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Abstract

In the present work, we explore possible routes to the future exploitation of quan-

tum technologies in superconducting artificial atoms. The objectives of the thesis

are twofold. On the one hand, we study advanced control of the quantum states

of individual artificial atoms, tailored at robust and faithful quantum informa-

tion processing in complex architectures and at the detection of the Ultra Strong

Coupling regime. On the other hand, we study and propose a framework to

experimentally establish quantum stochastic thermodynamics in circuit-QED.

In chapter 3, the implementation of a Lambda system in superconducting

artificial atoms is discussed. Strategies for optimal design are investigated by

means of optimal symmetry breaking and dynamical decoupling. Stimulated Ra-

man Adiabatic Passage (STIRAP), an adiabatic population transfer technique in

three-level system, is introduced and its transfer efficiency is shown to be ∼ 70%

in the Cooper Pair Box. Optimization strategies are also discussed.

In chapter 4, a novel technique for population transfer in a Lambda system is

proposed, nicknamed chirped STIRAP (cSTIRAP), its key asset being the possi-

bility of operating with an always on driving field. Robustness against parametric

imperfections is assessed and specific regimes of failure due to energy level fluc-

tuations are thoroughly examined.

A novel way to control superconducting qutrits in the Lambda system is in-

troduced in chapter 5. It is shown that, by employing a two-photon pump, the

spectrum of the devices is changed in a non-trivial way by AC Stark shifts, that

can be then compensated by suitable modulation of the driving phases. A 2+1

photons STIRAP technique is introduced, with transfer efficiency ' 97% in last

generation devices despite the presence of both low and high frequency noise.

In chapter 6, dynamical detection of the Ultra Strong Coupling (USC) regime

is studied. It is shown that, by implementing a three-level Vee scheme with a flux

qutrit, non classical effects and exotic light-matter interaction phenomena can be

amplified and detected unambiguously.
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A Circuit-QED implementation of a non-equilibrium thermodynamic exper-

iment is finally proposed in chapter 7. A stochastic thermodynamics formalism

is defined and work and heat are defined at the single quantum trajectory level.

Numerical simulations are shown and the possibility to verify detailed fluctua-

tion theorems is demonstrated. Moreover, the entropy production is defined as

a witness of irreversibility and trajectory with a negative entropy production are

shown, the mean entropy production being non-negative as required by the second

law.
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Chapter 1

Introduction

Quantum technologies have attracted much interest in the last few years, both

in academia and in industry[5, 6, 7, 8], and the field is currently one of the most

active in the physics community, producing large volumes of research[9]. The

goal of quantum technology research is to demonstrate how harnessing genuinely

quantum properties like quantum superposition, non-locality and squeezing can

help to achieve certain tasks in a more efficient way. Below we give some of the

numerous examples of how this is possible.

In quantum computation, quantum superposition and entanglement are em-

ployed to speed-up certain computation tasks. A universal quantum computer[10]

is, in fact, capable of exponential improvements in the complexity class of cer-

tain problems. Famous examples are factorization of large numbers[11], database

searching[12] and, more recently, machine learning algorithms[13, 14, 15]. In

quantum simulation, the possibility of simulating efficiently a physical system of

interest is studied. Quantum simulators were initially envisioned by Feynman[16].

Later works[17] demonstrated how a universal quantum computer can be used to

efficiently simulate any system obeying quantum mechanics. This has applica-

tions, for example, to drug synthesis and quantum chemistry[18].

Quantum squeezing can be used to engineer finite temperature environments

that promise to outperform Carnot engines[19]. Shortcuts to adiabaticity[20] al-

low a quantum engine to operate at full powers with an efficiency higher than

the classical limit[21]. Spin squeezing can be employed to overcome the bound-

ary imposed by Cramér Rao inequality for the uncertainty of the estimation of

parameters, a result that gave rise to the field of quantum metrology[22].

Quantum technologies depend, from a theoretical perspective, on the quite

straightforward requirement that the physical substrate onto which they are im-

1



2 CHAPTER 1. INTRODUCTION

plemented obeys the laws of quantum mechanics. In other words, they need a

quantum hardware. Observing quantum behaviour, though, has proven to be an

amazingly difficult challenge. This is due to the fact that a quantum system

always interacts with a noisy environment that is responsible to the loss of its

quantum properties by means of decoherence[23]. Advances in the field were pos-

sible only due to the fact that current technology allows us to isolate and control

the quantum state of microscopic or mesoscopic systems that behave quantum

mechanically. Many systems were, then, identified as a possible candidate to

constitute the hardware substrate of future quantum technologies. Examples are

Rydberg atoms in quantum optics[24], trapped ions[25], quantum dots[26], Nu-

clear Magnetic Resonance systems[27], NV centers[28], impurities in silicon[29]

and superconducting artificial atoms[30].

In this thesis we will present a collection of research works related to quan-

tum technologies in the context of superconducting artificial atoms. The latter

have established in the past few years as one of the most promising frameworks

for the future implementation of quantum computers. We will introduce the

physics of superconducting artificial atoms in chapter 2, but, in a nutshell, they

are nanoscopic devices built on a chip using common photo/electro-litographic

techniques, based on superconducting materials[31, 32]. The unique properties

of the superconducting phase and the Josephson junction allow for the design of

devices, such as the Cooper Pair Box (see section 2.1.2) and the flux qudit (see

section 2.1.3), that exhibit discrete[32] non-linear spectra and allow for the ob-

servation of several quantum effects like superposition[33] and entanglement[34].

The very fact that such devices are engineered allows for a great degree of tun-

ability of their parameters[32], which can be achieved both at the design stage

and on-chip via the use of electromagnetic knobs. Superconducting artificial are

probably the most scalable technology among the ones listed above[35]. Moreover

they enjoy large couplings with control fields[30] and to each other[36].

In circuit Quantum Electrodynamics (Circuit-QED) (see section 2.1.4), su-

perconducting artificial atoms are coupled to electromagnetic resonator modes

that allow for the control and measurement of their quantum state. Circuit-QED

was proposed in 2004 by Blais et al.[30] as an architecture for quantum com-

putation. Since then, several proposals have shown how the technology can be

used to study, among the others, quantum simulation[37], thermodynamics[38]

and beautiful quantum optics phenomena[39]. In the recent years, the possibil-

ity to successfully implement quantum error correction codes[40], a fundamental

building block to build universal, scalable quantum computers[41], arose much
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Figure 1.1: Driven three-level atoms configurations: (a) Lambda, (b) Ladder and
(c) Vee schemes.

interest[42] and brought quantum computers outside the boundaries of academia.

In this theses, we will, in particular, focus on two main aspects. In the first

part (chapters from 3 to 6) we study advanced quantum control techniques tai-

lored at the manipulation of the quantum state of an artificial atom. In the second

part (chapter 7) we will study the implementation of a non-equilibrium thermo-

dynamics experiments to study irreversibility features of quantum physics at the

microscopic level. Below we give an outline of the work together with its main

motivation and a brief account of the current literature.

1.1 Advanced control of Quantum Systems

Complex architectures of superconducting artificial atoms are subject to fabrica-

tion imperfection. Moreover, superconducting circuits are embedded in a solid

state environment that brings noise into the dynamics, both of Markovian[30]

and non-Markovian[43, 44, 45, 46] nature (see section 2.2). These issues demand

for control techniques that show some intrinsic robustness with respect to pa-

rameter fluctuations, such as, for example, adiabatic techniques. The latter have

been shown to display a remarkable resilience to parameter variability and control

pulses shaping[47], while, on the downside, being slow due to the very requirement

of adiabaticity of the dynamics. This implies a greater sensitivity with respect to

Markovian noise[48], although, as we shall see in chapter 5, remarkable efficiency

can be obtained in present technology.

For the greater part of this thesis, we are going to focus on three-level artificial

atoms (see Fig.1.1), in particular operated in the so called Lambda system, a way

to drive a three-level atom with two external fields. In a nutshell, the Lambda

scheme is more interesting than the other configurations of the drives (Ladder

and Vee schemes) since it involves both absorption and emission of photons.
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This property can be useful to achieve a number of tasks such as, among oth-

ers, non-classical radiation generation[49, 50] in the microwave domain, quantum

information transfer between distant, uncoupled nodes[51], holonomic quantum

computation[52]. As we shall see in sections 2.1.2 and 2.1.3, though, identifying

a Lambda system in superconducting artificial atoms poses a fundamental design

problem, that is the trade-off between strength of the pump coupling [see Fig.

1.1(a)] and protection against noise.

This trade-off is thoroughly studied in chapter 3, where we study the imple-

mentation of a commonplace quantum optic technique to transfer population from

state |0〉 to state |1〉 of a three-level atom known as Stimulated Raman Adiabatic

Passage (STIRAP). STIRAP relies on quantum interference and adiabaticity to

trap the system in a dark state that has no component along the excited state

|2〉 in spite of how the fields trigger transitions in the Lambda configuration.

STIRAP does so through the application of a Stokes and a pump field in a coun-

terintuitive sequence, i.e. the Stokes preceding the pump and has been shown to

have a remarkable resilience with respect to parametric fluctuations[53, 54, 47].

After reviewing STIRAP, in chapter 3 we study the application of STIRAP to the

quantronium, i.e. a class of superconducting artificial atoms based on the Cooper

Pair Box (see section 2.1.2). We study the transfer efficiency of STIRAP under

the effect of Broad Band Colored Noise (BBCN), responsible of both markovian

and non-markovian decoherence and address the optimization of STIRAP using

two different strategies, namely optimal symmetry breaking and dynamical decou-

pling. We show how a ∼ 70% efficiency can be obtained with the quantronium.

In chapter 4, we propose a novel technique for adiabatic population transfer

in three-level atoms. The main difference with respect to STIRAP is in the

knobs we used: while in STIRAP one is allowed to employ time modulation of

the amplitude of the external fields, our technique, which we nicknamed chirped

STIRAP or cSTIRAP, works on the constraint that of the fields is kept always-

on. The desired population transfer is then attained by properly modulating the

phases of the field, i.e. the detunings. The main motivation behind this idea is

given by circuit-QED architectures. In circuit-QED, in fact, artificial atoms are

coupled with resonator modes through capacitors with coupling constants that

are hard or impossible to make time-dependent. The always-on field is, therefore,

intended to mimic this coupling to achieve an effective interplay between the

artificial atom and the non-classical state of the resonator1 such as generation of

Fock states of radiation[49, 50] or of mechanical motion[55, 56]. We show how,

1This is detailed in Ref. [57].
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despite cSTIRAP relies on an approximate rather than exact dark state, it is

remarkably resilient to parameter fluctuations and allows almost unit efficiency.

In chapter 5, we study yet another way to overcome the large coupling vs

noise protection trade-off in the implementation of a Lambda system with arti-

ficial atoms. We propose how a Lambda system can be effectively implemented

by resorting to a two-photon pump. Although this particular kind of control

scheme produces, as we shall see, unwanted Stark shifts in the atomic spectrum,

this drawback can be easily overcome by introducing phase modulation, which is

doable in present day technology[58]. We simulate the 2+1 STIRAP protocol in

two kind of artificial atoms, namely a transmon and a flux qutrit, using param-

eters borrowed from the literature and show that nearly unit efficiency can be

attained in spite of both high and low frequency noise acting on the devices.

In chapter 6 we show how the Ultra Strong Coupling (USC) regime can be

probed by STIRAP. In the USC regime, see section 2.1.4, the ground state of

the resonator-artificial atom system has a two-photon component. Our proposal

is to coherently amplify such a component to generate a two-photon Fock state

in the cavity and it can be used to efficiently detect USC, as opposed to current

techniques based on the detection of the Bloch-Siegert shift[4]. This dynamical

technique will move one step beyond coherent control, besides complementing

standard saturation spectroscopy techniques aimed at the detection of the Bloch-

Siegert shift. We will discuss coherently amplified USC detection in state of the

art quantum hardware, proposing that it could be observed in flux-type super-

conducting artificial atoms driven in the Vee scheme.

1.2 Non-equilibrium Thermodynamics at the Quantum

Scale

Much effort has been put recently by the scientific community in the quest for

a deeper understanding of the laws of thermodynamics at the quantum scale.

Quantum thermodynamics is, in particular, characterized by the fact that is al-

lows both thermal and quantum fluctuations[59, 60]. A fundamental question yet

to be answered is how could irreversibility and the arrow of time arise from a

time-symmetric theory[61]. Answering this question would resolve long standing

puzzles as the thermalisation[62] of small systems. More importantly, understand-

ing thermodynamic theory at the fundamental level could pave the way towards

the design and construction of quantum heat engines[63].

A very important achievement has been the extension of seminal results of clas-
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sical stochastic thermodynamics[64] to the quantum realm. Specifically, quantum

versions fluctuation theorems[65, 66] have been derived allowing a description of

non-equilibrium thermodynamics beyond the linear response theory. Fluctuation

theorems relate non-equilibrium quantities such as work to equilibrium properties

of the working media, such as the free energy difference. Very important examples

are the Jarzynski equality, that relates the non-equilibrium average exponentiated

work to the free energy difference thereby entailing the second law of thermody-

namics for closed systems, and Crooks detailed fluctuation theorem. Central fluc-

tuation theorems have also been proposed for different quantum maps[67, 68, 69]

and the entropy production has been defined at the quantum level[70, 71].

In spite of tremendous theoretical effort, we currently have very few experiments[71].

This is because the verification of fluctuation theorems requires the use of projec-

tive measurements, that are experimentally demanding. In chapter 7 we study the

verification of fluctuation theorems for a continuously monitored superconducting

artificial atom. Continuously monitoring, as opposed to projective measurements,

is easier to implement in circuit-QED architecture. In particular, we show how

detailed fluctuation theorems can be verified and the entropy production, as a

witness of irreversibility, can be properly defined and measured. Interestingly,

we will show that along particular quantum trajectories it is possible to observe

negative values for the entropy production, the mean entropy production always

being non-negative as required by the second law.



Chapter 2

Superconducting Artificial

Atoms: Basic Concepts

In this chapter we will briefly describe the physics of superconducting artificial

atoms. Such devices are made of superconducting materials printed in solid state

chips making use of state of the art photo/electro-litographic technology[31, 32].

The name artificial atoms is due to the fact that they exhibit quantum properties

such as discrete, non-linear spectra in the microwave ∼ 1 ÷ 10GHz range and

coherence. The fact that superconducting artificial atoms can be engineered and

whose properties can be tuned both at project stage and on-chip via electromag-

netic signals, makes them very promising candidates for the exploitation of future

quantum technologies.

2.1 Superconducting circuits

A superconducting circuit can be modelled as an electrical circuit in the lumped

elements approximation. Assuming that, below the superconducting critical tem-

perature the resistance of the circuit is zero, its components will be reactive el-

ements, i.e. capacitors and inductors, and Josephson junctions. The Joseph-

son junction[72] is a superconductor-insulator-superconductor junction where the

thickness of the insulator layer is ∼ nm. Its voltage-current characteristic is given

by the Josephson equations. The current produced by the Cooper pairs tunnelling

through the junction is called Josephson current. If we call V the voltage across

the junction and I the Josephson current we have:

V (t) =
~

2e

∂φ(t)

∂t
; I(t) = Ic sinφ(t) (2.1)

7
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Where Ic is the critical current and φ(t) is the difference of the Ginzburg-Landau

wavefunction between the two superconducting leads of the junction. Defining

the magnetic flux of the junction as Φ(t) := Φ0 φ(t)/2π, Φ0 := h/2e being the

quantum of magnetic flux, we see that the Josephson junction has a current-

flux characteristic, that qualifies it as a non-linear inductor. The energy of the

Josephson junction can be written as:

UJ(t) =

∫ t

−∞
dt′ V (t)I(t) = EJ(1− cosφ(t)) (2.2)

Where we defined the Josephson energy EJ := ~/2eIc. Since the Josephson

junction is a metal-insulator-metal junction, every physical realization of the lat-

ter has a parallel parasitic capacitance.

2.1.1 Lagrangian formulation of circuit theory and canonical quan-

tization

A lumped-elements circuit can be formally described as a graph made of a set of

nodes and a set of branches, each branch containing a lumped reactive element.

The Lagrangian theory of electrical theories is conveniently expressed in terms of

node fluxes and charges.

Formally, the Lagrangian of the system is a function node fluxes and their

derivatives, i.e. L = L(Φ, Φ̇). In particular, as we detail in appendix A, it is

found to be the difference between the electrostatic energy stored in the capacitors

and the magnetic energy in the inductors. The variables canonically conjugate

to the nodes fluxes, i.e. the generalized momenta, are q := ∂/∂Φ̇ L(Φ, Φ̇). The

Hamiltonian of the circuit is found by Legendre transforming H(Φ, q) = Φ̇ · q −
L(Φ, Φ̇). The quantum Hamiltonian is found by replacing generalized coordinates

and momenta with their operatorial counterparts, i.e. Φ → Φ̂ and q → q̂, and

imposing the canonical conjugation relations [Φ̂i, q̂j ] = δij~i. Below we going to

describe two types of superconducting artificial atoms, namely the Cooper pair

box and the flux qudit. Their circuit schematics are shown in Fig.2.1 and 2.5.

From now on, unless otherwise specified, we will work in ~ units by imposing

~ = 1.
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Figure 2.1: Circuit schematics for the Cooper pair box. (a) Single and (b) double
junction architectures. Φ̃ here is the external magnetic flux applied to the SQUID
loop

2.1.2 The Cooper Pair Box

The Cooper pair box is a device composed by a superconducting loop broken by a

Josephson junction and a capacitance [see Fig.2.1(a)]. In most implementations,

the single junction is substituted by a parallel of two identical junctions with

Josephson energy EJ , i.e. a SQUID loop. The SQUID is equivalent to a single

tunable junction with Josephson energy EJ |eq = EJ cos Φ̃/Φ0 [see Fig. 2.1(b)]

and twice the capacitance of the single junctions. The two architectures of Fig.

2.1 can, therefore, be formally treated on the same footing and we will refer to

the single junction one for simplicity.

The superconducting region or island between the capacitance and the junction

was, in the early implementations of such devices, used to store single cooper

pairs whose presence or absence was encoded as a logical state. The circuit has a

single node in correspondence with the island, hence it’s Hamiltonian is given by

HCPB = 4EC(n̂− qg)
2 − EJ cos φ̂ (2.3)

where we used the number of Cooper pairs in the island n̂ := q̂/2e and the phase

difference across the junction φ̂ := 2eΦ̂. Moreover we defined the Charging energy

relative to the total capacitance EC := Ctotvg/2e, with Ctot := C + Cg and the

residual charge qg = Ctotvg/2e. The Cooper pair number operator has clearly a

discrete spectrum, hence we can define its eigenstates by n̂ :=
∑

k k |k〉 〈k|. The

canonical conjugation relation [φ̂, n̂] = i implies that[73] we can regard the phase

as a generator of translations in the number space, i.e. e−iφ̂ |n〉 = |n+ 1〉. Writing

the Hamiltonian in the discrete basis of the number operator yields

HCPB = 4EC

∑

n

(n− qg)
2 |n〉 〈n| − EJ

∑

n

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) (2.4)
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Written in this form, HCPB is easily tractable and amenable to numerical diago-

nalization.

Control of the device is attained through superimposition of a small AC signal

A(t) to the bias qg. In general, quantum control can be formalized as a coupling

to the external field through an electrical dipole-like operator Q of the system.

The general Hamiltonian for a driven artificial atom is therefore

H = H0 +Q A(t) (2.5)

where H0 is the bare Hamiltonian. By expanding Eq. 2.3 and dropping non

operator terms we get the expression for the driven Hamiltonian of the Cooper

pair box where Q = −8EC n̂.

The properties Hamiltonian of the Cooper pair box can be drastically changed

by tuning values of qg and the ratio EJ/EC . Semi-integer values of the residual

charge qg are particularly interesting. Since HCPB(qg) is periodic with period one,

we will only consider the [0, 1] interval. The particular choice qg = 0.5 is referred to

in the literature as symmetry point or sweet spot. At the symmetry point, a parity

symmetry to set in; in particular, HCPB(qg = 0.5) is symmetric with respect to

the charge-parity operator Pn =
∑

m |1−m〉 〈m|. This implies that eigenstates

|φn〉 of HCPB will have a definite parity symmetry Pn |φj〉 = (−1)j |φj〉. Since the

dipole-like operator Q has an odd symmetry with respect to Pn, it won’t couple

states with the same parity, i.e.

Qij := 〈φi|Q|φj〉 ∝ 1− (−1)i+j (2.6)

We plot the behaviour of Qij vs qg in Fig. 2.1.2 (a), where we definitely see

how Q02 vanishes at the sweet spot. This means that the transition between the

ground and the second excited state cannot be addressed, hence the impossibility

of designing a Lambda system at the symmetry point. We address this issue in

chapters 3 and 5.

If, on the one hand, biasing the CPB at the sweet spot limits available control,

on the other it enforces protection against charge noise. Fig. 2.1.2 (b) shows the

spectrum of the CPB against qg. It is seen that the sweet spot is a stationary point

for the energy levels. This, in turn, means that variations in energy due to small,

unwanted fluctuations δqg of qg caused by charge noise only add quadratically in

δqg. This is why charge noise, the dominant source of noise in the CPB[32, 48],

is suppressed at the sweet spot. We are going to address this point in greater

details in chapter 3.
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Figure 2.2: Behaviour of the CPB vs qg. Simulations have been carried out by
cutting the number of charge states to nmax = 100. (a) Couplings Q01 (blue),
Q12 (orange) and Q02 (green) vs qg in units of Q evaluated at the sweet spot. (b)
Spectrum of the device emphasizing the parity symmetry at the sweet spot.
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Figure 2.3: (a) Bohr frequencies ω01 (black), ω12 (red) and ω23 (green) of the
CPB vs EJ/EC . (b) Spectrum of the transmon (EJ/EC = 50) emphasizing the
harmonicity of the device.
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The ratio EJ/EC can be tuned, up to a certain limit, electromagnetically

by applying an electromagnetic field to the SQUID loop of Fig. 2.1(b). This

enables, for example, tasks such as time-dependent modulation of detunings (see

chapters 4, 5, 7) between the artificial atom and external fields. More importantly,

hardware engineering of the the EJ/EC has led, over the year, to drastically

different implementations of the CPB ranging from the charge qubit (EJ/EC �
1), where the first eigenstates of the Hamiltonian are almost parallel with charge

eigenstates, to the quantronium (EJ/EC ∼ 1) and the transmon (EJ/EC � 1).

The reduction of the charging energy in the transmon is achieved by using a big

shunt capacitor Cg[74]. This has two main effects: on the one hand, charge noise

is drastically reduced by reducing EC ; on the other hand reducing the ratio of

the kinetic (∼ EC) to the potential (∼ EJ) has the unwanted effect of reducing

the anharmonicity of the spectrum of the CPB. This can be seen by an analogy.

A particle moving with a small kinetic energy in a cosine shaped potential will

"see" value of the potential only in the proximity of a minimum, where the cosine

potential is quasi-harmonic. In Fig. 2.1.2 (a) we plot the spectrum of the CPB vs

EJ/EC . In particular, defining εj as the j-th eigenenergy, we plot the splittings

ω01, ω12, ω13 (see caption) , where we defined the Bohr frequencies ωij := εj − εi.

In fig. 2.1.2 the spectrum of a transmon with EJ/EC = 50 is plotted is vs qg.

As a consequence of the quasi-harmonicity of the spectrum, selectively ad-

dressing specific transition in the transmon is tricky and can be done only if the

coupling with the control field is small enough[74]. A consequence of this is that

gate times in the transmon are usually longer than in the charge or the flux qubit.

