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ὁ δὲ ἀνεξὲταστος βὶος οὐ βιωτός ἀνθρώπῳ.

“The unexamined life is not worth living.”

Plato (Dialogues, Apology of Socrates, 38a)

“And I feel that I am a man. And I feel that a man is a very important thing–
maybe more important than a star. This is not theology. I have no bent toward
gods. But I have a new love for that glittering instrument, the human soul. It is a
lovely and unique thing in the universe. It is always attacked and never destroyed–
because ‘Thou mayest’.”

John Steinbeck (East of Eden)
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The use of the formalism and the operatorial techniques typical of quan-
tum mechanics proved in recent years to be an effective approach for the
description of even macroscopic systems characterized by complex inter-
actions in several contexts with interesting applications both in the bioe-
cological and in the socioeconomic area. The operatorial approach, based
on raising and lowering operators, especially using the number representa-
tion, provides useful tools for modeling collective dynamics of spatially dis-
tributed physical systems in a completely general and precise way. Quantum–
like models (not necessarily related to the microscopic approach) offer an
interesting mathematical insight into phenomena and processes even at
macroscopic scales in several situations in which some quantities chang-
ing discontinuously are well described in terms of the integer eigenvalues
of certain self–adjoint operators useful for a complete description of the
system under consideration (the so–called observables of the system itself).
Moreover, according to the innovative approach called rule–induced dy-
namics, the derivation of the dynamics in the operator algebra of quan-
tum mechanics from a time–independent Hamiltonian operator may be en-
riched by means of the repeated application of specific “rules” including
in the dynamics meaningful effects occurring during the time evolution of
the system and, therefore, producing an adjustment of the model itself as
a consequence of its evolution. This method is of great interest to describe
systems for which a nontrivial and sufficiently regular asymptotic behavior
is expected.

The original contributions of this thesis, besides the construction and
the numerical investigation of operatorial models to describe complex sys-
tems of interest in many areas (mathematics, physics, ecology, social sci-
ences), are concerned with the introduction and exploitation of the so called
(H, ρ)–induced dynamics. The combined action of the Hamiltonian and of
some rules allowed to take into account in the model relevant effects that
can not be described by a time independent self–adjoint Hamiltonian. This
strategy, which provides a powerful strategy to simulate the effect of using
a time–dependent Hamiltonian, revealed capable of greatly enriching the
dynamics of the considered models still with simple quadratic Hamiltoni-
ans without additional computational costs.
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Introduction

The description of the dynamics of classical complex systems may be prof-
itably carried out with an operatorial approach, typical in quantum me-
chanics, even when dealing with several macroscopic systems related to
real case studies (Bagarello, 2012). The key to this approach lies in the
consideration that the operatorial framework provides useful tools for de-
scribing the interactions occurring within appropriate physical systems in
a completely general and precise way.

Without expecting to describe any quantum phenomena or stochastic
dynamics, the operatorial approach, based on raising and lowering opera-
tors, especially using the number representation, proved to be useful to set
up a natural description of systems in rather different areas. This happens
in several situations in which some quantities changing discontinuously are
well described in terms of the integer eigenvalues of certain self–adjoint op-
erators useful for a complete description of the system under consideration
(the so–called observables of the system itself); possible areas of applicability
of this idea are, among others, stock markets, love affairs, population mi-
gration phenomena, escape strategies of crowds, desertification processes,
microbial ecology, cellular automata, or politics. The assumption that spe-
cific techniques borrowed from quantum mechanics turn out to be well
suited to successfully analyze the dynamical aspects of complex classical
systems too is indeed confirmed by a series of recent papers (see Bagarello,
2007; Bagarello and Oliveri, 2010; Bagarello and Oliveri, 2013; Bagarello and
Oliveri, 2014; Bagarello, Gargano, and Oliveri, 2015; Bagarello, Cherubini,
and Oliveri, 2016; Bagarello and Haven, 2016; Di Salvo and Oliveri, 2016a;
Di Salvo and Oliveri, 2016b; Di Salvo and Oliveri, 2016c; Bagarello et al.,
2016, and references therein).

The theoretical framework for the analysis of the dynamics of classical
systems in the operator algebra of quantum mechanics is built basically as
follows: we sketch out a model of the macroscopic system S under con-
sideration, assume that the variables we are interested in are expressed
as number–like operators, and then we deduce the dynamics of S in the
Schrödinger or in the Heisenberg representation, once a suitable Hermitian
operator H = H†, called the Hamiltonian of S (which, in standard quantum
mechanics, corresponds to the total energy of the considered system) has
been defined. Thus, we have that the Hamiltonian H , which embeds the
main phenomena appearing relevant for a satisfactory characterization of
the system S under consideration, has the property of governing the time
evolution of any observable of S by means of the equation

X(t) = exp(iHt)X exp(−iHt),
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or, rather, that H rules the evolution of the wave function Ψ(t) describing S
at time t according to the law

iΨ̇(t) = HΨ(t),

where Ψ(0) = Ψ0 describes the initial status of S.
Despite of the fact that this method has been applied to very different

situations, it can not give completely general results, at least in its simplest
formulation. In particular, if S is required to have a finite number of de-
grees of freedom, and H is time independent self–adjoint and quadratic,
then we have that the only possible dynamics is periodic or quasi–periodic,
which means that such a strategy needs to be varied or enriched in order
to produce a more powerful description, working even in the case that the
system decays asymptotically to some final state. This motivates the defi-
nition of an extended version of the quantum dynamics which allows us to
take into account other effects which may occur during the time evolution
of the system. In particular, the dynamics may be thought of as driven by
a Hermitian time independent Hamiltonian operator H , but with the inno-
vation that, during the time evolution, a check on the system occurs peri-
odically and, in principle, determines a change on certain ingredients of the
model. Such a kind of control on the state of S is called rule (and indicated
by ρ), and the combined effect ofH and ρ produces what in the following is
called the (H, ρ)–induced dynamics. In this new kind of approach the model
preserves its structure, whereas the rule accounts for a sort of dependence
of the model itself on the current state of the system by repeatedly modi-
fying, at specific times, the state of the system itself or the value of some
of parameters entering H (without modifying the functional form of the
Hamiltonian). In some sense, the model adjusts itself as a consequence of
its evolution; this feature mimics the changes in the interactions among the
actors of the system under different environmental conditions. The com-
bined action of the Hamiltonian operator and a rule, that is really not a
mere mathematical trick, but rather an additional ingredient physically jus-
tified by what we are deducing from the dynamics, can be efficiently used
to describe systems going to some equilibrium, even when H is thought to
be Hermitian (see Bagarello and Gargano, 2016a; Bagarello et al., 2017; Di
Salvo and Oliveri, 2016a; Di Salvo and Oliveri, 2016c; Bagarello et al., 2016).

The plan of the thesis is the following one.
In Chapter 1, as a start, and in order to fix the formalism, very few tools

and aspects related to the theory of quantum mechanics, useful for the sub-
sequent development, are briefly discussed. Some hints on the quantum–
mechanical apparatus, with respect to the operator algebra, and particu-
larly to the number operator (used for the definition of the conceptual set-
ting for the applications) are also given.

In Chapter 2, the theoretical framework derived from quantum mechan-
ics for the description of the dynamical properties of classical systems by
means of operatorial methods is introduced. The related theoretical and ap-
plicative aspects are addressed in completely general terms, leaving aside
the concrete interpretation that can be attributed to the involved models.

In Chapter 3, different fermionic models of bacterial populations are
presented. In particular, by using a conveniently defined operatorial scheme,
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and by adopting the Heisenberg representation of the dynamics, some fea-
tures of the long–term survival of bacterial populations are investigated,
and the colony morphology in stressed/aged bacterial populations of Pseu-
domonas aeruginosa constrained in a closed environment is described. Both
linear and nonlinear models are considered (the first of which also in a
spatial version); moreover, some effective dissipative mechanisms, phe-
nomenologically introduced, are taken into account.

Chapter 4 deals with the discussion of an operatorial model based on
fermionic operators for the description of the dynamics of political parties
affected by turncoat–like behaviors of part of their members. The model is
built by assuming that the various subgroups of the political parties are de-
scribed by time dependent number–like operators, and that the dynamics is
ruled, in the Heisenberg representation, only by a strictly quadratic Hamil-
tonian describing the main effects deriving from the interactions among
disloyal politicians. In this context, a study of the influence of the parame-
ters entering the model on the dynamics of the political system is discussed.

Chapter 5 is devoted to the introduction of the notion of rule–induced
dynamics, intended as a strategy to upgrade the description of the dynam-
ics of a macroscopic system by means of the combined effect of quantum
tools and some external or internal action periodically adjusting the model,
which is not easy to include in any Hamiltonian.

In Chapter 6, the approach of the (H, ρ)–induced dynamics (in the case
in which suitable sets of conditions acts on the state of the system) is applied
in the field of cellular automata in order to extend the classical Game of Life,
and several aspects of this extension are analyzed.

Finally, Chapter 7 and Chapter 8 deal with the extension of the conser-
vative models of bacterial populations and political party systems (already
introduced in Chapter 3 and Chapter 4, respectively) obtained by combin-
ing the standard operatorial approach with the additional introduction of
specific rules changing periodically the values of certain parameters enter-
ing the respective quadratic Hamiltonian operators.

It is worth of being remarked that all the models presented in this the-
sis, even if built with tools typically used in quantum mechanics, are fully
deterministic.

The original contributions of this thesis, besides the construction and
the numerical investigation of operatorial models to describe complex sys-
tems of interest in many areas (mathematics, physics, ecology, social sci-
ences), are concerned with the introduction and exploitation of the so called
(H, ρ)–induced dynamics. The combined action of the Hamiltonian and of
some rules allowed to take into account in the model relevant effects that
can not be described by a time independent self–adjoint Hamiltonian. This
strategy revealed capable of greatly enriching the dynamics of the consid-
ered models still with simple quadratic Hamiltonians without additional
computational costs.

Some of the original results presented in this thesis are contained in the
published papers Di Salvo and Oliveri, 2016b; Di Salvo and Oliveri, 2016c;
Bagarello et al., 2017, as well as in the papers Di Salvo and Oliveri, 2016a;
Bagarello et al., 2016; Di Salvo, Gorgone, and Oliveri, 2016b; Di Salvo, Gor-
gone, and Oliveri, 2016a that have been submitted for publication; other
results will be the object of some papers in progress.
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1 On the quantum–mechanical
apparatus

In this Chapter, to fix the language, the basic formalism of quantum me-
chanics, essential for the subsequent developments, is presented, and some
aspects of the theory are briefly illustrated.

Certain quantum tools, in particular the number operator, used for the
definition of the theoretical framework that provides in a logically satisfy-
ing way the conceptual setting for the various applications analyzed in the
following, are also introduced.

The aspects here discussed are widely analyzed in any textbook about
quantum mechanics (see, for instance, Roman, 1965; Merzbacher, 1998).

1.1 Background and preliminaries

Toward the end of the nineteenth century it seemed quite apparent that
the general concepts of what is now called the “classical physics” were ad-
equate to describe all physical phenomena. The macroscopic world evi-
dently appeared intelligible first in the framework of classical mechanics,
formalized by I. Newton in the late seventeenth century, and providing a
valid treatment of the dynamics of material bodies, and lastly in the context
of the classical electrodynamics, finalized by J. C. Maxwell in the latter half
of the nineteenth century to describe all the properties of the electromag-
netic field.

During the first quarter of the twentieth century, the scientists turned
their attention to the microscopic world, and a number of unforeseen diffi-
culties arose concerning the discovery of instances in nature in which cer-
tain physical variables assumed only quantized or discrete values (in con-
trast to the continuum of values expected on the basis of classical physics)
as well as the distinction between waves and particles. Instances of quantum
effects were uncovered in the early part of the last century, among others, by
M. Planck, who examined the so–called “black body radiation”, N. Bohr, in
regard to the spectrum of radiation emitted by excited hydrogen atoms, and
A. Einstein, with his theory of the photoelectric effect concerning the nature
of light (later supported by A. H. Compton). Ad hoc hypotheses about the
microscopic world, relating to the quantization of physical variables and
the wave–particle duality in nature, were introduced thanks to the contri-
bution of several physicists; by 1930, through the efforts of W. Heisenberg,
E. Schrödinger, M. Born, N. Bohr, P. A. M. Dirac, and many others, the
system of “quantum mechanics” had been devised (the name derives from
Plank’s radical suggestion that the photon energy could change only in dis-
crete steps, or quanta).
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Certainly it would be presumptuous to assert absolutely that quantum
mechanics, whose basic tenets are in many respects quite foreign to the con-
cepts and attitudes of classical physics, is the only or even the best possible
way of understanding physical phenomena. However, it is not possible to
deny the fact that quantum mechanics, in its present form, has been suc-
cessful in predicting experimental observations (Gillespie, 1974).

The structure of quantum mechanics differs startlingly from that of the
classical theory. In particular, the algebra of observables is no longer com-
mutative, but, instead, position and momentum (q and p) satisfy the canon-
ical commutation relations

[q, p] := qp− pq = i}, (1.1)

where i is the imaginary unit, and } is the reduced Planck’s constant: } ≡
h/2π = 1.054× 10−34joule · sec.

The equation of Schrödinger treats p and q as differentiation and mul-
tiplication operators acting on the Schrödinger wave–function Ψ, which has
the interpretation of a probability amplitude: it is complex–valued, and |Ψ|2
is the probability distribution in the state specified by Ψ. Superposition of
the solutions of the equation causes probability interference effects, a phe-
nomenon that, an interference being between events that from a classical
view are mutually exclusive, can not be understood classically at all. Later,
Ψ was characterized axiomatically as a vector in a Hilbert space, but the
peculiar fact remained that one worked with a complex Hilbert space and
came up with real probabilities.

Since any state is required to be represented as a positive linear func-
tional, where positivity means that the expectation value

〈
a2
〉

of the square
of any real observable a must always be nonnegative, it turns out that to
each state there corresponds a representation of the observables as linear
operators on some Hilbert space. As a consequence of the fact that the
scheme of quantum theory omits the postulate that the algebra is com-
mutative, quantum mechanically there are no states for which the expecta-
tion values of all products are equal to the products of the expectation val-
ues. Such a state would provide an algebraic isomorphism to the ordinary
numbers, which is possible only for very special noncommutative algebras
(Thirring, 1997). The occurrence of nonzero fluctuations (∆a)2 ≡

〈
a2
〉
−〈a〉2

is in general unavoidable, and gives rise to the indeterministic features of
the theory.

Moreover, quantum mechanics do not conform to classical logic, and the
logical maxim tertium non datur is not valid in quantum theory. The idea of a
“logic of quantum mechanics”, or quantum logic, was originally suggested
by Birkhoff and von Neumann in their pioneering paper (Birkhoff and Neu-
mann, 1936), and attained notoriety within the last years for its relevant role
in the fields of cognitive science and quantum information theory, suggest-
ing quantum theory to be the dominant fundamental logic in the natural
world. Quantum logic contests the validity of the only and mutually exclu-
sive possibilities by pointing to the irreparable change caused in the state
by preparing the system to test the new propositions. Recent research areas
recognize quantum logic in studies of: the subconscious, decisions involv-
ing unknown interconnected variables, memory, and question sequencing
(Larson, 2015).
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1.2 Certain aspects of the formalism

The general framework of the models we will discuss in this thesis relies
on the so–called number representation. Here, few important facts will be
given, paying not much attention to mathematical problems arising from
the fact that the operators involved might be unbounded, since this class
of operators is not relevant for the applications proposed in this thesis. A
detailed reference covering the following topics is Bagarello, 2012.

In this Section, some fundamentals of quantum states and operators,
starting with the usual definitions and properties, are briefly considered
and the derivation of the time evolution of a system is addressed.

1.2.1 Stationary states

Let us consider a system S of L identical particles, which means that they
can not be distinguished by measuring their properties, i.e., a permutation
P of the particles can not be measured. In classical mechanics, particles are
always distinguishable in the sense that, at least formally, we can always
follow the trajectory through the phase space of each individual particle
and disclose its identity. In quantum mechanics, instead, the concept of
trajectory does not exist, due to the intrinsic uncertainty in position, em-
bodied in Heisenberg’s principle, and identical particles are indistinguish-
able. One way to describe the state of a system composed of L particles
is the wave function Ψ(x1, . . . , xL), where the variable xi of the i–th parti-
cle represents its position and spin: xi = (~ri, si). According to the litera-
ture, |Ψ(x1, . . . , xL)|2 is interpreted as the probability to find the system S
in the state (x1, . . . , xL) when an actual measurement is performed. There
is a number of rules with which measurement processes are represented in
quantum mechanics (Buhler, 2006). Basically, any observable of S that can
be measured (such as the switch state, or maybe energy or momentum) has
the following defining property. To each observable O we associate a self–
adjoint operator Ô (with matrix entries Oij) such that the eigenvalues of
Ô precisely correspond to all possible measurement outcomes. The corre-
sponding eigenstates of Ô are the quantum states in which the measure-
ment yields a definite outcome equal to the eigenvalue. The eigenvalues
of the self–adjoint operator Ô are necessarily real, and the eigenvectors are
orthogonal, so that they can be used to form an orthonormal set of base
vectors for the system.

It is known that elementary particles (electrons, neutrons, etc.) all have
a special degree of freedom called spin, which can be regarded as a form of
angular momentum.

Definition 1.3 All particles with integer spin (0, 1, 2, . . .) are bosons, and parti-
cles with half–odd–integer spin (1

2 ,
3
2 , . . .) are fermions.

The wave function can exhibit two (and, generically, only two) possi-
ble symmetries under exchange; the law governing such behaviors, which
distinguishes all particles as either bosons or fermions, was discovered by
W. Pauli and is supported by experimental evidence.

Theorem 1.4 (Spin–Statistics Theorem) Systems of identical bosons have wave
functions which are symmetric under interchange of any pair of particle labels.
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The wave function is said to obey Bose–Einstein statistics. Systems of identical
fermions have wave functions which are antisymmetric under interchange of any
pair of particle labels. The wave function is said to obey Fermi–Dirac statistics.

Theorem 1.4 rules out the additional general result, known as Pauli Ex-
clusion Principle, stating that no two identical fermions can be in the same
quantum state. On the contrary, no such restriction applies to identical
bosons, that is any number of identical bosons can occupy the same quan-
tum state. A systematic exploration of Theorem 1.4 can be found in Duck
and Sudarshan, 1998.

1.4.1 Canonical relations and number representation

The formalism of Second Quantization (Paar, 2010) starts by postulating the
Canonical Commutation Relations (CCR)

[aj , ak] = 0, [a†j , a
†
k] = 0, [aj , a

†
k] = δj,k11, (1.2)

where j, k = 1, . . . , L (in case of a system with L independent bosonic
modes), 11 is the identity operator on H, and we have used the definition
of the so–called commutator [A,B] := AB − BA between A and B. The
properties in Equation (1.2) involve the operators a†`, and their adjoints a`,
which create and annihilate the bosons, respectively (in analogy with the
similar operators for the treatment of the harmonic oscillator in terms of
lowering and raising the energy of the system one quantum at a time).

Of special interest are the self–adjoint operators called occupation number
operators which can be constructed from the operators a†` and a` as follows:

n̂` = a†`a`, (1.3)

with ` = 1, . . . , L, whose eigenvalues are the occupation numbers n` for the
L modes of the system. The related self–adjoint operator

N̂ =

L∑
`=1

n̂` (1.4)

is called the particle number operator for S.
The creation operators a†j allow to construct bosonic states ϕn1,...,nL from

the vacuum or ground state ϕ0, that is the vector annihilated by all the aj ’s:
ajϕ0 = 0 for all j = 1, . . . , L. In particular, the Hilbert space H where a
system with L independent bosonic modes lives is constructed as the linear
span of the vectors generated by acting on ϕ0 with the operators a†j and
their powers, and then normalizing the obtained vectors, say

ϕn1,...,nL :=
1√

n1! . . . nL!
(a†1)n1 · · · (a†L)nLϕ0, (1.5)

n` = 0, 1, . . ., for all `. The set of vectors defined in (1.5) forms a complete
and orthonormal set inH; these vectors are eigenstates of both n̂` and N̂ :

n̂`ϕn1,...,nL = n`ϕn1,...,nL
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and
N̂ϕn1,...,nL = Nϕn1,...,nL ,

where N =
∑L

`=1 n`. Hence, n` and N are eigenvalues of n̂` and N̂ , respec-
tively. Moreover, using the CCR we deduce that

n̂`(a`ϕn1,...,nL) = (n` − 1)(a`ϕn1,...,nL),

for n` ≥ 1, whereas, if n` = 0, a` annihilates the vector, and

n̂`

(
a†`ϕn1,...,nL

)
= (n` + 1)

(
a†`ϕn1,...,nL

)
,

for all ` and for all n`.
Thus, the operator n̂` acts on ϕn1,...,nL , and returns n`, which is exactly

the number of bosons in the `–th mode. The operator N̂ counts the to-
tal number of bosons. Moreover, the operator a` destroys a boson in the
`–th mode, whereas a†` creates a boson in the same mode. This is why
in the physical literature a` and a†` are usually called the annihilation and
the creation operators, respectively. Notice that, due to the fact that H is
infinite–dimensional, the operators introduced so far, a`, a

†
`, n̂
†
`, and N̂ , are

all unbounded.
In using the bosonic creation and annihilation operators, in general,

one needs to apply only the commutation relations (1.2) and the property
a`ϕ0 = 0. As long as one starts from a wave function with the proper
bosonic symmetry, one does not need to worry ever about proper symme-
tries of wave functions, since they are induced through the algebra of a†`
and a`.

The vector ϕn1,...,nL has to be intended as a describer of the L different
modes of bosons of S in the sense that n1 bosons are in the first mode, n2

in the second mode, and so on. Another possibility consists in thinking
of ϕn1,...,nL as the state of L independent one–dimensional harmonic oscil-
lators, each with a frequency ωj , such that the first oscillator has energy
}ω1

(
n1 + 1

2

)
, the energy of the second oscillator is }ω2

(
n2 + 1

2

)
, and so on.

This interpretation, however, is not considered in this thesis since it is not
interesting for the aims of the proposed approach.

Analogously to the case of bosons, fermions are annihilated and created
by similar operators, b` and b†`, with the difference that these latter operators
satisfy other rules, called the Canonical Anti–commutation Relations (CAR)

{bj , bk} = 0, {b†j , b
†
k} = 0, {bj , b†k} = δj,k11, (1.6)

where j, k = 1, . . . , L (in case of a system with L independent fermionic
modes), 11 is the identity operator onH, and we have used the definition of
the so–called anti–commutator {A,B} := AB + BA between A and B. The
properties in equation (1.6) provide that creation and annihilation operators
for fermions alter the occupancy of the wave function without affecting the
fermionic symmetry. The immediate difference between the commutation
rules (1.2) and the anti–commutation rules (1.6) is that, while the operator
a2
` is different from 0, the square of b` is automatically 0, together with all

its higher powers. This is indeed an evidence of the Pauli principle: if we
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try to construct a system with two fermions with the same quantum num-
bers (labeled by `) using the language of second quantization, we should

act twice with b†` on the vacuum ϕ0. But, as b†`
2

= 0, the resulting vector
vanishes, in accordance with the fact that such a state has probability 0 to
occur.

As for bosons, from the creation and annihilation operators for fermions
we can construct n̂` = b†`b` and N̂ =

∑L
`=1 n̂`, which are both self–adjoint.

In particular, n̂` is the number operator for the `–th mode, while N̂ is the
number operator of S.

The Hilbert space H of the system S is constructed as for bosons, with
the difference that we can act on the vacuum ϕ0 with the operators b†` but
not with higher powers, since these powers are simply zero. This means
that we construct the vectors

Φn1,...,nL := (b†1)n1 · · · (b†L)nLΦ0, (1.7)

where n` = 0, 1, for all `, and no normalization appears. Again, the vectors
defined in (1.7) form an orthonormal set (spanningH) of eigenstates of both
n̂` (` = 1, . . . , L) and N̂ with eigenvalues n` (` = 1, . . . , L) andN =

∑L
`=1 n`,

respectively. A major difference with respect to what happens for bosons is
the property, following from the idempotence of n̂`,

n̂2
` = b†`b`b

†
`b` = b†`(1− b

†
`b`)b` = b†`b` − b

†
`b
†
`b`b` = n̂`, (1.8)

that the values that the various n` can assume are simply 0 and 1, whereas,
as for bosons, N can take any integer value larger or equal to 0.

Moreover, using the CAR, we deduce that

n̂` (b`Φn1,...,nL) =

{
(n` − 1)(b`Φn1,...,nL), n` = 1,

0, n` = 0,

and

n̂`

(
b†`Φn1,...,nL

)
=

{
(n` + 1)(b†`Φn1,...,nL), n` = 0,

0, n` = 1,

for all ` = 1, . . . , L. The interpretation of the annihilation and the creation
operators for fermions does not differ in principle from the one for bosons,
except from the fact that the operator b†` may also be seen as an annihilation
operator since, acting on a state with n` = 1, that state is actually destroyed.

Of course, for fermionic systems, H has a finite dimension. In par-
ticular, for just one mode of fermions, dim(H) = 2, and for L modes of
fermions dim(H) = 2L. This also implies that, contrarily to what happens
for bosons, the fermionic operators are bounded and can be represented by
finite–dimensional matrices.

1.4.2 Time evolution

In this Section, we describe how to find the time evolution of a closed quan-
tum microscopic system not interacting with any external reservoir. More
precisely, the two possible equivalent strategies consisting in adopting the
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Schrödinger rather than the Heisenberg picture in order to obtain the de-
pendence on time of a given measurable quantity are discussed.

Let H be an Hilbert space, and B(H) the set of all the bounded oper-
ators on H. B(H) is a so–called C?–algebra, that is, an algebra with in-
volution that is complete under a norm, ‖ · ‖, satisfying the C?–property:
‖ A?A ‖=‖ A ‖2, for all A ∈ B(H). Let S be the physical system under
consideration, and A the set of all the operators useful for a complete de-
scription of S, which includes the observables of S . For simplicity, it is
convenient to assume that A is a C?–algebra by itself, possibly coinciding
with the original set B(H), or, at least, with some closed subset of B(H).
This is not possible when using unbounded operators, which do not be-
long to any C?–algebra. However, also in the case that some unbounded
operator X appears in the scheme, if it is self–adjoint, then we may con-
sider exp(iXt), which is unitary and, therefore, bounded, and X may be
recovered by taking its time derivative in t = 0 and multiplying the result
by −i.

The description of the time evolution of S is related to a self–adjoint
(bounded or unbounded) operator H = H†, the Hamiltonian of S, which in
standard quantum mechanics is the observable operator corresponding to
the total energy of the system. Hence, H possesses a complete, orthonor-
mal set of eigenvectors {ηk(x)} and a corresponding set of real eigenvalues
{Ek},

Hηk(x) = Ekηk(x), k = 1, 2, . . .

where the numbers {Ek} are the allowed values of the total energy of the
system. Thus, the quantum–mechanical Hamiltonian generates the time–
evolution, as in classical mechanics, except that the influence of the non-
commutativity must now be taken into account.

