strategy

In the scientific literature there are various control methods reported [24] [36]
[42] [43] and the choice of which type to adopt is of crucial importance for the
performance of the system. A first step in this evaluation is to list all the variables
that are supposed to be controlled, i.e. Euler angles, GPS and air pressure
sensors. Secondly, it must consider whether and how these variables are related to
each other: in this case it is necessary that their control is in some way correlated.
For instance, taking into consideration the roll and yaw, is evident as this two
variables are strictly related. To point along a given direction (yaw), a plane must
first turn activating the ailerons on the wings, thereby setting a certain roll angle.
From the above it is clear another key observation concerning the dynamics of
the two variables: the roll has a dynamic faster than the yaw, then to control these
two variables a cascade control represents a suitable solution [23]. As regards
pitch and altitude, the relation is the same. For this reason, two cascaded PID
control loops, one for the heading-by-roll and one for the altitude-by-pitch
regulations, and a simple feedback PID control loop for the speed regulation are
implemented in the control architecture of the Volcan UAV [17]. The developed
controllers are a similar implementation of the Altitude-Hold and Heading-Hold
schemes presented in [24].

The “Mission Management” block of the FCCS supervises and controls the
mission execution: the desired trajectory is assigned to the FCCS by means of a
set of waypoints coordinates [32] and the “Mission Management” block

Flight Control Computer System | 25

computes the reference signals to be assigned to the control loops with the aim of
performing the planned mission. As it can be observed in Figure 17, the heading-
by-roll regulator acts on the ailerons and the rudder, the altitude-by-pitch
computes the signals for the elevator, while the throttle command is computed by
the airspeed controller.

Figure 17 - The interaction of the different sub-systems implemented on the FCCS.

In Figure 18 the block scheme of the altitude-by-pitch regulator is shown. The
reference altitude is the height of the next waypoint to be reached. The current
altitude is obtained by means of an EKF-based sensor fusion between the
altitudes given by the on-board GPS and by the absolute pressure sensor of the
ADAHRS board; the computed altitude is sent via CANAerospace protocol to
the FCCS. The resulting error is processed by PIDAlt which provides the
reference signal to the inner loop, regulating the pitch angle.

Figure 18 - Altitude-by-pitch control loop.

26 |The Volcan UAV

In Figure 19 the block scheme of the heading-by-roll control loop is shown.
The course error is determined as it can be seen in Figure 20. The value of the
desired course essentially depends on the coordinates of the next waypoint and
the current coordinates of the aircraft (given by GPS); the measure of the heading
is obtained from the ADAHRS. Obviously, this represents a simplification,
because we are considering the heading as the direction in which the plane is
pointing, without taking into account the effects of wind drift [26]. However, this
problem is compensated by the FCCS navigation algorithm that continuously
updates the Course Error. The resulting error is processed by the PIDCourse
regulator, which provides the reference signal to the inner loop, regulating the roll
angle.

Figure 19 - Heading-by-roll control loop.

Figure 20 - Course error computation.

Finally, in Figure 21 the speed control block scheme is shown. The desired
speed is related to the next waypoint, whereas the current speed is obtained

Flight Control Computer System | 27

through a sensor fusion between the speed coming from GPS and the airspeed
obtained by the differential pressure sensor connected to the Pitot tube.

Figure 21 – Speed control loop.

II.3.2 Hardware Design

The complete schematic of the FCCS subsystem is shown Appendix A. The
main component is the dsPIC33FJ256GP710A, a microcontroller produced by
Microchip [65]. Moreover, an EEPROM memory and a transceiver CAN are
present. In Figure 22 the developed PCB is shown.

Figure 22 - FCCS board

28 |The Volcan UAV

II.3.3 Operating modes

The operating modes of the FCCS determine the particular conditions in
which the UAV operates, which results in a different iteration with the
environment. Essentially, the operating modes necessary are two: the first is
necessary for the tuning of the PIDs, and the second one is used to accomplish a
given flight plan.

II.3.3.1 Assisted Mode

In assisted mode the aircraft does not follow any flight plan, but the reference
values of the controlled variables (Roll, Pitch, Heading, Altitude and Speed) set
by the user. This mode is particularly useful during calibration of the control
loops or to verify the correct operations of them. Using the complete cascade
control, it is possible to assign the reference to the variable on the outer loop
(Heading and Altitude) Only. To assign the reference variables in the inner loop
(Roll and Pitch) the outer loop should be opened, transforming the cascade
control in a simple feedback control (in this configuration, yaw and altitude are
not checked). For this reason two flags are inserted in the heading-by-roll and in
the altitude-by-pitch control loops, TrackHold and AltitudeHold. These flags make
it possible to set the reference of the outer loop, or inhibit it and give a reference
value directly to the inner loop. As regards the speed control, being controlled by
a simple feedback control, it always follows the reference set by the operator.
This is summarized by Table 4 and Figure 23.

 Flag →
Setpoints ↓

TrackHold AltitudeHold
True False True False

RollAssisted Notused Used X X
TrackAssisted Used NotUsed X X
PitchAssisted X X Notused Used
AltitudeAssisted X X Used NotUsed
AirspeedAssisted X X X X

Table 4 - Assisted Mode Flags

Flight Control Computer System | 29

Figure 23 - Assisted Mode Flow chart

II.3.3.2 Navigation

This is the typical operating mode of the UAV, i.e. the navigation between
waypoints. In this modality a waypoint is considered reached if the UAV is
located within a given radius from it (typically chosen as 50m in this work). In
Figure 24 the flow chart of this modality is shown.

30 |The Volcan UAV

Figure 24 - Navigation mode flow chart

II.3.4 Autotuning algorithm

The tuning procedures of the control algorithms of unmanned platforms
represent one of the most time consuming phases, especially in the case of flying
robots adopted in strongly not structured environments, like in volcanoes [11].
Usually a new mission needs to be preceded by a tuning procedure of the control
loops, depending on weather and environmental conditions (pressure,
temperature and so on). Propellers efficiency, wings lift and the power of a stroke
engine depend on air density, which is strongly related to the weather conditions.

The implementation of automatic procedures represents an advantage that
makes the development phase of an UAV easier and faster. Several papers deal
with the automatic or self-tuning of control systems [34]. However, only a few

Flight Control Computer System | 31

attempts are related to UAVs [28] [29] [30] [31]: this is mainly due to the risks
connected to the tuning procedures of this kind of robotic platforms.

The relay feedback technique is widely adopted for the automatic tuning of
PID controllers [27]. However, such algorithm is unsuitable for the automatic
tuning of the control loops of an aircraft. Indeed, the first phase of this algorithm
leads the system in a steady-state oscillation. It is clear how dangerous could be
this condition for an aircraft. A different approach is based on Fuzzy rules,
suggested by experience. The papers [28] and [29] are examples of this approach,
where a self-adaptive fuzzy control is used to tune the PIDs of an UAV.

 However, up to now the literature presents only works focused on the
different methodologies to be adopted for the self or automatic tuning of UAVs.
The step ahead is represented by the development of an hardware and software
suite that makes the tuning phase safe, reliable and fast, independently of the
control loops implemented on the on-board avionics [25].

The tuning algorithm analyses the step response of the control loop to be
tuned and automatically implements a method based on Åström and Hägglund
[27], where the PID parameters are chosen as a compromise between stability
and speed, as summarized in Table 5.

 Speed Stability
Proportional Action increases Increases Reduces
Integral Action increases Reduces Increases
Derivative Action increases Increases Increases

Table 5 - Effect of the controller on speed and stability

Going into detail, a constant set-point is assigned to the control loop to be
tuned and the response of the aircraft is analyzed to verify if the desired behavior
is achieved. A set of constraints, assigned before the tuning procedure, must be
satisfied: rise time, overshoot, steady state error and settling time (Figure 25). The
values assigned to the constraints should be based on the specific aircraft model
and, in general, on experience.

The algorithm, developed in Matlab-Simulink [68], communicates with the
onboard avionics via CANAerospace protocol. A screenshot of the GUI
implemented for executing and monitoring the tuning procedure is shown in
Figure 27: in particular, the form dedicated to the automatic tuning is
represented. This form allows the operator to assign the desired constraints
(“Specifications” section), to start the tuning procedure (“Auto Tuning” section),

32 |The Volcan UAV

to analyze in real-time the response of the control loops (“Step Response”
section) and to view the computed parameters (“Dynamic Features” section).

Figure 25 - Generic step response

The tuning procedure, automatically executed by the implemented algorithm
and started by acting on the “Auto Tuning” section of the GUI, is shown in
Figure 26 and summarized below:

• The constraints must be introduced in the “Specifications” section of the
developed HMI.

• An initial set of the PID parameters is assigned and sent via
CANAerospace to the control loops of the FCCS.

• A step signal is assigned as input reference for the autopilot.

• The dynamic response of the system is analyzed and is compared with the
assigned constraints.

If the response is not satisfactory, the PIDs gains are modified according to the
following classical rules [27]:

• The proportional action is correlated to the speed and, then, to the rise
time;

• The derivative action is correlated with the overshoot;

• The integral action acts on the steady state error.

Flight Control Computer System | 33

This procedure is iterated until the constraints are not satisfied or a specified
number of iterations is reached.

Figure 26 - Flow chart of the developed automatic tuning algorithm

34 |The Volcan UAV

Figure 27 - The developed GUI for the autotuning procedure

II.3.5 HIL Architecture

Hardware in the Loop architectures have been adopted by several projects to
develop and test different aeronautical components [33] [35] [36].

To reduce time, costs and risks related to the trials on a real aircraft, an HIL
architecture has been used to test and verify the developed architecture: the real
aircraft has been substituted with a simulated virtual model closed in a HIL
architecture with the real controller.

The used HIL architecture is similar to the one adopted in [32] to develop the
VOLCAN project. In this architecture the VOLCAN has been replaced by the
X-Plane Simulator by Laminar Research [53], connected both to the FCCS and
the GUI via CANAerospace. In Figure 28 the adopted architecture is shown; the
block named “FCCS” represents the real electronic board. Telemetry data,
concerning plane pose, are sent from the simulator through CANbus to the
FCCS board by using the CANaerospace protocol. Once attitude and position of
the aircraft are known, the control algorithms implemented on the FCCS board
compute the signals for the servo commands that are sent back to the simulator
to actuate the mobile parts of the plane.

Flight Control Computer System | 35

The GUI, presented in II.3.4, is closed in the loop to execute the automatic
tuning procedure, sending the reference signals to the FCCS and capturing and
recording the telemetry data sent by the simulator.

In the next paragraphs, several experimental results are presented. In
particular, in the first part the procedure and the results related to the automating
tuning of the “heading-by-roll” control loops (Figure 19) are discussed. The first
step regards the tuning of the inner (and faster) variable, the roll (II.3.5.1). Once
the roll loop has been tuned, the procedure to tune the outer loop (heading, with
a slower dynamic) is automatically executed (II.3.5.2).

To validate the results of the automatic tuning algorithm, the computed
parameters have been used during the execution of a complete flight mission in
absence of wind (II.3.5.3) and in windy conditions (II.3.5.4).

Figure 28 - The HIL architecture adopted to test the algorithm

36 |The Volcan UAV

II.3.5.1 Automatic tuning of the roll control loop

To tune the roll control loop, the outer loop (heading control) is deactivated
and the reference signal is directly assigned to the inner control loop.

To execute this procedure, the aircraft has been placed at an altitude of 200m
ASL, with a ground speed of 90 Km/h. The reference roll signal used to evaluate
the step response has been set to ±30°: the procedure is considered as
successfully completed when the constraints are satisfied both on the positive
(+30°) and the negative (-30°) roll steps.

The constraints to be satisfied, assigned at the beginning of the procedure, are
reported in the first row of Table 6; the second row reports the values reached at
the end of the tuning procedure.

The initial values of the PID gains are shown in the first row of Table 7, while
the computed parameters are reported in the last row.

Parameters Rise time
[s]

Settling time
[s]

Overshoot [DEG] Overshoot
[%]

SSE
[DEG]

Imposed 1 1 0.3 1 0.3

Achieved 0.82 0.82 0.17 0.58 0.21

Table 6- Constraints and results of roll loop tuning.

Gains Kp Kd Ki

Starting values 1.5 0 0

Final values 2.4 0 0

Table 7 - Roll PID gains.

Figure 29 shows the time evolution of the roll angle, measured during the
tuning procedure. As it can be observed, the responses of the first eighth steps
are incomplete (A), because the constraint related to the rise time on the positive
edge is not satisfied. In fact, when the reference signal is not reached in the
assigned rise time, the algorithm stops the step under execution; then, the KP gain
is modified and another step is executed.

At the ninth step (B), the constraints are satisfied on the rising edge of the
+30° imposed roll; but they are not satisfied on the negative step.

Flight Control Computer System | 37

Finally, at the tenth attempt (C), the algorithm executes positive and negative
steps and verifies that the imposed constraints are achieved (Table 6), by acting
only on proportional action (Table 7).

