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INTRODUCTION 

  The use of eddy current devices is very common in several areas of 

Electrical Engineering such as non-destructive testing, electrical machines and 

induction heating. The latter, particularly, in the last decades, was widely 

applied to several fields, including heavy industry, chemical industry, electro-

medical devices, domestic appliances. In fact this technique has a number of 

intrinsic advantages: such as a very quick response and a good efficiency. 

Induction heating also allows heating very locally, the heating speeds are 

extremely high because of the high power density and the heating process can 

be regulated precisely. The environmental impact is low, thanks to no 

production of flue gas and to the possibility to recover an important part of heat 

losses. 

The aim of this work was the development of numerical methods for 

analysis and design of induction devices. The analysis of these devices is 

usually tackled by means of numerical techniques and can be often very hard 

due to the necessity to deal with a three-dimensional electromagnetic field 
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problem that extends to infinity. In the case of an induction heating devices the 

electromagnetic analysis is coupled with a non linear thermal one. The 

proposed approach minimizes the computational cost of analysis with no loss of 

accuracy.  

At first, a reduction of the number of numerical unknowns was 

obtained restrincting the FEM domain to conductors region by means of the 

new FEM-SDBCI method (Singular Dirichlet Boundary Condition Iteration), 

explained in Chapter I. The method is described for three-dimensional eddy 

current problems in which the electrical field is used as unknown in a mesh of 

edge elements. This method alleviates the major drawback of FEM-DBCI, that 

is, the insertion of some element layers between the integration and truncation 

surfaces and consequently allows the use of a common mesh for thermal 

analysis in coupled  problems. The procedure couples a differential equation for 

the interior problem in terms of the electric field with an integral equation for 

the exterior one, which expresses the Dirichlet condition on the truncation 

boundary; note that, without the insertion of element layers between inner 

domain and truncation boundary, the integral equation becomes singular. The 

global algebraic system is efficiently solved in an iterative way. The use of an 

efficient mesh generator based on an artificial neural network which allows 

good-accuracy solutions with a lower computational effort is also described. 
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The generator grows an initial (moderately coarse) mesh of edge elements of 

tetrahedral shape up to a user-selected number of nodes. The mesh growth is 

driven by a node probability density function, which is obtained from an error 

estimation for the solution of the eddy current problem with the initial coarse 

mesh.  

In Chapter II a strategy to perform FEM solutions of coupled 

electromagnetic-thermal problems is described. In this kind of problems, the 

electromagnetic one needs the large part of computing time; it is possible to 

limit the number of electromagnetic solutions by means of a control on the 

variations of temperature-dependent electric parameters. The solution of the 

eddy current problem leads to the calculation of power density in each finite 

element. Starting from this power density, a transient thermal analysis 

employing nodal tetrahedral finite elements of a given order is carried out. The 

thermal conductivity and the specific heat are assumed to be temperature-

dependent. To solve the transient non linear problem, a Crank-Nicolson scheme 

was implemented.  

In order to perform the design of induction devices the proposed 

analysis method was used as evaluation block into an optimization strategy 

particularly suitable to tackle this kind of problems, the PSALHE-EA 

algorithm, described in Chapter III. The PSALHE-EA has some new features 
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that permit to considerably reduce the overall optimization time allowing to 

make full use of parallelization. Moreover, it is able to identify multiple optima  

by locating global as well as local optima; this aspect could be advantageous in 

industrial design, because the designer may want to see several design 

alternatives. The tests performed show that PSALHE-EA is a very efficient 

hybrid optimization method and in this work it was successfully applied to the 

design of an induction heater for conductor pieces. 

   

1  
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Chapter I 

Electromagnetic Analysis of Induction Devices 

by means of the Singular FEM-DBCI Method 

1.1 Introduction 

In this chapter the Finite Element Method (FEM) is briefly introduced, 

with particular reference to its application to electromagnetic vector problems. 

Then an overview of the application of FEM-DBCI to the solution of time-

harmonic eddy current problems in unbounded domains is given. 

Subsequently, the application of FEM-SDBCI is explained in detail; 

finally numerical examples are given in order to validate the method. 

1.2 Finite Element Method for open boundary 

electromagnetic problems 

The FEM [1] is one of the most popular numerical methods for 

constructing approximate solutions to partial differential equations. The FEM is 

used by scientists and engineers to model the dynamic failure of structures, 
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blood flow in the human heart, and thermal loads on electronic microchips, just 

to name a few applications. Originally developed by structural engineers, it is 

now widely applied in several fields and particularly to the numerical solution 

of electromagnetic Boundary Value Problems (BVP). 

FEM is based on following main steps. The first step is subdivision of 

the problem domain into a set of subdomains (usually triangles or quadrangles 

in 2D, tetrahedra or parallelepipeds in 3D) called finite elements (triangles and 

tetrahedra are the most frequently used because of their greater adaptability); 

the union of all these elements is called a mesh. The second step is the 

translation of the BVP into a system of linear algebraic equations; the two most 

common ways to obtain this system are minimization of a functional related to 

the BVP and variational methods, such as the Galerkin weighted residual 

method. 

In each element, the solution (e.g. the electromagnetic variable) is 

approximated by a set of simple position functions called shape or basis 

functions, The resulting (approximate) governing equations for elements are 

assembled into a global set of linear algebraic equations. The solution of this 

system of equations is followed by a post-processing stage in which the results 

are interpreted. 
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The repetition of local assembly to obtain a system of linear algebraic 

equations and the need to solve this usually sparse system by means of a 

numerical solver, lends itself to computer implementation, and in fact much of 

the success of the method parallels developments in computing science. 

Let us now consider some aspects of FEM application to 

electromagnetic field problems. For three-dimensional problems in the time or 

frequency domain, it is generally necessary to employ a vector variable. With 

such a variable it is possible to perform the following nodal-based expansion 

(i.e. expansion using the same shape functions as (1.1)): 

)()(
1

rUrU
M

m

mm

rrrr

∑
=

= α  (1.1) 

where )(r
r

α  is a scalar shape function and mU
r

 represents an array of M 

unknown nodal vectors, that is to say 3M scalars. The expansion (1.1) may be 

appropriate if the vector variable is one that can remain fully continuous 

throughout the problem domain, as is the case for vector potential A
r

 when 

employed in solving for eddy currents. On the other hand, if a field vector E
r

 or 

H
r

 is sought in regions with discontinuous material properties, there is a 

physical requirement for the normal vector component to be discontinuous at a 

material interface; otherwise, if a vector D
r

 or B
r

 is to be found, it is the 

tangential components which become discontinuous. In either case expansion 
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(1.1) is inappropriate and we must use a representation of the trial function U
r

, 

representing either E
r

 or H
r

, which conforms to these continuity rules. The 

working variable is then expanded using vector the interpolation functions τ
r

: 

∑
=

=
M

m

mm rUrU
1

)()(
rrrr

τ  (1.2) 

defined within finite elements, where each mτ
r

 exhibits tangential but not 

normal continuity between elements.  

By using tetrahedral elements for meshing 3D domains (Fig. 1-1), it is 

possible to associate a shape function mτ
r

 to every tetrahedron edge. Taking the 

inner product of functions 
mτ
r

 with tetrahedron edge vectors 
me
r

, m=1,…6, the 

following relations are satisfied: 

mnnme δτ =⋅
rr

 (1.3) 

where δmn is the Kronecker’s symbol. 

Thus if, in any given tetrahedral element a trial function U
r

is 

represented by the edge interpolation functions: 

∑
=

=
6

1

)()(
m

mm rUrU
rrrr

τ  (1.4) 
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Fig. 1-1. Edge elements in a tetrahedron. 

 

it is clear that the line integral of U
r

 along the tetrahedron edge 
me
r

 is  

m
e

m LUrdrU
m

⋅=⋅∫r
rrr

)(  (1.5) 

being Lm the length of the edge, whilst the line integral along any continuous 

path of tetrahedron edges is just the algebraic sum of the appropriate expansion 

coefficients Um multiplied with the length of the path.  

Practical electromagnetic problems often involve finding fields in infinite 

domains. Because of its nature, FEM cannot be applied to solve unbounded 

domain problems. The most brutal approach is to truncate the finite element 

mesh by means of sufficiently distant artificial boundary and impose 
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approximate boundary conditions; generally, truncation introduces large errors 

into the solution and it requires an onerous computing effort. In order to solve 

unbounded domain problems using a finite-domain model, other techniques 

which solve the external field problem have to be coupled with the FEM. A 

great number of these methods are currently available for low or high frequency 

problems, with different degrees of computing effort and accuracy, e.g. the 

ballooning method, coordinate transformation, infinite elements, perfectly 

matched layer (PML) and hybrid methods such as FEM/BEM (Boundary 

Element Method). 

1.3 3D Eddy current electric field formulation 

Many different formulations are available to tackle this kind of problem, 

based on either fields or potentials, using one or more unknown variables [3-[5]. A 

convenient choice  is to analyze an eddy current problem in a three-dimensional 

domain in terms of the electric field E
r

 [6]. The domain of a typical eddy 

current problem is shown in Fig. 1-2; the media are assumed to be linear, 

isotropic homogeneous and time-invariant; the boundary Γ is, generally, 

constituted by two kinds of boundary: ΓE and  ΓH. 
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r
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Fig. 1-2. Eddy current domain for electric field formulation. 

 

At each point P on ΓE a Dirichlet boundary condition on the electric field 

SEE
rr

=  is assigned: 

ESEnEn Γ∈∀×=×  P      
r)r)

 (1.6) 

At each point P on ΓH a Dirichlet boundary condition on the magnetic field 

SHH
rr

=  is assigned 

HSHnEnHn Γ∈∀×=×∇×=×  P      
r)r)r)

 (1.7) 

Under the assumption of time–harmonic steady state behaviour, the 

system of Maxwell’s equations  can be rewritten as: 
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ρ=⋅∇ D
r

 (1.8) 

0=⋅∇ B
r

 (1.9) 

BjE
rr

ω−=×∇  (1.10) 

JH
rr

=×∇  (1.11) 

where ω is the angular frequency. 

The field vectors are related by the following material constitutive 

properties: 

ED
rr

ε=  (1.12) 

HB
rr

µ=  (1.13) 

where ε and µ are the material permittivity and permeability, respectively. 

