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Preface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The field of aerial robotics, from 20 years ago up to now, has had an 
incredible growth. The reasons are several, but surely, the key motivation is the 
development of MEMS sensors and microcontroller more and more cheap and 
reliable. The “Dipartimento di Ingegneria Elettrica, Elettronica e Informatica” 
(DIEEI) at the University of Catania is involved in several research projects 
focused on the study and development of Unmanned Aerial Systems (UASs).  

The most well-known project of DIEEI in the field of Unmanned Aerial 
Vehicles (UAVs) is the Volcan Project, an autonomous aerial platform for 
volcano activities monitoring in order to analyze gases and to improve the 
forecast of the lava flow during an eruption.  

In addition to the Volcan project, many research activities of DIEEI are 
focused on problematic related to UAVs that nowadays are still open, such as 
cooperation with different type of robotic platforms, inertial navigation, visual 
navigation and last but not least, the power management in order to maximize the 
autonomy. This Ph.D. course was related to and funded by the Ambition Power 
project [64], whose objective was the virtual prototyping of power devices in 
avionics field. 
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Nomenclature 

ACI: AscTec Communication Interface 
ACK: Acknowledgement 
ADAHRS: Air Data and Attitude Heading Reference System 
ADC: Analog to Digital Converter 
AGATE: Advanced General Aviation Transport Experiment 
AoA: Angle of Attack 
ASL: Above Sea Level 
AUV: Unmanned Underwater Vehicle 
CAN: Controller Area Network 
CSMA/CD: Carrier Sense Multiple Access with Collision Detection 
DIEEI: Dipartimento di Ingegneria, Elettrica, Elettronica ed Informatica 
DLL: Dynamic Link Library 
DoF: Degree of Freedom 
DSD: Debug Service Data 
EAP: Electro-Active Polimer 
EKF: Extended Kalman Filter 
ENAC: Ente Nazionale Aviazione Civile 
EEPROM: Electrically Erasable Programmable Read-Only Memory 
FCCS: Flight Control Computer System 
FW: FirmWare 
GPS: Global Positioning System 
GUI: Graphical User Interface 
HIL: Hardware In the Loop 
HL: High Level (processor) 
HMI: Human Machine Interface 
I2C: Inter Integrated Circuit 
ICAO: International Civil Aviation Organization 
IDE: Integrated development environment 
IMU: Inertial Measurement Unit 
LiPo: Lithium Polymer 
LL: Low Level (processor) 
LTA: Light then Air 
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MEMS: Micro Electro Mechanical Systems 
NASA: National Aeronautics and Space Administration 
NOD: Normal Operation Data 
NSH: High-priority Node Service Data 
ODR: Output Data Rate 
OS: Operating System 
PCB: Printed Circuit Board 
PIC: Pilot in Command 
ROR: Route Of Robot 
RPA: Remotely piloted aircraft 
RPV: Remotely Piloted Vehicle 
RPY: Roll Pitch Yaw 
RS-232: Recommended Standard 232 
RTK: Real Time Kinematic 
S&R: Search and Rescue 
SACS: Servo Actuators Control System 
SDK: software development kit 
SLAM: Simultaneous Localization And Mapping 
SNR: Signal Noise Ratio 
SoA: State of Art 
SPI: Serial Peripheral Interface 
SWD: Serial Wire Debug 
UAV: Unmanned Aerial Vehicle 
UDP: User Datagram Protocol 
UGV: Unmanned Ground Vehicle 
USART: Universal Synchronous-Asynchronous Receiver/Transmitter 
USB: Universal Serial Bus 
UVS: Unmanned Vehicle System 
VI: Virtual Instrument 
VTOL: Vertical TakeOff and Landing 
WP: WayPoint 
WPL: WayPoint List 
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Chapter I. Introduction 

I.1 The State of the Art 

The adoption of UVSs (Unmanned Vehicle System) as performing tools to be 
used for data gathering, S&R operations, civil protection and safety issues is 
rapidly increasing. Generally, the unmanned vehicles are grouped in three 
categories: 

• UAV, Unmanned Aerial Vehicles 

• UGV, Unmanned Ground Vehicles 

• AUV, Autonomous Underwater Vehicles 

 
Figure 1 - Examples of UVSs 

The topic of this thesis is strictly related to the first class of robots, which are 
the robotic platforms able to fly without pilot.  

I.1.1 Normative: UAV, RPA or RPV? 

The increasingly frequent use of drones in recent years [2] [3] has made it 
essential a legislation concerning them in order to regulate its use. There is a 
general legislation drafted by ICAO [15], the International Civil Aviation 
Organization, whereas as regards the UAVs with a weight less than 150 Kg there 
is a particular normative depending by the nation. In the case of Italy, this 
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normative is drafted by the ENAC [14]. The key aspect of the normative is that 
the use of a completely autonomous robotic platform in open field is illegal, 
except for very particular cases that, however, require permission by the relevant 
authorities. In fact, according to normative, there must be someone that pilots, or 
in general supervises, the aircraft. For this reason, the relevant authorities prefer 
using the terms such as Remotely Piloted Vehicle (RPV) or Remotely Piloted 
Aircraft (RPA) in place of UAV, in order to underline the role, and the 
responsibilities, of the operator that controls the plane, which, according to the 
normative, is to all effects a pilot. Moreover, still according to the law, anyone 
who pilots a drone must have a license, issued after an examination, and an 
insurance that covers the risks connected with the activity of the drone. 

I.1.2 Classification of UAVs 

To make a complete summary of all the models of UAV is a really difficult 
operation, because of the huge variety of applications in which they are used. On 
the other hand, it's possible to make a comparison between them, on the basis of 
particular aspects, such as dimension, airframe and scope [1]. 

I.1.2.1 UAV Dimension 

A first comparison between UAV takes into account their dimension, and 
then their mass (Figure 2). As it is shown in the following table, the mass of a 
drone is strictly connected to its autonomy and operational range. 

Category Acronym Mass[Kg] Max Op. 
Range[Km] 

Max Flight 
Altitude[m]

Max Duration 
 of Flight[h] 

Nano η <0.0250 1 100 0.5 
Micro µ <5 10 250 1 
Mini Mini <30 10 300 2 
Close Range CR <150 30 3000 4 
Short Range SR <200 70 3000 6 
Medium Range MR <1250 200 5000 10 

Table 1 - UAV classification by dimension 
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Figure 2 - Different dimensions of UAVs 

I.1.2.2 UAV Airframes 

Essentially, the airframe of an UAV may be of five different types. It is worth 
to point out that there isn't "the best one" airframe for every application, but each 
airframe has advantages and disadvantages, which must be evaluated, in order to 
choose the best drone to accomplish a given task. 

Fixed wings 
This is the most common airframe for big drones, especially for the maturity 

of technology (Figure 3). This type of airframe gives great advantages in terms of 
efficiency and power consumption, due to the additional lift provided from the 
wings. However, the wings require a minimum speed cruising to perform their 
tasks. This aspect brings to the main limit of this type of airframe: the incapability 
to hover or fly slower, in addition to the fact that they require a runway for 
takeoff and landing operations. For these reasons they are unsuitable for indoor 
applications. 
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Figure 3 - Fixed wings airframe 

Rotary wings 
This class of airframe gets the necessary lift to fly directly by the propellers. 

Moreover, they are able to hover and to execute vertical takeoff and landing 
(VTOL). This makes them perfect for indoor flight. Depending on propellers 
number, it is possible to split this class in two groups: 

• Helicopters: this type of airframe has one or two rotors (Figure 4). In 
relation to this class of aircraft, this structure ensures the best performance in 
terms of energy consumption. In fact, the rotor has a practically constant 
speed and the aircraft movements are given by the variation of the angle of 
attack (AoA) of the blades. In a few words, the speed of a helicopter is not 
related to the speed of rotation of the rotor, but essentially to the AoA of the 
blades. Anyhow, such a rotor is a very complex system (Figure 5) and, even if 
its technology is consolidated, this has an impact on the cost and reliability. 

 
 

Figure 4 - Helicopter airframe 
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Figure 5 - Helicopter rotor 

• Multirotors: to this group belongs airframes that have three or more 
(generally, up to eight) rotors (Figure 6). With respect to helicopters, in 
these drones the propellers have a fixed AoA, but variable speed. This 
means a great simplicity in the mechanical structure, but a worst power 
management. It is precisely the mechanical simplicity that has made the 
multirotors the most common airframes for small drones, especially in the 
field of academic research. 

 
Figure 6 - Multirotors airframe 

 

Tilt rotors 
This class of airframes is a hybrid between the two previously discussed 

configurations (Figure 7). Such a structure is capable, at the same time, to execute 
vertical takeoff and landing, to stay in hovering and to reach a cruise speed 
comparable with a fixed wings system. However, it is important to underline that 
these features are achieved by means the rotation of the rotors, which causes 
reliability problems and a very complex control during the transition phase. In 
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addition, another disadvantage of this airframe resides in the propellers: a 
propeller designed for the hovering is not optimized for flying, and viceversa. In 
other words, a tiltrotor is capable to hover, but it is worst with respect to a rotary 
wing. Moreover it is capable to fly forward for a long range, but consuming more 
energy respect to a fixed wing. 

 
Figure 7 - Tiltrotor airframe 

Flapping wings 
This bio-inspired UAV airframe is the most recent. Its main limit, in fact, 

derives from the fact that the technology behind it is not mature yet. There are 
still open issues: ignoring for now problems related to control, probably the most 
interesting challenge regards the development of linear actuators, capable to 
reproduce the muscle motion. A possible solution could be the electro-active 
polymers (EAP), but this is not yet a mature technology and some years are still 
needed to obtain a commercial product. Depending on the animal to which they 
are inspired, there are two classes of flapping wings airframes: 

• Ornithopters: bird-like airframes, which generate lift by flapping wings up 
and down with synchronized small variations of AoA (Figure 8). As in the 
fixed wings airframes, this type of flapping wings requires a forward flight 
to generate lift. 

• Entomopters: inspired to the insect structure, this airframe generates a 
great variation of AoA between the upstroke and the downstroke phases 
(Figure 9). Unlike the previous one, this airframe is capable to hover and 
to execute vertical takeoff and landing. 
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Figure 8 - Flapping wings, bird-like airframe 

 

 
Figure 9 - Flapping wings, insect-like airframe 

Blimp 
To this last class of airframe belong drones called Lighter Than Air, or LTA 

(Figure 10). It is easy to guess how this airframe has the best efficiency in terms 
of energy, since no energy is needed to hover. However, generally these airframes 
move slower than the other types of airframes, have a bigger volume, in order to 
obtain enough lift force and, above all, have a limited payload. The latter 
peculiarity represents the biggest disadvantage of this type of airframe, because a 
typical mission with a drone often requires additional equipment such as cameras, 
sensors, robotic arms and so on. 
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Figure 10 - LTA airframe 

 
To summarize, in Table 2 the main features of each airframe are compared. 

 Fixed Wings Rotary Wings Tilt Rotors Flapping Wings Blimp 
Power efficiency Medium Bad Bad Medium Good 
Control  Good Good Medium Bad Good 
Miniaturization Medium Good Bad Medium Bad 
Payload Good Medium Good Bad Bad 
Hover Bad Good Medium Medium Good 
Low Speed Fly Bad Good Medium Medium Good 
High Speed Fly Good Bad Medium Bad Bad 
Robustness Good Medium Bad Bad Bad 
Maneuverability Medium Good Medium Bad Good 
Indoor usage Bad Good Bad Bad Medium 
Outdoor usage Good Medium Medium Medium Good 

Table 2 - UAV airframes comparison 

I.1.2.3 Scope 

In the last years the number and the diversity of applications regarding the use 
of UAVs is increased enormously. A first distinction is usually made between 
military and civil applications. Focusing on the second group, the non-military 
applications where the UAVs are commonly used are: 

• Disaster management [4] [5]. 

• Agricultural monitoring and management [6]. 

• Infrastructure inspection [7] [8]. 

• Law enforcement [9]. 

• Weather monitoring. 

• Environmental monitoring and exploration [10] [11] [12]. 

• Aerial imaging/mapping. 
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• Entertainment: television news coverage, sporting events, moviemaking. 

• Freight transport. 

• Oil and gas exploration [13]. 
As regards the DIEEI [52], the research activities are focused mainly on 

monitoring and forecasting of volcanic activity. The volcano under examination is 
the Mount Etna, one of the most active volcanoes in the world, which is in an 
almost constant state of eruption. In the next chapter the developed UAV, i.e. the 
Volcan, will be treated. 
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I.2 Architecture of an UAV 

The design of an UAV control system is a very complex mission and, as it 
often happens in engineering topics, there is no a single way to accomplish this 
task. Listing all the possible architectures goes beyond the scope of the thesis, 
therefore in the next chapters we will focus only on the control architectures of 
the UAVs used. However, some milestones are always present in the 
development of an UAV control system. 

The choice of the model  
This is the first and probably the most important step. A good modeling 

represents the key phase in order to obtain satisfactory dynamic performances. 
The expression "good modeling" is not intended as a perfect modeling, where 
every dynamic effect is considered, but as a modeling where only the most 
important dynamic modes are taken into account. 

The control strategies 
Once the model has been developed, it is necessary to ensure the system 

stability and, as far as possible, the immunity to noise and to unmodeled 
dynamics. The most used control strategies use PID [17] controllers or digital 
filters such as EKF [40] [41] and complementary filters [42] [43]. Once the 
stability is obtained, the next step is focusing on high level control tasks such as 
collision avoidance, cooperation, fault detection and so on.  

Sensors 
Sensors are fundamental in order to obtain information about the state of the 

drone. As regards the stability, an Inertial Measurement Unit (IMU) is needed. 
This system returns roll and pitch resulting by a sensors fusion of a three axial 
accelerometer and of a three axial gyroscope. Often a three axial magnetometer is 
added in order to obtain also the yaw angle. For navigation, generally GPS and 
pressure sensors are used. Finally, for high level tasks as obstacle avoidance or 
object tracking, cameras, laser scanners and ad hoc sensors are used. For the 
choice of the sensors, in addition to the precision, the other parameters to take 
into account are the bandwidth, the power consumption, the immunity to noise 
and last but not least, the easy of interfacing to a microprocessor. 
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Motors and actuators 
Motors and actuators connected to the mobile parts of the drones are 

necessary to transduce the commands coming from control unit. As for the 
sensors, precision and bandwidth are important parameters to consider in their 
choice. Moreover, it is extremely important to underline that this is the part of 
the whole architecture that consumes more energy. So, if in one hand more 
power means more torque, on the other hand it means more weight and less 
autonomy. 

CPUs 
The core of the control architecture computes data coming from sensors and 

in according to the task, sends commands to actuators. If to execute a stability 
control by means a set of PID controllers is adequate a commercial 
microprocessor that costs a few Euros, to accomplish complex tasks in real time 
such as SLAM or recognize a target by means of an HD camera it is necessary a 
dedicated PC with a real time OS. Also in this case it is mandatory the monitoring 
of the energy consumption, since the computational load of the control algorithm 
is strictly related to the energy necessary to execute it. 