Figure 29 - Roll control loop auto-tuning procedure

II.3.5.2 Automatic tuning of the heading control loop

Once the roll loop has been tuned, the outer loop (heading) is reactivated
while the PID gains of the inner loop (roll) are those achieved in the previous roll
loop tuning. In this case, the reference amplitude, used to evaluate the step
response, has been imposed to ±45°. Constraints and results are summarized in
Table 8, while the achieved PID gains are shown in Table 9.

Parameters
Rise time
[s]

Settling
time [s]

Overshoot
[DEG] Overshoot [%]

SSE
[DEG]

Imposed 6 6 2 4.44 2

Achieved 4.2 4.26 0.44 1 1.25

Table 8 - Constraints and results of heading loop tuning

38 |The Volcan UAV

Gains Kp Kd Ki

Startingvalues 0.8 1 0

Increments 0.1 0.1 0.01

Finalvalues 1 1.2 0.01

Table 9 - Heading PID gains

In Figure 30 the result of the heading control loop automatic tuning
procedure is shown. Likewise to the roll tuning procedure, the first two steps (A)
are partial, because the rise time constraint is not satisfied on the positive edge;
then, the constraints are satisfied for the positive edge but not on the negative
edge (B). Finally, the assigned specifications are satisfied both on the positive and
the negative edges (C).

In order to tune the remaining control loops (pitch, altitude and speed)
automatic tuning procedure have been executed and the algorithm has always
found suitable PID gains satisfying the imposed constraints.

Figure 30- Heading control loop auto-tuning

Flight Control Computer System | 39

II.3.5.3 Parameters validation: mission execution without wind

The same procedure used for the “heading-by-roll” control loops has been
adopted for the automatic tuning of the “altitude-by-pitch” and “speed” control
loops.

Then, a mission has been executed in the HIL architecture to validate the
obtained parameters. In Figure 31 the mission is represented: the red circles are
the assigned WPs while the purple line represents the executed trajectory. Table
10 summarizes the assigned WPs and the altitude and speed assigned for each
one.

Waypoint Latitude
[Deg]

Longitude
[Deg]

Altitude
[m]

Speed
[km/h]

WP1 37.4728737 15.0714064 200 80

WP2 37.4591484 15.0772877 500 110

WP3 37.4603195 15.0517006 300 90

Table 10 - Waypoint assigned for parameters validation

Figure 31- The mission executed after the automatic tuning procedure

Figure 32 allows to observe the behaviors of the two control loops involved in
the “heading-by-roll” regulation during the mission. The picture shows the time
evolution during the take-off, navigation and landing phases.

40 |The Volcan UAV

Figure 32 - The time evolution of the heading-by-roll control loops

In Figure 33 the time evolutions of the control loops involved in the “altitude-
by-pitch” regulation is shown.

As it can be observed by analyzing Figure 31, Figure 32 and Figure 33, the
behavior of the tuned loops is fine and allows to execute the flight plan in a
satisfactory way.

Figure 33 - The time evolution of the altitude-by-pitch control loops

Flight Control Computer System | 41

II.3.5.4 Parameters validation: mission execution in windy conditions

To validate the robustness of the control architecture with the parameters
computed by the automatic tuning algorithm, the same mission assigned in the
previous section has been executed in windy conditions, introducing in the
simulator a wind of 20 km/h and with the direction shown in Figure 34. Such a
wind condition is remarkable taking into account the aircraft under test.

Figure 34- The mission executed in windy conditions. The red arrow indicates the wind
direction.

Figure 35 allows to observe the behaviors of the two control loops involved in
the “heading-by-roll” regulation during the mission. The picture shows the time
evolution during the take-off, navigation and landing phases.

In Figure 36 the time evolutions of the control loops involved in the “altitude-
by-pitch” regulation is reported.

As it can be observed by analyzing Figure 35 and Figure 36, the response of
the inner loops (roll and pitch) allows to obtain a good behavior of the outer
loops (heading and altitude). This permits the aircraft to reach successfully the
assigned waypoints, even if the trajectory is disturbed.

42 |The Volcan UAV

Figure 35 - The time evolution of the heading-by-roll control loops in windy conditions.

Figure 36 - The time evolution of the altitude-by-pitch control loops in windy conditions

Servo Actuators Control System | 43

II.4 Servo Actuators Control System

This subsystem manages the engine and the actuators (up to seven) connected
to the mobile parts of the Volcan UAV. It also allows switching from the UAV
mode to the Pilot In Command (PIC) mode, in order to execute takeoff and
landing operations or also to bypass instantaneously the FCCS in case of failures.
Therefore, in UAV mode the reference signals come from the FCCS, whereas in
PIC mode they come from the RC receiver. The core of the SACS is the
microcontroller PIC18F4580 by Microchip [65]. Moreover, a transceiver CAN
and an array of digital isolators, in order to isolate the ground of the servos
(generally noisy) with the ground of the microcontroller, are mounted. PCB of
the SACS is shown in the following figure, whereas the schematic is reported in
Appendix A.

Figure 37 - SACS board

44 |The Volcan UAV

II.5 UDP2CAN

This subsystem acts as a bridge between the CANAerospace bus and a
wireless link. This is because it is necessary for the operator to supervise and
monitor the drone by means of a ground station. Obviously, a wireless link does
not have the same robustness of a wired link. However, considering that the
ground station receives only telemetry data and it sends asynchronous commands
with ACKs (the NSH frames), it's clear as this type of connection represents an
appropriate solution.

Going into details, an UDP2CAN bridge has been realized, i.e. a device that
converts CAN frames coming from the drone control system in UDP frames
suitable for a commercial WiFi link.

As regards the hardware, this subsystem has the same microcontroller of the
FCCS, the dsPIC33FJ256GP710A, in addition to a transceiver CAN (MAX3051)
and the ENC28J60, an Ethernet controller produced by Microchip [65]. PCB of
the UDP2CAN is shown in the following figure, whereas its schematic is
reported in Appendix A.

Figure 38 – UDP2CAN board

Air Data and Attitude Heading Reference System | 45

II.6 Air Data and Attitude Heading Reference System

The last subsystem of the whole control architecture is represented by the
ADAHRS. In reality, for reasons of convenience, this subsystem is split into two
boards:

• A sensors board, which manages GPS, pressure sensors and temperature
sensor.

• An Inertial measurement unit, that gives information about attitude and
heading. To this board, considering its complexity, the section II.7 is
dedicated.

II.6.1 Sensors Board

The dsPIC33FJ256GP710A onboard manages the following sensors:

• A classical GPS with RS232 interface.

• The STTS75 Digital temperature sensor.

• The absolute pressure sensor HSCMAND015PA2A3 by Honeywell
[66], used as barometer in order to obtain information about altitude.

• The differential pressure sensor HSCMRRN100MD2A3 by
Honeywell [66], used as Pitot tube in order to obtain information
about airspeed.

PCB of the sensors board are shown in the following figures. Its schematic is
shown in Appendix A

Figure 39 – Sensors board

46 |The Volcan UAV

II.7 IMU board

The aim of this board is to provide the Euler angles of the aircraft. To make
this possible, a set of inertial sensors are needed. Such a set of sensors, together
with a 32bit ARM microcontroller, are present in the INEMO®-M1, produced by
ST-Microelectronics [37]. Going into details, the key features of this device are
the following:

• STM32F103REY6: WLCSP package, high-density performance line
ARM®-based 32-bit MCU

• LSM303DLHC: 6-axis digital e-compass module, ±2g, ±4g, ±8g, ±16g
linear acceleration programmable full scale, from ±1.3 gauss to ±8.1
gauss, I2C digital output

• L3GD20: 3-axis digital gyroscope (roll, pitch, yaw), 16-bit data output,
±250°/s, ±500°/s, ±2000°/s selectable full scale

• LDS3985M33R: ultra-low drop, low-noise BiCMOS 300 mA onboard
voltage regulator.

• Flexible interfaces: CAN, USART, SPI and I2C serial interfaces; full-speed
USB 2.0

• Up to 8 ADC channels for external analog inputs

• Compact design: 13 x 13 x 2 mm

Figure 40 - INEMO®-M1

II.7.1 Hardware development

In order to interface the INEMO®-M1 with the other subsystems, some
improvements have been added. In particular, a transceiver CAN and an SWD
connector (to program the microcontroller) were inserted. In the following figure,
the board is shown. The schematic is in Appendix A.

IMU board | 47

Figure 41 - INEMO®-M1 Board

II.7.2 Firmware development

The IMU firmware development has represented one of the most complex
phases in the design of the Volcan control system. The reason is that to develop a
reliable system that calculates the RPY angles from a set of inertial sensors
requires a very long phase of test and optimization. In the next paragraphs the
various development and optimization steps are described.

II.7.2.1 CANAerospace implementation

The first step in the IMU development is represented by the implementation
of the CANAerospace protocol. The CANAerospace directives impose only the
most important frame structures, such as the frames for the RPY angles. There is
therefore the possibility to insert several user defined frames, in order to make
possible the management and the personalization of such a system. A complete
documentation of the CANAerospace protocol implemented is reported in
Appendix B.

II.7.2.2 Extended Kalman Filter implementation

The classical Kalman filter [38] [39] is an optimal observer under the
hypotheses that the system is linear and that both the process and the
measurement noises are Gaussian and additive. The Kalman Filter equations are
summarized in Table 11

48 |The Volcan UAV

Initial estimates for ෝ࢞࢑ି૚and࢑ିࡼ૚
Time Update (“Predict”)

Project the state ahead ෝ࢞࢑ି = ෝ࢞࢑ି૚ ࡭ + ࡮ ࢛࢑
Project the error covariance ahead ࢑ିࡼ = ࢀ࡭࢑ି૚ࡼ࡭ + ࡽ

Measurement Update (“Correct”)
Compute the Kalman gain ࢑ࡷ = ࢑ିࡼ ࢑ିࡼࡴ)ࢀࡴ ࢀࡴ + ૚ି(ࡾ

Update estimate with measurement zk ෝ࢞࢑ = ෝ࢞࢑ି + ࢑ࢠ)࢑ࡷ − ࡴ ෝ࢞࢑ି)
Update the error covariance ࢑ࡼ = − ࡵ) (ࡴ࢑ࡷ ࢑ିࡼ

Table 11 - Kalman Filter Equations

Unfortunately, in this case of study the hypothesis of linearity is not satisfied.
However, under the assumption that the process and the measurement noises are
Gaussian and additive, it is possible to implement an Extented Kalman Filter
(EKF) algorithm [40] [41]. With respect to a conventional Kalman filter, the EKF
is its linearization around the current estimate. Considering a given process with
the following equations:

ቊ࢞࢑ = ,࢑ି૚࢞)ࢌ ࢛࢑, ࢝࢑ି૚)࢑ࢠ = ,࢑࢞)ࢎ ࢜࢑)

Where xk represents the state variables, zk the measurements and f, h non-
linear functions. The following Jacobians represent the linearization of the system
around the current estimate:

[ܹ௜,௝] = ߲ [݂௜]߲ݓ[௝] ,ො௞ݔ) ,௞ݑ 0)

[௜,௝]ܣ = ߲ [݂௜]߲ݔ[௝] ,ො௞ݔ) ,௞ݑ 0)

[௜,௝]ܪ = ߲ℎ[௜]߲ݔ[௝] ,ො௞ݔ) 0)

[ܸ௜,௝] = ߲ℎ[௜]߲ݒ[௝] ,ො௞ݔ) 0)

The resulting equations are shown in Table 12

IMU board | 49

Initial estimates for ෝ࢞࢑ି૚and࢑ିࡼ૚
Time Update (“Predict”)

Project the state ahead ෝ࢞࢑ି = ,ෝ࢞࢑ି૚)ࢌ ࢛࢑, 0)
Project the error covariance ahead ࢑ିࡼ = ࢀ࢑࡭࢑ି૚ࡼ࢑࡭ + ࢀ࢑ࢃ࢑ି૚ࡽ࢑ࢃ

Measurement Update (“Correct”)
Compute the Kalman gain ࢑ࡷ = ࢑ିࡼ ࢑ିࡼࡴ)ࢀࡴ ࢀࡴ + ૚ି(ࢀ࢑ࢂ࢑ି૚ࡾ࢑ࢂ

Update estimate with measurement zk ෝ࢞࢑ = ෝ࢞࢑ି + ࢑ࢠ)࢑ࡷ −)ࢎ ෝ࢞࢑ି , ૙))
Update the error covariance ࢑ࡼ = ࡵ) − (ࡴ࢑ࡷ ࢑ିࡼ

Table 12 - EKF equations

State Vector
As regards the state vector, initially the best choice would seem to be the

Euler Angles RPY. However, the adoption of Euler Angles causes two
drawbacks:

• Gimbal lock: the loss of one DoF in a 3D space that occurs when 2 axes are
parallel.

• Mathematical singularities, caused by the trigonometric function atan2.