The current density is related to the electric field and source currents by: 

sJEJ
rrr

+= σ  (1.14) 

where σ is the material conductivity. 

The current continuity equation follows from (1.11) and is given by: 

0=⋅∇ J
r

 (1.15) 

 Applying the curl operator to (1.10): 

HjE
rr

×∇−=×∇×∇ ω
µ

1
 (1.16) 

and by means of (1.11): 
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( )SJEjE
rrr

+−=×∇×∇ σω
µ

1
 (1.17) 

Scalar multiplying (1.17) with a vector field 'E
r

 called a test function, which 

satisfies homogeneous Dirichlet conditions on ΓE, gives: 

( ) 0
1

=′⋅+′⋅+′⋅×∇×∇ EJjEEjEE S

rrrrrr
ωωσ

µ
 (1.18) 

Applying the following vector identity 

( ) ( )EEEEEE ′××∇⋅∇+′×∇⋅×∇=′⋅×∇×∇
rrrrrr

)(  (1.19) 

and integrating over domain Ω, after application of Gauss theorem: 

( ) dSnEEdVEJj

dVEEjdVEE

S ∫∫

∫∫

ΓΩ

ΩΩ

⋅′××∇−′⋅−=

=′⋅+′×∇⋅×∇

ˆ)(
1

                            

 
1

rrrr

rrrr

µ
ω

ωσ
µ

   (1.20) 

Let us examine the boundary term: 

( ) ( )∫∫ ΓΓ
′⋅×∇×−=⋅′××∇− dSEEndSnEE

rrrr
ˆˆ)(

µµ

11
 (1.21) 

This integral can be subdivided into the two contributions on ΓE and ΓH. 

Because on ΓE it is 0ˆ ' =× En
r

: 

( ) ( ) 0
11

EE

=×∇⋅′×=′⋅×∇×− ∫∫ ΓΓ
dSEEndSEEn
rrrr

ˆˆ
µµ

 (1.22) 

On boundary part ΓH, using equations (1.7), (1.10) and the constitutive relation 

(1.13): 
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( ) ( ) dSEHjndSEEn
H

s
′⋅×=′⋅×∇×− ∫∫ ΓΓ

rrrr
ω

µ
ˆˆ

1

H

 (1.23) 

The final integral equation in the electric field E
r

is: 

( ) dSEHnjdVEJj

dVEEjdVEE

sS ∫∫

∫∫

ΓΩ

ΩΩ

′⋅×+′⋅−=

=′⋅+′×∇⋅×∇

H

                  

 
1

rr)rr

rrrr

ωω

σω
µ  (1.24) 

When the boundary conditions are only Dirichlet conditions on the electric field 

E
r

, (1.24) reduces to: 

dVEJjdVEEjdVEE S∫∫∫ ΩΩΩ
′⋅−=′⋅+′×∇⋅×∇
rrrrrr

ωσω
µ

 
1

 (1.25) 
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Fig. 1-3. Eddy current problem in open boundaries. 
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1.4 FEM-DBCI formulation 

An unbounded three-dimensional domain of an eddy current problem is 

shown in Fig. 1-3. In order to apply FEM, the unbounded domain is truncated 

by means of a fictitious boundary ΓF, enclosing all the eddy current conductors. 

Optionally some coils may be left outside of ΓF. On ΓF a inhomogeneous vector 

Dirichlet boundary condition is assumed: 

FEEn
rr

=×ˆ      on   ΓF (1.26) 

where n̂  is the outward unit vector normal to ΓF and 
FE
r

 is the unknown 

component of the electric field along the boundary.  

Discretizing the bounded domain Ω delimited by ΓF by means of tetrahedral 

edge elements [7], the electric field is approximated in each tetrahedron as: 

∑
=

=
6

1m

mmwEE
rr

 (1.27) 

where mw
r

 are first order vector shape functions: 

)( 1221 mmmmmm Lw ςςςς ∇−∇=
r

 (1.28) 

with ζ1m and ζ2m the local coordinates in tetrahedron relative to the first and 

second node, respectively, of the edge em and Lm its length, and Em is the 

expansion coefficient of the electric field defined as: 
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∫ ⋅=
me

m

m

m dltE
L

E r

r
ˆ

1
 (1.29) 

 in which 
mt̂  is the unit vector along the edge.  

Applying the Galerkin method and using the shape functions as weighting 

functions, the following matrix equation is derived: 

AE=B0 − AFEF (1.30) 

where A and AF are sparse FEM matrices, E and EF are the arrays of the electric 

field expansion coefficients for the internal and boundary edges, respectively, 

and B0 is an array due to the source current.  

Note that if some source coils are included in the analysis domain D, 

great care should be reserved to model the source current density in such a way 

that 0=⋅∇ sJ
r

 [8,9]. 

Equation (1.30) alone is not sufficient to solve the problem because it 

only allows E to be obtained once the correct EF is known. If an incorrect guess 

is made for EF, the resulting E will be affected by a systematic error. 

In order to solve the unbounded problem, it is thus necessary to derive 

another equation relating E to EF. This can be done by means Dirichlet 

Boundary Condition Iteration (DBCI) method [10-12]. The field on a point PF 

on ΓF can be expressed by means of the following integral equation [14]:  
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∫∫Γ 







∇⋅+∇××+×∇×+=

M
FextF dS

r
En

r
EnEn

r
PEPE

111

4

1 rrrr
ˆ)ˆ(ˆ)()(

π
 

(1.31) 

where ΓM is a closed surface enclosing all the eddy current conductors, but 

strictly enclosed by ΓF (see Fig. 1-3), n̂  is the outward normal to ΓM at point P, 

r is the distance between P and PF, and extE
r

is the electric field due to the coil 

source currents external to ΓM. Substituting (1.31) in (1.29) for the edges on ΓF 

and expanding the field on ΓM as in (1.27), we obtain: 

EF=Eext+HE (1.32) 

where H is a dense rectangular matrix in which null columns appear for the 

internal edges not involved in the computation. Note that since no singularities 

arise (ΓM and ΓF do not intersect each other) a simple Gauss integration can be 

used to evaluate the two integrals (that is, the surface integral on ΓM and the 

line integral on the generic edge of ΓF).  

A convenient approach to perform these computations is to select the 

surface ΓM as constituted by element faces, that is, triangles if tetrahedral 

elements are used. In this case, when the edge and the triangle are far apart, the 

Green function varies slowly so that a one-point quadrature is sufficient in both 

the triangle and the edge; when, on the contrary, the triangle and the edge are 
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very close, the Green function varies rapidly due to the nearness of the 

singularity, and a large number of Gauss points is needed. 

For tetrahedral edge elements, the integration accuracy can be selected 

according to the following rule. Let LM be the length of the longest edge of the 

triangle on ΓM, LF the length of the edge on the fictitious boundary, 

L=max(LM,LF) and d the distance between their centers; then for L/d ≤ 0.2 a 

one-point quadrature is used on both the triangle and the edge; for 0.2 ≤ L/d ≤ 

1.1 three Gauss points are used on the triangle and two points on the edge; 

otherwise six points are used on the triangle and three on the edge. This rule has 

proved to be a good tradeoff between accuracy and speed, as extensive 

numerical investigations have shown [15]. Of course this computation can be 

replaced by an FMM (fast multipole method) implementation of the integral 

equation (1.31) in order to reduce its computational complexity [17]. 

 Combining (1.30) and (1.33) the global linear algebraic system of FEM-

DBCI is formed: 









=

















− extF

F

E

B

E

E

IH

AA 0

 (1.33) 

where I is the identity matrix. The global system (1.33) allows solving the 

electromagnetic problem. 
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System 1.30 is similar to those arising from FEM-BEM methods, since 

it is made up of two parts: one comes from the differential equation and the 

other from the integral equation. However the diagonal submatrix related to the 

unknown on the fictitious boundary in (1.33) is the identity matrix, whereas in 

FEM-BEM this matrix is dense and nonsymmetric. The price paid for this 

advantage of FEM-DBCI is the introduction of an air gap between ΓF and ΓM, 

which, however, can be selected as very thin (one or two layers of elements). 

Moreover, the adoption of a single vector unknown in both the conductors and 

air does not involve a significant increase in the computational cost with respect 

to other formulations employing a scalar potential in the air regions, since the 

air region can be set very small, by opportunely placing the fictitious boundary 

ΓF very near the conductor surfaces, which can be adopted as the integration 

surface ΓM. 

1.5 The FEM-SDBCI method 

In order to alleviate the major drawback of FEM-DBCI, that is, the 

insertion of some element layers between the integration and truncation 

surfaces, this paper presents a modified version of the method, named FEM-

SDBCI (Singular DBCI), in which the two surfaces are coincident, so that the 

integral equation becomes singular. In order to apply FEM, the unbounded 
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medium is truncated by means of a fictitious boundary ΓF, enclosing all the 

eddy current conductors (see Fig.1-4). Optionally some coils may be left 

outside. On ΓF a non-homogeneous vector Dirichlet boundary condition is 

assumed: 

FEEn̂n̂ =××−           on   ΓF     
(1.34) 

where n̂  is the outward unit vector normal to ΓF and FE is the unknown 

component of the electric field along the boundary.  
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 Fig. 1-4. Eddy current conductors and internal (distributed) source coils are 

enclosed by the fictitious truncation boundary ΓF.  
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Applying the Galerkin method and using the vector shape functions as weighting 

functions, a matrix equation as in (1.34) is obtained. 

In order to solve the problem, it is necessary to derive another equation 

relating E to EF. This can be done by expressing the field on a point PF on ΓF 

by means of the integral equation:  

∫∫Γ 







∇⋅+∇××+×∇×

π
+=

π

α

F
FextF dS

r

1
En̂

r

1
)En̂(En̂

r

1

4

1
)P(E)P(E

4
 

(1.35) 

where r is the distance between P and PF, extE  is the electric field due to the 

coil source currents external to ΓF, and α is the solid angle that ΓF subtends at 

point PF. The expansion coefficient Em relative to an edge em lying on the 

fictitious boundary is expressed as: 

∑∫∫ ∫

∫

⋅







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ˆ
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ˆ
1

)ˆ(ˆ
1

4

1

ˆ)(
1

4

π

π

α

 

 

(1.36) 

where Tk is the k-th triangular patch on the fictitious boundary coming from the 

tetrahedral decomposition of the domain. In each patch the field is developed as 

in (1.27), where the six edges are those of the corresponding tetrahedron of 

which the patch constitutes one of its faces. Both the double integral on the 

triangle Tk and the line integral on the edge em are computed by means of the 

Gauss quadrature. The integration accuracy can be selected as in DBCI. The 
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singularities arising in the integrand function in (1.29) are overcome by means 

of analytical formulas [22]. 

