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Multiobjective Acceptability Analysis in Multiple Criteria Hierarchy Process for the Choquet

integral preference model. Omega. In Press. DOI:10.1016/j.omega.2015.10.010.

• S. Angilella, S. Corrente, S. Greco (2015). Stochastic Multiobjective Acceptability Analysis for

the Choquet integral preference model and the scale construction problem. European Journal

of Operational Research, 240 (1), 172-182.

• S. Corrente, S. Greco, A. Ishizaka. Combining Analytical Hierarchy Process and Choquet inte-

gral within Non Additive Robust Ordinal Regression. Omega. In Press. DOI:10.1016/j.omega.2015-

07-003.

• J. Branke, S. Corrente, S. Greco, R. S lowiński, P. Zielniewicz. Using Choquet Integral as
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Introduction

What we mean by the terms Multiple Criteria Decision Analysis and Multiple Criteria Decision

Aiding1? In the following, without seek of completeness, we report some statements, given by

researchers well-known in the field, defining what Multiple Criteria Decision Analysis and Multiple

Criteria Decision Aiding are, and which are their main objectives.

• Bell, 1977 [12]:

Almost all the issues that decision makers face in actuality involve multiple objectives that

conflict in some measure with each other. In such issues, decisions that serve some objectives

well will generally satisfy other objectives less well than alternative decisions, which, however,

would not be so satisfactory for the first group. The decision maker then must select from

among the possible decisions the one that somehow establishes the best mix of outcomes for his

multiple conflicting objectives. ... Such problems include the use of energy resources, the

management of the environment, the development of water resources, and the expansion of

regional development.

• Keeney and Raiffa, 1993 [109]:

The theory of decision analysis is designed to help the individual make a choice among a set

of prespecified alternatives ... The aim of the analysis is to get your head straightened out.

• Roy, 2005 [142]:

Decision aiding is the activity of the person who, through the use of explicit but not

necessarily completely formalized models, helps obtain elements of responses to the questions

posed by a stakeholder in a decision process.

1Multiple Criteria Decision Analysis and Multiple Criteria Decision Aiding are both abbreviated by “MCDA”. In
the following, we shall use the acronym MCDA referring to both Multiple Criteria Decision Analysis and Multiple
Criteria Decision Aiding indifferently.
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• Belton and Stewart, 2000 [14]:

... we use the expression MCDA as an umbrella term to describe a collection of formal

approaches which seek to take explicit account of multiple criteria in helping individuals or

groups explore decisions that matter.

• Saaty, 2005 [148]:

The purpose of decision-making is to help people make decisions according to their own

understanding. ... decision-making is the most frequent activity of all people all the time...

In MCDA (see [12, 14, 51, 95] for some books providing surveys on MCDA), a set of alternatives

A = {a, b, c, . . .} is evaluated on the basis of a finite and consistent [141] family of criteria G =

{g1, . . . , gn} in order to deal with a choice, ranking or sorting problem. Choice problems consist into

selecting one or more alternatives from A considered the best among the considered ones; ranking

problems consist into rank ordering all the alternatives from the best to the worst while sorting

problems consist into assigning each alternative from A to one or more contiguous and preferentially

ordered classes or categories. Each criterion can have an increasing or a decreasing direction of

preference. If a criterion gj, j = 1, . . . , n, has an increasing direction of preference, then the higher

the evaluation of a on gj (gj(a)), the better a is with respect to criterion gj while, if gj has a

decreasing direction of preference then, the higher gj(a) the worse a is with respect to criterion gj.

In the following, for the sake of simplicity and without loss of generality, we suppose that all criteria

have an increasing direction of preference.

When looking at the evaluations of the alternatives on all criteria simultaneously, the only objec-

tive information that can be obtained is the dominance relation for which, an alternative a dominates

an alternative b if a is at least as good as b on all criteria (gj(a) ≥ gj(b) for all j = 1, . . . , n) and strictly

better for at least one criterion (there exists at least one j ∈ {1, . . . , n}, such that gj(a) > gj(b)). In

general, the dominance relation is really poor since, very often, comparing two alternatives a and b,

a is better than b on some criteria, while b is better than a on the other criteria. For this reason,

one needs to aggregate the evaluations got by the alternatives on the considered criteria by means

of some aggregation method. Three different families of aggregation methods are known in MCDA

that are, the Multiple Attribute Value Theory (MAVT) [109], the outranking methods (in particular

ELECTRE [55] and PROMETHEE [27]) and the Dominance Based Rough Set Approach (DRSA)

[82]. MAVT assigns to each alternative a a real number U(a) being representative of the goodness of
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a with respect to the problem at hand; outranking methods are based on a pairwise binary relation

S where aSb means that a is at least good as b; DRSA aggregates the preferences of the Decision

Maker (DM) through the use of a set of “if,...,then” decision rules expressed in a natural and easily

understandable language for the DM. All these methods are based on several parameters and these

could be obtained in a direct or an indirect way. The DM provides a direct preference information if

he gives directly values to all parameters involved in the model, while the DM provides an indirect

preference information if he gives some preference information such as comparisons between alter-

natives (for example, a is preferred to b or a is indifferent to b) or comparison between criteria with

respect to their importance (for example, gi is more important than gj or gi is as important as gj),

from which parameters compatible with these preferences can be inferred. Since the direct preference

information asks a great cognitive effort to the DM, it is advisable, in general, to adopt the indirect

preference information. Considering the indirect way of providing preference information, more than

one set of parameters could be compatible with these preferences and, for such a reason, choosing

only one of these sets of parameters could be considered arbitrary or even meaningless. In order

to provide more robust conclusions with respect to the problem at hand taking into account the

plurality of sets of parameters compatible with the preference information provided by the DM, the

Robust Ordinal Regression (ROR) (see [86] for the seminal paper on ROR and [35, 36] for two recent

surveys on ROR) and the Stochastic Multiobjective Acceptability Analysis (SMAA) (see [113] for

the paper introducing SMAA and [164] for a survey on SMAA) are used in practice. Both of them

explore the whole set of parameters compatible with the preferences provided by the DM even if in

different ways. ROR builds two binary preference relations, one necessary and one possible. The

necessary preference relation holds between two alternatives a and b if a is at least as good as b for all

sets of parameters compatible with the preferences of the DM, while the possible preference relation

holds between a and b if a is at least as good as b for at least one set of parameters compatible with

the DM’s preferences. SMAA explores, instead, the whole set of parameters compatible with the

preferences of the DM, computing for each alternative a the frequency of attaining a certain position

in the final ranking or the frequency with which an alternative a is preferred to another alternative

b.

MCDA methods have been applied to deal with financial problems [47, 159], natural resource man-

agement problems [120], energy planning problems [44, 175], environmental problems [110, 117, 118]

etc.

In this thesis we have dealt with two MCDA issues, that are, the hierarchy of criteria and the

interaction between criteria.
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In all real world decision making problems, the evaluation criteria are not sited all at the same

level but they are structured in a hierarchical way. This means that it is possible to highlight a root

criterion, some criteria at the second level descending from the root criterion, other criteria descending

from the criteria at the second level and so on. In the same real world problems, the evaluation

criteria are not mutually preferentially independent but they can present a certain degree of positive

or negative interaction. In particular, two criteria gi and gj are positively interacting if the importance

of the set composed of these two criteria is greater than the sum of the importance assigned to the

two criteria singularly. Analogously, gi and gj are negatively interacting if the importance assigned

to the set composed of these two criteria is smaller than the sum of the importance assigned to the

pair of criteria taken singularly. For example, in evaluating a sport car and taking into account

criteria such as acceleration, maximum speed and price, on one hand, acceleration and maximum

speed can be considered as negatively interacting criteria while, on the other hand, maximum speed

and price can be considered as positively interacting criteria. Indeed, a car presenting a high good

acceleration has, in general, a good maximum speed and, for this reason, the importance assigned

to the pair of criteria should be lower than the sum of the importance assigned to the two criteria

considered singularly in order to avoid to overestimate a car having a good acceleration and a good

maximum speed. At the same time, a car having a good maximum speed and a low price is well

appreciated by the DM since, in general, a car having a good maximum speed has also a very high

price. In this case, the importance assigned to this pair of criteria should be greater than the sum

of the importance assigned to the criteria taken singularly.

Regarding the hierarchy of criteria, on the basis of the recently introduced Multiple Criteria Hi-

erarchy Process (MCHP) framework [37], we have extended the well known sorting method UTADIS

[43] to deal with sorting problems in which criteria are structured in a hierarchical way. Moreover,

the ROR has been also applied to take into account the plurality of sets of parameters compatible

with the indirect preference information provided by the DM.

Related to the hierarchy of criteria, we have also proposed a method putting together the Choquet

integral preference model, the MCHP, the ROR and the SMAA. On one hand, the capabilities of

taking into account interactions between criteria of the Choquet integral preference model have been

used to deal with problems presenting a hierarchical structure of interacting criteria. On the other

hand, on the basis of the indirect preference information, we applied the ROR and the SMAA to get

robust recommendations with respect to the considered problem taking into account all the sets of

parameters compatible with the indirect preference information provided by the DM.
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Regarding the interaction between criteria, and in particular the Choquet integral preference

model, three contributions, that we briefly summarize in the following, have been proposed:

• Since, as we shall explain in detail in Section 1.2, the application of the Choquet integral asks

that the evaluations of the alternatives on the considered criteria are expressed on the same

scale, in the first contribution we proposed a way to build this common scale. Because more

than one common scale could be built by the proposed methodology, we take into account the

plurality of these common scales by using SMAA;

• In the second contribution, the Analytic Hierarchy Process (AHP) (see [146] and Section 1.3) is

applied to build the common scale in which the Choquet integral is based. Since the application

of the AHP asks plenty of comparisons between alternatives on each considered criterion, we

proposed a parsimonious way of asking preference information to the DM with respect to this

point;

• In the third contribution, an interactive evolutionary multiobjective optimization method based

on the Choquet integral preference model, and called NEMO-II-Ch, has been proposed. Based

on the well known evolutionary multiobjective method NSGA-II [39], NEMO-II-Ch uses the

Choquet integral preference model and the ROR to address the search in the most interesting

region of the Pareto front for the DM.

The thesis is organized as follows: in chapter 1, we present some basic MCDA concepts and,

in particular, MAVT (section 1.1), the Choquet integral preference model (section 1.2), the AHP

(section 1.3), the ROR (section 1.4) and the SMAA methodology (section 1.5); the chapter 2 con-

tains the two contributions related to the hierarchy of criteria that are “Multiple Criteria Hierarchy

Process for Sorting Problems Based on Ordinal Regression with Additive Value Functions” (section

2.1) and “Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in Mul-

tiple Criteria Hierarchy Process for the Choquet integral preference model” (section 2.2); in chapter

3 we present in detail the three contributions related to the interaction issue, that are, “Stochas-

tic Multiobjective Acceptability Analysis for the Choquet integral preference model and the scale

construction problem” (section 3.1), “Combining Analytical Hierarchy Process and Choquet inte-

gral within Non Additive Robust Ordinal Regression” (section 3.2) and “Using Choquet Integral

as Preference Model in Interactive Evolutionary Multiobjective Optimization” (section 3.3). Final

considerations contained in chapter 4 conclude the thesis.
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Chapter 1

Basic MCDA concepts

1.1 Multiple Attribute Value Theory

As already mentioned in the introduction, one of the most used approach to aggregate the perfor-

mances of an alternative on the considered criteria is that one of assigning a real number being

representative of the goodness of the alternative with respect to the problem at hand. Preference

theory, and in this case Multiple Attribute Value Theory [109], studies how to construct appropriate

functions for decision making representing the preferences of the DM. It is possible to distinguish

between preferences under conditions of certainty or risk and over alternatives described by a single

attribute or by multiple attributes. We shall refer to a preference representation function under cer-

tainty as a value function, and to a preference representation function under risk as a utility function

[109]. In the following, we shall consider multiple attribute value functions.

Denoting by % the DM’s preference relation over I, where I =
n
∏

j=1

Ij, Ij is the set of the perfor-

mances got by the alternatives from A on criterion gj and a % b means that a is at least as good

as b, in the following we provide conditions ensuring the existence of a function U : I → R such

that a % b if and only if U(g(a)) ≥ U(g(b)), with g(a), g(b) ∈ I and g(a) = (g1(a), . . . , gn(a)), for all

a ∈ A. A necessary condition for the existence of such a function is that % is a weak order (complete

and transitive binary relation). If A is uncountable, a second condition (and then both are necessary

and sufficient) is that A/ ∼ contains a countable order-dense subset where ∼ is the symmetric part

of %. This condition is known as the Birkhoff-Milgram theorem. The theorem, as well as its proof,

can be found in [138]. The interested reader is also referred to [42] and [84]).

The most common form for the value function U , and the most used in real world applications, is
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the additive one. In an additive representation, a real value is assigned to each alternative a by:

U(a) =
n

∑

j=1

uj(gj(a))

where uj are single attribute non-decreasing value functions over Ij. Defining x∗j = max
a∈A

gj(a) and

xj,∗ = min
a∈A

gj(a) the best and the worst evaluations an alternative belonging to A can get on criterion

gj, the value function U is normalized in the interval [0, 1] by imposing that
n

∑

j=1

uj(x
∗
j) = 1 and

uj(xj,∗) = 0 for all j = 1, . . . , n.

The condition ensuring the existence of an additive value function is the mutual preference inde-

pendence of the set of criteria G [109, 174]. We say that the set of criteria T ⊆ G is preferentially

independent of G \ T if, for all aT , bT ∈
∏

j∈T

Ij, and for all cG\T , dG\T ∈
∏

j∈G\T

Ij,

(aT , cG\T ) % (bT , cG\T ) ⇔ (aT , dG\T ) % (bT , dG\T )

that is, the preference of (aT , cG\T ) over (bT , cG\T ) does not depend on cG\T . The whole set of criteria

G is said to be mutually preferentially independent if T is preferentially independent of G \ T for

every T ⊆ G.

While the additive value function is an attractive choice for practical applications of multiattribute

decision making, the assessment of the single attribute value functions relies on techniques that are

cumbersome in practice, and that force the DM to make explicit tradeoffs between two or more

criteria. Two assessment procedures for ordinal additive value functions are illustrated in [109].

Using a value function U , one gets a complete order among the considered alternatives, differently

from the outranking methods in which in addition to the preference (a is preferred to b if aSb and

not(bSa)) and indifference relations (a is indifferent to b if aSb and bSa) also an incomparability

relation (a is incomparable with b if not(aSb) and not(bSa)) is defined.

1.2 The Choquet integral preference model

The mutual preference independence between criteria introduced in the previous section, is not always

fulfilled in practice. As a consequence, in this cases, an additive value function is not able to represent

the preferences provided by the DM.

Inspired by [77], let us suppose that four trainees learning to drive military vehicles are evaluated on

4



three criteria: Precision (P), Rapidity (R) and Communication (C). The performances of the trainees

on the three criteria are expressed on a [0, 1] scale and they are shown in Table 1.1. The instructor

thinks that both P and R are really important criteria but there exists a certain compensation

between them. Comparing Williams and Johnson, the instructor observes that both trainees have

Table 1.1: Trainees’ evaluations

Trainee Precision (P) Rapidity (R) Communication (C)

Johnson 0.7 0.9 0.2
Williams 0.7 0.7 0.6
Brown 0.2 0.9 0.2
Davis 0.2 0.7 0.6

good performances on P and R but Williams has a better performance than Johnson in C, so he

prefers Williams over Johnson. Comparing Brown and Davis, the instructor observes that their

performances on P are very low, so, because he thinks that P and R are more important than C, he

states that Brown is preferred to Davis for his better performance on R. It is easy to observe that

the set of criteria {R, C} is not preferentially independent from criterion P and, therefore, the whole

set of criteria {P,R,C} is not mutually preferentially independent. Consequently, the preferences of

the instructor can not be represented by an additive value function. Indeed, denoting by uP , uR and

uC the marginal value functions on P, R and C,

• the preference Williams ≻ Johnson, is translated to the constraint

uP (0.7) + uR(0.7) + uC(0.6) > uP (0.7) + uR(0.9) + uC(0.2), (1.1)

• while the preference Brown ≻ Davis is translated to the constraint

uP (0.2) + uR(0.9) + uC(0.6) > uP (0.2) + uR(0.7) + uC(0.6). (1.2)

The two inequalities lead to the following contradiction:

uR(0.7)− uR(0.9) + uC(0.6)− uC(0.2) > 0 > uR(0.7)− uR(0.9) + uC(0.6)− uC(0.2).

5



In this case, the compensation between P and R observed by the instructor can be paraphrased

saying that the two criteria are negatively interacting, that is, the importance assigned to this pair

of criteria should be lower than the sum of the importances assigned to the two criteria considered

alone.

In order to take into account the possible interactions (positive or negative) between criteria, in

MCDA non-additive integrals are used and, in particular, the Choquet integral [31] and the Sugeno

integral [162] as well as their generalizations, that are the bipolar Choquet integral [71, 72], the bipolar

Sugeno integral [89] and the level dependent Choquet integral [80]. Other methods dealing with the

possible interactions between criteria are the multilinear value functions [109] and the UTAGMS-

INT method [88]. Let us mention that the interaction between criteria has been also considered

in outranking methods and, in particular, in ELECTRE methods [52] and in the PROMETHEE

methods [34]. In the following, we shall describe the Choquet integral preference model since four

out of the five contributions introduced in the thesis are based on it.

Differently from the weighted sum in which a weight wj is assigned to each criterion gj, the

Choquet integral preference model is based on a capacity (or non-additive measure) µ : 2G → [0, 1]

that assigns a weight to each subset of G and that has to satisfy the following normalization and

monotonicity constraints:

1a) µ(∅) = 0, µ(G) = 1,

2a) µ(A) ≤ µ(B), for all A ⊆ B ⊆ G.

A capacity is additive if µ(A ∪ B) = µ(A) + µ(B) whenever A ∩ B = ∅. If a capacity is additive,

then it is sufficient defining the m coefficients µ({g1}), . . . , µ({gm}).

Given a capacity µ, and x = (x1, . . . , xn) ∈ I such that xj = gj(x) ≥ 0, ∀j = 1 . . . , n, the Choquet

integral of x with respect to µ is defined by

Cµ(x) =

∫ +∞

0

µ({j ∈ G : xj ≥ t})dt, (1.3)

or, equivalently, as

Cµ(x) =
n

∑

j=1

x(j)

[

µ(A(j))− µ(A(j+1))
]

=
n

∑

j=1

[

x(j) − x(j−1)

]

µ(A(j)), (1.4)

where 0 = x(0) ≤ x(1) ≤ . . . ≤ x(n), A(j) =
{

i ∈ G : xi ≥ x(j)

}

and A(n+1) = ∅.

Going back to the example above, and using the definition of the Choquet integral in (1.4), the

preferences of the instructor can be translated to the following two inequalities:
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Williams ≻ Johnson ⇔ 0.2µ({R}) + 0.4µ ({P,R}) < 0.4, (1.5)

and

Brown ≻ Davis ⇔ 0.2µ ({R,C}) < 0.3µ ({R}) . (1.6)

Inequalities (1.5) and (1.6) are not in contradiction since a capacity such that µ({R}) = µ({P}) = 0.5,

µ({C}) = 0.1, µ({R,P}) = 0.7, µ({R,C}) = µ({P,C}) = 0.7 and µ({R,P,C}) = 1 is compatible

with the two inequalities and, consequently, the Choquet integral is able to describe the preferences

of the instructor.

Considering the Möbius representation a : 2G → R of the capacity µ [140], such that

µ(T ) =
∑

R⊆T

a(R), for all T ⊆ G

constraints 1a) and 2a) can be replaced by the constraints

1b) a(∅) = 0,
∑

T⊆G

a(T ) = 1,

2b) ∀ j ∈ G and ∀S ⊆ G \ {j} ,
∑

T⊆S

a(T ∪ {j}) ≥ 0,

and the Choquet integral can be expressed in a linear form as follows [66]:

Cµ(x) =
∑

T⊆G

a(T ) min
i∈T

gi (x) .

The application of the Choquet integral requests the knowledge of a great number of parameters.

Indeed, one needs 2n−2 parameters (the value assigned by µ to each subset of G with the exception of

∅ and the same set G because µ(∅) = 0, and µ(G) = 1). In order to reduce this number of parameters,

in general k-additive capacities are considered [69]; a capacity is said k-additive if a(T ) = 0 with

T ⊆ G, when |T | > k1. In many real world decision making problems, it is sufficient to consider

2-additive capacities and, in this case, positive and negative interactions are considered only between

couples of criteria neglecting any interaction among triples, quadruplets and generally m-tuples,

(with m > 2) of criteria. In this way, the DM has to provide n+
(

n
2

)

parameters (in terms of Möbius

representation, a value a({i}) for every criterion i and a value a({i, j}) for every couple of distinct

1Observe that a 1-additive capacity is the common additive capacity
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criteria {i, j}). With respect to a 2-additive capacity, the inverse transformation to obtain the fuzzy

measure µ(R) from the Möbius representation is defined as:

µ(R) =
∑

i∈R

a ({i}) +
∑

{i,j}⊆R

a ({i, j}) , ∀R ⊆ G. (1.7)

With regard to 2-additive measures, properties 1b) and 2b) have the following formulations

1b) a (∅) = 0,
∑

i∈G

a ({i}) +
∑

{i,j}⊆G

a ({i, j}) = 1,

2b)















a ({i}) ≥ 0, ∀i ∈ G,

a ({i}) +
∑

j∈T

a ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

while the Choquet integral of x ∈ A is given by:

Cµ(x) =
∑

i∈G

a ({i}) (gi (x)) +
∑

{i,j}⊆G

a ({i, j}) min{gi (x) , gj (x)}. (1.8)

In case of non-additive measures, the importance of a criterion does not depend on itself only but

also on its contribution to all coalitions of criteria in G. For this reason, the Shapley value [154] and

the Murofushi index [128] have been introduced. The Shaplex value gives the importance of criterion

gi, i = 1, . . . , n, and it is given by

ϕ(i) =
∑

T⊆G:i/∈T

(|G− T | − 1)!|T |!

|G|!
[µ(T ∪ {i})− µ(T )], (1.9)

while the interaction index for a couple of criteria {i, j} ⊆ G, expresses the importance assigned to

the pair of criteria {gi, gj} and is computed as follows:

ϕ ({i, j}) =
∑

T⊆G:i,j /∈T

(|G− T | − 2)!|T |!

(|G| − 1)!
[µ(T ∪ {i, j})− µ(T ∪ {i}))− µ(T ∪ {j}) + µ(T )]. (1.10)

In case of 2-additive capacities, the Shapley value (1.9) and the interaction index (1.10) can be

reformulated as follows:

ϕ ({i}) = a ({i}) +
∑

j∈G\{i}

a ({i, j})

2
, i ∈ G, (1.11)
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ϕ ({i, j}) = a ({i, j}) . (1.12)

1.3 The Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is an MCDA method helping to build ratio scales for mea-

suring performance on considered criteria and importance of the same criteria. The problem at hand

is structured by AHP in a hierarchical way, as shown in Figure 1.1, where the overall goal is put at

the top of the hierarchy, the alternatives being the object of the decision are placed at the bottom of

the hierarchy while, the criteria on which the alternatives need to be evaluated are put in the middle

of the hierarchy between the overall goal and the alternatives themselves.

Figure 1.1: AHP structure

Given the n criteria g1, . . . , gn and their priorities w1, . . . , wn, let us consider the matrix

M =

















w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

...
...

wn/w1 wn/w2 · · · wn/wn

















where each entry mij = wi/wj is the ratio between the priorities wi and wj. Of course, the matrix

M is such that mij = 1/mji for all i, j (M is therefore reciprocal) and mij = mik · · ·mkj for all i, j, k

(M is therefore consistent). Moreover, mii = 1 for all i = 1, . . . , n. Multiplying on the right the

matrix M for the weight vector w = (w1, . . . , wn)T , we get

9



















w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

...
...

wn/w1 wn/w2 · · · wn/wn

































w1

w2

...

wn

















= n

















w1

w2

...

wn

















or, in a compact form,

Mw = nw. (1.13)

Let us notice from equation (1.13) that n is an eigenvalue of the matrix M , rank(M) = 1 (since each

row is a multiple of the first row) and, consequently, n is the only eigenvalue of M different from

zero. The priorities vector w is, therefore, the eigenvector associated to the eigenvalue n.

The DM is not able to provide exact numbers for the priorities w1, . . . , wn, but he is able to

perform pairwise judgments on the considered criteria. For this reason, in AHP, the DM is asked to

compare each pair of criteria {gi, gj} expressing a verbal judgment such as gi is “as important as ”

gj or, gi “moderately dominates”, “strongly dominates”, “very strongly dominates” or “extremely

dominates” gj. These judgments are numerically coded with 1, 3, 5, 7 and 9 while the values 2, 4, 6

and 8 express a compromise between the previous values. Denoting by aij the pairwise comparison

between the criteria gi and gj, it is possible to build a positive square reciprocal matrix of order n:

M
′

=

















1 a12 · · · a1n

1/a12 1 · · · a2n
...

...
...

...

1/a1n 1/a2n · · · 1

















(1.14)

Denoting by λmax the maximal eigenvalue of M
′

, in [146] it is proved that λmax ≥ n and that M
′

is

consistent iff λmax = n. For this reason, in order to check the consistency of the comparisons provided

by the DM, AHP considers the consistency index CI = (λmax−n)/(n− 1) and the consistency ratio

CR = CI/RI, where RI is the consistency index of 500 reciprocal square matrices of order n filled

in a random way. If CR ≤ 0.1, then the judgments provided by the DM are consistent enough and

the eigenvector associated to the eigenvalue λmax is an accepted approximation of the priority vector

w.

Once an estimate (w1, . . . , wn) of the priority vector of weights has been obtained, the DM is

therefore asked to compare pairwise the alternatives stating how much better is an alternative than
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another with respect to each considered criterion. Again, AHP is applied to obtain the priorities of

each alternative on each criterion. Formally, denoting by M (i) the pairwise comparison matrix of

order |A| related to criterion gi for all i = 1, . . . , n, and by p(i) = (p
(i)
1 , . . . , p

(i)
|A|) the priority vectors

obtained by matrices M (i), the final evaluation U(al) of the alternative al ∈ A is obtained as

U(al) =
n

∑

i=1

pilwi.

1.4 Robust Ordinal Regression

Because the application of each decision model involves the definition of the values of several pa-

rameters (the marginal value functions in MAVT, the capacity in the case of the Choquet integral

preference model or the thresholds, weights and cutting levels in outranking methods), in literature

a direct and an indirect techniques are used. With the direct technique, the DM provides directly

values of the parameters involved in the model at hand. Therefore, he is able to define the shape of

the considered value functions in MAVT or the Möbius coefficients necessary to the application of the

Choquet integral preference model or the thresholds in the outranking methods. With the indirect

technique, the DM provides some preference information on reference alternatives AR ⊆ A in terms

of pairwise comparisons, or on considered criteria in terms of comparison between their importance,

from which a set of parameters compatible with these preferences can be inferred. In the following we

shall call compatible model a set of parameters compatible with the preference information provided

by the DM. Since the direct preference information is more demanding from the cognitive point of

view for the DM, the indirect preference information is preferred in practice. The indirect preference

information is used in the ordinal regression paradigm. The ordinal regression paradigm has been

applied within the approaches using a value function as preference model [29, 97, 98, 133, 160], and

those using an outranking relation as preference model [126, 127].

In general, more than one compatible model exists. Each of them provides the same recommen-

dations on the reference alternatives but they can provide different recommendations on the other

alternatives that do not belong to the reference set. For example, let us consider two alternatives

a∗, b∗ ∈ AR for which the DM stated that a∗ is preferred to b∗. Then, all compatible models will

be concordant with the preference of a∗ over b∗ but, considering other two alternatives a, b ∈ A on

which the DM did not provide any information (in the sense that the DM did not state neither that

a is preferred to b nor that b is preferred to a), it is possible that for some compatible models, a is

preferred to b, while for other compatible models, b is preferred to a. For this reason, the choice of
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only one among the many compatible models is, in some sense, arbitrary and meaningless.

Robust Ordinal Regression (ROR) [35, 36, 86] copes with this problem taking into account simul-

taneously all models compatible with the preferences provided by the DM. To do this, ROR builds

two preference relations, one necessary and one possible. The couple (a, b) belongs to the necessary

preference relation iff a is at least as good as b for all compatible models, while the couple (a, b)

belongs to the possible preference relation iff a is at least as good as b for at least one model com-

patible with the preferences provided by the DM (for a discussion on the axiomatic basis of the

necessary and possible preference relations see [64]). ROR has been already applied to value func-

tions in [37, 86, 87, 88, 103], to the Choquet integral preference model in [8], to outranking methods

in [38, 78, 103] and to interactive evolutionary multiobjective optimization in [24].

Even if the recommendations obtained by ROR are more robust than the recommendations got

by applying one compatible model only, in some cases, one needs to assign a single number to each

alternative being representative of its goodness with respect to the problem at hand. In these cases,

one needs to consider only one among the plurality of models compatible with the preferences provided

by the DM and, therefore, the most representative model has been introduced in [53]. The most

representative model is the compatible model summarizing the results of the ROR. In particular, it

maximizes the difference between the alternatives (a, b) such that a is necessarily preferred to b and

b is not necessarily preferred to a and, at the same time, it minimizes the difference between the

alternatives a, b ∈ A such that neither a is necessarily preferred to b nor b is necessarily preferred to

a. The most representative model has been computed for value functions [79, 101, 102], as well as

for the Choquet integral preference model [7] and for outranking methods [104].

1.5 SMAA methodology

Even if in a different way with respect to ROR, Stochastic Multiobjective Acceptability Analysis

(SMAA) methodologies are based on the indirect preference information provided by the DM and

aim to explore the whole set of models compatible with this preference. SMAA methodologies are,

in general, applied to problems where the uncertainty is so significant that it should be considered

explicitly. Incomplete information on considered criteria as well as on performances of the different

alternatives on the criteria at hand are represented by suitable probability distributions fW (w) and

fχ(ξ) where W is the set of parameters representing the preferences of the DM, χ ⊆ R
|A|×n is the set
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of all possible performances matrices ξ of the alternatives at hand and, in particular,

ξ = [ξki]ki =











ξ1
...

ξ|A|











∈ χ.

Different variants of methods have been proposed under the SMAA framework depending on the

underlying model used to represent the preferences provided by the DM (for a survey on SMAA

methods see [164]). In the following, we describe the indices used by the SMAA methods just in case

the used preference model is the simple weighted sum:

U(ξk, w) =
n

∑

i=1

wiξki

where ξki = gi(ak) is the performance of the alternative ak on criterion gi, chosen the performance

matrix ξ ∈ χ.

As already mentioned in the previous sections, the application of a value function (in this case of a

weighted sum), permits to get a complete ranking of the alternatives at hand. For this reason, given

an alternative ak ∈ A, a vector of weights w ∈ W = {w ∈ R
n : wj ≥ 0, ∀j, and

n
∑

j=1

wj = 1} and a

performance matrix ξ ∈ χ, SMAA computes:

• The position got by ak in the final ranking of the population

rank(k, ξ, w) = 1 +
∑

r 6=k

ρ(U(ξr, w) > U(ξk, w)),

where ρ(true) = 1 and ρ(false) = 0

• The set of favourable rank weights W r
k (ξ), with r = 1, . . . , |A|, that is the set of weights giving

to ak the r-th position in the ranking of the alternatives

W r
k (ξ) = {w ∈ W : rank(k, ξ, w) = r}

Based on W r
k (ξ), the main results of SMAA analysis are the rank acceptability indices, the central

weight vectors, the confidence factors for each alternative and the pairwise winning indices for each

couple of alternatives ak, ar ∈ A.

• The rank acceptability index
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brk =

∫

ξ∈χ

fX(ξ)

∫

w∈W r
k
(ξ)

fW (w) dw dξ

is the frequency with which an alternative fills the position r in the obtained final ranking;

obviously, the greater the value of b1k the better ak is and, vice versa, the greater the value

of b
|A|
k , the worse alternative ak. Let us remember that in the first version of the SMAA

methodology [113], only b1k was computed for each alternative and it was called acceptability

index ;

• The central weight vector

wc
k =

1

b1k

∫

ξ∈χ

fX(ξ)

∫

w∈W 1
k
(ξ)

fW (w)w dw dξ

describes the preferences of a typical DM that make alternative ak the most preferred;

• The confidence factor

pck =

∫

ξ∈χ: U(ξk,w
c
k
)≥U(ξr,wc

k
)

∀r=1,...,|A|

fX(ξ) dξ

measures if the criteria measurements are accurate enough to discern the efficient alternatives;

• The pairwise winning index [116, 165]

p(ak, ar) =

∫

w∈W

fW (w)

∫

ξ∈χ: U(ξk,w)≥U(ξr,w)

fX(ξ) dξ dw

is the frequency with which an alternative ak is at least as good as an alternative ar.

Since the computation of all mentioned indices involves to solve multidimensional integrals, approx-

imations of these integrals are computed via Monte Carlo simulations.
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Chapter 2

Contributions related to the Multiple

Criteria Hierarchy Process

As stated in the introductory section, all MCDA methods assume that the evaluation criteria are

sited at the same level even if, in general, this is not true. Many examples of problems presenting an

hierarchy of criteria can be presented. Let us suppose, for example, that a committee has to evaluate

the feasibility of different projects. Of course, it has to take into account economic, environmental

and social aspects and, going more in depth, under each of these aspects several criteria can be

considered. Total amount of the investment and possible earning can be considered as subcriteria of

the economic macrocriterion, soil sustainability and water sustainability can be listed as subcriteria

of the environmental macrocriterion while, number of inhabitants living in the interested area and

means of transport (bus, metro, train) connecting the area to the city center can be considered under

the social aspects.

The Multiple Criteria Hierarchy Process (MCHP) has been recently proposed to deal with deci-

sion making problems in which criteria are not all at the same level, but they are structured in a

hierarchical way as in the example provided above. The advantage of the MCHP is that it permits

to decompose and to make easier the preference elicitation. Indeed, the basic idea of the MCHP

relies on consideration of preference relations at each node of the hierarchy tree of criteria. These

preference relations concern both the phase of eliciting preference information, and the phase of

analyzing a final recommendation by the DM. On one hand, the DM can provide partial preference

information related only to a particular aspect of the problem avoiding to take into account the whole

set of criteria simultaneously. In the example provided above, we can assume that the committee is

composed of three members, whose one is an expert in economy, one in environmental aspects and
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one in social aspects. Of course, each of them will be more confident in providing information on his

field of expertise while he could be more in difficulty in giving information on other fields or, even

more, at a global level taking into account the all the criteria together. On the other hand, the use

of the MCHP permits to get as output more precise recommendations not only at a global level but

considering each particular aspect of the problem at hand. For example, even if a global ranking

of the considered projects is obviously necessary to decide which of them deserves to be financed,

more partial information on the three aspects at hand can be very relevant from the side of the

people who should invest in the project. Indeed, considering a project a evaluated as “medium” at

comprehensive level, it is possible that it is evaluated as “good” with respect to environmental and

economic aspects and “bad” with respect to social aspects. Such a type of output information can

be obtained by the application of the MCHP. The MCHP has already been applied in the case in

which the preference model is a value function [37] or an outranking method [38]. In the thesis we

went further, applying the MCHP to the sorting method UTADIS [43] and to the Choquet integral

preference model [31].

In the first contribution, the application of the MCHP to the UTADIS method permits to assign

each alternative to one or more of the preferentially ordered classes not only at a comprehensive way

but also considering a particular subcriterion in the hierarchy of criteria. This extension regards

both the direct and the indirect preference information and, in the case of the indirect preference

information, it applies ROR computing the necessary and possible assignments at each node of the

hierarchy of criteria.

In the second contribution, the application of the MCHP to the Choquet integral preference model

permits, instead, to take into account the possible positive and negative interactions that can be

observed between criteria organized in a hierarchical way. Also in this case, the proposed extension

regards the direct and the indirect preference information and, in particular, in the indirect case

we applied both ROR and SMAA to take into account the plurality of models compatible with the

preferences provided by the DM.

The applications of the MCHP to the UTADIS method and to the Choquet integral preference

model are presented in sections 2.1 and 2.2, respectively.

16



2.1 Multiple Criteria Hierarchy Process for Sorting Prob-

lems Based on Ordinal Regression with Additive Value

Functions

2.1.1 Introduction

In many decision making problems, decisions concerning a set of alternatives are based on different

evaluation criteria organized in a hierarchical structure. Such a hierarchy introduces a decomposition

of the primary objective into separate dimensions, which are then further analyzed in sub-dimensions,

up to the lowest level of the hierarchy, which consists of the elementary criteria. Structuring deci-

sion problems following such a hierarchical scheme is particularly useful in situations that require

consideration of large sets of criteria describing different aspects of the problem at hand. Dealing

with complex families of criteria of diverse nature, poses significant cognitive burden to decision

makers (DMs). Thus, using a hierarchical decomposition facilitates the analysis as it allows DMs

to deal with more manageable elementary dimensions. Furthermore, working with such a hierarchy

provides detailed insights on all partial dimensions of the problem, instead of focusing solely on the

comprehensive level.

A common approach to deal with hierarchies of criteria in MCDA is the analytic hierarchy process

[148], but its fundamental problems are well-documented in the literature (see, for example, [10]).

Recently, the Multiple Criteria Hierarchy Process (MCHP) has been introduced as an alternative

[5, 37, 38]. The MCHP introduces a new modeling framework that allows the construction of sound

decision models in decision problems with a hierarchical structure, through MCDA techniques based

on the preference disaggregation paradigm [98]. The MCHP is able to take into account preference

information not only at a comprehensive level but also at all lower levels of the hierarchy, and provide

recommendations in a similar form.

In previous studies, the MCHP has been introduced in the context of choice and ranking prob-

lems, where the objective is either to choose the best alternative(s) among those considered (choice)

or to rank-order the alternatives from the best to the worst ones. In these contexts, the MCHP

has been employed to construct decision models with outranking methods such as ELECTRE and

PROMETHEE [38], value function models [37], as well as with the Choquet integral preference model

[5].

In this study, we extend the MCHP framework to multiple criteria sorting (classification) prob-
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lems, where the objective is to assign a set of alternatives to predefined (ordinal) decision classes.

Such problems often arise in many domains [180] and they have attracted much interest in MCDA

over the past decade. Sorting problems have been dealt in the literature using outranking relations

(e.g., the ELECTRE Tri method [178]), value functions, and decision rules [81, 82, 83, 155]. In this

paper, we focus on value function models, which constitute a convenient and easy way of modeling

DMs preferences in MCDA problems. The best-known method based on this modeling approach for

multiple criteria sorting problems is the UTADIS method (UTilités Additives DIScriminantes) and

its variants [43, 45, 179]. In this paper, we extend the UTADIS method to problems having a hier-

archical structure by applying the MCHP framework. In order to reduce the cognitive effort of the

DM, we also extend the UTADISGMS method [87], putting it in the MCHP framework. UTADISGMS

is the generalization of UTADIS to the Robust Ordinal Regression (ROR) setting [35, 36, 86]. ROR

is a family of methods taking into account not only one but all instances of an assumed preference

model being compatible with the preference information provided by the DM. In that regard, this

study contributes to the literature on multiple criteria sorting through the extension of existing

techniques for inferring decision models from sorting decision examples, using a formal framework

of MCHP, which allows the input preference information to be decomposed into smaller and more

manageable aspects of the problem. In order to illustrate the proposed methodology, we employ

a case study involving a financial decision problem, namely the performance rating of banks. In a

supervisory context, bank rating is a complex process that requires the consideration of all aspects of

bank operation, financial status, and risk profile. This case study fits well the framework of MCHP

and multiple criteria sorting, and thus, it illustrates well the potentials of the proposed modeling

approach in practice.

The rest of the paper is organized as follows: In the next section, a general problem setting is

provided. Section 2.1.3 describes the MCHP extension of the UTADIS method to decision problems

with a hierarchical structure, while in section 2.1.4 the integration of MCHP and UTADISGMS is

explained in detail. The application to bank performance evaluation is presented in section 2.1.5.

Finally, section 2.1.6 concludes the paper and provides some future research directions.

2.1.2 General Setting

A set of alternatives A = {a, b, . . .} is evaluated on a set of criteria structured in a hierarchical way

in l different levels. The complete set of criteria (from all levels) will be denoted by G, while the set

of indices of criteria will be denoted by IG. The criteria at the lowest level of the hierarchy will be
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called elementary criteria and the alternatives will be directly evaluated on these criteria only. The

set of indices of elementary criteria will be denoted by EL, while the set of indices of elementary

criteria descending from node Gr of the hierarchy (r ∈ IG), will be denoted by E(Gr). Each node

of the hierarchy represents a particular sub-dimension of the problem, with G0 corresponding to the

root of the hierarchy (i.e., G0 = G). Without loss of generality, we shall suppose that all elementary

criteria are to be maximized (i.e., preference increases with the value of each criterion).

Furthermore, by n(r) we shall denote the number of criteria G(r,1), . . . , G(r,n(r)) descending from

Gr in the next (lower) level of the hierarchy. Obviously, the elementary criteria are not further

decomposed into subcriteria. By LBO we shall denote the indices of the criteria from the next to the

last level of the hierarchy, while LB(Gr) will denote the set of indices for criteria descending from

Gr and located at the next to the last level.

Assuming that the set of elementary criteria is mutually preferentially independent [109, 174],

their aggregation is possible with an additive value function U : A→ [0, 1], such that:

U(a) =
∑

t∈EL

ut(gt(a))

where ut are marginal value functions related to elementary criteria gt.

In the MCHP context, assuming that at each level criteria are preferentially independent, it is

possible to consider a partial value function for each (non-elementary) criterion Gr, r ∈ IG as follows:

Ur(a) =
∑

t∈E(Gr)

ut(gt(a)).

An obvious consequence is that

Ur(a) =

n(r)
∑

j=1

U(r,j)(a) (2.1)

where U(r,j)(a) represents the value of alternative a according to the j-th subcriterion of Gr, for all

r ∈ IG \ EL (more details on MCHP can be found in [37]).

For each criterion Gr above the level of elementary criteria, the sorting procedure with respect to

subcriteria descending directly from Gr consists in assigning each alternative from A to one among

pr decision classes C1, . . . , Cpr , where Cpr is the class of top performing alternatives and C1 is the

class of the worst alternatives. Note that the sorting with respect to subcriteria descending directly

from different criteria Gr could involve different values of pr, i.e., the number of classes to which an

alternative can be assigned could depend on Gr. For each criterion Gr above the elementary level,
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class Ch (h ∈ {1, . . . , pr}) is defined by lower and upper value thresholds brh−1 and brh, such that

brh−1 < brh, defined on the value function scale. It follows that 0 = br0 < br1 < . . . < brpr−1 < brpr =
∑

t∈E(Gr)

ut(x
mt

t ), where the value of brpr is the maximum level of the value function for Gr (with xmt

t

being the best performance on elementary criterion gt over all alternatives from A).

2.1.3 MCHP and the UTADIS method

Consider an assignment of alternative a ∈ A to class Ch (h ∈ {1, ..., pr}) with respect to subcriteria

descending directly from criterion Gr (r ∈ IG \ EL). In the following, instead of criterion Gr, we

shall often use the term node Gr, in order to stress that the assignment takes place in a particular

place of the hierarchy tree.

Moreover, the assignment of alternatives with respect to subcriteria descending directly from criterion

Gr (r ∈ IG \ EL) will be called the assignment in node Gr.

Definition 2.1.1. In node Gr (r ∈ IG \ EL), alternative a is assigned to class Ch (h = 1, . . . , pr)
(

denoted as a −→
r

Ch

)

, iff brh−1 ≤ Ur(a) < brh.

As a consequence, in node Gr,

• a is assigned to at least class Ch

(

a −→
r

C≥h

)

, iff Ur(a) ≥ brh−1,

• a is assigned to at most class Ch

(

a −→
r

C≤h

)

, iff Ur(a) < brh (the inequality becomes weak if

h = pr, that is Ur(a) ≤ brpr),

• a is assigned to some class in the interval [Ch1 , Ch2 ] (1 < h1 < h2 < pr)
(

a −→
r

[Ch1 , Ch2 ]
)

, iff

brh1−1
≤ Ur(a) < brh2

.

In what follows, in order to simplify the presentation and without loss of generality, we assume

that the same classes apply in all nodes of the hierarchy tree. This means that the number of

classes pr to which each alternative can be assigned does not depend on the considered node Gr.

Consequently, pr = p for all r ∈ IG \ EL.

A first desirable coherence property for hierarchical multiple criteria sorting methods is the fol-

lowing. If an alternative a ∈ A is assigned to class Ch in all nodes directly descending from Gr, then

it should also be assigned to the same class in node Gr. For example, if student S is assigned to

the class of good students in the nodes corresponding to Algebra and Analysis, being the only two

subcriteria of the criterion Mathematics, then S has to be assigned to the class of good students
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also in the node of Mathematics. Henceforth, we shall refer to this property as the first coherence

property of hierarchical multiple criteria sorting.

A second desirable coherence property for hierarchical multiple criteria sorting methods is the

following. If an alternative a ∈ A is assigned to at least class Ch, i.e., to class Ch or better, in all nodes

directly descending from Gr, then it should also be assigned to at least class Ch in node Gr. Coming

back to the previous example, if student S is assigned to at least medium class of students in the

nodes corresponding to Algebra and Analysis, then S has also to be assigned to at least the medium

class of students in the node of Mathematics. Let us call this property second coherence property of

hierarchical multiple criteria sorting. Of course, another coherence property for hierarchical multiple

criteria sorting methods is symmetric to the second property, i.e., if an alternative a ∈ A is assigned

to at most class Ch (to class Ch or worse), in all nodes directly descending from Gr, then it should

also be assigned to at most class Ch in node Gr. Henceforth, this property will be referred to as

the third coherence property of hierarchical multiple criteria sorting. The second and third coherence

properties of hierarchical multiple criteria sorting can be synthesized as follows: in node Gr, an

alternative a ∈ A should be assigned to an interval of contiguous classes, included in the interval

of classes having as extrema the worst and the best classes to which a is assigned in nodes directly

descending from Gr. For example, if student S is assigned to the interval of classes from moderate

to relatively good students in the node of Algebra, and to the interval of classes from medium to

good students in the node of Analysis, then student S has to be assigned to an interval of classes

from moderate to good students in the node of Mathematics. Even if this coherence property is

the mere synthesis of the above second and third coherence properties, we shall refer to it as the

fourth coherence property for hierarchical multiple criteria sorting methods, because it will be useful

to recall it in the subsequent discussion.

Proposition 2.1.1 given below says that the first and the fourth coherence properties for hierarchi-

cal multiple criteria sorting methods coincide, and that they hold if and only if the value thresholds

separating the classes in node Gr are equal to the sum of the corresponding value thresholds separat-

ing the classes in the nodes directly descending from Gr (see the Appendix for the proofs). Indeed,

this condition is expressed as statement 1 of Proposition 2.1.1, whereas the first and the fourth co-

herence properties for hierarchical multiple criteria sorting methods correspond to statements 2 and

3, respectively.