We will see a consequence of this in chapter 5. On the other hand, though, re-

duction of the charging energy dramatically reduces the detrimental influence of

charge noise, making the transmon a much more reliable quantum device and one

of the most promising candidates for future large scales quantum computers[3, 75]

implementing fault tolerant hardware by quantum error correction[40, 42]. De-

coherence times in state of the art transmons are ∼ 100µs[3], incommensurably

bigger than the values earliest implementations of the CPB (∼ 100ns). Since the

transmon effectively approximates an harmonic oscillator with increasing EJ/EC

values, as well dipole operator Q ∝ n will approximate the momentum quadrature

at large EJ/EC . In turn this means that Q will become more and more close to a

ladder-climbing operator, with non ladder matrix elements such as Q02 vanishing

as EJ/EC increases. We show this behavior in Fig. 2.1.2.
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Figure 2.5: Circuit schematics for the persistent current flux qubit. (a) Three
junctions architecture and (b) four junctions architecture.

2.1.3 The Flux qubit

Schematics of the flux qudit are shown in fig. 2.5. We will in particular refer to the

so called persistent current flux qubit, introduced in Refs.[76, 77]. It is made of a

loop of either three [Fig. 2.5 (a)] or four [Fig. 2.5] Josephson junctions[2, 78], one

of which is smaller than the others by a factor α. Although this implementation

was originally introduced in the three junctions version, we will from now on refer

to the four junctions loop since it has proved to be much more resilient with

respect to low-frequency noise[2].

The Hamiltonian of the device can be written in terms of the node variables

as outlined at the beginning of the section, but we prefer here to pass to the

branch variables [See Fig. 2.5(b)] via a canonical transformation that yields the
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sweet spot. (b) Spectrum of the device emphasizing the parity symmetry at the
sweet spot.

Hamiltonian

HF =− EJ

3
∑

j

cos ϕ̂j − αEJ cos
{

3
∑

j

ϕ̂j − 2π[f +A(t)]
}

+

4
EC

1 + 3α

[

(1 + 2α)

3
∑

j

n̂2i − 2α

3
∑

i 6=j

n̂in̂j
]

(2.7)

where the charging energy is given by EC := e2/2C and we used the reduced

flux f := Φb/Φ0 [see Fig. 2.5(b)]. Control is performed by superimposing to

the external flux bias f an AC signal A(t). By first order expansion of Eq.

(2.7) we see that the dipole-like operator for the flux qubit [see Eq.(2.5)] is Q =

2παEJ sin
(
∑3

j ϕ̂j−2πf) = 2πEJ Î/Ic, where we defined the loop current operator

Î.

In analogy with the CPB case, the flux qubit has a sweet spot at f = 0.5. At

the sweet spot, the system enjoys a symmetry with respect to the parity operator

Pϕ : Pϕ |ϕ〉 = |−ϕ〉, where we defined the vector ϕ := (ϕ1, ϕ2, ϕ3). As a

consequence, eigenfunctions |n〉 of H0 can be chosen with a definite symmetry,

i.e. ψn(−ϕ) = (−1)nψn(ϕ), where n labels eigenenergies in increasing order,

implying the selection rule Eq. (2.6) for the odd-parity coupling operator Q [see

Fig. 2.1.3(a)].

Biasing the device at the sweet spot also implies enforcing protection with

respect to fluctuations of the magnetic flux. Since flux noise is the dominant

source of noise, flux qudits are usually biased at the symmetry point.
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Figure 2.7: Circuit QED architecture. (a) Cartoon of a 1D Circuit-QED printed
circuit. The stripline resonator is coupled capacitively to che Cooper Pair Box.
(b) Circuit scheme of the Circuit-QED scheme. The resonator is modelled as a
transmission line of capacitance and inductance per unit length c and l respec-
tively. The CPB is usually placed in the middle (x = L/2), where the mode k = 2
has an antinode.

2.1.4 Circuit QED: control and measurement

Circuit Quantum Electrodynamics (Circuit-QED) was introduced in Ref. [30] as a

scalable architecture for quantum computation involving superconducting qubits

(especially of the CPB family) and microwave transmission line [see Fig. 2.7(a)]

or a 3D cavity. The latter has the function of enabling control, quantum non-

demolition measurement and to serve as a quantum bus for effectively couple[79]

and entangle[80, 51, 81] multiple qubits.

The quantum Hamiltonian of the transmission line is derived below, where we

will see how it can be treated as a collection of harmonic modes. We assume the

architecture is effectively 1D (see Fig. 2.7) and has length L and neglect, for the

time being, the presence of the CPB. Calling c the unit length capacitance and

l the unit length inductance [Fig. 2.7(b)] and using the methods of appendix A,

we write the classical Lagrangian of the system in term of the magnetic flux field

φ(x, t) as

LR(φ, ∂µφ) =
1

2

∫ L
2

−L
2

dx

[

c(φ̇2)− 1

l
(
∂

∂x
φ)2

]

(2.8)

whose Euler-Lagrange equation is a wave equation with velocity v =
√

1/lc. Due
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to charge neutrality[30], the boundary conditions will be φ(−L/2, t) = φ(L/2, t).

We can then write a solution in the form

φ(x, t) =
√
2
∑

k odd

φk(t) cos

(

kπx

L

)

+
√
2

∑

k even

φk(t) sin

(

kπx

L

)

(2.9)

substituting which in Eq. (2.8) gives

LR =
1

2
L
∑

k

[

c (φ̇k)
2 − 1

l

(

φk
πk

L

)2
]

(2.10)

By introducing the variable canonically conjugated to φk as qk = c L/2 φ̇k we

may write the Hamiltonian of the resonator as

HR =
1

2Ceq

∑

q2k +
1

2Leq

∑

k

(πk)2 φ2k (2.11)

where we defined the equivalent inductance Leq := l L and capacitance Ceq := c L.

The quantum Hamiltonian is found by substituting the canonically conjugated

variables with quantum operators satisfying the canonical commutation relations

[φ̂k, q̂k′ ] = iδkk′ , [φ̂k, φ̂k′ ] = [q̂k, q̂k′ ] = 0. By defining the bosonic operators1

ak :=

√

πkl

2~c

(

φ̂k + i
c

πkl
q̂k

)

(2.12)

and writing the canonically conjugated operators as φ̂k =
√

c
2πkl (ak + a†k) and

q̂k = −i
√

c
2πkl (ak − a†k) we can write the Hamiltonian as a collection of harmonic

modes, i.e.

HR =
∑

k

ωk

(

a†kak +
1

2

)

(2.13)

where the mode frequencies are ωk := kπv/L. Voltage in the resonator can be

written as

V (x) := v
∂φ(x)

∂x
=

= −
∑

k odd

√

ωk

Ceq
cos

(

kπx

L

)

(ak + a†k) +

+
∑

k even

√

ωk

Ceq
sin

(

kπx

L

)

(ak + a†k)

(2.14)

1Notice that here and from now on, when dealing with operators, we will drop the hat symbol
whenever we think it does not generate confusion.
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In the Circuit-QED implementation, voltage couples to the cooper pair box

through the gate capacitance Cg as described in section 2.1.2. The Bias parameter

qg can be set by superimposing a DC voltage. The superconducting artificial atom

and the resonator are designed in such a way that only one mode of the resonator

couples with the relevant transition frequencies of the artificial atom. One usually

[30] chooses the k = 2 mode and, in order to maximize the coupling, the artificial

atom is usually built at the center of the resonator (x = L/2), where the voltage

has an antinode V (0) = Vrms(a + a†), where we defined Vrms :=
√

~ωc

Ceq
, a := a2

and ωc := ω2. Performing the single mode approximation, the Hamiltonian for

the undriven circuit QED system reads

H = HR +HCPB +HInt (2.15)

where the interaction Hamiltonian is given by

HInt := Vrms(a+ a†) (2.16)

We will now assume that the cavity mode is only coupled to the 0 → 1

transition of the artificial atom, i.e. the cavity frequency is ωc ' ω01. At the

sweet spot qg = 0.5, the dipole operator can be then approximated as Q =

Q01 |φ0〉 〈φ1| + h.c., where we used the eigenstates |φk〉 of the CPB labelled in

ascending order with respect to their energy.

HInt = g (a+ a†) (σ+ + σ−) (2.17)

where we used the atomic ladder operators σ+ = |φ1〉 〈φ0| and σ− := σ†+, and the

coupling constant g := Q01Vrms. We will also assume that the resonator is driven

by an external single tone AC field at frequency ω ∼ ωc, ω01, that can be written

as a displacement term as follows

H = HR +HCPB +HInt + ε(t) (eiωta† + e−iωta) (2.18)

where we performed the Rotating Wave Approximation (RWA) by dropping the

counterrotating terms of the external field[82] and defined the external field am-

plitude ε(t). We notice that, given the linearity of the Hamiltonian, extensions

to cases with multi-tone external fields (as in the case of the Stimulated Raman

Adiabatic Passage, see section 3.2) and/or with the resonator mode coupled to

more than one transition are straightforward, but we won’t account for them for
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simplicity.

Real world resonators are imperfect and leak photons through input and out-

put ports at rate κ. The circuit QED is said to be in the strong coupling regime

whenever g � κ, which means that we can find time scales in which quantum

effects dominate the dynamics. Below we will outline important properties of the

Circuit-QED architecture. In particular, we will consider the interaction between

microwave photons and the artificial atom as the external field is turned off, re-

sulting either in the Jaynes Cummings model for small values of g or in the Ultra

Strong coupling regime in the presence of a large g. We will then consider the case

of a driven cavity and see how tuning the external field to match the resonator

frequency ωc leads to an efficient, quantum non-demolition measurement scheme

for the artificial atom, while matching it to the atomic Bohr frequency ω0 := ω01

effectively leads to quantum control of the atomic state in the qubit subspace

span{|φ0〉 , |φ1〉}.

Atom-Photon interaction in Circuit QED

When ε(t) = 0, the only states involved in the dynamics of the systems are those

in the qubit space of the atomic Hilbert space. By defining the Pauli matrices

σz := |φ0〉 〈φ0| − |φ1〉 〈φ1| and σx := |φ0〉 〈φ1| + |φ1〉 〈φ0|, the Hamiltonian of the

Circuit-QED system can be rewritten as:

H = ωca
†a+

1

2
ω0σz + g(a+ a†)σx (2.19)

which is known as the Rabi Hamiltonian. It is insightful to look at the rotating

frame Hamiltonian defined by Hrf = UrfHU
†
rf − iU̇rfU

†
rf , where the unitary

operator Urf := e−iωc(a†a+1/2σz)t has been defined. Its expression is

Hrf =
1

2
∆σz + g(aσ+ + a†σ−) + g(aσ+e−2iωct + aσ−e2iωct) (2.20)

where we used the atom - resonator detuning ∆ := ω0 −ωc. The last term of Eq.

2.20 has components oscillating with frequencies ±2ωc, i.e. counterrotating terms.

Neglecting them amounts to perform the RWA with respect to the resonator field.

This is possible in the regime |∆|, |g| � ωc, ω0. Applying the RWA and going back

to the laboratory frame we get the Jaynes and Cummings (JC) Hamiltonian

H = ωca
†a+

1

2
ω01σz + g(aσ+ + a†σ−) (2.21)
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In order to point out some important properties of the JC model, we define as

|n〉 the eigenstates of the resonator mode with n excitations and decompose the

resonator operators as a =
∑

n

√
n |n− 1〉 〈n|. In the eigenbasis of the uncoupled

atom and resonator, the JC Hamiltonian in the laboratory frame can thus be

written as

H =
∞
∑

n=0

(n+ 1)ωc(|φ0, n+ 1〉 〈φ0, n+ 1|+ |φ1, n〉 〈φ1, n|)

+
∆

2
(|φ0, n+ 1〉 〈φ0, n+ 1| − |φ1, n〉 〈φ1, n|)

+g
√
n+ 1(|φ0, n+ 1〉 〈φ1, n|+ |φ1, n〉 〈φ0, n+ 1|) =

∑

n

ΠnHΠn

(2.22)

Where we defined the projectors

Π0 := |φ0, 0〉 〈φ0, 0| , Πn := |φ0, n〉 〈φ0, n|+ |φ1, n− 1〉 〈φ1, n− 1| , n > 0 (2.23)

that project, respectively, the Hamiltonian onto the ground state |φ0, 0〉 and onto

the subspaces span{|φ0, n〉 , |φ1, n− 1〉} of n > 0 total excitations, i.e. the sum of

both atomic and photonic excitations. The Jaynes and Cummings Hamiltonian is

block diagonal with respect to such subspaces, thus conserving the total number

of excitations. Eigenvalues of the JC model are easily computed as

E0 = 0; E±n = nωc +
∆±

√

ng2 +∆

2
, n > 0 (2.24)

In Circuit-QED the dispersive regime |∆/g| � 1 is particularly interesting. In

this regime it can be shown[30], e.g. by applying Average Hamiltonian Theory (see

appendix B), that the Jaynes and Cummings Hamiltonian can be approximated

as

H = ωca
†a+ ω0σz + χa†aσz (2.25)

where χ := g2/∆. We notice that the last term can be read as a shift on the

frequency of the resonator conditional on the qubit state. This is, as we shall see

later in this section, the mechanism used to measure the qubit state.

The Ultra Strong Coupling Regime

The RWA does not hold any more as g approaches the cavity frequency ωc. In

this last case, the full Rabi Hamiltonian of Eq.(2.19) and the regime ωc ∼ g

is called Ultra Strong Coupling (USC) regime. The full Rabi Hamiltonian does
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Figure 2.8: Spectrum of the Cavity-Atom system vs the coupling constant g.

not conserve the number of excitations, but only their parity. An important

consequence is that the ground state of the system acquires a component on the

n = 2 excitation manifold. In the resonant regime (∆ = 0), up to the second

order in g/ωc, the ground state |φ〉0 and its energy become

|Φ0〉 = |0, g〉 − 2gωc

4ωc − 2g2
|1, e〉+ g2

4ωc − 2g2
|2, g〉 ;E0 = − g2ωc

2ω2
c − g2

(2.26)

Above, E0 is the Bloch-Siegert shift, a distinctive feature of RWA breaking and

USC. In Fig.2.1.4 we plot the spectrum of the Circuit-QED system vs the coupling

constant g. We see how dropping the RWA has a dramatic effect in the spectrum.

The linear behaviour of the spectrum for increasing g is, in fact, broken by the

appearance of the Bloch-Siegert shift. We will to consider an application to USC

in chapter 6.

Control in circuit QED

We are now going to address how control of the state of the artificial atom can be

addressed in the dispersive regime of the Circuit-QED implementation. We will

consider a two-level atom coupled to a mode of a resonator driven at a frequency

ω ' ω0. Extension to a multi-level atom driven by a multi-tone field is then

straightforward due to linearity. We will thus consider the JC Hamiltonian of

Eq.2.21 and supplement it with driving, i.e.

H = ωca
†a+

1

2
ω0σz + g(aσ+ + a†σ−) + ε(t)(a†e−iωt + aeiωt) (2.27)
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To see how this Hamiltonian effectively implements σx control for the atom, we

apply the unitary transformation U = e
g
∆
(aσ+−a†σ−) and retain terms up to order

1 in g/∆ to get[30], in the rotating frame defined by Urf ,

Hrf ' 1

2

{

ω0 +

[

2χ

(

a†a+
1

2

)]

− ω

}

σz +
Ω(t)

2
σx +∆ra

†a+ ε(a+ a†) (2.28)

where we defined the Rabi frequency Ω(t) := 2gε(t)/∆ and the external field -

resonator detuning ∆r := (ωc − ω). For |ε/∆r| � 1 the quantum field in the res-

onator is effectively decoupled from the dynamics. We can therefore assume that

the resonator will lay in a zero photon state and derive the following Hamiltonian

for the atom alone

H =
δ

2
σz +

Ω(t)

2
σx (2.29)

with the external field - atom detuning defined as δ := ω0 − ω. We have shown

how control along σx and σz can be achieved2. Control in the σy direction can be

achieved by controlling the phase of ε, here assumed real for simplicity.

Measurement in Circuit-QED

We are now going to outline the measurement technique most widely used in

Circuit-QED. It is attained by pumping the resonator with a field at frequency

ω ' ωc. Such a field has the effect of injecting into the resonator photons that get

entangled with the artificial atom. Therefore, the field leaking from the resonator

at rate κ will carry information about the artificial atom state. Measuring such

leaking field can be easily done, for example through the homodyne scheme.

In a rotating frame defined by Urf = e−iωâ
†ât the Hamiltonian of the system

is

Hrf = ω0 σz +∆râ
†â+ εd(t)(â+ â†) + χâ†âσz (2.30)

where we used the dispersive approximation of Eq. 2.25. Including the effect of

cavity damping, the dynamics of the density matrix of the Circuit-QED system

ρ(t) is described by the master equation

ρ̇(t) = −i[Hrf , ρ(t)] + κD[a]ρ(t) (2.31)

where κ is the cavity photon loss rate and the dissipator superoperator has the

2Control along σz can be made time-dependent either via modulating the Bohr frequency of
the device by changing the EJ/EC ratio through the application of an external magnetic field,
or via chirping of the external field
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standard form

D[Â]B̂ = ÂB̂Â† − 1

2
{Â†Â, B̂} (2.32)

The solution to Eq. (2.31), provided a coherent state[82] of the resonator, e.g.

the ground state, has been prepared at time t = 0, has form

ρ(t) =
∑

i,j∈{0,1}
(cij(t) |φi〉 〈φj | ⊗ |αi(t)〉 〈αj(t)|) (2.33)

where |αk〉 are coherent states for the field, that is eigenstates of the annihilation

operator such that a |αk〉 = αk |αk〉. The equations of motion for the amplitudes

cij and αk are given by

cii(t) = cii(0)

cij(t) = cij(0)
e−i2χ

∫ t

0 ds αi(s)α
∗
j (s)

〈αj(t)〉αi(t)
, i 6= j

α̇0(t) = −iε(t)− [i(∆r + χ) + κ]α0(t)

α̇1(t) = −iε(t)− [i(∆r − χ) + κ]α1(t)

(2.34)

Tracing over qubit degrees of freedom, we are left with the field state ρf =

c00(0) |α0(t)〉 〈α0(t)| + c11(0) |α1(t)〉 〈α1(t)|. Information on the qubit state is,

therefore, translated into the resonator degrees of freedom. The distinguishabil-

ity of α0 and α1 gives the strength of the measurement[83]. The steady state

value of the two amplitudes, assuming constant ε, is

αj(t� κ−1) = −i ε

i(∆r + (−1)jχ) + κ
(2.35)

Assuming, now, ∆r = 0 and κ� χ we have

Im{α0} = Im{α1} = − ε

κ

Re{α0} = −Re{α1} = −χε
κ2

(2.36)

Meaning that, in this case, information on the qubit is encoded in the in-phase

quadrature, thereby continuous homodyne measurement of X := (â + â†)/
√
2 is

insightful. In Fig.2.1.4 we graphically show the conditional phase shift of the field

quadratures in the phase space. In section 2.2.1 we will extend the measurement

theory in Circuit-QED to account for continuous measurement and quantum tra-

jectories.
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conditions, these latter can be thought to affect only the system Hamiltonian

H. The full noisy dynamics is obtained by averaging over the classical stochastic

processes, i.e.

ρ(t) =

∫

Dx̃(t)P [x̃(t)] ρ(t|x̃) (2.38)

An important simplification comes from the fact that low-frequency noise has

a ∼ 1/fα behavior. This means that, given a protocol of duration T , most

often the relevant part of its power spectrum will contain frequencies � 1/T .

As a consequence, the effects of low-frequency noise can be seen as quasistatic

fluctuations of the energy levels ∆εi and of the dipole matrix elements ∆Qij of the

device. The path integral Eq.(2.38) can therefore be evaluated in the Static Path

Approximation(SPA) [45, 43], reducing to an ordinary integration over random

variables x̃, that is

ρ(t) =

∫

dx̃ P [x̃] ρ(t|x̃) (2.39)

where P (x̃) is the multivariate probability distribution of the noise parameters x̃.

As a consequence of the central limit theorem, this latter is moreover a normal

distribution if we assume that they are due to many uncorrelated microscopic

sources. This means that the covariance matrix, or equivalently the variances of

the x̃i and their correlations, uniquely identify their full statistics. Such quantities

can be easily extracted by experiments by measuring the non-secular dephasing

(see section 5.A).

2.2.1 Quantum trajectory theory for continuously monitored ar-

tificial atoms

Our goal is now to describe the conditional evolution of the Circuit-QED system

when the field leaking out of the cavity is continuously measured. For the sake

of simplicity, we will only consider a two-level artificial atom, i.e. a qubit. If we

neglect decoherence for the qubit, which, as it will be argued in chapter 7, can be

done with present technology implementations, the total dynamics of the system

is described by the Master Equation

ρ̇(t) = −i[H, ρ(t)] + κD[a]ρ(t) (2.40)

where the Hamiltonian H is in general driven by both a control field at frequency

ω ' ω0 and a measurement field at frequency ωd = ωc. In the dispersive approx-
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imation, such Hamiltonian is given by

H = ω0 σz + ωcâ
†â+ χâ†âσz +

Ω(t)

2
(σ−eiωt + σ+e−iωt)

+ εd(t)(âe
iωdt + â†e−iωdt)

(2.41)

In Eq.(2.40) we also used the photon leak rate κ and the dissipator D given in

Eq. (2.32).

We can think of Eq.(2.40) as the dynamical equation that describes the evolu-

tion of the compound qubit and cavity system when we average over all possible

quantum trajectories [87]. A quantum trajectory is the stochastic evolution of a

system coupled to an environment in which quantum measurements are performed

on the environment. The observer can, in this way, keep track of the information

leaking from the system into the environment. Since, in quantum mechanics, the

measurements process is stochastic in nature and inevitably brings back-action

into the system, averaging over quantum trajectories will lead to an evolution

that is different from the closed, unitary one. This is in striking contrast with

classical physics. Dissipation in the Master Equation (2.40), hence decoherence,

can be explained in this framework as unread measurements performed on the

environment. In the Circuit-QED scenario, the if we were able to continuously

measure the field leaking from the cavity, we could single out individual quantum

trajectories.

Different measurements strategies lead to different quantum trajectories. In

turn, the choice a particular measurement protocol leads to a different unravelling

choice for the Master Equation (2.40). An unravelling choice is described by a

stochastic Master Equation that generally preserves the purity of the state and

is dependent on a stochastic process reflecting the non deterministic nature of

quantum measurement. Averaging with respect to such a process gives again the

unconditional evolution described by Eq. (2.40).

In Circuit-QED, it is possible to observe single quantum trajectories of an

artificial atom through homodyne measurement of the resonator field. Quantum

trajectory theory of homodyne measurements has first been described by Wiseman

and Millburnin Ref. [88], and it has been extended to circuit-QED by Gambetta

et al. [89]. In the homodyne scheme, illustrated in Fig.2.10, the leaking field

is mixed with a strong local oscillator through a beam splitter. The field of

the Local oscillator can be thought as a classical coherent state of amplitude

γ/
√
1− η, where η is the transmittance coefficient of the beam splitter. In the
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of quantum trajectories of artificial atoms. In the homodyne scheme, the number

of photons at the output port of the beam splitter is continuously observed. We

can think of this process as a continuous projective[90] measurement of the output

photon number no. It is more convenient, though, to work with the output pho-

tocurrent Ih(t) instead, defined as the number of output photons per unit time,

given by[87]

Ih(t) =
√
k〈X0〉+ ξ (2.47)

To the leading order in dt, the infinitesimal, conditional evolution of the density

operator can then be written as

ρ(t+ dt) =
LIh(1 − iH)ρ(t)(1 + iH)L†Ih

Tr[LIh(1 − iH)ρ(t)(1 + iH)L†Ih ]
(2.48)

where we introduced the measurement operators LIh := [1−1/2κa†a+κIh(t)dt]po(I),

with po(Ih) :=
√

dt/2π exp[−1/2dtIh
2] being the ostensible[87] probability den-

sity for Ih. In Eq. 2.48) unitary evolution and evolution due to measurement in

the infinitesimal time interval dt are factorized. The process can be interpreted

as follows. At time t the system is in the state ρ(t). It is then infinitesimally

evolved through the time evolution operator U(t) ' 1− iH(t). The sample Ih(t)

is obtained from the measurement - assumed instantaneous - of the output pho-

tocurrent. The action of the POVM operators LI reflects quantum back-action,

i.e. it relates to the disturbance that quantum measurements inevitably induce

onto a quantum system.

