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Abstract

Nature shows as human beings live and grow inside social structures. This
assumption allows explaining and exploring how it may shape most of our
behaviours and choices, and why we are not just blindly driven by instincts:
our decisions are based on more complex cognitive reasons, based on our
connectedness on different spaces. Thus, human cooperation emerges from
this complex nature of social network. One of the main aims of my Ph.D.
dissertation is to explore how and why it happens, hence the work is mainly
focused on studying the evolutionary dynamics of cooperation and social be-
haviours on a multilayer social network. Following a Bio-inspired approach,
the social network analysis methodologies, and exploiting the mathematical
framework of Evolutionary Game Theory (EGT), the target is to unveil
the hidden dynamics, observe non-trivial patterns, finding out the hidden
emergent behaviours in a population. The study of cooperation and its evo-
lutionary dynamics on a social network, has raised up the need of a model
able to explain the actual complexity of real-world networks, where individ-
uals are connected through multiple types of relationships. For this reason,
the mathematical framework of multilayer networks has been exploited, in-
deed it allows us to encompass these several interactions and relationships,
exploring and unveiling how the different ties in the various layers can im-
pact on the emergence of social behaviours in a population. Therefore, the
presence of the same nodes in multiple layers of a system, known as mul-
tiplexity, is the key to understand emergent phenomena, adding an extra
dimension of analysis which explains what is the role not only of the in-
tralayer interactions, as in a single-layer framework, but also of interlayer
interactions for the emergence of these phenomena. Furthermore, it is ex-
plored and quantified the role of some shaping factors, such as homophily,

in this evolutionary process. Taking into account all these aspects, a novel



analytical model is proposed, together with a simulative investigation of the
evolution of human cooperation using mutliplex evolutionary game theory,
shedding light on the key role played by homophily and multiplexity in the
evolution of cooperation.

Furthermore, the analysis of social behaviours in a multilayer network, along
with the large amount of available data, the Big Data revolution, is also
exploited to design a novel multilayer structure in healthcare context, giv-
ing rise to a smart healthcare system. In fact, together with the multidi-
mensional approach to comorbidity, the inclusion of a social dimension of
analysis allows finding out correlations and causality relations between dis-
eases and patients also considering the connectedness and social contagion
processes. In this way, we obtain an evolution from data to multi-agents
through the introduction of personalised medicine in a multilayer architec-
ture. The multilayer paradigm is built up on a health mining approach,
which introduces methodologies for fusing, integrating and drawing infer-
ence from a plurality of heterogneous data, extracted from different sources,
creating a complex data type, containing all the information enclosed in the
various dimensions. The introduction of a social dimension in healthcare,
the study of the evolution of behaviours, the social networking, Big Data
and ICT strategies, considering a multilayer structure, allow extracting an
“organised” knowledge, which connects, relates and computes all the facets
of healthcare data. The Bio-inspired and the social network evolution, based
on the organised knowledge, provides the basis for a new Bio-inspired Infor-
mation and Communication Technology (ICT) paradigm, enclosing social,
human, and cognitive aspects, other than the self-capabilities and context-
awareness. Nodes and data enclose all these features, and the social multi-
layer network allows us to analyse the complex dynamic patterns involving
these entities, highlighting the impact of social interactions and contagion
processes, and increasing the overall level of awareness, from simple things
to knowledge through the social objects. ICT interventions are the result
of the multilayer analysis, the context and the system as a whole. This
evolution process leads to a bio-inspired network-driven ICT, re-designing

the ICT communication paradigm.
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Chapter 1

Introduction

1.1 Evolution of Social Behaviours on Multilayer Net-
works: An Overview

One of the main properties of a complex system is that a large number of simple ele-
ments gives rise to collective phenomena impossible to predict or anticipate considering
an individual unit. Ant colonies, biological systems, social networks are some examples
of the emergent complexity. It raises up the following question: what is behind the
emergent complexity? What are the mechanisms allowing to transform people into
complex societies or simple cells into a complex entity? The answer is the connected-
ness of the simple units, forming a more complex entity, which is more than just the
sum of their parts, known as network. In the last decades, we have witnessed with an
incredible development of data-driven mathematical models, which have created a new
discipline, named ‘network science’ (1). Network theory has demonstrated to be the
most suitable way to investigate the structural patterns of the interactions among the
constituent elements of a variety of complex systems, also composed by a large number
of elements, such as social networks, the brain and biological networks (2, 3, 4, 5).
Analysing the spectral properties of the adjacency and Laplacian matrix of a network
is possible to gain insight on the structure and dynamics occurring on the network
(6). In recent years, a vast literature has witnessed with the development of tools and
models to get a better understanding of how these networks may evolve. A lot of work
has focused on social network properties and dynamics and, thanks to the technolog-
ical advances with regards to real data acquisition both from real and online social

networks, nowadays there is the availability of a huge quantity of data, called as Big
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Data, which is expected even to grow in the next decades. The increasing resolution of
data gathering techniques allows capturing new properties of the interaction patterns
in complex systems, including the spatial, temporal and multiplex nature of interaction
networks.

In fact, advances in the complex systems field have underlined that, in order to gain
insight on the complexity of the large variety of systems, the description in terms of
single networks is an oversimplification, which fails into capturing the dynamics of net-
work patterns deriving from the simultaneous interactions of more than just the one
network. For this reason, multilayer networks have been introduced, distinguishing the
different kinds and channels of interactions between nodes through the layers. Depend-
ing on the interaction between the different systems or layers, we can discern different
types of multilayer networks, e.g. multiplex networks are composed by the same nodes
interacting trough different layers. Multilayer networks and their structural and dynam-
ical features, have greatly attracted the interest in network science recently, resulting
in a number of works about the structure and dynamics of multilayer and multiplex
networks (7), demonstrating that the behaviour of interacting complex systems is very
different from a simple combination of the isolated cases (6). An individual’s behaviour
can be different in each layer, even if it is conditioned by all of them (8).

Network science and multilayer networks allow describing interactions among non-
trivial and complex entities, such as humans in a social network. But, what kind
of behaviours may emerge from these interactions in a social network? Is it possible to
solve the human conflict between the benefit of the single individual and that one of
the population, such as risking one’s life to save a stranger, or finding an equilibrium
among the interests that enable them to cooperate toward a common good?

This pushed my motivation to study a standard approach used to solve such situations:
Game Theory. Game Theory has been applied to various fields, from economy to biol-
ogy, other than in computer science, such as communication networks, security, power
control issues in wireless scenarios, distributed systems (e.g. peer-to-peer networks),
artificial intelligence, where agents have to negotiate between them in order to coor-
dinate a collective action. It allows modelling those situations where the individual
behaviours and decisions affect the outcomes of others in the same environment, that is
the conflictual scenarios where there is a strategic behavioural interdependence among

individuals, affecting the dynamics of behaviours. The analysis of the dynamic patterns
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raises the challenge of the evolution of cooperation and how it can evolve and survive in
various scenarios. Cooperation is the act where individuals can contribute something,
at a cost to themselves, to provide a benefit for others. It is a widespread phenomenon
in natural and social systems, but not fully-understood mainly due to its complexity.
Cooperation, representing the most important challenge to Darwin’s theory of evolu-
tion, is crucial to understand the evolutionary dynamics and transitions that lead from
single-cell organisms to complex animal and human societies. Thus, understanding
the evolution of cooperation remains a key challenge attracting the interest of research
across the social and natural sciences.

To address the conundrum of human cooperation and understand the evolution of social
behaviours within a population in networks, it is important to have a mathematical
framework to capture these underlying mechanisms. Evolutionary Game Theory (EGT)
provides a powerful theoretical framework to investigate strategic choices in a huge va-
riety of complex systems (9). Despite the numerous application areas, however, the
main fundamental problem that is studied in the realm of EGT is the exploration of
the evolution of cooperation (10, 11) and cooperative behaviours in systems consisting
of competitive individuals (12, 13, 14). EGT allows studying interactions of multiple
nodes in a population, and find out the hidden dynamics, shedding light on how and
why some behaviours emerge following a specific pattern, and which behaviours are able
to persist in the population and those having a tendency to be driven out by others.
To describe and study the problem of evolution of cooperation, the social dilemmas,
such as Prisoner’s Dilemma Game (PDG), are typically used (15). Social dilemmas
represent situations where individuals face the conflictual situations between what is
best for them and what is best for the society. In the Prisoner’s dilemma, at each
instance two players have to decide simultaneously whether they want to cooperate or
defect. The dilemma is given by the fact that although mutual cooperation yields the
highest collective payoff a defector will do better if the opponent decides to cooperate.
A lot of research has been devoted to the identification of mechanisms that may lead
to a cooperative resolution of social dilemmas, such as kin selection, direct and indirect
reciprocity, network reciprocity, as well as group selection (16).

Humans are part of different social networks and live inside them. This could have im-
portant consequences for the evolutionary dynamics of social behaviours, mainly due

to the multilayer nature of their adopted strategies. The presence of nodes in multiple



1.2 Research Questions

layers of a system, together with their social connectedness, is the key to understand
emergent phenomena and how the evolution of cooperation can work on top of this
multilayer structure. One of the main targets becomes to try to answer some key open
challenges, such as: how did the selfish process of natural selection gives rise to co-
operation? how might social interactions can give a boost to cooperative behaviour?
Despite some studies in EGT have already shed light on the promotion of cooperation
(10, 11, 17, 18), the puzzle between the Darwinian fundamental assumptions of natural
selection described in “The Origin of Species”, for which “only the fittest survive” and

the cooperation observed in human and animal societies remains unsolved (19).

1.2 Research Questions

This Ph.D. dissertation addresses the issue of evolutionary dynamics of social be-
haviours on multilayer networks. Thus, how evolutionary game theory and multilayer
social networks, with its structural and dynamical features and considering the different
kinds and channels of social interactions between nodes, can improve the investigation
of the emergent dynamics of behaviours in a population. The novel approach is cru-
cial to improve the analysis of evolutionary dynamics and addresses the following main

research questions:

e Some of the main requirements of an Information and Communication Technol-
ogy (ICT) system, such as the high complexity and connectivity, the reliability,
the growing information load, risk management and energy-saving issues, under
conditions of limited computational resources, limited time constraints and low
overall knowledge, claim for a new modeling approach, able to face all these needs,
getting a “satisficing” or sub-optimal solution. If, at a first glance, it might seem
strange to look at biology as an inspiration for research related to networking
and ICT fields, however, the two research fields show a deeper connection than
one might expect. In fact, the Internet and, more in general ICT, has a lot of
features very close to those of biological systems (20). To what extent can
biological processes and models inspire the analysis and management
of the complexity of the ICT systems, increasing knowledge and trying

to solve also the associated computational problems?
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e Real-world complex systems, such as social networks, suggest how nodes or agents
usually interact using different ways and channels, thus a single layer network is
not enough to represent and describe the complex set of multiple interactions
between different networks. For instance, a social network can be described as a
set of people who interact through some patterns. In general, the connections,
which identify relationships between nodes on a network, have been considered at
the same level. However, in a real context, this assumption is not true. In fact,
in a real social network, different and not mutually exclusive relationships can be
considered between the same two people (e.g. friends, relatives, colleagues, etc.),
therefore the actual interactions and relationships cover different levels or layers.
This concept introduces a new point of view of the social network analysis, and
shows how the nodes and their relationships must be considered and weighed on
different contexts (or layers) and, at the same time, the weight of their decisions
and their behaviours has an impact on so many different levels. In order to gain a
better understanding of the complexity and how these complex systems function
and evolve, multilayer networks become the more popular and natural paradigm.
What are the main properties and features of multilayer networks?
How can multilayer networks help to represent and investigate the

dynamics and patterns of real-world networks?

e ICT systems are continuously changing as a result of innovation, the increasing
connectedness and the large amount of data. The Big Data revolution requires
novel ICT models and paradigms, and poses new issues and challenges, in terms of
heterogeneity and computational analysis. This is affecting not only the technolo-
gies, but also human, social and economic aspects. Furthermore, the introduction
of the Internet of Things (IoT) paradigm has transformed simple things in inter-
connected smart objects, able to measure, monitor, detect events and human
activities, understand and cooperate in order to solve a problem. In the era of
high connectedness, users are becoming more active in interacting, sharing and
collaborating, through social networks. In this way, this process produces a col-
lective intelligence, spread out in many different areas and related to networks’
phenomena. Despite the huge amount of heterogeneous data to be anal-

ysed, the increased connectedness and complexity of social networks,
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how can ICT systems and models be able to manage them, capturing
the complex dynamic patterns, and increasing both performance and

context-awareness?

