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Abstract

Nature shows as human beings live and grow inside social structures. This

assumption allows explaining and exploring how it may shape most of our

behaviours and choices, and why we are not just blindly driven by instincts:

our decisions are based on more complex cognitive reasons, based on our

connectedness on different spaces. Thus, human cooperation emerges from

this complex nature of social network. One of the main aims of my Ph.D.

dissertation is to explore how and why it happens, hence the work is mainly

focused on studying the evolutionary dynamics of cooperation and social be-

haviours on a multilayer social network. Following a Bio-inspired approach,

the social network analysis methodologies, and exploiting the mathematical

framework of Evolutionary Game Theory (EGT), the target is to unveil

the hidden dynamics, observe non-trivial patterns, finding out the hidden

emergent behaviours in a population. The study of cooperation and its evo-

lutionary dynamics on a social network, has raised up the need of a model

able to explain the actual complexity of real-world networks, where individ-

uals are connected through multiple types of relationships. For this reason,

the mathematical framework of multilayer networks has been exploited, in-

deed it allows us to encompass these several interactions and relationships,

exploring and unveiling how the different ties in the various layers can im-

pact on the emergence of social behaviours in a population. Therefore, the

presence of the same nodes in multiple layers of a system, known as mul-

tiplexity, is the key to understand emergent phenomena, adding an extra

dimension of analysis which explains what is the role not only of the in-

tralayer interactions, as in a single-layer framework, but also of interlayer

interactions for the emergence of these phenomena. Furthermore, it is ex-

plored and quantified the role of some shaping factors, such as homophily,

in this evolutionary process. Taking into account all these aspects, a novel



analytical model is proposed, together with a simulative investigation of the

evolution of human cooperation using mutliplex evolutionary game theory,

shedding light on the key role played by homophily and multiplexity in the

evolution of cooperation.

Furthermore, the analysis of social behaviours in a multilayer network, along

with the large amount of available data, the Big Data revolution, is also

exploited to design a novel multilayer structure in healthcare context, giv-

ing rise to a smart healthcare system. In fact, together with the multidi-

mensional approach to comorbidity, the inclusion of a social dimension of

analysis allows finding out correlations and causality relations between dis-

eases and patients also considering the connectedness and social contagion

processes. In this way, we obtain an evolution from data to multi-agents

through the introduction of personalised medicine in a multilayer architec-

ture. The multilayer paradigm is built up on a health mining approach,

which introduces methodologies for fusing, integrating and drawing infer-

ence from a plurality of heterogneous data, extracted from different sources,

creating a complex data type, containing all the information enclosed in the

various dimensions. The introduction of a social dimension in healthcare,

the study of the evolution of behaviours, the social networking, Big Data

and ICT strategies, considering a multilayer structure, allow extracting an

“organised” knowledge, which connects, relates and computes all the facets

of healthcare data. The Bio-inspired and the social network evolution, based

on the organised knowledge, provides the basis for a new Bio-inspired Infor-

mation and Communication Technology (ICT) paradigm, enclosing social,

human, and cognitive aspects, other than the self-capabilities and context-

awareness. Nodes and data enclose all these features, and the social multi-

layer network allows us to analyse the complex dynamic patterns involving

these entities, highlighting the impact of social interactions and contagion

processes, and increasing the overall level of awareness, from simple things

to knowledge through the social objects. ICT interventions are the result

of the multilayer analysis, the context and the system as a whole. This

evolution process leads to a bio-inspired network-driven ICT, re-designing

the ICT communication paradigm.
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Chapter 1

Introduction

1.1 Evolution of Social Behaviours on Multilayer Net-

works: An Overview

One of the main properties of a complex system is that a large number of simple ele-

ments gives rise to collective phenomena impossible to predict or anticipate considering

an individual unit. Ant colonies, biological systems, social networks are some examples

of the emergent complexity. It raises up the following question: what is behind the

emergent complexity? What are the mechanisms allowing to transform people into

complex societies or simple cells into a complex entity? The answer is the connected-

ness of the simple units, forming a more complex entity, which is more than just the

sum of their parts, known as network. In the last decades, we have witnessed with an

incredible development of data-driven mathematical models, which have created a new

discipline, named ‘network science’ (1). Network theory has demonstrated to be the

most suitable way to investigate the structural patterns of the interactions among the

constituent elements of a variety of complex systems, also composed by a large number

of elements, such as social networks, the brain and biological networks (2, 3, 4, 5).

Analysing the spectral properties of the adjacency and Laplacian matrix of a network

is possible to gain insight on the structure and dynamics occurring on the network

(6). In recent years, a vast literature has witnessed with the development of tools and

models to get a better understanding of how these networks may evolve. A lot of work

has focused on social network properties and dynamics and, thanks to the technolog-

ical advances with regards to real data acquisition both from real and online social

networks, nowadays there is the availability of a huge quantity of data, called as Big

1
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Data, which is expected even to grow in the next decades. The increasing resolution of

data gathering techniques allows capturing new properties of the interaction patterns

in complex systems, including the spatial, temporal and multiplex nature of interaction

networks.

In fact, advances in the complex systems field have underlined that, in order to gain

insight on the complexity of the large variety of systems, the description in terms of

single networks is an oversimplification, which fails into capturing the dynamics of net-

work patterns deriving from the simultaneous interactions of more than just the one

network. For this reason, multilayer networks have been introduced, distinguishing the

different kinds and channels of interactions between nodes through the layers. Depend-

ing on the interaction between the different systems or layers, we can discern different

types of multilayer networks, e.g. multiplex networks are composed by the same nodes

interacting trough different layers. Multilayer networks and their structural and dynam-

ical features, have greatly attracted the interest in network science recently, resulting

in a number of works about the structure and dynamics of multilayer and multiplex

networks (7), demonstrating that the behaviour of interacting complex systems is very

different from a simple combination of the isolated cases (6). An individual’s behaviour

can be different in each layer, even if it is conditioned by all of them (8).

Network science and multilayer networks allow describing interactions among non-

trivial and complex entities, such as humans in a social network. But, what kind

of behaviours may emerge from these interactions in a social network? Is it possible to

solve the human conflict between the benefit of the single individual and that one of

the population, such as risking one’s life to save a stranger, or finding an equilibrium

among the interests that enable them to cooperate toward a common good?

This pushed my motivation to study a standard approach used to solve such situations:

Game Theory. Game Theory has been applied to various fields, from economy to biol-

ogy, other than in computer science, such as communication networks, security, power

control issues in wireless scenarios, distributed systems (e.g. peer-to-peer networks),

artificial intelligence, where agents have to negotiate between them in order to coor-

dinate a collective action. It allows modelling those situations where the individual

behaviours and decisions affect the outcomes of others in the same environment, that is

the conflictual scenarios where there is a strategic behavioural interdependence among

individuals, affecting the dynamics of behaviours. The analysis of the dynamic patterns

2
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raises the challenge of the evolution of cooperation and how it can evolve and survive in

various scenarios. Cooperation is the act where individuals can contribute something,

at a cost to themselves, to provide a benefit for others. It is a widespread phenomenon

in natural and social systems, but not fully-understood mainly due to its complexity.

Cooperation, representing the most important challenge to Darwin’s theory of evolu-

tion, is crucial to understand the evolutionary dynamics and transitions that lead from

single-cell organisms to complex animal and human societies. Thus, understanding

the evolution of cooperation remains a key challenge attracting the interest of research

across the social and natural sciences.

To address the conundrum of human cooperation and understand the evolution of social

behaviours within a population in networks, it is important to have a mathematical

framework to capture these underlying mechanisms. Evolutionary Game Theory (EGT)

provides a powerful theoretical framework to investigate strategic choices in a huge va-

riety of complex systems (9). Despite the numerous application areas, however, the

main fundamental problem that is studied in the realm of EGT is the exploration of

the evolution of cooperation (10, 11) and cooperative behaviours in systems consisting

of competitive individuals (12, 13, 14). EGT allows studying interactions of multiple

nodes in a population, and find out the hidden dynamics, shedding light on how and

why some behaviours emerge following a specific pattern, and which behaviours are able

to persist in the population and those having a tendency to be driven out by others.

To describe and study the problem of evolution of cooperation, the social dilemmas,

such as Prisoner’s Dilemma Game (PDG), are typically used (15). Social dilemmas

represent situations where individuals face the conflictual situations between what is

best for them and what is best for the society. In the Prisoner’s dilemma, at each

instance two players have to decide simultaneously whether they want to cooperate or

defect. The dilemma is given by the fact that although mutual cooperation yields the

highest collective payoff a defector will do better if the opponent decides to cooperate.

A lot of research has been devoted to the identification of mechanisms that may lead

to a cooperative resolution of social dilemmas, such as kin selection, direct and indirect

reciprocity, network reciprocity, as well as group selection (16).

Humans are part of different social networks and live inside them. This could have im-

portant consequences for the evolutionary dynamics of social behaviours, mainly due

to the multilayer nature of their adopted strategies. The presence of nodes in multiple

3
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layers of a system, together with their social connectedness, is the key to understand

emergent phenomena and how the evolution of cooperation can work on top of this

multilayer structure. One of the main targets becomes to try to answer some key open

challenges, such as: how did the selfish process of natural selection gives rise to co-

operation? how might social interactions can give a boost to cooperative behaviour?

Despite some studies in EGT have already shed light on the promotion of cooperation

(10, 11, 17, 18), the puzzle between the Darwinian fundamental assumptions of natural

selection described in “The Origin of Species”, for which “only the fittest survive” and

the cooperation observed in human and animal societies remains unsolved (19).

1.2 Research Questions

This Ph.D. dissertation addresses the issue of evolutionary dynamics of social be-

haviours on multilayer networks. Thus, how evolutionary game theory and multilayer

social networks, with its structural and dynamical features and considering the different

kinds and channels of social interactions between nodes, can improve the investigation

of the emergent dynamics of behaviours in a population. The novel approach is cru-

cial to improve the analysis of evolutionary dynamics and addresses the following main

research questions:

• Some of the main requirements of an Information and Communication Technol-

ogy (ICT) system, such as the high complexity and connectivity, the reliability,

the growing information load, risk management and energy-saving issues, under

conditions of limited computational resources, limited time constraints and low

overall knowledge, claim for a new modeling approach, able to face all these needs,

getting a “satisficing” or sub-optimal solution. If, at a first glance, it might seem

strange to look at biology as an inspiration for research related to networking

and ICT fields, however, the two research fields show a deeper connection than

one might expect. In fact, the Internet and, more in general ICT, has a lot of

features very close to those of biological systems (20). To what extent can

biological processes and models inspire the analysis and management

of the complexity of the ICT systems, increasing knowledge and trying

to solve also the associated computational problems?
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• Real-world complex systems, such as social networks, suggest how nodes or agents

usually interact using different ways and channels, thus a single layer network is

not enough to represent and describe the complex set of multiple interactions

between different networks. For instance, a social network can be described as a

set of people who interact through some patterns. In general, the connections,

which identify relationships between nodes on a network, have been considered at

the same level. However, in a real context, this assumption is not true. In fact,

in a real social network, different and not mutually exclusive relationships can be

considered between the same two people (e.g. friends, relatives, colleagues, etc.),

therefore the actual interactions and relationships cover different levels or layers.

This concept introduces a new point of view of the social network analysis, and

shows how the nodes and their relationships must be considered and weighed on

different contexts (or layers) and, at the same time, the weight of their decisions

and their behaviours has an impact on so many different levels. In order to gain a

better understanding of the complexity and how these complex systems function

and evolve, multilayer networks become the more popular and natural paradigm.

What are the main properties and features of multilayer networks?

How can multilayer networks help to represent and investigate the

dynamics and patterns of real-world networks?

• ICT systems are continuously changing as a result of innovation, the increasing

connectedness and the large amount of data. The Big Data revolution requires

novel ICT models and paradigms, and poses new issues and challenges, in terms of

heterogeneity and computational analysis. This is affecting not only the technolo-

gies, but also human, social and economic aspects. Furthermore, the introduction

of the Internet of Things (IoT) paradigm has transformed simple things in inter-

connected smart objects, able to measure, monitor, detect events and human

activities, understand and cooperate in order to solve a problem. In the era of

high connectedness, users are becoming more active in interacting, sharing and

collaborating, through social networks. In this way, this process produces a col-

lective intelligence, spread out in many different areas and related to networks’

phenomena. Despite the huge amount of heterogeneous data to be anal-

ysed, the increased connectedness and complexity of social networks,

5



1.2 Research Questions

how can ICT systems and models be able to manage them, capturing

the complex dynamic patterns, and increasing both performance and

context-awareness?

• The issue of model and explore individual and social behaviours in a context

or setting where the outcomes depend on the behaviour of others, is fundamen-

tal and become also more interesting in network contexts. Furthermore, the

increased number of nodes in networks and the multilayer description of inter-

actions through many different layers, make the setting even more complex and

difficult to analyse and model analytically. The study of the dynamic evolu-

tionary patterns emerging from these complex systems represents an even more

challenging question. What is the more suitable mathematical formalisa-

tion to analyse social interactions and behaviours? What are its main

properties and features? What are the behaviours having the ability

to persist in the population, and which ones instead have a tendency

to be driven out by others?

• Humans tend to cooperate building complex societies, as well as predators hunt

in groups to catch more preys as possible (8). More in general, cooperation

is an act where individuals can contribute something, at a cost to themselves,

to provide a benefit for others. We can find situations where this kind of act

can arise at almost every layer of human societies and also in the animal world.

Many models and mechanisms have been proposed to explain the emergence and

evolution of cooperation by studying interactions in a population. Nevertheless,

the evolution of cooperation among individuals remains an unsolved puzzle: it has

being observed since ancient times but, only in the recent years, a lot of research

efforts have been done trying to understand and deepen the origin inside social

networks. A vast literature on the evolution of cooperation on complex networks

(19, 21, 22, 23) highlights many aspects which offer insights on how cooperation

can evolve and survive in different scenarios (24, 25, 26). To study cooperation

and its evolutionary dynamics, we need to understand the impact of the structure

and the nature of social relationships among individuals. Therefore, how did

the selfish process of natural selection, described by Charles Darwin,

gives rise to cooperation? How might social interactions can give a
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boost to cooperative behaviour? And what may be the role of a linkage

polariser, such as homophily, in this evolutionary process?

1.3 Methodology

I focused my research on an interdisciplinary approach, since I believe that the best

ideas should address topics and issues from different fields, combining two or more

academic fields in an innovative way, overcoming the traditional boundaries between

apparently disconnected research areas. This methodology gave me the advantage of

covering many research topics and obviously facing with many interesting issues, whose

meaning can be revealed only breaking down barriers and thinking them as one largest

and most complex issue.

In particular, I started my Ph.D. in Systems Engineering pushed by curiosity and desire

to deepen the bio-inspired approach and algorithms, which were issues I dealt with

during my MSc thesis. I studied and proposed a novel bio-inspired model for converged

networks (e.g. NGN, NWGN, based on self-organisation and biodiversity. The idea

was to exploit biodiversity to design a multilayer approach to security, introducing a

self-protecting module in each node and an architecture consisting of three security

layers (node, community and ecosystem), suitable to increase the security degree of the

emerging paradigm of networks. The MSc thesis experience allowed me to investigate

a huge variety of bio-inspired models and I was really wondered and fascinated by

how such microscopic interactions could affect macroscopically the system with good

performance. In particular, how the interactions of many simple self-organised agents,

for instance imitating the behaviour of bees or ants (e.g. swarm intelligence), were able

to push towards a sub-optimal solution, thanks to the emerging intelligence from these

interactions of many simple agents.

Then, I began asking myself a number of questions about studying and analysing these

interactions among entities: one of the main targets became to study and focus on what

could it happen when the interaction is among non-trivial and complex entities, such

as humans within a social network. What kind of behaviours can emerge from these

interactions in a social network? Is it possible to solve the human conflict between the

benefit of the single individual and that one of the population, such as risking one’s life

to save a stranger, or finding an equilibrium among the interests that enable them to
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cooperate toward a common good? This raised up my interest in studying a standard

approach used to solve such situations: Game Theory. On the other hand, the idea

to better understand the dynamics of interactions in human societies led me to focus

on exploring properties and dynamics of social networks. Social network analytics

(27, 28, 29, 30) and the availability of a huge amount of data and simultaneously

the technological advances with regards to data acquisition both from real and online

social networks, enabled to investigate dynamic patterns and the evolution of social

behaviours, such as human cooperation, in various scenarios. To better understand the

evolution of social behaviours and, in particular, human cooperation in a population

in a social network, I decided to concentrate upon the mathematical framework of

Evolutionary Game Theory, able to capture the underlying mechanisms and the hidden

dynamics, and shedding light on how and why some behaviours emerge following a

specific pattern. To deal with the complexity of social interactions, I started exploiting

the paradigm of multilayer networks, since the presence of nodes in multiple layers of

a system is the key to understand emergent phenomena, adding an extra dimension

explaining what is the role not only of the intralayer interactions, as in a monoplex

framework, but also of interlayer interactions for the emergence of these phenomena.

The final target of my research is to study social behaviours, analyse the emergence

and their evolution on a multilayer network. To do this, first I searched, studied and

evaluated numerous scientific contributions, related to the different issues involved in

this field. The following is a list of my research keywords, corresponding to the topics of

interest that I have studied during my Ph.D. and on which I’m going to focus also in the

next future. The following is a list of the main macro-areas of this Ph.D. dissertation:

• Bio-Inspired ICT

• Multilayer networks

• Social networks

• Game Theory and Evolutionary Game Theory (EGT)

• Human cooperation

• Multiplex EGT
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My research work has been articulated over the years in different and logically linked

steps. I started my Ph.D. using a bio-inspired approach applied to ICT, then I exploited

multilayer networks, social networks methodologies and game-theoretic approach to

describe the complexity of the real-world scenarions, and study interactions among

individuals. In particular, I focused on human cooperation issue and, through multiplex

EGT, I have quantified the role of multiplexity and of homophily, as a shaping factor

of social interactions, in the emergence of cooperation in a population.

1.4 Dissertation Outline

The structure of this Ph.D. dissertation is as follows:

1. Chapter 2 discusses the main concepts of bio-inspired approach and algorithms,

and shows how the interplay between bio-inspired approach and Information and

Communication Technology (ICT) gives the opportunity to use algorithms, tools

and analytical models able to optimise and improve the design and management

of methodologies proper of traditional vision of ICT. A bio-inspired approach

allows solving certain problems and meet specific requirements, such as reliability,

information load, risk management and energy saving, under conditions of limited

computational resources, time constraints and low overall knowledge. To prove

the importance of a bio-inspired approach to ICT, two algorithms for Wireless

Sensor Networks (WSNs), both based on heuristics, are proposed, respectively an

IoTs clustering algorithm (IMLM) and a energy-aware routing algorithm.

2. Chapter 3 reviews the main structural notions, models, properties and mea-

sures of the mathematical framework of multilayer networks. At the beginning,

the motivations behind the transition from Single- to Multi-layer Networks are

explained. In fact, multilayer networks are a recent mathematical framework

which has been introduced to explain and understand the complexity of a huge

variety of real-world systems, since single networks are not enough to describe

the complex set of interactions between different networks. Some representative

examples of the major constraints of the traditional single networks are presented,

stressing the importance to use a multilayer approach. Finally, in the second part

is focused on the structural properties and measures in multilayer and multiplex

networks.
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3. Chapter 4, leveraging the bio-inspired approach to ICT, deals with the Big Data

and the data-intensive computing issues in the future vision of a smart healthcare.

To this aim, a multidimensional approach to comorbidity and the introduction of

a social dimension of analysis, allow finding out correlations and causality rela-

tions between diseases and patients also considering the connectedness and social

contagion processes. The proposed multilayer architecture represents an evolu-

tion from data to multi-agents through the introduction of personalised medicine,

giving rise to a smart healthcare paradigm. The last part is devoted to present the

bio-inspired and social evolution of nodes and data in a multilayer network, with

an increasing level of awareness, and the development of an organised knowledge.

4. Chapter 5 focuses on game theory, a mathematical tool able to describe and

analyse the strategically interdependent interactions among individuals. In par-

ticular, the first part of the chapter is intended to define some of the main no-

tions underlying the classical game theory, while the second part deals with the

framework of Evolutionary Game Theory, allowing to explore the evolutionary

dynamics of behaviours in a population.

5. Chapter 6 represents the main focus of this dissertation, joining the mathe-

matical frameworks of multiplex networks and EGT, the bio-inspired approach

and the social network analysis methodologies, in order to find out the hidden

emergent behaviours within a population across network layers. The investiga-

tion of evolutionary dynamics through Evolutionary Game Theory on multiplex

networks allows unveiling and studying the existing social conflicts and dilemmas

among the interests of the single nodes and groups, their counterparts in various

layers, not neglecting what is captured from homophily, the patterns of similarity

and dissimilarity. The simulations, conducted both macroscopically and micro-

scopically across the network layers in the multiplex, show quantitatively the role

of homophily in human cooperation.

6. Chapter 7 concludes by revisiting the research questions posed in Sect. 1.2, and

summing up the main contributions of this dissertation, other than highlighting

some key aspects to be investigated in the future research.
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Chapter 2

Bio-Inspired ICT

2.1 Introduction

The potential consequences that may arise as a result of innovation and widespread of

future Information and Communication Technologies (ICTs) are raising up the interest

in this research field. ICT should be planned and designed to conduct almost any ac-

tivity which involves logical strategies and operations in a variety of application areas.

ICTs, represented in services, logical strategies, infrastructures, methodologies, inter-

ventions and platforms, are expected to contribute to the realisation of a sustainable

and smart society, because of its strong influence and impact on the environmental,

social, economic and technology aspects of our lives. Biological systems act as an inspi-

ration for research related to networking and ICT fields, in fact the two research fields

show a deeper connection than one might expect. In fact, the Internet, and more in

general ICT, has a lot of features very close to those of biological systems (20). The

natural world is enormous, dynamic, heterogeneous and highly complex. Nevertheless,

biological organisms are able to survive, self-organise, and evolve in a such a complex

and challenging world, exploiting only the local knowledge, and not with a centralised

control. A continuously increasing and similar complexity is experienced by computer

networks, since they are becoming larger and more interconnected, even if the same

extent of robustness, adaptability, and scalability is reached. A lot of research efforts

have been made on studying these analogies between the two worlds, and evaluated if

there are some concepts and approaches to be derived from biological systems. Future

ICT requires an innovation in terms of novel architectures, capable of integrating high
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computational capabilities, extracting knowledge from data and from smart communi-

cations, social-based networking, and developing context-aware platforms. Information

Systems (IS) engineering technologies are increasingly becoming embedded into our

job and home lives, creating a complex interdependence between people and technol-

ogy since individuals and groups communicate, collaborate and exchange knowledge

through a variety of ICT systems (31). ICT may be seen as the technical aspect of the

socio-technical systems which are used in society and organisations (31).

Research and innovation in some topics such as Big Data, data-intensive computing,

context-awareness, social networking, provide the basis for the future challenges of

ICT. Traditionally the research, design, and applications in the ICT field involve the

development of methodologies and tools, and it is characterised by features meant to

support specific tasks, linked to specific contexts of technologies. The complexity be-

yond the new issues, for example, the heterogeneity of data and objects, the multitude

of information sources, the high connectedness, complexity of systems and the related

intensive computing, requires to transform the basis of ICT following the real compu-

tational nature of world around us. The plurality of resources in terms of data, nodes,

communication paradigms and smart infrastructures, should coexist in the same space

and merges coherently in order to produce knowledge, as the real representation of

world needs and behaviours. ICT solutions, if wisely applied, may increase the success

of organisations, the efficiency and transparency of governments (32).

The impact of ICT on enhancing the quality of services and decreasing the overall costs

has been the focus of numerous studies in the last two decades (32). This confirms the

importance which covers the ICT on following the evolutionary trends on social, eco-

nomic and technological aspects. Through its influence and the resulting impact, ICT

should be able to mine and convey knowledge into practices and methods to improve

the performance of tasks related to growing scientific and socio-economic interests. The

challenge of ICT is to extract knowledge as best as possible from information sources,

by using the actual technologies and analysing the real world scenarios, translating

everything into actions, interventions, strategies and innovative platforms, addressing

to the complex systems as well as users.

The bio-inspired approach, when applied to ICT, gives the opportunity to use algo-

rithms, tools and analytical models to optimise and improve the design and manage-

ment of methodologies proper of traditional vision of ICT. This could introduce a new
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assessment perspective, considering innovative approaches and, at the same time, new

challenges linked to the new issue of finding suitable models to evaluate and translate

into computational terms the need to extract as much knowledge as possible from the

systems we know. The target is to make this knowledge available to those who have

to design ICT interventions and services, considering the multitude of resources, in

terms of data and sources, computational limits and social dynamics. ICT systems

are evolving toward innovative approaches by investing more on developing new fields

such as context-aware, social networking, multilayer networks, evolutionary game the-

ory, smart mobility, dynamic complex systems, personalisation of models and services,

smart platforms and services, with the aim of providing, not only good user experiences

and user expectations, but for the future, also the profiling of all his features. The goal

of the research for the future ICT, by drawing inspiration from bio-inspired models, is

to rewrite and redesign networks nodes, as information sources, and data, as packet

information of global knowledge, finding consistency starting from the heterogeneity,

ubiquity, dynamicity of the new social-based complex systems.

2.2 Bio-inspired and ICT: analogies and interplay

Surprisingly, ICT and biological systems have a lot of common features (20). One of the

analogies, for instance, is related to the similar architecture, as the “hourglass” model,

typical of Internet protocol stack, has a structure close to many biological systems.

In the hourglass model, one layer exploits the set of lower layer protocols but, at the

same time, protocols that run on top provide new additional information and functions

exploited by the above layers in the stack. In a biological system, for instance, bacteria

eat severe different nutrients; all of these nutrients contain some or all of the raw build-

ing blocks needed to power a bacterial cell, even if a bacterium must first metabolize

these nutrients before using them, reassembling the building blocks into the multitude

of complex macromolecules required for survival.

As well as it is almost impossible to build a different version of application layer

adapted to a different physical layer technology, it would be unthinkable to use dif-

ferent metabolic processes to convert nutrients to the macromolecules it needs. In

analogy with the Internet model, all nutrients are converted into a small number of
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common currencies. These currencies are then used to build the large number of com-

plex macromolecules required to power the cell. Considering the hourglass metaphor,

the so-called “bow tie” structure is a nearly universal feature of complex systems. The

acknowledgement mechanism ensembles a form of integral feedback: it allows regulat-

ing the transmission speed of packets through the Internet. Biological systems use an

analogous type of feedback to rule various processes between cells, e.g. bacteria rule the

speed and direction of movement when tracking the concentration of certain chemicals

in their environment (20).

Other significant similarities emerge taking into consideration both social networks and

biological systems, as they represent two examples of complex systems. We find a lot

of entities (nodes, proteins, etc.), connected to each other in several ways and also for

very different reasons. They interact using both weak and strong ties (33), inducing

some other actions inside the communities they belong to and, more in general, also in

whole network. Furthermore, both the Internet and biological systems are large scale

networks, and they show a complex, strictly organised internal structure. The human

body has many different organs and physiological systems, each of which serves a spe-

cific target. The Internet also contains a number of specialised devices: in the core

network the high speed routers forward data in a highly optimised manner, while at

the edges of the network there are application-oriented devices, such as laptop comput-

ers and cellular phones. As well as an high-speed router is very important to forward

an important message through the network, the kidney is fundamental in oxygenating

your blood. In addition, complex systems are robust against perturbations or expected

failures but not if we consider an unexpected one. In particular, interdependent sys-

tems increase their vulnerability and become increasingly prone to cascade failures due

to the coupling factor between the different blocks or layers they consist of (34). A

social network tends to emphasize the significance of a particular event when it has a

great spreading factor; similarly, a biological system shows an extremely high vulnera-

bility when, for example, a disease is able to travel quickly corrupting the body cells,

involving different organs.

The analogies between the biological and networking systems has been exploited in

so many different research fields, such as social insects (35), artificial immune systems,

the fireflies synchronisation, the transport networks inspired by physarum polycephalum,
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Figure 2.1: Bio-inspired Engineering. Steps needed to adapt biological mechanisms

to technical engineered solutions.

epidemic spreading models, etc. Therefore, examining some of the most common struc-

tures and algorithms used in telecommunications networks, it is easy to find out striking

analogies with the biological systems. In fact, the evidence suggests that Nature and

engineers not only have to solve similar problems but regardless they come to surpris-

ingly similar solutions. Thus, it seems completely reasonable that networking issues

may have much in common with those that biology has already encountered and solved

a long time ago. The idea is to study deeply the biological systems since they may

inspire very interesting solutions to networking and ICT problems.

To develop bio-inspired models and algorithms, we need to shed light on the general

modelling approaches. The first modelling approaches date back to the early 1970s.

Since then a lot of technical solutions mimicking biological counterparts have been

developed. Fig. 2.1 illustrates the bio-inspired methodology.

The first step is to identify the analogies between biological and networking systems,

that is which structures and methods seem to be similar. The second step consists

of creating detailed models for the biological behaviour which will later be used to

develop the technical solution. The third step is the translation from biological models

into a model describing the bio-inspired technical system, and the engineering of the

biological models, which includes the model’s simplification and tuning for the specific

application.

Furthermore, we can distinguish the following categories of bio-inspired solutions to

issues related to computation and communication:

• Bio-inspired computing : it represents a class of algorithms focused on efficient

computing techniques, for instance for optimisation processes and pattern recog-

nition.
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• Bio-inspired systems : they constitute a class of system architectures for dis-

tributed systems in massive and collaborative way, e.g. distributed sensing and

exploration.

• Bio-inspired networking : it consists of a class of strategies to obtain a scalable

networking under uncertain conditions, e.g. for the autonomous organisation in

massively distributed systems.

Exploiting the biological principles, several application domains in networking can

be distinguished. The following is a list some of the main biological domains and the

correspondent networking applications and algorithms:

• Swarm intelligence - distributed search and optimisation; routing in computer

networks,( e.g. MANETs, WSNs, etc.); task and resource allocation.