Proposition 2.1.1. The three following statements are equivalent:

1. In each node Gr, r ∈ IG \ EL, brh =

n(r)
∑

j=1

b
(r,j)
h for all h = 0, . . . , p,

21



2. In each node Gr, r ∈ IG \ EL, if a −−→
(r,j)

[Chj
, Ckj ] for all j = 1, . . . , n(r), then a −→

r
[Ch, Ck]

where h = min
j=1,...,n(r)

hj, and k = max
j=1,...,n(r)

kj,

3. In each node Gr, r ∈ IG \ EL, if a −−→
(r,j)

Ch for all j = 1, . . . , n(r) then a −→
r

Ch.

Since we would like our hierarchical sorting approach to respect points 2 and 3 of Proposition

2.1.1, we shall assume that brh =

n(r)
∑

j=1

b
(r,j)
h in each node Gr, r ∈ IG \ EL. As a consequence of

this choice, it is sufficient to define the value thresholds in nodes from the last but one level of the

hierarchy, because for any other higher level node Gr, r ∈ IG \ {EL ∪ LBO} it holds that

brj =
∑

s∈LB(Gr)

bsj, for all j = 0, . . . , p.

In order to construct the additive value function and define the value thresholds, one can use

a direct or an indirect approach. In the former case, the DM is asked to specify explicitly the

parameters of the model (value thresholds in this case), following an direct assessment protocol

designed specifically for the type of model under consideration (for example of such a protocol for

additive value models see [18]). On the other hand, in an indirect approach [98] the DM is asked to

provide some comprehensive preference information on the assignment of some reference alternatives

(i.e., taking into account the full set of criteria present in the hierarchy) and/or partial preference

information (i.e., considering a particular dimension of the problem, corresponding to criterion Gr,

being an intermediate node in the hierarchy tree). With such preference information at hand, it

is possible to infer values for the parameters of the model that are compatible with the judgments

provided by the DM. This can be achieved considering the following set of constraints (in accordance

with [87], henceforth (U, b) will be used to denote a value function and a set of value thresholds

compatible with the preferences of the DM, whereas U will denote the set of all compatible instances

of this model):
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Ur(a) ≥ brh−1,

Ur(a)− brh ≤ −ε







if a −→
r

Ch

Ur(a) ≥ brh−1, if a −→
r

C≥h

Ur(a)− brh ≤ −ε, if a −→
r

C≤h

Ur(a) ≥ brh1−1
,

Ur(a)− brh2
≤ −ε







if a −→
r

[Ch1 , Ch2 ]

ut(x
k
t) ≥ ut(x

k−1
t ), k = 1, . . . ,mt, for all t ∈ EL,

ut(x
0
t) = 0, for all t ∈ EL, and

∑

t∈EL

ut(x
mt

t ) = 1

bsh ≥ bsh−1 + ε, h = 1, . . . , p, for all s ∈ LBO,

bs0 = 0, and bsp =
∑

t∈E(Gs)

ut(x
mt

t ), for all s ∈ LBO,

brh =
∑

s∈LB(Gr)

bsh, for all h = 0, . . . , p, and for all r ∈ IG \ {EL ∪ LBO}















































































































































EAR

where xk
t , k = 0, . . . ,mt, are the mt + 1 different performances on elementary criterion gt attained

by alternatives in A (arranged in ascending order); x0
t and xmt

t are, respectively, the worst and the

best performances of alternatives on elementary criterion gt, while ε is an auxiliary variable used to

translate the strict inequality constraints to weak inequality constraints.

If EAR

is feasible and ε∗ > 0, where ε∗ = max ε subject to EAR

, then there exists at least

one instance (U, b) compatible with the preferences provided by the DM. The readers interested to

conditions ensuring the existence of an additive representation of ordered partitions could look at

[18].

Remark 2.1.1. Let us observe that if the number of classes considered in each node Gr is different

(different values of pr for all Gr), then the direct and the indirect approaches explained above remain

valid. In particular, in the indirect approach, one has to consider the set of constraints EAR

1 obtained

from EAR

by replacing the last three constraints with the following ones:

brh ≥ brh−1 + ε, h = 1, . . . , pr, for all r ∈ IG \ EL, (2.2)

br0 = 0, and brpr =
∑

t∈E(Gr)

ut(x
mt

t ), for all r ∈ IG \ EL. (2.3)

The last constraint in EAR

does not hold anymore (except for the case h = 0 and h = pr in consequence
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of eq. (2.3)), since the number and meaning of the different thresholds obviously depend on the number

of classes to which each alternative can be assigned in node Gr. For example, let us consider a small

hierarchy in which a root criterion G0 has subcriteria G1 and G2, and each alternative can be assigned

to two classes in node G0 (p0 = 2) while it can be assigned to three and four classes in nodes G1 and

G2, respectively (p1 = 3 and p2 = 4). In this case, there will be three value thresholds in node G0

({b00, b
0
1, b

0
2}), four value thresholds in node G1 ({b10, b

1
1, b

1
2, b

1
3}), and five value thresholds in node G2

({b20, b
2
1, b

2
2, b

2
3, b

2
4}).

2.1.4 MCHP and the UTADISGMS method

In general, more than one instance of the preference model could be compatible with the preference

information provided by the DM. Each of these instances restores the given information in the

same way, but each one of them could provide different recommendations on alternatives outside

the reference set. In this case, choosing a single compatible instance of the preference model may

lead to a loss of possibly important information. For this reason, Robust Ordinal Regression (ROR)

[35, 36, 86] takes into account the whole set of instances of the preference model compatible with the

preference information provided by the DM, by building necessary and possible preference relations

that hold for all or for at least one compatible instance of the preference model.

In the MCHP context, the DM could be therefore interested to know not only to which class an

alternative could be necessarily or possibly assigned taking into account the whole set of criteria, but

also to which class it could be necessarily or possibly assigned with respect to a criterion corresponding

to a particular node of the hierarchy tree.

In this section, we extend UTADISGMS [87] to the MCHP context, by reformulating the definition

of the necessary and possible assignments as follows:

Definition 2.1.2. In any node Gr, (r ∈ IG \ EL) in the hierarchy tree,

• a ∈ A is necessarily assigned to at least class Ch, denoted by a
N
−→
r

C≥h, iff Ur(a) ≥ brh−1 for all

compatible (U, b),

• a ∈ A is possibly assigned to at least class Ch, denoted by a
P
−→
r

C≥h, iff Ur(a) ≥ brh−1 for at

least one compatible (U, b),

• a ∈ A is necessarily assigned to at most class Ch, denoted by a
N
−→
r

C≤h, iff Ur(a) < brh for all

compatible (U, b),
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• a ∈ A is possibly assigned to at most class Ch, denoted by a
P
−→
r

C≤h, iff Ur(a) < brh for at least

one compatible (U, b).

The above necessary and possible preference relations can be computed as follows:

• a
N
−→
r

C≥h iff the set of constraints EN
(

a −→
r

C≥h

)

is infeasible or if ε
(

a
N
−→
r

C≥h

)

≤ 0, where

EN
(

a −→
r

C≥h

)

= EAR

∪
{

Ur(a) + ε ≤ brh−1
}

and ε
(

a
N
−→
r

C≥h

)

= max ε, s.t. EN
(

a −→
r

C≥h

)

;

• a
P
−→
r

C≥h iff the set of constraints EP
(

a −→
r

C≥h

)

is feasible and ε
(

a
P
−→
r

C≥h

)

> 0, where

EP
(

a −→
r

C≥h

)

= EAR

∪
{

Ur(a) ≥ brh−1
}

and ε
(

a
P
−→
r

C≥h

)

= max ε, s.t. EP
(

a −→
r

C≥h

)

;

• a
N
−→
r

C≤h iff the set of constraints EN
(

a −→
r

C≤h

)

is infeasible or if ε
(

a
N
−→
r

C≤h

)

≤ 0, where

EN
(

a −→
r

C≤h

)

= EAR

∪ {Ur(a) ≥ brh} and ε
(

a
N
−→
r

C≤h

)

= max ε, s.t. EN
(

a −→
r

C≤h

)

;

• a
P
−→
r

C≤h iff the set of constraints EP
(

a −→
r

C≤h

)

is feasible and ε
(

a
P
−→
r

C≤h

)

> 0, where

EP
(

a −→
r

C≤h

)

= EAR

∪ {Ur(a) + ε ≤ brh} and ε
(

a
P
−→
r

C≤h

)

= max ε, s.t. EP
(

a −→
r

C≤h

)

.

Robust hierarchical multiple criteria sorting methods should satisfy some desirable properties.

The first two properties are logical properties, that, in fact, have to be satisfied even when there

is no hierarchical structure. These properties state that for all a ∈ A and for any non-elementary

criterion Gr,

1R) either a is necessarily assigned to at least class Ch, or a is possibly assigned to at most class

Ch−1, h ∈ {2, . . . , p},

2R) either a is necessarily assigned to at most class Ck, or a is possibly assigned to at least class

Ck+1, k ∈ {1, . . . , p− 1}.

Conditions 1R) and 2R) can be considered as completeness properties for robust hierarchical mul-

tiple criteria sorting corresponding to completeness properties for “flat” (non-hierarchical) sorting

problems, according to which for all a ∈ A:

1B) either a is assigned to at least class Ch, or a is assigned to at most class Ch−1, h ∈ {2, . . . , p},

2B) either a is assigned to at most class Ck, or a is assigned to at least class Ck+1, k ∈ {1, . . . , p− 1}.

On the basis of this observation, we shall call properties 1R) and 2R), first and second completeness

properties of robust hierarchical multiple criteria sorting. Observe that removing the reference to

node Gr of the hierarchy tree, the first and the second completeness properties should hold for any

robust multiple criteria sorting method.
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Other desirable properties are related to the hierarchical nature of the robust sorting, and can

be seen as counterparts of the robust multiple criteria sorting of the coherence properties considered

in section 2.1.3 for non-hierarchical multiple criteria sorting. The coherence properties for robust

hierarchical multiple criteria sorting methods that we shall consider are the following:

• If a is necessarily assigned to at least class Ch in all nodes directly descending from Gr, then it

is necessarily assigned to at least class Ch in node Gr. For example, if student S is necessarily

assigned to at least class medium in both Algebra and Analysis, then S has to be assigned to

at least class medium also in the node of Mathematics. Let us call this property first coherence

property for robust hierarchical multiple criteria sorting methods.

• If a is necessarily assigned to at most class Ck in all nodes directly descending from Gr, then it

is necessarily assigned to at most class Ck in node Gr. For example, if student S is necessarily

assigned to at most class moderate in both Algebra and Analysis, then S has to be assigned

to at most class moderate also in the node of Mathematics. Let us call this property second

coherence property for robust hierarchical multiple criteria sorting methods.

• If a is necessarily assigned to at least class Ch in all nodes directly descending from Gr, with

the possible exception of node j for which a is possibly assigned to at least class Ch, then a

is possibly assigned to at least class Ch in node Gr. For example, if student S is assigned to

at least class medium necessarily in the node of Algebra, and possibly in the node of Analysis,

then S has to be possibly assigned to at least class medium also in the node of Mathematics.

Let us call this property third coherence property for robust hierarchical multiple criteria sorting

methods.

• If a is necessarily assigned to at most class Ck in all nodes directly descending from Gr, with

the possible exception of node j for which a is possibly assigned to at most class Ck, then a is

possibly assigned to at most class Ck in node Gr. For example, if student S is assigned to at

most class moderate necessarily in the node of Algebra, and possibly in the node of Analysis,

then S has to be possibly assigned to at most class moderate also in the node of Mathematics.

Let us call this property fourth coherence property for robust hierarchical multiple criteria

sorting methods.

Proposition 2.1.2 given below says that the above two completeness properties, as well as the

four coherence properties hold for the hierarchical UTADISGMS we are proposing. Notice that the

four coherence properties are satisfied because statement 1 in Proposition 2.1.1 holds, i.e., because
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the value thresholds separating the classes in node Gr are equal to the sum of corresponding value

thresholds separating the classes in all nodes directly descending from Gr.

Proposition 2.1.2. In any node Gr, r ∈ IG \ EL, of the hierarchy tree,

1. For all a ∈ A, and h = 2, . . . , p, either a
N
−→
r

C≥h or a
P
−→
r

C≤h−1,

2. For all a ∈ A, and k = 1, . . . , p− 1, either a
N
−→
r

C≤k or a
P
−→
r

C≥k+1,

3. If a
N
−−→
(r,j)

C≥hj
, j = 1, . . . , n(r), then a

N
−→
r

C≥h where h = min
j=1,...,n(r)

hj,

4. If a
N
−−→
(r,j)

C≤kj , j = 1, . . . , n(r), then a
N
−→
r

C≤k where k = max
j=1,...,n(r)

kj,

5. If a
N
−−→
(r,j)

C≥hj
, j ∈ {1, . . . , n(r)} \

{

j
}

and a
P
−−→
(r,j)

C≥hj
, then a

P
−→
r

C≥h where h = min
j=1,...,n(r)

hj,

6. If a
N
−−→
(r,j)

C≤kj , j ∈ {1, . . . , n(r)} \
{

j
}

, and a
P
−−→
(r,j)

C≤kj then a
P
−→
r

C≤k where k = max
j=1,...,n(r)

kj.

An obvious consequence of Proposition 2.1.2 is that if a
N
−−→
(r,j)

Ch, j = 1, . . . , n(r), then a
N
−→
r

Ch.

In order to possibly or necessarily assign an alternative a ∈ A to an interval of classes in node Gr

of the hierarchy tree, the following indices can be defined:

LU ,Pr (a) = max

(

{1} ∪

{

h ∈ H : a
N
−→
r

C≥h

})

, RU ,Pr (a) = min

(

{p} ∪

{

h ∈ H : a
N
−→
r

C≤h

})

(2.4)

LU ,Nr (a) = max

(

{1} ∪

{

h ∈ H : a
P
−→
r

C≥h

})

, RU ,Nr (a) = min

(

{p} ∪

{

h ∈ H : a
P
−→
r

C≤h

})

.

(2.5)

On the basis of Proposition 2.1.2, we can prove the following results:

Proposition 2.1.3. In any node Gr (r ∈ IG \ EL) of the hierarchy tree, and a ∈ A,

1. LU ,Pr (a) ≥ min
j=1,...,n(r)

{

LU ,P(r,j)(a)
}

,

2. RU ,Pr (a) ≤ max
j=1,...,n(r)

{

RU ,P(r,j)(a)
}

.
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2.1.5 Application to bank performance rating

Problem context

In order to illustrate the applicability of the proposed approaches, this section presents results from

a case study involving bank performance rating, in a context of prudential supervision. Under

the existing financial regulatory framework of Basel II, the banking supervisory authorities of each

country (e.g. central banks) should conduct performance assessments on a regular basis for banks

operating in the country, in order to ensure the stability of the country’s banking system. Given that

bank defaults are rare events, adequate historical data are usually not available to fit statistical models

for estimating the likelihood of financial distress for banking institutions. Therefore, supervisors

mainly rely on judgmental peer assessment systems, which take into account all aspects of a bank’s

operations and risk profile [132, 150, 171]. The application of the MCDA is well-suited in this context,

as it provides bank analysts and supervisors with a formal framework and analytic techniques for

constructing composite performance indicators, exploring the trade-offs between different risk and

performance factors, conducting robustness checks, and exploring stress testing scenarios.

Typically, bank rating systems consider six major dimensions, which define a comprehensive

assessment framework referred to as CAMELS:

1) capital adequacy,

2) asset quality,

3) management competence,

4) earning generating ability,

5) liquidity,

6) sensitivity to market risks.

These dimensions are further decomposed into elementary criteria, which are specified according

to particular characteristics of the banking system in a country. Thus, the problem has a hierarchical

structure and the bank rating assessment process should provide results not only at the comprehensive

level, but also at each one of the above main dimensions. The results are commonly expressed in

a 5-point rating scale. Thus, the context of bank rating fits well the MCHP sorting framework

developed in this study.
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Data and criteria

The data used in the analysis are taken from [46] and they originate from the Bank of Greece (the su-

pervisory authority responsible for the Greek banking system). They involve 18 Greek banks between

2001 and 2005 (overall 85 bank-year observations1, which correspond to the alternatives). The banks

have been evaluated on 31 criteria structured in a hierarchical way following the CAMELS framework,

as shown in Figure 2.1. The six CAMELS dimensions (Capital-CA, Assets-AS, Management-MC,

Earnings-ER, Liquidity-LQ, and Sensitivity to market risks-SM) are the first level criteria, each ana-

lyzed through multiple subcriteria in the subsequent level. These subcriteria serve as the elementary

decision attributes in the MCHP framework, for which the data are available for the banks in the

sample.

G(0)

CA

G1

CA1

G(1,1)
· · ·

CA3

G(1,3)

AS

G2

AS1
G(2,1)

· · ·

AS5
G(2,5)

MC

G3

MC1

G(3,1)
· · ·

MC12

G(3,12)

ER

G4

ER1

G(4,1)
· · ·

ER5

G(4,5)

LQ

G5

LQ1

G(5,1)
· · ·

LQ4

G(5,4)

SM

G6

SM1

G(6,1)

SM2

G(6,2)

Figure 2.1: Hierarchy of Criteria

The definition of the elementary criteria is given in Table 2.1. These include 17 financial ratios

that describe quantitative aspects of bank operation, whereas the remaining 14 criteria describe

qualitative issues (but these are still measured on a 0.5−5.5 cardinal scale defined by analysts at the

Bank of Greece, with lower values indicating higher performance). Criteria whose type is indicated in

Table 2.1 as “max” are positively related to the performance of banks, whereas minimization criteria

are those that are negatively related to bank performance.

For each elementary criterion gt, we considered a linear marginal value function:

ut(a) = ut(x
mt

t )
gt(a)− x0

t

xmt

t − x0
t

(2.6)

where the best (xmt

t ) and worst (x0
t) performances are defined as follows:

Maximization criteria: xmt

t = max {gt(a), a ∈ A} and x0
t = min {gt(a), a ∈ A}

Minimization criteria: xmt

t = min {gt(a), a ∈ A} and x0
t = max {gt(a), a ∈ A} .

It should be noted that the use of linear marginal value functions in the setting of this case study,

1For some banks the data were not available for all years.
The data are available at: http://www.fel.tuc.gr/BankData.xlsx

29



Table 2.1: Evaluation criteria and their indices used in Figure 2.1

Category Index Abbr. Type Index Criterion name

Capital 1 CA1 Max (1, 1) Capital adequacy ratio
CA2 Min (1, 2) TIER II capital / TIER I
CA3 Min (1, 3) Qualitative∗

Assets 2 AS1 Min (2, 1) Risk-weighted assets / Assets
AS2 Min (2, 2) (Non performing loans – Provisions) / Loans
AS3 Min (2, 3) Large exposures / (TIER I + TIER II capital)
AS4 Min (2, 4) [0.5(Non performing loans) – Provisions]/Equity
AS5 Min (2, 5) Qualitative∗

Management 3 MC1 Min (3, 1) Operating expenses / Operating income
MC2 Min (3, 2) Staff cost / Assets
MC3 Max (3, 3) Operating income / Business units
MC4 Min (3, 4) Top management competencies, qualifications and continuity
MC5 Min (3, 5) Managers’ experience and competence
MC6 Min (3, 6) Resilience to change, strategy, long term horizon
MC7 Min (3, 7) Management of information systems
MC8 Min (3, 8) Internal control systems
MC9 Min (3, 9) Financial risk management system
MC10 Min (3, 10) Internal processes charter - implementation monitoring
MC11 Min (3, 11) Timely and accurate data collection
MC12 Min (3, 12) Information technology systems

Earnings 4 ER1 Max (4, 1) Net income / Assets
ER2 Max (4, 2) Net income / Equity
ER3 Max (4, 3) Interest revenue / Assets
ER4 Max (4, 4) Other operating revenue / Assets
ER5 Min (4, 5) Qualitative∗

Liquidity 5 LQ1 Max (5, 1) Cash / Assets
LQ2 Min (5, 2) (Loans – Provisions) / Deposits
LQ3 Min (5, 3) Real funding from credit institutions / Assets
LQ4 Min (5, 4) Qualitative∗

Market 6 SM1 Min (6, 1) Risk-weighted assets II / Risk-weighted Assets (I & II)
SM2 Min (6, 2) Qualitative∗

∗ Undisclosed criteria related to qualitative aspects of the banks’ operation

is actually in accordance with the CAMELS modeling framework as implemented by the Bank of

Greece. Furthermore, similar linear scoring and risk monitoring systems are widely used by bank

supervisory agencies worldwide.

In accordance with the policy followed by analysts at the Bank of Greece during the period under

consideration, the following points are taken into consideration:

• The importance of quantitative criteria should be at least equal to 70%. Even though criteria

related to qualitative aspects of bank operation are particularly useful for describing important
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performance and risk factors in the medium-long term, they clearly entail some subjectivity

on the way they are modeled and assessed. On the other hand, financial quantitative criteria,

despite their shortcomings (e.g., potential manipulation of accounting reporting standards),

are hard data widely used in prudential supervision research and practice all over the world.

In that regard, this requirement is imposed to ensure that the resulting evaluation does not

overweight the qualitative aspects of bank operation over the actual financial results.

Denoting by IGQual
the set of indices of qualitative elementary criteria, that is

IGQual
= {(1, 3), (2, 5), (4, 5), (5, 4), (6, 2)}

and by IGQuan
the set of indices of all quantitative elementary criteria (IGQual

∪ IGQuan
= IG),

the previous piece of preference information can be translated to the following constraint:

∑

t∈IGQuan

ut(x
mt

t ) ≥ 0.7. (2.7)

This implies that a bank having the best performance on all quantitative elementary criteria

should have a comprehensive value not less than 0.7.

• Capital and assets are the most important dimensions, whereas market risk is the least im-

portant one. Capital adequacy and asset quality are critical factors for ensuring the financial

soundness of a bank. They are both closely monitored on a regular basis by supervisors, and

actions are taken whenever a bank does not have adequate capital (see for example the stress

tests conducted by the European Banking Authority) or when its loan portfolio is particularly

troublesome. Liquidity is also an important issue, but during the period of the analysis (2001–

2005) there were no indications that liquidity risk could be a critical factor in the foreseeable

future for Greek banks. Therefore, liquidity is considered to be of lower importance for this

analysis, compared to capital adequacy and asset quality. The same applies to earning power

and management competence, too. Earning power is an important dimension for the success of

banking institutions as it indicates how they perform in multiple areas. Furthermore, a strong

stream of earnings constitutes the first line of defense against loan losses. However, the period

of the analysis was a time of transition for Greek banks in terms of their profitability, mainly

due to the introduction of the Euro and the adoption of the international accounting standards

by the largest banks. Due to the challenges that these issues created in assessing the earnings
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of Greek banking institutions over the period under consideration, its relative importance was

set below capital and assets. On the other hand, management competence is mostly related

to qualitative aspects of bank operation, which, as explained above, are given lower priority.

Finally, the data set only involves commercial banks, whose exposure to market risks is limited.

Therefore, the market risk dimension is assumed to be the least important one among the six

criteria categories.

Using the notation introduced in section 2.1.2 and indices of criteria shown in Table 2.1, the

given three pieces of preference information can be translated to the following sets of constraints

∑

t∈E(G1)

ut(x
mt

t ) ≥








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
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t∈E(G3)

ut(x
mt

t ) + ε,

∑

t∈E(G4)

ut(x
mt

t ) + ε,

∑

t∈E(G5)

ut(x
mt

t ) + ε,
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t∈E(G6)

ut(x
mt

t ) + ε,
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t∈E(G3)

ut(x
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t ) + ε,

∑

t∈E(G4)

ut(x
mt

t ) + ε,

∑

t∈E(G5)

ut(x
mt

t ) + ε,
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t∈E(G6)
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t ) + ε,

(2.8)

∑

t∈E(G6)

ut(x
mt

t ) ≤


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
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






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∑

t∈E(G3)

ut(x
mt

t )− ε,

∑

t∈E(G4)

ut(x
mt

t )− ε,

∑

t∈E(G5)

ut(x
mt

t )− ε,

(2.9)

where the constraints (2.8) say that criteria categories capital and assets are more important than the

other four criteria categories, while the constraints (2.9) say that market risk is the least important

criteria category. Let us notice that the constraints saying that market risk is less important than

capital and assets are missing in (2.9) since these constraints are already present in (2.8).

Discussion of results

In addition to the above preference information, an expert banking analyst (DM) familiar with

the Greek banking sector provided global assessments for a small set of banks, as shown in Table

2.2. These are banks for which the DM was familiar with their strengths and weaknesses over the

examined period. For example, alternatives A3, A4, and A5 correspond to a leading Greek bank in
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terms of its market niche and financial strength over a three years period (2003–2005), alternatives

A7, A8, and A9 involve a state-owned bank being in transition towards privatization, whereas A16,

A17, and A18 correspond to a recently privatized bank that faced significant operating challenges

moving to a new corporate plan.

Table 2.2: Initial set of the expert’s comprehensive judgments

Alternatives Class

A16, A17, A18 C1

A10, A21, A22 C2

A7, A8, A9 C3

A1, A2, A6 C4

A3, A4, A5 C5

Since each bank can be assigned to one of five classes at the level of macro-criteria and at the com-

prehensive level, then six thresholds have to be specified for each macro-criterion (bs0, b
s
1, b

s
2, b

s
3, b

s
4,

bs5), such that bs0 = 0 and bs5 =
∑

t∈E(Gs)

ut(x
mt

t ) for all s ∈ {1,2,3,4,5,6}. Consequently, follow-

ing Proposition 2.1.1, the thresholds for criterion G0 are obtained as the sum of the corresponding

thresholds for the six macro-criteria, that is b0h =
6

∑

s=1

bsh, for all h = 0, . . . , 5.

Having defined the thresholds for the six macro-criteria, the preferences shown in Table 2.2 are trans-

lated to constraints as explained in section 2.1.3. For example, the assignment at a comprehensive

level of bank Ax to class Ch is translated to the constraints

U0(Ax) ≥ b0h−1,

U0(Ax)− b0h ≤ −ε.







(2.10)

Consequently, the set EAR

containing the constraints translating the preferences of the DM and the

technical constraints will be the following:

(2.7)− (2.10),

ut(x
0
t) = 0, for all t ∈ EL, and

∑

t∈EL

ut(x
mt

t ) = 1

ut(x
mt

t ) ≥ ut(x
0
t), for all t ∈ EL ,

bsh ≥ bsh−1 + ε, h = 1, . . . , 5, for all s ∈ {1, . . . ,6} ,

bs0 = 0, and bs5 =
∑

t∈E(Gs)

ut(x
mt

t ), for all s ∈ {1, . . . ,6} ,

b0h =
∑

s∈{1,...,6}

bsh, for all h = 0, . . . , 5.
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Note that in this case we do not need the monotonicity constraint ut(x
k
t) ≥ ut(x

k−1
t ), k = 1, . . . ,mt,

for any t ∈ EL because, as shown in equation (2.6), we are considering a linear marginal value

function for each elementary criterion, and this function is defined by the marginal value ut(xt) and

by the worst and the best performances of the banks on each elementary criterion.

Solving the LP problem ε∗ = max ε, s.t. EAR

, we find that EAR

is feasible and ε∗ > 0. This leads

to the conclusion that there are multiple different instances of the preference model compatible with

the above comprehensive judgments and preferential inputs. Clearly, the choice of a single decision

instance from such limited information is likely to lead to conclusions that are not robust. Combining

ROR with the modeling framework of the UTADIS method under the hierarchical structuring of the

family of criteria, enables the formulation of results taking into account the full set of possible

instances.

Applying (2.4), we computed the lowest and the highest possible class assignment for each alternative.

Apart from the seven banks shown in Table 2.3, all the others could be possibly assigned to the whole

range of classes. Moreover, applying (2.5), we computed the lowest and highest necessary assignment

for each alternative. It appears that the set of necessary assignments is empty for all banks, since

LU ,N0 > RU ,N0 for all of them. It is evident that at this stage of the analysis, the obtained results are

not conclusive enough.

Table 2.3: Results after the first stage

Alternatives
[

LU ,P0 , RU ,P0

]

A23, A54, A61, A68 [C1, C4]
A36, A80, A81 [C2, C5]

In order to get a more clear recommendation, the expert analyst has to provide more detailed

preference information. Then, the DM provided partial judgments involving the main CAMELS

dimensions, as shown in Table 2.4. These partial judgments are easier for the DM to define, as each

main dimension comprises a much smaller set of criteria compared to the 31 criteria required for

the comprehensive assignment decisions provided in the previous stage. The calculation of the new

recommendation is performed analogously to the first stage.

With the new preference information, the integration of MCHP with the UTADISGMS method

was employed again to get a new set of assignments. Table 2.5 reports the number of non-reference

cases (i.e., banks-year observations not included in the assignments provided by the expert analyst),

by the type of their assignment result (range of classes) at the comprehensive level and at all lower-
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Table 2.4: Information provided by the expert in the second stage

Capital adequacy Asset quality Management competence

Alternative Assignment Alternative Assignment Alternative Assignment

A67 [C1, C2] A60 [C1, C2] A17 C2

A19 [C2, C3] A41 [C2, C3] A60 C3

A7 C3 A11 [C3, C4] A1 C4

A1 C4 A5 [C4, C5]
A4 C5

Earning power Liquidity Market risks

A19 C1 A82 C1 A76 [C1, C2]
A20 C2 A28 C2 A33 C3

A3 C3 A79 C3 A22 C4

A26 C4 A78 [C3, C4] A47 [C4, C5]
A36 C5 A55 C5

level dimensions. In addition, the table also presents the mean range of the assignments as an

indicator of the imprecision that describes the obtained results. The mean range is calculated from

the number of classes in the sets of possible assignments, averaged over all non-reference bank-year

observations.

Table 2.5: Summary of possible assignments from the second stage of the analysis (non-reference
alternatives)

Assignments Overall CA AS MC ER LQ SM

C1 – – 1 – – – –
[C1, C2] – – 1 – 5 2 2
[C1, C3] – – – 4 10 26 5
[C1, C4] 11 – 2 22 9 8 11
[C1, C5] 40 – 56 18 28 25 –

C2 – 2 – – – – –
[C2, C3] – 13 – – – – –
[C2, C4] – 2 – 7 – – –
[C2, C5] 16 28 17 24 15 19 –
[C3, C5] 3 34 4 7 9 – 33
[C4, C5] – 3 – – 3 – 30

C5 – – – – 1 – –

Mean range 4.5 3.1 4.6 4.0 3.9 3.9 2.7

It is evident that even with the new information, the sorting decisions at the comprehensive level

are still characterized by ambiguity, as 40 (out of 70) cases can be assigned in any of the five rating

classes. The examination of the partial assignments for each of the six main dimensions provides
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some insights on the decomposition of the banks’ comprehensive performance and the sources of

ambiguity in the assignments at the comprehensive level.

In particular, the partial assignments for capital adequacy (CA) and sensitivity to market risks

(SM) are more precise compared to the other dimensions. In terms of capital adequacy, all banks are

consistently rated in class C2 or better (throughout the years), with 37 cases being in at least medium

condition (i.e., belonging to categories C3−C5). This result is concordant with the characteristics of

Greek banks during the period of the analysis, as prior to the outbreak of the Greek sovereign debt

crisis in 2010, they have been generally well capitalized.

As far as their sensitivity to market risks is concerned, the banks also performed rather well over

the period under consideration. In particular, 63 cases are considered as having at least medium

performance on this dimension. There are, however, a few cases corresponding to banks that seem to

be exposed to market risks (i.e., their assignment includes the high risk class C1). These are mostly

smaller banks, which have indeed developed some risky investment activities and financial products

during that period.

Asset quality seems to be the main factor explaining the ambiguity in the assignment at the

comprehensive level. In the majority of cases (56 out of 81), the assignments in this dimension span

all five rating classes, which indicates that in order to obtain more precise conclusions on the asset

quality dimension, further analysis is required using additional input information. The same applies

(yet to a smaller extend) to management competence, earnings, and liquidity.

A further examination of the time trends in the range of the assignments over time (Figure 2.2)

reveals that the imprecision in the assignments at the comprehensive level has increased over time.

This can be interpreted as a warning signal, as it implies that deriving clear conclusions on the overall

performance of the banks became more difficult over the years. This trend was primarily driven by the

increasing ambiguity in the evaluations with respect to capital adequacy (after 2002), asset quality

(mostly in 2001–2002), and management competence. On the other hand, the imprecision in the

evaluations with respect to the market risk dimension followed a declining trend, as the introduction

of Greece to the Eurozone area in 2002 and the improving conditions in the global financial markets

(particularly after 2003) contributed to the minimization of the exposure of Greek banks to external

market risks.

The information derived from the imprecise assignments of the UTADISGMS method can be

further enriched and complemented through the construction of the most discriminant additive value

model, which is obtained through the solution of the optimization problem: max ε, subject to EAR

.

Table 2.6 presents the number of assignments with the obtained model, both at the comprehensive
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Figure 2.2: Mean ranges of the assignments over time

Table 2.6: Summary of assignment results with the most discriminant value function (number of
assignments by each class)

Class Comprehensively CA AS MC ER LQ SM

C1 6 0 26 21 8 20 6
C2 23 22 9 29 24 38 4
C3 19 17 7 30 29 15 15
C4 32 43 7 5 15 8 42
C5 5 3 36 0 9 4 18

level and at the level of the six performance dimensions. According to the results, there are six cases

involving very high risk banks (class C1), five cases of top performing banks (class C5), whereas most

banks are assigned to classes C2 − C5. The distribution of the assignments for the capital adequacy

dimension resembles the assignment at the comprehensive level, whereas in terms of asset quality it

is interesting to note that there is a considerable concentration in the two extreme rating classes.

This is in accordance with the large number of imprecise assignments in this dimension, as discussed

earlier. In terms of management competence and liquidity there is a concentration in classes C1−C3

(at most medium performance), whereas the results for market risk verify the remarks made earlier

on the low exposure of Greek banks to external market risks as there is a clear concentration in classes

C4−C5 (above average performance). The Kendall’s τ rank correlations between the comprehensive

assignment and the partial ones were higher for capital adequacy (0.725) and asset quality (0.653),

which is concordant with the information that the expert analyst provided on the high importance

of these criteria. The correlations of the comprehensive assignment to those of the other dimensions

were lower (0.2−0.3).

Table 2.7 presents further results on the relationship of the imprecise assignments obtained by

UTADISGMS with the ones of the most discriminant model at the comprehensive level. In particular,
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for banks assigned to different ranges of classes according to UTADISGMS, we report their mean global

values (i.e., performance scores) according to the most representative model (second column), as well

as their distribution in the classes resulting from the most discriminant model (frequencies). For

instance, the mean performance score for banks assigned to the range of classes [C1, C4] is 0.4, and

most of such instances (90.9%) are assigned to class C2 by the most discriminant model. The last

row in the table presents the mean comprehensive value for banks assigned to different classes by the

most discriminant model. The results indicate that most banks assigned to [C1, C4] by UTADISGMS

are considered as low performance banks by the most discriminant model. Banks for which their

assignment is completely imprecise according to UTADISGMS span the whole range of classes with

the most discriminant model, but most of them are assigned to the medium performance class C3. On

the other hand, banks assigned to the range of classes [C2, C5] and [C3, C5] according to UTADISGMS

are assigned to class C4 by the most discriminant model. However, the mean value of banks in

[C2, C5] is 0.567, which is very similar to the mean performance (0.559) of banks assigned to C4 by

the most discriminant model (i.e., they resemble typically good banks), whereas banks assigned to

[C3, C5] have a mean performance value of 0.603, which is higher that the mean of class C4 but lower

that the mean of the top rating class C5 (0.642).

Table 2.7: The relationship between the results of UTADISGMS and the assignments of the most
discriminant model at the comprehensive level

Most discriminant assignments

Mean value C1 C2 C3 C4 C5

[C1, C4] 0.400 9.1% 90.9% – – –
[C1, C5] 0.483 5.0% 25.0% 40.0% 27.5% 2.5%
[C2, C5] 0.567 – – – 93.8% 6.2%
[C3, C5] 0.603 – – – 100.0% –

Mean value 0.337 0.423 0.482 0.559 0.642

2.1.6 Conclusions

Several methods are able to deal with multiple criteria sorting problems, but they all assume a single-

level organization of the family of criteria. In this paper, we proposed an extension of the MCHP

approach to sorting problems with a hierarchical structure of the family of criteria. The MCHP is

a methodology that allows the decomposing of decision making problems into smaller dimensions

(each taking into account different aspects of the problem). In this context, we introduced modeling
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formulations that allow the inference of a preference model from decision examples through preference

disaggregation techniques based on an additive value function model (UTADIS and UTADISGMS

methods). MCHP combined with UTADIS and UTADISGMS allows the consideration of both global

and partial preference judgments, which adds flexibility to the specification of the input preference

information required in the decision aiding process. The applicability of the MCHP-based methods

was illustrated through an application regarding the assessment of bank performance.

Future research can be extended towards a number of different directions. First, similar ap-

proaches could be considered for other types of preference models for sorting problems, including

outranking relation [34], Choquet integral [74], and rule-based models [85, 157]. That would be par-

ticularly useful, as it would yield a much more general MCHP framework, covering situations where

different aspects of a decision problem require the adoption of different types of models. Group

decision making problems can also be considered in such a context. Combinations with simulation

methods [106] could also be useful to enhance the assignment recommendations with probabilistic

information, whereas further analysis could also focus on building good representative preference

models in sorting problems with hierarchical structure, using the techniques presented in previous

studies [48, 79]. In addition to these methodological extensions, further testing on other case studies

and through experimental computational analyses could provide further insights into the properties

of the MCHP-based sorting schemes. Introduction of procedures guiding the elicitation of preference

information by the DM in the spirit of active learning would also be useful to reduce the cogni-

tive effort required during the decision aiding process and make such techniques easier to apply in

practice.

2.1.7 Appendix

Proof of Proposition 2.1.1

Proof. (1) ⇒ (2) Let a −−→
(r,j)

[

Chj
, Ckj

]

for all j = 1, . . . , n(r). This means that b
(r,j)
hj−1

≤ U(r,j)(a) <

b
(r,j)
kj

for all j = 1, . . . , n(r). Let us consider h = min
j=1,...,n(r)

hj and k = max
j=1,...,n(r)

kj. For the monotonicity

of the thresholds, we shall have for all j = 1, . . . , n(r) that b
(r,j)
h−1 ≤ b

(r,j)
hj−1

≤ U(r,j)(a) < b
(r,j)
kj

≤ b
(r,j)
k

for all j = 1, . . . , n(r) and, consequently, b
(r,j)
h−1 ≤ U(r,j)(a) < b

(r,j)
k . Adding up with respect to j, we

get

brh−1 =

n(r)
∑

j=1

b
(r,j)
h−1 ≤

n(r)
∑

j=1

U(r,j)(a) <

n(r)
∑

j=1

b
(r,j)
k = brk.
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From equation (2.1), it follows that brh−1 ≤ Ur(a) < brk and, consequently, a −→
r

[Ch, Ck].

(2) ⇒ (3) follows directly by setting hj = kj = h for all j = 1, . . . , n(r).

(3) ⇒ (1) follows by contradiction, when we suppose that brh 6=

n(r)
∑

j=1

b
(r,j)
h for some h. This implies

that brh >

n(r)
∑

j=1

b
(r,j)
h or brh <

n(r)
∑

j=1

b
(r,j)
h .

Let brh >

n(r)
∑

j=1

b
(r,j)
h and a ∈ A an alternative, such that

U(r,j)(a) = b
(r,j)
h for all j = 1, . . . , n(r). (2.11)

Obviously, this implies that a −−→
(r,j)

Ch+1 for all j = 1, . . . , n(r). Adding up with respect to j in the

two members of equation (2.11), we get Ur(a) =

n(r)
∑

j=1

U(r,j)(a) =

n(r)
∑

j=1

b
(r,j)
h < brh and, consequently,

a −→
r

C≤h, being in contradiction with the hypothesis.

Now, let brh <

n(r)
∑

j=1

b
(r,j)
h and a ∈ A an alternative, such that

U(r,j)(a) = b
(r,j)
h −

ε

n(r)
for all j = 1, . . . , n(r) (2.12)

where ε > 0. This choice implies that a −−→
(r,j)

C≤h, for all j = 1, . . . , n(r). Now, adding up with respect

to j in the two members of equation (2.12), we get Ur(a) =

n(r)
∑

j=1

U(r,j)(a) =

n(r)
∑

j=1

[

b
(r,j)
h −

ε

n(r)

]

=

n(r)
∑

j=1

b
(r,j)
h − ε. If we choose ε such that

0 < ε ≤ min







min
{

n(r) ·
[

b
(r,j)
h − b

(r,j)
h−1

]

, j = 1, . . . , n(r)
}

,

n(r)
∑

j=1

b
(r,j)
h − brh







we obtain that b
(r,j)
h−1 ≤ U(r,j)(a) < b

(r,j)
h for all j = 1, . . . , n(r)2 and Ur(a) > brh

3 implying that

a −−→
(r,j)

Ch for all j = 1, . . . , n(r) and a −→
r

C≥h+1, thus leading to a contradiction.

Proof of Proposition 2.1.2

2Because ε ≤ min
j=1,...,n(r)

n(r)
[

b
(r,j)
h − b

(r,j)
h−1

]

.

3Because ε ≤

n(r)
∑

j=1

b
(r,j)
h − brh and, consequently

n(r)
∑

j=1

b
(r,j)
h − ε > brh
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Proof. 1. Let a ∈ A, r ∈ IG \ EL and h = 2, . . . , p such that not
(

a
N
−→
r

C≥h

)

. This means that

there exists at least one (U, b) such that Ur(a) < brh−1. Therefore a
P
−→
r

C≤h−1. Let us observe

that a
N
−→
r

C≥h and a
P
−→
r

C≤h−1 do not hold simultaneously because, otherwise, a couple (U, b)

should exist, such that U r(a) ≥ b
r

h−1 and U r(a) < b
r

h−1, which is impossible.

2. Let a ∈ A, r ∈ IG \ EL and k = 1, . . . , p − 1 such that not
(

a
N
−→
r

C≤k

)

. This means that

there exists at least one (U, b) such that Ur(a) ≥ brk. Therefore a
P
−→
r

C≥k+1. Let us observe

that a
N
−→
r

C≤k and a
P
−→
r

C≥k+1 do not hold simultaneously because, otherwise, a couple (U, b)

should exist, such that U r(a) < b
r

k and U r(a) ≥ b
r

k, which is impossible.

3. a
N
−−→
(r,j)

C≥hj
for all j = 1, . . . , n(r) implies that U(r,j)(a) ≥ b

(r,j)
hj−1

for all (U, b) and for all

j = 1, . . . , n(r). Considering h = min
j=1,...,n(r)

hj, for the monotonicity of the thresholds we have

that U(r,j)(a) ≥ b
(r,j)
h−1 for all (U, b) and for all j. As a consequence, adding up with respect to j,

we get Ur(a) =

n(r)
∑

j=1

U(r,j)(a) ≥

n(r)
∑

j=1

b
(r,j)
h−1 = brh−1 for all (U, b), which proves point 2.

4. a
N
−−→
(r,j)

C≤kj for all j = 1, . . . , n(r) implies that U(r,j)(a) < b
(r,j)
kj

for all (U, b) and for all

j = 1, . . . , n(r). Considering k = max
j=1,...,n(r)

kj, for the monotonicity of the thresholds we have

that U(r,j)(a) < b
(r,j)
k for all (U, b) and for all j. As a consequence, adding up with respect to j,

we get Ur(a) =

n(r)
∑

j=1

U(r,j)(a) <

n(r)
∑

j=1

b
(r,j)
k = brk for all (U, b), which implies point 3.

5. a
N
−−→
(r,j)

C≥hj
, for all j ∈ {1, . . . , n(r)} \

{

j
}

implies that for all (U, b), U(r,j)(a) ≥ b
(r,j)
hj−1

for all

j ∈ {1, . . . , n(r)} \
{

j
}

. Analogously, a
P
−−→
(r,j)

C≥hj
implies that there exists at least one (U, b)

such that U (r,j)(a) ≥ b
(r,j)

hj−1
. Considering h = min

j=1,...,n(r)
hj, for (U, b) and for the monotonicity of

the thresholds we have that U (r,j)(a) ≥ b
(r,j)

h−1 for all j = 1, . . . , n(r). Adding up with respect to

j we get U r(a) =

n(r)
∑

j=1

U (r,j)(a) ≥

n(r)
∑

j=1

b
(r,j)

h−1 = b
r

h−1, which proves point 4.

6. a
N
−−→
(r,j)

C≤kj , for all j ∈ {1, . . . , n(r)} \
{

j
}

implies that for all (U, b), U(r,j)(a) < b
(r,j)
kj

for all

j ∈ {1, . . . , n(r)} \
{

j
}

. Analogously, a
P
−−→
(r,j)

C≤kj implies that there exists at least one (U, b)

such that U (r,j)(a) < b
(r,j)

kj
. Considering k = max

j=1,...,n(r)
kj, for (U, b) and for the monotonicity of

the thresholds we have that U (r,j)(a) < b
(r,j)

k for all j = 1, . . . , n(r). Adding up with respect to

j we get U r(a) =

n(r)
∑

j=1

U (r,j)(a) <

n(r)
∑

j=1

b
(r,j)

k = b
r

k, which proves point 5.
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Proof of Proposition 2.1.3

Proof. 1. Let LU ,P(r,j)(a) = hj for all j = 1, . . . , n(r). This means that a
N
−−→
(r,j)

C≥hj
and not

(

a
N
−−→
(r,j)

C≥l

)

with l > hj for all j = 1, . . . , n(r). By Proposition 2.1.2 we get a
N
−→
r

C≥h with h = min
j=1,...,n(r)

hj.

As a consequence we get the thesis.

2. Let RU ,P(r,j)(a) = kj for all j = 1, . . . , n(r). This means that a
N
−−→
(r,j)

C≤kj and not

(

a
N
−−→
(r,j)

C≥l

)

with l > kj for all j = 1, . . . , n(r). By Proposition 2.1.2 we get a
N
−→
r

C≥k with k = max
j=1,...,n(r)

kj.

As a consequence we get the thesis.
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2.2 Robust Ordinal Regression and Stochastic Multiobjec-

tive Acceptability Analysis in Multiple Criteria Hierar-

chy Process for the Choquet integral preference model

2.2.1 Introduction

Multiple Criteria Decision Aiding (MCDA) helps Decision Makers in solving choice, ranking and

sorting problems concerning a set of alternatives evaluated on multiple criteria (see [51] for a collection

of state-of- the-art surveys on MCDA). Taking into account preferences of a particular Decision

Maker (DM), in choice problems, a subset of best alternatives has to be chosen; in ranking problems,

alternatives have to be partially or totally rank ordered from the best to the worst, while in sorting

problems each alternative has to be assigned to one or more contiguous preferentially ordered classes.