The issue of model and explore individual and social behaviours in a context
or setting where the outcomes depend on the behaviour of others, is fundamen-
tal and become also more interesting in network contexts. Furthermore, the
increased number of nodes in networks and the multilayer description of inter-
actions through many different layers, make the setting even more complex and
difficult to analyse and model analytically. The study of the dynamic evolu-
tionary patterns emerging from these complex systems represents an even more
challenging question. What is the more suitable mathematical formalisa-
tion to analyse social interactions and behaviours? What are its main
properties and features? What are the behaviours having the ability
to persist in the population, and which ones instead have a tendency

to be driven out by others?

Humans tend to cooperate building complex societies, as well as predators hunt
in groups to catch more preys as possible (8). More in general, cooperation
is an act where individuals can contribute something, at a cost to themselves,
to provide a benefit for others. We can find situations where this kind of act
can arise at almost every layer of human societies and also in the animal world.
Many models and mechanisms have been proposed to explain the emergence and
evolution of cooperation by studying interactions in a population. Nevertheless,
the evolution of cooperation among individuals remains an unsolved puzzle: it has
being observed since ancient times but, only in the recent years, a lot of research
efforts have been done trying to understand and deepen the origin inside social
networks. A vast literature on the evolution of cooperation on complex networks
(19, 21, 22, 23) highlights many aspects which offer insights on how cooperation
can evolve and survive in different scenarios (24, 25, 26). To study cooperation
and its evolutionary dynamics, we need to understand the impact of the structure
and the nature of social relationships among individuals. Therefore, how did
the selfish process of natural selection, described by Charles Darwin,

gives rise to cooperation? How might social interactions can give a
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boost to cooperative behaviour? And what may be the role of a linkage

polariser, such as homophily, in this evolutionary process?

1.3 Methodology

I focused my research on an interdisciplinary approach, since I believe that the best
ideas should address topics and issues from different fields, combining two or more
academic fields in an innovative way, overcoming the traditional boundaries between
apparently disconnected research areas. This methodology gave me the advantage of
covering many research topics and obviously facing with many interesting issues, whose
meaning can be revealed only breaking down barriers and thinking them as one largest
and most complex issue.

In particular, I started my Ph.D. in Systems Engineering pushed by curiosity and desire
to deepen the bio-inspired approach and algorithms, which were issues I dealt with
during my MSc thesis. I studied and proposed a novel bio-inspired model for converged
networks (e.g. NGN, NWGN, based on self-organisation and biodiversity. The idea
was to exploit biodiversity to design a multilayer approach to security, introducing a
self-protecting module in each node and an architecture consisting of three security
layers (node, community and ecosystem), suitable to increase the security degree of the
emerging paradigm of networks. The MSc thesis experience allowed me to investigate
a huge variety of bio-inspired models and I was really wondered and fascinated by
how such microscopic interactions could affect macroscopically the system with good
performance. In particular, how the interactions of many simple self-organised agents,
for instance imitating the behaviour of bees or ants (e.g. swarm intelligence), were able
to push towards a sub-optimal solution, thanks to the emerging intelligence from these
interactions of many simple agents.

Then, I began asking myself a number of questions about studying and analysing these
interactions among entities: one of the main targets became to study and focus on what
could it happen when the interaction is among non-trivial and complex entities, such
as humans within a social network. What kind of behaviours can emerge from these
interactions in a social network? Is it possible to solve the human conflict between the
benefit of the single individual and that one of the population, such as risking one’s life

to save a stranger, or finding an equilibrium among the interests that enable them to
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cooperate toward a common good? This raised up my interest in studying a standard
approach used to solve such situations: Game Theory. On the other hand, the idea
to better understand the dynamics of interactions in human societies led me to focus
on exploring properties and dynamics of social networks. Social network analytics
(27, 28, 29, 30) and the availability of a huge amount of data and simultaneously
the technological advances with regards to data acquisition both from real and online
social networks, enabled to investigate dynamic patterns and the evolution of social
behaviours, such as human cooperation, in various scenarios. To better understand the
evolution of social behaviours and, in particular, human cooperation in a population
in a social network, I decided to concentrate upon the mathematical framework of
Evolutionary Game Theory, able to capture the underlying mechanisms and the hidden
dynamics, and shedding light on how and why some behaviours emerge following a
specific pattern. To deal with the complexity of social interactions, I started exploiting
the paradigm of multilayer networks, since the presence of nodes in multiple layers of
a system is the key to understand emergent phenomena, adding an extra dimension
explaining what is the role not only of the intralayer interactions, as in a monoplex
framework, but also of interlayer interactions for the emergence of these phenomena.

The final target of my research is to study social behaviours, analyse the emergence
and their evolution on a multilayer network. To do this, first I searched, studied and
evaluated numerous scientific contributions, related to the different issues involved in
this field. The following is a list of my research keywords, corresponding to the topics of
interest that I have studied during my Ph.D. and on which I'm going to focus also in the

next future. The following is a list of the main macro-areas of this Ph.D. dissertation:

Bio-Inspired ICT

Multilayer networks

Social networks

Game Theory and Evolutionary Game Theory (EGT)

e Human cooperation

Multiplex EGT
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My research work has been articulated over the years in different and logically linked
steps. I started my Ph.D. using a bio-inspired approach applied to ICT, then I exploited
multilayer networks, social networks methodologies and game-theoretic approach to
describe the complexity of the real-world scenarions, and study interactions among
individuals. In particular, I focused on human cooperation issue and, through multiplex
EGT, I have quantified the role of multiplexity and of homophily, as a shaping factor

of social interactions, in the emergence of cooperation in a population.

1.4 Dissertation Outline

The structure of this Ph.D. dissertation is as follows:

1. Chapter 2 discusses the main concepts of bio-inspired approach and algorithms,
and shows how the interplay between bio-inspired approach and Information and
Communication Technology (ICT) gives the opportunity to use algorithms, tools
and analytical models able to optimise and improve the design and management
of methodologies proper of traditional vision of ICT. A bio-inspired approach
allows solving certain problems and meet specific requirements, such as reliability,
information load, risk management and energy saving, under conditions of limited
computational resources, time constraints and low overall knowledge. To prove
the importance of a bio-inspired approach to ICT, two algorithms for Wireless
Sensor Networks (WSNs), both based on heuristics, are proposed, respectively an

IoTs clustering algorithm (IMLM) and a energy-aware routing algorithm.

2. Chapter 3 reviews the main structural notions, models, properties and mea-
sures of the mathematical framework of multilayer networks. At the beginning,
the motivations behind the transition from Single- to Multi-layer Networks are
explained. In fact, multilayer networks are a recent mathematical framework
which has been introduced to explain and understand the complexity of a huge
variety of real-world systems, since single networks are not enough to describe
the complex set of interactions between different networks. Some representative
examples of the major constraints of the traditional single networks are presented,
stressing the importance to use a multilayer approach. Finally, in the second part
is focused on the structural properties and measures in multilayer and multiplex

networks.
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3. Chapter 4, leveraging the bio-inspired approach to ICT, deals with the Big Data
and the data-intensive computing issues in the future vision of a smart healthcare.
To this aim, a multidimensional approach to comorbidity and the introduction of
a social dimension of analysis, allow finding out correlations and causality rela-
tions between diseases and patients also considering the connectedness and social
contagion processes. The proposed multilayer architecture represents an evolu-
tion from data to multi-agents through the introduction of personalised medicine,
giving rise to a smart healthcare paradigm. The last part is devoted to present the
bio-inspired and social evolution of nodes and data in a multilayer network, with

an increasing level of awareness, and the development of an organised knowledge.

4. Chapter 5 focuses on game theory, a mathematical tool able to describe and
analyse the strategically interdependent interactions among individuals. In par-
ticular, the first part of the chapter is intended to define some of the main no-
tions underlying the classical game theory, while the second part deals with the
framework of Evolutionary Game Theory, allowing to explore the evolutionary

dynamics of behaviours in a population.

5. Chapter 6 represents the main focus of this dissertation, joining the mathe-
matical frameworks of multiplex networks and EGT, the bio-inspired approach
and the social network analysis methodologies, in order to find out the hidden
emergent behaviours within a population across network layers. The investiga-
tion of evolutionary dynamics through Evolutionary Game Theory on multiplex
networks allows unveiling and studying the existing social conflicts and dilemmas
among the interests of the single nodes and groups, their counterparts in various
layers, not neglecting what is captured from homophily, the patterns of similarity
and dissimilarity. The simulations, conducted both macroscopically and micro-
scopically across the network layers in the multiplex, show quantitatively the role

of homophily in human cooperation.

6. Chapter 7 concludes by revisiting the research questions posed in Sect. 1.2, and
summing up the main contributions of this dissertation, other than highlighting

some key aspects to be investigated in the future research.
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Chapter 2

Bio-Inspired 1CT

2.1 Introduction

The potential consequences that may arise as a result of innovation and widespread of
future Information and Communication Technologies (ICTs) are raising up the interest
in this research field. ICT should be planned and designed to conduct almost any ac-
tivity which involves logical strategies and operations in a variety of application areas.
ICTs, represented in services, logical strategies, infrastructures, methodologies, inter-
ventions and platforms, are expected to contribute to the realisation of a sustainable
and smart society, because of its strong influence and impact on the environmental,
social, economic and technology aspects of our lives. Biological systems act as an inspi-
ration for research related to networking and ICT fields, in fact the two research fields
show a deeper connection than one might expect. In fact, the Internet, and more in
general ICT, has a lot of features very close to those of biological systems (20). The
natural world is enormous, dynamic, heterogeneous and highly complex. Nevertheless,
biological organisms are able to survive, self-organise, and evolve in a such a complex
and challenging world, exploiting only the local knowledge, and not with a centralised
control. A continuously increasing and similar complexity is experienced by computer
networks, since they are becoming larger and more interconnected, even if the same
extent of robustness, adaptability, and scalability is reached. A lot of research efforts
have been made on studying these analogies between the two worlds, and evaluated if
there are some concepts and approaches to be derived from biological systems. Future

ICT requires an innovation in terms of novel architectures, capable of integrating high
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computational capabilities, extracting knowledge from data and from smart communi-
cations, social-based networking, and developing context-aware platforms. Information
Systems (IS) engineering technologies are increasingly becoming embedded into our
job and home lives, creating a complex interdependence between people and technol-
ogy since individuals and groups communicate, collaborate and exchange knowledge
through a variety of ICT systems (31). ICT may be seen as the technical aspect of the
socio-technical systems which are used in society and organisations (31).

Research and innovation in some topics such as Big Data, data-intensive computing,
context-awareness, social networking, provide the basis for the future challenges of
ICT. Traditionally the research, design, and applications in the ICT field involve the
development of methodologies and tools, and it is characterised by features meant to
support specific tasks, linked to specific contexts of technologies. The complexity be-
yond the new issues, for example, the heterogeneity of data and objects, the multitude
of information sources, the high connectedness, complexity of systems and the related
intensive computing, requires to transform the basis of ICT following the real compu-
tational nature of world around us. The plurality of resources in terms of data, nodes,
communication paradigms and smart infrastructures, should coexist in the same space
and merges coherently in order to produce knowledge, as the real representation of
world needs and behaviours. ICT solutions, if wisely applied, may increase the success
of organisations, the efficiency and transparency of governments (32).