• Firefly synchronisation - Robust and fully distributed clock synchronisation;

• Activatorinhibitor systems - Self-organisation of autonomous systems;

• Artificial immune system - Network security and anomaly detection;

• Epidemic spreading - Analysis of worm and virus spreading in the Internet;

• Cellular signaling networks - Coordination and control in massively distributed

systems;

Another important property of the bio-inspired algorithms related to communica-

tion and coordination is that we may identify similarities between techniques studied

at a microscopic layer, such as cells and pathways between cells, and the techniques

observed at a macroscopic layer, such as the coordination among people in a group

or all over the world (35). In other words, many models show similar features both

at microscopic and macroscopic layers, and exploit analogous coordination and com-

munication mechanisms (see Fig. 2.2). This further degree of similarity allows using

existing communication models in other domains, e.g. the mathematical models of pro-

teins’ spreading between cells may be considered equal to the virus spreading through-

out people, so the problem is to choose the proper biological model as inspiration to
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Figure 2.2: Bio-inspired approach. Figure illustrates communication and coordination

at microscopic and macroscopic levels, showing the information exchange within a cell,

between cells, within the human body, among people, and around the globe.

solve a technical network or social problem, otherwise, if the matching is not correctly

identified, the solution may result limited in terms of functionality or effectiveness.

As stated in the previous subsection, ICT represents the project, the development,

the implementation, the support and the management of information systems through

telecommunications systems, therefore ICT constitutes a fundamental resource in the

modern organisations, where it becomes increasingly more important to manage and

use quickly and efficiently the large amount of data and the growing volume of infor-

mation. Although the complexity, dynamicity and the diversity of the Nature, and the

great problems related to the survival in the world, the biological organisms are able

to evolve, self-organize, self-repair, and self-protect. To realise all these aspects, they

leverage their knowledge and they have not any centralised control entity. Similarly,

the entities in a network are growing in number and are becoming more and more

connected, so they may mimic the robustness and the adaptiveness of the biological

systems. Many research works have underlined how we can learn from the Nature. For

this reason, bio-inspired research in ICT field is a growing research field.

Some of the main requirements of an ICT system, such as the high complexity and con-
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nectivity, the reliability, the growing information load, risk management and energy-

saving issues, under conditions of limited computational resources, time constraints

and a low overall knowledge, claim for a new modelling approach, able to face all these

needs, getting a satisficing or sub-optimal solution. A bio-inspired approach allows

solving certain problems and meet these specific ICT requirements. As we will see in

the next sections, such kind of approach has been used as a model that relates the coop-

eration of multi-agent systems, the intelligence of the node, according to the paradigm

of Internet of Things (IoT), and also the satisficing concept of heuristic decisions. What

are the analogies between our system and a biological scenario? A biological system is

characterised by the following features: high complexity; high connectivity; communi-

cation, cooperation and coordination; relation with other systems of the same nature;

relation and communication with external environment.

Therefore, it is clear how a networked system (e.g. social network, energy-aware WSN,

etc.), is a complex system similar to a biological one. Following the Dressler’s approach,

the first step is to focus on identification of mechanisms and models applicable to bio-

logical technical solutions for ICT systems. The biological approach makes it possible

to give methodologies, algorithms and models useful to optimise and improve the de-

sign and management of traditional issues related to ICT systems, but also to evaluate

new points of view which consider issues that previously have never been taken into

account. The biological approach has the advantage of being found in Nature, and the

Nature shows us the operation and the performance of certain processes (35). ICT

systems have been evolved following innovative approaches by investing more on de-

veloping new fields such as context-awareness, social networks and mobile, dynamic

adaptive complex systems, smart platforms, models and services for personalisation,

providing the best user experience and user expectation. The user could be viewed as

a transfiguration of knowledge, communication skills and cognitive ability. Also the

behaviour of the nodes of a network, representing human beings, follows its human fea-

tures, socio-psychological traits, involving cognitivity, awareness, contagiousness etc.

One of the aims of future ICT networks is to redesigning network nodes, since a node is

becomes a sort of “bio-shell” of the user, trying to reduce the gap existing between the

network node and the human user. The node acquires cognitive skills, user’s habits,

understands the context in which it is located, and predicts behaviours and reactions,

acquires the ability to make inferences and decides based on contexts, perceived risks
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and manages the interactions and social relations, from workplace to everyday life.

The node acquires more human features and, locating at the center of a truly pervasive

network, it becomes a really “smart subject”. A collection of nodes, connected with

strong and weak ties (33), forms a network of smart subjects able to interact within a

community or among different communities. The structure of the social network will

determine the dynamics of diffusion and relationships. The bio-inspired approach rep-

resents the way to guide and inspire strategy for rethinking and redesigning ICT. In the

next sections, we will see in detail the importance of joining the bio-inspired approach

with ICT. In particular, we will focus on two bio-inspired algorithms, applied to IoT

and WSNs, based on the concept of heuristics.

2.2.1 Heuristics

One of the most interesting and promising area in computer science is the design of

algorithms and computer architectures based on our reasoning process and on how the

brain works. Human neural circuits receive, encode and analyse the “available infor-

mation” from the environment in a fast, reliable and economical way.

The evolution of human cognition could be seen as the result of a continuous improve-

ment of neural structures which drive the decision-making processes from the inputs

to the final behaviours, cognitions and emotions. Heuristics are simple, efficient rules,

hard-coded by evolutionary processes or learned, which have been proposed to explain

how people make decisions and solve also complex problems under limited knowledge or

incomplete information. It is common experience that the majority of human reasoning

and decision making can be modelled by fast and frugal heuristics that make inferences

with limited time and knowledge. For example, Darwin’s deliberation over whether

to marry represents an interesting example of such heuristic process. In other words,

heuristics suggests the inability to achieve the complexity of the traditional models of

rationality and a heuristic approach is a solution to the problems, even if complex, that

do not rely on a clear path but rely on intuition upon temporary circumstances in order

to generate a decision or a reasoning.

The concept of heuristics is the result of a lot of research works on the mechanisms

which rule decisions about uncertainty (36). The basic idea in these works is that “peo-

ple rely on a limited number of heuristic principles which reduce the complex tasks of
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assessing probabilities and predicting values to simpler judgmental operations”. Al-

though representing a valid rule, D. Kahneman and A. Twersky have underlined also

how it is prone to sistematic errors, following a certain statistical distribution, which

makes it possible to describe and predict them. Heuristics have impacted in different re-

search fields, among them human-machine interactions, in particular it has been proved

useful for understanding human logic (37), since it allows studying human behaviour

in human-computer interactions, empowering the analysis and helping in designing re-

lated architectures and algorithms. As stated in (36), the following are three main

mechanisms underlying heuristics are: availability, representativeness and anchoring.

Availability refers to the probability of relying more upon knowledge readily available

rather than examining other alternatives. For instance, people evaluate the probability

of an event according to the occurrences among their acquaintances, thus it constitutes

a useful clue, even though it could be affected by some factors, such as kinship, frien-

ship, etc., producing a bias in exalting small risks or underestimating more dangerous

risks. The representativeness derives from the assessment of similarities between an

outcome and a model. It consists of categorisation and generalisation, as to predict

the behaviour of an unknown subject, ii is needed to identify the group to which it

belongs, but at the same time we can associate its behaviour to the typical behaviour

of the group. The classical example is when you need to guess if a person is a computer

scientist or a clerk employed in the public administration. His description as a shy per-

son with passion for details leads to think that he is more likely a computer scientist,

but the error may be generated from not considering the base-rate, that is the fact

that there are more clerk employed in public administration than computer scientists.

From this example it is clear that this kind of heuristics may produce assessment errors

tending to ignore the base-rate. D.Kahneman and A. Twersky have also suggested

that people usually make inferences starting from an initial value, or anchoring, thus

the choice is ruled by this starting value which, though randomly, influences people’s

answers. In (37, 38), authors shed light on the dual process which characterizes human

thinking: from one side people make decisions in a rapid and intuitive way, but obvi-

ously error-prone; from the other side, there is a slower, reflective and more statistical

decision mechanism. The idea underlying the models used in the two following subsec-

tions represent a trade-off between these two approaches to decisions, since heuristics
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produces intuitive and error-prone decisions, while the other system, based on statis-

tics and thoughtful allows making corrections. The coexistence of the two mechanisms

ruling decisions is linked with the experimental evidences of the presence of areas for

emotions in the brain, which may be triggered or activated before than the cognitive

areas.

2.3 It Measures Like Me: An IoTs algorithm in WSNs

based on heuristics behaviour and clustering methods

In (39), we stem from the consideration that nodes of a WSN, deployed on a general

topology, should follow a bio-inspired approach to respect the trustability, information

load, risk and energy-saving requirements, upon bounded conditions of time, knowl-

edge and computational power. This allows introducing a multi-agent model related to

Internet of Things and heuristics models, in order to obtain a smart organised network

where nodes have a social and human cognition. Our model is based on hierarchi-

cal clustering method and aggregation/rejection mechanism, following sociological and

heuristics theories. The model follows the principle of sense of community and the logic

of tie for similarity. The key target is to integrate the concept of cooperation of a multi-

agent system with the node’s intelligence of Internet of Things and the “Satisficing” of

heuristics decision, in order to get a “Social Smart Behaviour” of the overall network.

2.3.1 Introduction

Wireless sensor networks (WSNs) are large networks made up of many autonomous

low-power, low-cost, and small-sized sensor nodes. WSNs use sensors to co-operatively

monitor complex physical or environmental conditions, such as motion, temperature,

sound etc. Such sensors are generally equipped with data processing and communi-

cation capabilities to collect data and route information back to a sink. The network

must possess self-organising capabilities since positions of individual nodes are not pre-

determined. Cooperation among nodes is the dominant feature of this type of network

because sensor nodes use their processing abilities to locally carry out simple com-

putations and transmit only the required and partially processed data (40). Sensor

nodes can be either thrown in mass or placed one by one in the sensor filed, hence

the deployment may be deterministic or self-organising. The future of WSNs is the
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integration of bio-inspired ideas, hierarchical clustering methods, and sociological mod-

els and concepts, such as sense of community and the “satisficing” theory, to form a

social network model (41, 42). This will be possible using the node intelligence to al-

low network to self-organise itself into communities deciding how to join, through an

aggregation/rejection mechanism, trying to keep the key requirements regarding the

quality of service (QoS), efficiency, security, trustability and computational power. For

this reason we have based our algorithm on multi-agent system model, where a single

agent is an intelligent node, exploiting the Internet of Things approach (39). Then,

we introduce the heuristic model to give to the node the ability to decide about the

interactions with other nodes obtaining a social smart behaviour of the network. This

approach is characterised by the assessment of the trustability value and the risk per-

ception value for each node; this will rule the formation of the community and the

aggregation/rejection mechanism of the nodes. Proposing an algorithm based on the

models mentioned above, the idea has been to emphasise the importance of the concept

of cooperation and sense of aggregation to group or community. The model accepts

and follows the natural tendency to aggregate and reject each other according to a

bio-inspired and self-organised approach, following a model of aggregation/rejection,

applying a clustering method to a multi-agent model, based on heuristic decisions, in

order to get eventually a “satisficing” model. It allows increasing the global knowledge

in a WSN with nodes characterised by bounded conditions like limited time, limited

knowledge and limited computational power.

The next sections are organised as follows: in sect. 2.3.2 we specify what are the main

reason and features for using a bio-inspired approach for the model, in sect. 2.3.3 first

we focus on heuristics and Internet of Things, then it is explained how we use these

concepts in our model. In sect. 2.3.4 we present and describe our propsed algorithm

“It measures like me” (IMLM). Finally, sect. 2.3.5 is dedicated to conclusion.

2.3.2 Why using a Bio-inspired approach?

As underlined before, a bio-inspired approach allows solving certain problems and meet

specific requirements, such as reliability, information load, risk management and energy

saving, under conditions of limited computational resources, time constraints and low

overall knowledge. In (39), such kind of approach has been used as a model that relates

the cooperation of multi-agent systems, the intelligence of the node, according to the
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IoT paradigm, and also the “satisficing” concept of heuristic decisions. What are the

analogies between our system and a biological scenario? Starting from the features of

a biological system, it is clear that a energy-aware WSN, that has to send aggregated

information related to single clusters, is a complex system similar to a biological one.

We follow the Dresslers approach (35) described in Fig. 2.1, and the identification of

analogies step is summarised in the following scheme:

• High complexity: IoT node intelligence;

• High connectivity: sense of community and social behaviour, other than the

aggregation model;

• Communication, cooperation and coordination: multi-agent system, heuristics

and trustability model;

• Relation with other systems of the same nature: logic of similarity, heuristics and

information load;

• Relation and communication with external environment: social and human cog-

nition.

The proposed approach tends to solve decisional issues through heuristics, cognitive

aspects, using the proposed trustability model, security problems exploiting risk per-

ception model, and shared knowledge management, using a controlled information load.

The understanding and engineering steps will be treated in the following subsections.

2.3.3 Heuristics that makes WSNs “Smart and Things”

2.3.3.1 Inference, Heuristics and Satisficing

How do nodes deployed in a topology make inference about unknown aspects of a

context? The possible approaches could be three (43): one follows the Laplacian demon

theory that considers the mind as a supercomputer, with unlimited time, unlimited

knowledge and unlimited computational power. This follows the classical view that

human inferences rules are those of probability and statistics. Another approach is fully

heuristics so that inference is systematically subject to human error: this perspective

is diametrically opposed to the classical rationality principle. The issue is much more
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complex because it would identify the conditions under which the human mind seems

to be more rational or more irrational. The heuristic would suggest the inability to

achieve the complexity of the classical canons of the models of rationality. The third

approach achieves a balance of compromise between both, and it is the approach of

a controlled heuristics, on which we have based our proposed model of (39). This

follows the theory of H. Simon (41), which is based on the concepts of “bounded

rationality” and “Satisficing”. Simon starts from hypothesis that information systems

of processing should have the need to satisfy rather than optimise. Hence, the term

“Satisficing”, that is the union of “sufficing” and “satysfing”, is suitable with our model

and with models that generally deal with conditions of limited time, limited knowledge

and limited computational power. The theory that follows the “bounded rationality”

considers human minds appropriate in the environment in which they live, only if

they have the right perception of their limits, according to a cognitive, ecological and

saving logic, but still meeting the target. Therefore, this approach remains heuristic

but not at all, and finds the right trade-off between the heuristic decisions and the

sense of community, control strategy and suitable criteria. The heuristic approach is a

solution to the problems, that do not rely on a clear path, but rely on intuition upon

temporary circumstances in order to generate new knowledge. We overcome the simple

heuristics in the model due to the bounded rationality of Simon, as we also rely on the

good sense of the community in decision-making, and we also add on trustability and

risk perception (39). The heuristic models that generally rely on bounded rationality,

follow the two sides defined by H. Simon, that is, cognitive mode and ecological mode

(38, 41). In models such as “Two Alternative Choice Tasks” in general, there are two

types of inference: inference from memory, decisions are taken considering declared

knowledge, studies, memory and history; inference from given, decisions are made

considering data and information extracted from a calculation or data extracted from

an experiment. Following the process suggested by Simon, we should involve only the

first type of inference. The initial process, and probably the most natural one, is to

base its decisions only from those we have acquired in the past. In our proposal the

component “inference from memory” is represented by an array that keeps track of

our past contacts. This allows us to make inductive inference during aggregation to

a community. Obviously, the inductive inference needs to be investigated in relation

to the surrounding environment, topology and context of the communities created.
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Aggregation/Rejection CHx

Inference from Memory Cue Value 1: Trustability +/-

Inference from Memory Cue Value 2: Risk Perception +/-

Inference from Givens Cue Value 3: Measure(Temperature) +/-

Inference from Givens Cue Value 4: Variance +/-

Table 2.1: Cue Values for Inference on Aggregation/Rejection.

These models are characterised by cognitive algorithms that allow the creation of a

framework for modelling the inference from memory. Such kind of tool allows the use

of limited knowledge to make fast inference, using intelligent insights about unknown

properties, based on indicators uncertainty. A subject must know the “cue values” that

can be linked to the target variable to make inference, in a positive or in a negative

way. Each “cue” also has a validity which indicates the frequency with which the

cue correctly predicts the target defined with regards to the environment. The “cue

values” are criteria and suggestions for assessment in order to achieve the targets. In

Table 2.1 we show the cue values for our algorithm. Each cue will be characterised by a

validity and a discrimination rate. In our proposal, after an initial self-organised sensing

phase, the node aggregate and form communities, considering similarity measurements

of temperature, trustability, risk perception and variance values.

2.3.3.2 Trustability and Risk Perception

Our model follows the principles of multi-agent systems, indeed the set of nodes will be

deployed in a certain environment and will interact with each other using organisational

rules that follow the hierarchical clustering, and exploiting the two main principles of

multi-agent system: organisation and cooperation. Cooperation is related to the inter-

actions among agents. It is the fundamental feature of multi-agent system where the

overall system exhibits significantly greater functionality than the individual compo-

nent. Cooperation allows to reach the target through coordination and conflict that

regulate the community and which result in the aggregation and rejection processes.

In this way we have an autonomous, multi-agent and self-organised system. Nodes

become smart objects which have different communication, information and processing

capabilites.

Starting from a WSN, our design choice of the proposed algorithm consists of the
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saving, as showed in Fig. 2.3. Therefore, to achieve this target, introducing all the

features mentioned above, we also make the nodes more “human”, as well as smart

and self-organised. Nodes are able to decide, then the limited conditions allow obtain-

ing resolute decisions and, considering communities and interactions between them, we

have a Social Smart Behaviour.

2.3.4 IMLM Algorithm

2.3.4.1 Introduction

“It Measures Like Me” (IMLM) algorithm is applied to WSNs, in which a large number

of sensor nodes is deployed in a extended region to monitor and measure some param-

eter, such as temperature. IMLM aims at reducing the power-consumption and intro-

ducing a social smart behaviour of the network. IMLM fuses an aggregation/rejection

model, in terms of clustering, with a heuristic multi-agent model related to the sin-

gle node. IMLM uses heuristics to mitigate the speed of node rejection with a decision

taken in a short lap of time (limited time), using a reduced amount of information (lim-

ited knowledge) and consuming as low battery as possible (limited power consumption)

(38, 43). The main assumption of the clustering process takes advantage from the first

law of geography: “everything is related to everything else, but near things are more re-

lated than distant things” (45). The basic idea is that we can aggregate a large amount

of known nodes in a WSN. The aggregation mechanism concerns with radio visibility

between the couples of nodes. The algorithmic approach is self-organised and consists

of nodes’ “instinct” to aggregate themselves to other communities, while the rejection

policy is hierarchically managed by Cluster Heads (CHs). The proposed model follows

rules similar to those ones of cohesive attraction or cohesive force, that is the action

or property of like molecules sticking together, being mutually attractive. The cluster

aggregation is similar to the molecular aggregation based on the instinct to follow its

own nature. The node is attracted by neighbourhood inside its radio range and it will

aggregate “naturally” with one of them. The same thing happens in the case of oil in a

glass of water: the two liquids split each other to form two different clusters, then they

mix again cause an external force that is represented in the algorithm by the CH deci-

sion to reject one or more CH. IMLM is based on a multi-agent model that considers

abstract entities, called “agents”, that work autonomously in the algorithm in different

ways according to their states and roles. These roles depend on hierarchical levels and
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• Rejection message (REJM): it allows CHs to reject a child, in particular “true”

is used to reject it, while “false” is used to mantain the child.

The IMLM operation is described as follows and figures are used to outline graph-

ically the various steps (see Figs. 2.4 and 2.5). At the beginning the node stays in

the idle state and listens to CHs via radio sensing for a random period of time. The

node listens to CH Notification Messages (CHNM) to know if there are CHs in the

neighbourhood. Both in the case in which an idle node does not recognise and in the

case in which recognises the presence of a CH that rejected it in the recent past, it will

self-elect itself as a CH0. Otherwise, if the node finds an available CH, it will become

a CH with a lower hierarchical level (CHL) and it will send a Node Affiliation Message

(NAM) to the “father” (i.e., the node of higher hierarchical level). Hence, the node no-

tifies to the neighbourhood its actual state in both cases using CHNM messages. After

“Neighbours notification”, the node will wait for NAM messages from its children and

it will register their identities (IDs). CH will have to associate a random trustability

value, in the interval between 0 and Ai for the empathy mechanism (which explains

the process for which we trust in a different way of one rather than another, without

an apparently reasonable logic: first, aggregation mechanism is ruled by the logic of

the first encounter, then it will be ruled by the trustability and risk perception values

following the hierarchy). If the CH is alone and if it is a CH0, it will send its measured

temperature to a sink node, otherwise if it is a alone CHL, it will send it to the father.

Instead if the CH is not alone, it will wait for Measurement Messages (MM) from chil-

dren; MM can be either single measurements or mean values of sub-communities. The

IMLM algorithm uses a heuristic mechanism based on trustability estimation directed

from CH to its children. For this reason, the CHs evaluate the trustability among all

children and relate sub-communities. In the trustable case, if the CH is the root of the

hierarchical tree (CH0), it will send a Variance Request Message (VRM) set to “false”

to children, and the mean value of the whole community to the sink. The next step is

to return in the “temperature sensing” state. If the CH has a lower hierarchical level,

it will send the mean value of its community to the father and it will wait for a VRM.

A received VRM, set to “false”, allows the node to come back to a temperature sens-

ing of its sub-community, while VRM set to “true” forces CH to forward the request

(VRM) to its children. In the latter case CH has to wait for a VRM Response (VRMR)
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to collect variance values from sub-communities. Then it calculates its local variance

value to be sent to the father.

Figure 2.5: Algorithm Description - Heuristics and Rejection mechanism.

It will listen to the REJection Message (REJM) to see if it still belongs or not

to the community. The αij assessment allows identifying untrusted children. This

condition occurs when the related αij is less than the risk perception, Ai (44). In

this case, the autonomous agent will be “scared” of specific sub-communities, so it

will ask them for updated variance values that result in a local new variance value. It

is needed to evaluate also variances related to trusted sub-communities; these values

will be estimated weighing them with a coefficient that is inversely proportional to the

trustability value and directly proportional to the last variance value related to the

sub-community. The variance calculation is based on (46). The Ward’s method aims

to minimise the inner-cluster variance. The variance of a community is calculated as
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follows:

S = Sw + Sb (2.1)

where S is the matrix of total variances and co-variances, Sw the matrix of internal

variances and co-variances, Sb the matrix of external variances and co-variances. If we

consider a uni-variate measurement and two clusters, “1” and “2”, the global variance

will be calculated as follows:

σtot = σ1n1 + σ2n2 + (µ1 − µtot)
2 + (µ2 − µtot)

2/n1 + n2 (2.2)

where σ1, σ2 are variance values of the two communities; µ1, µ2 are the corre-

sponding mean values; n1, n2 represent the number of nodes in each cluster. The new

community variance value will be compared with a fixed threshold. If the check is

positive, the specified trustability, related to the sub-community, will be increased of

a fixed quantity Vα, otherwise, it will be decreased of the same quantity. In the latter

case, the CH will have to see if the sub-community is suitable yet in order to send a

Rejection Message (REJM), “true” or “false”, according to the new trustability and Ai

values. If the trustability value is less than −Ai , the corresponding sub-community will

be thrown away, otherwise it will be maintained. The rejected node will register the last

CH in a specified scheduling queue, not to allow the association to a “old” community

for a certain period of time. Each CH in the queue is affected by a oblivion factor,

following a negative exponential function (1−λ)τ . If the oblivion factor reaches a fixed

threshold, the associated CH will be thrown away from the queue. The last step consists

of the mean value calculation, considering all the “alive” sub-communities, and finally

the sending of it to the father or to the sink. Each CH0 communicates a mean value

to the sink, that forwards information to an elaboration center, integrated with GPS

positions of the community. The elaboration center will reconstruct a measurement

map, using interpolation algorithms like Kriging (47).

2.3.5 Conclusion

The aim of our clustering algorithm is to reduce power consumption of nodes in WSNs,

through the aggregation of them, based on the geographic position and a common

range measurement. This feature also allows reducing the waste of energy related to
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sink nodes, especially in communications to the satellite. A challenging issue of the

aggregation process is the waste of overhead related to the cooperation among nodes.

Heuristic behaviour addresses to solve this question, mitigating the flow of information

exchanged between nodes in a “satisficing” way. Furthermore, the self-organisation of

nodes in communities is similar to the principles ruling human society. Thus, IMLM

creates a “Social Smart behaviour”, adding a social feature to the IoT principles.

2.4 A Energy-Preserving Model for Wireless Sensor Net-

works based on Heuristic Self-Organised Routing

One of the main targets related to WSNs is to reduce power consumption of nodes

and of the whole network. An ideal WSN should be networked, scalable, fault-tolerant,

energy-aware, and also smart and efficient. Unfortunately, however this is not always

true. The basic idea of the work (48) is that senders use a heuristic approach to

select the sub-optimal next hop in order to reach just one sink, considering some key

requirements such as general performance (QoS and security), efficiency, trustability,

high computational power and energy-aware behaviour. The model presented in (48)

tries to satisfy the need for reaching the nearest sink node, considering a trade-off

between the shortest path and heuristic decisions, in a top-level strategy based on a

heuristics approach in order to reduce the overall power consumption of the network.

2.4.1 Introduction

A WSN consists of spatially distributed autonomous sensors to monitor physical or

environmental conditions. Each node is an autonomous agent able to decide how to

route information (40). There are many types of routing and forwarding algorithms

for WSNs, characterised by different kinds of actions about how to reach the desti-

nations. Overall, an efficient routing protocol should perform aggregation, clustering,

self-organisation and cooperation for power saving and to increase network lifetime; it

should also consider a threshold for sensor nodes in data transmission in order to get

energy-saving, and a multi-path dissemination to improve fault-tolerance.

In (48), we propose an energy-preserving model for WSNs based on a heuristic and

self-organised routing. We consider a network with specific nodes which need to send
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information to just one of a set of sinks. In order to make simpler and reduce the

communication flow that would produce a large amount of energy consumption, each

node routes information exploiting a cognitive behaviour of its own neighbourhood,

without using traditional routing protocols that could produce large routing tables, for

a huge amount of sensors. The hierarchy follows a trend ranging from the sink to the

probable sources. From the latter, following the hierarchy created previously, each node

will choose the next hop according to an heuristic mechanism, based on trustability,

goodness’ perception of the path and battery level of node. The heuristic approach con-

sidered within the model will allow us to explain how the nodes take decisions to solve

complex problems with incomplete information using trustability level and perception,

following a top-level strategy that leads to solve problems exploiting this underlying

heuristics.

The work (48) is organised as follows: sect. 2.4.2 deals with some energy-aware pro-

tocols, also introducing what is required to achieve an efficient energy-aware routing

protocol. In sections 2.4.3, we analyse the heuristic theory underlying the proposed

model, and how we use and propose this strategy, along with trustability and percep-

tion, in multi-agent systems. In sect. 2.4.4, we present our model, and finally in sect.

2.4.5 we sum up the presented model with conclusions.

2.4.2 Energy-Aware Routing Protocols

Routing or forwarding of data packets in WSNs can be divided into three categories:

flat-based routing, hierarchical-based routing, location-based routing (49). In flat-based

routing, nodes have the same role and responsibility in forwarding/routing data, while

in hierarchical-based routing, decisions are influenced by the hierarchical rank of sensor

nodes. Furthermore, another classification of routing protocols is based on how routes

are created (50). In a proactive approach all routes are created in advance and updated

regularly; in a reactive approach, routes are computed only when they are required and

a hybrid approach is a combination of these two ideas. In general an efficient rout-

ing protocol should perform data aggregation for power saving, dynamic clustering to

increase network lifetime, a threshold for sensor nodes on data transmission and dissem-

ination, in order to help energy-saving, multi-path selection dissemination to improve

fault-tolerance, self-configuration and adaptation of the sensors nodes to changes in

network topology and finally time synchronisation.
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In (48) we propose an energy-efficient model based on a heuristic approach. The key

idea applied to a WSN’s scenario, is that of giving to sinks the power to create a dy-

namic hierarchy. The root of the hierarchical tree is represented by the sink and leafs

follow iteratively the hierarchy in order to cover the entire network spatially. Using the

previously created hierarchical tree, senders will be able to reach one of the avaliable

sinks, exploiting only the knowledge of their neighbourhood. Heuristics will help single

nodes to choose the next hop until to the sink.

2.4.3 Inference and Heuristics in the model

In this section, we are going to explain inference mechanisms and focus on the overall

heuristic approach adopted in the model. The question is how nodes deployed in a

topology do make inferences about unknown aspect of the context? There could be

three possible approaches (43): Laplacian demon theory, fully heuristics and controlled

heuristics. Many decision problems may be considered as optimisation problems. These

problems are tipically too difficult to be solved exactly within a reasonable amount of

time and heuristics become the best methods of solve them. Furthermore, when the

quality of solution is critical and an optimal solution does not exist, it becomes impor-

tant to investigate efficient procedures to obtain the best possible solutions, considering

key factors to be minimised. Heuristics are criteria, methods, or principles for deciding

which, among several alternative courses of action, promises to be the most effective, in

order to achieve some goal (51). The model follows the main principles of multi-agent

systems: cooperation and self-organisation. Cooperation is related to the interactions

among agents. It is a fundamental feature of multi-agent system where the overall

system exhibits significantly greater functionality than the individual component (52).

Exploiting hierarchical methods within an heuristic approach to detect a good path,

we achieve an autonomous, multi-agent and self-organised system. Therefore, nodes

become smart objects which have different communication, information and processing

capabilities to make decisions. Our design choice consists of the implementation of a

heuristic model. The heuristic approach inside the model will allow us to explain how

the nodes make decisions, come to judgments and solve complex problems with incom-

plete information. The main advantage is that using a heuristics model with a dinamic

hierarchical phase, from sink to source, and a heuristic approach, from source to sink,

we reduce the complexity of tasks, obtaining a self-organised energy-aware system. The
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ID FRAME MAC ADDR NODE’S LEVEL

Table 2.2: Identification frame.

trustability and perception are used when a node/agent interacts with other agents to

decide the next-hop in order to reach the sink. We refer to the model presented in (44),

adding some mechanisms to maximise the overall lifeness of the network.

2.4.4 Model

Sink nodes in WSNs are able to receive messages from other nodes and collect various

kind of data. Usage of multiple sinks is related to power consumption reduction in

WSNs, as shown in (53), for this reason our topology follows a hierarchical organisation

in which the highest role is delegated to sink nodes. We identify three phases: Topology

Discovery, Data Sending and Heuristic Approach. Our model tries to satisfy the need

of reaching the nearest sink node, considering heuristic decisions to reduce the overall

power consumption of the network and network’s errors. The aim of the proposal is to

use simple network signaling and light logic to maximise network lifetime.