Consider a triangular patch Tk of the fictitious boundary, relative to 

tetrahedron Ek (see Fig. 1-5). A local coordinate frame is selected, in such a 

way that Tk lies on the xy plane, vertex V0 coincides with the origin and the 

other two vertices have coordinates V1=(x1,0,0) and V2=(x2,y2,0). The fourth 

vertex of the tetrahedron V3=(x3,y3.z3) has z3<0; in this way the normal to the 

patch is ẑ . Assume that we want to evaluate the contribution of such patch to 

the mean value of the tangent component of the electrical field along its edge 

V0V1, whose versor is x̂ . The integration on such edge is performed by means 

of the Gauss quadrature method with Gauss points Pn=(ξnx1,0,0) (0<ξn<1) and 

weights wn, n=1,…,N. Then the second term in the right side of (1.36) is 

evaluated as: 

∑ ∫∫
=

⋅







∇⋅+∇××+×∇×

π
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1n
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dSx
r

1
En̂

r

1
)En̂(En̂

r

1
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4

1 )
 

(1.37) 

where r the distance of the integration point P=(x,y,0)∈Tk from the Gauss point 

Pn on the edge. For each Gauss point Pn it necessary calculate three integrals: 
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Fig. 1-5 Triangular patch on the fictitious boundary 

 

∫∫ ⋅
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By noting that E×∇  is constant in the tetrahedron (and hence in the 

triangle), the first integral is simply computed by using the result: 
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The second integral vanishes since the normal to the triangle n̂  (= ẑ ) is 

orthogonal to ∇(1/r) which lies on the xy plane. The third integral leads to the 

calculation of 

∫∫ ∂
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kT
dxdy

rx
cbyaxI

1
)(  

(1.42) 

where a, b and c are given coefficients; this integral is conveniently performed 

by subdividing the patch in two subtriangles T' and T" (fig. 1-5):  
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where: 
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221 byaxp +=  (1.51) 

More details are given in Appendix A. Finally using the above formulas, (1.37)  

leads to: 

GEEEH += extF  (1.52) 

where H and G are dense matrices. Matrix H is square by construction.  

Combining ((1.30)) and (1.52) the global linear algebraic system of the FEM-

SDBCI method is formed: 
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(1.53) 

1.5.1 Solution of the FEM-DBCI global system 

The global matrix in (1.53) is partly sparse, partly full and 

nonsymmetric. There is no efficient algorithm to solve this type of matrix 

equation. An iterative solver, which performs a matrix-vector multiplication at 

each iteration step, exhibits a complexity O(N) for the FEM part and )N(O 2
F  for 

the integral part, where NF is the number of edges on the fictitious boundary. 

Although NF<N, for large problems this approach is too onerous. The same 

complexity is exhibited by the approach in which (1.52) is substituted in (1.30) 

to yield the reduced system: 
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It is clear from the above discussion that a good solving approach is one that 

only requires a few multiplications of the dense matrices H and G by vectors. 

This is obtained with the following two-block Gauss-Seidel iterative algorithm, 

which takes into account the very different nature of equations (1.30) and 

(1.52): 

1) a first guess for EF is arbitrarily selected, for example EF=0; 

2) equation (1.30)  is solved for E by means of COCG; 

3) the square matrix H is first decomposed into L and U matrices, and then 

equation (1.52) is solved for EF; 

4) at the generic n-th step, a convergence indicator is computed, measuring the 

distance between the new solution for EF and the old one: 

2

new
F

2

old
F

new
F

100
E

EE −
=η  

(1.55) 

5) if convergence is not reached go to step 2, assuming a relaxed new guess for 

EF such as: 

old
F

new
F

)n(
F )1( EEE γ−+γ=  

(1.56) 

where γ is the relaxation coefficient. 

This iterative scheme exhibits the following characteristics: 
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a) since the first guess for the CG solver in each step is the solution obtained in 

the previous iteration step, the various solutions of system get faster as the 

iteration proceeds;  

b) the LU decomposition is performed only once at the beginning of the 

iterative procedure; round-off errors in the LU decomposition are treated by 

selecting an appropriate (double precision) accuracy in the computing and 

storing  of the matrices H and G. 

c) the whole iterative procedure is convergent if an appropriate relaxation 

coefficient γ is selected; this however is not known a priori; if a non 

appropriate coefficient γ is used, divergence may occur; 

d) consequently, the integral equation (1.52) is used only a few times, if 

compared to its use in an iterative CG-like solver for the whole non-

symmetric system (1.53) or the reduced one (1.54). 

By looking at the above iterative procedure more deeply, one realizes that the 

procedure can be interpreted as a stationary iterative method applied to the 

reduced system: 

NEM =F  (1.57) 

where: 

F
1AGAHM −+=  

(1.58) 
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1
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(1.59) 

Since it is well known that stationary methods are very weak and possibly non 

converging, one can think of finding a more robust substitute. The matrix M 

and vector N are not directly available. However, the vector N is simply built as 

follows: 

1) assume a zero initial guess EF=0; 

2) solve the FEM equation ((1.30)) by means of the CG solver to obtain E; 

3) compute N=Eext+GE, which coincides with the initial residual vector.  

Similarly, matrix M can be used to perform matrix-vector multiplication MEF, 

as follows:  

1) given the vector EF; 

2) solve the FEM equation ((1.30)) with B0=0 by means of the CG solver to 

obtain E=A−1AFEF; 

3) compute  MEF=HEF+GE. 

Then non-stationary iterative CG-like solvers for non symmetric matrices, such 

as BiCG (BiConjugate Gradient), QMR (Quasi Minimal Residual), CGS 

(Conjugate Gradient Squared), BiCGstab (BiCG stabilized) and GMRES (all 

being polynomial accelerations of the Richardson method) can be used to solve 

(1.57). 
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Because the matrix-vector multiplications in this context are much more 

expensive than in a system where the coefficient matrix is directly available, 

GMRES should be preferred. In fact GMRES performs a true minimization of 

the residual and is thus the optimal method for accelerating the iterative 

solution of (1.55) as it minimizes the number of matrix-vector multiplications 

(neglecting the other operations required). The residual can be computed 

directly with the approximate solution, thus requiring a further matrix-vector 

multiplication, or by using the orthonormal basis of the Krylov subspace. The 

latter option is definitely preferable since matrix-vector multiplications are 

much more expensive than in a case where the coefficient matrix is directly 

available. 

The major drawbacks of GMRES are the computing time and memory 

required to compute and store the orthonormal basis, which increases linearly 

with the number of iterations. So restarting procedures are often used. In our 

case the computing time and memory required for the orthonormal basis are 

only a small fraction of the total, because GMRES works on a reduced system, 

the number of unknowns being the values of the electric field along the edges 

of the fictitious boundary. Most of the computing time and memory is spent on 

solving (1.30), i.e. performing matrix-vector multiplications. It is therefore 

convenient to use long restarts which generally result in a full GMRES due to 
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the quick convergence characteristic of the simple iterative procedure. The fact 

that the relaxed iterative procedure converges with a suitable choice of a 

positive relaxation parameter γ indicates that the eigenvalues of the matrix M 

have positive real parts, and this assures that GMRES converges to the true 

solution even with a very short restarting parameter m. 

In comparing the GMRES solving algorithm with the simple iterative one, it is 

to be noted that the GMRES solution does not require the LU decomposition of 

matrix H. This is a great advantage, especially for problems with large number 

of unknowns. Conversely, the various solutions of the FEM equations by means 

of the CG-solver are not related to each other, so the number of CG steps does 

not decrease as the solution proceeds. 

1.6 An efficient Mesh Generator for Eddy Current 

Problems 

Is is well known that the accuracy of the finite element solution depends on 

the discretization which is characterized by the finite element mesh and by the 

order of elements. In literature two main approaches exist to mesh a domain in 

order to apply the Finite Element Method (FEM) for the solution of a given 

field problem. 
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In the first approach the mesh is build in the preprocessing, before the 

solution of the problem [31]-[32]. In this approach the user expertise is 

extremely important: he should be able to foresee the domain parts in which to 

put more degrees of freedom (nodes or edges) and should utilize a suitable 

mesh generator, capable of such a fine specification. Meshes which are not very 

well optimized are therefore quite common. 

 In the second approach [33]-[37] the finite element mesh is adapted 

iteratively to the numerical solution, according to the following procedure: start 

with a coarse mesh, solve the field problem, estimate the solution error, refine 

the finite elements with greater errors, and iterate this process until a 

satisfactory accuracy is reached. This approach gives very accurate results, but 

a great computational effort is required. Moreover in some cases it is 

impractical, as for example in fast time-varying field problems. Other weak 

points of this approach are the fact that the user does not control exactly the 

degrees of freedom which he intends to invest for the solution of the problem 

and that the user expertise is not taken into account, so that a large percentage 

of computing time is spent on obtaining a mesh which could have been foreseen 

by an experienced user and from which the adaptation process could have been 

more conveniently started. 
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 The tetrahedral mesh generator proposed in this work combines the two 

approaches by trying to take the best of each one. The mesh generator is based 

on an artificial neural network 101which grows an initial moderately coarse 

mesh of tetrahedral edge elements, according to a node probability density 

function (pdf), which is derived from an error analysis for the field solution 

computed with the initial mesh.  

