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Preface 
 

The interaction between electromagnetic radiation and condensed matter is a broad field of 

study concerning numerous practical applications in everyday life. 

The metal nanoparticles have peculiar optical properties that determine a real revolution in the 

fields of physics, chemistry, materials science and bioscience, due to their ability to increase 

and to focus the electromagnetic fields in spatial regions smaller than the light wavelengths. 

This ability is due to the presence of localized surface plasmons (LSP), or collective 

undulatory excitations of free electrons in the metal particles. The manufacturing techniques 

bottom-up of plasmonic nanoparticles with high possibilities of control and precision are 

promising for the future construction of low-cost nanophotonic devices. 

The plasmon science is enabling the development of a vast number of applications such as 

spectroscopy, high sensitivity, the realization of nanometric laser and of ultracompact optical 

circuities that is expected in the future can serve as an efficient bridge between the circuitry 

electronics and photonics. The surface plasmon intensity depends on many factors including 

the wavelength of the incident light and the morphology of the metal surface. The wavelength 

must be very close to that of the plasma of the metal. For particles of noble metals, such as 

silver and gold, this can fall in the visible region. This makes the interaction of these metals 

with the light particularly strong and leads to a highly dispersive permittivity at optical 

frequencies. In particular, the real part of the permittivity changes sign near the resonance 

frequency. For metal particles smaller than the skin depth, the plasmon interaction becomes a 

collective interaction that involves the entire nanoparticle. In practice, more interesting 

nanoparticles have diameters less than 100 nm. Among the noble metals, silver is the metal 

that has less absorption and produces more intense resonance effects. The number, the 

position and the intensity of the plasmon resonance depends on the geometric shape and size 

of the nanoparticle. 

In this doctorate thesis we will see how to analyze numerically the surface plasmons of metal 

nanoparticles, and to optimally design a solar cell equipped with metal nanoparticles. 

The structure of the thesis is the following. In Chapter 1 the finite element method (FEM) is 

briefly outlined, both in 2D and 3D geometries; in Chapter 2 the FEM analysis of 

electromagnetic scattering is described by means of the hybrid FEM-RBCI (Robin boundary 

condition iteration) and of the perfectly matched layer (PML) methods; in Chapter 3, two 

stochastic optimization methods are described, that is genetic algorithms (Gas) and particle 

swarm optimization (PSO); in Chapter 4 the photovoltaic conversion principles are recalled; 

in Chapter 5 the plasmon phenomena are briefly introduced; in Chapter 6 the numerical 

analysis of light scattering from metal nanoparticle is performed by means of FEM-RBCI 

method; in Chapter 7 a solar cell, equipped with metal nanoparticles, is optimized from the 

point of view of efficiency; finally the author's conclusions follow. 
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Chapter 1  
 

 

 

The finite element method 
 

1.1.  The method 
 

The solution of engineering problems makes use of mathematical models to represent 

physical situations. Within the framework of electrical and electronic engineering the 

behavior of these models can be described by partial differential equations, the well-known 

Maxwell's equations, to which are associated the corresponding initial and boundary 

conditions and the constitutive equations. The complexities of the analysis domains and / or 

of the constitutive equations make it impossible to obtain exact analytical solutions of these 

differential equations in most cases. So we often use numerical methods, which provide an 

estimate of the unknown quantities in a discrete and finite set of points of the domain. The 

values of these quantities in the other points are obtained by interpolating functions. The most 

widely used numerical methods are the finite difference method (FDM) and the finite element 

method (FEM). 

The FEM [1-3] was born in the 60s and had a wide circulation as a result of the technological 

development of electronics and computers. It lends itself well to be implemented in computer 

programs, and can be used for a wide range of applications. These reasons have led to the 

success of this method compared to FDM, born before. The latter, although more simple and 

easy to implement, it is suitable to solve problems that have a high degree of complexity in 

the domain where there are no inhomogeneities and whose borders are well defined. 

The FEM is based on the discretization of the domain of interest by means of a set of 

subdomains, said finite elements, of finite sizes and simple shapes, interconnected at points 

called nodes. The unknown values of the scalar field f (function of the spatial coordinates) are 

obtained from the nodal values fn (n=1,…,N) through appropriate interpolating functions αn 

said form functions (or shape functions), defined within the finite elements: 

 

            

n

nn )z,y,x(f)z,y,x(f                                  (1.1.1) 

 

Substituting this approximate expression in the differential equations that characterize the 

problem posed in an appropriate integral form, we obtain a system of algebraic equations in 

the unknown nodal values. These equations are linear or not, depending on the nature of the 

constitutive laws. The resolution of the system provides the unknown values fn and then the 

approximate solution in the entire domain through the use of the shape functions. 

 

 

1.2.  Discretization of the domain 

 

The first step of the numerical analysis is the finite element discretization of the domain, 

namely the creation of a mesh of finite elements, in which it was decided to subdivide the 

domain. Typical elements used for the solution of electromagnetic problems are the 
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simplexes, i.e. geometric entities having Nd + 1 vertices in a space of Nd dimensions (for 

example, triangles in a two dimensional space and tetraheda in a three dimensional space). 

The choice of the element kind depends on the number of dimensions Nd of the problem and 

on the shape of the domain. The use of a greater number of elements in a domain increases the 

accuracy of the solution, but causes an increase of the computational cost in terms of 

occupation of memory and computing time. A convenient approach is to increase the number 

of elements only where it is needed, i.e., where the unknown scalar field presents major 

changes. This can be done based on the experience of the user or automatically by means of 

algorithms of automatic adaptive meshing. 

If we want a better approximation within a given finite element, it is necessary to give the 

approximate solution a greater number of degrees of freedom, in such a way as to reduce the 

difference between the approximate solution and the exact one. According to the Weierstrass 

theorem, given a function f(x), continuous in the closed and limited range [a, b], fixed an 

arbitrary number  > 0, there exists a polynomial p(x) such that:  

 

            )x(p)x(f      x a,b

 

It is clear that every continuous function can be approximated with the desired accuracy by a 

polynomial of sufficiently high degree. The type of simplest approximation is the linear one, 

but turns out to be the worst in terms of quality. In fact, the order of the polynomial used in 

the approximation of the real solution affects the accuracy with which we can evaluate the 

solutions of differential equations: the higher the grade, the better the approximation. 

In Fig. 1.1 it is shown the basic principle used in the FEM method in the one-dimensional 

case: after having divided the domain of analysis in finite elements (in this case, intervals, 

typically having different amplitudes), we proceed to approximate the unknown function as in 

(1.1), choosing as unknowns only the values fn in the nodes of abscissas xn on the x-axis. 

From the solution of a system of algebraic equations we obtain the approximate nodal values 

of the function f(x), while the values in the internal points are evaluated based on the 

approximation functions used. As we can deduce from the figure, the approximation would be 

better if the number of elements were increased or if higher-degree polynomials were chosen 

to approximate the function from one node to another. 

 

 

 

 f(x) 

x x1 x2 x3 

exact 

… xn … 

fn f1 f2 f3 fN 

approximate 

xN 

 
 

Fig. 0.1.  -  Exact and approximate 1D FEM solutions. 
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1.3.  Scalar finite elements 
 

The electromagnetic problems in two dimensions (2D) can be always traced to scalar 

problems. This is achieved by assuming as unknown the electric scalar potential; alternatively 

the variable can be a component (along the z axis) of the magnetic vector potential, or directly 

of the electric or magnetic field. 

The most used finite elements in 2D are the triangle and the quadrangle. Consider a triangular 

finite element E, defined by three vertices, Pn (xn, yn), n = 0,1,2, where you want to linearly 

approximate a scalar field f(x, y). We have: 

 

         E)y,x(P)y,x(f)y,x(f
2

0n

nn 


                              (1.3.1) 

 

where fn and n(x,y) are the nodal values and the shape functions, respectively. The shape 

functions n(x,y) are non-dimensional linear functions, given by: 

 

     y
A2

xx
x

A2

yy

A2

yxyx
)y,x( 1n2n2n1n1n2n2n1n

n
 







            (1.3.2) 

 

They exhibit the property: 

 

         









nmif1

nmif0
)y,x( mmn             (1.3.3) 

 

In a domain D discretized with triangular finite elements, the umerical approximation of a 

scalar field f(x,y) is continuous in D.  

It is useful to refer to the generic point P(x, y) of a finite element E in a reference frame ,, 

local to the element (Fig. 1.2 on the left), by means of the coordinate transformation: 

 

         








)yy()yy(yy

)xx()xx(xx

02010

02010
                   (1.3.4) 

 

whose Jacobian is: 

         A2
yyyy

xxxx

yy

xx

),(J
0201

0201






















               (1.3.5) 

 

where A is the area of the finite element. 

By means of (1.3.4), the finite element E is transformed into the standard triangle T, as shown 

in Fig. 1.2.  

In local coordinates the shape functions simplify to: 

 

          ),(),(1),( 210              (1.3.6) 
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Fig. 0.2.  -  Triangular finite element of order 1 and standard triangle T. 

 

 

The derivatives of the shape functions with respect to the absolute Cartesian coordinates are: 

 

         









































n01n02n

n01n02n

A2

xx

A2

xx

y

A2

yy

A2

yy

x
                     (1.3.7) 

 

By expressing the shape functions in the standard triangle T with the aid of the third local 

coordinate =1, we have: 

 

         









































),,(),,(),(

),,(),,(),(

nnn

nnn

         (1.3.8) 

 

The three local coordinates , ,  can be interpreted as areolar coordinates in the element E; 

we have in fact:  

        
A

A

A

A

A

A 021                           (1.3.9) 

 

where A0, A1 and A2 are the areas of the triangles obtained by joining the generic point P 

inside the triangle with its vertices (see Fig. 1.3). It is clear that the sum of the three areolar 

coordinates is 1, ie: ++=1. 
 

 

y 

x P0 

A0 

 

 

P1 

P2 

A2 

A1 

P 

 
 

Fig. 0.3.  -  Areolar coordinates in a triangular finite element. 
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Fig. 0.4.  -  Triangular finite element of order 2 and standard triangle. 

 

 

Triangular finite elements of higher order can be used. This choice increases the 

computational cost and the calculation time in favor of a better accuracy of the solution. For 

example, a finite element of the second order is shown in Fig. 1.4, with the associated 

standard triangle T. For this element the shape functions in local coordinates are: 

 

        




444

)12()12()12(

543

210
                      (1.3.10) 

 

and the approximation of the  scalar field is: 

 

         E)y,x(P)y,x(f)y,x(f
5

0n

nn 


                    (1.3.11) 

 

In Fig. 1.5 a quadrangular finite element of order 1 is shown. By defining the local curvilinear 

coordinates ,, the shape functions are: 

 

         
)1()1()1()1(

)1()1()1()1(

4

1
44

1
3

4

1
24

1
1




                           (1.3.12) 

 

and the coordinate transformations are:  

 

         



4

1n

nn

4

1n

nn ),(yy),(xx                      (1.3.13) 

 

These transformations transform the quadrangle E into the standard quadrangle Q (see Fig. 

1.5). Note that the Jacobian of this transformation is not constant (exept for parallelograms), 

but it is a polynomial of degree 2 in the local coordinates. 

The approximation of the scalar field is:  

 

         E)y,x(P)y,x(f)y,x(f
4

1n

nn 


                              (1.3.14) 
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Fig. 0.5.  -  Quadrangular finite element of order 1 and standard quadrangle Q. 

 
 

Some electromagnetic problems in three dimensions (3D) can be traced to scalar problems. 

This is the case of electrostatic and static current density problems formulated in terms of the 

scalar electric potential v. 

The most used finite elements in 3D are the tetrahedron and the hexahedron. Consider a 

tetrahedral finite element E, defined by four vertices, Pn (xn, yn), n = 0,1,2,3 where you want 

to linearly approximate a scalar field f(x, y, z). We have: 

 

         E)z,y,x(P)z,y,x(f)z,y,x(f
3

0n

nn  


           (1.3.15) 

 

where fn and n(x,y,z) are the nodal values and the shape functions, respectively. The shape 

functions n(x,y,z) are non-dimensional linear functions: 

 

         nnnnn dzcybxa)z,y,x(  (1.3.16) 

 

where le coefficients are 

 

    
V6

zyzyzyzyzyzy
a 1n3n3n2n2n1n2n3n1n2n3n1n

n
 

      (1.3.17) 

   
V6

zxzxzxzxzxzx
b 2n3n1n2n3n1n1n3n3n2n2n1n

n
 

  (1.3.18) 

   
V6

yxyxyxyxyxyx
c 1n3n3n2n2n1n2n3n1n2n3n1n

n
 

 (1.3.19) 

   

V6

zyxzyxzyx

V6

zyxzyxzyx
d

2n1n3n1n3n2n3n2n1n

1n2n3n3n1n2n2n3n1n
n













(1.3.120) 

 

where V is the volume of the tetrahedron. 

They exhibit the property:  

 

         







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nmif1

nmif0
)z,y,x( mmmn                                               (1.3.21) 
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In a domain D discretized with tetrahedral finite elements, the numerical approximation of a 

scalar field f(x,y,z) is continuous in D.  

It is useful to refer to the generic point P(x,y,z) of a finite element E in a reference frame 

,,, local to the element (Fig. 1.6 on the left), by means of the coordinate transformation: 

 

         











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)zz()zz()zz(zz

)yy()yy()yy(yy

)xx()xx()xx(xx
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        (1.3.22) 

 

whose Jacobian is: 
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


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








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




















              (1.3.23) 

 

where V is the volume of the tetrahedral finite element. 

By means of (1.3.22), the tetrahedral finite element E is transformed into the standard 

tetrahedron T, as shown in Fig. 1.6. In local coordinates the shape functions simplify to: 

 

        




),,(),,(

),,(1),,(

32

10
   (1.3.24) 

 

and the shape function derivatives with respect to the absolute Cartesian coordinates are: 
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               (1.3.25) 
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             (1.3.27) 

 

By expressing the shape functions in the standard triangle T with the aid of the fourth local 

coordinate =1, we have: 
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The four local coordinates , , ,  can be interpreted as volume coordinates in the element 

E; we have in fact:  

 

         
V

V

V

V

V

V

V

V 0321                           (1.3.22) 

 

where V0, V1, V2 and V3 are the volumes of the four tetrahedra obtained by joining the 

generic point P inside the tetrahedron with its four vertices. It is clear that the sum of the four 

volume coordinates is 1, ie: +++=1. 
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Fig. 0.6.  -  Tetrahedral finite element of order 1 and standard tetrahedron T. 
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1.4.  Vector finite elements 
 

The electromagnetic problems in 3D are very often vector problems, in which the unknowns 

are vector fields instead of scalar ones. The representation of such vector fields by means of 

three scalar fields exhibits several drawbacks: 

 It imposes the continuity of the three components of the vector at the interface between 

two adjacent finite elements; this is not true if the two elements are constituted of different 

materials with different constitutive parameters; 

 The imposition of the boundary conditions are difficult; 

 The numerical solutions exhibit errors (spurious modes), whose amplitude is not 

controllable. 