In order to overcome these problems, another representation of spatial
orientation of a rigid body has been used, the unit quaternion [40] [41]: an
efficient and non‐singular description of spatial orientation used in particular for
calculations involving three-dimensional rotations, such as in three-dimensional
computer graphics and computer vision. Obviously, it is possible to convert the
unit quaternion in Euler Angles and viceversa [44]. Another aspect to take into
consideration is the gyroscopes drift. For this reason also the gyroscope biases are
chosen as state variables. In summary the state vector of the EKF is the
following:
ݔ = ଴ݍ] ଵݍ ଶݍ ଷݍ ܾ߱௫ ܾ߱௬ ܾ߱௭]்

Prediction phase
In the discrete time, using the Euler integration method, it is possible to write:
௞ݔ = ௞ିଵݔ + (1) ݐ∆ሶ௞ݔ

Considering the gyroscope measurements ω as inputs u (see Table 12) and
using the relationship that exists between the derivative of the unit quaternion ݍሶ
and the angular velocity ω [44], it is possible to write:

50 |The Volcan UAV

ሶ௞ିଵݔ = ଵଶ (௞ିଵݍ)ܳ ൤ 0߱௞ିଵ൨ = ଵଶ ൦ݍ଴௞ିଵ ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ଶ௞ିଵݍ− ଷ௞ିଵݍ−ଷ௞ିଵݍ− ଶ௞ିଵݍଶ௞ିଵݍ ଷ௞ିଵݍଷ௞ିଵݍ ଴௞ିଵݍଶ௞ିଵݍ− ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ൪ ێێۏ
ۍ 0߱௫௞ିଵ − ܾ߱௫௞ିଵ߱௬௞ିଵ − ܾ߱௬௞ିଵ߱௭௞ିଵ − ܾ߱௭௞ିଵ ۑۑے

ې
 (2)

Substituting (2) in (1) it obtains:

௞ݔ =
ێێۏ
ێێێ
ۍێ ۑۑےଷ௞ܾ߱௫௞ܾ߱௬௞ܾ߱௭௞ݍଶ௞ݍଵ௞ݍ଴௞ݍ

ۑۑۑ
ېۑ =

ێێۏ
ێێێ
ۍێ ۑۑےଷ௞ିଵܾ߱௫௞ିଵܾ߱௬௞ିଵܾ߱௭௞ିଵݍଶ௞ିଵݍଵ௞ିଵݍ଴௞ିଵݍ

ۑۑۑ
ېۑ + 12 ൦ݍ଴௞ିଵ ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ଶ௞ିଵݍ− ଷ௞ିଵݍ−ଷ௞ିଵݍ− ଶ௞ିଵݍଶ௞ିଵݍ ଷ௞ିଵݍଷ௞ିଵݍ ଴௞ିଵݍଶ௞ିଵݍ− ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ൪ ێێۏ

ۍ 0߱௫௞ିଵ − ܾ߱௫௞ିଵ߱௬௞ିଵ − ܾ߱௬௞ିଵ߱௭௞ିଵ − ܾ߱௭௞ିଵ ۑۑے
ې (3) ݐ∆

The (3) in extended form becomes:

ەۖۖۖ
۔ۖۖ
ۓۖۖۖ

଴௞ݍ = ଴௞ିଵݍ − ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍଵ௞ିଵ∆ݐ − ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆ଶ௞ିଵݍ − ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍଷ௞ିଵ∆ݍ;ݐଵ௞ = ଵ௞ିଵݍ + ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍ଴௞ିଵ∆ݐ − ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆ଷ௞ିଵݍ + ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍଶ௞ିଵ∆ݍ;ݐଶ௞ = ଶ௞ିଵݍ + ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍଷ௞ିଵ∆ݐ + ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆଴௞ିଵݍ − ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍଵ௞ିଵ∆ݍ;ݐଷ௞ = ଷ௞ିଵݍ − ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍଶ௞ିଵ∆ݐ + ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆ଵ௞ିଵݍ + ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍ଴௞ିଵ∆ݐ;ܾ߱௫௞ = ܾ߱௫௞ିଵ;ܾ߱௬௞ = ܾ߱௬௞ିଵ;ܾ߱௭௞ = ܾ߱௭௞ିଵ;
(4)

The equations (4) represent the prediction phase of the EKF algorithm (see
Table 12).

In order to calculate the error covariance ௞ܲି (Table 12) it is necessary to
compute:

• The Jacobian matrix A of partial derivatives of the state transition function
with respect to x (state):

[௜,௝]ܣ = ߲ [݂௜]߲ݔ[௝] ,ො௞ݔ) ,௞ݑ 0) ߳ ℝ଻௫଻

• The Jacobian matrix W of partial derivatives of the state transition function
with respect to w (noise) :

[ܹ௜,௝] = ߲ [݂௜]߲ݓ[௝] ,ො௞ݔ) ,௞ݑ 0) ߳ ℝ଻௫ଷ

IMU board | 51

• The matrix Q of the variance of the gyroscope:
 ܳ = ,ܺݎݕܩ ݁ܿ݊ܽ݅ݎܸܽ)݃ܽ݅݀ ,ܻݎݕܩ ݁ܿ݊ܽ݅ݎܸܽ ℝଷ௫ଷ ߳ (ܼݎݕܩ ݁ܿ݊ܽ݅ݎܸܽ

Correction Phase
Once the prediction phase is calculated, it is necessary using the accelerometer

and the magnetometer measures, to implement the correction phase. On the
basis of the tests executed, the best performance is obtained splitting the
correction phase in two independent steps. One step using only the
accelerometers measurements and another one in which the correction is
performed using only the magnetometers measurements. The measurement
function that links the accelerometers measurements with the state vector is:

 ℎ௔௖௖ = (ݍ)ܴ ∗ ଴ଶݍതതതതത = ቎ܿܿܣ + ଵଶݍ − ଶଶݍ − ଷଶݍ ଶݍଵݍ)2 − (ଷݍ଴ݍ ଷݍଵݍ)2 + ଵݍଶݍ)ଶ)2ݍ଴ݍ + (ଷݍ଴ݍ ଴ଵݍ − ଵଶݍ + ଶଶݍ − ଷଶݍ ଷݍଶݍ)2 − ଵݍଷݍ)ଵ)2ݍ଴ݍ − (ଶݍ଴ݍ ଶݍଷݍ)2 + (ଵݍ଴ݍ ଴ଶݍ − ଵଶݍ − ଶଶݍ + ଷଶ቏ݍ ቎ܿܿܣ௫ܿܿܣ௬ܿܿܣ௭ ቏

In the same way, Hmag is obtained by the following matrix product:

ℎ௠௔௚ = (ݍ)ܴ ∗ ଴ଶݍതതതതതത = ቎݃ܽܯ + ଵଶݍ − ଶଶݍ − ଷଶݍ ଶݍଵݍ)2 − (ଷݍ଴ݍ ଷݍଵݍ)2 + ଵݍଶݍ)ଶ)2ݍ଴ݍ + (ଷݍ଴ݍ ଴ଵݍ − ଵଶݍ + ଶଶݍ − ଷଶݍ ଷݍଶݍ)2 − ଵݍଷݍ)ଵ)2ݍ଴ݍ − (ଶݍ଴ݍ ଶݍଷݍ)2 + (ଵݍ଴ݍ ଴ଶݍ − ଵଶݍ − ଶଶݍ + ଷଶ቏ݍ ቎݃ܽܯ௫݃ܽܯ௬݃ܽܯ௭ ቏

 .തതതതതതത represent the measures݃ܽܯ തതതതത andܿܿܣ
In order to calculate the Kalman gain ܭ௞(Table 12), it is necessary to evaluate:

• the Jacobian matrix H of partial derivatives of the measurement function
with respect to x (state):

[௜,௝]ܪ = ߲ℎ[௜]߲ݔ[௝] ,ො௞ݔ) 0) ߳ ℝଷ௫଻

• The Jacobian matrix V of partial derivatives of the measurement function
with respect to v (noise measures):

[ܸ௜,௝] = ߲ℎ[௜]߲ݒ[௝] ,ො௞ݔ) 0) ߳ ℝଷ௫ଷ

52 |The Volcan UAV

• The matrix R of the variance of the sensor: ܴ = ,ܺ݁ܿ݊ܽ݅ݎܸܽ)݃ܽ݅݀ ,ܻ݁ܿ݊ܽ݅ݎܸܽ ℝଷ௫ଷ ߳ (ܼ݁ܿ݊ܽ݅ݎܸܽ

Considering that the V is an identity matrix, the Kalman gain is the following: ܭ௞ = ௞ܲି ܪ)்ܪ ௞ܲି ்ܪ + ܴ)ିଵ

II.7.2.3 EKF improvements

The EKF algorithm discussed in the previous chapters in theory should work
perfectly. Unfortunately, in the real world some improvements are needed in
order to obtain an IMU with a satisfactory performance.

Sensors Calibration
In order to convert the sensors raw data in calibrated data, the sensors

datasheets give the conversion formulas. However, these equations suppose ideal
conditions and don't take into account the following aspects:

• Process tolerances.

• Different sensitivity and bias for each axis.

• Misalignment between different sensors.

• Misalignment between the INEMO® and the IMU board.

• Non linearity.

Supposing the last problematic negligible, it is possible to overcome the other
problems by means of the least square method.
As regards the gyroscope, the raw data and the angular velocity are related by the
following relation:

IMU board | 53

Where Rx, Ry, Rz are the final angular velocities of each axis, G_m is the
misalignment matrix between the gyro sensing axes and the device body axes,
SCx, SCy, SCz are the scale factors caused by the mismatch of the sensitivity of
each axis, Rx’, Ry’, Rz’ are the raw measurements of the gyroscopes and Rx0,
Ry0, Rz0 are the biases for each axis. The least square method can calculate the
twelve parameters (G11…G33, G10, G20 and G30) for a complete calibration
procedure. To apply this method, the IMU board was mounted over a KUKA
robotic manipulator [67]. First of all, the bias of each axis is measured (G10, G20,
G30). Then, the KUKA manipulator rotates the board around each axis at
different known angular velocity and collects the measurements (Y). The matrix
of the known angular velocities is related to the gyroscope raw measurements
matrix (w) by the unknown matrix X: Y = w ∙ X

Finally, to determine the other nine parameters (G11…G33) the least square
method is applied: X = [w୘w]ିଵw୘Y

For the accelerometer, the procedure is the same, using also in this case the
KUKA manipulator [67] in static poses. On the contrary, the magnetometer
calibration, even if use the same equation, cannot be executed by means the
KUKA manipulator because the metal parts of the robot affect the
magnetometer measurements.

The accelerometer and gyroscope calibration is executed only once, because
their parameters are practically time independent and don't depend by the
environment. On the contrary, the magnetometer calibration has to be executed
every time the environment changes.

Chebyshev Filtering
During the test phase, the greatest problem was represented by the vibration

introduced by the brushless engine to the whole airframe. In particular, the
accelerometer measurements were completely distorted, causing a malfunction of
the EKF algorithm. In Figure 42 a comparison between the raw data of the Z
component, when the motor is off (red) and when the motor is running (blue) is

54 |The Volcan UAV

shown. It is worth to point out that, in both cases the airframe is locked to the
workbench.

Figure 42 - Noise introduced by brushless engine – Time domain

To solve this problem, the first step is an analysis of the vibration in the
frequency domain. Once the noise region has been identified, a filtering is
performed. In order to catch the widest range of frequencies, the Output Data
Rate (ODR) of the accelerometer has been set to 1344Hz, whereas the sample
rate is 1kHz. In Figure 43 the same comparison is shown into the frequency
domain. It is clear as the main harmonic corresponds to approximately 110Hz.
Therefore, to filter out the vibration effect, accelerometer data were filtered with
a low pass fourth-order Chebyshev filter, with a cutoff frequency of 25Hz. The
results are shown in Figure 44. In contrast to the previous test, in this case the
airframe is moving in order to ensure that the Chebyshev filtering does not filter
part of the dynamics of the aircraft. Moreover, in addition to the comparison
between the filtered (black) and unfiltered data (green), a comparison is executed
with a commercial IMU (red), in particular an MTi by Xsens [54].

IMU board | 55

Figure 43 - Noise introduced by brushless engine – Frequency domain

Figure 44 - Results of accelerometer filtering

Dynamic compensation
Another aspect to be taken into account that leads to a deterioration of the

EKF performance, is represented by the dynamic component of the
accelerometer measures. Going into detail, the EKF algorithm implemented in
the IMU works properly only when the system rotates and does not translate, or
at least it translates slowly. Obviously, this is not the case of a drone. During a
mission, the accelerometer measures both the gravity vector and the dynamic

56 |The Volcan UAV

accelerations of the aircraft, but only the former is useful for the EKF algorithm.
Considering that to identify separately the static and dynamic component is not
possible without other devices, the only way to compensate the dynamic
acceleration is represented by decreasing the reliability of the accelerometer data,
i.e. to act in the correction phase of the EKF algorithm. More precisely, the
computation of the Kalman gain in the accelerometer correction phase is done in
the following way: ܭ௞ = ௄ܲܪ)்ܪ ௄்ܲܪ + ܴ)ିଵ

The R matrix, is a diagonal matrix whose elements are the variances of the
X,Y and Z axis of the accelerometer.