The impact of ICT on enhancing the quality of services and decreasing the overall costs
has been the focus of numerous studies in the last two decades (32). This confirms the
importance which covers the ICT on following the evolutionary trends on social, eco-
nomic and technological aspects. Through its influence and the resulting impact, ICT
should be able to mine and convey knowledge into practices and methods to improve
the performance of tasks related to growing scientific and socio-economic interests. The
challenge of ICT is to extract knowledge as best as possible from information sources,
by using the actual technologies and analysing the real world scenarios, translating
everything into actions, interventions, strategies and innovative platforms, addressing
to the complex systems as well as users.

The bio-inspired approach, when applied to ICT, gives the opportunity to use algo-
rithms, tools and analytical models to optimise and improve the design and manage-

ment of methodologies proper of traditional vision of ICT. This could introduce a new
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assessment perspective, considering innovative approaches and, at the same time, new
challenges linked to the new issue of finding suitable models to evaluate and translate
into computational terms the need to extract as much knowledge as possible from the
systems we know. The target is to make this knowledge available to those who have
to design ICT interventions and services, considering the multitude of resources, in
terms of data and sources, computational limits and social dynamics. ICT systems
are evolving toward innovative approaches by investing more on developing new fields
such as context-aware, social networking, multilayer networks, evolutionary game the-
ory, smart mobility, dynamic complex systems, personalisation of models and services,
smart platforms and services, with the aim of providing, not only good user experiences
and user expectations, but for the future, also the profiling of all his features. The goal
of the research for the future ICT, by drawing inspiration from bio-inspired models, is
to rewrite and redesign networks nodes, as information sources, and data, as packet
information of global knowledge, finding consistency starting from the heterogeneity,

ubiquity, dynamicity of the new social-based complex systems.

2.2 Bio-inspired and ICT: analogies and interplay

Surprisingly, ICT and biological systems have a lot of common features (20). One of the
analogies, for instance, is related to the similar architecture, as the “hourglass” model,
typical of Internet protocol stack, has a structure close to many biological systems.
In the hourglass model, one layer exploits the set of lower layer protocols but, at the
same time, protocols that run on top provide new additional information and functions
exploited by the above layers in the stack. In a biological system, for instance, bacteria
eat severe different nutrients; all of these nutrients contain some or all of the raw build-
ing blocks needed to power a bacterial cell, even if a bacterium must first metabolize
these nutrients before using them, reassembling the building blocks into the multitude
of complex macromolecules required for survival.

As well as it is almost impossible to build a different version of application layer
adapted to a different physical layer technology, it would be unthinkable to use dif-
ferent metabolic processes to convert nutrients to the macromolecules it needs. In

analogy with the Internet model, all nutrients are converted into a small number of
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common currencies. These currencies are then used to build the large number of com-
plex macromolecules required to power the cell. Considering the hourglass metaphor,
the so-called “bow tie” structure is a nearly universal feature of complex systems. The
acknowledgement mechanism ensembles a form of integral feedback: it allows regulat-
ing the transmission speed of packets through the Internet. Biological systems use an
analogous type of feedback to rule various processes between cells, e.g. bacteria rule the
speed and direction of movement when tracking the concentration of certain chemicals
in their environment (20).

Other significant similarities emerge taking into consideration both social networks and
biological systems, as they represent two examples of complex systems. We find a lot
of entities (nodes, proteins, etc.), connected to each other in several ways and also for
very different reasons. They interact using both weak and strong ties (33), inducing
some other actions inside the communities they belong to and, more in general, also in
whole network. Furthermore, both the Internet and biological systems are large scale
networks, and they show a complex, strictly organised internal structure. The human
body has many different organs and physiological systems, each of which serves a spe-
cific target. The Internet also contains a number of specialised devices: in the core
network the high speed routers forward data in a highly optimised manner, while at
the edges of the network there are application-oriented devices, such as laptop comput-
ers and cellular phones. As well as an high-speed router is very important to forward
an important message through the network, the kidney is fundamental in oxygenating
your blood. In addition, complex systems are robust against perturbations or expected
failures but not if we consider an unexpected one. In particular, interdependent sys-
tems increase their vulnerability and become increasingly prone to cascade failures due
to the coupling factor between the different blocks or layers they consist of (34). A
social network tends to emphasize the significance of a particular event when it has a
great spreading factor; similarly, a biological system shows an extremely high vulnera-
bility when, for example, a disease is able to travel quickly corrupting the body cells,
involving different organs.

The analogies between the biological and networking systems has been exploited in
so many different research fields, such as social insects (35), artificial immune systems,

the fireflies synchronisation, the transport networks inspired by physarum polycephalum,
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Figure 2.1: Bio-inspired Engineering. Steps needed to adapt biological mechanisms
to technical engineered solutions.

epidemic spreading models, etc. Therefore, examining some of the most common struc-
tures and algorithms used in telecommunications networks, it is easy to find out striking
analogies with the biological systems. In fact, the evidence suggests that Nature and
engineers not only have to solve similar problems but regardless they come to surpris-
ingly similar solutions. Thus, it seems completely reasonable that networking issues
may have much in common with those that biology has already encountered and solved
a long time ago. The idea is to study deeply the biological systems since they may
inspire very interesting solutions to networking and ICT problems.

To develop bio-inspired models and algorithms, we need to shed light on the general
modelling approaches. The first modelling approaches date back to the early 1970s.
Since then a lot of technical solutions mimicking biological counterparts have been
developed. Fig. 2.1 illustrates the bio-inspired methodology.

The first step is to identify the analogies between biological and networking systems,
that is which structures and methods seem to be similar. The second step consists
of creating detailed models for the biological behaviour which will later be used to
develop the technical solution. The third step is the translation from biological models
into a model describing the bio-inspired technical system, and the engineering of the
biological models, which includes the model’s simplification and tuning for the specific
application.

Furthermore, we can distinguish the following categories of bio-inspired solutions to

issues related to computation and communication:

e Bio-inspired computing: it represents a class of algorithms focused on efficient
computing techniques, for instance for optimisation processes and pattern recog-

nition.
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e Bio-inspired systems: they constitute a class of system architectures for dis-
tributed systems in massive and collaborative way, e.g. distributed sensing and

exploration.

e Bio-inspired networking: it consists of a class of strategies to obtain a scalable
networking under uncertain conditions, e.g. for the autonomous organisation in

massively distributed systems.

Exploiting the biological principles, several application domains in networking can
be distinguished. The following is a list some of the main biological domains and the

correspondent networking applications and algorithms:

e Swarm intelligence - distributed search and optimisation; routing in computer

networks,( e.g. MANETSs, WSNs, etc.); task and resource allocation.
e Firefly synchronisation - Robust and fully distributed clock synchronisation;
e Activatorinhibitor systems - Self-organisation of autonomous systems;
e Artificial immune system - Network security and anomaly detection;
e Epidemic spreading - Analysis of worm and virus spreading in the Internet;

e Cellular signaling networks - Coordination and control in massively distributed

systems;

Another important property of the bio-inspired algorithms related to communica-
tion and coordination is that we may identify similarities between techniques studied
at a microscopic layer, such as cells and pathways between cells, and the techniques
observed at a macroscopic layer, such as the coordination among people in a group
or all over the world (35). In other words, many models show similar features both
at microscopic and macroscopic layers, and exploit analogous coordination and com-
munication mechanisms (see Fig. 2.2). This further degree of similarity allows using
existing communication models in other domains, e.g. the mathematical models of pro-
teins’ spreading between cells may be considered equal to the virus spreading through-

out people, so the problem is to choose the proper biological model as inspiration to
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Figure 2.2: Bio-inspired approach. Figure illustrates communication and coordination
at microscopic and macroscopic levels, showing the information exchange within a cell,
between cells, within the human body, among people, and around the globe.

solve a technical network or social problem, otherwise, if the matching is not correctly
identified, the solution may result limited in terms of functionality or effectiveness.

As stated in the previous subsection, ICT represents the project, the development,
the implementation, the support and the management of information systems through
telecommunications systems, therefore ICT constitutes a fundamental resource in the
modern organisations, where it becomes increasingly more important to manage and
use quickly and efficiently the large amount of data and the growing volume of infor-
mation. Although the complexity, dynamicity and the diversity of the Nature, and the
great problems related to the survival in the world, the biological organisms are able
to evolve, self-organize, self-repair, and self-protect. To realise all these aspects, they
leverage their knowledge and they have not any centralised control entity. Similarly,
the entities in a network are growing in number and are becoming more and more
connected, so they may mimic the robustness and the adaptiveness of the biological
systems. Many research works have underlined how we can learn from the Nature. For
this reason, bio-inspired research in ICT field is a growing research field.

Some of the main requirements of an ICT system, such as the high complexity and con-
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nectivity, the reliability, the growing information load, risk management and energy-
saving issues, under conditions of limited computational resources, time constraints
and a low overall knowledge, claim for a new modelling approach, able to face all these
needs, getting a satisficing or sub-optimal solution. A bio-inspired approach allows
solving certain problems and meet these specific ICT requirements. As we will see in
the next sections, such kind of approach has been used as a model that relates the coop-
eration of multi-agent systems, the intelligence of the node, according to the paradigm
of Internet of Things (IoT), and also the satisficing concept of heuristic decisions. What
are the analogies between our system and a biological scenario? A biological system is
characterised by the following features: high complexity; high connectivity; communi-
cation, cooperation and coordination; relation with other systems of the same nature;
relation and communication with external environment.

Therefore, it is clear how a networked system (e.g. social network, energy-aware WSN,
etc.), is a complex system similar to a biological one. Following the Dressler’s approach,
the first step is to focus on identification of mechanisms and models applicable to bio-
logical technical solutions for ICT systems. The biological approach makes it possible
to give methodologies, algorithms and models useful to optimise and improve the de-
sign and management of traditional issues related to ICT systems, but also to evaluate
new points of view which consider issues that previously have never been taken into
account. The biological approach has the advantage of being found in Nature, and the
Nature shows us the operation and the performance of certain processes (35). ICT
systems have been evolved following innovative approaches by investing more on de-
veloping new fields such as context-awareness, social networks and mobile, dynamic
adaptive complex systems, smart platforms, models and services for personalisation,
providing the best user experience and user expectation. The user could be viewed as
a transfiguration of knowledge, communication skills and cognitive ability. Also the
behaviour of the nodes of a network, representing human beings, follows its human fea-
tures, socio-psychological traits, involving cognitivity, awareness, contagiousness etc.
One of the aims of future ICT networks is to redesigning network nodes, since a node is
becomes a sort of “bio-shell” of the user, trying to reduce the gap existing between the
network node and the human user. The node acquires cognitive skills, user’s habits,
understands the context in which it is located, and predicts behaviours and reactions,

acquires the ability to make inferences and decides based on contexts, perceived risks
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and manages the interactions and social relations, from workplace to everyday life.
The node acquires more human features and, locating at the center of a truly pervasive
network, it becomes a really “smart subject”. A collection of nodes, connected with
strong and weak ties (33), forms a network of smart subjects able to interact within a
community or among different communities. The structure of the social network will
determine the dynamics of diffusion and relationships. The bio-inspired approach rep-
resents the way to guide and inspire strategy for rethinking and redesigning ICT. In the
next sections, we will see in detail the importance of joining the bio-inspired approach
with ICT. In particular, we will focus on two bio-inspired algorithms, applied to IoT

and WSNs, based on the concept of heuristics.

2.2.1 Heuristics

One of the most interesting and promising area in computer science is the design of
algorithms and computer architectures based on our reasoning process and on how the
brain works. Human neural circuits receive, encode and analyse the “available infor-
mation” from the environment in a fast, reliable and economical way.