The probability of sampling the photocurrent Ih(t) at time t given the state

ρ(t) is given by.

p(Ih(t)|ρ(t)) = Tr[LIh(1 − iH)ρ(t)(1 + iH)L†I ] (2.49)

Now, the ostensible standard deviation of Ih is dt−1/2. We make the Ansatz that

it will also be the standard deviation of the actual distribution and, following Ref.

[87], define a quantity S := Ih
√
dt ∼ 1. Therefore we have

p(S) =

√

1

2π
exp(−S2/2)[1 + S〈X0〉

√
dt+O(dt)] (2.50)

That, up to the leading order, is equivalent to

p(Ih) = po(Ih − 〈X0〉) (2.51)
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Eqs. (2.48) and (2.51) completely define the quantum trajectory theory for con-

tinuous homodyne measurements. Discarding measurement results Ih(t) is equiv-

alent to averaging over every possible result for J , performing which gives

ρ̄(t+ dt) :=

∫

dJLJρ(t)L
†
J = ρ(t)− i[Ĥ, ρ(t)]dt+D[ĉ]ρ(t)dt (2.52)

which is, as expected, identical to the unconditional Master Equation (2.31).

Quantum trajectory theory for the qubit alone

The conditional dynamics of the qubit alone when the latter is subject to con-

tinuous homodyne measurements can be found by tracing over the field degrees

of freedom. Since, in general, the qubit and the resonator get entangled, their

reduced states are not pure. Under certain conditions, though, the entanglement

is negligible and the conditional dynamics of the qubit alone can be considered.

This has been sudied in Ref. [89], where a Stochastic Master Equation (SME)

for the qubit alone was found. The conditions to be met in order to neglect the

entanglement between resonator and qubit are χ � κ, Ω � κ and n̄ � 1, where

n̄ ' |α0|2 ' |α1|2 ' |ε/κ|2 is the mean number of photons in the cavity[83]. We

shall recast the SME of Ref. [89] in the form of Bloch equations in the basis of the

bare qubit Hamiltonian H0 := 1/2 ω0σz. In the present section, in order to sim-

plify the notation, we shall refer to the qubit’s state as ρ and to its Hamiltonian

as H. In the rotating frame, the driven Hamiltonian for the qubit is therefore

H = 1/2 δσz + Ω(t)σx and the Bloch equations read:

ρ̇00(t) = −ρ̇11(t) = −2H01Im{ρ01}
+ 2

√

Γdρ00ρ11(Ih −
√

Γd〈σz〉)
ρ̇01 = ρ̇∗01 = iH00ρ01 + iH01(ρ00− ρ11)

−
√

Γd(ρ00 − ρ11)(Ih −
√

Γd〈σz〉)−
Γd

2
ρ01

(2.53)

With such a choice for the phase of the local oscillator, the full-spectrum homo-

dyne current can be written as Ih =
√
Γd〈σz〉+ ξ(t).

We are going to use this result in section 7.A, where we will derive the model

we employed to produce results and simulations of chapter 7.



Chapter 3

Design of a Lambda system in

superconducting artificial atoms

The implementation of a three-level Lambda System in artificial atoms would al-

low to perform advanced control tasks typical of quantum optics in the solid state

realm, with photons in the µm/mm range. However, hardware constraints put

an obstacle since protection from decoherence is often conflicting with efficient

coupling to external fields. We address the problem of performing conventional

STImulated Raman Adiabatic Passage (STIRAP) in the presence of low-frequency

noise. We propose two strategies to defeat decoherence, based on “optimal sym-

metry breaking” and dynamical decoupling. We suggest how to apply to the

different implementations of superconducting artificial atoms, stressing the key

role of non-Markovianity.1

3.1 Introduction

In recent years several experiments have demonstrated multilevel coherence in su-

perconducting artificial atoms, as the observation of the Autler-Townes (AT) [92,

93] effect, of electromagnetically induced transparency (EIT) [94], besides evi-

dences of three-state superpositions [95] and coherent population trapping (CPT) [96].

Further exploiting coherence in such systems would be important in principle and

moreover allow important applications in solid-state quantum integrated coher-

ent architectures. So far all the experiments in these systems (except the one

1The content of this chapter is adjusted, with minor modifications, from P.G. Di Stefano, E.
Paladino, A. D’Arrigo, B. Spagnolo and G. Falci, Design of a Lambda configuration in artificial
coherent nanostructures, Rom. Jour. Phys. 60:676-685, 2015.

29
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of Ref. [96]) have been performed driving by ac-fields in ladder configuration

[see Fig. 3.1(a)]. In this chapter we address the design of a Lambda configuration

in three-level artificial atoms which would allow to implement tasks [97, 49, 56]

where two-photon absorption and emission are invoved at once. In spite of several

theoretical proposals [98, 80, 99, 48, 100], this goal is still experimentally unset-

tled, mainly because protection from low-frequency noise requires to enforce exact

or approximate symmetries of the Hamiltonian, which on the other hand imply

selection rules cancelling the pump coupling [98, 56, 48] [see Fig. 3.1(a)].

Our second goal of is to elucidate the central role of non-Markovian noise in

producing three-level decoherence for the class of phenomena based on CPT. We

focus on a protocol called STIRAP [47, 101], described in Sec. 3.2, which in-

volves several basic coherent effects and allows striking applications in integrated

atom-cavity systems. Therefore its demonstration would be a benchmark for mul-

tilevel advanced control in artificial atoms. In Sec. 3.3 we introduce an effective

model for noise and argue that dephasing in the “trapped subspace” span{|0〉 , |1〉}
(see Fig. 3.1a) plays the major role. We show that implementation of STIRAP

in Lambda configuration is possible within present technology. In Sec. 3.4 we

propose two strategies to defeat dephasing, namely the search for optimal sym-

metry breaking conditions, and selective dynamical decoupling of noise sources

achieved by operating on a specific external control. Both strategies leverage

on the fact that dephasing in the solid state is due to broad band colored noise

(BBCN), which is inherently non-Markovian. As a consequence BBCN impacts

on dephasing in a way specific of correlations of the induced fluctuations of the

device bandstructure. Finally in Sec.6.5 we conclude and discuss some further

perspective.

3.2 Coherent population transfer in three-level atoms

STIRAP is an advanced control technique for M > 2-level systems, allowing

complete population transfer between two states |0〉 and |1〉, even in absence of a

direct coupling, via one or more intermediate states which are never populated.

In three-level systems the indirect linkage is provided by the typical configurations

of two ac-fields shown in Fig. 3.1(a). The pump field at ωp ≈ |E2 − E0|, where

Ei is the energy of state |i〉, triggers transitions |0〉 ↔ |2〉 whereas the Stokes,

ωs ≈ |E2 − E1|, triggers |1〉 ↔ |2〉 ones. The standard Hamiltonian in the rotat-

ing wave approximation (RWA) in a rotating frame referred to the “bare” basis



3.2. COHERENT POPULATION TRANSFER IN 3-LEVEL ATOMS 31

sδpδ

0
1

0
1

2

2

1

0

2

Lambda

Vee

δ

sδ

spδ

pδ

Ladder

(a)

StokesPump

-100 -50 50 100

Ω0t

0.2

0.4

0.6

0.8

1.0

Ωs
Ωp

(b)

-100 -50 50 100

Ω0t

0.2

0.4

0.6

0.8

1.0
P0 P1

P2

(c)

Figure 3.1: (a) Three-level system driven with AC fields in Λ configuration (in
the insets the Ladder and the Vee configurations). (b) Gaussian pulses in the
counterintuitive sequence (here Ω0T = 20, τ = 0.6T ). (c) Population histories
Pi(t) = |〈i|ψ(t)〉|2 for ideal STIRAP (δ = 0) and for δp = −0.2Ω0, κ = 1.

{|0〉 , |1〉 , |2〉} is given by the matrix

H =







0 0 1
2Ω
∗
p(t)

0 δ(t) 1
2Ω
∗
s(t)

1
2Ωp(t)

1
2Ωs(t) δp(t)






(3.1)

where the Rabi frequencies Ωk(t) for k = p, s are related to the amplitudes of the

pump and Stokes fields, δk are the single-photon detunings and δ = δp − δs is the

two-photon detuning. We will mostly refer to the Lambda configurations where

δp(t) := E2 − E0 − ωp and δs(t) := E2 − E1 − ωs. At two-photon resonance, δ =

0, the Hamiltonian (3.1) has an instantaneous eigenvector with null eigenvalue,

ε0 = 0, given by

|D〉 = Ωs |0〉 − Ωp |1〉
√

Ω2
s +Ω2

p

(3.2)

which is called the “dark state” since state |2〉 is not populated, despite of the

transitions triggered by the fields. In ideal STIRAP (δ = 0), adiabatic pulses

Ωk(t) are shined in the counterintuitive sequence, i.e. the Stokes preceding the

pump as in Fig. 3.1(b). We will make use of Gaussian pulses

Ωp = κpΩ0 e
−[(t+τ)/T ]2 Ωs = κsΩ0 e

−[(t−τ)/T ]2 (3.3)

with τ ∼ T . Here Ω0 is a frequency scale and κk ∼ 1 are constants which will be

taken equal to 1 when not otherwise specified. In this way the dark state |D(t)〉
performs the desired |0〉 → |1〉 evolution, yielding complete population transfer,

while |2〉 is never populated [Fig. 3.1(c)].

Adiabaticity in ideal STIRAP [47, 101] requires that Ω0T > 10. Since it

involves in a clever sequence several coherent phenomena [101] (AT effect, EIT

and adiabatic passage), STIRAP is very efficient, faithful and stable apart for
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Figure 3.2: Left panel: typical Landau-Zener (LZ) patterns as a function of time
of instantaneous eigenvalues for nonzero detunings. Three different patterns may
occurr according to the value of δp/δ (see Sec.3.4). Right panel: efficiency diagram
of STIRAP vs detunings. The curves enclose regions corresponding to efficiency
larger than 90%. The black line is obtained for κp = κs and shows that the
protocol is much more sensitive to deviations of δ rather than of δp. Gray lines
are the efficiencies when κp = 2κs and κs = 2κp (see Sec. 3.4). Intercepts of such
curves with lines δp/δ = a define the two-photon linewidths δ 1

2
as a function of

all the parameters but δ. The dashed line shows the example of the Cooper pair
box for qg = 0.48 and J = 1.

a crucial sensitivity to δ (see Fig. 3.2 right panel). Indeed for δ 6= 0 no exact

dark state exists providing the adiabatic connection |0〉 → |1〉. Still population

transfer may take place by non-ideal STIRAP, via non-adiabatic Landau-Zener

(LZ) transitions between adiabatic states (see Fig. 3.2 left panel), a mechanism

crucial for the applications in artificial atoms (Sec.3.4).

In artificial atoms the Hamiltonian reads [43, 99]H = H0(q)+[Ap(t) cos(ωpt)+

As(t) cos(ωst)]Q, where the device H0 depends on tunable parameters q. The

field couples to the system dipole-like operator Q (see Sec. 2.1.2) and the en-

velopes Ak(t), k = p, s are slowly varying with respect to Rabi frequencies. Un-

der suitable conditions, H can be truncated to three levels. Performing the

RWA and transforming to a doubly rotating frame, we get the form (3.1), where

Ωp(t) = Ap(t)Q20 and Ωs(t) = As(t)Q21.

3.3 Effective model for solid-state noise

As discussed in Sec. 2.2, noise in solid-state devices has large low-frequency com-

ponents with a 1/fα spectrum, and high frequency component, either white or
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ohmic. Assuming for simplicity a single noise source inducing fluctuations of

the parameter qg, we can describe this BBCN by the phenomenological Hamilto-

nian [43] H = H0(qg + x(t)) + A(t)Q +Henv. Here x(t) is a classical stochastic

process accounting for low-frequency noise, whereas Henv describes an environ-

ment coupled to the system, responsible for Markovian quantum noise. The effect

of low-frequency noise is obtained by averaging over the stochastic process the den-

sity matrix ρf (t|qg + x(t)), accounting for fast noise in a background stochastic

field

ρ(t) =

∫

Dx(t)P [x(t)] ρf (t|qg + x(t)) (3.4)

Leading effects are estimated by evaluating the integral in the “quasistatic” or

static path approximation (SPA), i.e. by substituting x(t) with a random variable

x with distribution p(x) and calculating ρf (t|qg + x) by a Markovian master

equation (see Sec. 2.2).

Notice that H0, its eigenenergies Ei(qg) and the matrix elements Qij enter-

ing Ωij(qg) depend on qg. As detailed in Sec. 2.1.2, a proper choice of qg may

enforce symmetries of H, which protect the system against dephasing due to fluc-

tuations of Ei(qg), but at the same time suppress some Qij . Non-Markovian

noise determines fluctuations of the entries of the Hamiltonian (3.1), namely

δk(qg+x) = ∆Ek(qg+x)−ωk and Ωk(qg+x) = Ak(t)Qk(qg+x), where ∆Ek(qg+x)

and Qk(qg + x) are the relevant energy splittings and "dipole" matrix elements.

This is a key issue for all our subsequent analysis about design and optimization

of Lambda systems. For instance, it is clear that for a Lambda configuration

at nominal resonance, i.e. if external fields are resonant at the nominal bias qg,

fluctuations in the “trapped subspace” translate in stray δ 6= 0 which are the

most detrimental for STIRAP. It is convenient to expand detunings and Rabi

frequencies. For instance at nominal resonance and for small enough fluctuations,

imposing E0 = 0 we have

δ(x) = A1(q)x+
1

2
B1(q)x

2 ; δp(x) = ∆E2 = A2(q)x+
1

2
B2(q)x

2 (3.5)

where Ai(q) = ∂Ei(q)/∂qg and Bi(q) = ∂2Ei(q)/∂q
2
g . We notice that all such

fluctuations are correlated via the bandstructure of the device, since they originate

from the same random variable x.

We apply these ideas to the important case study of the Cooper pair box

(CPB), that we described in sec.2.1.2. Here we conveniently give the Hamiltonian
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in units of the Charging Energy EC , i.e.

H0(qg, J) =
∑

n

(qg − n)2 |φn〉 〈φn| −
J

2
(|φn+1〉 〈φn|+ h.c.). (3.6)

where we defined J := EJ/EC and we used n̂ :=
∑

n n |φn〉 〈φn| as the number

of extra Cooper pairs in a metallic island. The parameter J is, therefore, the

relative strength of the Josepson tunnelling changing n→ n± 1. According to its

value several different implementations of superconducting qubits from “charge

qubits” to “transmons” [33, 102, 103, 104, 74] have been demonstrated. The other

parameter qg can be tuned by an external voltage. The CPB is operated by an ac

gate voltage which is coupled to the charge, Q ∝ n̂, playing the role of the system

operator.

The HamiltonianH0(qg, J) =
∑

iEi |i〉 〈i| is symmetric for charge parity trans-

formations at half-integer and integer qg. Here the selection rule nij := 〈i| n̂ |j〉 =
[1 − (−1)i+j ]nij holds, preventing pump coupling. On the other hand working

at qg = 1/2 guarantees the maximal protection from charge noise because of the

suppression of Ai(q) in Eq.(3.5). Larger values of J � 1 suppress asymmetries at

qg 6= 1/2, ensuring protection in a larger region of the space of parameters, where

however the pump coupling is suppressed [48].

The numerically calculated [48] efficiency of STIRAP (Fig. 3.3a) shows that

a Lambda configuration allowing population transfer ∼ 80% is achievable in a

CPB with J = 1 by operating at a symmetry breaking bias qg 6= 1/2, despite

of the reduced protection from low-frequency noise. In this regime, qg . 0.49,

only linear fluctuation of detunings matter, i.e. linear terms in Eqs.(3.5) are

considered. We used Ω0T = 15 to guarantee good adiabaticity, with figures

of noise and couplings consistent with measurements of the decoherence in the

qubit of Ref. [1]. In this regime, Markovian emission [47, 101] or absorption [48]

channels are not effective, whereas spontaneous decay in the trapped subspace,

characterized by T1, is tolerably small. Instead near qg = 1/2 pump coupling is

small and it would require T � T1, thereby decay suppresses the efficiency.

3.4 Strategies of protection against noise

We now analize the tradeoff between efficient coupling and decoherence when

parity symmetry is broken. Our analysis leverages on the results of last section,

that the main mechanism of efficiency loss (besides lack of adiabaticity) are low-

frequency fluctuations of energy levels. As discussed in Sec.3.3, these correspond
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symmetry breaking yields enough pump coupling still keeping decoherence toler-

able. Referring to Fig. 3.2 we formulate this condition by defining a two-photon

linewidth [54] δ 1
2
, as the interval of δ where coherent transfer is appreciable, for any

fixed combination of the other parameters (see Fig. 3.2). For efficient STIRAP

low-frequency noise must induce fluctuations of δ with small enough variance,

σδ ≈
√

A2
1σ

2
x +

1
2B

2
1σ

4
x . δ1/2.

The linewidth can be estimated by evaluating the impact of unwanted tran-

sitions between adiabatic states. In this way Vitanov et al. [54] found the scaling

law δ 1
2
' d(τ)Ω0

√

κ2p + κ2s valid for δp = 0, and roughly holding on the lines

δp/δ = a in the region (c) of Fig. 3.2 left. In the same way one can derive that

δ 1
2

≈ d′(τ, κ)Ω0 κp in the region (b) of anticorrelated detunings [48], whereas

δ 1
2
≈ d′′(τ, κ)Ω0κs in the region (a) of correlated detunings. The dependence on

κ := κs/κp in the prefactors turns out to be weak.

In the case of CPB, since A1 and A2 have different sign, charge noise deter-

mines anticorrelated fluctuations of detunings, and good transfer efficiencies are

achieved for large values of the ratio

δ 1
2

σδ
∝ κpΩ0

σδ
≈ 2n02(J, qg)

√

A2
1(J, qg)σ

2
x +

1
2B

2
1(J, qg)σ

4
x

. (3.7)

This is a figure of merit for STIRAP efficiency (see Fig. 3.3b) which can be used for

seeking optimization of both the design of the device and the symmetry breaking

of the Hamiltonian modulated on-chip by the bias qg.

The above analysis also suggests that effects of charge noise in a CPB can be

minimized by increasing κp only. This is a specific way of decoupling dynamically

noise sources, responsible for anticorrelated (δ, δp) fluctuations. Indeed it is clear

from Fig. 3.2(b) that increasing κp the efficiency grows in the region (b), sup-

pressing anticorrelated fluctuations of detunings. This happens because non ideal

STIRAP occurs via LZ tunneling along the pattern (b) in Fig. 3.2, being sup-

pressed for increasing δ when the avoided crossing builds on, and being restored

if the gap shrinks due to a larger Ωp.

This analysis can be extended to the main different designs of superconducting

artificial atoms, and to each specific low-frequency noise source. These latter are

classified according to the (δ, δp) correlations they determine. For instance flux

noise in flux qubits yields anticorrelated (δ, δp), as for charge noise in the CPB,

and increasing Ωp yields dynamical decoupling. Instead critical current noise in

CPB and flux qubit determine correlated (δ, δp) fluctuations, requiring larger Ωs.
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We address the issue of detuning correlations in further detail in Sec. 5.A. In

phase qubits both critical current and bias current noise yield correlated (δ, δp)

fluctuations dynamically suppressed by a large Ωs.

In real superconducting artificial atoms, where more than one noise source

is present, the two strategies can be combined. Protection from noise produc-

ing anticorrelated (δ, δp) fluctuations can be achieved by the optimal symmetry

breaking strategy, since dynamical decoupling is limited by the insufficient cou-

pling Ωp. Protection from noise producing correlated (δ, δp) fluctuations can then

be obtained increasing Ωs, which is not limited by selection rules.

It is easy to extend this analysis to artificial atoms driven in different field

configurations. For instance for population transfer in the Ladder scheme(Fig. 3.1)

scheme one associates δ (δp) with the second (first) excited state, which allows to

identify the relevant correlations between detunings.

3.5 Implications of non-Markovianity

The picture of the last section relies on the non-Markovianity of BBCN. We remind

that low-frequency noise is the main source of dephasing in artificial atoms. BBCN

explains distinctive experimental observations in qubits [43, 1, 2, 105]. Moreover

design of low-decoherence qubits relies on protection from non-Markovian noise.

Both optimal tuning [106, 107] and dynamical decoupling [108, 109] have been

exploited for entangled states. We generalize these ideas to protection of three-

level coherence, obtaining a rich scenario.

It is important to point out the different impact on STIRAP of non-Markovian

dephasing, as discussed in this chapter, and Markovian pure dephasing as de-

scribed by the standard Master Equation approach. This latter problem has been

studied in Ref. [110], including only the dephasing rates γ̃ij . For large enough

Ω0T populations at the end of the protocol were found to be

ρ11(∞) =
1

3
+

2

3
e−3 ˜γ01T 2/8τ ; ρ00(∞) = ρ22(∞) =

1

3
− 1

3
e−3 ˜γ01T 2/8τ (3.8)

i.e. dephasing determines efficiency losses which do not depend on the peak Rabi

frequencies. Therefore Markovian dephasing cannot at all accout for the scenario

presented in Sec. 3.4.

In Fig. 3.4 we plot the final populations of the bare states comparing Marko-

vian (ρii) and non-Markovian (Pi) pure dephasing, in the entire relevant range

of Ω0. Noise produces in both cases the same qubit dephasing time T2, which is
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Figure 3.4: Final populations of STIRAP with Markovian (ρii) and non Markovian
(Pi) noise. The former is the solution of a Master Equation with rate γ̃10 = 1/T2,
leading to exponential decay of qubit coherences. The non-Markovian noise is
simulated taking a distribution of detunings corresponding to σx =

√
2/(A1T2),

leading to Gaussian decay with the same T2.

relatively large. When Ω0 is large, while for non-Markovian noise P1 is completely

recovered, for Markovian noise it saturates to a smaller value given by Eq.(3.8).

For small Ω0 the protocol fails in both cases, due to insufficient adiabaticity.

3.6 Conclusions

In this chapter we discussed effects of BBCN noise in three level artificial atoms.

In particular we studied the tradeoff between protection from low-frequency noise,

enforced by symmetries of the Hamiltonian, and the implied selection rules which

are the main obstacle to the implementation of a Lambda scheme. Being based

on two-photon absorption and emission, the Lambda scheme allows performing

tasks as transduction of photons in the µm/mm range. We have studied STIRAP

since it is a benchmark advanced protocol. It is also the basis of other protocols

from preparation of superpositions [101] to transfer of wavepackets and manip-

ulation of photons, with still unexplored potentialities for quantum information

and quantum control.

We have shown that model for BBCN noise decoherence in the “trapped sub-

space” span{|0〉 , |1〉} plays a major role, a conclusion which holds for all Lambda,

Ladder and Vee schemes. Strategies to defeat noise in qubits can then be gener-

alized to three-level systems. We presented two strategies, namely optimal sym-

metry breaking and continuous dynamical decoupling, which can be integrated

to minimize the effects of anticorrelated and correlated parametric fluctuations

of the artificial atom bandstructure. Relying on non-Markovianity of BBCN, our
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results suggest that features of the scenario of STIRAP with BBCN, as the pre-

dictions on the peculiar dependence on control knobs described in Sec. 3.4, could

be used to probe aspects of non-Markovianity of the solid-state evironment.

