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Introduction

Elements in the universe are mostly produced inside stars. Apart from H, He

and Li, partly produced in primordial nucleosynthesis, the heavier elements were in

fact produced in stellar environments.

Isotopes with atomic number A<60 can be produced by thermonuclear reactions,

given the enhancement of the Coulomb barrier and the consequent fall of the cross-

section between charged particles. It is also known that elements belonging to the

Fe-group (Fe, Ni, Cr...) have the highest binding energies between nucleons, mak-

ing fusion reactions disadvantageous for such nuclei.

If A > 60, neutron capture is the main responsible for heavier nuclei production.

One of the two key points of this work will be the study of one of the main de-

struction channels for 19F, that results to be one of the least abundant elements with

12 < A < 56. In this atomic number range, it is proven that nucleosynthesis mainly

takes place inside AGB-stars, in which the isotopes just synthesized are brought to

the surface by a mechanism called third dredge-up (TDU). Following the accepted

models, at this evolutionary stage a star is composed by a degenerate C-O core, sur-

rounded by a He-shell and a H-shell. The latter are separated by a thin layer called

He-intershell (10−2÷10−3 M⊙), while the stellar envelope is composed by dust, that

can extend for hundreds of R⊙.

If temperature is high enough in the He-intershell, elements coming from the CNO

cycle, such as 14N, can lead to the production of 19F by means of the chain
14N(α, γ)18F(β+ν)18O(p, α)15N(α, γ)19F. Low-mass AGB-stars are the only sites of

production observatively confirmed [Santos et al., 2004; Recio-Blanco et al., 2012;

Li et al., 2013]. 19F production was also predicted to take place is in Supernovae
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Introduction

and Wolf-Rayet objects, evven if in small quantities.

Fluorine abundance shows a strong dependence from the internal conditions of

the star where it is produced: its production and destruction pathways are, in fact

strongly linked to temperature, density and to the mixing processes that move the

so called s elements on the surface of the star, and to the superficial mixing that

alters light elements abundances. Moreover, about 19F, its abundance can not still be

reproduced by astrophysical models, that strongly underestimates such quantities.

Observative evidences of fluorine production are obtained from an analysis of the

electromagnetic spectra of stars. In this way in fact, a study of the distribution of

energy as a function of the wavelength is possible, so that information about tem-

perature and chemical composition of the star can be obtained.

If the pathways in which 19F is produced are quite clear, is now important to de-

scribe how it can be destroyed. In AGB stars it could happen with the reactions
19F(p, α)16O and 19F(α, p)22Ne, and their relative importance critically depends on

the environment where the reaction takes place. It is therefore important to know

the reaction rate for 19F(α, p)22Ne. This is not well known in the energy range of as-

trophysical interest, because direct measurements of the cross-section at the Gamow

energy region for a stellar temperature of T = 8·108 K should go at energies in the

center of mass reference frame between 390 e 800 keV, while the lowest energy for

such a measurement is at 1.1 MeV in the laboratory reference frame.

The other main topic of this work will be on 23Na. The reaction 23Na(p, α)20Ne, in

particular, is of primary importance for sodium destruction inside the nucleosynthe-

sis path in the A > 20 mass region. This reaction is also involved in the branching

point of the Ne-Na cycle, responsible for hydrogen burning at high temperatures.

Ne-Na cycle is not well understood, mainly because the branching (p,α) to (p,γ) ra-

tio bears great uncertainties. Only if the first prevail on the second the cycle can be

started. From an observative point of view, the anti-correlations O-Na are of utmost

importance while observing massive stars: those will be of great help in understand-

ing the action of Ne-Na cycle, giving also a hint on the reaction pathways occurring

in stars. The 23Na(p, α)20Ne reaction plays its role in quiescent burning, so in the

range temperature between T = 20 · 106 K and T = 80 · 106 K, and in the Hot Bot-

tom Burning occurring in AGB-stars, whose impact needs to be known at between

T = 70 · 106 K and T = 100 · 106 K.

The 23Na(p, α)20Ne reaction needs to be studied at energy E = 50 ÷ 200 keV, corre-

sponding to the Gamow peak for the temperatures expressed earlier. In this energy
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range, the (p,α) channel prevails, allowing the development of the Ne-Na cycle, but

measurements are proven to be difficult due to the presence of some resonant states

of the intermediate 24Mg nucleus, and as for now there are no clear information

about their contribution on the total 23Na(p,α)20Ne reaction rate. These intermediate

states were studied, and two resonances at 37 and 138 keV were found, but their

large uncertainties make its importance in a Ne-Na closed cycle still not fully un-

derstood. It is now clear why the study of such a reaction could be important at

astrophysical energies.

Measurements at low energies are in general kind of problematic: astrophysically

relevant reactions usually take place at energies of a few tens of keV or lower, while

the typical Coulomb barrier has a value of some MeV. In such conditions, the cross-

section is strongly reduced (order of magnitude of some picobarn or lower). This

makes direct measurements really hard and, in some cases, nearly impossible. For

this reason extrapolations are often used and cross-section is calculated starting from

values at higher energies, extending its trend in an energy range where, if there are

no resonances, its behaviour is strongly decreasing. To make things easier, it is very

useful to use the astrophysical factor S(E) = σ(E)E × e2πη, in which the decreasing

behaviour of the cross-section is compensated by the e2πη, where η is the Sommer-

feld parameter. In this way extrapolations are made easier. Such a procedure can

sometimes be not much reliable, because it doesn’t take into account possible the

presence of resonances at low-energy (or below the threshold).

In this energy regions electron screening is also important. This phenomenon low-

ers the effects of the Coulomb barrier between the interacting nuclei, and it is due

to electrons, enhancing the probability of interaction between projectile and target.

Theoretical models do not reproduce well all these facts, and so the bare nucleus

cross-section is not approachable from the one measured with direct methods at

very low energies.

For all those reasons, several indirect method were proposed. Their aim is to study

the reaction of interest starting from processes that have some kind of link with it,

and that make easier to study. Among them, the Trojan Horse Method (THM) al-

lows us to measure the cross-section between charged particles - or between charged

particles and neutrons - at low energies, avoiding Coulomb barrier and electron

screening effects. This method is useful to reduce uncertainties, making models

that describe the chemical evolution of stellar objects more accurate.
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The idea behind this method is to study the two-body reaction of interest

a + x → C + c

from a three-body reaction in the exit channel:

a + A → C + c + s

where the nucleus A has a cluster-like structure A = x ⊕ s, with the x particle is

the participant and the s one is the spectator, following the nuclear reaction theory

for the quasi-free break-up. If quasi-free processes are taking place, the participant

nucleus, interacting with the target, will lead to the two-body reaction of interest,

while the spectator will continue undisturbed. Furthermore, if the beam energy is

high enough to overcome the Coulomb barrier between a e A, then the participant

nucleus will be led inside the nuclear field of a, and the reactions will take place

without Coulomb suppression and electron screening effects.

In the following work the reactions 19F(α, p)22Ne and 23Na(p, α)20Ne in their re-

spective region of astrophysical interest will be studied with the THM method: for

the first reaction, a nucleus of 6Li, that can be considered as a cluster α ⊕ d, is used

as projectile particle impinging on a 7LiF target, with the aim to induce the reaction
19F(6Li, p22Ne)2H, in which the α particle is the spectator and the deuterium is the

spectator. In the second one, a 23Na beam impinging on a CD2 target will be used to

study the 2H(23Na, α20Ne)n, with the proton as participant and neutron as spectator.

For both reaction, once the detector are calibrated, a particle discrimination was

made using the ∆E − E telescope technique. To isolate the three body reaction,

kinematic loci were than studied, with the aim to isolate the right Q−value. Af-

ter that, the quasi-free process was identified using the momentum distribution of

the spectator particle, and a cross-section in arbitrary units was extracted, using

the THM standard approach. Then for the 19F(α,p)22Ne reaction the absolute value

cross-section, the S(E)−factor and the reaction rate were calculated, and the astro-

physical impact of the new values was also evaluated. Both measurement show the

presence of resonant structures in the energetic range of astrophysical relevance.

The following work will consist in:

• CHAPTER 1: Astrophysical problems connected to the reactions.

• CHAPTER 2: Key features to study arguments related to nuclear astrophysics

.
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• CHAPTER 3: Brief discussion on indirect methods with a particular focus on

THM method (experimental examples).

• CHAPTER 4: Experimental apparatus and calibration procedures.

• CHAPTER 5: Experimental results for the 19F(α,p)22Ne reaction.

• CHAPTER 6: Early experimental results for the 23Na(p,α)20Ne reaction.
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CHAPTER 1

Astrophysical background

Main topic of astrophysics is to explain what happens in the universe, applying

well-known and verified physical laws. About the physical processes that take place

inside stars, we know that those can be considered, in first approximation, as an

isotropic system of self gravitating particles, whose equilibrium can be described

using the virial theorem:

〈T 〉 = −
1
2
〈U〉 (1.1)

with T t̀he kinetic energy and U the gravitational potential. Following eq.1.1 it is

possible to say that a star, to stay at thermal equilibrium, has to spend half of the

gravitational energy gained by contraction to rise its temperature. The other half is

lost by radiation.

While temperature increases, contraction is made slower due to increasing radiation

pressure. This is caused by internal energy production (e.g. nuclear fusion). Among

the physical inputs for stellar evolution, nuclear processes cross-section or the decay

of the produced particles are really important. Nuclear astrophysics studies from

a theoretical and experimental point of view the nucleosynthesis of the involved

reactions inside stars, trying to minimize the errors with which they are known.

In this work we will focus on the 19F(α,p)22Ne and 23Na(p,α)20Ne reactions. The

former is important in 19F abundance in stars, while the latter is of great importance

for sodium destruction inside the nucleosynthesis path for A>20.

In the first part of this work we will focus on stellar structure and evolutionary

pathways of the star in which the synthesis of those two elements takes place. To

do so we will introduce some proper quantities of astrophysics, starting from the
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1.1 Abundances

so-called abundance.

1.1 Abundances

In astrophysics, abundance is defined as a quantity that indicates the presence of

a certain element or isotope inside stars, a cluster, a galaxy, the primordial universe

or any other astrophysic environment. This quantity is usually given as the ratio of

a certain element i over hydrogen, so [Xi]/[H]1 , where Xi is the number of atoms

of a certain element i, and H is the abundance of hydrogen in the observed object2.

Figure 1.1: Abundances of elements in solar photosphere as a function of A. H and He are the most
abundant elements [Asplund et al., 2009]

Looking at Figure 1.1 it results clear that the Sun has elements heavier than A = 8

inside it. Those elements are not produced in Big Bang nucleosynthesis but more

likely in a earlier generation of stars, that enriched the interstellar medium with those

elements. While hydrogen and helium abundances at equilibrium reflect the primor-

dial composition of the universe, all the heavier isotopes with Z>6 are synthesized

1When squared parentheses are present, those quantities are referred to the Sun
2Sometimes abundance can be expressed as a ratio ove elements other than hydrogen, like for

instance Fe, Si or O
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1.1 Abundances

by nuclear reactions in stellar environment. So our Sun is not a first-generation star

(but a second generation one, at least), given that the protostellar cloud from which

the star was produced shows such elements.

Lithium, beryllium and boron are the most fragile nuclear elements3 in stellar envi-

ronment. This behaviour explains why in Fig 1.1 they look to be the least abundant

light elements. Those with A ≤ 56 (56Fe) inside stars are mainly produced by fusion

reactions between charged particles. In those cases Coulomb barrier comes to play,

reducing fusion probability. This explains the decreasing trend in the abundances of

elements between 12C to 40Ca. A peak around Iron in figure 1.1 is also visible, and

this is due to the fact that 56Fe - like elements are the ones with the highest binding

energy, and so those are the most stable ones (figure 1.2).

Figure 1.2: Binding energy per nucleon B/A as a function of the mass number A.

Elements heavier than 56Fe cannot be produced by exothermic fusion reactions, be-

cause now this kind of interaction is energetically disadvantageous. Those elements

are therefore produced by neutron and proton capture [Burbidge et al., 1957].

1.1.1 Essentials on abundance measurements

An analysis of the electromagnetic radiation emitted from a star is a way to as-

certain the physical and chemical characteristics of a star: analysing the wavelengtht

of the light produced by a star, it is possible to have information on its temperature

and chemical composition. A stellar spectrum can be decomposed into two compo-

3Those elements have a big destruction cross-section, even at low energies. This key-point will
be discussed in chapter II
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1.2 Basis of stellar evolution

nents, once temperature is fixed: a discrete part, composed by absorption lines, and

a continuum one. Light emitted from inside the star can be assumed as a black-body

radiation, and is absorbed by the photosphere and by interstellar clouds, giving rise

to absorption lines. Those lines strongly depend on chemical species emitting or

absorbing it, and on the temperature of the photosphere. Absorption coefficient of

a certain line (e.g. lv) is defined as the ratio between the intensities of the absorbed

line radiation and the continuum, and is proportional to the number of atoms of a

certain species X:

lv ∝
f Xi − Ni

ρ
(1.2)

with Xi mass fraction of the i−element, ρ its density, Ni the number of atoms able

to populate the atomic level responsible for the absorption line and f the oscillator

strength [Gray, 2005].

From spectral analysis, along with information about strength and position of ab-

sorption lines, it is possible to obtain information about chemical composition.

1.2 Basis of stellar evolution

In stellar environment nuclear reactions can take place in a specific energy range

(the so-called Gamow window4). This is strongly tied to stellar mass and tempera-

ture. It is therefore important to describe the characteristics of stars where this reac-

tion can take place. Star classification is based on spectral characteristics, in which

stars are ordered by their effective temperature5, in decreasing order, in spectral

types O, B, A, F, G, K, M. Every one of those is than divided into ten sub-categories

(B0, B1, B2...B9, A0, A1...), following Tab 1.1[Castellani, 1985].

4See Chapter 2.5.
5The effective temperature (Te f f ) of a body such as a star or planet is the temperature of a black

body that would emit the same total amount of electromagnetic radiation. Effective temperature is
often used as an estimate of a body’s surface temperature when the body’s emissivity curve (as a
function of wavelength) is not known.
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1.2 Basis of stellar evolution

Class Temperature (K) Mass (M⊙) Radius (R⊙) Luminosity (L⊙)
O ≥ 33000 ≥ 16 ≥ 6.6 ≥ 30000
B 10000 − 33000 2, 1 − 16 1, 8 − 6, 6 25 − 30000
A 7500 − 10000 1, 4 − 2, 1 1, 4 − 1, 8 5 − 25
F 6000 − 7500 1, 04 − 1, 4 1, 15 − 1, 4 1, 5 − 5
G 5200 − 6000 0, 8 − 1, 04 0, 96 − 1, 15 0, 6 − 1, 5
K 3700 − 5200 0, 45 − 0, 8 0, 7 − 0, 96 0, 08 − 0, 6
M ≤ 3700 0, 08 − 0, 45 ≤ 0, 7 ≤ 0, 08

Table 1.1: Spectral classification and reference physical parameters for every class (expressed as a
function of solar values)

At the beginning of the XX century, Hertzprung and Russel put stars into their

world-famous diagram, organizing them by visual magnitude6, and its color index

(B-V)7 or temperature (figure1.3). This schematic view is still called H-R diagram

in their honour.

Figure 1.3: Star population based on spectral classification, absolute magnitude and temperature.
Absolute magnitude is the apparent magnitude that an object would have if it were to be
at a distance of 10 parsecs from the observer. The parsec (pc) is a unit of length used
to measure large distances to objects outside the Solar System. One pc is the distance at
which one astronomical unit subtends an angle of one arcsecond [Castellani, 1985] and
is equal to about 3.26 light-years.

6Apparent magnitude is a measurement of luminosity from a certain place (e.g. Earth). It is
equal to mx − mx0 = −2, 5log10F/Fx0 , where m is the magnitude and Fx is the observable flux in the
x-band. If subscript 0 is present, than it is referred to a reference object, like the Sun.

7In astronomy, the color index is a simple numerical expression that determines the color of an
object. To measure the index, one observes the magnitude of an object successively through two
different filters B and V, where B is sensitive to blue light and V is sensitive to visible (green-yellow)
light
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1.2 Basis of stellar evolution

Looking at this diagram, it can be seen how stars in the so-called main sequence

corresponds to the longest period of steady nuclear burning inside the core, where

hydrogen is converted in helium and accumulates in the core.

He production from H can take place through different reaction networks. At low

temperatures, as shown in figure 1.4, the main source of helium (and energy) is

the so-called p-p chain (typical for stars with mass lower than ≈ 1.2 M⊙), while at

higher temperatures the CNO-cycle (carbon nitrogen oxygen) is dominant [Iliadis,

2007] [Rolfs, 1988].

Figure 1.4: Energy production of pp chain and CNO cycle as a function of temperature. If
T < 15 · 106 K the first is dominant, while at higher temperature the latter prevail [Rolfs,
1988].

In the p-p chain four protons are fused to produce a He nucleus. This phenomenon

is efficient in stars at temperature of the order at T = 6 · 106 K , and begins with the

reactions: This chain, called PPI, represents the most likely reaction pattern (circa

H + H→ 2H + e+ + νe Q=1.18 MeV
d + p→ 3H + γ Q=5.49 MeV

3He +3 He→ 4He + 2p Q=12.86 MeV

86%). The other possibilities, called PPII and PPIII chain are proven to be less

probable(14%)
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1.2 Basis of stellar evolution

3He(4He, γ)7Be(e−, ν)7Li(p, α)4He
3He(4He, γ)7Be(p, γ)8B(e+ν)8Be(α)4He

About the CNO-cycle, firstly proposed by the German physicist Hans Bethe in

1938, it consists in the fusion of four H nuclei also to form a He one, producing en-

ergy in the process. This cycle, however, needs some catalyst like carbon, nitrogen

and oxygen and is composed by two different steps. The first (CN-cycle) goes by

the chain reactions:

12C + p→13 N + γ Q=1.94 MeV
13N→13 C + β+ + ν Q=1.51 MeV
13C + p→14 N + γ Q=7.54 MeV
14N + p→15 O + γ Q=7.29 MeV

15O→15 N + β+ + ν Q=1.76 MeV
15N + p→12 C +4 He Q=4.96 MeV

The 15N+p has also a 0.04% probability to give rise to another chain:

16O + p→17 F + γ Q=0.60 MeV
17F→17 O + e+ + ν Q=2.22 MeV

17O + p→14 N +4 He Q=1.19 MeV

The CNO-cycle can not take place unless at least one of the catalyst is present [Kip-

penhahn and Weigert, 1990]. Moreover, the CN-cycle can only take place at tem-

peratures higher than 1.5 · 107, K, while the second step needs even higher temper-

atures (2 · 107 K). It is also important to underline that the low cross-section of the

p(p,e+ν)d and 14N(p,γ)15O reactions is the main responsible for the long “life” of the

main sequence stage. This stage is called Main Sequence (MS), and is indeed a very

long period of time (circa 109 year) in which it slowly contracts, producing helium

from hydrogen as explained before. In the central region, gravitational pressure is no

more balanced out by energy production, given that the 3 − α process has a higher

Coulomb barrier, and therefore the star starts to contract. The star then leaves the

MS gradually, and its temperature increases inside the star. Hydrogen present in

the layer surrounding the core, called shell, starts burning, giving rise to an increase

in luminosity, while effective temperature is almost unvaried. As an answer to the

contraction of the core, the convective envelope expands. The star has so entered

the Red Giant Branch (RGB).
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1.2 Basis of stellar evolution

In RGB phase, the helium-composed core,which mass is increased by the reactions

taking place in the shell, continues to shrink, unless it becomes electron-degenerate

matter8. The external parts of the star then expand and cool down, until they be-

came convective9: convection will enter inside the star, reaching the zone in which

hydrogen was previously converted in helium. This mixing, called first dredge-up,

is able to modify superficial abundances (in particular of carbon and nitrogen). If

the stellar core has mass below 0.45÷0.55 M⊙ (depending on the chemical compo-

sition) He-core remains inert, and H-burning in shell is activated.

If the star is more massive, in-core He-burning can take place: in the first step, two

α can react and form 8Be. Its ground state has a half-life of 10−16 sec, long enough

with respect respect to the typical time for another α particle to come across the

nucleus [Iliadis, 2007] (10−19 sec). So 8Be “lives” long enough to capture another

helium nucleus and form 12C10.

At T = 2 · 108 K carbon can capture another α particle and form 16O emitting a γ

ray with the 12C(α,γ)16O (this reaction is moreover slower than C-production). All

this chain can be triggered only in electron-degenerate matter. In such an environ-

ment the non-relativistic equation of state is still valid, so pressure P is proportional

to density ρ, in particular P ∝ ρ5/3, and lowly dependent from temperature, unless

energy is high enough to remove the degeneracy. This happens due to reactions that

take place in the He-flash11. Now the star has lower luminosity with respect to the

one that it had at the end of the RGB, and can be placed in a part of the H-R di-

agram (figure 1.4) called Horizontal Branch: in this evolutionary stage the central

He-burning brings to carbon and oxygen formation. Those elements gather at the

center of the star, and when all helium is converted in C and O, energy for stellar

equilibrium will be provided by in-shell H-burning, unless helium abundance and

temperature are not enough to start He-burning again. So an alternate shell burning

of hydrogen and helium will take place (figure 1.5).

8When matter is compressed to a density of 106÷108 g/cm3, electrons start to manifest a quantic
repulsion, due to the Pauli exclusion principle. Electrons are fermions, so they can not coexist as a
pair in the same quantum state with anti-parallel spin.

9Convection is a movement of matter that allows heat transportation. It happens when transport
by radiation is not sufficient to bring outside all the produced energy.

10This reaction can occur because there is a resonance of 12C near the Q-value (7.68 MeV), that
enhances the reaction rate [Rolfs, 1988]

11This occurrence is possible because the time necessary to expand the gas is longer than the one
necessary for the 3α reaction
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1.2 Basis of stellar evolution

Figure 1.5: Sketch of the shell structure of a AGB star [Lugaro et al., 2012].

In this way the star reaches the so-called Asymptotic Giant Branch (AGB) of the

H-R diagram, whose name is chosen because of the way in which the evolution-

ary track of those stars comes near to the Giant Branch (figure 1.6). AGB stars are

one of the proposed sites of 19F and 23Na nucleosynthesis, and in those the reaction
19F(α,p)22Ne and 23Na(p,α)20Ne can take place.

Figure 1.6: H-R diagram of the discussed stellar evolution
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1.2 Basis of stellar evolution

Hydrogen and helium shells are divided by a thin zone (10−2 ÷ 10−3 M⊙), called He-

intershell. The external part of a star is instead called convective envelope, and is

composed by a “cold” and dusty atmosphere made in most part of hydrogen. This

zone can extend itself for several hundreds of R⊙. In H-shell, when active, He is pro-

duced by means of nuclear reactions explained in the previous paragraph. Helium is

heavier than hydrogen and it will accumulate in the He-intershell, enhancing density

and temperature in the process, unless the physical conditions are good enough to

ignite He-burning.

Figure 1.7: Convective episodes. The convective zone, generated by a thermal pulse, covers the He-
intershell completely. After 2000 years, external convection penetrates the inner part of
the star [Straniero et al., 2006]

Those episodes are called thermal pulses (figure1.7) and can be described as fol-

lows: when the right conditions of He mass is fulfilled, the shell temperature is high

enough to trigger fast processes, giving birth to a flash. Due to this, a convective

zone will be formed, and it will cover the region from the He-burning shell to the

H-shell (this phenomenon is called thermal pulset). This phenomenon is responsi-

ble for the mixing of the elements coming from the 3 − α and from H-burning in the

intershell region [Straniero et al., 2006].

Energy produced and released in this process results in an expansion of the star,

that will cool down in the process. This goes to the point that the hydrogen shell

switches off, and the He-shell become more stable. This phase is called convective

burning: while helium decreases, the shell starts to die out and superficial convec-

15



1.3 The fluorine problem

tion can penetrate the H-shell and the external part of the He-shell, changing the

chemical composition of the surface. This phenomenon is called third dredge-up,

and the convective envelope penetrates in the deep region of the He-shell, carrying

a lot of carbon from the inner part to the surface of the star. it will modify the C/O

superficial ratio, now equal to more than one.

After He-burning the star will start to shrink again, rising its internal temperature,

while the envelope expands and cools down. In this phase H-shell accumulates he-

lium, until the conditions are right for another pulse. There are lot of thermal pulses

in the life of a star, and there are a lot of theoretical models that try to explain that

(for example Cristallo et al. [2014] Cristallo et al. [2011]; Cristallo et al. [2009]).

1.3 The fluorine problem

Fluorine origin into our Galaxy is still a matter of debate. There are few spectro-

scopical observations, due to the scarce abundance of fluorine if compared to other

elements (like C, N, O, ...). This fact determines the low intensity of its spectral

lines. Fluorine has no spectral lines in the visible part of the electromagnetic spec-

tra: the only atomic lines (transitions from ground state of FI) can be seen, but only

in the deep ultraviolet spectrum. It is therefore convenient to use the transitions of

the HF molecule. Those are in the infra-red spectrum (at about 23000 Å), and the

HF(1-0)R9 spectral line [Recio-Blanco et al., 2012; D’Orazi et al., 2013] is often

used, because it is considered to be the best indicator to ascertain fluorine abun-

dance12 [Abia et al., 2009; Lucatello et al., 2011].

The production and destruction patterns of fluorine in galactic environment are still

not fully understood. In stellar environment characterized by a great presence of

hydrogen and helium, 19F, only stable isotope of fluorine, can be destroyed through

the reactions 19F(p,α)16O and 19F(α,p)22Ne. Its abundance is the lowest among the

light elements with 6 ≤ Z ≤ 20 [Abia et al., 2009]. Until today, three main stellar

sites are proposed for 19F nucleosynthesis:

• He-Burning in AGB stars whose mass is between 2 ÷ 4 M⊙;

• Type II Supernovae (SNe II);

• H-Burning in Wolf-Rayet objects;

12This line was identified, for example, using the CRiogenic high-resolution InfraRed Echelle
Spectrograph (CRIRES)[Recio-Blanco et al., 2012]
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1.3 The fluorine problem

1.3.1 19F production in AGB environment

In AGB stars fluorine can be produced by the chain of reactions:

14N(α, γ)18F(β+ν)18O(p, α)15N(α, γ)19F (1.3)

in which 14N produced in CNO cycle by proton capture from 13C. This chain, nev-

ertheless, can take place only in the He-rich part of the star. Here is highly possible

that a 14N nucleus interacts with an α particle, forming 18F. This nucleus is unstable,

with a half-life of 109.8 minutes, and will decay in 18O. It will capture a proton,

with the reaction18O(p,α)15N, and after α−capture 19F will be produced through the

reaction 15N(α,γ)19F [Forestini et al., 1992]. An oxygen-18 nucleus can also absorb

an α producing 22Ne13 in the process. This reaction is furthermore involved in 23Na

production via proton capture, and will be discussed later in this work.

A 14N nucleus is now in the He-intershell region of an AGB star, and can be syn-

thesized in situ due to the presence of protons brought by the third dredge-up, by

means of the chain reactions:

12C(p, γ)13N(β+ν)13C(p, γ)14N (1.4)

This case, called 13C-pocket formation, is widely discussed in literature, because

the reaction 13C(α,n)16O is, together with the 22Ne(α,n)25Mg reaction, considered

to be the main source of neutrons for the so-called s-process, typical of AGB-

nucleosynthesis for low-mass stars.

Given the high cross section for the reaction 14N + n this isotope is also known

as a “poison” for s-processes, because it can absorb a lot of neutrons coming from
13C(α,n)16O, blocking neutron capture from heavier nuclei. However, the 14N(n,γ)15N

reaction would be important for 19F production:

14N(n, γ)15N(α, γ)19F (1.5)

but this last chain is not efficient enough. In fact, the 14N(n,γ)15N reaction is ap-

proximately ten times slower than the 14N(n,p)14C [Fowler et al., 1967; Brehm et al.,

1988].

Another possibility is that a 18O nucleus absorbs a neutron, producing 19O. This will

decay in a 19F nucleus through β− decay:

14N(α, γ)18F(β+ν)18O(n, γ)19O(β−ν)19F (1.6)
13Neon production via this reaction takes place in the firsts thermal pulses, because it needs higher

temperatures [Wasserburg et al., 1995]
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1.3 The fluorine problem

The efficiency of this channel of production is, however, strongly tied to the 18O(n,γ)19O

reaction: 19O, in fact, has a high neutron capture cross-section14.

From what discussed so far, it is clear that the chain 1.3 is dominant if compared to

the others.

Fluorine, produced at the end of every thermal pulse and brought to the surface by

means of the third dredge-up, is very fragile. Three main reactions were proposed

as a destruction channel for 19F in AGB environment:

19F(α, p)22Ne (1.7)

19F(n, γ)20F (1.8)

19F(p, α)16O

The dominance of one of those three reaction on the others will be strongly influ-

enced by the presence of protons, neutrons or α particles: the 1.7 reaction is typical

of the He-intershell region part that is rich of α particles, while the 1.8 will take

place thanks to the neutrons coming from 13C(α,n)16O and 22Ne(α,n)25Mg. The 1.9

reaction will happen in proton-rich environments. In the first part of this work we

will focus on 1.7. About 1.9, this reaction was extensively studied in the last years

[La Cognata et al., 2015; Lombardo et al., 2015; Indelicato et al., 2017], while about

the 1.7 cross-section and reaction rate are almost unknown at astrophysical energies.

1.3.2 Observative evidences

First observations of fluorine in stellar environment were made by Jorissen,

Smith and Lambert, tat in 1992 succeeded in measuring its abundance (following

the procedure briefly explained at the beginning of the paragraph) in a sample of

stars15, finding it higher than solar abundance. At the same time they found a corre-

lation between 19F and C/O ratio: this correlation is enhanced in correspondence of

the Third Dredge-up [Busso et al., 1999]. Examples of fluorine spectra are reported

in figure1.8a and 1.8b.

