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ABSTRACT

The exponential growth in the number of communicating devices and

the increasing demand for better and high-performance communica-

tions have made allocation of network resources an issue of extreme

importance. The problem is further exacerbated if we consider that,

while the number of deployed devices is massive, the amount of net-

work resources is still limited. In this thesis, we aim at providing a

holistic approach for resource allocation in modern telecommunication

networks. Specifically, we consider a network consisting of a backhaul

interconnecting a Radio Access Network (RAN) that provides mobile

users with wireless access to a Core Network (CN). The CN allows ac-

cess to the Internet and enables end-to-end communications by rout-

ing users’ data and calls. We take both energy and security aspects

into account, by proposing a power-efficient and jamming-proof re-

source allocation scheme for the RAN. Furthermore, we consider the

relevant and emerging case where the backhaul is shared among dif-

ferent tenants. Accordingly, we exploit Software Defined Networks

(SDNs) and Network Function Virtualization (NFV) paradigms to

provide dynamic and flexible network and service management in the

multi-tenant backhaul and CN, respectively. We formulate the re-

source allocation problem through both centralized and distributed ap-

proaches, we discuss the existence and uniqueness of efficient resource

allocation solutions and we provide distributed privacy-preserving al-

gorithms that provably converge allow to the optimal resource alloca-

tion policy by exploiting only local or shared information.
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CHAPTER

ONE

INTRODUCTION

The last decades have been characterized by the development of new

technologies and materials which have paved the way for significant

evolutionary and revolutionary advances in the field of telecommuni-

cations. Nowadays, sharing computing resources among several net-

work users is made possible by distributed and cloud computing [1–3].

Device-to-Device (D2D) communications are now feasible and can be

exploited to improve network efficiency and performance in modern

communication networks such as 4G and 5G networks [4–7]. Also,

new materials such as graphene allow the development of communi-

cation devices, i.e., the so called nanomachines, whose size is in the

nanometer range [8–10].

The technological evolution, together with the reduction of manu-

facturing costs of technological devices such as smart-phones, tablets

and laptops, brought to the exponential diffusion of those devices. Ac-

cordingly, concepts such as the Internet of Things (IoT), where even

everyday objects access the Internet and communicate with other de-

vices, are feasible [11]. Furthermore, even though modern devices are

small in size, they are able to perform complex computations, thus

1



2 Chapter 1. Introduction

Figure 1.1: The considered network scenario.

making possible to perform pervasive and ubiquitous computing.

For the above reasons, the deployment of such devices is already

massive and it is expected to grow in the near future. On the one

hand, the number of devices exponentially increases, on the other hand

the amount of network resources (e.g., transmission power, spectrum,

bandwidth in IP networks) to support device communications is lim-

ited and fixed [12–14].

Accordingly, the scarcity of network resource calls for efficient al-

location and management of those resources. Even though a variety

of efficient resource allocation schemes have already been designed in

several wired and wireless scenarios [15–20], the development of new

communication paradigms still leaves the resource allocation problem

a challenging and open issue.

Modern communication networks generally consist of three ele-
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ments: the Radio Access Network (RAN), the Backhaul and the Core

Network (CN) [5, 6, 21]. The RAN allows users to access the network

through wireless connections provided by Access Points (APs) such as

Base Stations (BSs). The CN allows end-to-end communications by

routing users data and calls. Also, it provides network users with a

variety of services and access to the Internet network and the cloud.

Instead, the backhaul is the element in the network infrastructure that

interconnects the RAN and the CN. A schematic computer network

diagram is provided in Fig. 1.1. Also, Fig. 1.1 shows interconnections

among the various network segments established by exploiting proper

gateway nodes.

The core network is, in general, composed of high performance

elements such as switches and routers that exploit optical technologies

which are able to guarantee and support high-rate communications

generated by BSs and network users. On the contrary, the backhaul is

composed of hardware and links whose performance have been shown

to be the bottle-neck of modern telecommunication networks [22, 23].

Furthermore, achievable performances are, in many scenarios, also

affected by the fact that the backhaul is often shared among several

tenants. This is the case of multi-tenant networks where the physical

underlying network which composes the backhaul is divided in several

logical slices that are assigned to one or more tenants that share the

same physical resources such as routers, switches and links [24, 25].