Finally, we mention that artificial atoms allow for new unconventional schemes

to manipulate a Lambda system, bypassing hardware constraints and allowing to

perform STIRAP at protected symmetry points and with always-on fields (see

chapter 4. The strategies to defeat noise presented here could be successfully

applied also in these cases.
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Chapter 4

Population transfer in a Lambda

system induced by detunings

In this chapter we propose a new protocol to achieve coherent population transfer

between two states in a three-level atom by using two ac fields. It is based on

the physics of Stimulated Raman Adiabatic Passage (STIRAP), but it is imple-

mented with the constraint of a reduced control, namely one of the fields cannot

be switched off. A combination of frequency chirps is used with resonant fields,

allowing to achieve approximate destructive interference, despite of the fact that

an exact dark state does not exist. This new chirped STIRAP protocol is tailored

for applications to artificial atoms, where architectures with several elementary

units can be strongly coupled but where the possibility of switching on and off

such couplings is often very limited. Demonstration of this protocol would be a

benchmark for the implementation of a class of multilevel advanced control pro-

cedures for quantum computation and microwave quantum photonics in artificial

atoms.1

4.1 Introduction

Preparation of a quantum system in a well defined state is an essential task in

many branches of modern physics ranging from atomic and molecular physics [101]

to quantum computation [90]. Techniques for transferring population from a

ground state |0〉 to a state |1〉 employ either Rabi cycling or adiabatic passage

1The content of this chapter is adjusted, with minor modifications, from P.G. Di Stefano, E.
Paladino, A. D’Arrigo, G. Falci, Population transfer in a Lambda system induced by detunings,
Phys. Rev. B 91:224506, 2015.

41
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(AP) [54]. Amongst these latter STIRAP (see Sec. 3.2) is a three-level atom

scheme where selective and faithful population transfer is achieved by operating

with two resonant driving fields in Lambda configuration [47, 54]. The advantage

over Rabi cycling is the dramatic reduction of sensitivity to fluctuations of the

parameters, at the expenses of a longer duration of the adiabatic protocol. In more

complex architectures semiclassical driving fields are substituted by harmonic

modes of a strongly coupled cavity, and tasks as preparation of photons with

controlled amplitude, frequency and polarization [111, 49] can be performed by

vacuum-stimulated Raman AP (vSTIRAP).

In the last few years multilevel coherence in solid-state systems, from meso-

scopic devices [100] to atomic-like impurity states [112], has been a fertile subject

of investigation. Several theoretical proposals [113, 98, 56, 55, 80, 99, 48] and ex-

periments [92, 114, 93, 96] have dealt with multilevel coherence in artificial atoms.

As we detailed in Sections 2.1.2, 2.1.3 and 3.3, distinctive features of such systems

is the effectiveness of parity selection rules [98, 55, 48] which together with the

presence of strong 1/f noise [45, 43], impose constraints on the available control.

Therefore new protocols for manipulating the coherent dynamics must be tailored

for such systems. Their design requires that large couplings allowing for efficient

control are combined with protection from noise [48].

In this chapter we present a new protocol to achieve coherent population

transfer between the two lowest excited states of a three-level atom by using two

ac fields. The key difference with standard STIRAP, where ac fields must be

switched on and off in a counterintuitive sequence [47], is that one of the fields

is kept always-on, its amplitude being constant during the protocol. Operating

with an always-on field require phase modulation, and for this reason we call the

protocol cSTIRAP (chirped STIRAP). Sweeping the frequency of a single classical

driving field across the resonance is a standard way to switch on and off Rabi

oscillations, thereby one may think to rephrase STIRAP accordingly, but this is

not the case. Indeed coherent population requires destructive interference of the

two fields [115]. This is guaranteed by cSTIRAP, which thereby solves a non-

trivial control problem, its experimental demonstration in artificial atoms being

by itself an important proof of principle of advanced three-level control. Even

more interestingly, cSTIRAP could apply to architectures where “artificial atoms”

are coupled to quantized modes, electromagnetic or nanomechanical, where strong

coupling is achieved by non-switchable hardware elements keeping the interaction

always-on. The protocol we propose possesses certain advantageous distinctive

characteristics: (i) it works with reduced available control, as an always-on field,
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(ii) it operates with nearly resonant fields, reducing the operation time; (iii) it

may rely on better techniques to control the phase of microwave circuits, (iv) it

is cyclic.

The chapter is organized as follows. In Sec.4.2 we introduce the model Hamil-

tonian and briefly review standard implementations of coherent population trans-

fer in two and three-level atoms. In Sec. 4.3 we illustrate the new protocol dis-

cussing in Sec. 4.4 the robustness against parametric fluctuations and in Sec. 4.5

decoherence effects. Finally, in Sec.4.6, along with the conclusions, we will discuss

the comparison of cSTIRAP with other protocols for population transfer operated

by frequency chirps.

4.2 Coherent population transfer in Lambda atoms

In two-level systems coherent population transfer |0〉 → |1〉 by AP is performed

by shining a direct coupling field whose detuning is swept through the resonance

at the Bohr frequency of the transition. Common examples are Rapid AP (RAP)

or Stark Chirped RAP (SCRAP) [101].

In three-level, as discussed in the previous chapter, systems population transfer

may be achieved in absence of direct coupling, via a third linkage state |2〉, coupled

to |0〉 and |1〉 by a pump field at frequency ωp ' E2 − E0 and a Stokes field at

ωs ' E2−E1, respectively. In particular the Lambda configuration depicted in the

top inset of Fig. 4.1 will be considered in this chapter. Since |2〉 is usually short-

lived, one of the goals of coherent techniques is to use |2〉 but never populate

it. This is achieved in a very efficient and elegant way relying on destructive

interference [115]. The Hamiltonian in the rotating wave approximation, in the

basis of the bare states {|0〉 , |1〉 , |2〉} and in the rotating frame has been given

in Eq.(3.1). As detailed in the Sec. 3.2, conventional STIRAP relies on the two-

photon resonance, δ(t) = 0, at which such a Hamiltonian admits an exact dark

state |D〉 with zero eigenvalue ε0 = 0, given by Eq. (3.2).

Another three-level technique, Raman Chirped Adiabatic Passage (RCAP) [116],

uses instead phase modulation. Population transfer is achieved by two far off-

resonance chirped laser pulse sweeping through resonance (see Sec. 4.6). Unlike

conventional STIRAP, two-photon resonance is not kept during the whole process,

causing a transient population of state |2〉 to appear. The latter in principle can

be made small by accurate tuning of parameters.
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4.3 Coherent population transfer with an always-on

field

In this section we will address the problem of achieving |0〉 → |1〉 population

transfer subject to two constraints, namely (a) keeping the population of |2〉
small and (b) operating with a reduced control, in particular with one of the

fields, for instance the Stokes one, kept always on, Ωs(t) =: Ω0 6= 0. Naively one

could suppose that sweeping the detuning δs(t) could allow to effectively switch

on and off Ωs, allowing again for conventional STIRAP. However this is not the

case because coherent population transfer requires that the two-photon resonance

condition, δ = 0, is kept while sweeping δs(t), to ensure destructive interference.

In what follows we will seek for a solution allowing to achieve complete population

transfer by properly shaping the detunings.

First of all when one of the fields is always on, the Hamiltonian (3.1) for t→
±∞ is not diagonal in the bare state basis. In order to approximate asymptotically

the desired target state |1〉, necessarily at the end of the protocol we must have

δs � Ω0. If we take detunings shaped as shown in Fig.4.1, which are given by

δs(t) =
1

2
hδΩ0

[

tanh

(

t− τ

τch

)

+ tanh

(

t+ τ

τch

)]

δp(t) = κδδs(t)

(4.1)

the desired asymptotics is ensured by hδ � 1, i.e. the protocol must start and end

with “far detuned” lasers. The modulation (4.1) has the important characteristics

that at least for part of the protocol δ(t) = 0 (Fig. 4.1). During this phase a

Stokes-induced Autler-Townes (AT) splitting opens. Although an exact adiabatic

dark state is not available for population transfer, we will argue later that keeping

δ ≈ 0 allows to minimize the transient population of |2〉.
The population transfer mechanism is better understood studying the evolu-

tion of the instantaneous eigenvalues and eigenvectors of the “Stokes” Hamiltonian,

obtained setting to zero the pump field in Eq.(3.1)

Hs(t) =







0 0 0

0 δ(t) 1
2Ω0

0 1
2Ω0 δp(t)






(4.2)

Here the Rabi frequency has been taken real with no loss of generality. The

Stokes Hamiltonian acts non-trivially only on the {|1〉 , |2〉} subspace, yielding
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Figure 4.1: Main figure: single (coloured lines) and two-photon (dotted line)
detunings in Ω0 units. Top inset: Three level Lambda system. Bottom inset:
Zoom of the single and two-photon detunings (solid lines), plotted together with
the Stokes eigenvalues (dashed lines) of Eq. (4.4) showing the appearance of a
dynamical Stokes-induced AT, which is switched on and off by modulation of δs.

the asymptotic states

|s+(−∞)〉 ' |2〉 → |s+(+∞)〉 ' |1〉
|s−(−∞)〉 ' |1〉 → |s−(+∞)〉 ' |2〉

(4.3)

The "Stokes eigenvalues" display the presence of the AT splitting during the

protocol (Fig. 4.1, bottom inset)

s0 = 0, s± = δ +
δs ±

√

δ2s +Ω2
0

2
(4.4)

During this AT phase δs is swept across the resonance swapping |1〉 ↔ |2〉.
Using detunings Eq.(4.1) with κδ > 1 the pattern of split instantaneous eigen-

values s±(t) is crossed twice by the eigenvalue s0 = 0, as shown in Fig. 4.2(a).

Crossings occur at times ±tc when s±(t) = 0, i.e. 4δ(tc)δp(tc) = Ω2
0. In these

conditions the system prepared in |ψ(−∞)〉 = |0〉 remains of course in this state,

passing through the crossing. Population transfer is achieved by applying a pump

pulse with finite area reaching its peak value close to the second crossing, t = tc.

For instance, employing a a Gaussian pulse, we have

Ωp(t) = κΩ0e
−( t−tc

T )
2

(4.5)

The behavior is understood in terms of the instantaneous eigenenergies of the
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Figure 4.2: (a) Eigenvalues of the Stokes Hamiltonian of Eq. (4.2) (dashed lines)
and of the full Hamiltonian of Eq. (3.1) (solid lines) in Ω0 units. The red thick line
is the instantaneous energy of the system adiabatically driven from |0〉 to |s+〉 '
|1〉 through the opening of the avoided crossing generated by the pump pulse
(dotted line) at time t = tc. (b) Population histories (red, blue and green lines)
from the numerical solution of the Schrödinger equation, for Ωs(t) = Ω0,Ω0T =
40, hδ = 10, κδ = 1.2 and κ = 1, τch = 0.6T , showing complete population
transfer by cSTIRAP. For these parameters the adiabatic approximation (gray
curves) fully agrees with the exact solution. Inset: the exact population P2 of
the excited state (green solid line) is small at any time of the protocol, as can be
estimated by Eq.( 4.6) (thin line). The dashed line refers to the approximation of
Eq. (4.13).

full Hamiltonian Eq. (3.1). In particular the pump pulse lifts the degeneracy

between s0 and s+ turning their crossing into an avoided crossing [Fig.4.2(a)]. The

adiabatic connection corresponding to s+ yields eventually the desired population

transfer, |0〉 → |s+(+∞)〉 ' |1〉.
We remark that population transfer depends only on the presence of a crossing
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between Stokes eigenenergies s+ and s0 and on the fact that the adiabatic ap-

proximation is valid. In this regime the precise shape of the pulses is not relevant.

Therefore the protocol is robust against imperfections in the control. From the

physical point of view it is worth stressing that the pump pulse triggers AP by

a two-photon process. The distinctive feature of our proposal is that this two-

photon effective coupling is obtained with both quasi resonant pump and Stokes

fields. This ensures large efficiency for rather small pulse duration. We mention

that during its switching on Ωp could in principle trigger unwanted transitions

|0〉 → |2〉, which are however suppressed by the Stokes-induced AT splitting and

the two-photon resonance condition. A similar phenomenon occurs in standard

STIRAP, where it is called the Stokes-induced EIT (electromagnetically induced

transparency) phase [54].

Summing up cSTIRAP can be described in the language of Ref. [54] as a five

stages protocol, with successive far-detuned, Stokes-induced AT, Stokes-induced

EIT, two-photon AP and again far-detuned phases. In what follows we will see

that the other important requirement, namely that population of |2〉 should be

minimal at all times, is also fulfilled. This requirement is necessary in order to

prevent unwanted decay processes likely to occur in real physical systems, where

|2〉 is often unstable.

We estimate P2 = | 〈2〉ψ|2 by adiabatic elimination. The standard procedure

formulated in the bare basis yields the state |ψ0
AE〉 = c0 |0〉+c1 |1〉 (see App. 4.A).

First order corrections yield a leakage from the subspace {|0〉 , |1〉} given by [116]

P2(t) '
∣

∣

∣

∣

Ωpc0 +Ω0c1
2δp

∣

∣

∣

∣

2

(4.6)

that can be made very small, as shown in Fig.4.2(b), which also shows that this

approximation works very well. A better approximation is obtained by working in

the Stokes basis [see App. 4.A and Fig. 4.2(b)], but Eq.(4.6) has a simpler analytic

form, allowing to write a figure of merit for the parametric dependence of leakage

during the protocol. A simple choice is to consider leakage at the crossing s+ = 0

P2(tc) '
δ

δp
f(κ) =

κδ − 1

κδ
f(κ) (4.7)

Here f(κ) is a monotonically decreasing function of the ratio of the Rabi peak

amplitudes κ. This qualitative behaviour is confirmed by numerical simulations

shown in Fig. 4.3, where the efficiency is plotted versus relative magnitude of

the amplitudes (κ, left panel) and of the detunings (κδ, right panel), both in
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Figure 4.3: Upper panels: STIRAP efficiency vs the relative peak amplitudes of
the fields (left panel, where κδ = 1.2) and to the relative detunings (right panel,
where κ = 1), for various degrees of adiabaticity (curves: Ω0T = 40 (red), 20
(blue), 10 (brown) from higher to lower efficiency). For κδ > 1, and provided
adiabaticity is good, the system has a very slight sensitivity to these parameters.
Lower panels: sensitivity of the efficiency to unwanted transient population of |2〉
accounted for by a finite lifetime τ2 =: 1/Γ2 (cf. Eq.4.8). The insets of panels (a)
and (c) are zooms of the corresponding main figures showing how, in the presence
of a non-vanishing Γ2, the efficiency improves with increasing κ.

the absence (top panel) and the in presence (bottom panel) of a finite lifetime

τ2 = T/2 of the intermediate state |2〉 (see section 4.4 for a model). It is seen that

efficiency increases with increasing κ as an effect of a larger avoided crossing at

s+ = 0. Moreover increasing κ reduces the transient population of |2〉, as given

by the figure of merit Eq.(4.7). This is seen by comparing the insets of the left

panels of Fig. 4.3: the positive slope of the sensitivity in the presence of a finite

τ2 [Fig. 4.3(c)] cannot be explained as an improvement in adiabaticity, since this

slope is not present in the ideal case [Fig. 4.3(a)]. Therefore, it can only be caused

by a reduction of P2.

Population transfer occurs only for κδ > 1 as shown in Fig. 4.3(b),(d). In

particular, for κδ = 1 we have δ(t) = 0 and Eq.(3.2) applies, showing that an

always on Stokes field would produce a return of the population to the initial

state. For κδ < 1 the Stokes eigenvalues do not cross, and adiabatic dynamics

leads to a final population entirely in |0〉.
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4.4 Sensitivity to parameters

The efficiency of cSTIRAP is not very sensitive to slight deviations of relative

amplitudes κ and detunings κδ of the pulses, provided adiabaticity is kept. This

is shown in Fig. 4.3, results in the lower panels allowing to fix convenient values

κ = 1, κδ = 1.2 and Ω0T = 40, which we will use hereafter.

As in conventional STIRAP [54], the most critical feature is the parametric

sensitivity to stray detunings. Here we discuss this issue, which is also responsible

for decoherence due to low-frequency noise [43, 48].

The physics is understood recalling the picture of conventional STIRAP, where

two kind of errors emerge [101]. “Bad projection” errors, due a bad choice of the

pulse shape and timing, may lead to the wrong target state. “Bad adiabaticity”

errors induce leakage from the trapped subspace, nonadiabatic transitions surely

occurring when the so called “global condition” ΩkT � 1 is not met. Both kinds of

errors are also triggered by fluctuations induced by an environment (see Sec.4.5).

For cSTIRAP we verified that large enough ΩkT again guarantees adiabaticity

(Fig. 4.3). In this regime a strong asset of cSTIRAP is that it is not affected

by bad projection errors in the far-detuned phases, since final eigenstates in the

rotating frame are nondegenerate.

However since the efficiency of cSTIRAP depends on the structure of crossings

of the eigenvalues of the Stokes Hamiltonian, it may be affected by stray detunings

during the protocol. A further drawback comes from the fact that the state carry-

ing population in cSTIRAP, while taking advantage from destructive interference,

it is not an exact dark state as in Eq.(3.2), since the condition δ(t) = 0 does not

hold true. This is a potentially important source of error for cSTIRAP since it also

may determine a nonvanishing population of |2〉 at intermediate times. Sensitivity

to detunings is conveniently studied by the non-Hermitian Hamiltonian:

H(t|{δk}) → H(t|{δk}) + i
Γ2

2
|2〉 〈2| (4.8)

Using a sufficiently large Γ2 > 1/T guarantees that transient population of |2〉
decays elsewhere (e.g. in a continuum), yielding a lack of normalization at the

end of the protocol. Therefore the resulting efficiency P1(tf ) is a figure of merit

embedding the requirement that |2〉 should be never populated.

The Hamiltonian (4.8), where only the dependence on detunings is empha-
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Figure 4.4: The color map describes the efficiency of ideal cSTIRAP, with Γ2 = 0
vs fluctuations of the detunings. In the brightest area we have P1(tf ) > 0.9.
Lines refer to Γ2 = 1/T and delimit the P1(tf ) > 0.9 (most inner region) and
the P1(tf ) > 0.8 areas. We use the same parameters as in Fig. 4.2(b), which
guarantee that in absence of fluctuations, δ̃s = δ̃p = δ̃ = 0, adiabaticity of the
protocol is strong. The extension of the regions of large efficiency determines the
single-photon linewidths (in this case ∆δ̃s) and the two-photon linewidth ∆δ̃.

sized, accounts for the effect of stray components by letting

δk(t) → δk(t) + δ̃k, k = s, p

δ(t) → δ(t) + δ̃, δ̃ := δ̃p − δ̃s
(4.9)

Stray detunings may describe very slow phase fluctuations (at frequencies � 1/T )

of the driving fields. Physically in solid-state devices they describe energy fluctu-

ations due to coupling to an environment (see Sec.4.5 and Ref. [48]) whose power

spectrum has 1/fα behavior [43]. In what follows we describe the detrimental

effects they produce and the limitations they determine.

The efficiency of the protocol versus stray detunings is shown in Fig. 4.4. The

colour map shows P1(t) for Γ2 = 0 at the end of the protocol, t = tf . Lines refer to

finite Γ2 = 1/T , which determines a reduced value of P1(tf ) since a nonvanishing

population P2(t) would decay outside the system. It is seen that the efficiency

is large in a whole region around the center of the plot (absence of fluctuations,

δ̃s = δ̃p = δ̃ = 0), showing the stability of the protocol. The failure of cSTIRAP
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in the region of larger detunings is analyzed in the App. 4.C. Here we mention

that in the first and in the third quadrants of Fig. 4.4 failure is due to “bad

projection” errors, i.e. the system may evolve along an adiabatic linkage leading

to a wrong target state. Instead deep in the second quadrant the problem is “bad

adiabaticity” due to an insufficient pump-induced two-photon avoided crossing.

Concerning sensitivity to τ , notice that the convenient delay is implicitly set

by the choice of Ωp(t) being maximal at the second crossing time, Eq.(4.5). We

have checked that in these conditions the protocol is stable against deviations

from the delay and the detailed pulse shape used in this chapter, provided they

are not too large. Moreover it is worth stressing that the protocol we propose in

the “ideal” detunings case, while being physically satisfactory, is not an optimal

solution in the mathematical sense. Therefore we expect further improvement by

tackling the problem with Optimal Control Theory.

4.5 Decoherence

A further important source of errors in STIRAP is decoherence [48], especially in

solid-state artificial atoms. We discuss some qualitative aspect in this section. A

key asset of conventional STIRAP is that while spontaneous decay from |2〉 may

be large (decay time larger than the duration of the protocol), the phenomenon is

supposed to have small impact as long as |2〉 is depopulated. This holds true also

for cSTIRAP, as seen from the results for Γ2 6= 0 presented in the last Section.

Markovian dephasing in STIRAP has been studied in detail [110] and its detri-

mental effect, namely leakage from the trapped subspace due to the weakening

of destructive interference phenomenon, has been elucidated. It has been shown

that strong Markovian dephasing is tolerated, as long as it does not affect the two

levels of the trapped subspace. More complete studies of the effects of quantum

noise in driven systems have pointed out that in solid state implementations of

three-level artificial atoms the main effect is due to decay processes within the

trapped subspace [48]. Other decoherence channels emerging in the Born-Markov

approximation, namely the relation of rates to the detailed spectral density of the

environment [86] and the possible drive-induced absorption [48], are less relevant.

On the other hand, unlike their natural counterpart, artificial atoms imple-

mented by solid-state nanodevices suffer from low-frequency noise [43]. This draw-

back may be compensated by the ease of producing large couplings on chip, the

tradeoff between protection and addressability being the central design issue. The

effect of low-frequency noise in STIRAP has been discussed in Ref. [99], where
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its interplay with Markovian noise and the role of device design were also ad-

dressed [48, 117]. The extension of this detailed analysis to cSTIRAP is beyond

the scope of this work, but general features pointed out in the above works to-

gether with the results of the last section, allow to draw a physical picture which

can be used as a guide for device design.

We assume that low efficiency may be determined by by decoherence lead-

ing to detrapping from the {|0〉 , |1〉} subspace and by failures of the adiabatic

approximation also leading to unwanted population of |2〉. The simplest model

encompassing these main features is to account for decay of |2〉 in a continuum

due to quantum noise (Γ2) and to account for dephasing as due to low-frequency

(classical) fluctuations of relevant parameters. That is we consider the Hamil-

tonian Eq.(3.1) supplemented by the non-Hermitian term appearing in Eq.(4.8),

and let δk(t) → δk(t)+ δ̃k(t), for k = s, p, and Ωk(t) → Ωk(t)+ Ω̃k(t), where δ̃k(t)

and Ω̃k(t) are classical stochastic processes. In artificial atoms such fluctuations

stem physically from noisy external bias fields, which induce fluctuations of the

energy spectrum of the device (determining δ̃k’s) and of the operator coupling to

the field (yielding Ω̃k’s). The efficiency is obtained by averaging over such fluctu-

ations P1(t|{δ̃k}, {Ω̃k}), at the end of the protocol. In cases of interest, as for 1/f

noise, the average can be estimated in the quasistatic (or static-path) approxima-

tion [45, 43]. It amounts to substitute stochastic processes by random variables

with a suitable Gaussian distribution, which physically accounts for sample to

sample fluctuations of parameters. Results of the last section suggest that stray

Ω̃ks hardly affect the efficiency, whereas the effect of the distribution of δ̃k’s can

be important. This effect can be read off in Fig.4.4, which shows that for reason-

ably small fluctuations there is a region where still large efficiencies are allowed.