For all such reasons, vector finite elements have been devised, named edge elements. In the 

edge elements the shape functions are of vector kind. The most used edge elements are the 

triangle and the quadrangle in 2D, and the tetrahedron and hexahedron in 3D. Other elements 

(more rarely) used are the prism with triangular base and the pyramid with quadrangular base. 

It is possible to show that a generic finite volume can be subdivided in tetrahedra, but this is 

not true for hexahedra, prisms and pyramids.  

By indicating the four local coordinates , , ,   in a tetrahedron by i, i=0,…,3, the generic 

edge shape function is: 

 

         )(L ijjiijij 


                                 (1.4.1) 

 

were indices i=1,…3 and j=i+1,…,4 are relative to the beginning and ending nodes of the 

edge, oriented from node i to node j, as shown in Fig. 1.7. Said ijê  the versor of the edge ij, it 

can be shown that:  

 

         jhikkhijê 


                                    (1.4.2) 

 

where  is the Kronecker delta. In other words, the vector shape functions (1.4.1) are 

interpolating vector functions. These shape functions ensure the continuity of the tangential 

components of the vector field, but not the normal components. Therefore this kind of finite 

element is very useful for electromagnetic problems where the unknown field is the electric 

field or the magnetic one, whose tangential components are continuous across the interface 

between two different materials. 

By numbering the edges of the tetrahedron from 1 to 6 as shown in Fig.1.7, the electric (or 

magnetic) field inside the tetrahedron is approximated as:  

 

         



6

1s

ss )z,y,x(E)z,y,x(E


                         (1.4.3) 

 

where the six degrees of freedom Es s=1,…,6 are relative to the mean values of the tangential 

component of the field along the edge s:  

 

          
se

s
s dlt̂E

L

1
E


                                   (1.4.4) 

 

where t̂  is the versor of the edge es and Ls its length. 

Note that in literature several ways exist to extend the tetrahedral edge element to higher 

orders.  



 13 

y z 

x P0 

P1 

P2 

P3 

1 

2 

3 

4 

5 

6 

 
 

Fig. 0.7.  -  Tetrahedral edge element. 

 

 

For a hexahedron of the first order the degrees of freedom are the average values of the 

tangential component of the vector field along the edges of the element, for a total of 12 

unknowns, as shown in Fig. 1.8. 

The vector shape functions of a hexahedral finite elements are: 

 

       


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






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            (1.4.5) 

 

and the electric (or magnetic) field inside the hexahedron is approximated as:  

 

         



12

1s

ss )z,y,x(E)z,y,x(E


                         (1.4.6) 
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Fig. 0.8.  –  Hexahedral edge element. 



 14 

1.5.  Building of the global algebraic system 
 

The FEM requires that the problem is formulated in terms of a functional,. whose 

minimization is equivalent to the solution of the partial differential equation with the 

associated boundary conditions. Consider the partial differential equation:  

 

         gf L       in D                               (1.5.1) 

 

where L is a differential linear operator, f is an unknown scalar function and g is a known 

function (source). Assume that the function f satisfies the following Dirichlet and Neumann 

boundary conditions: 

 

        















)Neumann(on0
n

f

)Dirichlet(onff

Neu

Dird

                                       (1.5.2) 

 

where fd is a known function defined on a subset Dir of the boundary  of the domain D, and 

Meu is such that: 

 

          neudir               neudir                                 (1.5.3) 

 

It can be shown that the solution of the problem minimizes the functional [2] 

 

         










 
dird

DD2

1

onff

dxdydzfgdxdydzff)f(min L
                        (1.5.4) 

 

Having discretized the domain D by means of nodal finite elements of a given order, the 

unknown scalar field f can be represented as a linear combination of shape functions and 

nodal values: 

 

         ][]f[)z,y,x(f)z,y,x(f tot
t

tot

N

1n

nn

tot




                         (1.5.6) 

 

where Ntot is the total number of nodes in the finite element mesh, fn are the nodal values and 

the n the relative shape functions. The array [ftot] and [tot] are the column vectors of the 

nodal values and of the shape functions, respectively; the superscript t denotes transposition. 

Without loss of generality, we can number first the Nint internal nodes, after the Nneu nodes on 

the Neumann boundary neu, and finally the Ndir nodes on the Dirichlet boundary dir. The 

number of unknowns N is given by: 

 

        neuint NNN                                              (1.5.7) 

 

By using the approximation (1.5.6), the functional becomes: 

 

    






 
D tot

t
tottotD

t
tottot

t
tot2

1
dxdydzg][]f[]f[dxdydz][][]f[)f( L       (1.5.8) 
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which can be put in matrix form as: 

 

            tot
t

tottottot
t

tot2

1
g]f[]f[A]f[)f(                     (1.5.9) 

 

where: 

- [Atot] is the matrix of the coefficients, whose generic entry is: 

 

          dxdydza
D

mnnm2

1
mn   LL                              (1.5.10) 

 

- [gtot] is an array, whose generic entry is:  

 

         dxdydzgg
D mm                                      (1.5.11) 

 

Now we can partition the arrays [ftot] as 

 

         









]f[

]f[
]f[

d
tot                              (1.5.12) 

 

This partition induces similar partitions in the matrix [Atot] and in the array [gtot], so that 

 

       










































]g[

]g[
t

]f[

]f[

]f[

]f[

]A[t]A[

]A[]A[

]f[

]f[
)f(

dddddd

d
t

d
2

1
           (1.5.13) 

 

where we have assumed that the matrix [Atot] is symmetric; this is a very common case and is 

verified if the differential operator L is self adjoint. By expanding (1.5.13), we get: 

 

         

               

            d
t

d
t

dddd2

1

t
dd2

1
d2

1

2

1

gfgffAtf

fAtffAtffAtf)f( d



 

    (1.5.14) 

 

By noting that  

                   fAtffAtf
t

dddd                                           (1.5.15) 

 

we can rewrite (1.5.14) as: 

 

         

            

         d
t

ddddd2

1

dd2

1

gffAtf

gfAtffAtf)f(



 

           (15.16) 

 

Note that this expression is a non-homogeneous quadratic form in the nodal unknowns, which, 

in addition to the quadratic terms, it also contains linear and constant terms.  

In order to minimize the functional, we impose that its partial derivatives with respect to the 

unknown nodal values fn, n=1,...,N are zero: 
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         0
fn





            n=1,2,…,N                                                   (1.5.17) 

 

or in matrix notation: 

 

         
  
 

         0gfAfA
f

f
dd 




                                (1.5.18) 

 

By setting: 

 

               gfAb dd                                                   (1.5.19) 

 

we obtain the global algebraic system of N equations in N unknowns: 

 

            bfA                                                               (1.5.20) 

 

Another approach, which leads to the same global system, is the Galerkin method. By this 

method the partial differential equation (1.5.1) is rewritten in homogeneous form, multiplied 

by a shape function n and then integrated over the whole domain: 

 

         0dxdydz)gf(
D

n  L     n=1,…,N                          (1.5.21) 

 

By substituting to f its approximation (1.5.6), we obtain the global system (1.5.21) again. The 

Galerkin method is more general than the functional approach, since it can be applied also in 

the cases in which the functional does not exist, as, for example, in the solution of skin effect 

problems by means of the integrodifferential Konrad's equation. 
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1.6.  Solution of the global system 
 

The methods of solution of linear algebraic equations are classified as direct and iterative 

solvers.  

The direct solvers perform a finite number of operations, which depends on the order of the 

matrix, in general O(N
3
). Such methods obtain an exact solution in exact arithmetic, and no 

truncation error is introduced. 

The iterative solvers are based on repeated corrections of an approximate solution; they 

introduce a truncation error and, in general it is not possible to foresee a priori the number of 

steps needed.  

The direct methods are used only for systems of limited number of unknowns (some 

thousands). If the matrix is banded, symmetric and positive defined (SPD) it is possible to 

solve greater systems (some tens of thousands). Since the FEM linear systems are very big, in 

general iterative solvers are used. 

Consider the linear algebraic system: 

 

          ]b[]x][A[                    (1.6.1) 

 

where [A] is a square matrix and [b] the known term array. We intend to use an iterative 

solver to solve (1.6.1) for [x]. Let [y] be an approximate solution, previously computed. We 

define the error: 

 

         ]y[]x[]e[                   (1.6.2) 

 

Since the solution [x] is unknown, also the error [e] is unknown, but it is possible to compute 

the residual:  

 

         ]y][A[]b[]y][A[]x][A[]e][A[]r[                     (1.6.3) 

 

By using the approximate solving method by which we have computed [y], we obtain another 

approximation [e'] for [e]:  

 

         ]r[]A[]'e[ 1                        (1.6.4) 

 

We set: 

         ]'e[]y[]'y[                    (1.6.5) 

 

By repeating this procedure, more good solutions are found. Now it is necessary to specify the 

algorithm by which to build such approximate solutions. Since this algorithm is applied 

repeatedly, it needs to be fast in the building of the approximate solutions. 

We decompose the matrix [A] as:  

 

         ]U[]L[]D[]A[       (1.6.6) 

 

where [D] is the diagonal of [A], and [L] and [U] are the lower and upper triangular parts 

of [A]. The linear system is rewritten as:  

 

           ]b[]x[]U[]L[]D[                     (1.6.7) 

 

and from this we find: 
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           ]b[]x[]U[]L[]x][D[                  (1.6.8) 

 

and also: 

          ]b[]D[]x[]U[]L[]D[]x[ 11                       (1.6.9) 

 

From this we have the following iterative scheme (Gauss-Jacobi) [4]: 

 

           ]b[]D[]y[]U[]L[]D[]y[ 1)1n(1)n(               (1.6.10) 

 

If [y
(n)

]=[x] at the nth step, then [y
(m)

]=[x] for all the subsequent steps m>n. This iterative 

scheme fall within the general case described above. In fact we have:  

 

        

 

 

]r[]D[]y[

]b[]D[]y[]A[]D[]y[

]b[]D[]y[]U[]L[]D[]D[]D[

]b[]D[]y[]U[]L[]D[]y[

1)1n(

1)1n(1)1n(

1)1n(1

1)1n(1)n(

















             (1.6.11) 

 

Obviously the algorithm which finds fast the approximate solutions is the diagonal system 

having [D] as matrix of coefficients. 

Consider now another iterative scheme (Gauss-Seidel) [4]: 

 

            ]b[]L[]D[]y[]U[]L[]D[]y[
1)1n(1)n( 

             (1.6.12) 

 

If [y
(n)

]=[x] at the nth step, then [y
(m)

]=[x] for all the subsequent steps m>n. This iterative 

scheme fall within the general case described above. 

 

   

   

     

   

  ]r[]L[]D[]y[

]b[]L[[D[]y[]A[]L[]D[]y[

]b[]L[[D[]y[]U[]L[]D[]L[]D[]L[]D[

]b[]L[]D[]y[]U[]L[]D[]y[

1)1n(

1)1n(1)1n(

1)1n(1

1)1n(1)n(

















      (1.6.13) 

 

The linear system which is solved to obtain the approximate solutions is the system having 

[D][L] as matrix of coefficients. 

The two methods are convergent if their iteration matrices, that is [D]
1

([L]+[U]) for the 

Gauss-Jacobi solver and ([D][L])
1

[U] for the Gauss-Seidel one, have spectral radii less than 

1. It possible to show that the Gauss-Jacobi method converges if the matrix [A] è strictly 

diagonal dominant, whereas the Gauss-Seidel converges if [A] is SPD. Note that such 

conditions are sufficient but not necessary. 

This two methods in general converge slowly, so that very often another method, called the 

conjugate gradient (CG) is used [4]. 

Consider the linear algebraic system (1.6.1) and assume that [A] is a square matrix of order N, 

symmetric and positive definite. The solution of such a system can be seen as the 

minimization of the function:  
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         ]b[]x[]x][A[]x[])x([g tt

2

1
 (1.6.14) 

 

Having defined the residual as in (1.6.3) in relation to an approximate solution, the conjugate 

gradient algorithm is described in the following. 

 

0) the counter k is initialized: k=0 
 

1)  given the initial approximate solution [x
(0)

], the initial residual and direction are 

computed: 
 

         ]b[]x[]A[]r[ )0()0(    ]r[]p[ )0()0(                  (1.6.15) 
 

2)  the function g([x]) is minimized along the straight line through the point [x
(n)

] and having 

the direction [p
(n)

]. In other words, the function g()=g([x
(n)

] +  [p
(n)

]) is minimized with 

respect to the real parameter . The minimum is obtained for the parameter value: 
 

         
]p][A[]p[

]r[]p[
)n(t)n(

)n(t)n(

n                (1.6.16) 

 

3)  a new approximate solution is found as:  
 

         ]p[]x[]x[ )n(
n

)n()1n(                (1.6.17) 
 

4)  and the relative residual is  
 

         ]p][A[]r[]r[ )n(
n

)n()1n(            (1.6.18) 
 

5)  a new search direction is set:  
 

         ]p[]r[]p[ )n(
n

)1n()1n(                (1.6.19) 
 

  with:      
]p][A[]p[

]r][A[]p[
)n(t)n(

)1n(t)n(

n



                          (1.6.20) 

 

6)  the counter k  is increased by 1:   k=k+1; 
 

7)  the convergence is tested: 
  

         







2

)1n(

2

)1n(

]x[

]x[]x[

100

)n(

                                                   (1.6.21) 

where  is a user-selected small values; 

 

8)  if the test is positive, the algorithm stops; otherwise it goes back to step 2). 
 

 

Note that the minimization is performed on the quadratic function: 
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          
]r[]p[]p[]A[]p[)]x[(g

]b[]p[]x[]p[]x[]A[]p[]x[

])p[]x([g)(g

)n(t)n()n(t)n(2

2

1)n(

t)n()n()n()n(t)n()n(

2

1

)n()n(









     (1.6.22) 

 

from which it is easy to find the (1.6.16). 