Provided S is not disturbed (such as by being measured), the Hamilto-
nian operator H determines the time evolution of the wave function Ψ(t)
describing the system at time t through the differential equation, known as
the Schrödinger equation,

i}
dΨ(t)

dt
= HΨ(t). (1.9)

According to this postulate, so long as the system is not disturbed1, Ψ
evolves with time in a completely deterministic way, that is, if Ψ0 is the
wave function describing S at time t = 0; then (in absence of external agents
intruding upon the system) as t assumes further values t1, t2, . . ., the wave
function successively coincides with the H–vectors Ψ(t1),Ψ(t2), . . . which
are solutions to (1.9) satisfying the initial condition Ψ(0) ≡ Ψ0.

Since H does not depend explicitly on t, the formal solution of the
Schrödinger equation is Ψ(t) = exp(−iHt)Ψ(0) = exp(−iHt)Ψ0. As the
time increases, the evolution of the wave function is completely specified
by the differential equation (1.9), and we can then compute the mean value
of each operator Z ∈ A in the state Ψ(t), say

z(t) = 〈Ψ(t), ZΨ(t)〉 . (1.10)

1An example of such a disturbance is given by the measurement process, which alters in
a sudden, random way the otherwise orderly time development of the wave function.
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Notice that, in general, the explicit form of the solution exp(−iHt)Ψ0 may
be actually unknown, at least if there is no easy way to compute the action
of the unitary operator exp(−iHt) on the vector Ψ0, which is not granted at
all.

The second point of view considered in this thesis in order to look at the
time evolution of S, which is completely equivalent to the previous picture
(Bagarello, 2012), consists in adopting the Heisenberg representation, in which
the wave function does not evolve in time, while each operatorX ∈ A does,
and its time evolution is given by the Heisenberg equation

X(t) = exp(iHt)X exp(−iHt), (1.11)

or, equivalently, by the solution of the differential equation

dX(t)

dt
= i exp(iHt)[H,X] exp(−iHt) = i[H,X(t)]. (1.12)

The time evolution defined in this way is a one–parameter group of auto-
morphisms of A.

An operator Y ∈ A is a constant of motion if it commutes withH . Indeed,

in this case, equation (1.12) implies that
dY (t)

dt
= 0, so that Y (t) = Y for all

t.
The vector ϕn1,...,nL in (1.5) (or the vector Φn1,...,nL in (1.7) depending on

the fact that the system involves bosonic or fermionic modes, respectively)
defines the expectation value of any operator Z ∈ A changing with time as

z(t) = 〈ϕn1,...,nL , Z(t)ϕn1,...,nL〉, (1.13)

where 〈 , 〉 is the scalar product inH.
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2 Theoretical operatorial
models of classical problems

In this Chapter, we present the theoretical framework for the description of
the dynamic properties of different systems by means of operatorial meth-
ods of quantum mechanics. The disquisition is carried out in very general
terms, leaving aside the interpretation that can be attributed to the various
models, and is intended to cover the theoretical and applicative aspects of
interest for the developments considered later.

2.1 Background

Operatorial techniques borrowed from quantum mechanics even provide a
valuable tool for the analysis and the description of the dynamical aspects
of different macroscopic classical systems related to real case studies.

The main motivations which suggest the use of tools, like operator al-
gebras and, in particular, the number representation, originally developed
in a quantum context to describe classical situations, have been widely dis-
cussed along the years (see Bagarello, 2012, and the references therein). In-
deed, in many situations several quantities changing discontinuously are
well described in terms of the integer eigenvalues of certain relevant self–
adjoint operators, the observables of the system, and the dynamics may be
ruled by an energy–like operator called the Hamiltonian of the system.

In the following, the systems that we shall describe are thought of as
compartmental models, i.e., systems that can be viewed as divided into com-
partments among which some fluxes occur. A sketch of such models is pic-
tured by representing the compartments by boxes and the connections be-
tween them by arrows, each box having a number of connections leading
to itself (inflows) and a number of arrows leading from itself (outflows).

The theoretical framework adopted hereafter for the description of a
macroscopic system consists of a model involving fermionic annihilation
and creation operators, and the number operators associated to the involved
compartments. In particular, we shall use fermionic operators due to two
main reasons. The first one is of technical nature, since the Hilbert space
of a model involving a finite number of fermionic modes has a finite di-
mension (in other words, fermionic operators are bounded), whereas the
use of bosonic operators always entails, even for very simple systems, the
introduction of an infinite–dimensional Hilbert space. As it is widely dis-
cussed in the literature (see Roman, 1965 for instance), this means that
the fermionic operators, in case of a model involving N different compart-
ments, can be represented as matrices acting on a 2N–dimensional Hilbert
space, and hence they are 2N × 2N matrices. This reflects also in the fact
that, while the eigenvalues of a bosonic number operator are all the posi-
tive integers (and therefore can take very high values), one has that 0 and



14 Theoretical operatorial models of classical problems

1 are the only allowed eigenvalues of a fermionic number operator. This
latter consideration leads to the second justification, which concerns the
interpretation given to the model in all those situations, as in the case of
ecosystems, in which for each compartment only two possible non–trivial
situations are admitted: a first one (the ground state), having a very low den-
sity, or a second one (the excited state), in which the density is very high. In
such contexts, trying to increase the density of the excited state, as well as to
decrease the density of the ground state, simply annihilates that compart-
ment. This fact simply means that there exist upper and lower bounds to
the densities of the compartments which can not be overcome for obvious
reasons. Fermionic operators have been successfully used in the defini-
tion of local densities of observables in different macroscopic systems, for
instance closed ecological systems (Bagarello and Oliveri, 2014), desertifi-
cation models (Bagarello, Cherubini, and Oliveri, 2016), or decision mak-
ing mechanisms (Bagarello and Haven, 2014; Bagarello and Haven, 2015;
Bagarello, 2015).

According to the operatorial approach, the dynamics of a system S is
therefore governed by the Hermitian Hamiltonian operatorH = H†, which,
in standard quantum mechanics, is the observable operator corresponding
to the total energy of the system and, besides describing the main effects
which are observed in S, has the property of determining the time evolution
of the system. The way in which H may be constructed is described in
Bagarello, 2014 and in Bagarello, 2012.

The models adopted in this framework are built by expressing the vari-
ables we are interested in as number–like operators, i.e., self–adjoint opera-
tors like n̂ = a†a, with a and a† the annihilation and creation operator, re-
spectively, since this choice turns out to be the most convenient in all those
cases in which the mean values of n̂ corresponding to an assigned initial
condition can be interpreted as a density attached to a compartment of the
macroscopic system.

Without expecting to describe any quantum effect or stochastic dynam-
ics, this perspective allows us to build a deterministic system, evolving with
time in a completely deterministic way, just as position and momentum do
in classical mechanics.

Two equivalent viewpoints in order to look at the time evolution of
a system S consist, on the one hand, in considering the wave function
Ψ(t) describing S at time t evolving according to the Schrödinger equa-
tion iΨ̇(t) = HΨ(t), where Ψ(0) = Ψ0 describes the initial status of the
system, or, on the other hand, in adopting the Heisenberg representation,
according to which the wave function does not evolve in time, while each
operatorX(t) acting on the Hilbert space where S lives at time t do, accord-
ing to the Heisenberg equation Ẋ(t) = i[H,X(t)], whereupon it is X(t) =
exp(iHt)X(0) exp(−iHt). The formal solution of the Schrödinger equation
is, sinceH is assumed independent explicitly of t, Ψ(t) = exp(−iHt)Ψ(0) =
exp(−iHt)Ψ0.

Both in the Schrödinger and in the Heisenberg representation the formal
solution is not, in general, explicitly known (an easy way to compute the re-
quired operations is not granted at all). However, for quadratic Hamiltoni-
ans, the dynamic equations are linear and it is possible to drastically reduce
the computational complexity of the problem. On the contrary, the meth-
ods for the numerical resolution of the nonlinear equations (arising when
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one uses a non quadratic Hamiltonian) encounter major obstacles due to
the remarkable growth of the size of the problem as the number N of the
involved compartments increases, even in the case of models not too much
complicated. Of course, this results in a strong limitation on the kind of sys-
tems that can be analyzed in practice, and makes the operatorial approach
computationally unmanageable without large supercomputing resources in
case of models describing nonlinear interactions between compartments or
spatially nonhomogeneous models on a lattice. This increase in the compu-
tational cost may be avoided without a loss in quality with the introduction
of the notion of rule–induced dynamics.

From now on we will use mainly the Heisenberg picture for the math-
ematical formulation of the dynamics of the contemplated systems, so that
the wave function is stationary. Although the Schrödinger and the Heisen-
berg formulations are formally equivalent, the latter, in the light of the ap-
plications we shall consider, provides a physically more appealing picture.

2.2 Systems modeled by quadratic Hamiltonians

Let us consider at first a simple linear model describing the dynamics of
a certain physical system S in terms of N different fermionic modes aj ,
j = 1, 2, . . . , N . Of course, these operators satisfy the Canonical Anti–
commutation Rules (no more than one particle can ever be in the same
state), respectively. Moreover, we assume that the general Hamiltonian
containing the essential features of the system S is given by

H = H0 +HI , with

H0 =
N∑
j=1

ωj a
†
j aj ,

HI =
∑

1≤j<k≤N
λj,k

(
aj a

†
k + ak a

†
j

)
+

∑
1≤j<k≤N

µj,k

(
a†j a

†
k + ak aj

)
,

(2.1)

where ωi (i = 1, . . . , N ), λj,k, and µj,k (j = 1, . . . , N−1, k = j+1, . . . , N ) are
real parameters. The operator in (2.1) is made up of a free standard part,
H0, and a contribution, HI , related to the interactions among the compo-
nents. In particular, the parameters in H0, which, in agreement with the
quantum mechanical literature, are called the frequencies, measure the in-
ertia of the different compartments (Bagarello, 2012): the higher the value
of a certain ωj , the higher the tendency of the density of the j–th degree of
freedom to stay constant in time (that is to say, the smaller the amplitudes of
the oscillations of the related densities). On the other hand, the interaction
Hamiltonian HI , which is quadratic in the raising and lowering operators,
describes the effects of the simultaneous increasing and/or decreasing of
the densities of the various fermionic modes. In particular, the term aja

†
k

makes the density of the k–th compartment of S to increase and that of
the j–th one to decrease, while the adjoint contribution, aka

†
j , is responsible

for the opposite phenomenon. Similarly, the terms like a†ja
†
k or akaj are in-

tended to produce a simultaneous increase or decrease of both the j–th and
the k–th compartment of S. Notice that the presence of the adjoint contri-
butions in HI ensures the fact that the Hamiltonian H is self–adjoint, i.e.,
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H = H†. The parameters λj,k measure a sort of competition (mors tua vita
mea) between the j–th and the k–th compartment, whereas the parameters
µj,k a sort of cooperation (unita vincimus). Of course, λj,k (µj,k, respectively)
must be taken to be 0 when between the j–th and the k–th component of the
system there is no competition (cooperation, respectively). When HI = 0,
[H, n̂j ] = [H0, n̂j ] = 0, j = 1, 2, . . . , N , i.e., H describes a somehow static
situation, in which the densities of the compartments of S , described by the
number operators n̂j , stay constant even if the operators aj and a†j have a
non trivial time dependence.

To look at the time evolution of the system S in accordance with the
Heisenberg scheme, we should consider the evolution in time of any opera-

torX acting on S according to the Heisenberg equation
dX(t)

dt
= i[H,X(t)].

The dynamical equations deduced in correspondence of each operator aj
(j = 1, . . . , N ) thus have the form:

ȧj = i

(
− ωjaj +

∑
1≤`<j

λ`,ja` +
∑

j<k≤N
λj,kak

+
∑

1≤`<j
µ`,ja

†
` −

∑
j<k≤N

µj,ka
†
k

)
.

(2.2)

In order to close the system, in general, the Hermitian conjugates of these
equations, say

ȧ†j = i

(
ωja

†
j −

∑
1≤`<j

λ`,ja
†
` −

∑
j<k≤N

λj,ka
†
k

−
∑

1≤`<j
µ`,ja` +

∑
j<k≤N

µj,kak

)
,

(2.3)

have to be considered too. Since H is a quadratic operator, the equations
(2.2) and (2.3) turn out to be linear. By introducing the vector

A =
(
a1, . . . , aN , a

†
1, . . . , a

†
N

)T
, (2.4)

the system of the equations of motion can be rewritten as

Ȧ = UA, (2.5)

whereU is the symmetric matrix deduced from the equations (2.2) and (2.3).
The solution is clearly

A(t) = V (t)A(0), (2.6)

with V (t) = exp(Ut). Therefore, the computation of the densities of the
various compartments of the system, described by the number operators
n̂j , j = 1, . . . , N , is immediately obtained, and the only numerical difficulty
consists in finding, given U , the matrix exp(Ut). Calling Vj,k(t) the generic

time–dependent matrix entry of V (t), and nj(t) =
〈
ϕn, a

†
j(t)aj(t)ϕn

〉
, where

n = (n1, . . . , nN ) contains the initial densities of the compartments, and ϕn
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is an eigenstate of all the number operators n̂j with eigenvalue nj , it is

nj(t) =
N∑
k=1

(
|Vj,k(t)|2 + |Vj,k+N (t)|2

)
nk, j = 1, . . . , N. (2.7)

These are the required functions describing the densities of each compart-
ment of S, with initial conditions fixed by the vector ϕn. Thus, for quadratic
Hamiltonians, since we know the solution to (2.2), we do not need to con-
sider the dynamic equations for each entry of the operators aj , but simply
the global equations for the fermionic operators.

As we will show in Section 2.3, the simplification expressed by (2.7) is
no longer applicable when the dynamic equations are nonlinear, since in
this case we do not have explicitly the solution.

2.3 Models with general cubic Hamiltonians

Here, we deal with the case of systems whose dynamics is driven by differ-
ential equations which are no longer linear.

The interaction among the N compartments of the same system S in-
troduced in Subsection 2.2 can be represented in a more complex way by
considering in the full Hamiltonian H , rather than just quadratic terms,
also contributions of order greater than two. For simplicity, we consider a
Hamiltonian operator containing cubic contributions:

H = H0 +HI , with

H0 =
N∑
j=1

ωj a
†
j aj ,

HI =
∑

1≤j<k≤N
λj,k

(
aj a

†
k + ak a

†
j

)
+

∑
1≤j<k≤N

µj,k

(
a†j a

†
k + ak aj

)
+

∑
1≤j,k,`≤N

νj,k,`

(
a†ja
†
ka` + a†`akaj

)
.

(2.8)

The interpretation of the terms in the last sum inHI is prompted by the fact
that the expressions a†ja

†
ka` (j, k, ` = 1, . . . , N ) model the fact that whenever

a particle of type ` is annihilated, one of type j and another one of type k
are created, expressing in such a way the simultaneous increase of the den-
sities of both the j–th and the k–th compartments of the system associated
with the decrease of the `–th one. The adjoint term in H , which is needed
in order to render the operator H Hermitian, describes the specular phe-
nomenon: a type–` particle is created and two type–j and type–k ones are
annihilated; certainly, the total number of particles is not preserved. No-
tice that, in order to make the formulation of the model completely general,
one might consider further terms of the form a†jaka

†
` or aja

†
ka
†
`. However,

the description of the dynamics would not differ due to the presence of
such contributions (expressing mechanisms similar to those described just
above).
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The Heisenberg equations of motion extend those in (2.2) and (2.3):

ȧj = i

(
− ωjaj +

∑
1≤`<j

λ`,ja` +
∑

j<k≤N
λj,kak +

∑
1≤`<j

µ`,ja
†
` −

∑
j<k≤N

µj,ka
†
k

+
∑

k,`∈{1,...,N}\{j}

νj,k,`

(
2a†jaj − 11

)(
a†ka` + aka`

))
,

ȧ†j = i

(
ωja

†
j −

∑
1≤`<j

λ`,ja
†
` −

∑
j<k≤N

λj,ka
†
k −

∑
1≤`<j

µ`,ja` +
∑

j<k≤N
µj,kak

−
∑

k,`∈{1,...,N}\{j}

νj,k,`

(
a†`ak + a†`a

†
k

)(
2a†jaj − 11

))
,

(2.9)
with j = 1, . . . , N . The solutions of the nonlinear system (2.9) are to be
found by means of numerical methods (as an example by Runge–Kutta
methods). Analyzing this problem in terms of size, in accordance with the
classical representation of the fermionic operators, since the operators aj
and a†j (j = 1, . . . , N ) are actually 2N × 2N matrices, the number of nonlin-
ear equations to be solved amounts to 2N · 22N . Therefore, the calculation
of numerical solutions of (2.9) is not readily implementable at all. In fact,
a strong limitation of the classical fermionic operatorial approach lies pre-
cisely in the exponential rise of size of the nonlinear differential system of
the equations of motion as soon as not extremely low values of N are con-
sidered or, even further, in case of spatial models. In this latter event the
calculation of numerical solutions becomes in practice a computationally
intractable problem in absence of huge computing resources.

2.4 Dissipative effects

The problem of a simple description of irreversible processes in quantum
mechanics is usually very hard. Perfect isolation of quantum systems is not
possible since any realistic system is influenced by the coupling to an en-
vironment, which typically has a large number of degrees of freedom. In
general, a complete microscopic description of the degrees of freedom of
the environment is too complicated. Probably, the simplest choice consists
in using a non self–adjoint, effective, Hamiltonian which is properly chosen
in order to describe the phenomenon we are interested to. Of course, using
such an operator to describe the time evolution of a system usually causes
several problems. First of all, it is not evident at all that the dynamics is
still driven by a Heisenberg–like equation of motion. Actually, the assump-
tion is that the wave function Ψ(t) of the system still evolves obeying the
Schrödinger equation iΨ̇ = HΨ, even if H 6= H†.

As widely discussed in Bagarello, 2012 and references therein, a rigor-
ous way to describe damping in a quantum system is to open it, making
the system to interact with a suitable reservoir. In this way, the dynamics
of the full system remains unitary, even if an exchange between the sys-
tem and the (infinitely extended) reservoir allows us to describe quantities
which are not conserved during the time evolution. In principle, in order
to look for some simple description of the dynamics of an open system, one
should investigate the unitary dynamics of the total system, i.e. system and
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environment, to obtain information about the reduced system of interest by
averaging the appropriate observables over the degrees of freedom of the
environment (Breuer and Petruccione, 2007). Usually, the dynamics of an
open quantum system is described in terms of the reduced density operator
which is obtained from the density operator of the total system by tracing
over the variables of the environment. In order to eliminate the degrees
of freedom of the environment, various approximations are needed which
lead to a closed equation of motion for the density matrix of the open sys-
tem. A possible choice to that effect is the Markov approximation, which
may lead to a so–called quantum master equation that, in turn, generates
a quantum dynamical semigroup in the space of reduced density matrices.
Prominent representants of such equations are the quantum optical master
equation, and, derived under slightly different assumptions, the quantum
Brownian motion master equation, with applications in condensed matter
physics. In general, the validity of the master equation approach is guar-
anteed in a Markovian setting, where the master equation takes the famous
Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) form and is a generator
of a dynamical semigroup.

Also, quite often, an effective approach can be used, i.e., that of replac-
ing self–adjoint with non self–adjoint Hamiltonians, keeping unchanged
the other rules of the game. This kind of procedure is used in branches
of quantum physics, like quantum optics, to describe simply (though not
rigorously) decay processes (see Ben-Aryeh, Mann, and Yaakov (2004) and
Cherbal et al. (2007), and references therein). In particular, in order to de-
scribe a damping effect, it is sufficient, even if not rigorous, to replace some
real parameters involved in the Hamiltonian operator with complex num-
bers. In particular, it results that it is enough to add an even small negative
imaginary part to just a single parameter of H0 in (2.1) and (2.8) to induce a
damping for all the compartments of the considered system (Bagarello and
Oliveri, 2014; Bagarello, Cherubini, and Oliveri, 2016; Di Salvo and Oliveri,
2016c).

Consider, therefore, the time evolution of the observable X still given
by the equation

X(t) = exp(iHt)X exp(−iHt),

even if H 6= H† (the consequences of this position on the choice of the
natural scalar product of the Hilbert space of the theory are not addressed
here).

In order to find conditions which produce damping, let us consider the
following simple interacting model deduced from the one introduced in
Bagarello and Oliveri, 2010:

H = ω1a
†
1a1 + ω2a

†
2a2 + λ(a†1a2 + a†2a1),

where [ai, a
†
j ] = δi,j 11, i, j = 1, 2, and ωj , λ ∈ R. The time evolution of aj(t),

and of n̂j(t) = a†j(t)aj(t) as a consequence, can be deduced analytically, and
the mean values of n̂j(t) can also be found:{

n1(t) = 〈n̂1(t)〉 = n1|Φ1,1(t)|2 + n2|Φ1,2(t)|2,
n2(t) = 〈n̂2(t)〉 = n1|Φ2,1(t)|2 + n2|Φ2,2(t)|2.
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FIGURE 2.1: A representation of 2–D lattice for the spatial model.

Here nj = 〈n̂j(0)〉 are fixed by the initial conditions for the system, while
the various functions |Φk,l(t)| all share the same general analytic expression:

|Φk,l(t)|2 = a11 exp(it(α1 − α1)) + a12 exp(it(α2 − α2))

+ a21 exp(it(α2 − α1)) + a22 exp(it(α1 − α2)),

where aij are constants, while

α1 =
1

2
(ω1 + ω2 +Ω) , α2 =

1

2
(ω1 + ω2 − Ω) ,

where Ω =
√

(ω1 + ω2)2 + 4λ2. It is clear that, as far as ωj and λ are real,
n1(t) and n2(t) can only oscillate. On the other hand, let us consider the
possibility of having these parameters complex–valued: ωj = ωj,re+ iωj,im,
λ = λre+iλim, with ωj,re, ωj,im, λre and λim real. A simple analysis suggests
that, in order to get nj(t) → 0 for t → ∞, it is enough to add a negative
imaginary part to ω1 or to ω2. More precisely, if we take λim = 0 and ω1,im =
ω2,im < 0, both n1(t) and n2(t) goes to zero asymptotically. On the other
hand, it is easy to check that, if ω1,im = ω2,im = 0, there is no possible
choice of λre and λim which produces damping.

This simple model suggests that, for a phenomenological description of
damping, it is sufficient to add a (small) negative imaginary part to the pa-
rameters of the free Hamiltonian, leaving unchanged the (real) interaction
parameter.

2.5 Spatial models of diffusion processes

This Section deals with the description of operatorial models also includ-
ing spatial interactions. These models have an important role in modeling
different biological and/or sociological systems (Bagarello, 2012). Possible
applications of the operatorial approach on a lattice include the study of
migration phenomena (Bagarello and Oliveri, 2013), in which a population
moves from a poor place to a richer region already occupied by a second
group of people, desertification processes (Bagarello, Cherubini, and Oliv-
eri, 2016), ecosystem modeling (Di Salvo and Oliveri, 2016b), escape strate-
gies (Bagarello, Gargano, and Oliveri, 2015), and general features connected
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to competitions between species.
Spatial versions of operatorial models are achieved considering extra

diffusion terms in the Hamiltonian operatorH . The large number of modes
for such models forces us to consider systems ruled by quadratic Hamilto-
nians in order to have acceptable computational costs.

Start considering a two–dimensional rectangular (or square) region R
divided into cells, labeled by α = 1, . . . , L · L′, as depicted in fig. 2.1. With
α = 1 we label the first cell down to the left, while L · L′ labels the last
cell up to the right. In principle, in each cell α, a certain number N of
compartments, represented by suitable operators aj,α, j = 1, . . . , N , α =
1, . . . , L · L′, are distributed. The rules that these operators satisfy extend
the CAR relations:

{ai,α, a†j,β} = δi,jδα,β11, {ai,α, aj,β} = {a†i,α, a
†
j,β} = 0, (2.10)

where i, j = 1, . . . , N , α, β = 1, . . . , L · L′. The main idea to build up a
spatial model of the system under consideration is to extend what we have
discussed in Section 2.2 by assuming the dynamics governed by a quadratic
Hamiltonian operator HS for the full system consisting of a sum of all the
terms composing the first standard part H0 and the contribution HI related
to the interactions among the parts (see Equation (2.1)) in each cell α plus
another contribution, HM , responsible for the migration or diffusion of the
compartments all around the lattice. A natural choice for HM is the follow-
ing one:

HM =
N∑
i=1

L·L′∑
α=1

γi,α

L·L′∑
β=1

pα,β (ai,α a
†
i,β + ai,β a

†
i,α), (2.11)

where γi,α and pα,β (i = 1, . . . , N , α, β = 1, . . . , L · L′) are real quantities,
to keep HM self–adjoint. All the parameters entering the spatial model are,
in general, assumed to be cell dependent to allow for the description of an
anisotropic situation. In particular, pα,β can only be 0 or 1 depending on the
possibility of the actors of the model to move from the cell α to cell β, or
vice versa, and the parameters γi,α are the mobilities. In fact, if pα,β = 1, the
term ai,α a

†
i,β produces a lowering in the density of the i–th compartment in

the cell α with a related raising of its density in the cell β, which means that
some member of this compartment is moving from α to β. For this reason,
pα,β’s, together with the parameters γi,α, measure the diffusion coefficients.
Indeed, if, for instance, γi,α = 0, ∀α ∈ {1, . . . , L ·L′}, and ∃β ∈ {1, . . . , L ·L′}
such that γj,β > 0, then no diffusion is possible for the i–th compartment,
while the j–th compartment can move between certain cells ofR. However,
we stress that, also when γi,α = 0, ∀α ∈ {1, . . . , L · L′}, there exists still the
possibility of increasing, after some time, the density of the i–th compart-
ment in a part of R where this density was initially very small due to the
presence of the contributions

N∑
j=1
j 6=i

(
λj,α(ai,α a

†
j,α + aj,α a

†
i,α) + µj,α(a†i,α a

†
j,α + aj,α ai,α)

)
, (2.12)

which allows the density of i–th compartment to increase just as a conse-
quence of its interaction with the other compartments of the model in the
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cell α. These are of course effects of competition and/or cooperation among
the actors of the system which are localized in a single cell ofR.

Moreover, to account for other possible spatial interactions related to
the migration which may be naturally expected between some couple of
actors of the system, a contribution like∑

1≤i<j≤N

∑
ξ∈Ξα

(
λi,ξ(ai,α a

†
j,ξ + aj,ξ a

†
i,α) + µi,ξ(a

†
i,α a

†
j,ξ + aj,ξ ai,α)

)
(2.13)

can be introduced in HI , Ξα being the set of the indices referring to the cells
which are adjacent to α in the chosen topology (e.g., the cells belonging to
the so called Moore neighborhood).

Since the Hamiltonian H has a quadratic form, the differential equa-
tions for the annihilation operators, and possibly for the creation operators,
keep linear and, therefore, are not, in principle, particularly difficult to solve
(provided that the computations on the total amount of operators involved
in the spatial model, i.e., the number of compartments times the number of
cells of the lattice, are computationally manageable).

2.6 Computational complexity

In this Section, we discuss some considerations related to the computational
cost of the operatorial linear method described in Section 2.2 in the par-
ticular case where the model representing the system is defined by using
fermionic operators.

According to eq. (2.7), in order to obtain the mean values of the num-
ber operators at each instant t (which represent the quantities of interest in
the described approach, at least as regards the applications proposed in this
thesis), we need the computation of the exponential of the 2N × 2N matrix
Ut (we have an N ×N matrix when there are no cooperation terms so that
we do not need to consider the creation operators as additional unknowns).
There are various methods in the literature, based on different grounds (see
Moler and Van Loan, 2003 and the references therein for a survey on this
topic), for carrying out the exponential of even large matrices. The best
general algorithms use matrix decomposition methods; they start with the
Schur decomposition and include some sort of eigenvalue clustering. There
are also variants which involve a further reduction to a block form. In all
cases, for an N × N matrix, the initial decomposition costs O(N3). There-
fore, roughly speaking, the computational complexity for the exponential
of a matrix of order N can be considered as O(N3).