The evolution of human cognition could be seen as the result of a continuous improve-
ment of neural structures which drive the decision-making processes from the inputs
to the final behaviours, cognitions and emotions. Heuristics are simple, efficient rules,
hard-coded by evolutionary processes or learned, which have been proposed to explain
how people make decisions and solve also complex problems under limited knowledge or
incomplete information. It is common experience that the majority of human reasoning
and decision making can be modelled by fast and frugal heuristics that make inferences
with limited time and knowledge. For example, Darwin’s deliberation over whether
to marry represents an interesting example of such heuristic process. In other words,
heuristics suggests the inability to achieve the complexity of the traditional models of
rationality and a heuristic approach is a solution to the problems, even if complex, that
do not rely on a clear path but rely on intuition upon temporary circumstances in order
to generate a decision or a reasoning.

The concept of heuristics is the result of a lot of research works on the mechanisms
which rule decisions about uncertainty (36). The basic idea in these works is that “peo-

ple rely on a limited number of heuristic principles which reduce the complex tasks of
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assessing probabilities and predicting values to simpler judgmental operations”. Al-
though representing a valid rule, D. Kahneman and A. Twersky have underlined also
how it is prone to sistematic errors, following a certain statistical distribution, which
makes it possible to describe and predict them. Heuristics have impacted in different re-
search fields, among them human-machine interactions, in particular it has been proved
useful for understanding human logic (37), since it allows studying human behaviour
in human-computer interactions, empowering the analysis and helping in designing re-
lated architectures and algorithms. As stated in (36), the following are three main
mechanisms underlying heuristics are: availability, representativeness and anchoring.

Awailability refers to the probability of relying more upon knowledge readily available
rather than examining other alternatives. For instance, people evaluate the probability
of an event according to the occurrences among their acquaintances, thus it constitutes
a useful clue, even though it could be affected by some factors, such as kinship, frien-
ship, etc., producing a bias in exalting small risks or underestimating more dangerous
risks. The representativeness derives from the assessment of similarities between an
outcome and a model. It consists of categorisation and generalisation, as to predict
the behaviour of an unknown subject, ii is needed to identify the group to which it
belongs, but at the same time we can associate its behaviour to the typical behaviour
of the group. The classical example is when you need to guess if a person is a computer
scientist or a clerk employed in the public administration. His description as a shy per-
son with passion for details leads to think that he is more likely a computer scientist,
but the error may be generated from not considering the base-rate, that is the fact
that there are more clerk employed in public administration than computer scientists.
From this example it is clear that this kind of heuristics may produce assessment errors
tending to ignore the base-rate. D.Kahneman and A. Twersky have also suggested
that people usually make inferences starting from an initial value, or anchoring, thus
the choice is ruled by this starting value which, though randomly, influences people’s
answers. In (37, 38), authors shed light on the dual process which characterizes human
thinking: from one side people make decisions in a rapid and intuitive way, but obvi-
ously error-prone; from the other side, there is a slower, reflective and more statistical
decision mechanism. The idea underlying the models used in the two following subsec-

tions represent a trade-off between these two approaches to decisions, since heuristics
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2.3 It Measures Like Me: An IoTs algorithm in WSNs based on heuristics
behaviour and clustering methods

produces intuitive and error-prone decisions, while the other system, based on statis-
tics and thoughtful allows making corrections. The coexistence of the two mechanisms
ruling decisions is linked with the experimental evidences of the presence of areas for
emotions in the brain, which may be triggered or activated before than the cognitive

areas.

2.3 It Measures Like Me: An IoTs algorithm in WSNs
based on heuristics behaviour and clustering methods

In (39), we stem from the consideration that nodes of a WSN, deployed on a general
topology, should follow a bio-inspired approach to respect the trustability, information
load, risk and energy-saving requirements, upon bounded conditions of time, knowl-
edge and computational power. This allows introducing a multi-agent model related to
Internet of Things and heuristics models, in order to obtain a smart organised network
where nodes have a social and human cognition. Our model is based on hierarchi-
cal clustering method and aggregation /rejection mechanism, following sociological and
heuristics theories. The model follows the principle of sense of community and the logic
of tie for similarity. The key target is to integrate the concept of cooperation of a multi-
agent system with the node’s intelligence of Internet of Things and the “Satisficing” of

heuristics decision, in order to get a “Social Smart Behaviour” of the overall network.

2.3.1 Introduction

Wireless sensor networks (WSNs) are large networks made up of many autonomous
low-power, low-cost, and small-sized sensor nodes. WSNs use sensors to co-operatively
monitor complex physical or environmental conditions, such as motion, temperature,
sound etc. Such sensors are generally equipped with data processing and communi-
cation capabilities to collect data and route information back to a sink. The network
must possess self-organising capabilities since positions of individual nodes are not pre-
determined. Cooperation among nodes is the dominant feature of this type of network
because sensor nodes use their processing abilities to locally carry out simple com-
putations and transmit only the required and partially processed data (40). Sensor
nodes can be either thrown in mass or placed one by one in the sensor filed, hence

the deployment may be deterministic or self-organising. The future of WSNs is the
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integration of bio-inspired ideas, hierarchical clustering methods, and sociological mod-
els and concepts, such as sense of community and the “satisficing” theory, to form a
social network model (41, 42). This will be possible using the node intelligence to al-
low network to self-organise itself into communities deciding how to join, through an
aggregation/rejection mechanism, trying to keep the key requirements regarding the
quality of service (QoS), efficiency, security, trustability and computational power. For
this reason we have based our algorithm on multi-agent system model, where a single
agent is an intelligent node, exploiting the Internet of Things approach (39). Then,
we introduce the heuristic model to give to the node the ability to decide about the
interactions with other nodes obtaining a social smart behaviour of the network. This
approach is characterised by the assessment of the trustability value and the risk per-
ception value for each node; this will rule the formation of the community and the
aggregation /rejection mechanism of the nodes. Proposing an algorithm based on the
models mentioned above, the idea has been to emphasise the importance of the concept
of cooperation and sense of aggregation to group or community. The model accepts
and follows the natural tendency to aggregate and reject each other according to a
bio-inspired and self-organised approach, following a model of aggregation/rejection,
applying a clustering method to a multi-agent model, based on heuristic decisions, in
order to get eventually a “satisficing” model. It allows increasing the global knowledge
in a WSN with nodes characterised by bounded conditions like limited time, limited
knowledge and limited computational power.

The next sections are organised as follows: in sect. 2.3.2 we specify what are the main
reason and features for using a bio-inspired approach for the model, in sect. 2.3.3 first
we focus on heuristics and Internet of Things, then it is explained how we use these
concepts in our model. In sect. 2.3.4 we present and describe our propsed algorithm

“It measures like me” (IMLM). Finally, sect. 2.3.5 is dedicated to conclusion.

2.3.2 Why using a Bio-inspired approach?

As underlined before, a bio-inspired approach allows solving certain problems and meet
specific requirements, such as reliability, information load, risk management and energy
saving, under conditions of limited computational resources, time constraints and low
overall knowledge. In (39), such kind of approach has been used as a model that relates

the cooperation of multi-agent systems, the intelligence of the node, according to the
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IoT paradigm, and also the “satisficing” concept of heuristic decisions. What are the
analogies between our system and a biological scenario? Starting from the features of
a biological system, it is clear that a energy-aware WSN, that has to send aggregated
information related to single clusters, is a complex system similar to a biological one.
We follow the Dresslers approach (35) described in Fig. 2.1, and the identification of

analogies step is summarised in the following scheme:

e High complexity: IoT node intelligence;

e High connectivity: sense of community and social behaviour, other than the

aggregation model;

e Communication, cooperation and coordination: multi-agent system, heuristics

and trustability model;

e Relation with other systems of the same nature: logic of similarity, heuristics and

information load;

e Relation and communication with external environment: social and human cog-

nition.

The proposed approach tends to solve decisional issues through heuristics, cognitive
aspects, using the proposed trustability model, security problems exploiting risk per-
ception model, and shared knowledge management, using a controlled information load.

The understanding and engineering steps will be treated in the following subsections.

2.3.3 Heuristics that makes WSNs “Smart and Things”

2.3.3.1 Inference, Heuristics and Satisficing

How do nodes deployed in a topology make inference about unknown aspects of a
context? The possible approaches could be three (43): one follows the Laplacian demon
theory that considers the mind as a supercomputer, with unlimited time, unlimited
knowledge and unlimited computational power. This follows the classical view that
human inferences rules are those of probability and statistics. Another approach is fully
heuristics so that inference is systematically subject to human error: this perspective

is diametrically opposed to the classical rationality principle. The issue is much more
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complex because it would identify the conditions under which the human mind seems
to be more rational or more irrational. The heuristic would suggest the inability to
achieve the complexity of the classical canons of the models of rationality. The third
approach achieves a balance of compromise between both, and it is the approach of
a controlled heuristics, on which we have based our proposed model of (39). This
follows the theory of H. Simon (41), which is based on the concepts of “bounded
rationality” and “Satisficing”. Simon starts from hypothesis that information systems
of processing should have the need to satisfy rather than optimise. Hence, the term
“Satisficing”, that is the union of “sufficing” and “satysfing”, is suitable with our model
and with models that generally deal with conditions of limited time, limited knowledge
and limited computational power. The theory that follows the “bounded rationality”
considers human minds appropriate in the environment in which they live, only if
they have the right perception of their limits, according to a cognitive, ecological and
saving logic, but still meeting the target. Therefore, this approach remains heuristic
but not at all, and finds the right trade-off between the heuristic decisions and the
sense of community, control strategy and suitable criteria. The heuristic approach is a
solution to the problems, that do not rely on a clear path, but rely on intuition upon
temporary circumstances in order to generate new knowledge. We overcome the simple
heuristics in the model due to the bounded rationality of Simon, as we also rely on the
good sense of the community in decision-making, and we also add on trustability and
risk perception (39). The heuristic models that generally rely on bounded rationality,
follow the two sides defined by H. Simon, that is, cognitive mode and ecological mode
(38, 41). In models such as “Two Alternative Choice Tasks” in general, there are two
types of inference: inference from memory, decisions are taken considering declared
knowledge, studies, memory and history; inference from given, decisions are made
considering data and information extracted from a calculation or data extracted from
an experiment. Following the process suggested by Simon, we should involve only the
first type of inference. The initial process, and probably the most natural one, is to
base its decisions only from those we have acquired in the past. In our proposal the
component “inference from memory” is represented by an array that keeps track of
our past contacts. This allows us to make inductive inference during aggregation to
a community. Obviously, the inductive inference needs to be investigated in relation

to the surrounding environment, topology and context of the communities created.
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Aggregation/Rejection CHx
Inference from Memory Cue Value 1: Trustability +/-
Inference from Memory Cue Value 2: Risk Perception +/-

Inference from Givens Cue Value 3: Measure(Temperature) | +/-

Inference from Givens Cue Value 4: Variance +/-

Table 2.1: Cue Values for Inference on Aggregation/Rejection.

These models are characterised by cognitive algorithms that allow the creation of a
framework for modelling the inference from memory. Such kind of tool allows the use
of limited knowledge to make fast inference, using intelligent insights about unknown
properties, based on indicators uncertainty. A subject must know the “cue values” that
can be linked to the target variable to make inference, in a positive or in a negative
way. HEach “cue” also has a validity which indicates the frequency with which the
cue correctly predicts the target defined with regards to the environment. The “cue
values” are criteria and suggestions for assessment in order to achieve the targets. In
Table 2.1 we show the cue values for our algorithm. Each cue will be characterised by a
validity and a discrimination rate. In our proposal, after an initial self-organised sensing
phase, the node aggregate and form communities, considering similarity measurements

of temperature, trustability, risk perception and variance values.

2.3.3.2 Trustability and Risk Perception

Our model follows the principles of multi-agent systems, indeed the set of nodes will be
deployed in a certain environment and will interact with each other using organisational
rules that follow the hierarchical clustering, and exploiting the two main principles of
multi-agent system: organisation and cooperation. Cooperation is related to the inter-
actions among agents. It is the fundamental feature of multi-agent system where the
overall system exhibits significantly greater functionality than the individual compo-
nent. Cooperation allows to reach the target through coordination and conflict that
regulate the community and which result in the aggregation and rejection processes.
In this way we have an autonomous, multi-agent and self-organised system. Nodes
become smart objects which have different communication, information and processing
capabilites.