145.4 mb at 30 keV [Bao and Kappeler, 1987]
15Their work was focused on Red Giants [Jorissen et al., 1992]
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1.3 The fluorine problem

(a)

(b)

Figure 1.8: a)Spectrum for the K-type HD 131977 (red dots), belonging to the Libra constellation;
in the squared part the zoom for the R9 (1-0) line of the HF molecule at λ ≃ 23358 Å
is reported. In table 1.2 some atmospheric parameters are reported [Santos et al., 2004;
Sousa et al., 2006] together fluorine abundances for some stars [Recio-Blanco et al.,
2012]
b)Some examples of HF spectra at λ ≃ 2.3358 µm for HD 110281 (K-type) belonging to
Virgo constellation, and HD 135148, same class, but located in the Serpent constellation
[Li et al., 2013]
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ID Target Te f f (K)16 logε(F)17

HD 50281 4658 ± 56 4.53 ± 0.20
HD 65486 4660 ± 66 4.47 ± 0.20
HD 85512 4505 ± 176 4.73 ± 0.20

HD 101581 4646 ± 96 4.61 ± 0.20
HD 111261 4529 ± 62 4.44 ± 0.20
HD 131977 4693 ± 80 5.16 ± 0.20
HD 156206 4568 ± 94 4.41 ± 0.20
HD 209100 4629 ± 77 4.75 ± 0.20
HD 216803 4555 ± 87 4.64 ± 0.20

Table 1.2: Examples of stars containing fluorine. In figure 1.8a is represented the spectrum of the
star HD131977 (in red).

Abundances observed in low-mass AGB-stars, in which fluorine production is

confirmed, are in agreement with the galactic one, while observation about stars be-

longing to the Large Magellanic Cloud (LMC)18 and ω Cen show a decreasing F/O

ratio in correspondence of oxygen enhancement.

Figure 1.9: Observed abundances made by Jorissen (firs line at top) for various stars, in respect to
various models (second line)) [Lugaro et al., 2004]

16In astrophysics, the effective temperature Te f f of a star is the temperature of a black-body object
with the same luminosity for unit of surface of the star.

17logε = log
[X i]
[H] − 12

18The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way. The LMC has a
diameter of about 14,000 light-years (4.3 kpc) and a mass of approximately 10 billion M⊙, making
it roughly 1/100 as massive as the Milky Way. The LMC is the fourth-largest galaxy in the Local
Group, after the Andromeda Galaxy (M31), the Milky Way, and the Triangulum Galaxy (M33).
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1.3 The fluorine problem

This could be due to an increased 19F production in more massive stars [Cunha et al.,

2003; Renda et al., 2005].

Nucleosynthesis pattern earlier discussed can not explain the high measured abun-

dance of fluorine (figure 1.9): if C/O ratio is the same only a small part of it is in

fact theoretically justified.

To solve this problem, the presence of processes of extra mixing at the base of the

convective envelope were proposed. One of these phenomena, known as cool bot-

tom processing (CBP) [Wasserburg et al., 1995; Lugaro et al., 2004], consists in a

slow mixing of materials from the base of the convective envelope to the hydrogen

shell. During this, there can be elements exposed to proton capture [Nollett et al.,

2003]. This process can reduce the 12C/13C and 12C/16O ratios, and enhance 14N

[Uttenthaler et al., 2008; Palmerini et al., 2011a,b; Hedrosa et al., 2013] one.

The CBP is typical of low-mass Red Giants (M < 2.3M⊙) while for heavier ob-

jects (4 ÷ 8M⊙) the base of the convective envelope can reach temperatures ∼ 107

K. In this case, some proton capture reactions are allowed: this event is called Hot

Bottom Burning (HBB) [Frost and Lattanzio, 1996]. Either HBB or CBP have the

effect to modify superficial abundances in stars. In this case 12C and 18O abundance

decrease, while 14N and 15N (typical “signs” of CN-burning) abundance increase.

Furthermore, 17O abundance varies. Even superficial abundance of 19F can be mod-

ified by CBP or HBB. In particular, more fluorine will burn through 19F(p,γ)20Ne

and 19F(p,α)16O.

A better understanding of fluorine nucleosynthesis could be really important

to understand AGB nucleosynthesis, even for low-metallicity19 and population II

stars20, as underlined in Lucatello et al. [2011].

Regarding what is stated in Lugaro et al. [2004], recently those measurement were

corrected by Abia et al. [2009]. They were able to systematically reduce fluorine

abundance, in carbon-rich AGB stars, by a factor of 0.8. Now low-mass, low metal-

licity AGB stars are in agreement with theoretical calculations. Those results, any-

19In astronomy, metallicity of a certain object is a non-dimensional quantity indicating the fraction
of mass of a star or other kind of astronomical object that is not in hydrogen or helium. The overall
stellar metallicity is often defined using the total Iron-content of the star [Fe/H] = log10( NFe

NH
)star -

log10( NFe

NH
)S un.

20Population II, or metal-poor stars, are those with relatively little metal. The idea of a relatively
small amount must be kept in perspective as even metal-rich astronomical objects contain low per-
centages of any element other than hydrogen or helium; metals constitute only a tiny percentage of
the overall chemical make-up of the universe, even 13.8 billion years after the Big Bang. However,
metal-poor objects are even more primitive. These objects are formed during an earlier time of the
universe.

21



1.3 The fluorine problem

Figure 1.10: fluorine abundance observed by Jorissen taking into account partial mixing zone [Joris-
sen et al., 1992]

way, do not confute the role that AGB stars play in fluorine production and in any

case are not able to reproduce theoretical predictions for more massive stars.

A particular case of AGB stars: C-EMP

Carbon-enhanced metal-poor (C-EMP) gives us an opportunity to directly mea-

sure 19F in low-mass, low-metallicity AGB stars. C-EMP stars are chemically pe-

culiar: in fact they are characterized by an over-abundance of carbon with respect to

the average cosmic abundance ([C/Fe]>1)21. This anomalous abundance, together

with the irregular abundances of nitrogen and oxygen (again beside iron), suggests

that there is a strong contribution to nucleosynthesis of C and O, cause of the en-

hancement of nitrogen, carbon and oxygen. Those represent around 10%-20% of

stars with [Fe/H] ≤ −2.5.

Various types of C-EMP are listed in literature [Lucatello et al., 2011]

• C-EMP-s: traces of s-processes in their spectra (circa 80% of the observed

ones) [Aoki et al., 2007];

• C-EMP-r: traces of r-processes in their spectra;

21Some authors use different cut-off taking into account the evolutionary stage of the star, adopt-
ing [C/Fe]≃0.5
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• C-EMP-rs: r-processes and s-processes are both present;

• C-EMP-no: no chemical enrichment;

Lucatello et al. [2005] showed that any C-EMP-s star belongs to binary systems,

composed by a low-mass star (M ∼ 0.8 M⊙) and a slightly bigger one (between 1.2

and 2.5 M⊙, the exact range depends on metallicity). Through stellar wind, the more

massive, “dying” star passes the processed materials to the companion star. Those

elements can be seen on the surface of the remaining star, that often is still not an

AGB-star. This allows to perform measurement of abundance of fluorine or other

s-elements and s-elements in C-EMPs (figure1.11).

Figure 1.11: Measured abundances as a function of Te f f for a sample of stars [Lucatello et al., 2011].
Overturned triangles represent upper limits. The correlation between them and Te f f

Anyway, C-EMP stars are still quite peculiar objects. The existence of C-EMP-no,

in particular [Fujimoto et al., 2000] suggests that those stars became C-enhanced

through self-enrichment due to an anomalous mixing process characteristic for low-

metallicity star, without going by the AGB phase. Otherwise Ryan et al. [2005],

those stars may have been born from C-rich gases, maybe contaminated by remnants

of a previous generation supernova, whose fall-back kept heavier elements during
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explosive stages.

Another proposed scenario consists in a transfer of heavy elements from low-mass

AGB stars before s-processes [Ryan et al., 2005; Masseron et al., 2010], or from

AGB stars whose evolution has been interrupted by a binary interaction with its

companion (still visible) [Izzard and Tout, 2003].

Measurements about abundance of 19F (1.12) would be crucial in understanding the

origin of chemical composition observed in C-EMP-no.

Figure 1.12: Fluorine abundances as a function of C+N for ten C-EMP stars. Reversed triangles are
the upper limits, while the green symbols represents C-EMP-no stars. All lines come
from theoretical calculations [Lucatello et al., 2011].

1.3.3 Supernovae

A Supernova (SN) is an explosive and extremely energetic event. At its lumi-

nosity peak, a typical SN can rise up to 20 magnitudes more than its original state

(so one thousand million times brighter), and reach 1010 solar luminosities (emitting

as much light as an entire galaxy). This phenomenon is indeed destructive: it is

revealed by the humongous quantity of energy emitted and the expansion velocity

observed (circa 104 km/sec).
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There are two types of Supernovas:

• Type I Supernovas (SNe I): characterized by the absence of hydrogen lines and

a by well defined light curve, with a rapid rise (circa three order of magnitude)

and a slow and regular fall (Fig 1.13);

• Type II Supernovas (SNe II): characterized by the presence of hydrogen and

by a slow and regular decline (linear SNII ), in some cases interrupted by

zones in which the fall almost stops (plateau SNII)(Fig 1.14)

Another difference between SNe I and SNe II that the spectrum of the latter has sign

of hydrogen, that are not visible in the first.

Figure 1.13: Light curve obtained superimposing data from thirty-eight different SNe I [Castellani,
1985].

Figure 1.14: Light curve for several Sne II stars (SN 1987a, SN 1999em, SN 2003hh). The solid line
represents the measurements made by by Suntzeff e Bouchet (1990) (solid line)
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SN II represents the final evolutionary stage of massive objects (M & 10 M⊙),

and are considered to be among the fluorine production sites. Those stars throw into

the interstellar medium the external parts, leaving a Neutron Star or a Black Hole as

a remnant.

In this case, a large part of the produced fluorine is made by spallation22 from 20Ne,

with the emission of µ e τ [Woosley and Haxton, 1988; Woosley et al., 1990]. A

part of it is produced in situ, but the largest part of it is expelled in the interstellar

medium (ISM). Another source of 19F can be found in pre-explosive CNO-cycle in

the H-shell, but spallation is considered to be dominant. Renda et al. [2004] and

Heger et al. [2005] have supposed that the neutrino cross-section should be revised

to lower values. If that is true, than fluorine production could be halved in SNe II

stars. Anyway, there are still no observative evidences of fluorine production in SN.

1.3.4 Wolf-Rayet stars

At the beginning of this paragraph, while discussing about 19F production sites,

we mentioned Wolf-Rayet stars (WR). These objects, discovered in 1867 by Charles

Wolf and Georges Rayet that identified three of such stars in Cygnus constellation,

are extremely peculiar: their temperature is quite high (25000 K ≤ Teff ≤ 50000 K)

such as their masses (M ≥ 20 M⊙). Another striking feature is that those stars pro-

duce really strong stellar winds (v ≥ 2000 km/sec) [Tuthill et al., 1998]. Even if in a

minor part, WR stars contribute to chemical enrichment of galaxies, and are consid-

ered to be one of the possible sources of long (usually tied to massive star explosion

in a peculiar supernova called collapsar) and soft (emitted by highly magnetic neu-

tron stars belonging to our Galaxy) gamma ray bursts23 [Woosley and Bloom, 2006].

Furthermore, the presence of WR stars was also confirmed in the zone of formation

of high mass stars [Schaerer and Vacca, 1998].

Regarding WR spectroscopy, these objects show broad and strong emission lines

(figure1.15), while the absorption ones are narrow and typical of “normal” star pop-

ulations. Two types of Wolf-Rayet stars are identified nowadays:

22Nuclear spallation is a phenomenon discovered in 1937 by the Nobel-awarded Glenn Theodore
Seaborg, while studying neutron inelastic scattering. This is the effect of the bombardment of an
atom by high-energy particles (over 100 MeV). After that lighter nuclei are emitted. This easily
happens on the surface of stars after the interaction with cosmic rays.

23Gamma ray burst are gamma ray flashes that can last from some milliseconds to several min-
utes. Those explosions are the most energetic phenomena observed so far in the universe.
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• Stars with strong lines of helium and nitrogen in their spectrum (WN-type);

• Stars with strong lines corresponding to helium, carbon and oxygen (WC- and

WO-type);

Figure 1.15: WN and WC spectra obtained by Smith [1968]; Massey [1984]; Massey and Johnson
[1998] [Crowther, 2007]

The first scientist to suggest that the anomalous composition of WR stars is due to

previous nuclear reactions (detectable in the stellar surface) was George Gamow in

1943. This idea was not completely accepted by the scientific community until 1991

[Lamers et al., 1991].

WR stars show CNO products, while WC have traces of He-burning. Wolf-Rayet

stars with solar-like metallicity have ≃ 25M⊙, comparable with the mass limit that

Humphreys & Davidson found in 1979 for Supergiants (RSG). WR stars could

therefore be an evolutionary stage subsequent to red supergiants. Those stars exist
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a really narrow mass interval (25 ÷ 30M⊙) [Crowther, 2007], and, show hydrostatic

He-burning that can bring to 19F production (that is expelled afterwards by stellar

wind) [Meynet and Arnould, 2000]. The production network is the same as the one

explained earlier in 1.3.1.

Figure 1.16: Evolution of total mass Mtot, of the convective core Mconv and of the superficial (XS
19)

and central(XC
19) mass fraction of 19F for a 60 M⊙ star with Z=0.008, 0.02 and 0.04

metallicity at the end of the H-burning and during He-burning [Meynet and Arnould,
2000]

1.4 Sodium production in stellar environment

As fluorine, sodium presence inside stars has been matter of debate in the last

twenty years, but for different reasons. Sodium overabundances has been found

in many astrophysical objects: in particular, observation of globular clusters (GCs)

have proven to be really interesting. These clusters, in fact, host many different star

28



1.4 Sodium production in stellar environment

populations [Gratton et al., 2012].

Globular clusters usually contains about 105 stars, and their distribution is spheri-

cal. Stars inside GC are among the oldest (∼1010 years, composed by population II

stars) of the Milky Way, giving to those objects great importance as a “laboratory”

to study stellar evolution. In our Galaxy there are about 150 GC.

Figure 1.17: Colour-magnitude diagram of the M5 globular cluster. In addition to the main sequence,
Giant Branch (the one bending to the right) and the Horizontal branch are also visible
[Kartunnen et al., 1987]

The colour-magnitude diagram of a typical (M5) GC (figure 1.17) shows that the

main sequence contains only faint red stars, then there is a prominent giant branch,

and clear evidences of horizontal and asymptotic branches. Their overall linear size

can be calculated in 0.3 ÷ 10 pc, and they are surrounded by an envelope that is up

to 100 times larger.

GC mass can be estimated from virial theorem, and is at about 104 − 106 M⊙. In the

Milky Way GC are concentrated towards its center and at the plane of the galaxy

[Kartunnen et al., 1987]. The first group form a system that rotates along with the

general rotation of the galaxy, while the second is spherically distributed in 35 kpc

radius. This second group does not rotate as a system: each GC has its own velocity,

distributed in every direction. Even elemental abundance is different: disk clusters
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have at about 30% of solar value, while halo clusters have only 1% of the solar value

(the smallest known value is 10−3).

For all that has been said, it is clear how GC are important to understand the produc-

tion of elements in the early universe and during Milky Way formation. All Globular

Clusters are old, and the halo ones are among the oldest objects known. Their ages

should be 13 ÷ 16 × 109 years, but a precise estimation is difficult [Kartunnen et al.,

1987]. For GC that exhibit a negligible spread in [Fe/H], the various stars can be

classified using their light element abundances, in particular considering [O/Fe] and

[Na/Fe] ratio [Carretta et al., 2009] (figure 1.18):

• Primordial, first generation stars with compositions similar to metal-poor halo

field stars (O-rich, Na-poor).

• Intermediate, second generation stars with lowered [O/Fe] and enhanced [Na/Fe].

• Extreme, like the previous, but with the lowered O and enhanced Na abun-

dances.

Figure 1.18: Na-O anticorrelation for of 1958 individual red giant stars. [Na/Fe] and [O/Fe] ratios
from GIRAFFE spectra are shown as open (red) circles; abundance ratios obtained from
UVES spectra are superimposed as filled (blue) circles and show no offset from the
GIRAFFE sample. Arrows indicate upper limits in oxygen abundances [Carretta et al.,
2009]
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About these three, there are evidences [Carretta et al., 2009] that the intermediate

population tends to dominate on the other two, with the “extreme” population that

can be found only in a bunch of clusters.

The striking feature about 23Na is its widely observable anti-correlation with oxy-

gen. In GC in particular, it is an evidence that elements inside stars atmosphere has

gone through a severe proton capture nucleosynthesis [Denisenkov and Denisenkova,

1990; Langer et al., 1993; Prantzos et al., 2007]. While [C/Fe], [N/Fe], and 12C/13C

ratios in subgiant (SGB) and red giant branches (RGB) as a function of evolution-

ary state can be strictly linked to mixing processes [Denissenkov and VandenBerg,

2003], the same thing cannot be said for [Na/O]. Temperatures reached near the bot-

tom of the convective envelope in evolved low-mass RGB stars are in fact too low to

significantly alter the abundance of elements (there are possible exceptions to that,

see D’Antona and Ventura [2007]).

In the past years, many works were published [Briley et al., 1996; Gratton et al.,

2001; Ramírez and Cohen, 2002, 2003; Carretta et al., 2009; Briley et al., 2004a,b;

Cohen and Meléndez, 2005; Bragaglia et al., 2010; D’Orazi et al., 2010; Dobro-

volskas et al., 2014] that seem to support the idea that the composition differences

between the various globular cluster populations are due to difference in the gas

from which the GC was formed. About the source of 23Na inside stars, there is still

no agreement between scientists. In particular, four solutions seem to be the most

promising:

• Intermediate-mass AGB-stars (4-9 M⊙) [Cottrell and Da Costa, 1981; D’Antona

et al., 1983; Ventura et al., 2001] or Super-AGB stars24 [Pumo et al., 2008;

Ventura and D’Antona, 2010, 2011];

• Supermassive Stars (≈ 104 M⊙)[Denissenkov and Hartwick, 2014];

• Fast Rotating Massive Stars (FRMS) [Norris, 2004; Maeder and Meynet, 2006;

Prantzos and Charbonnel, 2006; Decressin et al., 2007a,b];

• Massive Binaries [de Mink et al., 2009]

All of this stellar objects, at same point of their evolution, have the right parameters

of temperature to efficiently host CNO-cycle, and also the so-called NeNa-cycle and

24Super Massive AGB Stars (SMAGBs) are objects with initial masses in the range between 9
M⊙ and 11 M⊙, that undergo off-center carbon ignition in partially degenerate conditions and end up
their evolution as O-Ne white dwarfs [Ventura and D’Antona, 2010]
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MgAl-cycle: for this reason they are considered to be a good place for 23Na produc-

tion. Which model is the right one is still matter of debate(see Renzini et al. [2015]

and Charbonnel et al. [2013] and references therein), and every model has its flaws.

If temperatures are higher than the typical CNO-burning temperatures (≃ 2· 107 K),

additional cycles can come into play: the NeNa, MgAl, SiP and SCl cycles. We

will focus on the first two, given that 23Na looks to be the branching point between

NeNa and MgAl cycles (figure 1.19). Both have the result to fuse hydrogen into

Figure 1.19: NeNa and MgAl cycles. Note that the 23Na(p,α)/23Na(p,γ) branching ratio is really
important because it represents the branching point between the two cycles [Iliadis,
2007].

helium, and their importance in stellar energetic production is negligible. Their true

relevance lays in the production of heavier elements between 20Ne and 27Al [Rolfs,

1988]. Nuclei in this mass range are mainly produced by β-decay, (p, γ) and (p, α)

reactions. The relative importance of one of this three physical processes with re-

spect to the others determines the temperature range at which the two cycles above

are possible, and the nucleosynthesis path in the nuclide chart.

Reactions induced by protons involving unstable isotopes do not play an important

role in that cycles, since the competing β-decays are much faster. The β-decay typ-

ical time range goes form seconds to minutes in most cases, but even long-lived

nuclei like 22Na (T1/2=2.6 y) β-decay is faster than (p,γ) reaction at temperatures
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proper of the non explosive H-Burning. These situation changes at T≥0.065 GK,

with the 22Na(p,γ)23Mg reaction that dominates over the β-decay. This temperature

is well above the one for non-explosive H-burning. For a mass number 20 ≤ A ≤ 40,

both (p,α) and (p,γ) channels are open, so those kind of reaction will compete. One

of the two cycles in figure 1.19 can be active if the reaction rate branching ratio

Bpα/pγ=NA〈σv〉pα/NA〈σv〉pγ is large enough. H-burning in the mass range A ≥ 20 is

important to understand Ne, Na, Mg and Al abundances observed in stars: the rel-

ative isotopic abundance depends on the temperature and density conditions inside

the H-burning region of a certain star. About NeNa-cycle, at temperature T ∼ 106

K, 22Ne is entirely transformed in 23Na. An extra production of this element is pre-

dicted at temperatures higher than 3.5 · 107 K, reaching 60% at T ∼ 6 · 107 K. This

extra production is provided by 20Ne reaction. In the end 23Na starts burning at

T ≥ 6 · 106 K [Mowlavi, 1999]. From an experimental point of view, 23Na detection

has proven to be much easier than 19F. Detectable spectral lines are in fact present in

the visible spectrum, as the doublets at 5672-88 Å and 6154-60 Å. As an example,

in figure 1.20 [Johnson et al., 2015] there is the reduced spectrum for an AGB-star

belonging to the Globular Cluster 47-Tuc.

Figure 1.20: Sample spectrum of a 47 Tuc AGB star in the region of interest for Na I. The line at
6154-60 Å [Johnson et al., 2015] is visible

1.4.1 23Na in AGB and Super AGB Stars

Carbon and s-processes are considered to be the main verifiable examples of

He-shell nucleosynthesis and TDU, but there are other elements produced during

thermal pulses, like 19F, 22Ne and 23Na. The last two are produced through a com-

bination of helium and hydrogen burning. Fluorine nucleosynthesis is extremely

complex, as can be seen in the previous paragraph. Furthermore neon looks to be

enhanced in all the models including TDU, because it can be brought to the surface

of a star due to the dredge up of freshly synthesized 22Ne during thermal pulses via
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the chain reaction [Mowlavi, 1999]:

14N(α, γ)18F(β+ν)18O(α, γ)22Ne (1.9)

In 1.9 the way in which nucleosynthesis proceeds is the very same of what was

already discussed in Section 1.3.1, with the only difference that the production of
22Ne must take place in the first thermal pulses, because higher temperature are nec-

essary [Wasserburg et al., 1995]. The abundance of 22Ne in the intershell is fairly

high (≈2%), because 14N is converted into 22Ne during a thermal pulse [Karakas and

Lattanzio, 2014].

If the 22Ne abundance is higher or equal to the 20Ne one, an enhancement in the ele-

mental Ne composition is expected. The intershell is also enriched in 23Na and 27Al,

that are not He-burning products but are synthesised in the H-shell during the previ-

ous interpulse [Karakas and Lattanzio, 2014]. Those elements are not burned by the

subsequent TP and mixed into the envelope by the next TDU episode. In low-mass

AGB-stars, sodium can be synthesized via proton captures during the 13C-Pocket

formation, and through neutron captures during both the radiative burning of the
13C-Pocket and the convective 22Ne-burning in the convective shells generated by

TPs [Cristallo et al., 2009]. This leads to a notable 23Na surface enhancement espe-

cially for low metallicities. In most massive stars, its synthesis is strongly affected

by HBB [Ventura and D’Antona, 2006; Karakas and Lattanzio, 2014] through the
22Ne(p,γ)23Na reaction (Fig 1.21).

The sodium produced in this way will then enter the NeNa-cycle.

Figure 1.21: Left panel: variation during evolution of sodium abundance at the surface model with
initial mass 6 M⊙ (light solid line), 6.5 M⊙ (dotted), 7 M⊙(dashed) 7.5 M⊙(dot-dashed)
and 8 M⊙ (solid).
Right panel: same thing but for oxygen surface mass fraction.[Ventura and D’Antona,
2011]
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1.4.2 Supermassive Stars

To solve the [Na/O] anticorrelation, Supermassive stars (SMS) were supposed

as a possible site of 23Na production. A supermassive star is a stellar object with a

mass more than fifty times the mass of the sun. It was proposed [Denissenkov and

Hartwick, 2014] that the more massive stars inside a GC will sink to the center of the

cluster and then merge, forming a SMS. Such a star is a fully convective object and

has a luminosity that is close or exceeds the Eddington luminosity25 with Te f f=105

K. In this condition Denissenkov and Hartwick [2014] postulated that these objects

reach central temperature for CNO−, NeNa−, and MgAl−cycles already at the be-

ginning of the main sequence. The star will continue to burn H until He abundance

increases by ∆Y = 0.15, which is approximately the largest difference in Y between

Na-poor and Na-rich sub-populations of GC stars. After that, the SMS lose the

greatest part of its mass as a result of various instabilities and stellar winds. The re-

maining parts of the SMS eventually collapse to directly form an intermediate mass

black hole (102 ÷ 106 M⊙) if MSMS ≃ 104 M⊙. This star can likely produce 23Na

through the 1.9 and enrich the GC of CNO and p-capture products with its wind. As

shown in figure1.22 this model well reproduce experimental data.

Figure 1.22: Comparison between theoretical [Na/Fe] and [O/Fe] whit observations (full circle) (See
Denisenkov and Denisenkova [1990] and references therein)

25Eddington limit is the maximum luminosity that a star in hydrostatic equilibrium could reach.
It can be calculated as LEdd=33000 M

M⊙
L⊙. Once this limit is exceeded, the star will throw a lot of

its mass into the interstellar medium through stellar wind, lowering its temperature in the process.
Many massive stars with less luminosity than the Eddington limit have a strong wind by the way: in
this case it is due to other phenomena. This condition is valid only for stable objects.
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1.4 Sodium production in stellar environment

Figure 1.23: Nuclear reaction rate for NeNa (left) and MgAl (right) cycles for three sets of data. Ar-
rows and upper full lines in the lower right panel indicate the increase of 24Mg(p,γ)25Al
at 60·106 K [Decressin et al., 2007b]

1.4.3 Fast Rotating Massive Stars

Fast rotating Massive Stars are OB stars (≥20 M⊙) characterized by fast rotation

(≥100 km/sec) with broad spectral lines, due to rotation. For a star of 60 M⊙, for

example [Decressin et al., 2007b], central temperatures on the main sequence vary

from 4.8 · 107 K to 7.5 · 107 K. In this condition CNO cycle can reach equilibrium

at the beginning of the H-burning after a fast lowering in 12C abundance in favour

of a 14N enhancement. 23Na in main sequence shows a three step evolution: it rises

rapidly, than there’s a progressive increase, and then a rapid decrease (Fig1.23).

The first step is due to proton capture on 21Ne and 22Ne. The second is due to the

competition between 20Ne burning and (p,γ) and (p,α) reactions on 23Na. This re-

sults in a slow increase of sodium because the first reaction is less efficient than

the other two at T<50·106 K, while the situation reverses at higher temperatures.

Following this model and using NACRE nominal reaction rates, O and Na are re-

spectively depleted and produced, as required by the observations.

1.4.4 Binary objects

An interacting binary star is a type of binary star in which one or both compo-

nents have filled or exceeded the Roche lobe26. When this happens, material will

flow from a star towards the other; de Mink et al. [2009] proposed this system as

26The Roche lobe is the region around a star in a binary system within which orbiting material is
gravitationally bound to the star [Kartunnen et al., 1987].

36



1.4 Sodium production in stellar environment

a source for the internal pollution of GC. Interacting Binaries, in fact, are able to

provide large amounts of H-burning ashes into their surrounding. The ejecta of such

stars show signatures of CNO processing [Grundstrom et al., 2007]. Evidence of

severe mass-loss from interacting binaries comes from many sources, and appears

to be a common phenomenon (see de Mink et al. [2007] and references therein), and

theoretical considerations support the idea that most interacting binaries shed large

amounts of mass.

To follow the nucleosynthesis up to the advanced stages of H-burning, a binary sys-

tem with initial metallicity Z = 5 · 10−4 and masses of 20 and 15 M⊙ for the two

stars, with an orbital period of twelve days can be considered [de Mink et al., 2009].

After hydrogen exhaustion in the center, the primary star expands and starts to trans-

fer mass to the companion, that at the beginning grows efficiently, absorbing both

mass and angular momentum, spinning faster in the process. After absorbing 1.5

M⊙, the star approaches critical rotation, and the majority of the mass is ejected into

the interstellar medium. After transferring almost its entire envelope, the donor star

becomes a Wolf-Rayet star, igniting helium. During He-burning, another 1M⊙ is

transferred and accreted by the companion star. Shortly after this material is ejected

by the rotationally enhanced wind. After the primary star ignites carbon, it fills its

Roche lobe a third time and then explode as a SNe I.

A stellar system made in this way, according to model [de Mink et al., 2009], shows

Figure 1.24: Composition of the slow ejecta of the binary system as a function of the ejected amount
of mass. Each mass function X is given relative to initial mass Xi, except for Mg where
24Mg, 25Mg, 26Mg are added. The average Xav and the most extreme mass-fraction Xex

are given in logarithmic scale. The solid vertical line separates between first and second
mass fraction [de Mink et al., 2009].
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the presence of 2 M⊙ of relatively unprocessed material, that resembles the pristine

composition except for a depletion of fragile elements (like lithium). The next 2

M⊙ are processed by CN-cycle, and the next 4 M⊙ show He enrichment and Na-O

anticorrelation (figure1.24). After that, a sudden change in slope is visible for all el-

ements except carbon. The layers of the donor star are now exposed, and show part

of the convective zone above H-burning shell. Here temperatures are high enough to

allow proton capture by 25Mg and 26Mg, leading to an enhancement of Aluminium.