2.4.4.1 Topology discovery

The Topology discovery phase is initialised by sink nodes, which represent 0-level hier-

archical nodes (HN0), sending a identification frame to their neighbours, at a certain

time interval, Tidentification. Each HN0’s neighbour will become HN1, storing node IDs

of previously identified HN0s and in turn they will send an identification frame to their

neighbourhood. The Identification frame is defined as follows:

Network’s nodes, without a specific role, will listen to identification frames and

they will become L-level hierarchical node, choosing own level L as the minimum of

the levels of nodes which have sent it identification frames:

L = min (nodes levels) + 1 (2.3)

Consequently the HNL will store IDs of the HNL−1 nodes so that it will be able

to use one of them to reach a sink as shown in Fig. 2.6. The HNL−1 black circled

node is the “delegated node”, chosen by HNL node to send data to the sink, using the

heuristics we are going to describe in sect. 2.4.4.3.
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Figure 2.6: Multiple routes. Each node could reach multiple upper level nodes.

Figure 2.7: HN3 routes on the right.

2.4.4.2 Data Sending

When a HNL node needs to send data to a sink, it will use the delegated node, using

a Data Frame, defined as showed in Table 2.3.

At each Data Frame (DF ), the node will store, the Sender (Se), the Receiver (Re),

the last Data Frame Counter (DFC), the Data packet, and it will calculate the related

Cyclic Redundancy Check (CRC) of the frame. Figs. 2.7 and 2.8 represent a network

with two sinks and two different paths.

2.4.4.3 Heuristic Approach

If a source node needs to send data to a sink, it will refer to one of the hierarchical

upper level neighbours. It will choose the specific neighbour, using a heuristic approach,

DF Se Re DFC DATA

Table 2.3: Data Frame.
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Figure 2.8: HN3 routes on the left.

similar to (44), taking in account both battery level and communication quality. A

generic node i stores a risk perception level, Ai , that intuitively represents a mean

“trouble” level of the neighbouring nodes. Each node will store a trustability level, αij ,

related to each upper level hierarchical node and they will use the most “trustable” node

in the neighbourhood to reach the sink. The choosen node will be called “delegated

node”. Considering a generic node i , and its delegated node j , if the trustability level,

αij , related to j is greater than the risk perception perceived by i, Ai , it will send data

to node j without considering j ’s battery level, or connection quality between them.

Condition : if αij > Ai => i sends data to j (2.4)

The model considers nodes with a finite memory, so they “forget” their history, fol-

lowing an Oblivion Mechanism. Hence, risk perception and trustability will be updated

at certain time steps, as follows:

αij = αij (1− rα)
τ ; Ai = Ai(1− rA)

τ (2.5)

In this way the model will force nodes to check model’s parameters against neigh-

bours and refresh their perceived knowledge. The rα parameter represents the rate of

decrease of the Trustability Level, likewise rA is the rate of decrease of Risk Perception.

If node i does not trust nobody due to the Oblivion Mechanism or Negative Checks

(as explained below), then it will start a “check phase”. The check phase consists of

asking to delegated node the CRC of the last Data Frame and to each upper level nodes

battey levels, using CRC Frame and Battery Frame (see Tables 2.4 and 2.5).

39



2.4 A Energy-Preserving Model for Wireless Sensor Networks based on
Heuristic Self-Organised Routing

CRC Frame Se Re

Table 2.4: CRC Frame.

Battery Frame Se Re

Table 2.5: Battery Frame.

Battery levels and connection quality parameters will be used to recalculate trusta-

bility levels related to each upper level neighbour. We propose to evaluate the correction

of trustability level related to the delegated node, as follows:

αijnext
= αijprevious

+ C ′
weightCij +B′

weightbj (2.6)

where Cij is the parameter related to connection quality between i and j , C ′
weight

is the weight related to the importance of considering the connection quality. bj is

equal to 1 if the battery level of node is lower than the quantity: Meanbattery levels −

Standard Deviationbattery levels, otherwise it is equal to zero. We choose such kind of

threshold (Standard Deviationbattery levels), to consider the global amount of energy

in the neighbourhood and its distribution among nodes. B′
weight is the weight related

to the importance of considering battery levels in our model. B′
weight and C

′
weight are

design values that will be choosed according to the specific target to obtain. The Ai

factor is a key parameter in our model because it rules the behaviour of a node, accord-

ing to the amount of αij , following a heuristic approach. For this reason, periodically,

at a certain time step Tperception, nodes will recalculate the risk perception perceived,

as follows:

Ai = Ai + vA

(

B′
weightbnegative checks + C ′

weightCnegative checks

Total checks

)

(2.7)

where bnegative checks represent the total number of negative checks related to bat-

tery levels and Cnegative checks represents the total amount of network negative checks.

Total checks is the amount of total checks, both for battery and communication “right-

ness”. vA is a key parameter because it rules how the risk perception should grow up.
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2.4.5 Conclusion

In a WSNs context, nodes are able to collect data and send only the required infor-

mation to the sink. In a scenario with multiple sinks, an ideal model should satisfy

the need to reach the nearest sink node. In order to reduce power consumption of

the network and, at the same time, maintain the same communication performance, in

(48) we have proposed a novel strategy based on a heuristics approach that rules the

underlying heuristic decision process under certain parameters, such as battery level,

communication performance, trustability and risk perception. In this way, we have

proposed a model based on heuristic assumptions, dynamic hierarchy and decision pro-

cesses to obtain a cognitive energy-preserving behaviour for the sensor nodes, exploiting

a self-organised routing.
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Chapter 3

Multilayer Networks

3.1 From Single- to Multi-layer Networks

Since the turn of the millennium, networks have become a universal paradigm for sim-

plifying large-scale complex systems, for describing their structure and for studying

their systems-wide functionalities. Network theory has constituted a way to charac-

terise the connectedness among single entities or components which interact in a huge

variety of complex systems, ranging from biological to social systems. ‘Complex Sys-

tems science’ represents an emergent field of knowledge dealing with collective and large

scale phenomena arising from the interaction of many components. One of the main

features is that a complex system cannot be understood and predicted from individual

behaviour, but instead the system should be considered as a whole. Some examples

are the self-organised behaviour of neurons in the brain or the complex cooperative

phenomena in ant colonies or human cities. Thus, together with phenomena such as

self-organisation or pattern formation, the complexity is essentially the result of net-

work, connecting the single parts in a system which does not corresponds only to the

sum of its parts. The striking advances of data-driven models has allowed empowering

and deepening the analysis of such complex systems, creating a new kind of science,

known as “network science” (1). Recently, a lot of research efforts have been devoted

to study networked systems, e.g. social networks, made up by nodes, which are the

components or the single entities, while the links among them describe the interactions

(4). Interestingly, some pioneering works in this field have discovered some similarities

between networks, describing quite different phenomena, such as heavy tailed degree
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distributions of nodes or the relatively high clustering of node triples. These regular-

ities along with its interdisciplinarity have even raised up the attention for network

science, making it one of the hottest research topics in the 21st century (2, 3, 4). The

“engine” behind this rapid development, increasing investigation and growing under-

standing of network science has been represented by the vast amount of data, that are

now routinely being collected, modelled and analysed, regarding these complex systems

(10, 16, 17, 18).

In 1960, Erdos and Rényi developed the first model of networks, known as random

graph theory, where the ’random’ hypothesis means that every pair of nodes is ran-

domly connected with the same probability, giving rise to a Poisson degree distribution

(54). Simultaneously the lattice networks have been exploited to model physical sys-

tems, where instead the feature is that each node has the same number of links. Since

then, many types of modelling approaches have been proposed and studied in the var-

ious disciplines based on different features of the different networks, making the graph

theory a well-estalished mathematic tool to study networked systems. Despite its ability

to desribe the structure of a variety of networks, graph theory is not able to include the

real-world networks which, as Barabàsi observed in 1999 in his pioneering work (55), do

not follow the Erdos-Renyi model, but rather in most systems the organisational prin-

ciples arise in natural way, pushing towards new models and to the emergence of a new

science, that of complex networks. Barabàsi networks, known as scale-free networks,

are non-homogenous structures whose degree distribution, which indicates the number

of links per node, in most cases follows a power-law form (55). The most important and

interesting aspect of these scale-free networks is the ability to approximate real net-

works, such as the Internet (4), the World Wide Web (WWW) (56), social networks,

infrastructures networks, biological networks, Protein-Protein Interactions (PPI), gene

regulation and biochemical pathways, and networks in physics (13, 16, 18, 57). Scale-

free networks have also highlighted different properties of networks, for instance, in

term of robustness, in contrast with Erdos-Renyi networks, this kind of networks is

extremly robust to random failures due to its heterogeneity (55, 56). Network concepts

and notions have been exploited to study different aspects and properties, such as ro-

bustness, epidemic spreading and the social interactions and behaviours in frienship

(7, 58) or scientific collaborations (59). Evidently, a great part of our current knowl-

edge on networks is based on ideas and concepts borrowed from statistical physics, such
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as percolation theory, fractals and scaling analysis. Over the years, new measures and

methods have been introduced to characterise network properties, such as measures of

node clustering, that is the formation of triads in network, degree-degree correlations

between neighbouring nodes, centrality measures to weigh the node importance in the

network, other than measures to detect community structures. All these measures not

only have been proven useful to explore and better understand networks as a whole,

but also to identify network motifs or patterns occurring repeatedly and providing in-

formation about their functionality (13).

If, from one hand, network theory has successfully allowed characterising the interaction

among the constituents of various types of complex systems, however, from the other

hand, up until recently, attention was almost exclusively given to single-layer networks,

in which all components were treated on a single equivalent layer, neglecting all the

extra information about the temporal- or context-related properties of the interactions

among nodes or entities. Only in the last years, also exploiting the enhanced multi-

scale resolution in real data sets (60), network scientists have directed their interest and

research efforts to the multiplex nature of real-world systems, explicitly considering the

presence of a node and its interactions in different layers. In fact, these complex sys-

tems are not single isolated networks, but continuously interact with other networks,

and this creates an interdependence.

The concept of interdependence means that a failure of a node in a network can cause

a failure of dependent nodes lying in another network, and so on, leading to cascading

failures and catastrophic phenomena (34, 61). Blackouts represent a classical example

of interdependent networks, since most often they are the result of cascading effects

between commmunication and power grid systems (34, 61, 62, 63). Furthermore, differ-

ent kinds of critical infrastructures are also coupled together, such as financial systems,

power transmission or communications systems only to name a few. Therefore, the

deeper understanding of complex networks has showed as they are organised as a Net-

work of Networks (NoN), producing a shift in paradigm from single layer networks to

multiplex, multilayer and interdependent networks (61). Thus, providing a suitable

representation and modelling of these interconnected systems, identifying the rules and

mechanisms, control them, are some of the major efforts of recent research in complex

systems. ‘Complex networks theory’, born in the last fifteen years, has been exploited

the interdisciplinary effort of a lot of scientists, in order to extract meaning, information
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and knowledge from the vast amount of big Data and the underlying complex systems

and mechanisms. Among the main targets, from one side the analysis and identification

of the main unifying principles describing the structure of network, and from the other

side the understanding of the emergent dynamics able to explain and capture what

actually observed in such systems. In particular, in (4) the authors present a complete

compendium of the ideas and concepts involved in both structural and dynamical prop-

erties of complex networks.

The traditional complex network approach has mostly been concentrated on the single-

layer case, in which each single system’s unity is represented as a network node, and

each link or connection among units is represented as a real number indicating the

link’s weight. Thus, every link of the network belongs to the same equivalent layer and

it constitutes a big constraint because it is not able to capture the real-world systems,

where instead phenomena occur simultaneously in different layers. This is the rea-

son why a multilayer approach, where a multitude of entities interact with each other

through somehow complicated patterns, results by far more suitable to describe such

systems. The idea is to consider a complex system including multiple subsystems, or

layers of connectivity, focusing on the mechanisms of evolution, adaptation, transfor-

mation due to internal and external dynamics regarding locally the single components

or globally the whole multilayer structure. The understanding of these multiscale and

multicomponent dynamics is challenging, but a lot of work has been done during the

last years to describe and understand the structure and dynamics of this kind of sys-

tems (7, 58, 64, 65). The introduction of some concepts, such as network of networks

(61, 63), multidimensional networks, multilevel networks, multiplex networks, inter-

acting networks, interdependent networks, other than the related and even different

mathematical approaches, based on tensorial representation (58, 64) or otherwise (65),

represent a demonstration of the efforts in this field.

The main target of this chapter is to discuss the framework of multilayer networks, and

the main structural notions, models and measures introduced in literature to study and

describe it.

45



3.2 Real-world examples of Multilayer networks

3.2 Real-world examples of Multilayer networks

As seen in the previous section, the framework of multilayer networks is a recent math-

ematical tool introduced to explain and understand the complexity of a huge variety

of real-world systems, since single networks are not enough to describe the complex

set of interactions between different networks. The following are some representative

examples of the major constraints of the traditional single networks, where it becomes

essential to use a multilayer approach.

The first example is related to social networks. A social network can be described as

a set of nodes, corresponding to people or groups (communities), and a set of links or

connections or edges, representing the relationships or interactions between them (7).

The traditional network science assumes that all the connections or social interactions

lie in the same layer or level, but the real scenarios are extremely different from this

contrained description. In fact, in general social relationships occur among nodes or

groups belonging not only to one layer, but rather social interactions involve nodes

on different layers. Thus, considering only a single layer perspective, used in classic

complex network models, does not allow modelling properly the real-world situations.

For instance, if we take into account the spreading of information or rumours on top of

a social network, such as Facebook or Twitter. Exploiting the graph theory, we can see

users as the nodes of the graph and all the relationships as network’s links or connec-

tions, but the connection between two nodes could be the result of various and several

direct or indirect interactions which occur in another context, for example due to the

fact that they are both fan of the same football team and they occasionally met at the

stadium, or maybe they could be co-workers, sharing the same working environment,

or even live in the same part of the city, going to the same pub. Thus, the problem is

that considering only a layer in the diffusion process, we cannot capture the real dy-

namics of information spreading, since a node lives, interacts and evolve in the various

layers, being influenced from each single interaction in every layer. In other words, the

spreading process will involve each layer and only through a multilayer approach we

can study its dynamics.

Another clear example of the multilayer or multiplex nature of real-world systems is

the transportation network. For instance, if we deal with the Air Transportation Net-

work (ATN) or subway networks, using the traditional single-layer modelling approach,
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where nodes represent the various airports and links the direct flights between them, we

will lose a lot of information about dynamics (e.g. delay propagation in the ATN), as

there are different types of flights, e.g. commercial airlines include different flights and

routes, so it may be represented better as a distinct layer, containing all the connections

operated by the same company. Also in the case we want to model the transportation

networks in the city, the single parts of the city may be connected via different kinds

of public transports, ranging from bus to underground, suburban rail, or riverboat net-

works. Even if we consider the connections among different cities, they may include

not only roads, but also railways, and air transports.

Another interesting example, taken from biology, is the description of C. elegans neural

networks, which consist of 281 neurons and nearly 2000 connections: these connections

involve not only a layer, because two neurons may be linked through a chemical link

or by an ionic channel with gap junctions’ interactions, and accordingly the dynamics

will completely change.

To sum up, all the previous examples are only some of the cases where using the tra-

ditional single-layer modelling approach would be a strong oversimplification, since the

different nodes interact simultaneously in more than just the one network. As observed,

this key concept could be applied to social as well as technological, air transportation

and biological systems. Therefore, we need to replace single-layer networks with an-

other mathematical framework which provides a better description of such systems. For

this reason, multilayer network, that is a combination of networks that are interrelated

in a nontrivial way, has recently emerged as a key concept to quantitatively describe the

interactions not just within, but also among different networks. Another mathematical

description typically used in the examples above, such as in transportation or social

networks, is in terms of multiplex networks, i.e. networks where each node appears in

a set of different layers, and each layer describes all the edges of a given type.
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3.3 The mathematical formulation of multilayer networks

Network science investigates the structural properties and patterns of the interactions

among the elements of a variety of complex systems, ranging from social groups to

infrastructure and technological systems, and also including the brain and biological

networks (2, 3, 4, 5). In the last decade, a vast amount of literature has attempted

to disentangle noise and stochasticity from non-random patterns and mechanisms, in

order to get a better understanding of how these systems function and evolve. As

we explained in the previous sections, the evidence suggests that to understand the

complexity and unveil the real properties of these systems, we need to switch from

single layer networks to a multi-layer framework, able to characterise the complex set

of interactions among different networks. The intrinsic interdependence of systems,

with many components interacting with each other through different channels allows

explaining the self-organisation and emergent phenomena, from which we can extract

the knowledge. Network science and the science of complexity have revolutionised our

understanding of several phenomena and processes, considering a multilevel, multichan-

nel, multicomponent, a system-of-systems analysis. The multiple subsystems and layers

of connectivity allow exploring the internal and external dynamics affecting the various

components, both at local and global scale, which make the system evolve, adapt and

transform accordingly. The multiscale and multilayer dynamics poses severe challenges

regarding the analysis, observation, investigation and understanding, thus a lot of work

in literature has been done in the last years to understand and describe adequately the

structure and dynamics of the multilayer neytworks (58, 64, 65). In particular, some

notions corresponding to the different mathematical approaches have been introduced,

such as Network of Networks (NoN), multilevel networks, interacting networks, inter-

dependent networks, multilayer networks and multiplex networks, only to name a few

(61, 63). Most of these approaches are based on a tensorial representation (58, 64),

even though there also other descriptions based more on topological formalism (65).

In this section, the aim is to briefly present and discuss the mathematical framework

of multilayer networks, and also to extend some notions and network measures from

single layer to multilayer networks.
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Figure 3.1: Schematic represenation of a multilayer network. M = (G ,C ) is

composed by two graphs: G1 and G2. The interlayer connections are in red, while the

intralayer connections are in green for graph G1 and in blue for graph G2.

Multilayer networks are formed by a setM of layers constituted by single networks,

and by interlinks connecting the nodes in the different layers. Formally, a multilayer

graph M is described by a pair (G ,C ), where G = {Gα;α ∈ {1, . . .M, }} is a set of

(directed or undirected, weighted or unweighted) graphs Gα = (Xα, Eα) (called layers)

and C = {Eαβ ⊆ X ×X;α, β ∈ 1, . . . ,M, α 6= β} is the set of interconnections between

nodes of different layers Gα and Gβ , with α 6= β. The elements of Eαβ are called

interlayer connections or crossed layers (see red edges in Fig. 3.1) while the elements

of each Eα are called intralayer connections (see Fig. 3.1, green edges for graph G1

and blue edges for graph G2). The set of nodes of the layer Gα will be denoted by

Xα =
{

xα1 , . . . , x
α
Nα

}

and the adjacency matrix of each layer Gα will be denoted by

Aα =
{

aαij

}

∈ R
Nα×Nβ , where:

aαij =

{

1 if (xαi , x
α
j ) ∈ Eα,

0 otherwise,
(3.1)

for 1 ≤ i, j ≤ Nα, 1 ≤ α ≤ M . Furthermore, associated with Eαβ we define a

similar adjacency matrix, called interlayer adjacency matrix, Aαβ = (aαβij ) ∈ R
Nα×Nβ ,

given by:

aαij =

{

1 if (xαi , x
β
j ) ∈ Eαβ ,

0 otherwise.
(3.2)

The projection network related to multilayerM, indicated with proj(M) = (XM, EM),
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is given by:

XM =
M
⋃

α=1

Xα EM =

(

M
⋃

α=1

Eα

)

⋃





M
⋃

α,β=1,α 6=β

Eαβ



 (3.3)

We will denote the adjacency matrix of proj(M) by A(M).

This mathematical model is well suited to describe phenomena in social systems (66),

air transportation networks (65) and brain networks (67), as well as many other com-

plex systems, such as the so-called systems medicine, whose definition is born with the

introduction of complex network methodology in biomedicine, which involves a systemic

view of the organism, where there is an interplay among the various elements building

living beings. Systems medicine exploits multilayer networks as a tool for combining

the characterisation of the main constituents of the cell: genes, proteins and metabo-

lites. Until now, many different complex networks have been studied, e.g. gene-gene

coexpression networks, protein-protein interaction networks, metabolite-metabolite co-

expression network. But each one has been considered separately, not including the

strong correlations and interdependencies with the other complex networks. The in-

terdependent representation of the cell, other than of the living being, may give a new

insight about the exhibition of systemic pathological conditions. Moreover, focusing

on the interdependencies among genes and proteins, we can build a multilayer network

encoding both experimental setup (coexpression matrices from experimental profiles)

and annotated reactions (protein-protein interaction network). This structure natu-

rally pictures the gene control upon the production of proteins, turning into catalysers

of the metabolic reactions. The multilayer representation allows also performing a mul-

tivariate statistics and an integrated clustering.

In general, by exploiting this multilayer representation, we simultaneously consider:

• the links within the different groups,

• the nature of the links and the relationships between elements that may also

belong to different layers,

• the specific nodes belonging to each layer involved.

Multilayer networks can be distinguished, among others, in multiplex networks

(64, 65, 66) and interacting networks of networks (61, 63). In interacting networks
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of networks, the nodes in the different layers represent different elements of the system.

For example, in the cell, metabolites, proteins and transcription factors remain distinct

biological entities. In a multiplex network, instead, the same set of nodes forms M

networks, one in each layer corresponding to different types of interactions. Mathe-

matically, a multiplex network is a particular case of multilayer network consisting of

a fixed set of nodes in the various layers, that is X1 = X2 = · · · = XM = X, and where

the only possible type of interlayer connections are those in which a given node is only

connected to its counterpart (or replica) nodes in the other layers of the network, i.e.,

Eαβ = {(x;x);x ∈ X} , for each α, β ∈ {1, . . . ,M} , α 6= β. The paradigm of multiplex

networks is suitable for describing social systems which can be seen as a superposition

of a multitude of complex social networks, where nodes represent individuals and links

capture a variety of different social relations. A given multiplex network M, can be

associated with several (monolayer) networks providing valuable information about it.

A specific example is the projection network proj(M) = (XM;EM), where the elements

of its adjacency matrix AM are:

aαij =

{

1 if aij = 1, for some 1 ≤ α ≤M

0 otherwise.
(3.4)

Multiplex networks can be seen as monolayer networks with a certain modular

structure in the mesoscale, and thus network a multiplex structureM can be represented

as a monolayer network M̃ = (X̃, Ẽ), where X̃ is the disjoint union of all the nodes of

G1, G2, ..., GM , that is formally expressed as follows:

X̃ =
⊔

1≤α≤M

Xα = {xα;x ∈ Xα} (3.5)

and Ẽ is formally given by the following expression:

(

M
⋃

α=1

{

(xαi , x
α
j ); (x

α
i , x

α
j ) ∈ Eα

}

)

⋃





M
⋃

α,β=1,α 6=β

{

(xαi , x
β
j );xi ∈ X

}



 (3.6)

Note that M̃ is a (monolayer) graph with N ×M nodes whose adjacency matrix,
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called supra-adjacency matrix of M, can be written as a block matrix:

Ã =











A1 IN · · · IN
IN A2 · · · IN
...

...
. . .

...
IN IN · · · AM











∈ R
(NM)×(NM) (3.7)

where IN is the identity matrix with N dimensions. Therefore, the multilayer

structure can be represented using a tensorial representation, and this procedure is

called flattening, unfolding or matricisation. Thus, “flattening” the tensor allows also

reducing the rank or the order of such a tensor constraining the space of possible mul-

tilayer networks. Therefore, this flattening process yields “supra-adjacency matrices”

(or “super-adjacency matrices”) (58), with the advantage over tensors of being able to

represent missing nodes in a convenient way. In other words, with regards to computa-

tional issues and methods, most people are also much more familiar with working with

matrices rather than with tensors.

It is important to note that the behaviours of M and M̃ are related but different, since

a single node of M corresponds to different nodes in M̃. Therefore, the properties and

behaviour of a multiplex M can be understood as a type of non-linear quotient of the

properties of the corresponding (monolayer) network M̃.

The framework of multilayer network extends that of other mathematical objects, that

is every other mathematical object which exhibits a multilayer network structure, such

as multiplex networks, networks of networks, multidimensional networks, etc. used in

literature, can be represented exploiting the mathematical formulation of multilayer

networks, by only introducing some constraints. We can summarise the mathematical

properties of these mathematical objects as follows:

• Multiplex networks - as defined before, a multiplex network M, with M layers

is made up by a set of layers {Gα;α ∈ {1, . . . ,M}}, where each layer is a graph

Gα = (Xα, Eα), with a set of nodes Xα = {x1, . . . , xN}, which is the same in all

the layers, and this constraint formally means that X1 = X2 = · · · = XM = X

and interlayer connections are only possible between a node and its counterpart

(or replica) nodes in the other layers of the network, which means that: Eαβ =

{(x;x);x ∈ X} , for each α, β ∈ {1, . . . ,M} , α 6= β.
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• Interdependent networks - a collection of different networks, corresponding to the

various layers, whose nodes are interdependent to each other. In other words,

there is a dependence of the nodes of one layer from another node, which is a

control node, belonging to a different layer (61). These dependencies constitute

constraints, and are represented by additional edges connecting the different lay-

ers. This structure is known asmesostructure. We can consider an interdependent

(or layered) network as a multilayer network by identifying each network with a

layer.

• Interacting or interconnected networks - if we consider a set of interacting net-

works {G1, . . . , GL}, they can be modelled as a multilayer network of the L layers

and whose crossed layers Eαβ correspond to the interactions between networks

Gα and Gβ (see Fig. 3.2).

• Multidimensional networks - Formally, an edge-labeled multigraph (or multidi-

mensional network) is a triple G = (V,E,D), where respectively V is a set of

nodes, D is a set of labels representing the different dimensions, and E is a set

of labeled edges, that is a set of triples E = {(u, v, d) ;u, v ∈ V ; d ∈ D}. The

rule is that, considered a pair of nodes u, v ∈ V and a label d ∈ D, there could

be only one edge (u, v, d). In the particular case of a directed graph, the edges

(u, v, d) 6= (v, u, d). Fixed the cardinality of D equals to m, each pair of nodes

in G can be connected by at most m possible edges. If we also consider the

weights, the edges become quadruplets (u, v, d, w), where w ∈ R is the weight of

the relation between nodes u, v ∈ V and labeled with d ∈ D. Furthermore, a

multidimensional network G = (V,E,D) can be modelled as a multiplex network

and, hence, as a multilayer network by mapping each label to a layer (7).

• Multilevel networks - considering a network, whose graph is G = (X,E), a mul-

tilevel network is a triple (X,E, S) (7), where S = (S1, . . . , Sp) is a family of

subgraphs (or slices) Sj ∈ S, with Sj = (Xj , Ej) , j = 1, . . . , p of the network G,

which is the projection network of M, such that:

X =

p
⋃

j=1

Xj E =

p
⋃

j=1

Ej (3.8)
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Figure 3.2: Schematic illustration of interacting networks and its mapping into

a multilayer network. Each different colored network on the left side corresponds to a

different blue layer on the right side.

Clearly, a multilevel network M = (X,E, S) can be seen as a multilayer network,

with layers {S1, . . . , Sp} and crossed layers Eαβ = {(x;x) ;x ∈ Xα ∩Xβ}, and

also as a multiplex network if Xα = Xβ for all 1 ≤ α, β ≤ p.

• Temporal networks - A temporal network (G(t))Tt=1 can be represented as a mul-

tilayer network with a set of layers {G1, . . . , GT }, where Gt = G(t), Eαβ =

∅, if β 6= α + 1 (t is an integer, and not a continuous parameter) (68), while

crossed layers are given by (see Fig. 3.3):

Eα,α+1 = {(x, x) ;x ∈ Xα ∩Xα+1} (3.9)

• Hypernetworks (or hypergraphs) - A hypergraph is a pair H = (X,H), where X is

the (non-empty) set of nodes andH = {H1, . . . , Hp} includes (non-empty) subsets

of X, known as hyperlinks of H . Therefore, considering a graph G = (X,E), an

hyperstructure S is defined as a triple (X,E,H) constituted of the vertex set

X, the edge set E, and the hyper-edge set H. A hypernetwork (or hypergraph)

can be represented as a multilayer network, defining a layer with Gh, a complete

graph of nodes (x1, . . . , xk) for each hyperlink h = (x1, . . . , xk) ∈ H, and the

interlayer connections are Eαβ = {(x, x) ;x ∈ Xα ∩Xβ} (see Fig. 3.4).

Analysing the different multilayer mathematical models and definitions, what emerges

clearly is that each model has its features and it results suitable to represent some sit-

uations, but not able to describe others. For example, hypergraphs are not able to

combine all the scales of the analysis of a system, from local to global to mesoscale.
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Figure 3.3: Schematic illustration of a temporal network and its mapping into a

multilayer network. On the left side, it is showed that at each time instant t = 1, 2, 3, a

different graph characterises the structure of interactions between the system’s constituents.

On the right side, it is illustrated the corresponding multilayer network representation,

where each time instant is mapped into a different layer.

Figure 3.4: Schematic illustration of a hypergraph and its transformation into a

multilayer network. Red nodes on the left side define three hyperlinks (H1, H2, and H3),

each of which corresponds to a layer consisting of a complete graph of its nodes.
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The classical example is that of a social network, where the different groups can be

linked through some of their members, but also two people who know the same person

do not necessarily know each other, since they may belong to entirely different groups

or levels. Modelling this situation with hypernetworks, the main problem regarding

systems with mesoscale structures is that they are node-based models, while many

real systems combine a node-based point of view with a link-based perspective. On the

other hand, as underlined in (64), multiplex networks have intrinsically a mesostructure,

called interslice or interlayer coupling, which connects a node of a specific slice or layer

to its copy in another layer. The mathematical formulation of multiplex networks has

been recently developed through many works (65, 69, 70, 71). A considerable amount

of effort has been devoted to the characterisation and modelling of multiplex networks,

proposing a number of measures in various contexts of real-world multiplex networks,

such as air transportation systems (65). Some other works are pointing towards a sta-

tistical mechanics formulation of multiplex networks (69)(see 3.4.6), to the extension

of classical network metrics to the case of multiplexes (65) (see 3.4.1, 3.4.2, 3.4.3, 3.4.5,

3.4.4), and to model the growth of such systems (72). Finally, other works aim at

characterising the dynamics and the emergent properties of multi-layer systems, espe-

cially with respect to epidemic and information spreading (70), cooperation (8, 71, 73),

synchronisation (74), diffusion processes (75) and random walks on multiplex networks

(64). In (65) a comprehensive formalism and many structural measures on multiplex

systems are proposed, thus allowing to characterise multiplex systems with respect to

node degree, edge overlap, node participation to different layers, clustering coefficient,

reachability, betweenness, closeness and eigenvector centralities. A review in this field

can be found in (58) and in (7).