Communication Protocols 
As discussed in the section I.1.1, for normative reason a drone always has to 

be connected to a remote station, where an operator can monitor and supervise 
its mission. Moreover, the control systems are becoming more and more complex 
and often they are realized as a combination of subsystems connected each other. 
For this reason the choice of the communication protocol is dual: to 
communicate to remote station and to interconnect the various subsystems of the 
control architecture. As regards the former, generally this link is used also to send 
the drone telemetry. In most cases this connection is made by a WiFi link. As 
concern the latter, is mandatory to choose a communication protocol that 
guarantees a data rate at least an order of magnitude greater than the bandwidth 
of the sensors and actuators used and also an SNR as small is possible. A 
differential communication with a good bandwidth, like the CANbus, is suitable 
for this purpose. However, generally also a normal serial communication could be 
suitable. 
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I.3 Limits and Challenges 

From now on, this thesis will be focused exclusively on fixed wings and 
multirotors, i.e. those airframes mainly used for both civilian and research 
activities. As mentioned in the previous pages, the progress in this field has been 
enormous, especially in the last 5 years. However, there are still some aspects 
where some improvement and clarifications are needed. Probably, the key 
limitation resides on the current normative. If on the one hand, the scientific 
community tries to develop a completely autonomous UAV [2], on the other 
hand actual rules generally require a human supervisor responsible for the actions 
of the robot. Surely, this is a difficult aspect to solve and even if a normative 
exist, these are destined to be modified in accordance with the technological 
growth. As regards the technical aspect, the most evident bottleneck is the energy 
management. Generally, even if the energy density of the batteries has steadily 
increased during the last years, the autonomy of a commercial UAV with 
brushless motors is less than 30 minutes. This is a limit extremely incapacitating, 
when you consider a complex task to accomplish, such as mapping an area or 
search a target, which generally requires a lot of time. Moreover, a complex task 
requires a high computational load, which obviously consumes a lot of energy, 
further reducing the autonomy. At present, the most common batteries used are 
of LiPo type. A good alternative could be fuel cells, i.e. a sort of battery in which 
the fuel is transformed into electric current through an electrochemical process. 
However also fuel cells have an energy density lower than other sources, such as 
gasoline or methanol [1]. Increasing the autonomy of an UAV is without doubt 
the main challenge that the scientific community have to face in the next years. 
Concerning the control algorithms, the results so far are more than satisfactory, 
even if the best performance are generally obtained indoor, thanks to the 
feedback provided by motion detection systems, as the Vicon [59] . The ETH of 
Zurich [62] and the CATEC in Seville [63] are among the best European research 
centers in this field. However, to get a level of control comparable in outdoors 
conditions is a hard challenge. The main reasons are two: 

• First of all, motion tracking systems are unsuitable for outdoor 
applications, in particular in the case of unstructured environments. 
Normally MEMS sensors are used, such as accelerometers, gyroscopes 
and magnetometers to help localization. These sensors are less precise and 
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noisier respect to a motion tracking system, and then the feedback of the 
control architecture is less reliable. 

• Secondly, an unstructured environment introduces dynamics that degrade 
the accuracy of the mathematical model of the aircraft. 
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I.4 Development tools 

The testing phase during the design of the control architecture of an UAV is 
the longest phase in terms of time. This is because, despite other robotics 
platform such as UGVs, a bug in the control algorithm most of the times means 
the destruction of the drone itself. A powerful method to test the control 
algorithm is the Hardware In the Loop (HIL) architecture [32] [33], where the 
real aircraft is substituted with a virtual one, generally within a flight simulator. In 
this way it is possible to test and tune the control architecture, under the 
assumption that the aircraft model of the flight simulator reflects satisfactorily the 
dynamic behavior of the real one. However, in HIL architecture it is not possible 
to test other fundamentals parts of the whole system, such as sensors and 
actuators. A step ahead in this direction is represented by the Motion Capture 
technique. In this scenario, the drone operates inside an arena, where a set of 
high speed cameras provide an extremely precisely feedback regarding pose and 
position. In this way, in addition to the control algorithm, it is possible to test the 
actuators and compare the telemetry coming from the sensors, with the other 
measurements one coming from the cameras. The only limitation in this case is 
that within the arena the environment is perfectly structured, so it is not possible 
to test the robustness of the control algorithm, i.e. its dynamic performance when 
the drone operates in noisy and not structured environments. 
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I.5 Objectives 

In the previous paragraphs the UAV SoA was briefly presented, underlining as 
several research field are evolving. In particular, as regards the UAV features, it is 
clear as there isn't "a general purpose" drone, capable to accomplish whatever 
task. For this reason, a keyword in the next years for the researchers will be the 
cooperation between heterogeneous robotic platforms. More and more often 
complex tasks require features that a single drone doesn't have. For example, to 
patrol a huge area, it is required a drone suitable to fly forward with high speed, 
to be capable to hover and to have a good autonomy. In a few words, it is 
impossible for a single drone, but also for a homogeneous fleet. 

From this consideration is born the objective of this thesis: to develop a fleet 
of heterogeneous UAV, composed by the following parts: 

• A fixed wing aircraft, represented by the Volcan UAV [16]. 

• A quadrotor, represented by the Hummingbird produced by Asctec 
[60]. 

• A multiplatform HMI developed in LabView [48], in order to 
monitor and supervise the heterogeneous fleet. 

The next chapters are organized in the following way: the second one 
describes the Volcan. The third chapter treats the Hummingbird by Asctec. The 
fourth chapter presents the HMI developed and finally, the last one discusses 
about the conclusions. 
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Chapter II. The Volcan UAV 

II.1 Introduction 

As mentioned before, the Volcan UAV is the fixed wing developed for the 
mission related to volcano monitoring. In order to accomplish missions in hard 
environments and conditions, the project designed is a V-tail fixed wings very 
similar to the famous Aerosonde [18] (Figure 11), with the following features: 

• Fuselage in carbon fiber and fiberglass 

• Wooden wing and V-tail 

• A wing span of 3m 

• A total weight of 13kg 

• A 2000W brushless motor 

• A maximum cruise speed of 150km/h 

 
Figure 11 - Volcan UAV 

The choice to develop a fixed wing is given by the fact that on the Etna the 
weather conditions are really adverse, not to mention the reduction of the air 
density, which at 3000m reduces drastically the lift of the airframe. The use of an 
electric engine is given by two factors: 

• First of all, because the reduced air density has a negative effect on 
the carburetion of a stroke engine. 

• Secondly, gases produced by the motor would distort the measures of 
the gas sensors. 
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The Volcan has been entirely designed in the DIEEI laboratories. In 
particular, during this Ph.D. activity a new control architecture has been 
developed [17]. In the following sections the steps that have led to the 
development the whole system will be discussed. 

II.1.1 System architecture overview 

The core of the control architecture is based on the interaction between 
different sub-systems developed in DIEEI laboratories (Figure 12):  

• ADAHRS, the Air Data and Attitude Heading Reference System, is the 
sensors board and manages all the sensors in order to compute the pose 
and the position of the vehicle 

• SACS, the Servo Actuators Control System, controls the engine and the 
actuators connected to the mobile parts of the drone.  

• FCCS, the Flight Control Computer System, receives data from the 
sensors and, according with the flight plan, sends commands to the 
interface board. 

• UDP2CAN, the data link board, connects the drone with a remote 
station, in order to send telemetry and to permit to the operator to 
supervise it. 

 
Figure 12 - Volcan control system 

The whole architecture has been divided in various subsystems in order to 
maximize flexibility and modularity. 
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II.2 CAN: Control Area Network 

The different subsystems forming the UAV control system need to exchange 
data constantly. Therefore it is necessary to use a communication protocol which 
gives wide guarantees of reliability and immunity to noise, moreover with a 
bandwidth such as to permit a real-time control of the drone. For these reasons 
the CANbus protocol (Controller Area Network) was chosen. CANbus is a 
broadcast serial bus, introduced by Bosch in the early 80s [19]. Initially designed 
for automotive applications, now the CANbus is used in many industrial sectors, 
including avionics. Its success is due to the considerable technological advantages 
it offers: 

• Rigid Response time. This feature is fundamental for the control process. 

• Simplicity and flexibility of wiring: the CAN is a serial bus which is 
typically implemented on a twisted pair (shielded or not, depending on the 
requirements). 

• Multi-Master architecture, where all nodes of the network can transmit 
and multiple nodes of the network can request to transmit data 
simultaneously. They are characterized by network addresses different by 
the conventional sense. In fact the messages are routed on the basis on 
the importance of the variable to be sent and not on the basis of the 
address of the transmitter. Each variable has an identifier, which indicates 
the priority for the access to the bus. Thanks to this peculiarity, the nodes 
don't have an address that identifies them, so in this way they can then be 
added or removed to the network without reorganizing it. 

• High noise immunity: the standard ISO11898 [20] imposes that the 
transceiver chip can continue to communicate even in extreme 
conditions, such as the interruption of one of the two wires or short 
circuit of one of them with ground or with the power supply. 

The transmission rate depends on the size of the maximum length of the bus 
(Figure 13). In case of short distances, as in the case under exam, it is possible 
obtaining a bit-rate up to 1Mbit/s 
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Figure 13 - CANbus data rate 

II.2.1 Rules for bus access 

In order to manage a multi-master architecture, the CANbus uses a modified 
CSMA/CD protocol, which uses the concept of dominant and recessive bits. 
When two or more nodes are transmitting simultaneously, the conflict is resolved 
with an arbitration mechanism that avoids both loss of information and time. 
During each transmission, the transmitting node monitors the channel and 
compares the level of the bit transmitted with the level on the monitored channel. 
If the two bits coincide, the node continues transmitting. If the level associated 
with the bit is recessive and in the channel there is a dominant level, the node 
immediately stops the transmission. Through this mechanism it is possible to 
assign to each CAN frame a priority level, through the Arbitration Field. For 
example, in Figure 14 three nodes try to transmit simultaneously. During the 
transmission of the fourth bit, node A notifies an inconsistency between what 
transmits and what is present on the bus, and hangs up. This is because the node 
A is transmitting a recessive bit, while nodes B and C a bit dominant. The same 
considerations applies during the transmission of the eighth bit, in which the 
node C hangs up and leaves the channel to node B, having an ID with a higher 
priority. 
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Figure 14 - Example of bus access 

 

II.2.2 CANbus Frames 

In the CANbus protocol there are five different message structures:  

• Data Frame (DF): it allows the transmission of data from one transmitter 
node (TX) to all the others (RX). Each node decides if consider relevant 
or discard the received data.  

• Remote Frame (RF): it has a structure similar to the Data Frame, but is 
devoid of the data field; it is used to request the sending of a determined 
Data Frame by the interrogated node.  

• Error Frame: it is sent from a node that reveals an error and causes the 
retransmission of the message from the transmitter node.  

• Overload Frame: it is sent from a node that is busy in order to delay the 
transmission of the next packet.  

• Interframe Space: it precedes any Data and Remote Frame and has a 
separating function. 

The last three frames are automatically generated, owing to special conditions. 
The implementation of the CAN protocol to communicate between the various 
UAV subsystems doesn't require the use of remote frames. In a few words, only 
the DFs will be used, which are explained in the next paragraph. 
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II.2.2.1 Data Frame (DF) structure 

A CANbus DF consists of seven fields:  

• Start of Frame (SoF): it consists of a single dominant bit and signals the 
start of the message. It also provides a sync function for all other nodes 
that detect the start of transmission. 

• Arbitration Field: it contains the identifier of the content of the message. 
The identifier has 11 bits in the CAN protocol 2.0A (Standard CAN) or 
29 bits in the CAN 2.0B (Extended CAN). 

• Control Field: it consists of 6 bits, 4 are used to specify the number of 
bytes of the Data Field (DLC) and 2 are reserved for future expansion of 
the protocol. 

• Data Field: it contains the data, ranging from a maximum of 8 bytes to a 
minimum of 0. The bytes are sent from the most significant to the least 
significant. 

• CRC Field: it consists of 16 bits, the first 15 contain the control sequence 
(cyclic redundancy check) and the last bit is a recessive delimiter. If the 
cyclic redundancy code does not reveal the presence of errors, the node 
puts a recessive bit in the ACK field of the current Data Frame. 

• ACK Field: it is constituted by an ACK bit and another delimiter bit. 
They are both sent as recessive, but ACK Slot is overwritten as a 
dominant by every node that receives the message correctly. In this way 
the TX node knows that at least one node has received the message 
correctly. 

• End of Frame (EoF): it is made up of 7 recessive bits that indicate the 
end of the Frame. 

A graphical representation of the DF structure is shown in Figure 15 
 

 
Figure 15 - DF structure 
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II.2.3 CANAerospace 

The CANbus covers only the first two levels of the ISO/OSI protocol, the 
physical layer and the data link layer. CANaerospace [21] is a specification that 
defines the application level, specifically for use in avionics and aerospace field. It 
was introduced in 1997 by Stock Flight Systems, a German company founded in 
1993, now partner of many leading international aerospace companies. A subset 
of the specification has been standardized by NASA in 2001 as AGATE 
(Advanced General Aviation Transport Experiment) Avionics Databus. The 
specifications dictated by CANAerospace are used to arrange the Arbitration 
Field and Data Field of the data frame previously treated. CANAerospace 
supports both the CAN 2.0A (11bit) and CAN 2.0B (29bit) identification, with 
whatever bit-rate. For the Volcan control system a standard identifiers to 11bit 
and a bit-rate equal to 1 Mbit/sec have been chosen. 

II.2.3.1 Arbitration Field 

In according with CANAerospace directives, the ID of a given DF has the 
priority summarized in Table 3: 

Message Type ID range Description 
Emergency Event Data 
(EED) 

0 - 127 
0x000-0x07F 

Transmitted asynchronously whenever a 
situation requiring immediate action occurs. 

High-priority Node Service 
Data (NSH) 

128 – 199 
0x080-0x0C7 

Transmitted asynchronously or cyclic with 
defined transmission intervals for operational 
commands 

High-priority User-defined 
Data (UDH) 

200 - 299 
0x0C8 - 0x12B 

Message/data format and transmission 
intervals entirely user-defined 

Normal Operation Data 
(NOD) 

300 - 1799 
0x12C – 0x707

Transmitted asynchronously or cyclic with 
defined transmission intervals for operational 
and status data. 

Low-priority User-defined 
Data (UDL) 

1800 - 1899 
0x708 – 0x76B 

Message/data format and transmission 
intervals entirely user-defined 

Debug Service Data (DSD) 1900 - 1999 
0x76C - 0x7CF

Transmitted asynchronously or cyclic for 
debug communication &software download 
actions. 

Low-priority Node Service 
Data (NSL) 

2000 - 2031 
0x7D0 -0x7EF 

Transmitted asynchronously or cyclic for test 
& maintenance actions 

Table 3 – Arbitration field CANAerospace 
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II.2.3.2 Data Field 

The data field of a DF conforms to the specifications of the CANAerospace 
consisting of 8 bytes, 4 bytes form a header and the remaining 4 form the real 
data field (Figure 16). The header includes the following fields: 

• Node ID, indicates the address of the node transmitter in the case of 
messages EED / NOD or the receiver address for messages NSL / NSH 
(the identifier 0x00 is reserved for broadcast transmissions). 

• Data Type, specifies the data type of the last four byte. Are supported 
both standard data types and types specified by the user depending on the 
application. 

• Service Code, reserved for specific purposes in the case of messages 
EED/NOD, or used to define the type of service in case of messages 
NSL/NSH. 

• Message Code, is essentially a counter message used for debugging 
purposes in case of message EED/NOD. 
 

 
Figure 16 - Data field of a CANAerospace DF 

A complete description of the CANAerospace frames used in the Volcan 
UAV is available in [22]. 
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II.3 Flight Control Computer System 

The FCCS subsystem is the core of the control architecture. It is responsible 
of the stability of the aircraft, in addition to the management of a given flight 
plan. In other word, the FCCS is the controller of the whole system, since it 
provides two level of control: 

• A low level control, in order to ensure the stability of the aircraft. In this 
case, the FCCS needs to receive roll and pitch data from an IMU, and it 
acts only on the ailerons and the elevator. 

• A high level control, to accomplish a given flight plan, generally formed 
by a set of waypoints. In this scenario, in addition to the IMU, 
magnetometers, GPS and pressure sensors are needed. 