Let suppose to use a coarse mesh to solve the eddy current problem by 

means of SDBCI method; after the solution of (1.53) an error indicator ηi is 

evaluated for the generic i-th tetrahedron in the mesh: 
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(1.60) 

where the local index j refers to the Na adjacent tetrahedra (1≤Na≤4), Eij and Eji 

are the normal components of the electric field evaluated in the barycentre of 

the triangular face in between the i-th and j-th tetrahedra by using the solution 

in the i-th tetrahedron and in the j-th one, respectively. In (1.60) the non 

dimensional coefficient kij is defined as: 
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where σi and σj are the electric conductivity of the two tetrahedra. Note that 

theoretically the exact solution should give Eij-kijEji=0.  
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The node probability of the neural network generator is evaluated as  

∑
=

ηη=π
0M

1m

mmiii VV /                i=1,...,M0 
(1.62) 

where Vi is the volume of the i-th tetrahedron and M0 is the number of 

tetrahedra of the initial mesh. 

The generation starts from the initial mesh of the domain by means of 

M0 first-order tetrahedral finite elements. Its target is to add a number Nadd of 

additional nodes, as specified by the user. The initial mesh has two aims. First it 

defines the geometry of the domain D in which the FEM has to be applied. 

Secondly it constitutes the support of a piece-wise constant pdf f(x), x∈D, by 

associating a probability πi that a node xn of the final mesh lies in.  

At the start of the generation the nodes and tetrahedra of the initial mesh 

are duplicated, so that the original ones are used to support f(x), x∈D, and to 

search for of the node which best matches a given example point x, whereas the 

duplicated ones are used as the initial mesh to be manipulated by the generator. 

At the end of the generation the original nodes and tetrahedra are cancelled. 

The generation is a stochastic process which can be seen as an ANN, 

similar to the Let-It-Grow neural network [35]. The learning phase of the neural 

network is based on a set of Nex example points, randomly derived from the pdf 

f(x). Each example point x is processed as explained in the following. First, the 
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node xh closest to x (best matching node) is selected and displaced toward x by: 

)()( hhhh xyxxx −β+−α=∆  (1.63) 

where α and β are parameters (0≤α, β≤1) and yh is the barycenter of the set of 

nodes xk directly connected to node xh. If a node to be moved lies on the 

boundary surfaces or edges, only the component of the displacement along the 

same surface or edge is effectively taken into account. Nodes placed in the 

corners of the boundary are not moved at all. Once the best matching node xh 

has been moved toward the example point x, its error count eh is increased by 

one. No changes are made in the error counts of the neighbouring nodes xk. 

Periodically in the learning phase (every ξ=Nex/Nadd examples, ξ being 

an integer parameter), a new node is inserted. The insertion procedure foresees 

the selection of the tetrahedron Tm with the maximum error count εm, defined as 

the sum of the error counts of its nodes multiplied by a coefficient 1+ϕf, where 

ϕ≥0 is a parameter and f is the number of boundary faces of the tetrahedron, the 

coefficient being introduced to favor the tetrahedra lying on the boundary. The 

new node is inserted in the barycentre of the longest edge of the tetrahedron Tm 

(another coefficient ψ ≥0 is utilized to favor the boundary and interface edges) 

and the original tetrahedron is refined. Of course all the other tetrahedra sharing 

that edge with Tm are refined too. 

Once a new node has been inserted, the error counts en of the N nodes of 
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the refined tetrahedra are decreased by a factor λ(N-1)/N, (0≤λ≤1), whereas the 

error count of the new node is initialized to µ/N, (0≤µ≤1) of the sum of the 

error counts en of the nodes of the refined tetrahedra. 

Once a certain amount of new nodes have been inserted, the mesh 

quality decreases, especially in the higher density regions, where bad-shaped 

tetrahedra appear, not allowing the further insertion of nodes. For this reason 

the Delaunay algorithm [31] is applied ND times in the growing process (every 

ζ=Nex/ND examples, ζ being an integer parameter). 

When the number of nodes inserted reaches the user-specified value 

Nadd, the learning algorithm stops. A final optimization of the mesh is 

performed based on the Delaunay algorithm and on moving the node towards 

the barycenter of its neighbors [31]. 

The various parameters of the generator have been optimized in [37]; 

the following values are used:  α=0.030,  β=0.016,  λ=0.968,  µ=0,  ϕ=0.20,  

ψ=1.40,  ξ=10,  ζ=50. 

 To measure the quality of the whole mesh, the mean, joint and minimum 

quality factors are employed: 
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{ }imin qminq =  (1.66) 

where 

 qi=3ri/Ri (1.67) 

 is the quality of a single tetrahedron where ri and Ri are the radii of the 

inscribed and circumscribed spheres, respectively. 

1.7 Numerical examples 

In this section a numerical example will be given to illustrate and validate 

the FEM-SDBCI method for 3-D eddy currents. The used finite element code is 

ELFIN [39]. 

1.7.1 The ELFIN code 

The ELFIN code is written in Fortran. The basic features are N-

dimensional (N=1,2,3) geometrical discretization, a wide application area, easy 

treatment of coupled problems, and a generalized iterative procedure. The 

ELFIN code is able to solve the following kinds of problems: Laplace, Poisson, 

Helmholtz, skin effect, motional diffusion and eddy currents. 
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The code is structured according to the classical scheme of FE codes, in 

which three distinct main programs are devoted to pre-processing, processing 

and post-processing, respectively. The pre-processing program (PREELFIN) 

exhibits a mixed interactive-batch user interface: in this part the user can define 

the geometric structure, the kind of problem, the materials and their properties, 

mesh generation, boundary conditions and sources. The processing program 

(ELFIN) works in a batch mode, starting from the data prepared in the pre-

processing session and stored in a suitable file; the main aspects of the program 

are: generalized iteration structures, with four nested cycles (non-linearity, 

adaptive mesh refinement, boundary conditions, time discretization); numerical 

techniques (variational or Galerkin approaches are used), universal matrices and 

coupled problems. The post-processing program (POSTELFIN) exhibits the 

same interactive-batch user interface as the pre-processing one; available 

restitutions are displaying/printing of nodal values, 2D contour line plotting, 

axonometric 3D contour line plotting, and 2D and 3D vector plotting. Global 

quantities (energy, flux, current, etc.) can also be evaluated by means of 

integrals on elements, boundary (or local) sides or edges. 

The most important feature that allows us to use ELFIN for the stochastic 

optimization of electromagnetic devices [40]Errore. L'origine riferimento 

non è stata trovata. is that the code uses symbolic variables as parameters 
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(instead of fixed numeric values) of the batch input command files CMB and 

CMD of the pre- and postprocessing programs, respectively. The actual values 

of these parameters are given in the PCB file. In this way both the pre- and 

post-processing batch sessions (and so the whole code) can be made parametric 

with respect to a set of variables, typically representing the geometrical or 

constitutive data of the device to be optimized. 

1.7.2 Bath Plate with two holes 

An example is used to demonstrate the effectiveness of the FEM-SDBCI 

method. The system is the classical Bath plate with two holes [4],[41]. A 

conducting ladder (σ=32.78 MS/m) with two holes (length l=110 mm, width 

w=60 mm, height h=6.35 mm, central column and yoke width 10 mm, lateral 

column 20 mm) is under (s=15 mm) a toroidal coil (1260 Amp turns, frequency 

f=50 Hz) having a square section of side 20 mm, internal radius 20 mm and 

axis equations x =w/2, y =l/2+s (see Fig. 1-6). FEM-SDBCI was applied 

leaving the coil outside the fictitious boundary (which coincides with the 

conductor surface). 
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Fig. 1-6. Bath plate (dimension in mm). 

 

 The x=w/2 plane is a symmetry one, so only half of the original domain 

needs to be meshed, by imposing a homogeneous Dirichlet boundary condition 

on such a plane. Fig. 1-7 shows the initial mesh which consists of 657 nodes, 

1680 tetrahedra and 2872 edges. The mesh was refined by means of the mesh 

generator of Par. 1.6. For the first solution the relaxed iterative scheme was 

used with γ=0.8. Starting from this solution the error indicators ηi and the relative 

probabilities πi are computed. The artificial neural network mesh generator started with 

a target value of additional nodes Nadd=1000. 
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Fig. 1-7. Initial tetrahedral mesh of half ladder conductor. 

 

Fig. 1-8 shows the obtained final mesh in the eddy current conductor. The whole 

mesh is constituted by 1657 nodes, 5143 tetrahedra and 8100 edges (4002 laying on 

the conductor’s surface).  

The mean, joint and minimum quality factors of the mesh are Qm=0.722, Qj=0.664 

and qmin=0.043, respectively.  

Fig. 1-12 reports the histogram of the quality factor qf, as defined in (1.67), for 

ten classes, from 0.0-0.1 to 0.9-1.0. 
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Fig. 1-8. Final tetrahedral mesh of half ladder conductor. 
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Fig. 1-9.  Histogram of the quality factor qf for the final mesh. 
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Starting form the refined mesh, a new solution by means of SDBCI was 

obtained. The procedure reached convergence in 11 iteration steps with an end 

iteration tolerance of 0.1 per cent. Fig. 1-10 shows the eddy currents on the 

z=h/2 plane, whereas in Fig. 1-11 the Joule power density is drawn. A check of 

the Kirchhoff law was made by evaluating the three currents through the three 

sections with the symmetry plane: I1=I2+I3; an acceptable fulfillment was 

obtained. 

 

 

                                                         

(a)                                                                                    (b) 

Fig. 1-10. – Real (a) and imaginary (b) parts of the eddy currents in the Bath plate. 
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Fig. 1-11. Distribution of the Joule power density 
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2 Chapter II 

Coupled Electromagnetic-Thermal Analysis 

2.1 Introduction 

The analysis of induction heating devices is often very hard due to the 

necessity to deal with coupled three-dimensional electromagnetic field 

problems and non linear thermal coupled problems. However, both the 

problems can be tackled by means of the FEM method.  

In this chapter FEM-SDBCI is applied to solve a coupled electro-

thermal problem, in which a conductor is heated by means of eddy currents 

induced by time-harmonic source currents flowing in some coils. The solution 

thus obtained is used to compute the heating power density inside the 

conductor, from which a steady-state thermal analysis is performed by 

considering the same mesh, but employing nodal tetrahedral finite elements of a 

given order. The thermal conductivity is assumed to be temperature-dependent, 

as are the coefficients of the mixed boundary conditions on the surface of the 

conductor, which take radiation and convection into account. The thermal 



 45 

problem is therefore non-linear and is solved by a simple iterative procedure. 