ܴ = ൥ܺܿܿܣ_ݎܽݒ 0 00 ܻܿܿܣ_ݎܽݒ 00 0 ൩ܼܿܿܣ_ݎܽݒ

The lower is the value of such variance, the more reliable are the
measurements. In order to relate the R matrix to the dynamic acceleration, the
following modification is made to the matrix:

ܴௗ௬௡ = ൥ܺܿܿܣ_ݎܽݒ 0 00 ܻܿܿܣ_ݎܽݒ 00 0 ൩ܼܿܿܣ_ݎܽݒ ∙ ݌݉݋ܿ_݊ݕܦ

Where Dyn_comp is a variable related to the dynamic acceleration, as it is
shown in the following formula:

௖௢௠௣݊ݕܦ = ଴.ଵݐܽݏ ቊቤ݊ܺܿܿܣ)݉ݎ݋, ,ܻܿܿܣ 9.81(ܼܿܿܣ − 1ቤቋ

In absence of dynamic accelerations, Dyn_comp is zero, converesely the value
of Dyn_comp (saturated to 0.1) increases the unreliability of the accelerometer.

IMU board | 57

Firmware Development and Optimization
A big challenge in the IMU firmware development resides in maximizing the

frequency at which the Extended Kalman Filter works. In fact, the IMU could be
designed to provide the feedback of the low level control, in order to ensure the
stability of the aircraft (see II.3.1). An IMU that works at higher frequency
implies a system faster to compensate the disturbances, and therefore more
suitable to operate in unstructured environments. However, the EKF is a very
complex algorithm, and implementing it at high frequency inside a 32bit
microcontroller, represents a hard challenge. A solution to this problem consists
in optimizing the code, replacing the libraries for the matrix calculation with
normal sums of products. These libraries, even if make the code more readable,
on the other hand are not optimized. To better clarify the concept, consider the
following matrix product:

଻௫଻ܣ ∙ ଻ܲ௫଻ ∙ ଻௫଻்ܣ

To solve this product 686 multiplications and 588 sums are needed. However, if
one considers the terms of the A matrix:

ܣ =
ێێۏ
ێێێ
ێێێ
ۍێ 1 − 12 ݐ݀ݔܩ − 12 ݐ݀ݕܩ − 12 ݐ1݀ݍ ݐ݀ݖܩ ݐ2݀ݍ 12ݐ3݀ݍ ݐ݀ݔܩ 1 12 ݐ݀ݖܩ − 12 ݐ݀ݕܩ ݐ0݀ݍ− ݐ3݀ݍ 12ݐ2݀ݍ− ݐ݀ݕܩ − 12 1 ݐ݀ݖܩ 12 ݐ݀ݔܩ ݐ3݀ݍ− ݐ0݀ݍ− 12ݐ1݀ݍ ݐ݀ݖܩ 12 ݐ݀ݕܩ 12 ݐ݀ݕܩ 1 ݐ2݀ݍ ݐ1݀ݍ− 0ݐ0݀ݍ− 0 0 0 1 0 00 0 0 0 0 1 00 0 0 0 0 0 1 ۑۑے

ۑۑۑ
ۑۑۑ
ېۑ

ݐ݀݅ܩ ݁ݎℎ݁ݓ = ௜݁݌݋ܿݏ݋ݎݕܩ − ௜ݏܽ݅ܤ

It can be seen that there are only seven different elements, and there are seven

ones and eighteen zeros. Then, in the matrix product A·P·AT ,whatever is the P
matrix, there are many null terms, whereas the others are composed in part by the

58 |The Volcan UAV

seven elements of the A matrix. By using the symbolic calculation toolbox of
Matlab, it is possible to quantify the level of optimization obtained:

symsp11p12p13p14p15p16p17p21p22p23p24p25p26p27real
symsp31p32p33p34p35p36p37p41p42p43p44p45p46p47real
symsp51p52p53p54p55p56p57p61p62p63p64p65p66p67real
symsp71p72p73p74p75p76p77real

P=[p11 p12 p13 p14 p15 p16 p17; p21 p22 p23 p24 p25 p26 p27;
 p31 p32 p33 p34 p35 p36 p37; p41 p42 p43 p44 p45 p46 p47;
 p51 p52 p53 p54 p55 p56 p57; p61 p62 p63 p64 p65 p66 p67;
 p71 p72 p73 p74 p75 p76 p77];

syms Gxdt Gydt Gzdt S0dt S1dt S2dt S3dt real

A=[1 -Gxdt -Gydt -Gzdt S1dt S2dt S3dt;
Gxdt 1 Gzdt -Gydt -S0dt S3dt -S2dt;
Gydt -Gzdt 1 Gxdt -S3dt -S0dt S1dt;
GzdtGydt -Gxdt 1 S2dt -S1dt -S0dt;
0 0 0 0 1 0 0;
0 0 0 0 0 1 0;
0 0 0 0 0 0 1];

Pnew=A*P*A';

Exploiting the symmetries and the occurrences of the terms present in the Pnew
matrices, it turns out that it is possible to calculate it with about 300
multiplication and 700 sums. Considering that the products require more time
compared to the sums to be computed and that in this way no for cycle is needed,
it is possible to reduce the computation time to about 4-5 times. Summarizing,
using this strategy the maximum frequency to the EKF algorithm increases from
50Hz (using the matrix libraries) to 250Hz (Figure 46).

II.7.2.4 Firmware Block Scheme

The EKF timing is managed by an interrupt connected to a timer whose
frequency is 500Hz. At each interrupt the accelerometer data are acquired,
calibrated and filtered. The acquisition and calibration of the gyroscope and the
magnetometer is executed every two interrupts, i.e. every 4ms (Figure 45). The
yellow wave in Figure 46 indicates the time necessary to execute the interrupt. the
frequency is in fact 500Hz and it can be seen that there are positive half-waves
longer (where overall sensors are acquired), alternating with positive half-waves
shorter (where only accelerometer is acquired). The reason to acquire the
accelerometer at 500Hz is because in this way a better filtering can be

IMU board | 59

accomplished, with respect to a sampling frequency of 250Hz. Once all sensors
data are acquired and calibrated, a flag is set and the EKF algorithm is executed
in the main loop. According to the tests, once executed the prediction phase
(green wave of Figure 46), the best performance is obtained executing the
correction phase (blue wave of Figure 46) one time with the accelerometer
measurements and one time with the magnetometer measurements. The last step
is represented by a rotation of the resulting quaternion, if a ROS or a RHS
request is received (see Appendix B), and their conversion in RPY angles.

Figure 45 - EKF block scheme

60 |The Volcan UAV

Figure 46 - EKF timestamp

II.7.3 HMI development

In the development and test phases the HMIs have a key role, because they
make these processes faster than the classic debug firmware of a microcontroller.
In particular, during the IMU design, two HMIs have been developed, both of
them in LabView [48].

II.7.3.1 Kalman HMI

This HMI has been developed in order to verify and optimize the EKF
algorithm. As discussed in the section II.7.2.3, the EKF algorithm and especially
its optimization process, requires a lot of time and attention. Even a single wrong
sign can lead the algorithm to diverge. It is really important in this phase, in order
to recognize a possible error, to monitor each intermediate calculation and each
term of the various matrices. It is obvious that if the EKF algorithm is running in
the microcontroller, it is practically impossible to control every matrix terms by a
classical debug. Moreover, every FW change requires a compiling and a
programming operation. Conversely, with a LabView HMI it is possible
monitoring easily each term and executing changes on the fly in the EKF

IMU board | 61

algorithm. Moreover, in this way a comparison with the MTi by Xsens can be
done. In the Figure 47 a block scheme of the Kalman HMI is shown, whereas the
Figure 48 shows a screenshot.

Figure 47 - Kalman HMI block scheme

 Figure 48 - HMI Kalman, EKF development

62 |The Volcan UAV

II.7.3.2 INEMO® M1 HMI

Once the testing and the development phases were completed, a new HMI
has been designed in order to exploit the potentialities of the IMU (Figure 49).

Figure 49 - INEMO® M1 HMI

The key features of the INEMO® M1 HMI are the following:

• complete management of the CANAerospace protocol (Appendix B)

• Selection of the data to send (Figure 50).

• Possibility to change on the fly whatever parameter or reset the
attitude and the heading reference (Figure 51).

• Online plotting of any sensors data (Figure 52).

• Online magnetometer calibration (Figure 53). In contrast with the
gyroscope and the accelerometer, whose calibration can be made only
once, the magnetometer measurements are affected by many factors,
such as batteries, metal parts and so on. For this reason, a
magnetometer calibration is needed every time the environment in
which the IMU works is modified.

IMU board | 63

Figure 50 - INEMO® M1 HMI, data selection

Figure 51 - INEMO® M1 HMI, parameters management

64 |The Volcan UAV

Figure 52 - INEMO® M1 HMI, sensorsplotting

Figure 53 - INEMO® M1 HMI, online magnetometer calibration

IMU board | 65

II.7.4 Results

In this paragraph a comparison between the developed IMU board and a
commercial one is treated. The IMU taken as reference is the MTi produced by
Xsens [54]. The features of both devices are summarized in Table 13:

Sensors IMU boardwith INEMO M1 Xsens MTi

Gyroscopes 3-axis digital gyroscope,
±250°/s, ±500°/s, ±2000°/s full scales,

0.03 deg/s/√Hz Noise,
100 Hz Bandwidth

760 Hz max update rate

3-axis gyroscope,
±300°/s Full Scale,

0.05 deg/s/√Hz Noise,
40 Hz Bandwidth,

512 Hz max update rate
Accelerometers 3-axis digital accelerometer,

±2g, ±4g, ±8g, ±16g full scales,
220 ug/√Hz,

149,3 Hz Bandwidth,
1.344 kHz max update rate

3-axis accelerometer,
±50 m/s^2 Full Scale,

0.002 m/s^2/√Hz,
30 Hz Bandwidth,

512 Hz max update rate
Magnetometers 3-axis digital magnetometer,

from ±1.3 gauss to ±8.1 gauss,
0.05 mGauss,

220 Hz max update rate

3-axis accelerometer,
±750 mGauss Full Scale,

0.05 mGauss,
10 Hz Bandwidth,

512 Hz max update rate
Maximum update rate

processing
250 Hz 512 Hz

Table 13 - INEMO® M1 board vs Xsens MTi

In order to execute the comparison, the two inertial platform boards were
aligned and fixed in a rigid support, as shown in the Figure 54. Both slow and fast
dynamics were performed. The Figure 55, Figure 56 and Figure 57 show as the
two IMU boards have a comparable behaviour.

Figure 54 - Rigid support to compare the two devices

66 |The Volcan UAV

Figure 55 - Roll comparison

Figure 56 - Pitch comparison

0 20 40 60 80 100 120
-200

-150

-100

-50

0

50

100

150

200

250
ROLL COMPARISON

[sec]

[D
E

G
]

ROLL iNEMO

ROLL MTI

0 20 40 60 80 100 120
-100

-80

-60

-40

-20

0

20

40

60

80
PITCH COMPARISON

[sec]

[D
E

G
]

PITCH iNEMO

PITCH MTI

IMU board | 67

Figure 57 - Yaw comparison

0 20 40 60 80 100 120
-100

-50

0

50

100

150
YAW COMPARISON

[sec]

[D
E

G
]

YAW iNEMO

YAW MTI

68 |The Asctec Hummingbird

Chapter III. The Asctec Hummingbird

III.1 Introduction

In this section the other aerial platform is treated, the Hummingbird
quadrotor produced by Asctec [60]. As discussed in the I.1.2.2 paragraph,
quadrotors and in general the multirotors have the advantage that they can be
controlled only by varying the speed of the propellers and thus fixed-pitch blades,
in contrast to helicopters, can be used. This aspect implies a simplification in the
design and in the control of the drones. Moreover, the use of four rotors allows
each individual rotor to have a smaller diameter, compared to a helicopter with
the same size, producing them to store less kinetic energy during the flight. In
order to compensate gyroscopic effect and aerodynamic torques, the front and
the rear propellers rotate counter-clockwise, while the others rotate clockwise
(Figure 58).

Figure 58 - Rotation of the quadrotor propellers

Introduction | 69

III.1.1 Quadrotor Movements

The total thrust generated by each motor is given by [45]:

௜ܶ = ௜ଶ߱௜ଶݎ௥௜ܣߩ்ܥ

Where, for any rotor i, Ari is the rotor disk area, ri is the radius of the
propeller, ωi is the angular velocity, CT is a thrust coefficient depending of
propeller geometry and ρ is the air density. In practice, a simple lumped
parameter model like the following is used:

௜ܶ = ෪்߱௜ଶܥ

In this equation, ܥ෪் > 0 represents a constant determined from static thrust
test, in order to include also the effects of the drag on the airframe induced by the
rotor flow. Consequently, the total thrust at hover applied to the airframe can be
easily calculated as the sum of the thrusts from each individual rotor:

ܶ = ෍| ௜ܶ|௡
௜ୀଵ = ෪்ܥ ෍ ߱௜ଶ௡

௜ୀଵ

The system is underactuated, and the remaining degrees of freedom (DoF)
corresponding to the translational velocity in the x-y plane must be controlled
through the system dynamics. In particular, in order to accomplish a given
movement, each rotor has to modify its thrust in the following way:

• Ascend: each rotor increases its angular velocity.

• Descend: each rotor decreases its angular velocity.