System (2.5) is made of 2N first order linear differential equations, and
a good numerical solution (for instance by a Runge–Kutta method) at the
costO(N2) (O(N) if U is a sparse matrix) could be looked for. Nevertheless,
this is not completely true since a numerical approach requires the use of
A(0), and, according to the classical representation of N–mode fermionic
operators, each component of the latter is a matrix of order 2N ; therefore,
the linear system (2.5) actually involves 2N · 22N differential equations.

It is easily ascertained that for quadratic Hamiltonians the system expe-
riences time evolutions which are periodic or quasi–periodic. To describe
some kind of “more interesting” dynamics, without adding extra ingredi-
ents to the operatorial approach described in the previous Sections, we need
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to change something in the form of H . A natural choice consists in assum-
ing a Hamiltonian with terms of order greater than two; however, in such a
case, adopting the Heisenberg representation, to obtain the time evolution
of the system, we have to compute at each instant of time the exponential
of a 2N × 2N matrix, or, equivalently, to compute the numerical solution
of a system of 2N · 22N nonlinear differential equations. This approach be-
comes almost intractable from a computational point of view if one wants
to consider models with a large number of fermionic modes, or, even more,
spatial models.

An interesting possibility to enrich the description of the dynamics with-
out increasing the computational complexity of the problem is given by the
(H, ρ)–induced dynamics (described in Chapter 5), where the evolution is
driven, besides the Hamiltonian operator, by certain conditions, which may,
in particular, change periodically the values assigned to the parameters of
the Hamiltonian. For reasons that we will explain later, the implementation
of the rule–induced dynamics in the case in which the rule is a map in the
space of the parameters of H requires the need to follow the evolution of
all the entries, according to the standard representation, of the fermionic
operators building the model (see Subsection 5.3.1).

We now discuss a different point of view for the problem of deducing
the time evolution of the operators that bypasses both the need of directly
computing the exponential of the matrix Ut, and the huge amount of com-
putation to obtain a numerical solution of (2.5).

Let us reconsider the system (2.5) but assuming that each component
Aj(t) of A is an 2N–component row vector whose value at t = 0 is the j–th
element of the canonical orthonormal basis of R2N . As a consequence, (2.5)
now represents a linear differential equation for the 2N × 2N matrix A to
be solved with the initial condition A(0) = 11, and now the solution reads

A(t) = exp(Ut). (2.14)

We can compute this solution by numerically solving a system of 4N2 lin-
ear differential equations, with computational cost O(N3) that reduces to
O(N2) if the matrix U is sparse (this usually occurs in operatorial models
on a lattice (Bagarello and Oliveri, 2013; Bagarello, Cherubini, and Oliveri,
2016; Di Salvo and Oliveri, 2016b)).

The expression
(
|Aj,k(t)|2 + |Aj,k+N (t)|2

)
provides the mean value nj(t)

corresponding to the initial values n`(0) = δk` (` = 1, . . . , N). Therefore, in
correspondence to the general initial values (n1, . . . , nN ), the mean values
are obtained by means of the formula

n`(t) =
N∑
k=1

(
|A`,k(t)|2 + |A`,k+N (t)|2

)
nk. (2.15)

We point out that this approach in the case where U is not a sparse ma-
trix does not lead to a relevant lowering of computation complexity. Never-
theless, as it will appear clear in Chapter 5, this strategy provides useful if
we consider modified modelizations where the evolution is ruled by some
Hamiltonian operator together with the periodic application of a rule that
modifies the value of some of the parameters involved in the Hamiltonian
on the basis of the current state of the system.
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2.7 An application: the dynamics of a closed ecosys-
tem

(a)

N

(b)

FIGURE 2.2: A schematic view to the N–compartment models of
closed ecosystem with a single kind of garbage, (a), or two differ-

ent garbages, (b).

In this Section, we deal with the application of operatorial techniques
of quantum physics to the very simple theoretical models of closed ecosys-
tem made of N levels of organisms interacting with some external compart-
ments for the nutrients and one or two kinds of garbage (both the situations
are schematized in fig. 2.2). The models considered here, which have been
described in Bagarello and Oliveri, 2014, are built by adopting raising and
lowering fermionic operators (since these mimic quite well densities, or lo-
cal densities, of species) whose evolution is ruled by a self–adjoint Hamil-
tonian operator, which can be either quadratic or can contain higher order
terms.

Closed ecological systems are ecosystems that do not rely on matter ex-
change with any part outside the system. They are often used to describe
small artificial systems designed and controlled by humans (e.g., agricul-
tural systems and activated sludge plants, or aquaria, or fish ponds). Math-
ematical models of such systems, besides being useful in describing the
real earth’s ecosystems, may help in making predictions of how the sys-
tem may change under certain circumstances. For artificial systems, models
may help to optimize their design too.

In a closed ecological system, any waste product produced by one species
must be used by at least one other species and converted into nutrients:
to do this, an energy supply from outside the system is needed. There-
fore, a closed ecological system must contain at least one autotrophic —
chemotrophic or phototrophic — organism. Small closed ecosystems may
serve as useful models for the analysis of ecosystem properties in general,
due to their relatively simple trophic structure and the high intensity of the
biotic material and energy transformations. The most widely used mathe-
matical models are compartment models whose time evolution is governed
by a system of ordinary differential equations.
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The models described below, which are thought of as a first simplified
version of what a realistic closed ecological system should be, have a com-
mon structure: they are all made byN different internal compartments (the
levels), interacting with a certain number of external compartments playing
the role of the nutrients needed to feed the organisms in level 1 (autotroph
organisms), and the garbage produced by all the elements occupying the
various levels. Part of the garbage turns into nutrients after some time.
The organisms of levels greatest than 1 (heterotroph organisms) are fed by
those of the immediately preceding level. In fig. 2.2, a schematic view to
the possible interrelations among the various compartments gives a visual
clarification of the structure of the models. Each system considered here is
closed, meaning with this that the only dynamical degrees of freedom are
those of the levels, the garbage(s) and the nutrients: there is nothing else,
and only these quantities can interact between them. The simplest model is
the one where one has only a level of heterotroph organisms.

Two linear models. The first closed ecosystem which is taken into account
is the simplest one, made of N levels of organisms interacting with a com-
partment for the nutrients and a single compartment for the garbage (see
fig. 2.2 (a)). Since we are interested in the densities of these compartments,
we adopt fermionic operators.

The dynamics of the ecosystem is described by a Hamiltonian operator
containing the essential features one wants to model. For the first linear
model the following Hamiltonian is used:

H = H0 +HI , with

H0 =
N+1∑
j=0

ωj a
†
j aj ,

HI =
N∑
j=0

λj

(
aj a

†
N+1 + aN+1a

†
j

)
+
N−1∑
j=0

νj

(
aj a

†
j+1 + aj+1a

†
j

)
,

(2.16)

where aj (j = 0, 1, . . . , N + 1) is a fermionic operator, and ωj , νj and λj are
real constants. The zero-th mode is related to the nutrients, the (N + 1)-th
mode to the garbage, while all the remaining modes describe the organisms
of the various trophic levels. The Hamiltonian (2.16), which is quadratic
in the raising and the lowering operators, has the form discussed for the
general case in Section 2.2 except for the terms of simultaneous increase or
decrease of the densities of the different fermionic modes, that are not con-
sidered in this case. The meaning of the various parts forming H is to be
intended as previously clarified: the free standard part H0 is related to the
inertia of the different compartments, while HI describes the effects due
to the presence of interaction. In particular, the contributions λj aj a

†
N+1

(j = 1, . . . , N ) describe an increasing of garbage and a simultaneous de-
creasing of the densities of the levels (metabolic waste and death organisms
become garbage), whereas, for j = 0, the contribution λjaN+1a

†
j describes

the fact that the garbage is recycled by decomposers and transformed into
nutrients. Furthermore, the terms νj aj a

†
j+1 (j = 1, . . . , N − 1) express the

fact that the nutrients are used by the organisms of level 1, and that the
organisms of level j feed those of the level j + 1.
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The equations of motion, deduced by Ẋ = i[H,X], are:

ȧ0 = i (−ω0a0 + λ0aN+1 + ν0a1) ,

ȧl = i (−ωlal + λlaN+1 + νl−1al−1 + νlal+1) ,

ȧN = i (−ωNaN + λNaN+1 + νN−1aN−1) ,

ȧN+1 = i

−ωN+1aN+1 +
N∑
j=0

λjaj

 ,

(2.17)

where l = 1, . . . , N − 1. Recall that a0 and aN+1 are not organisms but
the nutrients and the garbage, respectively. It is not surprising, therefore,
that the related equations of motion differ from the other ones. Also, the
equation for aN looks slightly different from those for al, l = 1, . . . , N − 1,
since theN–th level has a single outgoing arrow, which goes to the garbage.

Since for quadratic Hamiltonians the dynamic equations are linear, the
solution can be found analytically, and it is possible to drastically reduce the
computational complexity of the problem (Bagarello, 2012). System (2.17)
can effectively be rewritten as Ȧ = UA, where

A =



a0

a1
...
...
aN
aN+1


, U = i



−ω0 ν0 0 · · · · · · λ0

ν0 −ω1 ν1 · · · · · · λ1

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · −ωN λN
λ0 λ1 λ2 · · · λN −ωN+1

 ,

U being a symmetric matrix, and the solution is A(t) = V (t)A(0), with
V (t) = exp(Ut). Calling Vk,l(t) the entries of the matrix V (t), and nk(t) =〈
ϕn, a

†
k(t)ak(t)ϕn

〉
, where n = (n0, n1, . . . , nN , nN+1) are the initial condi-

tions, it is

nk(t) =

N+1∑
l=0

|Vk,l(t)|2 nl. (2.18)

These are the required densities of the various compartments of the system,
k = 0, 1, . . . , N + 1, with initial conditions fixed by the vector ϕn.

The model considered up to now is simply a first approximation of a
closed ecosystem. A more realistic approach relies on the idea of mod-
eling the possibility of having garbages of different kind, in particular a
soft garbage (mainly coming from autotroph organisms), which easily turns
into nutrients, and a hard garbage (mainly coming from heterotroph organ-
isms), which also produces nutrients but only after a much longer period.
Therefore, a second linear model obtained by adding a second reservoir to
the system is now considered.

The leading idea is that, considering different coupling constants be-
tween the garbagesG1 andG2 with the nutrients, the model is able to repro-
duce the fact that part of the waste products and dead organisms is turned
into nutrients quickly (say, the autotroph detritus), while other parts (say,
the heterotroph detritus) are converted into nutrients only after a longer
time. The presence of two compartments for the garbages implies the need
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to add another degree of freedom and, consequently, an extra fermionic op-
erator aN+2. The other ingredients, as well as their meaning, are those of the
previous model. The structure of the ecosystem is depicted in fig. 2.2 (b).
The main differences introduced are that two arrows now start from each
level Lj , moving towards G1 and G2 and that both G1 and G2 (with differ-
ent time scales) contribute to the nutrients.

The Hamiltonian now looks like

H = H0 +HI , with

H0 =
N+2∑
j=0

ωj a
†
j aj ,

HI =

N∑
j=0

λ
(1)
j

(
aj a

†
N+1 + aN+1a

†
j

)
+

N∑
j=0

λ
(2)
j

(
aj a

†
N+2 + aN+2a

†
j

)

+
N−1∑
j=0

νj

(
aj a

†
j+1 + aj+1a

†
j

)
,

(2.19)
where λ(1)

j describes the interaction between the organisms and G1, while

λ
(2)
j is used to fix the strength of the interaction between the organisms and
G2. The meaning of the various contributions are analogous to those in
Section 2.2. The equations of motion extend those in (2.17),

ȧ0 = i
(
−ω0a0 + λ

(1)
0 aN+1 + λ

(2)
0 aN+2 + ν0a1

)
,

ȧl = i
(
−ωlal + λ

(1)
l aN+1 + λ

(2)
l aN+2 + νl−1al−1 + νlal+1

)
,

ȧN = i
(
−ωNaN + λ

(1)
N aN+1 + λ

(2)
N aN+2 + νN−1aN−1

)
,

ȧN+1 = i

(
−ωN+1aN+1 +

N∑
l=0

λ
(1)
l al

)
,

ȧN+2 = i

(
−ωN+2aN+2 +

N∑
l=0

λ
(2)
l al

)
,

(2.20)

l = 1, . . . , N − 1, and can be solved in a similar way. Setting

Ntot :=

N+2∑
l=0

a†l al, (2.21)

it follows that [H,Ntot] = 0, so that Ntot is a conserved quantity: what
disappears from the levels appears in the garbages and in the nutrients.
Notice that, since no compartment here has an infinite number of degrees
of freedom, no damping is allowed within the present scheme.

A nonlinear model. A nonlinear version of the same system schemati-
cally described in fig. 2.2 (b) is defined as follows. Instead of considering
two different quadratic terms in H to represent the interaction of the var-
ious levels with the two garbages, the idea is to consider a single cubic
contribution. For instance, aj a

†
N+1 a

†
N+2 models the fact that the density
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of the j–th level decreases while, simultaneously, the densities of both G1

and G2 increase: an organism, through its metabolism or dying, produces
garbage of two different kinds, soft and hard. The full Hamiltonian of the
system is the following one:

H = H0 +HI , with

H0 =

N+2∑
j=0

ωj a
†
j aj ,

HI =
N∑
j=1

λj

(
aj a

†
N+1 a

†
N+2 + aN+2 aN+1 a

†
j

)

+
2∑
j=1

ν(j)
(
a0 a

†
N+j + aN+ja

†
0

)
+
N−1∑
j=0

νj

(
aj a

†
j+1 + aj+1a

†
j

)
.

(2.22)

The notation is the same as before: for instance, zero refers to the fermionic
mode for the nutrients, whileN+1 andN+2 refer to the modes for the two
garbages. The physical interpretation of the Hamiltonian is easily found:
HI describes an interaction between the levels and the two garbages (first
contribution), the nutrients and the two garbages (second contribution),
and a hopping term (third term): the nutrients are used to feed the or-
ganisms of level 1, and the organisms of level j feed those of level j + 1

(j = 1, . . . , N − 1). The conjugate term, aj+1a
†
j , is needed in order to render

the Hamiltonian self–adjoint, since all the parameters are supposed here to
be real. The Heisenberg equations of motion look much harder than the
previous ones. Indeed, calling X :=

∑N
l=1 λl al, we have

ȧ0 = i(−ω0a0 + ν0a1 + 2Xa0a
†
N+1a

†
N+2 + 2aN+2aN+1X

†a0

+ ν(1)aN+1 + ν(2)aN+2),

ȧj = i(−ωjaj + νjaj+1 + νj−1aj−1 + 2Xaja
†
N+1a

†
N+2

+ aN+2aN+1(2X†aj − λj11)),

ȧN = i(−ωNaN + νN−1aN−1 + 2XaNa
†
N+1a

†
N+2

+ aN+2aN+1(2X†aN − λN11)),

ȧN+1 = i(−ωN+1aN+1 +Xa†N+2(11− 2a†N+1aN+1) + ν(1)a0),

ȧN+2 = i(−ωN+2aN+2 +Xa†N+1(2a†N+2aN+2 − 11) + ν(2)a0),

(2.23)

l = 1, . . . , N −1. It is evident that this system is not closed. In order to close
it, the Hermitian conjugates of these equations have to be considered too.
This leads to a nonlinear system, whose solution can be found numerically.
Notice also that, because of the nonlinearity, the operator Ntot introduced
in (2.21) does not commute with the Hamiltonian, and it is not evident if
any other integral of motion exists at all. Losing the linearity looks like
opening the system to the outer world: part of Ntot could be lost or created,
during the time evolution. This could have interesting consequences, since
one might expect that a realistic ecosystem is not entirely closed. On a me-
chanical level, this looks like having a sort of unavoidable friction in the
system, friction which can be made small, or even very small, but not zero.
However, this feature of a nonlinear model is not enough to produce in the
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dynamics of the system a clear damping effect, and in fact this has to be
introduced phenomenologically.

A further remark regards the consequences of the fact that the differen-
tial equations ruling the dynamics are nonlinear for non quadratic Hamilto-
nians. The point is that the methods for the numerical solution of the non-
linear equations encounter major obstacles due to the remarkable growth
of the size of the problem as the number of the involved compartments in-
creases, even in the case of models not too much complicated. Of course,
this results in a strong limitation on the kind of systems that can be ana-
lyzed in practice by means of nonlinear models, and, in particular, makes
the operatorial approach computationally unmanageable without large su-
percomputing resources, for instance in the case of spatial models describ-
ing nonlinear interactions between compartments on a lattice (Di Salvo and
Oliveri, 2016b).

Phenomenological damping. After a sufficiently long time, if the ecosys-
tem is supposed to be unable to recycle completely all the produced garbage,
the densities of the species are expected to decrease significantly, and to ap-
proach to zero eventually. A damping effect accounting for such a behavior
of the system may be added to the model phenomenologically.

Damping can be deduced by adopting a standard Heisenberg-like dy-
namics, simply by replacing the original real parameters in H with some
complex quantities. Moreover, it results that it is not important, or neces-
sary, to replace all the real parameters of H with complex quantities. For
instance, all the interaction parameters need not to be changed. In practice,
a negative and relatively small imaginary part is added only to ωN+1. The
reason for the choice of the sign of the imaginary part is forced owing to the
fact that taking a positive imaginary part for ωN+1 produces a blow up of
the solution. As a matter of fact, this could also be deduced directly from
the equations of motion. To illustrate this, consider the differential equa-
tion ẋ = −iωx, where ω = ωr + iωi, ωr, ωi ∈ R, x ∈ C. It is clear that
x(t) = exp(−iωt)x(0) = exp(−iωrt) exp(ωit)x(0), which is decaying only if
ωi < 0.

The damping obtained by means of this trick is evident (especially in
G1, at a lower rate in the other compartments) both in the linear cases and
in the nonlinear one. In such a way the models are made efficiently decaying,
that is, by allowing only one parameter of the free Hamiltonian H0 to be
complex (with a negative imaginary part), a damping for the densities of
all the compartments is reproduced. This is exactly the expected behavior
in a realistic closed ecosystem, with high (but not perfect) efficiency.
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3 Fermionic models of
bacterial populations

The aim of this Chapter is to describe some features of the long–term sur-
vival of bacterial populations by using conveniently defined fermionic mod-
els. Adopting the Heisenberg–like dynamics, we investigate an operatorial
scheme derived from the general one presented in Section 2.7 for the de-
scription of the colony morphology in stressed/aged bacterial populations
of Pseudomonas aeruginosa constrained in a closed environment (Di Salvo
and Oliveri, 2016b). We study the evolution of similar bacterial populations
by considering either a linear model or a nonlinear one; some effective dis-
sipative mechanisms, phenomenologically introduced, are also considered.
In order to better describe the bacterial colony morphology and character-
istics of P. aeruginosa, the linear model is considered on a square lattice too
(Di Salvo and Oliveri, 2016c).

3.1 Preliminaries and general definitions

Bacteria are highly–complex thermodynamic systems, requiring a source of
energy for maintaining their structure and functions. Bacterial growth is in-
fluenced by several factors: nutrient availability, pH, temperature, oxygen,
osmolarity, presence of toxic compounds (heavy metals, hydrogen perox-
ide, antibiotics, etc.). When one or more environmental conditions become
unfavourable, bacteria react in order to survive. Some genera, such as Bacil-
lus and Clostridium, when under negative stimuli, produce the endospore,
i.e., a differentiated cell with no active metabolism, able to survive for an in-
definite time in terms of “latent life”. When optimal conditions are restored,
the endospore germinates, metabolism is activated, and a new vegetative
cell appears. Most of bacterial genera, however, are not able to produce

FIGURE 3.1: Variations in the colony morphology of a popula-
tion of P. aeruginosa after 1 month of incubation.
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endospores; nonetheless, they can trigger efficient resistance mechanisms.
In the last 30 years, the survival of non–sporulating bacteria attracted the
attention of many microbiologists with the aim of characterizing the molec-
ular mechanisms underlying the bacterial stress response. In general, when
under stress, several phenotypic variations are observed (reduction of cell
size, morphological transitions from rod to spherical shape (Reeve, Amy,
and Matin, 1984), decrease in metabolic activity (Chapman, Fall, and Atkin-
son, 1971), synthesis repression of constitutive proteins, synthesis activa-
tion of stress–induced proteins required for survival (Givskov, Eberl, and
Molin, 1994)); parallely, increased resistance against external challenges
(e.g., H2O2, antibiotics, disinfecting solutions) and improved ability to per-
sist in their habitat are displayed (Van Overbeek et al., 1995).

Among others, P. aeruginosa is an ubiquitous bacterium which can be
found in marine and estuarine environments, in soils, etc. It is able to
use more than one hundred of chemical compounds as carbon and energy
sources, and, due to its wide metabolic versatility, is able to persist for pro-
longed periods of time without external sources of nutrients. Moreover, it is
the ethiological agent of cystic fibrosis, a fatal chronic disease, and can be in-
volved in urinary infections, conjunctivitis, otitis and pneumonia. Actually,
it represents an emergence in nosocomial infections, because of its high de-
gree of resistance against several classes of antibiotics and persistence also
in disinfecting solutions. For these features, it is important to develop mod-
els able to better comprehend, or at least describe, the observed long–term
survival of P. aeruginosa (Carnazza et al., 2008).

The model here analyzed takes some ideas from the one proposed in
Bagarello and Oliveri, 2014, where, as described in detail in Section 2.7,
the dynamics of the various trophic levels in a closed ecosystem has been
proposed and investigated. In particular, we consider a spatial model in a
finite, closed, two–dimensional square region, made by L2 cells, involving
four compartments in each cell, say the nutrients, the bacteria and two dif-
ferent garbages (the first one made up of the dead cells which are reusable
as nutrients, and the second one with the waste material not yet reusable or
requiring much more time to become recyclable).

By introducing four time dependent operators representing the relevant
actors of the system, and a self–adjoint Hamiltonian describing the interac-
tions among them, the dynamics is deduced, as in quantum mechanics,
using the Heisenberg–like representation.

The formulation here proposed is based on the assumption that the
compartments entering the model are described by the fermionic annihi-
lation operators aj , together with the creation operators a†j , and their asso-
ciated number operators n̂j = a†jaj (j = 1, . . . , 4).

In the following, the mean value of each number operator has the mean-
ing of a measure of the density of the associated compartment. For each
compartment, we will have two only possible nontrivial situations: the
ground state, corresponding to a very low density, and the excited state,
where the density is very high. Hence, increasing the density of the ex-
cited state, or decreasing the density of the ground state, annihilates that
compartment.

The model is inspired by the considerations made in Section 2.7, and
by the observation of the biological dynamics of some bacterial colonies
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FIGURE 3.2: A schematic view to the 4–compartment model of a
bacterial population in a batch culture as a closed ecosystem.

where the living bacteria, as the nutrients disappear, besides reducing their
metabolism, use as a source of energy either dead cells or part of their com-
ponents (Carnazza et al., 2008). This seems to be one of the working mech-
anisms in the observed long–term survival of bacteria like P. aeruginosa con-
strained in a closed environment (see fig. 3.1). In particular, only a part of
the chemical compounds produced by the metabolism is easily reusable;
moreover, some of the products of metabolic activity contribute to degrade
the environmental conditions, and, therefore, may act as a stress factor.

A diagram of the interactions among the above–mentioned compart-
ments is illustrated in fig. 3.2.

3.2 The linear dynamical model

The dynamics of the 4–compartment linear model of a closed ecosystem is
defined by means of the self–adjoint quadratic Hamiltonian operator



H = H0 +HI , with

H0 =
4∑

j=1

ωj a
†
j aj ,

HI = λ
(
a1 a

†
2 + a2a

†
1

)
+

2∑
j=1

ν
(1)
j

(
aj a

†
3 + a3a

†
j

)
+

2∑
j=1

ν
(2)
j

(
aj a

†
4 + a4a

†
j

)
,

(3.1)
where the first mode is related to the nutrients, the second one to the bacte-
ria, and the last two to the garbages. The real constants ωj appearing in the
first standard part H0 are related to the tendency of each degree of freedom
to stay constant in time; the larger their values, the smaller the amplitudes
of the oscillations of the related densities (Bagarello, 2012), whereas the real
parameters λ, ν(1)j and ν

(2)
j in HI are concerned to the interactions among

the bacteria, the nutrients, and the garbages. In more detail, the term λa1a
†
2

describes an increasing of bacteria and a simultaneous decreasing of the
density of nutrients, and the terms involving the parameters ν

(1)
j (ν(2)j , re-

spectively) describe the analogous interactions between the nutrients (the
bacteria, respectively) and the two garbages: the garbages are recycled and
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FIGURE 3.3: Linear model: time evolution of the densities of the
compartments both in the case of a purely conservative system,
(a), and in the case in which a dissipative effect is phenomenolog-

ically introduced, (b).
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transformed into nutrients, and the bacteria, because of their metabolic ac-
tivity, produce garbage. Of course, the adjoint contributions are added in
order to make the Hamiltonian self–adjoint.

The linear dynamic equations deduced for each observable of the sys-
tem in accordance with the Heisenberg scheme read

ȧ1 = i
(
−ω1a1 + λa2 + ν

(1)
1 a3 + ν

(2)
1 a4

)
,

ȧ2 = i
(
−ω2a2 + λa1 + ν

(1)
2 a3 + ν

(2)
2 a4

)
,

ȧ3 = i
(
−ω3a3 + ν

(1)
1 a1 + ν

(1)
2 a2

)
,

ȧ4 = i
(
−ω4a4 + ν

(2)
1 a1 + ν

(2)
2 a2

)
.

(3.2)

As widely discussed in Bagarello, Cherubini, and Oliveri (2016) and
Bagarello and Oliveri (2014), the operatorial approach is suited to cover also
dissipative systems, in order to deal with more realistic situations in which
one or more compartments can experience stress; in this case, a simple and
efficient strategy consisting in giving up the self–adjointness ofH (allowing
the use of complex–valued parameters) can be adopted. We simply include
this effect in the model by adding to some of the inertia parameters a small
negative imaginary part. Fig. 3.3(a) shows, as expected, the quasi–periodic
oscillating behavior obtained in the conservative linear case; on the con-
trary, when a small stress factor is introduced only for the second kind of
garbage, the amplitude of the oscillations of the densities of all the compart-
ments decays as time increases. Under the assumption that the ecosystem is
unable to completely recycle all the produced garbage, as expected, after a
sufficiently long time, a significant decay of the densities of all the levels in
the model arises, as depicted in fig. 3.3(b). The simulations shown in fig. 3.3
are produced by selecting the following values of the parameters: ω1 = 0.3,
ω2 = 0.2, ω3 = 0.4, ω4 = 0.5 (ω4 = 0.5 − 0.05i in case of stress effects, re-
spectively), λ = 0.3, ν(1)

1 = 0.25, ν(2)
1 = 0.2, ν(1)

2 = 0.15, ν(2)
2 = 0.1, and

the following initial densities for the four compartments: n1 = 1, n2 = 0.1,
n3 = 0, and n4 = 0.