In the following section, we are going to describe some of these key measures, starting

from the traditional properties of monoplex structures and extending their definition

to the context of multilayer networks and multiplex networks.
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3.4 Structural measures and properties in multilayer and

multiplex networks

3.4.1 Spectral properties

In general, the analysis of the spectral properties of the adjacency and Laplacian matri-

ces of a network allows gaining insights into its structure and dynamics (4). Therefore,

also in the case of multilayer networks, the introduction of suitable matrix represen-

tations enables the deep understanding of dynamics on top of complex networks and

capturing the specific role of multilayer and multiplex topologies. Given a multilayer

network M, to analyse its dynamics and spectral properties, we can use the adjacency

matrix Aα of each layer Gα, the adjacency matrix of the projection network AM and,

most of all, the supra-adjacency matrix AM, whose spectrum is directly related to sev-

eral dynamical processes occurring on the multilayer network.

In (6), the authors introduce the mathematical concept of quotient graph, which under-

pins the notion of multilayer network and gives crucial insights into the structure and

spectral properties of the network. In fact, applying interlacing of eigenvalues of quo-

tients of matrices, they show how the pattern of connections between layers constraints

the dynamics on the whole system. A network quotient is a reduction or a simplifica-

tion of the original network, and their spectral analysis aims also at quantifying the

information loss in terms of eigenvalue spectrum due to this reduction process. The au-

thors prove that if λ1 ≤ · · · ≤ λN is the spectrum of the supra-adjacency matrix AM of

an undirected multilayer network and µ1 ≤ · · · ≤ µnα is the spectrum of the adjacency

matrix Aα of the layer Gα, then for every 1 ≤ k ≤ nα, we have: λk ≤ µk ≤ λk+N−nα
.

Therefore, considering a network quotient as a partition or identification of its node set,

a multilayer network can be indeed recovered from its underlying network and these

two quotients, the network of layers (which represents the connection pattern between

layers), and the aggregate network (which results from the projection of all layers onto

an aggregated single-layer network).

In (75), the authors focus on analysing the spectral properties of multiplex networks,

considering the Laplacian matrix, and studying the time scales associated with diffusion

processes that take place on multiplex networks. The proposed mathematical setting

not only allows studying diffusion dynamics, but it also represents a good approxima-

tion for other dynamical processes, whose dynamics can be captured by the behaviour
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of the eigenvalues of the Laplacian matrix. The Laplacian matrix of a multiplex M,

known also as supra-Laplacian matrix, denoted by LM = L is a MN ×MN matrix,

having the following form:

L =











D1L
1 0 · · · 0

0 D2L
2 · · · 0

...
...

. . .
...

0 0 · · · DMLM











+











∑

β D1βI −D12I · · · −D1MI

−D21I
∑

β D2L
2 · · · −D2MI

...
...

. . .
...

−DM1I −DM2I · · ·
∑

β DMβI











(3.10)

In (3.10), I is the N × N identity matrix and Lα is the N × N Laplacian matrix

of the network layer α, whose elements are Lα
ij = sαi δij − wα

ij , where s
α
i is the strength

of the node i in layer α, given by: sαi =
∑

j w
α
ij . The authors in (75) prove as the

diffusion dynamics depends strongly on the spectral properties of L. More in general,

the behaviour of any linearised dynamical process on a complex system is related to

the Laplacian matrix of the underlying network and particularly to its second smallest

eigenvalue, also called algebraic connectivity λ2, e.g. it is essential to evaluate the time

required to synchronise phase oscillators (76), or to converge to the maximum entropy

state in a diffusion process (75). Futhermore, the largest eigenvalue of the Laplacian

matrix plays a determinant role in the assessment of the stability of the synchronisa-

tion manifold in networks of coupled oscillators. In (77), based on the features of a

multiplex network, they model its Laplacian matrix in terms of a decomposition be-

tween intra- and interlayer structure. The target is to characterise the spectrum of

the Laplacian, using perturbation theory, and hence the behaviour of several dynamic

processes, assessing the diffusion time scales in any multiplex structure, and inferring

the optimal value of the synchronisation ratio in terms of the master stability function.

One of the most interesting findings of (75) is that, in some particular cases, the cou-

pling of networks shows a super-diffusive behaviour, meaning that diffusive processes

in the multiplex are faster than in any of the networks that form it separately. Even

if it is worth to specify that in general, the superdiffusive behaviour is not guaranteed

and depends on the specific structures coupled together.

In this field of studying spectral properties, also irreducibility has been analysed in

fact, as we know, in network theory not only the eigenvalues, but also the eigenvec-

tors play a key role in determining the spectral properties (77). Studying the spectral

irreducibility of a multiplex network means the study of the existence of the Perron
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vector, that is the existence of a positive and normalised eigenvector, guaranteed by

the Perron-Frobenius theorem (as it allows verifying if the corresponding matrix is ir-

reducible). Then, we can relate this irreducibility with that one in each layer and on

the projection network. For example, in (77), the authors demonstrate that if wij > 0

and the adjacency matrix of the projection network AM is irreducible, then the matrix

corresponding to the global heterogeneous-like centrality is irreducible. In (78), it is

proved the irreducibility also considering random walkers in multiplex networks, thus

random walkers have a unique stationary state.

3.4.2 Centrality measures

The importance or ranking of nodes in the network, that is the identification of nodes

that play a central structural role is traditionally a key aspect when analysing complex

networks. In single-layer networks, the classical measures used to assess the structural

centrality of a node are the node degree, the closeness, the betweenness, eigenvector

centrality. In this section, we are going to extend these measures to multilayer networks.

The degree of a node measures the relevance of a node according to the number of links

incident upon a node. We define the degree in a multiplex network as follows:

ki =
(

k
[1]
i , . . . , k

[M ]
i

)

, i = 1, . . . , N (3.11)

where k
[α]
i is the degree of the node i on a given layer α, defined as: k

[α]
i =

∑

j a
[α]
ij .

One of the major issues related to centrality measures is to rank structurally the

nodes, creating an ordered list of vertices according it their importance in the network.

As the node degree is a vector and we can define many complete orders in R
M , we need

to clarify which of these nodes are relevant. To this aim, we can aggregate the degree

of nodes and define the so-called overlapping degree of the node i , as:

oi =
∑

j

oij =
∑

α

a
[α]
ij =

M
∑

α=1

k
[α]
i (3.12)

where oij =
∑

α a
[α]
ij is the edge overlap of edge i − j , and by definition: 0 ≤ oij ≤

M, ∀i , j . We can note as overlapping degree oi represents the correct factor to normalise

the components of the degree vector ki .

Closeness and betweenness centralities are strictly connected with the metric structure
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of the network so, defining the geodesic and metric structure, it is easy to extend these

measures to multilayer networks. Eigenvector centrality is instead based on the spectral

properties of the adjacency matrix, and its definition depends not only on the number

of links of each node but also on the quality of these connections. In literature there

are a lot of definitions of this centrality measure, but probably the simplest way to

calculate it in multiplex networks is to consider separately the eigenvector centrality

in each layer 1 ≤ α ≤ M , given by: cα = (cαi , · · · , c
α
N ). Thus, eigenvector centrality is

another vector:

ci = (c1i , · · · , c
M
i ) ∈ R

M (3.13)

where each element is the centrality in the corresponding layer. Starting from (3.13),

the following (3.14) gives the indipendent layer eigenvector-like centrality of M:

C = (cT[1] | c
T
[2] | · · · | c

T
[M ]) ∈ R

N×M (3.14)

The main drawback of this this parameter is that it does not fully consider the

multilayer interactions between layers and the subsequent influence in the centrality of

each node.

Since the centrality measure of a node also depends on the centrality of its neighbours,

distributed among all the layers, we need to define the so-called uniform eigenvector-

like centrality, defined as a positive and normalised eigenvector c̃ (if it exists) of the

matrix Ã given by the following (3.15):

Ã =

M
∑

α=1

(A[α])T (3.15)

where (A[α])T is the transpose of the adjacency matrix A of the layer α. This type

of centrality measure does not consider neither the different importance or influence

of a node through the various network layers, nor the mutual influence between lay-

ers. In fact, in a multilayer or multiplex structure, the relevance of a node within a

specific layer changes according to the other layers, therefore it becomes fundamental

to take into account also the situation where there is a heterogeneous influence among

layers. To include also this influence in the centrality definition, the influence matrix

W = (wαβ) ∈ R
N×M , with W ≥ 0, is introduced, where wαβ measures the influence on
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the layer Gα given by the layer Gβ . Having fixed G and W , we define the local hetero-

geneous eigenvector-like centrality of G on each layer Gα as a positive and normalised

eigenvector c∗α ∈ R
N (if it exists) of the following matrix (3.16):

A∗
α =

M
∑

β=1

wαβ(A
[β])T (3.16)

Thus, C∗ represents the local heterogeneous eigenvector-like centrality matrix, de-

fined as:

C∗ = (c∗1 | c
∗
2 | · · · | c

∗
M ) ∈ R

N×M (3.17)

It is important to observe how the centrality of the node xαi belonging to the layer α

depends not only locally but also globally on the neighbours linked to it belonging to the

other layers. This leads to another definition of centrality, known as global heterogeneous

eigenvector-like centrality of M, defined, starting from the influence matrix W , as a

positive and normalised eigenvector c⊗ ∈ R
NM of the following matrix ((3.18)):

A⊗ =











w11(A
[1])T w12(A

[2])T · · · w1M (A[M ])T

w21(A
[1])T w22(A

[2])T · · · w2M (A[M ])T

...
...

. . .
...

wM1(A
[1])T wM2(A

[2])T · · · wMM (A[M ])T











∈ R
NM×NM (3.18)

which is the result of the Khatri-Rao product of the matrices W and ((A[1])T |

(A[2])T | · · · | (A[M ])T ), where:

W =







w11 · · · w1M
...

. . .
...

wM1 · · · wMM






(3.19)

Introducing the following notation:

c⊗ =











c⊗1
c⊗2
...
c⊗M











∈ R
NM (3.20)
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where c⊗1 , c
⊗
2 , · · · , c⊗α , · · · , c⊗M ∈ R

N , we can define the global heterogeneous

eigenvector-like matrix C⊗ of M, as follows:

C⊗ =
(

c⊗1 | c⊗2 | · · · | c⊗M
)

∈ R
N×M (3.21)

3.4.3 Clustering

It is well-known as one of the most significant characteristics of complex real-world

single-layer networks, e.g. in collaboration networks, is the tendency of nodes to form

triangles, i.e. simple cycles involving three nodes. This tendency is expressed by the

famous popular saying “the friend of your friend is my friend”. To quantify this

tendency, Watts and Strogatz (56) introduced ths so-called node clustering coefficient.

This notion can be easily extended to multilayer networks in different ways. Given a

network G = (X ,E ), the clustering coefficient of a given node i is given by:

cG(i) =
number of links between the neighbours of i

largest possible number of links between the neighbours of i
(3.22)

If i , j and k are three people with mutual relations between i and j , as well as

between i and k , the clustering coefficient measures the likelihood that also j and k are

related to each other. The global clustering coefficient of G is given by the average of

the clustering coefficients of all the nodes in the network. Instead, the local clustering

coefficient is the density of the local node’s neighbourhood, and it represents a measure

of transitivity. In some works (27), the global clustering coefficient is defined in relation

with the network features, as a network transitivity, which means the capability of nodes

in the network to form triangles, thus formally we have:

T =
number of triangles in the network

number of triads in the network
(3.23)

To extend the clustering coefficient defintion to the multilayer networks, we need

to consider not only intralayer connections but also interlayer links. It is important

to notice how in general, different layers may show similar or dissimilar patterns of

clustering, but it is interesting to study to which extent the multiplexity affects the

formation of triangles, i.e. how the presence of different layers can give rise to triangles

which cannot exist at the level of single layers. Therefore, we need to extend the
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notion of triangle to take into account the richness added by the presence of more than

one layer. Before defining the clustering coefficient for multilayer networks, we need

to introduce some basic notions about triangles and triads. The notion of triangle is

extended in multilayer networks due to the presence of more than one layer, thus we

define a 2-triangle as a triangle formed by an edge belonging to one layer and two edges

belonging to a second layer. Similarly, we define a 3-triangle as a triangle composed by

three edges all lying in different layers. Furthermore, we define the notion of 1-triad,

when the two edges of triangles are on the same layer, while in the case of a 2-triad, the

two links belong to different layers of the system. In order to quantify the added value

provided by the multiplex structure in terms of clustering, the authors of (65) consider

two parameters of clustering interdependence, I1 and I2. I1 (I2) is the ratio between

the number of triangles in the multiplex which can be obtained only as 2-triangles (3-

triangles), and the number of triangles in the aggregated system. Then, I = I1 + I2

is the total fraction of triangles of the aggregated network which cannot be found

entirely in one of the layers. Given these notions, we can give two further definitions of

clustering coefficient for multiplex networks. In terms of multilayer adjacency matrix,

we have:

Ci ,1 =

∑

α

∑

α′ 6=α

∑

j 6=i ,m 6=i

(

a
[α]
ij a

[α′]
jm a

[α]
mi

)

(M − 1)
∑

α

∑

j 6=i ,m 6=i

(

a
[α]
ij a

[α]
mi

) =

∑

α

∑

α′ 6=α

∑

j 6=i ,m 6=i

(

a
[α]
ij a

[α′]
jm a

[α]
mi

)

(M − 1)
∑

α k
[α]
i

(

k
[α]
i − 1

)

(3.24)

Since each 1-triad can theoretically be closed as a 2-triangle on each of the M

layers of the multiplex excluding the layer to which its edges belong, in order to have

a normalised coefficient, we have to divide the term by M − 1. In addition to this, we

define a second clustering coefficient for multiplex networks as the ratio between the

number of 3-triangles with node i as a vertex, and the number of 2-triads centered in

i . Therefore, we have:

Ci ,2 =

∑

α

∑

α′ 6=α

∑

α′′ 6=α,α′

∑

j 6=i ,m 6=i

(

a
[α]
ij a

[α′′]
jm a

[α′]
mi

)

(M − 2)
∑

α

∑

α′ 6=α

∑

j 6=i ,m 6=i

(

a
[α]
ij a

[α′]
mi

) (3.25)

where M − 2 is a normalisation coefficient. While Ci ,1 (see (3.24)) is a suitable

definition for multiplexes with M ≥ 2, Ci ,2 can only be defined for systems composed
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of at least three layers. Averaging over all the nodes of the system, we obtain the

network clustering coeffcients C1 and C2.

In (65) the authors also extend the definition of transitivity. To this purpose, they

propose two measures of transitivity: T1, as the ratio between the number of 2-triangles

and the number of 1-triads, and T2 as the ratio between the number of 3-triangles and

the number of 2-triads. We can observe as clustering interdependencies I1 and I2,

average multiplex clustering coefficients C1 and C2, and multiplex transitivities T1

and T2 are all global network variables which give a different view on the multilayer

patterns of clustering and triadic closure with respect to the clustering coefficient and

the transitivity computed for each layer of the network.

3.4.4 Entropy, Participation Coefficient, Social Reinforcement and

Interdependence

In Sect. 3.4.2 we have defined the degree centrality of a node. As we know, the degree

distribution is the probability distribution of these degrees over the single layer or the

whole network. Most often degree distribution is heterogeneous between layers and

there is a weak correlation between the degrees of the same node at different layers.

This suggests the need to introduce a measure able to quantify the ability of a node

to be connected through a pattern in all the layers of the multiplex structure. Indeed,

two nodes i and j could have the same overlapping degree, oi = oj (see (3.12)), but for

instance node i could be a hub on a generic layer α and only an isolated node on the

other layers, because all its connections lie in that layer, while the node j has the same

number of links on each layer, so that we have: oi = kαi and oj =Mkαj , ∀α. Thus, even

though the two nodes have the same overlapping degree, if we look at them from a

multiplex perspective, they have totally different roles. By contrast, it may occur also

the opposite situation, where the overlapping degree are different, but the two nodes are

very similar looking at the contribution of each layer to the overall overlapping degree

of the two nodes. In order to describe the degree distribution over the various layers of

the multiplex, we define the so-called entropy of the multiplex degree, as follows:

Hi = −
M
∑

α=1

k
[α]
i

oi
ln

(

k
[α]
i

oi

)

(3.26)
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From the above definition, it follows that entropy Hi = 0 if all the connections lie

in a single layer, while it will reach the maximum value when the degree distribution

over the various layers is uniform. Similarly, we can define the multiplex participation

coefficient Pi of the node i as follows:

Pi =
M

M − 1



1−

M
∑

α=1

(

k
[α]
i

oi

)2


 (3.27)

Then, Pi measures how the links of node i are distributed among the M layers of

the multiplex, and its values ranges in the interval [0, 1], where values close to 0 mean

that links are concentrated in just one or few layers (in the limit case Pi = 0 all the

edges of the node lie in one layer), while values close to 1 mean that the distribution

is nearly uniform among layers (in the limit case Pi = 1, the node has the same links

on each of the M layers). The overall participation coefficient P of the multiplex is

calculated as the average of Pi over all the nodes of multiplex, i.e. P = 1/N
∑

i Pi . It

is clear how the two quantities Pi and Hi give very similar information.

Up to now we have focused on measures related to the single node in the multiplex,

our purpose is now to quantify the importance of each layer as a whole. In Sect. 3.4.2

we have defined the edge overlap and the overlapping degree (see (3.12)), which allows

evaluating the presence of correlations across the layers of the multiplex. Although

the edge overlap distribution gives information about inter-layer correlations, it does

not allow assessing whether one layer is more relevant than others in the multiplex.

Hence, we can define the following quantity, defined in (65) as social reinforcement,

which measures the conditional probability to find a link between two nodes at a layer

α′ given the presence of a link between the same nodes at layer α:

P
(

a
[α′]
ij | a

[α]
ij

)

=

∑

ij a
[α′]
ij a

[α]
ij

∑

ij a
[α]
ij

(3.28)

where the denominator is the total number of links at layer α, or the size of the

layer, Kα, obtained summing all the degrees ki of the nodes in the layer, while the

numerator quantifies the number of the edges which are present also in the layer α′. In

(65), the authors consider the multi-layer network of Indonesian terrorists, where social

reinforcement is able to quantify if one of the layers (in this case the Trust layer) acts as

a dominant layer in the multiplex, or in other words if there is a layer representing the
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strongest connection between two nodes, whose existence can lead to an edge creation

also in the other layers. Thus, collaboration and communication in this example of

multiplex network is ruled by this mechanism of social reinforcement, and we can think

to extend it also in other social contexts.

Reachability, as well as in the single-layer networks, is related to the existence and

length of a shortest path between a pair of nodes in the multiplex network. It is clear

that in presence of more than one layer, the shortest path can change across layers,

thus to capture how the multiplex affects the reachability of each node in the network,

it is possible to define the node interdependence, as follows:

λi =
∑

j 6=i

ψij

σij
(3.29)

where σij is the total number of shortest paths between the two nodes i and j , while

ψij , among all of these shortest paths, only considers those exploiting links in two or

more than two layers. Therefore, λi ranges in the interval [0, 1] and, in particular,

λi = 1 when all the shortest paths make use at least two layers, while λi = 0 if each of

the shortest paths exploits only one of theM layers of the multiplex structure. Overall,

the network interdependence is the average of λi over all nodes: λ = 1/N
∑

i λi . It is

easy to observe how the interdependence is anti-correlated to the overlapping degree, as

if a node has a high overlapping degree, it will have a lot of opportunities to choose the

first edge to reach another node, while if it has a low overlapping degree, its shortest

paths are more constrained in terms of edges and layers.

3.4.5 Correlations

Multiplex networks contain a lot of information, more than considering the single lay-

ers isolatedly. This is one of the reasons why it is interesting to model and study a

system as a multiplex network, instead of simply aggregating together its component

networks trated as single-layer networks. Multiplex network allows including measures

of correlation between both nodes and layers. Finding out the correlations is one of

the most important aspects in multilayer networks. Degree correlation in a single layer

network indicates how much the degree of a node can be correlated, positively or neg-

atively, or not correlated with the degree of its neighbours. In particular, a positive

degree correlation indicates that the hubs are preferentially connected to each other
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through the network, while a negative degree correlation means that they are preferen-

tially connected to low-degree nodes. In the case of multiplex networks, the notion of

correlation is by far richer than in the single-layer case, as we can still investigate the

classical degree-degree correlation in each layer, but evaluating and measuring corre-

lations between a property of a node in one layer and the same or other properties of

the same node in another layer is surely more interesting and gives more information.

Before distinguishing between the most important types of correlations in multiplex

networks, listing the most important properties of each of them, it is worth to note

that multiplexity introduces a novel complexity due to the non-trivial patterns of node

involvement across layers (79). We can outline the various types of correlations in

multiplex networks as follows:

• interlayer degree correlations: it indicates wheter a hub in one layer is also a hub

in another layer, or a low degree node. Thus, it allows quantifying if there are as-

sortative or disassortative correlations: in the former case, nodes having a certain

degree are preferentially connected to other nodes having similar degree, in the

latter case they are connected to dissimilar degree nodes. Social networks repre-

sent the most clear example of assortative networks, in contrast with other types

of networks, such as technological and biological networks, showing disassorta-

tive degree correlations, where hubs are preferentially linked to poorly-connected

nodes. The interlayer degree-degree correlation allows exploring whether there

are correlations in the degrees of a node across different layers. To quantify it,

we can use the Pearson, Spearman and Kendall’s correlation coefficients (79).

• overlap and multidegree: as we defined in (3.12), the edge overlap gives infor-

mation about patterns correlation through the network. For instance, mobile

communications occur at different layers, such as phone, email, instant messag-

ing applications (e.g. Whatsapp, Viber, Hangouts, Skype, etc.), hence the edge

overlap is high and it is able to quantify this type of correlation. Multidegree of

the node specifies the overlapping pattern.

• multistrengths and inverse multiparticipation ratio of weighted multiplex : if we

represent the multiplex as a weighted multiplex network (80), the weights of the

links in the different layers can be correlated with other structural properties of
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the multiplex. The classical example is that of citation networks, where authors

tend to cite collaborators differently from other scientists. The definition of these

two correlation measures derives from the concept of multilink, which is the set of

links connecting two nodes in the different layers of multiplex. The multistrength

of a node is the distribution of weights in the multiplex, while the inverse mul-

tiparticipation ratio is the distribution of weights incident upon nodes having a

certain degree K in the multiplex. Then, these two parameters represent two cor-

relation measures able to capture the correlation between the weights distribution

and topology of the multiplex (80).

• node pairwise multiplexity : the activity of a node Bi is the number of layers in

which the node is present. The evaluation of activity across the different layers

can give information about correlation in fact, if two nodes are not active in all the

layers, it is more likely that their activity patterns are correlated, as for example

they are active on the same layers. To capture these correlations, we use the node

pairwise multiplexity (79).

• layer pairwise multiplexity : analogously to the previous measure, also this mea-

sure is based on layer activity, so that two layers show correlated activity patterns

if, for instance, the active nodes are the same. To capture these correlations be-

tween layers, we use the layer pairwise multiplexity.

3.4.6 Multiplex networks models, network ensembles and entropy

As we know, the issue of generative models of a network has been addressed in the

case of monolayer networks, unveiling some of the most important mechanisms, such

as Barabàsi-Albert model based on preferential attachment, explaining the emergence

of power-law distributions (55), and the static models, as a generalisation of random

graphs to the case of more complex structures, able to describe network ensembles with

certain properties (e.g. exponential random graphs) (2, 3). Also in multilayer networks,

the generative models can be split into two main classes: growing multilayer network

models, where the basic mechanism is the generalised preferential attachment, and mul-

tilayer network ensembles, which are ensembles of N nodes with specified structural

constraints (72). In statistical mechanics the concept of ensemble is defined as a large

number of copies of a system (which can be also infinite), considered all at once, each
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of which represents a possible state in which the real system might be in (that is a mi-

crostate). Also in network theory, ensemble models consider not only a single network,

but a probability distribution over many possible networks. Apart from constraints,

the other features of the network ensemble are completely random (randomised net-

work ensembles), so that for a give real network, it is possible to generate different

randomised network ensembles, which depend on the fixed structural constraints (69).

The ensembles allow identifying non-random patterns and properties in real networks,

thus an observed real network represents a single realisation of a larger statistical en-

semble including all the possible realisations consistent with the defined constraints.

Furthermore, given a set of constraints, we can distinguish between the microcanonical

and the canonical network ensembles: in the first case, network ensemble satisfies the

hard constraints, while in the second case, constraints are satisfied in average. It is im-

portant to observe how the distinction between microcanonical and canonical network

ensembles has to be take into account when analysing dynamical processes on network,

as it can strongly influence their critical behaviour. From a mathematical point of view,

a statistical ensemble of networks can be defined as a set of graphs where, for each graph

~G =
(

G1, G2, . . . , GM
)

, we can define a probability P ( ~G). Now, we define the concept

of entropy in multiplex ensembles. It is well known as the concept of entropy appears

in many different theories, starting from the first probabilistic interpretation of ther-

modynamic entropy given by Ludwig Boltzmann, and becoming a crucial concept of

information theory. In statistical mechanics, defined a set of macroscopic variables, en-

tropy constitutes a measure of the spreading out of probability over different possible

microscopic states. Therefore, given the probability P ( ~G), the entropy of the multiplex

S is given by:

S = −
∑

~G

P ( ~G) logP ( ~G) (3.30)

It measures the logarithm of the typical number of multiplex networks in the ensem-

ble. Moreover, as described comprehensively in (69), other than distinguishing between

microcanonical and canonical multiplex ensembles, there is also a further distinction

between uncorrelated and correlated multiplex ensembles, since in ensembles of net-

works, links in the different layers can be uncorrelated or correlated, and this produces

different definitions of P ( ~G) and entropy as a consequence.
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Chapter 4

Social Networks, Big Data and

ICT in Healthcare

In the future, life and death decisions will depend on having more data and more

organised knowledge. These data will overcome traditional scale and dimensions, thus

we will need to think about new kind of strategies which involve ICT. Collect, organise

and compute every aspect will be crucial for survival of patients and for healthcare

management. Following a bio-inspired approach to ICT, in (81) we relate big data and

the data-intensive computing issues in the future vision of a smart healthcare. The

multidimensional approach to comorbidity and the introduction of a social dimension

of analysis allow finding out correlations and causality relations between diseases and

patients also considering the connectedness and social contagion processes. In this

way, we obtain an evolution from data to multi-agents through the introduction of

personalised medicine in a multilayer architecture.

4.1 Introduction

Innovation and widespread of Information and Communication Technologies (ICTs)

are pushing forward the interest in this research field. ICT should be planned and de-

signed to conduct almost any activity which involves logical strategies and operations in

a variety of application areas. In chap. 2 we have discussed about the similarities and

connections between biology and ICT (20), and about some of the main challenges of

bio-inspired ICT in such a complex, heterogeneous, and increasingly highly connected

world. In the era of high connectedness, users are becoming more active in interacting,
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sharing and collaborating, through social networks. The latest trends in network ex-

pansion and data provisioning have introduced new challenges in network science and

engineering, such as: availability, efficiency, evolvability, computational intelligence,

data intelligence, effectiveness intelligence. In this way, this process produces collective

intelligence, spread out in many different areas and related to networks phenomena.

Nodes, data and interactions represent both subject and object of the knowledge dis-

tillation in social networks. This produces a large amount of unstructured information,

and a multitude of social subjects and objects as information sources and users. Het-

erogeneity and plurality, based on bio-inspired approach, are the representation of the

bio-diversity: in terms of knowledge, it is represented by health, in terms of data, it

is represented by complexity and, in terms of social networking, it is represented by

collective intelligence.

In this scenario, as well as biodiversity in biological phenomena, big data represent an

excellent resource to improve the understanding of the networks phenomena, optimis-

ing ICT interventions, pushing towards greater knowledge and collective intelligence.

The healthcare industry historically generates large amounts of data, related to patient

care (82). The current trend is toward digitalisation of these large amounts of data.

The basic idea is to improve the quality of healthcare delivery and reduce the costs.

Moreover, big data in healthcare hold the promise of supporting a wide range of medical

and healthcare functions, including clinical decision support, disease surveillance, and

population health management (82). Big data in healthcare refers to electronic health

data sets, such as Electronic Health Records (EHRs) so large (for instance, big data

for U.S. healthcare will soon reach the zettabyte scale, and not long after, yottabyte)

and complex that they are almost impossible to manage with traditional data manage-

ment tools and methods. For all these reasons, Public Health and Clinical Intervention

management is a future challenges of next future research. Medical statistics, clinical

epidemiology, decision analysis and health economics, are different disciplines that, in

the smart health context, are becoming more increasingly connected in a fruitful and

compelling way (83).

Comorbidity refers to the co-occurrence of different medical conditions or diseases in the

same patient. In the comorbidity perspective, the patient becomes the centerpiece of a

system characterised by multiple, complex and correlated conditions or diseases (84).

In the biomedical research field, for example, one of the main problems is to find out
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the correlations between human diseases and the subtle mechanisms, at the molecular

level, shared by apparently dissimilar diseases. By exploring genes-diseases relations,

the pathogenesis may emerge, and it could lead to better diagnosis and treatment (85).

In this field, the study of comorbidity relations becomes crucial, as it allows finding out

dynamic patterns, correlations and causality mechanisms between diseases and patients

and, even more interesting, it becomes crucial to study the social dimension of comor-

bidity, focusing on how the strength of the ties, the connectedness, and communications

lead to an evolutionary dynamics of the social network and represent a further degree

of analysis in the comorbidity assessment. Medicine is subject to many challenges, due

to many kinds of innovations in different fields. The social networking, the ubiquitous

networks, big data and ICT strategies can support the future innovation in healthcare

design and management, making the medicine able to face the different opportunities

in important challenges. As an added value in the future development of medicine, the

involvement of patients in the healthcare process is increasingly becoming an important

factor. The social dimension will change radically the approach for the future medicine,

involving the precision medicine (86), by exploiting the dynamic analysis, the study of

the dynamic evolution of behaviours and needs, the disease contagion processes, and

also through the sharing, cooperation and collaborative approach thanks to the new

technologies.

In this chapter at the beginning, we will give a brief scientific background of the main

issues and challenges of big data, and in particular big data storage and analytics, fo-

cusing more on data-intensive computing (see sect. 4.2). In sect. 4.3, we will shed light

on the challenges of big data in the healthcare context. After having discussed a health

mining approach (see sect. 4.4), we will raise up the issue of comorbidity relations,

bringing out the importance of considering a social dimension (see sect. 4.5). In sect.