In order to deal with any of these problems, the evaluations of the alternatives on the considered

criteria have to be aggregated by a preference model, which can be either a value function [109], or

an outranking relation [27, 55], or a set of decision rules [82, 156].

Nowadays, MCDA is facing three important methodological challenges: handling a complex structure

of criteria, dealing with interactions bewteen criteria, and reducing the cognitive effort of the DMs

in interaction with MCDA methods. These challenges are usually handled separately, however, they

often concern the same decision problem.

In particular, with respect to the complex structure of criteria having the form of a hierarchy, the

Analytic Hierarchy Process (AHP) [146], and then the Multiple Criteria Hierarchy Process (MCHP)

[37] have been proposed. While AHP requires preference information at all levels of the hierarchy in

the form of exhaustive pairwise comparisons, and provides recommendations at the comprehensive

level only, MCHP accepts a partial preference information in form of pairwise comparisons of some

alternatives at some levels of the hierarchy, and provides recommendations at all levels.

As to the challenge of interaction, it is present when evaluation criteria are not mutually pref-

erentially independent [109]. To deal with interactions, MCDA methods use non additive integrals,

such as the Choquet integral (see [31] for the Choquet integral definition, and [68] for the application

of non additive integrals in MCDA), the Sugeno integral [162], and some of their generalizations

[72, 80, 89, 121]). The preferential independence condition has also been smoothed in multiplicative

and multilinear utility functions [109], but due to the high number of parameters that have to be

elicited from the DM, their use has not been very successful in real world applications [161].
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Moreover, the interaction between criteria has been recently considered in the ELECTRE methods

[52] and in PROMETHEE methods [34]. It was also handled in artificial intelligence approaches,

by weakening the preference independence condition in GAI-networks [67], as well as UCP-networks

[17]. They are based on the concept of Generalized Additive Independence (GAI) decomposition

introduced by Fishburn [56], which permits to aggregate performances on considered criteria through

the sum of marginal utilities related to subsets of criteria. Yet another approach, recently proposed

to deal with the interaction between criteria [88] is based on an enriched additive value function

that is decomposed of the usual sum of marginal value functions related to each one of considered

criteria and some additional terms expressing a bonus (in case of positive interaction) or a penalty

(in case of negative interaction), incurred for interaction between some criteria. In this approach, the

pairs of criteria for which there exists a positive or negative interaction are inferred through ordinal

regression on the basis of preference information given by the DM on some reference alternatives.

The aforementioned aspects of hierarchy and interaction of criteria have been jointly analyzed

and described in the hierarchical Choquet integral preference model [5]. Other studies devoted to

modeling the hierarchy of criteria within the Choquet integral preference model can be found in

[60, 61, 62, 63, 129, 130, 163]. Let us remark that their multi-step Choquet integral is different from

our approach, since it requires the definition of a capacity at each node of the hierarchy of crite-

ria. Consequently, their method considers Choquet integrals resulting from aggregation of Choquet

integrals at the subsequent level of the hierarchy, which is not the case of our approach.

As to the challenge of reducing the cognitive effort of the DM, one can observe the trend of

abandoning direct elicitation of preference model parameters in favor of an indirect elicitation of

preferences. In the direct elicitation, the DM is expected to provide values of all parameters of the

considered preference model, while in the indirect elicitation, the DM is expected to provide prefer-

ence information in the form of pairwise comparisons between some alternatives or criteria. There

are known two MCDA methodologies based on the indirect elicitation of preferences, which explore

the whole set of preference model parameters compatible with the preference information provided

by the DM. These are the Robust Ordinal Regression (ROR) (see [86] for the paper introducing

ROR, and [35, 36] for surveys) and the Stochastic Multiobjective Acceptability Analysis (SMAA)

(see [113] for the paper introducing SMAA, and [164] for a survey).

In this paper, we undertake all these three challenges together, combining the use of MCHP with

the Choquet integral preference model on one hand and application of ROR and SMAA on the other

hand. This combination is not straightforward, however, because it does not consist in chaining

these three methods as they are, but in joint application of all of them, which needs some non-trivial
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adaptations. In this way, we extend the study presented in [5] by considering two new aspects:

• application of ROR to identify all instances of the Choquet integral preference model being

compatible with the preference information provided by the DM; due to hierarchical structure

of criteria, the DM can express preference information at a particular level of the hierarchical

decomposition of the problem; in exchange, ROR provides robust recommendation in terms of

necessary and possible preference relations at all levels of the hierarchy of criteria;

• application of SMAA to compute the frequency with which an alternative gets a particular

position in the recommended ranking or the frequency with which an alternative is preferred

to another one, at all levels of the hierarchy of criteria.

Let us observe that the methodology presented in this paper is not just a simple sum of the afore-

mentioned three approaches, because MCHP requires that the Choquet integral preference model,

SMAA and ROR are applied in all nodes of the hierarchy of criteria in a different way than in case of

a flat structure of criteria; the hierarchy requires a coordination of calculations in particular nodes,

and moreover, the preference information does not need to be given in all nodes. Moreover, the

approach is really adaptive with respect to the complexity of the decision problem considered, since

on one hand, it permits decomposition of complex problems due to hierarchical structure of criteria

and, on the other hand, it permits to adapt the Choquet integral from 1-additive form (linear) to

k-additive form, depending on the preference information provided by the DM. Another aspect that

we would like to underline here and that will be clear in the next sections is that the extension of

the MCHP to the Choquet integral preference model does not require more parameters than the

application of the Choquet integral preference model in case of a flat structure of criteria. Indeed,

the application of the Choquet integral in case of criteria structured in a hierarchical way requires

only the definition of a capacity on the set of elementary subcriteria and not of a capacity on each

node of the hierarchy. Indeed, the capacities on the different nodes of the hierarchy can be easily

obtained by the capacity defined on the elementary subcriteria only.

The highlights characterizing the approach presented in this paper, are summarized briefly in the

following paragraphs.

At the input, the DM is asked to provide the following preference information:

• comparisons related to importance and interaction of macro-criteria as well as between some

elementary criteria, not necessarily belonging to the same macro-criterion;
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• preference comparisons between alternatives at a comprehensive level as well as considering

only a macro-criterion and, therefore, a particular aspect of the problem at hand.

At the output, the DM gets, we get the following results again with respect to each node of the

hierarchy as well as at a comprehensive level:

• necessary and possible preference relations resulting from NAROR;

• all the probabilistic indices supplied by SMAA applied to the k-additive Choquet integral

preference model;

• the rankings of the alternatives, by applying the Choquet integral preference model assuming

the barycenter of the capacities compatible with the preference information provided by the

DM.

The paper is organized as follows. In Section 2, we introduce some basic concepts relative to the

Choquet integral preference model, MCHP, hierarchical Choquet integral preference model, ROR

and SMAA. In Section 3, the proposed methodology, combining SMAA and ROR applied to the

hierarchical Choquet integral preference model, is presented. A real world multicriteria problem,

related to the ranking of universities, illustrates the considered methodology in Section 4. Conclusions

are drawn and some future directions of research are provided in Section 5.

2.2.2 Basic concepts

In this section, we introduce some basic concepts used further in the paper. In subsection 3.1.2,

we present the Choquet integral preference model. In subsections 2.2.2 and 2.2.2, we recall ROR

applied to the Choquet integral (called NAROR), and SMAA, respectively, while in subsection 2.2.2,

a description of the hierarchical Choquet integral preference model is presented together with an

example (subsection 2.2.2).

The Choquet integral, preference model

Let G = {g1, . . . , gn} be the set of evaluation criteria and 2G the set of all subsets of G; a capacity

on 2G is a function µ : 2G → [0, 1] such that µ(∅) = 0, µ(G) = 1 (normalization constraints) and

µ(T ) ≤ µ(R) for all T ⊆ R ⊆ G (monotonicity constraints). The Möbius representation of the

capacity µ is the function m : 2G → R, such that, for all R ⊆ G,
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µ(R) =
∑

T⊆R

m(T ). (2.13)

Let also A be a set of alternatives. Given an alternative a ∈ A and a capacity µ, the Choquet integral

of a is defined as

Cµ(a) =
n

∑

i=1

[

g(i)(a)− g(i−1) (a)
]

µ (Ni) ,

where (·) stands for a permutation of the indices of criteria, such that 0 = g(0)(a) = g(1) (a) ≤ . . . ≤

g(n) (a) , with Ni = {(i), ...., (n)}, i = 1, .., n. In the following, we suppose that all criteria are of the

gain type.

Using the Möbius representation of µ, and without reordering the criteria, the Choquet integral of a

is therefore redefined as

Cµ(a) =
∑

T⊆G

m(T ) min
i∈T

gi (a) .

Since in case of interacting criteria the importance of the criterion i, as well as its interaction with

other criteria, do not depend on its importance as singleton only, but also on its contribution to all

coalitions of criteria, we recall the Shapley value [154]

ϕ ({i}) =
∑

T⊆G: i/∈T

(|G− T | − 1)!|T |!

|G|!
[µ(T ∪ {i})− µ(T )] , (2.14)

and the interaction index [128]

ϕ ({i, j}) =
∑

T⊆G: i,j /∈T

(|G− T | − 2)!|T |!

(|G| − 1)!
[µ(T ∪ {i, j})− µ(T ∪ {i})− µ(T ∪ {j}) + µ(T )] . (2.15)

Using the Möbius representation of capacity µ, equations (2.14) and (2.15) can be formulated as

follows [76]

ϕ({i}) =
∑

A⊆G: i∈A

m(A)

|A|
(2.16)

and

ϕ({i, j}) =
∑

{i,j}⊆A⊆G

m(A)

|A| − 1
. (2.17)

A direct application of the Choquet integral preference model implies the elicitation of 2|G| − 2
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parameters µ(T ) (one for each subset T ⊆ G, apart from T = ∅ and T = G, since µ(∅) = 0 and

µ(G) = 1). As the inference of all these parameters is cognitively hard, the concept of q-additive

capacity has been defined in [69]. A capacity is q-additive if m(T ) = 0 for all T ⊆ G, such that

|T | > q. In real world applications, it is enough considering 2-additive capacities only. The use of a

2-additive capacity involves knowledge of n+
(

n
2

)

parameters only: a value m({i}) for each criterion

i and a value m({i, j}) for each couple of criteria {i, j}. Considering the Möbius representation m

of a 2-additive capacity µ, normalization and monotonicity constraints have the following form

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)















m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅,

while the Choquet integral of a ∈ A can be computed as

Cµ(a) =
∑

i∈G

m ({i}) gi (a) +
∑

{i,j}⊆G

m ({i, j}) min{gi (a) , gj (a)}. (2.18)

Equations (2.16) and (2.17) expressing the Shapley value and the interaction index can be, there-

fore, rewritten in the following way:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
, (2.19)

ϕ ({i, j}) = m ({i, j}) . (2.20)

Non Additive Robust Ordinal Regression (NAROR)

NAROR [8] belongs to the family of ROR methods (see [35, 36, 86]). In NAROR, the DM is asked to

give the following type of preference information on a subset A∗ ⊆ A of reference alternatives (s)he

knows well:

• a is preferred to b, denoted by a ≻ b (translated to the constraint Cµ(a) ≥ Cµ(b) + ε);

• a is indifferent to b, denoted by a ∼ b (Cµ(a) = Cµ(b));
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• a is preferred to b more than c is preferred to d, denoted by (a, b) ≻∗ (c, d) (Cµ(a) − Cµ(b) ≥

Cµ(c)− Cµ(d) + ε and Cµ(c)− Cµ(d) ≥ ε);

• the intensity of preference between a and b is the same of the intensity of preference between

c and d, denoted by (a, b) ∼∗ (c, d) (Cµ(a)− Cµ(b) = Cµ(c)− Cµ(d)),

where a, b, c, d ∈ A∗.

Moreover, differently from other ROR methods, in NAROR the DM can provide also some preference

information on criteria i, j, l, k ∈ G, such as:

• criterion i is more important than criterion j, denoted by gi ≻ gj (translated to the constraint

ϕ({i}) ≥ ϕ({j}) + ε);

• criteria i and j are indifferent, denoted by gi ∼ gj (ϕ({i}) = ϕ({j}));

• criteria i and j are positively (negatively) interacting (ϕ({i, j}) ≥ ε (≤ −ε));

• i is preferred to j more than l is preferred to k, denoted by (gi, gj) ≻
∗ (gl, gk) (ϕ({i})−ϕ({j}) ≥

ϕ({l})− ϕ({k}) + ε and ϕ({l})− ϕ({k}) ≥ ε);

• the difference of importance between i and j is the same as the difference of importance between

l and k, denoted by(gi, gj) ∼
∗ (gl, gk) (ϕ({i})− ϕ({j}) = ϕ({l})− ϕ({k})).

In the above constraints, ε is an auxiliary variable used to convert the strict inequalities into weak

inequalities; for example Cµ(a) ≥ Cµ(b) + ε is the translation of Cµ(a) > Cµ(b).

At the output of NAROR, two preference relations, one necessary %N and another possible %P ,

are presented to the DM:

a %N b iff Cµ(a) ≥ Cµ(b) for all compatible capacities ,

a %P b iff Cµ(a) ≥ Cµ(b) for at least one compatible capacity ,

where a compatible capacity is a set of Möbius measures for which the preference information pro-

vided by the DM is restored.

Denoting by EDM the set of above constraints translating the DM’s preference information together

with the monotonicity and normalization constraints 1c) and 2c), the existence of a compatible

capacity is checked by solving the following linear programming problem:
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ε∗ = max ε, subject to EDM .

If EDM is feasible and ε∗ > 0, then there exists at least one compatible capacity, otherwise there

exists some inconsistency in the preferences provided by the DM that could be identified by using

one of the methods presented in [125].

The two following sets of constraints,

Cµ(b) ≥ Cµ(a) + ε,

EDM











EN(a, b),
Cµ(a) ≥ Cµ(b)

EDM











EP (a, b)

are used to compute the necessary and the possible preference relation between alternatives a and

b, a, b ∈ A. In particular, the necessary preference relation holds between a and b if EN(a, b) is

infeasible or εN ≤ 0, where εN = max ε, subject to EN(a, b). Analogously, the possible preference

relation holds between a and b if EP (a, b) is feasible and εP > 0, where εP = max ε, subject to

EP (a, b).

Stochastic Multiobjective Acceptability Analysis (SMAA)

SMAA [113, 115] is a family of MCDA methods which take into account uncertainty or imprecision

on the evaluations and preference model parameters. In this section we describe SMAA-2 [115],

since our proposed methodology also regards ranking problems.

The most common value function used in SMAA-2 is the linear one

U(ak, w) =
n

∑

i=1

wigi(ak)

where w ∈ W = {(w1, . . . , wn) ∈ R
n : wi ≥ 0 and

n
∑

i=1

wi = 1}. In SMAA methods, the indirect

preference information is composed of two probability distributions, fχ and fW , defined on the

evaluation space χ and on the weight space W , respectively.

Defining the rank function

rank(k, ξ, w) = 1 +
∑

h 6=k

ρ (U(ξh, w) > U(ξk, w)) ,

(where ρ(false) = 0 and ρ(true) = 1) that, for all ak ∈ A, ξ ∈ χ and w ∈ W gives the rank position
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of alternative ak, SMAA-2 computes the set of weights of criteria for which alternative ak assumes

rank r = 1, 2, . . . , n, as follows:

W r
k (ξ) = {w ∈ W : rank(k, ξ, w) = r} .

The following further indices are computed in SMAA-2:

• The rank acceptability index that measures the variety of different parameters compatible with

the DM’s preference information giving to the alternative ak the rank r:

brk =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r
k
(ξ)

fW (w) dw dξ;

brk gives the probability that alternative ak has rank r, and it is within the range [0, 1].

• The central weight vector that describes the preferences of a typical DM giving to ak the best

position:

wc
k =

1

b1k

∫

ξ∈χ

fχ(ξ)

∫

w∈W 1(ξ)

fW (w)w dw dξ;

• The pairwise winning index that is defined as the frequency that an alternative ah is preferred

to an alternative ak in the space of weight vectors:

phk =

∫

w∈W

fW (w)

∫

ξ∈χ:u(ξh,w)>u(ξk,w)

fχ(ξ)dξ dw.

From a computational point of view, the multidimensional integrals defining the considered indices are

estimated by using the Monte Carlo method. Let us note that, recently, the potentialities of SMAA

and the Choquet integral preference model have been combined in [3] and further investigated in [4].

Multiple Criteria Hierarchy Process (MCHP) and the Choquet integral preference

model

In MCHP, the evaluation criteria are not all considered at the same level but they are structured in

a hierarchical way. This means that one considers a root criterion (the comprehensive objective) and

a set of subcriteria branching successively, as shown in Figure 2.3.

The following notation will be used in the paper:

• G denotes the set of all criteria at all considered levels, while IG is the set of indices of all

criteria in the hierarchy;
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Figure 2.3: Example of a hierarchy of criteria. G0 is the root criterion, G1 and G2 are the first level
subcriteria while 10 elementary subcriteria are in the last level of the hierarchy.

• EL is the set of indices of the elementary subcriteria, that is criteria located at the last level

of the hierarchy and on which the alternatives are evaluated (in Figure 2.3,

EL = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2), (2, 3, 1), (2, 3, 2)});

• Gr is a generic criterion in the hierarchy, while G(r,1), . . . , G(r,n(r)) are the subcriteria of criterion

Gr in the subsequent level (in Figure 2.3, G(2,1), G(2,2) and G(2,3) are the subcriteria of G2 in

the subsequent level);

• E(Gr) is the set of indices of elementary subcriteria descending from Gr (in Figure 2.3,

E(G1) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)});

• Given F ⊆ G, E(F) = ∪Gr∈FE(Gr) is the set of all elementary subcriteria descending from at

least one criterion in F (in Figure 2.3, considering F =
{

G(1,1), G(2,3)

}

, then

E(F) = {(1, 1, 1), (1, 1, 2), (2, 3, 1), (2, 3, 2)});

• Gk
r is the set of subcriteria of Gr located at level k (in Figure 2.3, G2

1 =
{

G(1,1), G(1,2)

}

, while

G3
1 =

{

g(1,1,1), g(1,1,2), g(1,2,1), g(1,2,2)
}

).

Given a capacity µ defined on the power set of EL, a criterion Gr with r ∈ IG ∩ N
h (that is, Gr

is a criterion located at level h of the hierarchy) and k = h+ 1, . . . , l, where l is the number of levels

in the hierarchy tree (for example, l = 3 in Figure 2.3), we can define a capacity on the power set of

Gk
r

µk
r : 2G

k
r → [0, 1] (2.21)

such that

µk
r(F) =

µ (E (F))

µ (E (Gr))
(2.22)
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for all F ⊆ Gk
r .

According to equation (2.22), the capacity µk
r can be written in terms of the capacity µ defined

on the power set of EL.

Considering criterion Gr, r ∈ IG \EL at any but the last level of the hierarchy, and the capacity

µ defined on the power set of EL, the Choquet integral of alternative a ∈ A on criterion Gr can be

computed as

Cµr
(a) =

Cµ(ar)

µ(E(Gr))
(2.23)

where ar is a fictitious alternative having the same evaluations as a on elementary subcriteria from

E(Gr) and null evaluation on elementary subcriteria from outside E(Gr), i.e., gt(ar) = gt(a) if

t ∈ E(Gr) and gt(ar) = 0 if t /∈ E(Gr).

Starting from equations (2.14) and (2.15), and considering a criterion Gr, r ∈ IG \ {EL}, we can

define the Shapley value of criterion G(r,w) and the interaction index between criteria G(r,w1) and

G(r,w2), with G(r,w), G(r,w1), G(r,w2) ∈ G
k
r , as follows:

ϕk
r

({

G(r,w)

})

=
∑

T⊆Gk
r \{G(r,w)}

(

|Gk
r \ T | − 1

)

!|T |!

|Gk
r |!

[

µk
r

(

T ∪
{

G(r,w)

})

− µk
r (T )

]

, (2.24)

ϕk
r

({

G(r,w1), G(r,w2)

})

=
∑

T⊆Gk
r \{G(r,w1)

, G(r,w2)}

(

|Gk
r \ T | − 2

)

!|T |!

(|Gk
r | − 1)!

. (2.25)

As for the capacity µ defined on the power set of G, we can define analogously the Möbius represen-

tation mk
r : 2G

k
r → [0, 1] of the capacity µk

r , such that

µk
r (F) =

∑

T⊆F

mk
r (T ) (2.26)

for all F ⊆ Gk
r .

By considering the Möbius representation mk
r of the capacity µk

r , equations (2.24) and (2.25) can

be rewritten as follows:

ϕk
r

({

G(r,w)

})

=
∑

F⊆Gk
r : G(r,w)∈F

mk
r (F)

|F|
(2.27)

ϕk
r

({

G(r,w1), G(r,w2)

})

=
∑

F⊆Gk
r : G(r,w1)

, G(r,w2)
∈F

mk
r (F)

|F| − 1
(2.28)
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where G(r,w), G(r,w1), G(r,w2) ∈ G
k
r .

The Möbius transformation mk
r of the capacity µk

r can be written in terms of the Möbius trans-

formation m of the capacity µ, as stated in the following proposition.

Proposition 2.2.1. Let µ be, a capacity defined on 2EL, and m its Möbius representation. Let

Gr ∈ G, r ∈ IG \ {EL} with µk
r being a capacity defined on 2G

k
r and mk

r its Möbius representation;

then for all F =
{

G(r,w1), . . . , G(r,wα)

}

⊆ Gk
r ,

mk
r (F) = mk

r

({

G(r,w1), . . . , G(r,wα)

})

=

∑

T1⊆E(G(r,w1)), T1 6=∅
···

Tα⊆E(G(r,wα)), Tα 6=∅

m ({T1, . . . , Tα})

µ (E (Gr))
.

Proof. See Appendix.

Example 2.2.1. Let F =
{

G(1,1)

}

⊆ G2
1, as shown in Figure 2.3; considering the Möbius represen-

tation m2
1 of the capacity µ2

1, we have that

m2
1

({

G(1,1)

})

=

∑

T1⊆E(G(1,1)), T1 6=∅

m({T1})

µ (E (G1))
=

=
1

µ (E (G1))

[

m
({

g(1,1,1)
})

+ m
({

g(1,1,2)
})

+ m
({

g(1,1,1), g(1,1,2)
})]

.

Analogously, considering set F =
{

G(1,1), G(1,2)

}

= G2
1, we have that

m2
1

({

G(1,1), G(1,2)

})

=
∑

T1⊆E(G(1,1)), T1 6=∅

T2⊆E(G(1,2)), T2 6=∅

m ({T1, T2}) =

=
1

µ (E (G1))

[

m
({

g(1,1,1), g(1,2,1)
})

+ m
({

g(1,1,1), g(1,2,2)
})

+ m
({

g(1,1,2), g(1,2,1)
})

+

+m
({

g(1,1,2), g(1,2,2)
})

+ m
({

g(1,1,1), g(1,1,2), g(1,2,1)+
})

+ m
({

g(1,1,1), g(1,1,2), g(1,2,2)
})

+

+m
({

g(1,1,1), g(1,2,1), g(1,2,2)
})

+ m
({

g(1,1,2), g(1,2,1), g(1,2,2)
})]

.

As mentioned before, 2-additive capacities are in general sufficient for practical use. For this

reason, in the last part of this section we concentrate on the application of MCHP to the 2-additive

Choquet integral preference model. First, we provide a proposition stating that if µ is a q-additive

capacity, then µk
r is also q-additive for each subcriterion Gr in the hierarchy, while the second propo-

sition expresses the Shapley value and the interaction index in case of 2-additive capacities.
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Proposition 2.2.2. Let µ a q-additive capacity defined on 2EL, then µk
r is a q-additive capacity

defined on 2G
k
r , for all Gr ∈ G with r ∈ IG \ {EL}.

Proof. See Appendix.

Proposition 2.2.3. Let µ a 2-additive capacity defined on 2EL and G(r,w), G(r,w1), G(r,w2) ∈ G
k
r , with

r ∈ IG \ {EL}, then:

1.

ϕk
r

({

G(r,w)

})

=













∑

t∈E(G(r,w))

m (gt) +
∑

t1,t2∈E(G(r,w))

m (gt1 , gt2) +
∑

t1∈E(G(r,w))
t2∈E(Gk

r \{G(r,w)})

m(gt1 , gt2)

2













1

µ(E(Gr))
,

(2.29)

2.

ϕk
r

({

G(r,w1), G(r,w2)

})

=













∑

t1∈E(G(r,w1))
t2∈E(G(r,w2))

m(gt1 , gt2)













1

µ(E(Gr))
. (2.30)

Proof. See Appendix.

It is meaningful observing in equation (2.29) that the importance of a criterion G(r,w) depends on

which criterion it is descending from. This means that if G(r,w) is a subcriterion of Gr and, in turn,

Gr is a subcriterion of Gs, then G(r,w) will get importance ϕk
r(G(r,w)), because it is subcriterion of

Gr, and importance ϕk
s(G(r,w)), because it is also subcriterion of Gs. This is due to the fact that

when computing ϕk
s(G(r,w)) one should take into account a greater number of interactions than when

computing ϕk
r(G(r,w)).

Example

In this section, we provide a simple example to explain how to apply the hierarchical Choquet

integral preference model, and to highlight some characteristics of the method. Let us suppose that

four alternative projects are evaluated with respect to two macro-criteria, Environmental (En) and

Economic (Ec), and that each of these macro-criteria is composed of two elementary subcriteria. In

particular, Soil Sustainability (SoSu) and Water Sustainability (WaSu) are elementary subcriteria of

En while Expected Earnings (ExEa) and Financial Feasibility (FiFe) are elementary subcriteria of
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Figure 2.4: Hierarchy of criteria for evaluation of projects.

Ec. The hierarchy of criteria is shown in Figure 2.4. The general notation concerning set of criteria

G =
{

G1, G2, g(1,1), g(1,2), g(2,1), g(2,2)
}

corresponds now to G = {En,Ec,SoSu,WaSu,ExEa,FiFe}. All

criteria are defined on a common gain scale 10-30. The evaluations of the four projects with respect

to the considered elementary subcriteria are shown in Table 2.8(a).

Table 2.8: Evaluations of projects and Möbius parameters

(a) Evaluations of projects

En Ec
Projects SoSu WaSu ExEa FiFe

a 17 14 13 18
b 14 15 18 15
c 11 21 11 20
d 15 14 15 14

(b) Möbius parameters

m(SoSu) 0.3793
m(WaSu) 0.1724
m(ExEa) 0.0507
m(FiFe) 0.1562

m(SoSu, WaSu) −0.1724
m(SoSu, ExEa) −0.0507
m(SoSu, FiFe) −0.1562
m(WaSu, ExEa) 0.6168
m(WaSu, FiFe) 0.0039
m(ExEa, FiFe) 0

For the sake of this example, we assume that the Möbius parameters of the Choquet integral

are known (see Table 2.8(b)). They have been obtained by ordinal regression technique which will

be explained in the next section. Values of the Choquet integral for the four projects can now be

computed with respect to the totality of criteria (equation 2.18), as well as with respect to each of

the two considered macro-criteria (equation 2.23). These values are given in Table 2.9. At the same

time, one can also compute the Shapley values of different criteria (see Table 2.10).

Looking at Table 2.9, we can observe that even if project a is better than project b with respect

to En and Ec (Cµ1
(a) > Cµ1

(b) and Cµ2
(a) > Cµ2

(b)), b is preferred to a with respect to the totality

of criteria (Cµ(b) > Cµ(a)). An analogous situation can be observed for projects c and d with c being

preferred to d on the two macro-criteria and d being preferred to c with respect to the totality of

criteria. Even if this could seem an unlikely situation at a first sight, it is justifiable if we observe
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Table 2.9: Values of the Choquet integral for the four projects

(a) At the comprehensive level

G1 (En) G2 (Ec) Choquet integral values
SoSu WaSu ExEa FiFe Cµ(·)

a 17 14 13 18 Cµ(a) = 14.67
b 14 15 18 15 Cµ(b) = 15.15
c 11 21 11 20 Cµ(c) = 14.16
d 15 14 15 14 Cµ(d) = 14.37

(b) At the level of macro-criteria

G1 (En) G2 (Ec) Choquet integral values
SoSu WaSu ExEa FiFe Cµ(·)/µ(E(Gr))

a1 17 14 0 0 Cµ1
(a) = 17

a2 0 0 13 18 Cµ2
(a) = 16.77

b1 14 15 0 0 Cµ1
(b) = 14.45

b2 0 0 18 15 Cµ2
(b) = 15.73

c1 11 21 0 0 Cµ1
(c) = 15.54

c2 0 0 11 20 Cµ2
(c) = 17.79

d1 15 14 0 0 Cµ1
(d) = 15

d2 0 0 15 14 Cµ2
(d) = 14.24

that in computing the Choquet integral of a project with respect to En (analogously with respect to

Ec), we take into account only the interactions between the elementary subcriteria of En (Ec), while

in computing the Choquet integral of a project with respect to the totality of criteria, we consider

the interactions between all four elementary subcriteria.

Table 2.10: Shapley values

(a) Shapley values of each elementary subcriterion
with respect to the considered macro-criterion

En Ec
SoSu WaSu ExEa FiFe

ϕ2
r(G(r,w)) 0.7727 0.2272 0.2450 0.7549

(b) Shapley values of
each elementary subcri-
terion with respect to
the totality of criteria

ϕ2
0(G(r,w))

SoSu 0.1896
WaSu 0.3965
ExEa 0.3337
FiFe 0.080

Looking at Table 2.10, one can observe another phenomenon characteristic for the hierarchical

Choquet integral preference model. Indeed, SoSu is more important than WaSu when they are

considered as subcriteria of En, while the opposite is true when they are considered as subcriteria of

the root criterion G0. Analogous situation could be observed for the elementary subcriteria ExEa and

FiFe, where FiFe is more important than ExEa when they are considered as subcriteria of Ec, while

the opposite is true when they are considered as elementary subcriteria of the root criterion G0. Also

this phenomenon could seem unlikely, but this can be explained as before. In fact, when computing

the importance of SoSu with respect to En one has to take into account only the interaction between

SoSu and WaSu, while computing the importance of SoSu with respect to the root criterion G0, one

has to take into account its interaction with WaSu and the two elementary subcriteria of Ec.
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2.2.3 Robust Ordinal Regression (ROR) and Stochastic Multiobjective

Acceptability Analysis (SMAA) applied to the hierarchical Cho-

quet integral preference model

According to Section 2.2.2, to apply the hierarchical Choquet integral preference model, one has to

define the Möbius representation of a capacity defined on the power set of EL, that is m({gt}) for

each elementary subcriterion gt, and m({gt1 , gt2}) for each couple of elementary subcriteria {gt1 , gt2}.

These values will be calculated using an ordinal regression technique from some indirect preference

information. Below, we explain this technique in detail.

Given a criterion Gr, r ∈ IG \ {EL}, the DM is requested to provide the following type of

preference information:

• a is preferred to b on criterion Gr, denoted by a ≻r b (translated to the constraint Cµr
(a) ≥

Cµr
(b) + ε);

• a is indifferent to b on criterion Gr, denoted by a ∼r b (Cµr
(a) = Cµr

(b));

• on criterion Gr, a is preferred to b more than c is preferred to d, denoted by (a, b) ≻∗r (c, d),

(Cµr
(a)− Cµr

(b) ≥ Cµr
(c)− Cµr

(d) + ε and Cµr
(c)− Cµr

(d) ≥ ε);

• on criterion Gr the intensity of preference between a and b is the same as the intensity of

preference between c and d, denoted by (a, b) ∼∗r (c, d) (Cµr
(a)− Cµr

(b) = Cµr
(c)− Cµr

(d)).

Considering criteria Gr1 , Gr2 , Gr3 , Gr4 , with r1, r2, r3, r4 ∈ G
k
r , the DM can provide the following

preference information:

• criterion Gr1 is more important than criterion Gr2 , denoted by Gr1 ≻ Gr2 (translated to the

constraint ϕk
r ({Gr1}) ≥ ϕk

r ({Gr2}) + ε);

• criteria Gr1 and Gr2 are equally important, denoted by Gr1 ∼ Gr2 (ϕk
r ({Gr1}) = ϕk

r ({Gr2}));

• criteria Gr1 and Gr2 are positively interacting (ϕk
r ({Gr1 , Gr2}) ≥ ε);

• criteria Gr1 and Gr2 are negatively interacting (ϕk
r ({Gr1 , Gr2}) ≤ −ε);

• the interaction between criteria Gr1 and Gr2 is greater than the interaction between criteria

Gr3 and Gr4

– if there is positive interaction between both pairs of criteria, then the constraint translating

this preference are ϕk
r ({Gr1 , Gr2})− ϕk

r ({Gr3 , Gr4}) ≥ ε and ϕk
r ({Gr3 , Gr4}) ≥ ε
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– if there is negative interaction between both pairs of criteria, then the constraint translat-

ing this preference are ϕk
r ({Gr1 , Gr2})−ϕk

r ({Gr3 , Gr4}) ≤ −ε and ϕk
r ({Gr3 , Gr4}) ≤ −ε;

• Gr1 is preferred to Gr2 more than Gr3 is preferred to Gr4 , denoted by (Gr1 , Gr2) ≻∗ (Gr3 , Gr4)
(

ϕk
r ({Gr1})− ϕk

r ({Gr2}) ≥ ϕk
r ({Gr3})− ϕk

r ({Gr4}) + ε and ϕk
r ({Gr3})− ϕk

r ({Gr4}) ≥ ε
)

;

• the difference of importance between Gr1 and Gr2 is the same of the difference of impor-

tance between Gr3 and Gr4 , denoted by (Gr1 , Gr2) ∼∗ (Gr3 , Gr4) (ϕk
r ({Gr1}) − ϕk

r ({Gr2}) =

ϕk
r ({Gr3})− ϕk

r ({Gr4})).

Similarly to Section 2.2.2, ε is an auxiliary variable used to convert the strict inequalities into

weak ones. Moreover, like in Section 2.2.2, EDM denotes the set of constraints translating the DM’s

preference information together with the monotonicity and normalization constraints.

To check if there exists at least one compatible capacity, one has to solve the following linear pro-

gramming problem:

ε∗ = max ε, subject to EDM .

If EDM is feasible, and ε∗ > 0 then there exists at least one compatible capacity, otherwise some

inconsistency arised, which has to be identified [125].

Considering criterion Gr located at a not last level of the hierarchy, and the two following sets of

constraints,

Cµr
(b) ≥ Cµr

(a) + ε,

EDM .











EN
r (a, b),

Cµr
(a) ≥ Cµr

(b)

EDM











EP
r (a, b)

the necessary preference relation with respect to criterion Gr holds for alternatives a and b if EN
r (a, b)

is infeasible or εNr ≤ 0, where εNr = max ε, subject to EN
r (a, b). Analogously, the possible preference

relation with respect to criterion Gr holds for alternatives a and b if EP
r (a, b) is feasible and εPr > 0,

where εPr = max ε, subject to EP
r (a, b).

In practice, it is very likely that, given an available preference information, a is possibly preferred

to b and b is possibly preferred to a. Nevertheless, the number of compatible capacities for which

a is preferred to b could be very different from the number of compatible capacities for which b is

preferred to a. For this reason, in order to estimate how good an alternative is compared to others

and how often it is preferred over another alternative, we propose to apply the SMAA methodology.

This technique applied to the hierarchical Choquet integral preference model is explained in detail

below.
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The set of linear constraints in EDM defines a convex set of Möbius parameters. To explore this

set of parameters the Hit-And-Run (HAR) method can be applied [158, 168, 172]. HAR samples

iteratively a set of Möbius parameters satisfying EDM until a stopping condition is met. For each

sampled set of Möbius parameters and a given criterion Gr, one can compute values of the Choquet

integral for all considered alternatives. These values rank the alternatives with respect to Gr. Having

as many rankings as the samples, one can compute the indices typical to the SMAA methodology

recalled in Section 2.2.2:

• the rank acceptability index blk,r, being the frequency with which alternative ak gets position l

in the ranking obtained with respect to criterion Gr,

• the pairwise winning index pr(a, b), giving the frequency of the preference of a over b on criterion

Gr.

Moreover, by using the rank acceptability indices, other two indices recently introduced in [2] can

be computed:

• the downward cumulative rank acceptability index b≤lk,r, being the frequency that alternative ak

will get a position not greater than l on criterion Gr,

b≤lk,r =
l

∑

s=1

bsk,r,

• the upward cumulative rank acceptability index b≥lk,r, being the frequency that alternative ak

will get a position not lower than l on criterion Gr,

b≥lk,r =
n

∑

s=l

bsk,r.

It is worth stressing that at the comprehensive level, represented by criterion G0, we also get the

necessary and possible preference relations on one hand and the SMAA indices on the other hand.

An illustrative real world decision making problem

In this section, we apply the proposed methodology to a real world decision making problem [1].

220 European universities from 30 countries have been evaluated on a 1-5 scale (1-weak, 2-below

average, 3-average, 4-good, 5-very good) with respect to criteria structured in a hierarchical way,

as shown in Figure 2.5. The three macro-criteria are Teaching & Learning (TL), Research (R) and
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Figure 2.5: Hierarchical structure of criteria considered in the case study

Knowledge Transfer (KT), and they are further decomposed to more detailed elementary subcriteria.

For macro-criteron TL, these are:

• Masters Graduation Rate (MGR),

• Masters Graduating on Time (MGOT).

Macro-criterion R is decomposed to:

• Number of Research Publications (NRP),

• Citation Rate (CR),

• Proportion of Top Cited Publications (PTCT),

and macro-criterion KT is decomposed to:

• Number of Patents Awarded (NPA),

• Number of Spin-Offs (NSO),

• Research and Knowledge Transfer Revenues (RKTR).

Description of the elementary subcriteria is given in Table 2.11.

Many of these universities dominate4 the others and, at the same time, many universities are

dominated by others. For this reason, following a procedure well known from the evolutionary mul-

tiobjective optimization method, called NSGA-II [39], we ordered the universities in nondominated

fronts. We put in the first front all nondominated universities; then, after removing these universities

from the list of universities, we put in the second front the universities nondominated among the

4An alternative a dominates an alternative b with respect to criteria {g1, . . . , gn} if, supposing that all criteria are
of the gain type, gi(a) ≥ gi(b) for all i = 1, . . . , n, and there exists at least one j ∈ {1, . . . , n}, such that gj(a) > gj(b).
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Table 2.11: Description of the elementary subcriteria

Elementary subriterion Description

Masters Graduation Rate (MGR) The percentage of new entrants that successfully completed their master programs

Masters Graduating on Time (MGOT) The percentage of graduates that graduated within the time expected (normative time) for their masters programs

Number of Research Publications (NRP) The number of research publications indexed in the Web of Science database, where at least

one author is affiliated to the university (relative to the number of students)

Citation Rate (CR) The average number of times that the university department’s research publications (over the period 2008-2011)

get cited in other research, adjusted (normalized) at the global level to take into account differences in

publication years and to allow for differences

Proportion of Top Cited Publications (PTCP) The proportion of the university’s research publications that, compared to other publications in the same field

and in the same year, belong to the top 10% most frequently cited

Number of Patents Awarded (NPA) The number of patents assigned to (inventors working in) the university (over the period 2001-2010)

Number of Spin-Offs (NSO) The number of spin-offs (i.e. firms established on the basis of a formal knowledge transfer arrangement

between the institution and the firm) recently created by the institution (per 1,000 fte academic staff)

Research and Knowledge Transfer Revenues (RKTR) Research revenues and knowledge transfer revenues from private sources (incl. not-for profit organizations),

excluding tuition fees. Measured in e1,000s using Purchasing Power Parities. Expressed per fte academic staff.

remaining ones, and so on. In this way, the universities belonging to the same front are more ore less

similar, in the sense that there is not any strong evidence for the preference of one university over an-

other. Consequently, it is meaningful from the DM’s point of view to get a ranking recommendation

with respect to universities from the same front. In this section, we shall focus our attention on the

first nondominated front but, of course, a similar analysis could be done also with respect to another

nondominated front, or with respect to any subset of universities considered as most interesting for

a particular DM. The evaluations of the universities belonging to the first nondominated front on

the eight elementary subcriteria are provided in Table 2.12.

Table 2.12: Evaluations of the universities belonging to the first nondominated front on the considered
elementary subcriteria

G(0)

TL (G(1)) R (G(2)) KT (G(3))

University Country MGR (g(1,1)) MGOT (g(1,2)) NRP (g(2,1)) CR (g(2,2)) PTCP (g(2,3)) NPA (g(3,1)) NS0 (g(3,2)) RKTR (g(3,3))

Bocconi University (U25) Italy 5 4 2 5 5 1 1 5
Budapest U Tech & Economics (U35) Hungary 5 3 3 3 3 2 4 2
U Cordoba (U51) Spain 3 5 3 3 3 2 3 5
Tech U Denmark (U61) Denmark 4 4 5 5 5 5 5 5
Dublin Inst. Tech (U64) Ireland 2 5 2 5 5 2 4 2
U Limerick (U108) Ireland 4 5 2 5 4 4 3 5
Lomonosow Moscow State U (U117) Russia 5 5 5 2 2 2 5 5
Mondragon U (U129) Spain 4 5 2 5 5 1 5 5
Newcastle U (U136) United Kingdom 4 5 5 5 5 5 2 5
U Salamanca (U170) Spain 5 4 4 3 3 2 2 4
U Trieste (U196) Italy 5 2 5 4 4 3 3 3
WHU School of Management (U216) Germany 5 5 2 4 4 1 5 5

Suppose that the DM specifies the following preference information on the considered elementary

subcriteria and on the macro-criteria. Within parentheses, we write the constraints translating the

corresponding piece of preference information provided by the DM:

• R is more important than KT that, in turn, is more important than TL

(ϕ0 (R) ≥ ϕ0 (KT ) + ε and ϕ0 (KT ) ≥ ϕ0 (TL) + ε),

• With respect to TL, MGOT is more important than MGR (ϕ2
2 ({MGOT}) ≥ ϕ2

2 ({MGR}) + ε),
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• With respect to KT, RKTR is more important than NSO that, in turn, is more important than

NPA (ϕ2
2 ({RKTR}) ≥ ϕ2

2 ({NSO}) + ε and ϕ2
2 ({NSO}) ≥ ϕ2

2 ({NPA}) + ε),

• At a comprehensive level, PTCP is more important than RKTR that, in turn, is more important

than MGT (ϕ2
0 ({PTCP}) ≥ ϕ2

0 ({RKTR}) + ε and ϕ2
0 ({RKTR}) ≥ ϕ2

0 ({MGT}) + ε),

• TL and R are positively interacting (ϕ1
0 ({TL,R}) ≥ ε),

• R and KT are positively interacting (ϕ1
0 ({R,KT}) ≥ ε),

• TL and KT are positively interacting (ϕ1
0 ({TL,KT}) ≥ ε),

• The interaction between R and KT is greater than the interaction between TL and KT

(ϕ1
0 ({R,KT}) ≥ ϕ1

0 ({TL,KT}) + ε and ϕ1
0 ({TL,KT}) ≥ ε),

• The interaction between R and TL is greater than the interaction between TL and KT

(ϕ1
0 ({R, TL}) ≥ ϕ1

0 ({TL,KT}) + ε and ϕ1
0 ({TL,KT}) ≥ ε),

• With respect to R, NRP and PTCP are positively interacting (ϕ2
2 ({NRP, PTCP}) ≥ ε),

• CR and PTCP are negatively interacting (ϕ2
0 ({CR,PTCP}) ≤ −ε),

• NRP and RKTR are positively interacting (ϕ2
0 ({NRP,RKTR}) ≥ ε),

• NPA and NSO are negatively interacting (ϕ2
0 ({NPA,NSO}) ≤ −ε),

• MGOT and NRP are positively interacting (ϕ2
0 ({MGOT,NRP}) ≥ ε),

Applying NAROR at the comprehensive level, as well as on the three macro-criteria, we get

the necessary preference relations shown in Figures 2.6(a)-2.6(d). Let us observe that the blocks

B1, . . . , B7 in Figures 2.6(b)-2.6(d) are composed of universities having exactly the same evaluations

on the elementary subcriteria descending from the considered macro-criterion. Therefore, for exam-

ple, B1 is composed of U25 and U170 since they have exactly the same evaluations (5 and 4) on MGR

and MGOT, being the two elementary subcriteria descending from macro-criterion TL.

Looking at Figures 2.6(a)-2.6(d) it seems that U61 can be seen as the best university. Indeed,

while it is evident that on R and KT this university dominates all the others, at the comprehensive

level it is necessarily preferred to six out of the eleven universities. Analyzing more in detail the

results of NAROR at the intermediate level, one can observe that the preference information provided

by the DM result in many bold arrows, i.e., necessary preference relations which are not dominance
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(a) Comprehensive level (b) Teaching and Learning
(TL); B1 = {U25, U170},
B2 = {U117, U216}, B3 =
{U108, U129, U136}

(c) Research (R); B4 =
{U25, U64, U129}, B5 = {U35, U51},
B6 = {U61, U136}

(d) Knowledge Transfer (KT); B7 =
{U35, U64}, B8 = {U129, U216}

Figure 2.6: Necessary preference relation at the comprehensive level, as well as with respect to
macro-criteria TL, R and KT. Dotted arrows represent the dominance relation, while bold arrows
represent necessary preference relations obtained by NAROR.
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relations. For example, on TL, U51 is necessarily preferred to U35 and U196, while on R, the universities

belonging to B4 are necessarily preferred to the universities belonging to B5. Moreover, on KT, U117

is necessarily preferred to U196. Let us remind that the results we are showing concern the universities

belonging to the first nondominated front only but they are enough to observe that the application

of NAROR puts many new couples in the necessary preference relations, both at the comprehensive

level, and on particular macro-criteria, contributing in this way to a better understanding of the

decision problem by the DM.

After applying NAROR, we applied the SMAA methodology on the set of compatible value

functions at the comprehensive level and at the level of macro-criteria. At first, for each considered

university, we looked at the best and at the worst position the university could get considering the

whole set of capacities compatible with the preferences provided by the DM as well as the three

highest rank acceptability indices showing, therefore, which are the most likely positions for the

alternatives at hand.

Table 2.13: Rank Acceptability Indices. For each university, we reported the worst and the best
possible positions as well as the three greatest rank acceptability indices. The blocks B1, . . . , B8

are composed of universities having exactly the same evaluations. Let us note that 220 are the
different performance vectors got by the universities at comprehensive level so the rank acceptability
indices are computed for the positions going from the first one to the 220th. Analogously, the rank
acceptability indices with respect to TL are computed for the positions from the first to the 16th,
with respect to R from the first to the 29th while, on KT, from the first to the 55th.