1.5 Final considerations

Now that the overall theoretical framework for fluorine and sodium production

has been exposed, some considerations can be made. About the first it is important

to underline if the 19F(α,p)22Ne reaction is considered to be one of the responsible

for the destruction of a substantial part of it. With the actual reaction rate reported

in literature, fluorine abundance detected in AGB-stars is impossible. The only one

corresponding to the theoretical predictions are WR stars (Mi &25 M⊙ for Z=0.02,

Mi &35 M⊙ for Z=0.008, see Maeder and Meynet [1994]; Meynet and Arnould

[2000]), in which some fluorine is produced in He-burning. A part of it, however, is

expelled in the interstellar medium before being destroyed.

About sodium, a big part of the problem lies in the models, as said at the beginning

of this paragraph. Sodium production sites are in fact still matter of debate, but it

was suggested by D’Antona and Ventura [2016] that a reduction by a factor of five of

the 23Na(p, α)20Ne reaction rate would “... put the rate of sodium destruction below

the rate of oxygen destruction in the whole range of interest for the AGB envelope

p−capture processing. This would allow to reduce the mass loss rates in the models,

and achieve a good quantitative agreement also in the magnesium depletion” (figure

1.25). In this way the study of 23Na-related reactions would be of much help to solve

the puzzle, even only reducing uncertainties. It is also important to fully understand

the 23Na(p,α)20Ne versus 23Na(p,γ)24Mg branching ratio, that will be of much help

to fully understand the transition from the NeNa-cycle to MgAl-cycle.

In the following chapters, after some other theoretical considerations necessary to

better understand the “nuclear” part of the problem, two experiments about the
19F(α,p)22Ne and 23Na(p,α)20Ne reactions will be explained and results on the ex-

perimental cross-section at astrophysical energies and reaction rate will be shown.
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Figure 1.25: Rates of the two reaction that mainly influence Na-O correlation in AGB stars as a
function of temperature. Rates for oxygen burning via proton capture are from Angulo
et al. [1999], while for sodium burning a value ∼25% below the rate recommended by
Hale et al. [2004](red line). The blue dashed line correspond to a further reduction by
a factor of five. Temperature boundaries for the different scenarios are also marked.
Temperatures at which the reaction work efficiently are also reported. The green dashed
temperature range is the temperature in AGB models with longer evolutionary time,
in which total content of C+N+O and s-process abundances increase due to the third
dredge-up [Ventura and D’Antona, 2006] (figure and caption taken from D’Antona and
Ventura [2016]).

In both cases those represent the first experimental results on those reactions at such

energies, as it will be discussed in Chapter III.
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CHAPTER 2

Direct measurements in nuclear astrophysics

Energy production inside stars is mainly caused by nuclear reactions [Kippen-

hahn and Weigert, 1990]. To understand how and in how much time energy can

be produced, it is therefore necessary to introduce some definitions and concepts

proper of nuclear physics, starting from the so-called cross-section.

At energy of astrophysical interest, particle motion is caused by thermal agitation,

corresponding to temperatures of kbT ≈ 107 ÷ 108 K. At those temperature, the par-

ticles have energies that are lower than the Coulomb barrier. In this condition mea-

surements are technically really hard (if not virtually impossible), because the cross-

section are very low (some pico-nanobarns).

In the following chapter we will discuss general arguments regarding nuclear physics,

paying close attention to nuclear astrophysics, underlining experimental difficulties

concerning such measurements.

2.1 Cross-section

In a standard nuclear physics experiment, two particles collide with each other,

and a reaction like the following is obtained:

A + a→ b + B (2.1)

Here a and A are the impinging and the target particle, while b and B represent

the reaction products, respectively. Now let us call Jinc the number of particles that
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hit the target per unit of time on a unit of surface perpendicular to the beam. We call

ρinc the number of impinging particles per unit of volume, and v the relative velocity

between a and A. The flux of incoming particles will therefore be expressed as it

follows

Jinc = ρincv (2.2)

Let us now suppose that ρinc is so small that mutual interactions between the

particles composing the beam can be considered negligible, and be N the number of

particles emitted per unit of time inside a certain interval of solid angle dΩ, proper

of a certain detector placed an angle θ from the beam direction. In this situation N

can be defined as

N = JincΣ(θ)dΩ (2.3)

Σ(θ) is a physical quantity that has the dimensions of a surface, and represents

the probability for a particle of the beam that collides with a particle of the target to

be emitted at a certain solid angle dΩ [Williams, 1991].

Since the target is usually composed by an high number of particles (quantity com-

parable with the Avogadro number NA) and the relative distances between them are

bigger than the De Broglie wavelength, considering negligible the coherence effects

for waves coming from diffusers, Σ(θ) will be equal to

Σ(θ) = Nσ(θ) (2.4)

In equation 2.4 σ(θ) is called differential cross-section, and represents the prob-

ability for a certain particle to be emitted inside a certain solid angle dΩ, after the

reaction 2.1 took place.

The quantity σ(θ) can be calculated using equations 2.3 and 2.4:

σ(θ) =
N

JincNdΩ
(2.5)

We can now integrate equation 2.5 on the whole solid angle, obtaining the total

cross-section for the process:

σtot =

∫

Ω

σ(θ)dΩ (2.6)
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Here Σ(θ), σ(θ) andσtot have the dimensions of a surface, and given that the diffusers

are 10−13 ÷ 10−14 cm wide, those quantities will be expressed in barns, so that 1

barn=10−24 cm2

2.2 Reaction rate

Another important quantity in nuclear physics is the reaction rate, which rep-

resents the number of reactions that take place in the unit of volume and time. It

indicates also the number of nuclei created or destroyed by a certain reaction. This

quantity depends on the number of involved nuclei (Na and NA), on the cross-section

σ and on other boundary conditions (like temperature, for instance).

Let us consider a system made by a certain number Na of a-nuclei and NA particles

of A-nuclei, being σ(v) the cross section for the reaction equation 2.1. In this case

v is the relative velocity between the two particles. The reaction rate r is defined as

the number of reactions per unit of time and volume, and can be calculated as the

product of the cross-section times the density of the target particles NA and the flux

of the incoming particles equation 2.2, if ρ is substituted with Na

r = NaNAvσ(v) (2.7)

This quantity can be measured as number of particles per second.

It is important to underline that this equation is valid only if a and A are not identical:

in this case another term must be added, due to indiscernible nature of these two

particles. So the equation 2.7 will be:

r = (1 + δaA)−1NaNAvσ(v) (2.8)

with δaA known as Kronecker’s delta.

Let us now assume that the relative velocity is included between v and v + dv, and

that f (v)dv is the probability for the velocity to take a certain value in that range.

In this case the reaction rate will be obtained by an integration of the equation 2.8,

where at each velocity is assigned a certain weight f (v):

r = (1 + δaA)−1NaNA

∫

vσ(v) f (v)dv = (1 + δaA)−1NaNA 〈σv〉 (2.9)

The 〈σv〉 term is the reaction rate for a pair of particles, while the (1+δaA)−1NaNA

is the total number of them.
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It is now mandatory to know the energy at which particles inside stars interact with

each other: this is indeed possible, considering that the kinetic energy of the nuclei

inside a star is mainly due to the thermal agitation. Stellar plasma, in fact, due to

the high temperature and low densities, may be considered in fair approximation

as a non degenerate and non relativistic gas. So the most probable energy can be

calculated as

E ≈ kT (2.10)

with k Boltzmann constant. Such a plasma can be considered as a gas at thermo-

dynamic equilibrium, so the velocity distribution can be expressed as a Maxwell-

Boltzmann one, again considering the plasma as a non degenerate gas with almost

no electromagnetic interaction between particles:

f (vi)dvi = 4πv2
i

[

mi

2πkT

]3/2

exp

[

−
miv

2
i

2kT

]

dvi (2.11)

In equation 2.11 T is the temperature, while mi is the i-nucleus mass.

Assuming that equation 2.9 depends only on relative velocity between particles, it

is convenient to express velocities of the many particles as a function of the relative

and center-of-mass ones (v and V, respectively)

va = V +
mA

ma + mA

v (2.12)

vA = V − mA

ma + mA

v (2.13)

Let us now introduce the probability for the a-particle to have velocity va in a certain

element of volume of the velocity-space d3va and for the A-particle to have velocity

vA in d3vA. This quantity will be calculated as f (va)d3va f (vA)d3vA, and it is possible

to demonstrate that it can be written as a product between the velocity distributions

in the center-of-mass reference frame and relative velocity, respectively exp

[

−
MV

2kT

]

and exp

[

− Mv

2kT

]

:

NaNA

[

M

2πkT

]3/2

exp

[

− MV2

2kT

][

µ

2πkT

]3/2

exp

[

− µv2

2kT

]

(2.14)

where µ e M are the reduced mass and the total mass respectively. Those distri-

butions are however normalized, and the integral with respect to d3V will be equal

to one. So the reaction rate will be

r = (1 + δaA)−1NaNA 〈σv〉

= (1 + δaA)−1NaNA4π
(

µ

2πkT

) ∫ ∞

0
v3σ(v)exp

(

−
µv2

2kT

)

dv
(2.15)
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Or, in terms of energy

r = (1 + δaA)−1NaNA

(

8
πµ

)1/2
1

(kT )3/2

∫ ∞

0
Eσ(E) exp

(

− E

kT

)

dE (2.16)

About the latter, it is necessary to underline that the integration is extended only

on the positive region if the reaction is exothermic. For the endothermic ones, the

integration path will start from the threshold energy [Iliadis, 2007].

2.3 Coulomb barrier effects between charged parti-

cles

Analysing interactions between nuclei, two things have to be taken into account:

centrifugal barrier and Coulomb interaction. The second, in particular, is due to

the repulsion between projectile and target. If we consider two nuclei, with atomic

number Z1 e Z2 interacting with each other, the forces involved will be the Coulomb

repulsion and the nuclear force (attractive). Their combination will lead to a poten-

tial that goes as in Fig. 2.1.

Figure 2.1: Sketch of the complete potential (Coulomb + nuclear) that rules the relative motion of
two nuclei
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Reaction Ec

p + p 0.45 MeV
p + 7Li 0.93 MeV
α + 12C 2.78 MeV
α + 19F 3.81 MeV

p + 23Na 2.57 MeV

Table 2.1: Values of the Coulomb barrier (Ec) for a sample of nuclear reaction of interest for nuclear
astrophysics and for the two reactions in exam

At big distances Coulomb force will prevail, while going at distances lower than

the sum of the two nuclear radii, the lead will be taken by the nuclear force, that can

be approximated to a finite potential well with R width and V0 depth.

In nuclear astrophysics energies are at the order of magnitude of some keV (proper

of stellar nucleosynthesis) up to hundreds of keV (primordial nucleosynthesis) (esti-

mations made using equation 2.10). Given that Coulomb barriers are at about 1÷10

MeV (e.g. table 2.1), with a classical approach this reaction should not take place,

because the interacting nuclei would not be near enough to trigger the nuclear inter-

action. This problem is overcome by the so-called tunnel effect1.

The probability for a nucleus to overcome the Coulomb barrier by tunnel effect can

be expressed as a penetration factor

Pl =
|χl(∞)|2

|χl(R)|2
(2.17)

where χl is the wave radial function that solves the Schrödinger equation
[

−
~

2

2µ
d2

dr2
+ Vl(r) − E

]

χl(r) = 0 (2.18)

and

Vl =
l(l + 1)
2µr2

+
Z1Z2

r2
(2.19)

is the effective potential for the l-wave, sum of the centrifugal potential (that depends

on l) and the Coulomb one (independent form it).

Solutions of the equation 2.18 are known and can be expressed as the so-called

Coulomb regular and irregular wave functions. The first one, Gl(r), diverges if l→ 0

while the second, Fl, is equal to zero at the origin, being the only possible solution

if it is included. In our case (0 ≤ r ≤ R), χl(r) can be written as a linear combination

1Quantic tunnelling was introduced by George Gamow in 1928, and was proposed while study-
ing α-decay. Following quantum mechanic a finite probability for the incoming particle to tunnel
through the barrier exists
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2.3 Coulomb barrier effects between charged particles

of the two, so the penetration factor equation 2.17 will be

Pl(kR) =
1

F2
l
(kR) + G2

l
(kR)

(2.20)

where k is the wave number.

By the way, Pl has no analytic form. It is therefore necessary to use known values

of Fl(kR) and Gl(kR), or, if Vl(r) is a lot bigger than the impinging energy, to an

approximation of Pl based on expansion of Gl(r) as a function of the modified Bessel

equations (Semi-classical approximation, or WKB) [Rolfs, 1988]. In this case, if

V >> E, then Gl >> Fl, and so

Pl =

[

Eb − E

E

]1/2

exp

[

−
2
√

2µ

~

∫ R0

R

(

EcR

R

ElR
2

R
− E

)

dr

]

(2.21)

In this equation Eb is the sum of the Coulomb (Ec) and centrifugal (El) barriers

heights.

Let us define −Wl the terms in the exponential function in equation 2.21, and try to

understand its trend when l changes.

1. l = 0: the most common case in nuclear astrophysics, due to the fact that

energies are of a few keV. In this case integrating and using power expansion

as a function of E
Ec

, the Wl term will be equal to:

W0 =
2πZ1Z2e2

~v

[

1 − 4
π

(

E

Ec

)

+
2

3π

(

E

Ec

)3/2]

(2.22)

The first term of equation 2.22 can be written as

bE−
1
2 (2.23)

in which

b = 31.28 · Z1Z2A1/2 (2.24)

while the second term is equal to

−1.05(ARZ1Z2)1/2 (2.25)

with A reduced mass of the system, Ec calculated in MeV and R in fm. The

third term, which depends on the energy, represents a corrective term in the

case of E at the same order of magnitude of the Coulomb barrier, calculated

by:
4Z1Z2e2

3~v

(

E

Ec

)3/2

(2.26)
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2.4 Astrophysical factor

adding up equations 2.23, 2.25, and 2.26, we will obtain:

W0 = bE−
1
2 − 1.05(ARZ1Z2)1/2 +

4Z1Z2e2

3~v

(

E

Ec

)3/2

(2.27)

2. l , 0: In the hypothesis that Ec > El, Wl can be obtained using power

expansion as a function of R/r:

Wl = W0 + 2
[

l(l + 1)E1

Ec

]1/2[

1−
(

E

Ec

)1/2]

(2.28)

From equation 2.22 and 2.28, stopping the expansion at the first order, Pl will

be equal to

Pl =

(

Ec

E

)1/2

exp

[

−bE−1/2+1.05(AZ1Z2)−1/2−7.62l(l+1)(AZ1Z2)−1/2

]

(2.29)

If E << Ec and the interaction takes place in s-wave, penetrability can be approxi-

mated with the Gamow factor

P0 = exp [−bE−1/2] = exp

[

− 2πZ1Z2e2

~v

]

= exp (−2πη) (2.30)

in which η = Z1Z2αβ, where α is the structure constant and β is the velocity in

units of c (the speed of light). The η factor, called Sommerfeld parameter, gives a

measurement of Coulomb interaction, assuming values that grow with the charge of

the interacting nuclei, and decrease at higher relative velocities (corresponding to

lower interaction times) [Rolfs, 1988].

2.4 Astrophysical factor

As anticipated in previous paragraphs, the experimental study of nuclear reac-

tions in astrophysical conditions is really hard, due to the small reaction rates and to

the low energies: the p + p→ d + e+ + νe reaction, which as shown in table 2.1 has

the smallest Coulomb barrier and occurs in the Sun at T ≈ 1.5 · 107 K, has a really

low cross-section (mainly due to the fact that energy is not sufficient to overcome

the Coulomb barrier and that the cross-section is governed by weak interaction),

σ = 10−47 cm2 = 10−23 b (Q = 1.44 MeV). It is therefore clear that an experiment

meant to reproduce this reaction in solar environment with direct methods would

obtain an event every 1000000000 years! This is just one of the many cases in

which experiments aimed to reproduce reaction of astrophysical interest are impos-

sible. The study of such reaction in fact, is normally possible at higher energies,
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2.4 Astrophysical factor

and some kind of extrapolation near or below the Coulomb barrier based on mea-

surements at higher energies is necessary. In this procedure, even a trivial error in

sub-threshold estimation could be catastrophic. It is therefore necessary to optimize

the system and the experimental set-up for low-energies measurements in a way that

maximizes the signal-to-noise2 ratio, that represents a limit for those measurements.

Such a measure is then almost impossible with direct methods.

From equation 2.5 is clear that the number of detected particles N is proportional to

the number of incoming particles Ninc, in portion of width equal to δ of the target

and at the solid angle subtended by the detectors:

N ∝ Nincδ∆Ω (2.31)

From equation2.31 it is clear that three independent parameters can be changed,

even if the increasing rate will bring forth other issues that lower data accuracy:

• Increasing beam intensity a spatial charge will be generated and the target will

heat up, modifying its structure (density and chemical composition variations)

or destroying it

• Increasing the density of the target will lead to an enhancement of the interac-

tion between particles, but straggling and energy loss will reduce resolution.

• Increasing the solid angle range (for example using wide detector placed near

the target), can be useful, but this operation have some limits regarding the

beam direction and the high count rates.

Another way to enhance the signal-to-noise ratio is to reduce the background coming

from cosmic rays, environmental radioactivity or from electric devices: in the first

case, material able to absorb neutrons or γ can be used, or the measurements can be

done in underground laboratories (like in Laboratori Nazionali del Gran Sasso3).

Regarding extrapolation, the cross-section is strongly related with the geometrical

factor πŻ2 ∝
(

1
Pl

)2

∝ 1
E

, where Ż is the De Broglie reduced wavelength and Pl is

the penetrability factor. Those are both strongly varying with energy. To overcome

those difficulty one can adopt a representation for the interaction probability at high

energies that allows to separate the purely nuclear effects and the geometrical and

2The signal is made by the particles incoming in the detectors from the reaction of interest, while
noise comes from background or from other competing reactions

3LUNA experiment [Broggini et al., 2010]
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2.5 Charged Particle Reactions

electromagnetic ones: for such a reason the so-called Astrophysical Factor, or S(E),

was introduced:

S (E) = Eσ(E) exp (2πη) (2.32)

This quantity represents the nuclear component of the probability for a certain re-

action to occur and, if there are no resonances in the extrapolation region, it allows

to obtain more accurate low-energies extrapolation. Trends of σ(E) and S(E), for

non-resonant reactions, are shown in Fig. 2.2. From it is possible to understand that

the second one is almost a constant, while the first has an exponential decreasing.

Figure 2.2: Comparison between cross-section and astrophysical factor, both as a function of energy
and for charged particle reactions without resonances.

This procedure allows to make extrapolations at low energies, normally by means

of polynomial fit. A more complex method is the so-called R-Matrix [Lane and

Thomas, 1958], that will be used later in this work, in particular regarding the
19F(α,p)22Ne reaction (see Chapter 5.5).

2.5 Charged Particle Reactions

Substituting equation 2.32 in equation 2.16, and taking into account equation

2.30 and dividing by NaNA(1 + δaA)−1, one can obtain the reaction rate for a couple
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2.5 Charged Particle Reactions

of interacting particles

〈σv〉 =
(

8
µπ

)1/2
1

(kT )3/2

∫ ∞

0
S (E)exp

(

− E

kT
− bE−1/2

)

dE (2.33)

The argument of the integral in equation 2.33 is essentially dependent on the expo-

nential part, that is a function of energy. Furthermore, as it can be seen in figure 2.3,

the term exp(−E/kT ) shows a decreasing trend as a function of energy, while the

tunnel probability increases. The biggest contribution to the integral is then coming

from intermediate energies.

Figure 2.3: Representation of the exponential terms that determine the trend of the reaction rate for
resonant processes. The product of those two (Gamow factor an Maxwellian tail) origi-
nates the so-called Gamow peak (strongly magnified in picture). It indicates the energy
range at which the probability for a reaction to occur is maximized. The EG factor in
figure is called Gamow energy, and in the adopted notation for this work corresponds to
b2 [Clayton, 1983].

For non-resonant reactions in stellar environment, the energetic range in which they

take place is so narrow that the astrophysical factor can be accounted as constant

(figure 2.2). This region is called “Gamow window”.

It is clear that a good approximation of equation 2.33, again in the case of non-

resonant reactions, can be made considering S(E) as a constant, with the value that

it would have at E0, at which the exponential shows its peak. Than S (E) ≈ S (E0) ≈
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2.5 Charged Particle Reactions

S 0, and so

〈σv〉 =
(

8
πµ

)1/2
S 0

(kT )3/2

∫ ∞

0
exp

(

− E

kT
− bE−1/2

)

dE (2.34)

This result can be further evaluated by approximating the function inside the integral

to a Gaussian function with E0 as its centroid and the same slope of the original

function. Considering now the minimum for the g(E) = E/kT + bE−1/2 function,

and after Taylor expansion around E0, we will obtain:

g(E) = g(E0) +
1
2

(E − E0)2g′′(E0) + ... (2.35)

From equation 2.35 it is possible to acquire the energy corresponding to the Gamow

peak:

E0 =

(

bkT

2

)2/3

= 1.220 (Z2
aZ2

AµT 2
6 )1/3 keV (2.36)

where T6 = T/106 K, and µ is the reduced mass for the two-body process. At E0

the probability for a certain nuclear reaction to occur is strongly enhanced, given a

certain temperature T. From equation 2.36, and considering the case for a couple of

light particles (Z < 6) at temperature of tenth of millions degree, values of E0 ≈ 1÷
30 keV can be obtained. Those values are clearly bigger than kT = 0.086T6 keV:

this fact makes us understand how Coulomb barrier penetrability trend enhances the

probability for reactions at the high-energy tail of the Maxwell-Boltzmann function.

By substitution of g(E) with equation 2.35, and taking into account equation 2.36, it

is possible to obtain:

exp

(

− E

kT
− bE−1/2

)

≈ C exp

[

− (E − E0)2

2∆2

]

(2.37)

where

C = exp

(

− E

kT
− bE

−1/2
0

)

= exp

(

− 3E0

kT

)

(2.38)

The equation equation 2.37 is, in the end, simply an approximation to a Gaussian

function of the original exponential one, with ∆ as the full-width of the Gaussian

function that can be determined from the second derivative of g(E).

∆ = 2.31(E0kT )1/2 = 0.75(Z2
aZ2

AµT 5
6 )1/6 keV (2.39)

From equation 2.39 is clear that the Gamow window width is related to the average

of the peak energy E0 and the maximum value for the Maxwell-Boltzmann distribu-

tion.

∆EG = E0 ±
∆

2
(2.40)
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2.6 Resonant reactions induced by charged particles

By substituting what found so far in the expression of the reaction rate for a couple

of particles, we will obtain:

〈σv〉 =
(

8
µπ

)1/2
S 0

(kT )3/2
e−τ

∫ ∞

−∞
exp

[

− (E − E0)2

2∆2

]

dE (2.41)

Where τ = 3E0/kT . Resolving the integral:

raA = (1 + δaA)−1NaNA 〈σv〉

= (1 + δaA)−1NaNA

7.20 · 10−19

AZaZA

S 0 (keV b) τ2e−τ cm3/sec
(2.42)

In this last equation the dependence from the temperature is contained in the term τ.

From equation 2.42 it is clear that the reaction rate will depend mainly on e−τ.

Reactions e−τ

p + p 1.1 · 10−6

p + 14N 1.8 · 10−27

4He + 12C 3.0· 10−57

p + 23Na 1.6 · 10−105

α + 19F 9.1 · 10−138

16O + 16O 6.2· 10−239

Table 2.2: Values of e−τ for some important reactions of astrophysical interest at T = 15 · 106 K. This
factor determines the trend of the reaction rate

In table 2.2 some values of this factor are reported as examples. All those reactions

(apart from 16O+16O) take place inside the solar core (T6 = 15). At this temperature

the p + p reaction has been shown to be the most efficient. It will contribute strongly

to energy production inside the Sun.

At a certain value of temperature, only some nuclear species will experience nuclear

fusion. The core will start to contract, rising its temperature, unless it will be high

enough to trigger new reactions.

2.6 Resonant reactions induced by charged particles

In the case of resonant reactions between two nuclei, an excited state of the

compound nucleus is formed. This process occurs when the energy of the entrance

channel matches the energy of a certain excited state in the compound nucleus. This

compound nucleus will subsequently decay to lower-lying states.

If resonances are taking place inside the energy region of interest, the astrophysical
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2.6 Resonant reactions induced by charged particles

factor S(E) is no more slowly varying with energy, and cannot be considered as a

constant value. In this case the reaction rate is dominated by such resonances.

Resonant reactions are those in which the temporary formation of an exited state

of a compound nucleus occurs between the entrance and the exit channel [Satchler,

1990]. In this case, an intermediate state composed by fusing projectile and target

will form:

a + A −→ C∗ −→ b + B (2.43)

In 2.43 C∗ represents the intermediate system. Populating this state, resonances will

affect the excitation function for the reaction of interest.

Let us suppose that a nucleus can be formed in an excited state during the collision

between projectile and target particles. This new-born nucleus will be left in an

excited state, and than will decay emitting γ radiation. The energy at which this

state is formed is called “resonance”. A resonance is called narrow when its width

(Γ) is a lot smaller that the peak energy (Er). This condition usually corresponds to
Γ

Er
≤ 10%. If it does not happen, the resonance is called broad.

Figure 2.4: Examples of narrow, broad and isolated resonances [Rolfs, 1988].

In case of a isolated resonance, where the energy gap between different levels

is bigger than the width of the states, the cross-section can be calculated using the

Breit-Wigner formula:

σBW(E) = πŻ2ω
Γ1Γ2

(E − Er)2 + (Γ/2)2
(2.44)
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2.6 Resonant reactions induced by charged particles

in which Er is the energy of the resonance, πŻ2 represents a geometrical factor typi-

cal for the quantic process, and ω is a statistical factor that can be calculated as

ω =
2J + 1

(2Ja + 1)(2JA + 1)
(1 + δaA) (2.45)

In 2.45 J, Ja and JA are the spins of the compound nucleus and of the interacting

particles respectively, and (1+δaA) is meant to take into account the case for identical

particles.

In the total Γ width, all the possible decays of the compound nucleus are considered,

while Γ1 and Γ2 are the probability amplitudes of the compound nucleus formation

from the particles in the entrance channel and of the decay to the particles in the exit

channel, respectively.

If Γ « Er (narrow resonances), the reaction rate for a pair of particles equation 2.33

will be equal to [Clayton, 1983]:

〈σv〉 =
(

8
πµ

)1/2
1

kT

∫ ∞

0
σBW(E)E exp

(

− E

kT

)

dE (2.46)

In this case the exponential function will be nearly constant, given that it acts in a

tight energy interval (≈ Γ), and can be written as

〈σv〉 =
(

8
πµ

)1/2
1

kT
Er

∫ ∞

0
σBW(E) dE (2.47)

If one ignores the energy dependence for Γ, Γ1 and Γ2, the integration in equation

2.47 will be equal to
∫ ∞

0
σBW(E) dE = 2π2

Ż
2
rωγ (2.48)

where γ = Γ1Γ2/Γ, and ωγ is the resonance strength. Combining equation 2.48 and

equation 2.47 we obtain

〈σv〉 =
(

2π
µkT

)3/2

~(ωγ)r exp

(

− Er

kT

)

(2.49)

For reactions that occur thanks to narrow resonances, nuclear combustion takes

place at the energy of the resonance Er, and the Gamow peak will correspond to

the resonance one [Iliadis, 2007].

For broad resonances (Γ/Er ≥ 10%), instead, the energy dependence of the cross-

section and of the Γ width must be taken into account. In this case the cross-section

σ(E) will be:

σ(E) = σr

Er

E

Γ1(E)
Γ1(Er)

Γ2(E)
Γ2(Er)

(Γr/2)2

(E − Er)2 + [Γ(E)/2]2
(2.50)
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2.7 Electron screening

with σr = σ(E = Er) and Γr = Γ(E = Er).

If the level spectrum of the compound nucleus has an energy state below the Qvalue
4,

the resonance will be addressed as sub-threshold resonance for the channel b + B.

This state cannot decay in b +B, and the excited state can not be populated using this

reaction channel, given that Er = ER − Q is negative. Nevertheless such an excited

state, to be formed needs at least one allowed decay channel. This implies that this

level must be characterized by a Γ and certain half-life. If the width of the resonance

is large enough to have a tail at energies higher than Q-ER, then the resonance will

be “visible”, and will lead to an enhancement of the cross-section σ with respect to

the expected value. In this case the cross-section will be:

σ(E) = πŻ2ω
Γ1(E)Γ2(E + Q)

(E − Er)2 + [Γ(E)/2]
(2.51)

2.7 Electron screening

Up to now we assumed that both projectile and target are completely electron-

less objects. This allows us to easily consider the Coulomb barrier.

Figure 2.5: Sketch of the Coulomb potential modified by electrons. The dashed line represents the
bare nucleus condition. Ra, Rn, Ec and Rc are the atomic radius, the nuclear interaction
radius, the height of the barrier for a classical bare nucleus and the classical turning point
for a particle with a certain energy E

4The Qvalue for a certain reaction can be defined as mass-defect that can be detected between the
entrance and the exit channels. For a certain reaction A + a→ b + B it will be Qvalue = (ma + mA −
mb − mB)c2
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2.7 Electron screening

In experiments with charged particles performed in laboratory, however, projectile

and target particles are in form of ions and atoms (or atom and molecules) respec-

tively, so electrons will shield both charges. Let us therefore now the target nucleus

is considered as an atom: for distances above the atomic radius Ra, the electrostatic

potential is zero (figure 2.5), and so the the projectile nucleus will not experience

Coulomb repulsion until it does not surpasses the electron “nebula”.

For high-energy reactions, this effect is negligible, but at astrophysical energies it is

not the case. In Born-Oppenheimer approximation, the atomic and nuclear degrees

of freedom can be treated separately, and the dynamical effects (polarization and de-

formation of the nebula), can be overlooked. It is possible to calculate the so-called

screening potential Ue between interacting nuclei:

Ue f f (r) =
ZaZA

r
− Ue (2.52)

Where a and A are the projectile and target nuclei, respectively.