4.6, we will focus on the future challenges of medicine and innovation in healthcare

through the introduction of P5 medicine. In sect. 4.6.1, we propose a novel multiagent

system in a multilayer structure, which allows extracting a smart organised knowledge

from big data. In sect. 4.7, we summarise some of the main proposed aspects of bio-

inspired ICT in healthcare. Finally, in sect. 4.8, we will discuss about a social evolution

of the concepts of node and data, developing a novel social multilayer paradigm in order

to investigate the complex dynamic patterns in the analysis of ICT systems.
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4.2 Big Data: An Overview

4.2.1 Introduction and background

Big Data Analysis is an interdisciplinary topic which combines many different disci-

plines, such as social networking (87), computational social science (88), data integra-

tion and fusion (89), data mining (90), trend discovery, multimedia and business man-

agement, opinion analysis and sentiment analysis (91), machine learning (92), graph

mining, knowledge-based systems (91), decision support system (93), healthcare and

biomedical applications (82), cloud computing.

Big data is defined as large amount of data which requires new technologies and ar-

chitectures so that it becomes possible to extract value by capturing and analysing

process. In the near future there will be a high availability of digital data difficult to

be managed and analysed by using only the traditional techniques and conventional

software tools and technologies. This kind of data, in all shapes and sizes, is growing at

very fast rates. The actual interest of research is to shed light on suitable methodologies

to perform an effective analysis on this huge quantity of data, exploiting the benefits

brought by it. As stated by (94), big data can be defined using the following properties

associated with variety, velocity, volume, variability, value (the so-called “5V model”)

as illustrated in Fig. 4.1. These features represent the advantages, the main issues and

the basis for the future challenges.

ICT should attend and provide support to the designing of innovative systems able to

handle large amount of data efficiently and effectively. The challenge is also to insert

this process in a context of social networking linked to application areas, such as the

healthcare, in which nodes and information become subject and object of interactions,

information sources and users of the services. Through the mechanisms of data fusion

and integration, another challenge may be to select, among all the collected data, the

most important data related to time, space and, more in general, to the context-aware

process. The challenges consist not only of storing, collecting, processing and managing

the vast volume of data, but also to analyse and extract meaningful value from it. If

this process of extraction is inserted in a social context, the obtained knowledge may

become object of social sharing and part of the social contagion process (30), promoting

cooperation and spreading collective actions in the population.
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The concept of big data has permeated social sciences and humanities (60). The com-

plexity lies in collecting data combining datasets from multiple sources, matching coher-

ently incomplete data, and managing the data paying attention on ownership questions

and privacy issues, since many datasets contain sensitive data regarding users (60).

Issues and challenges are focused on the following topics: big data, big data analytics

and storage and data-intensive computing. Data-intensive computing has become a

research problem in science, industry and computer academia. The data explosion has

lead to the development of various data-intensive computing applications, including for

example text data processing, large scale graph computing. Data-intensive computing

research faces challenges of scalability of massive data management and processing of

integrated or unstructured data, fault tolerance and high availability issues. There-

fore, data-intensive computing models need to be suitable for large scale data sets

parallel computing, multiple virtual machine task scheduling and constructing new

data-intensive computing applications. Although industry and academia has proposed

some approaches for data-intensive applications, issues related to both data-intensive

and computation intensive features are still not solved at present.

4.2.2 Big Data Analytics and Storage

The Internet’s network expansion and the resource provisioning have introduced new

challenges in network science and engineering. The first challenge is the availability,

both in terms of network infrastructure and services; it becomes really challenging fac-

ing the scaling and the large amount of network applications which exceed the speed

of network upgrades (e.g. video streaming). The problem becomes even stronger due

to the mobility and heterogeneity of devices. Therefore, this means that the Internet

should become more flexible, adaptable, robust and resilient, maintaining its avail-

ability. Another challenge is the efficiency in delivering information, in particular in

social networks because of the large amount of applications daily installed from users.

The third feature of the future Internet should be evolvability, so the Internet archi-

tecture has to be able to face the emerging trends in data-intensive computing and

the continuous infrastructure and applications changes. The future Internet architec-

ture has to address the increasing computational complexity. Other challenges are the

data intelligence, in order to sample, analyse and find out correlations and causality

relations among data, increasing the quality metrics, e.g. using the users’ quality of
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experience. Furthermore, to manage the network resources, data-driven approaches

are needed, simplifying the problem formulation and speeding up the decision-making

processes, reducing cost and improving network performance. Big data opens a new

era for science discovery through data-driven computing. This new paradigm applies

to the design of the future Internet, facing issues such as supporting new applications,

the efficient resource utilisation, and continuous evolution.

Following the 5V model, explained in (95), major interest for the bio-inspired approach

is addressed to the heterogeneity of data, identified as “Variety” in the 5V model. This

feature has a dual nature, in fact from one side it represents a problem, but it is also an

opportunity. The achievable benefits are for end-users, enterprise consumers, services

providers, and prosumers which can extract knowledge and a lot of information from

this huge data variety. The concept of “variety”, which can be identified as the biodi-

versity of our system, using a bio-inspired approach, is the result of unstructured data.

Unstructured data refers to information without a pre-defined data model or does not

fit well into relational tables. The nature of the unstructured leads to consider that

we have a variety of formats which can collect. Moreover, there is no standardisation

on content extraction and storage of it and, finally, the data are from multiple and

different sources (social media, data providers, mobile apps, sensors, etc.) and also in

different layers (7). We can collect data in different and long time intervals, introduc-

ing a large-scale resolution problem (60). Thus, big data introduces a need to manage

efficiently the measures of data being stored and manipulated. Data storage is, in fact,

the basis for big data networking. From the analytical point of view, there are also

high challenges to be addressed. Thus, the research is interested in investigating all

the new techniques and paradigms being developed and implemented. The challenge

related to the problem and, at the same time, the opportunity of exploiting a large

amount of data, is not only to store and manage the great amount of data, but also to

analyse and extract meaningful value from it. There are several approaches to collect,

store, process, and analyse big data. The emerging volume of big data types needs for

capabilities of innovative technologies for the unstructured data. For this reason, look-

ing for future generation technologies for data analytics is becoming a growing research

interest. Big data analytics are practical methodologies applied to very big data sets,

composed by structured and unstructured data. Big data analytics is where advanced

analytics techniques operate on big data sets (96). The analytic process, starting from
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multiple sources, such as mobile devices, network nodes, Internet of Things, datasets,

sensors, etc., is a collection of practical skills and techniques which include data mining,

data visualisation, predictive analysis and artificial intelligence. The nature of big data

involves the collection of many samples of data. The traditional analytical tools must

therefore be optimised to support a large set of data. In statistical terms, the larger

is the set of data, the more accurate is the analysis. The evolution process of big data

analytics is related to the rapid growth of applications in this field. This produces a

great opportunity growing in area and topics diversity.

The principal features and challenges linked to technologies identified in Big data an-

alytics are the following: (a) innovation in data warehousing, because traditional pro-

cesses are slow and limited in scalability; (b) ability to converge data from multiple

structured and unstructured sources; (c) innovation and challenge in time of value ex-

traction from multiple sources.

Big data analytics can benefit customers, relations, business intelligence, and many

analytic applications (96). In this research field, there are three major advances: 1)

direct analytic over massively parallel processing data warehouses, 2) indirect analytic

over Hadoop and 3) direct analytic over Hadoop. There are various developmental

topics within Big Data Analytics: MapReduce, scalable database, real-time stream

processing and Big Data appliance. MapReduce was introduced by Google in order

to process and store large datasets, providing a programming paradigm which allows

useable and manageable distribution of many computationally tasks. It simplifies the

programming work, improving data processing efficiency. Hadoop is a highly popular

free Map-Reduce implementation by the Apache Foundation, and it is widely used for

example in Facebook, Yahoo, etc. Microsoft Dryad model is a parallel computing model

based on pipeline computation. It uses a Directed Acyclic Graph (DAG) to represent

computational task decomposition. Each node in DAG represents a scheduled task.

The stored big data are made available by analytical functions. After that, the data

mining and knowledge discovery are parts of the features of the process handling this

large amount of data, relating to the other questions which go around the intensive

computing.
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taneously, the cloud computing and virtualisation technologies are revolutionising the

scientific research, transforming it in a data-intensive computing application.

Data-intensive computing is different from traditional high performance computing, as

it not only requires high storage capabilities and high speed data transmission, but

also computationally complex issues and the analysis and visualisation of the results.

The main difference is related to application environment, data size and application

requirements. Its features are embodied in the data, processing technology, complex

application development and application mode. Data-intensive computing deals with

massive, changing, distributed and heterogeneous data. In addition to the traditional

structured data, there are semi-structured and unstructured data. As data dynamically

change features, data processing must be real-time and the traditional static database

management technology is not able to do this type of dynamic processing. Furthermore,

the new paradigm of data-intensive computing revolutionises the meaning of comput-

ing, as it includes search, query and other traditional data processing, but also includes

smart processing, such as analysis and understanding. Therefore, data-intensive com-

puting is associated with the storage and management platform, and combined with

a high flexibility and customisation ability, it has to exploit easy search, query and

analysis tools. By using these tools, users can construct complex data analysis or un-

derstanding application.

Data-intensive computing needs the massive storage, high performance computing plat-

form, which usually cannot be achieved locally. It may include data acquisition,

pre-processing and data analysis process. In this complex procedure, data-intensive

computing service interface must provide full description function and favourable web

service interaction between client and server. Data-intensive computing is a parallel

computing technology that processes large scale intensive data sets. The end users do

not need to care about parallel processing details. To allow program developers to

fully exploit the data-intensive computing convenience and availability, a proper data-

intensive computing programming model needs to meet the following requirements: (a)

suitability for large scale data sets parallel computing, (b) the possibility of multiple

virtual machine task scheduling, and finally (c) the program developers should be able

to construct new data-intensive computing applications for end users on the network.

Some examples of programming models are MapReduce and Dryad, showing different

features as discussed above. Data-intensive computing research prospect is very broad
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and the sensation is that a lot of work has to be done in this research field to meet the

different requirements of the various applications.

4.3 Big Data in Healthcare

Big data in healthcare is a very important issue not only because of its volume, but also

because of the heterogeneity of data types and the speed at which it must be managed.

In fact, the data related to patient healthcare and wellbeing in the healthcare industry

include clinical data from clinical decision support systems; patient data in electronic

patient records (EPRs); sensor data (e.g. body monitoring); social media posts; and

less patient-specific information (e.g. pubMed) (82). Big data available in healthcare

industry represent an opportunity, as discovering associations and understanding pat-

terns within the data through big data analytics, has the potential to improve care,

and analytical and computational processes. Organised data allows improving the di-

agnosis process, treatments, producing, as a consequence, a higher quality at an overall

reduced cost (82).

Furthermore, the analysis of data in healthcare helps to identify the most effective treat-

ments, offering analytics tools to make predictions and inferences about patients (pre-

dictive modelling), developing a proactive medicine, e.g. suggesting lifestyle changes.

Other advantages are the possibility to collect and publish data on medical procedures,

assisting patients in determining the care protocols, identifying and minimising fraud

by implementing advanced analytic systems for fraud detection and checking the ac-

curacy and consistency of claims. Through analytics, it becomes possible to monitor

adherence to drug and treatments and detect trends that lead to individual and popu-

lation wellness benefits.

Individual and population data would inform each physician and her patient during the

decision-making process and help determine the most appropriate treatment option for

that particular patient. Using big data, potential benefits include not only the detec-

tion of diseases at earlier stages when they can be treated more easily and effectively,

but also the management of both specific individual and population health. It becomes

possible to predict patients at risk for advancement in disease states; causality between

diseases and possible comorbid conditions.

Big data could help reduce economic wastes in all the healthcare aspects. In clinical
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operations, it will help to detect more clinically relevant and cost-effective ways to diag-

nose and treat patients. In the research field, predictive modelling will produce a faster

and more targeted processes. Statistical tools and algorithms will improve clinical trial

design and patient recruitment to better match treatments to individual patients, thus

reducing trial failures. In Public Health, the analysis of disease patterns and tracking

disease outbreaks will improve public health surveillance and interventions, in addition

the large amounts of data can be used to identify needs, provide services, and predict

and prevent crises, especially for the benefit of populations (82). Big data analytics in

healthcare can contribute to evidence-based medicine, thus combining and analysing a

variety of structured and unstructured data-EMRs, clinical data, and genomic data.

In terms of genomic analytics, big data allow executing gene sequencing more efficiently

and cost effectively and make genomic analysis a part of the regular medical care deci-

sion process and the growing patient medical record (82). The device monitoring, that

is the real-time analysis of large volumes of fast-moving data from in-hospital and in-

home devices, allow monitoring and predicting events. Applying analytics to patients

profiles, using predictive modelling, we can identify individuals who would benefit from

proactive care, lifestyle changes, or preventive care because they are at risk of devel-

oping a specific disease. Health-related data generate an incredible volume of data.

Data includes personal medical records, radiology images, human genetics and popu-

lation data genomic sequences, etc., and new forms of big data, such as 3D imaging,

genomics and biometric sensor readings, are also emerging, increasing this exponential

growth. Data are accumulated in real-time and at a rapid pace, or velocity, such as

more continuous control by insulin pumps, blood pressure readings, etc. Moreover,

it is important to note that in many medical situations, constant real-time data can

result in the survival of the patient. The early detection of infections through real-time

data analytics, and the application of the suitable treatments could reduce the patient

morbidity and mortality and even prevent hospital outbreaks.

The enormous variety of data-structured, unstructured and semi-structured is a di-

mension that makes healthcare data both interesting and challenging. In healthcare,

structured and semi-structured data include instruments readings and data generated

by the ongoing conversion of paper records to electronic health and medical records.

Unstructured data is the office medical records, doctor notes, hospital admission, pa-

per prescriptions, radiograph films, and other images. Genetics, genomics, social media
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research are creating new forms of structured and unstructured data, the problem is

to capture, store and organise in order to manipulated and analyse them for useful

information. Healthcare applications in particular need more efficient ways to combine

and convert varieties of data including automating conversion from structured to un-

structured data. The potential of big data in healthcare lies in combining traditional

data with new forms of data, both individually and on a population level. The veracity,

as we discuss previously, is related to the error-free and credible data, so the problem

is to get veracity increasing the data quality. Improving coordination of care, avoiding

errors and reducing costs depend on high-quality data, as well as the advances in drug

safety and efficacy, diagnostic accuracy and more precise targeting of disease processes

by treatments. On the other hand, the increased variety and high velocity hinder the

ability to cleanse data before analysing it and making decisions, magnifying the issue

of “trust” data (82). There are many other issues to consider, such as the number of

architectures and platforms, the dominance of the open source paradigm in the avail-

ability of tools, the challenge of developing methodologies and the need for user-friendly

interfaces.

It is clear that big data analytics has the potential to transform healthcare context, to

gain insight from their clinical and other data repositories and make informed decisions.

At this stage, the sensation is that the healthcare organisations and industry still have

to face a lot of issues and challenges to speed up the use of big data analytics and

data-intensive computing techniques in this field (82).

4.4 A new Data Mining in Healthcare

In healthcare context, there are many opportunities and issues related to data, because

we have a multitude of heterogeneous sources from which we can extract awareness,

related to the patient health. From the social, economic and political aspect, there are

a lot of perspectives to analyse these processes, and the mining process, as a collection

of different highly increased data, will become hard. Nowadays, the problem is that

healthcare should be rationed from different points of view.

First of all, the required innovation is in classifying and analysing clinical and biomed-

ical observations and studies, sensor measures, social behavioural dynamics which rep-

resent the new dimension of collected data in the health context. The plurality of the
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available informative resources does not allow fast processing, and therefore it would

be useful to define a single paradigm able to simplify the procedures optimising the

efficiency of the subsequent inference analysis, decision-making and management pro-

cesses (83). With the advance of ICT in healthcare context, following a bio-inspired

approach, exploiting processes and methodologies of social and biological world, it is

possible to collect many different kinds of data, in time and space. In time, we can

consider the need of high resolution process, to evaluate dynamically every changes in

a long period (60). In space, we consider many layers of knowledge, related to the

type of interactions among patients on different dimensions (7). Multiple types of data

provide many complementary perspectives of a single or different correlated aspects,

and highlight the need for algorithms able to unify these heterogeneous resources. On

the other hand, multiple layers consider different relationships which can influence and

change (30) the dynamics of population and personal health, in small and large scale.

The final target is to combine relevant information in the most efficient way and ob-

tain a complex and smart mining process, extracting awareness and knowledge, as a

semi-complete understanding of the healthcare issues, social dynamics which include in-

fluences and contagion processes, clinical and biomedical observations and experiments.

From multiple sources and various data, we obtain a large amount of smart complex

big data. Clinical data, statistics, classifications and databases (e.g. ICD9) provide and

maintain the traditional approach to the collection of bio-medical information. Instead,

the Internet of Things (IoTs) perspective, linked to body area sensors, home and social

monitoring, allows us to gather context-aware data about patients, thereby reducing

hospitalisation costs through early and fast interventions and treatments (83). The so-

cial dimension introduces a new point of view. Each patient is a node, each community

is a group of nodes or a population of nodes, and the ties, strong or weak, are the rela-

tionships and interactions between them. There is a stream of sharing in which we can

convey, control and exploit the diffusion dynamics, the contagion of some behaviours

(e.g. cooperation, good behaviours related to health, public good). In particular, this

influence rules the decision process of each node or of the entire community. Each node

is a social subject, and what it shares is a social object. Each of them has a role in the

knowledge extraction from these processes and to predict health phenomena (30, 98).

The traditional data mining process represents techniques used to explore database

and detect unknown patterns useful to build predictive models (99). In (83) we have
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Figure 4.2: Health Mining Architecture. A novel data fusion and integration

paradigm.

proposed a new point of view of the data mining process, introducing a multi-layered

approach, capturing different aspects of the collected data from several sources. The

three data layers, defined in the architecture, create a reality mining in health context,

considering not only the clinical data, but also social and IoT information. Finally,

the Bio-Inspired approach (35) provides methodologies and algorithms to redefine and

optimise the analytic process and improve ICT design and management systems. In

(81), we consider and propose some other dimensions, such as comorbidity, linked to the

social dimension, following bio-inspired and multilayer approach, obtaining an efficient

patient profiling and also new kinds of data to re-populate our big data collection.

4.5 Comorbidity and Complex Health Data

The Health Mining paradigm (83) presented in the previous section (see Fig. 4.2),

represents a new vision of data, a complex health data, obtained through an intra-

layer fusion and an inter-later integration of data of different nature from multiple

heterogeneous sources. This new complex form of data represents a first step towards

the resolution of data heterogeneity issues related to patients and diseases. Further-
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more, the complex data allow deepening the associations between diseases, and their

co-occurrence in the same patient, referred as ’comorbidity’. The new type of complex

data has intrinsically also a social dimension which, as we are going to describe in the

next subsections, is the key aspect to consider if we want to address the comorbidity

aspects of diseases. We will stress the importance of taking into account also the social

dimension along with the other dimensions of analysis.

4.5.1 A Multidimensional Approach

Comorbidity refers to the co-occurrence of different medical conditions or diseases in

the same patient. A comorbidity relation between two diseases occurs when the two

diseases appear simultaneously in a patient, not by chance alone (84). It is worth to

underline that some infections or diseases can coexist in the same patient only by co-

incidence, but there is not any pathological association between them (85). In most

cases, however, multiple diseases (chronicle or acute events) occur together in the same

patient because of the associations between them. These associations can be direct

or indirect causal relationships and can share some risk factors (some diseases share

almost the same risk factors). In the comorbidity perspective, the patient becomes the

centerpiece of a system characterised by multiple, complex and correlated conditions

or diseases (84).

To evaluate comorbidity, in the age of big data, with a large amount of available data,

it becomes necessary to use statistical parameters to make predictions or inferences,

learning from large data sets. This underlines the increasingly need for statistics and

uncertainty. In fact, even if, from one hand, the uncertainty increases the complexity

of the analysis in terms of comorbidity, on the other hand, uncertainty and statistics

allow gaining knowledge from ever larger data sets (100). Building probability models

and sophisticated simulation-based statistical methods, such as filters, it becomes pos-

sible to evaluate comorbidity risk. For instance, statisticians are developing models for

complex interactions between genes, learning the structure of a network describing gene

relationships or phylogenetic trees. The growing of medical databases creates more and

more difficulties in managing them, for this reason there is an increasing demand for

making causal inferences from observational data. The problem is the difficulty to turn

correlation into causality, even with large amount of data.

Big data help in increasing sample sizes, and it allows doing better estimates but this

84



4.5 Comorbidity and Complex Health Data

apparent precision goes down if we do not consider the selection bias, regression to the

mean, causation properties, and all the complex issues related to the different dimen-

sions of analysis. To produce knowledge from big data, it becomes necessary to analyse

and understand the various aspects using a multidimensional approach. In the biomed-

ical research field, for example, one of the main problems is to find out the correlations

between human diseases and the subtle mechanisms, at the molecular level, shared by

apparently dissimilar diseases. By exploring genes-diseases relations, the pathogenesis

may emerge, and it could lead to better diagnosis and treatment. Diseases are more

likely comorbid if they share associated genes (85). What becomes crucial in the comor-

bidity assessment is to discover the positive and negative associations between diseases,

and therefore the analysis has to be also focused on pathways-genes associations. Ash-

ley et al. in (101) have mapped the personal genome, gene-environment interactions

and the dependent risks for the clinical assessment. In addition to the molecular and

genetic data, the population-based disease associations are also important in the anal-

ysis of comorbidity. From the co-occurrence of diseases we can estimate the correlation

degree which is proportional to the strength of comorbidity risk (85).

The research of recent years has shed light how many apparently different diseases,

in reality from a molecular perspective show similar mechanisms. A part of the re-

search is exploring the relationships between genes and diseases at a molecular level,

trying to understand the pathogenesis. It may lead to more powerful diagnosis and

treatments. Therefore, from a biological point of view, it is important to analyse

both pathways-diseases associations and gene-diseases associations, to understand the

molecular mechanism of a particular disease. The authors of (101) have analysed the

personal genome, gene-environment interactions and risks of conditional dependence

for the clinical assessment. To find out the molecular origins and the comorbidity of a

disease, it is useful to study, along with molecular and genetic data, also the associa-

tions between diseases based on populations. The problem is to quantify the strength

of the comorbidity risk, in this direction the disease ontology helps to promote the

study of diseases and risk factors.

Comorbidity, in a “smart” health perspective, is a key factor to improve the analysis

related to stratification of the patients risk and to adapt the treatments planes. Pre-

dictions made taking into account comorbidity risk may allow improving the patient’s

management. Comorbidity may also influence the patient survival in fact, if we want to
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predict the possible consequences of diseases in the survival analysis, it is fundamental

to examine not the single disease in isolation, but the comorbidity, the environment,

the patient’s age and the treatment plane. Kan et al. (102) have observed how the life

expectancy decreases in function of the number of comorbid diseases. The authors of

(84) have underlined multiple dimensions of analysis of comorbidity. The disease space

allows inferring diseases relationships. It consists of a coordinate system with clinical

and molecular data; it leads to a patient disease network, with multiple interactions.

Taking into account these links, it is possible to evaluate the associations between the

diseases and also the “exogenous factors”, such as the large number of variables, the

lack of accuracy in measurements (due to the limited sample size) and the technological

limitations in generating data. These noise factors produce uncertainty and increase

the complexity of the system and, as a consequence, it becomes increasingly difficult

to discriminate between causality and correlation.

Another macro-dimension is time, in fact the events represent the turning points in

remodulating the ’comorbidity map’, which is a way to illustrate the links between

diseases (nodes) and quantify the correlations mechanism of human diseases (101) (see

sect. 4.5.2). The pathological episodes have to be contextualised in time, in fact

consequences are linked with the context and the involved environmental factors. Fur-

thermore, time allows distinguishing between transient and persistent contributions to

the comorbidity map, as some events are able to generate persistent changes in rela-

tionships (e.g. acute or chronic events), while others are re-absorbed in a relatively

short time. The time has two components: the sequence of events and the time span

which indicates the horizon of the contributions, transient or persistent. The interde-

pendence and the perturbation of systems (deviation from stationarity of the system)

can produce both local and global scale dynamics: locally, they can influence only a

limited part of the comorbidity map, but in some cases the effects may determine a

diffuse impact.

Trying to disentangle the complexity of the analysis, we need a multidimensional ap-

proach considering, beyond the temporal dimension, also the following dimensions: (a)

clinical, which involves diagnostics and intervention strategies in response to changing

conditions of the system. The treatment plane has to follow three different phases:

perturbation (acute events), transition (uncertainty and change of interdependencies)
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and return to stationarity, assessing changes and remodulating the map. (b) The ge-

netic dimension that affects dynamically stationarity since disease mechanisms, risk

factors often alter the expression levels, pathway activation/inhibition and epigenetic

influences. The common pathways may help in diagnosis and therapeutic process, de-

tecting the molecular causes of several associated diseases. Functional analysis based

on gene sets can explain crossover influences between different conditions. Omics lay-

ers, such as genome, epigenome, proteome, interactome, and so on, are crucial to detect

molecular relationships. (c) The therapeutic dimension aims at restoring stationarity,

but it may add further complexities according to the positive or negative effects or in-

terventions (e.g. side-effects of some drugs). Finally, (d) the computational dimension

considers all the complexities trying to make inferences using a variety of approaches,

topology-driven, time space driven or risk-driven, and so the clustering networks of

diseases, computing distance between them. The multidimensional approach allows

shedding light on the dynamic dimension in the analysis of comorbidites. The common

patterns of influences shared by diseases, grouped together according to their distance

in the comorbidity map, are subject to events, perturbations that may induce cascade

effects or disruptions of the clusters. In the analysis of comorbidity, there is always an

index condition, which is the subject of the state, becoming the dominant disease or

the attractor state driving the other linked diseases. Therefore, the dynamic dimension

is crucial in this kind of analysis, since it can be helpful in detecting these ’attractors’,

that is the stable points to which the system would return after small perturbations.

Building network-based predictive models could allow predicting the occurrence of per-

turbations and could be a very important support system for clinicians, suggesting the

definition of protocols aimed at personalisation of therapy: the calibration of therapy

should be simplified by using some comorbidity measures and by predictive evidence

obtained by dynamically analysing and revealing the stationarity patterns of the sys-

tem.

4.5.2 Social and Comorbidity Map: a new Social Dimension

In the previous subsection, we have underlined the importance of dealing with differ-

ent dimensions in the analysis of comorbidity. In this subsection, we want to stress

the importance of another dimension, the social one. In fact, among the conditions

that induce comorbidity/multimorbidity, we need to address also the social contagion
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effect (30), because it acts in time as another remodulator of the comorbidity map.

The occurrence of certain events on the social network with a strong impact, such

as an epidemics, may influence locally the evolution of the single diseases or risk fac-

tors, but above all these events can change globally the links/connections in the map.

Therefore, we can distinguish between some persistent components, such as aging, the

genetic/inherited predisposition to contract a specific disease, and other components

which impact the transient phase, inducing temporary changes in the map, such as the

influence of behaviours of people around us, the psychological stress related to a specific

event, e.g. the death of a family member or spouse, the infections, some therapeutic

interventions and the adverse interactions between drugs and diseases, the outbreak of

an epidemic, etc..

The problem related to modelling the comorbidities, the social behaviours and all the

possible consequences linked with some conditions, can be addressed only by exploiting

a paradigm which fuses and integrates a large amount of different kinds of data derived

from different contexts, ranging from microscopic sources, such as in body sensors, to

macroscopic sources, linked with social relationships, communities, and globally social

environment, more than clinical and medical data. These data fusion and integration

mechanisms, from different context and sources, allow weighing the contributions of

various factors in the map and to evaluate the overall components both transient and

persistent. Among them, the social aspects can modify notably the weights and links

in the social map, resulting in a rewiring and a variation of these weights.

In defining a new measure, it is crucial to consider also the social dimension, along

with the above mentioned dimensions (clinical, molecular, etc.): the strength of the

ties, the connectedness, and communications lead to an evolutionary dynamics of the

social network and represent a further degree of analysis in the comorbidity assessment.

The exogenous and environmental factors, called ’confounding factors’, act as a noise

in the system, amplifying some phenomena or creating new spurious perturbations.

These perturbations may generate effects at a local level, with consequences limited in

space and time, or at a global level, triggering resonances with important implications

on the entire map. As Christakis and Fowler have underlined in (30), the social con-

tagion mechanism produces a spread of some factors or behaviours, such as obesity,

smoking or happiness. Moreover, they have demonstrated that this contagion, even if

it decreases with social distance, is relevant until the friends of friends of friends.
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Some of these factors are risk factors in the map, such as obesity, smoking and the al-

cohol consumption, which may generate new comorbid diseases and cause some social

behaviours. On the other hand, some social behaviours may bring out some genotypic-

phenotypic traits leading to some comorbidities. Through exploiting the social and

comorbidity map, the target is to study this reciprocal influence. Social dimension and

social relationships can act as a selection bias in choosing one treatment plane or drug

rather than others, or still shedding light on some side-effects of some drugs inhibiting

the usage, or mimicking “good” behaviours of some friends in the social network.

To quantify the comorbidity, the authors of (85) have used two measures: the relative

risk, that is the fraction between the number of patients diagnosed with both dis-

eases and random expectation based on disease prevalence as the quantified measure

of comorbidity tendency of two disease pairs; the φ-correlation (Pearson correlation for

binary variables) to measure the robustness of the comorbidity association. Beyond

these measures, we need to use also a social measure of contagion, considering a dy-

namic evolution of comorbidities which depends on a different response of the patient

linked to a genotypic-phenotypic diversity, which may induce different social behaviours

and, as a consequence, to different maps.

4.6 Personalised Medicine and Social Dimension

According to the theory of “expert patient” (103), the individual-patient has a unique

knowledge and awareness of own health status. Thus, this knowledge would be trans-

lated in data, useful to design the strategies of decision-making process about clinical

trials or treatments. This kind of data could be shared and may influence other social

contacts (30), in different layers of the network (7), triggering a dynamic contagion

of “good behaviours” (30), with the aim of increasing the rate of success in terms of

personal and community wellness. The individual knowledge may become social knowl-

edge and, consequently, collective intelligence, as well as the individual participation

may become collective and social cooperation. The healthcare process would benefit

from these dynamics.