Since the fermionic operators aj , j = 1, . . . , 4, are represented by matri-
ces of order 16, the system (3.2) consists of 1024 differential equations to be
solved with a suitable set of initial conditions, say:

a1(0) =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,



36 Fermionic models of bacterial populations

a2(0) =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

a3(0) =



0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

a4(0) =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

Once we know the entries of the matrices aj(t) (j = 1, . . . , 4) at time t,
the local densities of the compartments are simply obtained by computing
the sum of the squared absolute values of the elements in a row of matrices
aj(t). The 16 rows produce the solutions for all the possible initial states,
which are the combinations with repetition of 4 elements chosen in the set
{0, 1}. Due to the linearity of the problem, actually we do not need to know
the solutions for all possible initial data; it suffices to have the fundamental
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solutions corresponding to the initial data (n1 = δi1, n2 = δi2, n3 = δi3, n4 =
δi4), i = 1, . . . , 4, where δij is the Kronecker symbol, to get, through a linear
combination, the solutions for all initial states. Also, we are not forced to
use initial densities in the set {0, 1}, but rather we may choose the initial
data for all compartments in the whole interval [0, 1].

Furthermore, as widely discussed in Section 2.1, we know that the lin-
earity of equations (3.2) implies the explicit knowledge of their exact solu-
tion, so that the computational cost may be drastically reduced by writing
(3.2) in compact form as

Ȧ(t) = UA(t), (3.3)

with

A(t) =


a1(t)
a2(t)
a3(t)
a4(t)

 , U = i


−ω1 λ ν

(1)
1 ν

(2)
1

λ −ω2 ν
(1)
2 ν

(2)
2

ν
(1)
1 ν

(1)
2 −ω3 0

ν
(2)
1 ν

(2)
2 0 −ω4

 , (3.4)

and by expressing the solution as

A(t) = V (t)A(0), (3.5)

with V (t) = exp(Ut). So, if we call Vjk(t) the generic time–dependent ma-
trix entry of V (t), and n` the initial density of the `–th compartment of the
system, we find that

nj(t) =

4∑
`=1

|Vj`(t)|2 n` (3.6)

at the cost of computing the exponential of the 4× 4 matrix Ut.

3.3 The nonlinear dynamical model

In this Section, we consider nonlinear effects in the model by including in
the Hamiltonian of the system contributions of order greater than two. In
particular, we introduce in the interaction part HI of the Hamiltonian oper-
ator cubic terms, say

H = H0 +HI , with

H0 =

4∑
j=1

ωj a
†
j aj ,

HI = λ
(
a2 a

†
3 a
†
4 + a4 a3 a

†
2

)
+ µ

(
a1 a

†
2 + a2a

†
1

)
+

4∑
k=3

ν(k)
(
a1 a

†
k + aka

†
1

)
;

(3.7)

the real parameters ωj (j = 1, . . . , 4), λ, µ, ν(k) (k = 3, 4) are to be inter-
preted once again as being related to the inertia and the strength of the
interactions among the compartments (Bagarello and Oliveri, 2014). The



38 Fermionic models of bacterial populations

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nutrients

Bacteria

Garbage 1

Garbage 2

(a) Conservative case

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nutrients

Bacteria

Garbage 1

Garbage 2

(b) Non–conservative case

FIGURE 3.4: Nonlinear model: time evolution of the densities of
the compartments both in the case of a purely conservative system,
(a), and in the case in which a dissipative effect is phenomenolog-

ically introduced, (b).
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differential equations derived from (3.7) take now the following more com-
plicated form:

ȧ1 = i
(
−ω1a1 + µa2 + 2λa2a1a

†
3a
†
4 + 2λa4a3a

†
2a1 + ν(3)a3 + ν(4)a4

)
,

ȧ2 = i
(
−ω2a2 + µa1 + λa4a3(2a†2a2 − I)

)
,

ȧ3 = i
(
−ω3a3 + λa2a

†
4(I− 2a†3a3) + ν(3)a1

)
,

ȧ4 = i
(
−ω4a4 + λa2a

†
3(2a†4a4 − I) + ν(4)a1

)
.

(3.8)
Since the size reduction of the computational cost to compute the evolu-

tion of the system produced by the equation (3.8) is not possible for the ob-
tained nonlinear dynamic equations, the solutions of the system (3.8) are to
be found numerically, which means that we are forced to numerically solve
1024 nonlinear differential equations, or, according to the formula (1.11), to
compute at each time t the exponential of the matrix Ht, which is a 24 × 24

matrix, together with its inverse (conjugate).
Similarly to what was already discussed for the linear model, also in the

nonlinear case the effect of some stress factor acting on the system can be
taken into account by considering some of the inertia coefficients having a
small negative imaginary part. The evolutions drawn in fig. 3.4, obtained
using the values of the parameters ω1 = 0.3, ω2 = 0.2, ω3 = 0.4, ω4 = 0.5
(ω4 = 0.5−0.05i in case of stress effects, respectively), λ = 0.1, µ = 0.25, ν3 =
0.15, ν4 = 0.15, and the initial densities for the four compartments (n1 =
1, n2 = n3 = n4 = 0), show once again irregular oscillatory behaviors for
the nonlinear conservative model compared to the decay of the system due
to the lack of recycling of part of the garbage produced by the ecosystem in
the non–conservative case.

The introduction of terms of order greater than two in H from one hand
entails the lack of an exact solution of the Heisenberg equations of motion
(so that no less than 1024 nonlinear differential equations need to be solved
in order to deduce the evolution of the system) and, on the other one, forces,
according to quantum theory, the initial densities of the compartments to be
flattened to the integer values 0 (completely empty) or 1 (completely filled).
The major limitation of the employment of a nonlinear fermionic model still
resides in the fact that numerically solve a system of nonlinear differential
equations obviously becomes a huge task as the number of compartments
of the system grows, requiring very high computational costs. Moreover,
the size of the problem almost immediately exceeds the limit of manage-
ability with ordinary computing resources in the event that the operatorial
approach is intended to be generalized to the case of a nonlinear spatial
model. This is the reason why for the description of the colony morphol-
ogy of bacterial populations of P. aeruginosa on a lattice we will just consider
linear models.

3.4 Spatial linear model on a 2–D square lattice

In this Section, we investigate spatial effects for both homogeneous and non-
homogeneous regions with respect to the parameters of the model repre-
sented through regular L × L square grids (see fig. 3.5). Assume that the
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FIGURE 3.5: A two–dimensional square lattice of size L2.

j–th actor aj,α, j = 1, . . . , 4, α = 1, . . . , L2, of our model occupies the cell
α and interacts locally with the other actors. Suppose also that some of the
actors can diffuse along the L2 cells of a two–dimensional square lattice.
Again, the operators aj,α and their adjoints a†j,α, j = 1, . . . , 4, are chosen as
fermionic operators, while the mechanisms of the spatial dynamics of the
ecosystem are modeled by the following quadratic Hamiltonian, in which
a new part, HM , related to the migration or diffusion of some of the actors,
has been introduced,

H = H0 +HI +HM , (3.9)

with 


H0 =

L2∑
α=1

4∑
j=1

ωj,α a
†
j,α aj,α,

HI =
L2∑
α=1




4∑
j=2

λj,α(a1,α a
†
j,α + aj,α a

†
1,α)

+
∑
γ∈Γα

λ2,γ(a1,α a
†
2,γ + a2,γ a

†
1,α)

+
4∑

k=3

νk,α(a2,α a
†
k,α + ak,α a

†
2,α)

)
,

HM =
4∑

j=1

L2∑
α=1

µj,α

L2∑
β=1

pα,β (aj,α a
†
j,β + aj,β a

†
j,α).

(3.10)

The parameters µj,α and pα,β are meant as described in Section 2.2; since
here we consider only the diffusion of bacteria, it is µj,γ = 0 for j �= 2. The
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(a) Central cell (b) Peripheral cell

FIGURE 3.6: Homogeneous model: time evolutions of the den-
sity of the bacteria on the central cell, (a), and on a peripheral cell,

(b), of the lattice.

equations of motion look like

ȧ1,α = i
(
− ω1,αa1,α + λ2,α a2,α +

∑
γ∈Γα

λ2,γ a2,γ

+ λ3,α a3,α + λ4,α a4,α

)
,

ȧ2,α = i
(
− ω2,αa2,α + λ2,α a1,α +

∑
γ∈Γα

λ2,γ a1,γ

+ ν3,α a3,α + ν4,α a4,α +

L2∑
β=1

(µ2,α + µ2,β) pα,β a2,β

)
,

ȧ3,α = i
(
− ω3,αa3,α + λ3,α a1,α + ν3,α a2,α

)
,

ȧ4,α = i
(
− ω4,αa4,α + λ4,α a1,α + ν4,α a2,α

)
,

(3.11)

α = 1, . . . , L2. Also in this case, in which no term of order greater than two
appears in H , the system (3.11) is linear so that the dynamics can be easily
deduced by computing the exponential of a 4L2 × 4L2 square matrix.

Numerical simulations. All the simulations shown below have been ob-
tained by choosing a square lattice of side L = 27. We consider either the
case where the parameters entering the model are equal all over the lattice,
i.e., they are cell–independent, or the one where they are cell–dependent. In
both situations we also investigate the noise effects induced in the dynam-
ics by assuming that in about 5% of the cells randomly chosen the values
of inertia parameters are significantly higher, and the interaction parame-
ters among the compartments are significantly smaller than those in the re-
maining cells; in some sense, these are holes where the rates of change of all
compartments are significantly unfavoured. As far as the initial conditions
are concerned, in all cases we choose the nutrients uniformly distributed
(with maximum local density) on the entire region, bacteria present with
maximum local density only in a restricted central area (made by 9 cells),
and the two garbages uniformly empty.
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(a) t = 0.6 (b) t = 2

(c) t = 4 (d) t = 5.6

(e) t = 9.2 (f) t = 12

FIGURE 3.7: Homogeneous linear model with diffusion on the
lattice. The frames show the density of the bacteria on the region

at times 0.6, 2, 4, 5.6, 9.2, 12, respectively.



3.4. Spatial linear model on a 2–D square lattice 43

(a) t = 0.6 (b) t = 2

(c) t = 4 (d) t = 5.6

(e) t = 9.2 (f) t = 12

FIGURE 3.8: Homogeneous linear model with spatial diffusion
on a lattice where some cells have parameters lowering the rates
of change of all compartments. The frames show the density of the
bacteria over the region at times 0.6, 2, 4, 5.6, 9.2, 12, respectively.
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Assume that all the parameters have the same value in all the cells.
More precisely, we choose ω1,α = 0.3, ω2,α = 0.1, ω3,α = 0.3, ω4,α = 0.4,
λ2,α = 0.5, λ3,α = 0.4, λ4,α = 0.2, ν3,α = 0.6, ν4,α = 0.4 (α = 1, . . . , L2).

In fig. 3.6 the densities of bacteria in the central cell and in a peripheral
one are plotted. In both situations, the density exhibits an oscillatory be-
havior even if the amplitudes of the oscillations decrease in time. This is
not the effect of a dissipative mechanism (the model is conservative) but it
is due to the diffusion along the lattice (as can be seen in fig. 3.7), where-
upon for large times the distribution of bacteria tends to be uniform all over
the lattice.

In the case in which the lattice has some holes, even if the density of
bacteria, as t increases, tends to become homogeneous all over the lattice, it
is possible to observe (see fig. 3.8) some anisotropy.

We now move on to consider nonhomogeneous regions, which results
in using cell–dependent parameters. A reasonable choice in the sense of
the biological interpretation of the model (peripheral cells are uncrowded
areas with available resources) is to assume that the inertia parameters de-
crease moving away from the center, while the other parameters moder-
ately grow. To be more precise, we used the following values of the pa-
rameters: ω1,α = 0.3/(1 + dα), ω2,α = 0.1/(1 + dα), ω3,α = 0.3/(1 + dα),
ω4,α = 0.4/(1 + dα), λ1,α = 0.5dα, λ1,α = 0.4dα, λ1,α = 0.2dα, ν2,α = 0.6dα,
ν3,α = 0.4dα, provided that dα 6= 0, where dα is the Euclidean distance (nor-
malized to 1) between the cell α and the central one; moreover, µ2,α = 0.3
(α = 1, . . . , L2), whereas pα,β = pβ,α is vanishing for α = β, equal to
1/d2(α, β), where d(α, β) is the Euclidean distance between the adjacent
cells α and β, and zero elsewhere; for adjacent cells, d(α, β) is 1 or

√
2, de-

pending on the relative positions. Thus, bacteria can only move from a cell
to a neighboring one.

Also in this case, it is observed (see fig. 3.9) that the diffusion has the
effect of distributing the bacteria all over the lattice, the only difference be-
ing that some symmetric patterns appear; this is not surprising since the
parameters entering the model change radially. The noise effects due to the
holes that disturb the symmetrical patterns are evident in fig. 3.10.

In all the considered settings, the densities of the bacteria in the cells of
the lattice tend to become homogeneous, even if some patterns arise when
the parameters are cell–dependent. The figs. 3.11 and 3.12 clearly show this
phenomenon, even though with some differences related to the fact that,
in the case of dynamics with cell–dependent parameters, the density ho-
mogenization process occurs more rapidly. Due to its mathematical struc-
ture, in each cell the model produces a periodic or at most quasiperiodic
behavior, and the main frequencies of oscillations of the densities in the
various cells are the same when the parameters do not vary along the cells;
therefore, some kind of synchronization may arise, and the oscillations are
maintained for longer times until they are killed by the diffusion processes.

The mean values of the densities of all the compartments exhibit an
oscillating behavior with decreasing amplitudes, and tend to stabilize,
whereas their variances over the entire region tend to become smaller and
smaller. The situation is not so much different for the mean values and the
variances of the densities of the various compartments that can be observed
(see figs. 3.13 and 3.14) in the holes of the lattice.
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(a) t = 0.6 (b) t = 2

(c) t = 4 (d) t = 5.6

(e) t = 9.2 (f) t = 12

FIGURE 3.9: Nonhomogeneous linear model with diffusion on
the lattice and interactions between nutrients and bacteria even
between adjacent cells. The frames show the densities of the bac-

teria over the region at times 0.6, 2, 4, 5.6, 9.2, 12, respectively.
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(a) t = 0.6 (b) t = 2

(c) t = 4 (d) t = 5.6

(e) t = 9.2 (f) t = 12

FIGURE 3.10: Nonhomogeneous linear model with diffusion on
a lattice where some cells have parameters lowering the rates of
change of all compartments. The frames show the densities of the
bacteria over the region at times 0.6, 2, 4, 5.6, 9.2, 12, respectively.
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(a) Homogeneous model

(b) Nonhomogeneous model

FIGURE 3.11: Time evolution of the mean of the densities of all
the compartments over the entire region for the proposed models,

respectively.
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(a) Homogeneous model

(b) Nonhomogeneous model

FIGURE 3.12: Time evolution of the variances of the densities
of all the compartments over the entire region for the proposed

models, respectively.
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(a) Mean (b) Variance

FIGURE 3.13: Homogeneous model: time evolution of the mean
value, (a), and the variance, (b), of the density of the bacteria on

the holes.

(a) Mean (b) Variance

FIGURE 3.14: Nonhomogeneous model: time evolution of the
mean value, (a), and the variance, (b), of the density of the bacteria

on the holes.
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4 Political dynamics affected
by turncoats

This Chapter deals with an operatorial theoretical model based on raising
and lowering fermionic operators for the description of the dynamics of
political parties affected by turncoat–like behaviors (Di Salvo and Oliveri,
2016a).

By observing the political landscape in place in Italy over the last years,
appropriate macro–groups have been identified on the basis of the behav-
ior of politicians in terms of disloyal attitude as well as openness towards
accepting chameleons from other parties. The various subgroups of the po-
litical parties are described by fermionic operators and their evolution is
ruled by a quadratic Hamiltonian operator in the Heisenberg representa-
tion.

4.1 Historical overview and motivation

Figuratively speaking, a turncoat is a person who changes allegiance from
one loyalty or ideal to another one in an unscrupulous way to get maxi-
mum benefits and personal gain. The reason of the shift is frequently self–
interest, and the faithless attitude in politics may come upon in a manifest
way through an open and declared change of side, or in a veiled and sub-
tle way in terms of incoherence in the voting secrecy (just think of those
politicians from fragmented sub–factions who declare a certain ideology,
but secretly give electoral support to a different cause).

For this political behavior, after the election speech of Agostino De Pretis
on October 8th, 1882 (Sabbatucci, 1998) (“If anyone wants to come into our
ranks, if he wants to accept my modest program, if he wants to transform himself
and become progressive, how can I reject him?”), the term “transformism” has
been coined: it refers to the method of making a flexible centrist coalition
of government which isolated the extremes of the left and the right in Ital-
ian politics. On that occasion, Agostino De Pretis, the Italian Prime Min-
ister in 1883, who was a member of the Constitutional Left party, moved
to the right and reshuffled his government to include Marco Minghetti’s
Conservatives. The aim was to ensure a stable government that would
avoid weakening the institutions by extreme shifts to the left or right. De-
pretis felt that a secure government could ensure calm in Italy. However,
transformism fed into the debates that the Italian parliamentary system was
weak and actually failing; it ultimately became associated with corruption
and created a huge gap between ’Legal’ (parliamentary and political) Italy,
and ’Real’ Italy where the politicians became increasingly isolated. With re-
spect to the contemporary political landscape in place in Italy, a look at the
behavior of politicians from various parties during the first thirty months
of the XVII Italian Legislature reveals a high level of disloyal attitude and
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openness towards accepting chameleons from other political groups in both
the two houses of the Italian Parliament. Such kind of ugly phenomenon,
which manifests in more than 300 changes of side during the period of 30
months under observation, emerges from the official data available in the
Institutional web pages of the Chamber of Deputies1 and the Senate of the
Republic2.

The general political elections of 2013 in Italy produced a result where
three parties took more or less the same number of votes: the Democratic
Party (PD), the People of Freedom (PdL) and the Five Star Movement (M5S). PD
was really the first party in that election, but due to the different electoral
rules for the two houses of Parliament, it got the majority of parliament
seats only in the Chamber of Deputies. Then, the formation of a stable
government required the formation of alliances between different parties.
This determined a fragmentation of some political parties, the birth of new
parliamentary groups, and a paroxysmal occurrence of changes of side of
groups of parliament members.

Recently, operatorial techniques have been efficiently used to build dy-
namical models for the description of alliances in politics (Bagarello, 2015;
Bagarello and Haven, 2016; Bagarello, 2016; Bagarello and Gargano, 2016b).

In the following, we define a simplified model, based on fermionic oper-
ators, whose dynamics is ruled by a time–independent self–adjoint Hamil-
tonian operator, that, despite its simplicity, is suitable to describe the dy-
namics of political party groups affected by turncoat–like behaviors of part
of their members.

4.2 The linear conservative model

FIGURE 4.1: A schematic view to the simplified model of three
parties.

1http://www.camera.it.
2http://www.camera.it.

http://www.camera.it
http://www.camera.it
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The model presented in this Section (schematized in fig. 4.1) consists
of nine groups of politicians Pij (i, j = 1, 2, 3), represented by fermionic
operators, identified on the basis of three possible attitudes in relation to
three main factions fi (i = 1, 2, 3) expressing three possible simplified polit-
ical strategies. More precisely, at the initial time, f1 represents a moderate
faction, characterized by scarce openness to exchanges with other parties
(external flows) and small propensity to transformations in ideological di-
rection (internal flows), f2 represents a fickle faction, highly permissive to-
wards transitions between political groups and other ideologies sympathiz-
ers in the party itself, while f3 stands for an extremist faction, intransigent
against contaminations and influences from others. The operators used to
describe the evolution of the system are to be intended in accordance with
the key under which the compartments whose subscript indices are equal
refer to those politicians who are loyal to the corresponding faction, while
those having different subscript indices are related to the politicians who
belong to a faction (the one associated with the first index) but are drawn
towards another faction (the one associated with the second index).

As expected, the formulation adopted in the following is based on the
assumptions stated in Section 1.2. In particular, the states of the system
are vectors in the 29–dimensional Hilbert space H constructed as the linear
span of the vectors

ϕp11,p12,...,p33 := (P †11)p11(P †12)p12 · · · (P †33)p33ϕ0,

which give an orthonormal set of eigenstates of the number operators p̂ij =

P †ijPij (i, j = 1, 2, 3), with pij ∈ {0, 1}, ϕ0 being the vacuum state.
Once defined a vector state ϕp11,p12,...,p33 representing the initial config-

uration of the system, we compute the mean values

pij(t) = 〈ϕp11,p12,...,p33 , p̂ij(t)ϕp11,p12,...,p33〉, i, j = 1, 2, 3, (4.1)

and such averages are interpreted as the densities of the various compart-
ments, i.e., the consistencies of the various political groups of the model.

The dynamics of the political system is assumed to be governed by the
self–adjoint time independent Hamiltonian operator

H = H0 +HI , with

H0 =
3∑

i,j=1

ωij P
†
ij Pij ,

HI =

3∑
i,j=1
j 6=i

λ
(j)
i

(
PiiP

†
ij + PijP

†
ii

)
+

3∑
i,j=1
j 6=i

µij

(
PijP

†
ji + PjiP

†
ij

)
,

(4.2)

embedding the main effects deriving from the interactions among the nine
actors of the system. As usual, the real parameters ωij appearing in the
first standard part H0 express a measure of the inertia of the various com-
partments (see Section 2.2). Moreover, the real parameters λ(j)

i in HI are
used to describe the internal flows that occur within each faction, namely
the minor ideological positions representing in some sense early warning
of disloyalty, whereas the parameters µij are related to the external flows
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stemming from the real changes of side. Of course, requiring λ(j)
i = µij = 0

(i, j = 1, 2, 3), meaning that the components of the system do not interact,
implies that the densities of the compartments of the system stay constant
in time.

In the Heisenberg picture, the compartments of the model evolve in
time according to the differential equations

Ṗ11 = i
(
−ω11P11 + λ

(2)
1 P12 + λ

(3)
1 P13

)
,

Ṗ12 = i
(
−ω12P12 + λ

(2)
1 P11 + µ12P21

)
,

Ṗ13 = i
(
−ω13P13 + λ

(3)
1 P11 + µ13P31

)
,

Ṗ21 = i
(
−ω21P21 + λ

(1)
2 P22 + µ12P12

)
,

Ṗ22 = i
(
−ω22P22 + λ

(1)
2 P21 + λ

(3)
2 P23

)
,

Ṗ23 = i
(
−ω23P23 + λ

(3)
2 P22 + µ23P32

)
,

Ṗ31 = i
(
−ω31P31 + λ

(1)
3 P33 + µ13P13

)
,

Ṗ32 = i
(
−ω32P32 + λ

(2)
3 P33 + µ23P23

)
,

Ṗ33 = i
(
−ω33P33 + λ

(1)
3 P31 + λ

(2)
3 P32

)
.

(4.3)

Once the system (4.3) has been solved, the evolution of the consistency
of the faction fi (i = 1, 2, 3) is easily obtained, say fi(t) =

∑3
j=1 pij(t).

Since the total densities of political parties commute with H , that is the
quantity f1+f2+f3 is a constant of motion, the system is suitable to describe
the density conservation of all the parliamentary seats.

To simplify the notation, let us set Q3(i−1)+j = Pij ; introducing the col-
umn vector Q = (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9)T and the matrix

U = i



−ω11 λ
(2)
1 λ

(3)
1 0 0 0 0 0 0

λ
(2)
1 −ω12 0 µ12 0 0 0 0 0

λ
(3)
1 0 −ω13 0 0 0 µ13 0 0

0 µ12 0 −ω21 λ
(1)
2 0 0 0 0

0 0 0 λ
(1)
2 −ω22 λ

(3)
2 0 0 0

0 0 0 0 λ
(3)
2 −ω23 0 µ23 0

0 0 µ13 0 0 0 −ω31 0 λ
(1)
3

0 0 0 0 0 µ23 0 −ω32 λ
(2)
3

0 0 0 0 0 0 λ
(1)
3 λ

(2)
3 −ω33

,


,

the system of linear differential equations (4.3) can be expressed in matrix
form as

Q̇ = UQ, (4.4)

whereupon the solution may be clearly expressed as

Q(t) = V (t)Q(0), (4.5)
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with V (t) = exp(Ut). If we denote with q3(i−1)+j = pij the initial density of
the generic compartment of the system, we have

q3(i−1)+j(t) = pij(t) =

9∑
k=1

∣∣V3(i−1)+j,k(t)
∣∣2 qk,

i.e., the local densities at time t of the various compartments of the model,
which are the physical observables that we consider relevant for a complete
description of the political environment, are exactly obtained in a simple
manner at the cost of computing the exponential of the 9× 9 matrix Ut.

Of course, the interactions that we can model with a quadratic Hamilto-
nian imply that the dynamics we can deduce is at most quasi–periodic. In
particular, if we choose, as a start, the following values of the parameters
(consistent with the ideological and attitudinal interpretation of the parties
given above),

ω11 = 0.7, ω12 = 0.5, ω13 = 0.4,
ω22 = 0.3, ω21 = 0.2, ω23 = 0.1,
ω33 = 1, ω31 = 0.8, ω32 = 0.7,

λ
(2)
1 = 0.5, λ

(3)
1 = 0.4,

λ
(1)
2 = 0.6, λ

(3)
2 = 0.7,

λ
(1)
3 = 0.4, λ

(2)
3 = 0.3,

µ12 = 0.1, µ13 = 0.2, µ23 = 0.3,

(4.6)

and we suppose that the initial consistencies of the three factions under con-
sideration are essentially the same, we get the evolution of the densities f1,
f2 and f3 shown in fig. 4.2. In this case, we can observe (at least in the con-
sidered time interval) how the model reproduces a dynamics according to
which the moderate party’s approach proves successful, the fickle party re-
sults scarcely promoted, whereas the strategy of the extremist party reveals
to be losing.
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FIGURE 4.2: Linear model: evolution of the densities of politi-
cians in each faction up to t = 20, with the parameters fixed as in

(4.6).
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4.3 Different behaviors depending on the cross inter-
actions

In this Section, we perform a study of the parameters entering the model.
Different assignments of values to the set of parameters involved in the
model, apart from the initial datum, of course play a significant role in the
evolution of the system giving rise to different dynamical behaviors.

The fact that each compartment of the considered model is associated
to a specific political fringe (identified on the basis of the declared ideology
and openness towards the other political groups) implicitly forces the as-
signment of the values to the inertia parameters ωij related to the tendency
of each group to keep the same amount of members during the evolution
as well as to the internal interaction parameters λ(j)

i , which need to be in-
versely proportional to the loyalty to the corresponding faction. Moreover,
it is clear from (4.2) that, in order to make the Hamiltonian operator self–
adjoint, the parameters µij definitely influences both the operator Pij and
the operator Pji. We may therefore think to minimize the exchanges be-
tween only two of the main factions.

For the above reasons, in the numerical simulations shown in fig. 4.3,
we fix the parameters ωij and λ(j)

i entering the model as follows:

ω11 = 0.7, ω12 = 0.6, ω13 = 0.5,
ω22 = 0.4, ω21 = 0.3, ω23 = 0.2,
ω33 = 1, ω31 = 0.8, ω32 = 0.9,

λ
(2)
1 = 0.25, λ

(3)
1 = 0.3,

λ
(1)
2 = 0.7, λ

(3)
2 = 0.75,

λ
(1)
3 = 0.15, λ

(2)
3 = 0.1.