70 |The Asctec Hummingbird

Figure 59 - Representation of angular velocities during ascending and descending phases

• Turn Left: front and rear rotors increase their angular velocity while
the others two maintain unchanged their angular velocity.

• Turn Right: left and right rotors increase their speed while the others
two maintain unchanged their speed.

Figure 60 - Representation of angular velocities during the yaw motion

• Move forward: front rotor decreases its angular speed and rear rotor
increases it. The others two don’t change their angular speed.

• Move backward: front rotor increases its angular speed and rear
rotor decreases it. The others two don’t change their angular speed.

Introduction | 71

Figure 61 - Angular speeds during the move forward and backward phases

• Move right: right rotor decreases its angular speed and left rotor
increases it. The other two rotors maintain a constant angular speed.

• Move left: right rotor increases its angular speed and left rotor
decreases it. The other two rotors maintain a constant angular speed.

Figure 62 - Angular speeds during the move right and left phases

72 |The Asctec Hummingbird

III.2 The Hardware

The Hummingird used is equipped with:

• A three-axial IMU for attitude control.

• A GPS module for outdoor navigation.

• A barometric sensor for altitude measure.

In Table14 its main features are summarized, whereas in Figure 63 a sketch of
the quadrotor is shown.

Size 540 x 540 x 85,5 mm
Max. take off weight 0,71 kg

Max. payload 200 g
Flight time incl. payload 20 min.

Range 4,500 m ASL, 1,000 m AGL
Max. airspeed 15 m/s

Max. climb rate 5 m/s
Max. thrust 20 N

Wireless communication 2,4 GHz XBee link, 10–63 mW
Intertial guidance system AscTecAutoPilot with 1,000 Hz update rate

Flight modes GPS Mode, Height Mode, Manual Mode
Table14 – Asctec Hummingbird features

Figure 63 - Sketch of Hummingbird Asctec

As regards the autopilot, the Hummingbird adopts a different approach with
respect to the Volcan UAV (II.3). Indeed, the Hummingbird autopilot is
constituted by two ARM7 microcontrollers, a low level processor (LL) and a high
level processor (HL), in addition to several communication interfaces such as
UART, SPI and I2C. The tasks of the LL processor are the management of the
sensor data processing, data fusion, sending commands to the motor controller,
and above all the implementation of the basic attitude control in order to ensure
the stability of the system. The HL processor manages the GPS as well as it is

The Hardware | 73

responsible for the high level control algorithms, such as navigation through
waypoints. A key difference between the two microcontrollers is that the code of
the LL processor is not accessible and not editable, whereas in the HL processor
there is the possibility to implement user-defined code, in order to add sensors, to
accomplish a custom task and so on. To confirm this, the attitude control cannot
be disabled or bypassed, and it is always running in the three flight modes in
which the Hummingbird operates:

• GPS Mode (attitude, height and position control activated)

• Height Mode (attitude and height control activated)

• Manual Mode (attitude control activated)

As it is shown in Figure 64, the two processors communicate with a data rate of
1kHz.

Figure 64 - Block scheme Asctec autopilot

74 |The Asctec Hummingbird

III.3 The Software

The software platform is composed by three different blocks:

• A development environment to build the code inside the HL
processor.

• A graphical interface connected to the LL processor, in order to
receive and display the telemetry.

• A communication protocol, necessary to interface the quadrotor with
a PC or another device.

III.3.1 AscTec SDK

The AscTec HL SDK is a C-code framework in an Eclipse environment with
cross-compiler and debugger. It can be used as a starting point to program
different algorithms, sensor interfaces and communication protocols in C-Code.
It contains the basic configuration and the predefined control algorithms to use
immediately the quadrotor, furthermore it has a particular .c file (sdk.c) which is
triggered at 1 kHz, where new control strategies can be implemented.

III.3.2 AscTec AutoPilot Control

The HMI provided by AscTec (Figure 65) is connected to the LL processor
via an Xbee wireless link and it is used to execute basic operations, such as the
navigation through waypoints using a static map, motor setup, parameters setting,
sensors calibration and telemetry. However, with this HMI it is not possible
adding new features, such as to manage other sensors. Moreover, with this HMI
the HL processor is not used. This means that is not possible, among other
things, to use the HL processor to store a flight plan. In fact, to execute a
navigation task it is necessary that the drone and the remote PC are connected.
This represents a heavy limit to the drone potential, since the flight plan area have
to be smaller than the wireless module range.

The Software | 75

III.3.3 ACI Protocol

The AscTec Communication Interface (ACI) [46] is a communication
protocol developed by AscTec, in order to connect their UAVs and a user local
machine (remote software). It is designed for requesting variables, sending
commands and setting parameters. It is possible to create own packages to send
or receive data. The advantage of this method is that it is possible to choose
which variables shall be received, at which transmitting rate from the device, and
which commands and parameters is possible to send to or to set on the device.
There are two different modules for the AscTec Communication Interface
(Figure 66):

• ACI Device in C: a simple module for the UAV, where it's possible to set
easily, which variables, commands and parameters are available on the device and
which of them the local machine can choose.

• ACI Remote in C: a small module written in C to get all variables,
commands and parameters of the device. It only uses standard libraries and
works on every operating system.

Figure 65 - Screenshoot of AscTecAutoPilot

76 |The Asctec Hummingbird

Figure 66 - ACI protocol modules

Library development for ACI remote | 77

III.4 Library development for ACI remote

In the section III.3.2 it's clear to understand that the HMI provided to Asctec
is not suitable to develop complex tasks, not to mention the possibility to manage
third part devices connected, for example, to an I2C port of the HL processor. In
a few words, a more powerful HMI is needed. A first step in this direction is
represented by the ACI protocol, discussed in the previous part, constituted by a
set of C-language files. However, if the ACI device packet (onboard the drone) it
is well suited to be used in the HL processor, which is generally programmed
with a C language IDE (Eclipse), on the other hand the C files of the ACI remote
packet are not suitable to be used in those IDEs with a high level graphical
language. For this reason a DLL library file has been developed, in order to make
the interface between the drone and a graphical IDE, such as LabView, simpler.
Moreover, in addition to ACI remote standard functions [46], several functions
have been added in order to simplify the connections and the data exchange
between the drone and the HMI.

III.4.1 Connection initialization

init_ACI
The first function in this category is used to initialize the ACI protocol in the

HMI and to initialize all the internal variables and flags. The prototype of this
function is the following:

void init_ACI(void);

getSystemInfo
This function is called when the operator needs information such as software

version and max number of variable packets. The prototype is:

void getSystemInfo(SystemInfo *info);

Where SystemInfo is the following struct:

78 |The Asctec Hummingbird

typedefstruct

{
unsigned char verMajor;
 unsigned char verMinor;
 unsigned char maxNameLength;
 unsigned char maxDescLength;
 unsigned char maxUnitLength;
 unsigned char maxVarPackets;
 unsigned char memPacketMaxVars;
 unsigned short flags;
 unsigned short dummy[8];

}SystemInfo;

III.4.2 Variables management

In the ACI protocol the variables are the read only data. The whole list is
present in [47]. The variables transmitted are managed by means of packets.
Every packet can include a max number of variables and it is possible to assign a
different data rate to each packet. Even if theoretically there is no a max number
of packets, the online documentation recommends to use a max number of three
packets, in order to avoid overloading of the transmission channel. Every variable
is identified by an ID, a short description and a data type. The following struct
shows the variable modeling.

typedef struct{
 unsigned short id;
 unsigned char varType;

char value_int8;
unsigned char value_u_int8;
short value_int16;
unsigned short value_u_int16;
int value_int32;
 unsigned int value_u_int32;
float value_float;

}Packet;

This struct is used also to model the commands and the parameters.

Library development for ACI remote | 79

varListUpdateFinished
Before using the variable packets, it is necessary to synchronize the HMI

receiving their complete list. After the calling of the function
aciGetDeviceVariablesList (see [46]), the ACI protocol executes the following
function, which sets a flag indicating that the variables list has been updated:

void varListUpdateFinished(void);

var_packetX_management with X=1,2,3
At the beginning of the paragraph it was explained that a variables packet can

include a different number of variables (up to twenty). Moreover, there are
different types of variables, such as 8bit, 16bit, 32bit integer or float. In order to
maximize the flexibility of the code, the generic variables packet is modeled as it
follows:

• A transmission rate.

• A packet size, i.e. the number of variables included in the packet.

• An array of variable types, which identifies the type of each variable.

• An array of ID, which identify each variable.

• An array of packet struct, in which the variables are stored. This array
is a global variable, so does not appear in the function prototype.

Then, the prototype of the function that generates the packet is the following:

void var_packetX_management(unsigned short transmission_rate,
unsigned char packet_size,unsigned char vartype_array[],
unsigned short ID_array[]);

For the sake of clarity, consider a variables packet example with the following
items:

• motor_rpm[1], ID 0x0100, type UINT8

• GPS_latitude, ID 0x0106, type INT32

• battery_voltage, ID 0x0003, type INT16

Graphically, the DLL creates the packet as it is shown in Figure 67:

80 |The Asctec Hummingbird

Figure 67 - var packet management

get_variables_packedX with X=1,2,3
This function is used to send sensors data to the HMI. Also in this case there

is the problem that a packet can contain a different number of variables, of
different types. A solution to this problem is to use a 32bit array (passed as
pointer) to send the variables, and to use the function memcpy to convert the 32bit
data in the correct format. The information about the correct datatype of the
variable can be taken by the Vartype_array used in the previous function. The
prototype of the function is the following:

void get_variables_packedX(unsigned int *variables);

Continuing the previous example, the DLL creates the array, as shown in Figure
68:

Library development for ACI remote | 81

Figure 68 get variable packet

Now the variables, contained in the packed0, can be used to the HMI.

reset_var_packedX with X=1,2,3
This function simply flushes the variables packet. Its prototype is the

following:

void reset_var_packedX(void);

III.4.3 Commands management

In the ACI protocol the commands are the write only data. The whole list is
presented in [47]. The organization of the commands packets is the same of the
variables, so similar functions have been implemented. The only difference is that
instead of the function GETvariable, there is a SETcommand function. They are:

void cmdListUpdateFinished(void);

voidcom_packetX_management(unsigned short transmission_rate,
unsigned char packet_size,unsigned char cmdtype_array[],
unsigned short ID_array[]);

82 |The Asctec Hummingbird

voidset_commands_packedX(unsigned int *variables);

void reset_com_packedX(void);

III.4.4 Parameters management

In the ACI protocol the parameters are both read and write data. The whole
list is presented in [47]. The parameters packet functions are the same of the
commands packet functions. They are:

voidparamListUpdateFinished(void);

voidpar_packetX_management(unsigned short transmission_rate,
unsigned char packet_size,unsigned charpartype_array[],
unsigned short ID_array[]);

voidset_parameters_packedX(unsigned int *variables);

void reset_par_packedX(void);

Introduction | 83

Chapter IV.
The Multiplatform Drone HMI

IV.1 Introduction

A disadvantage of using a heterogeneous fleet of UAVs is represented by the
different HMIs necessary to supervise them. In order to implement complex
cooperation tasks, a data exchange between the different HMIs is mandatory. A
smart solution to overcome this drawback is represented by the development of a
multiplatform HMI capable to manage different type of UAV; in this case of
study, this HMI, developed in LabView, has the following features:

• Possibility to manage, monitor and supervise different robotic platforms
by a single remote station.

• Compliant with CANAerospace and ACI protocol.

• Online Telemetry and datalog for post processing.

• On line mapping by means principal providers such as GoogleMap,
BingMap and OpenStreetMap.

• Complete managing of waypoint lists and routes.

LabView [48] is a graphical programming language that uses icons instead of
text to create applications. In contrast with the conventional textual programming
languages, in which the instructions determine program execution, LabView uses
the programming based on the data flow, i.e. the flow of data determines the
program execution. Any LabView application is made of two parts (Figure 69):

• The Front Panel: in this form are present buttons, knobs, text boxes and
so on. It is the effective interface with which the operator interacts.

• The Block Diagram: very similar to a block scheme, in this window there
are the relations and the links between the various elements of the
LabView Front Panel.

84 |The Multiplatform Drone HMI

Summarizing, generally a block in LabView has a double representation: one
for the operator (in the front panel) and one for the application developer (in the
diagram panel).

Figure 69–LabView: Front Panel and Block Diagram

An application developed in LabView is named VI, i.e. Virtual Instrument. A
given VI has a set of input and output parameters, like a conventional C function.
Moreover, it is possible to use a VI within another LabView application. In this
case, often the name subVI is used.

The following two sections are so organized: the first one discusses about the
various classes of subVI developed, the second one explains the HMI developed
for the Volcan and the Asctec Hummingbird.

LabView subVIs | 85

IV.2 LabView subVIs

The subVIs treated in this chapter, have been implementes in order to develop
LabView applications with specific features, such as CANbus connection, ACI
connection and online mapping.

IV.2.1 CANbus subVIs

The CANbus connectivity between the bus and the PC is realized by means of
the PCAN-USB converter by Peak-system [55] (Figure 70). Even if the Peak-
system releases a set of LabView subVIs [56], further subVIs based on this suite
have been developed in order to simplify the CANbus management.