In such a heterogeneous scenario where multiple tenants, wired

and wireless technologies coexist, efficient resource allocation is of ex-

treme importance. High-performance optical communications in the

CN make the problem of resource allocation relevant but not criti-

cal. Instead, efficient allocation of network resources in both the RAN

and the backhaul is fundamental. For example, due to the broadcast

nature of wireless communications, the RAN is vulnerable to interfer-

ences, whether they are generated by legitimate users or by malicious
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users, i.e. jammers. Accordingly, transmission policies that reduce the

impact of interferences on network performance should be designed.

Instead, tenants are not expected to cooperate. Instead, they com-

pete with each other to obtain as many users and network resources

as possible to maximize their revenues and network performance. Re-

cently, Software Defined Networks (SDNs) and Network Function Vir-

tualization (NFV) have been exploited to provide flexible and dynamic

network management and control. Also, these two technologies have

enabled the softwarization of network devices and services, thus mak-

ing possible to efficiently manage multi-tenant networks. However,

how to optimally allocate network resources to provide efficient net-

work management and control in softwarized networks is still an open

issue.

To deal with resource allocation problems, two approaches are pos-

sible: centralized and distributed, respectively. The first approach re-

quires a centralized entity that is charged to take decisions and to

optimally allocate network resources. In general, such an approach

implies that the centralized entity has full (or partial) access to the

actual state of the network, e.g., topology of the network, number of

connected users and their positions and channels conditions. However,

to properly take into account all the above parameters, the centralized

entity has to handle a large amount of variables, which implies that the

decisional space is large. As a consequence, most centralized solutions

result in combinatorial problems and require to test all the possible

allocation combinations. This is the reason why most of the resource

allocation problems that are addressed through centralized approaches

are NP-Hard and are computationally inefficient. To overcome such an

issue, greedy algorithms and heuristics approaches are often proposed.

However, although the two latter approaches considerably reduce both

the computational time and the complexity of the solution, they also

introduce approximations which lead to sub-optimal solutions in most
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cases.

On the contrary, distributed solutions allow each individual user to

take decisions by using local information which, in most cases, is either

already available, e.g., neighbors and user positions, or can be locally

measured by each user in the network, e.g., signal-to-interference-and-

noise ratio (SINR) and pilot signals. Accordingly, the decisional space

of each user, i.e., the entity that takes decisions, is small and the num-

ber of variables to be handled is small. It follows that the computa-

tional complexity of such approaches is low and can often be computed

in polynomial time.

To provide distributed solutions to resource allocation problems

several approaches can be considered depending on the considered

scenario. If users are allowed to cooperate with each other and ex-

change information, it is possible to allocate resources by exploiting

well-known optimization algorithms such as message-passing [26, 27]

and belief-propagation [28, 29]. However, such an assumption is ei-

ther unrealistic or unfeasible in several scenarios where network users

selfishly aim at maximizing their own performance without disclosing

any private information to other users in the network. For example,

spectrum auctions [30–32] and power allocation problems in Cognitive

Radio Networks (CRNs) [12, 13, 33] are typical examples of network

scenarios where users requests privacy-preserving solutions. Accord-

ingly, a promising and rigorous approach to deal with such distributed

non-cooperative scenarios, is Game Theory (GT). In game-theoretic

approaches, a set of players, i.e., network users1, take decisions from a

strategy set to maximize a given utility function. Game-theoretic so-

lutions can be derived for many resource allocation problems in com-

munication networks. The desirable outcome of a game is a strategy

profile such that each player maximizes its utility function and no

1In the following of this thesis,the terms network users, users and players are
used interchangeably.
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player has incentive in unilaterally deviating from.

In this thesis, we focus on the scenario where a set of mobile

users access a multi-tenant backhaul through the RAN. We assume

that mobile users are power constrained, i.e., their transmission power

cannot exceed a given threshold. Also, we consider a malicious user

that aim to disrupt wireless communications between mobile users

and the RAN. Accordingly, the scope of this thesis is to design

power-efficient and jamming-proof wireless communications in a non-

cooperative multi-tenant backhaul where network and services man-

agement is performed by exploiting SDNs and NFV, respectively.