(4.7)

This means that the third party is intended as the most severe and un-
willing to betray or become contaminated with the other parties, the first
one is slightly more prone towards the other ideologies, while the second
one is characterized by a markedly open and fickle attitude. Of course,
the parameters ωii, i = 1, 2, 3, are slightly larger than the parameters ωij
(i 6= j) referring to the disloyal fringes of the i–th party. In fig. 4.3, different
behaviors related to the choice of the values for the cross interaction pa-
rameters µi,j (determining the transitions among factions), as indicated in
the figure, are shown: the first two subframes illustrate the alternative time
evolutions of the system corresponding to the cases in which either f1 or
f3 is characterized by a marked attitude towards switching side compared
to the other groups (having very few interactions instead), while the last
subframe refers to a situation of uniform disloyal tendency.

The influence of the parameters entering the model on the dynamics of
the political system is the ingredient of the approach aimed at enriching the
standard Heisenberg description of the dynamics of this model of the polit-
ical environment that is presented in Section 8.1. In that context, the values
initially assigned to the parameters entering the model are no longer con-
stant all over the evolution of the system, but rather are subject to change
at specific times so as to take into account the subsequent states reached by
the system.
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(a) µ12 = 0.1, µ13 = 0.09, µ23 = 0.01
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(b) µ12 = 0.01, µ13 = 0.1, µ23 = 0.09
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(c) µ12 = 0.04, µ13 = 0.04, µ23 = 0.04

FIGURE 4.3: Linear model: time evolution of the densities of the
three party groups up to t = 90 corresponding to the inertia pa-
rameters in (4.7) and different choices of the cross interaction pa-

rameters.
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5 The rule–induced dynamics

In this Chapter, we discuss the possibility to expand the description of the
time evolution of a macroscopic system by using some tools arising from
quantum mechanics together with some specific rules. This completely
innovative approach is useful when, for instance, the time evolution of a
given system is governed not only by a Hamiltonian operator, as it happens
for conservative closed microscopic systems or even for non-conservative
microscopic open systems, but also by some external/internal action, peri-
odically acting on the system, that is not easy to include in any Hamiltonian.

The extension whose aspects are discussed here is called (H, ρ)-induced
dynamics, or, equivalently, rule–induced dynamics. According to this approach,
the evolution of the system depends on its Hamiltonian, its initial condi-
tions, and a rule ρ, i.e., a suitable set of conditions acting repeatedly on the
system itself (in such a case the rule can be seen as a sort of generalized
projection operator), as well as on the values of the parameters entering the
Hamiltonian operator (in some sense, this kind of rule adjusts the model on
the basis of the current state reached by the system). The action of the rule
(intended as a tool physically justified by the phenomena under analysis)
on the system produces reliable changes on its original behavior; further-
more, we show that replacing the Heisenberg with the (H, ρ)-induced dy-
namics produces a simple, and somehow natural, way to prove that some
relevant dynamical variables of the system converge, for large t, to some
asymptotic values (Bagarello et al., 2016).

5.1 Modified descriptions of the dynamics

The key aspect when using raising and lowering operators in the analysis
of the time evolution of some macroscopic system is that the time evolu-
tion of an observable X of the system S under consideration is given by
X(t) = exp(iHt)X exp(−iHt), where H is the Hamiltonian of S. Despite
of the fact that the method has been applied to very different situations,
it is not expected to be a completely general strategy. For instance, if you
require S to have a finite number of degrees of freedom, and if H is self–
adjoint, time independent and quadratic, then the only possible outcomes
are periodic or quasiperiodic. However, if we know that S decays to some
final state, it is clear that such a description does not work. This is a case
in which the framework needs to be enriched. A possibility, used, e.g., in
quantum optics, or for two or three level atoms (to describe some tran-
sition from one level to another) consists in using some effective Hamil-
tionian operator which is represented by a finite–dimensional not Hermi-
tian matrix (Cherbal et al., 2007). Another well known way is considering
the atoms interacting with some reservoir with an infinite number of de-
grees of freedom (Barnett and Radmore, 1997) at the price of dealing with
a full system (S plus the reservoir) which is no longer finite dimensional.
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This possibility has been used in several applications also because it admits
interesting interpretations (Bagarello, 2015; Bagarello, 2016; Bagarello and
Gargano, 2016a). However, from a technical point of view, this is probably
not the easiest choice and, in fact, quite often one makes use of some finite
dimensional effective Hamiltonian Heff , with Heff 6= H†eff . To keep the
situation simple, sometimes one describes a simplified version of the full
system (many details of which get lost) by means of some master equation
where, again, the dynamics is described by some finite matrix whose en-
tries are properly chosen. This theory extends quantum mechanics beyond
Hamiltonian dynamics, and finds powerful applications in quantum optics
and quantum information (see Huang et al., 2008, and references therein).
Often, when starting from the microscopic model for the full system, a se-
ries of approximations has to be made in order to be able to describe the
open system dynamics in terms of the GKSL–master equation (Breuer and
Petruccione, 2007). Naturally, these approximations are not generally valid,
and the dynamical semigroup is not an exact description for all possible
physical situations of interest. We propose a novel approach — the (H, ρ)–
induced dynamics — with the aim of overcoming such difficulties in a way
that is both straightforward and not expensive from a computational view-
point.

Thus, in the sequel we deal with an extended version of the Heisenberg
dynamics which allows us to take into account other effects which may
occur during the time evolution of a given system S. The strategy proposed
here merges the general framework of the quantum dynamics, described
by a Hamiltonian H , with some periodic (or not) effect which can not be
included in H .

In particular, we first consider the case in which the dynamics is driven
by a Hermitian Hamiltonian H , time independent, but, during the time
evolution, some check on S occurs periodically, and this check can, in prin-
ciple, change the state of the system itself. The check is what is called a rule,
ρ, and the combined effect of H and ρ produces what is called the (H, ρ)-
induced dynamics. This was applied in Bagarello et al., 2017 to an opera-
torial model of the Game of Life (described in Chapter 6), and in Bagarello
and Gargano, 2016a to politics.

Moreover, in Di Salvo and Oliveri, 2016c; Di Salvo and Oliveri, 2016a
a different viewpoint has been proposed: the rule periodically checks the
state of the system and changes some of the values of the parameters en-
tering the Hamiltonian, without modifying its functional form. In some
sense, the strength of the interactions between the different parts of the sys-
tem S are adjusted according to the current state (or its variation) of S. This
approach reveals quite efficient, as an example, in building an operatorial
model of political parties affected by turncoat–like behavior (Di Salvo and
Oliveri, 2016a), as described in detail in Chapter 8.

We briefly review the main definitions and results for the (H, ρ)-induced
dynamics. Let S be the physical system we are interested in, and Qj (j =
1, . . . ,M ) a set of M commuting self-adjoint operators with eigenvectors
ϕ

(j)
nj and eigenvalues α(j)

nj :

[Qj , Qk] = QjQk −QkQj = 0, Qj = Q†j , Qjϕ
(j)
nj = α(j)

nj ϕ
(j)
nj , (5.1)
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j, k = 1, . . . ,M , nj = 1, 2, 3, . . . , Nj , which can be finite or infinite. Setting
n = (n1, n2, . . . , nM ), the vector

ϕn = ϕ(1)
n1
⊗ ϕ(2)

n2
⊗ · · ·ϕ(M)

nM

represents an eigenstate of all the operators Qj , say

Qj ϕn = α(j)
nj ϕn. (5.2)

The existence of a common eigenstate for all the operators Qj is guaranteed
by the fact that they mutually commute. It is convenient, and always true
in our applications, to assume that these vectors are mutually orthogonal
and normalized:

〈ϕn, ϕm〉 = δn,m =
M∏
j=1

δnj ,mj . (5.3)

The Hilbert space H where S is defined is mathematically constructed, as
usual, as the closure of the linear span of all the vectors ϕn. Observe that
there exists a one-to-one correspondence between n and the vector ϕn: once
we know n, ϕn is clearly identified, and vice versa. Now, let H = H† be a
quadratic time independent self–adjoint Hamiltonian, ruling the evolution
of S, which, in general, does not commute with the Qj ’s. This means that,
in absence of any other information, to look at the time evolution of S it
is possible to assume that the wave function Ψ(t) describing S at time t
evolves according to the Schrödinger equation, or, equivalently, that the
operators acting on H at time t do, according to the Heisenberg equation
(see Section 2.1).

The mean value of each operatorQj in the state Ψ(t) is given by comput-
ing qj(t) = 〈Ψ(t), QjΨ(t)〉; the obtained values allow us to define the related
M -dimensional time-dependent vector q(t) = (q1(t), q2(t), . . . , qM (t)).

We now introduce, rather generally, two different ways of extending the
dynamics through the introduction of some rules.

In the first approach, described in Subsection 5.1.1, the rule ρ is a — not
necessarily linear — map from H to H. Its explicit action depends on the
expression of q(t) at particular instants kτ (k = 1, 2, . . .). In other words,
according to how q(kτ) looks like, ρ maps an input vector Φin into a dif-
ferent output vector Φout, that is ρ(Φin) = Φout. This is not very different
from what happens in scattering theory, where an incoming state, after the
occurrence of the scattering, is transformed into an outgoing state (Roman,
1965).

The second approach, described in Subsection 5.3.1, works on the space
of the (in general) real parameters of the Hamiltonian H . Given a quadratic
time independent self–adjoint Hamiltonian involving p real parameters, the
rule ρ is a map from Rp to Rp that, at particular instants kτ (k = 1, 2, . . .),
on the basis of the actual state (or its variation) of the system, changes the
values of the parameters. In such a way, the model adjusts itself and is able
to describe more complex (and somehow realistic) behaviors.

5.1.1 The rule ρ as a map fromH toH

We discuss here a special definition of the rule ρ as a map fromH toH.
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In general terms, suppose that at time t = 0 the system S is in a state n0

or, which is the same, S is described by the vector ϕn0 . Then, once fixed a
positive value of τ , this vector evolves in the time interval [0, τ [ according
to the Schrödinger recipe: exp(−iHt)ϕn0 . Let us set

Ψ(τ−) = lim
t→τ−

exp(−iHt)ϕn0 ,

where t converges to τ from below. The notation τ−, 2τ−, . . . as argument
of Ψ is used here to emphasize that before τ , for instance, the time evolu-
tion is only due to H , while ρ really acts at t = τ . Of course, the rule ρ
may be defined in different ways. The key point common to all possible
choices is that ρ behaves as a check over the system S, and modifies some
of its ingredients according to the result of this check. In particular, at time
t = τ , ρ is applied to Ψ(τ−), and the output of this action is a new vector
which we assume to be again an eigenstate of each operator Qj , but with
different eigenvalues, ϕn1 . In other words, ρ looks at the explicit expres-
sion of the vector Ψ(τ−) and, according to its form, returns a new vector
n1 = (n1

1, . . . , n
1
M ); as a consequence, a new vector ϕn1 of H is obtained.

Now, the procedure is iterated, taking ϕn1 as the initial vector, and letting
it evolve with H for another time interval of length τ ; we compute

Ψ(2τ−) = lim
t→τ−

exp(−iHt)ϕn1 ,

and the new vector ϕn2 is deduced by the action of rule ρ on Ψ(2τ−): ϕn2 =
ρ(Ψ(2τ−)). Then, in general, we have

Ψ(kτ−) = lim
t→τ−

exp(−iHt)ϕnk−1 , (5.4)

and
ϕnk = ρ

(
Ψ(kτ−)

)
, (5.5)

for all k ≥ 1.
Let now X be a generic operator on H, bounded or unbounded. In

this last case, we will require that the various ϕnk belong to the domain of
X(t) = exp(iHt)X exp(−iHt) for all t ∈ [0, τ ].

Definition 5.2 The sequence of functions

xk+1(t) := 〈ϕnk , X(t)ϕnk〉 , (5.6)

for t ∈ [0, τ ] and k ∈ N0, is called the (H, ρ)–induced dynamics of X .

Some consequences of Definition 5.2, and some properties of the se-
quence X(τ) = (x1(τ), x2(τ), x3(τ), . . .) have been discussed in Bagarello
et al., 2017. For instance, next theorem can be stated.

Theorem 5.3 The following results concerning periodicity hold true.

1. If the rule ρ does not depend on the input, then

X(τ) = (x1(τ), x2(τ), x2(τ), x2(τ), x2(τ), . . .) .
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2. Assume that a K > 0 exists such that ρ(ϕnK ) = ϕnK , then

X(τ) = (x1(τ), x2(τ), . . . , xK+1(τ), xK+1(τ), xK+1(τ), . . .) .

3. Assume that K > 0, N ≥ 0 exist such that ρ(ϕn(N+K)) = ϕnN , then

X(τ) = (x1(τ), . . . , xN (τ), xN+1(τ), . . . , xN+K+1(τ), xN+1(τ), . . .) .

Notice that from X(t) = (x1(t), x2(t), x3(t), . . .) it is possible to define a
function of time in the following way:

X̃(t) =


x1(t), t ∈ [0, τ [
x2(t− τ), t ∈ [τ, 2τ [
x3(t− 2τ), t ∈ [2τ, 3τ [
. . . . . .

(5.7)

It is clear that X̃(t) may have discontinuities at times kτ , for positive
integers k. Of course, Theorem 5.3 gives conditions for X̃(t) to admit some
asymptotic value or to be periodic. We will return on this aspect later in
Section 5.10.

5.3.1 The rule ρ as a map in the space of the parameters of H

In Subsection 5.1.1, we have introduced a rule ρ as a map acting on some
input vector of H and returning an output vector, again belonging to H. In
other words, the effect of ρ is to change the state of the system. This is not
the only possibility. In fact, we now discuss how a rule can be considered
on S changing some aspects of the dynamics of S. Let S be a system in-
volvingM fermionic modes whose evolution is ruled by the quadratic time
independent self–adjoint Hamiltonian

H =
M∑
j=1

ωja
†
jaj +

M−1∑
j=1

M∑
k=j+1

λj,k(aja
†
k + aka

†
j), (5.8)

containing the p = M(M + 1)/2 real parameters (not necessarily all non
vanishing) ωj and λj,k.

Adopting the Heisenberg representation, the time evolution is given by

aj(t) = exp(iHt)aj(0) exp(−iHt),

or, equivalently, by the solution of the following linear system of ordinary
differential equations:

ȧj(t) = i
(
−ωjaj(t) +

j−1∑
k=1

λj,kak(t) +

M∑
k=j+1

λj,kak(t)
)
, j = 1, . . . ,M. (5.9)

In principle, we have a system of M22M linear differential equations to
be solved with suitable initial conditions for the matrices representing the
fermionic operators aj . However, since the system is linear, we may write
it in compact form, say

Ȧ(t) = UA(t), (5.10)
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where

A(t) =


a1(t)
a2(t)

...
aM (t)

 ,

while U is an M × M constant symmetric matrix such that Uj,j = −iωj ,
Uj,k = Uk,j = iλj,k (j < k), and each component of A is a 2M × 2M matrix.
The formal solution is immediately deduced:

A(t) = exp(Ut)A(0) = V (t)A(0). (5.11)

Thus, if V`,m(t) is the generic entry of the matrix V (t), we have

a`(t) =
M∑
k=1

V`,k(t)ak, ` = 1, . . . ,M.

Now, we need to compute the mean value of the number operator

n̂`(t) = a†`(t)a`(t)

on an eigenvector ϕn1,...,nM of all the n̂`(0),

n̂`ϕn1,...,nM = n`ϕn1,...,nM , ` = 1, . . . ,M.

It is easy to check that

n`(t) = 〈ϕn1,...,nM , n̂`(t)ϕn1,...,nM 〉 =

M∑
k=1

|V`,k(t)|2 nk (5.12)

for all ` = 1, . . . ,M , provides what we are looking for (representing the
physical quantities which are relevant in the description of the system un-
der analysis).

Starting from a quadratic Hamiltonian such as the one defined in (5.8),
the alternative approach in order to enrich the dynamics proposed in this
Subsection consists in a suitable adjustment of the model operated by spe-
cific conditions accounting for a sort of dependence on the current state of
the system and repeatedly acting at specific times on the parameters enter-
ing the Hamiltonian operator. We stress that in such an approach only the
strengths of the mutual interactions change, whereas the model preserves
its functional structure. Combining the action of such kind of rule with
the standard Heisenberg description of the dynamics, other than having a
concrete meaning, really produces a simple, and somehow natural, way to
prove that some relevant dynamical variables of the system converge, for
large t, to some realistic asymptotic values.

Here is a brief sketch of this approach, leading to a (H, ρ)–induced dy-
namics slightly different from that above considered. Let us split the whole
period during which the system evolves into time subintervals of duration
τ . Then, the description of the dynamics of the system is determined by its
Hamiltonian as well as its initial conditions, and extended by a set of con-
ditions — i.e., the rule — stepwise acting on it. The rule takes into account
some effects occurring during the time evolution of the system. By means
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of this approach, quite different behaviors arise depending on the explicit
form of H , the initial conditions, the rule, and the length τ of each time
subinterval.

Here, we use the variations of the mean values of the various compart-
ments in some time intervals in order to modify the values of some of the
parameters of the model; then, we consider a new Hamiltonian operator,
having the same functional form as the previous one, but (in general) with
a different set of the values of the involved parameters, and follow the evo-
lution of the system under the action of this new Hamiltonian for the next
time interval of length τ , and so on. Therefore, the global evolution will be
ruled by a sequence of similar Hamiltonian operators, and the parameters
entering the model are stepwise (in time) constant.

More in detail, we start considering a self–adjoint quadratic Hamilto-
nian operator H(1), the corresponding evolution of an observable X

X(t) = exp(iH(1)t)X exp(−iH(1)t), (5.13)

and we compute its mean value

x(t) = 〈ϕn1,...,nM , X(t)ϕn1,...,nM 〉 (5.14)

in a time interval of length τ > 0. The change of some of the parameters
involved in H(1), on the basis of the values of the various x(τ), thus pro-
vides a new Hamiltonian operator H(2), having the same functional form
as H(1). We now restart the evolution of the system as ruled by H(2) in
another time interval of length τ > 0, and so on. Therefore, the rule now
has to be thought of as a map from Rp into Rp acting on the space of the p
parameters involved in the Hamiltonian.

In general terms, consider a time interval [0, T ], and split it in n = T/τ
subintervals of length τ (we assume here that n is integer). In the k–th
subinterval [(k− 1)τ, kτ [ consider a Hamiltonian H(k) ruling the dynamics.
The global dynamics arises from the sequence of Hamiltonians

H(1) τ−→ H(2) τ−→ H(3) τ−→ . . .
τ−→ H(n), (5.15)

the global evolution being obtained by gluing the local evolutions.
In every subinterval, we therefore have a system like

Ȧ(t) = U (k)A(t), t ∈ [(k − 1)τ, kτ ], (5.16)

whose solution (representing A as an N ×N matrix such that A(0) = 11, as
done in Section 2.6) is just given by

A(t) = exp(U (k)t), t ∈ [(k − 1)τ, kτ ]; (5.17)

joining the solutions in all the subintervals, we have globally

A(t) =


exp(U (1)t) t ∈ [0, τ ],

exp(U (2)(t− τ)) exp(U (1)τ) t ∈ [τ, 2τ ],

exp(U (3)(t− 2τ)) exp(U (2)τ) exp(U (1)τ) t ∈ [2τ, 3τ ],
. . . . . .

(5.18)

The fact that the parameters are changed according to the actual state (or
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its variation) of the system means, in some sense, that the strength of the
interactions among the compartments is repeatedly adjusted; as a result,
asymptotic values of the mean values can be obtained. This aspect is de-
veloped in more detail in Section 5.10. Moreover, this kind of rule–induced
step–wise dynamics clearly may generate discontinuities in the first order
derivatives of the operators, but prevents the occurrence of jumps in their
evolutions and, consequently, in the mean values of the number operators.

Stated differently, by adopting this rule, we are implicitly considering
the possibility of having a time-dependent Hamiltonian. But the time-
dependence is, in such a case, somehow hidden and of a very special form:
in each interval [(k−1)τ, kτ [ the Hamiltonian does not depend on time, but
in kτ some changes may occur, according to how the system is evolving.

5.4 On equilibria

In this Section, we show that the concept of (H, ρ)-induced dynamics can
be efficiently used to describe systems which are expected to reach some
stationary point or periodic orbit, during their time evolution, even when
H is kept to be Hermitian.

Suppose that ρ is a map from H to H. The following definitions are
directly connected with Theorem 5.3.

Definition 5.5

1. x∞ ∈ C is an equilibrium for the (H, ρ)–induced dynamics of the operator
X if, ∀ ε > 0, ∃Nε > 0 such that |x`(τ)− x∞| < ε, for all ` > Nε.

2. Given ε > 0, x∞ ∈ C is an ε-equilibrium for the (H, ρ)-induced dynamics
of the operator X if ∃Nε > 0 such that |x`(τ)− x∞| < ε, for all ` > Nε.

3. The L-dimensional vector (x∞1 , x
∞
2 , . . . , x

∞
L ), x∞j ∈ C, is an L-equilibrium

cycle for the (H, ρ)-induced dynamics of the operatorX if, ∀ ε > 0, ∃Nε > 0
such that

sup
`=1,...,L

|xNε+kL+`(τ)− x∞` | < ε,

for all k = 0, 1, . . ..
In this case, we call L the period of the solution and NL = infε>0Nε the
transient to reach the L-equilibrium cycle.

Remark 5.6 If x∞ is an equilibrium for the (H, ρ)-induced dynamics of the oper-
ator X , then it is also an ε-equilibrium, for all ε > 0.

Remark 5.7 According to the definition given in Theorem 5.3, a 1-equilibrium
cycle solution for the (H, ρ)-induced dynamics of the operatorX is simply an equi-
librium.

The following results easily follow from Definition 5.5 and Theorem 5.3.

Theorem 5.8 If the rule ρ does not depend on the input, or, more in general, if
there exists K > 0 such that ρ(ϕnK ) = ϕnK , then, for each operator X of the
system, an equilibrium for the (H, ρ)-induced dynamics of the operator X does
exist.
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Suppose rather that a K > 0 exists such that ρ(ϕnK ) = ϕn0 , and define

ε = max
j=1,...,K

∣∣x∞ − xj(τ)
∣∣ ,

with x∞ = 1
K

∑K
j=1 x

j(τ), then x∞ is an ε-equilibrium for the (H, ρ)-induced
dynamics of the operator X .

Once again, we do not give here the proof of the previous Theorem,
which is very easy. It is clear that the interesting situation is when ε is
sufficiently small. When this is not so, we can not say much about the
closeness of x∞ to the various xj(τ). In this case, it is more interesting the
following result.

Theorem 5.9 Suppose that K > 0 exists such that ρ(ϕnK ) = ϕn0 , then a (K +
1)-cycle for the (H, ρ)-induced dynamics of the operator X exists, with x∞j =

xj(τ).

It is clear that, even if an equilibrium exists for the (H, ρ)-induced dy-
namics of a certain operatorX , then it is not necessarily an equilibrium also
for the (H, ρ)-induced dynamics of a different operator Y . In other words,
using the function X̃(t) introduced before, even if this function can admit
some asymptotic value (or be periodic from some multiple of τ ), the anal-
ogous function Ỹ (t) defined in analogy to (5.7) does not necessarily admit
some asymptotic value.

5.10 Large time behaviors

In this Section, we describe, by using different techniques, a very simple
two-mode system, and discuss its time evolution. In particular, we consider
the limit t→∞.

5.10.1 An example: a two–mode system

In this Subsection, we describe the possibility of getting, in some simple
and natural way, some asymptotic behavior for certain physical systems
by means of the (H, ρ)-induced dynamics, but not only, by discussing in
some details a very simple example, originally introduced in Bagarello and
Oliveri, 2013.

Consider the Hamiltonian of the system S under analysis, having two
(fermionic) degrees of freedom,

H = H0 + λHI , H0 = ω1a
†
1a1 + ω2a

†
2a2, HI = a†1a2 + a†2a1. (5.19)

Of course, when λ = 0 there is no interacting contribution in H .
The eigenstates of the number operators n̂j := a†jaj are easily constructed:

if ϕ0,0 is the ground vector of S, a1ϕ0,0 = a2ϕ0,0 = 0, the only non–trivial, lin-
early independent, vectors of our Hilbert spaceH are

ϕ0,0, ϕ1,0 := a†1ϕ0,0, ϕ0,1 := a†2ϕ0,0, ϕ1,1 := a†1a
†
2ϕ0,0.
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This means that dim(H) = 4, and we have

n̂1ϕn1,n2 = n1ϕn1,n2 , n̂2ϕn1,n2 = n2ϕn1,n2 . (5.20)

The equations of motion for the annihilation operators aj(t) are

ȧ1(t) = −iω1a1(t)− iλa2(t),

ȧ2(t) = −iω2a2(t)− iλa1(t),
(5.21)

which can be solved with the initial conditions a1(0) = a1 and a2(0) = a2.
The solution looks like

a1(t) =
1

2δ
(a1 ((ω1 − ω2)Φ−(t) + δΦ+(t)) + 2λa2Φ−(t)) ,

a2(t) =
1

2δ
(a2 (−(ω1 − ω2)Φ−(t) + δΦ+(t)) + 2λa1Φ−(t)) ,

(5.22)

where
δ =

√
(ω1 − ω2)2 + 4λ2,

Φ+(t) = 2 exp

(
− it(ω1 + ω2)

2

)
cos

(
δt

2

)
,

Φ−(t) = −2i exp

(
− it(ω1 + ω2)

2

)
sin

(
δt

2

)
.

Then the functions nj(t) := 〈ϕn1,n2 , n̂j(t)ϕn1,n2〉 are the following:

n1(t) =
n1(ω1 − ω2)2

δ2
+

4λ2

δ2

(
n1 cos2

(
δt

2

)
+ n2 sin2

(
δt

2

))
,

n2(t) =
n2(ω1 − ω2)2

δ2
+

4λ2

δ2

(
n2 cos2

(
δt

2

)
+ n1 sin2

(
δt

2

))
.

(5.23)

These functions are interpreted, in agreement with what already stated, as
the densities of two species, S1 and S2, interacting in a given (small) re-
gion. The interaction Hamiltonian HI in (5.19) describes a sort of predator–
prey mechanism, and this is reflected by the solutions in (5.23), which show
how the two densities, because of the interaction between S1 and S2, oscil-
late between zero and one. In fact, if λ = 0, nj(t) = nj , and the den-
sities stay constant. Notice that these formulas automatically imply that
n1(t) + n2(t) = n1 + n2, independently of t and λ: the oscillations are such
that they sum up to zero.

Hereafter, we develop a different aspect of this model consisting in the
possibility of getting some limiting values for n1(t) and n2(t) for large val-
ues of t, when λ 6= 0.

The first trivial remark is that the functions n1(t) and n2(t) in (5.23) do
not admit any asymptotic limit, except when n1 = n2 (or if λ = 0, which
is excluded here). In this case, clearly, n1(t) = n2(t) = n1 = n2. If, on the
other hand, n1 6= n2, then both n1(t) and n2(t) always oscillate in time. This
is not surprising. In fact it is easy to prove the following statement:
if S is a system living in a finite dimensional Hilbert space, and if its dynamics is
driven by a time-independent, self-adjoint, Hamiltonian H , then its dynamics is
necessarily periodic or quasi-periodic.