Starting from a WSN, our design choice of the proposed algorithm consists of the
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Figure 2.3: Steps to get a Social Smart Behaviour.

introduction of a heuristic model, allowing us to reach the perfect compromise by “sat-
isficing” (41) and the compliance by smart objects in bounded conditions. The heuristic
will allow us to explain how the nodes make decisions, come to judgments and solve
complex problems with incomplete information (44). The purpose of the proposed al-
gorithm is to use fast and frugal heuristics to make inferences. The main advantage is
that using heuristics we reduce the complexity of the tasks in much more simple and
immediate operations. People have two systems for making decisions in rapid intuitive
error prone and slower reflective statistical mode. When an agent interacts with other
agents, it can or not trust on their neighbors. The trustability, in our model (39), has
been implemented as a personal recording one by one that measures the trustability
level of the node with which it must interact. We take as a reference model the one
presented in (44), by adding the empathy mechanism and contextualising it in accor-
dance with our problems. Thus, we consider in the model, as well as ay;, that is the
dynamical memory for the trustability of 7 on its partner ¢, also the parameter A;,
that is the risk perception, which regulates the value of trust in the nodes of the com-
munity. Furthermore, we consider the oblivion mechanism to update the network in
terms of knowledge. This results into the need of the network to forget periodically,
and update dynamically. Summing up, if in (44), heuristics is used to balance between
the costs and the risk of being infected, in our model it is used to balance between

the bounded condition and sending reliable parameters, not neglecting risk and energy
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saving, as showed in Fig. 2.3. Therefore, to achieve this target, introducing all the
features mentioned above, we also make the nodes more “human”, as well as smart
and self-organised. Nodes are able to decide, then the limited conditions allow obtain-
ing resolute decisions and, considering communities and interactions between them, we

have a Social Smart Behaviour.

2.3.4 IMLM Algorithm

2.3.4.1 Introduction

“It Measures Like Me” (IMLM) algorithm is applied to WSNs, in which a large number
of sensor nodes is deployed in a extended region to monitor and measure some param-
eter, such as temperature. IMLM aims at reducing the power-consumption and intro-
ducing a social smart behaviour of the network. IMLM fuses an aggregation/rejection
model, in terms of clustering, with a heuristic multi-agent model related to the sin-
gle node. IMLM uses heuristics to mitigate the speed of node rejection with a decision
taken in a short lap of time (limited time), using a reduced amount of information (lim-
ited knowledge) and consuming as low battery as possible (limited power consumption)
(38, 43). The main assumption of the clustering process takes advantage from the first
law of geography: “everything is related to everything else, but near things are more re-
lated than distant things” (45). The basic idea is that we can aggregate a large amount
of known nodes in a WSN. The aggregation mechanism concerns with radio visibility
between the couples of nodes. The algorithmic approach is self-organised and consists
of nodes’ “instinct” to aggregate themselves to other communities, while the rejection
policy is hierarchically managed by Cluster Heads (CHs). The proposed model follows
rules similar to those ones of cohesive attraction or cohesive force, that is the action
or property of like molecules sticking together, being mutually attractive. The cluster
aggregation is similar to the molecular aggregation based on the instinct to follow its
own nature. The node is attracted by neighbourhood inside its radio range and it will
aggregate “naturally” with one of them. The same thing happens in the case of oil in a
glass of water: the two liquids split each other to form two different clusters, then they
mix again cause an external force that is represented in the algorithm by the CH deci-
sion to reject one or more CH. IMLM is based on a multi-agent model that considers
abstract entities, called “agents”, that work autonomously in the algorithm in different

ways according to their states and roles. These roles depend on hierarchical levels and
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Figure 2.4: Algorithm Description - Aggregation mechanism.

on the internal state: idle, Cluster Head (CH), that could be a CHp, or a C Hy, going
up the hierarchical ladder, and still climbing to the sink node.
2.3.4.2 Description

Before focusing on the detailed operation of the algorithm, the followings are the dif-
ferent types of messages exchanged between the nodes in the various steps with a brief

description for each of them:

e Cluster Head Notification Message (CHNM): notification message sent by a neigh-
bouring CH;

e Node Affiliation Message (NAM): node affiliation to a CH;

o Measurement Message (MM): it allows nodes to communicate a single measure-

ment or a mean value;

e Variance Request Message (VRM): it allows CHs to ask “children” for sub-
community variance values: it is set “true” when it is needed to forward the

message, otherwise it is “false”;

VRM Response (VRMR): the sub-community sends variance value;
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e Rejection message (REJM): it allows CHs to reject a child, in particular “true”

is used to reject it, while “false” is used to mantain the child.

The IMLM operation is described as follows and figures are used to outline graph-
ically the various steps (see Figs. 2.4 and 2.5). At the beginning the node stays in
the idle state and listens to CHs via radio sensing for a random period of time. The
node listens to CH Notification Messages (CHNM) to know if there are CHs in the
neighbourhood. Both in the case in which an idle node does not recognise and in the
case in which recognises the presence of a CH that rejected it in the recent past, it will
self-elect itself as a CHy. Otherwise, if the node finds an available CH, it will become
a CH with a lower hierarchical level (CHp,) and it will send a Node Affiliation Message
(NAM) to the “father” (i.e., the node of higher hierarchical level). Hence, the node no-
tifies to the neighbourhood its actual state in both cases using CHNM messages. After
“Neighbours notification”, the node will wait for NAM messages from its children and
it will register their identities (IDs). CH will have to associate a random trustability
value, in the interval between 0 and A; for the empathy mechanism (which explains
the process for which we trust in a different way of one rather than another, without
an apparently reasonable logic: first, aggregation mechanism is ruled by the logic of
the first encounter, then it will be ruled by the trustability and risk perception values
following the hierarchy). If the CH is alone and if it is a C'Hy, it will send its measured
temperature to a sink node, otherwise if it is a alone C'H,, it will send it to the father.
Instead if the CH is not alone, it will wait for Measurement Messages (MM) from chil-
dren; MM can be either single measurements or mean values of sub-communities. The
IMLM algorithm uses a heuristic mechanism based on trustability estimation directed
from CH to its children. For this reason, the CHs evaluate the trustability among all
children and relate sub-communities. In the trustable case, if the CH is the root of the
hierarchical tree (C'Hp), it will send a Variance Request Message (VRM) set to “false”
to children, and the mean value of the whole community to the sink. The next step is
to return in the “temperature sensing” state. If the CH has a lower hierarchical level,
it will send the mean value of its community to the father and it will wait for a VRM.
A received VRM, set to “false”, allows the node to come back to a temperature sens-
ing of its sub-community, while VRM set to “true” forces CH to forward the request
(VRM) to its children. In the latter case CH has to wait for a VRM Response (VRMR)
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It will listen to the REJection Message (REJM) to see if it still belongs or not

to the community. The oy assessment allows identifying untrusted children. This

condition occurs when the related oy is less than the risk perception, A; (44). In

this case, the autonomous agent will be “scared” of specific sub-communities, so it

will ask them for updated variance values that result in a local new variance value. It

is needed to evaluate also variances related to trusted sub-communities; these values

will be estimated weighing them with a coefficient that is inversely proportional to the

trustability value and directly proportional to the last variance value related to the

sub-community. The variance calculation is based on (46). The Ward’s method aims

to minimise the inner-cluster variance. The variance of a community is calculated as
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follows:

S =Sy + 5, (2.1)

where S is the matrix of total variances and co-variances, S,, the matrix of internal
variances and co-variances, S the matrix of external variances and co-variances. If we
consider a uni-variate measurement and two clusters, “1” and “2”, the global variance

will be calculated as follows:

Otot = 0101 + 0ang + (1 — pieot)? + (2 — peot)? /n1 + 12 (2.2)

where o1, o9 are variance values of the two communities; p1, po are the corre-
sponding mean values; ni, ng represent the number of nodes in each cluster. The new
community variance value will be compared with a fixed threshold. If the check is
positive, the specified trustability, related to the sub-community, will be increased of
a fixed quantity V,, otherwise, it will be decreased of the same quantity. In the latter
case, the CH will have to see if the sub-community is suitable yet in order to send a
Rejection Message (REJM), “true” or “false”, according to the new trustability and A;
values. If the trustability value is less than —A;, the corresponding sub-community will
be thrown away, otherwise it will be maintained. The rejected node will register the last
CH in a specified scheduling queue, not to allow the association to a “old” community
for a certain period of time. Each CH in the queue is affected by a oblivion factor,
following a negative exponential function (1 — X)7. If the oblivion factor reaches a fixed
threshold, the associated CH will be thrown away from the queue. The last step consists
of the mean value calculation, considering all the “alive” sub-communities, and finally
the sending of it to the father or to the sink. Each C'Hy communicates a mean value
to the sink, that forwards information to an elaboration center, integrated with GPS
positions of the community. The elaboration center will reconstruct a measurement

map, using interpolation algorithms like Kriging (47).

2.3.5 Conclusion

The aim of our clustering algorithm is to reduce power consumption of nodes in WSNs,
through the aggregation of them, based on the geographic position and a common

range measurement. This feature also allows reducing the waste of energy related to
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sink nodes, especially in communications to the satellite. A challenging issue of the
aggregation process is the waste of overhead related to the cooperation among nodes.
Heuristic behaviour addresses to solve this question, mitigating the flow of information
exchanged between nodes in a “satisficing” way. Furthermore, the self-organisation of
nodes in communities is similar to the principles ruling human society. Thus, IMLM

creates a “Social Smart behaviour”, adding a social feature to the IoT principles.

2.4 A Energy-Preserving Model for Wireless Sensor Net-
works based on Heuristic Self-Organised Routing

One of the main targets related to WSNs is to reduce power consumption of nodes
and of the whole network. An ideal WSN should be networked, scalable, fault-tolerant,
energy-aware, and also smart and efficient. Unfortunately, however this is not always
true. The basic idea of the work (48) is that senders use a heuristic approach to
select the sub-optimal next hop in order to reach just one sink, considering some key
requirements such as general performance (QoS and security), efficiency, trustability,
high computational power and energy-aware behaviour. The model presented in (48)
tries to satisfy the need for reaching the nearest sink node, considering a trade-off
between the shortest path and heuristic decisions, in a top-level strategy based on a

heuristics approach in order to reduce the overall power consumption of the network.

2.4.1 Introduction

A WSN consists of spatially distributed autonomous sensors to monitor physical or
environmental conditions. Each node is an autonomous agent able to decide how to
route information (40). There are many types of routing and forwarding algorithms
for WSNs, characterised by different kinds of actions about how to reach the desti-
nations. Overall, an efficient routing protocol should perform aggregation, clustering,
self-organisation and cooperation for power saving and to increase network lifetime; it
should also consider a threshold for sensor nodes in data transmission in order to get
energy-saving, and a multi-path dissemination to improve fault-tolerance.

In (48), we propose an energy-preserving model for WSNs based on a heuristic and

self-organised routing. We consider a network with specific nodes which need to send
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information to just one of a set of sinks. In order to make simpler and reduce the
communication flow that would produce a large amount of energy consumption, each
node routes information exploiting a cognitive behaviour of its own neighbourhood,
without using traditional routing protocols that could produce large routing tables, for
a huge amount of sensors. The hierarchy follows a trend ranging from the sink to the
probable sources. From the latter, following the hierarchy created previously, each node
will choose the next hop according to an heuristic mechanism, based on trustability,
goodness’ perception of the path and battery level of node. The heuristic approach con-
sidered within the model will allow us to explain how the nodes take decisions to solve
complex problems with incomplete information using trustability level and perception,
following a top-level strategy that leads to solve problems exploiting this underlying
heuristics.