Leroy Hood, molecular biologist and oncologist, in (104) proposed the evolution of

medicine in P4, passing from P0 and P3. The transition was also due to changes in

the diagnostic process, that became complex and interdisciplinary, and in technologies
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Figure 4.4: Personalised medicine. A social evolution in healthcare.

effective if the healthcare process faces the complexity of disease. In fact, it is a cluster

of symptoms, multifaceted and affected by multifactorial pathologies. As a third fac-

tor of complexity, along with the biological information associated with diseases and

their interactions, the future medicine is facing with the introduction of strategies for

the assessment of comorbidities related to possible risk factors and underlying causes.

Recently, the most important application of personalised medicine has been discussed

in the research studies of A. L. Barabàsi (105), known as “network medicine”.

Considering a preventive perspective, the medicine switches from reactive to proactive.

Taking into account the shift from an illness-centered approach to an holistic one, the

doctors, with the support of computational models, big data (aggregation and integra-

tion of clinical and social data), molecular-biological profiles, and everything is related

to environmental factors which could influence risk factors, should be able to advice

patients to prevent particular diseases.

The social dimension could be important to convey the dynamics of social contagion

about good behaviours, for improving the preventive process, following specific strate-

gies linked to the pursuing of the common wellness or public good. The participatory

aspect allows the patients to be more involved in healthcare process, becoming gradu-
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ally more self-aware (103) of their own wellness and lifestyle, participating actively to

the decision process about their own health. In this context, following this kind of ap-

proach and introducing the social networking platform, the community helps to develop

self-organisation and self-awareness capabilities, improving the efficiency of strategies

related to the population’s health. It is worth to note that no single one of these di-

mension can be managed in isolation from the rest (103).

Recently, the research in healthcare has been taking into consideration another key

aspect of human life. In fact, considering the individual-patient as a whole (104),

thus a single unity, with a clinical and biological profile, in a global perspective, in

order to improve the personalisation and the efficiency of the model, the evolution of

P4 medicine has introduced a new component linked to the psycho-cognitive features,

which characterises and distinguishes each single individual. This approach leads to

the P5 medicine (103, 104). This new challenge in medicine, introducing the psycho-

cognitive skills, consists of considering a personal profile of the patient, who is not only

a biological-genetic entity, but the profile must be able to reflect efficiently his needs,

habits, behaviours and cognition. Through this novel approach, the rate of success will

increase in terms of predictions, since it will be able to combine different types of data

(heterogeneity), a large collection of data in time (big data), obtained from different

levels of research and fields of study (multiple sources). Furthermore, emphasising psy-

chological and cognitive aspects, the purpose is also to improve the general state of the

patient’s wellness.

The P5 model is an approach for person-centered and relationship-based care model;

it allows the design of a new profile related to the psycho-cognitive and behavioural

aspects of each patients. In fact “every human being of adult years and sound mind

has a right to determine what shall be done with his own body”. This means that

patients should participate more actively to the medical care process, for example by

weighing benefits of the proposed alternatives, based on risks assessment. The fifth

“P”, referring to these aspects, is important for the assessment of the wellness of the

individual-patient, making him, inside the healthcare process, a decision-maker who

actively participates in the process. The P5 model allows considering the individual-

patient as a person and not only as a collection of data extracted from clinical case

studies and statistical analysis of the single unit. This approach by far increases the
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individual’s satisfaction level and, as a consequence, the overall quality of life, the re-

lationship with physician, and the efficiency in the searching process of more suitable

and/or optimal therapy or therapeutic plan. The entire health system benefits from

this model, making the prevention more effective through interventions in promoting

strategies for reducing the unhealthy behaviours. Acting on psycho-cognitive aspects, it

could influence individuals to adopt or modify their inappropriate beliefs, bringing out

the underlying risks. The P5 model introduces the psychological, cognitive, emotional

and social aspect levels to improve the development of health personalisation. The

final goals are to improve design techniques of the new pharmacological trials, clinical

practices and make patients more actively involved in experimental trials, changing

the medicine paradigm, from reactive to proactive. The social, cultural, biological,

psycho-cognitive and behavioural features and needs of a single individual-patient or

community, will help the physicians in choosing the treatment or in deciding about

experimental trials.

The social dimension will change radically the approach for the future medicine, as

the precision medicine (86) will exploit the dynamic analysis, the study of the dy-

namic evolution of behaviours and needs, the disease contagion processes, and also the

sharing, cooperation and collaborative approach through the new technologies. This

evolution could be identified in P6 medicine as a social evolution of the healthcare pro-

cess, making medicine, clinical cases and data (genetic, molecular, phenotypic) public

and available, transforming them in collective knowledge, objects for future studies,

in order to exploit and benefit from the enormous potential gained by open, public

and social form of medicine. Big data could help to solve the aggregation problem of

genetic, molecular, environmental and social data, and the analysis of the comorbidity

dimension associated to risk factors of diseases (as underlined in sect. 4.5.1). Moreover,

it is known that similarity in lifestyle, along with the genetic predisposition, cause us

to be susceptible to similar diseases (106). Thus, using analytical tools for prediction

of the co-occurring risk factors, and taking into account the similarity aspects, the

complexity of the problem increases.
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4.6.1 From Data to Multiagent: A Multilayer Architecture

To describe the healthcare processes, following a bio-inspired approach, we exploit the

concept of Multi-Agent System (MAS). A multi-agent system is composed of multi-

ple agents which interact each other to obtain a specific purpose which may be, for

instance, the cooperative behaviour to get a specific target. Multi-agent systems are

often used to solve problems that are difficult or impossible for an individual agent,

in fact the underlying concept is that the overall system exhibits significantly greater

functionality than the individual component. The agents are intelligent, including some

processing and cognitive abilities. The agents are autonomous, self-organised entities

and only with a local view of the system (limited knowledge). The agent need to em-

body the knowledge of other similar agents with which it will interact, including their

own preferences and knowledge.

In our system, we exploit MAS in order to model social entities, represented by nodes or

cluster of nodes, therefore we consider complex agents, passive or active sources of data

and with a specific role in the network. The introduction of context-aware and cog-

nitive abilities gives agents the possibility to convey the extracted knowledge, decide,

apply strategies based on heuristics in order to reduce the computational complexity

(44). Big data analytics and storage techniques and the data-intensive computing ap-

plications and programming models, allow addressing the complexities, improving the

performance of a future smart data-intensive computing process in healthcare.

The multilayer structure represents a way to describe the interactions among nodes

on more layers. A set of entities, which can be agents, communities or clusters, dis-

eases, patients or data, based on the layer we take into account, interacts through

some patterns. The connections and the relationships between entities in a complex

system, are considered on different layers, with corresponding different types of inter-

actions. Therefore, the entities and the relationships among nodes must be considered

and weighed on different layers and, at the same time, the weight of their decisions

and their behaviours has an impact on so many different levels. It is only recently that

multilayer structures have become a popular paradigm for the modelling of interrelated

subsystems and entire systems (7).

In Fig. 4.5 we illustrate the multilayer structure in healthcare. Starting from the

bottom, the first layer is feeded by the large amount of data in healthcare and it corre-
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sponds to patients-data associations. The second layer is focused on patients-diseases

associations, hence the patients space allows shedding light on which patients are asso-

ciated with different diseases. This layer transforms the associations, considering not

only data, but the diseases connections: from a genetic point of view, two diseases are

connected if they have been associated with the same gene (107), from a metabolic

perspective, two disease are connected if they are associated with adjacent metabolites

in the metabolic network (108) and, based on phenotypic traits, two diseases are con-

nected if they are coexpressed in a significant number of patients in a population (109).

The third layer is that of comorbidity relationships, so we use clinical and molecular

data to build the disease space, and we consider the multidimensional approach de-

scribed above in sect. 4.5.1. The fourth layer consists of adding the social dimension

in comorbidity analysis: the habits and social behaviours, shared with similar friends,

and the social contagion process, obtained studying the connectedness of the network,

lead to clustering of the social nodes which influence each other. The comorbidity and

social dimension allow us to capture the subtle connections among nodes, and help us

to make this knowledge more connected and deeper. Finally, the fifth layer is made

up of complex agents which enclose all the addressed “traits” of the entities, hence the

multiagent system allows extracting an “organised” knowledge, furthermore applying

all the strategies targeting at reducing the computational complexity (e.g. heuristics).

In (110), starting from the previous multilayer structure, we have considered an ad-

ditional layer above all the other layers, called Health Information Exchange (HIE)

and Management Layer, consisting of control entities, such as ICT (Information and

Communication Technology), physicians, and the same patients that interact with the

various layers, through the social network and the various kinds of associations between

layers. These entities exploit the tools provided by ICT in order to observe and esti-

mate the various medical, social and economic aspects. The HIE and Management layer

solves the interoperability issues among the different healthcare information facilitat-

ing the exchange, moving clinical information among disparate healthcare information

systems without losing the meaning of the information being exchanged. Furthermore,

it is also useful to public health authorities and ICT to assist in analyses of the health

of the population and of the single patients.
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data are an opportunity to increase the collective intelligence and extract knowledge

through interactions among social agents. Nodes, data and interactions become both

subject and object of the spread of knowledge in social networks. Therefore, big data

analytics, data-intensive computing, data mining and machine learning tools, allow im-

proving the understanding of the networks phenomena, optimising ICT interventions,

pushing towards greater knowledge and collective intelligence.

In Healthcare, big data analytics and storage techniques have become crucial because

of the large amounts of data, related to patient care. The Health Mining paradigm

allows analysing these data, the emerging patterns, and extract complex health data,

an organised knowledge useful to deepen the comorbidity relations between diseases in

the patient. The study of comorbidity relations allows finding out dynamic patterns,

correlations and causality mechanisms between diseases and patients. We have under-

lined how the social dimension of comorbidity, focusing on how the strength of the ties,

the connectedness, and communications lead to an evolutionary dynamics of the social

network and represent a further degree of analysis in the comorbidity assessment.

The future medicine will change towards the precision medicine, overcoming the p5

medicine, exploiting the complex dynamic analysis, the study of the evolution of be-

haviours, the social networking, the ubiquitous networks, big data and ICT strategies.

Patients are becoming the centerpiece in the healthcare process (patient-centered),

agents able to interact through different layers, such as patient-data and patient-disease

associations, comorbidity relations, clustering in the social network. This multilayer

structure allows extracting an organised knowledge which connects, relates and com-

putes all the facets of healthcare data. In the near future, these topics will change rad-

ically the basic idea of data-intensive computing applications, data mining approach,

big data analytics and storage techniques, re-shaping all these tools and techniques in

the new social dimension and personalised medicine approaches.
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4.8 The Bio-Inspired and Social Evolution of Nodes and

Data in a Multilayer Network

In (111), following a bio-inspired approach, applied to multilayer social networks, the

idea has been to build a novel paradigm aimed to improve methodologies and analysis

in the field of ICT. The social network and the multilayer structure allow carrying

out an analysis of the complex patterns, in terms of the dynamics involving the main

entities, nodes and data. The nodes represent the basic kernel from which generating

ties, interactions, flow of information, influences and action strategies that affect the

communities. The data, gathered from multiple sources, after their integration, will

become complex objects, enclosing different kinds of information.

The proposed approach introduces a level of abstraction that originates from the evolu-

tion of nodes and data transformed in “social objects”. This new paradigm consists of

a multilayer social network, divided into three layers, generating an increasing aware-

ness, from “things” to “knowledge”, extracting as much “knowledge” as possible. This

paradigm allows redesigning the ICT in a bio-networks driven approach. The new ICT

paradigm is expected to contribute to the process of improvement in the realisation

of a knowledge-based networking, characterised by innovation, making the networks

sustainable with processes based on a strategic bio-inspired approach, considering also

the social, human and cognitive aspects.

The future network needs to meet some requirements, such as ubiquity, mobility, dy-

namicity, reliability. The ubiquitous nature leads to a logical fusion and integration

of different aspects of real and online social network platforms. The network nodes

acquire a common representation through identity features. These features, follow-

ing a bio-inspired approach, enclose genotypic and phenotypic traits. In addition to

these traits, it is important to consider also context-aware capabilities, self-organisation,

self-protection, perception, decision-making processes and cognitive behaviour. Con-

sidering these features, the nodes interact through social networks and they are able to

self-organise dynamically in communities and groups, based on aggregation metrics.

In (111), the node is an abstraction, an object which collects bio-inspired features as

well as human and social capabilities. Similarly, data shared inside the network are

a complex object, like a box, which travels across the network through interactions
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Figure 4.6: Bio-Inspired Multilayer Network for ICT.

between nodes. Data and nodes represent the objects that trigger influence, interac-

tion, contagion and decision criteria. These two entities enclose many different social

aspects. In the future of ICT we will expect to be able to obtain context-aware services,

which stem from a bio-inspired approach able to drive methodologies for analysing so-

cial complex networks. Then, we propose an evolutionary and innovative multilayer

perspective of nodes and data. Furthermore, to solve the heterogeneity issue of these

entities, in (111) we have considered a social object oriented approach, following the

bio-inspired principles in a multilayer social network.

The proposed paradigm is the result of a biologically-inspired approach applied to com-

plex social networks. Exploiting a multilayer architecture, it consists of an evolution

process that involves both node and data. This approach starts from the consideration

that all techniques and models related to information and communication have to be

based on what governs the network dynamics. These processes in a social-based con-

text are determined from nodes and data. This requires an evolution of these entities

inside a multilayer network which shows the patterns of the different relationships and

interactions among nodes and communities, through the sharing of data. The main

goal is to solve all the issues related to heterogeneity, which can be an obstacle to more
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Figure 4.7: Dynamic Complex Patterns of the Multilayer Structure.

complex and deep analysis of networks. The network is characterised by a multitude of

nodes of different nature, and by a multi-channel data collection. The aim is to obtain

an evolution of the networks considering bio-inspired social objects. This evolution will

become useful to enable the ICT procedures to be in line with the bio-inspired processes

that rule the complex social network. The future ICT will be driven from these objects

creating strategies and applications with an innovative and dynamic approach.

Fig. 4.6 illustrates a multilayer social network, divided in three different layers. The

three layers show the same topology but actually it could be different across layers. The

first layer is the social layer, characterised by interactions between nodes through the

sharing of data. In the second layer we introduce the comorbidity perspective, which is

a medical concept referring to the co-existing of different diseases in the same subject, it

creates other different relationships between nodes, that represent patients/individuals

who share the same diseases or morbidities. In the third layer we consider the ICT

in terms of interventions which involves the single entities and the system as a whole.

In this perspective, the multilayer organisation enables us to analyse the complex pat-

terns of analysis. Starting from a simple node which interacts with other nodes, we can

obtain an evolution and a growing awareness.

Fig. 4.7 shows the dynamic patterns as the result of the coupling effect of interdepen-

dent layers. Only by studying the inter-layer interactions between nodes, it is possible

100



4.8 The Bio-Inspired and Social Evolution of Nodes and Data in a
Multilayer Network

to detect the emergent behaviours and focus on the key features related to data and

nodes, from which these patterns are generated. One perturbation in one layer could

drive changes in the other layers through interactions.

The evolution process from node and data to “social objects”, is indicated in Fig. 4.8.

The “social objects” pave the way to the higher level of awareness, referred as “knowl-

edge”, the abstraction of the outcome of the flow of information and social objects.

The social objects merge together all the different cognitive, social and human aspects

and the various contexts.

The node, in the proposed paradigm, becomes an abstract object which contains any

kind of presence and/or participation in the social networks. This can encompass simple

network nodes, both hardware and software, IoT sensors, human nodes, etc. The node’s

presence is defined as a set of bio-inspired features, such as genotype and phenotype.

The genotype is represented by the immutable traits of that object. The phenotype is

a combination of observable features, behavioural manifestations of genotype, and the

result of interactions between genes, environment, and random factors. The multitude

of heterogeneous nodes, with capabilities of self-organisation, through mechanisms of

aggregation and clustering techniques, becomes an organised structure of communities

and groups. Enabling context-awareness and cognitive capabilities, the nodes become

smart, able to decide their strategies inside and outside the communities. Adding abil-

ities extracted from complex social networks analysis, in terms of emerging behaviours,

we will obtain the abstraction, which is the social object node.

The data, the other entity of the network, are any kind of collected information, useful

to network analysis. The data could consist of statistical data, data gathered from sen-

sors, social data, derived from online and real social network platforms. Collecting data

may be relatively easy, but the complexity arises in combining and integrating datasets

from multiple sources and different contexts, in order to extract the real knowledge

about networks.

This is the reason why we need a complex mining, as that described in (83), able to fuse

and integrate in a unique structure these heterogeneous data, collected from different

sources and of different nature. Furthermore, we have to integrate data considering

the different contexts and environmental conditions in which these data are generated,

considering who created them and for what purpose, so we have to consider a context-
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Figure 4.8: Evolution of Node and Data. The evolution, involving data and nodes,

is a process which starts from disaggregated and heterogeneous things, and gets the social

objects and finally, the knowledge for the ICT.

aware data mining, related to how attributes should be interpreted according to the

different contexts.

The evolution process, that involves nodes and data, enables us to give a new

definition, which tries, first of all, to solve the issue related to the management of

heterogeneous data and different nodes. In Fig. 4.9 we show the future directions of

social-object oriented paradigm. The social multilayer network allowed us to analyse

the complex dynamic patterns involving these entities, shedding light on the different

types of interactions at various layers. The multiplex structure, consisting of three

layers, the social layer, the comorbidity layer and the ICT layer, allows considering,

respectively, the social interactions and the social contagion between nodes through the

sharing of data, the comorbidity relations between diseases, and the ICT interventions

as a result of the analysis of the complex patterns involving entities, the context and

the system as a whole.

The multilayer social network paradigm describes the evolution of data and nodes,

considering an increasing level of awareness, from things to knowledge between social

objects nodes through the social objects data. This evolution process leads to a bio-

inspired network-driven ICT, redesigning the ICT communication paradigm. There

is still much work to be done on the complex analysis, considering different aspects

simultaneously, as layers of a multilayer or multiplex structure, and data, in order to get

a knowledge-based mining, supported by the collected data in healthcare. The game-
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Figure 4.9: Future directions of social-object oriented paradigm.

theoretic modelling of social interactions, along with multiplex, can allow investigating

and study from a social perspective the issues of comorbidity and the influence of social

behaviours.
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Chapter 5

Game Theory and Evolutionary

Dynamics

One of the main targets of this Ph. D. dissertation is to study the evolutionary pro-

cesses and the dynamics of cooperative behaviours of people within a social network,

the latter modelled exploiting the mathematical framework of multilayer networks (see

chap. 3). In chap. 3, we have explored the multi-layer connectedness of a complex

system, in terms of structure, describing mathematically the connections among nodes

in the network, extending the concepts and main properties of single-layer networks,

derived from graph theory, to the case of multilayer networks. Beyond the structural

interdependence of nodes in a network, there is also a behavioural interdependence of

the individuals who live in the system, since the outcome for each individual depends

not just on his chosen action or behaviour, but also on the actions or behaviors of its

neighbours with whom he interacts.

To describe and analyse such interdependent interactions and the dynamics of be-

haviours, we exploit the mathematical framework of Game Theory. Game-theoretic

ideas arise in many contexts, ranging from economy, e.g. the pricing of a new product

in comparison with similar products of other firms, or how to bid in an auction, to

politics, such as the voting system or international relationships with other countries,

to finacial and strategical-military, other than sociology and transportation networks.

Finally in biology, game theory has been used as a model to understand many differ-

ent phenomena: animals behaviours, sex ratio, biological altruism, etc. John Maynard

Smith, in the preface to “Evolution and the Theory of Games” assesss how “paradoxi-

cally, it has turned out that game theory is more readily applied to biology than to the
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field of economic behaviour for which it was originally designed”. As Jon Elster stated

in 1982, “..if one accepts that interaction is the essence of social life, then game theory

provides solid micro-foundations for the study of social structure and social change”,

thus game theory is everywhere these days. The common and basic idea, in all the

possible applications, is that there is a strategic interdependence that game theory is

aimed at analysing.

The chapter is organised as follows: in sect. 5.1 we will briefly discuss the main princi-

ples and concepts of the classical game theory; sect. 5.2 will be focused on evolutionary

game theory as a way to study evolutionary dynamics of behaviours in a population,

such as the emergence of cooperation in social dilemmas.

5.1 Classical Game Theory

Classical Game theory was born in the 1920s, when John von Neumann thought to

develop a scientific approach to bluffing in the game of poker. The subsequent study

applied to these conflictual situations, involving a decision-making problem, conducted

him to write, together with the economist Oskar Morgensten the first prototypical

framework of game theory in 1944 (112). Von Neumann and Morgensten defined a

game “as any interaction between agents that is governed by a set of rules specifying the

possible moves for each participant and a set of outcomes for each possible combination

of moves.”. After, in 1950, a lot of research in classical game theory was carried out in

Universities, such as Princeton University, and in particular one of the most important

contributions came from the American mathematician John Nash, who invented a

simple but powerful concept, the so-called “Nash equilibrium”, which is used to analyse

the outcome of strategic interactions among decision makers.

After having discussed the basic principle and underlined the importance of using game

theory to describe social interactions, now we are going to define some of the main

notions underlying the classical game theory, which is called “classical” in order to

distinguish it from the “evolutionary” game theory (see sect. 5.2).

To describe a game and its basic elements, we need to define the following three main

aspects:

1. players are the set of participants;
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2. strategies represent all the possible choices or strategies available for each player;

3. payoff is number associated to each choice or strategy selected by a player. Every

player tends to maximise his payoff as much as possible. The payoff values are

generally inserted into a payoff matrix, which describes the rules of the game.

Another important distinction is between single stage games or one-shot games,

where players play simultaneously, choose their actions independently and make their

choice only once, and repeated or iterated games, where instead there are more rounds,

representing a certain number of repetitions of some one-shot game. In the latter case,

the presence of more than one round means that a player has to consider not only

its action seen temporally isolated within a single round, but also the impact of his

current action on the future actions of other players (sometimes called “reputation”).

Furthermore, an iterated game is by definition dynamic, as a player varies his strategy

according to the payoff obtained in the previous rounds.

Once described the basic properties of a game, which consists of players, strategies,

payoffs and rules, our interest shifts to understand and reasoning about how players will

behave, or will choose their strategies in a certain game. In the following description,

we will focus on two-player game, but it is clear can be applied in the same way to

games with any number of players. First, we need to do a few assumptions. The first

assumption of classical game theory is that the interacting decision makers are rational,

thus they act in order to maximise their payoffs according to his predictions on the

strategies adopted by the other player. It is important to notice how the framework

of game theory does not require this assumption to care only about personal payoff

as, for instance, a player may also care about both his payoff and that of the other

players; in this case, payoff will reflect this situation. In general, payoff matrix should

describe completely the payoff associated with all possible outcomes of the game. The

assumption of rational behaviour combines the idea of maximising the payoff, and that

each player is able to select the optimal strategy. These two ideas are both reasonable if

we consider experienced player playing a simple game, but in the case of complex games,

this assumption of choosing the optimal strategy may fail as players will make mistakes

in the strategies adoption, and instead it becomes interesting to see how players make

mistakes and learn from playing the game.

Furthermore, another assumption is that players know all the rules and the structure of
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the game, that is all the possible strategies and related payoffs. This assumption is also

reasonable if we consider games with complete information, nonetheless some research

works, e.g. in economy, have analysed games with incomplete information (28), where

this assumption is no longer valid.

5.1.1 Best Response, Dominant Strategy and Nash Equilibrium

One of the key concepts of game theory is that of best response, which is the best choice

for a player, given his belief about the choice of the other player in a two-player game.

Mathematically, if S is a strategy chosen by player 1 (P1), and T is a strategy chosen by

the player 2 (P2), in the payoff matrix there is an entry which corresponds to the pair

(S, T ). As a result, we indicate respectively with P1 (S, T ) and P2 (S, T ), the payoffs

obtained by the two players. Therefore, we can say that a strategy S for P1 is a best

response to a strategy t for P2 if the payoff is at least equal to the payoff obtained by

choosing another strategy S′ paired with T :

P1 (S, T ) ≥ P1

(

S′, T
)

, ∀S′ of Player 1. (5.1)

We can give a symmetric definition for the other player P2, and we will do the same

also for the other following definitions. We can note that there may exist more than

one strategy corresponding to the best response to strategy T , and this makes more

difficult to predict which of these strategies P1 will choose. For this reason, we can also

define strictly the best response, considering the strict inequality, as follows:

P1 (S, T ) > P1

(

S′, T
)

, ∀S′ of Player 1. (5.2)

In this case, it is clear how the strategy should be played by P1 when facing the strategy

T of P2 is S.

Other fundamental concepts, related to the definition of best response, are that of

dominant strategy, defined as the best response to every strategy chosen by P2, and

strictly dominant strategy, defined as a strict best response to every strategy chosen by

P2. The notion of a dominant strategy is slightly weaker than the strictly dominant

one, since it can be equal to another strategy as the best choice against some opposing

strategies, then for a player there could be more than one dominant strategy, so there is

no certainty on the strategy to be adopted. In the case of Prisoner’s Dilemma (see sect.

5.2.4), the analysis is facilitated since both players have strictly dominant strategies,
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and so it is easy to reason about what will be the strategies of each player.

When none of the players has not a strictly dominant strategy, we need for another way

to predict what is likely to happen. To this purpose, in 1950 John Nash proposed a

simple but extremely effective and powerful equilibrium concept, a principle to reason

about behaviours in generic games. Nash’s starting point was that, in the absence

of dominant strategies, players are likely to choose strategies which represent best

responses to each other or, in other words, supposing that each player chooses a strategy,

the pair of strategies (S, T ) is a Nash equilibrium (NE) if S is a best response to T , and

vice versa T is the best response to S. We can formulate the concept of an equilibrium

for a two-player game with respective payoff matrices PA and PB, where A and B

denote the two players. Denoting by PA (S, S′) the payoff for player A when A plays

S and B plays S′, this is simply the (S, S′)-entry of the matrix PA. We can say that a

pair of strategies
(

S̃A, S̃B

)

is a Nash equilibrium for a two-player game if no player can

improve his payoff by changing his strategy from his equilibrium strategy to another

strategy considering that his opponent keeps his equilibrium strategy. In terms of the

payoffs matrices this means that:

PA

(

SA, S̃B

)

≤ P

(

S̃A, S̃B

)

, ∀SA and PB

(

S̃A, SB

)

≤ P

(

S̃A, S̃B

)

, ∀SB (5.3)

Thus, a strategy S̃A is a best response to a strategy SB if:

PA (SA, SB) ≤ P

(

S̃A, SB

)

, ∀SA. (5.4)

The concept of equilibrium introduced by John Nash (who shared the Nobel Prize in

Economics in 1994 with game theorists Reinhard Selten and John Harsanyi) allows

finding out the optimal outcome of a game, indeed a player has not any reason or

incentive to deviate from his strategy after considering the other player’s choice, because

he will not receive a higher payoff, if the other player will not change his strategy. A

game may have multiple Nash equilibria or none at all. Nash equilibrium can be seen

as an equilibrium in beliefs, as if each player believes that the other player will play a

strategy which belongs to a Nash equilibrium, then also the other will choose the other

part of the equilibrium.

There are two ways to find the Nash equilibria: the first consists of simply checking all

the possible pairs of strategies and see if each one represents a pair of best responses
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to each other; the second is to calculate the best response of each player (or the best

responses, if there are more than one) to every strategy chosen from the other player,

and then find the strategies which constitute mutual best responses to each other.

5.1.2 Pareto-Optimality and Social Optimality

We can observe how in the Nash equilibrium condition, the two players are optimis-

ing their strategies reasoning at individual level, but this does not necessarily mean

that they will get a whatever good outcome. Therefore, it is interesting to classify the

outcomes of a game not only according to the strategies or at equilibrium, but also

considering whether the chosen strategies are ”good for society” as a whole. To this

purpose, we define two concepts.

The first is the so-called Pareto-optimality (whose name derives from the Italian economist

Vilfredo Pareto), according to which the choice of strategies (one by each player) is

Pareto-optimal if there is no other choice of strategies in which all players receive pay-

offs at least as high, and at least one player receives a strictly higher payoff. To better

understand this concept, we can consider a choice of strategies that is not Pareto-

optimal, which means that it does exist an alternate choice of strategies with a higher

payoff at least for one player without degrading any player, or in other words there

exists a pair of strategies corresponding to a Nash equilibrium. This alternate choice

of strategies is better than the one is currently being played, then if the players could

jointly select the strategies, then they would wish to switch to this better solution. The

basic concept of Pareto-optimality is that, even though both the players realise that

there is a better solution, it is not possible to maintain it without a binding agreement

between the two players.

The second key concept is that of social optimality, which represent a even stronger

condition, defined as follows: a choice of strategies (one by each player) is a socially op-

timal if it maximises the sum of the players’ payoffs. This definition results appropriate

only when is is possible to add the payoff of the different players (in fact, not always

it makes sense to add up payoff experimented by players). It is important to note

how socially-optimal outcomes must be Pareto-optimal, so the Pareto-optimality is a

necessary but not sufficient condition to have a social-optimality. In fact, an outcome

which is not Pareto-optimal means that there would be a different outcome where all

payoffs were at least the same and and one was larger, and this would be an outcome
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with a larger sum of payoffs. It is not a sufficient condition, since a Pareto-optimal

outcome need not be also socially optimal.

5.2 Evolutionary Game Theory

In sect. 5.1 we have presented the basic ideas of classical game theory, now in this

section we will focus on Evolutionary Game Theory (EGT), which applies the basic

ideas of game theory also in those situations where nobody makes explicit decisions. If

from one hand, classical game theory assumes that the interacting decision makers are

rational, as they act so as to maximise their payoffs, from the other hand if we aim at

applying the game-thoretic concepts to organisms (different from human beings), this

rationality assumption must be relaxed. Therefore, EGT deviates from this assumption

and make the model applicable to biology.

EGT is applied to settings in which individuals can show different forms of behaviour

(including those that may not be the result of conscious choices), and we will consider

which forms of behaviour have the ability to persist in the population, and which ones

instead have a tendency to be driven out by others (28). Incorporating the ideas from

Darwinian evolution, EGT has been applied most widely in the area of evolutionary

biology, the domain in which the idea was first articulated by J. M. Smith and G. R.

Price (12), and more recently also in social contexts. Evolutionary biology is based on

the idea that an organism’s genes largely determine its observable characteristics, and

hence its fitness in a certain environment (121). Organisms with fitness will have more

possibility to reproduce, and thus it will lead their genes to increase the presence in

the population. Hence, the higher is the fitness of an organism, the higher will be the

rates of reproduction, winning over time.