Moreover, from (1.6.16) it follows that: 

 

         0]r[]p[]p][A[]p[ )n(t)n()n(t)n(
n                            (1.6.23) 

 

and also:  

 

           0]r[]p[]A[]p[ )n()n(
n

t)n(                       (1.6.24) 

 

and by virtue of (1.6.18): 

 

         0]r[]p[ )1n(t)n(                  (1.6.24) 

 

that is [p
(n)

] and [r
(n+1)

] are orthogonal. 

Finally, note that, by imposing that two consecutive residuals are orthogonal, we have: 

 

         0]p][A[]r[]r[]r[]r[]r[ )n(t)n(
n

)n(t)n()1n(t)n(              (1.6.25) 

 

and so:  

         
]p][A[]r[

]r[]r[
)n(t)n(

)n(t)n(

n                                                          (1.6.26) 

 

which coincides with the (1.6.16). By setting: 

 

         ]p[]r[]p[ )1n(
1n

)n()n( 
                         (1.6.27) 

 

we note that the numerators in (1.1.16) and (1.6.26) are the same: 

 

         
]r[]r[

]p[]r[]r[]r[]p[]r[

)n(t)n(

)1n(t)n(
1n

)n(t)n()n(t)n(



 


              (1.6.28) 

 

If we impose that two successive directions are conjugate with respect to the matrix [A], that 

is  

         0]p][A][p[ )n()1n(                                (1.6.29) 

 

one obtains that: 

         
]p][A[]p[

]r][A[]p[
)n(t)n(

)1n(t)n(

n



                                (1.6.30) 

 

By this choice, also the numerators in (1.6.16) e (1.6.20) are the same: 
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 

]p][A[]r[

]p][A[]p[]p[]A[]r[

]p[]A[]p[]r[]p[]A[]p[

)n(t)n(

)n(t)1n(
1n

)n(t)n(

)n(t)1n(
1n

)n()n(t)n(













            (1.6.31) 
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Chapter 2  
 

 

 

Electromagnetic FEM analysis 
 

2.1.  The Maxwell's equations 
 

In order to solve problems of propagation of electromagnetic wave, it necessary to solve the 

Maxwell's equations in time-harmonic behavior [1,2]: 
 

         Ddiv


                         (2.1.1) 
 

         0Bdiv 


                 (2.1.2) 
 

         BjErot


               (2.1.3)  
 

         DjJHrot


                  (2.1.4) 
 

were =2f is the angular frequency (rad/s) and f the frequency (Hz), E


 is the electric field 

(V/m), H


 the magnetic field (A/m), J


 the current density (A/m
2
), D


 the electric induction 

(C/m
2
), B


 the magnetic induction (Wb/m

2
), and  the volume charge density (C/m

3
). 

These vector fields are related by the constitutive laws, which describe the media in which 

they are located:  
 

          ED


                      (2.1.5) 
 

          HB


                      (2.1.6) 
 

          EJ


                            (2.1.7) 
 

where  is the electric permittivity (F/m),  the magnetic permeability (H/m) and  the 

electric conductivity (S/m).  

In addition to these equations, it is necessary to impose the boundary conditions.  

In the solution of the problems of scattering of electromagnetic waves, an incident wave incE


 

(or incH


), analytically known, irradiates one or more non-homogeneous objects in a 

surrounding homogeneous unbounded medium, very often the vacuum, characterized by 
 

         

m/S0

m/H104

m/F108541878.8

0

7
0

12
0











        (2.1.8) 
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0  0 

2   2   2 

1   1   1 

Einc 

0  0  

D 

 

 

Fig. 2.1.  Electromagnetic wave incident on non homogeneous objects. 

 

 

2.2.  Scattering of electromagnetic waves 
 

A plane incident wave is given by [2]: 

 

         
)znynxn(jk

maxinc
zyx0eEE





              (2.2.9) 

 

where nx, ny and nz are the cosines of the wave propagation direction. 

The scattered electromagnetic wave scatE


 (or scatH


), due to the presence of the objects, is 

superimposed to the incident one to obtain the total electric field: 

 

         scatinc EEE


                                                                (2.2.10) 

 

which satisfies the Helmholtz's equation: 

 

           0E'kE r
2
0r 


                               (2.2.11) 

 

where r is the relative reluctivity (r=1/r ), 'r is the relative complex permittivity given by:  

         
0

rr j'



                                     (2.2.12) 

 

and k0 is the free-space wavenumber: 

 

         000k                     (2.2.13) 

 

The boundary conditions, to be imposed on the boundaries of the analysis domain, are the 

following: 

 on the perfect conductors (PEC):  

       0En̂ 


        (or  0Hrotn̂ 


)                                           (2.2.14) 

 on the symmetry planes of the electric field:  

       0En̂ 


        (or  0Hrotn̂ 


)                                           (2.2.15) 
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 on the symmetry planes of the electric field: 

       0Erotn̂ 


        (or  0Hn 


)                                            (2.2.16) 

 on the far fictitious boundaries:  

       0)En̂(n̂jkEn̂ scat0scat                                         (2.2.17) 

In order to use the FEM, the unbounded free space outside the scatterers must be truncated by 

means of a fictitious truncation boundary F. The resulting bounded domain is discretized by 

tetrahedral edge elements. By applying the Galerkin method to the Helmholtz equation 

(2.2.11), we have: 

 

           0dxdydzE'k)E(
D

ir
2
0r 


       i=1,..,N           (2.2.18) 

 

where i


 is the vector shape function of the i-th edge and N is the number of edges not lying 

on the Dirichlet boundary. By applying the first Green formula to (2.2.18), we get: 

 

     
dSEn̂

dxdydzE'kdxdydzE

ir

D
ir

2
0

D
ir















      i=1,2,..,N          (2.2.19) 

 

where  is the boundary of the analysis domain and n̂  the outward normal versor to the 

boundary. By substituting to the electric field its approximation:  

 

         



eN

1j

jj )z,y,x(E)z,y,x(E


                                     (2.2.20) 

 

the following element matrix must be computed: 

 

          
kE

ij
)k(

ij dxdydzs


                                              (2.121) 

 

          
kE

ij
)k(

ij dxdydzt


                                 (2.2.22) 

 

for each finite element Ek. 

Finally, by imposing the boundary conditions, we obtain the global algebraic system. 

Electromagnetic scattering problems can be posed also in 2D. This happens in if the wave is 

E- or H-polarized along a given direction, say the z axis, and all objects are cylinders aligned 

along the same axis. In such cases, assumed as unknown the polarized field along the z axis, 

the problem becomes scalar. In the case of E-polarized wave, the incident wave is:  

 

         
)ynxn(jk

maxinc
yx0eEE


                            (2.2.23) 

 

and the Helmholtz's equation becomes:  
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         0E'k
x

E

yx

E

x
r

2
0rr 


































              (2.2.24) 

 

with the boundary conditions E=0 on the perfect conductors (Dirichlet), E/n=0 on the 

symmetry planes (Neumann) and Escat/n+jk0Escat=0 on the truncation boundary. By 

discretizing the analysis domain by means of nodal finite elements (triangles and/or 

quadrangles), the Galerkin method gives:  

 

          0dxdyE'k)E(
D

ir
2
0r          i=1,2,…,N           (2.2.25) 

 

where i is the scalar shape function of the i-th node and N is the number of nodes not lying 

in the Dirichlet boundary. By virtue of second Green formula, the (2.2.25) is rewritten as: 

 

      


 dl

n

E
dxdyE'kdxdyE ir

D
ir

2
0

D
ir      i=1,2,…,N         (2.2.26) 

 

where  is the boundary of the analysis domain D and n̂  is the outward normal versor to . 

By substituting to the electric field its approximation: 

 

        



N

1j

jj )y,x(E)y,x(E                 (2.2.26) 

 

and by imposing the boundary conditions, we obtain the global system. In order to derive 

these equations, we have to compute the following geometrical coefficients [1]: 

 

          
kE

ij
)k(

ij dxdys                        (2.2.27) 

 

          
kE

ij
)k(

ij dxdyt                          (2.2.28) 

 

for each finite element Ek in the mesh. The coefficients (2.2.27) and (2.2.28) form the 

stiffness and metric matrices of the finite element, respectively. 

 

 

2.3. The FEM-RBCI method in 2D 

 
Let us consider a set of conducting and/or dielectric objects, infinitely extended in the z-

direction, surrounded by an unbounded homogeneous dielectric medium (free space). A given 

time-harmonic electromagnetic wave Einc, E-polarized along the z-axis irradiates these 

objects, so that a scattered field Escat is excited extending to infinity. The total field E(x,y) 

(given by Einc+Escat outside the dielectric objects, if any) satisfies the two-dimensional scalar 

Helmholtz equation 

 

        0EkE r
2
0r                                        (2.3.1) 

 

where r is the relative magnetic reluctivity, r the relative electrical permittivity and k0 is the 

free-space wavenumber 
2/1

000 )(k  , in which  is the wave angular frequency and 0 
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and 0 are the free-space magnetic permeability and electrical permittivity, respectively. 

Homogeneous Dirichlet conditions hold on the perfectly conducting scatterer surface C, if 

any. In addition the scattered field Escat satisfies the Sommerfeld radiation condition at infinity. 

Let us introduce a fictitious boundary F enclosing all the scattering objects. Note that this 

boundary does not need to be constituted by a single closed curve, but several closed curves 

can be used, each one, for example, enclosing one scattering object. A Robin boundary 

condition is initially imposed on such a boundary [3-5]: 

 

        F0 onEjk
n

E
E 




               (2.3.2) 

 

where the normal derivative is computed in the outward direction and  is a user-selected 

function of the position on the fictitious boundary  (a good initial choice for  is given by 

Einc). By applying the Galerkin method to the bounded domain D, delimited by F and C 

and discretized by means of Lagrangian finite elements, the following algebraic system is 

obtained: 

 

        CΨΕA                                                       (2.3.3) 

 

where A is a square matrix depending on geometry and dielectric materials, E is the array of 

the unknown nodal field values (including that on F),  is the array of the nodal values of 

the right hand-side of the Robin condition on F and C is a rectangular matrix. 

Consider now the total field outside the surface enclosing the scatterer and enclosed by F, 

with a nonzero distance between them. The total field outside S is given by: 

 

         

















S

sd
n

G
E

n

E
GEE inc                    (2.3.4) 

 

where n is the outward normal to S (toward F), and G is the two-dimensional free-space 

Green's function, given by [2]: 

 

         rkjHG 0
)2(

04

1
                                         (2.3.5) 

 

where 
 2
0

H  is the Hankel function of the second kind and zero-order and r is the distance 

between a point on S and a point on F. Owing to the fact that F and S are separated by a 

distance greater than zero, function  can then be expressed as: 

 

         


















M

sd
n

G
EG

n

E
inc .         (2.3.6) 

 

In the FEM approximation, this relation is rewritten as: 

 

        MEΨΨ  inc                                              (2.3.7) 

 

where inc is the vector of  the values of the operator  applied to the incident field on the 

nodes of the fictitious boundary and M is a rectangular matrix in which null columns appear 

for the nodes not belonging to the elements external to S and having a side lying on it. 
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System (2.3.3) will be referred to as the FEM part of the equations, while (2.3.7) will be 

referred to as the integral part of the equations. 

Equations (2.3.3) and (2.3.7) form an algebraic system, which can be efficiently solved with 

the following iterative scheme: 

a) having arbitrarily guessed the vector ,  

b)  equation (3) is solved for the vector E;  

c) another guess for the Robin condition on F is obtained by means of (2.3.7);  

d) the procedure is then iterated until convergence takes place. 

The convergence is checked by computing the norm of the difference between the solution at 

the current step with the previous one, and dividing this quantity by the norm of the current 

solution; when this ratio is less than the convergence tolerance selected by the user the 

iteration is stopped. 

A simple study of the convergence of this iterative procedure can made led by formally 

relating the initial guess 
(0)  

to the true values of the Robin condition t by means of the 

error )0(
eΨ : 

 

        )0(
et

)0(
ΨΨΨ                                            (2.3.8) 

 

Solving equation (2.3.3) for the vector E, we obtain the field solution at the 0-th step: 

 

        
)0(

e
1

t
1)0(

CΨACΨAE
                             (2.3.9) 

 

in which the first term gives, by definition, the true field solution Et, whereas the second one 

represents the error )0(
eE . Starting from this solution, the new guess for the Robin condition 

on F is computed, whose error is given by: 

 

         
)0(

e
)1(

e PΨΨ                                                (2.3.10) 

 

where P is a square matrix (of order equal to the number of nodes on F) given by: 

 

        CMAP
1 .                                                (2.3.11) 

 

By further continuing the procedure, we can generalize (10) for the n-th step: 

 

        
)0(

e
n)1(

e ΨPΨ  .                                            (2.3.12) 

 

From this relation it is easy to understand how the procedure may converge to the true 

solution for every initial error 
)0(

eΨ on the first guess for . This happens if and only if the 

spectral radius  of matrix P is lower than 1. In this case, in fact, P
n
0 as n and, 

consequently, 0)n(
e Ψ  whatever 

)0(
eΨ . If this condition does not apply, divergence may 

occur. 

The spectral radius  depends in a complicated way on the distance of F  from the scatterers, 

on the whole FE discretization and on the frequency. Of course it is not possible to check 

condition <1 at the beginning of iteration, since matrix P is not available.  

Fortunately this is not a problem, since by suitably surrounding the scattering objects with 

two or more layers of finite elements, no divergence has been observed and, on the contrary, 
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the procedure is rapidly convergent to the true solution. This very attractive behavior of the 

procedure is lost if one tries to employ Dirichlet (or Neumann) boundary conditions on the 

fictitious boundary as is successfully done for static and quasi-static field problems for two 

reasons: equation (2.3.1) may have non vanishing solutions satisfying homogeneous boundary 

conditions; if there exist an incident field vanishing on F then equation (2.3.4) is singular. On 

the contrary, with the use of an impedance condition, system (2.3.3) which constitutes the 

FEM part of the system cannot be singular. The way in which the singularity relative to the 

integral equation (2.3.6) is avoided is a little more involved. In the global system 

(2.3.3),(2.3.7) the known term is constituted by the array inc in equation (2.3.7); it results 

from the discretization of Einc which vanishes if and only if Einc vanishes, so that this array 

is zero if, and only if, the incident wave is zero. In other words, the field source is well 

represented in the formulation. 