(a) Comprehensive level

University Best
(

bBest
k,0

)

Worst
(

bWorst
k,0

)

high1

(

bhigh1

k,0

)

high2

(

bhigh2

k,0

)

high3

(

bhigh3

k,0

)

U25 18 (0.11%) 103 (0.01%) 52 (3.65%) 55 (3.45%) 58 (3.39%)

U35 80 (0.01%) 132 (0.05%) 106 (4.68%) 108 (4.04%) 105 (3.87%)

U51 47 (0.1%) 83 (0.01%) 65 (6.18%) 60 (6%) 70 (5.71%)

U61 1 (93.29%) 2 (6.71%)

U64 47 (0.02%) 133 (0.05%) 90 (2.82%) 87 (2.72%) 88 (2.66%)

U108 14 (0.16%) 51 (0.01%) 28 (8.55%) 34 (6.19%) 33 (5.8%)

U117 23 (0.15%) 90 (0.06%) 63 (3.22%) 67 (3.15%) 64 (2.82%)

U129 6 (0.2%) 68 (0.11%) 23 (4.8%) 32 (4.24%) 37 (4.12%)

U136 1 (6.71%) 12 (0.12%) 2 (60.18%) 3 (14.36%) 5 (8.88%)

U170 58 (0.04%) 99 (0.04%) 80 (6.04%) 82 (6.12%) 83 (7.02%)

U196 40 (0.01%) 77 (0.33%) 58 (5.88%) 57 (5.64%) 55 (5.6%)

U216 12 (0.04%) 81 (0.01%) 43 (4.59%) 46 (4.04%) 42 (3.65%)

(b) Teaching and Learning

University Best
(

bBest
k,1

)

Worst
(

bWorst
k,1

)

high1

(

bhigh1

k,1

)

high2

(

bhigh2

k,1

)

high3

(

bhigh3

k,1

)

B1 3 (61.91%) 5 (18.47%) 3 (61.91%) 4 (19.62%) 5 (18.47%)

B2 1 (100.00%) 1 (100.00%)

B3 2 (100.00%) 2 (100.00%)

U35 5 (5.93%) 9 (19.37%) 6 (32.95%) 8 (28.3%) 9 (19.37%)

U51 3 (38.09%) 5 (21.64%) 4 (40.27%) 3 (38.09%) 5 (21.64%)

U61 4 (21.64%) 7 (4.04%) 6 (37.63%) 5 (36.69%) 4 (21.64%)

U64 4 (18.47%) 10 (0.05%) 7 (23.9%) 6 (23.52%) 4 (18.47%)

U196 8 (4.48%) 13 (28.09%) 13 (28.09%) 12 (22.16%) 10 (21.72%)

(c) Research

University Best
(

bBest
k,1

)

Worst
(

bWorst
k,1

)

high1

(

bhigh1

k,1

)

high2

(

bhigh2

k,1

)

high3

(

bhigh3

k,1

)

B4 5 (6.9%) 16 (1.27%) 8 (22.16%) 10 (13.81%) 11 (13.72%)

B5 15 (1.28%) 23 (0.14%) 21 (24.59%) 18 (20.95%) 20 (20.65%)

B6 1 (100.00%) 1 (100.00%)

U108 6 (0.32%) 19 (4.23%) 13 (16.05%) 14 (15.25%) 12 (11.63%)

U117 20 (1.71%) 26 (29.18%) 25 (48.64%) 26 (29.18%) 24 (14.85%)

U170 12 (3.03%) 21 (1.34%) 18 (27.28%) 17 (21.32%) 19 (16.49%)

U196 4 (43.99%) 10 (0.01%) 4 (43.99%) 5 (32.95%) 6 (10.96%)

U216 14 (4.66%) 21 (1.71%) 16 (23.79%) 15 (18.16%) 19 (17.19%)

(d) Knowledge Transfer

University Best
(

bBest
k,1

)

Worst
(

bWorst
k,1

)

high1

(

bhigh1

k,1

)

high2

(

bhigh2

k,1

)

high3

(

bhigh3

k,1

)

B7 30 (0.18%) 42 (0.3%) 36 (21.38%) 35 (18.18%) 34 (15.78%)

B8 15 (1.28%) 23 (0.14%) 21 (24.59%) 18 (20.95%) 20 (20.65%)

U25 21 (0.09%) 40 (0.09%) 30 (25.86%) 29 (11.91%) 31 (10.55%)

U51 13 (1.04%) 20 (0.38%) 16 (30.46%) 17 (22.81%) 18 (21.49%)

U61 1 (100.00%) 1 (100.00%)

U108 7 (4.92%) 14 (0.34%) 8 (20.09%) 10 (19.71%) 11 (17.92%)

U117 4 (20.81%) 14 (0.32%) 7 (22.22%) 4 (20.81%) 5 (19.14%)

U136 4 (5.2%) 20 (3.17%) 7 (11.48%) 10 (10.91%) 5 (9.05%)

U170 25 (0.3%) 36 (0.5%) 31 (34.4%) 32 (29.06%) 30 (9.87%)

U196 26 (0.01%) 39 (0.77%) 36 (17.57%) 33 (16.3%) 35 (15.43%)

65



Looking at Tables 2.13(a)-2.13(d) the following considerations could be done:

• At comprehensive level, U61 is confirmed as the best among the considered universities since it

has rank acceptability index for the 1st position equal to 93.29% while the remaining 6.71% is

its rank acceptability index for the 2nd position; analogously, U136 could be considered a really

good university since it fills always a position between the 1st and the 12th and its highest

rank acceptability indices are those corresponding to the 2nd and to the 3rd positions. At

the same time, even if U35 and U64 belong to the highest nondominated front, they do not fill

very high positions in the complete rankings obtained at a comprehensive level. Indeed, on

one hand, the highest position reached by U35 is the 80th while its highest rank acceptability

indices corresponds to the position 106. On the other hand, U64 reaches positions between the

47th and the 133th and its highest rank acceptability index is obtained in correspondence of

the position 90.

• With respect to TL the complete ranking is almost sure. Indeed, the universities belonging

to the block B1, that are U25 and U170, are always in the 1st position while the universities

belonging to the block B2, that are U117 and U216, are always in the 2nd position. Consider-

ing that on this macro-criterion the possible positions are only sixteen since sixteen different

performance vectors are obtained by the considered universities on this macro-criterion, U196

is bad on this macro-criterion since it fills always a position between the 8th and the 13th and

its highest rank acceptability index is obtained in correspondence of the position 13.

• With respect to R, the universities belonging to the block B4, that are U25, U64 and U129, are

the best since they fill always the 1st position. Good results are also obtained by university

U196 which fills always positions between the 4th and the 10th and it has the highest rank

acceptability index in correspondence of the 4th position. U117 is instead a bad university on

this macro-criterion since it fills positions between the 20th and the 26th and its highest rank

acceptability index is obtained in correspondence of the position 25.

• On KT, U61 is always the first while U117 and U136 are quite good since the highest position

got by both of them is the 4th and their greatest rank acceptability index is obtained in

correspondence of the 7th position. At the same time, the universities belonging to block B7,

that are U35 and U64, are not very good on KT since they fill always a position between the

30th and the 42th but their highest rank acceptability index is got in correspondence of the

position 36.
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To compare the universities pairwise, we computed also the pairwise winning indices p(Uh, Uk)

providing the frequency with which university Uh is preferred to university Uk considering all cri-

teria simultaneously, that is at comprehensive level, as well as considering the three macro-criteria

singularly.

Table 2.14: Pairwise Winning Indices

(a) Comprehensive level

p0 (·, ·) U25 U35 U51 U61 U64 U108 U117 U129 U136 U170 U196 U216

U25 0 99.87 77.21 0 94.75 2.69 55.06 3.36 0 94.93 54.78 19.78
U35 0.13 0 0 0 28.34 0 0 0 0 1.13 0 0
U51 22.79 100 0 0 88.08 0 32.1 0.82 0 96.44 23.16 4.65
U61 100 100 100 0 100 100 100 100 93.29 100 100 100
U64 5.25 71.66 11.92 0 0 0 9.85 0 0 26.51 2.25 2.67
U108 97.31 100 100 0 100 0 96.16 47.92 0 100 99.67 86.38
U117 44.94 100 67.9 0 90.15 3.84 0 8.82 0 96.72 45.94 21.63
U129 96.64 100 99.18 0 100 52.08 91.18 0 0.24 100 90.22 99.95
U136 100 100 100 6.71 100 100 100 99.76 0 100 100 100
U170 5.07 98.87 3.56 0 73.49 0 3.28 0 0 0 1.33 0.3
U196 45.22 100 76.84 0 97.75 0.33 54.06 9.78 0 98.67 0 18.88
U216 80.22 100 95.35 0 97.33 13.62 78.37 0.05 0 99.7 81.12 0

(b) Teaching and Learning

p1 (·, ·) B1 B2 B3 U35 U51 U61 U64 U196

B1 0 0 0 100 61.91 100 81.53 100
B2 100 0 100 100 100 100 100 100
B3 100 0 0 100 100 100 100 100
U35 0 0 0 0 0 8.97 36.94 100
U51 38.09 0 0 100 0 78.36 100 100
U61 0 0 0 91.03 21.64 0 63.26 100
U64 18.47 0 0 63.06 0 36.74 0 100
U196 0 0 0 0 0 0 0 0

(c) Research

p2 (·, ·) B4 B5 B6 U108 U117 U170 U196 U216

B4 0 98.73 0 100 100 94.37 14.74 100
B5 1.27 0 0 7.13 100 0 0 29.51
B6 100 100 0 100 100 100 100 100
U108 0 92.87 0 0 100 80.23 0.37 100
U117 0 0 0 0 0 0 0 1.71
U170 5.63 100 0 19.77 100 0 0 43.99
U196 85.26 100 0 99.63 100 100 0 100
U216 0 70.49 0 0 98.29 56.01 0 0

(d) Knowledge Transfer

p3 (·, ·) B7 B8 U25 U51 U61 U108 U117 U136 U170 U196

B7 0 0 5.83 0 0 0 0 0 6.99 36.92
B8 100 0 100 97.27 0 52.58 0 52.26 100 100
U25 94.17 0 0 0 0 0 0 0 89.29 89.29
U51 100 2.73 100 0 0 0 0 10.75 100 100
U61 100 100 100 100 0 100 100 100 100 100
U108 100 47.42 100 100 0 0 25.01 52.24 100 100
U117 100 100 100 100 0 74.99 0 68.77 100 100
U136 100 47.74 100 89.25 0 47.76 31.23 0 100 100
U170 93.01 0 10.71 0 0 0 0 0 0 89.29
U196 63.08 0 10.71 0 0 0 0 0 10.71 0

Further information can be obtained looking at the pairwise winning indices in Tables 2.14(a)-

2.14(d):

• At a comprehensive level, U61 is preferred to all but one the other universities in the first

nondominated front with a frequency equal to the 100% while it is preferred to U136 with a

frequency of the 93.29%. Analogously, U136 is preferred to all but two other universities in the

first nondominated front with a frequency equal to the 100%. Indeed, it is preferred to U61 with

a frequency of the 6.71% while, almost always, it is preferred to U129 (p0(U136, U129) = 99.76%).

Looking at the worst universities in the first nondominated front, U35 could be considered as a

bad university since it is never preferred to the most part of the universities in this front apart

from U25, U64 and U170 to which it is sometimes preferred with frequencies not very high;

• With respect to TL, universities belonging to block B2, that are U117 and U216 are obviously

always preferred to all other universities, while U196 is really bad since it is never preferred to

any other university belonging to the first nondominated front;

• With respect to R, the universities belonging to block B6, that are U61 and U136 are always
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preferred to all the other universities, while U117 could be considered the worst among the

twelve universities at hand since it is only preferred to U216 with a frequency equal to the

1.71%;

• With respect to KT, U61 is preferred to all other universities since it gets the best performances

on all elementary subcriteria descending from this macro-criterion, while U117 could be con-

sidered a quite well university with respect to KT since it is preferred to all other universities

(apart from U61) with a frequency at least equal to the 68.77%. Analogously, universities be-

longing to the block B7, that are U35 and U64, could be considered really bad since all other

universities are almost always preferred to them.

Table 2.15: Barycenter values of the Möbius representation of compatible capacities

m({MGR}) m({MGOT}) m({NRP}) m({CR}) m({PTCP}) m({NPA}) m({NSO}) m({RKTR}) m({MGR,MGOT}) m({MGR,NRP}) m({MGR,CR}) m({MGR,PTCP})

0.0406 0.0841 0.0504 0.1119 0.1485 0.0636 0.1277 0.1646 0.0139 0.0077 0.0506 0.0586

m({MGR,NPA}) m({MGR,NSO}) m({MGR,RKTR}) m({MGOT,NRP}) m({MGOT,CR}) m({MGOT,PTCP}) m({MGOT,NPA}) m({MGOT,NSO}) m({MGOT,RKTR}) m({NRP,CR}) m({NRP,PTCP}) m({NRP,NPA})

0.0085 0.0005 0.0058 0.0238 -0.0027 -0.0249 0.0067 0.0103 0.0009 0.0479 0.0581 0.0117

m({NRP,NSO}) m({NRP,RKTR}) m({CR,PTCP}) m({CR,NPA}) m({CR,NSO}) m({CR,RKTR}) m({PTCP,NPA}) m({PTCP,NSO}) m({PTCP,RKTR}) m({NPA,NSO}) m({NPA,RKTR}) m({NSO,RKTR})

0.0100 0.0147 -0.0464 0.0205 0.0163 -0.0082 0.0113 -0.0053 0.0024 -0.0147 -0.0119 -0.0573

In order to get a ranking of the considered universities with respect to TL, R, KT and at the compre-

hensive level, we computed the barycenter of the Möbius representation of capacities compatible with

the preferences provided by the DM. Their values are shown in Table 2.15. From this table one can

conclude that, considered alone, the most important criterion is RKTR (m ({RKTR}) = 0.1646),

followed by PTCP (m ({PTCP}) = 0.1485) and NSO (m ({NSO}) = 0.1277), while MGR is the

least important one (m ({MGR}) = 0.0406). Moreover, apart from information provided by the

DM about interactions about some elementary subcriteria, Table 2.15 shows other interactions, like

positive interaction between MGR and MGOT or negative interaction between NSO and RKTR.

Computing the Choquet integral value for each university using the barycenter of the Möbius

representations shown in Table 2.15, we get four complete rankings of universities at a comprehensive

level and at the levels of macro-criteria. In Tables 2.16(a)-2.16(d) we show the complete rankings of

the twelve universities in the first nondominated front underlying their positions in the full rankings,

that are those obtained considering the 220 universities at hand.

One can observe that the Tech U Denmark is the best among the considered universities at the

comprehensive level as well as on R and KT, while it fills the 5th position with respect to TL. It is

interesting to note that university of Trieste has a high position with respect to R (5th) while it has

a bad position with respect to KT (35th). Lomonosow Moscow State University behaves exactly in

the opposite way, getting a bad position with respect to R (25th) and a good position with respect

to KT (6th). These observations shed light on the usefulness of the MCHP in providing evaluable

68



Table 2.16: Complete rankings considering barycenter of the Möbius representations shown in Table
2.15

(a) Comprehensive level

Position in the complete ranking University Country

1st Tech U Denmark Denmark
2nd Newcastle U United Kingdom
31th U Limerick Ireland
32th Mondragon U Spain
41th WHU School of Management Germany
53th Bocconi University Italy
54th U Trieste Italy
58th Lomonosow Moscow State U Russia
67th U Cordoba Spain
78th U Salamanca Spain
91th Dublin Inst. Tech Ireland
105th Budapest U Tech & Economics Hungary

(b) Teaching and Learning

Position in the complete ranking University Country

1st Lomonosow Moscow State U Russia
WHU School of Management Germany

2nd U Limerick Ireland
Mondragon U Spain
Newcastle U United Kingdom

3rd Bocconi University Italy
U Salamanca Spain

4th U Cordoba Spain
5th Tech U Denmark Denmark
6th Dublin Inst. Tech Ireland
8th Budapest U Tech & Economics Hungary
12th U Trieste Italy

(c) Research

Position in the complete ranking University Country

1st Tech U Denmark Denmark
Newcastle U United Kingdom

5th U Trieste Italy
9th Bocconi University Italy

Dublin Inst. Tech Ireland
Mondragon U Spain

13th U Limerick Ireland
17th WHU School of Management Germany
18th U Salamanca Spain
19th Budapest U Tech & Economics Hungary

U Cordoba Spain
25th Lomonosow Moscow State U Russia

(d) Knowledge Transfer

Position in the complete ranking University Country

1st Tech U Denmark Denmark
6th Lomonosow Moscow State U Russia
9th Mondragon U Spain

WHU School of Management Germany
10th U Limerick Ireland
11th Newcastle U United Kingdom
16th U Cordoba Spain
28th Bocconi University Italy
31th U Salamanca Spain
35th U Trieste Italy
36th Budapest U Tech & Economics Hungary

Dublin Inst. Tech Ireland

insight into the problem at hand at different nodes of the hierarchy of criteria.

Even if we performed the analysis of the results for the alternatives belonging to the first nondomi-

nated front, for the sake of completeness, in Table 2.17 we list the first ten universities in the ranking

at comprehensive level obtained considering the barycenter of the Möbius representation of the ca-

pacities compatible with the preference information provided by the DM. Moreover, we reported also

the rank acceptability indices of the same universities with respect to the first five positions in the

ranking.

Table 2.17: First ten universities in the ranking at comprehensive level obtained by considering the
barycenter of the Möbius representations of the capacities compatible with the preferences provided
by the DMs. Moreover, we provide the rank acceptability indices of the same universities for the
first five positions.

Position University Country b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k
1st Tech U Denmark Denmark 93.29 6.71 0 0 0 0 0 0 0 0
2nd Newcastle U United Kingdom 6.71 60.18 14.36 6.99 8.88 0.61 1.08 0.32 0.3 0.31
3th Eindhoven U Tech The Netherlands 0 33.11 16.54 34.88 10.72 4.75 0 0 0 0
4th U Liverpool United Kingdom 0 0 50.12 20.91 6.44 16.13 1.46 1.58 0.84 1.07
5th U Bern Switzerland 0 0 0 11 38.28 16.13 21 4.24 1.39 0.85
6th Karlsruhe Inst. Tech (Kinst. Tech) Denmark 0 0 7.49 12.43 17.79 26.64 12.56 18.71 3.92 0.41
7th Tech U München Germany 0 0 11.26 8.47 9.22 14.52 26.74 10.58 9.3 3.23
8th U Liege Belgium 0 0 0 0.19 0.51 1.29 3.91 8.51 16.29 21.56
9th U Stuttgart Germany 0 0 0 0.89 2.46 2.03 7.37 13.49 10.67 10.63
10th U Groningen The Netherlands 0 0 0 0 0 4.52 5.53 10.71 18.63 10.21

Looking at Table 2.17, one can argue that something is wrong in the presented results since only

two of the universities in the first ten positions in the comprehensive ranking belong to the first
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nondominated front, that are the Tech U Denmark and the Newcastle U, even if it is not the case.

Indeed, the fact that a university belong to the first nondominated front means only that there is not

any other university dominating it in consequence of its excellence in one or more of the elementary

subcriteria. This does not mean that at comprehensive level, that is considering all elementary

subcriteria simultaneously, a university having not any excellence in some elementary subcriteria but

having in average good performance could not be a good university. For example, the Liverpool

university belongs to the 2nd nondominated front but its performances are such that it fills the 3rd

position in the final ranking with a frequency of 50.12%. Even more, we could observe that three of

the first ten universities belong to the 2nd nondominated front (Eindhoven U Tech and U Liverpool),

three at the 3rd nondominated front (U Bern, Karlsruhe Inst. Tech and Tech U München), while two

belong to the 4th nondominated front (U Stuttgart and U Groningen). Once more, we would like to

underline that, even if we performed the analysis of the results for the universities belonging to the

first nondominated front, the DM could make a similar analysis on every other subset of universities

(s)he is interested in, therefore universities in another nondominated front or universities belonging to

the same country and so on. The full list of the considered universites as well as the result obtained by

applying the NAROR and the SMAA methodologies are available at data-MCHP-NAROR-SMAA.

2.2.4 Conclusions

In this paper, we presented a methodology of handling a hierarchical structure of interacting criteria

in the multiple criteria ranking problem. To this end, we applied the Multiple Criteria Hierarchy

Process with the Choquet integral preference model. The preference information provided by the user

in the course of the decision aiding process has the form of pairwise comparisons of some alternatives

and some criteria at different levels of the hierarchy of criteria. The set of instances of the Choquet

integral compatible with this preference information is identified using the Robust Ordinal Regression

(ROR). Then, Stochastic Multiobjective Acceptability Analysis (SMAA) is applied on this set of

compatible instances, leading to recommendations in the form of complete rankings of alternatives

at the comprehensive level of the hierarchy of criteria and with respect to all subcriteria excluding

the elementary ones. SMAA provides, moreover, many useful indices permitting to assess the relative

quality of particular alternatives in different nodes of the hierarchy tree, i.e., with respect to different

macro-criteria..

The presented methodology performs a constructive learning process in which the user learns

from the results supplied by ROR and SMAA indices, and the method learns from the preference
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information supplied incrementally by the user in successive iterations. This process ceases when the

obtained recommendations and indices are conclusive enough for the user.

We envisage to apply the hierarchical Choquet integral preference model in conjunction with

ROR and SMAA in case of criteria involving different evaluation scales. In this case, the method

presented recently in [4] can be used to construct a common scale without the need of normalizing

the evaluations.

Appendix

Proof of Proposition 2.2.1

We shall prove Proposition 2.2.1 by induction over α.

• First, let us prove the thesis for α = 1. In this case, considering criterion G(r,w1) as subcriterion

of criterion Gr at the level k, we have

mk
r(
{

G(r,w1)

}

) = µk
r(
{

G(r,w1)

}

) =
µ(E(

{

G(r,w1)

}

))

µ(E(Gr))
=

∑

T⊆E(G(r,w1)
)

m(T )

µ(E(Gr))
.

The first equality is obtained by eq. (2.26) defining the Möbius transformation mk
r of the

capacity µk
r ; the second equality is obtained by equation (2.22) defining the capacity µk

r in

terms of the capacity µ while the third one is obtained by equation (2.13) defining the Möbius

transformation m of the capacity µ.

• Let us suppose that the thesis is true for α = n−1, that is, for all
{

G(r,w1), . . . , G(r,wn−1)

}

⊆ Gk
r ,

mk
r(
{

G(r,w1), . . . , G(r,wn−1)

}

) =

∑

T1⊆E(G(r,w1)
), T1 6=∅,

···
Tα⊆E(G(r,wn−1)

), Tn−1 6=∅,

m({T1, . . . , Tn−1})

µ(E(Gr))
.

• Now, let us prove that the thesis is true for α = n.

Let
{

G(r,w1), . . . , G(r,wn)

}

⊆ Gk
r and let us compute µk

r

({

G(r,w1), . . . , G(r,wn)

})

.
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– By equation (2.26), we have that

µk
r

({

G(r,w1), . . . , G(r,wn)

})

=
∑

T⊆{G(r,w1)
,...,G(r,wn)}

mk
r(T ) =

∑

T⊂{G(r,w1)
,...,G(r,wn)}

mk
r(T )+

+mk
r

({

G(r,w1), . . . , G(r,wn)

})

=
n

∑

β=1

mk
r

({

G(r,wβ)

})

+
∑

{β1,β2}⊂{w1,...,wn}

mk
r

({

G(r,β1), G(r,β2)

})

+

+ . . . +
∑

{β1,...,βn−1}⊂{1,...,n}

mk
r

({

G(r,β1), . . . , G(r,βn−1)

})

+ mk
r

({

G(r,w1), . . . , G(r,wn)

})

.

For the inductive hypothesis, we have therefore that

µk
r

({

G(r,w1), . . . , G(r,wn)

})

=
n

∑

β=1

∑

Tβ⊆E
(

G(r,wβ)

)

m(Tβ)

µ(E(Gr))
+

+
∑

{β1,β2}⊂{w1,...,wn}

∑

Tβ1
⊆E

(

G(r,wβ1
)

)

,Tβ1
6=∅,

Tβ2
⊆E

(

G(r,wβ2
)

)

,Tβ2
6=∅

m ({Tβ1 , Tβ2})

µ(E(Gr))
+ . . .+ (2.31)

+
∑

{β1,...,βn−1}⊂{1,...,n}

∑

Tβ1
⊆E

(

G(r,wβ1
)

)

,Tβ1
6=∅,

···

Tβn−1
⊆E

(

G(r,wβn−1
)

)

,Tβn−1
6=∅

m
({

Tβ1 , . . . , Tβn−1

})

µ(E(Gr))
+mk

r(
{

G(r,w1), . . . , G(r,wα)

}

).

– From equation (2.22) we have that

µk
r

({

G(r,w1), . . . , G(r,wn)

})

=
µ
(

E
({

G(r,w1), . . . , G(r,wn)

}))

µ(E(Gr))
=

∑

T⊆E({G(r,w1)
,...,G(r,wn)})

m(T )

µ(E(Gr))
=

=
n

∑

β=1

∑

Tβ⊆E
(

G(r,wβ)

)

m(Tβ)

µ(E(Gr))
+

∑

{β1,β2}⊂{w1,...,wα}

∑

Tβ1
⊆E

(

G(r,wβ1
)

)

, Tβ1
6=∅,

Tβ2
⊆E

(

G(r,wβ2
)

)

, Tβ2
6=∅

m ({Tβ1 , Tβ2})

µ(E(Gr))
+
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+ . . . +
∑

{β1,...,βn−1}⊂{1,...,n}

∑

Tβ1
⊆E

(

G(r,wβ1
)

)

, Tβ1
6=∅,

...

Tβα−1
⊆E

(

G(r,wβn−1
)

)

, Tβn−1
6=∅

m
({

Tβ1 , . . . , Tβn−1

})

µ(E(Gr))
+ (2.32)

+

∑

T1⊆E(G(r,w1
)), T1 6=∅,

···
Tn⊆E(G(r,wn)), Tn 6=∅

m ({T1 ∪ . . . ∪ Tn})

µ(E(Gr))

From equations (2.31) and (2.32), we get the thesis.

Proof of Proposition 2.2.2

Let m the Möbius representation of a q-additive capacity µ,
{

G(r,w1), . . . , G(r,wα)

}

⊆ Gk
r with α > q

and mk
r the Möbius representation of the capacity µk

r . By Proposition (2.2.1), we have that

mk
r

({

G(r,w1), . . . , G(r,wα)

})

=

∑

T1⊆E(G(r,w1)), T1 6=∅,
···

Tα⊆E(G(r,wα)), Tα 6=∅

m ({T1, . . . , Tα})

µ(E(Gr))
.

Observing that the set {T1, . . . , Tα} will contain at least q + 1 elements (since α > q) and that the

capacity µ is q-additive, we get that mk
r

({

G(r,w1), . . . , G(r,wα)

})

= 0 for all
{

G(r,w1), . . . , G(r,wα)

}

⊆ Gk
r

with α > q.

Proof of Proposition 2.2.3

1. Given G(r,w) ∈ G
k
r , by equations (2.27) and (2.2.1) and, considering that the capacity µ is

2-additive, we have that

ϕk
r

({

G(r,w)

})

=
∑

F⊆Gk
r : G(r,w)∈F

mk
r (F)

|F|
= mk

r

({

G(r,w)

})

+
∑

G(r,w1)
⊆Gk

r \{G(r,w)}

mk
r

({

G(r,w), G(r,w1)

})

2
=

=
∑

T⊆E(G(r,w))

m(T )

µ(E(Gr))
+

1

2

∑

G(r,w1)
⊆Gk

r \{G(r,w)}

∑

T1⊆E(G(r,w)), T1 6=∅,

T2⊆E(G(r,w1)), T2 6=∅

m({T1, T2})

µ(E(Gr))
=
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=
1

µ(E(Gr))







∑

t∈E(G(r,w))

m(gt) +
∑

t1,t2∈E(G(r,w))

m ({gt1 , gt2})






+

1

µ(E(Gr))

∑

t1∈E(G(r,w)),
t2∈E(Gk

r \G(r,w))

m ({gt1 , gt2})

2
=

=













∑

t∈E(G(r,w))

m(gt) +
∑

t1,t2∈E(G(r,w))

m ({gt1 , gt2}) +
∑

t1∈E(G(r,w)),
t2∈E(Gk

r \G(r,w))

m ({gt1 , gt2})

2













1

µ (E(Gr))
.

2. Given G(r,w1), G(r,w2) ∈ G
k
r , by equation (2.28) and Proposition 2.2.1 and, considering that the

capacity µ is 2-additive, we have that

ϕk
r

({

G(r,w1), G(r,w2)

})

=
∑

F⊆Gk
r : G(r,w1)

,G(r,w2)
∈F

mk
r(F)

|F| − 1
= mk

r

({

G(r,w1), G(r,w2)

})

=

=
∑

T1⊆E(G(r,w1)), T1 6=∅,

T2⊆E(G(r,w2)), T2 6=∅

m ({T1, T2})

µ(E(Gr))
=











∑

t1∈E(G(r,w1)
),

t2∈E(G(r,w2)
)

m ({gt1 , gt2})











1

µ(E(Gr))
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Chapter 3

Contributions related to the Interaction

between criteria

In section 1.1 we stated that, if the mutual preference independence is satisfied, then the preferences

provided by the DM can be represented by an additive value function. But, in general, the set of

criteria is not always mutually preferentially independent. For this reason, in the last decades, the

non-additive integrals and, in particular, the Choquet integral preference model began to be used

very frequently in literature. Two drawbacks of the Choquet integral preference model have been

highlighted, that are, the great number of parameters necessary to its application (2n − 2 in case of

n criteria) and the requirement that all the evaluations of the alternatives on different criteria are

given on a common scale. While the first problem has been dealt by using ordinal regression [6, 119]

and non-additive robust ordinal regression [8], in the first two contributions of this chapter we dealt

with the problem of the construction of a common scale.

In the first contribution, we proposed a procedure to build a common scale for the evaluations of the

alternatives and, since as in the case of the models compatible with the preferences provided by the

DM, more than one common scale could be built, we applied the SMAA methodology to take into

account the plurality of common scales that can be built.

In the second contribution, instead, we applied AHP to build a common scale proposing a new

methodology to reduce the number of pairwise comparisons requested in AHP.

In the third contribution we proposed to apply the Choquet integral preference model to the evo-

lutionary multiobjective optimization. The contribution proposed for the first time the application

of the Choquet integral preference model to the evolutionary multiobjective field and the Choquet

integral is used to address the research on the region of the Pareto front most interesting for the
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DM. The proposed method, called NEMO-II-Ch, has been tested on several benchmark problems on

different dimensions outperforming in most of the cases the other methods with which it has been

compared.

The three contributions related to the interaction between criteria are provided in sections 3.1,

3.2 and 3.3, respectively.
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3.1 Stochastic Multiobjective Acceptability Analysis for the

Choquet integral preference model and the scale con-

struction problem

3.1.1 Introduction

In Multiple Criteria Decision Aiding (MCDA) (see [51] for a collection of surveys on MCDA), an

alternative ak, belonging to a finite set of l alternatives A = {a1, . . . , al}, is evaluated on the basis

of a family of n criteria G = {g1, . . . , gn}. For example, in a car decision problem, the set A is

composed of different car models while criteria in G are features of the cars taken into consideration,

such as, price, maximum speed, acceleration and so on. In the description of the methodology we

are proposing, we shall suppose, for the sake of simplicity, that gi : A → Xi ⊆ R, which does not

exclude Xi from being a number-coded ordinal scale.

To give a recommendation for the decision making problem at hand, the evaluations of the

alternatives on all criteria have to be aggregated. In literature, the three main aggregation approaches

are the Multi-Attribute Value Theory (MAVT) [109], the outranking methods [141] (among which

the most well known are the ELECTRE [54] and PROMETHEE [27] methods) and the Dominance-

based Rough Set Approach (DRSA, see [82]). In the following, we shall describe MAVT being the

aggregation approach used in the paper.

MAVT takes into consideration an overall value function U : Rn → R with U(g1(ak), . . . , gn(ak)) =

U(ak), such that alternative ak is indifferent to alternative ah iff U(ak) = U(ah) and ak is preferred

to ah iff U(ak) > U(ah) for any ak, ah ∈ A. The value functions used in MAVT can take different

forms, but, the most common is the additive one. It is based on the preference independence of

the criteria [109, 174], even if it is an unrealistic assumption or a too strong simplification, since in

many cases the criteria can be interacting. For instance, let us consider the car decision problem

introduced above. On one hand, maximum speed and acceleration are redundant criteria because,

in general, speedy cars also have a good acceleration. Therefore, even if these two criteria can be

very important, their comprehensive importance is smaller than the sum of the importance of the

two criteria considered separately. On the other hand, maximum speed and price lead to a synergy

effect, because a speed car having also a low price is very well appreciated. For such a reason, the

comprehensive importance of these two criteria should be greater than the sum of the importance of

the two criteria considered separately.
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In the MAVT context, multiplicative and multilinear value functions are able to take into account

interactions between criteria but, due to the high number of parameters that have to be elicited from

the DM, its use results of marginal relevance in real world applications [161]. Recently, interactions

between criteria have been considered also in ELECTRE methods [52] and PROMETHEE methods

[34].

Within MCDA, the interaction between criteria has frequently been dealt by using non-additive

integrals, the most well known of which are the Choquet integral [31] and the Sugeno integral [162]

(see [68, 73, 74] for a comprehensive survey on the use of non-additive integrals in MCDA; see also

[71, 72, 80, 90] for some recently proposed extensions of non-additive integrals useful in MCDA).

The two main drawbacks of the Choquet integral preference model are the great number of

parameters that have to be elicited in order to apply it and the requirement that criteria are on a

common scale.

Regarding the elicitation of the preference parameters, the DM can provide direct or indirect pref-

erence information [6, 119]. The DM gives direct preference information when she provides directly

all the values of the parameters present in the model. The DM supplies indirect preference informa-

tion (see e.g. [97]) when she provides some preferences between alternatives or comparisons about

importance and interaction of criteria from which compatible preference parameters can be inferred.

With respect to the Choquet integral preference model, the inference of the preference parameters is

really challenging, but several methodologies have been proposed in literature [70, 119].

Concerning the common scale problem, let us mention that the Choquet integral preference model

requires that evaluations on different criteria have to be compared between them. For example, in

the considered car decision problem, the DM should be able to compare the speed of a car with its

acceleration estimating, for example, if the maximum speed of 200 km/h is as valuable as a price

of 35, 000 e. This problem is quite well known in literature (see e.g. [124]) but, to the best of

our knowledge, very few contributions tackled the problem (e.g. [6] proposes a search of a common

scale through Monte Carlo simulation). In this paper, we shall deal with these two drawbacks of the

Choquet integral preference model.

The elicitation of the preference parameters has been already taken into account in our previous

work [3], where the SMAA-Choquet methodology has been presented. In that paper, we have applied

the Stochastic Multiobjective Acceptability Analysis (SMAA) (for a survey on SMAA methods see

[164]) to explore the whole space of parameters compatible with some preference information provided

by the DM related to the importance and the interaction of criteria.

The contributions of this paper are threefold:
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1. SMAA-Choquet has been extended by taking into account also the DM’s preference information

regarding the pairwise comparison of some reference alternatives,

2. SMAA-Choquet has been also enhanced by including the possibility that the evaluations on

criteria may be given imprecisely, that is the evaluation of each alternative on the considered

criteria is not given punctually but as interval of possible evaluations,

3. SMAA-Choquet includes a procedure aiming to obtain a common scale for all considered criteria

permitting, therefore, to apply the Choquet integral preference model.

The paper is organized as follows. In Section 2, we introduce the Choquet integral preference

model, presented by a didactic example. In Section 3, we briefly describe the SMAA methods. Our

simulation based approach, proposed in the context of the Choquet integral preference model, is

introduced in Section 4 and illustrated by two examples in Section 5. Some conclusions and future

directions of research are presented in Section 6.

3.1.2 The Choquet integral preference model

Very often the aggregation of the evaluations of an alternative on the considered criteria is done by

means of the simplest additive value function, i.e. the weighted sum. It is obtained considering a

vector of non-negative weights w = [w1, ..., wn] (one for each criterion in G), that permits to assign

a value U(ak) = w1g1(ak) + . . . + wngn(ak) to the alternative ak ∈ A. Notice that, in the rest of the

paper, we shall use the terms criterion gi and criterion i interchangeably.

The weighted sum has several limitations to represent preferences (see e.g. [68, 109]) as illustrated

by the following didactic example inspired by [73].

Example The dean of a technical school wants to evaluate students s1, s2 and s3 whose marks on

Mathematics and Physics are shown in Table 3.1.

Table 3.1: Students’ evaluations on Mathematics and Physics given on a [0, 30] scale

Math Phy
s1 26 30
s2 28 28
s3 30 26

Since students good in Mathematics are in general good also in Physics, if there is a good mark

in one of the two subjects, one can expect a good mark also in the other subject. Consequently, a

student good in Mathematics and in Physics is of course appreciated, but the dean does not want to
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overvalue students having good marks in both subjects. Thus, for the dean, students s1 and s3 are

preferred to student s2.

In this case, we can say that there is a negative interaction (redundancy) between Mathematics and

Physics. To represent the dean’s preferences by means of the weighted sum model, the following

inequalities should be satisfied:

wMath · 26 + wPhy · 30 > wMath · 28 + wPhy · 28,

wMath · 30 + wPhy · 26 > wMath · 28 + wPhy · 28,

where wMath and wPhy are the weights of Mathematics and Physics, respectively. It is easily verified

that the above inequalities are contradictory since:

wMath · (−2) + wPhy · 2 > 0 > wMath · (−2) + wPhy · 2

Thus, we have to conclude that, due to the redundancy between Mathematics and Physics, the

weighted sum is not able to represent the dean’s preferences.

In order to represent preferences in case of interaction between criteria, one has to use some

preference model more general than the weighted sum. This is the case of the non-additive integrals

among which the most well-known is the Choquet integral [31]. It proposes an extension of the

weighted sum model to the case of interacting criteria and it is based on the concept of capacity

(fuzzy measure) that assigns a weight to each subset of criteria. More precisely, denoting by 2G the

power set of G (i.e. the set of all subsets of G), the function µ : 2G → [0, 1] is called a capacity (fuzzy

measure) on 2G if the following properties are satisfied:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ S ⊆ T ⊆ G, µ(S) ≤ µ(T ) (monotonicity condition).

Intuitively, for all T ⊆ G, µ(T ) can be interpreted as the comprehensive importance of the criteria

from T considered as a whole.

Example (Continuation). To represent the importance of Mathematics and Physics taken singu-

larly and considered together, one can set µ1({Math}) = µ1({Phy}) = 0.6 and µ1({Math, Phy}) =

1. The difference µ1({Math, Phy}) − µ1({Math}) − µ1({Phy}) = −0.2 represents the negative

interaction between Mathematics and Physics since it is the difference between the importance of

Mathematics and Physics considered as a whole (µ1({Math, Phy})), and the sum of their importance

when they are considered singularly (µ1({Math}) + µ1({Phy})).
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If there is no interaction between the considered criteria, we have µ(S ∪ T ) = µ(S) + µ(T ), for

any S, T ⊆ G such that S ∩ T = ∅ and the capacity is called additive. If a capacity is additive

then µ(T ) =
∑

i∈T

µ({i}) and, consequently, the values µ({1}), µ({2}) . . . , µ({n}) (corresponding to

the weights wi of the weighted sum model), are sufficient to rebuild the whole capacity µ.

Whenever the capacity is non-additive, in general, one has to assess 2|G|− 2 values µ(T ), ∅ ⊂ T ⊂ G,

since the values µ(∅) = 0 and µ(G) = 1 are already known.

If the criteria from G are interacting and their importance is represented by a capacity µ, the

weighted sum can be extended through the Choquet integral [31] that assigns the following value to

each ak ∈ A:

Cµ(ak) =
n

∑

i=1

[

g(i)(ak)− g(i−1)(ak)
]

µ (Ni) ,

where (·) stands for a permutation of the indices of criteria such that g(1)(ak) ≤ . . . ≤ g(n) (ak) ,

Ni = {(i), . . . , (n)} and g(0) = 0.

A meaningful and useful reformulation of the capacity µ and of the Choquet integral can be

obtained by means of the Möbius representation of the capacity µ which is a function m : 2G → R

[153] defined as follows:

µ(S) =
∑

T⊆S

m(T ).

Note that if S is a singleton, i.e. S = {i} with i = 1, 2, . . . , n, then µ({i}) = m({i}) while, if S is a

couple (non-ordered pair) of criteria, i.e. S = {i, j}, then µ({i, j}) = m({i}) + m({j}) + m({i, j}).

The Möbius representation m(S) can be obtained from µ(S) as follows:

m(S) =
∑

T⊆S

(−1)|S−T |µ(T ).

In terms of Möbius representation, properties 1a) and 2a) are, respectively, restated as:

1b) m(∅) = 0,
∑

T⊆G

m(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i} , m({i}) +
∑

T⊆R

m(T ∪ {i}) ≥ 0.

The Choquet integral may be reformulated in terms of Möbius representation as follows:

Cµ(ak) =
∑

T⊆G

m(T ) min
i∈T

gi (ak) . (3.1)
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Example (Continuation). The value assigned to student s1 by the Choquet integral in terms of

the capacity µ1 is the following:

Cµ1(s1) = gMath(s1) · µ1({Math, Phy}) + (gPhy(s1)− gMath(s1)) · µ1({Phy}) = 28.4.

This value can be explained as follows. The mark gMath(s1) = 26 is attained on both subjects and,

therefore, it is multiplied by µ1({Math, Phy}), i.e. the weight assigned to Mathematics and Physics

considered as a whole. The mark gPhy(s1) = 28 is attained on Physics only and, consequently,

the difference gPhy(s1) − gMath(s1) is multiplied by µ1({Phy}), i.e. the weight assigned to Physics

considered singularly. Analogously, we get Cµ1(s2) = 28 and Cµ1(s3) = 28.4, so that Cµ1(s1) >

Cµ1(s2) and Cµ1(s3) > Cµ1(s2). Therefore, we can conclude that the Choquet integral is able to

represent the dean’s preferences.

Observe also that the Möbius representation m1 of the capacity µ1 gives m1({Math}) = m1({Phy}) =

0.6 and m1({Math, Phy}) = −0.2 and, consequently, the Choquet integral related to student s1 can

be reformulated as follows in terms of the Möbius representation m1:

Cµ1
(s1) = gMath(s1) ·m1({Math}) + gPhy(s1) ·m1({Phy}) + min(gMath(s1), gPhy(s1)) ·m1({Math, Phy}) = 28.4

Considering its formulation in terms of Möbius representation, the Choquet integral can be explained

as follows. The marks in Mathematics and Physics are multiplied by m1({Math}) and m1({Phy})

representing, in some form, the weights related to their additive components. However, the value so

obtained has to be corrected by adding min(gMath(s1), gPhy(s1)) ·m1({Math, Phy}) representing the

negative interaction between Mathematics and Physics. The Choquet integral related to students s2

and s3 can be analogously reformulated in terms of the Möbius representation m1.

With the aim of reducing the number of parameters to be elicited, in [69] the concept of k-

additive capacity has been introduced. A capacity is called k-additive if m(T ) = 0 for T ⊆ G such

that |T | > k.

Within an MCDA context, it is easier and more straightforward to consider 2-additive capacities

since, in such case, the DMs have to express a preference information on positive and negative inter-

actions between two criteria, neglecting more complex interactions among three, four and generally

k ≤ n criteria. Moreover, by considering 2-additive measures the computational issue of determining

the parameters is weakened, since only n +
(

n
2

)

coefficients have to be assessed; specifically, in terms

of Möbius representation, a value m({i}) for every criterion i and a value m({i, j}) for every couple
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of criteria {i, j}. For all these reasons, in the following we shall consider 2-additive capacities only.

However, the methodology we are presenting can be applied to any capacity.

The value that a 2-additive capacity µ assigns to a set S ⊆ G can be expressed in terms of the

Möbius representation as follows:

µ(S) =
∑

i∈S

m ({i}) +
∑

{i,j}⊆S

m ({i, j}) , ∀S ⊆ G.

With regard to 2-additive capacities, properties 1b) and 2b) have, respectively, the following

expressions:

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)















m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

In this case, the Choquet integral assigns to ak ∈ A the following value:

Cµ(ak) =
∑

i∈G

m ({i}) gi (ak) +
∑

{i,j}⊆G

m ({i, j}) min{gi (ak) , gj (ak)}. (3.2)

Since, in this context, the importance of a criterion does not depend only on its importance as a

single but also on its contribution to each coalition of criteria to which it participates, we recall the

definitions of the importance of a criterion and of the interaction index for a couple of criteria.

Taking into account the Möbius representation of a 2-additive capacity µ, the importance of criterion

i ∈ G, expressed by the Shapley value [154], can be written as follows:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
.

The interaction index, expressing the sign and the magnitude of the interaction in a couple of criteria

{i, j} ⊆ G in case of a 2-additive Möbius representation of a capacity µ, is given by:

ϕ ({i, j}) = m ({i, j}) .

Example (Continuation). Capacity µ1 is trivially 2-additive and we have
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ϕ ({Math}) = m1 ({Math}) +
m1 ({Math, Phy})

2
= 0.5.

Observing that ϕ ({Phy}) = 0.5 and, consequently, ϕ ({Math}) = ϕ ({Phy}), we can conclude that

the marks in Mathematics and Physics have the same importance. Moreover, the value ϕ ({Math, Phy}) =

−0.2 confirms that the two considered criteria are negatively interacting.

3.1.3 SMAA

Stochastic Multiobjective Acceptability Analysis (SMAA) [113, 115] is a family of MCDA methods

aiming to get recommendations on the problem at hand taking into account uncertainty or imprecision

on the considered data and preference parameters. Several SMAA methods have been developed to

deal with different MCDA problems: SMAA-2 has been presented in [115] for ranking problems,

SMAA-O [114] has been introduced for multicriteria problems with ordinal criteria and SMAA-TRI

[165] for sorting problems. Other two recent contributions related to SMAA and ROR have been

presented in [105] and [106]. In the following, we shall describe SMAA-2 since, in this paper, we have

considered ranking problems only.

In SMAA-2, the most commonly used value function is the linear one:

u(ak, w) =
n

∑

i=1

wigi(ak).

In order to take into account imprecision or uncertainty, SMAA-2 considers two probability dis-

tributions fW (w) and fχ(ξ) on W and χ, respectively, where W = {(w1, . . . , wn) ∈ R
n : wi ≥

0 and
∑n

i=1 wi = 1} and χ is the evaluation space.

First of all, SMAA-2 introduces a ranking function relative to the alternative ak:

rank(k, ξ, w) = 1 +
∑

h 6=k

ρ (u(ξh, w) > u(ξk, w)) ,

where ρ(false) = 0 and ρ(true) = 1.

Then, for each alternative ak, for each evaluation of alternatives ξ ∈ χ and for each rank r = 1, . . . , l,

SMAA-2 computes the set of weights of criteria for which alternative ak assumes rank r:

W r
k (ξ) = {w ∈ W : rank(k, ξ, w) = r} .