II.3.1 Control strategy 

In the scientific literature there are various control methods reported [24] [36] 
[42] [43] and the choice of which type to adopt is of crucial importance for the 
performance of the system. A first step in this evaluation is to list all the variables 
that are supposed to be controlled, i.e. Euler angles, GPS and air pressure 
sensors. Secondly, it must consider whether and how these variables are related to 
each other: in this case it is necessary that their control is in some way correlated. 
For instance, taking into consideration the roll and yaw, is evident as this two 
variables are strictly related. To point along a given direction (yaw), a plane must 
first turn activating the ailerons on the wings, thereby setting a certain roll angle. 
From the above it is clear another key observation concerning the dynamics of 
the two variables: the roll has a dynamic faster than the yaw, then to control these 
two variables a cascade control represents a suitable solution [23]. As regards 
pitch and altitude, the relation is the same. For this reason, two cascaded PID 
control loops, one for the heading-by-roll and one for the altitude-by-pitch 
regulations, and a simple feedback PID control loop for the speed regulation are 
implemented in the control architecture of the Volcan UAV [17]. The developed 
controllers are a similar implementation of the Altitude-Hold and Heading-Hold 
schemes presented in [24]. 

The “Mission Management” block of the FCCS supervises and controls the 
mission execution: the desired trajectory is assigned to the FCCS by means of a 
set of waypoints coordinates [32] and the “Mission Management” block 
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computes the reference signals to be assigned to the control loops with the aim of 
performing the planned mission. As it can be observed in Figure 17, the heading-
by-roll regulator acts on the ailerons and the rudder, the altitude-by-pitch 
computes the signals for the elevator, while the throttle command is computed by 
the airspeed controller. 

 

Figure 17 - The interaction of the different sub-systems implemented on the FCCS. 

In Figure 18 the block scheme of the altitude-by-pitch regulator is shown. The 
reference altitude is the height of the next waypoint to be reached. The current 
altitude is obtained by means of an EKF-based sensor fusion between the 
altitudes given by the on-board GPS and by the absolute pressure sensor of the 
ADAHRS board; the computed altitude is sent via CANAerospace protocol to 
the FCCS. The resulting error is processed by PIDAlt which provides the 
reference signal to the inner loop, regulating the pitch angle. 

 

Figure 18 - Altitude-by-pitch control loop. 
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In Figure 19 the block scheme of the heading-by-roll control loop is shown. 
The course error is determined as it can be seen in Figure 20. The value of the 
desired course essentially depends on the coordinates of the next waypoint and 
the current coordinates of the aircraft (given by GPS); the measure of the heading 
is obtained from the ADAHRS. Obviously, this represents a simplification, 
because we are considering the heading as the direction in which the plane is 
pointing, without taking into account the effects of wind drift [26]. However, this 
problem is compensated by the FCCS navigation algorithm that continuously 
updates the Course Error. The resulting error is processed by the PIDCourse 
regulator, which provides the reference signal to the inner loop, regulating the roll 
angle. 

 
Figure 19 - Heading-by-roll control loop. 

 

Figure 20 - Course error computation. 

Finally, in Figure 21 the speed control block scheme is shown. The desired 
speed is related to the next waypoint, whereas the current speed is obtained 
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through a sensor fusion between the speed coming from GPS and the airspeed 
obtained by the differential pressure sensor connected to the Pitot tube. 

 
Figure 21 – Speed control loop. 

II.3.2 Hardware Design 

The complete schematic of the FCCS subsystem is shown Appendix A. The 
main component is the dsPIC33FJ256GP710A, a microcontroller produced by 
Microchip [65]. Moreover, an EEPROM memory and a transceiver CAN are 
present. In Figure 22 the developed PCB is shown.  

 
Figure 22 - FCCS board 
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II.3.3 Operating modes 

The operating modes of the FCCS determine the particular conditions in 
which the UAV operates, which results in a different iteration with the 
environment. Essentially, the operating modes necessary are two: the first is 
necessary for the tuning of the PIDs, and the second one is used to accomplish a 
given flight plan. 

II.3.3.1 Assisted Mode 

In assisted mode the aircraft does not follow any flight plan, but the reference 
values of the controlled variables (Roll, Pitch, Heading, Altitude and Speed) set 
by the user. This mode is particularly useful during calibration of the control 
loops or to verify the correct operations of them. Using the complete cascade 
control, it is possible to assign the reference to the variable on the outer loop 
(Heading and Altitude) Only. To assign the reference variables in the inner loop 
(Roll and Pitch) the outer loop should be opened, transforming the cascade 
control in a simple feedback control (in this configuration, yaw and altitude are 
not checked). For this reason two flags are inserted in the heading-by-roll and in 
the altitude-by-pitch control loops, TrackHold and AltitudeHold. These flags make 
it possible to set the reference of the outer loop, or inhibit it and give a reference 
value directly to the inner loop. As regards the speed control, being controlled by 
a simple feedback control, it always follows the reference set by the operator. 
This is summarized by Table 4  and Figure 23.  

                                Flag → 
Setpoints ↓  

TrackHold AltitudeHold 
True False True False 

RollAssisted Notused Used X X 
TrackAssisted Used NotUsed X X 
PitchAssisted X X Notused Used 
AltitudeAssisted X X Used NotUsed 
AirspeedAssisted X X X X 

Table 4 - Assisted Mode Flags 
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Figure 23 - Assisted Mode Flow chart 

II.3.3.2 Navigation 

This is the typical operating mode of the UAV, i.e. the navigation between 
waypoints. In this modality a waypoint is considered reached if the UAV is 
located within a given radius from it (typically chosen as 50m in this work). In 
Figure 24 the flow chart of this modality is shown. 
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Figure 24 - Navigation mode flow chart 

II.3.4 Autotuning algorithm 

The tuning procedures of the control algorithms of unmanned platforms 
represent one of the most time consuming phases, especially in the case of flying 
robots adopted in strongly not structured environments, like in volcanoes [11]. 
Usually a new mission needs to be preceded by a tuning procedure of the control 
loops, depending on weather and environmental conditions (pressure, 
temperature and so on). Propellers efficiency, wings lift and the power of a stroke 
engine depend on air density, which is strongly related to the weather conditions. 

The implementation of automatic procedures represents an advantage that 
makes the development phase of an UAV easier and faster. Several papers deal 
with the automatic or self-tuning of control systems [34]. However, only a few 
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attempts are related to UAVs [28] [29] [30] [31]: this is mainly due to the risks 
connected to the tuning procedures of this kind of robotic platforms. 

The relay feedback technique is widely adopted for the automatic tuning of 
PID controllers [27]. However, such algorithm is unsuitable for the automatic 
tuning of the control loops of an aircraft. Indeed, the first phase of this algorithm 
leads the system in a steady-state oscillation. It is clear how dangerous could be 
this condition for an aircraft. A different approach is based on Fuzzy rules, 
suggested by experience. The papers [28] and [29] are examples of this approach, 
where a self-adaptive fuzzy control is used to tune the PIDs of an UAV. 

 However, up to now the literature presents only works focused on the 
different methodologies to be adopted for the self or automatic tuning of UAVs. 
The step ahead is represented by the development of an hardware and software 
suite that makes the tuning phase safe, reliable and fast, independently of the 
control loops implemented on the on-board avionics [25].  

The tuning algorithm analyses the step response of the control loop to be 
tuned and automatically implements a method based on Åström and Hägglund 
[27], where the PID parameters are chosen as a compromise between stability 
and speed, as summarized in Table 5. 

 Speed Stability 
Proportional Action increases Increases Reduces 
Integral Action increases Reduces Increases 
Derivative Action increases Increases Increases 

Table 5 - Effect of the controller on speed and stability 

Going into detail, a constant set-point is assigned to the control loop to be 
tuned and the response of the aircraft is analyzed to verify if the desired behavior 
is achieved. A set of constraints, assigned before the tuning procedure, must be 
satisfied: rise time, overshoot, steady state error and settling time (Figure 25). The 
values assigned to the constraints should be based on the specific aircraft model 
and, in general, on experience.  

The algorithm, developed in Matlab-Simulink [68], communicates with the 
onboard avionics via CANAerospace protocol. A screenshot of the GUI 
implemented for executing and monitoring the tuning procedure is shown in 
Figure 27: in particular, the form dedicated to the automatic tuning is 
represented. This form allows the operator to assign the desired constraints 
(“Specifications” section), to start the tuning procedure (“Auto Tuning” section), 
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to analyze in real-time the response of the control loops (“Step Response” 
section) and to view the computed parameters (“Dynamic Features” section). 

 

Figure 25 - Generic step response 

The tuning procedure, automatically executed by the implemented algorithm 
and started by acting on the “Auto Tuning” section of the GUI, is shown in 
Figure 26 and summarized below: 

• The constraints must be introduced in the “Specifications” section of the 
developed HMI. 

• An initial set of the PID parameters is assigned and sent via 
CANAerospace to the control loops of the FCCS. 

• A step signal is assigned as input reference for the autopilot. 

• The dynamic response of the system is analyzed and is compared with the 
assigned constraints. 

 

If the response is not satisfactory, the PIDs gains are modified according to the 
following classical rules [27]: 

• The proportional action is correlated to the speed and, then, to the rise 
time; 

• The derivative action is correlated with the overshoot; 

• The integral action acts on the steady state error. 
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This procedure is iterated until the constraints are not satisfied or a specified 
number of iterations is reached. 

 

Figure 26 - Flow chart of the developed automatic tuning algorithm 
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Figure 27 - The developed GUI for the autotuning procedure 

 

II.3.5 HIL Architecture 

Hardware in the Loop architectures have been adopted by several projects to 
develop and test different aeronautical components [33] [35] [36].  

To reduce time, costs and risks related to the trials on a real aircraft, an HIL 
architecture has been used to test and verify the developed architecture: the real 
aircraft has been substituted with a simulated virtual model closed in a HIL 
architecture with the real controller.  

The used HIL architecture is similar to the one adopted in [32] to develop the 
VOLCAN project. In this architecture the VOLCAN has been replaced by the 
X-Plane Simulator by Laminar Research [53], connected both to the FCCS and 
the GUI via CANAerospace. In Figure 28 the adopted architecture is shown; the 
block named “FCCS” represents the real electronic board. Telemetry data, 
concerning plane pose, are sent from the simulator through CANbus to the 
FCCS board by using the CANaerospace protocol. Once attitude and position of 
the aircraft are known, the control algorithms implemented on the FCCS board 
compute the signals for the servo commands that are sent back to the simulator 
to actuate the mobile parts of the plane. 
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The GUI, presented in II.3.4, is closed in the loop to execute the automatic 
tuning procedure, sending the reference signals to the FCCS and capturing and 
recording the telemetry data sent by the simulator. 

In the next paragraphs, several experimental results are presented. In 
particular, in the first part the procedure and the results related to the automating 
tuning of the “heading-by-roll” control loops (Figure 19) are discussed. The first 
step regards the tuning of the inner (and faster) variable, the roll (II.3.5.1). Once 
the roll loop has been tuned, the procedure to tune the outer loop (heading, with 
a slower dynamic) is automatically executed (II.3.5.2). 

To validate the results of the automatic tuning algorithm, the computed 
parameters have been used during the execution of a complete flight mission in 
absence of wind (II.3.5.3) and in windy conditions (II.3.5.4). 

 
Figure 28 - The HIL architecture adopted to test the algorithm 
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II.3.5.1 Automatic tuning of the roll control loop 

To tune the roll control loop, the outer loop (heading control) is deactivated 
and the reference signal is directly assigned to the inner control loop. 

To execute this procedure, the aircraft has been placed at an altitude of 200m 
ASL, with a ground speed of 90 Km/h. The reference roll signal used to evaluate 
the step response has been set to ±30°: the procedure is considered as 
successfully completed when the constraints are satisfied both on the positive 
(+30°) and the negative (-30°) roll steps.  

The constraints to be satisfied, assigned at the beginning of the procedure, are 
reported in the first row of Table 6; the second row reports the values reached at 
the end of the tuning procedure.  

The initial values of the PID gains are shown in the first row of Table 7, while 
the computed parameters are reported in the last row. 

Parameters Rise time 
[s] 

Settling time 
[s] 

Overshoot [DEG] Overshoot 
[%] 

SSE 
[DEG]

Imposed 1 1 0.3 1 0.3 

Achieved 0.82 0.82 0.17 0.58 0.21 

Table 6- Constraints and results of roll loop tuning. 

Gains Kp Kd Ki

Starting values 1.5 0 0 

Final values 2.4 0 0 

Table 7 - Roll PID gains. 

Figure 29 shows the time evolution of the roll angle, measured during the 
tuning procedure. As it can be observed, the responses of the first eighth steps 
are incomplete (A), because the constraint related to the rise time on the positive 
edge is not satisfied. In fact, when the reference signal is not reached in the 
assigned rise time, the algorithm stops the step under execution; then, the KP gain 
is modified and another step is executed.  

At the ninth step (B), the constraints are satisfied on the rising edge of the 
+30° imposed roll; but they are not satisfied on the negative step. 
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Finally, at the tenth attempt (C), the algorithm executes positive and negative 
steps and verifies that the imposed constraints are achieved (Table 6), by acting 
only on proportional action (Table 7). 

 
Figure 29 - Roll control loop auto-tuning procedure 

II.3.5.2 Automatic tuning of the heading control loop 

Once the roll loop has been tuned, the outer loop (heading) is reactivated 
while the PID gains of the inner loop (roll) are those achieved in the previous roll 
loop tuning. In this case, the reference amplitude, used to evaluate the step 
response, has been imposed to ±45°. Constraints and results are summarized in 
Table 8, while the achieved PID gains are shown in Table 9. 

Parameters 
Rise time 
[s] 

Settling 
time [s] 

Overshoot 
[DEG] Overshoot [%]

SSE 
[DEG]

Imposed 6 6 2 4.44 2 

Achieved 4.2 4.26 0.44 1 1.25 

Table 8 - Constraints and results of heading loop tuning 
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Gains Kp Kd Ki 

Startingvalues 0.8 1 0 

Increments 0.1 0.1 0.01

Finalvalues 1 1.2 0.01

Table 9 - Heading PID gains 

In Figure 30 the result of the heading control loop automatic tuning 
procedure is shown. Likewise to the roll tuning procedure, the first two steps (A) 
are partial, because the rise time constraint is not satisfied on the positive edge; 
then, the constraints are satisfied for the positive edge but not on the negative 
edge (B). Finally, the assigned specifications are satisfied both on the positive and 
the negative edges (C). 

In order to tune the remaining control loops (pitch, altitude and speed) 
automatic tuning procedure have been executed and the algorithm has always 
found suitable PID gains satisfying the imposed constraints. 

 

 
Figure 30- Heading control loop auto-tuning 
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II.3.5.3 Parameters validation: mission execution without wind 

The same procedure used for the “heading-by-roll” control loops has been 
adopted for the automatic tuning of the “altitude-by-pitch” and “speed” control 
loops. 

Then, a mission has been executed in the HIL architecture to validate the 
obtained parameters. In Figure 31 the mission is represented: the red circles are 
the assigned WPs while the purple line represents the executed trajectory. Table 
10 summarizes the assigned WPs and the altitude and speed assigned for each 
one. 

Waypoint Latitude 
[Deg] 

Longitude 
[Deg] 

Altitude 
[m] 

Speed 
[km/h]

WP1 37.4728737 15.0714064 200 80 

WP2 37.4591484 15.0772877 500 110 

WP3 37.4603195 15.0517006 300 90 

Table 10 - Waypoint assigned for parameters validation 

 
Figure 31- The mission executed after the automatic tuning procedure 

Figure 32 allows to observe the behaviors of the two control loops involved in 
the “heading-by-roll” regulation during the mission. The picture shows the time 
evolution during the take-off, navigation and landing phases. 
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Figure 32 - The time evolution of the heading-by-roll control loops 

In Figure 33 the time evolutions of the control loops involved in the “altitude-
by-pitch” regulation is shown. 