Accordingly, the main contributions of this thesis are as follows:

• A comprehensive analysis of the problem of resource allocation

for power-efficient and jamming-proof communications in mod-

ern multi-tenant communication networks;

• Analysis and design of both centralized [34] and distributed

[12, 13, 33, 35] resource allocation solutions for power-efficient

and jamming-proof communications in the RAN. Also, we con-

sider the challenging case of imperfect information w.r.t. system

parameters such as jammer’s position [34], channel state infor-

mation (CSI) and SINR[12, 13, 33, 35];

• Investigation and design of distributed and privacy-preserving

resource allocation solutions for network and service manage-

ment of multi-tenant networks [36, 37];

• Discussion on the implementation aspects and issues of the pro-

posed resource allocation solutions for the user-centric resource

allocation in RANs with multi-tenant backhaul.
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1.1 Structure of this Dissertation

This dissertation is organized in five chapters (including this introduc-

tory section) as follows:

Chapter 2 is devoted to a review of the existing literature which is

relevant to our topic.

Chapter 3 proposes centralized and distributed resource allocation

solutions for power-efficient and jamming-proof RAN. A resource allo-

cation scheme that jointly provides power-efficient and jamming-proof

communications is proposed. Also, the two cases where whether one

of the two requirements is relaxed are discussed and efficient resource

allocation policies are proposed in both cases.

Chapter 4, instead, presents game-theoretic SDN and NFV-based

resource allocation schemes for managing network control in the multi-

tenant backhaul and service provisioning in the CN. Existence and

uniqueness of equilibrium points are discussed. Furthermore, dis-

tributed learning procedures which provably convergence to those

equilibrium points are presented

Chapter 5 analyzes and discusses implementation aspects of the

proposed resource allocation schemes for power-efficient and jamming-

proof RAN over multi-tenant backhaul. Specifically, the computa-

tional complexity of proposed solutions is investigated and algorithmic

implementations are proposed.

Finally, Chapter 6 summarizes the conclusions and proposes fur-

ther works related to the presented subject.
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TWO

BACKGROUND AND RELATED WORK

Resource allocation is a challenging and timeless issue in both wired

and wireless networks and several solutions to resource allocation prob-

lems have been proposed in the literature. However, quite often so-

lutions to these problems result in scenario-specific approaches that

make hard to develop a unifying framework to optimally allocate net-

work resources in RANs with multi-tenant backhaul.

To achieve power-efficient and jamming-proof RAN in multi-tenant

networks, we identify the following four issues that must be properly

addressed.

• Power Control/Allocation: the power-efficiency requirement and

the maximum transmission power constraint call for efficient and

robust transmission policy design. Accordingly, to optimally

schedule users’ transmissions, and in line with a vast body of

the literature, we identify power control and allocation as the

most well-suited tool to achieve power-efficiency while satisfying

power constraints;

• Anti-jamming Mechanisms: to achieve jamming-proof commu-

nications, anti-jamming mechanisms that either avoid the jam-

9
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mer or counteract to its attacks must be designed. Also, im-

perfecteness or lack of information w.r.t. the jammer’s system

parameters (e.g., transmission power and position) should be

considered;

• Flexible and Dynamic Backhaul Management: modern commu-

nication paradigms require flexibility of network management

to adapt network behavior to dynamics of traffic which flows

through the network. Recently, to achieve high flexibility, dy-

namism and fast deployment of routing policies, softwarization

of network (e.g., such as in SDNs) has been proposed. It is ex-

pected that next-generation networks such as those devised in

5G technologies will be software-defined;

• Service Management and Placement: in the CN, services are

provided to both tenants (e.g., Deep Packet Inspection (DPI)

and Firewalls) and users (e.g., video encoding and streaming,

caching and file sharing). Recently, a promising and success-

ful approach consists in providing such services as Virtualized

Network Functions (VNFs) hosted in virtual machine which run

in data centers. Such an approach, known as NFV, allows to

provide efficient and dynamic management of services. How-

ever, where to place those services is still a challenging and open

problem.

In the literature, the four above problems have been thoroughly

investigated. However, to the best of our knowledge, a holistic ap-

proach for a power-efficient and jamming-proof RAN in multi-tenant

networks is still missing. Accordingly, this thesis is the first to devise

and propose solutions for the considered problem. Since each one of

the above issues deserves a separate analysis, in the following four

subsections we separately provide fundamentals and analyze related

work relevant to each considered topic.
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Specifically, in Sections 2.1 and 2.2 we survey previous work rel-

evant to power control/allocation and anti-jamming in wireless net-

works, respectively. Instead, in Sections 2.3 and 2.4 we consider re-

lated work in the field of SDNs and NFVs, respectively.