The electric conductivity and magnetic reluctivity are also assumed to be time-

dependent and so, although the electromagnetic problem is linear, another 

iterative procedure needs to be used to solve the coupled problem. In the 

following section method is described in detail. 

2.2 Steady state coupled analysis 

Once the eddy current problem has been solved, using the FEM-SDBCI 

method described in Chapter I, the heating power density in each finite element 

is computed as: 
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where V is the volume of the finite element, and tij is the generic entry of the 

metric matrix, given by: 

∫∫∫ ⋅=
V

jiij dxdydzwwt  (2.2) 

Starting from the power density q the steady state thermal analysis can 

be performed by solving the Poisson differential equation 

q)T( =∇κ⋅∇−  (2.3) 
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where T is the temperature (in °C), κ is the thermal conductivity (in W/m°C) 

and q is the heating power density (in W/m
3
). Note that the thermal 

conductivity is a function of the temperature κ(T), so that the thermal problem 

is non linear. 

Another difficulty arises in the assignment of the boundary conditions 

on the surface of the heated piece. In this paper mixed conditions are assumed 

which take into account radiation and convection: 

)TT()hh(
n

T
aconvrad −+=

∂

∂
κ−  

(2.4) 

where Ta is the temperature of the surrounding fluid (air) and hrad and hconv are 

the coefficients of heat transfer due to radiation and convection, respectively. 

The coefficient hrad is evaluated as: 

)TTTT()TT(h 2
KaKaK

2
KKaKrad +++εσ=  (2.5) 

where ε is the over-all interchange coefficient of the thermal radiation, 

σ=5.67⋅10−8 W/m2K is the Stefan-Boltzmann constant, and TK=T+273.16 and 

TKa=Ta+273.16 are the absolute temperatures of the surface of the piece and of 

the surrounding fluid, respectively. The coefficient ε depends on the material 

and the surface state of the piece. 

Assuming a natural convection, the coefficient hconv is evaluated by 

means of the empirical relation: 
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( ) 90/Pr)logGrlog12(
PrGrNu

++
⋅=  (2.6) 

where Nu, Gr and Pr are the numbers of Nusselt, Grashof and Prandtl, 

respectively, given by: 

aconv /dhNu κ=  (2.7) 

2
a

23 /)TT(gdGr µ−βρ=  (2.8) 

ap /cPr κµ=  (2.9) 

where d is a characteristic linear dimension of the piece, κa the thermal 

conductivity of the air, ρ the mass density, g the acceleration of gravity, β the 

thermal expansion coefficient, µ the dynamic viscosity, and cp the isobaric 

specific heat. These quantity are evaluated at the temperature Ta, where 

appropriate. The coefficient hconv are further multiplied by 1.0, 1.2 or 0.5 

according to the vertical, high horizontal or low horizontal orientation of the 

triangular side of the boundary of the piece. 

As can be easily seen, all the coefficients appearing in the boundary 

condition are dependent of the temperature of the surface of the piece, so the 

problem and the relative FEM global system: 

QTA =  (2.10) 

is nonlinear even if a temperature-independent thermal conductivity is assumed. 
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To solve this non linear problem, a simple iterative procedure has been 

implemented: 

1) assume an initial uniform temperature distribution in the piece, for 

example T=Ta; 

2) build the FEM global system by evaluating the thermal conductivity and 

the boundary condition coefficients at the given temperature 

distribution; to simplify this task, mean temperatures are computed for 

each tetrahedral finite element and for each triangular boundary side; 

3) solve the FEM system for the new temperature distribution; 

4) compute a convergence indicator η of the 'distance' between the new 

and old temperature distributions, for example by means of:  
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100  

(2.11) 

where the summations are extended to all the nodes of the finite element 

mesh; 

5) if the indicator η is lower than a prescribed tolerance η0 the procedure is 

stopped; otherwise, assume the new temperature distribution as old 

(optionally by employing a relaxation coefficient γ) and go to step 2. 
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If the electric conductivity and magnetic reluctivity are also assumed 

to be temperature-dependent and so, another iterative procedure needs to 

be used to solve the coupled problem. The two analyses can be 

combined in the following iterative scheme:  

a) assume an initial uniform temperature distribution in the heated 

conductor T=Ta;  

b) evaluate the electrical conductivity σ(T) and the magnetic 

reluctivity ν(T) on an element basis; build and solve the FEM-

SDBCI global system (1.53) (note that only the matrix A 

changes with the temperature, whereas B0, AF, G and H do not); 

evaluate the heating power density q in each tetrahedron; 

c) using the temperature distribution employed for the eddy current 

analysis as the starting temperature distribution, solve the 

nonlinear FEM system (2.10) to obtain a new temperature 

distribution; 

d) check the convergence of the new temperature distribution with 

respect to that used in the last eddy current analysis; an indicator 

like that in (2.11) may be used; if convergence is not reached, go 

back to step b); otherwise stop the iterations. 
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2.3 Transient coupled analysis 

Instead of steady state analysis, a transient thermal analysis can be 

executed, starting from the power density q calculeated after the first solution of 

eddy current prolem. The transient thermal analysis is performed by solving the 

differential equation 

q
t

T
c)T( =

∂

∂
ρ+∇κ⋅∇−  (2.12) 

where T is the temperature (in °C) and κ is the thermal conductivity (in 

W/m°C), c is the specific heat (in J/kg °C) and ρ is the density (in kg/m
3
). As in 

the previous paragraph, the thermal problem is non linear. 

Applying the FEM to equation (2.12) with boundary conditions (2.4), 

the following non linear system of ordinary differential equations is built: 

)T()t(
dt

d
)()( BQTTCTTK +=+  (2.13) 

where T is the vector of the nodal values of the temperature, K and C are the 

temperature-dependent conductivity and capacity matrices, respectively, and Q 

and B are vectors depending on the power density and the boundary conditions 

(2.4), respectively. 

To solve the transient non linear problem, (2.13), a Crank-Nicolson 

scheme was implemented [43] with a fixed time step ∆t: 
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2/1n2/1nn1n2/1n2/1n2/1n )(
t

1
++++++ +=−

∆
+ BQTTCTK  

(2.14) 

Note that in FEM analysis the element sizes and the time step are very 

critical aspects. First, the elements have to be made small enough to yield 

sufficient information about the distribution of temperature. Next, a time step 

must be chosen that is sufficiently small, so that heat flow between elements 

can be approximated as a steady-state flow with little inaccuracy. A too large 

time step can introduce instability in the model. On the other hand, if the time 

step is too short, the computational cost increases with no gain in accuracy. 

By approximating the matrices and the arrays as means of their values at 

the extremes of the n-th time step, we get: 

[ ] [ ] 1nn1nn1nn1nn1nn1n )(
t

1
)(

2

1
BBQQTTCCTTKK +++=−

∆
++++ ++++++

 

(2.15) 

where: 

)()()()( nn1n1nnn1n1n TCCTCCTKKTKK ==== ++++      

)()()t()t( nn1n1nnn1n1n TBBTBBQQQQ ==== ++++

 

Equation (2.15) is rewritten as a non linear algebraic system of equations: 
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(2.16) 

The non linear system (2.16) is solved by a simple iterative procedure:  

1) assume an initial temperature distribution in the piece =Tn; 

2) build the FEM global system by evaluating the thermal conductivity, 

the specific heat and the boundary condition coefficients at the two 

temperature distributions and Tn; to simplify this task, mean 

temperatures are computed for each tetrahedral finite element and 

for each triangular boundary side; 

3) solve the system for the new guess of temperature distribution Tn+1; 

4) compute a convergence indicator η of the 'distance' between the new 

and old temperature distributions, for example by means of:  

2

new
1n

2

old
1n

new
1n

100

+

++ −
=η

T

TT
 

(2.17) 

5) if the indicator η is lower than a prescribed tolerance η0 the 

procedure is stopped; otherwise, assume the new temperature 

distribution as old (optionally by employing a relaxation coefficient 

γ) and go to step 2. 
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Note that this procedure is rapidly convergent, since the initial guess for Tn+1 is 

very close to the solution. 

The transient thermal analysis is combined with the time-harmonic eddy 

current analysis  in the following iterative scheme:  

a) at time  t=0 assume an initial uniform temperature distribution in the 

heated conductor T0=Ta; for each tetrahedral finite element evaluate the 

electric conductivity σ(T0) and the magnetic reluctivity ν(T0); solve the 

eddy-current problem and evaluate the heating power density q; 

b) start the transient thermal analysis to compute another temperature 

distribution T1 at time t1=∆t; 

c) continue the transient analysis, provided that the variations in the 

electrical conductivity σ and magnetic reluctivity ν in each tetrahedron 

are lower than a given tolerance;  

d) otherwise, for each tetrahedron recalculate the electric conductivity σ 

and the magnetic reluctivity ν, solve the eddy-current problem and 

evaluate the heating power density q; go to step c). 

This combined iterative procedure is stopped when the time counter reaches the 

prescribed end-analysis value. 
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2.4 A numerical example 

The example concerns the heating of a parallelepipedal piece, whose 

dimensions are 10 × 10 × 20 mm. The piece is made of aluminum and is 

surrounded by a concentric circular coil of rectangular cross section (internal 

radius 10 mm, external radius 12 mm, height 12 mm) which carries a total 

current Is=2000 A at frequency f=100 Hz (see Fig 2-1). 

The problem exhibits two symmetry planes so only 1/4 of the original 

domain needs to be meshed by imposing a homogeneous Dirichlet boundary 

condition on the xz and yz planes. 

 The eddy current analysis was performed by means of the FEM-SDBCI 

method. 

A regular mesh of 2500 tetrahedral edge elements was employed with a 

total of 3705 edges (1340 laying on the cube surface). The procedure converged 

in 5 iterations assuming an end-iteration tolerance of 0.1 per cent for SDBCI 

and 0.01 per cent for the COGC solver. 
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Fig 2-1: The system of the example: a parallelepipedal aluminum piece 

heated by a coil. 