Finally, some comments are in order about the computing time and memory requirements of 

the procedure. At first sight one could think that the procedure is too time- consuming. In 

reality this is not the case if the following points are fully exploited in implementation. 

i) Since the FE mesh remains unchanged through the various iteration steps, matrices A, M 

and C do not change, so that they are computed only once, at the beginning of the procedure 

and saved for further use. 

ii) Equation (2.3.3) may be solved efficiently by means of standard solvers, which exploit the 

matrix A sparsity and symmetry. Specifically, when a direct solver is used, matrix A must be 

decomposed only once (note that in the adaptive ABC described in [8] matrix A changes at 

each step, so that the use of a direct solver may become too time- consuming); when an 

iterative solver is used the FEM solution at a certain step is used as the initial guess for the 

next step, reducing the number of solver iterations. 

iii) Small extensions of the domain D can be obtained by suitably placing the fictitious 

boundary near the scattering objects. The distance between the fictitious boundary and the 

scatterer surface is very short with respect to that necessary to find an acceptable solution by 

ABC methods. In addition, if the fictitious boundary is constituted by several closed curves, 

each one enclosing a scattering object, the domain is subdivided into disjoint pieces and, 

consequently, the global FEM system (2.3.3) is partitionable into independent subsystems, 

with a reduction in the overall computing time. 

iv) The end-iteration test is conveniently restricted to the fictitious boundary, as suggested by 

(2.3.12), being sure that this assures convergence of the field solution in the domain. 

v) A good initial guess for 
(0) 

is inc since the number of iterations are minimized (note that 

the selected Robin operator  looks like an ABC one). 

By implementing all the above items the iterative procedure can be made competitive with 

respect to other techniques as far as computing time and memory requirements are concerned. 

In addition the procedure is easy implementable in a pre-existing FEM code for bounded 

problems. Only one routine has to be developed which calculates the matrix M entries (very 

often a similar routine is already available in the post-processing program). Note that no 

singularities arise in these calculations since F and S do not have points in common. 

 

 

2.4. The FEM-RBCI method in 3D 
 

Consider a set of conducting and/or dielectric bodies, embedded in free space, lit up by an 

incident time-harmonic electromagnetic wave. A scattering problem is set up in terms of the 

total electric field, which satisfies the 3-D vector Helmholtz equation (a time factor e
jt

 has 

been assumed and suppressed): 
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          0EkE r
2
0

1
r                                                              (2.4.1) 

 

where r is the relative magnetic permeability, r the relative electrical permittivity and k0 is 

the free-space wavenumber 2/1
000 )(k  , in which  is the wave angular frequency and 

0 and 0 are the free-space magnetic permeability and electrical permittivity, respectively.  

Homogeneous Dirichlet conditions ( )0En̂  hold on the perfectly conducting scatterer 

surface C, if any. In addition the scattered field Escat satisfies the Sommerfeld radiation 

condition at infinity. 

Let us introduce a closed fictitious boundary F, strictly enclosing the scatterer, as shown in 

Fig. 2.1. Note that when the scatterer is composed of several disjoint objects, the boundary 

can be constituted by several closed surfaces, each one, for example, enclosing a single 

object. On F, a nonhomogeneous Robin boundary condition is assumed [6-7] 

 

       U)En̂(n̂jkEn̂E 0                                   (2.4.2) 

 

where n̂  is the outward normal to F and U  is an unknown vector to be determined. 

Let us now discretize the bounded domain delimited by F and by C by means of edge 

elements such as first-order tetrahedra, whose vector shape functions are [1]  

 

         1i2i2i1iii L 


             (2.4.3) 

 

where i1 and i2 are the local coordinates relative to the two nodes of the i-th edge and Li is 

its length. To simplify the description of the FE formulation and without loss of generality, 

we number first the edges on from one to, next the interior edges from NF+1 to N, and finally 

the edges on C. 

Applying FEM to (2.4.1) inside D with a homogeneous Dirichlet condition on C and a 

boundary condition (2.4.2) on F, a linear algebraic system is obtained 

 

        BUAE                                                 (2.4.4) 

 

where A is a complex and symmetric matrix, B links (2.4.2) with the right hand side of the 

FEM system, E is the array of the expansion coefficients for the electric field , and U is the 

array whose generic entry is given by: 

 

         
F

dSUU jj


                       (2.4.5) 

 

Since U is unknown, in order to solve the scattering problem, another equation relating U to E 

needs to be derived. To this end let us now consider another surface, M, lying between the 

antenna and the fictitious boundary (see Fig. 2.1). At minimum this surface can be selected as 

coinciding with the scatterer surface itself. The total field outside M can be expressed as: 

 

        
M

'dS)'r(E'n̂)'r,r(g)'r(E''n̂)'r,r(G)r(E)r(E inc        (2.4.6) 

 

where G is the dyadic Green's function 

 

          )'r,r(gkI)'r,r(G 2
0  

                                                  (2.4.7) 

with: 
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'rrjk

0
0e

'rr4
1)'r,r(g




                                                         (2.4.8) 

 

Taking the curl of (2.4.6) and performing some manipulations, the following expression is 

obtained: 

 

       
M

'dS)'r(E''n̂)'r,r(g)'r(E'n̂)'r,r(Gk)r(E)r(E 2
0inc      (2.4.9) 

 

Note that in (2.4.9), the curl operator has been put inside the integral sign due to the fact that 

F and M do not intersect. Substituting (2.4.6) and (2.4.9) in (2.4.2), an integral expression 

for U is easily obtained. Then taking into account (2.4.5), the following algebraic equation is 

derived: 

         EQUU  inc                           (2.4.10) 

 

where incU  is an array whose generic j-th entry (j=1,…NF) is given by 

 

          
F

dSEU jincj,inc


          (2.4.11) 

 

and Q is an NFN rectangular matrix in which null columns appear for the internal edges not 

involved in the computation. Equations (2.4.4) and (2.4.10) together form the global algebraic 

system of the FEM-RBCI method, which can be conveniently solved by an iterative scheme 

as follows: 

1) Select an arbitrary first guess for U;  

2) Solve equation (2.4.4) for E, by means of a standard conjugate gradient solver (COCG);  

3) Obtain an improved guess for U by means of (2.4.10);  

4) If the procedure has converged, stop; otherwise go to 2).  

This scheme can be seen as a two-block Gauss-Seidel iterative method: 

 

        )n(1)n(
UBAE

                                            (2.4.11) 
 

        
)n(
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In this way the symmetry and sparsity of matrix A is fully exploited. Moreover, since this 

procedure converges in a few iterations (generally 10-20), it also minimizes the number of 

multiplications of the dense matrix Q by a vector. It is now clear now that the price paid by 

FEM-RBCI in meshing some space around the conductors is worth it. In fact if a similar 

approach were used in FEM-BEM, one would have to invert the sub-matrix relative to the 

unknowns on the truncation boundary with a computational complexity of )N(O 3

F . On the 

other hand, if an iterative solver for non-symmetric complex matrices were be directly applied 

to the solution of the FEM-BEM global system the dense BEM sub-matrix would be 

multiplied by a vector at each solver iteration. Since the number of such iterations is very high 

(from several hundreds to some thousands for big 3D problems) we can state that the FEM-

RBCI global system is cheaper to solve than the FEM-BEM one. Another advantage of FEM-

RBCI with respect to FEM-BEM is that it avoids singularities in the integral equation since, 

as already said, the integration surface M is different from the truncation one F. 

The FEM-RBCI method can be made computationally more efficient if: a) the fictitious 

boundary is selected in such a way that very small extensions of the domain D are obtained: in 

general one or two layers of finite elements can be inserted between the scatterer and the 
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fictitious boundary; b) the computational complexity of the integral equation (2.4.9) is 

reduced from )N(O 2

F  to )NlogN(O FF  by means of the well-known fast multipole method 

(FMM) [9]. 

 

 

2.5. The perfectly matched layer (PML) 
 

In dealing with electromagnetic problems in open boundaries, it is necessary to truncate the 

computational domain by means of a fictitious truncation boundary. The key question is how 

to do this without introducing significant errors in the model of the device to be tested. Some 

electromagnetic field problems by their own nature are confined in a specific region of space. 

Others present solutions that decay quickly in space, making irrelevant the error introduced by 

the truncation, if the computational domain is large enough. The problems regarding wave 

propagations, whose solutions oscillate and typically decay slowly, are the most complicated 

to truncate. Methods such as the simple truncation of the domain (using homogeneous 

Dirichlet or Neumann conditions) or the coordinate transformations would cause reflection 

invalidating the solution found. 

In 1994 Berenger presents a new method [10]: instead of imposing a boundary condition that 

absorbs the wave, he uses a layer of artificial material that does not reflect the incident fields 

on it. The relative dielectric constant and the relative magnetic permeability of the material 

are both anisotropic. This material is a sort of picture frame for domain along the direction in 

which you want to simulate the open space (see Fig. 2.2); on the external surface of the 

adsorbing layer a Dirichlet boundary condition is imposed. When the electromagnetic field 

meets the absorbing layer, the amplitude of the wave decays exponentially; thus, in the case 

where the wave reaches the Dirichlet condition and is reflected, it must again pass through the 

absorbing layer, resulting largely attenuated and therefore negligible. This method takes the 

name of Perfectly Matched Layer (PML). 
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Fig. 2.2.  –  Scattering objects enclosed by a PML. 
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Chapter 3 
 

 

 

Stochastic Optimization 
 

 

 

3.1.  Generalities 
 

The aim of an optimization problem is to find the value of some design parameters in order to 

minimize (maximize) a given quantity, called objective function. Moreover, the optimization 

problem can be subject to some restrictions (constraints) on the parameter ranges allowed.  

In industrial applications, the optimized design is often problematic because of the 

simultaneous occurrence of many conflicting objectives. Besides, in optimised design it is 

often preferred to have a wide range of solutions to choose from, taking into account further 

design factors (cost, feasibility, …), instead of only considering the best one. There are 

different methods to solve this kind of problem, such as optimizing a single multi-objective 

function obtained by a weighted sum of the objectives or finding multiple Pareto-optimal 

solutions. 

Many multi-objectives evolutionary algorithms exist in the literature but they can be 

extremely expensive. This is especially harmful in the design of electromagnetic devices, 

where each estimation of the objective function calls for a numerical solution of the 

electromagnetic problem by means of the Finite Element Method (FEM). 

In this thesis, two stochastic optimization algorithms are presented: the Genetic Algorithms 

(GAs) and the Particle Swarm Optimization (PSO). Moreover, the Pattern Search (PS) 

deterministic algorithm is used to further improve the optima obtained by GAs and PSO. 

This chapter is structured as follows. In section 3.2 the concepts of single-objective and multi-

objective optimization are introduced and an overview of well-known evolutionary algorithms 

is presented. In sections 3.3 and 3.4 the Gas and PSO are outlined, respectively, whereas in 

section 3.5 the PS is briefly described.  
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33..22..    SSiinnggllee--  aanndd  mmuullttii--oobbjjeeccttiivvee  ooppttiimmiizzaattiioonn  
 

The goal of an optimization problem [1-2] can be formulated as follows: find the combination 

of some design parameters (independent variables) which minimize a given quantity, possibly 

subject to some restrictions on the parameter ranges allowed. The quantity to be optimized is 

termed the objective function; the parameters are called control or decision variables and their 

values may be changed in the search for the optimum; the restrictions on allowed parameter 

values are known as constraints. The general optimization problem can be stated 

mathematically as: 
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                                  (3.2.1) 

 

where f(x) is the objective function, x is the column vector of the N independent variables, 

and ci(x) is the set of constraint functions. Constraint equations of the form ci(x)=0 are termed 

equality constraints, and those of the form ci(x) ≥ 0 are inequality constraints. Taken together, 

f(x) and ci(x) are known as the problem functions. 

There are many optimization algorithms available to the computational scientist, but 

many methods are only appropriate for some types of problems. It is therefore 

important to be able to recognize the characteristics of a problem in order to identify an 

appropriate solution technique. Within each class of problems there are different 

minimization methods, varying in computational requirements, convergence properties, 

and so on. 

The goal of optimization is to find global optimum x* of the objective function f(x), i.e. for a 

minimization problem, 

 

         *),(V)(f*)(f xyxyyx   (1.2)                                      (3.2.2) 

 

where V(x) is the set of feasible values of the control variables x. Obviously, for an 

unconstrained problem V(x) is infinitely large. 

A point y* is a strong local minimum of f(x) if 

 

         *),η,(N)(f*)(f yyyyyy                                            (3.2.3) 

 

where N(y,η) is defined as the set of feasible points contained in the neighborhood of y*, i.e., 

within some arbitrarily small distance η from y*. For y* to be a weak local minimum 

(maximum) only an inequality need be satisfied 

 

         *),,(N)(f*)(f yyyyyy                                              (3.2.4) 

 

The different types of stationary points for an unconstrained univariate function are shown in 

Error! Reference source not found.. The situation is slightly more complex for constrained 

optimization problem, as shown in Error! Reference source not found., where the presence 

of a constraint boundary (in the form of a simple bound on the permitted values of the control 

variable) can cause the global minimum to be an extreme value, an extremum (i.e., an 

endpoint), rather than a true stationary point. 
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Fig. 3.1.  -  Types of minima for unconstrained optimization problems. 

 
Fig. 3.2.  -  Types of minima for constrained optimization problems. 

 

 

Real-world optimization problems usually require to reach many goals. In fact, in industrial 

applications, optimized design is often problematic because of the simultaneous occurrence of 

many conflicting targets. There are different methods to solve this kind of problem, such as 

optimizing a single multi-objective function obtained by a weighted sum of targets or finding 

multiple Pareto-optimal solutions. Whichever method one adopts, real-world optimization 

problems usually exhibit multiple optima: i.e. it is necessary to find several optima of a single 

multimodal function or a set of Pareto optimal solutions.  

In the former case, deterministic methods do not perform well, while standard stochastic 

methods tend to find the best single global optimum. To explore a multimodal function 

correctly, the evolutionary algorithms (EAs) must maintain population diversity: several 

methods have been developed to adapt standard EAs for multimodal function optimization, 

such as the Niching Genetic Algorithm (NGA. Better results could be obtained by performing 

the recognition of subpopulations by means of NGAs, and then identifying the best point in 

every niche by means of a deterministic zero-order method. In practice this approach is 

nontrivial: the identification of niches and the attribution of each individual (a point in the 
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search space) to its niche is very hard due to the unknown behaviour of the objective function. 