Successful cSTIRAP requires that fluctuations of energy levels (i.e. detunings)

are smaller than the linewidths. In analogy with the analysis of Ref [48] we ex-

pect that the condition of large efficiency depends on the bandstructure of the

device at the bias point. Indeed depending on the device and on the noise source,

fluctuations of the two splittings (detunings) are either correlated or anticorre-

lated [117], namely they are described by lines with positive or negative slope in

Fig. 4.4. A figure of merit is the ratio δ 1
2
/σδ between the two-photon linewidth of

STIRAP, corresponding to the width of the large efficiency region in the proper

direction in Fig. 4.4, and the variance σδ of the fluctuations of the two-photon

detuning.
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4.6 Conclusions

In this chapter we have proposed a new protocol which extends conventional STI-

RAP. Coherent population transfer is achieved with reduced available control,

namely one of the field is kept always on. This procedure is suited for appli-

cations in artificial atoms and can be advantageous in integrated atom-cavity

systems architectures, where couplings to quantized modes are implemented by

non-switchable hardware [118], and may be manipulated in this way for appli-

cations to microwave quantum photonics [119]. In this respect it may be useful

that cSTIRAP can be repeated cyclically since population histories are invariant

when δk → −δk, allowing the protocol to work as well in the reverted detunings

configuration.

The protocol leverages on the fact that in the microwave realm external fields

have a phase which can be usually controlled better than for sources at optical

frequencies. In particular frequency can be modulated more accurately allowing

direct time-dependent control of the detunings, instead of the induced Stark shifts

used in genuine atomic systems [101]. Moreover in solid-state artificial atoms, e.g.

superconductor based, detunings can be independently modulated by external

voltages and fluxes.

Manipulation of detunings is the basis of other coherent transfer protocols like

RCAP [116]. The essential difference between standard RCAP and cSTIRAP is

that, owing to the fact that the Stokes field is always-on, our protocol involves

a dressed state in the AP phase (see Sec. 4.3), whereas in the former AP occurs

between bare states. Therefore while in RCAP the avoided crossing is due to the

two-photon coupling of two far detuned dispersively coupled fields, in cSTIRAP

AP takes place via destructively interfering resonant fields. This renders more

robust the protocol, which achieves large efficiency for rather small pulse dura-

tion. On the other hand the analogy with RCAP, as well as the discussion of

Sec. 4.5, suggests that also cSTIRAP may be resilient to phase noise and to low-

frequency noise in nanocircuits offering advantages in quantum state processing

with artificial atoms [80].

STIRAP is also the basis of other protocols as preparation of superposi-

tions [101], transfer of wavepackets [120], manipulation of photons and quantum

gates [80], with still unexplored potentialities for quantum information and quan-

tum control. Therefore demonstration of cSTIRAP is a benchmark for a class of

multilevel advanced control protocols in artificial atoms.
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4.A Adiabatic elimination of state |2〉

In order to estimate the population of |2〉 we start from the usual adiabatic elim-

ination in the bare basis. The Schrödinger equation i∂t |ψ〉 = H |ψ〉, with the

Hamiltonian Eq.(3.1), is written for the components of |ψ〉 :=
∑2

i=0 ci |i〉. As-

suming ċ2 ' 0 one finds

c2 = −Ωpc0 +Ωsc1
2δp

(4.10)

This expression of c2 is substituted in the Schrödinger equation yielding a two-

state problem governed by the effective Hamiltonian

H2(t) =





− Ω2
p

4δp
−ΩsΩp

4δp

−ΩsΩp

4δp
δ − Ω2

s

4δp



 (4.11)

Now assuming the validity of the adiabatic approximation, c0 and c1 are ap-

proximately given by the instantaneous eigenvectors of H2(t). In particular we

consider the state corresponding to the preparation |ψ(ti)〉 = |0〉, and we can

estimate P2 = |c2|2 from Eq. (4.10). The analytic result is shown in Fig. 4.2(b),

thin solid line in the inset, and it yields good agreement with the numerical curve.

The analytic expression, though easy attainable, is cumbersome. Insight in the

parametric dependence can be gained by evaluating leakage at t = tc:

P2(tc) =
κδ − 1

κδ

(κ−
√
κ2 + 4)2

4 + (κ+
√
κ2 + 4)2

which is Eq. (4.6). We remind that adiabatic elimination yields coarse grained

amplitudes and it is a priori enforced by large single-photon detunings. Remark-

ably the result obtained from Eq.(4.10) is accurate for the whole procedure, even

if in part of the protocol the condition δp � Ωk is not met. This is due to the fact

that the population of |2〉 is always small, either because the regime is dispersive

or because there is destructive interference.

Corrections in the regime where δp(t) . Ωp,Ωs can be fully taken into account

if adiabatic elimination is carried in the representation of the Stokes eigenstates.

We write the Hamiltonian Eq.(3.1) in the basis {|0〉 , |s+〉 , |s−〉}, given by |s±〉 =
a±1 |1〉 + a±2 |2〉. By expressing |ψ〉 = c0 |0〉 + c+ |s+〉 + c− |s−〉 and assuming

ċ− ' 0, we obtain c− = −(Ω−/2s−)c0, where Ω± = Ωp[1 + 4(δ − s∓/Ω0)
2]−1/2.

Substituting the Ansatz for c− into the Schrödinger equation yields an effective
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Figure 4.5: Population histories for Ωp(t) =: Ω0,Ω0T = 40, hδ = 10, κδ = 1.2,
κ = 1 and τch = 0.6T .

2× 2 Hamiltonian, which in the {|0〉 , |s+〉} basis reads:

H2s =

[

− Ω2
−

4s−
−Ω+

2

−Ω+

2 s+

]

(4.12)

which yields the leakage to |2〉 in the form

P2 ' | Ω+

2s−
c0 a

−
2 + c+ a

+
2 |2 (4.13)

As it is seen from Fig. 4.2(b) (dashed line) the result reproduces the numerical

solution, but it does not yield a figure of merit as simple as Eq. 4.6.

4.B Always-on pump field

We can seek for a protocol dual to the always-on Stokes field by making the

following substitutions, tc → −tc, δp � δs, Ωp � Ωs. The population histories

are shown in Fig. 4.5 and differ somehow from those of Sec.4.2. The point is that

the system is prepared in |0〉, which in this case is not an exact eigenstate of the

initial Hamiltonian. As a consequence Rabi oscillations of small amplitude appear

in both P0 and P2. They can be substantially reduced by increasing the initial

value of the pump detuning. Stray population may appear in the intermediate

state |2〉 also due to adiabatic population transfer at the avoided crossing, and

can be minimized by adjusting parameters as suggested by Eq. 4.6.
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4.C Failure of STIRAP at large detunings

We now analyze the dynamics in the regions of Fig. 4.4 where cSTIRAP fails.

As mentioned in Sec. 4.4 when energy levels have infinite lifetime, failure of the

protocol is due to two kind of errors, namely "bad adiabaticity" and "bad pro-

jection" [54]. While in the former case, the protocol fails because the avoided

crossing produced by the fields is insufficient to guarantee adiabaticity, in the

latter case the system is projected onto the wrong eigenstate of the Hamiltonian.

Errors mainly occur during the AP near the point at t = tc where Stokes

eigenstates cross. An efficient protocol requires for the probabilities of Landau-

Zener transitions between such states that γ0→s− � 1 and 1− γ0→s+ � 1, which

is not always met for finite stray detunings.

A qualitative picture of how cSTIRAP possibly fails due to stray detunings

is offered by the patterns of the instantaneous eigenvalues of the full and of the

Stokes Hamiltonians, in the darker regions of the three (a-c) quadrants of Fig. 4.4.

Examples of these patterns are plotted in Fig. 4.6(a-c).

In the region deep in quadrant (a) of Fig. 4.4 detunings are such that the

first crossings of the Stokes eigenenergies occurs at positive times, i.e. when Ωp is

already on [Fig. 4.6(a)]. Therefore |0〉 and |s−〉 mix, originating a sort of initial

“bad projection” error. Then the subsequent swap |s−〉 → |2〉 leads to a wrong

target state. Deep in quadrant (b), the protocol suffers from a sort of final “bad

projection” error: the second crossing occurs at negative times, where Ωp ≈ 0

and the correspondent transition becomes diabatic. This yields |ψ(t)〉 ≈ |0〉 at all

times2. Deep in quadrant (c) cSTIRAP fails when the configuration of detunings

renders the pump-induced avoided crossing insufficient. In this case the problem

is “bad adiabaticity”, Zener tunneling inducing unwanted transitions to the state

adiabatically evolving towards |0〉.
Finally, deep in the quadrant (d) the configuration of detunings is such that

the two “mixing” phases of the protocol are inverted. Indeed the Stokes-induced

AT splitting becomes relevant only after the second crossing, which in the ideal

case would have produced the two-photon AP. Therefore Ωp partially injects popu-

lation into |2〉. At later times, in the Stokes-AT phase, this population is swapped

to |1〉. Although the final state is correct (cf. the large efficiency in Fig. 4.4), in

the presence of decay Γ2 6= 0, occupation of |2〉 at intermediate times suppresses

the efficiency [see Fig. 4.6(d) and the solid lines of Fig. 4.4].

2In describing the behaviour in the first and third quadrant we rely on the distinction between
negative and positive times. This asymmetry roots from the choice of switching on Ωp(t) at
slightly positive times.
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Chapter 5

Coherent manipulation of

noise-protected superconducting

artificial atoms in the Lambda

scheme

We propose a new protocol for the manipulation of a three-level artificial atom

in Lambda (Λ) configuration. It allows faithful, selective and robust population

transfer analogous to stimulated Raman adiabatic passage (Λ-STIRAP), in last-

generation superconducting artificial atoms, where protection from noise implies

the absence of a direct pump coupling, as detailed in Sections 2.1.2 and 2.1.3.

It combines the use of a two-photon pump pulse with suitable advanced control,

operated by a slow modulation of the phase of the external fields, leveraging

on the stability of semiclassical microwave drives. This protocol is a building

block for manipulation of microwave photons in complex quantum architectures.

Its demonstration would be a benchmark for the implementation of a class of

multilevel advanced control procedures for quantum computation and microwave

quantum photonics in systems based on artificial atoms.1

1The content of this chapter is adjusted, with minor modifications, from P.G. Di Stefano, E.
Paladino, T.J. Pope, G. Falci, Coherent manipulation of highly noise-protected artificial atoms
in the Lambda scheme, Phys. Rev. A 93:051801, 2016.

59
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5.1 Introduction

Advanced control of multilevel quantum systems is a key requirement of quan-

tum technologies [90], enabling tasks like multiqubit or multistate device pro-

cessing [121, 100, 122] by adiabatic protocols, topologically protected compu-

tation [123] or communication in distributed quantum networks[124, 125, 126].

These are currently investigated roadmaps towards the design of fault tolerant

hardware, i.e. complex quantum architectures minimizing effects of decoher-

ence [127, 75]. In this scenario artificial atoms are very promising since, com-

pared to their natural counterparts, they allow for a larger degree of integra-

tion [118, 128, 129, 35], on-chip tunability, stronger couplings [4] and easier pro-

duction and detection of signals in the novel regime of microwave quantum photon-

ics [119]. Decoherence due to strong coupling to the solid-state environment [43]

is their major drawback. Over the years it has considerably softened [75] yield-

ing last-generation superconducting devices with decoherence times in the range

∼ 1− 100µs [2, 3, 78].

Combining potential advantages of artificial atoms is by no means straightfor-

ward. Protection from decoherence often implies strong constraints to available

external control, which pose key challenges when larger architectures are consid-

ered [35]. In this chapter we study a simple and paradigmatic example, namely a

three-level artificial atom driven by a two-tone electric field in the Lambda con-

figuration [Fig.5.1(a)]. Implementation of this control scheme in last-generation

superconducting hardware may in principle benefit from low decoherence, which

however is achieved by either biasing the device at the symmetry point (e.g. in

flux qudits) or increasing the EJ/EC ratio (e.g. in the transmon). This is done

at the expenses of suppressing the direct coupling of the pump field, and of pos-

sible limitations of selectivity in addressing specific transitions. While in chapter

3 we studied how to optimize the design of the Lambda configuration by opti-

mal symmetry breaking, in this chapter we show how to implement an efficient

Lambda configuration at symmetry, and we propose a dynamical scheme allowing

to operate quantum control. This solves the problem raised in the last decade

by several theoretical proposals on the implementation of advanced control by a

Lambda-scheme in artificial atoms [98, 130, 56, 80, 55, 100], which still awaits

experimental demonstration.

Quantum control via a dynamical Lambda scheme is very important because it

may provide a fundamental building block for processing in complex architectures.

Indeed adiabatic evolution may be used to trigger two-photon absorption-emission
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pumping cycles, which allow for on demand manipulation of individual photons

in distributed quantum networks, as proposed in the cavity-QED realm [50, 53].

Demonstrating control by a Lambda configuration in last-generation artificial

atoms would extend this scenario to the microwave arena, opening the perspective

of performing demanding protocols in highly integrated solid-state quantum ar-

chitectures [129, 35], which are usually subject to specific design constraints [131].

Examples are adiabatic holonomic quantum computation [52], information trans-

fer and entanglement generation [80, 51, 81] between remote nodes, and other

sophisticated control protocols [120].

The Lambda scheme is described by the standard Hamiltonian in the rotating-

wave approximation (RWA), which has been given in Eq.(3.1), where we also in-

troduced Rabi frequencies for the pump and Stokes field and the detunings, in

particular the two-photon detuning δ. The latter is a very important parameter,

since for δ = 0 the system admits an exact dark state given in Eq.(3.2) that allows

to observe STIRAP (see Sec. 3.2), a benchmark for multilevel advanced control

whose robustness against imperfections and disorder combined with decoherence

figures of last generation superconducting artificial atoms may allow to develop

new protocols [120, 121] with important applications in hybrid networks, com-

posed of many artificial atoms or microscopic spins interacting with quantized

modes [132].

5.2 2+1 STIRAP in superconducting Artificial Atoms

As we thoroughly discussed in chapter 3, Λ-STIRAP could be observed by break-

ing the symmetry of the device [98, 56], but at the expenses of an increased noise

level. Analysis of the case study (Sec. 3.4) of a the Cooper pair box has shown

that efficiency, i.e. the final population of the target state |1〉, does not exceed

& 70% (see Fig. 3.3).

In order to design an effective Lambda scheme, i.e. allowing efficient coupling

at symmetry, where decoherence times are large, we first replace the direct pump

pulse by a two-photon process, which yields overall the "2+1" Lambda scheme

[see Fig.5.1(a)]. This configuration is however known to lack robustness against

fluctuations of the parameters [133, 134, 135, 53]. To overcome this problem

we supplement the "2+1" Lambda scheme by suitable advanced control, which

turns out to be the key ingredient for achieving both ∼ 100% population transfer

efficiency and robustness. We address two classes of last-generation artificial

atoms, based on the "flux-qubit" [77, 2] and on the "transmon" [74, 3] design,
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Figure 5.1: (a) A three-level system with splittings ωij := Ej − Ei driven by
two quasi resonant ac pump (Ωp) and Stokes (Ωs) fields, in the usual Lambda
scheme (ωp := ω02 − δp, ωs = ω12 − δs). In 2+1 STIRAP the pump is operated
by two pulses Ωpk at frequencies ωp1 := ω01 − δ2, ωp2 = ω12 − δp + δ2 such that
ωp1 + ωp2 = ω02 − δp. (b) Pulses in conventional STIRAP (dashed lines) in the
counterintuitive sequence, i.e. the Stokes pulse is shined before the pump pulse.
Real part of the pulses in 2+1-STIRAP (solid lines): here Ωse

iφs(t) shows the
phase modulated control of Eq.(5.5).

respectively.

We start our analysis from the full Hamiltonian

H := H0 +HC(t) (5.1)

where H0 :=
∑

j Ej |j〉 〈j| models the undriven artificial atom. The control HC =

QA(t) is operated by a three-tone field A(t) =
∑

m=p1,p2,sAm(t) cos[ωmt−φm(t)].

It is coupled to the operator Q, corresponding to the electric dipole for natural

atoms. In artificial atoms it is, for instance, the charge operator in the trans-

mon [74, 3] or the loop current in the flux qudit [77, 2]. Symmetries in the

Hamiltonian H0 imply that matrix elements Qii = Q02 = 0. External fields

have suitable carrier frequencies (see Fig.5.1(a)) and a slowly varying modula-

tion of the phases φm(t), for m = s, p1. Rabi angular frequencies are defined

as Ωp1(t) := Q01Ap1(t), Ωp2(t) := Q12Ap2(t), Ωs(t) := Q12As(t). For simplicity

we take δp = δs = 0 and equal peak amplitudes Ωr for both the Ωpk(t), where

k = 1, 2, considering Gaussian pulses

Ωs(t) = Ω0 e−(
t+τ
T )

2

; Ωpk(t) = Ωr e−
1
2(

t−τ
T )

2

(5.2)

We use the delay [54] τ = 0.6T > 0 which implements the counterintuitive

sequence.
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5.2.1 2+1 STIRAP in the flux qudit

Our goal is to reproduce Eq.(3.1) as an effective Hamiltonian yielding STIRAP, by

properly shaping the control {φm(t)}. We first consider an artificial atom with a

highly anharmonic spectrum, ω12 � ω10, where each transition can be selectively

addressed. Therefore we can safely neglect the strongly off-resonant Ap1 (Ap2 and

As) in 〈1|H|2〉 (〈0|H|1〉), and also perform the RWA. The three-level Hamiltonian

in the interaction picture reads

H3 =
1

2

{

Ωp1(t) e−iδ2t |0〉 〈1|+
[

Ωp2(t) ei[δ2t−φp2(t)]+

+Ωs(t) e−iφs(t)
]

|1〉 〈2|
}

+ h.c.
(5.3)

If the two pump pulses are strongly dispersive, |δ2|/Ωr � 1, they implement an

effective two-photon |0〉 ↔ |2〉 pulse which does not populate |1〉 [54]. In this

regime we derive an effective Hamiltonian from the Magnus expansion of time-

evolution operator corresponding to H3 [136] (see Appendix B).. The relevant

contributions are found up to second order, which captures the coarse-grained

dynamics averaged over a convenient time scale ∆t such that ∆t |δ2| � 1 but

∆tΩr,∆t/T,∆t |φ̇i(t)| � 1 (see Appendix B). Then in the same rotating frame

of Eq.(3.1) we obtain

Heff =[(φ̇p2 − φ̇s)− (S2 + 2S1)] |1〉 〈1|+
+ (φ̇p2 + S2 − S1) |2〉 〈2|+

+
1

2

[(

Ωp |0〉 〈2|+Ωs |1〉 〈2|
)

+ h.c.
]

(5.4)

where Ωp(t) = −Ωp1Ωp2/(2δ2) is the two-photon effective pump field and Sk(t) =

−Ω2
pk/(4δ2) are dynamical Stark shifts. We see that if we define δp := φ̇p2+S2−S1

and δ := φ̇p2−φ̇s−(S2+2S1), Eq.(5.4) reproduces Eq.(3.1) identifying the effective

Lambda system.

We now look for external control yielding STIRAP. It is convenient to take

equal pulse amplitudes in Heff , thereby Ω0 = Ω2
r/(2|δ2|), and the necessary

condition for adiabaticity [47] sets the time scale T > 10/Ω0. We finally adjust

the system at both single and two-photon effective resonance by choosing the

phase modulation according to

φ̇p2 =S1 − S2 ; φ̇s = −(S1 + 2S2) (5.5)

This is a key point of our analysis: performing the latter step is crucial since
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Figure 5.2: Population histories ρ00(t) (blue) ρ11(t) (red) and ρ22(t) (green). (a)
For a flux artificial atom biased at the symmetry point f = 1/2 (spectrum in
the inset), with the phase modulation Eq.5.5. We used Ωr/2π = 200MHz and
δ2 = −5Ωr, for the two-photon pump, yielding Ω0 = |Ωr/2δ2| = 20MHz. Good
adiabaticity, Ω0T = 15, is obtained with T = 0.12µs and τ = 0.6T . Results
refer to the device Ref. [2] and account for leakage and effects of noise. In the
absence of phase modulation, population histories σii in the absence of decoher-
ence (dashed lines) show no population transfer. (b) Same results for a transmon
(spectrum in the inset) with phase modulation Eq. (5.12). Here Ω0 = 3.9MHz
from Eq.(5.10), T = 0.6µs and τ = 0.6T . For both designs the approximate ef-
fective dynamics (gray thin lines above the exact population histories), obtained
respectively from Eq.(5.4) and Eq.(5.9), reproduces remarkably well the coarse
grained time-evolution.
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STIRAP would fail otherwise [see Fig.5.2(a), dashed lines]. Indeed the dynamical

Stark shifts Sk(t) are of the same order of the effective coupling Ωp(t). Therefore

if uncompensated they would determine large stray detunings, in particular δ(t) =

−(S2 + 2S1) would destroy the dark state.

The phase modulation in Eq.(5.5) is obtained in closed form as a function of

the pulse envelopes Am(t) by a simple integration. Inserted in the control of the

full Hamiltonian Eq.(5.1) it yields the goal we set, namely ∼ 100% efficiency is

recovered [see Fig.5.2(a), solid lines].

An important point is that solutions φm(t) of interest are slowly varying,

consistent with our assumption. This is also clear from in Fig.5.1(b), where

the modulation of the Stokes pulse for equal Ωpis, i.e. S1 = S2, is shown. It

is worth stressing the remarkable agreement between the full dynamics and the

approximation by Heff (gray lines in Fig.5.2), which we will use later to estimate

appropriate figures for Ωr, Ω0 and T .

Noise sources coupled via the operator Q are usually the most detrimental for

decoherence. Effects of low-frequency noise from this "port" can be suppressed

by designing a Hamiltonian with suitable symmetries, a strategy that has yielded

very large decoherence times in last-generation superconducting qubits. On the

other hand high-frequency fluctuations from the Q-port are the relevant sources of

quantum Markovian noise. Pure dephasing is due to residual non-Markovian noise

from sources coupled to operators orthogonal to Q. The impact of noise is studied

using a phenomenological picture [45, 43] (see also Sec. 2.2), accounting for both

Markovian and non-Markovian relevant noise sources. Markovian quantum noise

is described by a "dissipator" LD in a Master Equation of the Lindblad form

ρ̇(t|x̃) = −i[H(x̃(t)), ρ(t|x̃)] + LDρ(t|x̃) (5.6)

whose solution has to be averaged over a stochastic process x̃(t) describing indi-

vidual realizations of the non-Markovian classical noise. For noise with ∼ 1/fα

low-frequency spectrum the leading effect is captured by retaining only the con-

tribution of quasistatic stray bias x̃(t) → x̃ of the artificial atom [45, 43], with a

suitable Gaussian distribution. In this picture stray bias determine fluctuations

of energies ∆Ei and of matrix elements ∆Qij , which translate respectively in fluc-

tuations of the detunings δ̃ = ∆(E1 − E0) and δ̃p = ∆(E2 − E0) and of the Rabi

frequency Ω̃0. Only the former turn out to be important [54, 48], thereby Eq.(5.6)

reduces to the structure ρ̇ = i[ρ,H(δ, δp)] + LDρ, where detunings undergo cor-

related fluctuations (δ̃, δ̃p) induced by x̃, the full dynamics emerging from proper
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averaging.