2.1 Power Control and Power Allocation

Ever since the early development stages of legacy wireless networks,

power control has been an essential component of network design and

operation, especially in decentralized environments where only local

information is available at each mobile terminal [38]. As such, the

introduction of fast and distributed power control algorithms (both

closed- and open-loop) was one of the main improvements that were

brought about in third generation CDMA-based cellular networks, in

both single- and multi-carrier settings.

Controlling the transmitted power has two important purposes.

The first is to minimize the interference of a given node to neighboring

receivers in the RAN, an issue of critical importance in future and

emerging wireless network paradigms where cells are deployed at a

massive scale – for instance, as in the case of femto-cell networks [39].

Due to their close proximity, neighboring users may create significant

interference to one another, so care must be taken to choose a power

allocation profile that maximizes the users’ transmission rate while

limiting their overall transmit power – otherwise, the situation could

rapidly degenerate to a cascade of power increases.

Second, power control reduces the users’ overall transmitted power.

Mobile terminals are generally energy-constrained (e.g. due to the

limitations of their power source or because of the cost of power con-

sumption), so inefficient power allocation can bring about unnecessary

losses in performance. As a result, the problem that arises is to derive

distributed power allocation policies that maximize the users’ trans-
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mission rate in energy-aware scenarios where transmission power also

carries a commensurate cost. This objective is made more complicated

by the fact that wireless users typically have conflicting interests and

cannot be assumed to cooperate with each other for their collective

benefit (in decentralized environments at least).

In view of the above, non-cooperative game theory has become an

important tool to analyze the interactions between mobile users in

wireless network scenarios where energy-efficient rate maximization is

an issue – see e.g. [40–43] for applications to power control and [44–46]

for power allocation problems.

Optimizing power allocation in such a way has been investigated

in both single- [41, 42, 47] and multi-carrier scenarios [43, 48, 49]. In

particular, the authors of [40, 41, 47] investigated the role of pricing

as an effective mechanism to measure the cost of power consumption,

thus leading to an energy-efficient formulation where users seek to

maximize their transmission rate while keeping their transmit power

in check (see also the very recent paper [49] where the authors consider

the problem of maximizing the users’ transmission rate per unit of

transmitted power subject to minimum rate requirements).

Studies by the US Federal Communications Commission (FCC)

and the National Telecommunications and Information Administra-

tion (NTIA) have shown that only 15% to 85% of the licensed radio

spectrum is used on average, leaving ample spectral voids that could be

exploited via efficient spectrum management techniques [50, 51]. Ac-

cordingly, in this often unregulated context, the emerging paradigm of

cognitive radio (CR) has attracted considerable interest as a promising

way out of the spectrum gridlock [52–55].

At its most basic level, cognitive radio comprises a two-level hi-

erarchy between wireless users induced by spectrum licencing: the

network’s licensed, Primary Users (PUCs) have purchased spectrum

rights from the network operator (often in the form of contractual qual-



2.1. Power Control and Power Allocation 13

ity of service (QoS) guarantees), but they allow unlicenced Secondary

Users (SUs) to access the spectrum provided that the induced co-

channel interference (CCI) remains below a certain threshold [52, 54].

In such opportunistic and non-cooperative environments, power con-

trol and allocation has been identified as a fundamental tool to provide

flexible transmit policies with minimal information exchange between

mobile users and BSs. For example, the authors of [12, 40, 41, 56]

investigated the role of pricing as an effective mechanism to desing ef-

ficient transmission policies and they provided an energy-efficient for-

mulation of the problem where users seek to maximize their transmis-

sion rate while keeping their transmit power in check. To reach a stable

equilibrium state in this setting, several distributed approaches have

been proposed [57–62], based chiefly on reaction functions [41], Gauss-

Seidel and Jacobi update algorithms [40], or learning [12, 13, 48].

That being said, the above works focus almost exclusively on RAN

with static channel conditions where the benefits of power and inter-

ference control mechanisms are relatively easy to evaluate; by contrast,

very little is known in the case where the channels vary with time (e.g.,

due to user mobility) or when the users’ measurements are not accu-

rate. In the presence of (fast) fading, channel gains are typically as-

sumed to follow a stationary ergodic process, so the users’ throughput

depend crucially on the channel statistics. In this stochastic frame-

work, the authors of [48] studied the problem of ergodic rate maxi-

mization in multi-carrier (MC) systems and derived an efficient power

allocation algorithm that allows users to attain the system’s capacity.