In order to give good results, they require a crucial a priori specification of a dissimilarity 

measure, corresponding to the “niche radius”.  

In the latter case, the multiobjective optimization problems are solved by finding a set of 

solutions, generally denoted as Pareto-optimal, that can be considered equivalent in the 

absence of information concerning the relevance of each objective relative to the others. Often 

the search space can be too large and too complex to be solved by exact methods, thus 

efficient optimization strategies are required that are able to deal with both difficulties. 

Evolutionary algorithms possess several characteristics that are desirable for this kind of 

problem, in fact multiple individuals can search for multiple solution in parallel.  

Unfortunately, both methods can be extremely expensive, because the exploitation of different 

solutions requires a great number of evaluations of the objective function. This is especially 

harmful in electromagnetic problems when each estimation of the objective function calls for 

a numerical solution by means of the Finite Element Method (FEM). 
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33..33..    GGeenneettiicc  aallggoorriitthhmmss  ((GGAAss))  
 

GAs, originally developed by Holland, are general purpose stochastic search strategies, based 

on the metaphor of natural evolution [3], [4]. 

The design variables are coded into fixed-length strings, called chromosomes (or genotypes); 

each position in the string is called a gene and the possible values of each gene are called 

alleles. In standard GAs, chromosomes are bit strings, obtained with or without Gray 

encoding [5].  

A population (or generation) contains a finite number P of chromosomes. Each chromosome 

has an assigned fitness that measures its ability to survive and produce offspring: fitness is 

calculated by means of an objective function that plays the role of the environment in which 

the population evolves. In the optimization of electromagnetic devices with FEM, the fitness 

estimate involves a full FEM analysis.  

The initial population is randomly created. A new population is generated by means of three 

main operators: selection, crossover and mutation. The selection operator stochastically 

chooses chromosomes to become parents and reproduce according to their fitness. The 

crossover operator exchanges a portion of the binary representations between two parents, 

randomly chosen, in order to generate new child strings. The mutation operator randomly flips 

a bit in an individual’s bit string representation. Crossover and mutation are applied with 

probabilities Pc and Pm, respectively, with Pm less than Pc. Both operators introduce changes 

into new chromosomes, which replace existing ones in the new population. The chromosomes 

that survive will be those which have proven to be most fit. The algorithm stops when the 

optimum is found or the maximum number of generations (Ng) is reached.  

To use GAs in optimization, it is essential to settle the configuration of many parameters. 

chromosome length (Nc), population size (P) and number of generations (Ng) are heuristically 

determined and are strictly dependent on the optimization problem. Selection, crossover and 

mutation are also dependent on the problem, yet less rigidly: the way in which each operator 

is implemented and their rate of application influence the evolution of the optimization and its 

chance of success. GA parameters are usually selected following heuristic criteria; a typical 

configuration is suggested by Carroll in [6]: 

 

        Representation:  binary (not Gray encoding) 

 

        Selection:  tournament selection with elitism 

 

        Crossover type: uniform crossover 

 

        Crossover probability:  5.0Pc   

 

        Mutation probability:  cm N/1P  . 

 

Searching for a global optimum of the objective function often involves a tradeoff between 

two apparently conflicting items: the judicious and robust sampling of the design variables 

(exploration) and the improvement of a good solution to reach valley bottom (exploitation). 

Our work aimed to find a choice of the GA parameters that generally leads to good results for 

any kind of optimization problem. 

Starting from Carroll’s configuration, binary representation without Gray encoding and the 

well-established “tournament selection” [7], [8] with elitism were maintained. Two crossover 

schemes were examined: two-point crossover and uniform crossover. The first is implemented 

by choosing two crossover points at random, whereas in the second, for each parent 

chromosome gene, a random number is generated and if it is less than the crossover 

probability Pc, this position becomes a crossover point. 



 38 

Furthermore, sharing the ideas put forward in [9] and [10], variable crossover and mutation 

rates were implemented, in order to improve the GA search by assuring a good exploration at 

the beginning of evolution, and more and more exploitation capability while optimization 

goes on. Simple linear variations were used. Several optimizations of some mathematical 

functions were performed to tune the starting and ending values of Pc and Pm. The following 

GA parameter configuration is therefore proposed [11]: 

 

      Representation:  binary (not Gray encoding) 

 

       Selection:  tournament selection with elitism 

 

       Crossover type:  two-point crossover   

 

       Crossover probability at generation k:  
1N

1k
4.03.0P

g

)k(
c




  

 

       Mutation probability at generation k:   
1N

1k
04.005.0P

g

)k(
m




  

 

The performance of this parameter configuration was measured using a set of four De Jong's 

mathematical functions which are typically used for GA benchmarking [12]. Function f1 is a 

unimodal quadratic function in three dimensions, which has only one minimum given by zero. 

Function f2 is the classical two-dimensional Rosenbrock's function, with a local minimum 

and a global one, given by zero. Function f3 is a discontinuous step function in five 

dimensions, which exhibits a global minimum given by -25. Function f5 is the 'foxhole' 

function in two dimensions with a global minimum of 0.998 and 24 local minima.  

Having fixed the population size and the number of generations to P=100 and Ng=50, 

respectively, the best parameter configuration for each objective function was found by 

considering two kinds of crossover (two-point and uniform crossover), 9 crossover probability 

values (from 0.1 to 0.9) and 9 mutation probability values (from 0.01 to 0.09). 50 

optimizations were performed for each parameter configuration, giving a total of 8100 

optimizations. Table 1 shows the best configuration for each De Jong's function. 

The proposed GA parameter configuration was compared with the Carroll and best ones. 

Table II shows this comparison. Three performance aspects were considered: number of 

successes (NS), accuracy of optimum (BO) and convergence speed (CS) [13]. NS is simply 

the number of times that the optimum was found (with a tolerance of 10
-3

) and verifies the 

ability of the GAs to reach the optimum solution. BO is the optimum value found by the GAs. 

CS is the average number of generations required to find the optimum. The average optimum 

(AO) value and worse optimum (WO) (out of the 50 optimizations performed) also provide  

 

 

TABLE 1 

BEST PARAMETER CONFIGURATION FOR SOME DE JONG’S FUNCTIONS 

 

 
f1 f2 f3 f5 

crossover type 
uniform 2-point uniform 2-point 

crossover probability 
0.1 0.4 0.5 0.9 

mutation probability 
0.01 0.05 0.01 0.05 
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meaningful information. For functions f1 and f3 the GAs invariably find the optimum with 

every parameter configuration (Table 2). For multi-minima functions f2 and f5, the proposed 

GA parameter configuration exhibits performance which is always in between that of the 

Carroll and best configurations, closer to the best one with regard to NS and AO; CS is also 

very similar. Note that, if the GA parameters are not suitably tuned for the specific function, 

the percentage of success may be below 50%, as shown in Table 2 for the Carroll 

configuration.  

  

  

TABLE 2 

COMPARING GA PARAMETER CONFIGURATIONS 

 

  NS BO WO AO CS 

f1 

Carroll 50 0.0 3.0 10
-4 

1.4 10
-4

 25 

universal 50 0.0 2.1 10
-3 

2.1 10
-4

 34 

best 50 0.0 3.0 10
-4 

1.4 10
-4

 25 

f2 

Carroll 22 0.0 0.106
 

6.769 10
-3

 22 

universal 32 0.0 0.082
 

3.708 10
-3

 25 

best 38 0.0 0.016
 

1.075 10
-3

 26 

f3 

Carroll 50 25.0 25.0 25.0 8 

universal 50 25.0 25.0 25.0 8 

best 50 25.0 25.0 25.0 8 

f5 

Carroll 23 0.998 4.172 1.138 14 

universal 41 0.998 1.421 1.044 16 

best 44 0.998 1.207 1.023 18 
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33..44..    PPaarrttiiccllee  sswwaarrmm  ooppttiimmiizzaattiioonn  ((PPSSOO))  
 

Particle Swarm Optimization (PSO) is a relatively new family of algorithms which can be 

used to find optimal (or near optimal) solutions to numerical and combinatorial problems. It is 

easily implemented (the core of the algorithm can be written in a few lines of code) and has 

proven both very effective and quick when applied to a diverse set of optimization problems. 

PSO was originally developed by Kennedy and Eberhart in 1995 [14], taking inspiration both 

from the related field of evolutionary algorithms and in artificial life methodologies.  

Animal social behavior, such as that seen in flocks, schools, or herds, has always attracted 

many researchers, interested in discovering the underlying rules which enable, as an example, 

large numbers of birds to flock synchronously, often scattering and regrouping, and suddenly 

changing direction. Many models of this flocking behavior were also used to create computer 

simulations, such as those by Heppner and Grenander [15], and by Reynolds [16]. 

A general way to search for a solution of a problem is to determine an objective, or cost 

function which describes the problem and to optimize it. Thus the field of function 

optimization is of wide interest. Optimizing a function f(x) means either minimizing (or 

maximizing) it. 

From an optimization point of view, it is straightforward to see the particles’ flight as a 

trajectory in the solution space. In this way the PSO algorithm can be used to minimize a 

generic function in and Nd-dimensional space. 

The standard algorithm of the PSO is the following one. 

 

1: procedure PSO 

2:   Initialize particles with random positions and velocities. 

3:   Set particles’ pbests to their current positions. 

4:   Calculate particles’ fitness and set gbest. 

5:   for T generations do 

6:     Update particles’ velocities. 

7:     Update particles’ positions. 

8:     Recalculate particles’ fitness. 

9:     Update particles’ pbest and gbest. 

10:  end for 

11: end procedure 
 

Consider a search space of d dimensions. Then xi=(xi1,…, xid) denotes the position of the i-th 

particle of the swarm (i=1,…,N), and pi=(pi1,…,pid) denotes the best position it has ever 

visited. The index of the best particle in the population (the one which has visited the global 

best position) is represented by the symbol g. At each time step t in the simulation, the 

velocity vi=(vi1,…,vid) of the i-th particle, is adjusted along each axis j according to the 

following equation: 

 

         (t) x (t)p)t(x)t(p)1t(v)1t(v ijgjgijijpijij                (3.4.1) 

 

where p and g are random numbers uniformly distributed in [0, pincr] and [0, gincr], 

respectively, pincr and gincr being the cognitive and social acceleration coefficients. Moreover, 

the velocity of the particle can be constricted to stay in a fixed range: 

 

         maxijmax V)1t(vV                               (3.4.2) 
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In this way the likelihood of particles leaving the search space is reduced, although indirectly, 

by limiting the maximum distance a particle will cover in a single step, instead of restricting 

the values of xi. The new position of a particle is calculated using: 

 

         )1t()t()1t( iii  vxx                (3.4.2) 

 

The personal best position of each particle is updated using: 
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while the global best index is defined as: 

 

         ))1t((fminargg i  p                            (3.4.4) 

 

An essential feature of the PSO algorithm is the way in which the local and global best 

positions, pi and pg, and their respective acceleration coefficients, are involved in velocity 

updates. Conceptually, pi (also known as pbest) resembles the particle’s autobiographical 

memory, i.e. its own previous experience, and the velocity adjustment associated with it is a 

kind of simple nostalgia, as it leads the particle to return in the position where it obtained its 

best evaluation. On the other hand, pg (gbest) is a sort of group knowledge, a common standard 

which every single particle seeks to attain. 

The overall effect is such that when particles find a good position, they begin to look nearby 

for even better solutions, but, on the other hand, they continue to explore a wider area, likely 

avoiding premature convergence on local optima and realizing a good balance between 

exploration of the whole search space and exploitation of known good areas [17]. 

 

 

33..55..    PPaatttteerrnn  sseeaarrcchh  ((PPSS))..  
 

One of the best known deterministic algorithms is the Pattern Search (PS). It was conceived 

by Hooke and Jeeves in 1961 [18] and is part of the so-called zero-order methods, for which 

you need to calculate the value of the single objective function. Key features of this method 

are ease of implementation and speed of convergence. 

The parameters of the algorithm are: the starting point, the step with which it must move to 

the next solution and the minimum step with which move from one point to another (tolerance 

and stopping criterion). Launched the execution, the calculation program performs a search 

based on points arranged at the vertices of a simplex. The first simplex is built around the 

starting point indicated during setting and by the values of the objective function at the 

vertices of the simplex are calculated. Subsequently, the simplex is reflected along one of its 

faces (in agreement with the step provided in the initial setting), the objective function is 

evaluated in the vertex of the new element, and this value is compared with the previous one. 

The algorithm proceeds by computing the function values for all elements adjacent to the 

starting simplex and finally it moves to the node that has the best value. This process is done 

until it finds a better solution than the current element. If this does not occur, the optimizer 

refines the search grid halving the step. After a series of iterations, if the optimizer takes less 

displacement compared to the tolerance, it is assumed that convergence has been reached. 
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.

 

x1 

x2 

 

Fig. 0.3.  –  Searching for the optimum in a function of two variables. 

  

 

Fig. 2.2 shows a possible path of the algorithm that switch from one configuration to the next. 

Being a deterministic algorithm, this method may not converge to the optimum if the 

objective function has its several extreme points. In cases where the change of the objective 

function is unknown, the choice of the PS as the optimizer is not very happy. However, 

because of the simplicity of the method, it is not advisable to exclude a priori the use of this 

procedure. A frequently used approach is to repeat the simulation several times using different 

starting points. If, during the various tests, the PS converges to the same point, it can be 

concluded that the objective function has only one minimum, and it is found by the algorithm. 

Otherwise, it is not guaranteed that the optimum is between the points found by the PS during 

the various simulations and it is advisable the use of another optimization algorithm. 
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Chapter 4 
 

 

 

The Photovoltaic Conversion 
 

 

 

4.1.  Functioning principle of a photovoltaic cell 
 

Photovoltaic systems convert solar energy into electricity. The term "photos" comes from the 

Greek "phos", which means light, and "Volt" is derived from Alessandro Volta (1745-1827), 

who was the first to study the electrolyte phenomenon. Commonly the term "PV" is used with 

the meaning of "solar cell". Photovoltaic systems can be simple energy-supplying systems for 

small calculators and wristwatches, or more advanced systems which can provide electricity 

for the operation of hydraulic pumps, communication systems, lighting systems for homes 

and many other applications. In most cases the supply of electricity through photovoltaic 

systems is the most economical solution. 