The work (48) is organised as follows: sect. 2.4.2 deals with some energy-aware pro-
tocols, also introducing what is required to achieve an efficient energy-aware routing
protocol. In sections 2.4.3, we analyse the heuristic theory underlying the proposed
model, and how we use and propose this strategy, along with trustability and percep-
tion, in multi-agent systems. In sect. 2.4.4, we present our model, and finally in sect.

2.4.5 we sum up the presented model with conclusions.

2.4.2 Energy-Aware Routing Protocols

Routing or forwarding of data packets in WSNs can be divided into three categories:
flat-based routing, hierarchical-based routing, location-based routing (49). In flat-based
routing, nodes have the same role and responsibility in forwarding/routing data, while
in hierarchical-based routing, decisions are influenced by the hierarchical rank of sensor
nodes. Furthermore, another classification of routing protocols is based on how routes
are created (50). In a proactive approach all routes are created in advance and updated
regularly; in a reactive approach, routes are computed only when they are required and
a hybrid approach is a combination of these two ideas. In general an efficient rout-
ing protocol should perform data aggregation for power saving, dynamic clustering to
increase network lifetime, a threshold for sensor nodes on data transmission and dissem-
ination, in order to help energy-saving, multi-path selection dissemination to improve
fault-tolerance, self-configuration and adaptation of the sensors nodes to changes in

network topology and finally time synchronisation.
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In (48) we propose an energy-efficient model based on a heuristic approach. The key
idea applied to a WSN’s scenario, is that of giving to sinks the power to create a dy-
namic hierarchy. The root of the hierarchical tree is represented by the sink and leafs
follow iteratively the hierarchy in order to cover the entire network spatially. Using the
previously created hierarchical tree, senders will be able to reach one of the avaliable
sinks, exploiting only the knowledge of their neighbourhood. Heuristics will help single

nodes to choose the next hop until to the sink.

2.4.3 Inference and Heuristics in the model

In this section, we are going to explain inference mechanisms and focus on the overall
heuristic approach adopted in the model. The question is how nodes deployed in a
topology do make inferences about unknown aspect of the context? There could be
three possible approaches (43): Laplacian demon theory, fully heuristics and controlled
heuristics. Many decision problems may be considered as optimisation problems. These
problems are tipically too difficult to be solved exactly within a reasonable amount of
time and heuristics become the best methods of solve them. Furthermore, when the
quality of solution is critical and an optimal solution does not exist, it becomes impor-
tant to investigate efficient procedures to obtain the best possible solutions, considering
key factors to be minimised. Heuristics are criteria, methods, or principles for deciding
which, among several alternative courses of action, promises to be the most effective, in
order to achieve some goal (51). The model follows the main principles of multi-agent
systems: cooperation and self-organisation. Cooperation is related to the interactions
among agents. It is a fundamental feature of multi-agent system where the overall
system exhibits significantly greater functionality than the individual component (52).
Exploiting hierarchical methods within an heuristic approach to detect a good path,
we achieve an autonomous, multi-agent and self-organised system. Therefore, nodes
become smart objects which have different communication, information and processing
capabilities to make decisions. Our design choice consists of the implementation of a
heuristic model. The heuristic approach inside the model will allow us to explain how
the nodes make decisions, come to judgments and solve complex problems with incom-
plete information. The main advantage is that using a heuristics model with a dinamic
hierarchical phase, from sink to source, and a heuristic approach, from source to sink,

we reduce the complexity of tasks, obtaining a self-organised energy-aware system. The
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ID FRAME | MAC ADDR | NODE’S LEVEL

Table 2.2: Identification frame.

trustability and perception are used when a node/agent interacts with other agents to
decide the next-hop in order to reach the sink. We refer to the model presented in (44),

adding some mechanisms to maximise the overall lifeness of the network.

2.4.4 Model

Sink nodes in WSNs are able to receive messages from other nodes and collect various
kind of data. Usage of multiple sinks is related to power consumption reduction in
WSNs, as shown in (53), for this reason our topology follows a hierarchical organisation
in which the highest role is delegated to sink nodes. We identify three phases: Topology
Discovery, Data Sending and Heuristic Approach. Our model tries to satisfy the need
of reaching the nearest sink node, considering heuristic decisions to reduce the overall
power consumption of the network and network’s errors. The aim of the proposal is to

use simple network signaling and light logic to maximise network lifetime.

2.4.4.1 Topology discovery

The Topology discovery phase is initialised by sink nodes, which represent 0-level hier-
archical nodes (HNy), sending a identification frame to their neighbours, at a certain
time interval, Tigenti fication- Each H Ny’s neighbour will become H N1, storing node IDs
of previously identified H Nys and in turn they will send an identification frame to their
neighbourhood. The Identification frame is defined as follows:

Network’s nodes, without a specific role, will listen to identification frames and
they will become L-level hierarchical node, choosing own level L as the minimum of

the levels of nodes which have sent it identification frames:

L = min (nodes levels) + 1 (2.3)

Consequently the H Ny, will store IDs of the HNy_1 nodes so that it will be able
to use one of them to reach a sink as shown in Fig. 2.6. The HNy_; black circled
node is the “delegated node”, chosen by H N, node to send data to the sink, using the

heuristics we are going to describe in sect. 2.4.4.3.
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Figure 2.6: Multiple routes. Each node could reach multiple upper level nodes.
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Figure 2.7: HNj routes on the right.

2.4.4.2 Data Sending

When a HNj, node needs to send data to a sink, it will use the delegated node, using
a Data Frame, defined as showed in Table 2.3.

At each Data Frame (DF'), the node will store, the Sender (Se), the Receiver (Re),
the last Data Frame Counter (DF'C), the Data packet, and it will calculate the related
Cyclic Redundancy Check (CRC) of the frame. Figs. 2.7 and 2.8 represent a network

with two sinks and two different paths.

2.4.4.3 Heuristic Approach

If a source node needs to send data to a sink, it will refer to one of the hierarchical

upper level neighbours. It will choose the specific neighbour, using a heuristic approach,

| DF | Se | Re | DFC | DATA |

Table 2.3: Data Frame.
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Figure 2.8: HNj3 routes on the left.

similar to (44), taking in account both battery level and communication quality. A
generic node ¢ stores a risk perception level, A;, that intuitively represents a mean
“trouble” level of the neighbouring nodes. Each node will store a trustability level, a;,
related to each upper level hierarchical node and they will use the most “trustable” node
in the neighbourhood to reach the sink. The choosen node will be called “delegated
node”. Considering a generic node %, and its delegated node j, if the trustability level,
o, related to j is greater than the risk perception perceived by 4, A;, it will send data

to node j without considering j’s battery level, or connection quality between them.

Condition : if oy > A; => 1 sends data to j (2.4)

The model considers nodes with a finite memory, so they “forget” their history, fol-
lowing an Oblivion Mechanism. Hence, risk perception and trustability will be updated

at certain time steps, as follows:

o = ag(l—ra)s Ai=Ai(1—ra)” (2.5)

In this way the model will force nodes to check model’s parameters against neigh-
bours and refresh their perceived knowledge. The r, parameter represents the rate of
decrease of the Trustability Level, likewise r 4 is the rate of decrease of Risk Perception.
If node i does not trust nobody due to the Oblivion Mechanism or Negative Checks
(as explained below), then it will start a “check phase”. The check phase consists of
asking to delegated node the CRC of the last Data Frame and to each upper level nodes
battey levels, using CRC Frame and Battery Frame (see Tables 2.4 and 2.5).
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’ CRC Frame ‘ Se ‘ Re ‘

Table 2.4: CRC Frame.

’ Battery Frame ‘ Se ‘ Re ‘

Table 2.5: Battery Frame.

Battery levels and connection quality parameters will be used to recalculate trusta-
bility levels related to each upper level neighbour. We propose to evaluate the correction
of trustability level related to the delegated node, as follows:

aijnext = aijp'revious + C’Zl)elghtczj + B’il}elghtb] (26)

!

where C; is the parameter related to connection quality between ¢ and j, C} ., ght

is the weight related to the importance of considering the connection quality. b; is
equal to 1 if the battery level of node is lower than the quantity: Meanpattery levels —
Standard Deviationpagtery levels, Otherwise it is equal to zero. We choose such kind of
threshold (Standard Deviationyastery teveis), to consider the global amount of energy
in the neighbourhood and its distribution among nodes. B, ght 1S the weight related

to the importance of considering battery levels in our model. B’ and C’

weight weight are

design values that will be choosed according to the specific target to obtain. The A;
factor is a key parameter in our model because it rules the behaviour of a node, accord-
ing to the amount of ay;, following a heuristic approach. For this reason, periodically,
at a certain time step Tperception, nodes will recalculate the risk perception perceived,

as follows:

/

l
weightbnegati'ue checks T+ Cweightcnegative checks
A, = A, 4wy
Total checks

(2.7)

where bpegative checks Tepresent the total number of negative checks related to bat-
tery levels and Cegative checks Tepresents the total amount of network negative checks.
Total checks is the amount of total checks, both for battery and communication “right-

ness”. v4 is a key parameter because it rules how the risk perception should grow up.
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2.4.5 Conclusion

In a WSNs context, nodes are able to collect data and send only the required infor-
mation to the sink. In a scenario with multiple sinks, an ideal model should satisfy
the need to reach the nearest sink node. In order to reduce power consumption of
the network and, at the same time, maintain the same communication performance, in
(48) we have proposed a novel strategy based on a heuristics approach that rules the
underlying heuristic decision process under certain parameters, such as battery level,
communication performance, trustability and risk perception. In this way, we have
proposed a model based on heuristic assumptions, dynamic hierarchy and decision pro-
cesses to obtain a cognitive energy-preserving behaviour for the sensor nodes, exploiting

a self-organised routing.
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Chapter 3

Multilayer Networks

3.1 From Single- to Multi-layer Networks

Since the turn of the millennium, networks have become a universal paradigm for sim-
plifying large-scale complex systems, for describing their structure and for studying
their systems-wide functionalities. Network theory has constituted a way to charac-
terise the connectedness among single entities or components which interact in a huge
variety of complex systems, ranging from biological to social systems. ‘Complex Sys-
tems science’ represents an emergent field of knowledge dealing with collective and large
scale phenomena arising from the interaction of many components. One of the main
features is that a complex system cannot be understood and predicted from individual
behaviour, but instead the system should be considered as a whole. Some examples
are the self-organised behaviour of neurons in the brain or the complex cooperative
phenomena in ant colonies or human cities. Thus, together with phenomena such as
self-organisation or pattern formation, the complexity is essentially the result of net-
work, connecting the single parts in a system which does not corresponds only to the
sum of its parts. The striking advances of data-driven models has allowed empowering
and deepening the analysis of such complex systems, creating a new kind of science,
known as “network science” (1). Recently, a lot of research efforts have been devoted
to study networked systems, e.g. social networks, made up by nodes, which are the
components or the single entities, while the links among them describe the interactions
(4). Interestingly, some pioneering works in this field have discovered some similarities

between networks, describing quite different phenomena, such as heavy tailed degree
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distributions of nodes or the relatively high clustering of node triples. These regular-
ities along with its interdisciplinarity have even raised up the attention for network
science, making it one of the hottest research topics in the 21st century (2, 3, 4). The
“engine” behind this rapid development, increasing investigation and growing under-
standing of network science has been represented by the vast amount of data, that are
now routinely being collected, modelled and analysed, regarding these complex systems
(10, 16, 17, 18).