Let us consider electrons as distributed on a surface with Ra radius, the projectile

as completely ionized and the target as globally neutral. In this case the shielding

potential Ue can be determined using a simplified model [Assenbaum et al., 1987]:

the potential generated by the electron nebula at a distance comparable with Ra can

be accounted as a constant value Va = Zae/Ra [Rolfs, 1988]. So the barrier that the

projectile must overcome is equal to:

Ue f f (Rn) = Ucoul(Rn) − Ue(Rn) =
ZaZAe2

Rn

−
ZaZAe2

Ra

(2.53)

with Rn radius of nuclear interaction, equal to the sum of the radii of the incoming

and target nuclei. Equation 2.53 gives informations about the electron screening: for

distances smaller than the atomic radius the screening potential is Ue = ZaZAe2/Ra,

and it will reduce the fusion barrier, enhancing the cross-section in the process with

respect to the the bare nucleus one.

Now that this potential is known, a correction factor flab can be calculated, with the

aim to obtain the shielded nucleus cross-section σs(E) from the bare nucleus one

σb(E) [Fiorentini et al., 1995]

flab =
σs(E)
σb(E)

(2.54)

The reaction rate for a couple of particles 〈σv〉 for shielded nuclei can be calcu-

lated by substituting energy E with Es = E + Ue in the equation 2.33. In this con-

dition, it is like the barrier penetration is occurring at higher energies [Assenbaum
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2.7 Electron screening

et al., 1987]. The value σs(E) must be replaced with σb(Es), and the astrophysical

factor must be a constant for Ue « E. So flab is :

flab =
σb(E + Ue)
σb(E)

=
E

E + Ue

exp

(

πηUe

E

)

(2.55)

The quantity flab is also dependent from Ue/E, and as can be seen in table 2.3, for

Ue/E = 0.01, the electron screening is not negligible [Assenbaum et al., 1987].

Reaction Ue(keV) flab(Ue/E = 0.1) flab(Ue/E = 0.01) flab(Ue/E = 0.001)
d + d 0.027 16.5 1.10 1.003

d + 3He 0.11 20.9 1.11 1.003
3He + 3He 0.22 131 1.18 1.006

p + 7Li 0.24 14 1.09 1.003
α + 12C 2.0 868 1.25 1.007

Table 2.3: Some values of flab for different reactions: even for Ue/E = 0.01 the discrepancy is relevant
(E≈ 3 - 30 keV )[Assenbaum et al., 1987]

More accurate approximations of this phenomenon exist. Those take into account

dynamical effects. At lower energies, where relative velocities of the interacting

nuclei are smaller than the typical velocities for atomic electrons, the so-called adi-

abatic approximation can be used [Fiorentini et al., 1995]: in this case the electron

screening potential is equal to

Ue = Ea + EA − Ec (2.56)

where Ea, EA, and Ec are the binding energies of the projectile, the target and the

compound nucleus respectively. In this approximation the fact that the nuclei are

a lot slower that the electrons is assumed. In this way, a wave function can be

assigned to the electrons for every instantaneous configuration of the interacting

nuclei. Those can be chosen as one that does not differs too much from the one ob-

tained considering the nuclei static in their instantaneous positions. In table 2.4 some

results of electron screening calculations for some reactions are reported, along with

theoretical predictions coming from adiabatic model.
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Reaction Experimental Ue (eV) References Uad
e (eV)

6Li(p,α)3He 470 ± 150 Engstler et al. [1992] 175
6Li(d,α)4He 380 ± 250 Engstler et al. [1992] 175
7Li(p,α)4He 300 ± 280 Engstler et al. [1992] 175
3He(d,p)4He 219 ± 7 Aliotta et al. [2001] 119

d(d,p)t 25 ± 5 Greife et al. [1995] 20.4

Table 2.4: Comparison between screening potential values for some reactions of astrophysical in-
terest. Those are obtained through best-fits on experimental data. Discrepancies with
theoretical values gave rise to the electron screening problem. This is one of the biggest
uncertainties in the astrophysical factor extraction at the Gamow peak.

2.7.1 Electron screening in stellar environment

In stars, atoms are completely ionized, due to high temperatures. In principle,

it would be reasonable to think that the electron screening is not important in such

environment. It is not right: nuclei, in fact, are surrounded by a “sea” of free elec-

trons, that tend to cluster around them, with effects similar to the ones generated by

atomic electrons.

Such a region is called Debye-Hückel sphere, and is characterized by a parameter

called Debye-Hückel radius, RD:

RD =

(

kT

4πe2ρNAξ

)1/2

(2.57)

with NA the Avogadro number, ρ the density of the stellar plasma and ξ defined by

ξ =
∑

i

(

Z2
i + Zi

)

Xi

Ai

(2.58)

In equation 2.58 Xi, Zi and Ai represents the mass fraction, the nuclear charge and

the atomic mass of the i-th ion, respectively [Rolfs, 1988].

Therefore in stars, the presence of the negatively-charged Debye-Hückel sphere,

generates the reduction of the Coulomb potential, making the barrier penetration

easier. So even in stellar environment, a factor that ties 〈σv〉s observed in presence

of electron screening and the bare nucleus 〈σv〉b must be introduced:

fplasma =
〈σv〉screen

〈σv〉b
(2.59)

This factor is strongly tied to equation 2.57 with the operation [Adelberger et al.,

1998]

fplasma = exp

(

ZaZAe2

kTRD

)

(2.60)
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2.7 Electron screening

From equation 2.60 it is clear that while stellar density grows, the reaction rate must

grow too: the Debye-Hückel sphere, in fact, is reduced and the electron shielding

grows [Rolfs, 1988].

From an experimental point of view the bare nucleus cross-section cannot be mea-

sured directly, but we can gain information on the shielded one. It is therefore nec-

essary to perform measurements of the latter cross-section, to calculate the fplasma

term applying the Debye correction equation 2.60, and then calculate the bare nu-

cleus cross-section. This is mandatory for direct measurements.
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CHAPTER 3

Indirect Measurements: The Trojan Horse Method

In the previous chapters of this thesis we focused on the difficulties to overcome

when measuring physical quantities of astrophysical relevance. A way to succeed

consists in using indirect methods. Those take advantage of reactions that are dif-

ferent from the ones of interest, but have some kind of connection with those, above

all in its cross-section.

In this chapter we will briefly discuss three indirect methods, among the most used

ones:

• Coulomb Dissociation (CD);

• Asymptotic Normalization Coefficient (ANC);

• Trojan Horse Method (THM);

The first two methods are useful in studying radiative capture reactions, while the

third one, to whom is dedicated the most extensive description (the measures dis-

cussed later in this work are made using it), has proven to be useful for reactions

involving charged particles or neutrons in the entrance and exit exit channel.
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3.1 Coulomb dissociation

3.1 Coulomb dissociation

The CD method is an indirect procedure meant to study radiative capture at ener-

gies corresponding to the Gamow peak. It was used for example for the 12C(α,γ)16O

reaction [Bertulani, 1994], important in heavy elements nucleosynthesis in massive

stars, in particular in the phases after 4He burning. Another example could be found

in 7Be(p,γ)8Be [Motobayashi et al., 1994; Bertulani, 1994], fundamental to study

solar neutrino problem.

This method uses a three-body reaction, with the aim to study a radiative capture

reaction at astrophysical energies, analysing the projectile nucleus (a) break-up, in-

duced by virtual photons: those mediate the Coulomb field generated by a heavy

nucleus (ZT ):

a + ZT → b + c + ZT (3.1)

In 3.1, the a nucleus can be described as a cluster a = b ⊕ c. The break-up is the

way to study the photo-disintegration reaction

a + γ → b + c (3.2)

Studying it with the detailed balance method, the cross-section for the reaction of

interest

b + c → a + γ (3.3)

can be measured. This method shows two main advantages:

• The adequate selection of the kinematic conditions allows to precisely mea-

sure the 3.1 reaction at low energies, using beams at higher energies with

respect to Coulomb barrier. This fact makes the detection of projectile frag-

ments easier, and allows to use thicker targets, enhancing the reaction rate,

given that the straggling in it is low [Baur and Rebel, 1994];

• The reaction rate is enhanced with respect to direct radiative capture or photo-

disintegration measurements. This happens because the a particle is hit by a

lot of virtual photons due to the presence of ZT , that has a high atomic number.

This rate enhancement is clear if differential cross-section for projectile break-up of

a defined multipole πλ is considered [Baur and Rebel, 1994]:

d2σ

dΩdEγ

=
1

Eγ

dnπλ

dΩ
σ

photo

πλ
(3.4)
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3.1 Coulomb dissociation

The equation 3.4 is the product of three terms: a kinematic factor (1/Eγ), the vir-

tual photon number for a unit of solid angle
dnπλ

dΩ
, and the off-energy shell photo-

disintegration cross-section σphoto

πλ
. The second term, called equivalent photon spec-

trum, is purely kinematic, and is responsible for an enhancement (some orders of

magnitude) of the cross-section for the three-body process, with respect to the ra-

diative capture [Baur and Rebel, 1994].

The 3.3 reaction, that is the real aim for the measurement, is a on-energy shell pro-

cess, so it implies real photon exchange, so the equation 3.4 is valid only as an

approximation [Baur and Rebel, 1994].

The relation 3.4 can only be applied if the process is a purely Coulomb one. In this

case the interaction between the projectile and the target must be peripheral, or else

the strong nuclear interactions must be taken into account.

3.1.1 Experimental examples

The CD method is useful when radiative capture are studied, because it allows

to explore the low relative energy region of the two fragments (nearly parallel emis-

sion).

It is necessary to underline, however, that the break-up can occur as an effect of

the Coulomb field and via strong nuclear interaction. Those processes can not be

distinguished, so interference will be observed. For example, the 7Be(p,γ)8B, stud-

ied using the three-body reaction 208Pb(8B,p7Be)208B [Bertulani, 1994; Motobayashi

et al., 1994] shows the presence of interference phenomena between the two reac-

tion channels in the cross-section (figure 3.1a) .

Coulomb Dissociation was also used used to study the cross-section of the 7Be(p,γ)8B

because the binding energy of 8B is really low (0.1375 MeV), and in this case the

dissociation cross-section is three orders of magnitude higher than the purely nu-

clear contribution [Bertulani, 1994; Motobayashi et al., 1994].
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3.2 Asymptotic Normalization Coefficient method

(a)

Figure 3.1: a) Angular distribution for the 8B+208Pb→p+7Be+208Pb at the energy of 50 MeV/A, with
relative energy of the fragments at 100 keV: The dotted and dashed lines are the cross-
section for a purely Coulomb process and for a purely nuclear one, respectively. The
continuous curve mixes the two processes through interference [Bertulani, 1994]
b)Comparison between the astrophysical factor of the S p−7 Be extracted via Coulomb dis-
sociation of 8B with previous measurements. Horizontal bars indicate the Erel range in
which S(E) is mediated [Motobayashi et al., 1994]

3.2 Asymptotic Normalization Coefficient method

The Asymptotic Normalization Coefficient allows to evaluate the cross-section

for (p, γ) and (α, γ) reactions at astrophysical energies form the so-called normal-

ization coefficient C, related to the low-bound systems B = A + p or B = A + α, so

in cases where the nucleus is composed by a core A and a proton or a α particle tied

to it [Trache et al., 1998].

The coefficient, obtained from measurements of the cross-section for peripheral

transfer processes, will represent the probability for a certain B particle to be in

the A + p or A + α configuration, at distance bigger than the strong interaction

range. In this way the wave function trend in the asymptotic region is essentially

determined by the Coulomb interaction. In this way an accurate measure of the rate

can be made, once the tail amplitude is known [Azhari et al., 2001].

Let us consider the peripheral transfer reaction

A + X → B + Y (3.5)

where X = Y + a and B = A + a, with a the transferred particle (figure 3.2). In

Distorted Wave Born Approximation (DWBA) the amplitude for the process 3.5,

that we call M, under the hypothesis that the interaction between the particles is
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3.2 Asymptotic Normalization Coefficient method

peripheral, is equal to [Mukhamedzhanov et al., 1997]

M(Ei, cos θ) =
∑

Ma

〈

χ
(−)
f

IB
Aa(rAa)|∆V |IX

Ya(rYa)χi(+) (3.6)

In equation 3.6, Ei represents the relative energy of the two nuclei A and X, θ is the

diffusion angle in the center-of-mass reference frame, and χ(+)
i

and χ(−)
f

are the dis-

torted waves for the entry and exit channel respectively, while ∆V is the transition

operator, and Iα
βγ

(rβγ) is the overlapping function for the β and γ nuclei that consti-

tutes the α = β + γ state: α, β and γ represent the X, Y and a nuclei in the right part

of equation of equation 3.6 (entrance channel) and B, A and a in the left one (exit

channel), respectively.

Figure 3.2: Schematic diagram for the A + X → B + Y reaction, where X = Y + a and B = A + a.
The a particle is transferred from the X nucleus to the A one

The validity of this method is based on the fact that the overlapping function Iα
βγ

(rβγ)

of the equation 3.6 is the same in case of direct capture:

MDC = λ
〈

IB
aA(rAa)|O|Ψ+i (rAa)

〉

(3.7)

In equation 3.7 λ is a kinematic factor, O is the electro-magnetic transition operator,

and Ψ+
i

represents the scattering wave function in the entry channel.

If the diagram in figure 3.2 describes the transfer reaction, the DWBA cross-section

can be factorized using the initial and final spectroscopic factors as it follows [Mukhamedzhanov

et al., 1997]:
dσ

dΩ
=

∑

jB jX

S AalB jB
S YalX jXσ

DW
lB jBlX jX

(3.8)

If evaluated following this approximation, those nevertheless are strongly dependent

on the used model, due to the behaviour of the wave function inside the nucleus

(unlike the normalization coefficients). This fact makes the uncertainties on the ge-

ometrical parameters of the potential a strong source of errors in calculations.
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3.2 Asymptotic Normalization Coefficient method

The asymptotic normalization coefficient is tied to the behaviour of the wave func-

tion at distances above the nuclear interaction range. This makes the coefficient less

model-dependent with respect to the spectroscopic factor [Mukhamedzhanov et al.,

1997].

Let us now write down the radial part of the overlapping function

Cβγlα jα = S
1/2
βγlα jα

bβγlα jα (3.9)

In equation 3.9 bβγlα jα is the normalization constant of the wave function related to

the intercluster motion of β and γ, that is involved in the radial part of the overlap-

ping function.

The equation 3.9 is useful to define the behaviour of the overlapping function for

rβγ bigger than the nuclear interaction range. By substituting the equation 3.8 in the

3.9, the cross section is equal to:

dσ

dΩ
=

∑

jB jX

(

CB
AalB jB

)2(
CYalX jX

)2
RlB jblX jX (3.10)

where RlB jBlX jX can be calculated as:

RlB jBlX jX =
σlB jBlX jX

b2
AalB jB

b2
YalX jX

(3.11)

The equation 3.10 is weakly sensible to nuclear parameter variations (unlike σDW)

for peripheral reactions.

To apply the ANC method, the transfer contribution must be isolated from other

mechanisms, with the aim to normalize the differential cross-section, calculated with

the DWBA approach, to the experimental values at small angles, where transfer

process is considered to be dominant.

3.2.1 Experimental examples

The ANC method was used for example to study the 8Be→ 7Be + p reaction

using the 10B(7Be,8B)9Be proton transfer. The astrophysical factor for the capture

reaction 7Be(p,γ)8B was than determined using the normalization coefficient for the

virtual decay 10B→ 9Be + p, given that in equation 3.6 overlapping coefficient are

present. From an experimental point of view, the ANC for the 10B→ 9Be + p re-

action must be extracted first, by means of another transfer reaction, and using the
9Be(10B,9B)10Be to avoid a third ANC use. In this way the overlapping function for

the two vertices are known and other ANC are avoided.
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3.3 The Trojan Horse Method (THM)

This method was successfully used to evaluate the values of Sp−7Be(0) equal to

17.3± 1.8 eVb [Azhari et al., 2001], averaging on different determinations obtained

analysing the transfer reactions 10B(7Be,8B)9Be and 14N(7Be,8B)13C. This result is

in agreement with the one adopted in literature, equal to 19+4
−2 eVb [Adelberger et al.,

1998]. This is also consistent with the most recent values of S(0)p−7Be obtained with

direct measurements [Hass, 1999] and CD method [Iwasa et al., 1999].

3.3 The Trojan Horse Method (THM)

3.3.1 Quasi-free processes

The THM is based on direct reaction theory, and in particular on the quasi-free

break-up [Satchler, 1990]. Let us consider the A + a → c + C + s reaction, in

which the a nucleus can be described as a cluster a=x⊕s, and that the intercluster

motion can occur mostly in s-wave: this implies that the momentum distribution

for that motion has a maximum at 0 MeV/c. In this conditions the break-up can be

considered as a quasi-free one if the spectator particle s has the same momentum

distribution inside a and in the exit channel. Under such constraints the s particle

acts as a spectator for the virtual process A(x,c)C [Satchler, 1990] (figure 3.3), and

the validity for polar approximation can be assumed.

Figure 3.3: Feynman pseudo-diagram for the A + a → c + C + s process. In the superior pole the
target (a) breaks-up into the two clusters x and s. The particle x does interact with the
beam (A), giving rise to the virtual reaction A + x → C + c, while s acts as a spectator
for the reaction, preserving the momentum that it had before the break-up inside a (polar
approximation)
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3.3 The Trojan Horse Method (THM)

It is necessary to underline that this method is valid whether the break-up takes

place inside the projectile or inside the target, and even if the relative cluster motion

x - s does not take place in s-wave.

3.3.2 THM

The THM is often used to study nuclear reactions with charged particles or neu-

trons in the entrance and in the exit channel, in the energy range of astrophysical

interest. Using this method, an indirect measurement of the cross section of a two-

body reaction is possible from the study of a quasi-free three-body reaction. In

this process, the wave function associated to the Trojan Horse (TH) nucleus has a

dominant amplitude for cluster configuration. Under such kinematic conditions, the

angles at which the c and C particles of the figure 3.3 are emitted are called quasi-

free angles. They can be determined considering that the s particle must remain

with momentum equal to ks before and after the interaction between x and A. If

the condition Ebeam>ECoul is chosen, the viability of this method is legitimate and it

makes possible to avoid Coulomb suppression of the cross-section. To do so, the en-

ergy of the projectile particle is chosen to be higher than the A - a Coulomb barrier,

while the A - x interaction can take place at very low energies, even zero. The bind-

ing energy between x and s, in fact, compensates the kinetic energy of the relative

motion A - x, giving rise to the so-called quasi-free energy [Tumino et al., 2003].

This energy can be considered as the minimum energy necessary to maximize the

quasi-free contribution, given that the momentum distribution has a peak around ps

= 0. This quantity can be calculated as:

Eq f = EAx − Bx−s (3.12)

In equation 3.12 EAx is the beam energy in the center-of-mass reference frame for

the A - x system and Bx−s is the binding energy for the x - s bound system. Under

these conditions the intercluster motion of the x particle inside the a nucleus has the

“duty” to fix the energy range that can be explored around the quasi-free energy for

the process.

Furthermore the Ebeam > Ecoul relation makes the electron screening effects negligi-

ble.
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3.3 The Trojan Horse Method (THM)

3.3.3 Plane Wave Impulse Approximation

Let us describe now the THM in a more detailed way. From a theoretical point of

view, the quasi-free mechanism can be approached using the impulse approximation

[Chew and Wick, 1952]:

• the A nucleus does not interact at the same time with the two particles com-

posing the cluster, x and s. This is true if the De Broglie wavelength of the

projectile A momentum is less than the average distance between x and s;

• the probability for the interaction between A and x is the same that x should

have in case of a free particle. This also means that s does not participate to

the reaction;

• the binding energy of the system x - s is negligible if compared with the

interaction energy between A and x.

Under such hypothesis, and introducing the plane-wave approximation formalism, a

simplified approach to the quasi-free break-up can be used: the Plane-Wave Impulse

Approximation (PWIA). To do so, two more assumptions must be made:

• the incoming and outgoing particles must be describable as plane waves;

• the momentum distribution of the spectator particle can be calculated as the

Fourier transformation of the wave function of the relative motion between

the x and s nuclei.

Let us assume now, to further simplify the problem, that the involved particles have

all spin equal to zero, and that the projectile nucleus wave function can be written

as the product of the wave functions of the cluster components x and s, which are in

their fundamental state. If ψx and ψs are such functions, the relative motion of the

cluster components can be written as it follows [Jain et al., 1970]:

ψa = ψx(rx)ψs(rs)ψ(rx − rs) (3.13)

The equation 3.13 is an approximation to the lowest order of a series expansion. The

complete expression implies the sum on the different excited levels of the cluster

components, introducing ci coefficients, strongly tied to the probability for a certain

configuration to happen:

ψa =
∑

i

ciψxi
(rxi

)ψsi
(rsi

)ψ(rx − rs) (3.14)
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3.3 The Trojan Horse Method (THM)

Let us now suppose that the TH nucleus is in the target, and define kC, kc, ks, q and

p as the momenta of the particles C, c, s, x and A in the laboratory reference frame.

Here kxs = (msq − mxks)/ma is the relative momentum of the cluster components

inside the target nucleus a and ψ(kxs) is the Fourier transform of the wave function

of the relative motion ψ(rx − rs) [Jain et al., 1970].

In this notation, the wave function for the a nucleus in the momentum space can be

written as it follows:
〈

ks, q
∣

∣

∣a
〉

= φ(kxs)δ(q + ks) (3.15)

In equation 3.15 |a〉 is the intrinsic state of the target, while the Dirac’s delta is

there because it takes into account the fact that the target is at rest in the laboratory

reference frame. Now the momentum for the target must be equal to zero, and so

ka = ks + q ⇒ q = −ks = kxs (3.16)

Here the x momentum before the collision with the projectile A is equal and opposed

to the s one. This means that it can be experimentally measured, because s will show

up in the exit three-body channel. The initial and final state wave function will be

respectively equal to
∣

∣

∣i
〉

=
∣

∣

∣p, a
〉

(3.17)

| f 〉 = |kC , kc, ks〉 (3.18)

equations 3.17 and 3.18 are true if the incoming and outgoing particles can be de-

scribed as plane-waves. So said, the transition element between the initial and final

state of the system will be [Jain et al., 1970]:

T f i =
〈

f
∣

∣

∣T̂
∣

∣

∣i
〉

=
〈

kC , kc, ks

∣

∣

∣T̂ 3B
∣

∣

∣p, a
〉

(3.19)

where T̂ 3B is the operator T̂ referred to the three-body reaction.

If the PWIA hypotheses are satisfied, then T̂ 3B of equation 3.19 can be substituted

with T̂ 2B, referred to the two-body reaction, and the spectator wave function will not

change under the influence of such operator

〈

ks

∣

∣

∣T̂ 2B =
〈

ks

∣

∣

∣ (3.20)

Taking into account what was said so far, the transition element of the equation 3.19

matrix can be written as it follows:

T f i =
〈

kC , kc, ks

∣

∣

∣T̂ 2B
∣

∣

∣p, a
〉

=

∫

〈

kC , kc

∣

∣

∣T̂ 2B
∣

∣

∣p, q
〉〈

q
∣

∣

∣a
〉

d3q (3.21)
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Now, the equations 3.15 and 3.16 can be used to obtain the following result:

T f i =

∫

〈

kC , kc

∣

∣

∣T̂ 2B
∣

∣

∣p,−ks

〉〈

ks, q
∣

∣

∣a
〉

d3q

=

∫

〈

kC , kc

∣

∣

∣T̂ 2B
∣

∣

∣p,−ks〉φ(kxs)δ(q + ks)d3q

=
〈

kC , kc

∣

∣

∣T̂ 2B
∣

∣

∣p,−ks

〉

φ(−ks)

(3.22)

In equation 3.22 the matrix element

T 2B
f i =

〈

kC , kc

∣

∣

∣T̂ 2B
∣

∣

∣p,−ks

〉

(3.23)

is the matrix element of the two-body reaction that describes the transition form the

initial state
∣

∣

∣p,−ks

〉

to the final one
∣

∣

∣kC , kc

〉

.

In the center-of-mass reference frame and in the coordinate of relative momentum

of the two-body system, the T2B
f i

can be written as [Jain et al., 1970]:

T 2B
f i = δ(p − ks − kC − kc)t

2B
f i (3.24)

where

t2B
f i = 〈k f |T̂ 2B|ki〉 (3.25)

is the reduced matrix element proper of the two-body process, ki and k f are the

relative momenta of the a and A particles in the entry channel and of c and C in the

exit one, respectively. The Dirac’s delta stands for momentum conservation.

Using now equations 3.24 and 3.25, the matrix transition element becomes:

T f i = δ(Ki −K f )t2B
f i φ(−ks) (3.26)

In equation 3.26 the quantity Ki = p and K f = ks + kC + kc are the momenta of the

center-of-mass reference frame, before and after the collision.

Let us rewrite T f i in terms of the reduced matrix element referred to the three-body

process:

T f i = δ(Ki −K f )t3B
f i (3.27)

with

t3B
f i = φ(−ks)t2B

f i (3.28)

This last equation has great importance: in fact, it allows to write down the transi-

tion amplitude for the three-body system that appears in the break-up cross-section

expression in terms of the reduced matrix element of the two-body system. The

differential cross section in the laboratory reference frame for a reaction with three
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3.3 The Trojan Horse Method (THM)

bodies in the exit channel, in fact, can be written, using natural unities (~ = c = 1)

as [Berggren and Tyren, 1966]:

dσ =
(2π)4

∣

∣

∣vrel

∣

∣

∣

d3kCd3kcd
3ksδ(Ki −K f )δ(Ei − E f )

∣

∣

∣t3B
f i

∣

∣

∣

2
(3.29)

where Ei and E f represent the total energies for the initial and final state of the

system, and vrel stands for the relative energy between the incoming particle and the

target. By substitution of the expressions for Ki and K f , and the equation 3.28 in

place of t3B
f i

in equation 3.29, one can obtain

dσ =
(2π)4

∣

∣

∣vrel

∣

∣

∣

k2
CdkCdΩCk2

cdkcdΩcd
3ks

× δ(p − ks − kC − kc)δ(Ei − E f )
∣

∣

∣φ(−ks)
∣

∣

∣

2∣
∣

∣t2B
f i

∣

∣

∣

2

(3.30)

After an integration in d3ks (given that the spectator is usually not detected1) and in

dkc, an explicit expression for the differential cross section can be written, under the

hypothesis that only one l contributes [Jain et al., 1970]:

d3σ

dECdΩCdΩc

∝ (KF)
∣

∣

∣φ(−ks)
∣

∣

∣

2
(

dσN

dΩ

)o f f

l

(3.31)

In equation 3.31 KF is a kinematic factor, that depends on the same variables that

define equation 3.31, |φ(−ks)|2 is the momentum distribution of the spectator nucleus

s inside the a cluster and
(

dσN

dΩ

)o f f

l

is the differential cross section off-energy-shell

[Joachain, 1987] for the A-x reaction.

In our case the kinematic factor can be written as it follows:

KF =
kCk2

c ES E2
C.M.

pExikcES + Ec[kc − p cosϑc + kC cos(ϑC − ϑc)]
(3.32)

In equation 3.32 the angles of the particles are measured with respect to the beam

direction, EC.M. is the total energy in the center-of-mass system of the two-body re-

action, and E2
xi=mc+k2

S .

The equation equation 3.31 should be multiplied by a spectroscopic factor, tied to

the probability for the a nucleus to be described as composed by the two cluster

components x and s. This factor is however unknown, and that is a limit for THM,

due to the fact that it does not provide information on the cross-section in absolute

units, and normalization to direct data are necessary. The method in fact needs a

1This will not be the case for the 19F(α,p)22Ne reaction, see Chapter V)
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3.3 The Trojan Horse Method (THM)

confrontation with direct measurements, and also a normalization to them, at ener-

gies above the Coulomb barrier or around it.

Let us now assume that the momentum distribution |φ(−ks)|2 is known theoretically

or experimentally studied. After the calculation of the KF, it will be possible to know

the differential off-energy-shell,two-body cross section
(

dσN

dΩ

)o f f

l

for the process, if

the three-body one is known, using equation 3.31:

(

dσN

dΩ

)o f f

l

∝
d3σ

dECdΩCdΩc

[

KF |φ(−kS)|2
]−1

(3.33)

If the TH nucleus is in the projectile − like in the 19F(α,p)22Ne − the process can be

treated in the same way, taking into account that in this case the wave function of

the TH nucleus in the momentum space will be equal to:

〈ks, q|A〉 = φ(kxs)δ(q + ks − p) (3.34)

In equation 3.34, |A〉 is the intrinsic state of the projectile, and from it we can obtain

the two-body amplitude transition. It will lead to a formulation that is identical to

equation 3.31, if a factor EA

Ea
is multiplied for it [Slaus et al., 1977], where A is the

projectile (that this time acts as a TH nucleus) and a is the target .

It is now important to underline that
(

dσN

dΩ

)o f f

represents only the nuclear contribu-

tion, given that the beam energy is deliberately chosen to overcome the Coulomb

barrier in the entry channel. In this way the x particle can be brought inside the

nuclear interaction field by the TH nucleus. In this way the desired reaction can be

triggered.

As said before, this measurements needs a comparison with direct data. For such

reason it is necessary to multiply the indirect two-body cross-section by a pene-

trability coefficient, that stands for the effects of Coulomb and centrifugal barrier

related to the l-th partial wave:

dσ

dΩ
=

∑

l

Pl

(

dσN

dΩ

)o f f

l

(3.35)

After integration of equation 3.35 over the solid angle dΩ, the total cross-section

σtot is obtained. The S(E)-factor can also be obtained from it (chapter 2 equation

2.33). Both σtot and S(E) are not affected by electron screening. It is now possible

to normalize to direct measurements.