In practical cases a single additional port must be considered, with associated

stray bias x̃. Then fluctuations have a simple linear correlation δ̃p(x̃) = a δ̃(x̃),

where a is determined by the parametric dependence of the spectrum on x̃ (See

Sec. 5.A for details). In this case experiments characterizing the qubit dynamics

yield all the needed statistical properties of (δ̃, δ̃p), since the standard deviation of

δ̃ is σδ =
√
2/T ′2, where 1/T ′2 := 1/T ∗2 − 1/(2T1) is the qubit non-Markovian pure

dephasing rate [43] and T1 the qubit relaxation time. The multilevel dynamics is

obtained by averaging over a Gaussian distribution, p(δ̃) = (2πσ2δ )
−1/2e−δ̃

2/(2σ2
δ
),

the solution ρ(t|δ̃, aδ̃) of Eq.(5.6). We use the Markovian dissipator

LDρ =− 1

2T1
([|1〉 〈1| , ρ]− 2 |0〉 〈1| ρ |1〉 〈0|)+

− k

2T1
([|2〉 〈2| , ρ]− 2 |1〉 〈2| ρ |2〉 〈1|)

(5.7)

accounting for the two allowed transitions in the lowest three levels. We assume

that LD does not depend explicitly on x̃, and we retain only spontaneous decay,

which is the only relevant process at low enough temperature [48]. The constant

k ' [Q21/Q10]
2 S(E2 − E1)/S(E1 − E0) depends essentially on the design of the

device and, in a much weaker way, on the power spectrum S(ω), which is often

ohmic at the relevant frequencies [43].

In Fig. 5.2(a) we present results for the four-junctions SQUID of Ref.[2]. They

show that Λ-STIRAP with ∼ 100% efficiency is obtained using T ' 0.12µs. We

simulate the dynamics for the lowest six states of the full device Hamiltonian

H0, verifying that leakage from the three-level subspace is negligible (
∑

j≥3 ρjj <

2 × 10−4). For this device relaxation (T1 = 12µs [2]) and the associated Marko-

vian dephasing are due to flux noise, whereas critical current and charge noise

determine non-Markovian fluctuations, yielding the overall T ∗2 = 2.5µs. We find

the remarkable & 97% efficiency, which is essentially limited by T1 only.

5.2.2 2+1 STIRAP in the transmon

We now turn to artificial atoms based on the transmon design [137, 74] (see Sec.

2.1.2). Successful implementation of Λ-STIRAP in this class of devices would

be very important, since they display the largest decoherence times observed so

far [3, 75], and offer the perspective of fabricating highly integrated architec-

tures [129, 35], with a rich arena of applications. These artificial atoms have a

nearly harmonic spectrum [inset of Fig.5.3(b)], quantified by α := ω12 − ω01 and
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β := ω23 − ω12 for the four lowest energy levels. Values of |α| ' |β| . ω01/10 en-

sure very large decoherence times, at the expenses however of limiting selectivity

in addressing the desired transitions with strong fields. Harmonicity is a severe

drawback for operating STIRAP and indeed the protocol outlined for flux-based

artificial atoms would fail in the transmon. In order to find the proper effective

Hamiltonian we must: (a) include selected off-resonant terms of the control, re-

laxing the quasi-resonant approximation; (b) consider explicitly a fourth level |3〉
since it will determine Stark shifts which must be accounted for. We neglect the

coupling to the cavity used in the transmon as a measuring apparatus and at this

stage we also assume the RWA, so we consider the Hamiltonian H = H3 + H̃ in

the interaction picture, with extra terms

H̃ =
{1

2
Ap1e

−i(δ2+α)t
[

Q12 |1〉 〈2|+Q23e
−iβt |2〉 〈3|

]

+
1

2
Ap2 eiδ2t

[

Q01e
i[αt+φp2(t)] |0〉 〈1|

+Q23 e−i[βt−φp2(t)] |2〉 〈3|
]

+ h.c.
}

(5.8)

The stray H̃ produces non negligible effects due to the fact that anharmonicities

|α|, |β| are small and large Apk are needed to yield a sufficient effective dispersive

pump drive. Since As needs not to be large, the corresponding terms can be

neglected. A convenient choice of parameters turns out to be |δ2| & |α|, |β|.
In this regime we obtain the following three-level effective Hamiltonian in the

rotating frame

Heff =
(Ωp

2
|0〉 〈2|+ Ωs

2
|1〉 〈2|+ h.c.

)

+
∑

k,i 6=j

Sk
ji |i〉 〈i|+ φ̇p2 |1〉 〈1|+ (φ̇p2 − φ̇s) |2〉 〈2|

(5.9)

where the effective pump coupling is now

Ωp = −Ωp1Ωp2

4δ2

α

α+ δ2
(5.10)

and the dynamical Stark shifts of level j due to the coupling to level i under the

action of the pk field is given by

Sk
ij(t) :=

∣

∣

∣

∣

Apk(t)Qij

2

∣

∣

∣

∣

2( 1

ωij − ωpk
+

1

ωij + ωpk

)

(5.11)
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This antisymmetric form for i ↔ j accounts also for Bloch-Siegert shifts, which

are however small in all cases treated in this chapter. Notice that Eq.(5.9) includes

three levels since levels i > 2 only yield Stark shifts. We again let δp = δ = 0,

thereby in order to obtain large STIRAP efficiency we modulate phases according

to

φ̇p2 =
∑

k,j

(Sk
j0 − Sk

j2) ; φ̇s =
∑

k,j

(Sk
j1 − Sk

j2) (5.12)

If we now use this modulation in the full Hamiltonian Eq.(5.1) we recover ∼ 100%

efficiency [see Fig. 5.2(b)]. Again the full dynamics is remarkably well approx-

imated by the Magnus expansion. Results refer to the transmon of Ref.[3] and

account for both leakage and effects of noise. Coherence is again essentially lim-

ited by T1 = 70µs, thereby noise has negligible effects, also allowing for multiple

STIRAP-like cycles.

Notice that Eq.(5.10) implies that the effective peak Ωp saturates to the value

−α/2(δ2/Ωr)
2, for increasing Ωr at constant δ2/Ωr � 1 [see Fig.5.3(a)]. For this

reason the duration of the protocol for the transmon [T = 0.6µs in Fig.5.2(b)]

is larger than for the flux-based artificial atom. More generally, shining larger

external fields to shorten the protocol is useful only to some extent [see Fig.5.3(a)],

but in devices with the largest coherence times this is not a limitation.

Robustness of the protocol is a crucial issue, since the success of conventional

STIRAP lies in the striking insensitivity to small variations of control parame-

ters. In the early proposal of "2+1" Λ−STIRAP, lack of efficiency due to the

stray dynamical Stark-shift was cured by using fields with a small static two-

photon detuning [133, 134, 135], but unfortunately the resulting protocol was

not robust [53]. Instead our control scheme is tailored to guarantee the same

robustness of conventional STIRAP. In Fig.5.3(b) we show sensitivity against

fluctuations of the detunings of phase modulated STIRAP in the trasmon, which

is potentially the most unfavourable case. For the example shown, frequency fluc-

tuations of the microwave fields . 1MHz still guarantee & 95% efficiency. This

important result would be hardly attainable for natural atoms driven at optical

frequencies [133, 134, 135, 53], where the available phase control is limited. In

addition phase modulated 2+1 STIRAP is naturally resilient to non-Markovian

noise inducing slow fluctuations of the energy splittings. This corresponds to

fluctuating detunings, correlated as δ̃p = 2 δ̃ in the transmon of Ref. [3]. The

part of this line contained in the high efficiency region of the (δ̃, δ̃p) plane cor-

responds to T ′2 ∼ 1µs, which sets a figure for the resilience of the protocol to

non Markovian dephasing. Quite interestingly a suitably asymmetric drive with
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Figure 5.3: Parametric robustness of the protocol. (a) Effective duration of the
protocol T = 15/Ω0 (µs units) vs Ωr/2π (GHz units) for the transmon of Ref. [3]
(Eq.(5.10), upper curve) and for the flux-qudit of Ref.[2] (limit α � δ2, lower
curve), at fixed |δ2|/Ωr = 5. (b) Efficiency versus stray detunings δ̃, δ̃p for the
transmon design, showing the robustness of the protocol Eq.(5.12). The solid
black inner curve encloses the region of efficiency > 95%; results of the approx-
imation Heff , Eq.(5.9) are also reported (dashed curve) which show again the
remarkable accuracy of the effective theory. The white straight line δ̃p = 2δ̃ rep-
resents the correlated quasitatic fluctuations of the stray detunings. The red outer
curve encloses the > 95% efficiency area for r = 2: it is seen that robustness along
the line further increases using r > 1. (c) Efficiency vs T2 for the transmon, r = 1
(lower line) and r = 2 (upper line).

ratio r := Max[Ωp(t)]/Max[Ωs(t)] > 1 enlarges the stability region in a way that

low-frequency correlated noise affecting the device is dynamically decoupled [see

also Fig.5.3(c)].

5.3 Conclusions

In summary we have shown how to design reliable multilevel control in Lambda

configuration by 2+1 STIRAP. The key ingredient is a new control scheme which

uses pulses with suitable slowly-varying modulated phases, Eqs.(5.5,5.12). We ob-

tained a unique strategy allowing to operate with last generation artificial atoms,

where symmetries enforce selection rules preventing a resonant pump field to be

coupled directly. It can be easily implemented in such devices with available mi-

crowave electronics [58], yielding ∼ 100% efficiency. It is worth stressing that

phase control is necessary to guarantee the important property of robustness to

the same level of conventional STIRAP.

We finally mention that STIRAP has been very recently observed in the so
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called Ladder configuration [138, 139], which is more easily implemented in last-

generation artificial atoms. It involves a two-photon absorption process, whereas

Λ-STIRAP implements a coherent absorption-emission cycle. This latter is a

fundamental building block for advanced control in highly integrated architec-

tures, thereby it would have an impact on applications. Phase control exalts in

a natural way the advantages of last-generation superconducting artificial atoms,

where it opens new perspectives for advanced quantum control. Our work may

be extended in these directions using optimal control theory tools.

5.A Noise figures evaluation and model

In evaluating the dynamics of the artificial atoms, we made use of the model

of Sec. 2.2. An emerging important qualitative issue, as we shall argue below,

is that noisy three-level dynamics is fully characterized by decoherence in the

"trapped" (or qubit) subspace only, plus information on the Hamiltonian of the

device alone, a results also obtained conventional STIRAP [48]. Indeed stray bias

due to low-frequency noise determine fluctuations of energies ∆Ei and of ma-

trix elements ∆Qij . They translate respectively in fluctuations of the detunings

δ = ∆E1 −∆E0 and δp = ∆E2 −∆E0 and in fluctuations of the Rabi frequency

Ω̃0. The sensitivity to such parameters has been extensively studied [54]: while

fluctuations Ω̃0 are irrelevant for STIRAP, fluctuations of detunings are impor-

tant. Therefore the relevant open system dynamics turns out to be described by

a Lindblad Master Equation with the structure ρ̇ = i[ρ,H(δ, δp)] +LDρ where H

depends on fluctuations (δ, δp) induced by stray bias x̃. In Fig. 5.3(b) we plot

the efficiency of the protocol vs stray (δ, δp): efficiency is large if fluctuations do

not let the system diffuse out of the central diamond region. In particular, the

protocol is critically sensitive to fluctuations of the two-photon detuning δ, i.e. of

the "qubit" splitting E1 − E0.

Concerning quantum noise, LDρ includes in principle the various decay rates

and associated excitation and secular dephasing processes, but in practice again

the "qubit" spontaneous decay only has to be accounted for, i.e. the only relevant

term turns out to be LDρ = − 1
2T1

([σ+σ−, ρ]−2σ−ρσ+) where 1/T1 is the sponta-

neous decay rate of the qubit, and the Lindblad operators are the corresponding

lowering and raising operators σ− = σ†+ = |0〉 〈1|. Indeed selection rules suppress

2 ↔ 0 processes, whereas we have estimated the decay rate Γ2→1 = k/T1, where

k = O(1) depends on features of the device, and directly checked that in the

devices of interest it had no impact on the results. This is due to the fact that |2〉
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qubit pure dephasing rate 1/T ′2 := 1/T ∗2 − 1/(2T1) the variance σδ =
√
2/T ′2 of

the two-photon detuning in STIRAP. Fluctuations of δp, i.e. of E2 − E0, are

easily found from the parametric dependence on the external bias of the calcu-

lated spectrum of the device (see Fig.5.4). Notice that since each source of noise

induces a single stray bias x̃i, fluctuations of detunings are correlated. For highly

noise-protected devices subdominant noise sources induce fluctuations δp = aδ.

The constant a depends on the band structure of the device (see Fig. 5.4) and

in particular a = −4.5 in the flux qudit of Ref. [2] refers to critical current and

charge noise.

Similar considerations hold for the transmon of Ref. [3]. In the transmon

a ' 2 and k ' 2. Low-frequency charge noise is suppressed by both symmetry

and the presence of the big shunt capacitance that reduces sensitivity to charge

fluctuations. Subdominant noise as flux and critical current noise lead to pure

dephasing 1/T ′2, which is very small.

Numerics have been carried out through a Montecarlo quantum jump ap-

proach accounting for Markovian noise, by averaging over 104 trajectories. Non-

Markovian noise has been taken into account by a further average: we impose

δp = aδ and sample δ from its Gaussian distribution for each trajectory. Vari-

ances we used are σδ = 4.1 × 10−3Ω0 = −0.22σδp for flux qubit (Ω0 = 20MHz)

and σδ = 2 × 10−4Ω0 = 0.5σδp in the transmon. By inspection of Fig.5.3(b) it

is clear that STIRAP in highly noise-protected devices is robust against such low

frequency fluctuations.



Chapter 6

Ultrastrong coupling probed by

Coherent Population Transfer

We propose a protocol to achieve dynamic detection of Ultra Strong Coupling

effects between an artificial atom and a mode of a resonator by means of coher-

ent population transfer. Following results from the recent literature [140, 141], we

study a Lambda configuration and propose a STIRAP protocol. We show that, in

spite of high transfer efficiency attainable, the Lambda configuration allows trans-

fer paths not uniquely imputable to the Ultra Strong Coupling regime. We address

this issue by considering a Vee configuration and show how high efficiencies can

be non ambiguously linked to breakdown of the Rotating Wave Approximation.

Simulations with state of the art flux qutrits are shown and possible sources of

imperfections in experiments are addressed.1

6.1 Introduction

Understanding light-matter interaction and the fundamental physics behind it is

fundamental for the development of new quantum technologies. Strong coupling

between atoms and electromagnetic modes, as described by the Jaynes-Cummings

(JC) model of quantum optics [142], has been observed in several physical sys-

tems. In particular, for solid-state artificial atom architectures [118, 75, 35], small

cavity volumes and large dipoles make easy to engineer values of the light-matter

coupling constant g ∼ 1% of the cavity angular frequency ωc and the atomic

1The content of this chapter has been adjusted, with minor modifications, from A. Ridolfo,
P.G. Di Stefano, E. Paladino and G. Falci, Ultrastrong coupling probed by Coherent Population
Transfer, in preparation.

73
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relevanto Bohr frequency ε. Coupling is large enough to determine strong cou-

pling, i.e. to overcome decoherence rates of both the cavity and the artificial atom,

g > κ, γ [137, 36, 118]. Fabrication techniques have recently allowed to go beyond,

entering the regime of ultrastrong coupling (USC) [143], where g ∼ ωc, ε [144].

In this regime the so called rotating wave approximation (RWA) breaks down,

and light and matter experience non-perturbative physics previously unexplored

experimentally. So far spectroscopic signatures of the breakdown of the RWA, as

the Bloch-Siegert shift, have been detected in superconducting [4, 145, 146, 147]

and semiconducting [144, 148, 149] systems. In the recent literature, dynamical

detection of USC by spontaneous emission pumping (SEP) [140] and by Raman

oscillations [141] have been proposed. This is also the subject of this work, where

we propose that coherent amplification of population transfer by STIRAP [47, 54]

could be a unique strategy to achieve a “smoking gun” dynamical signature of USC

in state-of the art solid-state systems. Despite several dynamics effects have been

predicted [143, 150] and interesting applications as the parametric generation of

nonclassical states have been foreseen [151], control in time beyond the RWA is

still little developed [148]. Demonstration of coherent dynamics in the USC regime

would be a benchmark for advances in quantum control in the USC regime, with

appealing perspectives in the field of dynamical quantum phase transitions [152].

The USC regime between a two-level atom, with states {|g〉 , |e〉} and energy

spitting ε, and a quantized mode is described by the Rabi Hamiltonian

HR2 = ε |e〉 〈e|+ ωc a
†a+ g

(

a† |g〉 〈e|+ a |e〉 〈g|
)

+ g
(

a |g〉 〈e|+ a† |e〉 〈g|
)

(6.1)

The JC Hamiltonian results from neglecting the last “counterrotating” term, which

can be done if g, |ε − ωc| � ε, ωc, as in atomic physics. Architectures of artifi-

cial atoms and quantized modes can be fabricated with larger g/ωc ∼ 0.1 − 1,

entering the USC regime described by the complete HR2. The counterrotating

term induces signatures in the spectrum {Ej} such as the Bloch-Siegert shift

[see Fig. 6.1(a)], which has been spectroscopically detected in experiments. The

structure of the eigenstates can be drastically altered by USC, since the typ-

ical JC states with doublets of definite number of excitations, are mixed by

the couterrotating term. Therefore eigenstates of HR2 have the generic form

|Φj〉 =
∑∞

n=0 cj n |ng〉 + djn |n e〉, with the only constraint that the parity of the

number of excitations is well defined (see Sec. 2.1.4). In particular, the ground

state |Φ0〉, which in the JC model is factorized in the zero photon state and the



6.1. INTRODUCTION 75

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

gêwc

E
i
êw

c

ωp ωs

ωp ωs

|Φ0i

|Φ1−i

|Φ1+i

0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

0.15

0.20

0.25

gêwc

c02 ≡ κΛ
p

κV
p = d1±,2/d1±,0

d1±,2

d1±,4

Figure 6.1: (color online) Spectrum {Ei} of the Rabi Hamiltonian Eq.(6.1) at
resonance ε = ωc, from strong coupling to the USC regime (thik red lines): for
small g/ωc energies are linear in g, as in the JC model, deviations from linearity
yield the Bloch-Siegert shift, marking the USC regime. Thin black lines refer to
factorized states |na〉 of the cavity with an ancillary atomic level, Eq.(6.2) at a
lower energy εa =: −ε′; two of these states are coupled to |Φ0〉 by resonant pump
(ωp) and Stokes (ωs) lasers in Lambda configuration. Thin dashed black lines rep-
resent extra levels when |a〉 has higher energy εa = ε+ε′, and the possible driving
schemes in the Vee configuration. In the inset, amplitudes of the eigenstates |Φj〉
of the Rabi model relevant for our work, c02(g) = 〈2g|Φ0〉 and d1±,2 = 〈2 e|Φ1±〉,
The quantities κΛ,Vp represent the attenuation of the external pump field, needed
to attain the range of best efficiency and robustness of STIRAP.

atomic ground state |0 g〉, acquires components with a finite number of photons,

corresponding to non-vanishing c0n for n even and d0n for n odd. Proposals of

dynamical detection of USC [140, 141] leverage on this property. A third ancillary

atomic level |a〉 is considered, at a lower energy −ε′ < 0, and assuming that the

corresponding transitions are far detuned ε′ � ωc the Hamiltonian becomes

H0 = −ε′ |a〉 〈a|+HR2 + ωc a
†a⊗ |a〉 〈a| (6.2)
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In SEP [54] population is pumped from |0a〉 to |Φ0〉, which may decay in |2a〉,
due to the finite overlap c02 = 〈2g|Φ0〉 6= 0. This is impossible in the presence of

JC coupling only, thereby detection of this channel, uniquely leaving two photons

in the cavity, is a “smoking gun” of USC [140]. This process has however very

low efficiency, since in most of the present implementations of USC architectures

c02 is very small, and the transfer probability depends on |c02|2. In this paper we

propose to amplify coherently this channel implementing population transfer by

STIRAP [54, 53]. Contrary to SEP, STIRAP is based on quantum interference,

allowing to reach the desired target state with efficiency ∼ 100%.

6.2 Λ-STIRAP

The artificial atom is driven by a two-tone external control field, W (t) =
∑

k=p,s Wk(t) cosωkt,

with slowly varying envelopes Wk(t). For illustrative purposes we assume that the

artificial atom’s spectrum is highly anharmonic ε′ � ε and take ωk ∼ ε′. There-

fore the control mainly addresses the lowest atomic states, and it is effectively

described by

Hc(t) =W (t) (|a〉 〈g|+ |g〉 〈a|)
=W (t)

∑

nj

cjn
(

|na〉 〈Φj |+ |Φj〉 〈na|
)

.

If we choose ωp ≈ E0 + ε′ and ωs ≈ E0 + ε′ − 2ωc, and assume not too strong

fields Wk � ωk, and not too large g, then Hc further simplifies yielding the so

called Lambda scheme [47, 54]

HΛ
c (t) =

Ωp(t)

2
eiωpt |0 a〉 〈Φ0|+

Ωs(t)

2
eiωst |2 a〉 〈Φ0|+ h.c.

where Ωp = c00Wp and Ωs = c02Ws are the Rabi frequencies associated to

the pump and Stokes fields respectively. Under these assumptions the rele-

vant dynamics is restricted to three levels, and it is described by the projected

H3 = −ε′ |0a〉 〈0a|+(2ωc− ε′) |2a〉 〈2a|+E0 |Φ0〉 〈Φ0|+HΛ
c (t), which is the stan-

dard Hamiltonian for Λ-STIRAP[47, 54]. Preparing the system in |0a〉 and shining

two pulses of width T in the counterintuitive sequence (the Stokes pulse before

the pump pulse) yields ∼ 100% population transfer to |2a〉. This effect results

from the adiabatic evolution of a dark state, stabilized by destructive interference

of the drives. Adiabaticity is obtained using large pulse areas maxt[Ωk(t)]T > 10

for both fields. In particular, since T is limited by the dephasing time T2, STI-

RAP requires appreciable USC mixing c02(g) to yield a large enough Stokes Rabi
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Figure 6.2: Coherent population transfer by STIRAP between |0a〉 (blue curves)
and |2a〉 (red curves), via the virtual intermediate state |Φ0〉 (green curves), as
a result of USC. Here we used a conservative value g/ωc = 0.25, ε = ωc, ε

′ =
4ωc and figures of the external control Ω0 = ωc/10 and κpΩ0T = 20. Using
ε/(2π) = 6GHz, figures typical of flux qubits [4, 2]. For this simulation 19 states
were enough and we considered coupling of the control field to all the |a〉 −
|g〉 transitions, and additional stray coupling also to the |g〉 − |e〉 transitions.
Coherent population transfer of ∼ 80% is obtained (solid lines), due to partially
autocompensated dynamical Stark shifts. Complete population transfer (dashed
lines) can be achieved by an extra phase modulation, similar to the one shown in
chapter 5, or by a suitable extra tone in Ws(t). The virtual intermediate level is
almost never occupied and no leakage from the three-level subspace occurs.

frequency Ωs. In the USC regime STIRAP reaches the state |2a〉 with nearly unit

probability, irrespective on g, whereas if mixing is insufficient there is no channel

for population transfer to |2a〉. Therefore detection of n = 2 photons in the cavity

after the pulse sequence is a “smoking” gun for USC.

Efficiency is larger if pulses are such that the peak Rabi frequencies are ap-

proximately equal, i.e. maxt[Ωs(t)] = maxt[Ωp(t)] =: Ω0 [54]. To this end, the

pump field should be attenuated Wp = κpWs, where κp ∼ c02/c00. Compared

to the small efficiency of SEP, STIRAP achieves unit probability provided the

coupling exceeds a threshold depending on c02(g), thus coherently amplifying the

USC channel. This effect is moreover very robust against parametric fluctuations,

which is the property making STIRAP so successful in molecular physics. The key

sensitivity to the two-photon detuning, δ = 2ωc − (ωp − ωs), still allows efficient

population transfer if fluctuations are smaller than a fraction of Ω0.