This claim implies, first of all, that an asymptotic limit exists only in the
trivial case in which no dynamics at all exists or, better to say, when each
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observable of the system keeps its initial value. To prove the claim, it is
sufficient to observe that, if H = H† is an M ×M matrix, then an unitary
matrix U exists such that UHU−1 = Hd, which is a diagonal matrix with M
(not necessarily different) real eigenvalues E1, E2, . . . , EM . Then, if n̂ is an
observable of S, its time evolution can be written as

n̂(t) = exp(iHt)n̂ exp(−iHt) = U−1 exp(iHdt)
(
Un̂U−1

)
exp(−iHdt)U,

which is periodic when all couples of eigenvalues are commensurable, while
is quasi–periodic otherwise. If Hd commutes with Un̂U−1, then n̂(t) = n̂,
and its large time behavior is clearly trivial. Otherwise, n̂(t) keeps on os-
cillating, and no asymptotic value is reached. This is essentially what is
described by formulas (5.23), where the focus is not really on the operators
n̂1 and n̂2, but on their mean values.

If S lives in a finite dimensional Hilbert space, the previous simple argu-
ment shows that no time-independent, self-adjoint, Hamiltonian H makes
the job. Hence, we have to add some extra ingredients, or change some-
thing in the Hamiltonian. Here, we show how the use of a rule, other than
having a concrete meaning, can describe a somehow realistic asymptotic
value for the observables of S.

In order to show this, we first rewrite (5.23) as follows:

N(t) = TtN(0), (5.24)

where

N(t) =

(
n1(t)
n2(t)

)
, Tt =

1

δ2

(
δ2 − 4λ2 sin2

(
δt
2

)
4λ2 sin2

(
δt
2

)
4λ2 sin2

(
δt
2

)
δ2 − 4λ2 sin2

(
δt
2

) ) .
(5.25)

Of course, the components of N(t) return the expressions of n1(t) and n2(t)
for all time. But, as we have already discussed, this can only produce a
periodic (or quasi–periodic) time evolution. Let us now see what happens
if we insert a rule ρ in the time evolution of the system.

The rule ρ can be thought of as a measure of n1(t) and n2(t) repeated
at time τ, 2τ, 3τ , . . . It is known that performing a measure on a quantum
system is a delicate operation, which modifies the system itself. For this
reason, there is no reason a priori to say that the result of a measure at time
kτ (after having measured the system at time τ , 2τ , . . . , (k − 1)τ ) would be
exactly the same as the one deduced directly from (5.25), i.e., n1(kτ) and
n2(kτ), as we are going to show now.

The first measure gives N1(τ) := N(τ) = TτN(0). Then, according to
what discussed in Section 5.1.1, we let the system evolve out of this new
initial condition N1(τ) for another time step: N2(τ) := TτN1(τ) = T 2

τN(0),
and so on. In this way, we produce a sequence

N`(τ) = T `τN(0), (5.26)

for all ` ≥ 1.
In order to compute Nl(τ), and its limit for ` diverging, we first observe

that Tt is a self–adjoint matrix, so it can be easily diagonalized. In particular,
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we get

U−1TtU =

(
λ1(t) 0

0 λ2(t)

)
=: Λt,

where

U =
1√
2

(
1 −1
1 1

)
, λ1(t) = 1, λ2(t) =

1

δ2

(
δ2 − 8λ2 sin2

(
δt

2

))
.

Then

T `τ = UΛ`τU
−1 = U

(
1 0
0 λ`2(τ)

)
U−1,

so that N`(τ) = T `τN(0) can converge if λ`2(τ) does converge when ` di-
verges. This is what happens whenever the parameters δ, τ and λ satisfy
the following inequalities:

0 < 8λ2 sin2

(
δt

2

)
< δ2. (5.27)

In fact, when this is true, λ2(τ) ∈]0, 1[, and therefore lim`→∞ λ
`
2(τ) = 0.

Hence,

lim
`→∞

Nl(τ) =

(
n1(0)

0

)
, (5.28)

which clearly shows that a non trivial equilibrium can be reached in this
case. However, if the parameters do not satisfy (5.27), the asymptotic be-
havior of N`(τ) can be completely different. In fact, taking, for instance,

τ = π
δ and λ =

√
3
8 δ, and then fixing δ = 1 for simplicity, we deduce that

λ2(τ) = −2, so that lim`→∞ |λ2(τ)|` = ∞: it is evident, therefore, that the
role of the values assigned to the parameters of H is in fact essential.

The conclusion of the analysis of this simple example is therefore the fol-
lowing: even in presence of a self-adjoint Hamiltonian, a simple two-mode
fermionic system admits a non trivial asymptotic limit for a large variety
of the parameters of the model, at least if a stop and go rule1 (according to
the approach described in Subsection 5.1.1) is assumed. However, the same
rule can also produce a non converging dynamics for special choices of the
parameters.

As discussed in Subsection 5.3.1, using a rule which modifies the state of
the system is not the unique choice, but rather one can also think to modify
the parameters of the Hamiltonian. Then, consider again the same model
with two fermionic modes ruled by the Hamiltonian (5.19), and suppose
now that the rule acts on the space of parameters. More precisely, assume
that the rule modifies at fixed times kτ (k = 1, 2, . . .) only the parameters
ω1 and ω2 in (5.19) according to the variations of n1 and n2 in the intervals
[0, kτ ] (rule ρ̃A) or [(k − 1)τ, kτ ] (rule ρ̃B).

Let us fix the initial values of the parameters, say ω1 = 1/
√

3, ω2 = 1,
λ = 1/

√
5, and the initial conditions n1 = 0.8, n2 = 0.6. Without applying

any rule, we have (see fig. 5.1), as one expects, a never ending oscillating
behavior of both n1(t) and n2(t).

1The reason why we call the one used here a stop and go rule is because we just stop to
measure n1 and n2, and then we go again, till the next measure.
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FIGURE 5.1: Time evolution of the mean values: oscillating be-
havior.

By taking the rule

ρ̃A(ω1) = ω1(1 + δ1), δ1 = n1(kτ)− n1(0),

ρ̃A(ω2) = ω2(1 + δ2), δ2 = n2(kτ)− n2(0),
(5.29)

fig. 5.2 shows how the system reaches some asymptotic states; the rate of
decay of oscillating behaviors is smaller as the value of τ is increased. No-
tice that, since n1(t) + n2(t) is a constant, δ1 + δ2 = 0, so that the variations
of the inertia parameters ω1 and ω2 are opposite.

By taking the rule

ρ̃B(ω1) = ω1(1 + δ1), δ1 = n1(kτ)− n1((k − 1)τ),

ρ̃B(ω2) = ω2(1 + δ2), δ2 = n2(kτ)− n2((k − 1)τ),
(5.30)

fig. 5.3 shows how the system tends to reach again some asymptotic states.
The conclusion of the analysis of this simple model is that the rules, both

the one defined on H and those working on the space of the parameters,
strongly affect the behavior of the system where they are defined, produc-
ing serious differences. For this reason, they seem to be a valid alternative
to the standard open system procedure, usually adopted in quantum optics
or, more recently, in the analysis of some macroscopic systems.
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FIGURE 5.2: Time evolution with rule ρ̃A.
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FIGURE 5.3: Time evolution with rule ρ̃B .
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6 Dynamics with rule acting on
the system: Quantum GoL

In this Chapter, we apply the general ideas concerning the (H, ρ)-induced
dynamics presented in Chapter 5 to extend the classical Game of Life, and
we analyze several aspects of this extension. The described dynamics, which
is obtained by considering the combined action of the HamiltonianH of the
system and a suitable set ρ of conditions acting repeatedly on the system it-
self, is not necessarily periodic or quasi-periodic, as one could imagine for
conservative systems with a finite number of degrees of freedom. In fact, it
may have quite different behaviors depending on the explicit forms of H ,
ρ, as well as on the initial conditions. The results here reported belong to
the joint paper Bagarello et al., 2017.

6.1 Classical setting and new perspectives

The Game of Life (hereafter, GoL) can be thought of as a sort of a dynami-
cal system S in which one is interested in the changes of the local densities
of a given population P living in a lattice R. In the generic cell Cj of R,
the density of the population changes according to what happens in the
other cells surrounding Cj itself (typically, the eight surrounding cells char-
acterizing the so-called Moore neighborhood); in particular, this change is
driven by the sum of the densities of the populations in these surrounding
cells. In other words, the GoL is a two-dimensional cellular automaton in
which each cell at any time assumes only two possible values: 0 if the cell
is in a dead state, 1 if the cell is alive. At each generation, a given cell under-
goes a transition according to specific rules based on its own state and on
the states of the surrounding cells. More formally, the GoL can be written as
the cellular automaton

AGoL = {Z2
GoL,N , {0, 1}, f},

where ZGoL is the set of all integers such that Z2
GoL represents the two-

dimensional array of the cellular space, N is the Moore neighborhood in-
dex, {0, 1} is the set of the possible states of a cell, and f : {0, 1}|N |+1 →
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{0, 1} is the transition function defined as

f(1, {α}) = 1 if

((∑
α∈N

α = 2

)
∨

(∑
α∈N

α = 3

))
, (6.1)

f(1, {α}) = 0 if

((∑
α∈N

α < 2

)
∨

(∑
α∈N

α > 3

))
, (6.2)

f(0, {α}) = 1 if

(∑
α∈N

α = 3

)
, (6.3)

f(0, {α}) = 0 if

(∑
α∈N

α 6= 3

)
. (6.4)

Here , {α} is the set of all state values in N , and |N | is the cardinality of
N . These rules mimic the basic processes of life and death: rule (6.1) repre-
sents condition for sustainable life, rule (6.2) represents death due to under
or over population, rule (6.3) represents a birth condition, and rule (6.4)
corresponds to the permanence of a death state condition. Cells are gener-
ally updated synchronously, i.e., they undergo state transitions at the same
time, although in some papers there are variations implementing also asyn-
chronous evolutions (see, for instance, Lee et al., 2004).

The use of quantum ideas for cellular automata (QCA) dates back to the
1980’s (Feynman and Shor, 1982; Deutsch, 1985; Grössing and Zeilinger,
1988), and has attracted the interest of several scientists during the last
decades. The motivation behind these approaches mainly relies on the pos-
sibility of reproducing, by using generalized structures, quantum phenom-
ena such as interference, or entanglement effects. In this context, various
quantum versions of the Game of Life have been developed. In Flitney and
Abbott, 2010, by using standard arguments in the QCA, the state |ψ〉 of a cell
is defined as a superposition of the states |1〉 (life) and |0〉 (death), forming
a qubit |ψ〉 = c1|1〉+ c0|0〉, and the process of birth-death-sustain of a cell is
reproduced through the combination of suitable birth and death operators.
A different quantum version of the Game of Life, based on the number op-
erator, and involving a Hamiltonian operator which includes mechanisms
resembling the standard rules of the Game of Life, is developed in Bleh,
Calarco, and Montangero, 2012.

The quantum version of the GoL introduced in this Chapter, hereafter
QGoL, is not intended as an attempt to study any quantum property of
the QCA, but just as a proposal of a deterministic method describing the
structure of peculiar cellular automata by means of an enriched concept
of rule, and under the assumption that, during consecutive transients, the
system is driven by an energy-like operator, i.e. the Hamiltonian operator
H , describing the most relevant mechanisms occurring in the system itself.
Therefore, differently from the GoL, we shall consider a quantic dynamics
of the population before applying the rule ρ, which somehow extends the
rule introduced in (6.1)-(6.4). The new state deduced after the rule is imple-
mented is then considered as the starting point for the next iteration of the
time evolution, which is again driven byH . At the end of this new iteration,
ρ is applied once again, and a new state is deduced. And so on. Of course,
the dynamics one deduces in this way is driven by several ingredients, and
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various scenarios can arise.

6.2 The framework for the Quantum Game of Life

In this Section, we introduce the operatorial framework for the variant of
the classical GoL called Quantum Game of Life (QGoL). The model is con-
structed as follows: to each cell of the lattice a fermionic variable, taking
value 0 or 1 only1, is attached , and each possible configuration is given as
a vector on the Hilbert space H described below. The quantum approach
we want to describe is based on the assumption that the observables of the
system S we are interested to, among which there is the state of each cell,
are described by operators acting onH.

We suppose that the system S is made up of a single population P liv-
ing on a square lattice R made by L2 cells. At time zero, each cell may be
dead or alive (states that are represented by the values 0 or 1, respectively).
This setting is well described by using a two state vector ϕnα for any single
cell, where α ∈ {1, . . . , L2} labels the cell itself, and nα = 0, 1, and by build-
ing these vectors up in a family of fermionic operators, say {aα}α∈{1,...,L2},
according to the formalism described in Section 1.2. In this way, we have
that the eigenvalues nα = 0, 1 of the number operator Nα = a†αaα for the
cell Cα describe exactly the status of that cell (dead or alive), whereas the
state vector of the system

ϕn = ⊗L2

α=1ϕnα , n = (n1, n2, ..., nL2), (6.5)

describes the status of each cell inR. The Hilbert spaceH is constructed by
taking the closure of the linear span of all these vectors. The scalar product
is the natural one. In particular, in each cell the scalar product reduces to
the one in C2. The CAR inR extend those above:

{aα, a†β} = δα,β11, ∀α, β, (6.6)

where aα is now a 2L
2 × 2L

2
matrix operator satisfying

aαϕn = 0 if nα = 0,

a†αϕn = 0 if nα = 1,

Nαϕn = a†αaαϕn = nαϕn.

The self-adjoint Hamiltonian describing the diffusion of a population in
a closed region through fermionic operators (see Bagarello, Gargano, and
Oliveri, 2015; Gargano, 2014) is assumed here to be

H =
L2∑
α=1

a†αaα +
L2∑

α,β=1

pα,β

(
aαa

†
β + aβa

†
α

)
, (6.7)

where pα,β are non-negative real parameters such that pα,β = 1 if α 6= β
and the cell α is comprised in the Moore neighborhood of the cell β, and
pα,β = 0 otherwise. Notice that letting the parameters pα,β range over all
positive real value, and not only zero and one, as it is in Bagarello, Gargano,

1Equivalently, one could use spin variables and work with Pauli matrices.
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and Oliveri, 2015, means that the speed of diffusion from one cell to another
may be changed. However, for the sake of simplicity, this possibility is
avoided here.

Consider now the essential variation with respect to the classical GoL,
that is, before the generation of a new state, we fix a transient time τ such
that in the time interval [0, τ [ the states of the neighboring cells interact gov-
erned by the Hamiltonian H given in (6.7) according to the laws of quan-
tum mechanics. Hence, as time t increases, t < τ , S is no more in its initial
state, φn0 , but instead in the evolved state exp(−iHt)φn0 , which, in gen-
eral, is a superposition of the vectors ϕn defined in (6.5). Following the
scheme described in Bagarello, 2012, we relate the mean values of the num-
ber operatorsNα to the new states of each cell. The evolution of the number
operators is given by the law

Nα(t) := exp(iHt)Nα(0) exp(−iHt),

and their mean values on some suitable state φn0 describing the system at
t = 0 by means of

nα,0(t) = 〈φn0 , Nα(t)φn0〉 = ‖aα exp(−iHt)(t)ϕn0‖2. (6.8)

Because of the CAR, the values nα,0(t) belong to the range [0, 1], for
all α ∈ {1, . . . , L2} and all t ≥ 0. Hence, they can be endowed with a
probabilistic meaning: if nα,0(t) � 1 then the cell α has high probability to
be in a dead state.

Thus, let t vary in the interval [0, τ [. After this interval has elapsed,
that is at time τ , the rule is applied synchronously to all the cells, so that
the upgraded states are all either 0 or 1, and the new state vector, obtained
through (6.5), is ϕn1 . This process is iterated for several generations. The
whole procedure can be schematized as follows.

loop {From generation k to generation k + 1}
• For each cell α set nα,k(0) = nα,k, with nα,k = 0 or 1, and construct
ϕnk through (6.5).
• Compute exp(−iHτ)ϕnk and the related nα,k(τ), in analogy with
(6.8), out of it.
• Apply the rule synchronously to exp(−iHτ)ϕnk to compute nk+1. In
each cell you will have nα,k+1 = 0 or 1.
• Set k → k + 1.

end loop
In such a way, we obtain in each cell a sequence of states nα,k, where

the index k labels the generic k-th generation. The conditions determining
the fact that, at each generation, nα,k is set to 0 or 1 are expressed by the
applied rule. Specifically, the rule ρ imposed here for the generation of the
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new state is defined as follows:

ρσ(nα,k = 1) = 1 if

2− σ ≤
∑
β∈N

nβ,k ≤ 3 + σ

 , (6.9)

ρσ(nα,k = 1) = 0 if

∑
β∈N

nβ,k < 2− σ

 ∨
∑
β∈N

nβ,k > 3 + σ

 , (6.10)

ρσ(nα,k = 0) = 1 if

3− σ ≤
∑
β∈N

nβ,k ≤ 3 + σ

 , (6.11)

ρσ(nα,k = 0) = 0 if

∑
β∈N

nβ,k < 3− σ

 ∨
∑
β∈N

nβ,k > 3 + σ

 , (6.12)

where σ is a positive parameter, which can be seen as a measure of the
deviation from the original classical rule. In particular, if σ = 0, we re-
cover essentially the rule expressed by (6.1)-(6.4). Through this procedure
we obtain a sequence of functions nα,k(t) (with t ∈ [0, τ [), which define the
(H, ρ)-induced dynamics for the number operators Nα (α = 1, . . . , L2).

We remark here that, if we look at the standard GoL, the time plays no
role: what is really relevant is the rule ρ. This can be easily recovered, in
the described scheme, just taking τ = 0, or assuming that H = 0, which
are, therefore, two limiting cases of this strategy. On the other hand, if we
assume that ρ is the identity map (it means essentially that we have no rule
at all), we trivially go back to the standard quantum dynamics.

A second important consideration concerns the formation of periodic
orbits. As a matter of fact, we stress that, because of the finite dimensional-
ity of the quantum system and of the finite number of the possible states
of each cell, each initial condition necessarily generates a periodic solu-
tion (the worst possible case is that an initial state φn0 returns in itself after
2L

2 − 1 generations).

6.3 The dynamics of the QGoL: results and compara-
tive analysis

This Section is devoted to a detailed analysis, by means of different tools, of
the results that can be deduced from the operatorial model of Game of Life
described above. At first, we study the influence of the parameters τ and σ
on the (H, ρ)-induced dynamics of the QGoL; in fact, the value of τ defines
the time range during which only the Hamiltonian–driven evolution is ac-
tive before the application of the rule (6.9)–(6.12), whereas the value of σ is
intended as a measure of the deviation of the new rule with respect to the
one originally given in (6.1)–(6.4). Successively, we analyze the output of
the model by means of both the spectral and blob analysis, with the aim of
describing differences and similarities between the QGoL and the GoL.

All the simulations shown below are performed on a two–dimensional
square lattice of size L2, with L = 33, by choosing initial configurations in
which the state of each cell is initialized in a random way, with equal prob-
abilities to have value 0 or 1. The results obtained from the QGoL evolution
are compared to the ones deduced from the simulations of the GoL so as to
highlight the main effects due to the (H, ρ)−induced dynamics.
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FIGURE 6.1: (a) The distribution ∆GoL
QGoL(τ, σ) of the L1-error

norms between the states of the cells obtained by the QGoL and
the GoL at the second generation. For a fixed σ, ∆GoL

QGoL essentially
increases with the time τ in which the Hamiltonian–driven evo-
lution takes place. The dependence of ∆GoL

QGoL(τ, σ) on τ may be
expressed as follows: for τ < 0.4, ∆GoL

QGoL(τ, σ) increases as σ ap-
proaches 0 or 1, while for τ > 0.4 the error increases with σ. The
white curve is the quadratic curve C(σ) = −0.337σ2 + 0.384σ ap-
proximating the contour level ∆GoL

QGoL(τ = 0.1, σ = 0.5) = 0.02.
(b) The minimum σmin(τ) of ∆GoL

QGoL(τ, ·) for a fixed τ . Differ-
ent linear growth rates are visible for three τ ranges; for τ > 0.4
σmin(τ) ≈ 0, which is explicative of the presence of a phase tran-

sition for τ � 0.4.

6.3.1 The parameters τ and σ

The parameter τ defines the time range of the (H, ρ)–induced dynamics of
the system before the rule is applied, whereas the parameter σ gives a mea-
sure of how much the rule for the generation of a new state in the quantum
setting differs from the set of conditions used in the classical case. Obvi-
ously, for τ = 0 there is no Hamiltonian–driven dynamics at all, and, there-
fore, if σ = 0, we recover the classical behavior of the GoL. To study how the
parameters τ and σ modify the classical evolution, we evaluate first of all
the following L1-error norm between the states of the cells obtained by the
quantum and the classical games of life at the second generation (K = 2):

∆GoL
QGoL(τ, σ) =

1

L2

L2∑
α=1

|nα,2 − n̊α,2|, (6.13)

where nα,2 and n̊α,2 are the states in the cell α reached by the QGoL and the
GoL, respectively. Hence, ∆GoL

QGoL(τ, σ) = 0 when nα,2 = n̊α,2 for all α, i.e.,
when the QGoL and the GoL actually coincide (at the second generation, and
so at all generations). In order to consider more robust results, we compute
the distribution ∆GoL

QGoL(τ, σ) by averaging the differences obtained from 100
different random initial conditions for fixed τ and σ.

The distribution ∆GoL
QGoL(τ, σ) is shown in fig. 6.1(a) for 0 ≤ τ, σ ≤ 1.

The way in which τ affects ∆GoL
QGoL is clear: ∆GoL

QGoL increases with τ . This
is in agreement with the fact that τ > 0 corresponds to an effect which
is absent in the classical situation, since, in the latter case, no time evolu-
tion exists at all. In the GoL, in fact, the rule only, applied again and again,
determines the different generations. The dependence of ∆GoL

QGoL(τ, σ) on



6.3. The dynamics of the QGoL: results and comparative analysis 81

σ is much richer, since it is also related to the value of τ . For τ < 0.4,
∆GoL
QGoL(τ, σ) increases as σ approaches 0 or 1, while it decreases for inter-

mediate values of σ. On the other hand, for τ > 0.4 the L1-error norm
increases with τ and with σ, taking its minimum value for σ = 0. This
is essentially what one could expect, since larger values of τ and σ repre-
sent major differences from the classical situation. Nevertheless, it is inter-
esting to notice that, for τ < 0.4, σ = 0, we have a maximum value for
∆GoL
QGoL(τ, σ). This suggests that, even if σ = 0 (so that the new rules and

the classical ones do coincide), the time evolution of the system driven by
H is already enough to significantly modify the behavior of the system. In
fig. 6.1(a), the quadratic curve C(σ) = −0.337σ2+0.384σ, approximating the
contour level ∆GoL

QGoL(τ = 0.1, σ = 0.5) = 0.02, is also shown. This contour
level surrounds the region τ < C(σ) in which ∆GoL

QGoL has its lowest values,
and, as it will be detailed in Section 6.4, it allows to characterize the region
of τ and σ where the periodicity of a periodic orbit of the QGoL case differs
from the GoL case.

The performed numerical simulations also suggest that, in general, for a
fixed τ , there is always a value σmin(τ) for which ∆GoL

QGoL(τ, σmin(τ)) reaches
a minimum. In particular, for very small values of τ , there exist ranges
of parameter σ for which ∆GoL

QGoL(τ, σ) vanishes, so that the QGoL and GoL
dynamics coincide: for instance, for τ = 0.01, we obtain ∆GoL

QGoL(τ, σ) = 0 for
0.009 < σ < 0.99. This fact suggests, once again, that the role of the action
ofH is more relevant than the change in the rule ρ (i.e., the passage from the
classical rule to the new one). For later convenience, if for a fixed τ we have
a range of minima [σ1, σ2] of ∆GoL

QGoL(τ, σ), then we fix σmin(τ) = σ1. The
trend of σmin(τ) is plotted in fig. 6.1(b), where a piecewise linear behavior
with three different slopes is visible. σmin(τ) appears increasing for τ ≤ 0.4;
in particular, for τ ≤ 0.1, σmin(τ) has a linear growth rate of 6, while for
0.1 < τ ≤ 0.4 the linear growth rate is much lower (close to 0.87). For
τ > 0.4 σmin(τ) ≈ 0. It looks like a phase transition for τ ' 0.4, even if, so
far, the reason for such a transition is not clear.

6.3.2 Spectral analysis

Here, we perform a statistical study of the QGoL by using the classical tools
of the spectral analysis. In particular, for a fixed cellα, the Fourier transform
of its state nα,k at the various generations k = 0, . . . , T − 1 is given by

ñα,k(f) =
1

T

T−1∑
t=0

nα,kexp
(
−i2πtf

T

)
, (6.14)

and the Fourier power spectrum is defined as

S(f) =

L2∑
α=1

|ñα,k(f)|2. (6.15)

Moreover, we consider the density of alive cells at the k–th generation, say

Dk =
1

L2

L2∑
α=1

nα,k. (6.16)
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Roughly speaking, the power spectrum S(f) gives information on the fre-
quencies excited due to the possible presence of an equilibrium cycle solu-
tion of period T/f . The density of alive cells Dk is the ratio of alive cells for
each generation k, and a stationary or periodic behavior of Dk gives infor-
mation about the possible periodicity of the solution (in the sense defined
in Section 5.4).

It is well known that the GoL has 1/f noise (Ninagawa, Yoneda, and
Hirose, 1998), i.e., its power spectrum behaves like 1/f at low frequencies,
and in general cellular automata can have a power spectrum of the kind fα

(Ninagawa, 2008). A system showing a 1/f power spectrum is such that its
current state is influenced by the history of the system itself; 1/f noise can
be observed in a wide variety of phenomena such as the voltage of vacuum
tubes, the rate of traffic flow, and the loudness of music. The presence of the
1/f behavior of the power spectrum has also been found in Lee et al., 2004
in the case of an asynchronous version of the GoL. Evidence of the 1/f noise
is given in fig. 6.2(a), where the power spectrum for the GoL is shown for
a random initial condition and T = 4096 generations (similar results arise,
of course, also from the several numerical simulations performed using dif-
ferent random initial conditions). In this case, if τ = 0 and σ = 0, we obtain
a 2-equilibrium cycle after a transient of 277 generations (see the density
of alive cells depicted in fig. 6.2(b)). Hence, in the power spectrum, there
is a final peak at the frequency 2048, due to the fact that a 2-equilibrium
cycle solution is a periodic orbit with period Ω = 2 giving strength to the
frequency T/Ω = 2048. By fitting the spectrum S(f) with a function Cfα

with a least square method, we obtain in the range f = 1, . . . , 2000 the
values C = 0.4 and α = −1.033, which are consistent with the predicted
1/f of the power spectrum. Let us now move on to consider the QGoL
case. The fig. 6.2(a) also shows the power spectra obtained in correspon-
dence to τ = 0.1 and various values of σ. As far as the values σ = 0.1, 0.25
are concerned, the spectrum is characterized by low power density at al-
most all frequencies with a peak at the first frequency f = 0: this is due
to the fact that, after an initial transient, the whole system stabilizes to a 1-
equilibrium cycle solution after very few generations. In fact, starting from
the same random initial condition used for the GoL, the QGoL stabilizes to
a 4–equilibrium and 6–equilibrium cycle solution for σ = 0.1 and σ = 0.25,
respectively. For higher values of σ (σ = 0.5), the spectrum has almost all
frequencies excited, with a clear low power behavior for small frequencies.
The fitting with the function Cfα for f = 0, . . . , 200 returns C = 0.45 and
α = −0.15 for σ = 0.5. The circumstance that almost all the frequencies
are excited, with decreasing amplitude, means that the solution does not
show (at least for the number of generations here considered) any periodic-
ity or equilibrium. However, this is just an appearance caused by the need
to truncate the process because of complexity limitations, since, as already
pointed out, each initial condition necessarily generates a periodic solution.
This suggests that, in order to detect the periodic structure in the solution,
a larger number of generations is needed.