SMAA-2 is based on the computation of the following indices:
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• The rank acceptability index measures the variety of different parameters compatible with the

DM’s preference information giving to the alternative ak the rank r:

brk =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r
k
(ξ)

fW (w) dw dξ;

brk gives the probability that alternative ak has rank k and it is within the range [0, 1].

• The central weight vector describes the preferences of a typical DM giving to ak the best

position and it is defined as follows:

wc
k =

1

b1k

∫

ξ∈χ

fχ(ξ)

∫

w∈W 1(ξ)

fW (w)w dw dξ;

• The confidence factor is defined as the frequency of an alternative to be the preferred one with

the preferences expressed by its central weight vector and it is given by:

pck =

∫

ξ∈χ:u(ξk,w
c
k
)≥u(ξh,w

c
k
)

∀h=1,...,l

fχ(ξ) dξ.

In the following, we shall consider also the frequency that an alternative ah is weakly preferred

to an alternative ak in the space of the preference parameters (weight vectors in case of SMAA-2):

phk =

∫

w∈W

fW (w)

∫

ξ∈χ:u(ξh,w)≥u(ξk,w)

fχ(ξ)dξ dw.

Let us notice that the previous index phk is also known as pairwise winning index and it has been

introduced in [116, 166].

From a computational point of view, the multidimensional integrals defining the considered indices

are estimated by using the Monte Carlo method.

3.1.4 An extension of the SMAA method to the Choquet integral pref-

erence model

In this section, we shall present the SMAA-Choquet method putting together the Choquet integral

preference model and the SMAA methodology.

As observed in Section 3.1.2, the use of the Choquet integral in terms of Möbius representation

with a 2-additive capacity requires the evaluation of n+
(

n
2

)

parameters and in order to assess these
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parameters, the DM is asked to provide some preference information in a direct or an indirect way.

Generally, the indirect preference information requires less cognitive effort from the DM, and for this

reason it is widely used in MCDA (see for example [8, 82, 97, 98]). In the following, we shall suppose

that the DM is able to provide some indirect preference information and we shall use the 2-additive

Choquet integral preference model expressed in terms of the Möbius representation.

Using the Choquet integral preference model, the DM can provide the following preference infor-

mation:

• Comparisons related to importance and interaction of criteria:

– criterion i is at least as important as criterion j (and we shall write i % j): ϕ({i}) ≥

ϕ({j});

– criterion i is more important than criterion j (i ≻ j): ϕ({i}) > ϕ({j});

– criteria i and j have the same importance (i ∼ j): ϕ({i}) = ϕ({j});

– criteria i and j are synergic: ϕ({i, j}) > 0;

– criteria i and j are redundant: ϕ({i, j}) < 0.

• Comparisons between couples or quadruples of alternatives:

– alternative ak is at least as good as alternative ah (ak % ah): Cµ(ak) ≥ Cµ(ah);

– alternative ak is preferred to alternative ah (ak ≻ ah): Cµ(ak) > Cµ(ah);

– alternative ak and ah are indifferent (ak ∼ ah): Cµ(ak) = Cµ(ah);

– alternative ak is preferred to alternative ah more than alternative as is preferred to alter-

native at ((ak, ah) ≻∗ (as, at)): Cµ(ak)− Cµ(ah) > Cµ(as)− Cµ(at);

– the difference of preference between ak and ah is the same of the difference of preference

between as and at ((ak, ah) ∼∗ (as, at)): Cµ(ak)− Cµ(ah) = Cµ(as)− Cµ(at).

Hereafter, we distinguish three sets of constraints:
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• Monotonicity and boundary constraints,

m ({∅}) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅,



























(EMB)

• Constraints related to importance and interaction of criteria,

ϕ({i}) ≥ ϕ({j}), if i % j,

ϕ({i}) ≥ ϕ({j}) + ε, if i ≻ j,

ϕ({i}) = ϕ({j}), if i ∼ j,

ϕ({i, j}) ≥ ε, if criteria i and j are synergic with i, j ∈ G,

ϕ({i, j}) ≤ −ε, if criteria i and j are redundant with i, j ∈ G,



















































(EC)

• Constraints related to comparisons between alternatives,

Cµ(ak) ≥ Cµ(ah), if ak % ah,

Cµ(ak) ≥ Cµ(ah) + ε, if ak ≻ ah,

Cµ(ak) = Cµ(ah) if ak ∼ ah,

Cµ(ak)− Cµ(ah) ≥ Cµ(as)− Cµ(at) + ε, if (ak, ah) ≻∗ (as, at),

Cµ(ak)− Cµ(ah) = Cµ(as)− Cµ(at), if (ak, ah) ∼∗ (as, at),



















































(EA)

where the strict inequalities used to translate the preferences have been transformed into weak

inequalities in EC and EA by adding an auxiliary variable ε taking positive values.

We shall call compatible model, a capacity whose Möbius representation satisfies the set of con-

straints EDM = EMB∪EC∪EA with a positive value of ε. Observe that EC or EA could be eventually

empty if the DM does not provide any information on importance and interaction of criteria, or com-

parison of alternatives, respectively.

In order to check if there exists at least one compatible model, one has to solve the following linear

programming problem:
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max ε = ε∗ s.t.

EDM .
(3.3)

If EDM is feasible and ε∗ > 0, then there exists at least one model compatible with the preference

information provided by the DM. If EDM is infeasible or ε∗ ≤ 0, then one can check which is the

minimum set of constraints determining the infeasibility using one of the techniques described in

[125].

In this section, we shall describe how to obtain robust recommendations on the problem at hand

by putting together the Choquet integral preference model and the SMAA methodology that is, by

estimating the indices typical of SMAA, but considering as preference model the Choquet integral

instead of an additive value function. We shall consider the following different cases:

case 1) the evaluations on the criteria are on a common scale and they are expressed in a precise

way, that is gi(ak) ∈ R for all i and for all k,

case 2) the evaluations on criteria are on a common scale but they can be given in an imprecise

way, that is gi(ak) ∈ [αk
i , β

k
i ] with αk

i ≤ βk
i , for some i and for some k,

case 3) the evaluations on the criteria are on different scales (for the sake of simplicity in this case

we have supposed that evaluations of alternatives on the considered criteria are given in a

precise way).

In case 1), since the evaluations on the criteria under consideration are on a common scale and

they are given in a precise way, the application of the Choquet integral depends only on a capacity

compatible with the preferences expressed by the DM. Because the set of inequalities in EDM defines

a convex set of parameters, one can use the Hit-and-Run (HAR) method in order to sample some

compatible models. The Hit-And-Run sampling has been firstly introduced in [158] and recently

applied in multicriteria decision analysis in [168]. It starts from the choice of one point (the Möbius

representation of one capacity in the problem at hand) inside the polytope EDM . Since the starting

point in the HAR sampling could be whichever point inside the polytope, we can begin from the point

obtained by solving the linear optimization problem defined in (3.3). At each iteration, a random

direction is sampled from the unit hypersphere that, passing through the starting point, generates a

line. Finally, one point inside the segment whose extremes are the intersection of the line with the

boundaries of the polytope is sampled.
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Figure 3.1: Hit-and-Run example

Figure 3.2: First iteration Figure 3.3: Second iteration

In order to illustrate the procedure, we shall provide the first two iterations of the Hit-and-Run

algorithm in a didactic example. Let us suppose we have to sample some points (x, y) inside the

region delimited by the constraints y ≤ x + 2, y ≥ x − 2, y ≤ −x + 2 and y ≥ −x − 2 (see Figure

3.1).

Chosen the starting point P and a vector belonging to the unit sphere of center (0, 0) and radius

equal to one that defines the direction d, we consider the line d1 in Figure 3.2 having the direction of

d and passing through the starting point P . d1 “hits” the boundaries y = x + 2 and y = −x + 2 in

the points Q1 and Q2, respectively. We then “run” along the segment Q1Q2, sampling in a uniform

way the point P1 at the first iteration. In the second iteration, the procedure continues considering

P1 as the starting point. Taking randomly a direction d, the line d2 passing through point P1 and

having the same direction of d intersects the lines y = x + 2 and y = x− 2 in the points Q3 and Q4.

Point P2 is then chosen in a uniform way inside the segment connecting Q3 and Q4. The algorithm

continues until the stopping rule (in our case the maximum number of iterations) is satisfied.

Let us observe that at each iteration of the HAR algorithm a compatible model is sampled and

therefore stored. Consequently, by applying the Choquet integral preference model with each of the

stored models, one can get one different ranking and, in the end, can estimate the indices typical of

the SMAA methodology.

In case 2), the application of the Choquet integral preference model does not depend on the

sampled capacity only, but also on the evaluations of the alternatives at hand, because while con-
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straints in EC and in EMB are not dependent on the alternatives’ evaluations, constraints in EA are

dependent on these evaluations. Consequently, we have to distinguish between the case in which the

DM does not provide any preference in terms of comparison between alternatives (EA = ∅) from the

case in which the DM expresses such type of preference (EA 6= ∅).

If EA = ∅, the set of constraints EDM defines a convex set and therefore one can sample compatible

models by applying the HAR method as described in the first case. The only difference with respect

to case 1) is that, in order to apply the Choquet integral preference model, one has to sample an

evaluation matrix M (whose element Mki is taken in a random way inside the interval [αk
i , β

k
i ]) for each

stored capacity. After applying the Choquet integral preference model with the considered matrices

and sampled capacities, one can compute the corresponding rankings and therefore estimating the

SMAA indices.

Differently from the previous case, at each sampled evaluation matrix M corresponds a different

set of constraints EDM . Consequently, one can not apply the HAR method to sample the compatible

capacities from EA. Besides, sampled an evaluation matrix M , it is also possible that the correspond-

ing set of constraints EDM is infeasible. For this reason, after that an evaluation matrix has been

sampled, one has to check if the set EDM is feasible and, in this hypothesis, sampling a capacity com-

patible with the DM’s preferences. Also in this case after storing the different rankings obtained by

applying the Choquet integral with the sampled evaluations matrices and the corresponding sampled

capacities, one can compute the SMAA indices.

A typical example of case 3) can be the evaluation of a sport car, where criteria such as maximum

speed, acceleration, price, comfort can be considered and each of them has a different scale. In this

case, one can not apply directly the Choquet integral to aggregate the preferences of the DM since,

as remarked in the introduction, a requisite of the method is that all considered criteria are on a

common scale.

In order to cope with this drawback, we propose to construct a common scale with a procedure

composed of the following steps for each criterion gi:

• sampling uniformly from the interval [0, 1], l′ different real numbers x1, . . . , xl′ supposing that

the different evaluations on gi are l′, with l′ ≤ l,

• ordering the l′ numbers in an increasing way, xi(1) < . . . < xi(l′),

• assigning xi(h) to the alternatives having the h-th evaluation, in an increasing order with respect

to the DM’s preferences on gi.

90



Supposing to deal with the aforementioned car decision problem, and looking at the evaluations

of the considered cars on criterion acceleration shown in Table 3.2, we proceed as follows:

• Because the evaluations of the 10 alternatives on criterion acceleration are all different, we

sample 10 different real numbers from the interval [0, 1]. For example, x1 = 0.81, x2 = 0.90,

x3 = 0.12, x4 = 0.91, x5 = 0.63, x6 = 0.09, x7 = 0.27, x8 = 0.54, x9 = 0.95, x10 = 0.96.

• We order the 10 numbers in an increasing way: x(1) = 0.09 < x(2) = 0.12 < x(3) = 0.27 < x(4) =

0.54 < x(5) = 0.63 < x(6) = 0.81 < x(7) = 0.90 < x(8) = 0.91 < x(9) = 0.95 < x(10) = 0.96.

• Since, in this example, acceleration has a decreasing direction of preference (the lower the

evaluation on the criterion, the better the alternative is) we assign value x(1) = 0.09 to SEAT

Ibiza ST 1.2, value x(2) = 0.12 to SKODA Fabia 1.2 and so on (see the third column of Table

3.2).

Table 3.2: Car evaluation with respect to the criterion acceleration (expressed in seconds necessary
to reach 100 Km/h starting from 0 Km/h) and the corresponding scale

Cars Acceleration 0/100 km/h Scale value
PEUGEOT 208 1.6 8V 10.9 0.96

Citroen C3 13.5 0.54
FIAT 500 0.9 11 0.95

SKODA Fabia 1.2 14.2 0.12
LANCIA Ypsilon 5p 11.4 0.90

RENAULT Clio 1.5 dCi 90 11.3 0.91
SEAT Ibiza ST 1.2 14.6 0.09

ALFA ROMEO MiTo 1.3 12.9 0.63
TOYOTA Yaris 1.5 11.8 0.81

VOLKSWAGEN Polo 1.2 13.9 0.27

The values xi(r), i = 1, . . . , n and r = 1, . . . , l′, become the evaluations of the considered al-

ternatives on the different criteria. In this way, evaluations on all criteria are expressed on the

same common scale and therefore, having a capacity compatible with the DM’s preferences, one can

compute the Choquet integral of all alternatives.

At this point, since the sampling of a compatible model will depend on the chosen common

scale only, if EA 6= ∅ (the DM provides some preference on the considered alternatives), one can

proceed as already described in case 2), but replacing the sampling of an evaluation matrix with the

construction of a common scale. The only difference with case 2) is that the DM could be interested

in discovering which is the most discriminant common scale. With this aim, one can proceed as

follows:
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• Sampling a certain number of possible common scales S1, . . . , Siter, considering the correspond-

ing feasible sets of constraints EDM
1 , . . . , EDM

iter and denoted by ε1, . . . , εiter, the solutions of the

linear programming problems

max ε s.t.

EDM
1











, . . . . . . . . . . . . ,
max ε s.t.

EDM
iter











(3.4)

the most discriminant scale is the scale Sk such that εk = max {ε1, . . . , εiter}.

After obtaining the most discriminant common scale, the decision aiding process can continue in

one of the following ways:

- applying the Choquet integral preference model after asking the capacities directly to the DM,

- eliciting one (arbitrary) capacity compatible with the DM’s preference information [119],

- considering the whole set of capacities compatible with the DM’s preference information using

NAROR [8],

- applying the simulation techniques proposed in case 1) since the common scale’s values become

the evaluations of the alternatives on the considered criteria.

3.1.5 Some examples

The whole methodology presented in the previous section will be illustrated by two didactic examples.

In the following, we shall consider uniform probability distributions fW and fχ, respectively, on W

and χ.

Considering imprecision in the evaluations on considered criteria

Let us consider a set of 18 alternatives evaluated on the basis of 4 criteria, G = {g1, g2, g3, g4}, as

shown in Table 3.3. We suppose that the evaluations of considered alternatives on each criterion are

integer numbers within an interval (for example, the evaluation of a1 on criterion g1 can be 14, 15 or

16), but this is not a specific requirement for our model i.e., in general, we can sample values from

the whole interval. We can consider this as a specific probability distribution fχ(ξ) concentrating

uniformly the mass only on the integers in the interval of evaluations on considered criteria.

We shall take into account the following preference information in terms of importance and

interaction of criteria and comparisons between alternatives:
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Table 3.3: Imprecise evaluations of alternatives on considered criteria

Alternatives
Criteria a1 a2 a3 a4 a5 a6 a7 a8 a9

g1 [14,16] [6,8] [17,19] [8,10] [11,13] [7,9] [13,15] [7,9] 3
g2 [11,13] [7,9] [7,9] [15,17] 5 3 [18,20] [12,14] [16,18]
g3 [9,11] [13,15] 4 [3,5] [13,15] [6,9] 5 [14,15] 2
g4 [6,9] [15,17] [11,13] [15,17] [13,15] [18,20] [9,11] 6 [13,15]

Criteria a10 a11 a12 a13 a14 a15 a16 a17 a18

g1 4 [15,17] [7,9] [16,18] [7,9] [18,20] [11,13] [13,15] [8,10]
g2 [18,20] 7 [10,12] [11,13] [6,8] [6,9] 4 [10,12] [12,14]
g3 [7,9] [13,15] 5 [5,7] [6,9] [3,5] [14,16] [11,13] [11,13]
g4 [8,10] [9,11] [18,20] 8 [18,20] [11,13] [12,15] [8,10] [5,7]

• ϕ({g1} > ϕ({g2}), ϕ({g3} > ϕ({g4}),

• ϕ({g1, g2}) > 0, ϕ({g2, g3}) > 0, ϕ({g2, g4}) < 0,

• a16 ≻ a2, a3 ≻ a14 and a13 ≻ a8.

According to [167], we perform the Hit-and-Run procedure for 10, 000 iterations.

For each iteration, we sample an evaluation matrix and we check if it is compatible with the preference

information provided by the DM. In this case, we compute the Choquet integral for each alternative

obtaining a complete ranking.

At the end of all iterations, we compute the rank acceptability index brk for each k, r = 1, . . . , l and

the Möbius representation of the central capacity for each alternative ak that can get the first rank

at least once, as shown, respectively, in Tables 3.4 and 3.5. In particular, in Table 3.4 we observe

that alternatives a1, a3, a7, a11, a13, a15, a16 and a17 can be ranked first. a17 has reached the first

position more than all other alternatives (b117 = 25.39) and a9 is instead the alternative that is almost

always in the last position in the obtained rankings (b189 = 99.52).

Looking at the second best alternative, one can be in doubt among a11, a7 and a1. In fact, on one

side a7 has a first rank acceptability index greater than the other two alternatives (b17 = 24.68%).

On the other side, looking at the pairwise winning indices shown in Table 3.6, one can observe that

a11 and a1 are weakly preferred to all other alternatives with a frequency of at least 47.04% and

44.09%, respectively (vs the 40.20% of a7) and both of them are preferred to a7 more frequently

than the viceversa. At the same time, a9 can be considered surely the worst alternative because all

alternatives are weakly preferred to it with a frequency at least equal to the 99.54%.

Computing the Möbius representation of the barycenter of compatible capacities shown in Table

3.7 and applying the Choquet integral to the average evaluation matrix we get the following ranking
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Table 3.4: Rank acceptability indices taking into account imprecise evaluations of alternatives on
considered criteria, preference information in terms of importance and interaction of criteria and
comparisons between alternatives

Alt b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k b11k b12k b13k b14k b15k b16k b17k b18k
a1 19.69 23.35 22.59 15.98 8.81 5.08 2.51 1.08 0.63 0.21 0.06 0 0.01 0 0 0 0 0
a2 0 0.02 0.03 0.06 0.34 1.52 4.23 7.25 11.2 15.38 17.62 18.27 12.54 7.19 3.76 0.55 0.04 0
a3 0.59 1.2 2.63 3.16 6.11 9.72 13.18 13.16 13.09 12.37 11.4 9.73 2.84 0.73 0.06 0.03 0 0
a4 0 0.01 0.01 0.07 0.11 0.43 1.27 2.38 3.16 4.9 6.28 8.5 14.2 21.1 24.08 11.69 1.81 0
a5 0.6 1.64 3.62 6.82 10.98 12.48 12.82 12.96 12.69 9.64 7.66 4.64 2.31 0.9 0.23 0.01 0 0
a6 0 0 0 0 0.01 0 0.03 0.04 0.03 0.18 0.32 1.05 2.2 5.32 10.87 40.02 39.47 0.46
a7 24.68 15.79 15.99 18 10.99 6.34 3.14 2.35 1.49 0.72 0.35 0.07 0.06 0.03 0 0 0 0
a8 0 0 0.08 0.43 1.77 7.96 11.39 13.81 12.24 12.92 12.12 9.81 7.74 5.29 3.45 0.97 0.02 0
a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.47 99.52
a10 0 0 0 0 0 0 0.01 0 0.02 0.02 0.12 0.2 0.66 2.32 6.87 32.5 57.26 0.02
a11 23.82 21.83 17.88 15.05 9.89 5.76 3.6 1.69 0.37 0.05 0.06 0 0 0 0 0 0 0
a12 0 0 0.01 0 0.01 0.11 0.25 0.64 1.85 3.35 5.44 9.08 16.84 26.49 27.61 7.86 0.46 0
a13 2.27 6.37 10.45 15.96 24.34 17.15 11.08 6.36 3.79 1.47 0.57 0.15 0.03 0.01 0 0 0 0
a14 0 0 0 0 0 0.05 0.34 1.31 3.06 5.57 8.87 13.99 24.1 20.09 17.52 4.76 0.34 0
a15 2.49 4 4.99 7.5 9.91 13.23 12.67 10.32 8.65 6.92 6.43 5.88 3.27 2.18 1.05 0.4 0.11 0
a16 0.47 1.16 1.65 2.9 5.14 9.15 12.77 16.41 16.85 14.64 10.26 5.19 2.36 1 0.05 0 0 0
a17 25.39 24.59 19.83 12.91 7.95 4.45 2.96 1.19 0.58 0.13 0.02 0 0 0 0 0 0 0
a18 0 0.04 0.24 1.16 3.64 6.57 7.75 9.05 10.3 11.53 12.42 13.44 10.84 7.35 4.45 1.2 0.02 0

Table 3.5: Möbius representation of central capacities for alternatives taking into account imprecise
evaluations of alternatives on considered criteria, preferences on importance and interaction of criteria
and comparisons between alternatives

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})
a1 0.31 0.19 0.18 0.19 0.10 0.03 0.00 0.10 -0.10 -0.00
a3 0.41 0.16 0.25 0.21 0.08 -0.11 0.02 0.08 -0.08 -0.03
a5 0.29 0.16 0.20 0.22 0.07 0.03 0.04 0.07 -0.11 0.03
a7 0.32 0.21 0.21 0.19 0.11 -0.04 0.01 0.09 -0.09 -0.01
a11 0.30 0.17 0.16 0.19 0.08 0.10 0.01 0.08 -0.09 -0.00
a13 0.34 0.19 0.21 0.19 0.11 -0.04 0.00 0.09 -0.10 -0.01
a15 0.39 0.17 0.25 0.21 0.09 -0.10 0.02 0.09 -0.09 -0.03
a16 0.32 0.16 0.25 0.21 0.05 -0.04 0.05 0.06 -0.11 0.05
a17 0.29 0.19 0.17 0.19 0.10 0.07 0.00 0.10 -0.10 -0.00

of the considered alternatives:

a17 ≻ a11 ≻ a1 ≻ a7 ≻ a13 ≻ a15 ≻ a5 ≻ a3 ≻ a16 ≻ a8 ≻ a18 ≻ a2 ≻ a14 ≻ a12 ≻ a4 ≻ a6 ≻ a10 ≻ a9.

An example with the criteria expressed on different scales

In this section, we deal with a decision making problem in which the evaluation of alternatives on

considered criteria are expressed on heterogeneous scales.

From the city-car segment market, we select ten cars evaluated on the basis of the following criteria:

price (in Euro), acceleration (0/100 km/h in seconds), maximum speed (in km/h) and consumption

(in l/100km) (see Table 3.8). In this example, we shall suppose that price, acceleration and con-

sumption have a decreasing direction of preference (the lower the evaluation of an alternative on the
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Table 3.6: Pairwise winning indices taking into account imprecise evaluations of alternatives on
considered criteria, preferences on importance and interaction of criteria and comparisons between
alternatives

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
a1 0.00 99.09 92.23 99.70 91.39 99.98 55.80 98.53 100.00 100.00 47.59 99.88 80.36 99.85 85.65 94.32 44.09 99.16
a2 0.91 0.00 29.52 78.07 14.31 99.20 2.96 37.69 99.99 99.33 0.25 83.54 6.58 77.66 23.08 0.00 0.39 45.69
a3 7.77 70.48 0.00 93.07 43.69 99.57 8.24 61.99 100.00 99.87 8.77 95.18 18.31 100.00 35.82 53.00 8.02 66.50
a4 0.30 21.93 6.93 0.00 9.17 86.72 0.23 16.44 100.00 95.37 0.45 51.96 0.97 42.25 6.56 11.77 0.23 21.00
a5 8.61 85.69 56.31 90.83 0.00 99.99 15.78 65.84 100.00 99.85 2.72 94.92 27.39 94.32 46.07 62.74 5.17 73.95
a6 0.02 0.80 0.43 13.28 0.01 0.00 0.14 2.68 99.59 62.13 0.00 9.16 0.13 4.64 0.78 0.04 0.00 2.85
a7 44.20 97.04 91.76 99.77 84.22 99.86 0.00 96.75 100.00 100.00 43.89 99.73 76.56 99.37 84.76 90.05 40.20 96.87
a8 1.47 62.31 38.01 83.56 34.16 97.32 3.25 0.00 100.00 99.93 2.64 86.11 0.00 79.90 29.48 42.28 1.66 58.17
a9 0.00 0.01 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a10 0.00 0.67 0.13 4.63 0.15 37.87 0.00 0.07 99.80 0.00 0.00 4.19 0.00 3.89 0.28 0.19 0.00 0.19
a11 52.41 99.75 91.23 99.55 97.28 100.00 56.11 97.36 100.00 100.00 0.00 99.94 77.93 99.96 84.83 97.71 47.04 98.97
a12 0.12 16.46 4.82 48.04 5.08 90.84 0.27 13.89 100.00 95.81 0.06 0.00 0.60 39.11 5.38 7.14 0.04 17.50
a13 19.64 93.42 81.69 99.03 72.61 99.87 23.44 100.00 100.00 100.00 22.07 99.40 0.00 99.07 69.73 82.77 18.51 91.79
a14 0.15 22.34 0.00 57.75 5.68 95.36 0.63 20.10 100.00 96.11 0.04 60.89 0.93 0.00 7.73 9.83 0.05 24.04
a15 14.35 76.92 63.57 93.44 53.93 99.22 15.24 70.52 100.00 99.72 15.17 94.62 30.27 92.27 0.00 63.15 14.14 72.99
a16 5.68 100.00 47.00 88.23 37.26 99.96 9.95 57.72 100.00 99.81 2.29 92.86 17.23 90.17 36.85 0.00 4.06 65.09
a17 55.82 99.61 91.98 99.77 94.83 100.00 59.80 98.34 100.00 100.00 52.96 99.96 81.49 99.95 85.86 95.94 0.00 99.46
a18 0.84 54.31 33.50 79.00 26.05 97.15 3.13 41.83 100.00 99.81 1.03 82.50 8.21 75.96 27.01 34.91 0.54 0.00

Table 3.7: Möbius representation of the barycenter of the compatible capacities taking into account
interval evaluations of alternatives on considered criteria, preference information on importance and
interaction of criteria and comparisons between alternatives

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})
0.31 0.18 0.19 0.19 0.097 0.034 0.008 0.091 -0.08 -0.014

criterion, the better the alternative is on the considered criterion), while criterion maximum speed

has an increasing direction of preference (the higher the evaluation of an alternative on a criterion,

the better the alternative is on the considered criterion). Let us notice that, in some cases, criteria

are non monotonic with respect to the preferences of the DM. This means that one can not state

that the criterion has a decreasing or an increasing direction of preference.

Let suppose that the DM supplies the following preference information in terms of importance

and interaction of criteria as well as in terms of comparisons between alternatives:

• ϕ({g1}) > ϕ({g2}), ϕ({g4}) > ϕ({g3}),

• ϕ({g3, g4}) > 0, ϕ({g2, g3}) < 0.

• a5 ≻ a1, a7 ≻ a6, a2 ≻ a3,

As explained in Section 3.1.4, at each iteration we sample a common scale, and, if the set of

constraints EDM is feasible, then we sample a capacity compatible with these constraints. Let us

notice that since the DM has provided some preference in terms of comparison between alternatives,

the set of constraints EDM will be dependent on the sampled scale.

At the end of all the iterations, we shall get the rank acceptability indices, the Möbius representations
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Table 3.8: Evaluation matrix

Cars Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

PEUGEOT 208 1.6 8V 17,800 10.9 185 3.8
e-HDi 92 CV Stop&Start 3p. Allure

Citroen C3 15,750 13.5 163 3.8
1.4 HDi 70 Seduction

FIAT 500 0.9 15,050 11 173 4
TwinAir Turbo Street

SKODA Fabia 1.2 15,260 14.2 172 3.4
TDI CR 75 CV 5p. GreenLine

LANCIA Ypsilon 5p 16,300 11.4 183 3.8
1.3 MJT 95 CV 5p. S&S Gold

RENAULT Clio 1.5 dCi 90 16,050 11.3 176 4
CV 3p. Dynamique
SEAT Ibiza ST 1.2 15,700 14.6 173 3.4
TDI CR Ecomotive

ALFA ROMEO MiTo 1.3 17,500 12.9 174 3.5
JTDm 85 CV S&S Progression

TOYOTA Yaris 1.5 17,800 11.8 165 3.2
Hybrid 5p. Lounge

VOLKSWAGEN Polo 1.2 17,060 13.9 173 3.4
TDI 5p. BlueMotion 89g

of the central capacities for each alternative and the preference matrix shown respectively in Tables

3.10, 3.11 and 3.12 in the Appendix.

In Table 3.10, we observe that car a4 is the most preferred by the DM (b14 = 55.51%) followed by a7,

while a6 is most frequently the least preferred car (b106 = 53.04%) and a1, a2, a3 and a6 can never

arrive first. Table 3.11 gives the Möbius representations of the central capacities ranking considered

alternatives in the first position at least once, while from Table 3.12, giving the frequency of the

weak preference between pairs of alternatives, we observe that a4 is weakly preferred to all other

alternatives with a frequency at least equal to 67.71%.

Since there are different common compatible scales, we propose the most discriminant common

scale, presented in Table 3.9, to the DM.

Table 3.9: Evaluations of alternatives on considered criteria expressed on the most discriminating
common scale

Alt Price Acceleration Max speed Consumption
a1 0.1834 0.7290 0.8208 0.5723
a2 0.5870 0.4023 0.2107 0.5723
a3 0.8663 0.6981 0.4427 0.0496
a4 0.8567 0.1268 0.4234 0.7090
a5 0.5613 0.5854 0.6979 0.5723
a6 0.5721 0.6626 0.5906 0.0496
a7 0.7443 0.0569 0.4427 0.7090
a8 0.3115 0.4438 0.5717 0.6015
a9 0.1834 0.5816 0.3944 0.8207
a10 0.4113 0.3501 0.4427 0.7090
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After the DM accepts the common scale, we apply SMAA sampling capacities compatible with the

preference information provided by the DM, computing the rank acceptability indices, the Möbius

representations of the central capacities and the preference matrix displayed, respectively, in Tables

3.13, 3.14 and 3.16 in the Appendix. Applying the Choquet integral with respect to the barycenter

of the compatible capacities whose Möbius representation are shown in Table 3.15, and considering

the most discriminating common scale we get the following ranking of the considered alternatives:

a5 ≻ a4 ≻ a7 ≻ a1 ≻ a10 ≻ a8 ≻ a2 ≻ a9 ≻ a3 ≻ a6.

3.1.6 Conclusions

In this paper, we have combined the Stochastic Multiobjective Acceptability Analysis (SMAA) to

the Choquet integral preference model extending a work already published by the authors [3]. We

have proposed to explore the space of the parameters compatible with some preference information

provided by the DM using SMAA. In particular, we have considered the DM’s preference information

not only in terms of relative importance of criteria and interaction between them, but differently

from [3], also in terms of pairwise comparison between alternatives and comparisons of intensity of

preferences between pairs of alternatives. Moreover, again differently from [3], we have considered

also imprecise evaluations of alternatives on the considered criteria.

Finally, we have proposed a methodology to construct the common scale required by the Choquet

integral; this is very useful in case the criteria for the decision problem at hand are defined on different

scales. Such aspect of the methodology we are proposing constitutes another original contribution

with respect to [3]. We have provided some didactic examples in which the proposed methodology

has been applied. We envisage the following future developments:

• application of SMAA methodology to some extensions of the classical Choquet integral, e.g.

the bipolar Choquet integral [71, 72], the level dependent Choquet integral [80], the robust

Choquet integral [90];

• implementation of the SMAA methodology to the Choquet integral in presence of hierarchy of

criteria [5] within the so called multiple criteria hierarchy process [37].

Appendix
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Table 3.10: Rank acceptability indices sampling simultaneously compatible capacities and scales

Alt b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k
a1 0 0.08 0.1 1.61 5.03 18.28 32.05 26.28 4.07 12.5
a2 0 0.02 1.9 4.12 4.99 14.82 45.23 26.46 2.46 0
a3 0 0 0 0.57 0.71 1.02 2.98 15.04 52.03 27.65
a4 55.51 32.37 7.54 3.45 0.99 0.1 0.04 0 0 0
a5 4.45 2.78 18.38 12.17 23.54 36.88 1.14 0.47 0.19 0
a6 0 0 0 0.05 0.41 0.89 1.91 10.46 33.24 53.04
a7 26.15 53.89 11.96 5.46 2.29 0.19 0.06 0 0 0
a8 4.79 4 20.66 35.32 23.96 6.21 2.88 1.27 0.81 0.1
a9 5.9 1.72 8.38 9.51 20.36 15.11 9.08 17.92 5.83 6.19
a10 3.2 5.14 31.08 27.74 17.72 6.5 4.63 2.1 1.37 0.52

Table 3.11: Möbius representations of central capacities sampling simultaneously compatible capac-
ities and scales

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})
a4 0.06 0.09 0.09 0.17 0.00 0.01 0.48 -0.05 0.08 0.06
a5 0.09 0.17 0.17 0.16 0.00 0.01 0.38 -0.09 0.02 0.09
a7 0.06 0.10 0.10 0.18 0.00 0.01 0.48 -0.05 0.05 0.07
a8 0.06 0.10 0.10 0.17 0.00 0.02 0.41 -0.05 0.11 0.09
a9 0.05 0.04 0.04 0.28 0.00 0.03 0.34 -0.02 0.17 0.05
a10 0.04 0.07 0.07 0.17 0.00 0.01 0.46 -0.04 0.14 0.08

3.2 Combining Analytical Hierarchy Process and Choquet

integral within Non Addititive Robust Ordinal Regres-

sion

3.2.1 Introduction

In Multiple Criteria Decision Aiding (MCDA) problems (see [95] for an accessible guide to MCDA and

[51] for a comprehensive collection of state of the art surveys), a set of alternatives A = {a, b, c, . . .}

is evaluated on a set of evaluation criteria G = {g1, . . . , gn} (sometimes, for the sake of simplicity

and slightly abusing of the notation, we refer to the criteria with their indices, i.e. we shall write

i ∈ G, instead of gi ∈ G). Typical MCDA problems are choice, sorting and ranking. Choice problems

consist of choosing a subset (possibly composed of one element only) A∗ ⊆ A of alternatives consid-

ered the best; sorting problems consist of assigning each alternative to one or more predefined and

preferentially ordered contiguous classes, while ranking problems consist of partially or completely

ordering all alternatives from the best to the worst.

Looking at the evaluations of the alternatives on the criteria, without taking into account further

preference information and any preference model, it could be only observed if the dominance rela-
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Table 3.12: Pairwise winning indices considering a simulation sampling of random capacities and
common scales

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
a1 0 44.25 82.51 0.27 0 85.29 0.32 5.45 34.33 9.63
a2 55.75 0 100 0.07 4.04 97.45 0.09 9.72 35.01 11.35
a3 17.49 0 0 0 1.37 65.79 0 2.81 11.38 3.26
a4 99.73 99.93 100 0 93.99 100 67.71 91.54 93.13 91.47
a5 100 95.96 98.63 6.01 0 99.45 7.36 34.36 58.28 33.69
a6 14.71 2.55 34.21 0 0.55 0 0 1.94 9.26 2.58
a7 99.68 99.91 100 32.29 92.64 100 0 89.46 91.59 89.77
a8 94.55 90.28 97.19 8.46 65.64 98.06 10.54 0 75.23 48.33
a9 65.67 64.99 88.62 6.87 41.72 90.74 8.41 24.77 0 21.94
a10 90.37 88.65 96.74 8.53 66.31 97.42 10.23 51.67 78.06 0

Table 3.13: Rank acceptability indices taking into account evaluations of alternatives on considered
criteria expressed on the most discriminating common scale shown in Table 3.9

Alt b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k
a1 0 17.76 8.48 22 10.92 15.65 12.82 9.17 2.42 0.78
a2 0 2.23 5.39 19.02 12.61 7.36 12.66 39.6 1.13 0
a3 0 0 0.33 1.53 2.79 3.18 2.93 7.79 69.46 11.99
a4 32.28 41.1 14.26 6.91 3.2 2 0.25 0 0 0
a5 65.88 12.06 20.58 1.24 0.24 0 0 0 0 0
a6 0 0 0 0 0 0.01 0.73 2.05 14.97 82.24
a7 0.81 21.11 39 15.1 8.06 5.53 5.91 2.38 2.1 0
a8 0 0.35 4.3 5.79 21.08 28.94 29.92 8.89 0.73 0
a9 1.03 2.4 5.23 7.01 15.7 9.83 18.64 26.38 8.79 4.99
a10 0 2.99 2.43 21.4 25.4 27.5 16.14 3.74 0.4 0

tion is fulfilled by some pairs of alternatives 1. In general, the dominance relation provides really

poor information and leaves many alternatives incomparable. For this reason, to get more precise

recommendations on the problem at hand, there is the necessity to aggregate the evaluations of the

alternatives on the considered criteria through some appropriate preference model representing the

preferences of the Decision Maker (DM). In the literature the most well-known aggregation methods

are the Multi-Attribute Value Theory (MAVT) [109] and the outranking methods (for ELECTRE

methods see [55, 54, 143] and for PROMETHEE methods see [26, 27]). MAVT assigns to each al-

1An alternative a dominates an alternative b if the evaluations of a are at least as good as the evaluations of b on
all criteria and better for at least one criterion.

Table 3.14: Möbius representation of the central capacities, taking into account evaluations of alter-
natives on considered criteria expressed on the most discriminating common scale, shown in Table
3.9

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})
a4 0.21 0.18 0.15 0.31 -0.01 0.02 0.17 -0.06 -0.03 0.08
a5 0.15 0.16 0.16 0.18 0.04 0.03 0.14 -0.06 0.07 0.12
a7 0.03 0.26 0.16 0.30 -0.01 0.07 0.38 -0.11 -0.13 0.04
a9 0.24 0.15 0.16 0.46 -0.03 0.03 -0.11 -0.07 0.11 0.07
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Table 3.15: Möbius representation of the barycenter of capacities taking into account evaluations of
alternatives on the considered criteria expressed on the most discriminant common scale shown in
Table 3.9

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})
0.17 0.17 0.16 0.23 0.02 0.03 0.15 -0.06 0.04 0.10

Table 3.16: Pairwise winning indices taking into account evaluations of alternatives on the most
discriminant common scale shown in Table 3.9

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
a1 0 64.01 92.08 20.67 0 97.97 31.4 71.33 77.54 54.86
a2 35.99 0 100 4.12 0 98.87 11.73 44.58 50.08 35.12
a3 7.92 0 0 0.82 0 87.97 3.86 8.43 16.46 6.53
a4 79.33 95.88 99.18 0 33.34 100 97.25 92.89 93.26 94.22
a5 100 100 100 66.66 0 100 78.61 100 97.19 99.64
a6 2.03 1.13 12.03 0 0 0 0 0.74 5.36 0.01
a7 68.6 88.27 96.14 2.75 21.39 100 0 83.14 82.55 83.94
a8 28.67 55.42 91.57 7.11 0 99.26 16.86 0 64.53 33.65
a9 22.46 49.92 83.54 6.74 2.81 94.64 17.45 35.47 0 29.4
a10 45.14 64.88 93.47 5.78 0.36 99.99 16.06 66.35 70.6 0

ternative a a real number U(a) being representative of the degree of desirability of a with respect to

the problem at hand, while outranking methods are based on an outranking relation being a binary

relation S on the set of alternatives A, such that aSb means that a is at least as good as b.

Both family of methods are based on the mutual preference independence between criteria [109, 174]

but, in many real world decision making problems, the evaluation criteria are not independent but

interacting. For instance, suppose the DM likes sport cars and she wants to buy a car taking into

account the criteria price, maximum speed and acceleration. In this case, maximum speed and ac-

celeration can be considered negatively interacting criteria while maximum speed and price can be

considered positively interacting criteria. In fact, on one hand, even if maximum speed and accelera-

tion are very important for a DM liking sport cars, in general cars with a high maximum speed have

also a good acceleration and, therefore, the comprehensive importance of the two criteria considered

together should be smaller than the sum of the importance of the two criteria considered alone.

On the other hand, a car with a high maximum speed has often also a high price and, therefore, a

car with a high maximum speed and a moderate price is very well appreciated. Consequently, the

comprehensive importance of these two criteria considered together should be greater than the sum

of the importance of the two criteria considered alone.

In such cases, the mutual preference independence can be violated because, for example, due to

the positive interaction between maximum speed and price, at a given level of price, one can prefer
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one combination of maximum speed and acceleration, while at another level of price one can prefer

another combination of maximum speed and acceleration. Observe however that the violation of

preference independence does not imply that the considered family of criteria is no more consistent.

Indeed, consistency [143] refers to the requirements of monotonicity, that is, when improving the

evaluations on considered criteria the overall evaluation of an alternative cannot be deteriorated,

exhaustivity, that is, all the relevant criteria are considered, and non-redundancy, that is, no criterion

can be removed without losing the representation of a relevant point of view. Monotonicity, exhaus-

tivity and non-redundancy can continue to be satisfied also when preference independence does not

hold. For instance, in the didactic example of Section 2, we show how reasonable can be the overall

evaluations of students obtained aggregating scores in different subjects by the Choquet integral

[31] rather than by the weighted sum. If the problem is correctly formulated, aggregation through

Choquet integral satisfies monotonicity, exhaustivity and non-redundancy even if, as explained in

the example, it does not satisfy preference independence.

Interaction between criteria and violation of the preference independence are well known in MCDA

(see e.g. [13, 50, 57, 108]). In the following, we briefly survey several methods handling with the in-

teraction between criteria. Considering the utility functions as aggregation methods, the multilinear

utility function [109] and the UTAGMS-INT [88] are reported in the literature. The first one aggre-

gates performances on considered criteria through a weighted sum of products of marginal utilities

corresponding to single criteria, over all subsets of criteria, while UTAGMS-INT is based on enriched

additive value functions that add some further terms representing interaction between criteria to the

usual sum of marginal utility functions. In Artificial Intelligence (AI), interaction between criteria

has been recently considered through GAI-networks [67] as well as through UCP-networks [17], that

are based on the idea of Generalized Additive Independence (GAI) decomposition [56]. Positive and

negative interaction between criteria has been taken into account also in outranking methods such as

ELECTRE [52] and PROMETHEE [34]. Another method that takes into consideration interaction

between criteria is the Analytical Network Process (ANP) [147]. In this case, interaction between

criteria is one of the possible results of interdependencies and network between goals, criteria and

alternatives. Observe that very specific interactions between criteria can be considered within ANP.

For instance, ANP can model interactions that depend on the considered alternatives. This is the

case of a positive interaction between criteria “price” and “maximum speed” for evaluating an eco-

nomic car, which is not the case for a sport car. Considering interaction between criteria that can

change from an alternative to another is not possible with the Choquet integral for which interaction

between criteria holds in the same way for all the alternatives. However, the price to pay for such
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so fine modeling is an increased amount of preference information that can be difficult to supply for

the DM.

Even if all cited methods are able to deal with the interaction between criteria, the most well-known

methodologies in the literature are the non-additive integrals, such as the Choquet integral (see [31]

for the original Choquet integral and [68] for the application of the Choquet integral in MCDA),

the Sugeno integral [162] and the generalizations of the Choquet integral, that are the bipolar Cho-

quet integral [71] or the level dependent Choquet integral[80]. The basic idea of these approaches is

that the interaction between criteria can be modeled through a capacity, called also fuzzy measure,

assigning a weight not only to each criterion but also to each subset of criteria.

In this paper, we shall consider the Choquet integral because, currently, it is the most adopted

methodology to deal with interactions between criteria for its manageability (for example, we shall see

that we can use linear programming to determine capacities compatible with DM’s preferences) and

for the meaningfulness of its preference parameters, namely the capacity that becomes understandable

and intelligible even for the non expert DM using some specific techniques such as the Möbius

representation, the Shapley index and the interaction indices.

Even if it is theoretically appealing, the application of the Choquet integral, as well as the

application of all non-additive methods mentioned above, involves some problems related to:

1) the determination of the capacity representing the interaction between criteria,

2) the construction of a common scale permitting comparisons between evaluations on different

criteria.

To handle point 1), we propose to use the Non Additive Robust Ordinal Regression (NAROR) [8]

that considers the whole set of capacities compatible with the preference information provided by the

DM while, to handle point 2) we propose to use the Analytic Hierarchy Process (AHP, [145, 146]).

Let us spend some words to give the intuition behind our proposal. We shall give more details on

how to deal with the two mentioned problems and on the reasons of combining them together in the

following sections of the paper.

In any MCDA problem, a decision model has to be built to produce a recommendation and its

preference parameters (weights, thresholds, value functions and so on) have to be determined. This is

usually done in cooperation with the DM, who can give directly the preference parameters or, instead,

can supply some preference information, for example in terms of preference pairwise comparison of

some alternatives, from which preference parameters can be induced. In the case of the Choquet

integral model, the preference parameters to be fixed are the weights that the capacity assigns to
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each one of the 2n subsets of a family of n criteria (for example 210 = 1024 weights for a family of 10

criteria). Due to this so huge number of parameters, very often the values assigned by the capacity to

the subset of criteria are not asked directly to the DM and, consequently, several methodologies have

been proposed to determine a capacity compatible with the preference information provided by the

DM. For example, in [34] four different approaches are presented to deal with this problem and there

is no general suggestion about which one to adopt. In this conditions, it seems very wise to take into

account not one among the many capacities compatible with the DM’s preference information, but,

instead, the whole set of capacities compatible with the available preference information. This is

the aim of the NAROR that is based on the concepts of necessary and possible preferences, holding

between two alternatives a and b if a is at least as good as b for all or for at least one capacity

compatible with the preferences provided by the DM.

In addition to the determination of the capacity, another important issue regarding the application

of the Choquet integral is the building of a common scale on which evaluations of alternatives on

considered criteria can be compared. Observe that also in this respect it is not reasonable to ask

directly to the DM the values that have to be assigned to the evaluations of criteria at hand. Indeed,

the DM is not able to take into consideration at the same time all the evaluations that criteria give

to all alternatives and to put everything in a single scale. For this reason, we remember the famous

article of Miller “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity

for Processing Information” [122] in which it is argued that the average human brain can handle a

number of objects equal to 7± 2. More precisely, Miller showed that this is due to the limits of one-

dimensional absolute judgment and to the limits of short-term memory. This suggests to consider

pairwise comparisons among objects in consequence of their manageability for the human mind,

and to use some proper methodology permitting to represent pairwise comparisons by numerical

evaluations of objects at hand. Some experiments showed that the use of pairwise comparisons

and, even better, verbal pairwise comparisons, is much more accurate than direct estimation [123].