As it can be observed by analyzing Figure 31, Figure 32 and Figure 33, the 
behavior of the tuned loops is fine and allows to execute the flight plan in a 
satisfactory way. 
 

 
Figure 33 - The time evolution of the altitude-by-pitch control loops 
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II.3.5.4 Parameters validation: mission execution in windy conditions 

To validate the robustness of the control architecture with the parameters 
computed by the automatic tuning algorithm, the same mission assigned in the 
previous section has been executed in windy conditions, introducing in the 
simulator a wind of 20 km/h and with the direction shown in Figure 34. Such a 
wind condition is remarkable taking into account the aircraft under test. 

 

Figure 34- The mission executed in windy conditions. The red arrow indicates the wind 
direction. 

Figure 35 allows to observe the behaviors of the two control loops involved in 
the “heading-by-roll” regulation during the mission. The picture shows the time 
evolution during the take-off, navigation and landing phases. 

In Figure 36 the time evolutions of the control loops involved in the “altitude-
by-pitch” regulation is reported. 

As it can be observed by analyzing Figure 35 and Figure 36, the response of 
the inner loops (roll and pitch) allows to obtain a good behavior of the outer 
loops (heading and altitude). This permits the aircraft to reach successfully the 
assigned waypoints, even if the trajectory is disturbed. 
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Figure 35 - The time evolution of the heading-by-roll control loops in windy conditions. 
 
 
 

 

Figure 36 - The time evolution of the altitude-by-pitch control loops in windy conditions 
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II.4 Servo Actuators Control System 

This subsystem manages the engine and the actuators (up to seven) connected 
to the mobile parts of the Volcan UAV. It also allows switching from the UAV 
mode to the Pilot In Command (PIC) mode, in order to execute takeoff and 
landing operations or also to bypass instantaneously the FCCS in case of failures. 
Therefore, in UAV mode the reference signals come from the FCCS, whereas in 
PIC mode they come from the RC receiver. The core of the SACS is the 
microcontroller PIC18F4580 by Microchip [65]. Moreover, a transceiver CAN 
and an array of digital isolators, in order to isolate the ground of the servos 
(generally noisy) with the ground of the microcontroller, are mounted. PCB of 
the SACS is shown in the following figure, whereas the schematic is reported in 
Appendix A. 

 
Figure 37 - SACS board 
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II.5 UDP2CAN 

This subsystem acts as a bridge between the CANAerospace bus and a 
wireless link. This is because it is necessary for the operator to supervise and 
monitor the drone by means of a ground station. Obviously, a wireless link does 
not have the same robustness of a wired link. However, considering that the 
ground station receives only telemetry data and it sends asynchronous commands 
with ACKs (the NSH frames), it's clear as this type of connection represents an 
appropriate solution. 

Going into details, an UDP2CAN bridge has been realized, i.e. a device that 
converts CAN frames coming from the drone control system in UDP frames 
suitable for a commercial WiFi link. 

As regards the hardware, this subsystem has the same microcontroller of the 
FCCS, the dsPIC33FJ256GP710A, in addition to a transceiver CAN (MAX3051) 
and the ENC28J60, an Ethernet controller produced by Microchip [65]. PCB of 
the UDP2CAN is shown in the following figure, whereas its schematic is 
reported in Appendix A. 

 
Figure 38 – UDP2CAN board 
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II.6 Air Data and Attitude Heading Reference System 

The last subsystem of the whole control architecture is represented by the 
ADAHRS. In reality, for reasons of convenience, this subsystem is split into two 
boards: 

• A sensors board, which manages GPS, pressure sensors and temperature 
sensor. 

• An Inertial measurement unit, that gives information about attitude and 
heading. To this board, considering its complexity, the section II.7 is 
dedicated. 

II.6.1 Sensors Board 

The dsPIC33FJ256GP710A onboard manages the following sensors: 

• A classical GPS with RS232 interface. 

• The STTS75 Digital temperature sensor. 

• The absolute pressure sensor HSCMAND015PA2A3 by Honeywell 
[66], used as barometer in order to obtain information about altitude. 

• The differential pressure sensor HSCMRRN100MD2A3 by 
Honeywell [66], used as Pitot tube in order to obtain information 
about airspeed.  

PCB of the sensors board are shown in the following figures. Its schematic is 
shown in Appendix A 

 
Figure 39 – Sensors board 
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II.7 IMU board 

The aim of this board is to provide the Euler angles of the aircraft. To make 
this possible, a set of inertial sensors are needed. Such a set of sensors, together 
with a 32bit ARM microcontroller, are present in the INEMO®-M1, produced by 
ST-Microelectronics [37]. Going into details, the key features of this device are 
the following: 

• STM32F103REY6: WLCSP package, high-density performance line 
ARM®-based 32-bit MCU 

• LSM303DLHC: 6-axis digital e-compass module, ±2g, ±4g, ±8g, ±16g 
linear acceleration programmable full scale, from ±1.3 gauss to ±8.1 
gauss, I2C digital output 

• L3GD20: 3-axis digital gyroscope (roll, pitch, yaw), 16-bit data output, 
±250°/s, ±500°/s, ±2000°/s selectable full scale 

• LDS3985M33R: ultra-low drop, low-noise BiCMOS 300 mA onboard 
voltage regulator. 

• Flexible interfaces: CAN, USART, SPI and I2C serial interfaces; full-speed 
USB 2.0 

• Up to 8 ADC channels for external analog inputs 

• Compact design: 13 x 13 x 2 mm 

 
Figure 40 - INEMO®-M1 

II.7.1 Hardware development 

In order to interface the INEMO®-M1 with the other subsystems, some 
improvements have been added. In particular, a transceiver CAN and an SWD 
connector (to program the microcontroller) were inserted. In the following figure, 
the board is shown. The schematic is in Appendix A. 
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Figure 41 - INEMO®-M1 Board 

II.7.2 Firmware development 

The IMU firmware development has represented one of the most complex 
phases in the design of the Volcan control system. The reason is that to develop a 
reliable system that calculates the RPY angles from a set of inertial sensors 
requires a very long phase of test and optimization. In the next paragraphs the 
various development and optimization steps are described. 

II.7.2.1 CANAerospace implementation 

The first step in the IMU development is represented by the implementation 
of the CANAerospace protocol. The CANAerospace directives impose only the 
most important frame structures, such as the frames for the RPY angles. There is 
therefore the possibility to insert several user defined frames, in order to make 
possible the management and the personalization of such a system. A complete 
documentation of the CANAerospace protocol implemented is reported in 
Appendix B. 

II.7.2.2 Extended Kalman Filter implementation 

The classical Kalman filter [38] [39] is an optimal observer under the 
hypotheses that the system is linear and that both the process and the 
measurement noises are Gaussian and additive. The Kalman Filter equations are 
summarized in Table 11 
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Initial estimates for ෝ࢞࢑ି૚and࢑ିࡼ૚ 
Time Update (“Predict”) 

Project the state ahead ෝ࢞࢑ି = ෝ࢞࢑ି૚ ࡭ + ࡮ ࢛࢑
Project the error covariance ahead ࢑ିࡼ = ࢀ࡭࢑ି૚ࡼ࡭ + ࡽ

Measurement Update (“Correct”) 
Compute the Kalman gain ࢑ࡷ = ࢑ିࡼ  ࢑ିࡼࡴ)ࢀࡴ ࢀࡴ + ૚ି(ࡾ

Update estimate with measurement zk ෝ࢞࢑ = ෝ࢞࢑ି + ࢑ࢠ)࢑ࡷ − ࡴ ෝ࢞࢑ି )
Update the error covariance ࢑ࡼ = − ࡵ) (ࡴ࢑ࡷ ࢑ିࡼ

Table 11 - Kalman Filter Equations 

Unfortunately, in this case of study the hypothesis of linearity is not satisfied. 
However, under the assumption that the process and the measurement noises are 
Gaussian and additive, it is possible to implement an Extented Kalman Filter 
(EKF) algorithm [40] [41]. With respect to a conventional Kalman filter, the EKF 
is its linearization around the current estimate. Considering a given process with 
the following equations: 

ቊ࢞࢑ = ,࢑ି૚࢞ )ࢌ  ࢛࢑, ࢝࢑ି૚)࢑ࢠ = ,࢑࢞ )ࢎ ࢜࢑)  

Where xk represents the state variables, zk the measurements and f, h non-
linear functions. The following Jacobians represent the linearization of the system 
around the current estimate: 

[ܹ௜,௝] =  ߲ [݂௜]߲ݓ[௝] ,ො௞ݔ) ,௞ݑ 0) 

[௜,௝]ܣ =  ߲ [݂௜]߲ݔ[௝] ,ො௞ݔ) ,௞ݑ 0) 

[௜,௝]ܪ =  ߲ℎ[௜]߲ݔ[௝] ,ො௞ݔ) 0) 

[ܸ௜,௝] =  ߲ℎ[௜]߲ݒ[௝] ,ො௞ݔ) 0) 

The resulting equations are shown in Table 12 
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Initial estimates for ෝ࢞࢑ି૚and࢑ିࡼ૚ 
Time Update (“Predict”) 

Project the state ahead ෝ࢞࢑ି = ,ෝ࢞࢑ି૚)ࢌ ࢛࢑, 0) 
Project the error covariance ahead ࢑ିࡼ = ࢀ࢑࡭࢑ି૚ࡼ࢑࡭ + ࢀ࢑ࢃ࢑ି૚ࡽ࢑ࢃ

Measurement Update (“Correct”) 
Compute the Kalman gain ࢑ࡷ = ࢑ିࡼ ࢑ିࡼࡴ)ࢀࡴ ࢀࡴ + ૚ି(ࢀ࢑ࢂ࢑ି૚ࡾ࢑ࢂ

Update estimate with measurement zk ෝ࢞࢑ = ෝ࢞࢑ି + ࢑ࢠ)࢑ࡷ − )ࢎ ෝ࢞࢑ି , ૙))
Update the error covariance ࢑ࡼ = ࡵ) − (ࡴ࢑ࡷ ࢑ିࡼ

Table 12 - EKF equations 

State Vector 
As regards the state vector, initially the best choice would seem to be the 

Euler Angles RPY. However, the adoption of Euler Angles causes two 
drawbacks: 

• Gimbal lock: the loss of one DoF in a 3D space that occurs when 2 axes are 
parallel. 

• Mathematical singularities, caused by the trigonometric function atan2. 

In order to overcome these problems, another representation of spatial 
orientation of a rigid body has been used, the unit quaternion [40] [41]: an 
efficient and non‐singular description of spatial orientation used in particular for 
calculations involving three-dimensional rotations, such as in three-dimensional 
computer graphics and computer vision. Obviously, it is possible to convert the 
unit quaternion in Euler Angles and viceversa [44]. Another aspect to take into 
consideration is the gyroscopes drift. For this reason also the gyroscope biases are 
chosen as state variables. In summary the state vector of the EKF is the 
following: 
ݔ  = ଴ݍ] ଵݍ ଶݍ ଷݍ ܾ߱௫ ܾ߱௬ ܾ߱௭]் 

Prediction phase 
In the discrete time, using the Euler integration method, it is possible to write: 
௞ݔ  = ௞ିଵݔ  +  (1)   ݐ∆ሶ௞ݔ

Considering the gyroscope measurements ω as inputs u (see Table 12) and 
using the relationship that exists between the derivative of the unit quaternion ݍሶ  
and the angular velocity ω [44], it is possible to write: 
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ሶ௞ିଵݔ = ଵଶ (௞ିଵݍ)ܳ ൤ 0߱௞ିଵ൨ =  ଵଶ ൦ݍ଴௞ିଵ ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ଶ௞ିଵݍ− ଷ௞ିଵݍ−ଷ௞ିଵݍ− ଶ௞ିଵݍଶ௞ିଵݍ ଷ௞ିଵݍଷ௞ିଵݍ ଴௞ିଵݍଶ௞ିଵݍ− ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ൪ ێێۏ
ۍ 0߱௫௞ିଵ − ܾ߱௫௞ିଵ߱௬௞ିଵ − ܾ߱௬௞ିଵ߱௭௞ିଵ − ܾ߱௭௞ିଵ ۑۑے

ې
 (2) 

Substituting (2) in (1) it obtains: 
 

௞ݔ =  
ێێۏ
ێێێ
ۍێ ۑۑےଷ௞ܾ߱௫௞ܾ߱௬௞ܾ߱௭௞ݍଶ௞ݍଵ௞ݍ଴௞ݍ

ۑۑۑ
ېۑ =

ێێۏ
ێێێ
ۍێ ۑۑےଷ௞ିଵܾ߱௫௞ିଵܾ߱௬௞ିଵܾ߱௭௞ିଵݍଶ௞ିଵݍଵ௞ିଵݍ଴௞ିଵݍ

ۑۑۑ
ېۑ + 12 ൦ݍ଴௞ିଵ ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ଶ௞ିଵݍ− ଷ௞ିଵݍ−ଷ௞ିଵݍ− ଶ௞ିଵݍଶ௞ିଵݍ ଷ௞ିଵݍଷ௞ିଵݍ ଴௞ିଵݍଶ௞ିଵݍ− ଵ௞ିଵݍଵ௞ିଵݍ− ଴௞ିଵݍ ൪ ێێۏ

ۍ 0߱௫௞ିଵ − ܾ߱௫௞ିଵ߱௬௞ିଵ − ܾ߱௬௞ିଵ߱௭௞ିଵ − ܾ߱௭௞ିଵ ۑۑے
ې  (3) ݐ∆

The (3) in extended form becomes: 
 

ەۖۖۖ
۔ۖۖ
ۓۖۖۖ

଴௞ݍ = ଴௞ିଵݍ   − ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍଵ௞ିଵ∆ݐ − ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆ଶ௞ିଵݍ − ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍଷ௞ିଵ∆ݍ;ݐଵ௞ = ଵ௞ିଵݍ  +  ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍ଴௞ିଵ∆ݐ − ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆ଷ௞ିଵݍ + ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍଶ௞ିଵ∆ݍ;ݐଶ௞ = ଶ௞ିଵݍ  + ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍଷ௞ିଵ∆ݐ + ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆଴௞ିଵݍ − ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍଵ௞ିଵ∆ݍ;ݐଷ௞ = ଷ௞ିଵݍ   − ଵଶ ൫߱௫௞ିଵ − ܾ߱௫௞ିଵ൯ݍଶ௞ିଵ∆ݐ + ଵଶ ቀ߱௬௞ିଵ − ܾ߱௬௞ିଵቁ ݐ∆ଵ௞ିଵݍ + ଵଶ ൫߱௭௞ିଵ − ܾ߱௭௞ିଵ൯ݍ଴௞ିଵ∆ݐ;ܾ߱௫௞ =  ܾ߱௫௞ିଵ;ܾ߱௬௞ =  ܾ߱௬௞ିଵ;ܾ߱௭௞ =  ܾ߱௭௞ିଵ;
(4) 

The equations (4) represent the prediction phase of the EKF algorithm (see 
Table 12). 