The photoelectric effect, that is the ability of certain materials to convert solar energy into 

electrical energy, is known since 1839, thanks to the experience gained by the French 

physicist Edmond Becquerel (1820-1891). He presented to the Academy of Sciences of Paris 

his "notes on the electrical effects under the influence of sunlight." This discovery occurred 

randomly, while performing some experiments on an electrolytic cell in which two platinum 

electrodes were immersed. 

The first commercial silicon solar cell was built at Bell Labs in 1954 (Person, Fuller and 

Chapin). At the end of the 50s, due to the high cost of this new technology, the development 

of photovoltaic devices was mainly due to the research in the field of space programs, for 

which it was necessary to have a reliable and inexhaustible source of electricity. Currently we 

are seeing a rapid spread of photovoltaic technology for terrestrial applications, such as for 

isolated user powering and systems installed on buildings and connected to a pre-existing 

network. 

The fundamental physical phenomenon on which is based the operation of a photovoltaic 

device is the photoelectric effect: it is characterized by the emission of electrons from the 

surface of a conductor or semiconductor material, when it is struck by an electromagnetic 

radiation (for example the light). In this way it is possible to convert the energy of the solar 

radiation into electrical energy in direct current. 

The basic component of a photovoltaic system is the photovoltaic cell. A standard 

photovoltaic cell, generally a 125 × 125 mm square with a thickness between 0.25 to 0.35 mm, 

is usually capable of producing about 1.5 W of power under normal conditions, ie when it is 

at a temperature of 25 ° C and is subjected to a power density of the radiation of 1000 W/m². 

The output power from a photovoltaic device under normal conditions is called peak power 

(WP) and is used as a reference.  

More cells assembled and connected between them in a single structure form the photovoltaic 

module. It is constituted by the series connection of 36 cells, and delivers an output power of 

50 W, approximately. Currently, especially for architectural demands, manufacturers put on 

the market modules consisting of a much higher number of cells so that the output power can 

reach up to 200 W. According to the voltage required to supply of the electrical devices, 

multiple modules can be connected in series in a "string". The electric power required 



 45 

determines the number of strings to be connected in parallel to achieve a photovoltaic 

generator. 

The transfer of energy from the photovoltaic system to the users occurs through additional 

devices, necessary to transform and adapt the direct current produced by the modules to the 

needs of end users. The set of such devices is called BOS (Balance Of System). An essential 

component of BOS is the inverter, a device that converts the direct current output from the PV 

array into alternating current. The conversion of solar radiation into electric current takes 

place in the photovoltaic cell, a device consisting of a thin wafer of semiconductor material 

suitably treated. The material most frequently used for the construction of such devices is the 

monocrystalline silicon, polycrystalline and amorphous. 

 

 

4.2.  The silicon structure 
 

The Silicon (Si) belongs to the group IV of the periodic table of the elements and is a 

semiconductor material. The silicon atom has the first two orbitals filled and the outer orbital 

contains 4 electrons of the 8 ones needed to fill the orbital. These electrons are called valence 

electrons and may participate to interactions with other atoms. In a crystalline structure, the 

silicon atom forms four valence bonds with neighbouring atoms, thus completing the outer 

orbital (see Fig. 4.1). 

The difference of the potential energy between the valence band (VB) and the conduction 

band (CB) of the electrons in a material (insulator, semiconductor or conductor) is called 

"Energy Gap" (EG) and its value is an intrinsic property of the material. This value represents 

the minimum amount of energy that must be supplied to the electron so that it can move from 

VB to CB. When an electron makes this passage, it leaves an empty orbital in VB. The 

electrical behavior of such empty orbital can be mathematically described as that of a particle 

of charge equal and opposite (ie positive) to that of an electron. Such a particle takes the name 

of hole. 

 

 

 

 
 

Fig. 4.1.  –  Crystal structure of silicon. 
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Fig. 4.2.  –  Energy gaps for metals, semiconductors and insulators. 

 

 

In the case of an insulating material the EG is very high, making the probability of passage of 

the electron from the VB to BC very close to zero. For a semiconductor material, the energy 

required has a lower value than the previous case and the probability of passage of electrons is 

always finite and different from zero (at a temperature different from absolute zero). In metals 

the two bands are overlapped and the electrons can move easily from one energy level to 

another making the material a good conductor. In the case of silicon, the value of EG is equal 

to about 1.12 eV (electron volts). Figure 4.2 shows the three cases described above. The 

energy required to overcome the band gap can be provided to electrons by thermal excitation 

or by absorption of photons of appropriate energy. 

Unlike what happens in metals, in the semiconductors the motion of the charges is not only 

due to the applied electric field, but also presents a so-called diffusion current. It is 

determined by the motion of electric charges generated by a gradient of concentration of 

electrons and holes. The expression of the current in a semiconductor can therefore be written 

analytically in the following way: 

 

      
dx

dp
qAD

dx

dn
qADpEqAnEqAIII pnpnpn            (4.2.1) 

 

where: 

- A is the cross section of the semiconductor; 

- q is the electron charge (q=1.602∙10
-19

 C); 

- n is electron density (m
-3

); 

- p is hole density (m
-3

); 

- E is the electric field (V/m); 

- µn is the electron mobility; 

- µp is the hole mobility; 

- Dn is the electron diffusion constant (m
2
/Vs); 

- Dp is the hole diffusion constant (m
2
/Vs). 

When a luminous flux invests the silicon crystal lattice, a number of electrons is excited and 

passes in CB, thus creating an equal number of holes. The process described takes the name 

of generation of electron-hole pairs. The process of recombination occurs when an electron 

occupies a hole, returning a part of the energy possessed in the form of heat. To exploit the 

electricity it is necessary to create a coherent motion of electrons (and holes), or a current, by 

means of an electric field internal to the cell. This field is obtained by putting in contact two 

semiconductor materials with charge excesses of opposite sign. 
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4.3.  Semiconductor doping 

 

The silicon crystals may be treated by means of physical or chemical processes, by inserting 

inside the crystalline structure some impurities, that is atoms of other elements. These 

treatments are called doping. Some silicon atoms are replaced with atoms of the group V of 

the table of the elements (typically phosphorus, P), said donors, or with atoms of group III 

(typically boron, B), said acceptors. 

In the first case an electron is introduced in the outer orbital, so that this exhibits an electron 

in excess with respect the number needed to complete the same orbital. This electron is 

weakly bound (fraction of eV) and therefore requires a modest energy to jump in CB; 

materials whose conductivity is mainly due to negative charges are called n-type. In the 

second case, instead, the concentration of holes increases; such materials are called p-type. 

 

 

4.4.  The p-n junction 
 

A photovoltaic cell is constituted by the coupling of a p-type doped semiconductor and an n-

type one (p-n junction). Through the contact surface of the two semiconductors, some 

electrons pass from the n-type material to the p-type one, while some holes moving in the 

opposite direction. The n-type material thus acquires a weak positive charge, while that of the 

p-type becomes slightly negative. At the interface between the two materials, therefore, an 

electric field is generated, directed from the n-type material to the p-type one, to which a 

potential difference Ve is associated. This layer, called the depletion region, prevents any 

further spread of the charge carriers in both directions. 

If the junction is hit by a light radiation some electron-hole pairs can be generated. This 

process occurs if the energy possessed by the photon E = hf (where h is Planck's constant and 

f is the frequency of the photon) is higher than the EG. In this case, due to the electric field 

present therein, the electron is pushed towards the n-type material and the hole toward the p-

type material, generating an accumulation of charge carriers in the two doped zones. If the 

two materials are connected by a conducting wire, the equilibrium is re-established by means 

of a flow of electrons from the p-type semiconductor to p-type one. The absorption of light 

radiation causes in this way a continuous electrical current in the wire (Fig. 4.3). 

 

 

 
 

Fig. 4.3 – A p-n junction radiated by the light. 
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Fig. 4.4. - Characteristic tension-current of a PV cell. 

 

 

4.5.  Electrical characterization of a photovoltaic cell 
 

A photovoltaic cell exposed to solar radiation behaves as a current generator. Its operation can 

be described by the voltage-current characteristic curve, as shown in fig 4.4. 

If subjected to an external voltage V, the behavior of a photovoltaic cell is similar to that of a 

semiconductor diode: if V<Ve, there is no passage of current; if V tends to Ve, the device 

becomes a good conductor. If one changes the sign of the voltage, an extremely modest 

current flows. In the case of excitation by voltage V, the current through the cell is that of a 

diode in direct conduction: 

 

          1eII NKT/qV
0D               (4.5.1) 

 

where: 

- q is the electron charge; 

- K is the Boltzmann constant (1.38∙10
-23

 J/°K); 

- T i the absolute temperature (°K); 

- I0 is a constant which depends on the semiconductors characteristics;  

- N is a coefficient between 1 and 2 which depends on the generation and recombination 

processes in the spatial charge region (for an ideal diode N=1). 

The analytical expression of I0 is: 

 

         
KTE3

00
/GeTAI


                          (4.5.2) 

 

where A0 is a constant which depends on the semiconductor utilized. 

When a cell is radiated by photons of frequency f>EG/h, the p-n junction becomes a source of 

pairs electron-hole. 

In open circuit operations, the voltage across the cell reaches a maximum value V0, while the 

current of the device is zero; In short-circuit operations, the current is maximum and is called 

Icc. In the presence of an external load, the current Icc decreases by an amount equal to ID in 

the opposite direction to that generated by the photovoltaic process. In this case, in fact, the 

cell behaves like a diode to which a voltage is applied. 

If we choose by convention that the photocurrent is positive, the current ID is negative. The 

equivalent circuit of the cell is shown in Fig. 4.5. 
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Fig. 4.5. - Circuit model of a photovoltaic cell. 

 

 

The current IL is the generated by the light, the intensity of which is proportional to the 

number of photons with frequency f> EG/h; the current ID is the one that passes through the 

junction of the cell, while the current I is flowing on the external load, that is the current 

which we need to know for practical purposes. 

The RS is the parasitic resistance of the cell and includes the resistance of the two layers of 

material that form the cell and the resistance of the contacts. The resistance RSH, said shunt 

resistance, represents those losses due to leakage currents occurring within the cell. 

The characteristic equation of the cell illuminated thus becomes: 

 

      
SH

SNKT/)IRV(q
0LRDL

R

IRV
1eIIIIII S

SH





           (4.5.3) 

 

By multiplying (4.5.3) to the voltage, it is possible to derive the power generated, whose 

graph is shown in Fig. 4.6 (dashed curve in red). 

If, as often happens, RS and GSH (= 1 / RSH) are negligible, V coincides with the difference of 

potential VR that the cell transmits to the load. 

If V vanishes, the current ICC attains the maximum current value that the cell can deliver for a 

given illumination, and is given by the following equation: 

 

 

 

 

Fig. 4.6. – Power generated 
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          
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In normal conditions RS<< RSH, then the third term of equation (4.5.4) can be neglected; 

moreover, since the exponent of the exponential much less than one, it can be approximated 

by the Taylor series stopped at the first order as e
x
≈1 + x. Then, equation (4.5.4) can be solved 

for Icc, by giving: 
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0S
cc


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From (4.5.6) it is possible to obtain IL: 
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The second term in parentheses is negligible because RS is small and the current I0 has a value 

of  ≈1.510
10

 A at a temperature of 300 °K and with an EG equal to 1.1 eV; then we have: 

 

         )t(I)t(I ccL                                        (4.5.8) 

 

We can therefore say that the short-circuit current Icc is proportional to the irradiation. 

The potential difference that occurs at the ends of the photovoltaic cell, in the open circuit 

condition, is indicated with VO. Its analytical expression can be derived from that of the 

current I, placing it equal to zero and neglecting the resistance RS and RSH. We have: 

 

         
0
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II
lnNVV


                (4.5.9) 

 

The main variables that affect the characteristic of a photovoltaic cell are three: the intensity 

of the solar radiation, the temperature and the cell area. The intensity of the short-circuit 

current, as already stated, varies proportionally to the intensity of the radiation. 

On the contrary, the intensity of the solar radiation does not have a significant effect on the 

value of the open-circuit voltage V0; for this reason V0 attains values close to the maximum 

even at low values of the solar radiation. The open circuit voltage between the cases of 

maximum and minimum value of radiation varies between 0.50-0.60 V (see fig 4.7). 

The only way to avoid the presence of voltage at the terminals of a photovoltaic generator 

consists in the total obscuring of the capture surface. 

As the temperature of the cell rises, the open-circuit voltage V0 decreases of about 2.3 mV/°C 

and, jointly, the short-circuit current Icc increases of about 0.2%/°C, as shown in Fig .4.8. 
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Fig. 4.7. – Characteristic curves for several values of the incident radiation.  

 

 

 

Fig. 4.8. – Characteristic curves for several values of the temperature. 

 

 

4.6.  Efficiency of a photovoltaic cell 
 

Performance or efficiency of a PV is the module the ratio, expressed in percentage, between 

the captured and transformed energy, with respect to the total incident one on the surface of 

the module. It is thus a parameter of the quality or performance of the module itself. As in all 

energy conversion systems, the efficiency of the photovoltaic module is always less than unity 

(or 100%) due to unavoidable losses in the real systems. The main reasons for the losses are 

listed below: 

 inefficiency of penetration of photons inside the cell: not all photons that radiate the cell 

penetrate inside it, given that in part they are reflected from the cell surface and in part they 

strike the metal grid of the contacts; 

 inefficiency of the conversion of the photon energy into energy of the not electron-hole 

pairs: in order to break the bond between electron and nucleus a well determined amount 

of energy is required and not all the incident photons carry enough energy; 

 inefficiency of conversion of the energy of the electron-hole pairs into electrical energy: 

not all the electron-hole pairs generated are collected by the electric field of the junction 
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and are sent to the external load, since in the path from the generation point to the junction 

they can meet charges of opposite sign, and then recombine; 

 inefficiency due to the presence of parasitic resistances: the charges generated and 

collected in the depletion zone must be sent outside; the harvesting operation is 

accomplished by the metal contacts, placed on the front and back of the cell; even if during 

the manufacture an alloy process is performed between the silicon and the aluminum of the 

contacts, a certain resistance at the interface remains, which causes a dissipation and hence 

a reduction of the power transferred to the load. 