The three-level analysis must be generalized to account for the multilevel
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nature of the system. No leakage from the three-level subspace occurs since the

intermediate |Φ0〉 is almost never occupied (see Fig. 6.1). On the other hand,

the control field W (t) couples also to off-resonant transitions, and may produce

dynamical Stark shifts [153] in view of the fact that STIRAP may require a large

Stokes field Ws. In fact the direct shift of the a−g splitting determines a stray two-

photon detuning δ(t) which may suppress the transfer efficiency. Fortunately the

multilevel structure mitigates this effect since the dynamical Stark shifts outside

the three-level subspace, tends to compensate the direct a − g shift. We studied

this problem considering up to 40 levels and a control field with the structure

Hc(t) = W (t)[(|g〉 〈a| + (1/η) |e〉 〈g|) + h.c.], which describes the experimentally

relevant case of a ladder type “dipole“ coupling to the artificial atom, also reflecting

an unwanted coupling to the g → e transition. η here is the ratio between the

corresponding dipole matrix elements, i.e. η := Qea/Qeg. Results in Fig.(6.2)

show that experimentally detectable population transfer is achieved also in this

non-ideal case. Moreover dynamical Stark shifts can be fully compensated by

appropriately crafted control, either using an additional phase modulation [153]

of the fields or by adding a suitable off-resonant tone to the Stokes pulse. Of

course by increasing the coupling g a large Ws is not needed any more and no

stray detuning is induced.

6.2.1 Problems with the Lambda scheme

Coming to implementation in state-of the art physical systems one has to tackle

two further problems. First of all a reliable scheme for detecting the two-photons

left in the cavity is needed, which is prohibitive for THz photons as those involved

in systems based on semiconductor quantum wells. Instead in superconducting

artificial atoms architectures GHz-photons are produced, which can be detected

with state of the art circuit-QED measurement technology. Subtile issues in

photon detection in the USC regime [154] do not affect the measurement scheme

with the uncoupled ancillary level |a〉. The multilevel nature of superconducting

artificial atoms offers moreover a natural way to implement the proposed design.

However, in real hardware the cavity is always dispersively coupled also to other

transitions of the three-level artificial atom, and in particular those involving |a〉.
This has a severe impact on the information gained by the simple protocol we

discussed. Indeed all the proposals [140, 141] based on the Lambda scheme, do not

allow unambiguous dynamical detection of USC in present day hardware. We will

first elucidate this problem, and then we will illustrate the solution, introducing
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a different STIRAP scheme showing that it provides a unique dynamical test for

USC.

We consider the relevant case of a single additional stray coupling g′ = ηg

of the cavity to the artificial atom a − g transition. The key point is that this

stray coupling may open a new channel for the two-photon target state already

in the RWA. Therefore detecting the cavity in the two photon state at the end of

the protocol is not a “smoking gun” for USC anymore, as illustrated in Fig. 6.3.

Insight is gained by using perturbation theory in the counterrotating g term of

the Rabi Hamiltonian and in the stray g′ coupling, taken in the RWA. It is seen

that |Φ0〉 acquires a component onto |1a〉 while |2a〉 gains a component onto |1g〉,
which are coupled by the Stokes field. Therefore the Rabi frequency becomes, to

lowest order in g′

Ωs(t) ≈
[

c02 −
√
2g′ 2

(ε′ − ωc)2 − g′ 2

]

Ws(t) . (6.3)

The additional term indicates that a new path for population transfer opens,

which interfere distructively with the USC channel, or may allow to reach the

target state also for c02 = 0, i.e. when USC is absent. Notice that in any of

the above cases, in practice two photons are detected in the final state, since the

correction to |2a〉 due to g′ is very small. Therefore STIRAP probes selectively

the USC channel only if the correction in Eq.(6.3) is so small that we can choose

T such that adiabatic population transfer is ensured only by the USC channel.

This necessary condition can be quantified in the perturbative regime as

A :=
1

2η2

∣

∣

∣

∣

α2 − (g/ε)2

2− (g/ε)2

∣

∣

∣

∣

� 1 (6.4)

where α := ε′/ε− 1 is the anharmonicity of the artificial atom spectrum. Notice

that the two competing contributions to Ωs(t) enter both at order g2 the condition

Eq.(6.4), which is then non trivial, and indeed it turns out that it is not met by

any currently available superconducting artificial atom. Indeed, while exhibiting

the largest figures of USC so far, architectures based on the flux (or persistent

current) qubit [4] lack of selectivity because the stray coupling is way too strong,

η � 1. A smaller η ≈ 1/
√
2 is found in circuit QED architectures based on

the transmon [74] design, which nowadays exhibit the lowest decoherence rates.

However, long coherence times require small anharmonicity, |α| . 0.1, and again

selectivity is not met. Fig. 6.3 shows that selecting the USC channel only is not

possible even for much more favourable figures than in state-of.the art devices.
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Figure 6.3: Population histories for Lambda system mimicking a favourable sit-
uation in realistic devices with ε′ = 4ε and g = 0.25ωc. Thick solid lines are the
results for g′ = 0 with the same color legend of Fig. 6.1. The additional red lines
are the populations of the target state with values of g′ = 0.1ωc (dotted line),
g′ = 0.2ωc (dot-dash line), g′ = 0.25ωc (dashed line) and g′ = 0.3ωc (solid thin
line). We see how the additional channel introduced by stray a − g coupling de-
structively interferes with the USC path, thereby determining an efficiency drop
for increasing values of g′. For g′ = 0.25 and g = 0 population transfer (not shown
here) occurs only through the JC stray coupling even in absence of USC.

Summing up present day hardware based on semiconductors or superconductors

does not allow dynamical detection of USC in the Lambda scheme.

6.3 VEE STIRAP

We now show that the above limitations can be uniquely bypassed by STIRAP

in the vee (V ) configuration. This is the central result of the work reported in

this chapter. We consider the standard configuration of a flux qubit, the lowest

energy doublet being coupled to a cavity in the USC regime. The second excited

state of the artificial atom is used as the ancillary level |a〉. The Hamiltonian is

now

H0 = HAA +H1 + ωc a
†a (6.5)

where HAA = ε |e〉 〈e| + (2 + α)ε |a〉 〈a| describes the flux artificial atom, sup-

posed to operated at an external flux bias Φx = Φ0/2, Φ0 = h/(2e) being

the flux quantum. This makes HAA symmetric with respect to fluctuations of

Φx and minimizes decoherence. The corresponding selection rule forbids the
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g − a transitions, therefore the full coupling to the cavity reads H1 = g (a +

a†)[(|g〉 〈e|+η |e〉 〈a|)+h.c.]. We consider resonant coupling to the cavity, ε = ωc,

and a control field operated via the magnetic flux coupling to both atomic tran-

sitions with Hc(t) = W (t)[(|e〉 〈a| + (1/η) |e〉 〈g|) + h.c.]. By choosing a two-

tone field with proper frequencies we can exploit two-photon processes, via one

of the intermediate states |Ψ1±〉, being the two lowest excited states of the

Hamiltonian (6.5). We first neglect the stray coupling of the e − a transition

to the cavity. Then |Ψ1±〉 are the eigenstates of the Rabi Hamiltonian (6.1)

|Φ1±〉 = d1±,0 |0e〉+ c1±,1 |1g〉+d1±,2 |2e〉+ c1±,3 |3g〉+ . . . , with eigenvalues E1±.

They reduce to the first JC doublet |ϕ1±〉 = (|0e〉 ± |1g〉)/
√
2 when the coun-

terrotating term is switched off. Population transfer |0a〉 → |2a〉 by V -STIRAP

requires, as before, a two-tone external field W (t), but in this case we must choose

ωp = (1 + α)ε − E1± − δp and ωs = (3 + α)ε − E1± − δs. Insight is gained by

projecting onto the three-level subspace span{|0a〉 , |2a〉 , |Φ1±〉}, which yields an

effective three-level Hamiltonian, the control term being

Hv
c (t) =

Ωp(t)

2
e−iωpt |0 a〉 〈Φ1±|+

+
Ωs(t)

2
e−iωst |2 a〉 〈Φ1±|+ h.c.

(6.6)

with peak Rabi frequencies Ωp = d1±,0Wp and Ωs = d1±,2Ws. In the absence

of counterrotating terms d1±,0 = 〈0e|Φ1±〉 = 1/
√
2 and d1±,2 = 〈2e|Φ1±〉 = 0,

thereby population transfer to |2a〉 occurs only in the USC regime.

We now evaluate the impact of stray couplings. To this end we first notice that

the vee configuration in flux qubits offers both advantages of large anharmonicity

α ≥ 3, and small ratio between the relevant "ladder" matrix elements, η ≈
1/3. It turns out that, contrary to the Lambda scheme, V -STIRAP provides

unambiguous evidence of the USC regime. This is clear in Fig. 6.4, where we

simulated the dynamics the the full Hamiltonian (6.5), using parameters of real

devices, showing that population transfer efficiency ∼ 100% is achieved in the

USC regime of the g − e coupling. On the contrary, if the counterrotating part

is switched off only Rabi oscillations occurr between the exact eigenvalue |0a〉 →
|Ψ0a〉 and |Ψ1±〉, which are due to the stray g′, whereas population of the target

state |Ψ2a〉 is always zero. This shows that V -STIRAP selects the USC channel.

Even more than the favorable configuration of the spectrum, the striking se-

lectivity of V -STIRAP stems from the fact that the stray coupling does not open

a new path for population transfer in lowest order, as was the case for Eq.(6.3).
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Concerning decoherence, we observe that STIRAP is essentilally sensitive to

fluctuations in the “trapped“ subspace span{|0e〉 , |2e〉} and rather insensitive to

all the other decay or dephasing processes affecting the system [48]. Efficient

population transfer is obtained if T < 1/Γ, where Γ is the decoherence rate in

the “trapped“ subspace. In high-quality devices is roughly given by the sum of

the cavity decay rate κ of the and the decay rate γa→e of the ancillary level. In

the best devices available at present these rates are very small, allowing for T

of several dozens of µs. In devices used for USC spectroscopy the cavity has a

much smaller quality factor, but there should be no fundamental tradeoff between

large g and decoherence cavity alone, allowing the fabrication of devices exploiting

the coherent dynamics in the USC regime. Alternatively large effective couplings

geff ∼
√
Ng could be attained by using few weakly coupled artificial atoms,

in the standard design allowing for > µs decoherence times. We simulated the

dynamics for N = 4 artificial atoms, and we reproduced results of Fig.(6.4) using

half of the value of g. We also checked robustness of the protocol with respect

to inhomogeneities of the individual couplings of artificial atoms and against the

possible presence of stray cavity modes at multiple frequencies.

6.5 Conclusions

In conclusion, we studied dynamical detection of the USC regime of light-matter

superpositions. An ancillary level is used as a probe, and the coherent amplifica-

tion of a USC-specific channel for population transfer, which yields a characteristic

two-photon state in the cavity. Ideally this is a unique signature of the violation

of the conservation of the number of excitations due to the counterrotating term

in the Rabi Hamiltonian Eq.(6.1). We show how to implement such design in

state of the art devices and introduce STIRAP in Vee configuration as a uniquely

selective tool to demonstrate unambiguously dynamics due to USC. Flux qubits,

besides being the physical systems with the largest figures of g/ωc > 1 fabricated

so far, also offer the ideal quantum hardware.

Amongst other protocols in the Lambda scheme, where population transfer

is obtained by SEP or by inducing Raman oscillations, STIRAP is in principle

superior beacuse of it allows ∼ 100% efficiency and it is remarkably robust against

the many and uncontrolled parametric fluctuations. What makes coherent popu-

lation transfer unique is the possibility to operate in Vee configuration, which is

resilient to the presence of stray couplings between the cavity and the artificial

atom, inevitable in a solid state architecture. While in Lambda configuration
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stray couplings provide new not USC-specific paths to population transfer, this

does not happen for V-STIRAP and population transfer is a “smoking gun” for

USC. Moreover external fields in V -STIRAP couple more strongly with the sys-

tem, allowing for easier and faster control.

Concerning experiments, we remark that the whole population history for

the Fock state |n = 2〉 of the cavity (practically equal to the population of the

target state in Fig. 6.4) can be measured. Thus more evidence can be provided

of the presence of USC than the final detection of two photons. At the same time

detection of USC is sufficiently assessed even if the population history is mesasured

only for a part of the protocol. Also adiabaticity sould not be fully enforced, since

some transient population of the intermediate state can be tolerated. Therefore

the requirement for the experiment are softened, expecially as far as decoherence

is concerned.



Chapter 7

Non-equilibrium thermodynamics

of continuously measured

quantum systems

We propose a fully operational framework to study the non-equilibrium thermo-

dynamics of a quantum system S that is coupled to a detector D whose state

is continuously monitored, allowing to single out individual quantum trajectories

of S. In particular, we focus on detailed fluctuation theorems and character-

ize the entropy production of the system. We establish fundamental differences

with respect to the thermodynamic of unmonitored, unitarily evolved systems.

We consider the paradigmatic example of circuit-QED, where superconducting

qubits can be coupled to a continuously monitored resonator and show numerical

simulations using state of the art experimental parameters.1

7.1 Introduction

The origin of dynamic irreversibility and the emergence of the arrow of time

from the microscopic foundations of quantum mechanics have attracted significant

interest in the past few years [61, 156, 71]. In particular, recent efforts in the field

of non-equilibrium quantum thermodynamics resulted in the characterization of

irreversibility in terms of fluctuation theorems [65] and entropy production [70].

The standard formulation of non-equilibrium thermodynamic quantities uses

1The content of this chapter has been adjusted, with minor modifications, from P.G. Di
Stefano, J.J. Alonso, E. Lutz, G. Falci and M. Paternostro, Non-equilibrium thermodynamics
of continuously measured quantum systems, in preparation.
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explicitly time-gated multi-measurement strategies [65]. Notwithstanding the suc-

cess encountered by such formulations in describing the thermodynamic implica-

tions of non-equilibrium processes all the way down to the quantum domain [71],

such requirements are very difficult to be met in practice. Indeed, the common

experimental configurations typically involve the continuous interaction between

a system and a measurement apparatus. Such interaction can result in either

strong projective measurements of the state of the quantum system at hand, or

only the acquisition of partial information on it. Recently, a theoretical frame-

work for the analysis of stochastic thermodynamics of weakly monitored quantum

systems was put forward [157, 166].

Here we make further steps along the lines of defining a fully operational

framework for stochastic thermodynamics of continuously monitored systems by

considering the case of a (dynamical) detector coupled to a system of interest and

being continuously monitored. This situation adheres perfectly with the configu-

rations typically engineered and encountered in a wide range of experiments. In

particular, circuit-QED systems embody a very suitable platform, where the sys-

tem is typically provided by a set of superconducting information carriers, while

the field of a stripline resonator plays the role of the continuously monitored

dynamical detector [30]. This offers a virtually ideal scenario for the study of

stochastic thermodynamics of continuously monitored systems, and the investi-

gation of the deviates from the time-gated approach that has dominated the field

to date. In particular, our work sets the theoretical context for the experimental

analysis of irreversibility in the non-equilibrium dynamics of a driven supercon-

ducting device as quantified by the irreversible entropy production, and the test

of the continuous-monitoring version of fundamental fluctuation theorems.

7.2 Non-equilibrium thermodynamics of closed quan-

tum systems

The typical setting for a non-equilibrium thermodynamics experiment in closed

quantum systems is the following: a system S of Hamiltonian HS(λt) =
∑

εk(λt) |nλt〉 〈nλt |
is initially (time t = 0) in equilibrium with its environment at inverse temper-

ature β, i.e. ρS(0) = ρ0, where we defined the Gibbs state ρt = e−βHS(λt)/Zt

with Zt = Tr[e−βHS(t)] the partition function. It is then brought out of equi-

librium by the application of an external force protocol λt parametrized in the

time interval [0, τ ]. In the closed quantum systems scenario, it is assumed that

in [0, τ ] the system is effectively detached from its environment and that S
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evolves unitarily through the time-evolution operator Ut1,t2 := T e−i
∫ t2
t1

dt′ H(λt′ ),

where T is the time-ordering operator. The non-equilibrium work performed

on the system is usually defined [158] as a stochastic variable W whose sin-

gle realizations εm(τ) − εn(0) are weighted by the probability of observing a

|nλ0〉 → |mλτ 〉 transition due to the application of the force protocol. Identi-

fying p(mτ , n0) = Tr[Πτ
mUτ,0Π

0
nρ0Π

0
nU†τ,0], where Πt

k = |kλt〉 〈kλt |, as the prob-

ability for such a transition to occur, one may define the work distribution as

pF (W ) =
∑

mτ ,n0 p(mτ , n0)δ(W − εm(τ)+ εn(0)). In order to address irreversibil-

ity, the corresponding backward work distribution is usually considered, where

the force protocol is reversed in time. One then looks at the probability of the

backward transition Θ |mλτ 〉 → Θ |nλ0〉, Θ being the time-reversal operator, with

initial statistics given by the Gibbs state ρ̃τ = ΘρτΘ
† at time t = τ when the

backwards protocol λ̃t = λτ−t is applied. In considering the backwards protocol,

we will assume that the Hamiltonian of the systems obeys a time-reversal sym-

metry of the form ΘHS(λt)Θ
† = ελHS(λτ−t) where ελ = ±1. We call pB(W )

the corresponding backward work distribution and state the Crooks fluctuation

theorem [67]

pF (W )/pB(−W ) = exp[β(W −∆F )], (7.1)

where we used the free energy difference ∆F = −1/β log(Zτ/Z0). By integrating

over W one gets the celebrated Jarzynski identity 〈e−β(W−∆F )〉 = 1, which entails

the second law through the Jensen inequality 〈σ〉 ≥ 0, where the irreversible

entropy production σ = β(W −∆F ) has been defined.

7.3 Quantum stochastic thermodynamics: a Circuit-

QED implementation

The closed quantum systems paradigm is in contrast with the approach of clas-

sical stochastic thermodynamics. In the latter, work realizations are described in

terms of trajectories of a classical system in the phase space. In this section, we

propose an implementation of a non-equilibrium thermodynamics experiment us-

ing the framework of quantum stochastic thermodynamics [166]. We thus exploit

the formalism of quantum trajectories considering a system that is continuously

monitored during its evolution through the coupling with a detector D. By do-

ing so, we are able to single out individual quantum trajectories and characterize

irreversibility in a way that is compatible with the classical picture. Despite

methodological similarities, though, we point out that important differences arise
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Figure 7.1: Setup for a circuit QED implementation. A superconducting qubit is
coupled to a resonator, through which it is measured and controlled. Measurement
is performed by means of continuous homodyne observation of the amplified cavity
field. A strong local oscillator provides a second amplification stage producing an
output current I(t) encoding information about qubit and resonator.

due to the back-action of quantum measurement on the system state.

We specifically address the platform typical of circuit-QED implementations,

as as the one depicted in Fig. 7.1. We thus consider a superconducting qubit, e.g. a

transmon [74], coupled to a microwave resonator in the strong dispersive coupling

regime. The latter is used both to drive (thus acting as a forcing mechanism) and

to measure the qubit [30]. Recently, continuous monitoring in circuit-QED has

been successfully employed to observe single quantum trajectories of a transmon

qubit [159, 34, 160, 161] and quantum jumps [162]. We have reviewed the weak,

diffusive regime of quantum trajectory theory for the Circuit-QED system in Sec.

2.2.1.

We shall regard the qubit as our system of interest S and the resonator as

the detector D. The S + D system is driven by a “forcing" field oscillating at

frequency ω(t)/2π and almost resonant with the qubit frequency ω0/2π, and by a

“measurement" field having angular frequency ωd that is, for simplicity, assumed

exactly resonant with the resonator frequency ωc/2π. Qubit and resonator will

be dispersively coupled, i.e. g � ∆, where g is the strength of the coupling and

∆ = ω0 − ωc is the cavity-qubit detuning. We will also assume g � ω0,c, i.e. we

will be outside the so-called ultra-strong coupling[4], as it is the case in most of

the implementations reported so far in literature. The Hamiltonian of the total

system can be split as

H = HS +HD +Hint (7.2)

where we defined the detector Hamiltonian HD = ω0 a
†a+εd (aeiωdt+a†e−iωdt), a

being the annihilation operator for the resonator field, and the interaction Hamil-

tonian is Hint = χσza
†a, where σi are the usual Pauli operators. Here χ = g2/∆
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is an effective coupling in the dispersive regime determining a Stark shift of the

cavity frequency conditional on the qubit state, which is the physical mechanism

for the qubit detection. The dispersive regime also implies weak coupling between

qubit and field, allowing us to separately define energies. The system Hamiltonian

HS can be split into

HS = H0 +Hλt
(7.3)

where H0 = ω0σz/2 is the bare Hamiltonian of the qubit and Hλt
= δω0(t)σz/2+

Ω(t) cos(ϕ(t))σx is the time-dependent contribution that implements the force

protocol. In circuit-QED, the available control that can be exploited in order

to manipulate the system breaks down into independent tunability of both the

qubit frequency δω0(t), achieved through the application of a time-dependent

magnetic field in the SQUID loop of the device, and the parameters of the external

microwave field, i.e. the amplitude Ω(t) and phase ϕ(t).

The conditional stark shift Hint allows for the the state of the qubit to be

mapped onto a quadrature of the field. In our model this has been set to be

the in-phase quadrature X0, where we defined the quadrature of phase φ as

Xφ = (aeiφ + a†e−iφ)/
√
2. Continuous monitoring can thus be done through

homodyne measurements of the field leaking out of the resonator at rate κ [89].

The homodyne photocurrent resulting from the mixing of the cavity field with

a strong local oscillator tuned on the phase of the quadrature X0 is therefore

continuously observed inducing quantum back-action on the S +D system. The

evolution of the system over a single quantum trajectory will be thus conditional

on the measured photocurrent. In order to describe the dynamics of the system,

we slice the time interval [0, τ ] into small but finite time intervals δt = tj+1 − tj

with 0 < t1 < t2 < ... < tN < τ . Here, δt is chosen to be much smaller than the

shortest time-scale of the problem, so that we can approximate Uti,ti+1 ' 1−iHδt.
The effect of a measurement can be modelled through the positive operator val-

ued measurement (POVM) Lx, such that
∫

dxL†xLx = 1, where x refers to the

average value of the homodyne photocurrent over δt. In the small time interval

δt, the overall dynamics of the system can be effectively factorized into two in-

dependent contributions given by unitary evolution and measurement. Defining

the operators Oti = LI(ti+1)Uti,ti+1 , the evolution of the system, conditional to

the observation of the average photocurrent stream I = {I(0), I(t1), ..., I(tk)}, is
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therefore given by

ρD+S(tk) =
(
←
∏

i<kOti)ρD+S(0)(
→
∏

i<kO
†
ti
)

Tr[(
←
∏

i<kOti)ρD+S(0)(
→
∏

i<kO
†
ti
)]
, (7.4)

where the arrows imply time ordering. In the homodyne measurement scheme for

circuit-QED, measurement operators are given by Lx = [1−1
2κa

†aδt+x
√
κδt]

√

po(x),

where po(x) = exp(−δtx2)/
√

δt/2π is the ostensible [87] probability density of

obtaining the result x for the homodyne photocurrent. We should point out that

additional decoherence terms may add up in the dynamics of the system, caused

by relaxation and dephasing of the qubit. We did not include those terms in our

analysis since, as it will be argued later, decoherence rates are small enough in

present technology to have a negligible effect in the time scale relevant to the

experiment.