In order to calculate the error covariance ௞ܲି  (Table 12) it is necessary to 
compute: 

• The Jacobian matrix A of partial derivatives of the state transition function 
with respect to x (state): 

[௜,௝]ܣ =  ߲ [݂௜]߲ݔ[௝] ,ො௞ݔ) ,௞ݑ 0)      ߳ ℝ଻௫଻ 

• The Jacobian matrix W of partial derivatives of the state transition function 
with respect to w (noise) : 

[ܹ௜,௝] =  ߲ [݂௜]߲ݓ[௝] ,ො௞ݔ) ,௞ݑ 0) ߳ ℝ଻௫ଷ 



IMU board | 51 
 

 

• The matrix Q of the variance of the gyroscope: 
 ܳ = ,ܺݎݕܩ ݁ܿ݊ܽ݅ݎܸܽ)݃ܽ݅݀ ,ܻݎݕܩ ݁ܿ݊ܽ݅ݎܸܽ  ℝଷ௫ଷ ߳   (ܼݎݕܩ ݁ܿ݊ܽ݅ݎܸܽ

Correction Phase 
Once the prediction phase is calculated, it is necessary using the accelerometer 

and the magnetometer measures, to implement the correction phase.  On the 
basis of the tests executed, the best performance is obtained splitting the 
correction phase in two independent steps. One step using only the 
accelerometers measurements and another one in which the correction is 
performed using only the magnetometers measurements. The measurement 
function that links the accelerometers measurements with the state vector is: 

 ℎ௔௖௖ = (ݍ)ܴ ∗ ଴ଶݍതതതതത = ቎ܿܿܣ + ଵଶݍ − ଶଶݍ − ଷଶݍ ଶݍଵݍ)2 − (ଷݍ଴ݍ ଷݍଵݍ)2 + ଵݍଶݍ)ଶ)2ݍ଴ݍ + (ଷݍ଴ݍ ଴ଵݍ − ଵଶݍ + ଶଶݍ − ଷଶݍ ଷݍଶݍ)2 − ଵݍଷݍ)ଵ)2ݍ଴ݍ − (ଶݍ଴ݍ ଶݍଷݍ)2 + (ଵݍ଴ݍ ଴ଶݍ − ଵଶݍ − ଶଶݍ + ଷଶ቏ݍ ቎ܿܿܣ௫ܿܿܣ௬ܿܿܣ௭ ቏ 

In the same way, Hmag is obtained by the following matrix product: 

ℎ௠௔௚ = (ݍ)ܴ ∗ ଴ଶݍതതതതതത = ቎݃ܽܯ + ଵଶݍ − ଶଶݍ − ଷଶݍ ଶݍଵݍ)2 − (ଷݍ଴ݍ ଷݍଵݍ)2 + ଵݍଶݍ)ଶ)2ݍ଴ݍ + (ଷݍ଴ݍ ଴ଵݍ − ଵଶݍ + ଶଶݍ − ଷଶݍ ଷݍଶݍ)2 − ଵݍଷݍ)ଵ)2ݍ଴ݍ − (ଶݍ଴ݍ ଶݍଷݍ)2 + (ଵݍ଴ݍ ଴ଶݍ − ଵଶݍ − ଶଶݍ + ଷଶ቏ݍ ቎݃ܽܯ௫݃ܽܯ௬݃ܽܯ௭ ቏ 

  .തതതതതതത represent the measures݃ܽܯ  തതതതത andܿܿܣ
In order to calculate the Kalman gain ܭ௞(Table 12), it is necessary to evaluate: 

• the Jacobian matrix H of partial derivatives of the measurement function 
with respect to x (state): 

[௜,௝]ܪ =  ߲ℎ[௜]߲ݔ[௝] ,ො௞ݔ) 0) ߳ ℝଷ௫଻ 

• The Jacobian matrix V of partial derivatives of the measurement function 
with respect to v (noise measures): 

[ܸ௜,௝] =  ߲ℎ[௜]߲ݒ[௝] ,ො௞ݔ) 0) ߳ ℝଷ௫ଷ 
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• The matrix R of the variance of the sensor: ܴ = ,ܺ݁ܿ݊ܽ݅ݎܸܽ)݃ܽ݅݀ ,ܻ݁ܿ݊ܽ݅ݎܸܽ  ℝଷ௫ଷ ߳   (ܼ݁ܿ݊ܽ݅ݎܸܽ
 
Considering that the V is an identity matrix, the Kalman gain is the following: ܭ௞ =  ௞ܲି ܪ)்ܪ ௞ܲି ்ܪ + ܴ)ିଵ 

II.7.2.3 EKF improvements 

The EKF algorithm discussed in the previous chapters in theory should work 
perfectly. Unfortunately, in the real world some improvements are needed in 
order to obtain an IMU with a satisfactory performance. 

Sensors Calibration 
In order to convert the sensors raw data in calibrated data, the sensors 

datasheets give the conversion formulas. However, these equations suppose ideal 
conditions and  don't take into account the following aspects: 

• Process tolerances. 

• Different sensitivity and bias for each axis. 

• Misalignment between different sensors. 

• Misalignment between the INEMO® and the IMU board. 

• Non linearity. 

Supposing the last problematic negligible, it is possible to overcome the other 
problems by means of the least square method. 
As regards the gyroscope, the raw data and the angular velocity are related by the 
following relation: 
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Where Rx, Ry, Rz are the final angular velocities of each axis, G_m is the 
misalignment matrix between the gyro sensing axes and the device body axes, 
SCx, SCy, SCz are the scale factors caused by the mismatch of the sensitivity of 
each axis, Rx’, Ry’, Rz’ are the raw measurements of the gyroscopes and Rx0, 
Ry0, Rz0  are the biases for each axis. The least square method can calculate the 
twelve parameters (G11…G33, G10, G20 and G30) for a complete calibration 
procedure. To apply this method, the IMU board was mounted over a KUKA 
robotic manipulator [67]. First of all, the bias of each axis is measured (G10, G20, 
G30). Then, the KUKA manipulator rotates the board around each axis at 
different known angular velocity and collects the measurements (Y). The matrix 
of the known angular velocities is related to the gyroscope raw measurements 
matrix (w) by the unknown matrix X: Y = w ∙  X 

Finally, to determine the other nine parameters (G11…G33) the least square 
method is applied: X =  [w୘w]ିଵw୘Y 

For the accelerometer, the procedure is the same, using also in this case the 
KUKA manipulator [67] in static poses. On the contrary, the magnetometer 
calibration, even if use the same equation, cannot be executed by means the 
KUKA manipulator because the metal parts of the robot affect the 
magnetometer measurements. 

The accelerometer and gyroscope calibration is executed only once, because 
their parameters are practically time independent and don't depend by the 
environment. On the contrary, the magnetometer calibration has to be executed 
every time the environment changes. 

Chebyshev Filtering 
During the test phase, the greatest problem was represented by the vibration 

introduced by the brushless engine to the whole airframe. In particular, the 
accelerometer measurements were completely distorted, causing a malfunction of 
the EKF algorithm. In Figure 42 a comparison between the raw data of the Z 
component, when the motor is off (red) and when the motor is running (blue) is 
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shown. It is worth to point out that, in both cases the airframe is locked to the 
workbench. 

 
Figure 42 - Noise introduced by brushless engine – Time domain 

To solve this problem, the first step is an analysis of the vibration in the 
frequency domain. Once the noise region has been identified, a filtering is 
performed. In order to catch the widest range of frequencies, the Output Data 
Rate (ODR) of the accelerometer has been set to 1344Hz, whereas the sample 
rate is 1kHz.  In Figure 43 the same comparison is shown into the frequency 
domain. It is clear as the main harmonic corresponds to approximately 110Hz. 
Therefore, to filter out the vibration effect, accelerometer data were filtered with 
a low pass fourth-order Chebyshev filter, with a cutoff frequency of 25Hz. The 
results are shown in Figure 44. In contrast to the previous test, in this case the 
airframe is moving in order to ensure that the Chebyshev filtering does not filter 
part of the dynamics of the aircraft. Moreover, in addition to the comparison 
between the filtered (black) and unfiltered data (green), a comparison is executed 
with a commercial IMU (red), in particular an MTi by Xsens [54]. 
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Figure 43 - Noise introduced by brushless engine – Frequency domain 

 

 
Figure 44 - Results of accelerometer filtering 

Dynamic compensation 
Another aspect to be taken into account that leads to a deterioration of the 

EKF performance, is represented by the dynamic component of the 
accelerometer measures. Going into detail, the EKF algorithm implemented in 
the IMU works properly only when the system rotates and does not translate, or 
at least it translates slowly. Obviously, this is not the case of a drone. During a 
mission, the accelerometer measures both the gravity vector and the dynamic 
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accelerations of the aircraft, but only the former is useful for the EKF algorithm. 
Considering that to identify separately the static and dynamic component is not 
possible without other devices, the only way to compensate the dynamic 
acceleration is represented by decreasing the reliability of the accelerometer data, 
i.e. to act in the correction phase of the EKF algorithm. More precisely, the 
computation of the Kalman gain in the accelerometer correction phase is done in 
the following way: ܭ௞ =  ௄ܲܪ)்ܪ ௄்ܲܪ + ܴ)ିଵ 

The R matrix, is a diagonal matrix whose elements are the variances of the 
X,Y and Z axis of the accelerometer.  

ܴ = ൥ܺܿܿܣ_ݎܽݒ 0 00 ܻܿܿܣ_ݎܽݒ 00 0  ൩ܼܿܿܣ_ݎܽݒ

The lower is the value of such variance, the more reliable are the 
measurements. In order to relate the R matrix to the dynamic acceleration, the 
following modification is made to the matrix: 

ܴௗ௬௡ = ൥ܺܿܿܣ_ݎܽݒ 0 00 ܻܿܿܣ_ݎܽݒ 00 0 ൩ܼܿܿܣ_ݎܽݒ ∙  ݌݉݋ܿ_݊ݕܦ

Where Dyn_comp is a variable related to the dynamic acceleration, as it is 
shown in the following formula: 

௖௢௠௣݊ݕܦ = ଴.ଵݐܽݏ ቊቤ݊ܺܿܿܣ)݉ݎ݋, ,ܻܿܿܣ 9.81(ܼܿܿܣ − 1ቤቋ 

In absence of dynamic accelerations, Dyn_comp is zero, converesely the value 
of Dyn_comp (saturated to 0.1) increases the unreliability of the accelerometer.  
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Firmware Development and Optimization 
A big challenge in the IMU firmware development resides in maximizing the 

frequency at which the Extended Kalman Filter works. In fact, the IMU could be 
designed to provide the feedback of the low level control, in order to ensure the 
stability of the aircraft (see II.3.1). An IMU that works at higher frequency 
implies a system faster to compensate the disturbances, and therefore more 
suitable to operate in unstructured environments. However, the EKF is a very 
complex algorithm, and implementing it at high frequency inside a 32bit 
microcontroller, represents a hard challenge. A solution to this problem consists 
in optimizing the code, replacing the libraries for the matrix calculation with 
normal sums of products. These libraries, even if make the code more readable, 
on the other hand are not optimized. To better clarify the concept, consider the 
following matrix product: 

଻௫଻ܣ  ∙ ଻ܲ௫଻ ∙ ଻௫଻்ܣ  

To solve this product 686 multiplications and 588 sums are needed. However, if 
one considers the terms of the A matrix: 

ܣ =
ێێۏ
ێێێ
ێێێ
ۍێ 1 − 12 ݐ݀ݔܩ − 12 ݐ݀ݕܩ − 12 ݐ1݀ݍ ݐ݀ݖܩ ݐ2݀ݍ 12ݐ3݀ݍ ݐ݀ݔܩ 1 12 ݐ݀ݖܩ − 12 ݐ݀ݕܩ ݐ0݀ݍ− ݐ3݀ݍ 12ݐ2݀ݍ− ݐ݀ݕܩ − 12 1 ݐ݀ݖܩ 12 ݐ݀ݔܩ ݐ3݀ݍ− ݐ0݀ݍ− 12ݐ1݀ݍ ݐ݀ݖܩ 12 ݐ݀ݕܩ 12 ݐ݀ݕܩ 1 ݐ2݀ݍ ݐ1݀ݍ− 0ݐ0݀ݍ− 0 0 0 1 0 00 0 0 0 0 1 00 0 0 0 0 0 1 ۑۑے

ۑۑۑ
ۑۑۑ
ېۑ
 

ݐ݀݅ܩ ݁ݎℎ݁ݓ  = ௜݁݌݋ܿݏ݋ݎݕܩ −  ௜ݏܽ݅ܤ
 
It can be seen that there are only seven different elements, and there are seven 

ones and eighteen zeros. Then, in the matrix product A·P·AT ,whatever is the P 
matrix, there are many null terms, whereas the others are composed in part by the 



58 |The Volcan UAV 
 
seven elements of the A matrix. By using the symbolic calculation toolbox of 
Matlab, it is possible to quantify the level of optimization obtained: 

 
symsp11p12p13p14p15p16p17p21p22p23p24p25p26p27real 
symsp31p32p33p34p35p36p37p41p42p43p44p45p46p47real 
symsp51p52p53p54p55p56p57p61p62p63p64p65p66p67real 
symsp71p72p73p74p75p76p77real 
 
P=[p11 p12 p13 p14 p15 p16 p17; p21 p22 p23 p24 p25 p26 p27; 
   p31 p32 p33 p34 p35 p36 p37; p41 p42 p43 p44 p45 p46 p47; 
   p51 p52 p53 p54 p55 p56 p57; p61 p62 p63 p64 p65 p66 p67; 
   p71 p72 p73 p74 p75 p76 p77]; 
 
syms Gxdt Gydt Gzdt S0dt S1dt S2dt S3dt real 
 
A=[1 -Gxdt -Gydt -Gzdt S1dt S2dt S3dt; 
Gxdt 1 Gzdt -Gydt -S0dt S3dt -S2dt; 
Gydt -Gzdt 1 Gxdt -S3dt -S0dt S1dt; 
GzdtGydt -Gxdt 1 S2dt -S1dt -S0dt; 
0 0 0 0 1 0 0; 
0 0 0 0 0 1 0; 
0 0 0 0 0 0 1]; 
 
Pnew=A*P*A'; 

 

Exploiting the symmetries and the occurrences of the terms present in the Pnew 
matrices, it turns out that it is possible to calculate it with about 300 
multiplication and 700 sums. Considering that the products require more time 
compared to the sums to be computed and that in this way no for cycle is needed,  
it is possible to reduce the computation time to about 4-5 times. Summarizing, 
using this strategy the maximum frequency to the EKF algorithm increases from 
50Hz (using the matrix libraries) to 250Hz (Figure 46). 
 

II.7.2.4 Firmware Block Scheme 

The EKF timing is managed by an interrupt connected to a timer whose 
frequency is 500Hz. At each interrupt the accelerometer data are acquired, 
calibrated and filtered. The acquisition and calibration of the gyroscope and the 
magnetometer is executed every two interrupts, i.e. every 4ms (Figure 45). The 
yellow wave in Figure 46 indicates the time necessary to execute the interrupt. the 
frequency is in fact 500Hz and it can be seen that there are positive half-waves 
longer (where overall sensors are acquired), alternating with positive half-waves 
shorter (where only accelerometer is acquired). The reason to acquire the 
accelerometer at 500Hz is because in this way a better filtering can be 
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accomplished, with respect to a sampling frequency of 250Hz. Once all sensors 
data are acquired and calibrated, a flag is set and the EKF algorithm is executed 
in the main loop. According to the tests, once executed the prediction phase 
(green wave of Figure 46), the best performance is obtained executing the 
correction phase (blue wave of Figure 46) one time with the accelerometer 
measurements and one time with the magnetometer measurements. The last step 
is represented by a rotation of the resulting quaternion, if a ROS or a RHS 
request is received (see Appendix B), and their conversion in RPY angles. 

 
 

 
Figure 45 - EKF block scheme 
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Figure 46 - EKF timestamp 

II.7.3 HMI development 

In the development and test phases the HMIs have a key role, because they 
make these processes faster than the classic debug firmware of a microcontroller. 
In particular, during the IMU design, two HMIs have been developed, both of 
them in LabView [48]. 