In the case of polycrystalline silicon cells, the efficiency is further decreased due to the 

resistance that the electrons meet at the boundary between a crystal and another, and even 

more in the case of amorphous silicon cells, due to the random orientation of individual atoms. 
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Chapter 5 
 

 

 

Plasmonic Resonances 
 

 

 

5.1.  Response models of the metals 
 

The behavior of the materials is strongly connected to the frequency of the radiation that 

passes through them. An example is given by the metals that at lower frequencies of the 

visible spectrum, that is in the infrared and in the microwave bands, they act as reflective 

materials and can be used as coatings for waveguides and resonators. As the frequency 

increases, instead, the radiation penetrates the metal, which behaves like a dielectric material, 

resulting in a dissipation and an altering of the responses of the devices, according to the 

materials used. Indeed, we can consider the different response to the passage of the ultraviolet 

radiation through the sodium (alkali metal), which behaves as a transparent material, that is 

with a reduced dissipation, and the gold (noble metal), that, due to the band transitions, 

generates a high dissipation [1,2]. 

As it is well known, Maxwell's equations are a useful tool for the study of the macroscopic 

electromagnetic phenomena. In order to study the interaction with a material medium, we 

introduce a parameter, the electric permittivity , which in the frequency domain becomes a 

complex function, whose imaginary part represents the absorption of the medium. The 

permittivity, therefore, describes the connection between the radiation and the medium; it 

depends on the polarization of the medium to the passage of an electromagnetic wave, by 

generating a field which influences the radiation itself. 

By subdividing the charge density ρ and the current density J in internal and external ones [3], 

in such a way that the external quantities condition the system, whereas the external quantities 

respond to the external excitations, we can write: 

 

         extD 


                    (5.1.1) 

 

where D


 is the electric displacement (or electric induction) and  ext is the external charge 

density. The relation which links the electric field E to electric displacement D is: 

 

         PED 0


                                                            (5.1.2) 

 

where ε0 is the permittivity (or dielectric constant) of the free space (or vacuum) and P is the 

polarization vector which describes the dipole moment per unit volume and is generated by 

the alignment of the microscopic dipoles in the medium. 

Assuming that the material is isotropic, linear and non magnetic, we can write the following 

relations: 
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         EP 0


                                (5.1.4) 

 

where εr is the relative permittivity and χ is the dielectric susceptibility, which 

are connected by the relation: 

 

          1r                 (5.1.5) 

 

Finally, we introduce the electrical conductivity σ in the linear dependence of J from E:  

 

         EJ


                 (5.1.6) 

 

Finally, turning from the time domain to the angular frequency domain, one derives the 

relationship between the permittivity and the electric conductivity: 
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Assuming also that the response is localized (then K = 0) the dielectric function we can 

consider depending only on ω: ε (ω); approximation valid as long as the wavelength of the 

radiation is at least an order of magnitude higher than the typical dimensions of the system, 

such as the free path average of the electrons or the lattice. 

Recalling that the dielectric function is in general a function complex, we can write: 

 

        )(j)()( 21r                  (5.1.8) 

 

The imaginary part is a measurement of the dissipation and, therefore, is related to the 

absorption of medium. 

Consider now the Maxwell's equation in the absence of external sources: 
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From these equations we derive: 
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where K is the wavevector. This equation allows us to highlight a particular aspect of the 

behavior of the electromagnetic radiation, which depends on the polarization direction of the 

electric field. If the wave is transverse the scalar product EK

  is zero and we get: 
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In the case of longitudinal waves  we have:  

 

          0r   (5.1.14) 

 

which is of fundamental importance in the response of metals at high frequencies, since it 

allows us to develop a model, called plasmon, which has interesting applications [1]. 

 

 

5.2.  The Drude model 
 

As already mentioned, the Drude model allows us to study, within certain limits, the optical 

response of the material media at the passage of electromagnetic waves. It is based on the 

assumption that in the medium there is a gas of free non-interacting electrons, which moves 

under the influence of the field generated by the radiation, and in the presence of a viscous 

friction, generated by collisions with fixed positive ions [4]. From the Newton's second law: 
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m


                              (5.2.1) 

 

where m is the effective mass, which take into account the effects which we have previously 

excluded before, v


 is the average speed of the electrons and a γ is coefficient equal to m/τ, 

where τ is the relaxation time, that is, the time that elapses between two clashes.  

Considering that the current density may be expressed as: 
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where n is the density of electrons per unit volume, and that in stationary conditions from 

(5.2.1) the average speed is 
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we obtain 
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which is the Ohm's law, the conductivity  being: 
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Now we write the motion equation as: 
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in which e is the electron charge and γ =1/τ. If a time-harmonic behavior is assumed: 
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The solution of the motion equation (5.2.4) is: 
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By considering that the polarization P is: 
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we finally obtain: 
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which can be written as: 
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where 
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We can derive the relative permittivity from (5.2.9): 
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which gives the following real and imaginary parts: 

 

         
22

22
p

1
1

1)(



                   (5.2.12) 

         
)1(

)(
22

2
p

2



              (5.2.13) 

 

Consider the response of the metals within the limit of ω <ωp, where for very low frequencies 

we have a strong absorption, the permittivity being predominantly imaginary (ωτ <<1), for 

intermediate frequencies we observe an almost total reflection (1≤ωτ≤ωpτ) and for 

frequencies to the limit we have a behavior of total transparency, the permittivity being  
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    real part 1               imaginary part 2    

           
Energy (eV)                                                                      Energy (eV) 

 

Fig. 5.1.  -   Behaviors of noble metals (dashed lines) with respect to the theoretical 

Drude model (solid line): the two behaviors diverge at around 2 eV, 

corresponding to the gap of the band transitions. 

 

 

predominantly real (ωτ >>1). We recall that in the latter regime the noble metals instead show 

a different behavior given by an increase of the absorption due to the jump of the band of the 

electrons, as already mentioned (see Fig. 5.1). 

To overcome the different behavior of the permittivity of metals for frequencies comparable 

to the interband transitions [5], it is possible to still use the Drude model, rewriting the 

equation (5.2.4) in the following way: 

 

        Eexmxmxm 2
0

                            (5.2.14) 

 

in which the additional term expresses the contribution of a fixed electron with resonant 

frequency ω0. From this equation we can obtain the polarization vector as we did for (5.2.4). 

We note, however, that the equation (5.2.14) is not only for one but for a given number pf 

electrons, each of which contributes to the effect of polarization providing a set of terms 

called Lorentz oscillators [6]. The addition of such terms contributes to the modification of 

the permittivity (5.2.11). 

 

 

5.3.  Volume plasmons 
 

In the limit ωτ >>1, where metals have a dielectric behavior, the permittivity is predominantly 

real and we can write: 
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We note immediately that if ω = ωp, the permittivity ε vanishes and under these conditions it 

is possible verify that Maxwell's equations allow longitudinal waves! Consider then a layer of 

electrons in two dimensions which oscillates in the third direction (denoted by z) parallel to a 

layer of positive charges (see Fig. 5.2). 

The surface charge density is ρ= ± neuz, with n number of charges, while the 5.1.2 becomes: 
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Fig. 5.2.  -  Charges which oscillate longitudinally in a metal. 

 

 

Considering that a force F=qE acts on the charges, we can write the motion equation as 

follows: 
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or equivalently: 
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Therefore we can identify the physical meaning of ωp as the oscillation frequency of the 

longitudinal motions of the electron sea (which we suppose to move in phase). The quantum 

of such oscillation is the volume plasmon. The plasma frequency, for many metals, is in the 

order of 5↔15 eV, that is in the range the ultraviolet band. 

 

 

5.3.  Surface plasmons 
 

In the previous section we have studied the behavior of metals on the basis of the response 

generated by the electron plasma in it content. With this approach we have obtained the 

permittivity and verified the existence of volume plasmonic quasi-particles, related to the 

quantized oscillatory motion of the plasma within of the metal. Let's see what happens on the 

surface of a metal and a dielectric in certain conditions. When an electromagnetic wave 

hitting this contact surface gives rise to a permittivity, whose real part is negative for the 

metal and absolutely greater than that of the dielectric. What happens is that coherent 

longitudinal oscillations of the plasma of free metal electrons take place and propagate in 

parallel to the contact surface. The associated electromagnetic field has a maximum near its 

interface and an exponentially decaying intensity in the direction perpendicular to the motion 

of such a wave, then towards the inside of the metal and the dielectric respectively. This 

electromagnetic waves connected to the electron plasma of the metal, which propagate along 

the interface and fade away from it, are called surface plasmon polaritons (SPPs).  
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Chapter 6 
 

 

 

Numerical analysis of light scattering 

from metallic nanoparticles 
 

 

 

6.1.  Analysis of Plasmons in Metallic Nanoparticles by FEM-RBCI 
 
The FEM-RBCI method can be applied to the computation of plasmon oscillations induced by an incident 

monochromatic electromagnetic wave on one or more metallic nanoparticles of arbitrary shapes, 

embedded in free space. In a large range of particle sizes the metal can be simply modelled by means of a 
complex relative electric permittivity (Drude model) [5], given by: 
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where p is the plasma frequency of the free electrons and  is the relaxation frequency, the values of 
which are experimentally determined [6]. Note that at the optical frequencies of interest, the real part of 

the relative electric permittivity is negative. Assuming a unitary relative magnetic permeability, the FEM 

analysis is easily performed.  
By applying the FEM-RBCI method to the analysis of the scattering of an incident wave from a single 

particle, a single fictitious boundary F may be selected homologously to the particle surface P at a mean 

distance of /20 - /10 from it,  being the wavelength in free space (see Fig. 6,1). The same surface P 

may be used as integration surface M.  

 
 

 

 

 

F 

M 

 
Fig. 6.1.  -  A single nanoparticle enclosed by a fictitious boundary. 
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F 

M 

                           

F 

M 

 
Fig. 6.2.  -  A couple of nanoparticles enclosed by two fictitious boundaries. 

 

 

 
This simple strategy can be used also for systems of several particles which are placed at great distance 

from each others (see Fig. 6.2). For particles which are very near from each others, a single integration 

surface is conveniently selected which includes the particles (in some parts may be coincident with their 
surfaces) (see Fig. 6.3); analogously the fictitious boundary is selected as a single closed surface at a 

distance of about /20 - /10 from M. The same considerations apply to 2D analyses, provided that F 

and M are closed curves. 
In postprocessing very often the calculation is required of some integral quantities, such as the absorption, 

scattering and extinction cross sections, respectively abs, scat and ext [5]. Having solved the problem by 
means of the FEM-RBCI method, these calculations are straightforward. In fact the fictitious boundary 

may be used to calculate the following integrals: 
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where *
incincinc HES  is the Poynting vector of the incident field, very often a linearly-polarized plane 

wave.  

 

 

 

F 

M 

 
Fig. 6.3.  - Selection of the truncation boundary F and of the integration 

surface M in a system of three adjacent nanoparticles. 
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Since the surface F is made of plane triangular patches, resulting from the tetrahedral finite element 
discretization of the domain internal to this boundary, the calculation of the first integral can be performed 

as  
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where index k refer to the k-th triangular face Sk on F, indices m and n refer respectively to the m-th and 
n-th edges of the tetrahedral finite element relative to Sk, N is the number of edges of the finite element 

(N=6 for first-order tetrahedra) and qmn are geometrical scalar values given by: 
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Formula (6.1.5) applies also for the numerical computation of the scat cross section, provided that the total 
field be substituted by the scattered field. 
The same formula (6.1.5) applies also for 2-D problems, provided that now Sk is the k-th segment 

(coincident with a side of a finite element), N is the number of the nodes of the element and  
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where m and n are nodal shape functions. Of course other surfaces (curves) which include all the 

particles can be used in the equations (6.1.2)-(6.1.4) instead of F, as for example the integration surface 

M. To obtain a greater accuracy, one can compute the above cross sections by employing both the 

surfaces F and M and assume the mean of such values. 
 

 

6.2.  Numerical results 
 
 The first system analyzed is a 2-D one in which a silver nanocylinder of circular cross section of radius 

R= 50 nm, having its axis coincident with the z-axis, is lit up by a plane wave of wavelength = 413 nm, 

E-polarized along the z axis and travelling toward the positive x-axis: ẑeEE
xjk

0inc
0

 , with E0=1 V/m. 

According to the data reported in [6] the relative electric permittivity of the metal was assumed to be r=  

5.173125 j0.2275 whereas the relative magnetic permeability was set to r=1. In order to observe the 

field around the nanocylinder, the fictitious boundary was selected rather far from the cylinder surface (at 
a distance of 75 nm), whereas the cylinder surface itself was selected as integration surface. For symmetry 

reasons the analysis can be conveniently restricted to half the xy plane (y>0), by imposing a homogeneous 

Neumann boundary condition on the x-axis. The bounded domain so obtained was discretized by means 
of 906 triangular finite elements of the second order (256 lie in the cylinder and 650 outside) and 1881 

nodes. An end-iteration tolerance of 0.01 per cent was set for the FEM-RBCI iterations and 0.0001 for the 

COGC solver. Five iteration steps were needed to obtain convergence. Fig. 6.4 reports the contours of the 
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  (a) 

 

 

  (b) 
 

 

Fig. 6.4.  -  Contours of the real (a) and imaginary(b) parts of the electric field (1st system) 

 
 

real and imaginary parts the total electric field. This solution was compared with the analytical one: a 

mean difference of 0.096 per cent was estimated. Starting from the numerical solution, the cross sections 

per unit length were evaluated by employing both F and M curves to obtain: abs= 3.856 nm, scat= 171.5 

nm, ext= 175.4 nm by using F, and abs= 3.937 nm, scat= 171.0 nm, ext= 175.0 nm by using M. A good 
agreement can be pointed out. 

A second system analyzed is constituted by a pair of nanocylinders each of which is the same as that 
above; the system is illuminated by the same wave of the previous analysis. The centres of the two 

cylinders are C1=(0,R+d/2) and C2=(0, Rd/2), where d=5 nm is the gap between their surfaces. The 
integration surface was selected as the envelope of two circumferences of radius RM=52.25 nm centred in 

C1 and C2; analogously the fictitious boundary was selected as the envelope of two circumferences of 
equal radius RF=125 nm, centred in C1 and C2. Also in this case the analysis was restricted to the y>0 half 

plane. The mesh is formed by 1546 second-order triangles (512 inside the nanocylinder) and 3173 nodes. 