Consequently, to construct the common scale we propose to adopt AHP which is the most well

known methodology used to build priority vectors on a homogeneous scale on the basis of pairwise

comparisons of alternatives with respect to considered criteria. Some limits related to the capacity

of identifying possible sources of inconsistency arise in case the number of objects to be compared

is larger than seven [149]. Consequently, taking also into account the cognitive burden required to

compare pairwise all the alternatives with respect to all considered criteria, we propose to focus the

attention of the DM on a selected number of meaningful reference levels on each criterion. The DM

is asked to supply pairwise comparisons of reference evaluations, so that they can be put on a single
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scale through AHP. All other evaluations are put on the common scale through linear interpolation.

With this approach we reduce the effort asked to the DM for supplying the preference information

and we increase the reliability of the results by taking into account pairwise comparisons given in

a much more careful way (because the number of required comparisons is much smaller and the

reference levels to be compared are meaningful for the DM that is supposed to participate to their

selection).

Recently, some contributions proposed to conjugate AHP and the Choquet integral [15, 16, 177].

Our approach can be compared with these three works as follows:

1. [16] and [177] use AHP within a procedure to determine the capacity. More precisely, [16] uses

AHP to determine a priority vector of the criteria, taking into account a capacity represent-

ing inconsistencies in the pairwise comparison matrix. Instead, [177] uses AHP to evaluate

the importance of each criterion in terms of the Shapley index and, after asking the DM to

supply the interactions degree of each couples of criteria, uses a nonlinear programming to get

the capacity. With respect to these contributions, the method we are proposing presents a

radical difference because we use NAROR, and not AHP, to define the whole set of capacities

compatible with the DM’s preference information containing pairwise comparisons of some real

alternatives for which the DM is confident in expressing her own convictions;

2. [15] uses a pairwise comparison method to put on a common scale the evaluations of alternatives

with respect to considered criteria (in fact it uses MACBETH, but AHP can be used as well)

and determines the capacity on the basis of the comparisons supplied by the DM of some

fictitious situations where the criteria have evaluations either totally satisfactory or totally

unsatisfactory. This approach is closer to our approach but:

• it uses a pairwise comparison method (which can be AHP as well as MACBETH) to

construct evaluations of alternatives on considered criteria on the basis of pairwise com-

parisons of all the alternatives which can be very numerous and requiring, therefore, a

strong cognitive effort to the DM; instead, in our method we consider comparisons of few

reference levels for each criterion and from the evaluations of these reference levels, by

linear interpolation, we assign evaluations being on a common scale to the alternatives at

hand with respect to considered criteria;

• it determines the capacity considering very specific fictitious alternatives while we can

consider any alternative, so that the DM can choose those ones that she knows best
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and for which she feels more comfortable in expressing her preferences. Moreover, it

determines only one capacity while we consider the whole set of capacities compatible

with the preference information provided by the DM.

The paper is organized as follows. In the next section, we state the problem and we give the basic

intuition of our proposal. Section 3 recalls the basic concepts of the Choquet integral and NAROR

and it gives fundamental notions of AHP. It also introduces our methodology to build the common

scale required by the Choquet integral by means of the AHP. Section 4 illustrates how our approach

can be applied in a multiple criteria decision problem. Section 5 collects conclusions and further

directions of research.

3.2.2 Problem statement and intuition

To explain the idea behind the Choquet integral, inspired by [68], we consider and discuss in detail a

problem of evaluation of students. The Dean of a high school has to evaluate students with respect

to three subjects: Mathematics (Math), Physics (Phys) and Literature (Lit). He starts using a

simple weighted sum whose weights represent the importance of the different subjects. Supposing

that Mathematics and Physics are more important than Literature, the weights could be 3, 3 and 2,

i.e., after normalization, wMath = wPhys = 3
8

= 0.375, wLit = 2
8

= 0.25, respectively. Let us consider

students A, B, C and D having their scores given on a 0-20 scale as shown in Table 3.17. The next

to the last column of Table 3.17 gives the weighted sum of the four students at hand considering the

weights of criteria previously defined.

Table 3.17: Evaluations of the students on the three considered criteria

Student/Subjects Mathematics (Math) Physics (Phys) Literature (Lit) Weighted Sum Choquet integral
A 18 16 14 16.25 15.9
B 18 14 16 16 16.7
C 14 16 14 14.75 14.9
D 14 14 16 14.5 14.6

Applying the weighted sum, student A is preferred to student B and student C to student D. The

Dean agrees with the preference of C over D, but he thinks that the preference of A over B can be

questionable. Indeed student A has relatively good scores both in Mathematics and Physics, while he

has a weakness in Literature. Mathematics and Physics are both important subjects, but students

with a good score in Mathematics have generally also a good score in Physics and, consequently,

there is an overvaluation of these students, in this case of student A. On the other hand, students
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good in Mathematics (or Physics) are generally not good in Literature; therefore, the Dean wants to

give a bonus to student B because he has good scores in Mathematics and Literature, even if he has a

weakness in Physics. The Dean wonders if it is possible to represent his preferences by changing the

weights assigned to the considered subjects. Unfortunately, this is not possible because the weighted

sum cannot represent the preferences of the Dean with respect to the four students. Indeed, on one

hand, the preference of B over A should imply that

18wMath + 16wPhys + 14wLit < 18wMath + 14wPhys + 16wLit, (3.5)

while, on the other hand, the preference of C over D should imply that

14wMath + 16wPhys + 14wLit > 14wMath + 14wPhys + 16wLit. (3.6)

By (3.5) we get

16wPhys + 14wLit < 14wPhys + 16wLit, (3.7)

while, by (3.6) we get

16wPhys + 14wLit > 14wPhys + 16wLit (3.8)

and, clearly, (3.7) and (3.8) are incompatible. The Dean considers also the possibility to evaluate

students using an additive value function such as

uMath(scoreMath) + uPhys(scorePhys) + uLit(scoreLit), (3.9)

with uMath, uPhys and uLit being non-decreasing in their arguments. Also additive value functions

cannot represent the preferences of the Dean with respect to the four students A, B, C and D. In

fact, the preference of B over A should imply that

uMath(18) + uPhys(16) + uLit(14) < uMath(18) + uPhys(14) + uLit(16), (3.10)

while, the preference of C over D should imply that

uMath(14) + uPhys(16) + uLit(14) > uMath(14) + uPhys(14) + uLit(16). (3.11)
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By (3.10) we get

uPhys(16) + uLit(14) < uPhys(14) + uLit(16), (3.12)

while, by (3.11) we get

uPhys(16) + uLit(14) > uPhys(14) + uLit(16), (3.13)

and, again, (3.12) and (3.13) are incompatible. In fact, the preferences of the Dean do not respect

preference independence [109] that would require that for alternatives a, b, c, d ∈ A if

• gi(a) = gi(b) and gi(c) = gi(d) for gi ∈ G′ ⊂ G,

• gi(a) = gi(c) and gi(b) = gi(d) for gi ∈ G \G′,

• a is preferred to b,

then also c should be preferred to d. In simple words, preference independence would require that

if two alternatives a and b have the same evaluation on a subset of criteria G′ ⊂ G, then the

preference of the DM should depend only on the evaluations with respect to remaining criteria, that

is criteria in G \ G′, regardless the evaluation on criteria from G′. This would imply that if any

two other alternatives c and d have the same evaluations on criteria from G′ (even if different from

the evaluations got by a and b on the same criteria) and on criteria from G \ G′ c has the same

evaluations of a and d has the same evaluations of b, then c must be preferred to d. When this is

not the case, the level of the evaluations on criteria G′ is relevant for the preference of an alternative

over the other, even if these evaluations are the same for the two compared alternatives. In these

cases, preference independence is violated. Observe that this situation applies to students A,B,C

and D. Indeed, A and B have the same score in Mathematics and therefore one could imagine that

the Dean’s preference of B over A should depend only on the scores on Physics and Literature. But if

this would be true, then the Dean should prefer also D to C, because in Physics and Literature also C

and D have the same scores of A and B, respectively, while they have the same score in Mathematics.

However, the common score in Mathematics of C and D (14) is different from the common score in

the same subject of A and B (18). Consequently C and D have a weakness in Mathematics, while

A and B have a quite good score in the same subject. Thus, it is absolutely reasonable that the

perspective of the Dean changes in evaluating C and D on one hand and A and B on the other

hand. Comparing students C and D, since their scores in Mathematics is not so good, taking into

account the technical orientation of the school, the Dean prefers C over D for her relatively good

score in Physics. Instead, comparing students A and B, since their score in Mathematics is good,
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taking into account a favor for well equilibrated students in Science (Mathematics and Physics) and

Humanities (Literature), the Dean prefers B over A for his good score in Literature. In conclusion,

the preferences of the Dean violate preference independence and there are sound reasons for this.

Reflecting on the problem, the Dean arrives at the conclusion that one should consider a weight not

only for each subject, but also for each subset of subjects in order to represent:

• the redundancy between Mathematics and Physics; in this case the weight given to Mathematics

and Physics together should be smaller than the sum of the weights given to Mathematics and

Physics considered alone;

• the synergy between Mathematics and Literature or Physics and Literature; in this case the

weight given to Mathematics and Literature together should be greater than the sum of the

weights given to Mathematics and Literature considered alone; analogous behavior should have

the weights of Physics and Literature.

Therefore, denoting by µ(S) the weight of the subset of subjects S, we could consider the following

weights:

µ({Math}) = µ({Phys}) = 0.45, µ({Lit}) = 0.3,

µ({Math, Phys}) = 0.5, µ({Math, Lit}) = µ({Phys, Lit}) = 0.9

and, of course,

µ({Math, Phys, Lit}) = 1.

It can be observed that:

• according to the redundancy between Mathematics and Physics,

µ({Math}) + µ({Phys}) > µ({Math, Phys}),

• according to the synergy between Mathematics and Literature,

µ({Math}) + µ({Lit}) < µ({Math, Lit}),
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• according to the synergy between Physics and Literature,

µ({Phys}) + µ({Lit}) < µ({Phys, Lit}).

Now the problem is: how to extend the weighted sum in case of interacting criteria? In other words:

how to redefine the weighted sum in order to take into account not only weights for each subject

(criterion), but also for each subset of subjects? Let us introduce the Choquet integral [31] explaining

why it can be considered as an extension of the weighted sum in case of interacting criteria. Indeed,

in this case we have to consider not only a weight for each one of the considered criteria, but also

a weight for each subset of considered criteria. Let us consider the case of a set of n non-negative

values x1, . . . , xn for which a weighted sum has to be computed on the basis of the weights w1, . . . , wn,

wi ≥ 0 and w1 + . . . + wn = 1, where wi represents the importance of the value (criterion) xi. The

weighted sum is given by

WS(x1, . . . , xn;w1, . . . , wn) = w1x1 + . . . + wnxn. (3.14)

Observe that we can re-write the weighted sum as follows

WS(x1, . . . , xn;w1, . . . , wn) =
n

∑

i=1

[

(

x(i) − x(i−1)

)

n
∑

j=i

w(j)

]

(3.15)

where (·) is a permutation of the indices 1, . . . , n such that x(1) ≤ . . . ≤ x(n) and x(0) = 0. For

example, considering student A, according to (3.14) we have

WS(18, 16, 14; 0.375, 0.375, 0.25) = 0.375 · 18 + 0.375 · 16 + 0.25 · 14 = 16.25

while, according to (3.15) we have

WS(18, 16, 14; 0.375, 0.375, 0.25) =

= (14− 0) · (0.375 + 0.375 + 0.25) + (16− 14) · (0.375 + 0.375) + (18− 16) · 0.375 = 16.25.

In case of absence of interaction between criteria, the importance of a subset of criteria is

µ(S) =
∑

i∈S

wi,

so that
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n
∑

j=i

w(j) = µ({(i), . . . , (n)})

and (3.15) can be written as follows:

WS(x1, . . . , xn;w1, . . . , wn) =
n

∑

i=1

[(

x(i) − x(i−1)

)

µ({(i), . . . , (n)})
]

. (3.16)

Now the Choquet integral, denoted by Cµ(x1, . . . , xn), is formulated exactly as (3.16), i.e.

Cµ(x1, . . . , xn) =
n

∑

i=1

[(

x(i) − x(i−1)

)

µ({(i), . . . , (n)})
]

(3.17)

and this formulation holds also in case of interacting criteria.

Therefore, according to (3.17), considering the capacity defined above, the Choquet integral of the

scores of student A is

Cµ(18, 16, 14) = (14− 0) · µ({M,P, L}) + (16− 14) · µ({M,P}) + (18− 16) · µ({M}) =

= (14− 0) · 1 + (16− 14) · 0.5 + (18− 16) · 0.45 = 15.9.

The Choquet integral of the scores of students B, C and D can be computed analogously obtaining

the results shown in the last column of Table 3.17. One can see that, in this case, student B is

evaluated better than student A and student C is evaluated better than student D.

We have shown that the Choquet integral is able to take into account interactions between criteria.

However, the application of the Choquet integral presents two relevant problems that did not appear

clearly in the above didactic example:

a) Differently from the usual weighted sum, where we have to assign only one weight to each

criterion, the Choquet integral requires to assign a weight to each subset of criteria. This

problem becomes very relevant when the number of criteria is high. Indeed, for n criteria we

have to assign n values in case of the weighted sum (one for each criterion), while we have

to assign 2n weights (one for each subset of criteria) in case of the Choquet integral (in fact

2n − 2 weights because the weight assigned to the empty set is null and the weight assigned to

the whole set of criteria is equal to one). For example, if we have 3 criteria, we have to assign

23 = 8 weights which become 24 = 16 if we have 4 criteria and so on. It is clear that asking to

the DM to provide a large number of weights is not reasonable. It is also worthwhile to observe
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that the interpretation of these weights is not trivial for the DM because of the interaction of

several criteria at once.

b) As it can be seen from (3.15), the Choquet integral requires that the evaluations with respect to

all considered criteria are on the same scale. In fact, for each alternative, the evaluations on the

considered criteria need to be ordered from the smallest to the greatest. In the example of Table

3.17, if we consider student A, it is immediate to conclude that a score of 18 in Mathematics is

greater than a score of 16 in Physics which, in turn, is greater than a score of 10 in Literature.

Even more, as shown by (3.17), to compute the Choquet integral we have also to consider

the difference between evaluations of the same alternative on different criteria. Therefore, for

example, taking into consideration student A, we must be able to say that the difference in the

score between Mathematics and Physics is 18-16=2, and that it is meaningful to state that it

is one half of the difference between Mathematics and Literature which is 18-14=4. However,

let suppose we have to rank a set of cars to decide which one to buy and suppose we want

to use the Choquet integral to evaluate, for example, Audi A3 (3 doors) having the following

characteristics:

Price: e22,140

Acceleration: 10.3 second to arrive from 0 to 100 km/h

Maximum speed: 193 km/h

Fuel consumption: 4.9 l/km.

How to order these evaluations for computing the Choquet integral? In other words, is a

price of e22,140 more valuable than a maximum speed of 193 km/h? And, even much more

problematic: how can we give a value to this difference?

Some answers have been given in the literature to the two above points. Regarding point a), the

most convincing answer seems the proposal of inducing the weights from some indirect preference

information provided by the DM in terms of pairwise comparisons of some reference alternatives

and in terms of relative importance and interaction between criteria [119]. Recently, in the same

direction, NAROR [8] has been proposed. It permits to consider the whole set of compatible weights,

i.e. the whole set of weights satisfying the preference information provided by the DM, by the use of

a necessary and a possible preference relation as in any Robust Ordinal Regression method (ROR;

[35, 36, 86]). The necessary and possible preference relations hold between alternatives a and b if

a is not worse than b for all, or for at least one, of the sets of weights compatible with the DMs

preferences, respectively (for a discussion on the axiomatic basis of necessary and possible preference
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relations see [64]).

With respect to point b), very often a normalization of evaluations on each criterion is done consider-

ing an “unacceptable” minimal value and an “ideal” maximal value for each criterion and considering

a linear interpolation between these two extremes. A more sophisticated methodology permitting to

build one scale and one capacity for the Choquet integral on the basis of the preference information

provided by the DM has been proposed in [6] and it has been further developed in [4]. However,

these two approaches are heuristics and not exact algorithms.

In this paper we propose to deal with problems a) and b) in a systematic way as follows:

• First we construct a common scale for all criteria using the AHP. The advantage of using AHP

in this context is given by the possibility of building the scale using the preferences provided by

the DM. Moreover, for the considered criteria, the evaluations on the scale obtained by AHP

are comparable between them and therefore we can apply the Choquet integral; it is worthwhile

to observe that our use of AHP is parsimonious with respect to the information asked to the

DM, in the sense that with respect to each considered criterion, we shall not ask the DM to

compare pairwise all the alternatives, as it is commonly done, but we shall ask the DM to

compare some reference levels on the considered criteria. The other non reference evaluations

are obtained by interpolating the values assigned by AHP to the reference levels. We believe

that this is another important contribution of our work which goes beyond the mere use of

AHP in a MCDA procedure based on the Choquet integral preference model. In fact, it can

be used in any decision problem where AHP has to be applied to a large set of alternatives. In

this way, the DM avoids to answer to a long and tiring list of questions related to all pairwise

comparisons of the alternatives at hand.

• Using the evaluations expressed in the scale obtained by means of the AHP method, we proceed

with the application of the NAROR. In this way, we consider all the set of weights which are

compatible with the preference information provided by the DM avoiding to consider only one

set of weights chosen in an arbitrary way in the whole family of compatible sets. Since the

necessary and possible preference relations obtained by NAROR can present some difficulty to

be handled by the DM, we present her also a complete ranking of the considered alternatives

obtained by computing the so called most representative value function [7, 53]. This is a value

function corresponding to the Choquet integral with respect to the capacity giving the “best”

representation not only of all the preferences supplied by the DM, but also of the necessary

and the possible preference relations.
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We believe that the proposed combination of AHP and NAROR represents the most convenient way

to deal with the two discussed problems of determining in a reasonable and meaningful way a set of

weights and a common scale for the considered criteria when the Choquet integral is used to represent

interaction between criteria.

3.2.3 Methodology

IntroductionThis section presents the methods used to solve the problem described in Section 3.2.2.

First, we formalize the Choquet integral preference model for MCDA problems (Section 2.2.2). As

the capacities to be used in the Choquet integral are difficult to elicit, we use the NAROR (Section

3.2.3), to indirectly infer all capacities compatible with the information provided by the DM. In

Section 3.2.3 basic principles of AHP are then recalled, describing after how to use it for building

the common scale, which is needed to apply the Choquet integral. In Section 3.2.3 we show how the

number of pairwise comparisons asked by the AHP can be decreased by taking into account only

reference points and then interpolating the results.

The Choquet integral preference modelA set function µ : 2G → [0, 1] is called a capacity (fuzzy

measure) on 2G (being the power set of G, i.e. the set of all subsets of G) if the following properties

hold:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ S ⊆ T ⊆ G, µ(S) ≤ µ(T ) (monotonicity condition).

For any T ⊆ G, µ(T ) represents the total weight of criteria from T , which is not supposed to

be additive, i.e. it is not necessarily true that for any S, T ⊆ G such that S ∩ T = ∅, one has

µ(S ∪ T ) = µ(S) + µ(T ).

In this case, we have to define 2|G| − 2 non additive weights µ(S), ∅ ⊂ S ⊂ G, since the values

µ(∅) = 0 and µ(G) = 1 are already known.

Given a ∈ A and a capacity µ on 2G, the Choquet integral [31], as above explained, gives the

analogous of the weighted sum in case of additive weights, and it is defined as follows:

Cµ(a) =
n

∑

i=1

[(

g(i)(a)− g(i−1)(a)
)

µ ({(i), . . . , (n)})
]

where (·) reorders the criteria so that g(1)(a) ≤ . . . ≤ g(n)(a) and g(0)(a) = 0.

It is useful to consider also the Möbius representation of a capacity µ being the function m : 2G → R

[140, 153] such that, for all S ⊆ G

113



µ(S) =
∑

T⊆S

m(T ).

The Möbius representation m(S) can be obtained from µ(S) as follows:

m(S) =
∑

T⊆S

(−1)|S−T |µ(T ).

For the Möbius representation [30], properties 1a) and 2a) become

1b) m(∅) = 0,
∑

T⊆G

m(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i} , m({i}) +
∑

T⊆R

m(T ∪ {i}) ≥ 0.

The Möbius representation is important in applications, because it permits to express the Choquet

integral in a linear form (but in a space different from that one of values given by criteria from

G), formulating the Choquet integral as a weighted sum of minimum values given to the considered

alternative a ∈ A by all subsets of criteria T from G [66],

Cµ(a) =
∑

T⊆G

m(T ) min
i∈T

gi (a) .

However, even if expressed in linear form with the above formula, the use of the Choquet integral

preference model remains difficult because we have to determine the 2|G| values m(T ), T ⊆ G. In

order to reduce the number of parameters to be determined and to get a simpler formulation for the

Choquet integral, the concept of k-additive capacity, k = 1, . . . , n, has been introduced [69]. Formally

a capacity is k-additive if m(T ) = 0 for T ⊆ G such that |T | > k. Intuitively a capacity is k-additive

if it considers interactions between no more than k criteria. In MCDA, 2-additive capacities are

often considered because it is reasonable to expect that the DM could supply preference information

on positive and negative interactions between couples of criteria, while it seems that interactions

between three, four and more criteria are more difficult, or even sometimes impossible, to evaluate.

It is to observe that a 2-additive capacity µ in terms of Möbius representation has the following

formulation

µ(S) =
∑

i∈S

m ({i}) +
∑

{i,j}⊆S

m ({i, j}) , ∀S ⊆ G.

Thus, from the computational point of view, 2-additive capacities require to induce the value of only
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n +
(

n
2

)

parameters, being a value m({i}) for every criterion i and a value m({i, j}) for every couple

of criteria {i, j}. For 2-additive capacities, properties 1b) and 2b) have to be reformulated as follows:

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)















m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

When the Choquet integral is adopted in MCDA, the importance of a criterion i ∈ G is not evaluated

considering only the value assigned by the capacity to the criterion i alone, i.e. µ({i}), but also taking

into consideration all its interactions, i.e., in case of 2-additive capacities, considering µ({i, j}) for

all j ∈ G \ {i}. So doing, the importance of criterion i ∈ G is expressed by the Shapley value [154]

that, in case of a 2-additive capacity, has the following formulation:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
.

As pointed out above, with respect to a criterion i ∈ G, in general the Shapley index ϕ ({i})

is different from the weight µ ({i}) assigned to the criterion i by the capacity µ. Our methodology

takes into account this fact by modeling DM’s preference information related to comparison between

the importance of criteria in terms of Shapley index ϕ ({i}). In this way, we acknowledge that the

importance of criterion i does not depend on itself only but also on its interactions with the other

criteria at hand.

Among the preference information that the DM can supply there is also the sign and the magnitude

of the interaction ϕ({i, j}) of couples of criteria {i, j} ⊆ G [128]. For a 2-additive capacity µ the

interaction is given by the Möbius representation of the couple {i, j}, i.e.

ϕ ({i, j}) = m ({i, j}) .

Robust Ordinal Regression and NAROR

Intuition of NARORConsider the example proposed in Section 3.2.2. Suppose now that the Dean

wants to evaluate three new students E,F and H, whose scores are shown in Table 3.18.

The Dean wants to apply the Choquet integral but he wants to be sure about his evaluations,

and, consequently, he wants to consider all the capacities µ that are coherent with his preferences.

Therefore he takes into account the following constraints for the values taken by µ:
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Table 3.18: Evaluations of three new students on the three considered criteria

Student/Subjects Mathematics (M) Physics (P) Literature (L) Choquet integral with respect to capacity µ1 Choquet integral with respect to capacity µ2

E 19 14 15 16.48 16.3125
F 18 18 14 16 16.5
H 18 14 18 16.4 17.25

• µ({Math, Lit}) > µ({Math, Phys});

Indeed, by considering the preference of B over A translated by the inequality

Cµ(18, 14, 16) > Cµ(18, 16, 14),

and applying (3.17), we have that

14µ({Math, Phys, Lit}) + (16− 14)µ({Math, Lit}) + (18− 16)µ({Math})

>

14µ({Math, Phys, Lit}) + (16− 14)µ({Math, Phys}) + (18− 16)µ({Math})

and, consequently,

µ({Math, Lit}) > µ({Math, Phys}). (3.18)

• µ({Phys}) > µ({Lit});

Indeed, by considering the preference of C over D translated by the inequality,

Cµ(14, 16, 14) > Cµ(14, 14, 16)

and applying (3.17) we have that

14µ({Math, Phys, Lit}) + (16− 14)µ({Phys})

>

14µ({Math, Phys, Lit}) + (16− 14)µ({Lit})

and, consequently,

µ({Phys}) > µ({Lit}). (3.19)
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•

µ({Math}) = µ({Phys}) and µ({Math, Lit}) = µ({Phys, Lit}) (3.20)

because Mathematics and Physics are considered equally important by the Dean.

Considering all the capacities µ satisfying constraints (3.18)-(3.20), the Dean arrives at the following

conclusions:

• student H is preferred to student F for every capacity µ compatible with his preferences; indeed

Cµ(18, 14, 18) > Cµ(18, 18, 14)

that, by (3.17), becomes

14µ({Math, Phys, Lit}) + (18− 14)µ({Math, Lit})

>

14µ({Math, Phys, Lit}) + (18− 14)µ({Math, Phys})

which is always true by eq. (3.18);

• among the capacities µ compatible with his preferences, there are some for which student E is

preferred to student F and there are others for which student F is preferred to student E; for

example, student E is preferred to student F for the capacity µ1 such that

µ1({Math, Lit}) = µ1({Phys, Lit}) = 0.6, µ1({Math, Phys}) = 0.5,

µ1({Math}) = µ1({Phys}) = 0.47, µ1({Lit}) = 0.1, µ1({Math, Phys, Lit}) = 1,

while, student F is preferred to student E for the capacity µ2 such that

µ2({Math, Lit}) = µ2({Phys, Lit}) = 0.8125, µ2({Math, Phys}) = 0.625,

µ2({Math}) = µ2({Phys}) = 0.375, µ2({Lit}) = 0.1875, µ2({Math, Phys, Lit}) = 1;

the evaluations given to students E,F and H by the Choquet integral with respect to capacities

µ1 and µ2 are shown in the last two columns of Table 3.18;
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• among the capacities µ compatible with his preferences, there are some for which student E is

preferred to student H and there are others for which student H is preferred to student E; for

example, student E is preferred to student H for the capacity µ1 while, student H is preferred

to student E for the capacity µ2.

In conclusion, the Dean is convinced that there is no doubt about the preference of student H over

student F . In this case, we speak of necessary preference. However, there are some doubts about the

preference between student E and student F , and between student E and student H. In this case

we speak of possible preferences. The following subsection 3.2.3 recalls basic concepts of NAROR

[8] that permits to define systematically necessary and possible preferences when using the Choquet

integral.

The formal model of NAROR

As observed in the example of the previous Section, in general, there is more than one capacity that

permits to represent the preference information provided by the DM through the Choquet integral.

Since choosing only one of these compatible capacities is always arbitrary to some extent, following

the principles of ROR [35, 36, 86], we take into account all the capacities compatible with the

preference information provided by the DM through NAROR [8] that we shall recall in the following.

To get the values µ(T ) that the capacity µ assigns to all the subsets T of G, one can use a direct

or an indirect technique. The direct technique asks the values µ(T ) or the corresponding Möbius

representation directly to the DM while the indirect technique infers the values µ(T ) from some

preference information provided by the DM ([6, 119]; for an extensive review on the topic see also

[70] and [74]).

When using an indirect technique, the DM can supply the following information with respect to a

subset of alternatives AR ⊆ A :

• a partial preorder % on AR whose meaning is: for a∗, b∗ ∈ AR

a∗ % b∗ ⇔ “a∗ is at least as good as b∗”;

• a partial preorder %∗ on AR × AR, whose meaning is: for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) %∗ (c∗, d∗) ⇔ “a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗”;
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• a partial preorder %1 on G, whose meaning is: for gi, gj ∈ G

gi %1 gj ⇔ “criterion gi is at least as important as criterion gj”;

• a partial preorder %∗1 on G×G, whose meaning is: for gi, gj, gk, gl ∈ G,

(gi, gj) %
∗
1 (gk, gl) ⇔ “the difference of importance between criteria gi and gj is no lower than the

difference of importance between criteria gk and gl”;

• the sign of the interaction between criteria gi and gj, with gi, gj ∈ G :

(a) gi and gj are positively interacting,

(b) gi and gj are negatively interacting.

In the following, as usual, ∼ (indifference) and ≻ (preference) so as ∼∗ and ≻∗ denote the symmetric

and the asymmetric part of % and %∗, respectively, that is,

• a∗ ∼ b∗ is equivalent to a∗ % b∗ and b∗ % a∗, while

• a∗ ≻ b∗ is equivalent to a∗ % b∗ and not(b∗ % a∗),

as well as

• (a∗, b∗) ∼∗ (c∗, d∗) is equivalent to (a∗, b∗) %∗ (c∗, d∗) and (c∗, d∗) %∗ (a∗, b∗), while

• (a∗, b∗) ≻∗ (c∗, d∗) is equivalent to (a∗, b∗) %∗ (c∗, d∗) and not[(c∗, d∗) %∗ (a∗, b∗)].

The preference information provided by the DM permits to define the following set EAR

of

constraints representing the set of all the capacities compatible with the preference information

given by the DM:
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Cµ(a∗) ≥ Cµ(b∗) if a∗ % b∗,

Cµ(a∗) ≥ Cµ(b∗) + ε if a∗ ≻ b∗,

Cµ(a∗) = Cµ(b∗) if a∗ ∼ b∗,

Cµ(a∗)− Cµ(b∗) ≥ Cµ(c∗)− Cµ(d∗) + ε if (a∗, b∗) ≻∗ (c∗, d∗),

Cµ(a∗)− Cµ(b∗) = Cµ(c∗)− Cµ(d∗) if (a∗, b∗) ∼∗ (c∗, d∗),

ϕ({i}) ≥ ϕ({j}) if i %1 j,

ϕ({i}) = ϕ({j}) if i ∼1 j,

ϕ({i, j}) ≥ ε if criteria i and j are positively interacting with i, j ∈ G,

ϕ({i, j}) ≤ −ε if criteria i and j are negatively interacting with i, j ∈ G,

m ({∅}) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1, [NC]

m ({i}) ≥ 0, ∀i ∈ G, [MC1]

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅, [MC2]
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where ε is an auxiliary variable used to transform the strict inequality constraints in weak inequality

constraints. If ε∗ > 0, where ε∗ = max ε subject to EAR

, then there exists at least one capacity com-

patible with the preference information provided by the DM. If there is not any capacity compatible

with the preference information provided by the DM, one can use techniques described in [125] to

determine the minimal set of pieces of preference information that could be revised by the DM in

order to remove the incompatibility of constraints in EAR

.

Note 3.2.1. From the computational point of view, the previous problem is a linear programming

problem composed of |G| +
(

|G|
2

)

+ 1 variables and, in particular, one Möbius parameter m({i}) for

each criterion i ∈ G, one Möbius parameter m({i, j}) for each pair of criteria {i, j} ⊆ G2 and the

variable ε. In the following, to simplify the notation, we shall denote by (m, ε) the vector composed

of the variables and we shall call it “the model”.

The set [NC] is composed of two equality constraints; the set [MC1] is composed of |G| inequality

constraints (one for each criterion i ∈ G) while the set [MC2] is composed of |G| ·
(

2|G|−1 − 1
)

inequality constraints (2|G|−1 − 1 for each criterion i ∈ G). Therefore, the number of monotonicity

2Let us observe that m({i, j}) = m({j, i}) for each pair of criteria {i, j} and this is the reason for which the Möbius

paremeters m({i, j}) are
(

|G|
2

)

.
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and normalization constraints will be equal to 2+|G|·2|G|−1. To these monotonicity and normalization

constraints should be added as many equality or inequality constraints as the number of pieces of

information provided by the DM. In particular, one equality constraint for each piece of indifference

information (indifference between couples of alternatives or no difference between the importance

of two criteria) and one inequality constraint for each piece of preference information (preference

between two alternatives, intensity of preference between couples of alternatives, preference in the

importance of two criteria) or for each positive or negative interaction.

In general, there could exist more than one capacity compatible with the preference information

provided by the DM and to take into account all these compatible capacities, one can compute the

necessary (%N) and the possible (%P ) preference relations on the set of alternatives A as described

below.

Given the following sets of constraints,

Cµ(b) ≥ Cµ(a) + ε

EAR

,











EN(a, b)
Cµ(a) ≥ Cµ(b)

EAR

,











EP (a, b)

we have that:

• a %N b if EN(a, b) is infeasible or if εN ≤ 0, where εN = max ε subject to EN(a, b),

• a %P b if EP (a, b) is feasible and εP > 0, where εP = max ε subject to EP (a, b).

Note 3.2.2. To get the necessary and possible preference relations one has to solve two linear pro-

gramming problems in which the considered variables are the same of EAR

, while the number of

constraints augmented by one unity.

To check if a %N b, we add the constraint Cµ(b) ≥ Cµ(a)+ε, corresponding to the strict preference

of b over a, to the set EAR

containing the constraints translating the preference information provided

by the DM and the monotonicity and normalization constraints. Since we already knew that the set

EAR

is feasible and that there exists at least one model (m, ε) such that ε > 0, we have the following

possible cases:

• EN(a, b) is infeasible: this means that the strict preference of b over a is not compatible with

the preference information provided by the DM since there does not exist any model (m, ε) for

which all the constraints are satisfied (independently from the sign of ε). Because it is not

possible to find any model compatible with the preference information provided by the DM for
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which b is strictly preferred to a, then a will be at least as good as b for all compatible models.

Consequently, a %N b.

• EN(a, b) is feasible but εN ≤ 0: in this case, even if there exist some model (m, ε) for which

the constraints are all satisfied, none of them has one ε greater than zero. This means that

for none of these models Cµ(b) > Cµ(a) and again, a is therefore at least as good as b for all

compatible models, implying that a %N b.

• EN(a, b) is feasible but εN > 0: in this case, there exist at least one model (m, ε) for which all

constraints are satisfied but, there exist at least one model presenting ε > 0. This means that b

could be strictly preferred to a and, consequently, it is not true that a is at least as good as b

for all compatible models.

To check if a %P b, we add the constraint Cµ(a) ≥ Cµ(b), corresponding to the statement “a is at

least as good as b”, to the set EAR

. Since we already know that the set EAR

is feasible and that there

exists at least one model (m, ε) such that ε > 0, we have the following possible cases:

• EP (a, b) is infeasible: this means that the weak preference of a over b is incompatible with the

preference information provided by the DM since there does not exist any model (m, ε) for which

all the constraints are satisfied (independently from the sign of ε). Because it is not possible to

find any model compatible with the preference information provided by the DM for which a is

weakly preferred to b, then b will be strictly preferred to a for all compatible models that implies

that a %N b.

• EP (a, b) is feasible but εP > 0: in this case, there exist some model (m, ε) presenting ε > 0

for which the constraints are all satisfied. This implies that there exists at least one compatible

model for which a is at least as good as b, that is a %P b.

• EP (a, b) is feasible but εP ≤ 0: this means that there exists some model (m, ε) for which

all constraints are satisfied but none of these models presents an ε > 0. Therefore, the new

constraint Cµ(a) ≥ Cµ(b) is not compatible with the preference information provided by the DM

and, consequently, it is not true that a %P b.

Finally, let us briefly remind that for each pair of alternatives a, b ∈ A, a %N b implies a %P b

(therefore we can state that %N⊆%P ), and that for all a, b ∈ A, a %N b or b %P a (for further

important properties of the necessary and possible preference relations, see [86]). We have reminded

this point to underline that to compute the necessary and possible preference relations we do not
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need, in general, to solve two LP problems for each couple of alternatives (a, b). In particular, after

computing the necessary preference relation for each couple of alternatives (a, b), we need to compute

only the possible preference relation for the couples (b, a) such that a %N b but not(b %N a). Indeed,

by considering the two properties mentioned above, we can have the following three cases:

• a %N b and b %N a ⇒ a %P b and b %P a;

• a %N b and not(b %N a) ⇒ a %P b but nothing could be said about b %P a;

• not(a %N b) and not(b %N a) ⇒ b %P a and a %P b.

In some cases, and also in our approach, one needs to assign a real number to the overall evaluation

of each alternative in order to obtain a complete ranking of the alternatives.

With this aim, based on the results of the ROR, among all the compatible models one can compute

the most representative model being that one maximizing the difference in the performance of two

alternatives a and b for which a %N b but not(b %N a) , and minimizing the difference in the

performances of two alternatives a and b such that a %P b and b %P a [7, 53].

The considered procedure is composed of two steps:

(S1) Solving the following optimization problem:

max ε subject to

Cµ(a) ≥ Cµ(b) if a %N b and not(b %N a),

EAR

.











E1

(S2) Denoted by ε1 the optimal value of epsilon obtained in the previous step, solving the following

optimization problem:

min δ subject to

Cµ(a)− Cµ(b) ≤ δ,

Cµ(b)− Cµ(a) ≤ δ,











if a %P b and b %P a,

E1,

ε = ε1.


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Analytic Hierarchy Process

Description of the methodAHP is a multi-criteria decision making (MCDM) method that helps

the DM in solving a complex problem having multiple conflicting criteria [93, 144, 145]. In its full

version, AHP is structured in a hierarchy, where the decision goal is located on the top. The children

of the tree are the criteria and sub-criteria to be satisfied by each alternative.

In our paper, we are not solving the whole problem with AHP but we are only inducing a rating table.

Therefore, only the core feature of AHP, the pairwise comparison matrix, is needed. The method

of pairwise comparisons provides more accurate results than direct evaluations, primarily due to the

fact that the DM is asked to concentrate only on two elements at a time [49, 92, 123]. With respect

to MACBETH [9], another methodology to construct a scale from pairwise comparisons, AHP has

the advantage to consider also indirect comparisons to derive priorities [94, 176], and this, on one

hand, permits to better control the consistency of information supplied by the DM, and, on the other

hand, gives more reliable results.

The pairwise comparisons are entered in a positive reciprocal matrix A = [aij] of dimension

n, where n is the number of considered “objects”, and aij expresses how many times “object” i is

“greater” than “object” j. Indeed if pi measures the magnitude of i and pj the magnitude of j,

we should have aij = pi
pj

. Usually, following Saaty, aij is determined by asking the DM a verbal

judgment using the scale “moderately more dominant”, “strongly more dominant”, “very strongly

more dominant”, and “extremely more dominant” which are numerically coded as 3, 5, 7, and 9,

respectively, with 2, 4, 6, and 8 for compromise between the previous values. The values aij from

matrix A are consistent if

1) aij = 1
aji

for all i and j, and this is always satisfied because, as above mentioned, matrix A is

supposed reciprocal, and

2) aijajk = aik for all i, j and k.

It can also be written that values aij from matrix A are consistent if and only if there exist values

p1, . . . , pn such that for i = 1, . . . , n

ai1p1 + . . . + ainpn = n · pi

which can be written as

A · p = n · p (3.21)
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where p = [pi] is the priorities vector. In this case the priorities p1, . . . , pn and, consequently, the

vector p, can be easily determined as follows:

pi =
aij

a1j + . . . + anj
for i = 1, . . . , n. (3.22)

If (3.21) holds, (3.22) gives the same values for any j = 1, . . . , n.

However, condition (3.21) is rarely satisfied which implies that (3.22) cannot be used because it

gives different values to pi when different j are considered. Therefore several methods have been

proposed to induce the priority vector p and among them the most well-known is the eigenvalue

method calculating the priorities corresponding to matrix A as follows:

A · p = λmax · p

where λmax is the maximal eigenvalue of matrix A.

In order to declare the comparison matrix consistent enough for calculating credible priorities, it

must pass a consistency check. Consistency Ratio (CR) is defined as:

CR = CI/RI,

where RI is the Random Index (the average CI of 500 randomly filled matrices).

CI is the Consistency Index

CI = (λmax − n)/(n− 1).

In order to make the rating on different criteria commensurable, we normalise the priorities with

respect to the maximum and minimum score on each criterion as follows:

p∗i =
pi − pmin

pmax − pmin

where:

• p∗i is the rating of the score i,

• pi is the calculated priority of the score i,

• pmax is the priority of the maximum score,

• pmin is the priority of the minimum score.
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Observe that the rating of p∗i will be in the range [0, 1], and p∗i = 1 if pi = pmax and p∗i = 0 if

pi = pmin.

Reducing the number of pairwise comparisonsAHP permits to build a scale on each criterion

starting from ratio evaluations given by the DM. This is very important in multiple criteria decision

making because numerical evaluations of alternatives on considered criteria permit to proceed towards

their aggregation in a single overall evaluation allowing to compare comprehensively alternatives

between them. However, the application of the AHP becomes troublesome when the number of

considered alternatives is high. Indeed, if the number of alternatives is m, then there is the necessity

of m(m−1)
2

pairwise comparisons for each considered criterion, such that, for n criteria we have a total

of nm(m−1)
2

pairwise comparisons to ask to the DM. For example, for a not so complex problem with

7 criteria and 7 alternatives, the total number of pairwise comparisons to ask to the DM is 147,

which becomes 450 in a problem with 10 criteria and 10 alternatives and 1900 in a problem with

10 criteria and 20 alternatives. Thus the use of AHP requires a consistent cognitive efforts from the

DM and this can deteriorate the quality of the information provided with the risk that the MCDA

methodology gives back a result which is not enough reliable. Consider also that, sometimes, there

is the necessity to get a decision model that can be applied to a set of alternatives very large and

not predefined at the beginning. For instance, suppose that one wants to develop a model to assess

credit score for customers of a bank taking into account several financial ratios such as return on

equity, current ratio, debt ratio and so on. In this case, it is necessary to build a decision model

which is universally applicable to all the customers requiring a credit to the bank. Thus, we should

consider thousands of potential customers and, even if we would be able to get the billions of pairwise

comparisons necessary to apply AHP, in any case, the customers that could apply for a credit cannot

be known in advance. Therefore, there is the necessity to develop a method permitting to apply AHP

also in these cases. For this reason, we propose to fix a small number of representative points in the

scale of each criterion and to ask the DM to compare pairwise these points. After obtaining through

AHP a normalized evaluation for these points, the evaluations of all other alternatives with respect

to the considered criteria can be obtained by linear interpolation. More formally, supposing for the

sake of simplicity that all criteria have a numerical scale that is monotonic increasing with respect to

the preferences, for each criterion i, i = 1, . . . , n, we consider ti representative points well distributed

on the scale of the criterion. Let us denote by γir the r-th point, r = 1, . . . , ti, on the scale of criterion

i. For each criterion i, the DM is asked to supply ti
ti−1
2

pairwise comparisons between points γir

and γis, r, s = 1, . . . , ti. Using AHP, for each representative point γir, the normalized evaluations
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u(γir) are obtained. Consider now an alternative a having an evaluation gi(a) on criterion i. If gi(a)

belongs to the interval of consecutive representative points
[

γis, γi(s+1)

]

, we can get the normalized

evaluation u(gi(a)) of gi(a) as follows:

u(gi(a)) = u(γis) +
u(γi(s+1))− u(γis)

γi(s+1) − γis
(gi(a)− γis). (3.23)

It is to observe that the selected set of points may have an influence on the results of the rescaling.

They must therefore be selected carefully and in the most representative way. We believe that the best

way to select reference points is to select them in cooperation with the DM. Indeed, the fundamental

characteristic that the reference points must possess is their meaningfulness for the DM. In addition

to the greater reliability of her comparisons, there is another advantage in involving the DM in the

selection of the reference points. Indeed, the more the reference points are meaningful for the DM,

the more she will feel comfortable in reasoning about possible inconsistencies and correct them, if

necessary.

With respect to the procedure we are proposing, one could ask if the reduction of comparisons

does not reduce the possibility of discovering inconsistencies in the DM’s evaluations, with the risk

of obtaining a decision model not enough accurate and convincing. We do not believe that this is

the case. Indeed, asking for comparing all the alternatives, especially in case of a great number of

alternatives, the DM experiments a great cognitive burden which is not compensated by a greater

reliability of the results. It is rather the contrary. The greater the number of the questions requested

to the DM and the more difficult the contents of these questions (because very often are based on

negligible differences), the less is the attention in answering and the more deteriorate the overall

quality of the preference information collected by the DM. Let us observe that this consideration is

confirmed by the growing literature in the domain of the heuristic decision making (see e.g. [65])

which is mainly based on the principle that ignoring part of the information can lead to more accurate

and more effective decisions. Moreover, even supposing an “ideal” DM able to answer in a good way

to all the many questions one can ask her, the traditional AHP is not adapted for large problems.

Observe that some studies even recommend only 7 alternatives because of the limited capacity of

our brain to compare more alternatives [149]. Therefore, reducing reasonably the number of pairwise

comparisons will not reduce the quality of the obtained decision model because the traditional AHP

will anyway have a reduced quality with a high number of alternatives and, probably, it will also

increase the reliability of the final results.

Since AHP has received several criticisms, one could wonder how they apply to the methodology
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we are proposing. We believe that the soundness of our application of AHP is not touched by these

remarks. For example, we agree with Salo and Hämäläinen [152] that the 1-9 scale is not always

justified. However, recent publications [96, 139] have proposed to calibrate the measurement scale

to the mental representation of the DM. We have not done this extra step because it is not the main

focus of the paper, but it can easily be added. Also the criticism of Perez, Jimeno and Mokotoff

[134] regarding the use of indifferent criteria in AHP does not apply to our model. Indeed, in our

work, we only use partially AHP. More precisely, we use only the pairwise comparison matrices for

comparing performances but we do not use pairwise comparison matrices for finding the weights

of the criteria since we use the NAROR technique for this part. Bana e Costa and Vansnick [10]

observe that the Condition of Order Preservation, that is, loosely speaking, that priorities represent

also intensity of preferences between alternatives, is not preserved in AHP. This is true if we consider

direct evaluations only. As we consider useful to take into account direct and indirect evaluations to

derive priorities [94, 176], also this criticism is not applicable to our model.

Finally, it is important to mention that the procedure we are proposing consisting of compare pairwise

a small number of reference points only can also be applied to other methods that give a normalized

evaluation on the basis of pairwise comparisons as, for example, MACBETH [9].

3.2.4 An application for the conjoint use of NAROR and AHP

Steve wants to buy an economy car and, therefore, he is analyzing currently available cars on the

market. Thus, he decides to consider 24 models that are presented in Table 3.19 together with their

evaluations with respect to criteria Price, Acceleration, Max Speed and Fuel Consumption. First of

all, in order to use the Choquet integral preference model and the NAROR to decide which car to buy,

the evaluations of each car with respect to above criteria have to be expressed on a common scale.

This is possible using AHP but it requires 276 pairwise comparisons for each one of the considered

criteria which lead to a total of 1104 pairwise comparisons. Steve thinks that all these pairwise

comparisons are too many, and thus we propose him to apply AHP only to a set of representative

evaluations on the scale of each criterion and to determine the normalized value of the evaluations

of the 24 considered cars by using the procedure described in Section 3.2.3.