The key concept of EGT is that many behaviours involve the interaction of multiple

organisms in a population, and the success of any one of these organisms depends on

how its behaviour interacts with that of others. As a consequence, the fitness of an

individual organism cannot be measured in isolation but, rather, it has to be evaluated

in the context of the full population in which it lives.

Although classical and evolutionary game theory differ quite radically in how they

consider strategic interactions and in the basic assumptions, there are some analogies
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between the two theories. Indeed, the genetic features of an organism and the corre-

sponding behaviours represent its strategy in a game, its fitness corresponds to payoff,

and payoff will depend on the strategies (characteristics) of the interacting organisms.

Also, other concepts prove the deep connection between classical and evolutionary game

theory, such as the idea of equilibrium formulated by Nash, matches with the the con-

cept of evolutionarily stable strategy (ESS) in EGT (see sect. 5.2.2), which is crucial

to make predictions about the results of evolution on a population.

5.2.1 Fitness, Diversity, Selection and Replication

What is important to highlight is the importance of analysing evolutionary processes,

as most biological, social and economic systems are governed by evolutionary pressures.

These evolutionary systems are made up of entities of different nature, such as animals,

genes, cells, behaviours, etc., but they share some common features represented by

diversity, selection, and replication. Diversity means that entities in the system show

dissimilarities affecting their so-called individual fitness. As we said before, fitness is

just a measurable indicator that determines how a population of entities evolves, so

entities with higher fitness will tend to persist in the population. In particular, the

linkage between fitness and the future population composition is the selection mecha-

nism, which reduces the diversity of the system, favouring the higher fitness entities.

Meanwhile, there are some other mechanisms which generate and preserve a certain

amount of diversity and heterogeneity, otherwise the system would lock. In biology,

diversity is generated by genetic mutations, while in economic systems, this role is

played by innovations and in social and ICT systems by the flow of information and

data through the network, which modifies behaviours.

In EGT, strategies (which may be seen as behavioural phenotypes) are selected on

the basis of the payoff they obtain, that is the relative frequency of strategies which

obtained higher payoffs in the population will increase at the expense of those which

obtained relatively lower payoffs. Replication (or Inheritance) can be considered as a

preservation mechanism for the properties of the entities in the system (or the entities

themselves), in fact replication means the inheritance from one generation to the next

at least to some extent. In biological systems, replication is constituted by genetic
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transmission, while in social systems, replication is the imitation in the social learning

processes.

5.2.2 Evolutionarily Stable Strategy

In the classical game theory, we have defined the key concept of Nash equilibrium for a

two-player game, which represents a situation of equilibrium in which neither player has

an incentive to deviate from the strategy they are currently using, so the equilibrium is

a choice of strategies that tends to persist once the players are using it. In general, the

study of dynamic systems often begins with the identification of their stable states, the

so-called static analysis, which does not consider the dynamics of the system explicitly,

but only its rest points.

An analogous notion of Nash equilibrium does exist also in EGT and it is that of an

Evolutionarily Stable Strategy (ESS), proposed by J. M. Smith and R. Price in 1973.

It allows determining these stable states and represents the most important concept

in the static analysis. ESS can be defined as a genetically-determined strategy that

tends to persist once it is prevalent in a population. We can assume a certain strategy

evolutionarily stable if, when the population is using this strategy, any small group

of invaders using a different strategy will eventually die off over multiple generations

(28). In biological terms, these invaders could be represented as mutants born into the

population with a different behaviour, or migrants joining the population. We can say

that a population playing an ESS is uninvadable by any other strategy (113).

Looking closely at the given definition of ESS, it is important to observe the assump-

tions underpinning its theoretical framework: the ESS is derived for a system composed

of a single infinite population of individuals who are repeatedly randomly drawn to play

a 2-player symmetric game; furthermore, it only considers monomorphic populations

(where all individuals are playing the same strategy) which can be invaded by only one

type of mutant strategy at a time. Indeed, this assumption of one single infinite popu-

lation represents a mean-field approximation used to match the average payoff actually

obtained by a population with the expected value of a probability distribution of payoffs

(which would be obtained by explicitly modelling players’ interactions). Futhermore,

this assumption effectively eliminates the impact of arbitrarily small invasions on the

incumbent population. To clear this last observation, we can consider the simple case

of a 2-player population, where a player i can punish the other player j with a certain
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magnitude P at a cost C < P : obviously, the punishment of the player j represents

an advantage for i , and it will produce a favour in the evolution process. Different

is the result when we consider a larger population where the punishable players are

more than one, in fact in this case the punishment’s effect is divided by the size of the

population n, wich means that player i will incur the same cost C, but the average

payoff of the incumbent population will be decreased only P/n so that, if n is infinite,

the effect of punishment will be almost zero. This observation reasoning is important

is the foundation of the argument that the concept of ESS is a refinement of Nash

equilibrium (see below).

We can capture the concept of ESS also in terms of payoffs, considering a population

using a strategy S, a small group of invaders, using another strategy T , should have

strictly lower fitness than the users of the majority strategy. As fitness means repro-

ductive success, the sub-population of invaders will shrink over time and evenually die

off in the evolutionary process. To clear and summarise the concept of ESS, we give

the following fundamental notions of EGT:

1. The fitness of an organism in a population is the expected payoff it receives from

an interaction with a random member of the population.

2. A strategy T invades a strategy S at a certain level δ, for some small positive

number δ, if a delta fraction of the underlying population uses T and a 1 . . . δ

fraction of the underlying population uses S.

3. A strategy S is evolutionarily stable if there is a (small) positive number γ, such

that when any other strategy T invades S at any level δ < γ, the fitness of an

organism playing S is strictly greater than the fitness of an organism playing T .

Once defined and discussed about ESS, we can now understand the relationship

with Nash equilibria. In particular, we can say that “If a strategy S is evolutionarily

stable, then (S, S) is a Nash equilibrium”. The opposite direction does not hold: it is

possible to have a game where (S, S) is a Nash equilibrium, but S is not evolutionarily

stable.

Therefore, the concept of an evolutionarily stable strategy can be viewed as a refinement

of the concept of a Nash equilibrium: the set of evolutionarily stable strategies S is a

subset of the set of strategies S for which (S, S) is a Nash equilibrium. Similarly, the
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concept of a strict Nash equilibrium (when the players use the same strategy which is

the unique best response) is a refinement of evolutionary stability: if (S, S) is a strict

Nash equilibrium, then S is evolutionarily stable. In other words, these two different

notions of equilibrium naturally refine each other. Furthermore, it is interesting to

note how, despite the extremely close similarities between the conclusions of ESS and

Nash equilibrium, they are built on completely different underlying concepts. From one

hand, in a Nash equilibrium, we consider players choosing mutual best responses to each

other’s strategy. So it demands on the ability of the players to choose optimally and to

coordinate on strategies that are best responses to each other. Evolutionary stability,

on the other hand, supposes no intelligence or coordination on the part of the players.

Instead, strategies are viewed as being naturally placed into the players, because their

behaviour is encoded in their genes. ESS increases the fitness of the more successful

strategies with a higher reproductive success in the selection process.

5.2.3 Evolutionary Dynamics

M. Nowak in (18) defines evolutionary dynamics as the mathematical formalisation of

the process of evolution whereby a population changes over time. Natural selection

operates such that genotypes (or strategies) with higher fitness tend to become more

common, whereas lower-fitness genotypes tend to die out. Mutation (re)introduces vari-

ation into the population. This process can also represent cultural evolution and social

learning, in which people imitate those with higher payoffs and sometimes experiment

with novel strategies. Therefore, EGT is a combination of game theory (mathematical

formalisation of social interactions and strategic behaviours), and evolutionary dynam-

ics. There is a population of agents, each of them has a strategy; they interact with each

other and earn payoffs. Payoff is translated into fitness, and the frequency of strate-

gies in the population changes over time accordingly: higher-payoff strategies tend to

become more common, whereas lower-payoff strategies tend to die out.

To explain the evolutionary dynamics, we exploit the so-called replicator equation, in-

troduced for the first time by P. D. Taylor e L. Jonker in 1978 (114). Denoting by x the

state of the population, that is the distribution of strategy frequencies, we assume that

the xi are differentiable functions of time t, which means to assume that the popula-

tion is infinitely large (or that xi are expected values for an ensemble of populations).

Within this hypothesis, we can now postulate a law of motion for x(t). Furthermore,
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we assume that individuals, meeting randomly, engage in a game with payoff matrix

W , so that (Wx)i is the expected payoff for an individual using strategy Si , and x
TWx

is the average payoff in the population state x. Interpreting the payoff as fitness and

considering that postulate that the growth rate for each individual of the part of the

population using strategy si is proportional to its payoff, we can define the replicator

equation as follows (13):

ẋi = xi
[

(Wx)i − xTWx
]

(5.5)

where ẋi is the derivative of xi , and the term xTWx exists in relation to the constraint:
∑

i xi = 1. The (5.5) represents mathematically the principle of natural selection,

for which strategies with higher fitness will spread more efficiently in a population.

The states xi = 1, xj = 0, ∀j 6= j are solutions of (5.5) and, in particular, they are the

absorbing states, which play a key role in the system dynamics in absence of mutations.

Regarding the solutions of the replicator dynamics, we are interested in equilibrium

or rest points, or the frequency distributions that make the second member of the

equation equal to zero, verifying either xi = 0 or (Wx)i = xTWx = 0, ∀i = 1, . . . , n.

The solutions are all the mixed strategy Nash equilibria of the game (115), and Nash

equilibria are the stable rest points. Henece, the replicator equation describes the

evolutionary mechanism by which the players, or the population, can reach the Nash

equilibrium, or an ESS. Moreover, the different basins of attraction of the different

equilibria allow finding out which of them is selected when there are more than one

equilibrium. Thus, the following are the hypotheses underlying the replicator equation:

1. The population in infinitely large;

2. Individuals meet randomly or play against every other one, such that the payoff

of strategy Si is proportional to the payoff averaged over the current population

state x.

3. There are no mutations (or migrations among physically distinct groups), thus the

increasing or decreasing in frequency of strategies depends only on reproduction

mechanism.

4. The variation of the population is linear according to the payoff difference.
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The first two hypotheses are crucial to derive the replicator equation, replacing the

fitness of a strategy using its mean value, with the population described in terms of

frequencies. Some works has been focused on investigating what happens when the

population is rather finite and they have identified an adjusted replicator equation,

showing a different dynamics and according to population size, it may also invert the

direction of evolutionary process. Other works have proved how in case of small popu-

lations, ESS may lose their stable feature (116). In particular, the second hypothesis is

related to temporal and spatial constraints of interactions, which requires another ap-

proximation for representing the fitness of a strategy in the population, as the expected

value of fitness is no longer valid. With regards to the third assumption, we may also

include mutation, producing the so-called replicator-mutator equation (117), in which

appears also a term which explictly involves the covariance of fitness and strategies.

The fourt assumption is the definition of replicator dynamics. Some works which do not

include the hypothesis of linearity consider the generalised replicator equation, having

the following form:

ẋi = xi
[

(Wi(x)− xTW (x)
]

(5.6)

where the functionsWi(x) are chosen according to the particular case to be modelled

(14).

5.2.4 The Emergence of Cooperation and Social Dilemmas

As we will see in the chap. 6, one of the most important challenges to which EGT is be-

ing applied is the understanding of the emergence of cooperation in different contexts,

among these the human societies (17). Why should I help a competitor? Cooperation

in a competitive world is a conundrum. In general, natural selection is a mechanism in

contrast with the evolution of cooperation. In a social dilemma, there is the struggle

between what is good for the individual and what is good for the population. The pop-

ulation does best if individuals cooperate, but for each individual there is a temptation

to defect. Cooperation is an act where individuals can contribute something, at a cost

to themselves, to provide a benefit for others. In EGT, cost and benefit are measured

in terms of reproductive success, where reproduction can be cultural or genetic.

To better understand the challenge of cooperation we are going to present the most chal-

lenging and stringent social dilemma in terms of cooperation, called Prisoners dilemma
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(or PDG), and the Snowdrift game (or SG) as a more relaxed dilemma. In both these

pairwise social dilemmas, a player has a binary choice: cooperate (C) or defect (D)

(15). Cooperation allows maximising the social welfare, while defection maximises

one’s own payoff regardless of the other’s choice. The payoff matrices of the two games

are illustrated in the following tables:

Table 5.1: Payoff Matrix of the Prisoner’s Dilemma Game.

Cooperate Defect

Payoff to Cooperation b− c −c

Payoff to Defection b 0

Table 5.2: Payoff Matrix of the Snowdrift Game.

Cooperate Defect

Payoff to Cooperation b− c/2 b− c

Payoff to Defection b 0

In the PDG, cooperation results in a benefit b to the opposing player, but incurs

a cost c to the cooperator (where b > c > 0); defection has no costs or benefits. In

both cases, independently of whether the opponent plays C or D, it is, therefore, bet-

ter to play D. In evolutionary settings, payoffs determine reproductive fitness, and it

follows that D is the Evolutionarily Stable Strategy (ESS). Thus, defectors tend al-

ways to overcome cooperators, and in a population containing both cooperators and

defectors, defectors will have a higher fitness. Considering a longer timespan, there will

be an increasing number of cooperators until the population will consist completely of

defectors. This can be formalised using replicator dynamics (14), which admits pure

defection as the only stable equilibrium. The social dilemma is thus established, since

mutual cooperation yields both an individual and total benefit higher than that of mu-

tual defection.

The social dilemma of the PDG can be relaxed by assuming that cooperation yields a

benefit that is accessible to both interacting players, and that costs are shared between
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cooperators. This results in the so-called Snowdrift Game (also known as the Hawk-

Dove Game, or the Chicken Game). In the SG, the order of P and S is exchanged,

such that T > R > S > P , therefore cooperation yields a benefit b to the cooperator

as well as to the opposing player, and incurs a cost c if the opponent defects, but only

a cost c/2 if the opponent cooperates. Thus, both strategies can invade when rare,

resulting in a mixed evolutionarily stable state at which the proportion of cooperators

is 1 − c/(2b − c). It is important to note that in this state the population payoff is

smaller than it would be if everybody played C, hence the SG still represents a social

dilemma (15). Its essential ingredient is that, in contrast to the PDG, cooperation has

an advantage when rare, which implies that the replicator dynamics (14) of the SG

converges to a mixed stable equilibrium at which both C and D strategies are present.

The PDG is in fact the most stringent cooperative dilemma, where for cooperation to

arise a mechanism for the evolution of cooperation is needed (118).

Other than the classical PDG, it is more interesting to study its repeated or iterated

form, known as Iterated Prisoner’s Dilemma (or IPD), a single game consists of a num-

ber of rounds of PD, which allows individuals to react to an opponent’s past behaviour.

Repeated interactions between players open up a whole new world of possible strategies

determining whether to cooperate or defect in the next round based on the outcome

of the previous rounds. In exploring the evolution of cooperation in a population ex-

ploiting the framework of EGT on multiplex networks (see chap. 6), we will consider

an IPD game with a memory-one game, where the player has only a finite memory of

the previous play. This assumption derives from (119), in fact the authors have proved

that, giving only a finite memory of previous play, the payoff obtained is exactly the

same as if we would consider a player with a longer memory.
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Chapter 6

The Evolutionary Dynamics of

Human Cooperation through

Multiplex Evolutionary Game

Theory

In previous chapters, we have described the bio-inspired ICT, the role of Big Data and

the introduction of a social dimension for analysis, which have been revolutionising

the bio-inspired ICT in the healthcare context. We have presented the mathematical

framework of multilayer networks, able to capture the complexity of the real-world sce-

narios, allowing us to observe also the non-trivial patterns between entities belonging

simultaneously to different layers. Furthermore, Evolutionary Game Theory (EGT)

constitutes the fundamental framework for investigating the dynamics of social be-

haviours in a population, allowing to gain a better understanding of the emergence of

cooperation in different contexts, among these the human societies. In this chapter,

representing the main focus of this Ph.D. dissertation, joining the mathematical frame-

works of multiplex networks and EGT, and following a bio-inspired approach and the

social network analysis methodologies, the target is to find out the hidden emergent

behaviours within a population across network layers. Furthermore, we will explore

and quantify the role of some shaping factors, such as homophily, in this evolutionary

process. To this aim, in the next sections we will conduct an analytical and simulative

investigation of the evolution of human cooperation using multiplex EGT (73).
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6.1 Quantifying the Role of Homophily in Human Coop-

eration Using Multiplex Evolutionary Game Theory

6.1.1 Introduction

Charles Darwin observed how animals, from ants to people, interacting each other, are

able to create social groups in which most of them work together for common good.

By the way, it was in contrast with his idea of individual fitness surviving over the long

term (17, 120). This altruistic behaviour could be justified among kin in the natural

selection mechanism. In (121), the authors explain that kin selection is conditioned

by “kin recognition”, as an individual recognises kin and behaves accordingly. Much

research effort has been done in exploring this behaviour, but the understanding of how

and why it may work out and evolve among people, linked by every type of relation,

remains an open and major challenge.

It raises the conundrum of cooperation, a widespread phenomenon in natural and social

systems, but not fully-understood mainly due to its complexity. Cooperation produces

a human conflict between the benefit of the single individual and that one of the popu-

lation, such as risking one’s life to save a stranger. The reason why people do something

for someone else, cooperating or helping, even though there is often a low probability

for direct reciprocity or socially reward, is that actions are contagious (122). Humans

tend to cooperate building complex societies, as well as predators hunt in groups to

catch more preys as possible (8). More in general, cooperating means to contribute

towards a common good at a cost to themselves, providing a benefit for others. Many

models and mechanisms have been proposed to explain the emergence of cooperation,

nevertheless, only by studying interactions inside population, we are able to explain the

hidden patterns leading to cooperation (123, 124). Cooperation may induce assortative

interactions among individuals, transforming it into the most profitable strategy (125).

Previous works on evolution of cooperation have identified some mechanisms, other

than kin selection, related to interactions among individuals which can favour it, such

as direct reciprocity, indirect reciprocity, spatial selection, and multilevel selection (18).

Direct reciprocity is related to a cost of cooperating in order to obtain a gain in the

near future. Indirect reciprocity involves the dependence of an individual’s actions

from the previous behaviours of the others. Spatial selection is linked with interactions

and clusters of cooperators. Multilevel selection refers to competition existing between
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groups and between individuals. Rand and Nowak in (121) underline the importance

to distinguish between interaction patterns that are mechanisms for the evolution of

cooperation and behaviours that require an evolutionary explanation such as strong

reciprocity, upstream reciprocity, and parochial altruism.

Therefore, how did the selfish process of natural selection give rise to cooperation?

how might social interactions can give a boost to cooperative behaviour? And what

may be the role of a linkage polariser, such as homophily, in this evolutionary process?

The evolution of cooperation among individuals is an unsolved puzzle: it has being

observed since ancient times but, only in the recent years, a lot of research efforts have

been done trying to understand and deepening the origin inside social networks. A

vast literature on the evolution of cooperation on complex networks (19, 21, 22, 23)

highlights many aspects which offer insights on how cooperation can evolve and sur-

vive in different scenarios (24, 25, 26, 115). To study cooperation and its evolutionary

dynamics, we need to understand the impact of the structure and the nature of social

relationships among individuals. The study of network properties and dynamics is the

result of a growing research interest in all the aspects related to social networks, from

extracted data to emerging behaviours (3, 27, 56). Therefore, both the structural and

behavioural dimensions are fundamental to analyse what is the origin of the observed

social dynamics within a population (28). Social network analysis is intended to deepen

the nature of nodes and ties (126), the actions and interactions between them and all

the features and behaviours emerging from the combination of both aspects. These

structural and behavioural dimensions allow unveiling the social contagion dynamics

(30, 70, 127, 128), showing how the influence runs through the ties connecting nodes,

with regards to several phenomena at a population scale, such as diseases, smoking,

happiness, etc. (29). Then, network thinking is central in the analysis of contagion

processes (129).

Social ties are crucial for collective action. In (130) the authors have formalised the

problem of collective action of large groups towards cooperative and uncooperative be-

haviours, considering how the role of a single actor or a group of people, community

or coalition, could trigger a dynamic action within a population, which could represent

a social contagion process. The most well-known theory of critical mass in the social

sciences, is that by Granovetter (131), by considering people that have to make a binary

choice, for instance, whether to join a protest or not, or whether to cooperate or not.

121



6.1 Quantifying the Role of Homophily in Human Cooperation Using
Multiplex Evolutionary Game Theory

In particular, it is argued that the large group problem can be solved by introducing

the concept of critical mass, intended as the minimum number of initial contributors,

whose efforts can produce a bandwagon effect, which has the power to involve the rest

of population, for example, persuading the remaining members of the population to-

wards the adoption of a specific behaviour (130). Therefore, starting from a minority

(132), the question is how many people should be involved in a collective action such

that a single individual, interacting with them, becomes more likely to join the action?

The answer is that each individual has his own threshold in terms of how many other

people connected with him should join the action before he will do the same.

The actions of the nodes could be affected by a huge number of factors, among them

one of the most important is the role played by homophily. The concept of homophily,

that is the principle that similarity breeds connection, can explain how social connec-

tions are forged and severed over time (133). In (134), the authors define homophily,

in terms of information consumed and rumors spreading, as the tendency to interact

with users and have similar consumption patterns. Homophily has been introduced and

investigated in several works and across various domains (135, 136) from friendship to

information transfer. This concept generates some interesting behaviours observed in

nature, shaping social relationships with a significant impact on information sharing,

influence dynamics, and all the interactions people form and experience. Following this

tendency to associate with others who are similar to them, we observe that a contact

between similar people occurs at a higher rate that among dissimilar; in terms of social

networks, this simply means that the attributes of vertices correlate across edges and

it is known as assortative mixing.

Among the various aspects of homophily, cognitive homophily is referred to the sim-

ilarity in interests, beliefs, which can represent a reason towards a choice. People

select each other because they share a similar representation of reality, strengthening

some contacts rather than others. Nevertheless, other studies in the social sciences

have pointed in the opposite direction, e.g. organisational ecologists have suggested

that similarity can lead to competition for scarce resources (137), therefore competi-

tion among organisations using similar strategies, of similar size, and in geographical

proximity with one another tends to be stronger than competition among dissimilar

organisations (138). Furthermore, it is crucial to distinguish between homophily, social

dependence and social influence. Homophily means that similar nodes are more likely
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to contact. Social dependence means that nodes exchange resources in order to satisfy

their goals. Social influence means that nodes which interact become more similar.

Homophily or assortative mixing, however, is only a statement of pattern, and does not

say much about the underlying mechanism. For example, if we observe a pattern of

homophily in a social network, e.g., on political beliefs or socioeconomic status, we gen-

erally cannot distinguish between the edge forming as a result of the similar attributes,

or the attributes becoming more similar as a result of the edge. The concept of ho-

mophily is important in the dynamics of collective action and critical mass mobilisation

(130). Therefore, despite a lot of research efforts in studying the role of homophily in

different fields (139), there is still much work to be done in studying its real effect on

the evolution of social behaviours within a population.

From the other hand, homophily alone cannot explain why we connect or choose a strat-

egy when interact with others, so it becomes essential considering the multiple types

of relationships between nodes, known as multiplexity. In fact, the constituents of a

huge variety of real-world complex systems, such as social networks, interact with each

other following complicated patterns. Therefore multiplexity allows us to encompass

these several interactions and relationships, exploring and unveiling how the different

ties in the various layers can impact on the diffusion of social behaviours within a pop-

ulation. The presence of nodes in multiple layers of a system is the key to understand

emergent phenomena, adding an extra dimension explaining what is the role not only

of the intralayer interactions, as in a monoplex framework, but also of interlayer inter-

actions for the emergence of these phenomena. Multiplex networks consist of multiple

channels of connectivity, and they provide the more natural description for systems in

which entities have a different set of neighbours in each layer (140) (see Fig. 6.1). In

social networks, these layers may correspond to different types of relationships: kin,

co-workers, friends, etc. A fundamental aspect of describing multiplex networks is to

quantify the interconnectivity between the different types of connections. In fact, in-

terlayer connections can generate new structural and dynamical correlations between

components of a system, and it is important to take them into account (141). Multiplex

networks are not just a particular case of interdependent networks (34), in fact, as in

multiplex systems, many or even all of the nodes have a counterpart in each layer, so

one can associate a vector of states to each node. In the multiplex case, the presence of

nodes in multiple layers of a system also entails the possibility of self-interactions. This
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Figure 6.1: Schematic example of a multiplex network. The multiplex is made of

N = 5 nodes embedded within M = 3 layers, each one containing 3 links. The size of nodes

is proportional to centrality measure. The dashed lines represent interlayer connections,

while the continuous lined represent the intra-layer connections.

feature is absent in interdependent networks, which were generated as interconnected

communities within a single, larger network (61, 62, 63). In multiplex framework, be-

ing the same node at different layers has deep dynamical consequences and give rise to

unexpected emergent phenomena (64).

To understand the evolution of social behaviours and, in particular, the emergence of

human cooperation within a population in networks, it is important to have a mathe-

matical framework to capture these underlying mechanisms. Fortunately, Evolutionary

Game Theory (EGT) has provided a powerful framework to investigate cooperative

behaviour in systems consisting of competitive individuals (12, 13, 14). EGT allows

studying interactions of multiple nodes in a population, and find out the hidden dy-

namics, shedding light on how and why some behaviours emerge following a specific

pattern. Among the classical games, we consider the Prisoner’s Dilemma Game (PDG),

that is one of the most common paradigms used to describe and study the problem

of evolution (15). The investigation of evolutionary dynamics through EGT on multi-

plex networks allows unveiling and studying the existing social conflicts and dilemmas

among the interests of the single nodes and groups, their counterparts in various layers,

not neglecting what is captured from homophily, the patterns of similarity and dissim-

ilarity (8, 71).

In (73), we targeted at investigating the evolutionary dynamics of human cooperation
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dilemma considering the multiplexity of interactions between nodes. To explore the

nature of human cooperation, we take into account a Critical Mass (130), able to pop

up a new behaviour and trigger a collective action within a population. To analyse the

contagiousness of the action (30), we investigate the social connectedness, using a mul-

tiplex evolutionary game theory framework (71) and bringing out the real reason why

similarity breeds connection (133). Therefore, we focus on both the role of homophily

and multiplexity (58, 65), stressing also the importance of the coupling between layers

using the communicability function inside the multiplex network (142). Taking into

account all these aspects, we propose a novel analytical model and simulate the evo-

lution of human cooperation using evolutionary game theory. In (73), coherently with

(8, 71), we analyse the problem of the emergence of cooperation in multiplex networks

using EGT. Our findings highlight the key role played by homophily and multiplexity

in the evolution of cooperation. In fact, despite the apparently constrained nature of

homophily in reducing the boundaries of connectedness, homophily allows observing

a new nature of the interaction patterns people experience, looking at these patterns

through multiplexity.

6.1.2 Materials and Methods

6.1.2.1 Critical Mass, Centrality and Homophily in Multiplex Networks

Critical mass is defined as the minimum coalition min(n), such that if actors organise

into coalitions of size n, at least n people will prefer mutual cooperation to unilateral

defection, and it is calculated as follows (130):

min(n) s.t.

{

N
∑

i=1

H(Ri − Ti)

}

≥ n (6.1)

where n is the overall population and min(n) is the minimum coalition size. The

latter depends on the Heaviside function of the difference between Reward and Temp-

tation payoffs, Ri and Ti respectively, evaluated considering different types of games

(130). In (73) we extend the concept of Critical Mass introducing a social network

approach, considering a scale-free network (55), and taking into account centrality and

homophily measures in a multiplex structure. Furthermore, we aim not only to evaluate

the minimum coalition size, but also to define a new kind of “Critical Mass” (CM), as

the minimum information enclosed in one or more nodes configurations able to trigger
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a diffusion process of a behaviour within a population. This represents the role of

CM for investigating the human cooperation. The idea is to observe and track the

diffusion of behaviours between connected nodes using a multiplex approach. We take

into account a scale-free network, thus CM is transformed into a set of nodes that de-

pends on the network structure taking into account centrality. In particular, we choose

the eigenvector-like centrality measure, which is defined in (143). The eigenvector-like

centrality allows including the concept of influence in our analysis; starting from the

spectral properties of the adjacency matrix, considers not only the number of links of

each node, but also the quality of such connections. Central nodes are the most influ-

ential nodes which can condition the behaviours of their neighbouring nodes.

In Fig. 6.2 we show the centrality measures and its distribution in the multiplex net-

work. The analysis of CM is then further extended considering a multiplex structure

Figure 6.2: Centrality distribution in the multiplex network. The multiplex is

made of N = 1000 nodes embedded within M = 3 layers, each one modelled by a different

scale-free network. The size of nodes is proportional to centrality measure.

M, taking a different eigenvector-like centrality measure in each layer α, in order to

consider different degrees of importance (or influence) in different layers of the network,

and to include this information in the definition of a matrix of mutual influence between

layers. Thus, to calculate the centrality of a node within a specific layer, one must take

into account all the other layers, as it may depends not only on the neighbours that

are linked to xα within that layer, but also on all other neighbours of xβ that belong
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to the other layers. In other words, one needs to consider the situation where the in-

fluence amongst layers is heterogeneous. To this aim, one can introduce an influence

matrix W , defined as a non-negative matrix, such that Wαβ measures the influence on

a layer α given by the layer β. Given a multiplex network M and an influence matrix

W = (wαβ) , we define the global heterogeneous eigenvector-like centrality of M as in

(7). For each layer α, we introduce the adjacency matrix, denoted by Aα ∈ R
N×N ,

where each element is:

aαxy = aαyx =

{

1, if x and y are connected
0, otherwise

, for 1 ≤ α ≤M (6.2)

Now we extend the homophily measure considering a multiplex structure. In each

layer α, we define an Homophily matrix Hα, where each element hαxy represents the

homophily measure between two nodes x and y in the layer α, calculated as:

hαxy =
1

1 + δαxy

where δxy measures the homophily difference between two nodes x and y. Then,

the Homophily matrix is defined as follows:

Hα =









1 · · · 1
1+δα1,N

...
. . .

...
1

1+δα
N,1

· · · 1









∈ R
N×N (6.3)

For each layer α, we define the matrix Zα, as the Hadamard product between the

homophily matrix Hα and the adjacency matrix Aα, as follows:

Zα = Hα ◦Aα =











0 · · ·
aα1,N

1+δα1,N
...