Fig. 6.5 reports the contours of the magnitude of the electrical field. The cross sections are evaluated as: 

abs= 6.690 nm, scat= 366.0 nm, ext= 372.7 nm by using F, and abs= 6.797 nm, scat= 365.4 nm, ext= 

372.2 nm by using M. 
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Fig. 6.5.  -  Contours of the magnitude of the electric field (2nd system) 
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    Figure 6.6. - Tetrahedral mesh.                  Figure 6.7. - Electrical field modulus in the xz plane. 

 
 

The third example is a spherical gold nanoparticle of radius R= 100 nm, centered in the origin, lit up by a 

plane wave x̂eEE
zjk

0inc
0

 , of wavelength  = 500 nm, E-polarized along the x-axis, proceeding 

toward the positive z-axis. The relative electric permittivity of the metal was assumed to be r= 2.56066 

 j3.60402 whereas the relative magnetic permeability was set to r=1. Due to symmetry reasons the 
analysis can be restricted to a quarter of the space (x>0, y>0) by imposing homogeneous Dirichlet and 

Neumann boundary condition on the yz and xz planes, respectively. A spherical fictitious boundary F is 
selected homologously to the particle surface, having a radius of RF = 140 nm. The domain was 

discretized by means of 12960 tetrahedral edge elements of the first order (8640 lie in the nanoparticle), 
16846 edges and 3047 nodes. The surface of the nanoparticle (432 triangular patches) is used as 

integration surface M. Fig. 6.6 shows the FE mesh, whereas Fig 6.7 reports the modulus of the total 
electrical field in the xz plane. The solution was compared with the analytical one: a mean difference of 

6.1 per cent was estimated. The cross sections are evaluated as: abs= 5.29110
14

 m
2
, scat= 5.49710

14
 m

2
, 

ext= 10.7910
14

 m
2
 by using the surface F. 

The fourth system analyzed is constituted by a single nanoring made of gold. The dimensions of 

the particle are: outer radius R = 60 nm, height h = 40 nm, thickness s = 14 nm (see Fig. 6.8). A 

Cartesian reference frame is set having the origin in the centre of the nanoring and the z-axis 

coincident with that of the particle. The particle is embedded in air. An electromagnetic plane 

wave lights the particle; its wavelength is = 1215 nm. The wave is E-polarized along the x-axis 

and travels toward the positive z-axis: x̂eEE
zjk

0inc
0

 , with E0=1 V/m. According to the data 

reported in [9] the relative electric permittivity of the metal was assumed to be r=  66.218525  

j57015 whereas the relative magnetic permeability was set to r=1. In order to observe the field 

around the nanocylinder, the truncation boundary was selected at a distance of 10 nm from the 

ring surface, whereas the nanoparticle surface itself was selected as integration surface. For 

symmetry reasons the analysis can be conveniently restricted to a quarter of the system (domain 

x>0 y>0), by imposing homogeneous Neumann and Dirichlet boundary conditions on the xz- 

and yz-planes, respectively. The bounded domain so obtained was discretized by means of 

23040 tetrahedral edge elements of the first order (5120 lie in the nanoring), 30440 edges and 

5577 nodes (see Fig. 6.9).  An end-iteration tolerance of 0.01 per cent was set for the FEM-RBCI 



 66 

iterations and 0.0001 for the COGC solver. Sept iteration steps were needed to obtain 

convergence. Fig. 6.10 reports the contours of the real and imaginary parts of the total electric 

field on the xz plane. 
 

 

 

 

h 

2R 

s 

 
 

Fig. 6.8.  -  Geometry of the gold nanoring analyzed. 
 

 

 

 

 
 

Fig. 6.9.  -  Finite element mesh of the nanoring. 
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Fig. 6.10.  -  Real and imaginary part of E. 
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Chapter 7 
 

 

 

Optimization of a solar cell 

with metallic nanoparticles 
 

 

 

7.1.  Generality 
 

The study of the efficiency of solar cells made of photovoltaic (PV) layers is very important to 

the aim of reduce the use of fossil fuels. In particular the capacity of very thin layers to 

capture the sunlight is of great interest in order to reduce the amount of expensive material. 

Unfortunately, the standard materials of today commercially available solar cells do not allow 

such a thickness reduction without a great decaying of light absorption. 

In the solar energy conversion, light absorption is mainly connected to a low number of 

electrons contributing to the absorption cross section over the spectral range of interest. 

Theoretically, the smallest amount of material needed for total absorption has been estimated 

to be a film of thickness of about 10 nm, whereas the today’s thin solar cells have thickness of 

about 1 m. 

Recently several researchers have demonstrated that the insertion of metallic (in particular 

aurum, silver and copper) nanoparticles within or near PV layers may improve significantly 

the efficiency of thin solar cells. This effect is due to plasmon resonances [1-6], which lead to 

increased electron-hole generation in the close PV layer. 

In the following we optimize the geometry of a thin solar cell by employing an FEM (Finite 

Element Method) code to compute the light scattering from the solar cell and suitable genetic 

algorithms (GAs) for the optimization of the cell geometry. 

 

7.2.  3D FEM analysis of light scattering from solar cells 

 

Consider the thin film solar cell depicted in Fig. 7.1, in which hemi-ellipsoidal metallic 

nanoparticles, having semi-axes a, b and c, with a=b>c, are placed near a PV layer, having a 

thickness t. The nanoparticle centers are regularly placed at the nodes of a rectangular grid, 

exhibiting the same grid step 2d along the x- and y-axis. To simplify the optimization the 

nanoparticles are assumed to have a given volume V=2abc/3, so that only one degree of 

freedom specifies their shape. 

For the sake of simplicity, we assume that this system is radiated by a monochromatic 

electromagnetic plane wave, E-polarized along the x-axis (a time factor exp(jt) is 

understood): 

 

          x̂)zjkexp(EE 0max                    (7.2.1) 
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Fig. 7.1.  -  Three-layer solar cell with a grid of hemi-ellipsoidal metallic nanoparticles. 

 

 

where Emax is the maximum value of the electrical field, x̂  is the versor of the x-axis and k0 is 

the free-space wavenumber, given by: 

 

         000k  ,               (7.2.2) 

 

in which   is the angular frequency and 0 and 0 are the free-space magnetic permeability 

and electric permittivity, respectively. 

For this electromagnetic scattering problem the Helmholtz vector equation holds: 
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2
0

1
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where r and r are the relative magnetic permeability and electrical permittivity, respectively  

At optical frequencies the metallic nanoparticles give rise to plasmons oscillations, which are 

taken into account by modeling the metal by means of a complex relative electric permittivity 

(Drude model) [1], given by: 
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where p is the plasma frequency of the free electrons and  is the relaxation frequency, the 

values of which are experimentally determined [8]. Note that at the optical frequencies of 

interest, the real part of the relative electric permittivity is negative. 

The active PV layer, is made of semiconductor material, namely the copper indium selenide 

(CuInSe2 or CIS), which is electrically modeled by a complex electrical permittivity which 

varies with the wavelength; these values are obtained from tabulated data in [9]. 

A substrate having a fixed thickness t1=250 nm and exhibiting a real relative electric 

permittivity r1≈Rer at the wavelength =900 nm is inserted on the top of the PV layer to 

minimize the reflection losses at the interface air-solar cell. Analogously another substrate of 

fixed thickness t2=250 nm and real relative electric permittivity r2<r1 is inserted behind the 

PV layer. 

For the nanoparticle metal, the PV layer and the substrate materials a unitary relative 

magnetic permeability is assumed. 
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Fig. 7.2.  –  Domain of the FEM analysis. 

 

 

For symmetry reasons the analysis can be restricted to the square domain 0xd, 0yd, by 

imposing homogeneous Dirichlet boundary conditions on the x=0 and x=d planes and 

homogeneous Neumann ones on the y=0 and y=d planes (see Fig. 7.2). On the z direction the 

domain is truncated by means of two thin layers of air and PMLs (Perfectly Matched Layers) 

[7], not shown in Fig. 7.1, placed over and under the cell. 

By discretizing the analysis domain by means of tetrahedral edge elements, the finite element 

analysis is easily performed [10-11]. In postprocessing the following fluxes of the Poynting 

vector (powers) are computed: 
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where 1 and 2 are the two air-PML plane interfaces lying over and under the cell, 

respectively, 1n̂  and 2n̂ are the normal versors to the above surfaces ( ẑn̂n̂ 21  , with ẑ  the 

versor of the z-axis). Since the surfaces 1 and 2 are made of plane triangular patches, 

resulting from the tetrahedral discretization, the contribution of the generic patch Tk to the 

integrals (4) and (5) can be computed as 
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where index k refers to the k-th triangular patch Tk on 1 or 2, indices i and j refer to the i-th 

and j-th edges, respectively, of the tetrahedral element relative to Tk, N is the number of edges 

of the finite element (N=6 for first-order tetrahedra), Ei and Ej are the mean values of the 

electric fields along the i-th and j-th edges, and qij are geometrical scalar values given by: 
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in which i  and j  are the vector form functions of the i-th and j-th tetrahedron edges, 

respectively, and kn̂  is the normal versor of the tetrahedron face Tk. 

Afterwards the Joule losses in the metallic particle are computed: 
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where V is the volume of the nanoparticle and  the metal conductivity. The contribution wh 

of the h-th tetrahedron Eh of the nanoparticle to the Joule loss Wj is computed numerically as: 
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where tij is the generic entry of the metric matrix: 
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The following non dimensional quantity is then evaluated: 
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where Sinc is the modulus of the Poynting vector of the incident electromagnetic wave: 
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in which Z0 is the impedance of free space. 

The meaning of  (here considered as a function of the geometrical parameters a, d and t) is 

that of representing the power absorbed by the PV layer, normalized by the power of the 

incident wave in the square of area d
2
. Obviously, a fraction of the power absorbed by the PV 

layer is not useful to the solar energy conversion, because it is transformed into heat. However 

several experimental studies have shown that this fraction should be small, so that in the 

following we assume that all the power absorbed by the PV layer will be useful for the 

photocurrent conversion, as well. 
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7.3.  Optimization by GAs 
 

By employing the quantity defined in (7.2.12) as objective function to be maximized, a 

stochastic optimization is started by assuming the following data: 

 

         light wavelength:       = 900 nm 
 

         nanoparticle metal:     silver 
 

         nanoparticle volume     V = 25600 nm
3 

  

        metal permittivity:      r = – 40.6 – j0.51 
 

         metal permeability:     r = 1.00 
 

         PV layer permittivity:     r = 8.65 – j2.68 
 

         PV layer permeability:    r  = 1.00 
 

         substrate-1 permittivity:    r1 = 9.00 
 

         substrate-1 permeability:   r1 = 1.00 
 

         substrate-2 permittivity:    r2 = 2.25 
 

         substrate-2 permeability:   r2 = 1.00 

 

The geometrical parameters to be optimized are assumed to vary in the following ranges: 

 

            5 nm  < a <   45 nm 
 

          50 nm  < d < 500 nm 
 

          10 nm  < t < 100 nm  

 

The stochastic optimization is pursued by means of Genetic Algorithms, which are search 

algorithms which simulate the random evolution of populations of biological entities. These 

well-known algorithms have proven to be very efficient in optimizing electromagnetic devices 

[12-17] both for low and high frequency applications. In this paper suitable GAs are used 

[14], which have already shown their ability in the optimization of mathematical test 

functions and electromagnetic devices [15-17]. Their main characteristics are the following:  

 

 population size: 
 

           P=30 
 

 number of generations:  
 

          Ng=30 
 

   binary lengths: 
 

          Na=6    Nd=7   Nt=7  
 

 



 74 

 selection:   
 

         tournament (no elitism) 
 

  crossover type:  
 

          two-point crossover 
 

  crossover probability at generation k:  
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  mutation probability at generation k: 
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As far as representation is concerned, the three geometric variables a, d, and t, were coded 

into binary strings of six, seven and seven bits, respectively, giving a total of N=20 bits. 

The reproduction process, which randomly creates a new generation from the old one, was 

chosen by tournament selection with a shuffling technique to choose random pairs. 

The crossover process, by means of which individuals exchange chromosomes from one 

generation to the other, was two-point crossover with a probability PC linearly varying from 

0.3 to 0.7 while optimization goes on.  

The mutation process, by means of which some random flips in the chromosomes of an 

individual are made, was employed with a probability PM linearly decreasing from 0.05 to 

0.01 while optimization proceeds. 

The evolution was halted after 30 generations, reaching an optimal function value opt=0.69, 

in relation to the following parameter configuration (values rounded to 0.5 nm): 

 

         nm14tnm,05dnm,32a      (7.3.1) 

 

In Fig. 7.3 the best (maximum) and mean values of the objective function are plotted through 

the various generations: it shows the good convergence property of the Genetic Algorithms 

employed.  
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Fig. 7.3.  -  Best and average objective function  values over GA generations. 

 

 

 

Fig. 7.4 shows the behavior of objective function  vs. the wavelength for the best 

configuration (7.3.1) of the geometrical parameters. The solid line refers to the function  

defined in (7.2.12); note that its maximum value is about 0.69 and is obtained at a wavelength 

very close to 900 nm.  

In the same figure the dotted line represents the function  
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which has the same meaning of  but it is evaluated for the same solar cell in the absence of 

the metallic nanoparticles. The dashed line gives the difference Δη=ηη0 and represents the 

absorption gain induced by the nanoparticles: its maximum is about 0.59 at 908 nm. 
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Fig. 7.4.  - Behavior of the objective function  (solid line) vs the wavelength for the best 

configuration of the geometrical parameters. The dotted line represent the function 

0 evaluated in the absence of the nanoparticles. The dashed line gives the 

difference Δ= 0. 
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Conclusions 
 

In this thesis we have shown that the FEM-RBCI method can be successfully applied to the 

analysis of the scattering of time-harmonic electromagnetic waves at optical frequencies from 

metallic nanoparticles of arbitrary shape.   

Moreover, the optimization of a thin solar cell with metallic nanoparticles has been 

performed by means of Genetic Algorithms and the Finite Element Method. The goal was to 

design a solar cell which shows good performances in terms of sunlight absorption. 

Suitable Genetic Algorithms with varying crossover and mutation probabilities have been 

employed. The optimum was reached in about half the time required by the standard 

procedure. The optimized solar cell performs well in the sunlight frequency bandwidth. 
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