II.7.3.1 Kalman HMI 

This HMI has been developed in order to verify and optimize the EKF 
algorithm. As discussed in the section II.7.2.3, the EKF algorithm and especially 
its optimization process, requires a lot of time and attention. Even a single wrong 
sign can lead the algorithm to diverge. It is really important in this phase, in order 
to recognize a possible error, to monitor each intermediate calculation and each 
term of the various matrices. It is obvious that if the EKF algorithm is running in 
the microcontroller, it is practically impossible to control every matrix terms by a 
classical debug. Moreover, every FW change requires a compiling and a 
programming operation. Conversely, with a LabView HMI it is possible 
monitoring easily each term and executing changes on the fly in the EKF 
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algorithm. Moreover, in this way a comparison with the MTi by Xsens can be 
done. In the Figure 47 a block scheme of the Kalman HMI is shown, whereas the 
Figure 48 shows a screenshot. 

 

Figure 47 - Kalman HMI block scheme 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 Figure 48 - HMI Kalman, EKF development 
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II.7.3.2 INEMO® M1 HMI 

Once the testing and the development phases were completed, a new HMI 
has been designed in order to exploit the potentialities of the IMU (Figure 49). 

 
Figure 49 - INEMO® M1 HMI 

The key features of the INEMO® M1 HMI are the following: 

• complete management of the CANAerospace protocol (Appendix B) 

• Selection of the data to send (Figure 50). 

• Possibility to change on the fly whatever parameter or reset the 
attitude and the heading reference (Figure 51). 

• Online plotting of any sensors data (Figure 52). 

• Online magnetometer calibration (Figure 53). In contrast with the 
gyroscope and the accelerometer, whose calibration can be made only 
once, the magnetometer measurements are affected by many factors, 
such as batteries, metal parts and so on. For this reason, a 
magnetometer calibration is needed every time the environment in 
which the IMU works is modified. 



IMU board | 63 
 

 
Figure 50 - INEMO® M1 HMI, data selection 

 

 
Figure 51 - INEMO® M1 HMI, parameters management 
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Figure 52 - INEMO® M1 HMI, sensorsplotting 

 
Figure 53 - INEMO® M1 HMI, online magnetometer calibration 
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II.7.4 Results 

In this paragraph a comparison between the developed IMU board and a 
commercial one is treated. The IMU taken as reference is the MTi produced by 
Xsens [54]. The features of both devices are summarized in Table 13: 

 
Sensors IMU boardwith INEMO M1 Xsens MTi 

Gyroscopes 3-axis digital gyroscope, 
±250°/s, ±500°/s, ±2000°/s full scales, 

0.03 deg/s/√Hz Noise, 
100 Hz Bandwidth 

760 Hz max update rate 

3-axis gyroscope, 
±300°/s Full Scale, 

0.05 deg/s/√Hz Noise, 
40 Hz Bandwidth, 

512 Hz max update rate 
Accelerometers 3-axis digital accelerometer, 

±2g, ±4g, ±8g, ±16g full scales, 
220 ug/√Hz, 

149,3 Hz Bandwidth, 
1.344 kHz max update rate 

3-axis accelerometer, 
±50 m/s^2 Full Scale, 

0.002 m/s^2/√Hz, 
30 Hz Bandwidth, 

512 Hz max update rate 
Magnetometers 3-axis digital magnetometer, 

from ±1.3 gauss to ±8.1 gauss, 
0.05 mGauss, 

220 Hz max update rate 

3-axis accelerometer, 
±750 mGauss Full Scale, 

0.05 mGauss, 
10 Hz Bandwidth, 

512 Hz max update rate 
Maximum update rate 

processing 
250 Hz 512 Hz 

Table 13 - INEMO® M1 board vs Xsens MTi 

In order to execute the comparison, the two inertial platform boards were 
aligned and fixed in a rigid support, as shown in the Figure 54. Both slow and fast 
dynamics were performed. The Figure 55, Figure 56 and Figure 57 show as the 
two IMU boards have a comparable behaviour. 

 
Figure 54 - Rigid support to compare the two devices 
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Figure 55 - Roll comparison 

 

 
Figure 56 - Pitch comparison 
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Figure 57 - Yaw comparison 
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Chapter III. The Asctec Hummingbird 

III.1 Introduction 

In this section the other aerial platform is treated, the Hummingbird 
quadrotor produced by Asctec [60]. As discussed in the I.1.2.2 paragraph, 
quadrotors and in general the multirotors have the advantage that they can be 
controlled only by varying the speed of the propellers and thus fixed-pitch blades, 
in contrast to helicopters, can be used. This aspect implies a simplification in the 
design and in the control of the drones. Moreover, the use of four rotors allows 
each individual rotor to have a smaller diameter, compared to a helicopter with 
the same size, producing them to store less kinetic energy during the flight. In 
order to compensate gyroscopic effect and aerodynamic torques, the front and 
the rear propellers rotate counter-clockwise, while the others rotate clockwise 
(Figure 58).  

 

Figure 58 - Rotation of the quadrotor propellers 
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III.1.1 Quadrotor Movements 

The total thrust generated by each motor is given by [45]: 

௜ܶ =  ௜ଶ߱௜ଶݎ௥௜ܣߩ்ܥ

Where, for any rotor i, Ari is the rotor disk area, ri is the radius of the 
propeller, ωi is the angular velocity, CT is a thrust coefficient depending of 
propeller geometry and ρ is the air density. In practice, a simple lumped 
parameter model like the following is used: 

௜ܶ =  ෪்߱௜ଶܥ

In this equation, ܥ෪் > 0 represents a constant determined from static thrust 
test, in order to include also the effects of the drag on the airframe induced by the 
rotor flow. Consequently, the total thrust at hover applied to the airframe can be 
easily calculated as the sum of the thrusts from each individual rotor: 

ܶ = ෍| ௜ܶ|௡
௜ୀଵ = ෪்ܥ ෍ ߱௜ଶ௡

௜ୀଵ  

The system is underactuated, and the remaining degrees of freedom (DoF) 
corresponding to the translational velocity in the x-y plane must be controlled 
through the system dynamics. In particular, in order to accomplish a given 
movement, each rotor has to modify its thrust in the following way: 

• Ascend: each rotor increases its angular velocity. 

• Descend: each rotor decreases its angular velocity. 
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Figure 59 - Representation of angular velocities during ascending and descending phases 

• Turn Left: front and rear rotors increase their angular velocity while 
the others two maintain unchanged their angular velocity. 

• Turn Right: left and right rotors increase their speed while the others 
two maintain unchanged their speed.  

 

 
Figure 60 - Representation of angular velocities during the yaw motion 

• Move forward: front rotor decreases its angular speed and rear rotor 
increases it. The others two don’t change their angular speed. 

• Move backward: front rotor increases its angular speed and rear 
rotor decreases it. The others two don’t change their angular speed. 
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Figure 61 - Angular speeds during the move forward and backward phases 

• Move right: right rotor decreases its angular speed and left rotor 
increases it. The other two rotors maintain a constant angular speed. 

• Move left: right rotor increases its angular speed and left rotor 
decreases it. The other two rotors maintain a constant angular speed. 

 

Figure 62 - Angular speeds during the move right and left phases 

  



72 |The Asctec Hummingbird 
 

III.2 The Hardware 

The Hummingird used is equipped with: 

• A three-axial IMU for attitude control. 

• A GPS module for outdoor navigation. 

• A barometric sensor for altitude measure. 

In Table14 its main features are summarized, whereas in Figure 63 a sketch of 
the quadrotor is shown. 

Size 540 x 540 x 85,5 mm 
Max. take off weight 0,71 kg 

Max. payload 200 g 
Flight time incl. payload 20 min. 

Range 4,500 m ASL, 1,000 m AGL 
Max. airspeed 15 m/s 

Max. climb rate 5 m/s 
Max. thrust 20 N 

Wireless communication 2,4 GHz XBee link, 10–63 mW 
Intertial guidance system AscTecAutoPilot with 1,000 Hz update rate 

Flight modes GPS Mode, Height Mode, Manual Mode 
Table14 – Asctec Hummingbird features 

 

Figure 63 - Sketch of Hummingbird Asctec 

As regards the autopilot, the Hummingbird adopts a different approach with 
respect to the Volcan UAV (II.3). Indeed, the Hummingbird autopilot is 
constituted by two ARM7 microcontrollers, a low level processor (LL) and a high 
level processor (HL), in addition to several communication interfaces such as 
UART, SPI and I2C. The tasks of the LL processor are the management of the 
sensor data processing, data fusion, sending commands to the motor controller, 
and above all the implementation of the basic attitude control in order to ensure 
the stability of the system. The HL processor manages the GPS as well as it is 
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responsible for the high level control algorithms, such as navigation through 
waypoints. A key difference between the two microcontrollers is that the code of 
the LL processor is not accessible and not editable, whereas in the HL processor 
there is the possibility to implement user-defined code, in order to add sensors, to 
accomplish a custom task and so on. To confirm this, the attitude control cannot 
be disabled or bypassed, and it is always running in the three flight modes in 
which the Hummingbird operates: 

• GPS Mode (attitude, height and position control activated) 

• Height Mode (attitude and height control activated) 

• Manual Mode (attitude control activated) 

As it is shown in Figure 64, the two processors communicate with a data rate of 
1kHz.  

 
Figure 64 - Block scheme Asctec autopilot 
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III.3 The Software 

The software platform is composed by three different blocks: 

• A development environment to build the code inside the HL 
processor. 

• A graphical interface connected to the LL processor, in order to 
receive and display the telemetry. 

• A communication protocol, necessary to interface the quadrotor with 
a PC or another device. 

III.3.1 AscTec SDK 

The AscTec HL SDK is a C-code framework in an Eclipse environment with 
cross-compiler and debugger. It can be used as a starting point to program 
different algorithms, sensor interfaces and communication protocols in C-Code. 
It contains the basic configuration and the predefined control algorithms to use 
immediately the quadrotor, furthermore it has a particular .c file (sdk.c) which is 
triggered  at 1 kHz, where new control strategies can be implemented. 

 

III.3.2 AscTec AutoPilot Control 

The HMI provided by AscTec (Figure 65) is connected to the LL processor 
via an Xbee wireless link and it is used to execute basic operations, such as the 
navigation through waypoints using a static map, motor setup, parameters setting, 
sensors calibration and telemetry. However, with this HMI it is not possible 
adding new features, such as to manage other sensors. Moreover, with this HMI 
the HL processor is not used. This means that is not possible, among other 
things, to use the HL processor to store a flight plan. In fact, to execute a 
navigation task it is necessary that the drone and the remote PC are connected. 
This represents a heavy limit to the drone potential, since the flight plan area have 
to be smaller than the wireless module range. 
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III.3.3 ACI Protocol 

The AscTec Communication Interface (ACI) [46] is a communication 
protocol developed by AscTec, in order to connect their UAVs and a user local 
machine (remote software). It is designed for requesting variables, sending 
commands and setting parameters. It is possible to create own packages to send 
or receive data. The advantage of this method is that it is possible to choose 
which variables shall be received, at which transmitting rate from the device, and 
which commands and parameters is possible to send to or to set on the device. 
There are two different modules for the AscTec Communication Interface 
(Figure 66):  

• ACI Device in C: a simple module for the UAV, where it's possible to set 
easily, which variables, commands and parameters are available on the device and 
which of them the local machine can choose.  

• ACI Remote in C: a small module written in C to get all variables, 
commands and parameters of the device. It only uses standard libraries and 
works on every operating system. 

Figure 65 - Screenshoot of AscTecAutoPilot 
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Figure 66 - ACI protocol modules 
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III.4 Library development for ACI remote 

In the section III.3.2 it's clear to understand that the HMI provided to Asctec 
is not suitable to develop complex tasks, not to mention the possibility to manage 
third part devices connected, for example, to an I2C port of the HL processor. In 
a few words, a more powerful HMI is needed. A first step in this direction is 
represented by the ACI protocol, discussed in the previous part, constituted by a 
set of C-language files. However, if the ACI device packet (onboard the drone) it 
is well suited to be used in the HL processor, which is generally programmed 
with a C language IDE (Eclipse), on the other hand the C files of the ACI remote 
packet are not suitable to be used in those IDEs with a high level graphical 
language. For this reason a DLL library file has been developed, in order to make 
the interface between the drone and a graphical IDE, such as LabView, simpler. 
Moreover, in addition to ACI remote standard functions [46], several functions 
have been added in order to simplify the connections and the data exchange 
between the drone and the HMI. 

 

III.4.1 Connection initialization 

init_ACI 
The first function in this category is used to initialize the ACI protocol in the 

HMI and to initialize all the internal variables and flags. The prototype of this 
function is the following: 

void init_ACI(void); 

getSystemInfo 
This function is called when the operator needs information such as software 

version and max number of variable packets. The prototype is: 

void getSystemInfo(SystemInfo *info); 

Where SystemInfo is the following struct: 
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typedefstruct 

{ 
unsigned char verMajor; 
 unsigned char verMinor; 
 unsigned char maxNameLength; 
 unsigned char maxDescLength; 
 unsigned char maxUnitLength; 
 unsigned char maxVarPackets; 
 unsigned char memPacketMaxVars; 
 unsigned short flags; 
 unsigned short dummy[8]; 

}SystemInfo; 

 

III.4.2 Variables management 

In the ACI protocol the variables are the read only data. The whole list is 
present in [47]. The variables transmitted are managed by means of packets. 
Every packet can include a max number of variables and it is possible to assign a 
different data rate to each packet. Even if theoretically there is no a max number 
of packets, the online documentation recommends to use a max number of three 
packets, in order to avoid overloading of the transmission channel. Every variable 
is identified by an ID, a short description and a data type. The following struct 
shows the variable modeling.  

typedef struct{ 
 unsigned short id; 
 unsigned char varType; 

char value_int8; 
unsigned char value_u_int8; 
short value_int16; 
unsigned short value_u_int16; 
int value_int32; 
 unsigned int value_u_int32; 
float value_float; 

}Packet; 

 
This struct is used also to model the commands and the parameters. 
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varListUpdateFinished 
Before using the variable packets, it is necessary to synchronize the HMI 

receiving their complete list. After the calling of the function 
aciGetDeviceVariablesList (see [46]), the ACI protocol executes the following 
function, which sets a flag indicating that the variables list has been updated: 

void varListUpdateFinished(void); 

var_packetX_management with X=1,2,3 
At the beginning of the paragraph it was explained that a variables packet can 

include a different number of variables (up to twenty). Moreover, there are 
different types of variables, such as 8bit, 16bit, 32bit integer or float. In order to 
maximize the flexibility of the code, the generic variables packet is modeled as it 
follows: 

• A transmission rate. 

• A packet size, i.e. the number of variables included in the packet. 

• An array of variable types, which identifies the type of each variable. 

• An array of ID, which identify each variable. 

• An array of packet struct, in which the variables are stored. This array 
is a global variable, so does not appear in the function prototype. 