Figure 70 - PCAN-USB

IV.2.1.1 PCAN connection.vi

This subVI manages the connection and the disconnection to the CANbus.
The prototype is shown in Figure 71, whereas the front panel and the block
diagram of a typical application is shown in Figure 72.

Figure 71 - PCAN connection.vi

86 |The Multiplatform Drone HMI

Figure 72 - PCAN connection example

IV.2.1.2 PCAN receive.vi

Once the PC is connected to the CANbus, the use of this VI makes it
possible the reception of the CANbus frames. The prototype is shown in Figure
73, whereas the front panel and the block diagram of a typical application are
shown in Figure 74.

Figure 73 - PCAN receive.vi

Figure 74 - PCAN receive example

The output Read Frame is a cluster, i.e. the equivalent of a struct in C-language,
that models a frame received from a CANbus. As it is shown in Figure 74, it has
the following fields:

LabView subVIs | 87

• The enum MSG type, that identifies the different types of frames, such
as standard, extended, remote request and so on.

• The ID field.

• The DLC field.

• Eight byte used as data field.

• The Cycle time field, expressed in ms, that indicates the time elapsed
between the current frame and the previous one.

• The Count field, that counts the total number of frames received.

IV.2.1.3 PCAN Send.vi

This subVI is the dual of the previous one. It manages the transmission of
CANbus frames. The prototype and a typical application are shown in the
following figures. The input cluster Send Frame has the same fields of the Read
Frame explained previously.

Figure 75 - PCAN send.vi

Figure 76 - PCAN Send example

88 |The Multiplatform Drone HMI

IV.2.2 FTDI subVIs

To connect the Asctec Hummingbird to the PC, an USB-RS232 converter or
an Xbee device are needed. Both of them are based on chip produced by FTDI
[57], which converts USB protocol in RS232 protocol. This company releases a
full set of LabView subVI (available at [58]), that allows a simple interface with its
devices, without any further subVI.

IV.2.3 ACI protocol subVIs

In LabView there is the possibility to import a DLL file in order to create a
VI from each function within it. This tool is the “Import Shared Library”. In this
way, the functions managing the ACI protocol, treated in the section III.4 can be
used in LabView by means of a set of subVIs. The prototypes of the subVI
created in this way, are exactly the same of their C-language counterpart (Figure
77), therefore to explain them again would be an unnecessary duplication.

Figure 77 - Example of matching between C-function and subVI

In addition to the DLL-imported subVI, a couple of polymorphic subVI have
been developed, ALL_2_UINT32.vi and UINT32_2_ALL.vi (Figure 78), in
order to make easier the use of the functions such as get_variables_packedX (III.4.2)
or set_commands_packedX (III.4.3). These subVIs fit, respectively, any numeric type
variable in a memory location suitable to store a 32bit unsigned integer variable
and viceversa. In a few words, is similar to a memcpy instruction in C-code.

LabView subVIs | 89

Figure 78 - Polymorphic subVIs

IV.2.4 Datalog subVIs

A key feature of the HMI developed, regards the possibility to execute a log of
the telemetry, choosing the variables to be logged, with a given sample time. In
order to maximize the flexibility and the exportation simplicity, the following
subVIs have been developed.

IV.2.4.1 Create Header Datalog.vi

This subVI modifies dynamically the header of the datalog, according to the
input parameter "Select Variable". In Figure 79 an example regarding a VOLCAN
datalog is shown.

Figure 79 - Create Header Datalog Example

IV.2.4.2 Record Data.vi

In a similar way to the previous subVI, this one updates the string variable
Datalog OUT. To make this, at each execution this subVI adds a row to the Datalog
IN variable, inserting those variables selected in the Select variable input parameter.

90 |The Multiplatform Drone HMI

In Figure 80 the prototype for the Volcan datalog is shown. The clusters Sensor
IN, Actuators IN and Assisted mode ref. value are shown in the Figure 102 in the next
chapter.

Figure 80 - Record Data.vi

IV.2.5 Instruments subVIs

Even if LabView owns a lot of graphic indicators, a customized set of flight
instruments has been developed, exploiting the connectivity between LabView
and .NET code. The basic idea is the design of a custom flight instrument,
composed by the following parts:

• A background image.

• An image which represents the needle

• A numeric input which indicates the needle rotation over the
background image.

To create a background image in LabView, simply create a picturebox and set its
property background image, indicating the path of the chosen image (Figure 81).

Figure 81 - Picturebox background image.

As concern the needle, the procedure is the same, but in this case the
picturebox property is simply image. At last, the rotation of the needle requires a
specific DLL file, whose source files in C# code is available at [49]. From this
DLL a subVI has been created, Rotate image.vi. In Figure 82 its prototype is shown,
whereas the Figure 83 shows an example of a flight instrument.

LabView subVIs | 91

Figure 82 - Prototype of "Rotate image.vi"

Figure 83 - Example of a flight instruments

IV.2.6 Mapping subVIs

The biggest limit of the Asctec HMI, discussed in the section III.3.2, lies in
the fact that a static map is used. This means that, before to begin a new mission
a georeferenced image of the location has to be loaded. To overcome this
limitation, the LabView HMI developed use a set of subVIs based on the DLL
files of the GMap.NET open source platform [50].

IV.2.6.1 Map provider.vi

This subVI binds a given map provider, selectable by means of an ENUM
control, to an instance of the .NET class GMap.NET.MapProviders. The
options are summarized in Table 15

Provider .NET class
BingMap Hibrid GMap.NET.MapProviders.BingHybridMapProvider
BingMap Satellite GMap.NET.MapProviders.BingSatelliteMapProvider
BingMap GMap.NET.MapProviders.BingMapProvider
GoogleMap GMap.NET.MapProviders.GoogleMapProvider
OpenStreetMap GMap.NET.MapProviders.OpenStreetMapProvider
YahooMap Hybrid GMap.NET.MapProviders.YahooHybridMapProvider
YahooMap Satellite GMap.NET.MapProviders.YahooSatelliteMapProvider
YahooMap GMap.NET.MapProviders.YahooMapProvider

Table 15 - Map provider options

92 |The Multiplatform Drone HMI

Figure 84 - Map provider.vi prototype

IV.2.6.2 Init GmapControl.vi

The aim of this subVI is to initialize the GMap control, i.e. the portion of the
screen in the LabView application where the dynamic map will be shown. The
editable properties are:

• The map provider

• The GMap mode: only server, server and cache, only cache.

The other properties, fixed by default, are summarized in Table 16:

GMap property value
Dimension 600x1100 pixels

Drag button With mouse left button
Min Zoom Value 1
Max Zoom Value 22
Cache Capacity 250MB
Table 16 - GMap Control default properties

As shown in Figure 85, this subVI returns the Gmap Overlays, a set of layers in
which graphic elements can be inserted.

Figure 85– InitGmapControl.vi prototype

IV.2.6.3 Init Gmap Overlays.vi

The overlays initialization is accomplished by means of this subVI. Generally,
for any robotic platform, three layers are used: a layer to draw the waypoints, a
second layer to draw the route and a last one to draw polygons.

Figure 86 - Init Gmap Overlays.vi prototype

LabView subVIs | 93

IV.2.6.4 Current coordinates.vi

This subVI is used to obtain the geographic coordinates pointed to the mouse
cursor, when it is over the map. In addition to the GMap control and the mouse
position, the subVI needs the position of the GMap control respect to the LabView
application (Left and Top input in Figure 87). The outputs are the mouse
geographic coordinates, together with the limit coordinates of the displayed map.

Figure 87 - Current coordinates.vi prototype

IV.2.6.5 LAT LON 2 pixel.vi

This subVI is the dual of the previous one. For a given geographic
coordinates, the subVI returns the corresponding pixel coordinates (top and left)
in the GMap control. As will be discussed in the next paragraph, such subVI is used
to place an image in the map.

Figure 88 - LAT LON 2 pixel.vi prototype

IV.2.6.6 Show picture on map.vi

The following subVI is used to show an image over a GMap control, in a given
position. In Figure 89 the prototype is shown.

Figure 89 - Show picture on map.vi prototype

94 |The Multiplatform Drone HMI

To make this, the following steps have to be accomplished:

• Create a .NET reference of the class System.Drawing.Bitmap,
using the chosen image.

Figure 90 - create the image reference

• Create a .NET reference of the class System.Drawing.Graphics,
used as input in the subVI (Figure 89).

Figure 91 - create the Graphics reference

• Since the center of the image is out of phase for 29 pixels along x and y,
to show it over the map correctly, it is necessary to draw the block
diagram in Figure 92. The resulting front panel is shown in Figure 93.

Figure 92 - example of block diagram with Show picture on map.vi

LabView subVIs | 95

Figure 93 - Example of Front panel with Show picture on map.vi

IV.2.6.7 Show Waypoint.vi

The task of the subVI developed is to display a given set of waypoint over the
GMap control. Its prototype is shown in Figure 94. The Route IN input is an array
of cluster which models a waypoint (Figure 95).

Figure 94 - Show Waypoint.vi prototype

Figure 95 - waypoints example

96 |The Multiplatform Drone HMI

IV.2.6.8 Save and Load Waypoint List.vi

This pair of files has been developed to save and load a set of waypoints. Save
Waypoint List creates a WPL file (WayPoint List), where the waypoints are stored.
Viceversa, Load Waypoint List displays on the map the waypoints previously saved
in a WPL file, with the possibility to append them in a preexisting list.

Figure 96 - subVI to save and load WPL files

IV.2.6.9 Update Route.vi

The route of the drone is modeled by a simple matrix, in which in its columns
latitude, longitude and time are stored. The matrix updating is executed only
when the drone covers a distance greater than the chosen threshold.

Figure 97 - Update route.vi prototype

IV.2.6.10 Show Route.vi

This subVI has been developed in order to make the drawing of a route over a
GMap control simpler. In Figure 98 the prototype is shown.

Figure 98 - Update Route prototype

LabView subVIs | 97

The input list point of UAV route is a reference of the .NET class
System.Collections.Generic.List’1.

IV.2.6.11 Save and Load Route.vi

This pair of files has been developed to save and load an UAV route. Save route
creates a ROR file (Route Of Robot), where the route is stored. Viceversa, Load
Route displays on the map the route previously saved in a ROR file.

Figure 99 - subVI to save and load ROR files

98 |The Multiplatform Drone HMI

IV.3 LabView HMI

The libraries introduced in the previous section represent the bricks necessary
to build the final HMI treated in this one.

IV.3.1 Different drones, one HMI

Exploiting the show icon on map.vi (IV.2.6.6), it is possible to display different
robotic platforms: just choose an icon and assign it a couple of geographic
coordinates. In Figure 100, the latitude and longitude from the CANAerospace
are assigned to the icon of the Volcan, whereas the coordinates from ACI
protocol are assigned to the icon of the Hummingbird.

Figure 100 - Example of icons on map

IV.3.2 CANbus and ACI connection

As concern the connection to the drones, the Figure 101 shows the forms
dedicated to the connection with the CANbus (left side) and the ACI protocol
(right side).

LabView HMI | 99

Figure 101 - Drones connection

IV.3.3 Telemetry and Datalog

Once the ACI connection is established, it is possible to choose which,
variables, commands and parameters manage. In Figure 103 the forms for
variables, commands and parameters management are shown. As regards the
Volcan UAV, an important part coincides with the management of the control
loop, in order to execute an optimal tuning (II.3.4). In Figure 102 the form
dedicated for the telemetry and the tuning of the PID gains in shown.

Figure 102 - Telemetry and PID tuning on the Volcan

100 |The Multiplatform Drone HMI

Figure 103 - Variables, Commands and Parameters management

LabView HMI | 101

In order to log the data relating to the Volcan and the Hummingbird, the
form for the datalog setup, shown in Figure 104, has been developed.

Figure 104 - Datalog form

IV.3.4 Map providers

The adoption of the GMap.NET framework permits to use different map
provider.

Figure 105 - Examples of map providers

102 |The Multiplatform Drone HMI

This is useful because, for example, a satellite image provides a lot of detail of
the environment, but generally the maximum level of zoom is lower than a
conventional map. The Figure 105 shows the same place, the DIEEI laboratories,
from different map providers.

IV.3.5 Waypoints and routes

The subVI treated in the sections IV.2.6.7 - IV.2.6.11 have been used to
develop the waypoint and route management. In Figure 106 an example of
waypoint and route management is shown.

Figure 106 - WPs and route management

Finally, in Figure 107 an example is shown.

LabView HMI | 103

Figure 107 - Mapping example

104 |Conclusions

Conclusions

Potentialities

The effectiveness of the developed Volcan control system has been confirmed
by several flight tests, one of them is treated in [17]. Other satisfactory tests have
been executed also with the Maya model by Bormatec [61] (Figure 108).

As concerns the IMU board, the comparison with other commercial inertial
platforms has confirmed its potentialities. However, some improvements could
be introduced, such as the compensation of the magnetometer disturbs caused by
external magnetic field close to the IMU.

As regards the Hummingbird quadrotor, the developed ACI library has made
possible to control and supervise the robotic platform, not to mention the
possibility to integrate and manage different payloads.