 

The analysis was performed using the following data: 

- Aluminum electric conductivity: 

)TT(109.31

1074.37
)T(

a
3

6

−⋅+

⋅
=σ

−
 

(2.18) 

- Aluminum thermal conductivity  

836.209T

65.51826T73.189
5.10)T(

−

+⋅
+=κ  

(2.19) 

 Aluminum specific heat c(Ta) = 895 J/kg °C, emissivity  ε = 0.19, 

characteristic dimension of the piece d=20mm, air temperature Ta = 20 °C, air 

dynamic viscosity µ = 18.04 Ns/m
2
, air thermal conductivity   κa = 0.026 W/m 
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°C, air isobaric specific heat cp = 1007 J/kg °C, air mass density:  ρ = 1.224 

kg/m
3
, air thermal expansion coefficient β = 3.411⋅10

−3
 K

−1
. 

 In the thermal analysis the conductor was discretized by the same 

regular mesh of 2500 2nd-order tetrahedra and 4461 nodes. Homogeneous 

Neumann conditions were imposed on the xz and yz planes. The time step ∆t 

was chosen equal to 10s. Assuming a tolerance of 1.0 per cent on the electrical 

conductivity changes, only 12 solutions of the electromagnetic problem were 

performed. Figure 2-2 the gives the values of the average temperature of the 

piece versus the time. Figure 2-3 shows the temperature distribution at final 

time. 

 

Fig. 2-2. Average temperature in the aluminum piece 
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 Fig. 2-3 Temperature distribution at time t=1000s 
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3 Chapter III 

Optimized design of an induction heating 

system by means of the PSALHE-EA 

algorithm 

3.1 Introduction 

Optimization techniques are often applied in engineering applications, 

like the design of electromagnetic devices. Often the devices have multiple 

specifications, i.e. it is necessary to employ multi-objective optimization 

methods. A more simple approach is to use a single objective function (OF) , 

obtained by means of the weighted sum of the objective functions related to 

each goal of the optimization problem. This weighted objective function is 

often multimodal, i.e. it presents multiple optima in the feasible domain. It is 

worth to note that by choosing the weights the designer restricts the search of 

multiple optima to one point on the Pareto front [45]. In this case, it may be 

helpful to provide to the designer not only the global optimum but even the 
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local ones with their niche radius, giving useful information about the 

sensitivity of each optimum to decision parameters variations. This information, 

usually neglected by optimization algorithms that try to find the Pareto optimal 

front, is very important when a physical device or component is modeled. 

The optimization of electromagnetic devices requires a method able to solve 

the optimization problem using only a few number of objective function 

evaluations. This is due to the high computational cost of a single evaluation; in 

fact it usually requires a solution by means of a numerical computational 

method: finite-element method, finite differences methid, method of moments 

and so on. Many EAs [45] such as Niching Genetic Algorithms (NGAs) [46] 

use niching techniques to maintain population diversity and to permit the 

investigation of many peaks at the same time, easily allowing the parallelization 

of the algorithm [47]. Sometimes these algorithms give their best performance 

with a high number of problem solutions. The reduction of the number of 

evaluations is an essential issue in electromagnetism. The SALHE-EA (Self-

Adaptive Low-High Evaluation Evolutionary-Algorithm) [48] is an 

optimization method able to exploit the information given by all calculated 

solutions without neglecting poor solutions. In particular it is able to find 

multiple optima of a multimodal function and to give information about the 
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fitness landscape in the neighborhood of these optima using a low number of 

solutions of the electromagnetic problem [52][53]. 

In this chapter an improved version of SALHE-EA is presented. This 

new version has some different features respect to the original one, that are: the 

number of individuals selected for reproduction each generation can be chosen 

by the user; each selected individual generates only one offspring; a 

replacement mechanism of the individuals that are identified as hypothetical 

maxima; the comparison mechanism applied to the fitness of parents and 

offspring after reproduction. These changes allow the full parallelization of the 

algorithm. The Parallel SALHE-EA (PSALHE-EA) is applied to the optimized 

design of induction eating device. 

3.2 The SALHE-EA Algorithm  

In the following optimization will refer to maximization without loss of 

generality. The SALHE-EA is a coupled stochastic-deterministic optimization 

algorithm. At the beginning of the stochastic section N individuals are random 

generated. After that, five fundamental steps are performed a fixed number of 

times ng (number of generations). These steps are: selection, mutation, 

elimination of useless individuals, identification of new hypothetical maxima 

(optima) and new hypothetical minima (they are “hypothetical” because they 
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may differ from the true maxima or minima), evaluation of niche radii (the 

niche radius of an hypothetical maximum is the Euclidean distance from the 

closest hypothetical minimum).  

At the end of the last generation the “doublets” are deleted. Doublets are 

the hypothetical maxima belonging to the same niche of another hypothetical 

maximum better of them. At the end of the stochastic section, a deterministic 

method, e.g. Pattern Search (PS) [49], is applied to the remaining hypothetical 

maxima in order to improve their OF value. The pseudo-code of SALHE-EA is 

shown in Fig. 3-1. 

   

Fig. 3-1. Pseudo-code of SALHE evolutionary algorithm. 

- begin 

- generates random population 

- do ng times 

- evaluation of fitness functions, fH and fL, for each individual 

- selection 

- mutation 

- elimination of useless individuals 

- identification of new hypothetical maxima and  

new hypothetical minima 

- updating of niche radii 

- end do 

- deletion of doublets 

- starting of PS algorithm from each hypothetical maxima 

- updating of niche radii 

- deletion of doublets 

- end 
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Let examine more in details the main steps of the algorithm. 

In the selection step, in order to search for the maxima the value of fHi of i-th 

individual depends on three factors: the value of the scalar objective function fi, 

a penalization factor βi for the individuals present in crowded zones and a 

penalty factor ρHi for the individuals present in discovered niches.  

( ) ( )c

Hi

b

i

a

iHi
Hff ρβ=  (3.1) 

where aH, b and c are some scaling powers greater than or equal to one. The 

value of βi is calculated as follows: 

maxd

di
i =β  (3.2) 

where di is the average Euclidean distance between the nc individuals closest to 

the individual i and dmax is the largest di. Being dik the Euclidean distance 

between individual k and individual i, di is calculated as follows 
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Finally the penalty factor ρHi is defined as:  

∏
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where mH is the number of niches, to which the individual i belongs, dij is the 

Euclidean distance between i and the maximum in niche j and rj is the radius of 

the niche j.  
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 In order to search for the minima, a modified fitness fi,L is evaluated for 

the i-th individual in a similar way. 

The niche radius rj is defined as the Euclidean distance in the design 

parameters space between a point of maximum xjM and its closest point of 

minimum xjm: 

jmjMjr xx −=  (3.5) 

The identification method of new maxima and minima is the following. 

An “hypothetical maximum” is an individual that, selected for reproduction, 

generates offspring with fitness values lower than its own for several 

consecutive times (parameter nh, chosen by user). Analogously an 

“hypothetical minimum” is an individual that generates, several consecutive 

times (parameter nl, chosen by user), offspring with fitness values higher than 

its own.  

A individual xp selected by means of wheel one W1, generates an 

offspring xo by means of the mutation operator that adds a random vector to xp. 

The value of the k-th parameter is computed as: 

kkpko steprrsignxx 21,, )5.0( −+=  (3.6) 

where r1 and r2 are [0,1] random numbers, and: 
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where N is the number of individuals in the population, ∆k is the domain of the 

k-th design parameter, fp, fmin and fmax are the values of the scalar objective 

function for the parent, the worst and the best individual respectively. 

Considering N regular subdivisions of ∆k, nk is the number of intervals in which 

at least one individual is present. Parameter e is a scaling power greater than or 

equal to one. A similar mutation mechanism is applied to individuals selected 

by means of wheel W2. Equation (3.7) controls the balance between 

exploration of unknown zones of the search space and exploitation of attractive 

areas of the search space. If the number N of individuals in the population is 

sufficiently large to explore the search space, the factor ∆k/N in (3.7) is small 

and forces new individuals to search locally. Otherwise the term ∆k/N is larger 

and the new individuals are spaced out, favoring exploration of the whole 

space. The second term in (3.7) preserves diversity in the population: if 

individuals tend to crowd, the number nk becomes small and stepk goes up. The 

third factor in (3.7) also has an influence on the balance between exploration 

and exploitation, forcing individuals with high fitness values to search locally 

and individuals with low fitness values to search globally. Finally, the last 

factor in (3.7) increases stepk if the parent belongs to a discovered niche: this 

contribute prevents unnecessary computations of the objective function. 

Applying the mutation operator twice, each selected individual generates two 
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offspring. After reproduction, the individual with the intermediate fitness value 

among a parent and its two offspring is chosen and eliminated because it is less 

able to identify local optima or local minima, as shown in Fig.3-2. 

Individuals not selected for reproduction for many generations are called 

“non-active” individuals. A threshold parameter na is introduced: if an 

individual is not selected for na generations it becomes a non-active individual.  

Individuals that have an intermediate fitness value in comparison to their 

neighbours are called “local middle” individuals.  

While the algorithm proceeds, the number N of individuals tends to 

increase, so, at the end of the mutation step, some individuals are eliminated in 

order to recondition the initial number Npop of individuals in the population 

 

 

Fig. 3-2 : Elimination of the individual with intermediate fitness value among 

the parent and the 2 offspring, in a 1-dimensional search space. 
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Non-active and local-middle individuals are mainly suitable to be eliminated. 

The pseudo-code of the elimination mechanism is shown in Fig. 3-3. 

 

 

Fig. 3-3. Pseudo-code of the elimination mechanism.

- begin elimination 

- number of exceeding individuals: Ne = N − Npop 

- number of non-active individuals: Nna  

- number of local-middle individuals: Nlm  

- if Ne> Nna 

- elimination of all non-active individuals 

- Ne = Ne − Nna 

- if Ne> Nlm 

- elimination of all local-middle individuals 

- Ne = Ne − Nlm 

- else 

- elimination of the Ne worst local-middle individuals 

- Ne = 0 

- endif 

- else  

- elimination of the Ne worst non-active individuals 

- Ne = 0 

- endif 

- end elimination 
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If, for several consecutive times, an individual selected for reproduction 

generates two offspring with fitness values lower than its own, then we assume 

that it is probably a maximum and we call it a “hypothetical maximum”. A 

minimum can be identified analogously: we call an individual that generates, 

several consecutive times, offspring with fitness values higher than its own a 

“hypothetical minimum” . Two numbers nH and nL are fixed in order to 

quantify the meaning of “several times” for the identification of hypothetical 

maxima and minima respectively. 