Then, the prototype of the function that generates the packet is the following: 

void var_packetX_management(unsigned short transmission_rate, 
unsigned char packet_size,unsigned char vartype_array[], 
unsigned short ID_array[]); 
 

For the sake of clarity, consider a variables packet example with the following 
items: 

• motor_rpm[1], ID 0x0100, type UINT8 

• GPS_latitude, ID 0x0106, type INT32 

• battery_voltage, ID 0x0003, type INT16 

Graphically, the DLL creates the packet as it is shown in Figure 67: 
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Figure 67 - var packet management 

get_variables_packedX with X=1,2,3 
This function is used to send sensors data to the HMI. Also in this case there 

is the problem that a packet can contain a different number of variables, of 
different types. A solution to this problem is to use a 32bit array (passed as 
pointer) to send the variables, and to use the function memcpy to convert the 32bit 
data in the correct format. The information about the correct datatype of the 
variable can be taken by the Vartype_array used in the previous function. The 
prototype of the function is the following: 

void get_variables_packedX(unsigned int *variables); 

Continuing the previous example, the DLL creates the array, as shown in Figure 
68: 
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Figure 68 get variable packet 

Now the variables, contained in the packed0, can be used to the HMI. 
 

reset_var_packedX with X=1,2,3 
This function simply flushes the variables packet. Its prototype is the 

following: 

void reset_var_packedX(void); 

III.4.3 Commands management 

In the ACI protocol the commands are the write only data. The whole list is 
presented in [47]. The organization of the commands packets is the same of the 
variables, so similar functions have been implemented. The only difference is that 
instead of the function GETvariable, there is a SETcommand function. They are: 

void cmdListUpdateFinished(void); 

voidcom_packetX_management(unsigned short transmission_rate, 
unsigned char packet_size,unsigned char cmdtype_array[], 
unsigned short ID_array[]); 
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voidset_commands_packedX(unsigned int *variables); 

void reset_com_packedX(void); 
 

III.4.4 Parameters management 

In the ACI protocol the parameters are both read and write data. The whole 
list is presented in [47]. The parameters packet functions are the same of the 
commands packet functions. They are: 

voidparamListUpdateFinished(void); 

voidpar_packetX_management(unsigned short transmission_rate, 
unsigned char packet_size,unsigned charpartype_array[], 
unsigned short ID_array[]); 
 
voidset_parameters_packedX(unsigned int *variables); 

void reset_par_packedX(void); 
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Chapter IV.                                                    
The Multiplatform Drone HMI 

IV.1 Introduction 

A disadvantage of using a heterogeneous fleet of UAVs is represented by the 
different HMIs necessary to supervise them. In order to implement complex 
cooperation tasks, a data exchange between the different HMIs is mandatory. A 
smart solution to overcome this drawback is represented by the development of a 
multiplatform HMI capable to manage different type of UAV; in this case of 
study, this HMI, developed in LabView, has the following features:  

• Possibility to manage, monitor and supervise different robotic platforms 
by a single remote station. 

• Compliant with CANAerospace and ACI protocol. 

• Online Telemetry and datalog for post processing. 

• On line mapping by means principal providers such as GoogleMap, 
BingMap and OpenStreetMap. 

• Complete managing of waypoint lists and routes. 

LabView [48] is a graphical programming language that uses icons instead of 
text to create applications. In contrast with the conventional textual programming 
languages, in which the instructions determine program execution, LabView uses 
the programming based on the data flow, i.e. the flow of data determines the 
program execution. Any LabView application is made of two parts (Figure 69): 

 

• The Front Panel: in this form are present buttons, knobs, text boxes and 
so on. It is the effective interface with which the operator interacts. 

• The Block Diagram: very similar to a block scheme, in this window there 
are the relations and the links between the various elements of the 
LabView Front Panel. 
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Summarizing, generally a block in LabView has a double representation: one 
for the operator (in the front panel) and one for the application developer (in the 
diagram panel).   

 
Figure 69–LabView: Front Panel and Block Diagram 

An application developed in LabView is named VI, i.e. Virtual Instrument. A 
given VI has a set of input and output parameters, like a conventional C function. 
Moreover, it is possible to use a VI within another LabView application. In this 
case, often the name subVI is used. 

The following two sections are so organized: the first one discusses about the 
various classes of subVI developed, the second one explains the HMI developed 
for the Volcan and the Asctec Hummingbird.   
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IV.2 LabView subVIs 

The subVIs treated in this chapter, have been implementes in order to develop 
LabView applications with specific features, such as CANbus connection, ACI 
connection and online mapping. 

IV.2.1 CANbus subVIs 

The CANbus connectivity between the bus and the PC is realized by means of 
the PCAN-USB converter by Peak-system [55] (Figure 70). Even if the Peak-
system releases a set of LabView subVIs [56], further subVIs based on this suite 
have been developed in order to simplify the CANbus management. 

 
Figure 70 - PCAN-USB 

IV.2.1.1 PCAN connection.vi 

This subVI manages the connection and the disconnection to the CANbus. 
The prototype is shown in Figure 71, whereas the front panel and the block 
diagram of a typical application is shown in Figure 72.  

 
Figure 71 - PCAN connection.vi 
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Figure 72 - PCAN connection example 

IV.2.1.2 PCAN receive.vi 

Once the PC is connected to the CANbus, the use of this VI makes it 
possible the reception of the CANbus frames. The prototype is shown in Figure 
73, whereas the front panel and the block diagram of a typical application are 
shown in Figure 74. 

 
Figure 73 - PCAN receive.vi 

 
Figure 74 - PCAN receive example 

The output Read Frame is a cluster, i.e. the equivalent of a struct in C-language, 
that models a frame received from a CANbus. As it is shown in Figure 74, it has 
the following fields: 
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• The enum MSG type, that identifies the different types of frames, such 
as standard, extended, remote request and so on. 

• The ID field. 

• The DLC field. 

• Eight byte used as data field. 

• The Cycle time field, expressed in ms, that indicates the time elapsed 
between the current frame and the previous one. 

• The Count field, that counts the total number of frames received. 

IV.2.1.3 PCAN Send.vi 

This subVI is the dual of the previous one. It manages the transmission of 
CANbus frames. The prototype and a typical application are shown in the 
following figures. The input cluster Send Frame has the same fields of the Read 
Frame explained previously.  

 
Figure 75 - PCAN send.vi 

 
Figure 76 - PCAN Send example 
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IV.2.2 FTDI subVIs 

To connect the Asctec Hummingbird to the PC, an USB-RS232 converter or 
an Xbee device are needed. Both of them are based on chip produced by FTDI 
[57], which converts USB protocol in RS232 protocol. This company releases a 
full set of LabView subVI (available at [58]), that allows a simple interface with its 
devices, without any further subVI.  

IV.2.3 ACI protocol subVIs 

In LabView there is the possibility to import a DLL file in order to create a 
VI from each function within it. This tool is the “Import Shared Library”. In this 
way, the functions managing the ACI protocol, treated in the section III.4 can be 
used in LabView by means of a set of subVIs. The prototypes of the subVI 
created in this way, are exactly the same of their C-language counterpart (Figure 
77), therefore to explain them again would be an unnecessary duplication. 

 

 
Figure 77 - Example of matching between C-function and subVI 

In addition to the DLL-imported subVI, a couple of polymorphic subVI have 
been developed, ALL_2_UINT32.vi and UINT32_2_ALL.vi (Figure 78), in 
order to make easier the use of the functions such as get_variables_packedX (III.4.2) 
or set_commands_packedX (III.4.3). These subVIs fit, respectively, any numeric type 
variable in a memory location suitable to store a 32bit unsigned integer variable 
and viceversa. In a few words, is similar to a memcpy instruction in C-code.   
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Figure 78 - Polymorphic subVIs 

IV.2.4 Datalog subVIs 

A key feature of the HMI developed, regards the possibility to execute a log of 
the telemetry, choosing the variables to be logged, with a given sample time. In 
order to maximize the flexibility and the exportation simplicity, the following 
subVIs have been developed. 

IV.2.4.1 Create Header Datalog.vi 

This subVI modifies dynamically the header of the datalog,  according to the 
input parameter "Select Variable". In Figure 79 an example regarding a VOLCAN 
datalog is shown.  

 
Figure 79 - Create Header Datalog Example 

IV.2.4.2 Record Data.vi 

In a similar way to the previous subVI, this one updates the string variable 
Datalog OUT. To make this, at each execution this subVI adds a row to the Datalog 
IN variable, inserting those variables selected in the Select variable input parameter. 
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In Figure 80 the prototype for the Volcan datalog is shown. The clusters Sensor 
IN, Actuators IN and Assisted mode ref. value are shown in the Figure 102 in the next 
chapter.  

 
Figure 80 - Record Data.vi 

IV.2.5 Instruments subVIs 

Even if LabView owns a lot of graphic indicators, a customized set of flight 
instruments has been developed, exploiting the connectivity between LabView 
and .NET code. The basic idea is the design of a custom flight instrument, 
composed by the following parts: 

• A background image. 

• An image which represents the needle 

• A numeric input which indicates the needle rotation over the  
background image. 

To create a background image in LabView, simply create a picturebox and set its 
property background image, indicating the path of the chosen image (Figure 81).   

 
Figure 81 - Picturebox background image. 

As concern the needle, the procedure is the same, but in this case the 
picturebox property is simply image. At last, the rotation of the needle requires a 
specific DLL file, whose source files in C# code is available at [49]. From this  
DLL a subVI has been created, Rotate image.vi. In Figure 82 its prototype is shown, 
whereas the Figure 83 shows an example of a flight instrument. 
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Figure 82 - Prototype of "Rotate image.vi" 

 
Figure 83 - Example of a flight instruments 

IV.2.6 Mapping subVIs 

The biggest limit of the Asctec HMI, discussed in the section III.3.2, lies in 
the fact that a static map is used. This means that, before to begin a new mission 
a georeferenced image of the location has to be loaded. To overcome this 
limitation, the LabView HMI developed use a set of subVIs based on the DLL 
files of the GMap.NET open source platform [50]. 

IV.2.6.1 Map provider.vi 

This subVI binds a given map provider, selectable by means of an ENUM 
control, to an instance of the .NET class GMap.NET.MapProviders. The 
options are summarized in Table 15 

Provider .NET class 
BingMap Hibrid GMap.NET.MapProviders.BingHybridMapProvider
BingMap Satellite GMap.NET.MapProviders.BingSatelliteMapProvider
BingMap GMap.NET.MapProviders.BingMapProvider
GoogleMap GMap.NET.MapProviders.GoogleMapProvider
OpenStreetMap GMap.NET.MapProviders.OpenStreetMapProvider
YahooMap Hybrid GMap.NET.MapProviders.YahooHybridMapProvider
YahooMap Satellite GMap.NET.MapProviders.YahooSatelliteMapProvider
YahooMap GMap.NET.MapProviders.YahooMapProvider

Table 15 - Map provider options 
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Figure 84 - Map provider.vi prototype 

IV.2.6.2 Init GmapControl.vi 

The aim of this subVI is to initialize the GMap control, i.e. the portion of the 
screen in the LabView application where the dynamic map will be shown. The 
editable properties are: 

• The map provider 

• The GMap mode: only server, server and cache, only cache. 

The other properties, fixed by default, are summarized in Table 16: 

GMap property value 
Dimension 600x1100 pixels 

Drag button  With mouse left button 
Min Zoom Value 1 
Max Zoom Value 22 
Cache Capacity 250MB 
Table 16 - GMap Control default properties 

As shown in Figure 85, this subVI returns the Gmap Overlays, a set of layers in 
which graphic elements can be inserted. 

 
Figure 85– InitGmapControl.vi prototype 

IV.2.6.3 Init Gmap Overlays.vi 

The overlays initialization is accomplished by means of this subVI. Generally, 
for any robotic platform, three layers are used: a layer to draw the waypoints, a 
second layer to draw the route and a last one to draw polygons. 

 
Figure 86 - Init Gmap Overlays.vi prototype 
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IV.2.6.4 Current coordinates.vi 

This subVI is used to obtain the geographic coordinates pointed to the mouse 
cursor, when it is over the map. In addition to the GMap control and the mouse 
position, the subVI needs the position of the GMap control respect to the LabView 
application (Left and Top input in Figure 87). The outputs are the mouse 
geographic coordinates, together with the limit coordinates of the displayed map. 

 
Figure 87 - Current coordinates.vi prototype 

IV.2.6.5 LAT LON 2 pixel.vi 

This subVI is the dual of the previous one. For a given geographic 
coordinates, the subVI returns the corresponding pixel coordinates (top and left) 
in the GMap control. As will be discussed in the next paragraph, such subVI is used 
to place an image in the map. 

 
Figure 88 - LAT LON 2 pixel.vi prototype 

IV.2.6.6 Show picture on map.vi 

The following subVI is used to show an image over a GMap control, in a given 
position. In Figure 89 the prototype is shown. 

 
Figure 89 - Show picture on map.vi prototype 
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To make this, the following steps have to be accomplished: 

• Create a .NET reference of the class System.Drawing.Bitmap, 
using the chosen image.  

 
Figure 90 - create the image reference 

• Create a .NET reference of the class System.Drawing.Graphics, 
used as input in the subVI (Figure 89). 

 
Figure 91 - create the Graphics reference 

• Since the center of the image is out of phase for 29 pixels along x and y, 
to show it over the map correctly, it is necessary to draw the block 
diagram in Figure 92. The resulting front panel is shown in Figure 93. 

 
Figure 92 - example of block diagram with Show picture on map.vi 
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Figure 93 - Example of Front panel with Show picture on map.vi 

IV.2.6.7 Show Waypoint.vi 

The task of the subVI developed is to display a given set of waypoint over the 
GMap control. Its prototype is shown in Figure 94. The Route IN input is an array 
of cluster which models a waypoint (Figure 95).  

 
Figure 94 - Show Waypoint.vi prototype 

 

 
Figure 95 - waypoints example 
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IV.2.6.8 Save and Load Waypoint List.vi 

This pair of files has been developed to save and load a set of waypoints. Save 
Waypoint List creates a WPL file (WayPoint List), where the waypoints are stored. 
Viceversa, Load Waypoint List displays on the map the waypoints previously saved 
in a WPL file, with the possibility to append them in a preexisting list. 

 
Figure 96 - subVI to save and load WPL files 

IV.2.6.9 Update Route.vi 

The route of the drone is modeled by a simple matrix, in which in its columns 
latitude, longitude and time are stored. The matrix updating is executed only 
when the drone covers a distance greater than the chosen threshold. 

 

 
Figure 97 - Update route.vi prototype 

IV.2.6.10 Show Route.vi 

This subVI has been developed in order to make the drawing of a route over a 
GMap control simpler. In Figure 98 the prototype is shown.  

 
Figure 98 - Update Route prototype 
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The input list point of UAV route is a reference of the .NET class 
System.Collections.Generic.List’1. 

IV.2.6.11 Save and Load Route.vi 

This pair of files has been developed to save and load an UAV route. Save route 
creates a ROR file (Route Of Robot), where the route is stored. Viceversa, Load 
Route displays on the map the route previously saved in a ROR file. 

 
Figure 99 - subVI to save and load ROR files 
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IV.3 LabView HMI 

The libraries introduced in the previous section represent the bricks necessary 
to build the final HMI treated in this one.  

IV.3.1 Different drones, one HMI 

Exploiting the show icon on map.vi (IV.2.6.6), it is possible to display different 
robotic platforms: just choose an icon and assign it a couple of geographic 
coordinates. In Figure 100, the latitude and longitude from the CANAerospace 
are assigned to the icon of the Volcan, whereas the coordinates from ACI 
protocol are assigned to the icon of the Hummingbird. 

 
Figure 100 - Example of icons on map 

IV.3.2 CANbus and ACI connection 

As concern the connection to the drones, the Figure 101 shows the forms 
dedicated to the connection with the CANbus (left side) and the ACI protocol 
(right side). 



LabView HMI | 99 
 

 
Figure 101 - Drones connection 

IV.3.3 Telemetry and Datalog 

Once the ACI connection is established, it is possible to choose which, 
variables, commands and parameters manage. In Figure 103 the forms for 
variables, commands and parameters management are shown. As regards the 
Volcan UAV, an important part coincides with the management of the control 
loop, in order to execute an optimal tuning (II.3.4). In Figure 102 the form 
dedicated for the telemetry and the tuning of the PID gains in shown.  

 
Figure 102 - Telemetry and PID tuning on the Volcan 
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Figure 103 - Variables, Commands and Parameters management 
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In order to log the data relating to the Volcan and the Hummingbird, the 
form for the datalog setup, shown in Figure 104, has been developed. 

 
Figure 104 - Datalog form 

IV.3.4 Map providers 

The adoption of the GMap.NET framework permits to use different map 
provider.  

 
Figure 105 - Examples of map providers 
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This is useful because, for example, a satellite image provides a lot of detail of 
the environment, but generally the maximum level of zoom is lower than a 
conventional map. The Figure 105 shows the same place, the DIEEI laboratories, 
from different map providers. 