The statistics of the qubit alone is, in general, given by partial tracing over

the detector degrees of freedom. Nonetheless, in the limit of a sufficiently weak

measurement, i.e. when the average number of photon is n̄ = (εd/κ)
2 � 1, χ � κ

and the driving is weak, i.e. Ω � κ, the qubit and the detector develop negligible

entanglement [83] and the dynamics of the S can be factorized from the dynamics

of D. The qubit density matrix at time tk will be therefore given by (see Sections

2.2.1 and 7.A)

ρS(tk) =
(
←
∏

i<kQti)ρS(0)(
→
∏

i<kQ
†
ti
)

Tr[(
←
∏

i<kQti)ρS(0)(
→
∏

i<kQ
†
ti
)]

(7.5)

where Qti = MI(ti+1)e
−i

∫ ti+1
ti

dtHS(t) and the POVM operators for the qubit alone

are given by

Mx =
√

P0(x) |0〉 〈0|+
√

P1(x) |1〉 〈1| . (7.6)

Here we defined the probability distributions Pj(x) = e−iδt/2(x+(−1)j
√
Γd)

2
[163]

(see, also, Section 7.A), with the measurement rate given by Γd = 16χ2n̄/κ.

During its evolution, the system will experience transformations in its internal

energy U(t) = Tr[ρSHS ]. The infinitesimal variation dU(ti) = δWi + δQi of the

latter can be split into a unitary and a back-action term, i.e.

δWi = Tr[ρS(ti) dH(ti)], δQi = Tr[H(ti) dρS(ti)], (7.7)

where the discretized differential is dX(ti) = X(ti+1) −X(ti). Correspondingly,

we will define work and heat as W (t) =
∑

ti<t δWi and Q(t) =
∑

ti<t δQi. Notice
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that the above definition of work is fundamentally different from the usual one

for closed systems. In the latter case, as mentioned above, work realizations are

determined as differences between eigenvalues of the final and initial Hamiltonian.

For a system is continuously monitored, on the other hand, work can be defined at

the single trajectory level as a time-dependent stochastic process. This is similar,

in spirit, to the approach of classical stochastic thermodynamics [64] with the

fundamental difference that, while in classical physics a trajectory in phase space

can be monitored without disturbing its dynamics, measurement back action plays

a fundamental role in quantum systems, generating the heat term Q. The latter

has been given a straightforward interpretation in Refs. [157, 166] as the amount

of work an external daemon would need to contribute in order to counter quantum

back action.

We are now concerned with the characterization of irreversibility for this sys-

tem, which can be done by means of detailed fluctuation theorems. The probabil-

ity of observing a particular single trajectory in the Hilbert space, though, cannot

be defined, as it was the case for closed systems, only through its end points. The

stochastic evolution of the system’s state have, in fact, to be taken into account.

From Eq. (7.5), we see that a single trajectory can be fully characterized if we

also take into account the measured current I(t). The probability of observing

a trajectory starting from |n0〉 and ending in |mτ 〉 while measuring I(t) is then

given by

pF (m
τ , I(t), n0) = Tr[Πmτ (

←
∏

i

Qti)Πn0ρ0Πn0(
→
∏

i

Q†ti)] (7.8)

In the spirit of the detailed fluctuation theorem of Eq. (7.1), we will again con-

sider a backwards trajectory starting in Θ |mτ 〉 and ending in Θ |n0〉 where the

time-reversal force protocol is applied together with the time-reversal POVM op-

erators M̃x. Employing the operators Q̃ti = Uti,ti+1 [λ̃(t)]M̃Ĩ(ti+1
, where M̃Ĩ(t) =

θM †I(τ−t)θ
† are the time-reversed measurement operators, we define the probabil-

ity of the backward trajectory as

pB(n
0, Ĩ(t),mτ ) = Tr[Π̃n0(

←
∏

i

Q̃ti)Π̃mτ ρ̃τ Π̃mτ (

→
∏

i

Õ†ti)], (7.9)

where Π̃k = ΘΠkΘ
† and ρ̃τ = ΘρτΘ

†. It has been shown in Ref. [68] that one
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can state a generalized detailed fluctuation theorem as

pF (m
τ , I(t), n0)

pB(n0, Ĩ(t),mτ )
= eβ(∆Unm−∆F ), (7.10)

where the internal energy difference is defined as ∆Unm = εm(τ) − εn(0). We

should point out that, in general, with such a notion of time reversal, pB is not

a proper probability distribution, i.e.
∫

pB(n
0, Ĩ(t),mτ )DI 6= 1, where DI is a

measure for the path integral. The normalization condition holds if and only if
∫

dx MxM
†
x = 1, which is indeed the case for the reduced dynamics for the qubit,

where the measurements operators are hermitian. The probability distribution of

the internal energy can then be written as

p(∆U) =
∑

m,n

∫

DI pF (m
τ , I(t), n0)δ(∆U −∆Unm), (7.11)

which immediately gives 〈e−σ〉 = 1. Here, the entropy production σ = β(W +

Q − ∆F ) allows again to derive the second law of thermodynamics 〈σ〉 ≥ 0 by

virtue of Jensen inequality. Notice that the heat term [166] is a unique feature of

quantum back-action, and has thus no equivalent neither in the closed quantum

system case, nor in the classical stochastic thermodynamics case.

In order to numerically simulate our results, we made use of parameters bor-

rowed from state of the art technology [159]. In particular, we considered an

architecture involving transmon with ω0/2π = 4 GHz, a leaking rate of the res-

onator at κ/2π = 10 MHz and coupling constant χ/2π = −0.5 MHz. We also

set the amplitude of the measurement field so to have, as in Ref. [159], an av-

erage number n̄ = 2(εd/κ)
2 = 0.4 of photons in the cavity. These parameter

yield a measurement rate Γd/2π = 160KHz, which gives a measurement time [89]

tm = 1/(2Γd) ' 500ns, which is usually much smaller than energy relaxation and

pure dephasing times for a state-of-the-art transmon (T1 ∼ T ∗2 & 10µs). This

enabled us to neglect energy relaxation and dephasing in our model.

We considered a force protocol in which the frequency of the qubit and the

amplitude of the field are both quenched, i.e.

δω0(t) = ∆ω θ(t− τ

2
), Ω(t) = Ω0 θ(t−

τ

2
), (7.12)

where we used values ∆ω/2π = 400MHz and Ω0/2π = 1MHz, while we kept the

external drive frequency constant, i.e. ϕ̇(t) =: ω = ω0 +∆ω.

In Fig. 7.2 we plot the results of our simulations. Fig. 7.2(a) shows how the
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7.4 Conclusions

We proposed a fully operational framework for the exploration of stochastic quan-

tum thermodynamics. We have shown how detailed fluctuation theorems verifi-

cation and measurement of witnesses of irreversibility such as the entropy pro-

duction are easily accessed in circuit-QED architectures. Finally, we have shown

how high quality experiments can be set up in existing labs employing state of

the art technology.

7.A Derivation of the dynamical equations

In the present appendix, in order to simplify the notation, we shall refer to the

system’s state as ρ and to its Hamiltonian as H := 1/2δωσz +Ω(t)σx. In section

2.2.1 we studied the theory of continuously monitored systems in circuit-QED

and, in particular, reported in Eq. (2.53) the dynamics of the qubit alone when

negligible entanglement is developed with the resonator. Our purpose here is to

derive Eq. (7.5).

For numerical simulations and in order to take into account the finite band-

width of the electronics in the circuit, a discretized version of Eq.(2.53) must be

employed, reading

ρ00(t+ δt) = ρ00(t) + (−2H01Im{ρ01}
+ 2

√

Γdρ00ρ11(I −
√

Γd〈σz〉))δt
ρ01(t+ δt) = ρ01(t) + (iH00ρ01 + iH01(ρ00− ρ11)

−
√

Γd(ρ00 − ρ11)(I −
√

Γd〈σz〉)−
Γd

2
ρ01)δt

(7.13)

where δt is a small, but finite, time interval such that δt � 1/H01,Γd and the

current I := 1
δt

∫ t+δt
t dt′ Ih(t′) has been introduced and Ih is the full spectrum

homodyne current introduced in Sec. 2.2.1. Notice that I can be written as

I := 〈σz〉 + ξ̄, ξ̄ being now gaussian distributed with standard deviation δt−1/2.

The probability distribution for I will then be

P (I) =

√

δt

2π
e−

δt
2
(I−
√
Γd〈σz〉)2 (7.14)

We shall now show how the dynamics can be approximated, up to the order one

in δt, with Eq. (7.5) in the main text. When a current sample I is measured, the
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conditional evolution over a single time step is given by:

ρ(t+ δt) =
Ut,t+δtMIρ(t)M

†
IU
†
t,t+δt

Ut,t+δtMIρ(t)M
†
IU
†
t,t+δt

(7.15)

where MI have been given in Eq. (7.6) in the main text. At first we are go-

ing to assume H = 0, i.e. Ut,t+δt = 1. Adding the unitary term will be then

straightforward. In the measurement basis, Eq. (7.15) can be written as

ρ00(t+ δt) =
ρ00(t)P0(I)

ρ00(t)P0(I) + ρ11(t)P1(I)

ρ01(t+ δt) =
ρ01(t)

√

P0(I)P1(I)

ρ00(t)P0(I) + ρ11(t)P1(I)

(7.16)

notice that, for δt−1 � Γd the mixture distribution on the denominator is indis-

tinguishable from Eq. (7.14), i.e. P (I) ' ρ00P0(I) + ρ11P1(I). Substituting this

expression into Eq.(7.16) and using ξ̄ = I −
√
Γd〈σz〉 we get

ρ00(t+ δt) = ρ00(t)e
−δt (ξ̄−q1)

2

2 eδt
ξ̄2

2

ρ01(t+ δt) = ρ01(t)

√

e−δt
(ξ̄−q0)

2

2 e−δt
(ξ̄−q1)

2

2 eδt
ξ̄2

2

(7.17)

where we defined qi := −2
√
Γdρii. Expanding up to second order in q1 and q2 and

approximating ξ̄2 = δt [87] gives Eq. (7.13) with H = 0. Introducing now the

unitary term through Eq.(7.15) and expanding up to the leading order in δt can

be easily shown to reproduce the full structure of Eq. (7.13), therefore justifying

our model.
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Chapter 8

Conclusions

In this work we have discussed how advanced control techniques can be applied

to superconducting qubits. In particular, we discussed techniques for popula-

tion transfer in Lambda systems like conventional STIRAP, cSTIRAP and 2+1-

STIRAP. We have shown that almost unit transfer efficiency can be achieved with

present technology devices. Our work paves the way towards several applications

in quantum technologies, such as holonomic quantum computation, secure quan-

tum communication between distant nodes and highly non-classical microwave

radiation manipulation.

We have shown how Ultra Strong Coupling effects can be dynamically am-

plified and detected using STIRAP. This can be achieved in state of the art flux

qutrits in a robust and efficient way uniquely showing features of non-classical

light-matter coupling, such as non conservation of excitations number.

We have, finally, proposed an experimental implementation to study how ir-

reversibility and the arrow of time arise at the quantum level. We have shown

how stochastic thermodynamics can be used to show the validity of fluctuation

theorems and to witness irreversibility by means of the entropy production.
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Appendix A

Quantum circuit theory

Our goal is to find a systematic procedure for writing the quantum Hamiltonian

of a general non-dissipative electric circuit. In order to do this, it is convenient to

write the circuit dynamical equations in terms of charges and fluxes rather than

the usual currents and voltages. Charges and fluxes, as we shall see, will serve

as conjugate coordinates for the Hamiltonian formalism. Our discussion will be

mainly based on the work of Devoret [164]. More recently, the quantum theory

of electrical circuits has been reviewed in Ref. [72].

A.1 Circuit theory in terms of fluxes and charges

We formally describe a lumped elements circuit as a connected graph whose

branches are two-terminal electrical components characterized by two variables,

namely the branch current and the branch voltage. For each branch b, we define

branch fluxes Φb and branch charges Qb as:

Φb(t) =

∫ t

−∞
dt′vb(t

′) (A.1)

Qb(t) =

∫ t

−∞
dt′ib(t

′) (A.2)

where vb and ib are, respectively, branch voltage and current of b. Each branch

has a constitutive relation, named branch relation, connecting currents and volt-

ages. This relation is not necessarily algebraic: it can in fact be differential.

Depending on the form of the branch relation, circuital elements are classified

as resistive, capacitive or inductive. A resistor is a component who exhibits an

algebraic relation (or characteristic) in the ib/vb plane, capacitors and inductors

99
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have characteristics, respectively, in the Qb/vb and in the Φb/ib, i.e.

vr = φ(ir); vc = f(Qb); il = g(Φl). (A.3)

The instantaneous power flowing in such elements is given by the product of the

current times the voltage: pb(t) = vbib = vbQ̇b = Φ̇bib. So we can write the energy

of a capacitor as:

hc(Qb) =

∫ Qb

0
dQf(Q) (A.4)

Analogously for an inductor:

hl(Φb) =

∫ Φb

0
dΦf(Φ) (A.5)

A.1.1 Kirchhoff’s laws and cut-set analysis

C2 L2

C3

L3

C1L1

(a) (b)

ba

g

Figure A.1: (a) Example of a non-dissipative reactive circuit. (b) The same circuit
where we emphasized the tree (solid branches) and the links (dashed branches).

Branch fluxes and charges can’t be taken as conjugate variables, since they

are not independent. Kirchhoff’s laws of currents and voltages must, in fact, be

satisfied. That is, the algebraic sum of currents arriving at a node n and the

algebraic sum of voltages in a loop l must both be zero. In terms of fluxes and

charges, for any loop l and for any node n, the Kirchhoff’s laws can be restated

as follows:
∑

all b around l

Φb = Φ̃l (A.6)

∑

all b arriving at n

Qb = Q̃n (A.7)

The set of all Kirchhoff’s laws for a circuit is not, in general, a set of linearly inde-

pendent equation. The problem to find a complete set of independent equations
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have is solved using different methods like node analysis, loop analysis or mesh

analysis. In the following we will make use of cut-set analysis.

First, we have to introduce node variables. Unlike branch variables, node

variables depend on a particular description of the topology of the circuit. We

will use the following. One node, say g, is chosen as a reference ground node.

The others are referred to as active nodes. The graph G representing the circuit

is divided into a tree T and a set L of links: G = T ∪ L. T is formed choosing

a set of branches such that T contains every node and for each node n a unique

path in T exists connecting n to g. The remaining branches are in L := G
T . In the following we will refer to the example of fig. A.1.1, that we borrowed

from Ref. [164]. It can be shown that for each branch b ∈ L only one loop l(b)

exists that contains b and no other branches in L. These loops are usually called

fundamental loops [165]

We can now define the node flux Φn of the node n as the time integral of the

sum of the voltages of the branches connecting g to n, namely:

Φn =
∑

b

SnbΦb (A.8)

where Snb is 1, -1 or 0 depending on whether b is in the path connecting g to

n with the proper orientation (within the convention chosen for the signs of the

branch voltages), with the opposite orientation or it is not present. Conversely,

we can write the flux of the branch b connecting nodes n and n′ in terms of the

node fluxes Φn and Φn′ . Attention must be paid in including the static fluxes

Φ̃l(b) corresponding to the fundamental loops of the links.

Φb∈T = Φn − Φn′ (A.9)

Φb∈L = Φn − Φn′ + Φ̃l(b) (A.10)

Each b ∈ T is associated to a fundamental cut-set. We define a fundamental

cut-set as follows. Let us remove bt ∈ T from T . The tree will now be composed

of two unconnected parts, say A and B, identified by two set of nodes. The

links connecting the nodes of A to the nodes of B, together with bt, form the

fundamental cut-set. It can be shown [165] that the set of the Kirchhoff’s current

laws at the fundamental cut-sets, expressed in the branch fluxes, is a set of linearly

independent linear differential equations.
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A.2 Lagrangian formalism for electric circuits

Let us refer to the circuit of fig A.1.1(b) where we have emphasized the tree (solid

line) and the links (dashed lines). Equating the current of the capacitors to the

current of the inductors, each expressed in terms of the branch variables yields:

C1Φ̈C1 + C3Φ̈C3 =
ΦL1

L1
+

ΦL3

L3
(A.11)

C2Φ̈C2 − C3Φ̈C3 =
ΦL2

L2
− ΦL3

L3
(A.12)

If we now express the branch variables ΦCi
,ΦLi

in terms of node variables Φa and

Φb we find:

C1Φ̈a + C3(Φ̈a − Φ̈b) =
Φa

L1
+

Φa − Φb + Φ̃

L3
(A.13)

C2Φ̈b − C3(Φ̈a − Φ̈b) =
Φb

L2
− Φa − Φb + Φ̃

L3
(A.14)

Equations A.13 and A.14 are the Eulero-Lagrange equations for a Lagrangian

obtained subtracting the magnetic energy of the inductors from the electric energy

of the capacitors, namely:

L =K − U =

=
C1Φ̇

2
a

2
+

C2Φ̇
2
b

2
+

C3(Φ̇a − Φ̇b)
2

2
−
[

Φ2
a

2L1
+

Φ2
b

2L2
+

(Φa − Φb)
2

2L3

] (A.15)

Node fluxes, thus, play the role of generalized coordinates in classical Lagrangian

mechanics.

A.3 Hamiltonian formalism for electric circuits

In order to derive the Hamiltonian of the circuit of Fig. A.1.1, we define the

conjugate momenta as:

qn =
∂L
∂Φ̇n

(A.16)

If we look at eq. A.15, we immediately identify qa and qb as the algebraic sum

of the charges stored at nodes a and b respectively. Hence, node charges are the

momenta conjugated to the node fluxes. The Hamiltonian is obtained by the
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usual Legendre transformation:

H =
∑

n

qnΦ̇n − L =

=
1

C1C2 + C1C3 + C2C3

[

(C2 + C3)q
2
a

2
+

(C1 + C3)q
2
b

2
+

C3(qa − qb)
2

2

]

+
Φ2
a

2L1
+

Φ2
b

2L2
+

(Φa − Φb)
2

2L3

(A.17)

A.4 Quantization of the model

Quantization of the model is obtained by promoting the canonically conjugated

variables appearing in the Hamiltonian of Eq.(A.17) to operators in a Hilbert

space:

Φi →Φ̂i

qi →q̂i

satisfying the canonical commutation relation, i.e.:

[Φ̂i, q̂j ] = iδij~ (A.18)

where δij is the Kronecker delta.

Writing the expression of the classical Hamiltonian in terms of these operators

yields the quantum Hamiltonian. For the circuit of Fig. A.1.1 we thus find:

Ĥ =
1

C1C2 + C1C3 + C2C3

[

(C2 + C3)q̂
2
a

2
+

(C1 + C3)q̂
2
b

2
+

C3(q̂a − q̂b)
2

2

]

+
Φ̂2
a

2L1
+

Φ̂2
b

2L2
+

(Φ̂a − Φ̂b)
2

2L3

(A.19)

The procedure highlighted so far is completely general for non-dissipative sys-

tems. Summing up, it consists in writing the Lagrangian in terms of the flux nodes

by subtracting the magnetic energy to the electrostatic energy, then Legendre

transforming to a classical Hamiltonian and quantizing via canonical quantiza-

tion. It can be applied also in the presence non-linear elements such as Josephson

junctions, i.e. non-linear inductors whose magnetic energy is given by Eq.(2.2).
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Appendix B

Magnus Expansion and Average

Hamiltonian Theory

We consider a time-dependent Hamiltonian H(t). Our goal is to find an effective

Hamiltonian H̃(t) capturing the dynamics on a coarse grained scale, defined by

the small but finite time interval ∆t. To this end we write

U(t+∆t; t) = T e−i
∫ t+∆t

t
dt′H(t′) =

←
∏

k=1

e−iHk δtk (B.1)

where we consider n → ∞ time slices δtk with
∑n

k=1 δtk = ∆t and define Hk :=

H(tk) with tk belonging to the k-th time slice. Moreover T is the time-ordering

operator for the continuous case, while the arrow stands for time-ordering in

the discretized one. By repeated application of the Campbell-Baker-Hausdorff

relation

eAeB = exp{A+B +
1

2
[A,B] + ...} (B.2)

we can write U(t+∆t; t) = e−iH̃∆t(t)∆t, where H̃∆t(t) is given up to second order

by

H̃∆t(t) =
1

∆t

∫ t+∆t

t
dt′H(t′)− i

2∆t

∫ t+∆t

t
dt′

∫ t′

t
dt′′[H(t′), H(t′′)] (B.3)

In many cases this expression can be approximated by a ∆t independent one,

i.e. H̃∆t(t) ' H̃(t). The resulting averaged U(t + ∆t; t) = e−iH̃(t)∆t allows

to approximate U(t, t0) ≈ T e
−i

∫ t

t0
dt′H̃(t′)

. In this way, H̃(t) is identified as an

effective Hamiltonian capturing the dynamics in a coarse grained fashion, which

is the main result of average Hamiltonian theory.
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We now refer explicitly to the problem of finding the effective Hamiltonians

of Eqs.(5.4) and (5.9). We carried out calculations in the interaction picture

defined by H0 [see Eq.(5.1)]. In our case each component of the pump pulse is

far detuned from each transition, allowing us to take ∆tδkij � 1, where δkij :=

|ωij − ωpk|. Since Ωr, |φ̇pk′(t)|, 1/T � δkij , we are allowed to choose ∆t such that

∆t/T,∆tΩr,∆t|φ̇p2,s(t)| � 1. Then the effective Hamiltonians Eqs. (5.4) and

(5.9) are obtained from Eq. (B.3) by bringing out of the integrals all the slowly

varying terms and subsequently neglecting terms of order (δkij∆t)
−1 or higher, so

that ∆t will not appear in H̃. The physical quantities that this procedure yields

are Stark shifts in the diagonal elements and amplitudes for two-photon processes

in the off-diagonal elements of H̃.



Appendix C

2+1 STIRAP with an always-on

pump coupling

In chapter 4 we studied a technique tailored to circuit-QED architectures, were

hardware limitations impose the non modulability of the coupling. In chapter 5,

on the other hand, we saw how a 2+1-photon version of conventional STIRAP

can be employed with artificial atoms biased at symmetry points with almost unit

efficiency. While in chapter 5 we made use of gaussian pulses [see Fig.5.1(b)], in

this appendix we briefly show how a good transfer efficiency can be achieved

by employing an always-on field as one of the two fields composing the two-

photon pump. This has obvious applications to circuit-QED architectures with

the resonator dispersively coupled to the artificial atom.

We will, thereby, employ a gaussian shaped Ωp1 and an always-on Ωp2. We

will, then, consider a gaussian Ωs as in chapter 5 and use the phase-modulation

of Eq.(5.5). For simplicity, we will only consider the anharmonic case of the

flux qudit, where the three-level approximation is possible. We plot the result

in Fig.C.1(b), while in Fig.C.1(a) we give the results for the gaussian pulses for

comparison.

We notice that, while the effective Hamiltonian Eq.(5.3) is invariant if we

change p1 ↔ p2, protocols with always-on Ωp1 are less faithful, since the constant

field produces small Rabi oscillations between |0〉 and |1〉 at the beginning of the

protocol, when |0〉 is populated. Instead the always-on Ωp1 scheme works better

for the time-reversed protocol.
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Figure C.1: (a) Populations histories vs Ω0t of the 2+1 STIRAP protocol
(coloured lines), for always-on Ωp2. Gray lines are the populations of the ef-
fective Hamiltonian Eq. (5.4), capturing very well the coarse-grained dynamics.
Here Max[Ωs,p(t)]T = 50 (b) The protocol with always-on Ωp1 with the same
figures, proves to be less faithful.
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