A most refined formalization of the Trojan Horse Method considers as a starting
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point not the PWIA, but the Distorted-Wave Impulse Approximation (DWIA). This

new formalism introduces some quantitative variations to the cross-section, keeping

the factorization equation 3.31 unchanged. This approximation also justifies in a

most rigorous way the equation 3.35 with respect to to the PWIA. The DWIA was

introduced with the aim to study a peculiar class of issues, called two potential scat-

tering. In this case we suppose that the potential of interaction V can be decomposed

into two parts:

V = U +W (3.36)

Of these two, only the U part will be the exact solution searched, while the W effects

are considered only at the first-order solutions.

In this condition the so-called two potential formula can provide the expression for

the diffusion amplitude form the potential V as a sum of terms depending on U and

W:

T f i =
〈

φ f

∣

∣

∣U
∣

∣

∣χ+i
〉

+
〈

χ−f

∣

∣

∣W
∣

∣

∣ψ+i
〉

(3.37)

In equation 3.37 |χ+i 〉 and |χ−
f
〉 are the distorted waves of the U potential in the initial

and final state, while |φ f 〉 is the plane wave representing the final state and |ψ+
i
〉 is

the exact solution of the scattering problem.

Let us now consider a two-body reaction of astrophysical interest obtained using

the THM. In general the differential cross-section for a three-body reaction can be

rewritten as it follows:
d3σ

dECdΩCdΩc

= KF
∣

∣

∣T f i

∣

∣

∣

2
(3.38)

Where again KF is the kinematic factor. Introducing the reduced masses, µAa and

µBb, the momenta KC and Kc, the relative momenta kCc, kBs e kAa, where B stands

for the “participants” system2, the KF factor will be equal to:

KF =
µAamc

(2π)5~7

KC K3
c

kAa

[(

kBs

µBs

)

−
kCc

mc

·
Kc

Kc

]−1

(3.39)

In DWIA the three-body cross section can be written as [Typel and Wolter, 2000]:

d3σ

dECdΩCdΩc

= KF
∣

∣

∣W(QBs)
∣

∣

∣

2 vCc

vAx

P−1
l Cl

dσl

dΩAx

(Cc→ Ax) (3.40)

In equation 3.40,
dσl

dΩAx

represents the on-shell cross section for the two-body re-

action, Cl is a normalization constant and QBs is a probability amplitude tied to

2The other letters are like in figure 3.3
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the wave function of the a nucleus in the momentum space at its fundamental state

Φ(QBs). This link is expressed in the following equations:

QBs = kBs −
ms

ms + mx

kAa (3.41)

W(QBs) = −
(

εa +
~

2Q2
Bs

2µxs

)

Φa(QBs) (3.42)

Here εa is the threshold energy for the a→ x + b decay [Typel and Wolter, 2000].

Moreover, in equation 3.40 the reciprocal of the penetrability factor appears. It com-

pensates for the on-shell cross-section suppression due to the Coulomb barrier.

It is now important to underline that the surface approximation, along with the Cl

factor, although it allows us to analyse the two-body cross-section
dσl

dΩAx

dependence

from the energy, does not give us a result in absolute units. It is therefore necessary

some kind of normalization of the two-body cross-section to direct data, in an energy

region where the latter is not affected by Coulomb suppression or electron screening.

3.4 Experimental examples

The THM has been used in the past twenty years to study many reactions of

astrophysical interest, and in many cases those measurements are in fair agreement

with the direct ones. Many studies about the validity of the method have also been

made, and experiments on individuation and separability of quasi-free processes

have been performed [Jacob and Maris, 1966; Zadro et al., 1989]. They aimed to

verify that the quasi-free process is allowed at low energies, and so that the THM is

applicable in the range of astrophysical interest.
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(a) (b)

(c)

Figure 3.4: Study of the reaction 6Li(p,α)3He via the 2H(6Li, α 3He)n [Tumino et al., 2003].
a)Experimental momentum distribution for the spectator (a neutron), compared with the
Hultén function, that is the theoretical trend for neutron distribution inside deuterium (see
Chapter 6.2).
b)Indirect two-body cross-section (full circles, compared with direct data at
Ebeam > Ecoul).
c) Experimental astrophysical factor (full circles) compared with direct data. The solid
line represents a second order polynomial function that fits the data.

In figure figure 3.4 some results regarding the validity check of quasi-free contri-

bution of the H(6Li,α)4He two-body reaction to the 2H(6Li,α 3He)n three-body one

[Tumino et al., 2003], in which the neutron acts as the spectator, are shown.

Experimental evidences underline that the quasi-free mechanism can be separated

from the others, and how the excitation function obtained in this way exactly repro-

duces the direct data, inside the experimental errors. Such a result is a validity test

for the polar approximation (paragraph 3.3.1) at energies higher than the Coulomb

barrier. An experimental evidence like this constitutes a necessary step to use the

THM in nuclear astrophysics measurements.

About the validity of the THM, in figure 3.4 is clear that the 2H nucleus can be used

as a TH one. So the method can be applied (figure 3.4a), and the cross section is

in good agreement with direct measurements (figure 3.4b). At low energies instead,

the astrophysical factor (figure 3.4c) is not influenced by the electron screening.
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(a) (b)

Figure 3.5: (a) Astrophysical factor for the 6Li + d −→ α + α reaction extracted using the THM
method [Spitaleri et al., 2001] (full circles), and compared with direct data [Engstler
et al., 1992] (white diamonds).
(b) Astrophysical factor for the 7Li + p −→ α + α reaction obtained with the THM [Lat-
tuada et al., 2001] (full circles) compared with direct measurements [Engstler et al., 1992]
(white diamonds). In both figures the solid line is the best-fit used to extrapolate the as-
trophysical factor of bare nucleus at zero energy Sb(0)

In figure 3.5 the astrophysical factor for the 6Li(d,α)4He studied via the three-

body 6Li(6Li,αα)4He are shown (black circles) [Spitaleri et al., 2001], along with the

direct measurement at low energies (white diamonds) [Engstler et al., 1992], while

in figure 3.5b the astrophysical factor for the 7Li(p,α)4He extracted via 2H(7Li,αα)n

(black circles) [Lattuada et al., 2001] and the direct measurements (white diamonds)

[Engstler et al., 1992] are reported.

Given that the deuteron and the α particle inside 6Li and the proton and the neu-

tron inside 2H are weakly-bound (EB 1.47 MeV and 2.22 MeV, respectively), in the

experimental application of the THM for α and d-induced (6Li), and for proton or

neutron induced (2H) reactions, those nuclei can be used. In the present work we

will use a 6Li beam impinging on a 7LiF target to study the 19F(α,p)22Ne, starting

from the three-body reaction 6Li+19F−→p+d+22Ne (in which the deuterium acts as

a spectator) and a 23Na beam colliding with a CD2 target to study the 23Na(p,α)20Ne

via the 23Na+d−→ 20Ne+α+n reaction, where this time the spectator is the neutron.

As can be easily understood from the results shown until now, the THM is a re-

ally useful and a powerful experimental technique for cross-section determination

at astrophysical energies.
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CHAPTER 4

Preparation of the experiments

In the first part of the following chapter the experimental features for Trojan

Horse (TH) application will be explained. After that, a more specific explanation

of the experiments meant to study the 19F(α,p)22Ne and 23Na(p,α)20Ne reactions

using the THM will be made, paying attention to the reasons that led us to choose

which nuclei to use as projectile and target, where to place our detectors and the two

different experimental set-up used.

4.1 Experimental conditions

The first thing to ascertain when TMH can be used is to verify a certain number

of conditions, involving the nuclear structure of the TH nucleus and the status of the

outgoing particles.

The necessary conditions about nuclear structure are:

• The TH nucleus must show an evident cluster structure;

• The binding energy of the particles composing the cluster must be negligible

if compared with the beam energy;

• The momentum distributions of the particles inside the cluster must be known

[Pizzone et al., 2005];

To apply the THM, a nucleus that can be described as A= x⊕s must be chosen as

TH nucleus, in which x is the participant and s the spectator. If those conditions are
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4.1 Experimental conditions

satisfied, a two-body reaction like the one below

a + x → C + c (4.1)

can be studied using the three-body process

A + a → C + c + s (4.2)

Among the nuclei with evident cluster structure, a favorable choice can be to use the

one that has the smallest binding energy. In this way, the QF probability to occur

can be maximized. In our cases 6Li, that shows a well-known cluster structure α⊕ d

with binding energy Eb=1.47 MeV, and 2H that can be described as a system p⊕ n

with binding energy Eb=2.22 MeV. Those were therefore chosen as THM nuclei.

All four particles distributions inside the respective clusters are well known [Bar-

barino et al., 1980; Zadro et al., 1987; Cherubini et al., 1996; Spitaleri et al., 2001;

Pizzone et al., 2005].

Figure 4.1: Feynman pseudo-diagram for the three-body reaction.

In figure 4.1 a three-body process is sketched, under the hypothesis that the break-

up is in the beam particle (if the TH nucleus is in the target, the figure is just tilted

upside-down). The total momentum of the TH nucleus is equal to pA = ps + px, and

its momentum before the collision must be considered: if the break-up takes place

inside the target, the momentum distribution of the spectator particle is equal to

px = −ps. In both cases, the momentum of the x particle composing the cluster can

be in principle experimentally measured, given that it is one of the three particles in

the exit channel.

The THM will be applied to the 6Li(19F,p22Ne)d reaction with the aim to study the
19F(α,p)22Ne two-body process, and the 23Na(d,α 20Ne)n to study the 23Na(p,α)20Ne:
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4.1 Experimental conditions

in the first case the TH nucleus is in the beam (6Li = α ⊕ d) and the spectator particle

(d) will be detected, while in the second the TH nucleus is in the target (2H = p ⊕ n)

and the spectator particle (n) characteristics will be reconstructed from the detected

ones (20Ne and α).

The next step in the preliminary considerations is to look for some conditions in

which the Coulomb barrier effects in the entrance channel can be overcome. More-

over the two-body reaction would take place inside the energy range of astrophysical

interest, taking into account that the relative kinetic energy between the two particles

in the entrance channel must be compensated by the binding energy between them.

Therefore, to choose the beam energy, overcoming the Coulomb barrier is only the

first step condition. The center-of-mass energy in QF conditions (Eq f ), in fact, must

lie as near as possible to the Gamow energy range (b factor in 2.24, if squared):

Eq f = EA − EB(x−s) ≈ EGamow (4.3)

Here EB(x−s) is the binding energy for the spectator particle inside the TH nucleus,

and EA is the energy of the beam for the two-body process in the center-of-mass

reference frame. By means of 4.3, the beam energy Ebeam can be extracted, in the

laboratory reference frame:

Ebeam = [EB(x−s) + Eq f ]
(

mx + ma

ma

)

(4.4)

4.1.1 Selection of the kinematic conditions

The THM needs the detection of at least two out of the three outgoing particles:

in a three-body reaction, once the emission angles of two out of three particles and

the energy of one of those are known, emission angle and energy of the third particle

in the exit channel is univocally determined.

The quasi-free contribution will be maximum for ps=0, where the momentum dis-

tribution of the spectator inside the TH nucleus shows its peak. This must be true

whether the TH nucleus is in the target or in the projectile, and in the second case the

energy of the beam must be taken into account. Using the classic energy and mo-

mentum lconservation aws for such a case, a system composed by three equations
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4.1 Experimental conditions

in four variables can be established:

EA + Q = Ec + EC +
p2

s

2m

pA = pccosϑc + pCcosϑC + ps (4.5)

0 = pcsinϑc + pC sinϑC

where EA and pA are the energy and the momentum of the TH particle, and EC, Ec,

pC , pc, ϑC and ϑc are energies, momenta and angles of the particles coming from

the a(x,c)C reaction (see figure 4.1). Fixing energies and one of the two angles,

the other one is determined univocally. If the momentum distribution has ps , 0

(i.e. the break-up is in the projectile), angles are chosen in a way that leaves the ps

unchanged before and after the reaction. Finding the right couple of angles is impor-

tant to maximize QF contribution, thus helping its identification and discrimination

form all the other processes occurring.

Once the kinematic conditions are determined, the energy trend in the center-of-

mass reference frame must be calculated using the post-collision prescriptions

(ECM=Ec−C-Q2B
value

) of the particles coming from the QF process versus ps: this pro-

cedure is useful because it allows us do ascertain that, in these kinematic conditions,

measurement in the energy region of astrophysical interest can be performed. This

calculation will be compared to the experimental data with the aim to verify if there

is agreement between those and the predicted momentum distribution of the specta-

tor particle. Once the angles are chosen, a prediction of the emission energies of the

fragments of interest can be made, again using a Monte Carlo simulation, and this

is useful to determine the number and the thickness of the detectors1.

It is obvious that an optimal calibration, both in energy and in angle, is fundamental,

due to the narrowness of the region of interest. It is also necessary that all noises

coming from parasite reactions are removed. It is also important to understand if

there are parasite reactions that share the same two bodies in the exit channel, and

in affirmative case this condition must be carefully examinated, and avoided if pos-

sible.

1In order to maximize resolution, the detected particles must stop inside the detectors
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4.2 Detectors and Electronics

4.2 Detectors and Electronics

In every TH experiment, energy and position of the impinging particles are really

important. Detectors with good position and energy resolution (less than 1 mm

and less than 1% spacial and energy resolution) even for small values are therefore

needed. Our choice was to use Position Sensitive Detectors (PSDs). Those must be

placed following some angular conditions (explained in 4.3.3 and 4.6.3), and must

have an adequate thickness to detect the incoming particle. With the aim to identify

their charge and mass, ∆E-E technique was also used, but using different kind of

detectors: silicon detectors for the 19F(α,p)22Ne reaction and ionization chambers

for the 23Na(p,α)20Ne. The reasons behind it will be explained in the continuation

of this paragraph.

4.2.1 Position Sensitive Detectors

The PSDs are solid-state detectors sensitive to the position where particles hit

them.

This achievement is performed using the so-called charge division method. This

kind of detector is composed by a diode, with a resistive electrode on the opposite

face of the silicon buffer (figure. 4.2). From any event two signals will be produced:

one proportional to the energy and another to the position. The former comes from

the low-resistance electrode, while the latter passes through the high-resistance one,

and it depends from the point where the particle is revealed. If a charged particle

comes across the detector, it will be revealed at one of the extremities of it. This

signal is proportional to the energy and to the resistance of the electrode produced

by the material between the far end of the detector and the point where the particle

has struck it. Therefore the P signal will be dependent also one the E one. On

the other electrode the signal will be proportional only to the energy. Those two

informations allowed us to identify the position where the signal has been produced.

If, for example, a particle hit the detector at the position P, naming x as the distance

between P and A (4.2), the charge collected at B will be equal to

Qx1 =
R2

Rtot

QE (4.6)

with QE total charge produced by the diode-particle interaction (extracted from the

low-resistance electrode), R2=ρx/L and Rtot=ρL/s (being ρ the resistivity and s the
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4.2 Detectors and Electronics

Figure 4.2: Operational scheme of a typical PSD: the incoming particle arrives on the P part, giving
rise to a signal that is proportional to the energy and to the position (x) between A and B.
On the C part the signal is proportional only to the energy.

surface area of the electrode). So the equation 4.6 can be written as

Qx1 =
x

L
QE (4.7)

and then

P ∝
x

L
E (4.8)

Therefore a calibration in position of the signal is needed. The PSDs used for this

experiment, produced by Micron Semiconductors, have a 1×5 cm2 active area, and

a scheduled spacial and energy resolution equal to 0.8 mm and 0.8%.

4.2.2 The ∆E-E tehchnique

Any charged particle, passing through some material, loses energy, ionizing the

surrounding nuclei in the process. A formula that takes into account classic and
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quantistic effects for particles different from electrons, and for velocities higher than

some hundredth of the speed of light was proposed by Bethe and Block in 1930, and

for a particle passing through a material made by nuclei with atomic number Z, mass

number A and density ρ has the following expression:

−
dE

dx
= 2π

NAZρ

A
r2

emec
2 z2

β2

(

ln
2meγ

2v2Wmax

I2
− 2β2 − δ − 2

C

Z

)

(4.9)

In this formula:

• NA is the Avogadro number;

• re is the classic radius of the orbit of an electron;

• me is the mass of the electron;

• z is the atomic number of the incoming particle;

• β = v
c
, with v speed of the incoming particle and c speed of light;

• I is the mean ionization potential;

• γ =
1

√

1 − β2
;

• Wmax is the maximum energy transferred to an electron in a collision;

• δ is the so-called density correction, that compensate for the rapid increase of

the logarithm for high values of γ.

• C is the shell correction, important at low energies

So the energy per unit of distance lost by a charged particle in the traversed material
(

−
dE
dx

)

is proportional to

−dE

dx
∝ z2ρ

1
β2

ln βγ (4.10)

From equation 4.10 it appears clear that different charged particles at the same en-

ergy will lose different amounts of energy in the same material: for example an α

particle will lose four times more energy than a proton of the same energy [Leo,

1994]. Using a detector thin enough to not stop the particle but able to measure the

energy that the particle has lost in in correlation with a thick one behind that mea-

sures its residual energy, particle discrimination by their charge is possible: different

particles in fact will lie on different curves depending on it. Plotting the the energy
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loss (retrieved by the thin detector) versus the residual energy (measured used the

thick one), different hyperboles depending on z2 will rise. This is the so called ∆E-E

technique for particle discrimination.

In the 19F(α,p)22Ne, 3 mm radius silicon detectors were used as ∆E stages, and a sig-

nals proportional to energy were xacquired (all the reasons behind this choice will

be explained later in this chapter). The way they work is the same of the resistive

part of the PSDs, with the difference that in this case energy loss is measured.

For the 23Na(p,α)20Ne, ionization chambers were used, because in this second ex-

periment the identification of the heavy fragment was decided2, and those had too

low energies to pass through solid ∆E stages.

Figure 4.3: Cartoon of a ionization chamber.

The ionization chamber is a device usually used to detect any kind of ionizing ra-

diation, by measuring the amount of charge liberated by the interaction of it with

suitable gases [Knoll, 2010]. It is sketched in figure 4.3, and it is composed by two

conducting electrodes put inside a container filled with a certain gas. Those are con-

nected to a power supply that maintains an electric field between the anode (positive,

blue solid line) and the cathode (negative, red solid line). When the radiation (in this
2see Chapter 4.6

84



4.2 Detectors and Electronics

case charged particles) penetrates the chamber from a window of suitable thickness

(light blue dashed line), its interaction with matter generates ion-electron couples,

and the electric field present in the chamber will change due to induction: a ∆V

signal is generated by the changing of the electrostatic energy coming from the drift

of the charges towards the electrodes. This ∆V signal is proportional to the number

of generated charges, therefore to the energy of the particle, and to the distance of

the particle track from the electrodes, if the track is parallel to these. That means

that for a fixed particle energy, the detector response is strongly dependent on the

position of the track. To avoid this, a grid with intermediate potential between the

electrodes and transparent to the electrons (called “Frisch grid”, yellow dashed line

in figure) is placed in front of the anode: this eliminates the dependence from the

position. The drift velocity of the ion-electron couples due to the electric field will

instead determine the fall time of the ∆V signal.

Ionization chambers are really versatile objects: the pressure of the gas inside it can

in fact be widely variated, according to the energy loss of the particle of interest and

to the resistance of the window. Increasing pressure, energy loss will also rise, and

separation between different Z will be wider. If the ionization chamber has also an

exit window, another detector can be placed behind it, and so the ∆E-E technique

can be used, with the ∆E stage that measures the energy loss of particles inside it,

and the back detector that can be used to measure the final energy of those particles.

Proper simulations showed how Isobutane (C4H10) was the best solution to energy

loss measures, because it provided the the best separation between different isotopes

at a favorable pressure (50 mb in our case). To avoid gas contamination, it must cir-

culate from the gas bottle to the chamber, and then in an appropriate system for gas

disposal.

4.2.3 Electronics

Let us now discuss in a really schematic way how the electronic chain operated.

For this reason let us imagine the simplest nuclear physics experiment: an incoming

beam, and two detectors, placed at the opposite sides of the beam at certain angles.

Such experiment is represented in figure 4.4: here a ∆E-E telescope and a single-

stage detector are present. This is, indeed, really similar to the experimental set-up

for both the 19F(α,p)22Ne and 23Na(p,α)20Ne, with the difference that in those two
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Figure 4.4: Sketch of a simplified experiment of nuclear physics

there are five PSDs (two telescopes) in the first and four PSDs (two telescopes) in

the second. The only difference between the case sketched in figure 4.4 and the

“real” set-up of the two experiments will be the number of channels that will go

to the acquisition system. The way they will be delivered and processed is almost

the same. The electronics used for the basic experiment can then be sketched as in

figure 4.5.

Figure 4.5: Sketch of the used electronic framework: pre-amplifiers (PRE), slow amplifiers (AMP),
fast amplifiers (TFA), delays (DELAY), gate generator (GG), discriminators (DISCR),
time to amplitude converter (TAC), TTL-NIM-TTL converter (TTL-NIM) and ADC.

For PSDs, two signals are delivered by the detector: one proportional to the energy

and the other to the position. The energy signal coming from the amplifier was

duplicated into two components: one is sent to the ADC (slow component), and the

other followed the other path of the electronics (fast component). Position and ∆E
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signals (not reported in figure) were treated in the same way as the slow component

of the energy. All the signals coming from PSDs and ∆E stage are delivered from

the pre-amplifiers (that increased the signal-to-noise ratio) to the amplifiers, with

the aim to shape it in the best possible way, improving resolution. The acquisition

trigger3 is given by the signals of the two E detectors, and the first one to arrive

to the START/STOP module opens the coincidence window, a period of time in

which the event will be acquired. Once the second signal arrives the acquisition

window will be closed and the TAC/SCA module will communucate with the ADC

(Analogic to Digital Converter): processed signals are then collected by the ADC

and then digitalized and stored in the PC disk. This situation corresponds to the

case in which a particle crosses the telescope, and another is detected by the other.

About the fast component, it will follow the other path of the electronics and is used

to generate the acquisition trigger and gate.

Regarding the two different experiments argument of this thesis, 19F(α,p)22Ne and
23Na(p,α)20Ne, the electronics are not so different: the only thing to keep in mind

is that there are a lot more parameters (thirteen for the first, ten for the second).

Another difference is that an OR module is present in both experimentsthat is used to

discriminate between different detectors operating in coincidence: this coincidence

can be one-to-many (PSD1/PSD2-PSD3 in the first experiment) and and one-to-one

(PSD1-PSD4 and PSD2-PSD3 in the second one).

4.3 Detectors Calibration

In paragraph 4.2.1 the way how the signal depends from energy was explained.

From equation 4.8, it is possible to obtain energy and position information coming

from the detectors, but they still need to be calibrated. To do so, some measurements

in which the trigger is given by the logic OR of every signal coming from detector

were performed: in this way every event detected was aso stored. In this phase

every detector had a equally spaced grid with slits placed in front of it (figure 4.6).

During calibrations for the 19F(α,p)22Ne, the ∆E detectors were removed, while in

the other experiment both calibration with and without the ionization chamber were

performed.

3Events that start the acquisition
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Figure 4.6: PSD holder and grid.

Using a theodolite, the measure of the central positions of any detector and of

any of the eighteen spacings was performed. The arm on which the detectors are

fixed moves on a graduate ferrule with a 0.1◦ precision, while the spacings of the

grids are 1 mm large. These positions are then compared with the geometrical posi-

tions expected for the central values of the spacings, that are already known. Their

presence in the calibration phase was fundamental, because it allowed us to estab-

lish a correspondence between measured angles and position signals. Calibrations

were made using elastic scattering (in the present cases 6Li at 6 MeV and 23Na at 58

MeV on 197Au and CD2 targets) , standard α-source, or some well known two-body

reactions.
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Figure 4.7: Not calibrated typical position versus energy 2D-spectrum (hydrogen beam on 197Au,
Eb=5 MeV). Some of the spacings are not visible.
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4.3.1 Position Calibrations

To eliminate the dependency of position from energy, the following relation,

based on equation 4.8, must be used:

xi =
Pi − P0

Ei − E0
(4.11)

with 1<i<n (n=number of spacings), while P0 and E0 are constant values to be

determined with fit procedures.

The spacings gave rise to the not calibrated 2D-spectrum in figure 4.7, where PCh

and ECh are the channel signals linked to position and energy, respectively. Once i is

fixed, a linear dependency between position and energy is established, and a linear

fit procedure can be performed.

PCh = a(ϑ) + b(ϑ)ECh (4.12)

Now our aim was to obtain a correspondence between the signals coming form the

detector and the angle ϑ corresponding to the position at which it was generated. So

linear fits on the a(ϑ) and b(ϑ) parameters were performed

a(ϑ) = p1ϑi + p2

(4.13)

b(ϑ) = p3ϑi + p4

The (4.13) gave rise to two functions that, by substitution in (4.12), allowed us to

obtain an angle-channel correspondence. This procedure in the end associated any

position peak to an angular value. The so obtained calibration function has the

following form

PCh = [p1ϑ + p2] + [p3ϑ + p4]ECh (4.14)

and finally

ϑ[deg] =
PCh − p2 − p4ECh

p1 + p3ECh

(4.15)

This equation finally ties the detection angle with energy and position signals.

4.3.2 Energy Calibration

About energy, it is related to signals by a linear relation:

EPS D[MeV] = a + bECh (4.16)
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To obtain a and b from a best-fit procedure one must be able to identify peaks in the

P(ch) versus E(ch) 2D-spectrum, and to associate those peaks with proper energy

values. Those are calculated using simulation codes for two-body reactions, taking

into account energy loss of the beam particles and of the outgoing ones. Emission

angles must be also considered, to better ascertain how much energy the outgoing

particles are losing, given that every particle has a different path for different de-

tection angles. This procedure was also made using LISE++ [Tarasov and Bazin,

2008].

Now the best-fit procedure (equation 4.15 and 4.16) must be applied, and the result

is the 2D-spectrum in figure 4.8. The fact that the dependence of the position from

the energy has been removed can be easily ascertained considering that now spots

at different energies share the same position (angle, in this case) of detection, giving

rise to a certain linearity in ϑ.

Figure 4.8: Calibrated 2D-spectrum. The green lines represents the central angular values for every
spacing, and the red one the central angle of the detector. Red squares represents the
theoretical values of energy and position for the i H+197Au and H+CD2 reactions at
different energies[Tarasov and Bazin, 2008].

It is now important to take into account the different energy loss of particles while

crossing the target at different angles, the ∆E and the absorbers (the last two if

present). It is therefore utterly important to take into account those elements when

the association between the signal and the “true” energy is made. This can be made

after some calculations, made in this case using LISE++ [Tarasov and Bazin, 2008]:

with this program one can calculate how much energy a certain particle loses in
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every crossed layer, even considering the different angle of emission, and so the

different paths, as a function of the revealed energy, ∆E=f(Eres). To explain this

procedure let us consider a particle crossing two different materials before reaching

the detector. For the first material crossed by the incoming particle, a calculation of

energy loss is made at different energies. Those are chosen taking into account the

energy range of the outgoing particles previously calculated by means of theoretical

calculations. After that a best-fit using a proper function (polynomial, exponential

or f (x)=axn function) is performed on the energy of the incoming particles versus

energy loss plot. In this way a theoretical trend of energy loss in the material with

respect to the energy of the incoming particle can be extracted. The outgoing ener-

gies of the particle are then used as impinging ones for the second layer, and with the

same procedure the final values are calculated. At last, to take into account energy

loss, the final step is to take the energies coming from calibrated detectors and use

this last function to calculate the energy that the particle had before the layer, using

the fitting function found so far, so E=∆E+Eres. This energy will then be used to do

the exact same thing for the first layer. In this way a calculation of the “true” energy

of an incoming particle can be made.

This concludes the general part of this chapter. In the following all the specifics of

the two different experiments will be explained.

4.4 The 19F(α, p)22Ne reaction: preparation of the ex-

periment

Now that all the general features of a THM experiment are known from both a

theoretical and experimental point of view, let us discuss the first key point of this

thesis: the 19F(α,p)22Ne reaction studied via the 6Li(19F,p22Ne)d by means of the

Trojan Horse Method. But first let us discuss the state of the art for the two-body

reaction

4.4.1 State of the art

The 19F(α,p)22Ne reaction, as stated in Chapter I, is one of the main destruction

channels in AGB-stars. For such stars, whose temperature is at about 0.2·109 K,

the Gamow window lies between 200 keV and 760 KeV, while the Coulomb bar-

rier for the two-body reaction of interest is 3.81 MeV. It is therefore obvious that the
19F(α,p)22Ne reaction occurs at energies far below the Coulomb barrier. This kind of
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reactions can take place only if quantum mechanics via tunnel effect is considered.

In fact this reaction has not been studied with direct method at astrophysical ener-

gies: the cross-section measurement at lowest energies near the Coulomb barrier

arrived at Elab=1100 keV for a α particle impinging on a fluorine target. Those were

then used to perform R-Matrix4 calculations by Ugalde et al. [2005, 2008] (figures

4.9 and 4.10).

Figure 4.9: Proton spectrum at 135◦ for three different α beam energies (written in the figure).
Groups of protons can be detected at 1360 keV and 1100 keV, while no evidences can be
found at 792 keV.

(a) (b)

Figure 4.10: Cross-section extracted with R-Matrix calculations for the 19F(α,p)22Ne reaction. Both
19F(α,p0)22Ne (panel a) and 19F(α,p1)22Ne (panel b), corresponding to 22Ne ground and
first excited state respectively, are shown along with their uncertainties.

4See Chapter 5.5

92



4.4 The 19F(α, p)22Ne reaction: preparation of the experiment

The authors also tried to measure at Elab=792 keV, but no experimental evidences

came out whatsoever.

(a) (b)

Figure 4.11: a)Upper and lowers limit for the 19F(α,p)22Ne reaction rate for an AGB-star (solid
line).[Lugaro et al., 2004]
b)Upper and lower limits for the 19F(α,p)22Ne in a WR-star (solid line). The limits are
reported as pointed lines, while the dashed one is the 22Ne(α,n)25Mg [Stancliffe et al.,
2005]

From the two panels in figure 4.11 it appears clear how at T=0.2÷1 T9 the uncer-

tainties in the reaction rate are huge (circa ten orders of magnitude). It is therefore

necessary to have a measurement of the reaction rate at lower energies.