Finally the Multiplatform Drone HMI represents a powerful tool capable to
manage different UVSs, in order to accomplish complex tasks that require
coordination and cooperation between the different robots.

Figure 108 - Maya by Bormatec

Limits | 105

Limits

As regards the autotuning of the Volcan control loops, the algorithm requires the
insertion of initial values of the PID gains, based on the designer experience.
However, in case of a new type of aircraft with its own dynamic model, this
approach could be really complex and risky, because the initial values could carry
the system to an instable condition. Moreover, there is no guarantee that the PID
gains achieved by our tuning algorithm are optimal and that they guarantee a
robust stability. The adoption of genetic algorithms to set up a multi-objective
optimization problem could improve this point.
Another limit to take into consideration resides in the precision of the GPS used
in both aerial platform [51]. The accuracy of a couple of meters could represent a
really disabling limit for tasks that require high precision positioning, such as
collision avoidance and robots cooperation.

Future works

The next step of this work will be the development of a sensor board with
RTK GPS, capable to ensure a centimetric accuracy.

Furthermore, several enhancements of the LabView HMI, such as the
managements of UGVs, is currently under study.

106 |Volcan control system schematics

Appendix A.
Volcan control system schematics

FCCS Schematic

Figure 109 - FCCS Schematic

SACS Schematic | 107

SACS Schematic

Figure 110 - SACS Schematic

108 |Volcan control system schematics

UDP2CAN Schematic

Figure 111 - UDP2CAN Schematic

Sensor Board Schematic | 109

Sensor Board Schematic

Figure 112 - Sensor Board Schematic

110 |Volcan control system schematics

IMU Board Schematic

Figure 113 - IMU Board Schematic

NSH Frames | 111

Appendix B. IMU Board CANAerospace
frames

NSH Frames

As mentioned in the section II.2.3.1, these frames classes are used to
configure the system or to send and receive state information.

IDS (Identification service)
This frame is generally sent by the HMI to the IMU in order to get

information regarding HW and FW version. Moreover it is also used to ping the
system.

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node ID Data type Service
code

Message
code

5 AS_NODATA
(0x0) IDS (0x0) 0 0 0 0 0

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node ID Data type Service
code

Message
code

5 AS_UCHAR_2
(0x13)

IDS (0x0) Error Flag IMU_Hw_rev IMU_Sw_rev 0 0

DTS (Data Transfer Service)
This frame is used to configure the sending data. This frame contains the

following fields organized as it follows:

• Data4: In this byte the flag TransferMode is inserted, whose value identifies
a data transmission in streaming mode (TransferMode = 0) or in remote
request (TransferMode = 1).

• Data5: in the case of streaming mode, in this field the value of the
streaming frequency in Hz is inserted.

• Data6 and Data7: in these two bytes there are the variable DataSelection,
whose each individual bits identify the presence or absence of the
corresponding variable (see Table 17) in the data streaming. A bit set to 1

112 |IMU Board CANAerospace frames

means that the variable is sent, otherwise the bit set to 0 means that the
variable is not present in the data streaming.

DataSelection Variable
Bit 0 Roll
Bit 1 Pitch
Bit 2 Yaw
Bit 3 Quat-Q0
Bit 4 Quat-Q1
Bit 5 Quat-Q2
Bit 6 Quat-Q3
Bit 7 AccX
Bit 8 AccY
Bit 9 AccZ

Bit 10 GyrX
Bit 11 GyrY
Bit 12 GyrZ
Bit 13 MagX
Bit 14 MagY
Bit 15 MagZ

Table 17 - DataSelection values

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node
ID

Data type Service
code

Message
code

 DataSelection

5 AS_UCHAR_4
(0x10)

DTS(0xD4) 0 Transfer
Mode

Datarate
[Hz]

MSB LSB

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node
ID

Data type Service
code

Message
code

 DataSelection

5 AS_UCHAR_4
(0x10)

DTS(0xD4) Error Flag Transfer
Mode

Datarate
[Hz]

MSB LSB

RTS (Raw Data Transfer Service)
This frame is used to configure the sending of raw data, i.e. the data coming

from the IMU sensors (16bit) without any modifications. This frame contains the
fields organized as it follows:

• Data4 and Data5 : these bytes have the same meaning of the DTS frame.

• Data7: in this byte the RawDataSelection variable will be transmitted, whose
each individual bit identifies the presence or absence of the corresponding
variable (see Table 18) in the raw data streaming.

NSH Frames | 113

RawDataSelection Variable
Bit 0 Degub Frame 1
Bit 1 Degub Frame 2
Bit 2 Degub Frame 3
Bit 3 Degub Frame 4
Bit 4 Degub Frame 5

Table 18 – RawDataSelectionvalues

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node
ID

Data type Service
code

Message
code

5 AS_UCHAR_3
(0x1B)

RTS(0xD8) 0 RawTransfer
Mode

Raw
Datarate

[Hz]

 RawData
Selection

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node
ID

Data type Service
code

Message
code

5 AS_UCHAR_3
(0x1B)

RTS(0xD8) Error
Flag

RawTransfer
Mode

Raw
Datarate

[Hz]

 RawData
Selection

SSS (Start and Stop data transfer Service)
This frame is used to manage both the data streaming and the raw data

streaming, where they are in streaming mode. Each stream has a flag, respectively
StartStopData (Data6) and StartStopRawData (Data7), whose values represent the
following meaning:

• 1, start streaming.

• 2, stop streaming.

• 0, streaming unchanged.

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node
ID

Data type Service
code

Message
code

5 AS_UCHAR_2
(0x13)

SSS(0xD5) 0 0 0 StartStop
Data

StartStop
RawData

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node
ID

Data type Service
code

Message
code

5 AS_UCHAR_2
(0x13)

SSS(0xD5) Error
Flag

0 0 StartStop
Data

StartStop
RawData

114 |IMU Board CANAerospace frames

CDS (Control Parameters download service)

This frame is used to load the configuration parameters in the inertial
platform. The selection of the parameter depends on the value of
parameter_identifier, in according with the following table:

parameter_identifier Description Parameter name
0 Ellipsoid eccentricity X EccX
1 Ellipsoid eccentricity Y EccY
2 Ellipsoid eccentricity Z EccZ
3 Ellipsoid radius X ErX
4 Ellipsoid radius Y ErY
5 Ellipsoid radius Z ErZ
6 X component magnetic field EmfX
7 Y component magnetic field EmfY
8 Z component magnetic field EmfZ
9 X component gravity field GX

10 Y component gravity field GY
11 Z component gravity field GZ
12 Offset Roll offset_Roll
13 Offset Pitch offset_Pitch
14 Offset Yaw offset_Yaw

Table 19 - Parameter identifier values

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node
ID

Data type Service
code

Message code Variable name:
Param_x

5 AS_FLOAT(0x02) CDS(0xA3) Parameter
identifier

Float
MSB

Float2 Float3 Float
LSB

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node ID Data type Service code Message code Variable name:
Param_x

5 AS_FLOAT(0x02) CDS(0xA3) Parameter
identifier

Float
MSB

Float2 Floa_3 Float
LSB

CUS (Control Parameters upload service)

This is the dual frame of the CDS. It provides the upload of a given parameter
from the IMU to the HMI. The value of the variable parameter_identifier is the
same of the CDS frame.

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node
ID

Data type Service
Code

Message
code

5 AS_NODATA(0x0) CUS(0xA5) Parameter
identifier

0 0 0 0

NSH Frames | 115

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node ID Data type Service
Code

Message
code

Variable name:
Param_x

5 AS_FLOAT
(0x02)

CUS(0xA5) Parameter
identifier

Float
MSB

Float_2 Float_3 Float
LSB

PRS (Parameters Reset Service)
This service is used to set the default value of a parameter (chosen in

according to Table 19).

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node
ID

Data type Service
code

Message code

5 AS_NODATA(0x0) PRS(0xCB) Parameter
identifier

0 0 0 0

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node
ID

Data type Service
code

Message
code

Variable name:
Param_x

5 AS_FLOAT(0x02) PRS(0xCB) Parameter
identifier

Float
MSB

Float_2 Float_3 Float
LSB

CMU (Change Measurement Unit)
With this service it is possible to set the unit of measurement of the Euler

angles, respectively in radians (Unit = 0) or in degrees (Unit = 1).

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node ID Data type Service code Message code

5 AS_UCHAR (0x0A) CUM(0xD3) 0 0 0 0 Unit

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node ID Data type Service code Message code

5 AS_UCHAR (0x0A) CUM(0xD3) Error Flag 0 0 0 Unit

116 |IMU Board CANAerospace frames

ROS (Reset Orientation Service)

Using this service the attitude of the IMU (roll and pitch) is reset. This frame
is useful when there is a rotation between the reference system fixed to the
airframe and the reference system fixed to the IMU.

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node
ID

Data type Service
code

Message
code

5 AS_NODATA(0x0) ROS(0xD6) 0 0 0 0 0

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node ID Data type Service
code

Message
code

5 AS_NODATA(0x0) RCS(0xD6) Error Flag 0 0 0 0

RHS (Reset Heading Service)
This frame provides a reset of the yaw, that in this case it does not point to

north anymore.

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node ID Data type Service code Message code

5 AS_NODATA(0x0) RHS(0xD7) 0 0 0 0 0

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex:0x83

Node ID Data type Service code Message code

5 AS_NODATA(0x0) RHS(0xD7) Error Flag 0 0 0 0

NSH Frames | 117

RCS (Reset CPU Setting Service)
This last service executes the reset of the onboard microcontroller.

HMI ->IMU
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_REQ_1_ID
dec:130

hex:0x82

Node ID Data type Service
code

Message
code

5 AS_NODATA(0x0) RCS(0xD2) 0 0 0 0 0

IMU ->HMI
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

NS_RSP_1_ID
dec:131

hex: 0x83

Node ID Data type Service
code

Message
code

5 AS_NODATA(0x0) RCS(0xD2) Error Flag 0 0 0 0

118 |IMU Board CANAerospace frames

NOD frames

The following frames are used to send the calibrated data of the IMU via
CANAerospace.

Pitch:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_PITCH_ANGLE_ID
dec:311

hex: 0x137

Node
ID

Data type Service
code

Message
code

Variable name:
Pitch [rad]

5 AS_FLOAT
(0x02)

0 0 Float
MSB

Float_2 Float_3 Float
LSB

Roll:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_ROLL_ANGLE_ID
dec:312

hex: 0x138

Node
ID

Data type Service
code

Message
code

Variable name:
Roll[rad]

5 AS_FLOAT
(0x02)

0 0 Float
MSB

Float_2 Float_3 Float
LSB

Yaw:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

HEADING_ANGLE_ID
dec:321

hex: 0x141

Node
ID

Data type Service
code

Message
code

Variable name:
Heading [rad]

5 AS_FLOAT
(0x02)

0 0 Float
MSB

Float_2 Float_3 Float
LSB

Longitudinal Acceleration (X):

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7
BODY_LONG_ACC_ID

dec:300
hex:0x12C

Node
ID

Data type Service
code

Message
code

Variable name:
acc_X [m]/[sec²]

5 AS_FLOAT
(0x02)

0 0 Float
MSB

Float_2 Float_3 Float
LSB

Lateral Acceleration (Y):
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_LAT_ACC_ID
dec:301

hex: 0x12D

Node
ID

Data type Service
code

Message
code

Variable name:
acc_Y[m]/[sec²]

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Normal Acceleration (Z):

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7
BODY_NORM_ACC_ID

dec:302
hex:0x12E

Node
ID

Data type Service
code

Message
code

Variable name:
acc_Z[m]/[sec²]

5 AS_FLOAT
(0x02)

0 0 Float
MSB

Float_2 Float_3 Float
LSB

NOD frames | 119

Quaternion q0:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_QUAT_Q0_ID
dec:1500

hex:0x5DC

Node
ID

Data type Service
code

Message
code

Variable name:
Quat_q0

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Quaternion q1:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_QUAT_Q1_ID
dec:1501

hex:0x5DD

Node
ID

Data type Service
code

Message
code

Variable name:
Quat_q1

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Quaternion q2:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_QUAT_Q2_ID
dec:1502

hex:0x5DE

Node
ID

Data type Service
code

Message
code

Variable name:
Quat_q2

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Quaternion q3:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_QUAT_Q3_ID
dec:1503

hex:0x5DF

Node
ID

Data type Service
code

Message
code

Variable name:
Quat_q0

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Gyroscope X:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_GYR_X_ID
dec:1504

hex:0x5E0

Node
ID

Data type Service
code

Message
code

Variable name:
gyr_X [DEG]/[sec]

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Gyroscope Y:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_GYR_Y_ID
dec:1505

hex:0x5E1

Node
ID

Data type Service
code

Message
code

Variable name:
gyr_Y[DEG]/[sec]

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Gyroscope Z:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_GYR_Z_ID
dec:1506

hex:0x5E2

Node
ID

Data type Service
code

Message
code

Variable name:
gyr_Z[DEG]/[sec]

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

120 |IMU Board CANAerospace frames

Magnetometer X:

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7
BODY_MAGN_X_ID

dec:1507
hex:0x5E3

Node
ID

Data type Service
code

Message
code

Variable name:
Magn_X [G]

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Magnetometer Y:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_MAGN_Y_ID
dec:1508

hex:0x5E4

Node
ID

Data type Service
code

Message
code

Variable name:
Magn_Y [G]

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

Magnetometer Z:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

BODY_MAGN_Y_ID
dec:1509

hex:0x5E5

Node
ID

Data type Service
code

Message
code

Variable name:
Magn_Z [G]

5 AS_FLOAT(0x02) 0 0 Float
MSB

Float_2 Float_3 Float
LSB

DSD frames | 121

DSD frames

The following frames are used to send the uncalibrated raw data of the IMU
via CANAerospace.