IV.3.5 Waypoints and routes 

The subVI treated in the sections IV.2.6.7 - IV.2.6.11 have been used to 
develop the waypoint and route management. In Figure 106 an example of 
waypoint and route management is shown.   

 

Figure 106 - WPs and route management 

Finally, in Figure 107 an example is shown. 
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Figure 107 - Mapping example 
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Conclusions  

Potentialities 

The effectiveness of the developed Volcan control system has been confirmed 
by several flight tests, one of them is treated in [17]. Other satisfactory tests have 
been executed also with the Maya model by Bormatec [61] (Figure 108). 

As concerns the IMU board, the comparison with other commercial inertial 
platforms has confirmed its potentialities. However, some improvements could 
be introduced, such as the compensation of the magnetometer disturbs caused by 
external magnetic field close to the IMU.  

As regards the Hummingbird quadrotor, the developed ACI library has made 
possible to control and supervise the robotic platform, not to mention the 
possibility to integrate and manage different payloads. 

Finally the Multiplatform Drone HMI represents a powerful tool capable to 
manage different UVSs, in order to accomplish complex tasks that require 
coordination and cooperation between the different robots.  

 
Figure 108 - Maya by Bormatec 
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Limits 

As regards the autotuning of the Volcan control loops, the algorithm requires the 
insertion of initial values of the PID gains, based on the designer experience. 
However, in case of a new type of aircraft with its own dynamic model, this 
approach could be really complex and risky, because the initial values could carry 
the system to an instable condition. Moreover, there is no guarantee that the PID 
gains achieved by our tuning algorithm are optimal and that they guarantee a 
robust stability. The adoption of genetic algorithms to set up a multi-objective 
optimization problem could improve this point.  
Another limit to take into consideration resides in the precision of the GPS used 
in both aerial platform [51]. The accuracy of a couple of meters could represent a 
really disabling limit for tasks that require high precision positioning, such as 
collision avoidance and robots cooperation.   

Future works 

The next step of this work will be the development of a sensor board with 
RTK GPS, capable to ensure a centimetric accuracy. 

Furthermore, several enhancements of the LabView HMI, such as the 
managements of UGVs, is currently under study.  
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Appendix A.                                      
Volcan control system schematics 

FCCS Schematic 

 
Figure 109 - FCCS Schematic 
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SACS Schematic 

 
Figure 110 - SACS Schematic 
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UDP2CAN Schematic 

Figure 111 - UDP2CAN Schematic 
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Sensor Board Schematic 

Figure 112 - Sensor Board Schematic 
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IMU Board Schematic 

 
Figure 113 - IMU Board Schematic 
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Appendix B. IMU Board CANAerospace 
frames 

NSH Frames 

As mentioned in the section II.2.3.1, these frames classes are used to 
configure the system or to send and receive state information. 

IDS (Identification service) 
This frame is generally sent by the HMI to the IMU in order to get 

information regarding HW and FW version. Moreover it is also used to ping the 
system. 

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node ID Data type Service 
code 

Message 
code     

5 AS_NODATA 
(0x0) IDS (0x0) 0 0 0 0 0 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type Service 
code 

Message 
code 

    

5 AS_UCHAR_2 
(0x13) 

IDS (0x0) Error Flag IMU_Hw_rev IMU_Sw_rev 0 0 

 

DTS (Data Transfer Service) 
This frame is used to configure the sending data. This frame contains the 

following fields organized as it follows: 

• Data4: In this byte the flag TransferMode is inserted, whose value identifies 
a data transmission in streaming mode (TransferMode = 0) or in remote 
request (TransferMode = 1). 

• Data5:  in the case of streaming mode, in this field the value of the 
streaming frequency  in Hz is inserted. 

• Data6 and Data7: in these two bytes there are the variable DataSelection, 
whose each individual bits identify the presence or absence of the 
corresponding variable (see Table 17) in the data streaming. A bit set to 1 
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means that the variable is sent, otherwise the bit set to 0 means that the 
variable is not present in the data streaming. 
 

DataSelection Variable 
Bit 0 Roll 
Bit 1 Pitch 
Bit 2 Yaw 
Bit 3 Quat-Q0 
Bit 4 Quat-Q1 
Bit 5 Quat-Q2 
Bit 6 Quat-Q3 
Bit 7 AccX 
Bit 8 AccY 
Bit 9 AccZ 

Bit 10 GyrX 
Bit 11 GyrY 
Bit 12 GyrZ 
Bit 13 MagX 
Bit 14 MagY 
Bit 15 MagZ 

Table 17 - DataSelection values 

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node 
ID 

Data type Service 
code 

Message 
code 

  DataSelection 

5 AS_UCHAR_4 
(0x10) 

 

DTS(0xD4) 0 Transfer 
Mode 

Datarate 
[Hz] 

MSB LSB 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node 
ID 

Data type Service 
code 

Message 
code 

  DataSelection 

5 AS_UCHAR_4 
(0x10) 

 

DTS(0xD4) Error Flag Transfer 
Mode 

Datarate 
[Hz] 

MSB LSB 

 

RTS (Raw Data Transfer Service) 
This frame is used to configure the sending of raw data, i.e. the data coming 

from the IMU sensors (16bit) without any modifications. This frame contains the 
fields organized as it follows:  

• Data4 and Data5 : these bytes have the same meaning of the DTS frame. 

• Data7: in this byte the RawDataSelection variable will be transmitted, whose 
each individual bit identifies the presence or absence of the corresponding 
variable (see Table 18) in the raw data streaming. 
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RawDataSelection Variable 
Bit 0 Degub Frame 1 
Bit 1 Degub Frame 2 
Bit 2 Degub Frame 3 
Bit 3 Degub Frame 4 
Bit 4 Degub Frame 5 

Table 18 – RawDataSelectionvalues 
 
HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node 
ID 

Data type Service 
code 

Message 
code 

    

5 AS_UCHAR_3 
(0x1B) 

RTS(0xD8) 0 RawTransfer 
Mode 

Raw 
Datarate 

[Hz] 

 RawData 
Selection 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node 
ID 

Data type Service 
code 

Message 
code 

    

5 AS_UCHAR_3 
(0x1B) 

RTS(0xD8) Error 
Flag 

RawTransfer 
Mode 

Raw 
Datarate 

[Hz] 

 RawData 
Selection 

SSS (Start and Stop data transfer Service) 
This frame is used to manage both the data streaming and the raw data 

streaming, where they are in streaming mode.  Each stream has a flag, respectively 
StartStopData (Data6) and StartStopRawData (Data7), whose values represent the 
following meaning:  

• 1, start streaming. 

• 2, stop streaming. 

• 0, streaming unchanged. 

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node 
ID 

Data type Service 
code 

Message 
code 

    

5 AS_UCHAR_2 
(0x13) 

SSS(0xD5) 0 0 0 StartStop 
Data 

StartStop 
RawData 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node 
ID 

Data type Service 
code 

Message 
code 

    

5 AS_UCHAR_2 
(0x13) 

SSS(0xD5) Error 
Flag 

0 0 StartStop 
Data 

StartStop 
RawData 
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CDS (Control Parameters download service) 

This frame is used to load the configuration parameters in the inertial 
platform. The selection of the parameter depends on the value of 
parameter_identifier, in according with the following table: 

parameter_identifier Description Parameter name 
0 Ellipsoid eccentricity X EccX 
1 Ellipsoid eccentricity Y EccY 
2 Ellipsoid eccentricity Z EccZ 
3 Ellipsoid radius X ErX 
4 Ellipsoid radius Y ErY 
5 Ellipsoid radius Z ErZ 
6 X component magnetic field EmfX 
7 Y component magnetic field EmfY 
8 Z component magnetic field EmfZ 
9 X component gravity field GX 

10 Y component gravity field GY 
11 Z component gravity field GZ 
12 Offset Roll offset_Roll 
13 Offset Pitch offset_Pitch 
14 Offset Yaw offset_Yaw 

Table 19 - Parameter identifier values 

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node 
ID 

Data type Service 
code 

Message code Variable name: 
Param_x 

5 AS_FLOAT(0x02) CDS(0xA3) Parameter 
identifier 

Float 
MSB 

Float2 Float3 Float 
LSB 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type Service code Message code Variable name: 
Param_x 

5 AS_FLOAT(0x02) CDS(0xA3) Parameter 
identifier 

Float 
MSB 

Float2 Floa_3 Float 
LSB 

CUS (Control Parameters upload service) 

This is the dual frame of the CDS. It provides the upload of a given parameter 
from the IMU to the HMI. The value of the variable parameter_identifier is the 
same of the CDS frame.  

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node 
ID 

Data type Service 
Code 

Message 
code 

 

5 AS_NODATA(0x0) CUS(0xA5) Parameter 
identifier 

0 0 0 0 
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IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type Service 
Code 

Message 
code 

Variable name: 
Param_x 

5 AS_FLOAT 
(0x02) 

CUS(0xA5) Parameter 
identifier 

Float 
MSB 

Float_2 Float_3 Float 
LSB 

 

PRS (Parameters Reset Service) 
This service is used to set the default value of a parameter (chosen in 

according to Table 19). 
 
HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node 
ID 

Data type Service 
code 

Message code  

5 AS_NODATA(0x0) PRS(0xCB) Parameter 
identifier 

0 0 0 0 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Param_x 

5 AS_FLOAT(0x02) PRS(0xCB) Parameter 
identifier 

Float 
MSB 

Float_2 Float_3 Float 
LSB 

CMU (Change Measurement Unit) 
With this service it is possible to set the unit of measurement of the Euler 

angles, respectively in radians (Unit = 0) or in degrees (Unit = 1). 
 
HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node ID Data type Service code Message code     

5 AS_UCHAR (0x0A) CUM(0xD3) 0 0 0 0 Unit 

 
IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type Service code Message code     

5 AS_UCHAR (0x0A) CUM(0xD3) Error Flag 0 0 0 Unit 
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ROS (Reset Orientation Service) 

Using this service the attitude of the IMU (roll and pitch) is reset. This frame 
is useful when there is a rotation between the reference system fixed to the 
airframe and the reference system fixed to the IMU. 

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node 
ID 

Data type Service 
code 

Message 
code 

    

5 AS_NODATA(0x0) ROS(0xD6) 0 0 0 0 0 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type Service 
code 

Message 
code 

    

5 AS_NODATA(0x0) RCS(0xD6) Error Flag 0 0 0 0 

 

 

RHS (Reset Heading Service) 
This frame provides a reset of the yaw, that in this case it does not point to 

north anymore. 

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node ID Data type Service code Message code     

5 AS_NODATA(0x0) RHS(0xD7) 0 0 0 0 0 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type Service code Message code     

5 AS_NODATA(0x0) RHS(0xD7) Error Flag 0 0 0 0 
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RCS (Reset CPU Setting Service) 
This last service executes the reset of the onboard microcontroller. 

HMI ->IMU 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node ID Data type Service 
code 

Message 
code 

    

5 AS_NODATA(0x0) RCS(0xD2) 0 0 0 0 0 

IMU ->HMI 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

NS_RSP_1_ID 
dec:131 

hex: 0x83 

Node ID Data type Service 
code 

Message 
code 

    

5 AS_NODATA(0x0) RCS(0xD2) Error Flag 0 0 0 0 
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NOD frames 

The following frames are used to send the calibrated data of the IMU via 
CANAerospace.  

Pitch: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_PITCH_ANGLE_ID 
dec:311 

hex: 0x137 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Pitch [rad] 

5 AS_FLOAT 
(0x02) 

0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Roll: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_ROLL_ANGLE_ID 
dec:312 

hex: 0x138 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Roll[rad] 

5 AS_FLOAT 
(0x02) 

0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Yaw: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

HEADING_ANGLE_ID 
dec:321 

hex: 0x141 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Heading [rad] 

5 AS_FLOAT 
(0x02) 

0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

 
Longitudinal Acceleration (X): 

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 
BODY_LONG_ACC_ID 

dec:300 
hex:0x12C 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
acc_X [m]/[sec²] 

5 AS_FLOAT 
(0x02) 

0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Lateral Acceleration (Y): 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_LAT_ACC_ID 
dec:301 

hex: 0x12D 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
acc_Y[m]/[sec²] 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

 
Normal Acceleration (Z): 

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 
BODY_NORM_ACC_ID    

dec:302 
hex:0x12E 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
acc_Z[m]/[sec²] 

5 AS_FLOAT 
(0x02) 

0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 
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Quaternion q0: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_QUAT_Q0_ID 
dec:1500 

hex:0x5DC 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Quat_q0 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Quaternion q1: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_QUAT_Q1_ID 
dec:1501 

hex:0x5DD 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Quat_q1 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Quaternion q2: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_QUAT_Q2_ID 
dec:1502 

hex:0x5DE 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Quat_q2 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Quaternion q3: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_QUAT_Q3_ID 
dec:1503 

hex:0x5DF 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Quat_q0 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Gyroscope X: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_GYR_X_ID 
dec:1504 

hex:0x5E0 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
gyr_X [DEG]/[sec] 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Gyroscope Y: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_GYR_Y_ID 
dec:1505 

hex:0x5E1 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
gyr_Y[DEG]/[sec] 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Gyroscope Z: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_GYR_Z_ID 
dec:1506 

hex:0x5E2 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
gyr_Z[DEG]/[sec] 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 
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Magnetometer X: 

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 
BODY_MAGN_X_ID 

dec:1507 
hex:0x5E3 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Magn_X [G] 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Magnetometer Y: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_MAGN_Y_ID 
dec:1508 

hex:0x5E4 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Magn_Y [G] 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 

Magnetometer Z: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

BODY_MAGN_Y_ID 
dec:1509 

hex:0x5E5 

Node 
ID 

Data type Service 
code 

Message 
code 

Variable name: 
Magn_Z [G] 

5 AS_FLOAT(0x02) 0 0 Float 
MSB 

Float_2 Float_3 Float 
LSB 
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DSD frames 

The following frames are used to send the uncalibrated raw data of the IMU 
via CANAerospace. 
 
Debug Frame 1, raw data accelerometer, x e y axis: 

ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 
DEBUG_FRAME_1_ID 

dec:1920 
hex:0x780 

Node 
ID 

Data type Service 
code 

Message 
code 

raw_Acc_X raw_Acc_Y 

5 AS_USHORT_2 
(0x0D) 

0 0 MSB LSB MSB LSB 

Debug Frame 2, raw data accelerometer z e gyroscope x axis: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

DEBUG_FRAME_2_ID 
dec:1921 

hex:0x781 

Node 
ID 

Data type Service 
code 

Message 
code 

raw_Acc_Z raw_Gyr_X 

5 AS_USHORT_2 
(0x0D) 

0 0 MSB LSB MSB LSB 

Debug Frame 3, raw data gyroscope y e z axis: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

DEBUG_FRAME_3_ID 
dec:1922 

hex:0x782 

Node 
ID 

Data type Service 
code 

Message 
code 

raw_Gyr_Y raw_Gyr_Z 

5 AS_USHORT_2 
(0x0D) 

0 0 MSB LSB MSB LSB 

Debug Frame 4, raw data magnetometer x e y axis: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

DEBUG_FRAME_4_ID 
dec:1923 

hex:0x783 

Node 
ID 

Data type Service 
code 

Message 
code 

raw_Mag_X raw_Mag_Y 

5 AS_USHORT_2 
(0x0D) 

0 0 MSB LSB MSB LSB 

Debug Frame 5, raw data magnetometer z e temperature: 
ID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 

DEBUG_FRAME_5_ID 
dec:1924 

hex:0x784 

Node 
ID 

Data type Service 
code 

Message 
code 

Temperature raw_Mag_Z 

5 AS_USHORT_2 
(0x0D) 

0 0 MSB LSB MSB LSB 
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