In this work, a indirect measurement of the 19F(α,p)22Ne reaction via the three-body

one 6Li(19F,p22Ne)d (Q=0.199 MeV) was performed using the Trojan Horse Method

(THM).

An accurate measurement of the cross-section of the reaction in the Gamow window

energy range would be of great importance to understand fluorine nucleosynthesis

inside stars. The following experiment was built with this task.

4.4.2 Preparation of the experiment: experimental conditions

For the case under investigation a 6Li beam impinging on a 7LiF target was used.

Given the well-known binding energy of the cluster (1.47 MeV), if the energy Eq f

is equal to the Gamow peak (≈430 keV if T=0.2 T9), equation 4.4 gives the value

Ebeam ≈2.3 MeV, far lower than the Coulomb barrier previously calculated. Then the

experiment was performed using a 6Li beam with energy equal to 6 MeV, so slightly

above the Coulomb barrier for the three-body one (5.42 MeV). This is the lowest
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energy at which such a beam with enough focusing5 (1 mm) could be delivered in

Ruder Bošković Institute (Zagreb). This choice allowed us to have useful events for

normalization purposes. Furthermore the beam energy in equation 4.4 is referred to

the condition ps=0, that is not reachable with our experimental set-up: this value,

in fact, corresponds to zero degrees in the laboratory reference frame, making it

impossible to measure with silicon detectors that would be destroyed by the beam.

The minimum spectator momentum for this case is at 25 MeV/c, value low enough

to have the presence of QF processes.

Another choice would have been to go to sub-barrier energies, but the cross-section

for those reactions is very low, making such a measure too expensive in terms of

time.

4.4.3 Selection of the kinematic conditions

Using the (4.6), it is possible to get a precise idea of the angles at which the

three body reaction will be detectable. From a kinematic analysis made by means of

Monte Carlo simulations, the optimal choice would be at small angles, but this could

be a problem if elastic scattering of 6Li on 19F is considered: the rate of incoming

particles would be too high to manage for the detectors, that would eventually burn

out.

Figure 4.12: Angular range for the two detected particles (exact angular ranges are reported in table
4.2). The red lines represent the central values of the detectors, while the blue and green
ones the extremities. In this simulation, only events with ps <60 MeV/c are considered

5Focusing is really important due to the necessity to reconstruct the exact angle of the outgoing
particles, as stated in chapter 4.1

94



4.4 The 19F(α, p)22Ne reaction: preparation of the experiment

The positions of the detectors were chosen taking this fact into account, along with

the obstacles coming form the supports. The final angular ranges covered by the

experimental set-up are sketched in 4.12: now that angular ranges are decided an

idea of the trend of ps versus EC.M. (p−22Ne) and of the energies of the detected particles

are useful, again to ascertain the energy range where parasite reaction can occur and

at which momentum values, and to choose the right detectors.

Figure 4.13: Predicted 2D-spectrum EC.M. versus psfor 23◦ < ϑp <54◦ and 2◦ < ϑd <22◦. As can be
seen, all the QF contribution is inside the preferred region.

Figure 4.14: 2D-spectrum proton energy versus deuteron energies, with the same cuts reported in
figure 4.13.
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Given the maximum energy values for protons and deuterons (cfr. figure 4.13) at the

designed angles, 500 µm thick PSDs where chosen for energy measurements, while

two silicon detectors (round, 81.7 mm2 active surface) 15 µm thick were chosen as

∆E stages.

4.4.4 Sequential mechanisms

The studied QF reaction is not the preferential channel in the three-body reac-

tion: there are in fact sequential mechanisms6 that have a much higher cross-section

(several orders of magnitude). This makes quasi-free processes hard to detect, due

to the fact that the outgoing particles are the same. It is therefore necessary to verify

if those reactions can be isolated in some way from the QF process. The reaction

used in this experiment is the three-body one in the exit channel

19F + 6Li → 22Ne + d + p (4.17)

This reaction can be hindered by some background coming from sequential mecha-

nisms. The reaction 4.17 can occur through three main channels that share the same

particles in the exit channel of the reaction of interest:

19F + 6Li → 22Ne + 3He∗ → 22Ne + d + p

19F + 6Li → 24Na∗ + p → 22Ne + d + p (4.18)

19F + 6Li → 23Na∗ + d → 22Ne + d + p

Among those three, the first one is not accessible: in literature there are no excited

levels of the 3He particle in the explored energy range [Firestone, 2007a]. About the

second mechanism of (4.18), there are no levels reported in literature in the E22Ne−d

relative energy range spanned by this experiment ( 0.5÷4.5 MeV, corresponding to

14÷20 MeV, see figure 4.15): the highest energy level of 24Na is in fact at 12.5

MeV [Firestone, 2007a] (figure 4.15), so there should not be any detectable inter-

ferences coming from this channel. About the third reaction of 4.18, it can not be

disentangled from the QF process if not after some considerations about the momen-

tum distribution of the spectator particle for the QF process itself. Some resonant

contributions from 23Na are therefore expected.

6A sequential mechanism is a process that goes through the formation of a compound nucleus
that will decay after some time producing some other particles.
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(a) (b)

Figure 4.15: a)2D-plot obtained by Monte Carlo simulation for the 19F +6 Li→24 Na + p. The red
solid lines represent the last excited states of 24Na that can be populated by sequential
mechanism.
b)Not-in-scale diagram of the levels corresponding to the red lines.

4.5 The 19F(α, p)22Ne via the THM: experimental set-

up and calibration

Taking into account what was discussed before, an experiment was performed

at Ruder Bošković Institute (Zagreb), where a 6Li beam with enough collimation is

available, as stated earlier in this chapter. This beam collided into a 7LiF target with

a 12C backing (produced at LNS-Laboratori Nazionali del Sud). This chemical com-

position was chosen because it allowed us to well separate the three-body reaction

of interest from parasite reactions coming from 7Li and from the carbon backing.
6Li is a good candidate to be a TH nucleus, because of its well-known cluster struc-

ture. For this experiment two targets 106 µg/cm2 and 141µg/cm2 were used, with

29µg/cm2 and 23µg/cm2 12C backing respectively. The beam had 5 enA intensity

and, if one presumes that the reaction is taking place in the middle of the target, the

beam energy loss are 0.04 MeV and 0.09 MeV respectively.
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Figure 4.16: Sketch of the experimental set-up

The experimental apparatus is reported in figure 4.16: three position sensitive

detectors (PSDs) made by a 500 µm silicon thick buffer were used. Those worked

in coincidence (PSD1 and PSD2 with PSD3) and were centred at definite quasi-free

angles, as reported in table 4.1).

Before PSD1 and PSD2 two thin silicon detectors (15 µm) are placed at 6 cm and

7.5 cm: those are used for particle identification by means of the ∆E-E technique,

with the aim to discriminate deuterium nuclei. A coincidence window of 250 ns was

also established to reduce the background. Elastic scattering of 6Li on 19F is a great

problem for this experiment. Its rate on PSD2 was calculated using simulations, and

it appeared to be ≥ 4kHz (for a 6 MeV 6Li beam with 5enA current impinging on a
7LiF target, calculations made using LISE++ [Tarasov and Bazin, 2008]), but such

a quantity would rapidly damage the detector. For this reason, a thin aluminium foil

(15 µm) was placed in front of PSD2.

About the target, it is tilted at 45◦ with respect to the beam direction: this was useful

to maximize the counting rate of deuterons on PSD1 and PSD2. In this way in fact

the target length that particles must pass through after the reaction is shorter, and

this has proven to be crucial given the low energies of deuterons involved. About

protons, those have enough energy to punch through the tilted target without any

significant reduction in its number.
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Det. Angle [deg] Distance[cm] Range [deg] ∆Ω[mSr]
PSD1 32.3 17.63 ±7.21 16
PSD2 12.3 20.61 ±6.58 12
PSD3 -37.7 10.3 ±12.4 47
∆E1 32.3 6 ±9.65 89
∆E2 12.3 7.5 ±7.74 57

Table 4.1: Experimental features of the set-up described in the text
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Figure 4.17: 22Ne energy distribution derived using a Monte Carlo simulation

To our purpose it is necessary to detect at least two particles in the exit channel,

so protons, deuterons or 22Ne particles. Among those three, 22Ne is impossible to

detect: from a proper Monte Carlo simulation, in fact appears clear that it is emitted

at forward angles (0 ≤ ϑ22Ne ≤ 6) and with maximum energy at about 3.5 MeV

(figure 4.17). At such low angles the contribution of the elastic scattering would be

too great (even with absorbers), while energy loss and angular struggling of the 22Ne

particle in the solid target would make its detection virtually impossible. Moreover,

using thin silicon detectors for particle discrimination would have been impossible

in this case, given that the 22Ne particle would need at least 11 MeV to pass through

them, and ionization chambers would be too bulky to be installed at the chosen

angles.

For this experiment, PSD1, PSD2 and PSD3 were calibrated using the procedure

explained in section 3, by means of standard three-peaks α-source (239Pu, 241Am

and 244Cm) and by several scattering reactions:
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• H on 197Au 104 µg/cm2 thick target at different energies (5, 4, 3, and 2 MeV)

• H on CD2 97 µg/cm2 thick target at different energies (5, 4, 3, and 2 MeV)

The linear relations for calibration are reported in the following table (table 4.2),

and have the form expressed in section 3.

Detector Position parameters [deg] Energy parameters [MeV]

PSD1
p2 = 151.8, p4 = −1.17 a = 0.0019247

p1 = −3.3685, p3 = 0.052815 b = −0.11463

PSD2
p2 = 97.665, p4 = −0.17381 a = −0.11291

p1 = −3.3443, p3 = 0.055534 b = 0.0018355

PSD3
p2 = 129.12, p4 = −0.62465 a = −0.12998

p1 = −2.2984, p3 = 0.029514 b = 0.0018423

Table 4.2: Fit parameters for the calibrated detectors

Taking into account the presence of the absorber in front of PSD2, and of the ∆E

detectors in front of PSD1 and PSD2, energy losses are evaluated following the

prescription briefly explained in section 3, and the total energy of the incoming

particles can now be measured. In the following analysis, only PSD2-3 coincidence

will be reported: this is due to the fact that only this coincidence bears signs of QF

processes.

4.6 The 23Na(p,α)20Ne reaction: preparation of the

experiment

As stated in Chapter 1, the 23Na(p,α)20Ne has raised the interest of the scientific

community due to Na anticorrelation with oxygen in GC, and one of the many sites

proposed for its formation are intermediate-mass AGB or Super-AGB stars. In those

scenarios the destruction of sodium becomes really important because the reactions
23Na(p,γ)24Mg and 23Na(p,α)20Ne are the turning point between NeNa and MgAl-

cycles. Their relative branching ratio is therefore utterly important, but there are no

available data about the cross-section and the S(E)-factor in the temperature range

proper of the quiescent burning (20÷80 T6) and hot bottom burning (70÷100 T6).

At those temperatures, the Gamow window lies between 50 keV and 200 keV, while

the Coulomb barrier for the reaction is 2.57 MeV, so the reaction (as usual) in stellar

environment takes place well below the Coulomb barrier thanks to the tunnel effect.
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4.6.1 State of the art

As for the 19F(p,α)22Ne, even the 23Na(p,α)20Ne has not been studied at astro-

physical energies with direct methods in the energy range of astrophysical inter-

est. Several states of 24Mg were however studied by Hale et al. [2004], via the
23Na(3He,d)24Mg transfer reaction (figure 4.18): a 20 MeV 3He beam was delivered

on two separate NaBr targets (49 and 102 µg/cm2 respectively), with intensity be-

tween 100 and 150 pnA. The outgoing particles were momentum-analysed using a

Split-Pole spectrometer and detected with an avalanche counter, at angles between

5◦ and 22.5◦ in the laboratory reference frame in 2.5◦ steps and between 25◦ and 35◦

in 5◦ steps.

Figure 4.18: Left panel: deuteron spectrum at θlab=12.5◦. The peaks are labelled by energy in 24Mg
or by the final state formed from a contaminant in the target [Hale et al., 2004]
Right panel: level scheme for 24Mg. The Gamow windows corresponding to 50 T6, 100
T6 and 300 T6 are shown to the right [Hale et al., 2004].

A resonant state at EC.M.=1398 keV has been found. This critically enhanced the
23Na+p reaction rate. Another unexpected 37 keV resonant state has been found,

but its low cross-section did not allowed the authors to study it. Anyway the reac-

tion rate maximum contribution for the (p,α) reaction at 37 keV was reduced by a

factor of 515, reducing the rate uncertainties for 45 T6. Now the biggest source of

uncertainties is the 138 keV resonance, that near 70 T6 has an overall uncertainty by

a factor of 12 [Hale et al., 2004] (figure 4.19, third pane, shaded area).
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Figure 4.19: Upper panel: total reaction rate (solid line) and contribution of each resonance (dotted
lines) for the 23Na(p,α)20Ne reaction. The dashed lines represents the upper limit for
l=0,2 capture in the 138 keV state [Hale et al., 2004]
Lower panel: ratio between the (p,γ) and (p,α) reactions. The solid line are made
using the recommended rate, and the grey zone denotes the uncertainties in the ratio
(correlations in the uncertainties for the two reactions are also considered) [Hale et al.,
2004]

The impact of the 138 keV resonance has been evaluated Rowland et al. [2004]

in the region of temperatures interesting for Nova nucleosynthesis (0.2÷0.4 T9). To

do so, an experiment was carried out delivering a proton beam at energies between

130 and 400 keV with 100 µA current on a Na2WO4 evaporated on a tantalum back-

ing. The aim of this experiment was to reduce the uncertainties of the (p,γ) channel

and to understand if closed NeNa cycle in Nova explosion is possible or not (figure

4.20): Rowland et al. [2004] concluded that in the 0.2÷0.4 T9 temperature range the

branching ratio is close tu unity, so almost 50% of the 23Na is lost after each cycle.

So the all 23Na will disappear after a fair number of NeNa and MgAl cycles: almost

no NeNa cycle exists at those stellar temperatures, but only below (T≤0.1 T9) and

above (T≥0.6 T9) . The large uncertainties about the 23Na(p,α)20Ne do not allow to

understand the action of a closed NeNa cycle, and precise information are needed.
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Figure 4.20: Left panel: ratio between 23Na(p,α)20Ne and 23Na(p,γ)24Mg before the work of Row-
land et al. [2004]. The dashed line is the ratio of the recommended value, with the zone
between the two solid line as uncertainties.
Right panel: same as the left panel, but with the data from Rowland et al. [2004]

4.6.2 Preparation of the experiment: experimental conditions

To study the 23Na(p,α)20Ne reaction via the application of THM, a 23Na beam

was produced at Laboratori Nazionali del Sud (LNS). This was the first time that

such a beam was produced and accelerated by the TANDEM accelerator at LNS.

About the production, it is made using NaOH in inert environment, using a glove

box7 filled with argon, and then mixed with silver to maximize thermal conductivity.

This choice was made because sodium hydroxide is an hygroscopic material, and the

presence of water inside the ion source must be avoided to prevent the presence of

oxygen flashes inside it [Marchetta and Marletta, 2016]. Such a beam impinged on

a CD2 target, with the aim to obtain the three body reaction 23Na(d,α 20Ne)n to study

the 23Na(p,α)20Ne two body reaction.

Given the well known binding energy of the p-n system inside deuterium (Eb=2.22

MeV) and the l=0 momentum distribution, which can be described in terms of a

radial Hulthén function, the beam energy was decided with the same procedure in-

troduced in this chapter so far: the Gamow peak for the reaction of interest at T=108

K is EG ≈130 keV, and using the equation 4.4 (with Eq f=-EG) the beam energy is

Ebeam ≈ 57 MeV. The beam energy as derived now is not strictly determined but

allows us to select the phase-space region where the QF process is expected to be

dominant. Energy loss inside the target must also be considered: for this experiment

a 150 µg/cm2 target was used, and the the beam energy was chosen to be Ebeam = 58

7A glove box is a sealed container designed to allow the manipulation of objects, where a separate
atmosphere is designed. On one side of it there are gloves, arranged in a way that the user can place
its hands inside it and perform tasks inside the box without breaking the container.
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MeV.

4.6.3 Selection of the kinematic conditions

Using the 4.6, as was already made for the 19F(α,p)22Ne, angular positions for

the PSDs can be chosen, using an appropriate Monte Carlo simulation (figure 4.21).

Figure 4.21: Angular range for 20Ne and alpha particles (exact angular ranges are reported in table
4.3). The orange lines represent the central values of the detectors while the dark green
and light blue lines are the extremities. This simulation takes also into account differ-
ent ps values, with the aim to understand where to place the detectors to get the ps=0
contribution as big as possible.

Det. Angle [deg] Distance[cm] Range [deg] ∆Ω[mSr]
PSD1 7.2 47 ±3 2.3
PSD2 -7.5 47 ±3 2.3
PSD3 21.5 20 ±7 12.5
PSD4 -23.1 20 ±7 12.5
∆E1 7.2 40 ±3.5 28.34
∆E2 -7.5 40 ±3.5 28.34

Table 4.3: Experimental features of the set-up described in the text

Again, the best choice for 20Ne detection would be at small angles (ϑ20Ne<6◦),

but a condition at which the PSD spans angles lower than 4◦ is virtually impossible,

given the high scattering rate at those angles (≥3 kHz), and detectors encumbrance

inside the chamber. To be able to place the detectors at the angular range of figure
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4.21, the beam had a very low intensity (ibeam ≈0.6 pnA).

From figure 4.21 it is also clear that, at those angular conditions the QF contribution

at ps=0 is also covered, and this fact is strengthened by the figure 4.22 (where a

general idea of the spanned EC.M. range is also reported) and as can be seen the

energy range of astrophysical relevance is fully covered.
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Figure 4.22: Predicted 2D-spectrum EC.M. versus ps for the designed angular conditions 15◦ <

ϑα <29◦ and 4◦ < ϑ20Ne <10◦. As can be seen, the maximum QF contribution lies
inside the region of astrophysical interest.
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Figure 4.23: Predicted 2D spectrum E23Na versus Eα, with the same angular cuts reported in figure
4.21.

Given the maximum theoretical values for the energies of the two detected particles

105



4.6 The 23Na(p,α)20Ne reaction: preparation of the experiment

(cfr. figure 4.23) at the designed angles, IC chambers were used to discriminate
20Ne, two PSDs 500 µm thick were chosen for neon detection at small angles, and

two 1000 µm ones for 4He detection.

4.6.4 Sequential mechanisms

Even for 23Na(p,α)20Ne the presence of sequential mechanisms with the same

three particles in the exit channel (p,n and 20Ne) is far more probable than the QF

process
23Na + d → 20Ne + α + n (4.19)

In particular, the parasite reactions that can hinder the detection of the QF process

are

23Na + d → 20Ne + 5He∗ → 20Ne + α + n

23Na + d → 21Ne∗ + α → 20Ne + α + n (4.20)

23Na + d → 24Mg∗ + n → 20Ne + α + n

Among those three, the first two show some level right inside the relative energy

spanned by our experiment: in literature, in fact, 5He has only one level reported,

and 21Ne has several that can hinder our measurement [Firestone, 2007a].

About the third of 4.20, this one can not be disentangled from the QF process now,

but only after some considerations about the momentum distribution of the spectator

for the QF process. Some contribution from levels of 24Mg is therefore expected.
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Figure 4.24: Upper panel: 2D plot obtained by means of Monte Carlo simulations for the first reac-
tion of 4.20: the red solid line represent the only possible state of 5He in the explored
energy range that can be populated by sequential mechanism.
Lower panel, left: 2D plot obtained by means of Monte Carlo simulations for the second
reaction of 4.20: the red solid lines represent the possible states of 21Na in the explored
energy range that can be populated by sequential mechanism. The last of them could
give some contribution.
Lower panel, right: Not-in-scale diagram of levels corresponding to the red lines of of
the figure on the left.

4.7 The 23Na(p,α)20Ne via the THM: experimental set-

up and calibration

Now that all the positions of the detectors are known, it is possible to perform the

experiment. The 23Na beam impinged on a CD2 target, also produced at Laboratori

Nazionali del Sud. For this experiment, two targets 208 µm/cm2 and 136 µm/cm2

thick respectively were used. The beam had very low intensity (0.6 pnA) due to

the forwardness of the two thinner detectors, and assuming that the reactions are

taking place in the middle of the target, its energy loss is 1.28 MeV and 0.78 MeV

respectively.

107



4.7 The 23Na(p,α)20Ne via the THM: experimental set-up and calibration

Figure 4.25: Sketch of the experimental set-up

The experimental apparatus is sketched in figure 4.25: it was composed by two

∆E-E telescopes made by two ionization chambers and two 500 µm thick detec-

tors for 20Ne discrimination, and two 1000 µm thick PSDs devoted to α detection.

Those worked in a one-to-one coincidence (PSD1-PSD4 and PSD2-PSD3) and were

centred at certain defined quasi-free angles, as reported in table 4.3 along with the

distances between the various parts of the apparatus.

The reaction 23Na(d,α 20Ne)n was used to study 23Na(p,α)20Ne. This time 20Ne and

alpha particles were detected, and energy and angle of the spectator particle was

calculated from energy and angle of the other two. All the detectors were cali-

brated: the ones at forward angles (devoted to heavy emitted particles) by means

of elastic scattering of 23Na on a gold target (81 µg/cm2 thick), while the ones at

higher angles were calibrated using standard α-source (228Th, eight peaks) and de-

tecting the α particles coming from the well-known 6Li(12C,α)14N reaction. Both
23Na(197Au,197Au)23Na elastic scattering and 6Li(12C,α)14N two-body reaction (made

using a 6Li beam impinging on a 136 µg/cm2 CD2 target) were made at several en-

ergies:

• 23Na beam at 30, 35, 40, 45, 50 and 58 MeV

• 6Li beam at 14 and 20 MeV

About the first, in this phase measurements both with gas-filled and empty ionization

chambers were preformed, to have several calibration points at different energies.

About the second, its fairly high Q-value (8.8 MeV) and the number of excited

levels of 14N present in the energy range provided us a lot of α particles at different

energies between 5 and 25 MeV, similar to the expected energy range for the ones

coming from the 23Na(p,α)20Ne reaction. The coefficients for the linear relations for

calibration are reported in table 4.4.
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4.7 The 23Na(p,α)20Ne via the THM: experimental set-up and calibration

Detector Position parameters [deg] Energy parameters [MeV]

PSD1
p2 = 75.997, p4 = −0.7858 a = 0.0146
p1 = −7.0656, p3 = 0.1545 b = 0.636

PSD2
p2 = 142.15, p4 = −0.8562 a = −0.0158
p1 = −10.032, p3 = 0.1557 b = 0.2768

PSD3
p2 = 112.59, p4 = −0.7648 a = 0.0099
p1 = −2.9477, p3 = 0.0544 b = −0.5707

PSD4
p2 = 81.245, p4 = −0.8079 a = 0.0101
p1 = −1.8838, p3 = 0.0536 b = −0.3953

Table 4.4: Fit parameters for the calibrated detectors

Even in this case, energy loss was evaluated, taking into account the presence of

the ionization chamber, with two Mylar foils as windows (1.5 µm thick) and 50 mb

isobutane inside it.
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CHAPTER 5

Data Analysis for the 19F(α,p)22Ne reaction

Once calibration procedures are completed, it is possible to gain information

about energies and positions of the incoming particles using the PSDs, and in partic-

ular PSD2 and PSD3 (optimized for deuterons and protons detection, respectively),

that during the data analysis have been proven to be the the only ones useful to de-

tect the reaction of interest.

The next steps are to select deuterons using the ∆E-E technique, identify the three-

body reaction of interest, and isolate the QF contribution. Once data are properly

reduced, the two-body cross-section for the 19F(α,p)22Ne reaction can be extracted

from the 6Li(19F,p22Ne)d three-body one using the THM. With that the astrophysical

factor and the reaction rate will be calculated, and the astrophysical implication will

be discussed at the end of the chapter.

5.1 Reaction channel selection

Several reactions can occur after the interaction between the beam and the target

components. Some kind of selection is therefore needed. Our experimental appara-

tus allowed us to select one of the outgoing particles by means of ∆E-E technique

explained in the previous chapter: in a ∆E-E typical 2D-spectrum, different particles

lie on different hyperbole branches depending on their charge and mass, allowing a

separation between different elements and different isotopes, if resolution is high

enough.
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5.1 Reaction channel selection

Figure 5.1: ∆E-E identification for deuterons in PSD2 (central angle of the detector 12.3◦). As can
be seen 2H discrimination with respect to H is really difficult. The selected events lie in
the black dashed graphical cut.

In figure 5.1 such a procedure is used in our case, and different particles are

visible and distinguishable. In this case resolution is not high enough to easily dis-

criminate between different isotopes of hydrogen, even if the presence of particles

with the same atomic number Z=1 and different mass number can be guessed. The

applied selection of particles impinging on PSD2 is reported in 5.1, and as can be

seen in the selected spectrum some bumps arise: those are evidences of several two

bodies parasite reactions.

Figure 5.2: Qvalue from the events selected in 5.1. It clearly shows the presence of several parasite
reaction, but a structure around the theoretical value for the 6Li(19F,p22Ne)d (Q3B=0.199
MeV) is also visible.

This is also supported by the Qvalue spectrum (figure 5.2), where different peaks can

be seen for the selected condition. The Qvalue spectrum is built by means of the mea-

sured energies and positions of the particles detected in PSD2 and PSD3, that are
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5.1 Reaction channel selection

also used to reconstruct energy and position of the not detected third particle.

In figure 5.2 there is also an evidence of some structure around Qvalue=0.199 MeV,

theoretical value for the 6Li(19F,p22Ne)d reaction Qvalue, but further data reduction is

needed. To do so some properties of the Qvalue were used: for example it has to be

independent from the kinematic variables involved in the experiment. A Qvalue ver-

sus ϑd or ϑp two-dimensional spectrum for the events selected so far must therefore

show to be uncorrelated.
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Figure 5.3: Three-body Qvalue versus angular distributions for PSD2 (upper panel) and PSD3 (lower
panel). If the 6Li(19F,p22Ne)d reaction is taking place, then events must lie around
y=0.199 MeV, corresponding to the Q3B value for the reaction of interest. In the fol-
lowing analysis only the data contained in the black boxes will be used [D’Agata et al.,
submitted].

In figure 5.3 it is obviously the case. So a graphic cut on data clustering around

Q3B=0.199 MeV was made, and the final Qvalue for the 6Li(19F,p22Ne)d three-body

reaction shows its agreement with theoretical value (figure 5.4).
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5.1 Reaction channel selection

Figure 5.4: Qvalue spectrum for the 6Li(19F,p22Ne)d reaction. A Gaussian fit to the experimental data
is also reported (blue line, centred at Qexp

3B
=0.19 MeV), along with the position of the

theoretical value (red line, Q3B
th
≃0.199 MeV) [D’Agata et al., submitted].

As a further proof of the selection of the 6Li(19F,p22Ne)d reaction, a comparison

between experimental kinematic locus and a proper Monte Carlo simulation was

made. This procedure is reported in figure 5.5: it can be seen experimental data and

theoretical predictions are in agreement.

Figure 5.5: Ed-Ep matrix. Events related to the reaction of interest and selected according to the text
above (red points) are compared with proper Monte Carlo simulations (black area). The
experimental data are spread around the simulation, and this is due to the energy strag-
gling in the absorber and in the thin silicon detector used as ∆E stage of the telescope.
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5.2 Quasi-free channel contribution

This procedure minimizes the possibility that different processes taking place along

with the one of interest are considered, and data coming from the three-body reaction

are isolated. The cuts above will be used in the following analysis.

5.2 Quasi-free channel contribution

Next step in data analysis is to isolate the quasi-free contribution. Such a proce-

dure is crucial for THM application: the extraction of the two-body cross-section is

in fact possible only after the separation of the QF process from any other (sequen-

tial decay, break-up,...) occurring in the target. For this reason, as already done in

the previous chapter, 2D-spectra relative energy were studied: Ep−d vs. Ep−22Ne and

Ed−22Ne vs. Ep−22Ne. Analysing those spectra it is possible to check the presence of

excited states of 3He, 23Na and 24Na: the presence of horizontal and/or vertical loci

will in fact indicate the presence of correlation, and therefore of excited states.

Figure 5.6: Relative energies matrix. In the upper panel the proton-neutron relative energy is potted
against the 22Ne-p one, while in the second in the y-axis the 22Ne-d one is plotted. The
absence of horizontal loci shows the lack of correlation between 22Ne and deuterium
(levels of 24Na compound nucleus) or between protons and deuterons (levels of 3He
compound nucleus)
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5.2 Quasi-free channel contribution

Both the 2D-spectra in figure 5.6 show no horizontal loci, and so no excited states of
3He and 24Na are present in our energy range: this is in agreement with what seen in

chapter 4. On the other hand, there is evidence of a structure at Ep22Ne=0÷0.5 MeV,

corresponding to excited levels of 23Na (figure 5.10).

It is now important to understand if those levels are populated via QF or sequential

processes. Under the conditions explained in chapter 3, the cross-section can be

factorized as it follows (equation 3.33):

d3σ

dΩcdΩCdEc

∝ KF · |Φ(ps)|2
(

dσ

dΩ

)o f f

(5.1)

and so:
d3σ

dΩcdΩCdEc

·
1

KF
∝ |Φ(ps)|2

(

dσ

dΩ

)o f f

(5.2)

From equation 5.2 it is possible to conclude that a QF process, if present, has a

coincidence yield that must change with the momentum distribution |Φ(ps)|2, as dis-

cussed in chapter 4. So the maximum contribution to the yield must be at ps ≈ 0,

and must decrease while going away from it.

Figure 5.7: Comparison between the 2D spectrum in figure 4.13 and experimental data. In the en-
ergetic region of interest those are in agreement. The definition of the quantity ECM is
reported in chapter 4

A way to ascertain the presence of QF process is to study this momentum distri-

bution of the spectator inside the cluster, that in our case are deuterium and 6Li.