In 1960, Erdos and Rényi developed the first model of networks, known as random
graph theory, where the 'random’ hypothesis means that every pair of nodes is ran-
domly connected with the same probability, giving rise to a Poisson degree distribution
(54). Simultaneously the lattice networks have been exploited to model physical sys-
tems, where instead the feature is that each node has the same number of links. Since
then, many types of modelling approaches have been proposed and studied in the var-
ious disciplines based on different features of the different networks, making the graph
theory a well-estalished mathematic tool to study networked systems. Despite its ability
to desribe the structure of a variety of networks, graph theory is not able to include the
real-world networks which, as Barabasi observed in 1999 in his pioneering work (55), do
not follow the Erdos-Renyi model, but rather in most systems the organisational prin-
ciples arise in natural way, pushing towards new models and to the emergence of a new
science, that of complex networks. Barabasi networks, known as scale-free networks,
are non-homogenous structures whose degree distribution, which indicates the number
of links per node, in most cases follows a power-law form (55). The most important and
interesting aspect of these scale-free networks is the ability to approximate real net-
works, such as the Internet (4), the World Wide Web (WWW) (56), social networks,
infrastructures networks, biological networks, Protein-Protein Interactions (PPI), gene
regulation and biochemical pathways, and networks in physics (13, 16, 18, 57). Scale-
free networks have also highlighted different properties of networks, for instance, in
term of robustness, in contrast with Erdos-Renyi networks, this kind of networks is
extremly robust to random failures due to its heterogeneity (55, 56). Network concepts
and notions have been exploited to study different aspects and properties, such as ro-
bustness, epidemic spreading and the social interactions and behaviours in frienship
(7, 58) or scientific collaborations (59). Evidently, a great part of our current knowl-

edge on networks is based on ideas and concepts borrowed from statistical physics, such

43



3.1 From Single- to Multi-layer Networks

as percolation theory, fractals and scaling analysis. Over the years, new measures and
methods have been introduced to characterise network properties, such as measures of
node clustering, that is the formation of triads in network, degree-degree correlations
between neighbouring nodes, centrality measures to weigh the node importance in the
network, other than measures to detect community structures. All these measures not
only have been proven useful to explore and better understand networks as a whole,
but also to identify network motifs or patterns occurring repeatedly and providing in-
formation about their functionality (13).

If, from one hand, network theory has successfully allowed characterising the interaction
among the constituents of various types of complex systems, however, from the other
hand, up until recently, attention was almost exclusively given to single-layer networks,
in which all components were treated on a single equivalent layer, neglecting all the
extra information about the temporal- or context-related properties of the interactions
among nodes or entities. Only in the last years, also exploiting the enhanced multi-
scale resolution in real data sets (60), network scientists have directed their interest and
research efforts to the multiplex nature of real-world systems, explicitly considering the
presence of a node and its interactions in different layers. In fact, these complex sys-
tems are not single isolated networks, but continuously interact with other networks,
and this creates an interdependence.

The concept of interdependence means that a failure of a node in a network can cause
a failure of dependent nodes lying in another network, and so on, leading to cascading
failures and catastrophic phenomena (34, 61). Blackouts represent a classical example
of interdependent networks, since most often they are the result of cascading effects
between commmunication and power grid systems (34, 61, 62, 63). Furthermore, differ-
ent kinds of critical infrastructures are also coupled together, such as financial systems,
power transmission or communications systems only to name a few. Therefore, the
deeper understanding of complex networks has showed as they are organised as a Net-
work of Networks (NoN), producing a shift in paradigm from single layer networks to
multiplex, multilayer and interdependent networks (61). Thus, providing a suitable
representation and modelling of these interconnected systems, identifying the rules and
mechanisms, control them, are some of the major efforts of recent research in complex
systems. ‘Complex networks theory’, born in the last fifteen years, has been exploited

the interdisciplinary effort of a lot of scientists, in order to extract meaning, information
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and knowledge from the vast amount of big Data and the underlying complex systems
and mechanisms. Among the main targets, from one side the analysis and identification
of the main unifying principles describing the structure of network, and from the other
side the understanding of the emergent dynamics able to explain and capture what
actually observed in such systems. In particular, in (4) the authors present a complete
compendium of the ideas and concepts involved in both structural and dynamical prop-
erties of complex networks.

The traditional complex network approach has mostly been concentrated on the single-
layer case, in which each single system’s unity is represented as a network node, and
each link or connection among units is represented as a real number indicating the
link’s weight. Thus, every link of the network belongs to the same equivalent layer and
it constitutes a big constraint because it is not able to capture the real-world systems,
where instead phenomena occur simultaneously in different layers. This is the rea-
son why a multilayer approach, where a multitude of entities interact with each other
through somehow complicated patterns, results by far more suitable to describe such
systems. The idea is to consider a complex system including multiple subsystems, or
layers of connectivity, focusing on the mechanisms of evolution, adaptation, transfor-
mation due to internal and external dynamics regarding locally the single components
or globally the whole multilayer structure. The understanding of these multiscale and
multicomponent dynamics is challenging, but a lot of work has been done during the
last years to describe and understand the structure and dynamics of this kind of sys-
tems (7, 58, 64, 65). The introduction of some concepts, such as network of networks
(61, 63), multidimensional networks, multilevel networks, multiplex networks, inter-
acting networks, interdependent networks, other than the related and even different
mathematical approaches, based on tensorial representation (58, 64) or otherwise (65),
represent a demonstration of the efforts in this field.

The main target of this chapter is to discuss the framework of multilayer networks, and
the main structural notions, models and measures introduced in literature to study and

describe it.
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3.2 Real-world examples of Multilayer networks

As seen in the previous section, the framework of multilayer networks is a recent math-
ematical tool introduced to explain and understand the complexity of a huge variety
of real-world systems, since single networks are not enough to describe the complex
set of interactions between different networks. The following are some representative
examples of the major constraints of the traditional single networks, where it becomes
essential to use a multilayer approach.

The first example is related to social networks. A social network can be described as
a set of nodes, corresponding to people or groups (communities), and a set of links or
connections or edges, representing the relationships or interactions between them (7).
The traditional network science assumes that all the connections or social interactions
lie in the same layer or level, but the real scenarios are extremely different from this
contrained description. In fact, in general social relationships occur among nodes or
groups belonging not only to one layer, but rather social interactions involve nodes
on different layers. Thus, considering only a single layer perspective, used in classic
complex network models, does not allow modelling properly the real-world situations.
For instance, if we take into account the spreading of information or rumours on top of
a social network, such as Facebook or Twitter. Exploiting the graph theory, we can see
users as the nodes of the graph and all the relationships as network’s links or connec-
tions, but the connection between two nodes could be the result of various and several
direct or indirect interactions which occur in another context, for example due to the
fact that they are both fan of the same football team and they occasionally met at the
stadium, or maybe they could be co-workers, sharing the same working environment,
or even live in the same part of the city, going to the same pub. Thus, the problem is
that considering only a layer in the diffusion process, we cannot capture the real dy-
namics of information spreading, since a node lives, interacts and evolve in the various
layers, being influenced from each single interaction in every layer. In other words, the
spreading process will involve each layer and only through a multilayer approach we
can study its dynamics.

Another clear example of the multilayer or multiplex nature of real-world systems is
the transportation network. For instance, if we deal with the Air Transportation Net-

work (ATN) or subway networks, using the traditional single-layer modelling approach,
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where nodes represent the various airports and links the direct flights between them, we
will lose a lot of information about dynamics (e.g. delay propagation in the ATN), as
there are different types of flights, e.g. commercial airlines include different flights and
routes, so it may be represented better as a distinct layer, containing all the connections
operated by the same company. Also in the case we want to model the transportation
networks in the city, the single parts of the city may be connected via different kinds
of public transports, ranging from bus to underground, suburban rail, or riverboat net-
works. Even if we consider the connections among different cities, they may include
not only roads, but also railways, and air transports.

Another interesting example, taken from biology, is the description of C. elegans neural
networks, which consist of 281 neurons and nearly 2000 connections: these connections
involve not only a layer, because two neurons may be linked through a chemical link
or by an ionic channel with gap junctions’ interactions, and accordingly the dynamics
will completely change.

To sum up, all the previous examples are only some of the cases where using the tra-
ditional single-layer modelling approach would be a strong oversimplification, since the
different nodes interact simultaneously in more than just the one network. As observed,
this key concept could be applied to social as well as technological, air transportation
and biological systems. Therefore, we need to replace single-layer networks with an-
other mathematical framework which provides a better description of such systems. For
this reason, multilayer network, that is a combination of networks that are interrelated
in a nontrivial way, has recently emerged as a key concept to quantitatively describe the
interactions not just within, but also among different networks. Another mathematical
description typically used in the examples above, such as in transportation or social
networks, is in terms of multiplex networks, i.e. networks where each node appears in

a set of different layers, and each layer describes all the edges of a given type.
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3.3 The mathematical formulation of multilayer networks

Network science investigates the structural properties and patterns of the interactions
among the elements of a variety of complex systems, ranging from social groups to
infrastructure and technological systems, and also including the brain and biological
networks (2, 3, 4, 5). In the last decade, a vast amount of literature has attempted
to disentangle noise and stochasticity from non-random patterns and mechanisms, in
order to get a better understanding of how these systems function and evolve. As
we explained in the previous sections, the evidence suggests that to understand the
complexity and unveil the real properties of these systems, we need to switch from
single layer networks to a multi-layer framework, able to characterise the complex set
of interactions among different networks. The intrinsic interdependence of systems,
with many components interacting with each other through different channels allows
explaining the self-organisation and emergent phenomena, from which we can extract
the knowledge. Network science and the science of complexity have revolutionised our
understanding of several phenomena and processes, considering a multilevel, multichan-
nel, multicomponent, a system-of-systems analysis. The multiple subsystems and layers
of connectivity allow exploring the internal and external dynamics affecting the various
components, both at local and global scale, which make the system evolve, adapt and
transform accordingly. The multiscale and multilayer dynamics poses severe challenges
regarding the analysis, observation, investigation and understanding, thus a lot of work
in literature has been done in the last years to understand and describe adequately the
structure and dynamics of the multilayer neytworks (58, 64, 65). In particular, some
notions corresponding to the different mathematical approaches have been introduced,
such as Network of Networks (NoN), multilevel networks, interacting networks, inter-
dependent networks, multilayer networks and multiplex networks, only to name a few
(61, 63). Most of these approaches are based on a tensorial representation (58, 64),
even though there also other descriptions based more on topological formalism (65).
In this section, the aim is to briefly present and discuss the mathematical framework
of multilayer networks, and also to extend some notions and network measures from

single layer to multilayer networks.
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Multilayer network 4

Projection Network
proj(49)

A A,
A A

21 2

A,=

Figure 3.1: Schematic represenation of a multilayer network. M = (G, C) is
composed by two graphs: G; and G5. The interlayer connections are in red, while the
intralayer connections are in green for graph G; and in blue for graph Gs.

Multilayer networks are formed by a set M of layers constituted by single networks,
and by interlinks connecting the nodes in the different layers. Formally, a multilayer
graph M is described by a pair (G, C'), where G = {Go;a € {1,... M, }} is a set of
(directed or undirected, weighted or unweighted) graphs G, = (X,, E,) (called layers)
and C ={E.,3 C X x X;o,6 € 1,...,M,a # B} is the set of interconnections between
nodes of different layers G, and Gg, with a # 3. The elements of E,g are called
interlayer connections or crossed layers (see red edges in Fig. 3.1) while the elements
of each E, are called intralayer connections (see Fig. 3.1, green edges for graph G
and blue edges for graph Gs). The set of nodes of the layer G, will be denoted by
Xy = {:c?, e ,x?‘va} and the adjacency matrix of each layer G, will be denoted by

A% = {a%} € RNaxNs where:

(]

o 1 if (a7, 2%) € Ea, (3.1)
ag; = .
0 otherwise,

for 1 < 4,5 < Ng, 1 < o < M. Furthermore, associated with E,3 we define a
.. . . . . . o af NaxN
similar adjacency matrix, called interlayer adjacency matriz, A = (aij ) € RYoxNs,

given by:

0 otherwise.

The projection network related to multilayer M, indicated with proj(M) = (X, Em),
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is given by:

M M M
Xu=|JXa Bu= (U Ea> Ul U B (3:3)

a=1 a,B=1,a#8
We will denote the adjacency matrix of proj(M) by A(M).