Two hypothetical maxima belong to the same niche if their Euclidean 

distance is lower than both their niche radii. If only one hypothetical maximum 

has a niche radius r1 greater than their Euclidian distance, this niche radius is 

reduced: 

2,1,1 rrr oldnew −=
 

(3.8) 

where r2 is the niche radius of the other hypothetical maximum.  

The hypothetical maxima belonging to the same niche and having fitness 

values lower than that of the best hypothetical maximum in the niche are called  

“doublets”. At the end of the main loop all doublets are deleted. 

A deterministic search is then started from each hypothetical maximum 

and carried out by means of the PS algorithm. At the end of the PS, the niche 
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radii are updated and new doublets are deleted, if they occur. The remaining 

hypothetical maxima are the optimal solutions obtained and their niche radii 

provide a measure of the sensitivity of the maxima to variations in the design 

parameters. 

A comparison among the SALHE-EA, Niched Genetic Algorithm (NGA) 

and Artificial Immune System (AIS) on both newly designed and existing test 

functions, typically used for NGA benchmarking demonstrated that using the 

same number of evaluations SALHE-EA works better than both NGA and AIS 

[52]. Moreover, SALHE-EA approaches the performance of the other 

algorithms with a smaller number of objective function evaluations, showing 

that it is well-suited when the containment of computational cost is a priority, 

as in electromagnetic optimization. SALHE-EA works better than other two 

algorithm also on functions with unequally spaced and non-uniform peaks. 

3.3 The Parallel version of SALHE-EA 

In the optimization of electromagnetic devices the computation effort due 

to the steps of the SALHE-EA is negligible compared to the time need to obtain 

a numerical solution. Moreover in each niche a PS is performed and, of course, 

they can run in parallel. Furthermore since PS always starts from a point close 

to the optimum it converges with a little number of objective function 
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evaluations. So, in order to estimate the overall optimization time only the 

number of objective function evaluations of the SALHE-EA stochastic section 

is relevant. In particular, each generation two individuals are selected for 

mutation by means of two different mechanisms. Each selected individual 

breeds two times. 

The fitness of the four generated individuals is computed. Note that in 

case of parallel computing this behavior makes ineffective the use of more than 

four CPU. Hence, for the stochastic section, the number of objective function 

evaluations nv is equal to: 

Nngnv += 4  (3.9) 

where ng is the number of generations and N the initial population size. 

Therefore assuming that fitness evaluation needs an average time Ts for each 

individual, the overall optimization time Ttot is about: 

  stot TNngT )4( +=  (3.10) 

Parallelizing SALHE-EA using a standard master/slave model [54] involves a 

lower limit on the overall optimization time equal to: 

     
4

)1( s
stot

nvT
TngT ≈+=  

(3.11) 

In fact, a simple parallel version of SALHE-EA, requires (using a 

number of NCPU≥N) a time Ts for the initial population fitness evaluation plus a 

time ngTs for the offspring fitness evaluation. The Parallel SALHE-EA 
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(PSALHE-EA) presented here has some new features that permit to 

considerably reduce the overall optimization time respect to the theoretical limit 

(3.11). 

PSALHE-EA and SALHE-EA have the same following characteristics: 

− the evaluating method of the modified fitness; 

− the niche radius definition and its estimation method; 

− the identification method of hypothetical maxima and minima; 

− the roulette wheel selection operator is applied; two wheels are created: W1 

with slots proportional to fH (modified fitness used to search for the 

maxima) and W2 with slots proportional to fL (modified fitness used to 

search for the minima); 

− the mutation mechanism; 

− the elimination mechanism of “doublets”; 

− the coupling with the deterministic PS algorithm. 

PSALHE-EA differs from SALHE-EA in these aspects:  

− the number of individuals selected for reproduction each generation can be 

chosen by user (2 individuals are selected in SALHE-EA); 

− each selected individual generates only one offspring (2 in SALHE-EA); 

− the absence in PSALHE-EA of the mechanism of elimination of useless 

individuals; 
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− the introduction in PSALHE-EA of a replacement mechanism of the 

individuals that are identified as hypothetical maxima or minima and stored 

in an external archive and for this reason deleted from the population; they 

are replaced by new individuals randomly generated;  

− the comparison mechanism applied to the fitness of parents and offspring 

after reproduction. 

In PSALHE-EA, when the parent is selected by means of wheel W1, 

such mechanism replaces the parent i with the offspring j with the greatest 

fitness fj if fj>fi. In the same way, when the parent is selected by means of 

wheel W2, the parent i is replaced by the offspring j with the smallest fitness fj 

if fj<fi. In SALHE-EA, the individual with the intermediate fitness value among 

a parent and its two offspring is chosen and eliminated because it is less able to 

identify local maxima or local minima, as shown in Fig.3-2.  

The most important feature of PSALHE-EA is the possibility to select 

more than two individuals for reproduction: h individuals are selected for the 

reproduction by means of wheel W1 and l by means of wheel W2. This is not 

feasible using the comparison mechanism of SALHE-EA. 

Considering a number of generation equal to ngp, the number of 

objective function evaluations nvp is equal to:  

mMngplhNnvp ++++= )(  (3.12) 
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with a overall optimization time: 

stot TmMngplhNTp ])([ ++++=  (3.13) 

where M and m are, respectively, the number of hypothetical maxima and 

hypothetical minima provided by PSALHE-EA. 

Making full use of parallelization this time can be reduced to: 

lh

nvpT
TmMngpTp s

stot
+

≈+++= )1(  
(3.14) 

Hence, using the same number of evaluations, nvp=nv, the PSALHE-EA 

computing time gain respect to SALHE-EA is: 

tottot T
lh

Tp
+

≈
4

 
(3.15) 

where the upper limit to the sum (h+l) is due to the number of available CPUs. 

3.4 Numerical validation 

The evaluation of performance was carried out applying PSALHE-EA to a 

set of mathematical functions, and to electromagnetic problems. 
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3.4.1 Mathematical functions 

The performance of the PSALHE-EA algorithm was evaluated by means of 

a test of mathematical functions typically used for multimodal algorithm 

benchmarking [55], as Shekel’s Foxholes function (Fig. 3-4) 

Fig. 3-4. Shekel’s foxholes function 
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 The chosen values for algorithm paramethers were aH=b=c=1, e=1. Three 

different values for population size were used: N=10 (nc=3, nh=5, nl=4), N=20 

(nc=4, nh=6, nl=5), N=25 (nc=5, nh=8, nl=6). The results on mathematical 

functions are averaged over 100 trials. 

Table I and Table II show the percentage of authentic maxima found on 

Shekel’s Foxholes function (over 25 true maxima). Table 3-I shows results 

obtained on a single CPU, i.e. without parallelization. The new strategy adopted 

in PSALHE-EA gives comparable results using the same number of offspring 

of SALHE-EA (h = l = 2) and about the same overall optimization time. Table 

3-II shows results for the case of h=l=5: parallel computing drastically reduces 

the optimization time when h and l increase. The performance decreases only 

using a very low evaluations number: this  is negligible in case of parallel 

computing which typically allows a high evaluation number. Fig. 3-5 shows the 

final hypothetical maxima with their radii in a solution found by means of the 

SALHE algorithm for the Foxholes function.  
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TABLE 3-I 

COMPARISON BETWEEN SALHE-EA AND PSALHE-EA 

 ON SHEKEL’S FOXHOLES FUNCTION 

TTOT Ng Nv 
PERCENTAGE OF SUCCESS 

SALHE-EA PSALHE-EA 

1000Ts 249 1000 47.51% 43.08 % 

2500Ts 622 2500 82.42% 82.72 % 

5000Ts 1173 5000 92.61% 94.56 % 

 

 

TABLE 3-II 

PERFORMANCE OF PSALHE-EA USING PARALLELIZATION 

Ttot ngp nvp PERCENTAGE OF SUCCESS 

~100Ts 91 1000 33.84 % 

~250Ts 229 2500 77.32 % 

~500Ts 472 5000 94.20 % 
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Fig. 3-5: Final hypothetical maxima with their radii for the Foxholes function 

 

The validation was also performed by means of an electromagnetic problem: 

the TEAM Workshop Problem 22 (SMES)  [56]. 

The problem consists of two concetric coils carrying current with 

opposite direction (Fig. 3-6). Working under superconducting conditions offers 

the opportunity to store a significant amount of energy in magnetic fields while 

keeping the stray field with certain limits. An optimal design of the system 
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should couple the desired value of energy E=Eref to be stored (first objective) 

with a minimal stray field measured at the distance of 10 meters from the 

device (second objective). Moreover the superconductivity must be guaranteed 

(quench condition). 

An optimization problem with three parameters (radius R2, height h2 and 

thickness d2 of the outer coil)  was defined. Table 3-III shows the variation 

range of the design parameters. 

TABLE 3-III 

Design parameters for the SMES problem 

 

 

R1 

[m] 

R2 

[m] 

h1/2 

[m] 

h2/2 

[m] 

d1 

[m] 

d2 

[m] 

J1 

[A/mm
2
] 

J2 

[A/mm
2
] 

min  2.6 - 0.204 - 0.1  - 

max  3.4 - 1.1 - 0.4  - 

fixed 2.0 - 0.8 - 0.27 - 22.5 -22.5 

 

 



 78 

 

Fig. 3-6: SMES configuration 

The objective function of this problem has to take both the energy 

requirement (E should be as close as possible to 180 MJ) and the stray field 

requirements (Bstray evaluated along 22 equidistant points along line a and line b 

in Fig. 3-6 as small as possible) into account, hence the problem is a 

multiobjective problem. However, the two objectives are mapped into a single 

objective function OF: 
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where Eref=180 MJ, Bnorm =200 µT   and B
2

stray  is defined as:     

22

22

1

2

2
∑

== i

strayi

stray

B

B  

(3.17) 

The superconducting material should not violate the quench condition 

that links together the value of the current density and the maximum value of 

magnetic flux density, as shown in Fig 3-7. 

 
Fig. 3-7: Critical curve of an industrial superconductor. 