The |Φ(ps)|2 can be calculated using the equation 5.2, if the energy region is narrow

enough to consider
dσ

dΩ
as a constant value

|Φ(ps)|2 ∝
d3σ

dΩcdΩCdEc

[

KF

(

d2σ

dΩ2

)o f f ]
(5.3)
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5.2 Quasi-free channel contribution

if QF is present, the momentum distribution should reproduce the distribution of

deuterium inside 6Li, within the experimental errors, once coincidence yield is

known from the experiment and KF factor from theoretical calculations: for this

reason a comparison between the experimental data and a proper Monte Carlo sim-

ulation was made, and there was agreement between them (cfr. figure 5.7) .

If the observed process is a QF one, then the momentum distribution of deuterium

inside 6Li must follow a certain trend, which is given by an Hänkel function [Bar-

barino et al., 1980]:

|Φ(ps)|2 = N
1

(k2
s + β

2)2

[

sinksRc

ks

+
cosksRc

β

]

(5.4)

where ks = ps/~, Rc is the cut-off radius, and β = (2µEB/~
2)1/2, with µ reduced mass

and Eb binding energy of the system. As can be seen in figure 5.8, this looks to be

the case.

Figure 5.8: Spectator momentum distribution: the experimental data are fitted with an Hänkel func-
tion (green line) and compared with the theoretical one [Pizzone et al., 2009] (blue line)
[D’Agata et al., submitted].

From literature it is known that the width of the Hänkel function that represents

the deuterium cluster distribution inside inside 6Li must follow the following trend

[Pizzone et al., 2009] as a function of the the transferred momentum qt

W(qt) = f0[1 − exp(−qt/q0)] (5.5)
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5.3 Excitation function

with

qt = pbeam −
pp + p22Ne

2
(5.6)

where pbeam and p22Ne are the projectile and 22Ne momenta, respectively. In equation

5.5 f0 = 73 MeV is the asymptotic value of the function and q0 = 122±3.5 MeV is

a fit parameter. In our case, taking into account that qt=190 MeV/c, from equation

5.5 W(qt)≈53 MeV/c ± 7 MeV (as reported in figure 5.9).

For further analysis only events with ps <60 MeV/c are considered.

Figure 5.9: FWHM of the momentum distribution for deuteron inside 6Li as a function of the trans-
ferred momentum qt [D’Agata et al., submitted]. The blue circle represents the value
obtained in this experiment while the diamonds represent values from literature [Pizzone
et al., 2005].

In figure 5.9 the trend of the W(qt) versus the transferred momentum is reported.

As shown in Pizzone et al. [2005], distortions of momentum distribution width arise

with decreasing qt. That should be taken into account in the following analysis.

5.3 Excitation function

Let us now consider the levels of the 22Ne-p compound nucleus: to do so the

E22Ne−p relative energy spectra (as anticipated in figure 5.6) is considered. This quan-

tity can be extracted from the relative energy for the 22Ne-p system as it follows:

E
23Na
ecc = Ep−22Ne + Qecc (5.7)

where Qecc=8.794 MeV is the Qvalue for the formation of the compound nucleus

starting from a 22Ne and a proton (as reported in figure 5.10). It is useful to under-

stand that, if E22Ne−p is equal to zero ENa
ecc=8.794 MeV.
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5.3 Excitation function

Na
23

Ne22p+
8.794 MeV

αF+
19

10.464 MeV

Figure 5.10: Levels scheme for the 23Na compound nucleus: the shaded zone indicates the region
explored by this experiment.

In the energy region spanned by the experiment, some resonant structures are de-

tected in the mono-dimensional E22Ne−p relative energy spectrum (figure 5.11), re-

sembling excited states of the 23Na compound nucleus.

A fit on the experimental data (figure 5.11) was made by adding many Gaussian

with the same σ. The centroids of these functions were compared with the levels of
23Na available in literature [Firestone, 2007a].
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Figure 5.11: Excitation function of the 23Na compound nucleus. The centroids of the used Gaussian
are reported in table 5.1, while the σ was fixed as 60 keV
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5.4 Angular distributions

E*exp
23Na

[MeV] E*lit
23Na

[Firestone, 2007a] [MeV] Jπ lmin ∆ Elit−exp [keV]
10.320 10.318 3−/2 1 2
10.470 10.477 3+/2 2 7
10.570 10.575 3−/2 1 5
10.820 10.823 3+/2 2 3
11.025 11.038 1+/2 0 13
11.220 11.238 3−/2 1 18
11.382 11.355 1+/2 0 -27
11.556 11.554 1+/2 0 2
11.784 not present //// //// ////

Table 5.1: Levels used as centers for the Gaussian functions (red dashed lines) in figure [Firestone,
2007a]. The sum of those Gaussian functions makes our fit (black solid line). In the last
column the difference between the centroids and the theoretical values are reported.

In figure 5.11, there are evidences of five groups of possible levels, centred near

the resonances reported in table 5.1. Experimental resolution, obtained in this case

by propagating the experimental errors on energy obtained by means of a three peak

α-source and scattering of 6Li on gold and CD2, is about 60 keV, and it is far greater

than the proper width of the levels, that is of the order of magnitude of few keV, or

lower [Firestone, 2007a].

This procedure is just a first step for level identification, and the angular momentum

of interaction and the Jπ of the resonances is still far from being assumed: in the

following analysis a more refined method involving R-Matrix approach will be used.

5.4 Angular distributions

The triple differential cross-section
d3σ

dΩpdΩddECM

is linked to the energy of the

center-of-mass in the post-collision prescription. In this case it can be calculated as

it follows:

EC.M. = Ep−22Ne − Q2B
value (5.8)

Another variable to consider is the ϑC.M. (the emission angle of the proton in the

center-of-mass reference frame), that involves the velocity of all the particles after

the emission [Slaus et al., 1977]:

ϑC.M. = arccos
(v19F − vα) · (v22Ne − vp)

|v19F − vα| · |v22Ne − vp|
(5.9)

Looking at the ϑC.M. versus EC.M. 2D-spectrum (figure 5.12), the spanned region of

ϑC.M. is between 120◦ and 160◦.
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5.4 Angular distributions

Figure 5.12: 2D-matrix ϑC.M. vs EC.M..

Angular distributions have great importance in nuclear spectroscopy: their trend in

restricted regions of EC.M., in fact, is of utmost importance to understand the spin-

parity Jπ of a certain resonance.

In the experimental region of EC.M. covered by the experimental set-up there are

more resonances than the ones of table 5.1 [Firestone, 2007a]. Different values

of the Jπ of a resonance corresponds to different quantum angular momentum in

the entrance channel. In Ugalde et al. [2008] all the levels informations in the en-

ergy region of EC.M. are reported, and a predominance of l=2 can be detected: this

information is really important for R-Matrix calculations, but needs further vali-

dation. To do so, mono-dimensional spectra of the variable ϑC.M. were analysed,

dividing the energy region into three parts (0<EC.M.<0.3 MeV, 0.3<EC.M.<0.6 MeV

and 0.6<EC.M.<0.9 MeV). In this way the statistics and energy interval were re-

spectively high and narrow enough to proceed with the analysis. The spectra ob-

tained so far were than divided by a proper Monte Carlo simulation for the ϑC.M.,

that takes into account the kinematics for the system and the momentum distribu-

tion trend extracted earlier: in particular, the experimental fit made using 5.4 on

ps mono-dimensional spectrum was used to modulate the Monte Carlo simulation.

The resulting angular distributions are reported in figure 5.13, along with the re-

spective statistical error. The experimental results are then fitted by means of a

linear combination of the two spin-parity 3/2+ and 5/2+, both corresponding to a l=2

configuration [Blatt and Biedenharn, 1952; La Cognata et al., 2015] (figure 5.13).
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Figure 5.13: Experimental angular distribution vs. ϑC.M., that is the emission angle of the proton
in the center-of-mass reference frame, versus half-off-energy-shell cross-section: the
blue points are the experimental data, while the blue, green and red lines represent
best-fits on data made by means of the equations given in Blatt and Biedenharn [1952]
and La Cognata et al. [2015] and with Jπ equal to 3/2− (with a3/2− as normalization
coefficient), 1/2+ and 1/2− (multiplied by a factor of of two to separate it from the
previous). Regarding the black line, it represents a best-fit made by means of a linear
combination of Jπ=3/2+ and Jπ=5/2+ angular distributions.

This combination, reported in figure 5.13, is in fair agreement with the exper-

imental errors, pointing out a dominant contribution of d-wave for the resonances

detected in the EC.M.<0.9 MeV region.

To further stress this last point, many different tries were attempted, and are also

reported in figure 5.13: in particular p-wave angular distribution with Jπ=3/2−, 1/2+

and 1/2− (green, black and blue lines in figure 5.13) were tested, but those choices

did not fit the data. Moreover, looking at the coefficients for the linear combination

of Jπ=3/2+ and Jπ=5/2+ angular distribution fit (a3/2+ and a5/2+ , respectively), it ap-
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5.5 The modified R-Matrix approach: a brief introduction

pears clear that the second dominates over the first by seven orders of magnitude.

Now that l=2 is ascertained, the arbitrary units cross-section can be fitted by means

of modified R-Matrix calculations.

5.5 The modified R-Matrix approach: a brief intro-

duction

The R-Matrix approach is a way to parametrise the properties of compound nu-

cleus reactions. First of all, let us underline that the R-Matrix theory is not a predic-

tive theory, but it is a framework that needs inputs from experimental data, in order

to have physical significance. The more accurate the data are, the more the nuclear

wave functions are constrained, and the more reliable the R-Matrix calculations are,

especially when attempting to use it to extrapolate the cross-section at nearly unob-

served energies.

This analysis usually starts with a simpler approach (like in our case) with the aim

to get informations about energies, Jπ, and partial widths of the resonances. Those,

called level parameters, are then used as a starting point to perform a least-squares

fitting of the R-Matrix parameters on experimental data. In this way, more accu-

rate level parameters are extracted, and interference signs between resonances wave

functions can be obtained.

The assumptions at the base of R-Matrix reported in Lane and Thomas [1958] and

are:

• non-relativistic quantum physics must be applicable to the reaction. This ap-

proximation is reasonable at low energies in nuclear physics, because the ki-

netic energies of the particles inside nuclei are smaller than their respective

rest-masses;

• there are only two nuclei in the entrance and in the exit channels;

• there are no important processes of creation and destruction of particles. The

main effect of this assumption is that no photons are produced;

• a certain radius a can be defined as the minimum radial distance at which

the nuclei interact with each other. It represents the division between the

internal and the external regions. In the first region (r<a), only short range

nuclear force is considered and the nuclear potential has an effect (in this
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5.5 The modified R-Matrix approach: a brief introduction

region the physics of the system is described by the R-Matrix parameters),

while in the second region (r>a) no strong nuclear force acts and the only

considered potential derives from the Coulomb force.

Starting from those assumptions and following the formalism given by Lane and

Thomas [1958], a mathematical framework to describe the internal and external

wave function separately can be made. For first, the aim of R-Matrix theory is, as

usual, to solve the Schrödinger equation

HΨ = EΨ (5.10)

This equation can be solved by the separation of variable technique, and solution

can be obtained for the internal region and for the external one of the configuration

space. After deriving under the assumption that the two solution match each other

it is possible to obtain the desired relations. Let us now simplify the problem to the

scattering of a spinless particle by a central potential V(r), with the aim to obtain the

wave functions and properties of the compound nucleus to the R-Matrix parameters.

In the internal region a complete set of stationary states are made to represent the

wave function:

Ψ =
∑

λ

AλXλ (5.11)

where Aλ has the form

Aλ =

∫

V

XλΨ dV (5.12)

In 5.12 the integration is on the whole internal volume.

These stationary states satisfy the Hamiltonian HXλ=EλXλ, with Eλ and Xλ energy

eigenvalues and eigenvectors of the system. These states must be directly related

to the quasi-stationary states at the nuclear surface: it is then necessary to impose

a boundary condition, satisfied on the nuclear surface at the channel radius. This

condition can be expressed as

dXλ

dr
+ bXλ|r=a = 0 (5.13)

By substitution and integration, it is possible to obtain the following equation:

− ~
2

2m

(

Ψ
dXλ

dr
+ Xλ

dΨ

dr

)

r=a

= (E − Eλ)
∫ a

0
XλΨ dr (5.14)

and using the equation 5.12

Aλ = −
~

2

2m
Xλ(a)

Ψ′(a) + bΨ(a)
E − Eλ

(5.15)
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5.5 The modified R-Matrix approach: a brief introduction

Finally, by substituting the equation 5.15 in 5.11

Ψ(r) = G(r, a)[Ψ′(a) + bΨ(a)] (5.16)

where G(r, a) is the Green function

G(r, a) = −
~

2

2m

∑

λ

X2
λ
(a)

Eλ − E
(5.17)

and the R-function can be defined as the value of the Green function at r = a

R = G(a, a) = −
~

2

2m

∑

λ

X2
λ
(a)

Eλ − E
(5.18)

The equation 5.18 can be simplified introducing a new parameter, γλ, such as γ2
λ =

~
2

2m
X2
λ
, and

R =
γ2
λ

E − Eλ

(5.19)

In this last equation E is the energy of the particles and Eλ is the eigenvalue, associ-

ated with an energy level in the compound nucleus.

Regarding now the external region (where only the Coulomb force is present), the

total wave function can be written as the superimposition of the incoming I and the

outgoing O waves:

Φl = Il − UlOl (5.20)

where l is the orbital angular momentum of the system and Ul the collision function.

The incoming and outgoing waves are related to the regular and irregular Coulomb

functions:

Il = (Gl − iFl)eiωl (5.21)

Il = (Gl + iFl)e−iωl (5.22)

withωl Coulomb phase shiftωl =
l
∑

n=1
tan−1 ηl

n
, where ηl is the Sommerfeld parameter

expressed in chapter 2.3. Using now equation 5.20, the nuclear scattering amplitude

can be expressed, along with the differential cross-section
dσ(ϑ)

dΩ
:

A(ϑ) =
1
2

ik−1
∑

l

(2l + 1)(1 − Ul)Pl(cosϑ) (5.23)

dσ(ϑ)
dΩ

= |A(ϑ)|2 =
1
4

k−2
∣

∣

∣

∣

∑

l

(2l + 1)(1 − Ul)Pl(cosϑ)
∣

∣

∣

∣

2
(5.24)
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5.5 The modified R-Matrix approach: a brief introduction

where Pl are the Legendre polynomials and Ul is the collision function. The Ul

function can be expressed in terms of the R-function, using the boundary conditions

and equating the logarithmic derivatives of the internal and external wave functions

at the nuclear surface r=a. In this way Ul = e2iδl , where

δl = tan−1

(

PlRl

1 − RlS l

− φl

)

(5.25)

In equation 5.25 φl, Pl and S l are the hard-sphere phase-shift, the penetrability and

the energy-shift function, respectively

φl = tan−1

(

Fl

Gl

)

(5.26)

Pl =
kr

F2
l
+G2

l

∣

∣

∣

∣

∣

∣

r=a

(5.27)

S l = Pl(FlF
′
l +GlG

′
l) (5.28)

Finally the differential cross-section depends on the phase-shift ωl, the hard-sphere

phase-shift φl and the reaction scattering R-function. In the R-function, all the in-

formation about the stationary states are contained, and these states are related to

the physical reality by the boundary constant b.

In many cases there are multiple states and channels that are open, and many combi-

nations of spin that can contribute to the formation of a certain state of fixed Jπ. The

collision and R functions then become the collision matrix and R-Matrix, depending

in general on the indices C=[αsνlm]. Those represent the channel (α), the channel

spin (s), the channel spin component (ν), the orbital angular momentum (l) and the

orbital angular momentum component (m).

In this representation, the R-Matrix can be written as:

Rcc′ =
∑

λ

γλc′γλc

Eλ − E
(5.29)

In equation 5.29 the difference between primed and unprimed indices is that the first

indicates entrance, while the second the exit channel. The collision matrix is related

to the R-Matrix by the relation:

Ucc′ =
(kcrc)1/2(1 − RL∗)Ic′

(kc′rc′)1/2Oc(1 − RL)
(5.30)

where Lc=Sc-B−c+IPc , with Bc matrix form of the boundary constant.

This theoretical framework introduces a set of parameters, called poles, character-

ized by a certain energy Eλ and reduced width γλ. Such quantities are then varied
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5.5 The modified R-Matrix approach: a brief introduction

using a minimization routine to best match the data. In this way, partial widths and

levels can be extracted. This procedure can be applied to both resonant and non-

resonant reactions. In this second case it is possible to simulate it via a high-energy

pole (called background contribution), that makes the R-Matrix almost independent

from energy [Lane and Thomas, 1958].

The quantities Eλ and γλ are associated with physical quantities, but not strictly

equal to them. Those are in fact parameters that directly influence the strength of

the resonant cross-section, but are identified only as eigenvalues and eigenstates of

the stationary wave functions used to describe the internal region of the compound

nucleus. The contribution of this part is also combined with the one coming from

the external part to calculate the collision matrix and cross-section in a way that

makes them independent from the channel radius or boundary condition. So the

final cross-section over a certain resonant state can be described with a certain ex-

perimental width related to the internal eigenstate parameter (γλ), again via channel

radius and boundary conditions. This makes the R-Matrix a phenomenological ap-

proach that describes the observed resonances in terms similar to the Breit-Wigner

one, without giving informations on the real wave functions of the compound. The

γλ parameters are caller reduced width and are expressed in terms of
√

E. Those are

related to the Γ coming from the Breit-Wigner approach via the following relation

Γλ = 2P(E)γ2
λ (5.31)

that is the formal width of the resonance. The observed one is then given by

Γ0
λ =

2P(E)γ2
λ

1 + γ2
λ
S ′(E)|E=Er

(5.32)

When the general state energy Eλ is such that the boundary condition is equal to the

shift function, the pole energy and resonance energy are the same.

All this formalism has proven to be useful as a feature to fit the experimental cross-

section and to extrapolate its behaviour down to the astrophysical energies. In that

case the formal values Eλ and γλ are considered as adjustable parameters. In par-

ticular, in THM application, all this framework must be updated to consider the

half-of-energy-shell character of the TH cross-section [La Cognata et al., 2011].

Using the same notation for the incoming and outgoing particles of the three-body

reaction used in chapter 3, the TH reaction amplitude is given by an expression sim-

ilar to the one expressed so far, with the introduction of an overlap function for the

internal wave function of the system F=x+A=c+C excited to the level τ, and the
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5.6 Cross-section

bound-state wave function of A. This function takes the form IF
Aτ =

〈

Φτ
∣

∣

∣φA

〉

, and

can be parametrized in terms of the boundary condition in the x+A channel and of

the reduced width γxAτ. Assuming non-interfering resonances, the TH cross section

can be obtained in the plane-wave approximation:

d2σ

dExAdΩs

= NF
∑

τ

(2Jτ + 1) ×
∣

∣

∣

∣

∣

∣

√

k f (ExA)

µcC

√
2Plτ(kcCRcC)Mτ(pxARxA)γcCτγxAτ

Dτ(ExA)

∣

∣

∣

∣

∣

∣

2

(5.33)

Here NF is a normalization factor, Jτ is the spin of the τ-th resonance, k f (ExA) =
√

2µcC(ExA + Q)/~ (with Q as the Qvalue for the reaction in exam and ExA the relative

energy for the x-A system), Plτ the penetration factor in Lτ-th wave, and RxA and

RcC the channel radii.

In equation 5.33 the Mτ(pxARxA) factor is equal to

Mτ(pxARxA) =
[

(BxAτ − 1) jlτ(ρ) − ρ
∂ jlτ(ρ)
∂ρ

]

ρ=pxARxA

(5.34)

where jlτ(ρ) is the Bessel spherical function pxA =
√

2µxA(ExA + Bxs)/~ (with Bxs

the binding energy of the x⊕ s system), and BxAτ is an arbitrary boundary condition.

In the end, the term Dτ(ExA) in equation 5.33 is the standard R-Matrix denominator

[Lane and Thomas, 1958], containing shift and penetration functions, besides the

boundary condition.

5.6 Cross-section

Now that l = 2 is ascertained, after studying the experimental angular distri-

butions, the arbitrary unit cross-section can be fitted by means of the R-Matrix ap-

proach discussed before. The imposition of quantum angular momentum can be

made because of the large uncertainties that affect the experimental data: those are

in fact not precise enough to allow a more sophisticated use of the R-Matrix the-

ory that involves interference in a many channel approach. We then considered all

the levels reported in table 5.2 and performed an R-matrix fit assuming the proton

channels p0 and p1 (corresponding to the ground state and to the first excited state

of 22Ne) as the dominant one, as pointed out in Ugalde et al. [2008]; Pizzone et al.

[2017]; D’Agata et al. [submitted].
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5.6 Cross-section

Figure 5.14: Upper panel: Three-body coincidence yield as a function of EC.M..
Lower panel: Kinematic factor times the momentum distribution for the α-d relative
motion inside 6Li [D’Agata et al., submitted].

To do so, the arbitrary units coincidence yield (in units of EC.M., figure 5.14 upper

panel) must be for first divided by a proper Monte Carlo simulation that takes into

account the momentum modulation (brought by the Hänkel function, figure 5.14,

lower panel), taking into account distortions discussed in section 5.2. The half-off-

energy shell cross section, σ(EC.M.) has been extracted and fitted by means of one

level, three-channel modified R-Matrix calculations, with all the features expressed

earlier, and is reported in figure 5.15.
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Figure 5.15: Half-of-energy-shell for the 19F(α,p)22Ne reaction in arbitrary units. The blue line with
red band represents the R-Matrix fit along with its error. All the resonances parameters
are reported in table 5.2 [Pizzone et al., 2017; D’Agata et al., submitted].

ER [MeV] EC.M. [MeV] Jπ γα [MeV1/2] γp [MeV1/2] γp′ [MeV1/2]
10.477 0.01 3/2+ 0.0010+0.00005

−0.00019 0.124 0.342
10.616 0.149 5/2+ 0.0055+0.00025

−0.0080 0.087 0.327
10.823 0.356 3/2+ 0.0070+0.0001

−0.0010 0.131 0.417
10.907 0.44 5/2+ 0.0007+0.00013

−0.00018 0.054 0.350
10.972 0.505 5/2+ 0.0090+0.00017

−0.00090 0.044 0.184
10.994 0.527 3/2+ 0.0050+0.00017

−0.00100 0.011 0.079
11.038 0.571 3/2+ 0.0027+0.00017

−0.00050 0.049 0.179
11.109 0.642 5/2+ 0.0120+0.00150

−0.00150 0.016 0.096
11.273 0.806 3/2+ 0.003∗ 0.045 0.279
11.280 0.812 3/2+ 0.003∗ 0.127 0.320
11.303 0.836 3/2+ 0.003∗ 0.105 0.148

Table 5.2: Energies of the 23Na states included in the present analysis. The measured centroid is
reported in the first column, as well as the Jπ of the levels and the reduced widths involved
in the Modified R-Matrix fit calculations discussed in Pizzone et al. [2017]; D’Agata et al.
[submitted]. Values marked with an asterisk are taken from Ugalde et al. [2008], and have
to be considered as upper limits.

About the red band in figure 5.15, it represent the uncertainty band relative to

the Modified R-Matrix fit, evaluated changing the values of the reduced partial width

γα to fit the upper and lower limits of the experimental data. This procedure also

gave us the possibility to evaluate the errors on γα. The fitting procedure (χ2=0.04)

had the aim to extract a trend for the cross-section, but also to deduce the reduced

widths of the levels, and to correct for HOES effects and energy resolution. This
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5.7 Astrophysical Factor and reaction rate

was also done for normalization purposes. After angular integration and the eval-

uation of centrifugal and Coulomb barrier penetration, using the very same param-

eters and experimental data an on-energy-shell measure for the cross-section has

been deduced (figure 5.16), and the contribution of each resonance was evaluated.

Then, those data and fitting function were used to evaluate the on-energy-shell cross-

section σ(EC.M.) in absolute units.
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Figure 5.16: Cross-section in absolute units, obtained evaluating penetrability and normalizing data
reported in figure 5.15 to direct data [Ugalde et al., 2008]. In this figure, the blue line
with red band are the same as in figure 5.15 [D’Agata et al., submitted].

In figure 5.16, error coming from the normalization to data coming from Ugalde

et al. [2008] is also added, and a comparison with existing data was performed

(black line with orange band).

5.7 Astrophysical Factor and reaction rate

The on-energy-shell S(EC.M.)-factor, was determined with the parameters extrap-

olated from the Modified R-Matrix calculations and reported in table 5.2. In figure

5.17, the comparison with the present measurement and existing data [Ugalde et al.,

2008] was also performed, but this time the comparison is also made with theoretical

prediction at lower energies (inside the Gamow window): in this case it was made

by Ugalde et al. [2005] and Ugalde et al. [2008] just imposing the known energies

and partial width for the resonances of the 23Na compound nucleus [Keyworth et al.,
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5.7 Astrophysical Factor and reaction rate

1968] in a standard R-Matrix calculation, for the not experimentally covered energy

region (EC.M.<0.7 MeV, reported in figure 5.17as a black line with a green band as

error). Data above 0.7 MeV are taken from experimental measurements made by

Ugalde et al. [2008], and brought in the center-of-mass reference frame for compar-

ison with our experimental data (reported in figure 5.17 as a black line with a orange

band as error).
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Figure 5.17: Experimental S(EC.M.)-factor for the 19F(α,p)22Ne reaction [Pizzone et al., 2017]. Here
the black line represents the data available in literature [Ugalde et al., 2008] smeared to
our experimental resolution using the procedure described in La Cognata et al. [2010],
while the green and orange bands are the experimental errors and the average uncertain-
ties in the extrapolation at lower energies reported in Ugalde et al. [2008]. The black
dots represent the experimental data from the present measurements, along with the
present Modified R-Matrix fit (blue line) ant its average uncertainties (red band).

Using now the equations reported in chapter 2, the reaction rate for a couple of

charged particles i and j can be calculated as

Ri j =
NiN j

1 + δi j

〈σν〉 =
NiN j

1 + δi j

(

8
πA

)1/2 (

1
kBT

)3/2

×

(5.35)

×
∫ ∞

0
S (EC.M.)exp

[

−
(

EC.M.

kBT
+ 2πη(EC.M.)

)]

dEC.M.

where σ is the cross-section for the process, v is the relative velocity of the i j couple

of interacting particles and Ni and N j is the number of nuclei of the two kinds. As

can be seen in equation 5.35, the reaction rate is critically dependent on temperature,

and in principle any energy of interaction has a role at every value of temperature.

To correctly evaluate the reaction rate is then necessary to use some properties of
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5.7 Astrophysical Factor and reaction rate

the reaction rate formula, in particular the properties of additivity of the integral

present in equation 5.35: thanks to this property, in fact, it is possible to simply

substitute our measure of the reaction rate in the energy range 0<EC.M.<0.9 MeV to

the existing one, and then calculate the rate in a wide range of temperature. To apply

this procedure, a parametrization of the existing reaction rate [Ugalde et al., 2008]

is needed.

The following equation represents a parametrization of the existing reaction rate

[D’Agata et al., submitted]:

Rlit = Exp[−a1 − a2
T9
− a3

T
1/3
9

− a4 · T 1/3
9 + a5 · T9 − a6 · T 5/3 − a7 · LogT9]

+Exp[−b1 − b2 ·102

T9
+

b3
T 1/3 − b4 · T 1/3

9 + b5 · T9 − b6 · T 5/3
9 + b7 · LogT9]

(5.36)

+Exp[−c1 + − c2
T9
+

c3

T
1/3
9

+ c4 · T 1/3
9 − c5 · T9 + c6 · T 5/3

9 + c7 · LogT9] +

+Exp[d1 +
d2
T9
+

d3

T
1/3
9

− d4 · T 1/3
9 + d5 · T9 − d6 · T 5/3

9 + d7 · LogT9]

where the constants a1,2,...7, b1,2,...7, c1,2,...7 and d1,2,...7 are reported in table 5.3.

Equation 5.36 coefficients
a1=1309.18 b1=15.3885 c1=844.952 d1=170.849
a2=2568.22 b2=15.7730 c2=16.3666 d2=1.80825
a3=520.290 b3=432.940 c3=431.058 d3=37.3312
a4=188.174 b4=418.860 c4=634.938 d4=222.838
a5=5870.34 b5=12.8279 c5=240.061 d5=13.6220
a6=1286.14 b6=36.6741 c6=31.2061 d6=7.37999
a7=6374.60 b7=270.212 c7=104.777 d7=88.7584

Table 5.3: Values of the constants in equation 5.36 [D’Agata et al., submitted].

Once the parametrization is done, the reaction rate in the energy region 0<EC.M.<0.66

MeV (R1) and 0.66<EC.M.<0.88 (R2) was calculated from the S-factor already present

in literature (figure 5.17). Using now the additivity properties of integrals, those val-

ues were subtracted to the parametrization 5.36, and then the measure of the reaction

rate performed (RT HM) in this work was added to it:

Rn = Rlit − R1 − R2 + RT HM (5.37)
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5.7 Astrophysical Factor and reaction rate

This results in a an enhancement of the reaction rate at temperature of astrophysical

interest (0.1<T9<0.6) up to a factor of four (figure 5.18 ad table 5.4).