For this reason, we ask Steve to compare the representative values shown in Table 3.20. As a

consequence, the pairwise comparisons asked to Steve are:

• 55 for the 11 reference levels of criterion Price,

• 28 for the 8 reference levels of criterion Acceleration,
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Table 3.19: Set of considered cars and their evaluation

Price [Euro] Acceleration [seconds from 0 to 100 km/h] Max Speed [km/h] Consumption (l/km)
(a1) Audi A3 (3-doors) 22,140 10.3 193 4.9
(a2) BMW 1 Series (3-doors) 23,089 11.2 195 5.5
(a3) Hyunday ix20 14,000 12.9 167 6
(a4) Ford C-Max 19,500 12.6 174 5.1
(a5) Toyota Aygo 10,350 13.7 157 4.4
(a6) Seat Ibiza (5-doors) Style 13,000 13.9 163 5.4
(a7) VolksWagen Polo highline 1.4 (3-door) 16,550 12.1 177 5.9
(a8) BMW Serie 1 (3-doors) 23,069 11.2 195 5.5
(a9) Chevrolet Spark 9,952 15.3 152 5
(a10) FIAT Punto (3-doors) 13,711 11.2 182 4.2
(a11) Ford Fiesta (3-doors) 12,750 14.9 165 4.6
(a12) Honda Civic 18,900 13.4 187 5.4
(a13) Kia Rio 11,650 13.1 172 5.1
(a14) Lancia Ypsilon 14,568 11.9 176 4.2
(a15) Mazda2 3-door Sporty 14,900 13.6 172 5
(a16) Mercedes A-Class 23,630 9.2 202 5.5
(a17) Mini Cooper 20,700 7.9 210 4.5
(a18) Mitsubishi Space Star 11,490 13.6 172 4
(a19) Nissan Micra 11,250 13.7 170 5
(a20) Opel Corsa 11,330 18.2 155 5.1
(a21) Peugeot 208 12,100 14 163 4.3
(a22) Renault Clio 16,200 12.2 182 4.5
(a23) Skoda Citygo 9,260 14.4 160 4.5
(a24) Suzuki Swift 12,100 11.5 165 5

• 21 for the 7 reference levels of criterion Max Speed,

• 36 for the 9 reference levels of criterion Consumption,

which gives a total of 140 pairwise comparisons. The pairwise comparisons given by Steve are shown

in Tables 3.21(a)-3.21(d) while the normalized evaluations of these reference points, obtained by

AHP, are provided in Table 3.22. Considering the normalized evaluations of the reference points

and interpolating them as described in the previous Section, we are able to obtain the normalized

evaluations of all cars with respect to all criteria reported in Table 3.23. For example, to obtain

the normalized evaluation of the Kia Rio with respect to price, first of all we have to observe that

its price (11, 650 euro), is in the interval of references prices whose extremes are 10, 500 euro and

12, 000 euro. Since the utilities of these reference prices obtained by AHP are respectively 0.2907

and 0.2489, applying (3.23) we get the normalized price of the Kia Rio as follows:

u(11, 650) = u(10, 500) +
u(12, 000)− u(10, 500)

12, 000− 10, 500
(11, 650− 10, 500)

= 0.2907 +
0.2489− 0.2907

1, 500
(1, 150) = 0.2587.

To apply the Choquet integral preference model, we decide to use the indirect preference infor-

mation and, consequently, Steve provides some preference information about the interaction between

criteria (the constraints translating the corresponding information are in brackets):
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Table 3.20: Reference levels for considered criteria

Price [Euro] Acceleration [seconds from 0 to 100 km/h] Max Speed [Km/h] Consumption (l/km)
9,000 7 150 4
10,500 9 160 4.25
12,000 10.5 170 4.5
13,500 12 180 4.75
15,000 13.5 190 5
17,000 15 200 5.25
19,000 16.5 210 5.5
21,000 19 5.75
23,000 6
25,000

Table 3.21: Pairwise comparison matrix for the considered criteria

(a) Price (CI=0.1)
9,000 10,500 12,000 13,500 15,000 17,000 19,000 21,000 23,000 25,000

9,000 1 9 9 9 9 9 9 9 9 9
10,500 1/9 1 2 3 3 4 6 7 9 9
12,000 1/9 1/2 1 2 3 5 6 8 9 9
13,500 1/9 1/3 1/2 1 2 3 3 4 6 9
15,000 1/9 1/3 1/3 1/2 1 2 4 4 6 9
17,000 1/9 1/4 1/5 1/3 1/2 1 2 3 4 6
19,000 1/9 1/6 1/6 1/3 1/4 1/2 1 2 3 5
21,000 1/9 1/7 1/8 1/4 1/4 1/3 1/2 1 2 4
23,000 1/9 1/9 1/9 1/6 1/6 1/4 1/3 1/2 1 2
25,000 1/9 1/9 1/9 1/9 1/9 1/6 1/5 1/4 1/2 1

(b) Acceleration (CI=0.05)

7 9 10.5 12 13.5 15 16.5 19
7 1 3 4 6 7 7 8 9
9 1/3 1 2 4 5 6 7 9

10.5 1/4 1/2 1 2 4 5 6 8
12 1/6 1/4 1/2 1 2 3 4 6

13.5 1/7 1/5 1/4 1/2 1 2 3 5
15 1/7 1/6 1/5 1/3 1/2 1 2 4

16.5 1/8 1/7 1/6 1/4 1/3 1/2 1 2
19 1/9 1/9 1/8 1/6 1/5 1/4 1/2 1

(c) Speed (CI=0.1)

150 160 170 180 190 200 210
150 1 1/5 1/6 1/7 1/8 1/8 1/8
160 5 1 1/2 1/6 1/7 1/7 1/7
170 6 2 1 1/2 1/6 1/7 1/7
180 7 6 2 1 1/5 1/5 1/5
190 8 7 6 5 1 1/2 1/3
200 8 7 7 5 2 1 1
210 8 7 7 5 3 1 1

(d) Fuel consumption (CI=0.08)

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6
4 1 3 4 5 6 7 8 9 9

4.25 1/3 1 2 4 5 6 7 8 9
4.5 1/4 1/2 1 2 3 5 6 8 9

4.75 1/5 1/4 1/2 1 2 4 5 6 7
5 1/6 1/5 1/3 1/2 1 2 4 5 7

5.25 1/7 1/6 1/5 1/4 1/2 1 2 4 6
5.5 1/8 1/7 1/6 1/5 1/4 1/2 1 2 7

5.75 1/9 1/8 1/8 1/6 1/5 1/4 1/2 1 3
6 1/9 1/9 1/9 1/7 1/7 1/6 1/7 1/3 1

Table 3.22: Reference levels for considered criteria and corresponding normalized values obtained by
AHP

Price [Euro] Norm. Acceleration [seconds from 0 to 100 km/h] Norm. Max Speed [Km/h] Norm. Consumption (l/km) Norm.
9,000 1 7 1 150 0 4 1
10,500 0.2907 9 0.5595 160 0.0616 4.25 0.6224
12,000 0.2489 10.5 0.3622 170 0.1096 4.5 0.4079
13,500 0.1454 12 0.1892 180 0.2432 4.75 0.2659
15,000 0.1167 13.5 0.1108 190 0.6438 5 0.1692
17,000 0.0661 15 0.0649 200 0.9110 5.25 0.0967
19,000 0.0396 16.5 0.0243 210 1 5.5 0.0574
21,000 0.0220 19 0 5.75 0.0211
23,000 0.0088 6 0
25,000 0

• Price (P) and Acceleration (A) are positively interacting (ϕ(P,A) ≥ ε),

• Price and Max Speed (M) are positively interacting (ϕ(P,M) ≥ ε),

• Acceleration and Consumption (C) are positively interacting (ϕ(A,C) ≥ ε),
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Table 3.23: Set of considered cars with normalized evaluations on each criterion

Price [Euro] Acceleration [seconds from 0 to 100 km/h] Max Speed [Km/h] Consumption (l/km)
(a1) Audi A3 (3-doors) 0.0145 0.3885 0.7240 0.2079
(a2) BMW 1 Series (3-doors) 0.0084 0.2814 0.7774 0.0574
(a3) Hyunday ix20 0.1358 0.1422 0.0952 0.0000
(a4) Ford C-Max 0.0352 0.1578 0.1630 0.1402
(a5) Toyota Aygo 0.3617 0.1047 0.0432 0.4937
(a6) Seat Ibiza (5-doors) Style 0.1799 0.0986 0.0760 0.0731
(a7) VolksWagen Polo highline 1.4 (3-door) 0.0775 0.1840 0.2031 0.0085
(a8) BMW Serie 1 (3-doors) 0.0085 0.2814 0.7774 0.0574
(a9) Chevrolet Spark 0.5499 0.0568 0.0123 0.1692
(a10) FIAT Punto (3-doors) 0.1413 0.2814 0.3233 0.6979
(a11) Ford Fiesta (3-doors) 0.1971 0.0679 0.0856 0.3511
(a12) Honda Civic 0.0410 0.1160 0.5236 0.0731
(a13) Kia Rio 0.2587 0.1317 0.1363 0.1402
(a14) Lancia Ypsilon 0.1250 0.2007 0.1897 0.6979
(a15) Mazda2 3-door Sporty 0.1186 0.1077 0.1363 0.1692
(a16) Mercedes A-Class 0.0060 0.5332 0.9288 0.0574
(a17) Mini Cooper 0.0247 0.8018 1.0000 0.4079
(a18) Mitsubishi Space Star 0.2631 0.1077 0.1363 1.0000
(a19) Nissan Micra 0.2698 0.1047 0.1096 0.1692
(a20) Opel Corsa 0.2676 0.0078 0.0308 0.1402
(a21) Peugeot 208 0.2420 0.0955 0.0760 0.5795
(a22) Renault Clio 0.0863 0.1787 0.3233 0.4079
(a23) Skoda Citygo 0.8771 0.0832 0.0616 0.4079
(a24) Suzuki Swift 0.2420 0.2468 0.0856 0.1692

• Max Speed and Consumption are positively interacting (ϕ(M,C) ≥ ε),

• Price and Consumption are negatively interacting (ϕ(P,C) ≤ −ε),

• Acceleration and Max Speed are negatively interacting (ϕ(A,M) ≤ −ε).

Steve provides also the following preference order on some cars that he knows and for which he is

able to form his preferences:

a3 ≻ a5 ≻ a6 ≻ a7 ≻ a1 ≻ a4 ≻ a2.

This preference information is translated by the following linear inequalities:

• Cµ(a3) ≥ Cµ(a5) + ε, Cµ(a5) ≥ Cµ(a6) + ε, Cµ(a6) ≥ Cµ(a7) + ε,

• Cµ(a7) ≥ Cµ(a1) + ε, Cµ(a1) ≥ Cµ(a4) + ε, Cµ(a4) ≥ Cµ(a2) + ε,

where ε is an auxiliary variable supposed being greater than zero.

To check if there exist at least one capacity compatible with the preferences Steve provided us,

we have to solve the following linear programming problem:
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ε∗ = max ε, s.t.

Cµ(a3) ≥ Cµ(a5) + ε, Cµ(a5) ≥ Cµ(a6) + ε,

Cµ(a6) ≥ Cµ(a7) + ε, Cµ(a7) ≥ Cµ(a1) + ε,

Cµ(a1) ≥ Cµ(a4) + ε, Cµ(a4) ≥ Cµ(a2) + ε,

m({P,A}) ≥ ε, m({P,M}) ≥ ε,

m({A,C}) ≥ ε, m({M,C}) ≥ ε,

m({P,C}) ≤ −ε, m({A,M}) ≤ −ε,


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Because ε∗ is greater than zero, this means that there exists at least one capacity compatible

with the preference information provided by Steve. Table 3.24 presents the Möbius representation

of the capacity corresponding to ε∗.

Table 3.24: Möbius representation of the capacity maximizing the value of ε

m({P}) m({A}) m({M}) m({C}) m({P,A}) m({P,M}) m({P,C}) m({A,M}) m({A,C}) m({M,C})
0.0380 0.0833 0.0133 0.0380 0.7374 0.0809 -0.0380 -0.0133 0.0133 0.0472

On the basis of the Möbius representation of the capacity maximizing ε, we can compute the Shapley

index of each criterion. For example, the Shapley index of criterion price will be obtained as follows:

ϕ({P}) = m({P})+
m({P,A}) + m({P,M}) + m({P,C})

2
= 0.0380+

0.7374 + 0.0809− 0.0380

2
= 0.4281.

Looking at Tables 3.24 and 3.25, one can see that Acceleration is the most important criterion both

considered singularly (because m({M}) > m({i}), i ∈ {P,A,C}), and also when taking into account

its interactions with the other three criteria (because ϕ({M}) > ϕ({i}), i ∈ {P,A,C}). On the other

hand, Maximum Speed is the less important criterion if it is considered singularly, while Consumption

is the less important criterion considering also all its interactions with the other criteria.
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Table 3.25: Importance of criteria measured by the Shapley index

ϕ
{P} 0.4281
{A} 0.452
{M} 0.0707
{C} 0.0492

In order to take into account not only one but the whole set of capacities compatible with the

preference information provided by Steve, we apply the NAROR as described in Section 3.2.3. In

Table 3.26, we reported the necessary preference relation %N , while in Table 3.27 we reported the

asymmetric part (≻P ) of the possible preference relation %P , where a ≻P b iff a %P b and not(b %P a).

We presented ≻P instead of %P , because ≻P⊆%N⊆%P (that is ≻P is much more synthetic than %P )

and, overall, because ≻P is transitive, which is not the case for %P [86]. In simple words, ≻P is much

more intelligible than %P for the DM.

Table 3.26: Necessary preference relation: for each line, the car on the left is necessarily preferred to
the cars on the right. For example, a1 is necessarily preferred to a2, a4 and a8 while the viceversa is
not true.

Cars
(a1) Audi A3 (3-doors) a2, a4, a8,

(a2) BMW 1 Series (3-doors) ∅
(a3) Hyunday ix20 a1, a2, a4, a5, a6, a7, a8, a12, a20,
(a4) Ford C-Max a2,
(a5) Toyota Aygo a1, a2, a4, a6, a7, a8, a12, a20,

(a6) Seat Ibiza (5-doors) Style a1, a2, a4, a7, a8, a12, a20,
(a7) VolksWagen Polo highline 1.4 (3-door) a1, a2, a4, a8, a12, a20,

(a8) BMW Serie 1 (3-doors) a2
(a9) Chevrolet Spark ∅

(a10) FIAT Punto (3-doors) a1, a2, a3, a4, a5, a6, a7, a8, a9, a11, a12, a14, a15, a16, a19, a20, a21, a22,
(a11) Ford Fiesta (3-doors) a2, a4, a8, a20,

(a12) Honda Civic ∅
(a13) Kia Rio a1, a2, a4, a5, a6, a7, a8, a9, a11, a12, a15, a16, a19, a20, a21

(a14) Lancia Ypsilon a1, a2, a4, a6, a7, a8, a9, a11, a12, a13, a15, a16, a20, a21
(a15) Mazda2 3-door Sporty a1, a2, a4, a6, a7, a8, a11, a12, a20

(a16) Mercedes A-Class ∅
(a17) Mini Cooper a1, a2, a4, a8, a12, a16

(a18) Mitsubishi Space Star a1, a2, a4, a6, a7, a8, a9, a11, a12, a15, a19, a20, a21
(a19) Nissan Micra a1, a2, a4, a6, a7, a8, a9, a11, a12, a20
(a20) Opel Corsa ∅
(a21) Peugeot 208 a2, a4, a8, a12, a20,
(a22) Renault Clio a1, a2, a4, a7, a8, a11, a12 a20
(a23) Skoda Citygo a2, a4, a8, a9, a12, a20
(a24) Suzuki Swift a1, a2, a3, a4, a5, a6, a7, a8, a9, a12, a16, a20

To summarize the results of ROR, we build also the most representative model, being that one that

maximally discriminate between alternatives for which there is a necessary preference. By computing

the Choquet integral preference model of each alternative considering the most representative model,

we obtain the following final ranking (in brackets the corresponding value obtained by applying the
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Table 3.27: Asymmetric part of the possible preference relation: for each line, the car on the left is
possibly preferred to the cars on the right, which, in turn, are not possibly preferred to the car on
the left. For example, a1 is possibly preferred to a2, a4 and a8, while no one between a2, a4 and a8
is possibly preferred to a1.

Cars
(a1) Audi A3 (3-doors) a2, a4, a8,

(a2) BMW 1 Series (3-doors) ∅
(a3) Hyunday ix20 a1, a2, a4, a5, a6, a7, a8, a12, a20,
(a4) Ford C-Max a2,
(a5) Toyota Aygo a1, a2, a4, a6, a7, a8, a12, a20,

(a6) Seat Ibiza (5-doors) Style a1, a2, a4, a7, a8, a12, a20,
(a7) VolksWagen Polo highline 1.4 (3-door) a1, a2, a4, a8, a12, a20,

(a8) BMW Serie 1 (3-doors) a2,
(a9) Chevrolet Spark ∅

(a10) FIAT Punto (3-doors) a1, a2, a3, a4, a5, a6, a7, a8, a9, a11, a12, a14, a15, a16, a19, a20, a21, a22, a22,
(a11) Ford Fiesta (3-doors) a2, a4, a8, a20,

(a12) Honda Civic ∅
(a13) Kia Rio a1, a2, a4, a5, a6, a7, a8, a9, a11, a12, a15, a16, a19, a20, a21

(a14) Lancia Ypsilon a1, a2, a4, a6, a7, a8, a9, a11, a12, a15, a16, a20, a21,
(a15) Mazda2 3-door Sporty a1, a2, a4, a6, a7, a8, a11, a12, a20,

(a16) Mercedes A-Class ∅
(a17) Mini Cooper a1, a2, a4, a8, a12, a16,

(a18) Mitsubishi Space Star a1, a2, a4, a6, a7, a8, a9, a11, a12, a15, a19, a20, a21,
(a19) Nissan Micra a1, a2, a4, a6, a7, a8, a9, a11, a12, a20,
(a20) Opel Corsa ∅
(a21) Peugeot 208 a2, a4, a8, a12, a20,
(a22) Renault Clio a1, a2, a4, a7, a8, a12, a20,
(a23) Skoda Citygo a2, a4, a8, a9, a12, a20,
(a24) Suzuki Swift a1, a2, a3, a4, a5, a6, a7, a8, a9, a12, a16, a20

most representative model):

a24(0.2415) ≻ a10(0.1520) ≻ a3(0.135) ≻ a14(0.132) ≻ a13(0.1319) ≻ a18(0.1156) ≻ a15(0.1092) ≻

≻ a5(0.1076) ≻ a19(0.1054) ≻ a21(0.0992) ≻ a6(0.0984) ≻ a22(0.0971) ≻ a23(0.0858) ≻ a7(0.0813) ≻

≻ a11(0.0707) ≻ a17(0.0614) ≻ a12(0.0579) ≻ a9(0.0576) ≻ a1(0.0406) ≻ a4(0.0405) ≻ a16(0.0384) ≻

≻ a8(0.0355) ≻ a2(0.0354) ≻ a20(0.0096)

From this representative ranking, we can state that a24 is the best car, while the worst is surely

a20.

3.2.5 Conclusions

We considered multiple criteria decision aiding in case of interaction between criteria using the

Choquet integral preference model. The application of the Choquet integral preference model requires

that evaluations with respect to considered criteria are expressed on a common scale. We used AHP

to build this common scale taking into account preference information given by the DM. To reduce
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considerably the number of pairwise comparisons usually required to the DM when applying AHP,

we proposed to use AHP on a set of few reference points in the scale of each criterion and to

interpolate the other values. Then, we adopted the recently introduced NAROR taking into account

all the capacities compatible with the preference information provided by the DM. We illustrated

the conjoint use of NAROR and AHP with an application to the decision problem of choosing a car

to buy. We believe that the procedure we are proposing conjugates harmoniously the advantages

of AHP in building a measurement scale and the advantages of the Choquet integral in handling

interaction between criteria. In this context, the adoption of NAROR seems very beneficial because

it permits to avoid focusing on only one capacity, which can be misleading for the reliability of the

final decision. We believe also that the procedure of applying directly AHP on only a small set of

reference points and using the linear interpolation to get the other values deserves to be considered

generally in future applications, regardless from the use of the Choquet integral. Indeed, the high

number of pairwise comparisons requested to the DM to apply AHP is a problem that can prevent its

application in case of too many alternatives. Moreover, the request of too many pairwise comparisons

can limit the reliability of the results supplied by AHP. In this perspective, our proposal can result

very useful for application of AHP in all the many real life decision problems presenting a high

number of alternatives. We conclude with an interesting extension of our method that we plan to

develop in a future paper. It regards consideration of the probability that a given alternative has a

certain rank or the probability that an alternative is preferred to another taking into consideration

the whole set of compatible capacities according to the methodology proposed in [4].
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3.3 Using Choquet Integral as Preference Model in Inter-

active Evolutionary Multiobjective Optimization

3.3.1 Introduction

Multiobjective optimization involves several conflicting objectives that compete for the best solution

in a constrained multidimensional space of decision variables. In general, there is no single optimal

solution (as in single-objective optimization), but a set of alternatives for which it is not possible to

improve one objective without deteriorating another one, called Pareto-optimal solutions. Despite

the existence of multiple Pareto-optimal solutions, in practice, usually only one of these solutions

is to be chosen. Thus, in multiobjective optimization, there are two equally important tasks: an

optimization task for finding Pareto-optimal solutions by a search procedure, and a decision aiding

task for recommending a single most preferred solution. The “most preferred” refers to the value

system of a particular user, also called decision maker (DM). Thus, decision aiding necessitates some

preference elicitation from the user.

As to procedures searching for Pareto-optimal solutions, in the last two decades we have been

able to observe a growing popularity of algorithms adopting the principles of natural evolution.

A distinguishing feature of these evolutionary algorithms is that they work with a population of

solutions. This is of particular advantage in the case of multiobjective optimization, as they can

search for several Pareto-optimal solutions simultaneously in one run, providing the user with a set

of feasible solutions to choose from. In the early stage of development of evolutionary algorithms

for multiobjective optimization, the efforts were focused on efficient generation of the whole set of

Pareto-optimal solutions (or of a good approximation thereof), leaving the decision aiding task to

the post-optimization stage. Later, researchers started interlacing the optimization and preference

handling in interactive procedures, which allows to converge more quickly to the most preferred

region of the Pareto-optimal front [21].

Most interactive procedures for multiobjective evolutionary optimization assume a particular

mathematical model of user’s preferences. This model drives the search procedure towards the most

preferred Pareto-optimal solutions. The model building involves preference information supplied by

the user. In case of simple preference models, one may expect that the user can provide directly

the values of model parameters. However, simple models, like the weighted sum of objectives, fail to

represent more subtle user’s preferences (see Section 3.3.4). For this reason, there is a tendency to

use more complex preference models built from indirect preference information which is much easier
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to elicit by the user than the direct preference information. In many previous studies on interactive

multiobjective optimization, the indirect preference information had the form of pairwise comparisons

of some solutions from a current population [23, 24, 91, 135]. In particular, the NEMO-I3 method [23]

is defining a set of value functions compatible with the preferences elicited from the DM, expressed

in terms of pairwise comparisons of solutions. These compatible value functions are used in Robust

Ordinal Regression (ROR) [35, 86] to build a necessary preference relation (%N) on the current

population of solutions. More precisely, a %N b if a is at least as good as b for all compatible value

functions. NEMO-I is adopting the scheme of NSGA-II [39], however substituting the dominance

relation by the necessary preference relation in the ranking. While NEMO-I has shown a satisfactory

convergence to the best compromise solution, the calculation of the necessary preference relation

requires a considerable computational effort. Therefore, in this paper, we are using an alternative

method called NEMO-II, which overcomes the problem of prohibitive computational effort. NEMO-II

accepts any type of value function. We are considering four types of value functions within NEMO-

II: linear, additive piecewise-linear, general additive, and (for the first time in combination with

evolutionary multiobjective algorithms) the Choquet integral [31, 68].

The paper is organized as follows. In Section 2, we review interactive evolutionary multiobjective

algorithms (MOEAs). Then, in Section 3, we present the general scheme of NEMO-II. Further, in

Section 4, we describe the four above mentioned value functions. The new procedure, called NEMO-

II-Ch, is introduced in Section 5. A computational experiment with the proposed procedure and its

main competitors on a set of benchmark problems is presented in Section 6. Section 7 summarizes

our conclusions and suggests avenues for future research.

3.3.2 Interactive Evolutionary Multiobjective Optimization

Evolutionary multiobjective optimization (EMO) has become very popular because of its ability to

generate a set of non-dominated solutions in one run, from which the DM can choose a favorite

solution without eliciting any preference information a priori. Nonetheless, in recent years, there

has been a growing interest in EMO algorithms that are able to take into account user’s preference

information in the search process. This is motivated by the following expected advantages.

1. Instead of a diverse set of solutions (many of them clearly irrelevant to the DM) a search

based on the DM’s partial preferences will provide a more suitable sample of all Pareto-optimal

solutions. It could either be a smaller set of only the most relevant solutions, or a more

3NEMO: Necessary preference enhanced Evolutionary Multiobjective Optimizer.
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fine-grained resolution of the relevant parts of the Pareto frontier.

2. By focusing the search onto the relevant part of the search space, one may expect the opti-

mization algorithm to find these solutions more quickly.

3. As the number of objectives increases, it becomes more and more difficult to identify and

represent the complete Pareto-optimal frontier. This is partly because of the increasing number

of Pareto-optimal solutions, but also because with an increasing number of objectives almost all

solutions in the population become non-dominated, rendering dominance as selection criterion

useless. User’s preference information allows re-introducing the necessary selection pressure.

The literature contains today quite a few techniques that allow the incorporation of full or partial

preference information into MOEAs, and previous surveys on this topic include [19, 20, 32, 33, 137].

Many of the techniques integrate partial user’s preferences a priori, e.g., by allowing the DM to

specify a reference point [58, 99, 151], maximal and minimal trade-offs [25], or desirability functions

[173]. In the following, we focus on the literature that is most related to our paper, namely interactive

approaches that learn user’s preferences over the course of the optimization based on the DM’s

(partial) ranking of small sets of solutions. They allow to accumulate preference information and thus

refine the internal preference model over time, and because they engage the DM in the optimization

process, they initiate a learning process on the DM’s side as well. These approaches are surveyed in

the following, divided into methods that attempt to learn a representative user’s value function, and

those that focus on the set of value functions compatible with the elicited preference information.

Some interactive approaches based on other paradigms include [40, 107, 151, 169].

We will use the following notation: A is the set of solutions in a considered population; AR ⊆ A

is the set of reference solutions in population A; f1, . . . , fn are n objective functions such that each

solution a ∈ A is associated with the vector of evaluations (f1(a), . . . , fn(a)). For simplicity, we

sometimes only write aj instead of fj(a). Unless specified otherwise, we suppose, without loss of

generality, that the objective functions have to be maximized.

Approaches to learn a value function representing user’s preferences

The approaches in this subsection use the elicited preference information to derive a single value

function to approximate user’s preferences. Value functions can have different complexity, ranging

from simple linear functions to the highly non-linear functions considered in the non-parametric

approaches, such as artificial neural networks or support vector machines. Most approaches simply
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use the derived value function for ranking individuals, sometimes as secondary criterion after non-

dominance, but other uses can also be found.

Phelps and Köksalan [135] proposed an interactive evolutionary algorithm that periodically asks

the DM to compare pairs of solutions. Assuming linear value functions (actually, the objectives are

modified before the optimization to the squared distance from a reference value, which effectively

results in ellipsoidal iso-utility curves), the method determines the most discriminant weight vector

compatible with the preference information. Most discriminant here means the weight vector that

maximizes the minimum value difference over all pairs of solutions compared by the DM.

Denote by ≻p the binary relation on the set AR, representing the preference information provided

by the user in terms of pairwise comparisons. Then, the following linear program (LP) identifies the

most discriminant value function:

max ε, subject to
n

∑

j=1

wjfj(a)−
n

∑

j=1

wjfj(b) ≥ ε, for all a ≻p b

n
∑

j=1

wj = 1, wj ≥ 0.























(3.24)

The resulting weight vector is then used for ranking individuals in the evolutionary algorithm

that works as a single objective evolutionary algorithm between user interactions. If the LP is

overconstrained and no feasible solution is found, the oldest preference information is discarded until

feasibility is restored.

Deb et al. [41] derive a polynomial value function model. The user is shown a set of (five in

the paper) solutions and asked to (at least partially) rank them. Then, similar to the approach by

Phelps and Köksalan [135], the most discriminant value function is determined. However, due to

the polynomial value function model, fitting the model to the specified preferences is a non-linear

optimization problem, and the authors propose to use sequential quadratic programming to solve it.

The most discriminant value function is used in the MOEA’s ranking of individuals. Basically, the

objective space is separated into two areas: all individuals with an estimated value (according to the

approximated value function) better than the solution ranked second by the DM are assumed to dom-

inate all the solutions with an estimated value worse than the solution ranked second. The authors

additionally use the approximated value function to perform a local single-objective optimization

starting with the solution ranked best by the DM.

Todd and Sen [170] use artificial neural networks to represent the DM’s value function. Pe-
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riodically, they present the DM with a set of solutions and ask for a score. The set of solutions is

chosen such that they represent a broad variety regarding the approximated value function, and the

estimated best and worst individual of the population are always included. Information from several

interactions is accumulated after normalizing preference scores.

Another model that allows representation of complex value functions are support vector ma-

chines (SVM). Battiti and Passerini [11] use SVMs in the setting of an interactive MOEA. Periodi-

cally, the DM is presented with a set of solutions and asked to (at least partially) rank them. This

information is then used to train the SVM, with cross-validation employed to select an appropriate

kernel. The derived approximate value function is then used to sort individuals in the same non-

dominance rank based on their value according to the learned value function. The paper examines

the influence of the number of solutions shown to the DM (assuming full ranking) and the number of

interactions with the DM. The results suggest that a relatively large number of solutions need to be

ranked for the SVM to learn a useful value function (around 10-20), but only two interactions with

the DM seem sufficient to come very close to results that would have been obtained had the DM’s

”true value function” been known from the beginning. The authors recommend to not start interac-

tion until the MOEA has found a reasonable coverage of the entire Pareto frontier, which somewhat

defeats the purpose of narrowing down the search early on. In [28], the approach’s robustness to

incorrect (noisy) DM preferences is examined and it is shown that the algorithm can cope well with

noise.

Branke et al. [24] have recently compared various ways to define a representative value function

and found that the function that maximizes the sum of values of individuals in the population actually

performed slightly better than the most discriminant value function, and much better than a value

function that minimizes slope changes. They showed that their approach, called NEMO-0, which is

able to learn arbitrary monotonic additive value functions, can perform well in cases where a linear

value function model is not sufficient to represent the user’s preferences.

Approaches to learn a set of value functions representing user’s preferences

Rather than deriving a single value function, Jaszkiewicz [100] notes that there may be several value

functions compatible with the specified user’s preferences and samples the preference function used

in each generation from the set of preference functions (in this case linear weightings are assumed).

The proposed approach uses the value function also for local search. In the interactive version,

preference information from pairwise comparisons of solutions is used to reduce the set of possible

weight vectors.

140



Greenwood et al. [91] suggested the imprecise value function approach which considers all com-

patible linear value functions simultaneously. The procedure asks the user to rank a few solutions,

and from this derives constraints for the weightings of the objectives consistent with the given or-

dering. Then, these are used to check whether there is a feasible linear weighting such that solution

a would be preferred to solution b.

Then, to compare any two solutions a and b from set A, one has to consider all value functions

compatible with the user’s preferences: a is considered at least as good as b if for all compatible value

functions a gets a value not smaller than b. To make this conclusion, the following linear program

(LP) has to be solved:

ε∗ = max ε, subject to
n

∑

j=1

wjfj(b)−
n

∑

j=1

wjfj(a) ≥ ε

n
∑

j=1

wjfj(c)−
n

∑

j=1

wjfj(d) ≥ ε, for all c ≻p d

n
∑

j=1

wj = 1, wj ≥ 0.











































EN(a, b)
(3.25)

If the set of constraints EN(a, b) is infeasible or ε∗ ≤ 0, it can be concluded that there is no

compatible value function such that b would be strictly preferred to a, and therefore a is at least as

good as b for all compatible value functions. If ε∗ > 0, then we know that b is possibly preferred over

a, and we would proceed by checking whether b is always at least as good as a by solving EN(b, a).

Overall, the method requires to solve one or two LPs for each pair of solutions in the population.

In [112], the value function model is only implicit. Under the assumption of quasi-concave value

functions, specified preferences between solutions can be generalized to preference cones. This idea

is used by Fowler et al. [59] to partially rank the non-dominated solutions in an MOEA. The DM is

asked to consider a set of six solutions and specify the best and worst. From this information, six

preference cones are derived (five 2-point cones involving the best and any of the other solutions, and

one 6-point preference cone specifying that five solutions are better than the worst). All generated

cones are kept throughout the optimization run, even if the solutions defining the cone are deleted

from the population. The solutions shown to the DM are selected from the set of non-dominated

solutions that cannot already be ranked with the existing cones.

Branke et al. [22, 23] proposed a method called NEMO-I. It is similar to the imprecise value

function approach by Greenwood et al. [91], but rather than being restricted to linear value func-
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tions, it allows for piecewise-linear [23] or general monotonic additive [22, 23] value functions.

NEMO-I replaces the use of the dominance relation in the non-dominance sorting step of NSGA-II

by the necessary preference relation. Additionally, it computes a representative value function used

for scaling in the crowding distance calculation.

The procedure used in NEMO-I is computationally very expensive because it requires solving at

least one LP for each pair of solutions (a, b) ∈ A× A. This means that, for a population composed

of s solutions, one has to solve up to s(s − 1) LP problems in each iteration where we get new

preference information. For this reason, in this paper, we are using a new variant, called NEMO-II,

which requires significantly less computational effort. It has first been proposed in [24] as part of a

general framework but it is implemented here for the first time.

3.3.3 General scheme of NEMO-II

In this section, we shall introduce the NEMO-II method presented as Algorithm 1. The procedure

starts, as a classical MOEA, by randomly generating a population of solutions. Then, after ordering

the population into fronts by using the dominance relation, two solutions in the first non-dominated

front are chosen randomly to be compared by the user. The preference of the user on this pair of

solutions is converted into a linear inequality involving the unknown value function. After introducing

these constraints to the set of constraints defining the set of value functions compatible with the user’s

preferences, one has to check if the augmented set of constraints is feasible, which means that there

exists at least one value function compatible with the preferences of the user. If this is not the

case, a sufficient number of constraints being the cause of the inconsistency should be removed.

For this reason, the procedure starts with removing the constraints representing the oldest pairwise

comparisons. After the set of constraints becomes feasible, the method tries to reintroduce the

removed constraints that were not the cause of the infeasibility in a reverse order (therefore starting

from the newest pairwise comparison) as long as the feasibility is maintained.

The ordering of the population is done as in NSGA-II, putting the solutions into different fronts

but, differently from NSGA-II, NEMO-II does not use the dominance relation. For each solution

a in the current population A, NEMO-II checks whether there exists at least one compatible value

function for which a is the most preferred solution in the current population, by solving the following

LP problem
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εa = max ε, subject to

U(a)− U(b) ≥ ε for all b ∈ A \ {a} , [C1]

U(c)− U(d) ≥ ε for all c ≻p d, [C2]

monotonicity and normalization constraints, [C3]























Ea

where constraints [C1] are used to impose that a is the most preferred among the considered solutions;

constraints [C2] translate the preferences of the user, while constraints [C3] are monotonicity and

normalization constraints depending on the type of the adopted value function that shall be described

in the next section.

If Ea is feasible and εa > 0, then there exists at least one value function for which the solution

a is the most preferred solution and, therefore, it is included in the first front. After removing all

solutions going in the first front, the same procedure is applied to build the other fronts until each

solution is assigned to a front. Within the same front, the solutions are ordered by using the crowding

distance on the objective space4.

So, although NEMO-I and NEMO-II both take into account all value functions compatible with

the user’s preference information, NEMO-I makes pairwise comparisons between solutions, while

NEMO-II compares each solution to all other solutions in the current population. The NEMO-II

method has two advantages. First it substantially reduces the computational effort required. While

in NEMO-I the construction of a front in a population of s individuals requires the solution of up

to s(s − 1) LPs, in NEMO-II, the same can be done by solving only s LP problems, one for each

solution in the population. Second, NEMO-II is slightly more precise in the sense that it only puts

solutions in the best rank for which there exists a value function that makes them most preferred

compared to all other solutions in the population, whereas NEMO-I may include some solutions for

which no compatible value function exists that would prefer them over all other solutions, as long

as no other solution is necessarily preferred in pairwise comparisons. Each front in NEMO-II is a

subset of the front in NEMO-I that, in turn, is a subset of the non-dominated front.

A small example may illustrate the difference. Consider the case of three solutions a, b, c, evaluated

with respect to the value functions U1 and U2 as follows: U1(a) = 1, U1(b) = 0.5 and U1(c) = 0;

U2(a) = 0, U2(b) = 0.5 and U2(c) = 1. If U1 and U2 were the only value functions compatible with

the user’s preferences, NEMO-II would not put solution b into the first rank, as it would not be

the most preferred under either value function. According to NEMO-I however, neither a nor c are

4The crowding distance of a solution a is the sum of distances between a′s left and right neighbor in each dimension,
and infinity if a is an extreme solution [39].
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necessarily preferred over b (because U2(b) > U2(a) and U1(b) > U1(c)) and thus NEMO-I would

put solution b into the first rank.

For these reasons, we base our new algorithm on the NEMO-II paradigm. The procedure is

repeated until the assumed number of iterations has been reached.

Algorithm 1 Basic NEMO-II method

Generate initial population of solutions.
Elicit user’s preferences by asking DM to compare two randomly selected non-dominated solutions.

Rank individuals into fronts by iteratively identifying all solutions that are most preferred for at
least one compatible value function. Rank within each front using crowding distance.
repeat

Select individuals for mating.
Generate offspring using crossover and mutation and add them to the population.
if Time to ask the DM then

Elicit user’s preferences by asking DM to compare two randomly selected non-dominated
solutions.
if There is no value function remaining compatible with the user’s preferences then

Remove information on pairwise comparisons, starting from the oldest one, until feasibility
is restored and reintroduce them in the reverse order as long as feasibility is maintained.

end if
end if
Rank individuals into fronts by iteratively identifying all solutions that are most preferred for
at least one compatible value function. Rank within each front using crowding distance.
Reduce population size back to initial size by removing worst individuals.

until Stopping criterion met.

3.3.4 Preference Modeling Using Value Functions

Additive Preference Models

Among many preference models considered in the literature, the most popular is an additive value

function defined on A, such that

U(a) =
n

∑

j=1

uj(fj(a)) =
n

∑

j=1

uj(aj), (3.26)

where uj are non-decreasing marginal value functions, uj : Gj → R, j ∈ G, Gj is a value set of

objective fj, j = 1, . . . , n, and G is the set of all indices of the objectives.

This model assumes one of the two forms of the marginal value functions uj(aj):

(i) piecewise-linear,
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(ii) general, non-decreasing.

In case (i), the ranges [αj, βj] are divided into γj ≥ 1 sub-intervals [a0j , a
1
j ], [a1j , a

2
j ], ..., [a

γj−1
j , a

γj
j ],

where akj = αj + k
γj

(βj − αj), k = 0, . . . , γj, and j ∈ G, while αj and βj are the worst and the best

performances on objective fj, respectively. The marginal value of solution a ∈ A with respect to

objective fj is obtained by linear interpolation,

uj(aj) = uj(a
k
j ) +

aj − akj

ak+1
j − akj

(uj(a
k+1
j )− uj(a

k
j )), (3.27)

if aj ∈ [akj , a
k+1
j ], where k ∈ {0, ..., γj − 1}.

The piecewise-linear additive model is completely defined by the marginal values at the break-

points, i.e., uj(a
0
j) = uj(αj), uj(a

1
j), uj(a

2
j), · · · , uj(a

γj
j ) = uj(βj). Considering this type of preference

function, one has to consider the following monotonicity and normalization constraints:

• for all j ∈ G and for all k = 0, . . . , γj − 1, uj(a
k
j ) ≤ uj(a

k+1
j );

• for all j ∈ G, uj(αj) = 0, and
∑

j∈G

uj(βj) = 1.

In case (ii), the characteristic points of marginal value functions uj, j ∈ G, are fixed in evaluation

points of considered solutions. Let τj be the permutation on the set of indices of solutions from A

that reorders them according to non-decreasing evaluation on objective j, i.e.,

aτj(1) ≤ aτj(2) ≤ . . . ≤ aτj(m−1) ≤ aτj(m), j ∈ G,m = |A|.

The general non-decreasing additive model is completely defined by the marginal values at the char-

acteristic points, i.e., uj(αj) = uj(aτj(1)), uj(aτj(2)), . . . , uj(aτj(m)) = uj(βj). Note that in this case,

no linear interpolation is required to express the marginal value of any reference solution.

Considering this type of value function, the monotonicity constraints have the form uj(aτj(k)) ≤

uj(aτj(k+1)), for all k = 1, . . . ,m− 1, while normalization constraints are the same as in case (i).

The Choquet Integral Preference Model

The simplest additive value function model is the weighted sum, obtained by assigning a non-negative

weight wj to each objective fj, j ∈ G, and giving to each a ∈ A the value
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U(a) =
n

∑

j=1

wjfj(a) = w1f1(a) + . . . + wnfn(a). (3.28)

The weighted sum has some limitations in representing user’s preferences, which are shown in the

following example. Let us underline that in this example we shall speak of evaluation criteria, being

in Multiple Criteria Decision Aiding (MCDA) the equivalent of the objective functions in Multiob-

jective Optimization.

Example. The manager of an international company wants to rank three candidates (Smith,

Johnson and Brown), taking into account their performances on criteria experience (Ex) and age

(Ag), given on a [0, 10] scale (see Table 3.28).

Table 3.28: Experience (Ex) and age (Ag) of three candidates

Ex Ag
Smith(S) 6 10
Johnson(J) 8 8
Brown(B) 10 6

Since candidates having good experience are not necessarily young, and vice versa, if there is a good

performance on one of the two criteria, one does not expect a good performance also on the other

criterion. Consequently, a candidate being good both on experience and age is well appreciated.

Therefore, in the manager’s mind there is a positive interaction (synergy) between the performance

on experience and the performance on age. In other words, the two criteria are not preferentially

independent [109]. For this reason, the manager prefers Johnson to Smith and Brown.

If one would like to represent the preferences expressed by the manager using the weighted sum

model, the following inequalities should be satisfied:

wEx · 6 + wAg · 10 < wEx · 8 + wAg · 8,

wEx · 10 + wAg · 6 < wEx · 8 + wAg · 8,

where wEx and wAg are the weights of experience and age, respectively. It can be easily verified that

the above inequalities are contradictory since:

wEx · (−2) + wAg · 2 < 0 < wEx · (−2) + wAg · 2.

Thus we have to conclude that, due to the positive interaction between the performances on experi-

ence and age, the weighted sum is not able to represent the manager’s preferences.
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In order to represent preferences in case of interaction between criteria, non-additive integrals are

often used [73]. The best-known non-additive integral in the literature is the Choquet integral [31].

The Choquet integral is based on the concept of capacity (fuzzy measure) that assigns a weight to

each subset of criteria rather than to each single criterion. More precisely, denoting by 2G the power

set of G (i.e., the set of all subsets of G), the function µ : 2G → [0, 1] is called capacity on 2G if the

following properties are satisfied:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ T ⊆ S ⊆ G, µ(T ) ≤ µ(S) (monotonicity condition).

Intuitively, for all T ⊆ G, µ(T ) can be interpreted as a comprehensive importance of the criteria

from T considered as a whole.

Example (continuation). To represent the importance and the interaction of the performances on

experience and age, one can set µ({Ex}) = 0.4, µ({Ag}) = 0.3 and µ({Ex,Ag}) = 1. The difference

µ({Ex,Ag})− µ({Ex})− µ({Ag}) = 0.3 represents the positive interaction between experience and

age because it measures how much greater is the importance of experience and age considered as a

whole (µ({Ex,Ag})) comparing to the sum of their importances when they are considered separately

(µ({Ex})+µ({Ag})).

The Choquet integral involving capacity µ assigns to each alternative a ∈ A the following value:

Cµ(a) =
n

∑

j=1

[

f(j)(a)− f(j−1) (a)
]

µ (Nj) , (3.29)

where (·) stands for a permutation of the indices of criteria, such that

f(0)(a) ≤ f(1) (a) ≤ f(2) (a) ≤ ... ≤ f(n) (a) , (3.30)

Nj = {(j), . . . , (n)} and f(0)(a) = 0.

Observe that (3.30) requires that the values taken by objective functions fj, j = 1, . . . , n, have

to be non negative. If this is not the case, one can recode the values fj(a), a ∈ A, with a translation

f ∗j (a) = fj(a)+ c with c ≥ − min
j∈G, b∈A

fj(b), so that we get f ∗j (a) ≥ 0 for all j = 1, . . . , n and all a ∈ A.
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A meaningful reformulation of the capacity µ and of the Choquet integral can be obtained by

means of the Möbius representation of the capacity µ (see [140]) which is a function m : 2G → R

[153] defined as follows:

µ(S) =
∑

T⊆S

m(T ).

Note that if S is a singleton, i.e., S = {j} with j = 1, . . . , n, then µ({j}) = m({j}). Moreover, if S

is a pair of criteria, i.e., S = {i, j}, then µ({i, j}) = m({i}) + m({j}) + m({i, j}).

The Möbius representation m(S) of capacity µ(S) can be obtained as follows:

m(S) =
∑

T⊆S

(−1)|S−T |µ(T ).

In terms of the Möbius representation, properties 1a) and 2a) are, respectively, restated as (see [30]):

1b) m(∅) = 0,
∑

T⊆G

m(T ) = 1,

2b) ∀ j ∈ G and ∀S ⊆ G \ {j} ,
∑

T⊆S

m(T ∪ {j}) ≥ 0,

while the Choquet integral may be reformulated as follows:

Cµ(a) =
∑

T⊆G

m(T ) min
j∈T

fj (a) . (3.31)

Geometrically, in the case of two objectives (G = {f1, f2}), the iso-value curve of the Choquet

integral can be decomposed into two linear functions, one above the line f1 = f2 and one below the

line f1 = f2. Using (3.31) we can write

Cµ(a) =







(m({1}) + m({1, 2}))f1(a) + m({2})f2(a), if f1(a) ≤ f2(a)

m({1})f1(a) + (m({2}) + m({1, 2}))f2(a), if f1(a) ≥ f2(a)

Example (continuation). The value assigned to Smith (S) by the Choquet integral with capacity

µ is the following:

Cµ(S) = fEx(S) · µ({Ex,Ag}) + (fAg(S)− fEx(S)) · µ({Ag}) = 7.2. (3.32)
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This value can be explained as follows. The performance fEx(S) = 6 is attained by the two criteria

and thus it is multiplied by µ({Ex,Ag}) which is the weight assigned to experience and age considered

as a whole. The performance fAg(S) = 10 is attained only on criterion age and therefore the difference

fAg(S) − fEx(S) is multiplied by µ({Ag}) which is the weight assigned to age considered alone.