The critical curve has been approximated by: 

( ) 2/0.544.6 mmABJ +−=  (3.18) 

 The optimization required 1186 objective function evaluations and a 

computational time of about 120Ts (100Ts for PSALHE-EA, 20Ts for PS). The 
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method identified four niches: Table 3-IV (h = l = 5) shows values of each 

optimum, together with the estimated normalized niche radius ρ. The optima 

and the niche radii are comparable with known solutions [46], [56]. Fig. 3-8 

shows the contours of the magnitude of magnetic vector potential A for the 

optimum O1. 

 

 

Figura 3-8: Contours of the magnitude of magnetic  

vector potential A for the optimum O1 
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TABLE 3-IV 

OPTIMA FOR THE SMES BENCHMARK  

 R2 h2/2 d2 OF ρ  

O1 3.0949 0.2543 0.3658 0.08944 0.0814 

O2 3.1771 0.3903 0.2274 0.10143 0.0856 

O3 3.3422 0.7815 0.1025 0.14520 0.2284 

O4 3.1189 0.3115 0.2949 0.09261 0.0723 

 

3.5 Optimization of an induction heating device 

The considered electromagnetic device is a induction heater for conductor 

pieces [57]. The piece is a parallelepiped of aluminum, whose dimensions are L 

× L × H (L=80mm, H=200mm). The piece is surrounded by a concentric 

circular inductor of rectangular cross section with thickness s=20mm, which 

carries a current with constant current density J=4A/mm
2
 (see Fig. 2). 

The design parameters of the inductor are the internal radius r ∈ [60, 80] 

mm, the height a ∈ [100, 140] mm, the offset between the center of the piece 

and the center of the inductor in z direction c ∈ [0, 20] mm, the current 

frequency f ∈ [250, 3000] Hz.  
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Fig. 3-9: Geometry of the induction heating device 

 

The aim of optimization is to obtain, at the end of the heating, the following 

three targets: 

− minimizing the difference Tdiff between the steady state average 

temperature in the piece Tav and the desired temperature Tref=500°C; 

− minimizing the gap of temperature Tgap into the piece; 

− maximize the induction efficiency η, defined as follows: 

)P/(PPη indll +=  (3.19) 

where Pl, Pind represent the power dissipation in the aluminum piece and in the 

inductor, respectively. 
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A compromise between the three objectives is obtained by using fuzzy 

techniques, which furthermore allow the handling of design objectives which 

are measured on different scales [58]. Three sigmoidal membership functions 

were used to scale values in the range [0,1]. The two limits (yacc and yrej, 

respectively the acceptability and unacceptability threshold for each objective) 

are set according to the designer’s requirements. The three membership 

functions are plotted in Fig. 3-10. 

The global objective function OF to maximize is  

3/)µµµ(OF
ηgapdiff ++=  (3.20) 

µdiff, µgap and µη being the fuzzified values of the objectives. 

 Note that both aluminum thermal conductivity and electric conductivity 

are functions of the temperature, so that the electromagnetic-thermal coupled 

problem is non linear. 

 The mesh was refined by means of the mesh generator of Par. 1.6. The 

initial coarse mesh consists of 525 nodes, 1600 tetrahedra and 2476 edges. 

Starting from this solution the error indicators ηi and the relative probabilities πi 

are computed. The artificial neural network mesh generator was applied with a 

target value of additional nodes Nadd=600. The final mesh, which is constituted 

by 1125 nodes, 4357 tetrahedra and 6230 edges, remained the same during the 

whole optimization. Fig. 3-11 shows the two meshes. 
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Fig. 3-10: membership functions for the three objectives
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                          (a)                                                       (b) 

Fig. 3-11: Initial (a) and final (b) mesh 

 

The thermal analysis was performed employing the strategy explained in 

chapter 2. Homogeneous Neumann conditions were imposed on the xz and yz 

planes. The simulation was performed on a computing cluster of 10 PC (P4 3.2 
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GHz, 4Gb RAM). The total time Ts for the solution of the coupled problem is 

about 50s. The PSALHE-EA was applied using a initial population N=20, with 

parameters value h=l=5. The optimization required 2717 OF evaluations  and a 

computational  time  of about 275 Ts (250Ts for stochastic section of PSALHE-

EA, 25Ts for PS).  

The CPU time increases of about 875% solving the same problem by 

means of SALHE-EA. Table 3-V shows the optima values and estimated niche 

radii ρ of each niche. Fig. 3-12 shows the power density distribution and the 

temperature distribution for the optimum O3. 

 

 

 

TABLE 3-V 
OPTIMA FOR THE INDUCTION HEATING DEVICE OPTIMIZATION 

 
r 

[mm] 

c 

[mm] 

a 

[mm] 

f 

[Hz] 
OF ρ 

Tav 

[°C] 

Tgap 

[°C] 

η 

[%] 

 O1 77.21 10.54 101.3 1217 0.814 0.178 499.8 18.2 86.3 

O2 65.16 14.74 137.9 382 0.828 0.186 499.9 14.1 84.4 

O3 67.92 13.55 127.5 487 0.824 0.196 499.9 15.4 84.9 
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Fig. 3-12: power density and temperature distribution for the optimum O3
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CONCLUSION 

In this work an innovative approach to the analysis and synthesis of 

three dimensional induction heating devices has been proposed. 

Analyses and evaluations are performed by means of a hybrid method 

called FEM-SDBCI (Singular Dirichlet Boundary Condition Iteration). The 

method couples a differential equation for the interior problem in terms of the 

electric fields with an integral equation for the exterior one. The adoption of a 

single vector unknown in both the conductors and the air does not involve a 

significant increase in computational cost as compared with other Eddy Current 

formulations. The method alleviates the major drawback of FEM-DBCI, that is, 

the insertion of some element layers between the integration and truncation 

surfaces; consequently, the integral equation becomes singular. The method is 

similar to the well-known FEM-BEM, but it assumes a Dirichlet boundary 

condition on the truncation boundary instead of a Neumann one. FEM-SDBCI 

leads to shorter solving times with respect to FEM-BEM. The FEM-SDBCI 

allows, in coupled problems, the use of a unique finite element mesh for both 

electromagnetic and thermal analyses. 
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The FEM-SDBCI is then incorporated in a method for the computation 

of the heating of a conductor in which eddy currents flow, induced by time-

harmonic source currents. The electrical field is assumed to be unknown on a 

mesh of edge elements and is computed by a time-harmonic analysis which 

uses the hybrid FEM-DBCI method. The heating power density inside the 

conductor is computed and a transient thermal analysis is started on the same 

mesh of nodal elements. This analysis is continued until the temperature-

dependent electrical conductivity or the magnetic reluctivity changes enough to 

require another time-harmonic eddy-current analysis. This combined procedure 

is iterated. To solve the transient non linear problem, a Crank-Nicolson scheme 

was implemented. 

Moreover, FEM-SDBCI is particularly suitable for use in an 

optimization tool. In fact, in the case of design of induction heating device, it 

allows a great saving of computing time by treating current sources as external 

sources, avoiding the construction of an FEM matrix in each solution of the 

field problem and making use of the same mesh for both electromagnetic and 

thermal problem. The optimization algorithm presented in this work is the 

PSALHE-EA algorithm for optimization of electromagnetic devices. The 

PSALHE-EA has some new features that permit to reduce considerably the 

overall optimization time allowing to make full use of parallelization. The tests 
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performed show that PSALHE-EA is a very efficient hybrid optimization 

method, that always outperforms the serial version. The ability to find multiple 

optima with a low computing time makes the algorithm particularly suitable to 

be used in the design of electromagnetic devices. Finally an induction heating 

system has been designed in order to validate the method with an industrial 

application, obtaining several good solutions at low computational costs 
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Appendix A 
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Fig A-1. Triangular patch 

 

Let consider a generic triangular patch Tk. A local coordinate frame is selected, 

in such a way that Tk lies on the xy plane, vertex V0 coincides with the origin 

and the other two vertices have coordinates V1=(x1,0,0) and V2=(x2,y2,0).The 

integral  

∫∫ ∂

∂
++=

kT
dxdy

rx
cbyaxI

1
)(  

(A.3) 

where a, b and c are given coefficients; in the triangular domain Tk  can be 

conveniently performed by subdividing the patch in two subtriangles T' and T" 

(fig. A-1).  
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In Tk, a system of coordinates (ξ,η) can be related to the system (x,y) as 

follows: 




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+=

η

ηξ

2

21

yy

xxx
 

(A.2) 

Let split the integral in (A.1): 
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The first integral in the right and side of (A.3) can be calculated as follows: 
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The terms I0 is computed as in (1.41). Thanks to the Green theorem (A.4) leads to: 

0
ˆ aIdlnm

r

byax
I

kT

ab −⋅
+

= ∫
∂

)
 

(A.5) 

 

being m
)

 the unit normal vector directed outside to 
kT∂ . Considering that 

1112 )
2

cos(ˆ γγπ sennm =−=⋅
)

 
(A.6) 

0020 )
2

cos(ˆ γγπ sennm −=+=⋅
)

 (A.7) 

0ˆ
01 =⋅ nm

)
 (A.8) 

and by means of (a.2), eq. (a.5) changes as : 
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Using the notation:  

R=A+Bη+Cη2 (A.10) 

integrals in (A.9) are of the form which can be evaluated by means of the 

following analytical formulas [23]: 
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(A.11) 
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Defining R1(η)=A1+B1η+C1η
2 

and R2(η)=A2+B2η+C2η
2, with A1=(x1-xq)

2
, 

A2=xq
2
, B1=2(x1-xq) (x2-x1), B2=-2xqx2, C1=(x2-x1)

2
+y2

2, C2=x2
2
+y2

2, by means 

of (A.11) and (A.12), equation (A.9) leads to:  
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where L12 and L02 are the lengths of two edges of the triangles, and 
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then, evaluating (A.13) at integration’s extremes: 
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where: 
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Finally the following equation can be obtained: 
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where: 
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In a similar way the second integral in the right and side of (A.3) can be 

calculated as follows,: 
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The right and side of (A.22) has the same form of (A.12) and, making use of an 

approach analogous to (A.12)-(A.21), leads to: 
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where H’ and H” are the same of (A.20)-(A.21). If Q is a generic Gauss points 

Pn=(ξnx1,0,0) (0<ξn<1) in the triangle, the equations (A.19) and (A.23), 

applying substitutions (1.44)-(1.51), lead to equation (1.43). 
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