For increasing values of τ (τ = 0.25, 0.5), the situation does not change
for σ ≤ 0.5, since all the power spectra are similar to those observed in case
of τ = 0.1 and σ = 0.1, 0.25; thus, there is a 1–equilibrium cycle solution af-
ter few iterations, as the density of alive cells in figs. 6.3(b) and 6.4(b) shows.
For τ = 0.25, 0.5 and σ = 1 a peak at f = 0 is observed, and the remaining
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FIGURE 6.2: (a) Power spectrum of the GoL and the QGoL for
τ = 0.1 and various values of σ after T = 4096 generations start-
ing from a random initial condition. The GoL exhibits a 1/f power
spectrum, and has a 2–equilibrium cycle solution after a transient
of 277 generations (see the density of the alive cell in (b)) leading
to the peak in the frequency f = 2048 of the spectrum. The QGoL
spectrum exhibits for σ = 0.1, 0.25 a low power density as a con-
sequence of a 1–equilibrium cycle solution obtained after very few
generations, while for σ = 0.5 has a 1/f0.15 behavior with all fre-
quencies excited due to the fact that no periodic orbit has emerged

yet (see b)).

frequencies appear excited with an amplitude similar to a “noise” signal,
meaning that the evolution is virtually orderless, with a high number of
alive cells in each generation (see figs. 6.3(b) and 6.4(b)): still in this case,
during the computed generations no equilibrium periodic solution arises.

Comparing the obtained results with the ones relative to the GoL, it may
be observed that, for small values of τ and σ, corresponding to small ex-
pected variations from the classical situation, we recover equilibrium solu-
tions with periods which are smaller than those found for τ = σ = 0. On
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FIGURE 6.3: a) Same as fig. 6.2(a) for τ = 0.25. Also in this case,
for σ ≤ 0.5 the power spectrum has low power density with a peak
at the frequency f = 0 due to a 1–equilibrium solution, whereas
for σ > 0.5 the spectrum has a noisy behavior with a high number

of alive density cell (see figure b)).
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FIGURE 6.4: a) Same as fig. 6.2(a) for τ = 0.5. The results in this
case are similar to those obtained for τ = 0.25 (see fig. 6.3(a)).
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the other hand, however, for τ and σ close to 1, and for the generations com-
puted during the performed numerical simulations, no equilibrium seems
to arise, so that the situation is really different from the one corresponding
to the classical GoL. However, as previously stated, a periodic solution nec-
essarily exists also when adopting the proposed operatorial formulation,
even if the transient period, for large values of τ and σ, may become so long
that the equilibrium is not observed during the numerical tests. To give an
insight on this aspect of the solutions, a case study with L = 5 is considered
in Section 6.4, and all possible equilibria together with their transients are
characterized.

6.3.3 Blob analysis

This Subsection deals with the so-called blob analysis (Lindeberg, 1994) of
the generations of both the GoL and the QGoL. More precisely, each gener-
ation, that is essentially a distribution of 0 (for dead cells) and 1 (for alive
cells) over a lattice, can be represented as a binary image. In particular,
we perform the analysis of the 8–connected largest alive components (the
blobs) in the binary images corresponding to the states of the system during
the evolution of the GoL and the QGoL. By means of a forward scan of the
lattice, each time an alive cell is encountered, we use it as a seed for the re-
construction of the binary large object of alive neighboring cells it belongs
to.

For different choices of the parameters τ and σ, the analysis of the blobs
detected during the evolution of the system has been carried out up to a
stationary or periodic behavior of the patterns, with particular focus on the
following properties:

• total number of blobs for configuration;

• area of each blob;

• perimeter of each blob;

• centroid of each blob;

• centroid of the whole configuration.

Area, perimeter and circularity are features used in shape analysis. The
area of an alive connected region can be accurately estimated by counting
the number of the cells of value 1 of the region. To obtain a good perimeter
estimator, a contour following procedure using distances in taxicab geom-
etry has been performed. To compute the circularities, the ratio between
perimeters and areas of the various regions has been simply considered.

Comparing the evolution of the number of alive cells and the amount
of connected regions, normalized with respect to the size of the lattice and
the largest possible number of its connected components, respectively, the
graphs plotted in figs. 6.5(a) and 6.5(b) and in figs. 6.6(a) and 6.6(b) re-
veal similar trends for the two curves, without strong fluctuations after
few steps either in the quantum case or in the classical one. As already
discussed in Subsection 6.3.2, for values of the parameter σ less than 0.5
the evolution of the QGoL is characterized by the achievement of stabil-
ity within the first few steps (unlike the corresponding classical evolution),
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whereas, for values of σ greater than or equal to 0.5, a significant delay
in reaching a stable configuration compared to the classical case, which on
average stabilize at most within about a thousand steps, is observed.
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(a) GoL producing a 2–equilibrium cycle so-
lution from step 594.
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(b) QGoL for τ = 0.25 and σ = 0.1 stable
from step 9.

FIGURE 6.5: Number of living cells and blobs for the GoL, 6.5(a),
and the QGoL, 6.5(b), for parameters τ = 0.25 and σ = 0.1, nor-
malized with respect to the dimension of the lattice and the max-
imum number of connected objects in it, respectively. The evolu-
tion trends of the amount of alive cells and of the connected re-
gions are similar either in the classical or in the quantum case. For
the same initial condition, the QGoL stabilizes to a 1–equilibrium
cycle solution after very few generations, while the corresponding

GoL generates a cyclic solution of period 2 from step 594.

The trends of the maximum, minimum and average value of the circu-
larity parameters of the polygons corresponding to the blobs in different
configurations provide a measure of how the shape of these connected re-
gions deviates from the square shape (for which this value equals 4 divided
by the number of neighboring cells). The maximum value of the circularity
is reached in the case of single isolated alive cells or groups of living cells
with at most one vertex in common. In the quantum case with τ = 0.1,
these types of connected components appear almost always, unlike the cor-
responding configurations in the classical case (see figs. 6.7(a) and 6.7(b)).
In any case, as expected for a very short quantum interaction, the general
trend of the curves for the shape parameters looks similar both for the GoL
and the QGoL. As τ increases, however, as shown in figs. 6.8(a) and 6.8(b),
the values corresponding to the shapes of the connected components tend
to the average values.

Concerning the analysis of the centroids, the frequencies of the occur-
rence of the center of mass of the whole binary images in the various cells
of the lattice at each step of the classical and the quantum evolution have
been analyzed. The study performed for successive generations shows that,
as depicted in figs. 6.9(a) and 6.9(b), while for the GoL the highest frequen-
cies are arranged in a fairly broad, irregular and not always centered area,
for quantum games evolving for long times before reaching the stability a
shrinkage of this region to a distribution area with few centralized pixels is
observed.
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(a) GoL producing a 2–equilibrium cycle so-
lution from step 245.
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(b) QGoL for τ = 0.5 and σ = 1 not yet
stable at step 4096.

FIGURE 6.6: Number of living cells and blobs for the GoL, 6.6(a),
and the QGoL, 6.6(b), for parameters τ = 0.5 and σ = 1, normal-
ized with respect to the dimension of the lattice and the maximum
number of connected objects in it, respectively. The evolution
trends of the amount of alive cells and of the connected regions are
similar either in the classical or in the quantum game of life. For
the same initial condition, the GoL generates a 2–equilibrium cy-
cle solution after 245 generations, while the corresponding QGoL
requires a significantly higher number of generations to reach the

equilibrium.
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(a) Blobs’ circularity parameters for the
GoL.
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(b) Blobs’ circularity parameters for the
QGoL, for τ = 0.1 and σ = 0.25.

FIGURE 6.7: Trends of the maximum, minimum and average
value of the circularity parameters of the polygons corresponding
to the blobs at each generation of the GoL, 6.7(a), and the QGoL,
6.7(b), for parameters τ = 0.1 and σ = 0.25. The fact that the max-
imum of the circularities of the blobs equals 4 at each step of the
QGoL attests the presence of single isolated alive cells or groups
of living cells with at most one vertex in common during all the
quantum evolution. Blobs with such a shape are not always de-

tected in the classical case.

Moreover, the sample correlation coefficient of the cluster correspond-
ing to the centroids of the connected regions at every generation has been
taken into account.
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(a) Blobs circularity parameters for the GoL.
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(b) Blobs circularity parameters for the
QGoL, for τ = 0.5 and σ = 0.25.

FIGURE 6.8: Trends of the maximum, minimum and average
value of the circularity parameters of the polygons corresponding
to the blobs at each generation of the GoL, 6.8(a), and the QGoL,
6.8(b), for parameters τ = 0.5 and σ = 0.25. For values of τ greater
than 0.1, the circularity parameters of the blobs flatten to the aver-

age value.

(a) Centroid occurrences for the GoL. (b) Centroid’s occurrences for the QGoL, for
τ = 0.1 and σ = 0.5.

FIGURE 6.9: Number of occurrences of the center of mass of
the whole system after each generation of the GoL, 6.9(a), and the
QGoL for parameters τ = 0.1 and σ = 0.5, 6.9(b), in the various
cells of the lattice. Classical evolutions are generally character-
ized by the arrangement of the highest frequencies in an irregular,
not centrally localized area. For quantum systems stabilizing after
many generations (such as the case considered in 6.9(b)), instead,
centroid occurrences appear enclosed in a narrow area composed

of few centralized pixels.
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for the QGoL, for τ = 0.25 and σ = 1.

FIGURE 6.10: Sample correlation coefficients of the centroids
of the various connected regions at each generation of the GoL,
6.10(a), and the QGoL, 6.10(b), for parameters τ = 0.25 and σ = 1.
In the case of quantum systems with τ greater than or equal to
0.25, the centroids of the blobs tend to assume configurations with

direct or inverse correlation.

The trends recorded for values of τ greater than or equal to 0.25, associ-
ated with significant expected variations from the classical situation, high-
light the fact that, as shown in figs. 6.10(a) and 6.10(b), to a lack of sample
correlation between the centers of mass of the blobs in the case of the clas-
sical game of life corresponds, rather, in the quantum setting, a tendency
of these centroids to be arranged in configurations with direct or inverse
correlation.

6.4 A case study in a small domain

In this Section, in order to get an in-depth look at the dynamics of the model
of the QGoL, a case study of the GoL and the QGoL dynamics in a small do-
main, namely choosing L = 5, is presented. Since in this case we have 225

possible initial conditions, we may perform in a reasonable time a complete
analysis of all scenarios that can arise in the classical GoL and how they dif-
fer from their quantum version. As remarked previously, for all the initial
conditions, φln, l = 0, . . . , 225 − 1, a periodic behavior, in the sense that is
explained in Section 5.4, will emerge. Each initial condition (a distribution
of 0 and 1 in the 25 cells of the lattice) can be considered as the binary rep-
resentation of an integer in the range [0, 225 − 1]; therefore, one can think to
label each initial condition with the corresponding integer.

For τ = σ = 0, i.e., in the classical GoL, following the evolution for all
initial conditions, we get that the possible evolutions lead to periodic solu-
tions, and that the observed periods are 1, 2, 3, 4, 5, 10, and 20. Since the
data so obtained show that many initial conditions lead to the same peri-
odic solutions, we can group the initial conditions in equivalence classes,
see Table 6.1.

A first interesting analysis consists in considering the length of the tran-
sient for the different periodic solutions. Below, we report the observed
data. For the initial conditions leading to the 1-equilibrium cyclic solutions,
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Period Ω 1 2 3 4 5 10 20
# of initial conditions 3455 1225 200 200 20 60 20

TABLE 6.1: List all the possible values of the period Ω for the
GoL in the case L = 5, and number of equivalence classes of initial

conditions leading to an Ω-periodic solution.

the length of transients has a mean value of about 8; most initial configura-
tions have very short transients (less than 7 generations), and, as the length
of transients increases (its maximum is 51), the number of the initial condi-
tions admitting them decays exponentially. For initial conditions leading to
the 2–equilibrium cyclic solutions, the situation is quite the same: the length
of transients has a mean value of about 5; most initial conditions have very
short transient (less than 5 generations), and, as the length of transients
increases (its maximum is 23), the number of the initial conditions admit-
ting them decays exponentially. For initial configurations leading to the
3–equilibrium cyclic solutions, the length of transients is in the range 1 to 4,
and most of the initial conditions have one or two transient generations.

For initial conditions leading to the 4–equilibrium cyclic solutions, the
length of transients has a mean value of about 8; most of the initial condi-
tions have a transient length between 1 and 13, and the maximum value is
32. For initial conditions leading to the 5–equilibrium cyclic solutions, the
length of transients has a mean value of about 5, which is also the value with
the highest frequency; most of the remaining initial conditions exhibit al-
most uniformly distributed transients of length equal to 1, 6, 7 and 8 (which
is the maximum). For initial conditions leading to the 10–equilibrium cyclic
solutions, the length of transients is in the range 1 to 10, and the distribu-
tion is almost uniform except for the extrema of the interval. Finally, for
initial conditions leading to the 20–equilibrium cyclic solutions, the length
of transients has a mean value of about 4, and most of the initial conditions
have a transient length between 1 and 2, while the maximum number of
transients is 15.

Consider now the behavior exhibited by the QGoL, and let T `(τ, σ) be
the number of transient generations needed to reach a P `(τ, σ)-periodic so-
lution for a generic initial condition labeled with `. In the case of the classi-
cal GoL evolution (τ = 0, σ = 0), we have the values of P `(0, 0) (1, 2, 3, 4, 5,
10, 20, respectively). To investigate how T `(τ, σ) and P `(τ, σ) are affected in
the (H, ρ)–dynamics by the parameters τ and σ, we compute the following
mean distributions

TP (τ, σ) =
1

NP

NP∑
kP=1

(
T jkP (τ, σ)− T jkP (0, 0)

)
, (6.17)

ΩP (τ, σ) =
1

NP

NP∑
kP=1

(
P jkP (τ, σ)− P jkP (0, 0)

)
, (6.18)

where j1, . . . , jNP label the initial conditions leading to a P -periodic solu-
tion. TP (τ, σ) and ΩP (τ, σ) allow us to determine where the transient and
the periodic orbit length of the equilibrium cycle solution change according
to the parameter τ and σ with respect to the GoL, as they are a measure of
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(a) T3(τ, σ) (b) Ω3(τ, σ)

FIGURE 6.11: The distribution TP (τ, σ) in (a), and ΩP (τ, σ) in
(b) for the period P = 3. For τ < C(σ), TP (τ, σ) and ΩP (τ, σ)
vanish, hence there is no substantial difference between the QGoL
and the GoL case. The most relevant differences arise for τ ≈ C(σ)
where it is evident how in the QGoL case the solution is an equilib-
rium cyclic solution having a period lower than the one obtained
in theGoL case and the length of transient before reaching the orbit
is higher than the one in the GoL case. For τ > C(σ) the situation
is quite different: the periodicity of the QGoL solution is in general
lower than the one in the GoL case, and the length of transient be-
fore reaching the orbit can decrease or increase with respect to the

GoL case according to the various values of τ and σ.

(a) T5(τ, σ) (b) Ω5(τ, σ)

FIGURE 6.12: Same as fig. 6.11 for P = 5. Also in this case the
main differences between the GoL and the QGoL evolution are vis-
ible for τ ≈ C(σ), and, compared to the case P = 3, the length of
the transient of the equilibrium cycle solution in the QGoL case is

always lower than the one in the GoL case.

the variations between the GoL and the QGoL case. The results are shown
in figs. 6.11 and 6.14 for the periodic orbit lengths P = 3, 5, 10, 20. Notice
that, in terms of the transient length, the most relevant differences arises
for τ = 0.1, σ > 0.5 along the curve τ = C(σ) = −0.337σ2 + 0.384σ for
P = 5, 10, 20, while for P = 3 the peaks are reached for τ < 0.1, σ < 0.5
again along the curve τ ≈ C(σ).

For τ < C(σ), it is observed that TP (τ, σ) and ΩP (τ, σ) vanish, meaning
that for τ < σ there is no substantial difference between the QGoL and the
GoL case. On the other hand, for τ > C(σ) the length of the periodic orbit
P l(τ, σ) is dramatically lower than the GoL case.
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(a) T10(τ, σ) (b) Ω10(τ, σ)

FIGURE 6.13: Same as fig. 6.11 for P = 10. The results are similar
to those obtained in the case P = 5.

(a) T20(τ, σ) (b) Ω20(τ, σ)

FIGURE 6.14: Same as fig. 6.11 for P = 20. The results are similar
to those obtained in the case P = 5, 10.
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7 Dynamics with rule acting on
the model: bacterial
populations

In this Chapter, we carry on the analysis of the models already introduced
in Chapter 3 by examining the effects of combining the operatorial ap-
proach with the additional introduction of specific conditions acting pe-
riodically on the model itself, and combining their action with the usual
quantum definition of the time evolution (see Chapter 5). Specifically, the
evolution in a time interval is obtained by gluing the evolutions in a finite
set of adjacent subintervals. In each subinterval the Hamiltonian is time in-
dependent, but the values of the parameters entering the Hamiltonian may
be changed by the rules at the end of a subinterval on the basis of the actual
state of the system, so as to express the change of the rates of interactions
which reasonably take place in the considered closed bacterial ecosystem
during its evolution (Di Salvo and Oliveri, 2016c; Bagarello et al., 2016).

7.1 The extended step–wise linear model in a single
cell

The purpose of the following discussion is the description of the long–term
survival of a bacterial population (considered in a single cell) by means of
the application of specific rules modifying the original linear model pre-
sented in Section 3.2 accordingly to the state reached by the system after
several time steps.

FIGURE 7.1: Viability data of a batch culture of P. aeruginosa mon-
itored weekly for a period of 24 months in the case in which no nu-
trients were added after bacterial inoculum for all the observation

period (Carnazza et al., 2008).
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In practice, we consider the Heisenberg dynamics of the closed ecosys-
tem for a time interval of length τ before applying the rule ρ; then, we
assume the state reached by the system as the starting point for the next it-
eration of the time evolution, now governed by the new time–independent
Hamiltonian operator deduced after the rule acting on the parameters has
worked. At the end of this new iteration, ρ is applied again, a new set of
values for the parameters deduced, and a new integration performed. The
global evolution in the whole time interval we are interested in is thus ob-
tained by gluing the evolutions in a finite set of adjacent subintervals. The
stepwise dynamics we deduce in this way is driven by the particular func-
tional form of the Hamiltonian H , the initial values for the parameters and
the initial status of the system, and, of course, the rule ρ.

In particular, two different rules, ρ1 and ρ2, have been devised by tak-
ing into account the dynamical mechanisms implied by the variation of the
scarcely recyclable garbage (7.1) and the nutrients (7.2), respectively; also,
different values of τ have been tested. The specific aim is to reproduce the
qualitative behavior of viability data (see fig. 7.1) of bacterial batch cultures
where no nutrients at all were added after bacterial inoculum (Carnazza et
al., 2008).

More explicitly, the rule ρ1 for the generation of the new set of values
for the parameters describing the interactions among the compartments on
the basis of the variation of n4 is defined as follows:

if n4(kτ)− n4((k − 1)τ) > 0
ρ1(λ) = λ(1− 0.4),

ρ1(ν
(2)
1 ) = ν

(2)
1 (1− 0.4),

ρ1(ν
(2)
2 ) = ν

(2)
2 (1− 0.4),

else 
ρ1(λ) = λ(1 + 0.4),

ρ1(ν
(2)
1 ) = ν

(2)
1 (1 + 0.4),

ρ1(ν
(2)
2 ) = ν

(2)
2 (1 + 0.4),

(7.1)

where k = 1, 2, . . .. In a very simple way, ρ1 checks if the density of the
scarcely recyclable garbage has increased compared to that of the previous
step, and then modifies the values of the involved interaction parameters.

The numerical simulations shown in fig. 7.2 have been produced by
choosing the inital values for the parameters ω1 = 0.3, ω2 = 0.2, ω3 = 0.4,
ω4 = 0.5, λ = 0.3, ν(1)

1 = 0.25, ν(2)
1 = 0.2, ν(1)

2 = 0.15, ν(2)
2 = 0.1, the ini-

tial densities for the compartments n1 = 1, n2 = 0.1, n3 = 0, n4 = 0.1,
and by imposing the rule ρ1 after a time interval of length τ = 2, τ = 5 or
τ = 10, respectively. Due to the facts that the density of the scarcely recy-
clable waste material has reasonably damped oscillations and that, since it
turns into nutrients rather hardly, this garbage has a low influence on the
transformation of the system, it is visible how, for values of length τ of the
interval of quantum evolution below 10, ρ1 seems not to be a fitting rule for
the description of the long–term survival of the bacteria, whereas for τ = 10
the results are quite satisfactory.

We thus consider a second rule ρ2 based on the control of the variation
of the density of the nutrients at each step and acting both on the values of
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FIGURE 7.2: Time evolution of the density of the bacteria using
the stepwise linear model: the rule ρ1, based on the dynamical
mechanisms implied by the variations of the scarcely recyclable
garbage, is imposed after a time interval of length τ = 2, (a), τ = 5,

(b), or τ = 10, (c).
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the inertia and of the involved interaction parameters according to the law

if n1(kτ)− n1((k − 1)τ) > 0

ρ2(ω1) = ω1(1− 0.4),

ρ2(ω2) = ω2(1− 0.4),

ρ2(ω3) = ω3(1 + 0.2),

ρ2(ω4) = ω4(1 + 0.2),

ρ2(λ) = λ(1 + 0.4),

ρ2(ν
(1)
1 ) = ν

(1)
1 (1− 0.4),

ρ2(ν
(1)
2 ) = ν

(1)
2 (1− 0.4),

else

ρ2(ω1) = ω1(1 + 0.4),

ρ2(ω2) = ω2(1 + 0.4),

ρ2(ω3) = ω3(1− 0.2),

ρ2(ω4) = ω4(1− 0.2),

ρ2(λ) = λ(1− 0.4),

ρ2(ν
(1)
1 ) = ν

(1)
1 (1 + 0.4),

ρ2(ν
(1)
2 ) = ν

(1)
2 (1 + 0.4),

(7.2)

with k = 1, 2, . . ..
The graphs plotted in fig. 7.3 represent an evidence of how, even for

small values of τ , the proposed approach, combining the action of the Hamil-
tonianH with a suitable rule able to adjust the model to the evolution of the
system, provides a valuable description of what is observed in a bacterial
population in a closed environment. The exact way in which the rules ρ1

and ρ2 change the values of the parameters entering the model in a specific
case is reported in Tables 7.1 and 7.2. Even in the event that some stress
factor is introduced for the scarcely recyclable garbage, the step–wise lin-
ear model employing the rule ρ2 proves to be efficient in describing the
expected behavior, characterized by a gradual decay of the densities of all
the compartments of the system, as visible in fig. 7.4.

The numerical simulations obtained by considering the evolution of the
system for consecutive time intervals in accordance with the Heisenberg
representation and repeatedly imposing the rules ρ1 or ρ2, intended to ac-
count for the changes of the metabolic activity of bacteria (and, hence, in
their interaction parameters) due to the increased density of the scarcely
recyclable garbage or to a lack of nutrients, demonstrate the validity of the
proposed stepwise method in describing the behavior of the bacteria, dif-
ferently from what happens by adopting the standard linear model, even
when we use the final values for the parameters deriving from several ap-
plications of the rule (as shown in fig. 7.5). Moreover, in such a simple way,
the complexity limitations imposed by the fast growth of the size of the
problem in the case of nonlinear models are avoided.
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FIGURE 7.3: Time evolution of the density of the bacteria using
the stepwise linear model: the rule ρ2, based on the dynamical
mechanisms implied by the variation of the nutrients, is imposed
after a time interval of length τ = 2, (a), τ = 5, (b), or τ = 10, (c).

]0, 10] ]10, 20] ]20, 30] ]30, 40] ]40, 50] ]50, 60] ]60, 70] ]70, 80] ]80, 90] ]90, 100]

λ 0.300 0.300 0.180 0.252 0.353 0.212 0.296 0.178 0.107 0.149

ν
(2)
1 0.200 0.200 0.120 0.168 0.235 0.141 0.198 0.119 0.071 0.100

ν
(2)
2 0.100 0.100 0.060 0.084 0.118 0.071 0.099 0.059 0.036 0.050

TABLE 7.1: Stepwise linear model using the rule ρ1 with τ = 10:
values of the parameters in the various time intervals.

]0, 10] ]10, 20] ]20, 30] ]30, 40] ]40, 50] ]50, 60] ]60, 70] ]70, 80] ]80, 90] ]90, 100]

ω1 0.300 0.300 0.420 0.252 0.353 0.212 0.127 0.076 0.046 0.064

ω2 0.200 0.200 0.280 0.168 0.235 0.141 0.085 0.051 0.030 0.043

ω3 0.400 0.400 0.320 0.384 0.307 0.369 0.442 0.531 0.637 0.510

ω4 0.500 0.500 0.400 0.480 0.384 0.461 0.553 0.664 0.796 0.637

λ 0.300 0.300 0.180 0.252 0.151 0.212 0.296 0.415 0.581 0.349

ν
(1)
1 0.250 0.250 0.350 0.210 0.294 0.176 0.106 0.064 0.038 0.053

ν
(1)
2 0.150 0.150 0.210 0.126 0.176 0.106 0.064 0.038 0.023 0.032

TABLE 7.2: Stepwise linear model using the rule ρ2 with τ = 10:
values of the parameters in the various time intervals.
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(a) Non–conservative case: closed ecosystem
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FIGURE 7.4: Time evolution of the densities of all the compart-
ments of the ecosystem, (a), and of the bacteria, (b), using the step-
wise linear model in the non–conservative case and imposing the

rule ρ2 after a time interval of length τ = 10.
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FIGURE 7.5: Time evolution of the density of the bacteria using
the linear model with the final values of the parameters obtained
applying either the rule ρ1, (a), or the rule ρ2, (b), after 10 time

intervals of length τ = 10.

7.2 Rule–induced dynamics for the long–term survival
of bacteria in a square region

In this Section, we consider an example of operatorial model for the descrip-
tion in a finite 2D region of the long–term survival of bacterial populations
belonging to certain genera, among which Bacillus and Clostridium, whose
metabolism is such as to procure the survival for an indefinite time in terms
of latent life when under negative stimuli (see Chapter 3). The results here
reported belong to the joint manuscript (Bagarello et al., 2016).