. . .
...

aαN,1

1+δα
N,1

· · · 0











∈ R
N×N (6.4)

where each element is given by:

zαxy =
aαxy

1 + δαxy

Note that Zα degenerates in the adjacency matrix Aα if, for each pair of nodes,

we have δαxy = 0, that is a network with no homophily difference between nodes. In
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order to obtain an overall measure that includes both the concepts of centrality and

homophily in the multiplex structure, in a first step we need to evaluate the global

heterogeneous eigenvector-like centrality and homophily of the multiplex M, defined as

a positive and normalised eigenvector o⊗ ∈ R
NM (if it exists) of the matrix:

Z⊗ =













w11
(

Z1
)T

w12
(

Z2
)T

· · · w1M
(

ZM
)T

w21
(

Z1
)T

w22
(

Z2
)T

· · · w2M
(

ZM
)T

...
...

. . .
...

wM1
(

Z1
)T

wM2
(

Z2
)T

· · · wMM
(

ZM
)T













∈ R
(NM)×(NM) (6.5)

where Z⊗ is the KhatriRao product of the matrices:

W =











w11 w12 · · · w1M

w21 w22 · · · w2M

...
...

. . .
...

wM1 wM2 · · · wMM











(6.6)

and

ZT =
[

(

Z1
)T (

Z2
)T

· · ·
(

ZM
)T
]

(6.7)

Note that we consider a symmetric homophily measure between two different nodes,

that is δxy = δyx. In other words, we consider realistically that, in terms of similarity,

two connected nodes present a symmetric measure, so that: (Zα)T = Zα. Introducing

the following notation:

o⊗ =











o1⊗

o2⊗

...
oM⊗











∈ R
NM (6.8)

where o1⊗, o2⊗, · · · , oα⊗, · · · , oM⊗ ∈ R
N , we can define the global heterogeneous

eigenvector-like matrix O⊗ of M, as follows:

O⊗ =
[

o1⊗ o2⊗ · · · oM⊗
]

∈ R
N×M (6.9)

Once defined (6.9), in a second step, for each node x, we define an overall measure

of its centrality and homophily, denoted by λx, in the multiplex network M. Λ is a
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column vector of size N , which includes all the measures λx. It allows quantifying the

overall weight, in terms of centrality and homophily, of each node in the multiplex M,

as follows:

Λ =











λ1
λ2
...
λN











=











∑M
i=1

(

oi⊗
)

1
∑M

i=1

(

oi⊗
)

2
...

∑M
i=1

(

oi⊗
)

N











∈ R
N (6.10)

Note that:

N
∑

x=1

λx = 1

Now we want to define the CM in the multiplex structure both in a quantitative and

qualitatively way. To this purpose, on one hand, we evaluate the minimum coalition

size n̄ and, on the other hand, we also identify the nodes which maximise the diffusion

process of a behaviour within a population of size N . First we consider the multiplex

as a single layer of N ×M nodes, and we calculate the CM size n̄, as follows:

min (n̄) s.t.

(

NM
∑

i=1

H (Ri − Ti)

)

≥ n̄ (6.11)

We identify a node as “critical” when it triggers a certain behaviour in all the

layers in which it is involved. Therefore, the CM results in a set of “critical” nodes

able to give a boost to a certain behaviour in a more effective and faster way, due

to its high centrality and homophily weight. In fact, more a node is central in the

network structure and more it is similar to the other nodes in the different layers of

the multiplex structure, more it becomes relevant in triggering a behaviour. Therefore,

assumed that in the multiplex network a “critical” node adopts the same behaviour in

all the layers, starting from (6.11) and considering a multiplex network, the CM size

¯̄n of M is given by:

¯̄n =
n̄

M
≤ n (6.12)

as we can exclude the replicas of a node that belongs to the set of CM nodes. In

other words, n̄ is the CM size of the “aggregate layer”, obtained considering in a single

layer all the connections in the different layers and the nodes in the multiplex (including
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To identify qualitatively the set of CM nodes, we take into account the set R,

representing all the permutations Sk of the ¯̄n nodes in the population N , so that we

overall have N !/¯̄n! permutations.

The set R is defined as follows:

R =
{

S1, S2, ...SN !/¯̄n!

}

(6.15)

For each subset Sk of R, we can define an overall centrality and homophily measure,

as follows:

ΛSk
=
∑

x∈Sk

λx (6.16)

The CM in the multiplex structure M, indicated with S̄, is the subset which max-

imises the overall centrality and homophily measure, that is ΛS̄ , as follows:

S ∈ R s.t. ΛS = arg max
S∈R

{

∑

x∈S

λx

}

(6.17)

Note that it may be more than one subset that satisfy the (6.17). Furthermore,

from a computational point of view, calculating S̄ is simple, since we have only to

consider the ¯̄n nodes with the higher values of λx.

6.1.2.2 Communicability in Multiplex

In (73), we want to stress the importance of the coupling between layers in exploring

the evolution of behaviours in the multiplex structure. To this aim we exploit the

communicability function defined in (142), which quantifies the number of possible

routes that two nodes have to communicate with each other. Therefore, considering a

multiplex formed by M layers, denoted by L1, L2, , LM , and their respective matrices

Z1, Z2, , ZM , representing the Hadamard product between the homophily matrices and

the adjacency matrices of the multiplex M, its matrix is then given by M = ZL +CLL

, where ZL is:

ZL = ⊕M
a=1Zα (6.18)
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and CLL is a matrix describing the interlayer interaction, defined as follows:

CLL =











0 C12 ... C1M

C21 0 ... C2M
...

...
. . .

...
CM1 CM2 ... 0











∈ RNM×NM (6.19)

where each element Cαβ ∈ R
N×N represents the interaction of layer α with layer

β. Here it is assumed that: Cαβ = Cβα = C = ωαβI = ωβαI, for all layers α and β,

as we consider a symmetric interaction between layers. ω is the parameter describing

the strength of the interlayer interaction, and I ∈ R
N×N is the corresponding identity

matrix. So we can now explain the multiplex matrix as follow:

M =











Z1 ω12I ... ω1MI
ω21I Z2 ... ω2MI
...

...
. . .

...
ωM1I ωM2I ... ZM











∈ R
NM×NM (6.20)

Since we are interested in accounting for all the walks between any pair of nodes in

the multiplex, we consider the number of walks of length k between two generic nodes

x and y in the multiplex, which is given by the α, β-entry of the K-th power of the

adjacency matrix of the network. Consequently, the walks of k length in the multiplex

are given by the different entries of MK . As underlined in (142), the walks can include

hops of two different kinds, e.g., intra-layer and interlayer hops, and we are interested in

giving more weight to the shortest walks than to the longer ones. The communicability

between two nodes x and y in the multiplex is given by a weighted sum of all walks

from x to y as follows:

Gxy = I +M+
M

2

2!
+ ... =

∞
∑

k=0

M
k

k!
= [exp(ZL + CLL)]xy (6.21)

Now we introduce the communicability matrix G, where each element Gαβ ∈ R
N×N

is the matrix representing the communicability between every pair of nodes belonging

to two different layers α and β, of the multiplex M. It is defined as follows:

G = exp(ZL + CLL) =











G11 G12 ... G1M

G21 G22 ... G2M
...

...
. . .

...
GM1 GM2 ... GMM











∈ R
NM×NM (6.22)
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In particular, [Gαβ ]xy represents the communicability between the node x in the

layer α and the node y in the layer β.

6.1.2.3 Evolutionary Dynamics

We use the Prisoners Dilemma game (PDG) as a general metaphor for studying the

evolution of cooperation. In this classical social dilemma, two players simultaneously

decide whether to cooperate (C) or to defect (D): cooperation results in a benefit

b to the opposing player, but incurs a cost c to the cooperator (where b > c > 0);

defection has no costs or benefits. In both cases, it is best to defect for rational

individuals in a single round of the PDG, regardless of the opponent strategy. However,

mutual cooperation leads to a higher payoff than mutual defection, but cooperation is

irrational. The social dilemma is thus established, since mutual cooperation yields both

an individual and total benefit higher than that of mutual defection. The payoff matrix

of the PDG is illustrated in Table 6.1:

Table 6.1: Payoff Matrix of the Prisoner’s Dilemma Game.

Cooperate Defect

Payoff to Cooperation b− c −c

Payoff to Defection b 0

In evolutionary settings, payoffs determine reproductive fitness, and it follows that

D is the Evolutionarily Stable Strategy (ESS). This can be formalised using replicator

dynamics (14), which admits pure defection as the only stable equilibrium. The PDG

is in fact the most stringent cooperative dilemma where, for cooperation to arise, a

mechanism for the evolution of cooperation is needed (118). The pairwise nature of the

game is translated to a population scale by making the nodes playing with each other,

and accumulating the payoff obtained from each interaction. After each round of the

game, the strategies of the nodes are updated so that those nodes with less payoff are

tempted to imitate the strategy of those fittest individuals. We focus on memory-one

game since in (119) the authors have proved that, giving only a finite memory of previ-

ous play, the payoff obtained is exactly the same as if we would consider a player with
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a longer memory. In unstructured populations, in which players are well-mixed, evolu-

tionary dynamics leads all the individuals to defection (7). However, the existence of a

network of interactions, so that each node can only play with those directly connected

to it, the population can sometimes promote the emergence of cooperation. This mech-

anism promoting cooperation, known as network reciprocity (16), was observed to be

substantially enhanced when the network substrate is a scale-free network (21, 118), a

real-world network, with a power law dependence of the degree distribution P (k) ∼ kγ ,

with the exponent γ typically satisfying 2 < γ < 3. For this reason, we decide to adopt

a scale-free as network substrate (55).

We simulate the evolutionary process in accordance with the standard Monte Carlo

simulation procedure, composed of elementary steps; including the distribution of com-

peting strategies, which is an elementary step entails randomly selecting a player and

one of its neighbours, calculating the payoffs of both players, and finally attempting a

strategy adoption. First, a randomly selected player x acquires its payoff Px by playing

the game with all its neighbours on the layer α. Next, player x randomly chooses one

neighbour y on the layer β, who then also acquires its payoff Py on the layer β in the

same way as previously did player x. Lastly, player x adopts the strategy Sy from

player y with a probability determined by the Fermi function (144):

W (Sy → Sx) = ηx
1

1 + exp[
Px−Py

δxyK
]

(6.23)

One player x on the layer α of the multiplex M adopts the strategy Sy of another

node playing on the layer β, taking into account the payoff difference, the homophily

measure δxy and a communicability measure ηx in the multiplex network. We take into

account a degree of uncertainty in the decision making process given by the factorK. In

fact, the temperature K represents a noise level (or selection intensity) and quantifies

the uncertainty related to the strategy adoption process; it can vary in the range

]0, +∞[. The selected value of K is a traditional and frequently employed choice that

does not qualitatively affect the evolutionary outcomes, as shown in many preceding

works and reviewed comprehensively in (57). In the K → 0 limit, the adoption of a

successful strategy is deterministic, while in the K → +∞ limit, the strategy learning

is blind. The factor δxy, related to the homophily measure, means that the more the

players have a high value, the more one player tends to imitate the strategy of the other
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one at each round. δxy can vary in the range ]0,+∞[; in particular for δxy → 0, the two

nodes present the highest homophily value, while in the δxy → +∞ limit, there is no

homophily. Furthermore, we introduce the scaling factor ηx of player x which depends

on the strategies of related players from the other layers, and it is the key quantity that

takes into account the communicability function between layers (23). If we consider

only the strategy of the counterpart x′ on another layer β, we are in the simplest case

and we can assume that ηx is minimal if Sx = Sx′ , otherwise it assumes the maximal

value. To avoid frozen states the scaling factor ranges in the interval [0.1, 1], assuming

ηxmin
= 0.1 as the minimal scaling factor and ηxmax = 1 as the maximal value. In our

definition, we consider a more general case where not only the counterpart node x′ but

also its neighbours on the other layer β determine ηx; in other words, the counterpart

and its neighbours can influence the strategy adoption due to the communicability, that

includes the interlayer interaction and the number of possible walks from node x to y,

where y are all the neighbouring nodes connected with the counterpart node x′ on the

layer β of the node x on the layer α.

The scaling factor ηx changes linearly between ηxmin
and ηxmax in accordance with:

ηx = 1− (ηxmax − ηxmin
)

∑

y∈β,Sy=Sx
[Gαβ ]xy

∑

y∈β [Gαβ ]xy
(6.24)

where the numerator is the sum of the communicability functions calculated between

the node x on the layer α and all the neighbouring nodes y belonging to the layer β,

adopting the same strategy as player x. While the denominator represents the sum of

the communicability functions calculated between the node x on the layer α and all

the neighbouring nodes y belonging to the layer β. Therefore, the ratio quantifies the

influence, in terms of communicability, on the strategy adoption of the player x on the

layer α, due to the strategies adopted by the counterpart node and its neighbours on

the layer β. In particular, more are players on the layer β with a high communicability

with the node x adopting the same strategy as player x, more likely x will adopt the

same strategy in the next round. On the other hand, if there are nodes on the layer β

with a high communicability, but adopting a different strategy, the player x will be most

likely pushed to change its strategy. Thus, this ratio depends on the communicability

function and it may result in a bias regarding the strategy adoption of the player x in
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the next round of the game. Each Monte Carlo step gives a chance for every player to

change its strategy once on average.

6.1.3 Results and Discussion

The simulations have been conducted choosing a scale-free network with N = 1000

nodes. We take into account different values of homophily randomly chosen following a

normal distribution around a mean value, with standard deviation σ. Furthermore, we

have considered two different values of interlayer interaction strength ωαβ ; in particu-

lar, ωαβ = 0.3 indicates a low interlayer interaction strength between the layers 1 and

3, while ωαβ = 0.6 represents a high interlayer interaction strength between the layers

2 and the others. The reasons behind our choice of the interlayer interaction strength

between layers are explained in Fig. 6.4.

Fig. 6.5 shows the fraction (or density) of cooperative nodes against the rounds or

time steps. ρ varies in the range [0, 1], where 0 corresponds to the global defection,

while 1 means a global cooperation of population. We have simulated the evolutionary

dynamics for a fixed number of simulations, and the colour corresponds to the pop-

ulation’s density, so ‘red’ indicates the highest density, while ‘blue’ means the lowest

density. In Fig. 6.5, the PDG is played between the interacting nodes in a multiplex

network with M = 3 layers. We have considered two different values of σ, where σ = 8

means a low homophily value (Fig. 5A), while σ = 1 means a higher homophily value

(Fig. 5B), fixed a CM value. We show the evolution of cooperation until 200 rounds

as, in correspondence of that value, the convergence has already been reached.

This macroscopic evolution highlights how the higher is the homophily value, more

quickly nodes converge to cooperation and the density of cooperative nodes tends to

the maximum value. In other words, increasing the homophily value of the multiplex

network M, we note a faster emergence of cooperation. Instead, considering lower

homophily values, we find a lower density of cooperative nodes, that means a slower

convergence to cooperation.

The results are coherent with our theoretical expectations: in fact the more the ho-

mophily, the more the nodes tend to choose the same cooperative strategy, solving the

social dilemma towards the most profitable strategy with the highest payoff for the evo-

lutionary fitness of population. The switching from the pure rational strategy to the

most profitable one is due to the interaction between nodes through the different layers
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Figure 6.4: Evolution of cooperation considering different interlayer interaction

strength. The evolution of cooperation against the round as a function of interlayer

interaction strength. The ‘blue’ plot represents the case of constant interlayer strength:

ωαβ = 0.4. The ‘red’ plot represents the case of variable interlayer strength (one dominant

layer): ωαβ = 0.3 between layers 1 and 3; ωαβ = 0.6 between the layer 2 and the other

layers of the multiplex. We show the evolution of cooperation until 200 rounds as, in

correspondence of that value, the convergence has already been reached. It can be observed

that the emergence of cooperation is quicker considering a variable interlayer strength (one

dominant layer), than the constant case. The dominant layer acts as a behaviour’s polariser

of the nodes in the other layers.
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of the multiplex network, creating a sort of ‘learning process’ driven by homophily,

which acts as a catalyst towards cooperation.

In Fig. 6.6, we illustrate the microscopic evolution of cooperation, considering both the

cases, respectively with low homophily (σ = 8) and high homophily value (σ = 1). We

have simulated the evolution of cooperation in the multiplex network, showing the evo-

lutionary dynamics of one of the layers, as the evolution in one layer is representative

of the overall one in all the layers of the multiplex. During the steps of evolutionary

dynamics, the nodes becomes coloured when they cooperate, otherwise they are ‘white’.

In particular, we coloured in ‘blue’ the cooperative nodes in the case of low homophily

σ = 8, while we indicated with ‘red’ the case of high homophily σ = 1. The size of

nodes are log-proportional to the values of Λ (see (6.10)), so it depends on both the

centrality and homophily measures of the multiplex network (see sect. 6.1.2).

As in Fig. 6.5, the Fig. 6.6 highlights the different speed in the emergence of coopera-

tion of the evolutionary process. The formation of cooperative groups in the different

parts of the network and also the group size depend on the homophily value. When we

consider a low homophily value, nodes tend not to interact with the others in the mul-

tiplex network, then the defective behaviour tends to persist more in the population,

not favouring the formation of cooperative groups and globally slowing the emergence

of cooperation. As a consequence, the group size will be small in this case of low

homophily (see Figs. 6A, 6B and 6C). Instead, when we consider a high homophily

value, nodes are pushed to interact with each other, so the convergence towards coop-

eration becomes quicker, and there is a natural formation of larger cooperative groups

than in low homophily case (see Figs. 6D, 6E and 6F). Analysing concurrently the

corresponding figures of microscopic evolution, we see clearly this difference, both in

speed and size, in the formation of cooperative groups. In both cases of respectively

low and high homophily, we illustrate the evolutionary process until the convergence

has already been reached.
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Figure 6.5: Emergence of cooperation over time. The figure illustrates the frac-

tion of cooperative nodes against the rounds or time steps: low homophily (A) and high

homophily (B). The figure shows the evolutionary dynamics of the PDG played between

the interacting nodes in a multiplex network with M = 3 layers. In both cases N = 1000

nodes. The results are obtained choosing a fixed number of simulations and the colour

corresponds to the density: ‘red’ indicates the highest density (that is the maximum num-

ber of overlapping points), while ‘blue’ means the lowest density. As can be observed,

increasing the homophily value of the multiplex network M, we note a faster emergence of

cooperation.
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Figure 6.6: Temporal evolution of cooperation. The figure highlights the microscopic

emergence of cooperation in the evolutionary process. The formation of cooperative groups

in the network and also the group size depend on the homophily value. Figs. A, B, C -

in the low homophily case (σ = 8), the defective behaviour tends to persist more in the

population, not favouring the formation of cooperative groups and globally slowing the

emergence of cooperation. Yet, the group size will be smaller in this case of low homophily.

Figs. D, E, F - in the high homophily case (σ = 1), the convergence towards cooperation

becomes quicker, and there is a natural formation of larger cooperative groups than in low

homophily case. Analysing the corresponding figures of the evolution, we see clearly this

difference, both in speed and size, in the formation of cooperative groups.
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To sum up, starting from (8, 71), we analysed the emergence of cooperation on

multiplex networks. To this aim, we defined a novel analytical model able to anal-

yse the problem of human cooperation in multiplex networks using evolutionary game

theory, exploring the role played by multiplexity and homophily in the evolution of

cooperation. Therefore, first we have introduced the critical mass in a multiplex net-

work, proposing also the selection criterion to detect nodes to trigger the evolution. To

capture the effect of multiplexity and stress the importance of the coupling between

the network layers, we have exploited the communicability function defined in (142).

We observed how the emergence of cooperation is quicker considering a variable inter-

layer strength in the different layers, with one dominant layer, than the constant case

with the same interlayer strength. This have suggested us that the dominant layer

acts as a behaviour’s polariser of the nodes in the other layers. We have redesigned

the study of evolution considering the homophily as a shaping factor. In particular,

we have studied its crucial role in breeding connections and rules interactions within

a population, and then influence the strategies of players in multiplex. After having

included these concepts of mutiplexity, communicability and homophily in our model,

we have investigated the evolutionary dynamics both at macroscopic and microscopic

scales. From one hand, the macroscopic evolution have highlighted the crucial role of

homophily in solving the social dilemma, moving the population from the pure rational

strategy (defection) towards the most profitable strategy with the highest evolutionary

fitness (cooperation). From the other hand, the microscopic evolution has pointed out

the impact of homophily on the formation of cooperative groups in the network and on

groups’ size. The results have shown as homophily significantly affects the formation of

cooperative groups, both in speed and size. Then, the introduction of multiplexity and

homophily not only is a more realistic representation of social systems but, as shown

before, it has a key effect on the evolutionary dynamics of cooperation.
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Chapter 7

Discussion

In this chapter we will revisit the research questions posed in the first chapter, sum-

marising the main results, contributions and the underlying key aspects we have ad-

dressed and presented in this Ph.D. dissertation.

7.1 Research Contributions and Questions Revisited

We can sum up the main reserach contributions presented in this dissertation, answering

the research questions posed in sect. 1.2:

• To what extent can biological processes and models inspire the analy-

sis and management of the complexity of the ICT systems, increasing

knowledge and trying to solve also the associated computational prob-

lems? In Chapter 2, we have discussed and showed what are main challenges

of ICT, the analogies between biology and ICT, and how using the bio-inspired

approach and algorithms, applied to ICT, it becomes possible to optimise and

improve the design and methodologies proper of the traditional vision of ICT.

The increasing connectedness, the most stringent computational requirements,

and the overall enhanced complexity of ICT systems can be faced by exploiting

novel bio-inspired approaches, reducing complexity through heuristic approach,

re-thinking network considering nodes as humans and evaluating their behaviours

in a “Social Smart behaviour”, extracting knowledge from network..

• What are the main properties and features of multilayer networks?

How can multilayer networks help to represent and investigate the dy-

142



7.1 Research Contributions and Questions Revisited

namics and patterns of real-world networks? As explained in Chapter 3,

multilayer networks and its mathematical formalisation, meet the need for un-

derstanding and gaining insight on the complexity of the large variety of systems

and its real properties. Multilayer networks allow to describe the multiple set of

interactions among nodes through the different network layers, unveiling also the

non-trivial patterns and resulting dynamics. The structural measures presented

in Chap. 3 represent the way to characterise the main concepts and aspects to

be investigated when dealing with multilayer networks.

• Despite the huge amount of heterogeneous data to be analysed, the

increased connectedness and complexity of social networks, how can

ICT systems and models be able to manage them, capturing the com-

plex dynamic patterns, and increasing both performance and context-

awareness? In Chapter 4, we have described the role of bio-inspired ICT in

dealing with the Big Data in healthcare context, considering the social connected-

ness and using the methologies of social network analysis to analyse the dynamics

of networked systems, such as healthcare system. Bio-inspired ICT, along with

the introduction of a social dimension of analysis, allows to re-think the health

system, described as a complex interdependent network, where the single entities

interact through the various layers. Exploiting the multilayer paradigm, the novel

Health mining introduced and the concept of multi-agent system, we have pro-

posed a framework able to model the social entities, considering complex agents,

with context-aware and cognitive abilities which makes nodes able to transmit

the extracted knowledge, decide and apply ICT strategies and procedures. This

produces an improved and empowered analysis and an overall better manage-

ment of the healthcare system, and an increased awareness and adaptability of

the system according to different targets.

• What is the more suitable mathematical formalisation to analyse so-

cial interactions and behaviours? What are its main properties and

features? What are the behaviours have the ability to persist in the

population, and which ones instead have a tendency to be driven out

by others? In Chapter 5, we have described the classical Game Theory and
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7.1 Research Contributions and Questions Revisited

Evolutionary Game Theory methodologies used to describe and analyse the inter-

dependent interactions and the dynamics of behaviours. Indeed, game-theoretic

approach allows to model those situations where the individual behaviours and

decisions affect the outcomes of others in the same environment, that is the con-

flictual scenarios where there is a strategic behavioural interdependence among

individuals, affecting the dynamics of behaviours. We have discussed about Evo-

lutionary Game Theory (EGT), representing the mathematical framework for

investigating the dynamics of social behaviours in a population, gaining a better

understanding of the emergence of cooperation in different contexts, among these

the human societies. In fact, EGT allows to evaluate which are the behaviours

able to persist in the population, using the replicator dynamics and calculating

the fitness function, which determines reproductive success of a behaviour or a

strategy in a population.

• Therefore, how did the selfish process of natural selection, described

by Charles Darwin, gives rise to cooperation? How might social inter-

actions can give a boost to cooperative behaviour? And what may be

the role of a linkage polarizer, such as homophily, in this evolutionary

process? In Chapter 6, we have explored one of the most important challenges

to which EGT is being applied, that is the emergence of human cooperation in a

social network. Modelling the social network as a multiplex network, we have de-

fined a novel analytical model able to analyse the problem of human cooperation

on multiplex networks using EGT, exploring the joint role played by multiplexity

and homophily in the evolution of cooperation. Combining multiplex network and

EGT frameworks, other than considering homophily, as a shaping factor of rela-

tionships in the social network, we have investigated the evolutionary dynamics

both at macroscopic and microscopic scales. The results have shown the striking

role of homophily in the emergence of cooperation and how the introduction of

multiplexity and homophily not only is a more realistic representation of social

systems but it has a key effect on the evolutionary dynamics of cooperation.

144



7.2 Concluding Remarks and Future Works

7.2 Concluding Remarks and Future Works

This Ph.D. dissertation has been focused on evolutionary dynamics of social behaviours,

in particular human behaviours, on multilayer networks. In particular, starting from

the bio-inspired approach to ICT and introducing some social network measures, and

exploiting the mathematical framework of evolutionary game theory, we have investi-

gated the evolution of human cooperation on a multiplex network. Multiplexity, as an

extra dimension of analysis, has allowed us to give a more realistic representation of

social systems, describing the complexity of social systems, but also to observe how

the non-trivial patterns and the different social interactions and relationships on the

various layers can impact on the emergence of social behaviours in a population. From

the other hand, it has been also quantified the role of homophily as a linkage polariser

or shaping factor of the social connections, in this evolutionary process. Although the

apparently constraining nature of homophily in boundering connections, due to the pat-

terns of similarity and dissimilarity, homophily has enabled us to shed light on a new

nature of the interaction patterns people experience, looking at these patterns through

multiplexity. Moreover, we have observed how the introduction of multiplexity and ho-

mophily has a key effect on the evolutionary dynamics of cooperation. In particular, we

have found out the striking role of homophily in the emergence of human cooperation

in the social dilemma represented by the PD game, both at macroscopic and micro-

scopic scales. Macroscopically, homophily is able to solve the social dilemma, moving

the population from the pure rational strategy (defection) towards the most profitable

strategy with the highest evolutionary fitness (cooperation), while the microscopic evo-

lution has pointed out the impact of homophily on the formation of cooperative groups

in the network and on groups’ size.

The analysis of social interactions and human behaviours and the investigation of its

evolutionary dynamics has been the core part of my research during my Ph.D. If, from

one hand, the mathematical frameworks of game theory and EGT have constituted the

way to model such interactions and the strategic interedependence among people when

interacting, also in evolutionary perspective, from the other hand, multilayer networks

has been the mathematical tool to describe more realistically such complex dynamics

in the social network. Social networking and the bio-inspired approach has been the

way to characterise nodes and their features in the network, considering also the single
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traits of the individuals and how these can affect their relationships.

The fascinating development of network science in the last decades has been creating

new growing challenges in various fields, from neuroscience to biology, and social sci-

ences. Directions for future research are many, and the idea of joining all these aspects

is thus promising. In terms of evolutionary games, perhaps the most obvious path to

take is considering other types of games on mutlilayer networks, such as the ultimatum

game, rock-paper-scissors games or other social dilemmas, studying the emergence of

dynamic patterns and collective behaviours. As underlined in Chap. 4, this evolution-

ary perspective of nodes and data, creating an organised and increasing knowledge, due

to interactions on the different layers, paves the way to explore collective awareness of

the single individuals or groups of individuals, e.g. developing platforms for sustain-

ability and social innovation. Reasoning in terms of epidemics or disease spreading

processes, we can investigate them from a multilayer perspective, studying the con-

tagions on the different layers and how the social connections may help in building

prevention measures, inhibiting a pandemic diffusion. Therefore, joining the multilayer

framework and EGT provides the basis to further research in epidemiology.

Another aspect to be investigated is to look at of the concept of homophily and the

patterns of similarity/dissimilarity from other perspectives. One of these is how the

structural dynamics of emotionally complex collaboration and in depth moral com-

mitments has generated regular expulsion events of founding populations, generating

a rapid dispersal of human populations, which has pushed them to take new routes

and cross significant environmental and behavioural barriers, facing also the risks and

difficulties. Therefore, along with cognitive and cultural complexity, we may recog-

nise the influence of emerging emotional complexity on significant behavioural changes.

Another issue involving homophily is the spreading of misinformations or rumours on

online social networks as one of the main risks for our society, thus characterising the

similarity of the consumption patterns in online social networks may help to measure

the degree of misinformation in the network and detect the most rumorous clusters.
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[105] Albert-László Barabási, Natali Gulbahce, and Joseph

Loscalzo. Network medicine: a network-based ap-

proach to human disease. Nature Reviews Genetics,

12(1):56–68, 2011. 91

[106] Nitesh V Chawla and Darcy A Davis. Bringing big data

to personalized healthcare: a patient-centered

framework. Journal of general internal medicine,

28(3):660–665, 2013. 93

[107] Kwang-Il Goh, Michael E Cusick, David Valle, Barton

Childs, Marc Vidal, and Albert-Laszlo Barabasi. The

human disease network. Proceedings of the National

Academy of Sciences, 104(21):8685–8690, 2007. 95

[108] D-S Lee, J Park, KA Kay, NA Christakis, ZN Oltvai,

and A-L Barabási. The implications of human

metabolic network topology for disease comor-

bidity. Proceedings of the National Academy of Sciences,

105(29):9880–9885, 2008. 95

[109] César A Hidalgo, Nicholas Blumm, Albert-László
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Moreno. Dynamic instability of cooperation due

to diverse activity patterns in evolutionary social

dilemmas. EPL (Europhysics Letters), 109(5):58002,

2015. 120

[126] James H Fowler and Nicholas A Christakis. Coop-

erative behavior cascades in human social net-

works. Proceedings of the National Academy of Sciences,

107(12):5334–5338, 2010. 121

[127] Zhen Wang, Michael A Andrews, Zhi-Xi Wu, Lin Wang,

and Chris T Bauch. Coupled disease–behavior dy-

namics on complex networks: A review. Physics

of life reviews, 2015. 121
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