Debug Frame 1, raw data accelerometer, x e y axis:

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7
DEBUG_FRAME_1_ID

dec:1920
hex:0x780

Node
ID

Data type Service
code

Message
code

raw_Acc_X raw_Acc_Y

5 AS_USHORT_2
(0x0D)

0 0 MSB LSB MSB LSB

Debug Frame 2, raw data accelerometer z e gyroscope x axis:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

DEBUG_FRAME_2_ID
dec:1921

hex:0x781

Node
ID

Data type Service
code

Message
code

raw_Acc_Z raw_Gyr_X

5 AS_USHORT_2
(0x0D)

0 0 MSB LSB MSB LSB

Debug Frame 3, raw data gyroscope y e z axis:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

DEBUG_FRAME_3_ID
dec:1922

hex:0x782

Node
ID

Data type Service
code

Message
code

raw_Gyr_Y raw_Gyr_Z

5 AS_USHORT_2
(0x0D)

0 0 MSB LSB MSB LSB

Debug Frame 4, raw data magnetometer x e y axis:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

DEBUG_FRAME_4_ID
dec:1923

hex:0x783

Node
ID

Data type Service
code

Message
code

raw_Mag_X raw_Mag_Y

5 AS_USHORT_2
(0x0D)

0 0 MSB LSB MSB LSB

Debug Frame 5, raw data magnetometer z e temperature:
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

DEBUG_FRAME_5_ID
dec:1924

hex:0x784

Node
ID

Data type Service
code

Message
code

Temperature raw_Mag_Z

5 AS_USHORT_2
(0x0D)

0 0 MSB LSB MSB LSB

122 |References

References

[1] Petricca, Luca, Per Ohlckers, and Christopher Grinde. "Micro-and nano-air
vehicles: State of the art." International Journal of Aerospace Engineering
2011 (2011).

[2] Valavanis, Kimon P., ed. Advances in unmanned aerial vehicles: state of the
art and the road to autonomy. Vol. 33. Springer, 2008.

[3] Valavanis, Kimon P., and George J. Vachtsevanos. "Future of Unmanned
Aviation." Handbook of Unmanned Aerial Vehicles. Springer Netherlands,
2014. 2993-3009.

[4] Quaritsch, Markus, et al. "Networked UAVs as aerial sensor network for
disaster management applications." e & i Elektrotechnik und
Informationstechnik 127.3 (2010): 56-63.

[5] Maza, Iván, et al. "Experimental results in multi-UAV coordination for
disaster management and civil security applications." Journal of intelligent &
robotic systems 61.1-4 (2011): 563-585.

[6] Grenzdörffer, G. J., A. Engel, and B. Teichert. "The photogrammetric
potential of low-cost UAVs in forestry and agriculture." The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 31.B3 (2008): 1207-1214.

[7] Metni, Najib, and Tarek Hamel. "A UAV for bridge inspection: Visual
servoing control law with orientation limits." Automation in construction
17.1 (2007): 3-10.

[8] Winkvist, Stefan, Emma Rushforth, and Ken Young. "Towards an
autonomous indoor aerial inspection vehicle." Industrial Robot: An
International Journal 40.3 (2013): 196-207.

[9] Murphy, Douglas W., and James Cycon. "Applications for mini VTOL UAV
for law enforcement." Enabling Technologies for Law Enforcement and
Security. International Society for Optics and Photonics, 1999.

[10] Casbeer, David W., et al. "Cooperative forest fire surveillance using a team of
small unmanned air vehicles." International Journal of Systems Science 37.6
(2006): 351-360.

References | 123

[11] G. Muscato et al., “Volcanic Environments: Robots for Exploration and
Measurement in Volcanic Environments”, Robotics & Automation
Magazine, IEEE , vol.19, pp 40-49,March 2012.

[12] Caltabiano, Daniele, et al. "Architecture of a UAV for volcanic gas
sampling."Emerging Technologies and Factory Automation, 2005. ETFA
2005. 10th IEEE Conference on. Vol. 1. IEEE, 2005.

[13] Hausamann, Dieter, et al. "Monitoring of gas pipelines–a civil UAV
application."Aircraft Engineering and Aerospace Technology 77.5 (2005):
352-360.

[14] Enac normative documentation http://www.enac.gov.it/repository/
ContentManagement/information/N1311250085/Bozza_Circolare_APR_14
0502.pdf last accessed November 2014.

[15] ICAO normative documentation http://www.icao.int/Meetings
/UAS/Documents/Circular%20328_en.pdf last accessed November 2014.

[16] Volcan UAV documentation http://www.robotic.diees.unict.it/robots/
uav/docs/Volcan%20UAV%20Project.pdf last accessed November 2014.

[17] Catena et al., “A New Modular Architecture for the Control of the
VOLCAN RPAS for Volcanic Activity Monitoring”, in IROS2012 Workshop
on Robotics for Environmental Monitoring, October 2012.

[18] Aerosonde webpage http://www.aerosonde.com/ last accessed November
2014.

[19] CANbus documentation by BOSCH
http://esd.cs.ucr.edu/webres/can20.pdf last accessed November 2014.

[20] ISO 11898 web page: http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=33422 last accessed October 2014.

[21] CANAerospace webpage http://www.stockflightsystems.com/
canaerospace.html last accessed October 2014.

[22] A.Catena, “Sviluppo, implementazione e simulazione di architetture
embedded di controllo per UAV su piattaforma hardware in the Loop”,
Master Thesis, Universistà degli Studi di Catania, October 2011.

[23] L. Sciavicco,B. Siciliano, “Robotica Industriale”, THE MCGRAW-HILL
COMPANIES, 2002/2003.

[24] B. L. Stevens, F. L. Lewis, “Aircraft Control and Simulation, 2nd Edition”,
Wiley, ISBN: 978-0-471-37145-8, 2003.

124 |References

[25] A. Catena, C. D. Melita, and G. Muscato. "Automatic Tuning Architecture

for the Navigation Control Loops of Unmanned Aerial Vehicles." Journal of
Intelligent & Robotic Systems 73.1-4 (2014): 413-427.

[26] U.S. Department of Transportation, Federal Aviation Administration, “Pilot's
Handbook of Aeronautical Knowledge”, FAA Handbooks, ISBN-10:
1560277505, 2009.

[27] Karl J. Ǻström and Tore Hägglund, “PID Controllers: Theory, Design, and
Tuning, 2nd Edition”, pp. 230-270, 1995.

[28] Yang Shengyi et al., “Design and Simulation of the Longitudinal Autopilot of
UAV Based on Self-Adaptive Fuzzy PID Control”, International Conference
on Computational Intelligence and Security, pp. 634 - 638, Dec. 2009.

[29] Wu-fa Liu et al., “Online Fuzzy Self-Adaptive PID Attitude Control of a Sub
Mini Fixed-Wing Air Vehicle”, International Conference on Mechatronics
and Automation, pp. 153-157, Aug. 2007.

[30] T. Sangyam et al. “Autonomous path tracking and disturbance force rejection
of UAV using fuzzy based auto-tuning PID controller” Electrical
Engineering/Electronics Computer Telecommunications and Information
Technology (ECTI-CON), 2010 International Conference on , vol., no.,
pp.528,531, 19-21 May 2010.

[31] A. Kirli et al., “Self tuning fuzzy PD application on TI TMS320F28335 for an
experimental stationary quadrotor”, Education and Research Conference
(EDERC), 2010 4th European , vol., no., pp.42,46, 1-2 Dec. 2010.

[32] G. Astuti et al., “HIL tuning of UAV for exploration of risky environments”,
International Journal on Advanced Robotic Systems, Vol.5, N.4, December
2008.

[33] Chang-Sun Yoo et al., “Hardware-In-the-Loop simulation test for actuator
control system of Smart UAV”, Control Automation and Systems (ICCAS),
2010 International Conference on , vol., no., pp.1729,1732, 27-30 Oct. 2010.

[34] A. Leva, “Comparative study of model-based PI(D) autotuning methods”,
American Control Conference, 2007. ACC '07 , vol., no., pp.5796,5801, 9-13
July 2007

[35] J. How et al., “Flight Demonstrations of Cooperative Control for UAV
Teams”, AIAA 3rd "Unmanned Unlimited" Technical Conference,
Workshop and Exhibit, 20 - 23 September 2004, Chicago, Illinois.

References | 125

[36] N. Regina, M. Zanzi, “Fixed-wing UAV guidance law for surface-target
tracking and overflight”, Aerospace Conference, 2012 IEEE , vol., no.,
pp.1,11, 3-10 March 2012.

[37] STMicroelectronics INEMO® system-on-board Datasheet,
http://www.st.com/st-web-ui/static/active/en/resource/technical/
document/datasheet/DM00056715.pdf last accessed October 2014.

[38] Kalman, Rudolph Emil. "A new approach to linear filtering and prediction
problems." Journal of Fluids Engineering 82.1 (1960): 35-45.

[39] Welch, Greg, and Gary Bishop. "An introduction to the Kalman filter."
(1995).

[40] Marins, João Luís, et al. "An extended Kalman filter for quaternion-based
orientation estimation using MARG sensors." Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on.
Vol. 4. IEEE, 2001.

[41] Sabatini, Angelo M. "Quaternion-based extended Kalman filter for
determining orientation by inertial and magnetic sensing." Biomedical
Engineering, IEEE Transactions on 53.7 (2006): 1346-1356.

[42] Euston, Mark, et al. "A complementary filter for attitude estimation of a
fixed-wing UAV." Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on. IEEE, 2008.

[43] Metni, Najib, et al. "Attitude and gyro bias estimation for a VTOL UAV."
Control Engineering Practice 14.12 (2006): 1511-1520.

[44] Diebel, James. "Representing attitude: Euler angles, unit quaternions, and
rotation vectors." Matrix 58 (2006): 15-16.

[45] Robert Mahony, Vijay Kumar, Peter Corke, “Multirotor aerial vehicles,
modeling, estimation, and control of quadrotor”.

[46] ACI Remote Code Documentation webpage:
http://www2.asctec.de/aci/remote_code_doku/index.html, last accessed
October 2014.

[47] ACI Asctec, list of all predefined variables, commands and parameters
http://wiki.asctec.de/display/AR/List+of+all+predefined+variables%2C+c
ommands+and+parameters, last accessed October 2014.

[48] LabView webpage http://www.ni.com/labview/last accessed October 2014.

126 |References

[49] PictureBox Rotation webpage http://www.codeproject.com/

Articles/58815/C-Image-PictureBox-Rotations last accessed October
2014.

[50] GMap.NET webpage http://greatmaps.codeplex.com/ last accessed
October 2014.

[51] GPS Position Accuracy Measures, NovAtel,
http://www.novatel.com/assets/Documents/Bulletins/apn029.pdf last
accessed November 2014.

[52] DIEEI Robotics web site: http://www.robotic.diees.unict.it/ last accessed
November 2014.

[53] X-Plane by Laminar Research webpage: http://www.X-Plane.com, last
accessed October 2014.

[54] Xsens products webpage: http://www.xsens.it/prodotti.php, last accessed
October 2014.

[55] PCAN-USB webpage http://www.peak-system.com/PCAN-
USB.199.0.html?&L=1last accessed October 2014.

[56] PCAN-USB Labview Driver http://www.peak-system.com/Lab-View-
Driver.255.0.html?&L=1last accessed October 2014.

[57] FTDI webpage http://www.ftdichip.com/last accessed October 2014.
[58] FTDI labview vi download link http://www.ftdichip.com/Support/

SoftwareExamples/CodeExamples/LabVIEW/LabVIEW_Byte_7.0.zip last
accessed October 2014.

[59] Vicon motion capture webpage http://www.vicon.com/ last accessed
October 2014.

[60] Hummingbird by Asctec webpage http://www.asctec.de/en/uav-uas-drone-
products/asctec-hummingbird/ last accessed October 2014.

[61] Bormatec webpage http://bormatec.com/ last accessed November 2014.
[62] ETH webpage https://www.ethz.ch/en.html last accessed November 2014.
[63] CATEC webpage http://www.catec.aero/ last accessed November 2014.
[64] Ambition Power webpage http://www.ambitionpower.org/ last accessed

November 2014.
[65] Microchip webpage http://www.microchip.com/ last accessed November

2014.
[66] Honeywell webpage http://honeywell.com/Pages/Home.aspx last accessed

November 2014.

References | 127

[67] KUKA manipulators webpage http://www.kuka-robotics.com/ last accessed
November 2014.

[68] Matlab-Simulink webpage http://www.mathworks.com/ last accessed
November 2014.