Temperature Rlit RT HM Upper RT HM Lower RT HM Ratio

[109K]

[

cm3

mol × sec

] [

cm3

mol × sec

] [

cm3

mol × sec

] [

cm3

mol × sec

]

RTHM

Rlit

0.04 4.259×10−34 4.247×10−34 4.248×10−34 4.245×10−34 0.997
0.05 8.725×10−32 9.376×10−32 9.437×10−32 9.196×10−32 1.075
0.06 8.640×10−30 1.422×10−29 1.474×10−29 1.270×10−29 1.646
0.07 4.940×10−28 1.637×10−27 1.737×10−27 1.325×10−27 3.314
0.08 4.193×10−26 1.310×10−25 1.384×10−25 1.061×10−25 3.125
0.09 5.066×10−24 8.628×10−24 8.912×10−24 7.560×10−24 1.703
0.10 3.297×10−22 3.297×10−22 3.369×10−22 3.003×10−22 1.373
0.11 5.096×10−21 6.709×10−21 6.847×10−21 6.136×10−21 1.316
0.12 6.298×10−20 8.511×10−20 8.719×10−20 7.691×10−20 1.352
0.13 5.550×10−19 7.921×10−19 8.169×10−19 7.027×10−19 1.427
0.14 4.002×10−18 6.017×10−18 6.252×10−18 5.249×10−18 1.504
0.15 2.507×10−17 3.905×10−17 4.085×10−17 3.368×10−17 1.557
0.16 1.379×10−16 2.189×10−16 2.304×10−16 1.875×10−16 1.591
0.18 2.742×10−15 4.559×10−15 4.853×10−15 3.855×10−15 1.663
0.20 3.312×10−14 5.970×10−14 6.438×10−14 4.968×10−14 1.803
0.25 3.727×10−12 9.629×10−12 1.078×10−11 7.655×10−12 2.583
0.30 1.259×10−10 4.572×10−10 5.316×10−10 3.522×10−10 3.632
0.35 2.413×10−09 9.429×10−09 1.136×10−08 7.084×10−09 3.908
0.40 3.377×10−08 1.065×10−07 1.324×10−07 7.805×10−08 3.152
0.45 3.644×10−07 7.976×10−07 1.011×10−06 5.793×10−07 2.188
0.50 3.041×10−06 4.670×10−06 5.875×10−06 3.489×10−06 1.535
0.60 1.018×10−04 1.063×10−04 1.234×10−04 9.034×10−05 1.045
0.70 1.461×10−03 1.399×10−03 1.970×10−03 1.292×10−03 0.957
0.80 1.103×10−02 1.048×10−02 1.430×10−02 1.004×10−02 0.950
0.90 5.639×10−02 5.405×10−02 7.410×10−02 5.272×10−02 0.958
1.00 4.179×10−01 4.110×10−01 5.570×10−01 4.078×10−01 0.983
1.25 5.762×10+00 5.719×10+00 5.736×10+00 5.704×10+00 0.992
1.50 3.948×10+01 3.935×10+01 3.939×10+01 3.931×10+01 0.997
1.75 1.772×10+02 1.769×10+02 1.770×10+02 1.768×10+02 0.998
2.00 5.921×10+02 5.916×10+02 5.918×10+02 5.915×10+02 0.999

Table 5.4: Values for the parametrization (Rlit) of the reaction rate and for the obtained values of the
present work (RT HM). Upper and lower limits of RT HM come from the error on Modi-

fied R-Matrix fit and on normalization, and are between 1% and 21% with respect to the
recommended value. In the ratio is possible to see the factor of four enhancement.
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Figure 5.18: Upper panel: comparison between the reaction rate, parametrized from the one present
in literature [Ugalde et al., 2008](black dashed line) and the one from the present work
(blue line) [Pizzone et al. 2017; D’Agata et al., submitted].
Lower panel: ratio between the reaction rate from Ugalde et al. [2008] and the one from
the present work (blue line) along with its errot (red band) [D’Agata et al., submitted].

5.8 Astrophysical implications

Now that the reaction rate is properly calculated, its impact on low-mass AGB-

stars nucleosynthesis can be evaluated. As it was already pointed out in Chapter 1,

fluorine nucleosynthesis is a quite complicated matter; in particular, it can be de-

stroyed by means of the 19F(p,α)16O, 19F(n,γ)20F and 19F(α,p)22Ne reactions, with

the third one that mainly operates during the TP1, being the abundance of protons in

the He-shell quite poor.

The extracted reaction rate was introduced in a state-of-the-art code for fluorine nu-

cleosynthesis: the NEWTON code [Trippella et al., 2014]. Such a feature was used

to study fluorine nucleosynthesis in stars of 1.5, 3 and 5 M⊙ with solar metallicity.

1Thermal pulse, see Chapter 1.2

134



5.8 Astrophysical implications

Profile for proton injection at the TDU2 and the resulting budget of 13C and 14N in

the He-rich region were adopted from Trippella and La Cognata [2017], along with

the same cross sections for neutron capture reactions. The cross section for proton

and α production were instead adopted from Trippella and La Cognata [2017]; Il-

iadis et al. [2010]; Caughlan and Fowler [1988]; Adelberger et al. [2011]; Palmerini

et al. [2013]; Sergi et al. [2015]; Best et al. [2013a]; La Cognata et al. [2010]; Best

et al. [2013b]; Couture et al. [2008]; Ugalde et al. [2008]; Pizzone et al. [2017].
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Figure 5.19: Temporal evolution of the ratio abundance obtained using THM data and and the one
from Ugalde et al. [2008]. In abscissa there are the thermal pulses that follow through
the whole AGB phase, indicated as integer numbers, while the half-integers represent
the inter-pulses. In this notation the time increases from left to right. Panels (a),(b) and
(c) are made using models of solar metallicity and with mass of 1.5M⊙, 3M⊙ and 5M⊙.
The black lines represent the evolution of 19F surface abundance, while the solid black
marks indicate the surface composition after each TP and the subsequent TDU. About
blue lines, those represent the ratio between fluorine abundance in He-rich stellar region
at each TP (blue dots), and before the on-set of the next He-burning episode at the end of
the inter-pulse (white dots). Finally the red areas represent the spread of nucleosynthesis
code after adopting the upper and lower limits of the R-Matrix calculation shown above
[D’Agata et al., submitted].

2Third Dredge-Up, see Chapter 1.2
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Moreover, other phenomena that are involved in 19F destruction, like cool bottom

process (see Palmerini et al. [2011b] and references therein) or hot bottom burning

(for 5M⊙ stars, Lattanzio [2003] model), were neglected with the aim to better ap-

preciate the impact of this new measurement of the 19F(α,p)22Ne cross-section and

reaction rate [Pizzone et al., 2017; D’Agata et al., submitted]. In figure 5.19 the

temporal evolution during the whole AGB phase of the 19F ratio, obtained with the

present THM experimental data for the 19F(α,p)22Ne, and the one obtained by using

the rate published in Ugalde et al. [2008] are reported: at the typical temperatures

value for the He-shell burning (a few 108 K) - with the present rate fluorine - is eas-

ily destroyed during TP, and its abundance in the stellar interior is lowered.

In (c) panel, where a 5M⊙ AGB-star is considered, the effect of the enhancement of

the rate is more visible: 19F abundance is reduced down to a factor of four in the

last pulses, due to the fact that in these conditions the temperature is of 3.8×108 K,

corresponding to the energy at which the difference with the present rate and the one

present in literature, is at its maximum. Differences are smaller for 1.5M⊙ and 3M⊙

because temperatures do not exceed 3×108K.

When the ashes of He-burning are brought to the stellar surface by the TDU, all the

products of stellar nucleosynthesis are mixed and diluted with the envelope materi-

als: so the effect of the 19F(α,p)22Ne reaction becomes negligible (as can be guessed

from the black curves in figure 5.19), and the difference between the calculations

made by using THM reaction rate or the one from Ugalde et al. [2008] are less than

5%.

5.9 Conclusions

With the experimental analysis presented in this chapter, the study of the
19F(α,p)22Ne using the THM can be considered completed at astrophysical energies.

Until this measure, in the region of interest of the Gamow window, there were no

experimental measurements for cross-section, S(EC.M.)-factor or reaction rate. This

measurement, performed at Ruder Bošković Institute (Zagreb), is the first one that

succeeded in determining such values at low energies of astrophysical interest. As

said earlier, the 6Li(19F,p22Ne)d three-body reaction in the exit channel was used

to to study the 19F(α,p)22Ne, that is the main destruction channel of fluorine in α-

rich environment, using THM. The excitation function for 10.3<E23Na<12 MeV was

studied, and many resonances corresponding to 23Na levels [Firestone, 2007a] were
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5.9 Conclusions

found. The two-body cross-section and S(EC.M.) were extracted at 0<EC.M.<0.88

MeV, and many levels were identified and fitted using the Modified R-Matrix ap-

proach. This fit was also useful to calculate the reaction rate, that was then used to

evaluate the astrophysical impact of this measurement.

With the aim to strengthen the results, more statistics would be needed to reduce er-

rors and clarify if there are interference phenomena between the resonances, along

with a better experimental resolution. Furthermore, while it appears clear that l = 2

is the dominant angular momentum of interaction, there is no reason why other l

could not play any role in the 19F(α,p)22Ne reaction, and measurement of the THM

at higher energies (EC.M.>1.1 MeV) would allow to have a more efficient normaliza-

tion. For all this reasons, repeating this experiment would be useful, possibly using

a magnetic spectrometer to detect 22Ne3 or deuterons at small angles: this would

allow a better reconstruction of the spectator momentum distribution ps, improving

the quasi-free process separation. Using a spectrometer would also allow to use

higher energy 6Li beam, or even a 19F one.

3but using a different experimental approach, like a 19F beam impinging on a 6Li target.
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CHAPTER 6

Data Analisys for the 23Na(p,α)20Ne reaction

As stated in the previous chapters, energy and position calibration are a neces-

sary step to analyze any nuclear reaction. For the 23Na(d,α 20Ne)n reaction, PSD1

and PSD2 were optimized for neon detection, while PSD2 and PSD4 for α detec-

tion: using the ∆E-E technique, the heavy particles for the reaction of interest were

selected, and then the QF events were isolated. Once data are properly reduced, ex-

citation function was studied and the two-body half-off-energy-shell cross-section

in arbitrary units was extracted. Further analysis will be made in the future.

6.1 Reaction channel selection

Like for 19F(α,p)22Ne, there are many reaction channels that could hinder the
23Na(p,α)20Ne reaction measurement. Careful data selection is therefore needed.

The experimental apparatus was mounted to identify particles by means of the ∆E-

E technique, at angles that are favorable for 20Ne detection. Looking at equations

4.9 and 4.10, it is clear how energy loss is poorly dependent from the number of

neutrons of the incoming particles. In this case the experimental set-up did not

allow to disentangle between 20Ne and 21Ne entirely, and a strong contribution from

both elastic and inelastic scattering of 23Na on deuterium and 12C was expected.
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Figure 6.1: 2D-spectra for both ∆E -E telescopes. A large contribution of scattering can be detected
for both spectra, and 21Ne presence can not be excluded at this point. In the red dashed
boxes, the hyperboles considered to be proper of neon-like particle are selected

As can be seen in figure 6.1, a contribution coming from 23Na scattering falls

right inside the neon-like hyperbole, and it must be eliminated in some way. 21Ne

coming from the direct two-body reaction 23Na(d,α)21Ne can be also present, and

this fact must be taken into account. To eliminate (or reduce to a minimum) both

contributions, a comparison between EPS D1 vs EPS D4 and EPS D2 vs. EPS D3 with a

proper Monte Carlo simulations for the three-body reaction was attempted.
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Figure 6.2: EPS D1 vs. EPS D4 and EPS D2 vs. EPS D3 2D-spectra (for PSD1-4 and PSD2-3 coincidences,
respectively). The red loci represent the extremities of a proper Monte Carlo simulation
of the energies of 20Ne and α nuclei in the examined three-body reaction 23Na(d,α 20Ne)n:
those will be used as kinematic cut for further analysis.

This procedure has been proven to be useful for data reduction: in this way, in
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6.1 Reaction channel selection

fact, it is possible to strongly reduce the contribution coming for 21Ne, but a strong

contribution coming from elastic scattering is still present (brighter zones inside the

red boxes in figure 6.2). From now on, only data lying inside the red boxes in figure

6.2 will be used: those show a better separation between Ne isotopes and beam, and

the contribution form 21Ne is strongly reduced.
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Figure 6.3: ∆E-E 2D-spectra for PSD1 and PSD2 (left and right panel, respectively) after the graph-
ical cuts of figure 6.1 and 6.2. Data shown a better separation from elastic scattering, and
the 20Ne hyperbole seems to be more resolved.

Both those facts are evident looking at figure 6.3: the separation of 23Na from Ne-

like particles appear to be more pronounced, and the typical contaminations from

the beam scattering is way less evident, along with the contribution from 21Ne. The

last of those facts can be guessed looking at the hyperbole thickness: it is in fact

thinner in the higher part, and according to the Bethe-Bloch formula (eq. 4.9) nuclei

with the same Z and different N must lie on curves that are higher when N rises. In

this case, results are much better of the one reported in the previous chapter at this

stage, and this fact reflected itself in a better refined Qvalue spectrum. The red boxes

of 6.3 will be used as further selection for the following analysis.
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Figure 6.4: Qvalue of the three body reaction for both coincidences (left and right panel are the same of
the previous figures): the red line indicates the theoretic value for the three body reaction
(Qvalue=0.152 MeV)

In figure 6.4 the better refinement is evident, but contaminations are also clearly

shown in the unlikely shape of the two peaks. To remove parasite reaction contri-

bution still hindering data analysis, an approach different from the previous chap-

ter was used: a new variable, Q2B=Ebeam-E20Ne-Eα, was reconstructed and plotted

against the three-body Qvalue, Q3B=Ebeam-E20Ne-Eα-En. Using it, if two-body reac-

tions (in particular reactions involving 21Ne contamination) are present, vertical loci

must rise, and this should happen even if other two-body reactions different from the
23Na(p,α)21Ne are taking place. From figure 6.5 this looks to be the case, and data

Figure 6.5: 2D-spectra Q3B vs. Q2B. As can be seen in the black boxes, vertical loci are present,
underlining the presence of two-body parasite reactions. Those (inside the black boxes)
will not be considered in the following analysis. There are evidences of another vertical
locus at Q2B=-0.6 MeV, but its contribution is far from the Q3B of interest
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6.1 Reaction channel selection

“inside” the black boxes will not be considered for further analysis. In this way, the

largest amount of the data coming from two-body reactions is eliminated.

Another experimental procedure that was applied in this work is the one coming

from Costanzo et al. [1990]. As said before, the experimental set-up was made to

detect only two out of the three emitted particles. Energy and angle of the third

particle are then reconstructed event by event, applying the conservation principles,

under the hypothesis that the third particle is a neutron (A=1). Such an assumption

can be made studying two quantities:

y = Ebeam − E20Ne − Eα (6.1)

x =
p2

n

2u
(6.2)

where u is the atomic mass unit in Mev/c2. Plotting equations 6.1 versus 6.2, a 2D-

spectrum was made (figure 6.6): the events of interest must gather around a straight

line:

y =
1
An

p2
n

2u
− Qvalue (6.3)

in which An is the mass of the spectator particle (a neutron in this case). This line

crosses the ordinate axis at y=Qvalue, that for this case is equal to 0.152 MeV.
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Figure 6.6: Spectator particle identification of the remaining events after the selection made in figure
6.5, using the procedure explained in Costanzo et al. [1990]. The red line represents
where the data with the expected Qvalue should gather. The black and yellow dashed
boxes in the left (coincidence PSD1-4) and right panel (coincidence PSD2-3) represent

data that will not be considered in further analisys. Data with
p2

n

2u
<5 MeV will also be

discarded.
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6.1 Reaction channel selection

Now a possibility would be to cut around the red line in figure 6.6, but this had

been proven to be a too big restriction on data: a better choice would be to discard

data that did not surely belong to the reaction of interest, 23Na(d,α 20Ne)n. In par-

ticular, the black dashed boxes in figure 6.6 should belong to the two-body reaction
23Na(p,α1)20Ne reaction: the so-called α1 channel corresponds to the configuration

where the heavy nucleus is emitted in the first excited state, in this case 20Ne∗. This

possibility is also of great interest, and its analysis is left for a future work. After all

those selections of data to analyse and discard, a new Qvalue spectrum was plotted

(figure 6.7).
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Figure 6.7: Qvalue for the 23Na(d,α 20Ne)n reaction for both coincidences (PSD1-4 on the left, PSD2-
3 on the right), with all the kinematic selections mentioned above. All informations are
in the legend

As can be seen in figure 6.7, for both coincidences data are in fair agreement with

experimental data. The Gaussian fit is limited to Q3B ≤1 MeV, and the contami-

nation at higher values has an unknown origin, but is probably due to some beam

contamination. In the following analysis this unknown contamination will be erased

(so only events with Q3B ≤1 MeV will be considered), imposing some limitation

on ps and ϑ20Ne. This second statement, in particular, was made considering the so

called quasi-free angles: the expected angle of emission of the 20Ne particle, ϑ20Ne,

in the range where the QF contribution is expected to be maximum (-50 MeV/c

≤ps ≤50 MeV/c), and considering the angular range covered by the α detectors (see

table 4.3), in fact, has its maximum between 1◦ and 6.5 ◦ (figure 6.8).
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Figure 6.8: Emission angle of the heavy 20Ne particle, guessed from Monte Carlo calculation, con-
sidering the ps range where it is expected to be maximum (-50 MeV/c≤ps ≤50 MeV/c).

6.2 Quasi-free channel contribution

As in the previous chapter, the three-body reaction channel is now isolated. In

the following paragraph, the QF contribution will be evaluated, with the aim to use

the THM: to use the method, in fact, is fundamental to eliminate all the contribution

from sequential decay, direct break-up, and any other process that can occur with the

same particles in the exit channel. As it has already been done for the 19F(α,p)22Ne

reaction, it is useful to look at the relative energy 2D-spectra. Plotting the Eα−n ver-

sus E20Ne−α and E20Ne−n versus E20Ne−α, the presence of horizontal and vertical loci is

a sign of the presence of 5He (horizontal loci), 21Ne (horizontal loci) or 24Mg (verti-

cal loci) excited states.
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Figure 6.9: Left panels: relative energy 2D spectra for the PSD1-4 coincidence.
Right panels:relative energy 2D-spectra for the PSD2-3 coincidence.
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6.2 Quasi-free channel contribution

In figure 6.9 there are no signs of horizontal loci in none of the four panels. This

indicates the absence of levels coming from excited states of 21Ne or 5He related to

sequential decays. Some vertical loci are instead detectable, and this was expected

and, in a way, favourable: it in fact underlines the presence of excited states of
24Mg. Among those data, the presence of QF process was investigated. Under the

conditions already explained in chapter 3, and from equation 5.2, if QF processes are

present the coincidence yield must change with the momentum distribution |Φ(ps)|2,

and it must show its peak at ps ≈0. Using now equation 5.3, the presence of those

will be revealed by its trend: in this case it must reproduce the neutron distribution

inside deuterium, once the yield is known from the experiment and the KF fac-

tor from theoretical calculations. From an experimental point of view, this can be

applied only in a favourably small region of energy of the center-of-mass system

(defined as in the previous chapter). This happens because in this small region the

two-body cross-section can be considered as a constant.
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Figure 6.10: ECM versus ps for both coincidences. The red dashed lines indicate the chosen energy
region.

For this case, the choice to take -0.2 MeV<ECM <0.2 MeV(red dashed lines in fig-

ure 6.10). Then the experimental ps was compared with theoretical Monte Carlo

calculations, that take into account all the kinematics for the problem (i.e. the KF

factor present in eq. 5.3). By dividing the two spectra it is possible to get the trend

of the |Φ(ps)|2 momentum distribution.
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6.2 Quasi-free channel contribution

Figure 6.11: Neutron momentum for both coincidences (PSD1-4 in blue and PSD2-3 in red). In the
upper panel experimental data are reported, while in the lower there are the theoretical
Monte Carlo simulation for the reaction with the corresponding angular restriction (red
PSD1-4, blue PSD2-3)

The two distributions (experimental and theoretical) are reported in figure 6.11:

as can be seen in the upper panel, for both coincidences there is a strong contribu-

tion around |ps|=100 MeV/c (this is also visible in figure 6.10), and this can be due

to compound nucleus decay of 24Mg. For this reason the angular cut on ϑ20Ne was

applied (1◦ ≤ ϑ20Ne ≤6.5◦), and the momentum distribution for the two coincidences

left is reported in figure 6.12
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Figure 6.12: Neutron momentum after the angular cut (colors as in figure 6.11). Now the strongest
contribution comes from |ps| ≤50 MeV/c: the peaks at higher |ps|, present in figures
6.10 and 6.11, are removed.
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6.2 Quasi-free channel contribution

In this new configuration a division between the two histograms (experimental com-

ing from figure 6.12 and theoretical from 6.11) was made, and finally the momentum

distribution |Φ(ps)| was obtained. In these conditions, the formalism briefly recalled

earlier can be used, and if the observed process is a quasi-free one, then the momen-

tum distribution of a neutron inside a deuterium cluster must follows the trend of a

Hulthén function [Pizzone et al., 2009]:

Φ(ps) =
N

π

ab(a + b)
(a − b)2

(

1
a2 + b2

− q

b2 + FWHM

)

(6.4)

where N is a normalization factor, a=0.2317 fm−1 and b=1.202 fm−1 are parameters

known from literature [Zadro et al., 1989; Pizzone et al., 2009] and FWHM is the

experimental full width at half maximum of the fitting curve. Then the absolute

values coming from the earlier obtained momentum distributions for the two coin-

cidences were mediated, and the results were best-fitted with the Hulthén function

(equation 6.4).
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Figure 6.13: Momentum distribution obtained with the procedure explained in the text. The red line
represents the Hulthén function that best-fits the experimental data. The FWHM, W(qt)
of this best-fit is reported in figure. Form now on, data will have |ps| ≤40 MeV/c

Now the anticipated selection over the ps variable appears clear: it is the limit at

which the Hulthén function best-fits the data (figure 6.13). It also is in agree-

ment with the maximum value that the neutron can take in QF reactions (ps ≤60

MeV/c)[Shapiro et al., 1965].
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6.3 Excitation function

In the fitting procedure using the Hulthén function, FWHM was calculated and it is

FWHM=52.09±9.32 MeV/c. Neutron full-width distribution inside deuterium fol-

lows, if plotted as a function of the transferred momentum qt, a trend similar to the

case of 6Li treated in the previous chapter [Pizzone et al., 2009]: in this case equa-

tion 5.5 is still valid, with the difference that for this case f0=58 MeV/c, q0=60±12

MeV/c, qt=230 MeV/c, and W(qt)≈52.09±9.32. About equation 5.6, it is still valid,

but pp and p22Ne must be substituted with pα and p20Ne. The results of this calculation

are presented in figure 6.14.

Figure 6.14: FWHM of the momentum distribution of neutron inside deuterium, as a function of
the transferred momentum qt. The green circle represents the value obtained in this
experiment, while the black and white diamonds and the white circles are taken from
literature [Pizzone et al., 2005, 2009].

6.3 Excitation function

As in chapter 5.3, the levels of the compound nucleus formed by the 23Na+p

reaction were considered: The relative energy spectra E20Ne+α were therefore anal-

ysed. This quantity can be extracted from experimental data by manipulation of the
20Ne−α system as made in eq. 5.7:

E
24Mg
ecc = E20Ne−α + Qecc (6.5)

In this case Qecc=9.316 MeV is the Qvalue for the formation of the 24Mg compound

nucleus from a α particle and a 20Ne nucleus (see figure 6.15). Also for this case if

E20Ne−α is equal to zero, E
24Mg
ecc will be equal to 9.316 MeV.
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6.3 Excitation function

Mg24

αNe+
20

9.316 MeV

Na+p
23

11.693 MeV

Figure 6.15: Level scheme for the 24Mg compound nucleus: the shaded zone indicates the region
explored by the experiment

In the energy region spanned by the experiment (figure 6.15), many resonant

structures are detected, using the mono-dimensional energy spectrum extracted from

eq. 6.5. Even in this case, a fit on the experimental data was made by adding many

Gaussian all with the same width σ=0.05 MeV (corresponding to the experimental

resolution, see in the text beyond for further details). All the centroids were then

compared with the levels of 24Mg available in literature [Firestone, 2007b].
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Figure 6.16: Excitation function of the 24Mg compound nucleus. The centroids of the Gaussian are
reported in the table 6.1, while the σ are fixed at 0.05 MeV.

In figure 6.16, there is evidence of many groups of blended resonances, really near to
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6.3 Excitation function

E*exp
24Mg

[MeV] E*lit
24Mg

[Firestone, 2007b] [MeV] Jπ lmin ∆ Elit−exp [keV]
11.715 11.728 0+ 2 13
11.830 11.862 //// //// 32
11.930 11.969 2+ 2 39
12.030 12.049 4+ 2 19
12.150 12.160 4+ 2 10

12.250
12.257 3− 1 7
12.258 2+ 2 8

12.380
12.339

2+ 2
-413− 1

4+ 2
12.403 2+ 2 23

12.510 12.504 4+ 2 -6

12.630 12.636
1− 1

6
2+ 2

12.750
12.737

2+ 2
-13

12.776 16

12.840 12.845
3− 1

5
4+ 2

12.910 12.919
2+ 2

93− 2
4+ 2

13.010
12.972 4+ 2 -38

13.027
2+ 2

17
3− 1

13.140 13.137 //// //// -3
13.270 13.253 //// //// -17

13.400
13.365 //// //// -35
13.417 //// //// 17

Table 6.1: Levels used as centroids for the Gaussian functions (red dashed lines) in figure 6.16 and
levels reported in literature [Firestone, 2007b]. The sum of those Gaussian makes our
fit (black solid line). In the last column the difference between the centroids and the
theoretical values are reported.

each other. In this case, experimental resolution and experimental errors are evalu-

ated from α-source and elastic scattering of 23Na on gold and CD2 (as in the previous

experiment): after the standard error propagation procedure, the experimental res-

olution has been fixed in 0.05 MeV, and the experimental error in 0.04 MeV. Both

are far greater than the proper width of the levels, that is of the order of magnitude

of some keV or lower [Firestone, 2007b], as in the case treated in chapter 5. Again,

this procedure is just a first step for level identification: angular momentum of in-

teraction and the Jπ proper of the resonance are still not uniquely assumed: more

refined methods are needed.
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6.4 Cross-section: preliminary approach

6.4 Cross-section: preliminary approach

The triple-differential cross-section
d3σ

dΩ20NedΩαdECM

is strictly tied to the energy

of the light particle in the center-of-mass reference frame of the two-body reaction,

under the post-collision prescription. As in the previous chapter it is defined as:

EC.M. = E20Ne−α − Q2B
value (6.6)

It is now useful to calculate the trend of the ϑC.M. variable, corresponding to the

angle of emission of the light particle in the center-of-mass reference frame of the

two-body reaction, following the prescription of Slaus et al. [1977] (similarly to

equation 5.9 of the previous chapter):

ϑC.M. = arccos
(v23Na − vp) · (v20Ne − vα)

|v23Na − vp| · |v20Ne − vα|
(6.7)

where v is the velocity of the different particles.

Figure 6.17: 2D-spectrum ϑC.M. versus EC.M. for both coincidences

If a 2D-spectrum ϑC.M. versus EC.M. is sketched, the region covered by the experi-

mental apparatus can be easily deduced: for this case it is between 40◦ and 140◦.

As can be seen in figure 6.17, the spectrum is quite populated, so an angular dis-

tribution similar to what has been done in chapter 5 for the 19F(α,p)22Ne reaction

will be performed in the future. The triple differential cross-section can be extracted

considering the variable EC.M. calculated using equation 6.6.
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6.4 Cross-section: preliminary approach

In chapter 3 and chapter 5 it was already stated that the THM is useful to derive the

two-body cross-section from a three-body measurement in the exit channel. Using

the PWIA, the cross section can be calculated using the equation 3.31, with the same

procedure used in chapter 5.
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Figure 6.18: Triple-differential cross section over the variables dΩα, dΩ20Ne, dEC.M., in arbitrary units.
The Gaussian fits correspond to the one in figure 6.16.

Again, this value depends from the kinematic factor and the momentum distribution

(of the neutron inside the deuterium, in this case) inside the TH nucleus. The quan-

tity KF|Φ(ps)|2 in the experimental conditions of this experiment can be calculated

using a proper Monte Carlo simulation. The two-body differential cross-section can

therefore be calculated by dividing the triple differential cross-section with such sim-

ulation. As can be seen, the cross-section covers both the Gamow window (50÷200

keV) and the energy region where direct data are present in literature [Mowlavi,

1999; Hale et al., 2004; Rowland et al., 2004].
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Figure 6.19: Experimental differential cross-section for the 23Na(p,α)20Ne two-body reaction.

6.5 Conclusions

In this chapter, the 23Na(p,α)20Ne was studied using the THM, at the energies of

astrophysical interest (EC.M.=50÷200 keV). In this region, no definitive information

about the cross-section is present, but only speculations based on indirect methods.

Anyway, such measurement at low energies is fundamental in the study of the

NeNa cycle, and in its implications on 23Na abundances in globular clusters. For

this reason, an experiment was performed at LNS-Laboratori Nazionali del Sud,

using a 23Na at 58 MeV impinging on a CD2 target, with the aim to induce the
23Na(d,p20Ne)n reaction: under the TH conditions, the 23Na(p,α)20Ne reaction was

then studied.

After the selection of the quasi-free process, it was possible to obtain preliminary

informations on the half-off-energy-shell two-body cross section, still in arbitrary

units, in the energy interval 0÷2 MeV. During the analysis, many resonances cor-

responding to 24Mg levels were guessed, resembling what is present in literature

[Firestone, 2007b]. Further steps in data analysis have still to be made: at first, a

systematic study (similar to the one performed in chapter 5) must be performed,

with the aim to detect and isolate the Jπ and l for each resonance and the possible in-

terference between different levels. With such information, angular integration can
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6.5 Conclusions

be performed, and the barrier penetrability can also be evaluated. After that, normal-

ization at higher energies through the Modified R-Matrix procedure explained and

adopted in chapter 5 must be performed, and in this way the experimental cross-

section in absolute unit will be obtained. A new reaction rate would be of critical

importance to understand the origin of 23Na and its abundance in GCs, as reported

in chapter 1 (see [D’Antona et al., 1983; D’Antona and Ventura, 2007, 2016] for

references).
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