Analogously, we get Cµ(Johnson) = 8 and Cµ(Brown) = 7.6, so that we have Cµ(Johnson) >

Cµ(Smith) and Cµ(Johnson) > Cµ(Brown), and thus we can conclude that the Choquet integral is

able to represent the manager’s preferences.

Observe, moreover, that the Möbius representation m of the capacity µ gives m({Ex}) = 0.4,

m({Ag}) = 0.3 and m({Ex,Ag}) = 0.3. Therefore, the Choquet integral referring to Smith can be

reformulated as follows in terms of the Möbius representation m:

Cµ(S) = fEx(S) ·m({Ex}) + fAg(S) ·m({Ag}) + min(fEx(S), fAg(S)) ·m({Ex,Ag}) = 7.2.

This value can be explained as follows. The performances on experience and on age are multi-

plied by m({Ex}) and m({Ag}), respectively, representing the relative weights of the two criteria.

However, the value obtained by summation of the two weighted components has to be corrected by

adding min(fEx(S), fAg(S)) ·m({Ex,Ag}) representing the positive interaction between the perfor-

mance on experience and the performance on age. The Choquet integral of Johnson and Brown

can be analogously reformulated in terms of the Möbius representation.

In order to reduce the number of parameters to be elicited and to avoid an overprecise description

of the interactions among criteria, Grabisch [69] introduced the concept of fuzzy k-additive capacity.

A capacity is called k-additive if m(T ) = 0 for T ⊆ G, such that |T | > k. In particular, in case of a

1-additive capacity, the Choquet integral is the standard weighted sum model.

In MCDA, it is easier and more straightforward to consider 2-additive capacities, since then

the users have to express preference information on positive and negative interactions between two

criteria only, neglecting possible interactions among three, four and, generally, r criteria, r = 2, . . . , n.

Moreover, by considering 2-additive capacities, the computational effort needed to determine the

parameters is reduced since only n+
(

n
2

)

coefficients have to be assessed; specifically, in terms of the

Möbius representation, a value m({i}) for every criterion i, and a value m({i, j}) for every pair of

criteria {i, j}. The value that a 2-additive capacity µ assigns to a set S ⊆ G can be expressed in

terms of the Möbius representation as follows:
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µ(S) =
∑

i∈S

m ({i}) +
∑

{i,j}⊆S

m ({i, j}) , ∀S ⊆ G. (3.33)

With regard to 2-additive capacities, properties 1b) and 2b) have, respectively, the following

forms:

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)















m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, for all i ∈ G, and for all T ⊆ G \ {i} , T 6= ∅.

In this case, the Choquet integral of a ∈ A is calculated as:

Cµ(a) =
∑

i∈G

m ({i}) fi (a) +
∑

{i,j}⊆G

m ({i, j}) min(fi (a) , fj (a)). (3.34)

As one can observe, the use of the Choquet integral is based on several parameters (capacity µ(T )

for each subset T ⊆ G or a value m(T ) for each subset T ⊆ G in case of the Möbius representation

of capacity µ). To determine these parameters, a direct and an indirect technique known from

the literature can be applied. In the direct technique, the user has to provide the parameters

directly, while in the indirect technique the user has to provide some preference information from

which parameters compatible with this information are retrieved by ordinal regression. The latter

technique is much more realistic than the former because it requires less cognitive effort from the

user. The indirect technique for the Choquet integral has been firstly proposed in [119]. When using

the indirect technique, it is possible that more than one set of parameters is compatible with the

preference information given by the user. For this reason, selection of only one of these compatible

sets of parameters is somewhat arbitrary. To take into account all sets of parameters compatible with

the user’s preferences, Robust Ordinal Regression (ROR) [86] has been recently proposed. Taking

into account all the sets of parameters compatible with the preferences of the user, ROR presents a

recommendation in terms of necessary or possible preference relations which, for a pair of alternatives

a and b, hold if a is at least as good as b for all or for at least one set of compatible parameters,

respectively. ROR has been applied to the Choquet integral in [8] under the name of Non Additive

Robust Ordinal Regression (NAROR).

Observe also that, besides determination of the capacity, the use of the Choquet integral involves

another specific problem that is the construction of a common scale for the considered criteria per-
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mitting to compare the performances on different criteria and to compute in a meaningful way their

difference. Indeed, looking at the definition of the Choquet integral in (3.29), we can observe that on

one hand, permutation (·) of the considered performances on different criteria is required, while on

the other hand, the computation of the Choquet integral requires also that the differences between

the performances on criteria g(i) and g(i−1), i = 1, . . . , n, are meaningful. In the provided example

this is obvious because, for instance, considering candidate Smith, the performance of 10 on age is

clearly more valuable than the performance of 6 on experience, and their difference is 4. But, con-

sidering the case of a decision about cars, which is more valuable between a maximum speed of 200

km/h and a price of 35,000 euros? This means that in case of criteria with heterogeneous scales, the

performances on all criteria have to be mapped to a common scale which permits to compare them

and also to compute their difference. Very often a normalization of performances on each criterion

is done considering an “unacceptable” and an “optimal value” for each criterion and considering a

linear interpolation between these two extremes (see, e.g., [75]). A more sophisticated methodology

permitting to construct a common scale and a capacity for the Choquet integral on the basis of pref-

erence information supplied by the DM has been proposed in [6] and further developed in [4]. In this

paper, as we shall explain in detail in Section 3.3.5, we consider an intermediate approach consisting

in first normalizing the performances on each criterion, and then rescaling them through multiplica-

tion by a set of weights that ensure comparability between performances on different criteria. We

explain this procedure in the continuation of the previous example, in which the performances on

considered criteria are already normalized but they need to be rescaled so that the preferences of the

DM can be represented by the Choquet integral.

Example (continuation). Suppose that two new candidates have to be added to the three pre-

viously considered. Their performances with respect to experience and age are presented in table

3.29.

Table 3.29: Two new candidates evaluated on experience and age

Ex Ag
Baker 7 9
Miller 9 7

After reflecting a little, the manager arrived at the conclusion that he has the following preferences

with respect to the five candidates:

Baker ≻ Johnson ≻Miller ≻ Brown ≻ Smith.

151



When trying to apply the Choquet integral to represent the current manager’s preferences, we realize

that it is not possible. Indeed, by computing the Choquet integral of the performances of the

candidates Brown and Smith we get

6 · µ({Ex,Ag}) + (10− 6) · µ({Ex}) > 6 · µ({Ex,Ag}) + (10− 6) · µ({Ag}) (3.35)

while comparing Baker and Miller we get

7 · µ({Ex,Ag}) + (9− 7) · µ({Ag}) > 7 · µ({Ex,Ag}) + (9− 7) · µ({Ex}). (3.36)

From Eq. (3.35) we get µ({Ex}) > µ({Ag}) while from Eq. (3.36) we get µ({Ag}) > µ({Ex}),

which are of course incompatible.

Observe, however, that if you rescale the criteria experience and age multiplying the relative

performances of the candidates by 0.56 and 0.44, respectively, we get the performances shown in

Table 3.30. Computing the Choquet integral of the five candidates considering the capacity previously

defined (µ({Ex}) = 0.4, µ({Ag}) = 0.3 and µ({Ex,Ag}) = 1), we get the values in the last column

of Table 3.30 which represent the preferences of the manager. �

Table 3.30: The five candidates evaluated on experience and age after rescaling

Ex Ag CI
Smith 3.36 4.4 3.67

Johnson 4.48 3.52 3.90
Brown 5.6 2.64 3.82
Baker 3.92 3.96 3.93
Miller 5.04 3.08 3.86

Let us conclude this section discussing the use of Choquet integral in case the DM prefers smaller

objectives function values, i.e. for all a, b ∈ A, if fj(a) ≤ fj(b), then a is at least as good as b with

respect to objective fj. In this case, the objective functions fj can still be aggregated using the

Choquet integral, but then solutions with a smaller Choquet integral would be preferred, i.e., for all

a, b ∈ A if Cµ(a) ≤ Cµ(b), then a is comprehensively at least as good as b. In this case, the aim is to

minimize rather than to maximize the value of the Choquet integral.

3.3.5 The NEMO-II-Ch method

Because most benchmark problems in evolutionary multiobjective optimization are minimization

problems, in the following description of NEMO-II and of the empirical analysis, we assume that
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Figure 3.4: In this case, Q ≡ (2, 1) is preferred to P ≡ (1, 2) and R ≡ (2.5, 3) is preferred to S ≡
(4, 1). Trying to translate these preferences by using a linear model (3.28), we get the contradictory
inequalities w1 < w2 and w1 > 4

3
w2. By using the Choquet integral preference model (3.31) to

translate these preferences, we get the inequalities m({1}) < m({2}) and m({1}) > 4
3
m({2}) +

m({1, 2}) being not in contradiction. For example, by considering m({1}) = 0.7, m({2}) = 0.8 and
m({1, 2}) = −0.5 these inequalities are satisfied.

objective functions as well as a supposed users’ utility are to be minimized. Compared to the

discussion above, the only difference is that while with maximization, the preference of an alternative

a over an alternative b was translated into the constraint U(a) ≥ U(b) + ε, now the preference

is translated into the constraint U(a) + ε ≤ U(b). In case of indifference between a and b, the

corresponding constraint is U(a) = U(b).

Let us first consider a problem with two objectives f1 and f2 to be minimized. As observed in

Section 3.3.4, due to some interactions between the considered criteria it could happen (as in the case

shown in Figure 3.4), that the linear model is not able to represent the preferences of the DM. For

this reason, we suggest using the Choquet integral preference model that is able to take into account

interactions between criteria. In [136], it has been shown experimentally that the Choquet integral

has a greater capacity of representing the preferences of a DM than the weighted sum model.

While a greater flexibility of the preference model allows to capture more complicated user pref-

erence information and is thus desirable, usually, it also has more parameters, and more preference

information is required before the set of compatible value functions is curbed sufficiently to be useful

in narrowing down the search. For this reason, we propose to keep the complexity of the preference

model low as long as it is sufficient to capture all preference information, but switch to a more

complex preference model when this is no longer the case, following the procedure described in Al-

gorithm 2. In particular, we start with assuming a linear preference model. Once we can no longer

find a linear value function compatible with all elicited preference relations, we switch to a 2-additive
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Algorithm 2 Basic NEMO-II-Ch method

Current preference model = LINEAR.
Generate initial population of solutions.
Elicit user’s preferences by asking DM to compare two randomly selected non-dominated solutions.

Rank individuals into fronts by iteratively identifying all solutions that are most preferred for at
least one compatible value function. Rank within each front using crowding distance.
repeat

Select individuals for mating.
Generate offspring using crossover and mutation and add them to the population.
if Time to ask the DM then

Elicit user’s preferences by asking DM to compare two solutions that are the most preferred
for at least one compatible value function.
if There is no value function remaining compatible with the user’s preferences then
if Current preference model = LINEAR then

Preference model = CHOQUET.
else

Remove information on pairwise comparisons, starting from the oldest one, until fea-
sibility is restored and reintroduce them in the reverse order as long as feasibility is
maintained.

end if
end if

end if
Rank individuals into fronts by iteratively identifying all solutions that are most preferred for
at least one compatible value function. Rank within each front using crowding distance.
Reduce population size back to initial size by removing worst individuals.

until Stopping criterion met.
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Choquet integral.

To check whether there exists a set of weights w = (w1, . . . , wn) such that the linear model is able

to restore the preferences of the DM, one has to solve the following LP,

max ε, subject to

U(a)− U(b) + ε ≤ 0 for all a ≻p b,
n

∑

j=1

wj = 1

wj ≥ 0, for all j = 1, . . . , n































Elinear
DM

where U(a)−U(b) ≤ ε are the constraints translating the preferences of the DM while the other two

constraints are used to ensure that weights are non-negative and normalized.

There is a w compatible with the preferences of the DM if and only if Elinear
DM is feasible and

εlinear > 0 where εlinear = max ε subject to Elinear
DM . In this case, one can proceed to order the

population by using the same procedure described in the previous section, checking, for each solution

x, whether there exists a set of weights w = (w1, . . . , wn) such that x is the best among the considered

solutions. To this end, one has to solve the following LP.

max ε, subject to

U(a)− U(b) + ε ≤ 0 for all a ≻p b,

U(x)− U(y) + ε ≤ 0 for all y ∈ A \ {x} ,
n

∑

j=1

wj = 1

wj ≥ 0, for all j = 1, . . . , n











































Elinear
x

where constraints U(x)− U(y) ≤ ε ensure that x is preferred to all other solutions in A.

If Elinear
x is feasible and εlinearx > 0 where εlinearx = max ε subject to Elinear

x , then there exists a

set of weights w such that x is the preferred solution and therefore it is included in the first front.

After ordering all the solutions into different fronts, the solutions in the same front are ordered by

computing the classical crowding distance of NSGA-II.

If there exists no vector w such that the linear model would be able to restore the preference

information provided by the DM, we need to use a more complex model such as the Choquet integral

in order to represent the preferences expressed by the DM. As we shall justify later, we use the

2-additive Choquet integral here that has a parameter m({j}) for each objective j and a parameter
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Figure 3.5: Example for a case where for capturing a user’s preferences with the Choquet integral it
is necessary to move the line f2 = f1 by multiplying both objectives by weights w1 and w2 such that
w1 + w2 = 1.

m({i, j}) for each pair of objectives {i, j}.

As already discussed in Section 3.3.4, the use of the Choquet integral assumes that all objectives

are expressed on the same scale. Indeed, when using the original formulation of the Choquet integral

involving the capacity µ (see Eq. (3.29)), for each solution x we need to order all values of each

individual’s objective from the worst to the best. Analogously, using the Choquet integral expressed

by means of the Möbius decomposition m (see Eq. (3.31)), for each solution x and for each subset

of objective functions, we need to know the minimum value. Since we cannot assume that the scales

of the different objectives are comparable, the scaling becomes part of the model. In other words, in

addition to the usual parameters of the Choquet integral, we also need to consider a scaling weight

for each objective.

Let us consider the example shown in Figure 3.5. If the user states that Q ≡ (1.75, 0.4) is

preferred to P ≡ (1.25, 1.05) and R ≡ (2.75, 1.9) is preferred to S ≡ (3.75, 0.4), there is no Cho-

quet integral compatible with these preferences. The preferences correspond to the inequalities

0.5m({1}) − 0.65m({2}) − 0.65m({1, 2}) < 0 and m({1}) − 1.5m({2}) − 1.5m({1, 2}) > 0 which

contradict the monotonicity constraints 2c). This is also apparent from the fact that all four alter-

natives are located under the line f1 = f2, where the iso-utility function of the Choquet integral is

linear, and no linear model is able to reflect the preferences.

However, if we scale the objectives appropriately (which ”moves” the f1 = f2 line), then it is possi-

ble to represent the preference information using a Choquet integral. For example, let us multiply the

two objectives by the weights w1 = 0.31 and w2 = 0.69. The four points become Q ≡ (0.5425, 0.276),

P ≡ (0.3875, 0.7245), R ≡ (0.8525, 1.311) and S ≡ (1.1625, 0.276) while the constraints translat-
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ing the preferences of the user become 0.155m({1}) − 0.4485m({2}) − 0.1115m({1, 2}) < 0 and

0.31m({1})− 1.035m({2})− 0.5765m({1, 2}) > 0, being compatible with the Möbius decomposition

m({1}) = 0.9, m({2}) = 0.4 and m({1, 2}) = −0.3.

Mathematically, determining whether the preferences can be represented by an appropriate scaling

and Choquet integral translates into the following non-linear program:

max ε, subject to

Cµ(w1f1(a), . . . , wnfn(a))

−Cµ(w1f1(b), . . . , wnfn(b)) ≤ ε for all a ≻p b,
n

∑

j=1

wj = 1

m (∅) = 0,
∑n

j=1 m ({j}) +
∑

{i,j}⊆{1,...,n}m ({i, j}) = 1,

m ({j}) ≥ 0, for all j = 1, . . . , n,

m ({j}) +
∑

i∈T

m ({i, j}) ≥ 0, for all j = 1, . . . , n, and

for all T ⊆ {1, . . . , n} \ {j} , T 6= ∅.
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ECh
DM

(3.37)

The user’s preferences can be represented if an only if the solution to this optimization problem

results in εCh
DM > 0, where εCh

DM = max ε subject to ECh
DM .

Since the optimization problem is non-linear, to solve it, we use the Nelder-Mead algorithm [131]

to search the space of weights while maximizing ε, with an LP being solved in every iteration to

determine the best Möbius parameters for the weights in the current iteration. The algorithm is

aborted as soon as an ε > 0 has been found. If after a few iterations (we chose 40 in the experiments

below), no such weight/Choquet coefficient combination has been found, we stop the search and

remove some of the DM’s preference information, starting from the oldest, until the feasibility is

regained.

Once it has been found that the preference information provided by the DM can be represented

by using the Choquet integral preference model (possibly after removing some pieces of information),

the solutions are put into different fronts by using the same procedure as described previously. For

each solution x ∈ A, one has to check whether this solution might be the most preferred one by

solving the following optimization problem.
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max ε, subject to

Cµ(w1f1(x), . . . , wnfn(x))

−Cµ(w1f1(y), . . . , wnfn(y)) ≤ ε, for all y ∈ A \ {x} ,

ECh
DM



















ECh
x

(3.38)

Because, again, the optimization problem (3.38) is non-linear, in a first step we try to simplify

the solution by fixing the vector of weights w′ = (w′1, . . . , w
′
n) such that w′1f1(x) = . . . = w′nfn(x) and

then checking, by using linear programming optimization, if there exists a set of Choquet coefficients

such that εCh
x > 0, where εCh

x = max ε s.t. ECh
x (indeed, if we fix the weights (w1, . . . , wn), then the

optimization problem (3.38) becomes an LP problem). We found that in many cases, this will find

a feasible solution if there exists one. If not, then we use the Nelder-Mead method explained above

to check whether the optimization problem allows for εCh
x > 0.

Note that for more than 2 dimensions, we still restrict our model to 2-additive Choquet.

3.3.6 Experimental Results

In this section, the algorithms introduced before are compared empirically. We start with a com-

parison of NEMO-I and NEMO-II to justify our use of NEMO-II for the remainder of the paper.

Next, we look at the effect of model complexity, and demonstrate the benefit of starting with a

simple model but then switching to a more complex model if it is necessary to represent the user’s

preferences. Finally, we compare a number of algorithms on various 2 to 5-dimensional benchmark

functions.

For the algorithms tested, we use the following notation:

• NEMO-I-L: The NEMO-I algorithm with a linear additive preference model.

• NEMO-II-L: The NEMO-II algorithm with a linear additive preference model.

• NEMO-II-PL2: The NEMO-II algorithm with a piecewise linear additive preference model,

consisting of two linear pieces. The breakpoint was chosen to be the median of the values in

the population for each objective.

• NEMO-II-G: The NEMO-II algorithm with a general monotonic additive preference model

as often used in ROR [86].
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• NEMO-II-Ch: The proposed NEMO-II algorithm that starts with a simple linear preference

model and switches to a 2-additive Choquet preference model when the linear model is no

longer able to account for the user’s preference information.

Furthermore, the following are provided as benchmarks:

• NSGA-II: The standard NSGA-II algorithm not using preference information.

• EA-UVF: A single-objective EA that uses the true user’s value function for ranking individuals

(information that is not available to the other algorithms). EA-UVF shows the performance

that could be expected if the user’s value function was fully known to the evolutionary algorithm

from the beginning. Clearly, this is an idealized setting and only serves as a reference.

• Optimum: This is the best value of feasible solutions according to the true user’s value

function.

Let us point out that comparison between different interactive methods is difficult since they use

different preference information. Consequently, we decided to compare our method with NSGA-II

only because NEMO-II-Ch is based on NSGA-II.

All algorithms use a real valued representation, generate offspring by simulated binary crossover

with crossover probability of 0.9 and ηc = 15, and Gaussian mutation with mutation probability 1
v

(where v is the number of variables and depends on the considered problem) and step size σ = 0.1.

Mating selection is done by tournament selection. We run the algorithm for a pre-specified number

of 400 (in case of 2 objectives) or 600 (in case of 3 or 5 objectives) generations. The population

size has been set to 30, a value smaller than usual in MOEAs, but we do not aim to find the whole

Pareto frontier but only the most preferred solutions. The DM is asked to provide some preference

information about one pair of randomly picked non-dominated solutions every 10 generations.

The “true” user’s value function assumed in this study is the Chebyshev function, i.e., the user’s

goal is to maximize UDM(a) = −max{w1f1(a), . . . , wnfn(a)}, which is equivalent to minimizing

U−DM(a) = max{w1f1(a), . . . , wnfn(a)}. The parameters w1, . . . , wn depend on the problem and are

defined below. For the sake of simplicity, with a slight abuse of the terminology, when we speak

of the user’s value functions we refer to their opposite forms, and thus we aim at minimizing the

Chebyshev-like value function U−DM(a) = max{w1f1(a), . . . , wnfn(a)}. When showing the plots of

convergence and tables, the terms “Convergence indicator” and “Convergence curve” mean the value

of U−DM(·).
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We measure performance based on the user’s true utility of the best individual in the population,

i.e., the minimum of U(x) over all individuals in the population. This assumes that the final popu-

lation is returned to the DM, and the DM is able and willing to spend the effort to identify the most

preferred solution among the set. All results shown in all tables and figures have been averaged over

50 independent runs.

Comparison of NEMO-I and NEMO-II

Since we implement here for the first time an idea that has been proposed in [24] as NEMO-II,

we would like to assert that it is not only much more efficient than NEMO-I, but also competitive

in terms of solution quality. To do this, we have compared NEMO-I and NEMO-II with a simple

linear preference model on the simple convex 2-dimensional test problem ZDT1. The user’s true

value function was set to U(x) = f1(x) + f2(x), i.e., the linear model is sufficient to represent the

user’s preferences. Knowing the user’s true value function, one can calculate the solution with the

best true user value for a given problem. This best value will be called “optimum”. Figure 3.6

shows the convergence curve corresponding to this experiment. One can observe that both methods

converge to the optimum (f1(x) = 1
4

and f2(x) = 1
2
, with U(x) = 3

4
), and that the convergence

of NEMO-II-L is slightly quicker than that of NEMO-I-L. We thus conclude that NEMO-II is not

only computationally much more efficient than NEMO-I, but at least as good, and we will focus on

NEMO-II in the remainder of this paper.

Figure 3.6: ZDT1-2D Linear (f1(x) + f2(x))

Model complexity switching

Determining an appropriate model complexity is a challenging issue. Obviously, a higher complexity

of the algorithm’s preference model allows the algorithm to model more complex user’s preferences.
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On the other hand, higher model complexity usually means more parameters to be set, and thus

more preference information is required for the model to become sufficiently restricted to be useful in

guiding the evolutionary process. Besides, more parameters also means a higher computational cost

for solving each LP in NEMO-II. For these reasons, we have proposed in Section 3.3.5 NEMO-II-Ch

that starts with a simple linear preference model, and switches to a 2-additive Choquet integral when

the simple linear model is no longer able to account for the user’s preference information.

Figure 3.7 compares the proposed NEMO-II-Ch with NEMO-II-L, with NEMO-II that uses the 2-

additive Choquet integral from the beginning, and with NEMO-II that starts using the linear model,

but then switches to the full Choquet model rather than the 2-additive one. The test problem is the

5-dimensional DTLZ1, and the user preference function to be minimized is the Chebyshev function:

U(x) = max {0.1f1(x), 0.15f2(x), 0.2f3(x), 0.25f4(x), 0.3f5(x)} . (3.39)

Figure 3.7: DTLZ1-5D Chebyshev with different types of Choquet integral as preference model.

As can be observed, the algorithm variants starting with a linear preference model converge much

more quickly. This makes intuitive sense, as they have fewer parameters to estimate and thus can

narrow down the search more quickly. Around iteration 70, the convergence curves for NEMO-

II-L, NEMO-II-Ch and “NEMO-II-L then Choquet all variables” diverge, i.e., the linear model is

sometimes no longer sufficient to capture the user’s preference information, and switching to the

Choquet model is required (note that not all runs switch at the same time). The difference between

switching to the full Choquet integral or 2-additive Choquet integral is relatively small, but the full

Choquet integral is somewhat slower, probably because it increases the number of parameters which

slows down convergence. There doesn’t seem to be a difference in final solution quality. Sticking

to the linear model eventually results in poor and unstable behavior, as the model can no longer
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capture the user’s preferences and old preference information has to be discarded.

In the following, we will thus stick to NEMO-II-Ch as our most promising procedure. To demon-

strate the advantage of learning user’s preferences, we compare it on various benchmark problems

with NSGA-II. To further demonstrate the particular advantages of the Choquet integral over alter-

native value function models, we also report on results obtained with NEMO-II-L, NEMO-II-PL2,

and NEMO-II-G.

Results in 2D

As 2D test problems, we use ZDT1 (with a convex Pareto front) and ZDT2 (with concave Pareto

front) and the parameters of the Chebyshev function given in Table 3.31.

Table 3.31: Parameters of the user’s value function in 2D

w1 w2

ZDT1-middle 0.6 0.4
ZDT1-extreme 0.15 0.85
ZDT2-middle 0.6 0.4
ZDT2-extreme 0.15 0.85

As one can observe in Figures 3.8 and 3.9, the differences of final solution quality of the various

approaches are very small, and all get very close to the optimal solution. This is not very surprising,

since although the linear model can not represent the Chebyshev user preference directly, given that

ZDT1 has a convex Pareto front, even the linear model is able to converge to any solution on the

frontier. The fact that NEMO-II-Ch and NEMO-II-L lines overlap almost completely indicates that

a linear model was almost always able to respect the user’s preferences. Where the user prefers an

extreme solution, the convergence of NSGA-II and NEMO-II-G is somewhat slower.

Moving to ZDT2, the situation is slightly different. NEMO-II-L is no longer able to converge to

the correct point because of the concavity of the Pareto front of the test function as can be noticed

from the erratic behavior of the corresponding curve in Figure 3.10 and especially in Figure 3.11.

NSGA-II and NEMO-II-G again converge more slowly in the case of the user preferring an extreme

solution.

For both two-dimensional test problems and both user’s preference functions, the convergence

curves for NSGA-II and NEMO-II-G are very similar, indicating that NEMO-II-G was not able to

use the provided preference information to substantially enrich the standard non-dominated sorting
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Figure 3.8: ZDT1-middle Figure 3.9: ZDT1-extreme

Figure 3.10: ZDT2-middle Figure 3.11: ZDT2-extreme

procedure.

Rather than comparing the value obtained after a specific number of generations, Table 3.32

shows the area under the convergence curve over all 400 generations as a measure of the overall

performance of the algorithm. Based on a Mann-Whitney-U test with 5% significance level, the

differences between NEMO-II-Ch and each of the other tested algorithms are significant, except for

ZDT1 and the difference to NEMO-II-L. The latter is not surprising, given that for such a convex

problem a linear model is able to find any solution on the frontier.

To illustrate the convergence of NEMO-II-Ch in the objective space, we show in Figure 3.12 the

population of solutions of ZDT2-middle after 30, 50, 100 and 200 generations. One can observe that

after 30 generations the population of solutions is located in the upper left corner of the Pareto

front which corresponds to one of the two minima obtained by a linear value function model. Then,

in subsequent generations the method discovers that the linear model is not able to represent the

growing set of pairwise comparisons and switches to the Choquet integral model. From generation

50 on, the method generates solutions grouped around the point most preferred by the artificial user.

In generations 100 and then 200, the population is almost exactly focused on this point.
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Table 3.32: Area under the curve for 2-dimensional problems, mean ± std. err. The difference of all
results to the results of NEMO-II-Ch is significant except for NEMO-II-L in ZDT1.

ZDT1
middle extreme

NSGA-II 141.38 ± 1.88 200.03 ± 4.12
NEMO-II-L 127.32 ± 1.76 164.48 ± 4.09

NEMO-II-PL2 138.27 ± 1.51 180.14 ± 3.04
NEMO-II-G 139.38 ± 0.94 196.22 ± 2.57
NEMO-II-Ch 126.73 ± 1.62 163.73 ± 4.11

ZDT2
middle extreme

NSGA-II 199.96 ± 2.02 255.08 ± 4.67
NEMO-II-L 207.80 ± 1.95 275.34 ± 5.24

NEMO-II-PL2 205.17 ± 1.40 254.36 ± 3.79
NEMO-II-G 199.99 ± 1.08 252.38 ± 2.48
NEMO-II-Ch 189.55 ± 1.61 225.27 ± 4.56

Figure 3.12: Convergence to the best preferred so-
lution by NEMO-II-Ch for ZDT2-middle

Figure 3.13: Attainment surfaces by NEMO-II-Ch
for ZDT2-middle
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It is also interesting to observe the convergence process using the attainment surface plots [111] for

the same problem. They are shown in Figure 3.13. The median attainment surface shows the area

that is dominated by solutions from the population of a given generation in 50% of the runs. In

Figure 3.13 the dominated area is located on the upper right side of the curves. The obtained surface

after 30 generations has almost conic shape because the population of solutions is concentrated in the

left upper corner of the Pareto front. After switching from the linear to the Choquet integral model

the attainment surfaces become more and more conic and, finally, in generation 200 it is perfectly

orthogonal. This means that the whole population is focused on one, most preferred point.

Results in 3D

In three dimensions we have compared the five methods on the benchmark problems DTLZ1 and

DTLZ2 considering the user’s Chebyshev value function with the parameters given in Table 3.33.

Table 3.33: Parameters of the user’s value function in 3D

w1 w2 w3

DTLZ1-3D-middle 0.3 0.4 0.3
DTLZ1-3D-extreme 0.2 0.3 0.5
DTLZ2-3D-middle 0.3 0.4 0.3
DTLZ2-3D-extreme 0.2 0.3 0.5

What we can observe for DTLZ1 in Figures 3.14 and 3.15 is that only NEMO-II-Ch is able to get

very close to the optimal solution. Indeed, after generation 200 the curve of NEMO-II-Ch merges

with that of EA-UVF, which means the NEMO-II-Ch behaves like a single-objective EA using the

true user’s value function. NSGA-II is the second closest, but converges significantly slower. NEMO-

II-L and NEMO-II-PL2 show erratic behavior, and NEMO-II-G converges very slowly, apparently

unable to make use of the provided preference information. Note that the peaks in the plots of

NEMO-II-L and NEMO-II-PL2 appear when in order to get a compatible model some of the oldest

preference information has to be removed. This removal deteriorates temporarily the value of the

best solution in the current population.

From Figures 3.16 and 3.17, one can notice that on DTLZ2, NEMO-II-Ch is slower than NSGA-II

or even NEMO-II-G in the beginning, although it takes over eventually and finds better solutions.

We are not sure what characteristics of DTLZ2 cause this behavior. Something seems to mislead the

linear model in the wrong direction, which is doing really poorly overall. However, NEMO-II-Ch is
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Figure 3.14: DTLZ1-3D-middle Figure 3.15: DTLZ1-3D-extreme

Figure 3.16: DTLZ2-3D-middle Figure 3.17: DTLZ2-3D-extreme
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Table 3.34: Area under the curve for 3-dimensional problems, mean ± std. err. The following
differences to NEMO-II-CH are not significant based on a Mann-Whitney-U test with 5% significance
level: DTLZ2 extreme and NSGA-II, DTLZ2 middle and NEMO-II-G.

DTLZ1
middle extreme

NSGA-II 334.78± 9.64 291.60 ± 7.93
NEMO-II-L 391.65± 41.33 326.68 ± 27.10

NEMO-II-PL2 446.30±12.74 361.94 ± 9.14
NEMO-II-G 562.98 ± 13.34 439.64 ± 10.40
NEMO-II-Ch 288.17 ± 11.89 244.99 ± 8.99

DTLZ2
middle extreme

NSGA-II 128.98 ± 0.09 107.01 ± 0.10
NEMO-II-L 182.87 ± 2.01 144.03 ± 6.04

NEMO-II-PL2 148.71 ± 0.64 124.69 ± 0.78
NEMO-II-G 131.58 ± 0.07 111.24 ± 0.08
NEMO-II-Ch 137.96 ± 2.31 106.90 ± 1.33

able to recover from a bad start when switching to the Choquet integral, and eventually yields the

best results.

As the numerical results in Table 3.34 confirm, overall, NEMO-II-Ch is still best in three out of

the four scenarios.

Results in 5D

In 5D we have considered the DTLZ1 and DTLZ2 benchmark functions for two user’s Chebyshev

value functions with parameters given in Table 3.35.

Table 3.35: Parameters of the user’s value function in 5D

w1 w2 w3 w4 w5

DTLZ1-5D-extreme1 0.1 0.15 0.2 0.25 0.3
DTLZ1-5D-extreme2 0.3 0.25 0.2 0.15 0.1
DTLZ2-5D-extreme1 0.1 0.15 0.2 0.25 0.3
DTLZ2-5D-extreme2 0.3 0.25 0.2 0.15 0.1

Different from the 2D and 3D cases, in which the performance of NSGA-II was good, in the

5D case, NSGA-II performs quite poorly. This is not very surprising, as it is known that the

non-dominance ranking does not work effectively in more than 3 dimensions. In such cases, prefer-

ence information is hugely beneficial as it allows to substantially enrich the non-dominated ranking.

Figures 3.18-3.21 thus show that NEMO-II-Ch obtains much better results than any of the other

algorithms on both benchmark problems and for both user preference functions. The two linear
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Figure 3.18: DTLZ1-5D-extreme1 Figure 3.19: DTLZ1-5D-extreme2

Figure 3.20: DTLZ2-5D-extreme1 Figure 3.21: DTLZ2-5D-extreme2
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Table 3.36: Area under the curve for 5-dimensional problems, mean ± std. err. NEMO-II-Ch
is significantly better than each other algorithm except for the comparison with NEMO-II-L on
DTLZ1.

DTLZ1
extreme1 extreme2

NSGA-II 1747.43 ± 70.29 1271.34 ± 50.33
NEMO-II-L 251.67 ± 19.80 250.81 ± 18.19

NEMO-II-PL2 586.27 ± 22.49 299.10 ± 21.89
NEMO-II-G 8569.95 ± 40.16 7531.91 ± 38.14
NEMO-II-Ch 207.84 ± 9.75 208.96 ± 9.25

DTLZ2
extreme1 extreme2

NSGA-II 81.86 ± 1.34 74.20 ± 1.03
NEMO-II-L 73.47 ± 2.50 70.45 ± 1.95

NEMO-II-PL2 74.97 ± 0.51 63.59 ± 0.54
NEMO-II-G 129.65 ± 0.67 119.30 ± 0.71
NEMO-II-Ch 57.02 ± 0.65 58.06 ± 0.74

models NEMO-II-L and NEMO-II-PL2 again show an erratic behavior, presumably because they are

not sufficiently complex to reflect the user’s preference information. A bit surprising is the very poor

behavior of NEMO-II-G. Apparently, in 5D, the general monotonic additive preference model is not

helpful. Again, when looking at the numerical results in Table 3.36, we see that NEMO-II-Ch yields

better results than all other algorithms in all cases.

Average utility

Finally, Table 3.37 looks at the average utility of all the individuals in the final population. This

measure provides some information on how well the algorithm was able to focus the search onto

the most preferred region of the search space, as keeping some individuals with poor utility in the

population would hurt this performance measure.

Again, NEMO-II-Ch performs best for most scenarios. It is marginally worse than NEMO-II-L

and NEMO-II-PL2 for ZDT1-middle where a linear value function model is sufficient to capture

the user’s preferences. And it is slightly worse than NEMO-II-PL2 on the 5-dimensional DTLZ2-

extreme2 problem, despite the fact that according to Figure 3.21, the best solution in the population

of NEMO-II-PL2 is clearly worse than the best solution in the population of NEMO-II-Ch. The

likely explanation is that although NEMO-II-PL2 converged to an inferior solution, it converged

fully, whereas NEMO-II-Ch still had some diversity in the population that degraded the average

utility.
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Table 3.37: Average and stdv of the utilities for the individuals in the last population for all considered
methods

ZDT1-middle ZDT1-extreme ZDT2-middle ZDT2-extreme
NSGA-II 0.3415± 0.117 0.3756± 0.2233 0.4247± 0.0868 0.5079± 0.2487

NEMO-II-L 0.1825± 0.0082 0.1182± 0.0643 0.4077± 0.1033 0.4304± 0.3214
NEMO-II-PL2 0.1853± 0.0155 0.1192± 0.0138 0.3364± 0.0374 0.3581± 0.1952
NEMO-II-G 0.3458± 0.0136 0.3740± 0.0299 0.4301± 0.0278 0.5298± 0.0519
NEMO-II-Ch 0.1856± 0.0262 0.1169± 0.0071 0.3010± 0.0106 0.1418± 0.0406

DTLZ1-3D-middle DTLZ1-3D-extreme DTLZ2-3D-middle DTLZ2-3D-extreme
NSGA-II 0.1252± 0.0373 0.129± 0.0545 0.2886± 0.049 0.3131± 0.1041

NEMO-II-L 3.5691± 16.8329 2.7865± 12.9957 0.3162± 0.0411 0.2812± 0.1038
NEMO-II-PL2 0.1237± 0.0521 0.1211± 0.0313 0.2454± 0.0404 0.2260± 0.0450
NEMO-II-G 0.1411± 0.0284 0.1384± 0.0098 0.3054± 0.0085 0.3324± 0.0113
NEMO-II-Ch 0.0635± 0.0197 0.0541± 0.0102 0.2078± 0.0395 0.1705± 0.0269

DTLZ1-5D-extreme1 DTLZ1-5D-extreme2 DTLZ2-5D-extreme1 DTLZ2-5D-extreme2
NSGA-II 1.4225± 1.0363 1.9122± 1.7195 0.2168± 0.0864 0.1977± 0.0812

NEMO-II-L 3.0879± 13.0158 2.2674± 10.7805 0.1622± 0.0657 0.1381± 0.0465
NEMO-II-PL2 0.1922± 0.1720 0.1623± 0.3116 0.1491± 0.0468 0.1214± 0.0374
NEMO-II-G 16.754± 4.772 17.494± 4.815 0.3806± 0.0620 0.3517± 0.0509
NEMO-II-Ch 0.0368± 0.0209 0.0417± 0.0205 0.1449± 0.0666 0.1353± 0.0687

3.3.7 Conclusions

In this paper, we presented the NEMO-II-Ch method. NEMO-II-Ch is an interactive evolutionary

multiobjective procedure guided by user’s preferences towards the most preferred part of the Pareto-

optimal set. The novelties brought by the method consist in the following features:

• It is the first implementation and empirical evaluation of the NEMO-II idea.

• It does not work by considering only one model to translate the preferences of the DM but

it starts from the simplest one (the linear model) and passes to a more complex one (the 2-

additive Choquet integral model) when it is not possible to represent the DM’s preferences

using the linear model.

• The use of the Choquet integral preference model has never been considered in the evolutionary

multiobjective optimization field for its relative complexity, however, we have demonstrated

that it is able to deal efficiently with problems where preferences involve interactions among

criteria, which additive preference models are unable to represent.

In order to demonstrate the effectiveness of the presented method, as well as the quality of its

solutions, we have compared NEMO-II-Ch with NSGA-II and a variant of Greenwood’s method

(NEMO-II-L) on a variety of benchmark problems in 2D, 3D and 5D.

In almost all performed simulations, NEMO-II-Ch clearly obtained better results than the other

tested methods.

Further developments will include to study how the increase of the number of interacting ob-

jectives in the k-additive Choquet integral for k > 2 influences the performance of the interactive
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procedure based on this preference model.
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Chapter 4

Final remarks

The aim of the Multiple Criteria Decision Aiding (MCDA) is not addressing the Decision Maker (DM)

to the “best” decision but, as stated by Keeney and Raiffa in [109], ...to get your head straightened

out. For this reason, several methods have been proposed during the years in MCDA and, in this

thesis, we contributed in dealing with two important MCDA issues that are, the hierarchy of criteria

and the interaction between criteria. Regarding the first issue, two contributions have been proposed:

• in the first contribution, we applied the recently proposed Multiple Criteria Hierarchy Process

(MCHP) to extend the well-known sorting method UTADIS. The application of the MCHP

to the UTADIS method permits to assign each alternative to one or more of the preferentially

ordered classes not only at a comprehensive level but also considering a particular subcriterion

in the hierarchy of criteria. This extension regards both the cases in which the DM provides

direct and indirect preference information;

• in the second contribution, we applied the MCHP to the Choquet integral preference model to

take into account positive or negative interactions between criteria structured in a hierarchy.

Also in this case, the proposed extension regards both the direct and the indirect preference

information. In case the DM provides indirect preference information, we applied the Robust

Ordinal Regression (ROR) and the Stochastic Multiobjective Acceptability Analysis (SMAA)

to take into account the plurality of models compatible with the preference information provided

by the DM.

Regarding the second issue, that is the interaction between criteria, we gave three contributions

related to the Choquet integral preference model:

• in the first contribution, we proposed a methodology to build a common scale, necessary for

the application of the Choquet integral preference model. Moreover, to take into account the
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plurality of common scales that could be built by using the proposed method, we applied the

SMAA methodology;

• in the second contribution we dealt, again, the problem of building a common scale for eval-

uations on different criteria but, differently from the previous contribution, we applied the

Analytical Hierarchy Process (AHP) to build this common scale; moreover, we proposed a way

to reduce the number of pairwise comparisons requested in the application of the AHP method;

• in the third contribution, we applied the Choquet integral preference model to the evolutionary

multiobjective optimization. The Choquet integral preference model has been applied for the

first time to this field and it is used to address the search to the region of the Pareto front most

interesting for the DM. The proposed method, called NEMO-II-Ch, has been tested on several

benchmark problems providing better results than the other methods with which it has been

compared.
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[98] E. Jacquet-Lagrèze and Y. Siskos. Preference disaggregation: 20 years of MCDA experience.

European Journal of Operational Research, 130(2):233–245, 2001.

[99] A. Lopez Jaimes, A. Arias Montano, and C. A. Coello Coello. Preference incorporation to

solve many-ojective airfoil design problems. In Congress on Evolutionary Computation, pages

1605–1612. IEEE, 2011.

[100] A. Jaszkiewicz. Interactive multiobjective optimization with the Pareto memetic algorithm.

Foundations of Computing and Decision Sciences, 32(1):15–32, 2007.
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[157] R. S lowiński, J. Stefanowski, S. Greco, and B. Matarazzo. Rough set based processing of

inconsistent information in decision analysis. Control and Cybernetics, 29:379–404, 2000.

[158] R.L Smith. Efficient Monte Carlo procedures for generating points uniformly distributed over

bounded regions. Operations Research, 32:1296–1308, 1984.

[159] J. Spronk, R.E. Steuer, and C. Zopounidis. Multicriteria decision aid/analysis in finance. In

J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple criteria decision analysis: State of the

art surveys, pages 799–848. Springer, Berlin, 2005.

[160] V. Srinivasan and A.D. Shocker. Estimating the weights for multiple attributes in a composite

criterion using pairwise judgments. Psychometrika, 38(4):473–493, 1973.

[161] T. Stewart. Dealing with Uncertainties in MCDA. In J. Figueira, S. Greco, and M. Ehrgott,

editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 445–460. Springer,

Berlin, 2005.

[162] M. Sugeno. Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of

Technology, 1974.

[163] M. Sugeno, K. Fujimoto, and T. Murofushi. A hierarchical decomposition of Choquet inte-

gral model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

03(01):1–15, 1995.

187



[164] T. Tervonen and J. Figueira. A survey on stochastic multicriteria acceptability analysis meth-

ods. Journal of Multi-Criteria Decision Analysis, 15(1-2):1–14, 2008.

[165] T. Tervonen, J.R. Figueira, R. Lahdelma, D.A. Juscelino, and P. Salminen. A stochastic

method for robustness analysis in sorting problems. European Journal of Operational Research,

192(1):236–242, 2009.

[166] T. Tervonen, J.R. Figueira, R. Lahdelma, and P. Salminen. SMAA-III: A simulation-based

approach for sensitivity analysis of ELECTRE III. In Real-Time and Deliberative Decision

Making, pages 241–253. Springer, 2009.

[167] T. Tervonen and R. Lahdelma. Implementing stochastic multicriteria acceptability analysis.

European Journal of Operational Research, 178(2):500 – 513, 2007.

[168] T. Tervonen, G. Van Valkenhoef, N. Basturk, and D. Postmus. Efficient weight generation

for simulation based multiple criteria decision analysis. EWG-MCDA, Tarragona, 12-14 April,

2012.

[169] L. Thiele, K. Miettinen, P. J. Korhonen, and J. Molina. A preference-based interactive

evolutionary algorithm for multiobjective optimization. Evolutionary Computation Journal,

17(3):411–436, 2009.

[170] D. S. Todd and P. Sen. Directed multiple objective search of design spaces using genetic

algorithms and neural networks. In W. et al. Banzhaf, editor, Genetic and Evolutionary Com-

putation Conference, pages 1738–1743. Morgan Kaufmann, San Francisco, California, 1999.

[171] H. van Greuning and S. Brajovic Bratanovic. Analyzing Banking Risk - A Framework for

Assessing Corporate Governance and Risk Management. The World Bank, Washington, D.C.,

3rd edition, 2009.

[172] G. Van Valkenhoef, T. Tervonen, and D. Postmus. Notes on “Hit-And-Run enables efficient

weight generation for simulation-based multiple criteria decision analysis”. European Journal

of Operational Research, 239(3):865–867, 2014.

[173] T. Wagner and H. Trautmann. Integration of preferences in hypervolume-based multiobjective

evolutionary algorithms by means of desirability functions. IEEE Transactions on Evolutionary

Computation, 14(5):688–701, 2010.

188



[174] P.P. Wakker. Additive representations of preferences: A new foundation of decision analysis,

volume 4. Springer, 1989.

[175] J.-J. Wang, Y.-Y. Jing, C.-F. Zhang, and J.-H. Zhao. Review on multi-criteria decision anal-

ysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews,

13(9):2263–2278, 2009.

[176] Y.-M. Wang, K.-S. Chin, and Y. Luo. Aggregation of direct and indirect judgments in pairwise

comparison matrices with a re-examination of the criticisms by Bana e Costa and Vansnick.

Information Sciences, 179(3):329–337, 2009.

[177] J.-Z. Wu and Q. Zhang. 2-order additive fuzzy measure identification method based on dia-

mond pairwise comparison and maximum entropy principle. Fuzzy Optimization and Decision

Making, 9(4):435–453, 2010.
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