The spatial model here analyzed is intended to generalize the ideas dis-
cussed in Di Salvo and Oliveri, 2016b; Di Salvo and Oliveri, 2016c, where
the dynamics of the various trophic levels in a closed ecosystem has been in-
vestigated by applying operatorial techniques and further introducing spe-
cific rules acting periodically on the system. In particular, we consider here
a fermionic model in a finite, closed, two-dimensional region, made by L2

cells, involving four compartments in each cell, say the nutrients, the bac-
teria and two different garbages (playing different roles in the ecosystem,
see Section 3.1), as schematized in fig. 3.2. To describe colony morphology
in stressed/aged bacterial populations, we consider a region represented
by a regular L × L square grid (see fig. 3.5). According to the usual inter-
pretation, the number operators are used to describe the evolution of the
local densities of the different compartments. Once we have fixed a suit-
able functional form for the Hamiltonian operator, say the one defined in
Equation (3.9), we now move to describe the effect of combining the usual
quantum definition of the dynamics with the action of a specific rule chang-
ing periodically the values of the involved parameters.

The way in which the rule acts is inspired by the observation of the
biological dynamics of bacterial colonies where the living bacteria, as the
nutrients disappear, besides reducing their metabolism, begin to use as nu-
trients the components of dead cells. In particular, the modifications of the
parameters entering the Hamiltonian operator are intended to account for
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the changes of the metabolic activity of bacteria (and, hence, their interac-
tion parameters) due to the increased density of the non recyclable garbage
or to a lack of nutrients.

Start considering nonhomogeneous regions characterized by cell–depen-
dent parameters such that, when moving away from the center, the iner-
tia parameters decrease and the interaction parameters moderately grow.
Precisely, we initially look at the values assigned to the parameters in Di
Salvo and Oliveri, 2016b, namely ω1,α = 0.3/(1 + dα), ω2,α = 0.1/(1 + dα),
ω3,α = 0.3/(1 + dα), ω4,α = 0.4/(1 + dα),λ2,α = 0.5dα, λ3,α = 0.4dα,
λ4,α = 0.2dα, ν2,α = 0.6dα, ν3,α = 0.4dα, provided that dα 6= 0, where
dα is the Euclidean distance (normalized to 1) between the cell α and the
central one; moreover, µ2,α = 0.3 (α = 1, . . . , L2), whereas pα,β = pβ,α is
vanishing for α = β, equal to 1/d2(α, β), where d(α, β) is the Euclidean
distance between the adjacent cells α and β, and zero elsewhere.

We take into account the dynamical mechanisms implied in each cell
by the variation D4,α of the scarcely recyclable garbage after any period of
quantum evolution of the system of length τ ,

D4,α = n4,α(kτ)− n4,α((k − 1)τ), k > 1, α = 1, . . . , L2,

to generate a new set of values for some of the parameters of the model
according to the rule ρ acting as

ρ(ω2,α) = ω2,α(1 + 10D4,α),

ρ(λ2,α) = λ2,α(1− 10D4,α),

ρ(λ4,α) = λ4,α(1− 10D4,α),

ρ(ν3,α) = ν3,α(1− 10D4,α).

(7.3)

Numerical simulations of the stepwise model, describing the evolution
of the system for consecutive time intervals in accordance with the Heisen-
berg representation and imposing repeatedly the rule ρ, have been com-
pared to those obtained in Section 3.4 by considering the evolution accord-
ing to the standard nonhomogeneous linear model (see figs. 3.9 to 3.12).
The employed initial conditions are such that the nutrients are uniformly
distributed with maximum local density on the entire region, the bacte-
ria appear with maximum local density only in a restricted central area,
whereas the two garbages are uniformly empty.

As visible in fig. 7.6, though the diffusion has the effect of distributing
the bacteria all over the lattice (kept in mind that the radial inhomogeneity
of the parameters determines the formation of symmetrical patterns), the
validity of the proposed stepwise method, differently from what happens
by adopting the standard linear model, is shown by the fact that the appli-
cation of the rule ρ after several time steps improves the description of the
behavior of bacterial populations in terms of long–term survival.

The mean values and the variances of the densities of all the compart-
ments of the ecosystem exhibit in the case of the stepwise approach, as well
as in the case of the standard approach (see figs. 3.11 and 3.12), an oscillat-
ing behavior with decreasing variations and the tendency to stabilize, in the
case of the mean values, and to become smaller and smaller, in the case of
the variances (see fig. 7.7 for the evolutions corresponding to the simulation
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(a) Bacterial densities at t = 0.5 (b) Bacterial densities at t = 1.7

(c) Bacterial densities at t = 3.6 (d) Bacterial densities at t = 5.4

FIGURE 7.6: Stepwise nonhomogeneous spatial linear model
with the rule ρ and τ = 1. The frames show for each row the
densities of the bacteria over the entire region at times 0.5, 1.7, 3.6,

5.4 respectively.

shown in fig. 7.6). The introduction of the rule results in an opposition to
the destruction of the oscillations caused by the diffusion processes.
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FIGURE 7.7: Time evolution of the mean, (a), and the variance,
(b), of the densities of all the compartments of the ecosystem over a
region described by means of the stepwise nonhomogeneous spa-

tial linear model with the rule ρ and τ = 1.



105

8 (H, ρ)–induced political
dynamics and the role of
turncoats

In this Chapter, we discuss an extension of the analysis of the party system
dynamics described in Chapter 4, by combining the action of the Hamilto-
nian of the system with certain rules acting periodically on it in such a way
that the parameters entering the linear conservative model, and describing
the political style of the various parties, are repeatedly changed (so as to
express a sort of dependence of them upon the variations of the mean val-
ues of the observables (Di Salvo and Oliveri, 2016a; Di Salvo, Gorgone, and
Oliveri, 2016b)).

Moreover, in Section 8.3, we deal with two more sophisticated models,
which consist in collections of similar models accounting for the effects of
politicians’ turncoat habits either inside the central government, or on the
voters’ opinion. The mutual influences are suitably graded.

8.1 Basic approach with rule acting on the model

The simulations shown during the dissertation in Chapter 4, as expected
for the adopted linear model, provide an evolution of the densities that
does not admit any asymptotic limit, that is the consistencies of the parties
always oscillate in time. To describe some kind of “more interesting” dy-
namics, we need to add some extra ingredients, or change something in the
form of H . The possibility consisting in assuming a different Hamiltonian
containing terms of order greater than two would require the computation
at each instant of time of the exponential of a 29×29 matrix, or, equivalently,
the numerical solution of a system of 9 · 218 nonlinear differential equations
to obtain the time evolution of the system in the Heisenberg representation.
This approach becomes almost intractable from a computational point of
view if we want to consider more realistic models with a larger number of
political groups. In order to bypass the huge problem of the increase of
the computational costs, we use here the approach of the (H, ρ)–induced
dynamics explained in Chapter 5. In particular, starting from a quadratic
Hamiltonian such as the one defined in (4.2), we enrich the description of
the dynamics by accounting for the influence that the information about the
subsequent states reached by the system has on the political style of the var-
ious parties (described by the specific values assigned to the parameters).
We stress that in such an approach only the strengths of the mutual interac-
tions change, whereas the structure of the original model is preserved.

If we consider the time interval [0, T ], split it in n = T/τ subintervals
of length τ , and imagine the dynamics in the k–th subinterval [(k − 1)τ, kτ [
ruled by an Hamiltonian operator H(k), the evolution of the mean values of



106 (H, ρ)–induced political dynamics and the role of turncoats

FIGURE 8.1: Linear model (no rule): time evolution of the den-
sities of the three factions (top) and of the consistency of the par-
liamentary majority and opposition (bottom) up to t = 250. The
time is scaled to the total number of weeks in the five–year term

of office.

the observable of the system we are interested in is obtained according to
the approach presented and discussed in Section 5.1.
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FIGURE 8.2: Stepwise linear model using the rule ρ1 with τ = 5:
time evolution of the densities of the three factions (top) and of the
consistency of the parliamentary majority and opposition (bottom)
up to t = 250. The time is scaled to the total number of weeks in

the five–year term of office.
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FIGURE 8.3: Stepwise linear model using the rule ρ2 with τ = 5:
time evolution of the densities of the three factions (top) and of the
consistency of the parliamentary majority and opposition (bottom)
up to t = 250. The time is scaled to the total number of weeks in

the five–year term of office.
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Thus, let us consider a general political system in which three major fac-
tions are outlined, each one of them internally subdivided according to the
political attitudes of its members into three fringes as schematically shown
in fig. 4.1. We assume that the nature of the factions is characterized by
the choice of values for the parameters of the model as in (4.7) along with
µ12 = 0.1, µ13 = 0.09, µ23 = 0.01; moreover, let us take the initial con-
sistencies such that the first faction is predominant, but not significantly,
compared to the sum of the remaining two. In other words, let us imagine
that at the beginning of a parliamentary term there is a moderate party (f1)
which struggles to keep the majority of seats and has not the right numbers
to govern alongside a fickle faction (f2) and an extremist one (f3). Taking
into account the turncoat attitudes of the various actors of our model, rea-
sonable estimates of the numerical consistence of the parliamentary major-
ity and opposition to the faction fj are obtained by considering the densities

Mj = fj +
3∑

k=1
k 6=j

pkj and Oj =
3∑

k,`=1
k,`6=j

pk`, respectively.

The description of the evolution of such a political system by means
of the linear model (4.4) in the case where no rule is applied produces the
results shown in fig. 8.1.

In order to account for the changes in political views and party affili-
ations due to the evolution and the mutual interactions between the com-
partments of the political system, we consider two different rules (ρ1 and
ρ2) periodically acting on some of the parameters of the model in such a
way to have remarkable effects on the evolution of the system. More ex-
plicitly, once the variations of the densities of the main factions

Dj = fj(kτ)− fj((k − 1)τ), k ≥ 1, j = 1, 2, 3, (8.1)

have been computed after a period of length τ of the Heisenberg–like evo-
lution of the political system, the first rule ρ1 consists in the conditions{

ρ1(ωjj) = ωjj(1 +Dj),

ρ1(ωj`) = ωj`(1−Dj), ` 6= j,
j, ` = 1, 2, 3, (8.2)

which are intended to modify, according to the evolution of each faction,
the tendency of the loyal fringes to remain constant in time contrarily to
those of the disloyal ones. The time evolutions of the system and of the con-
sistency of the parliamentary majority and opposition obtained by means
of the stepwise linear model applying the rule ρ1 after every time step of
length τ = 5 are shown in fig. 8.2.

The resulting dynamics can be further adapted in favor of the leading
party f1 through the set of conditions ρ2, taking into account the variations

dj` = pj`(kτ)− pj`((k − 1)τ), k ≥ 1, j, ` = 1, 2, 3, (8.3)

of the densities of each compartment pj` of the model, and introducing fur-
ther conditions on the internal interaction parameters:{

ρ2(ωj`) = ωj`(1 + dj`),

ρ2(λj`) = λj`(1− dj`), ` 6= j,
j, ` = 1, 2, 3. (8.4)
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FIGURE 8.4: A schematic view to the model describing the main
parties interacting in the Italian XVII Legislature.

Notice that, due to the fact that the system under consideration is conser-
vative, at any given time the variations dj` (as well as Dj), j, ` = 1, 2, 3, will
never have the same sign. This results in a consolidation of the factions
whose density is growing associated with an incentive to variability for the
other factions whose density is decreasing, i.e., ρ2 acts increasing (lowering,
respectively) the value of the inertia parameters and lowering (increasing,
respectively) the values of the internal interaction parameters in order to
suppress or promote the internal disloyalty flows. Therefore, the periodic
application of the rule ρ2 accounts for the tendency of the candidates to
jump on the bandwagon and, as visible in fig. 8.3, the stepwise model well
describes the situation in which the leading faction reaches a good numeri-
cal consistency compared to the other factions, and maintains a majority of
overall seats in the parliament.

Despite of the simplicity of the proposed model, the obtained numeri-
cal simulations seem to capture some relevant features (e.g. the reinforce-
ment of moderate factions) of the dynamics of political parties affected by
turncoat–like behaviors.

8.2 A case study: the dynamics of turncoats in the Ital-
ian XVII Legislature

The political parties taking part to the Italian XVII Legislature have been
grouped according to ideology and attitudes into five main factions: the
center–left coalition (f1), the center–right coalition (f2), the center coali-
tion (f3), the Five Star Movement (f4), and the set of all the minor parties,
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(a) (b)

FIGURE 8.5: Desertions (normalized to the final consistencies)
inside the Chamber of Deputies, (a), and the Senate of the Re-
public, (b), during the Italian XVII Legislature (data from http:
//www.camera.it and http://www.senato.it, accessed on

April 14th, 2016).

(a) (b)

FIGURE 8.6: Entries (normalized to the final consistencies) in-
side the Chamber of Deputies, (a), and the Senate of the Re-
public, (b), during the Italian XVII Legislature (data from http:
//www.camera.it and http://www.senato.it, accessed on

April 14th, 2016).

or Mixed Group (f5). This last compartment represents a mass of outcast
politicians without any kind of internal cohesion or ideological identity.

A graphical representation of the possible political interactions among
these actors is shown in fig. 8.4.

The Italian political system has been sadly characterized, especially in
recent years, by a tendency of the government to attempt to hold on to
power by forming coalitions to prevent the formation of any credible oppo-
sition. Phenomena such as opportunism and easy acceptance of turncoats
within the various parties have strongly influenced the XVII Italian Legisla-
ture, reaching even paroxysmal levels during the first thirty months of this
term (see figs. 8.5 and 8.6 for a display of the uniform disloyalty, practically
exhibited by all political groups, in both the two houses of the Italian Parlia-
ment). The time series of the numerical consistencies of the parties within
the Chamber of Deputies and the Senate of the Republic during the pe-
riod under consideration are shown in fig. 8.7. By observing the trends that
emerge from the official data about the changes of side, it springs to mind
to interpret such evolutions as strongly driven by the lack of scruples. This

http://www.camera.it
http://www.camera.it
http://www.senato.it
http://www.camera.it
http://www.camera.it
http://www.senato.it
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FIGURE 8.7: Time series of the numerical consistency of the po-
litical groups within the Chamber of Deputies, (a), and within the

Senate of the Republic, (b), during the Italian XVII Legislature.



8.2. A case study: the Italian XVII Legislature 113

key translates into the possibility of using the turncoat model presented in
this paper (with a specific rule ρP taking into account the dynamics within
the Italian Parliament) in order to attempt to fit the actual data extracted
from the Institutional web sites.

The various subgroups of the political parties are described by fermionic
operators and their evolution is ruled by a quadratic Hamiltonian operator
in the Heisenberg representation. On the basis of the observed behavior of
the various parties, we describe the political interactions by means of the
following Hamiltonian:

H = H0 +HI , with

H0 =
4∑

i,j=1

ωij P
†
ij Pij + ω5P

†
5 P5,

HI =
4∑

i,j=1
j 6=i

λ
(j)
i

(
PiiP

†
ij + PijP

†
ii

)
+

∑
1≤i<j≤4

µij

(
PijP

†
ji + PjiP

†
ij

)

+
4∑

i,j=1

νij

(
PijP

†
5 + P5P

†
ij

)
.

(8.5)

The equations of motion look similar to those obtained in (4.3), say

Ṗ11 = i
(
−ω11P11 + λ

(2)
1 P12 + λ

(3)
1 P13 + λ

(4)
1 P14 + ν11P5

)
,

Ṗ12 = i
(
−ω12P12 + λ

(2)
1 P11 + µ12P21 + ν12P5

)
,

Ṗ13 = i
(
−ω13P13 + λ

(3)
1 P11 + µ13P31 + ν13P5

)
,

Ṗ14 = i
(
−ω14P14 + λ

(4)
1 P11 + µ14P41 + ν14P5

)
,

Ṗ21 = i
(
−ω21P21 + λ

(1)
2 P22 + µ12P12 + ν21P5

)
,

Ṗ22 = i
(
−ω22P22 + λ

(1)
2 P21 + λ

(3)
2 P23 + λ

(4)
2 P24 + ν22P5

)
,

Ṗ23 = i
(
−ω23P23 + λ

(3)
2 P22 + µ23P32 + ν23P5

)
,

Ṗ24 = i
(
−ω24P24 + λ

(4)
2 P22 + µ24P42 + ν24P5

)
,

Ṗ31 = i
(
−ω31P31 + λ

(1)
3 P33 + µ13P13 + ν31P5

)
,

Ṗ32 = i
(
−ω32P32 + λ

(2)
3 P33 + µ23P23 + ν32P5

)
,

Ṗ33 = i
(
−ω33P33 + λ

(1)
3 P31 + λ

(2)
3 P32 + λ

(4)
3 P34 + ν33P5

)
,

Ṗ34 = i
(
−ω34P34 + λ

(4)
3 P33 + µ34P43 + ν34P5

)
,

Ṗ41 = i
(
−ω41P41 + λ

(1)
4 P44 + µ14P14 + ν41P5

)
,

Ṗ42 = i
(
−ω42P42 + λ

(2)
4 P44 + µ24P24 + ν42P5

)
,

Ṗ43 = i
(
−ω43P43 + λ

(3)
4 P44 + µ34P34 + ν43P5

)
,

Ṗ44 = i
(
−ω44P44 + λ

(1)
4 P41 + λ

(2)
4 P42 + λ

(3)
4 P43 + ν44P5

)
,
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Ṗ5 = i (−ω5P5 + ν11P11 + ν12P12 + ν13P13 + ν14P14 + ν21P21

+ν22P22 + ν23P23 + ν24P24 + ν31P31 + ν32P32 + ν33P33

+ν34P34 + ν41P41 + ν42P42 + ν43P43 + ν44P44) .

The values of the parameter involved in the model are initially selected
as

ω11 = 0.7, ω12 = 0.65, ω13 = 0.65, ω14 = 0.65,

ω22 = 0.45, ω21 = 0.4, ω23 = 0.4, ω24 = 0.4,

ω33 = 0.65, ω31 = 0.6, ω32 = 0.6, ω34 = 0.6,

ω44 = 0.9, ω41 = 0.85, ω42 = 0.85, ω43 = 0.85,

ω5 = 0.2,

λ
(2)
1 = 0.3, λ

(3)
1 = 0.35, λ

(4)
1 = 0.35,

λ
(1)
2 = 0.45, λ

(3)
2 = 0.5, λ

(4)
2 = 0.5, (8.6)

λ
(1)
3 = 0.35, λ

(2)
3 = 0.3, λ

(4)
3 = 0.35,

λ
(1)
4 = 0.15, λ

(2)
4 = 0.2, λ

(3)
4 = 0.15,

µ12 = 0.1, µ13 = 0.15, µ14 = 0.15,

µ23 = 0.2, µ24 = 0.25, µ34 = 0.1,

ν11 = ν22 = ν33 = ν44 = 0.1,

ν12 = ν13 = ν14 = ν21 = ν23 = ν24 = ν31 = ν32 = ν34 = ν41 = ν42 = ν43 = 0.

These values are then modified during the evolution of the system (after
any time interval of length τ = 1) on the basis of the variations of the den-
sities of the various compartments associated to the parties inside the Par-
liament:

Dj = fj(kτ)− fj((k − 1)τ), k ≥ 1, j = 1, . . . , 5 (8.7)

according to the rule ρP , acting as

ρP (ω11) = ω11(1 +D1/100),

ρP (ω22) = ω22(1− (D1 +D3)/10),

ρP (ω33) = ω33(1 + (D1 +D2)/10),

ρP (ω44) = ω44(1− (D4 +D5)/10),

ρP (ω5) = ω5(1 + (D4 +D5)/10).

(8.8)

The rule ρP , which resembles the rule ρ1 defined in (8.2), has to be in-
tended as a means to adjust the model to the observed phenomena in order
to reasonably mimic the actual trends, as the evolutions in fig. 8.8 show.

The more realistic variant of the model described in this Section is thus
able to provide satisfactory results in terms of fitting with the official data
extracted from the Institutional web pages of the Italian Parliament.
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FIGURE 8.8: Time evolution of the political system according to
the stepwise model with rule ρP and τ = 1: the numerical simu-
lations exhibit a good likeness to the actual data in both the case
of the Chamber of Deputies, (a), and of the Senate of the Republic,
(b). The x–axis is scaled to the number of months in the period un-
der study; the y–axis is scaled to the fractions of the overall seats.
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8.3 The interplay between politicians’ turncoat habits:
facets into the central government and the public
opinion

In this Section, we deal with a more sophisticated approach suitable to de-
scribe the effects deriving from the mutual interactions inside the central
government and the influence of the political dynamics affected by turn-
coat behaviors on the opinions of the voters and the abstainers (Di Salvo,
Gorgone, and Oliveri, 2016a).

8.3.1 The dynamics inside the Parliament

We consider here for both the two houses of Italian Parliament the same
model illustrated in fig. 4.1, and we assume that the dynamics of the com-
partments internal to these two subsystems making up the central govern-
ment is driven by similar Hamiltonian operators having the same func-
tional form defined in (4.2), but different sets of parameters and different
initial conditions. The interplay between the political behaviors of the var-
ious actors is therefore expressed by the action of specific rules taking into
account the internal events and their external implications.

Specifically, the parameters for the Chamber of Deputies and for the
Senate have been chosen as

ωc11 = 1.9, ωc12 = 0.6, ωc13 = 0.5,

ωc21 = 0.5, ωc22 = 1, ωc23 = 0.7,

ωc31 = 0.7, ωc32 = 0.9, ωc33 = 1.3,

λc12 = 0.5, λc13 = 0.6, λc21 = 0.5,

λc23 = 0.2, λc31 = 0.6, λc32 = 0.2,

µc12 = 0.1, µc13 = 0.15, µc23 = 0.05,

ωs11 = 1.7, ωs12 = 0.55, ωs13 = 0.45,

ωs21 = 0.45, ωs22 = 0.9, ωs23 = 0.65,

ωs31 = 0.65, ωs32 = 0.85, ωs33 = 1.1,

λs12 = 0.45, λs13 = 0.56, λs21 = 0.45,

λs23 = 0.15, λs31 = 0.55, λs32 = 0.15,

µs12 = 0.1, µs13 = 0.15, µs23 = 0.05,

and the initial conditions set, on the basis of the actual data, equal to

pc(0) = [0.9, 0, 0, 0, 0.4, 0, 0, 0, 0.45] , ps(0) = [0.9, 0, 0, 0, 0.5, 0, 0, 0, 0.6] ,

respectively. The global dynamics of the political system of the central gov-
ernment is shown in fig. 8.9; moreover, a zoom inside each faction is per-
formed in figs. 8.10 and 8.11 so as to have a look at the single evolutions of
the internal parties composing the faction itself. The time evolution of the
numerical estimate of the possession of the seats for each faction is visible
in figs. 8.12 and 8.13.

Several possible groups of conditions modifying some or all the param-
eters involved in the models describing the evolution of the systems which
represent the Chamber of Deputies and the Senate of the Republic may be
considered, and their resulting effects are consequently less or more imme-
diate and marked on the political dynamics.

In particular, let

δc1 = f c1(kτ)− f c1(0), δs1 = fs1 (kτ)− fs1 (0),

δc2 = f c2(kτ)− f c2(0), δs2 = fs2 (kτ)− fs2 (0).
(8.9)
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FIGURE 8.9: Linear model: time evolution of the composition of
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public (on the right) up to t = 120. The solid line represents the
seat majority threshold. The x–axis is scaled to half the number of
weeks in the period under study, so each step on the scale corre-

sponds to fifteen days.
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half the number of weeks in the period under study, so each step
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FIGURE 8.11: Linear model: zoom into the time evolution of the
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A way to improve the description of the dynamics of the central gov-
ernment by taking into account the mutual interactions between the two
houses of the Parliament is achievable by computing the stepwise evolu-
tions (according to the approach described in Chapter 5) of the two systems
for the Chamber of Deputies and the Senate of the Republic with the rule
ρG consisting in changing the inertia parameters of the compartments asso-
ciated to the factions f1 and f2 as follows:

ρG(ωc11) = ωc11(1 + δs1),
ρG(ωc12) = ωc12(1 + δs1),
ρG(ωc13) = ωc13(1 + δs1),
ρG(ωc21) = ωc21(1− δs2),
ρG(ωc22) = ωc22(1 + δs2),
ρG(ωc23) = ωc23(1− δs2),



ρG(ωs11) = ωs11(1 + δc1),
ρG(ωs12) = ωs12(1 + δc1),
ρG(ωs13) = ωs13(1 + δc1),
ρG(ωs21) = ωs21(1− δc2),
ρG(ωs22) = ωs22(1 + δc2),
ρG(ωs23) = ωs23(1− δc2).

(8.10)

The evolution of the political system of the central government and the
internal dynamics obtained by combining the action of the Hamiltonian
with the rule ρG are shown in figs. 8.14 and 8.16. Furthermore, the effect of
repeatedly imposing the conditions (8.10) on the parameters of the model
so far as concerns the possession of the seats for each faction is visible in
figs. 8.17 and 8.18.
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FIGURE 8.14: Stepwise linear model using the rule ρG with τ =
2: time evolution of the composition of the Chamber of Deputies
(on the left) and the Senate of the Republic (on the right) up to
t = 120. The solid line represents the seat majority threshold. The
x–axis is scaled to half the number of weeks in the period under
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FIGURE 8.15: Stepwise linear model using the rule ρG with τ =
2: zoom into the time evolution of the factions inside the Chamber
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FIGURE 8.17: Stepwise linear model using the rule ρG with τ =
2: time evolution of the consistencies of majority and opposition
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FIGURE 8.19: Diagram of the model for the opinion of voters
and abstainers.

FIGURE 8.20: A schematic view to the general context.

8.3.2 The dynamics of voters’ opinions

We now focus on the outcomes of the turncoat habits on the dynamics of
the change of opinion of the electorate.

Consider the four–compartment linear model for the description of the
interactions between voters and abstainers schematized in fig. 8.19. The
actors Oj (j = 1, . . . , 4) of this secondary model are again fermionic opera-
tors, whose mean values refer to the amounts of the j–th party supporters
for j = 1, 2, 3, and of the persons who choose not to vote for j = 4, re-
spectively. The time evolution of the densities described by the number
operators O†

jOj (j = 1, . . . , 4) thus offers a view on the trends of support (or
dissatisfaction) of the various voters shown at the polls.

Since we are interested in the effects caused by turncoats working in-
side the central government, we take into consideration two similar sets
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of operators (whose meaning and interchanges are those stated just above)
representing the voters’ opinion systems subtended to the two houses of
the Italian Parliament. The overall situation we are referring to is illus-
trated in fig. 8.20. In both cases, the dynamics of the change of opinion of
the electorate is defined by means of the self–adjoint quadratic Hamiltonian
operator

Ho =

4∑
i=1

ωoiO
†
iOi +

4∑
i,j=1

i6=j

νoij(O
†
iOj +O†jOi) (8.11)

in the rule–induced formulation using the rule ρO, which consists in the set
of conditions on the inertia parameters

ρO(ωoi ) = ωoi (1 + S?noi )(1 + f?i ), i = 1, . . . , 4, (8.12)

where
S? = sign(f?1 f

?
2 f

?
3 ) (8.13)

and the superscript ? may assume the values “c” or “s” depending on
whether we are referring to the voters’ opinion system related to the Cham-
ber of Deputies or the one related to the Senate of the Republic. If we com-
bine the results for the evolution of the political system of the central gov-
ernment obtained in Subsection 8.3.1 with the rule–induced dynamics of
the voters’ opinion system here defined, we get the polls of voters plotted
in fig. 8.21, from which we can observe a general trend of surge and decline
in support over time, with an alarming increase and consolidation of the
number of electors who refuse to vote.
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FIGURE 8.21: Time evolution of the voters’ opinion obtained
with the stepwise linear model using the rule ρO after each time
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