This mathematical model is well suited to describe phenomena in social systems (66),
air transportation networks (65) and brain networks (67), as well as many other com-
plex systems, such as the so-called systems medicine, whose definition is born with the
introduction of complex network methodology in biomedicine, which involves a systemic
view of the organism, where there is an interplay among the various elements building
living beings. Systems medicine exploits multilayer networks as a tool for combining
the characterisation of the main constituents of the cell: genes, proteins and metabo-
lites. Until now, many different complex networks have been studied, e.g. gene-gene
coexpression networks, protein-protein interaction networks, metabolite-metabolite co-
expression network. But each one has been considered separately, not including the
strong correlations and interdependencies with the other complex networks. The in-
terdependent representation of the cell, other than of the living being, may give a new
insight about the exhibition of systemic pathological conditions. Moreover, focusing
on the interdependencies among genes and proteins, we can build a multilayer network
encoding both experimental setup (coexpression matrices from experimental profiles)
and annotated reactions (protein-protein interaction network). This structure natu-
rally pictures the gene control upon the production of proteins, turning into catalysers
of the metabolic reactions. The multilayer representation allows also performing a mul-
tivariate statistics and an integrated clustering.

In general, by exploiting this multilayer representation, we simultaneously consider:

e the links within the different groups,

e the nature of the links and the relationships between elements that may also

belong to different layers,

e the specific nodes belonging to each layer involved.

Multilayer networks can be distinguished, among others, in multiplex networks

(64, 65, 66) and interacting networks of networks (61, 63). In interacting networks
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of networks, the nodes in the different layers represent different elements of the system.
For example, in the cell, metabolites, proteins and transcription factors remain distinct
biological entities. In a multiplex network, instead, the same set of nodes forms M
networks, one in each layer corresponding to different types of interactions. Mathe-
matically, a multiplex network is a particular case of multilayer network consisting of
a fixed set of nodes in the various layers, that is X1 = X9 = -+ = Xy = X, and where
the only possible type of interlayer connections are those in which a given node is only
connected to its counterpart (or replica) nodes in the other layers of the network, i.e.,
E.p ={(z;z);x € X}, for each a, 5 € {1,...,M},a # B. The paradigm of multiplex
networks is suitable for describing social systems which can be seen as a superposition
of a multitude of complex social networks, where nodes represent individuals and links
capture a variety of different social relations. A given multiplex network M, can be
associated with several (monolayer) networks providing valuable information about it.
A specific example is the projection network proj(M) = (Xw; Em), where the elements

of its adjacency matrix Ay are:

[0/
ag; =

. (3.4)
0 otherwise.

— {1 if a;; = 1, for some 1 <a < M

Multiplex networks can be seen as monolayer networks with a certain modular
structure in the mesoscale, and thus network a multiplex structure M can be represented
as a monolayer network M = (X, E), where X is the disjoint union of all the nodes of

G1,Go,...,Gyy, that is formally expressed as follows:

X= || Xo={2%2eX,} (3.5)
1<a<M

and E is formally given by the following expression:

M M
(U {(@F,25): (a9,25) € Ea}> Ul U {enedizex) (3.6)
a=1 ayﬁzlva#ﬁ

Note that M is a (monolayer) graph with N x M nodes whose adjacency matriz,
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called supra-adjacency matriz of M, can be written as a block matrix:

I I{V 42 I{V c RIVM)x(NM) (3.7)
IN IN “ e AM

where [y is the identity matrix with N dimensions. Therefore, the multilayer
structure can be represented using a tensorial representation, and this procedure is
called flattening, unfolding or matricisation. Thus, “flattening” the tensor allows also
reducing the rank or the order of such a tensor constraining the space of possible mul-
tilayer networks. Therefore, this flattening process yields “supra-adjacency matrices”
(or “super-adjacency matrices”) (58), with the advantage over tensors of being able to
represent missing nodes in a convenient way. In other words, with regards to computa-
tional issues and methods, most people are also much more familiar with working with
matrices rather than with tensors.
It is important to note that the behaviours of Ml and M are related but different, since
a single node of M corresponds to different nodes in M. Therefore, the properties and
behaviour of a multiplex M can be understood as a type of non-linear quotient of the
properties of the corresponding (monolayer) network M.
The framework of multilayer network extends that of other mathematical objects, that
is every other mathematical object which exhibits a multilayer network structure, such
as multiplex networks, networks of networks, multidimensional networks, etc. used in
literature, can be represented exploiting the mathematical formulation of multilayer
networks, by only introducing some constraints. We can summarise the mathematical

properties of these mathematical objects as follows:

o Multiplex networks - as defined before, a multiplex network M, with M layers
is made up by a set of layers {Gq;a € {1,...,M}}, where each layer is a graph
Go = (Xo, Eo), with a set of nodes X, = {x1,...,xx}, which is the same in all
the layers, and this constraint formally means that X| = Xo = --- = Xy = X
and interlayer connections are only possible between a node and its counterpart
(or replica) nodes in the other layers of the network, which means that: E,g =
{(z;z);x € X}, foreach o, B € {1,...,M},a # 5.

52



3.3 The mathematical formulation of multilayer networks

e Interdependent networks - a collection of different networks, corresponding to the
various layers, whose nodes are interdependent to each other. In other words,
there is a dependence of the nodes of one layer from another node, which is a
control node, belonging to a different layer (61). These dependencies constitute
constraints, and are represented by additional edges connecting the different lay-
ers. This structure is known as mesostructure. We can consider an interdependent
(or layered) network as a multilayer network by identifying each network with a

layer.

e Interacting or interconnected networks - if we consider a set of interacting net-
works {G1,...,GL}, they can be modelled as a multilayer network of the L layers
and whose crossed layers F,g correspond to the interactions between networks
G, and Gp (see Fig. 3.2).

e Multidimensional networks - Formally, an edge-labeled multigraph (or multidi-
mensional network) is a triple G = (V, E, D), where respectively V is a set of
nodes, D is a set of labels representing the different dimensions, and E is a set
of labeled edges, that is a set of triples £ = {(u,v,d);u,v € V;d € D}. The
rule is that, considered a pair of nodes u,v € V and a label d € D, there could
be only one edge (u,v,d). In the particular case of a directed graph, the edges
(u,v,d) # (v,u,d). Fixed the cardinality of D equals to m, each pair of nodes
in G can be connected by at most m possible edges. If we also consider the
weights, the edges become quadruplets (u,v,d, w), where w € R is the weight of
the relation between nodes u,v € V and labeled with d € D. Furthermore, a
multidimensional network G = (V, E, D) can be modelled as a multiplex network

and, hence, as a multilayer network by mapping each label to a layer (7).

e Multilevel networks - considering a network, whose graph is G = (X, E'), a mul-
tilevel network is a triple (X, E,S) (7), where S = (S1,...,5p) is a family of
subgraphs (or slices) S; € S, with S; = (X;,E;),j =1,...,p of the network G,
which is the projection network of M, such that:

X:OXj E=JE (3.8)

Jj=1 J=1
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Figure 3.2: Schematic illustration of interacting networks and its mapping into
a multilayer network. Each different colored network on the left side corresponds to a
different blue layer on the right side.

Clearly, a multilevel network M = (X, E, S) can be seen as a multilayer network,
with layers {Si,...,S5p} and crossed layers E,g = {(z;2);2 € X, N Xg}, and
also as a multiplex network if X, = Xg for all 1 < «, 8 < p.

e Temporal networks - A temporal network (G (t))tT:1 can be represented as a mul-
tilayer network with a set of layers {G1,...,Gr}, where Gy = G(t),Eqnp =
@, if f # a+ 1 (t is an integer, and not a continuous parameter) (68), while

crossed layers are given by (see Fig. 3.3):

Eoot1 ={(z,2);2 € Xoa N Xqy1} (3.9)

e Hypernetworks (or hypergraphs) - A hypergraph is a pair H = (X, H), where X is
the (non-empty) set of nodes and H = {Hj, ..., Hp} includes (non-empty) subsets
of X, known as hyperlinks of H. Therefore, considering a graph G = (X, F), an
hyperstructure S is defined as a triple (X, E, H) constituted of the vertex set
X, the edge set E, and the hyper-edge set H. A hypernetwork (or hypergraph)
can be represented as a multilayer network, defining a layer with Gy, a complete
graph of nodes (z1,...,x) for each hyperlink h = (z1,...,2;) € H, and the
interlayer connections are E,g = {(z,z) ;2 € Xo N Xg} (see Fig. 3.4).

Analysing the different multilayer mathematical models and definitions, what emerges
clearly is that each model has its features and it results suitable to represent some sit-
uations, but not able to describe others. For example, hypergraphs are not able to

combine all the scales of the analysis of a system, from local to global to mesoscale.
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G(t) t=123
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Figure 3.3: Schematic illustration of a temporal network and its mapping into a
multilayer network. On the left side, it is showed that at each time instant t = 1,2,3, a
different graph characterises the structure of interactions between the system’s constituents.
On the right side, it is illustrated the corresponding multilayer network representation,
where each time instant is mapped into a different layer.
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Figure 3.4: Schematic illustration of a hypergraph and its transformation into a
multilayer network. Red nodes on the left side define three hyperlinks (H;, Hy, and Hs),
each of which corresponds to a layer consisting of a complete graph of its nodes.
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The classical example is that of a social network, where the different groups can be
linked through some of their members, but also two people who know the same person
do not necessarily know each other, since they may belong to entirely different groups
or levels. Modelling this situation with hypernetworks, the main problem regarding
systems with mesoscale structures is that they are node-based models, while many
real systems combine a node-based point of view with a link-based perspective. On the
other hand, as underlined in (64), multiplex networks have intrinsically a mesostructure,
called interslice or interlayer coupling, which connects a node of a specific slice or layer
to its copy in another layer. The mathematical formulation of multiplex networks has
been recently developed through many works (65, 69, 70, 71). A considerable amount
of effort has been devoted to the characterisation and modelling of multiplex networks,
proposing a number of measures in various contexts of real-world multiplex networks,
such as air transportation systems (65). Some other works are pointing towards a sta-
tistical mechanics formulation of multiplex networks (69)(see 3.4.6), to the extension
of classical network metrics to the case of multiplexes (65) (see 3.4.1, 3.4.2, 3.4.3, 3.4.5,
3.4.4), and to model the growth of such systems (72). Finally, other works aim at
characterising the dynamics and the emergent properties of multi-layer systems, espe-
cially with respect to epidemic and information spreading (70), cooperation (8, 71, 73),
synchronisation (74), diffusion processes (75) and random walks on multiplex networks
(64). In (65) a comprehensive formalism and many structural measures on multiplex
systems are proposed, thus allowing to characterise multiplex systems with respect to
node degree, edge overlap, node participation to different layers, clustering coefficient,
reachability, betweenness, closeness and eigenvector centralities. A review in this field
can be found in (58) and in (7).

In the following section, we are going to describe some of these key measures, starting
from the traditional properties of monoplex structures and extending their definition

to the context of multilayer networks and multiplex networks.
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3.4 Structural measures and properties in multilayer and
multiplex networks

3.4.1 Spectral properties

In general, the analysis of the spectral properties of the adjacency and Laplacian matri-
ces of a network allows gaining insights into its structure and dynamics (4). Therefore,
also in the case of multilayer networks, the introduction of suitable matrix represen-
tations enables the deep understanding of dynamics on top of complex networks and
capturing the specific role of multilayer and multiplex topologies. Given a multilayer
network M, to analyse its dynamics and spectral properties, we can use the adjacency
matrix A% of each layer G, the adjacency matrix of the projection network Apy; and,
most of all, the supra-adjacency matrix Ay, whose spectrum is directly related to sev-
eral dynamical processes occurring on the multilayer network.

In (6), the authors introduce the mathematical concept of quotient graph, which under-
pins the notion of multilayer network and gives crucial insights into the structure and
spectral properties of the network. In fact, applying interlacing of eigenvalues of quo-
tients of matrices, they show how the pattern of connections between layers constraints
the dynamics on the whole system. A network q