More recently, [63] provided an efficient online learning algorithm for

unilateral rate optimization in dynamic multi-carrier multiple-input

and multiple-output (MIMO) cognitive radio systems. However, the

above works do not provide any power-efficient and jamming-proof

RAN as they fails when a jammer attacks the network.
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2.2 Anti-jamming mechanisms

Wireless networks are especially prone to several attacks due to the

shared and broadcast nature of the wireless medium. One of the most

critical attacks is jamming [64, 65]. Jamming attacks can partially

or totally disrupt ongoing communications at the RAN level of the

network, and proper solutions have been proposed in various applica-

tion scenarios [64, 66, 67]. Continuous jamming attacks can be really

expensive for the jammer in terms of energy consumption as the trans-

mission of jamming signals needs a significant, and constant, amount

of power. To reduce energy consumption while achieving a high jam-

ming effectiveness, reactive jamming is frequently used [68–71].

Reactive jamming attacks reach a high jamming efficiency and can

even improve the energy-efficiency of the jammer in several application

scenarios [72, 73]. Also, they can easily and efficiently be implemented

on COTS hardware such as USRP radios [74–76]. But, more impor-

tantly, reactive jamming attacks are harder to detect due to the attack

model, which allows jamming signal to be hidden behind transmission

activities performed by legitimate users [69, 74, 77].

It is clear that under such hostile conditions, network performance

can be significantly reduced. Accordingly, how to allocate network

resources to provide proper anti-jamming techniques is an interesting

topic and several solutions have been proposed in the literature. For

example, spread-spectrum techniques are commonly used to avoid the

jammer and its attacks [78–81]. However, to be effective, such tech-

niques need to either share or establish a secret among network users.

For this reason, such techniques cannot be applied in all wireless sce-

narios [82, 83].

In [82, 84, 85] a trigger-identification approach is presented. First,

nodes whose transmission trigger the reactive jammer, i.e., the trigger-

ing nodes, are identified. Then, optimal routing paths are established,
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which exclude triggering nodes from the routing process. However,

such solutions are designed for large sensor networks where multi-hop

communication is feasible. Such solutions fail in scenarios where the

whole network is under attack and any node can potentially be a trig-

ger node.

To detect transmission activities, the jammer has to first sense

ongoing communications. Then, when an activity is detected the jam-

mer starts its attack. Thus, there is a delay, i.e., activation time,

between the detection and attack phases. All bits transmitted during

the activation time escape jamming and can be exploited to establish

communications under reactive jamming attacks [83].

Timing channels have been frequently exploited to support covert

low rate [86], energy efficient [10, 87, 88] and undetectable communi-

cations [89]. Also, they have been proposed as anti-jamming solutions

[35, 71, 90, 91]. As the reactive jammer does not attack when no trans-

mission activities are performed by users, it is possible to encode the

information to be transmitted in silences between consecutive packets.

Accordingly, although transmitted packets can be completely dam-

aged, the radio silence between consecutive packets can be modulated

to convey data by mapping bit sequences and silence period dura-

tions. However, the above solutions neither aim to maximize network

performance nor provide any minimum QoS service level to network

users.

In [71] an analysis of energy consumption and effectiveness of a re-

active jammer attack against timing channels is presented. Moreover,

it is shown how a trade-off between energy consumption and jamming

effectiveness can be sought. It is also demonstrated that continuous

jamming can be very costly in terms of energy consumption.

Instead, in [90] Xu et al. propose an anti-jamming timing channel

that exploits inter-arrival times between jammed packets to encode

information to be transmitted, showing how timing channels are suit-
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able to guarantee low rate communications even though a reactive

jammer is disrupting transmitted packets. However, in [90] two con-

straining assumptions are made, that is, i) to perform an attack, the

jammer first has to recognize the preamble of a packet, and ii) the

jamming signal is transmitted as long as the jammer senses activity

on the channel. In our proposed solution, the two above assumptions

are relaxed.

As compared to the solutions proposed so far in the literature, one

of the anti-jamming solution we propose in this thesis is comparable

to that proposed in [92] by Anand et al. However, the main differences

between our work and [92] can be summarized as follows:

• in [92] the target node focuses on deploying camouflaging re-

sources (e.g., the number of auxiliary communications assisting

the covert communication) to hide the underlying timing chan-

nel. In our work, instead, the target node establishes a timing

channel that exploits the silence period between the end of an

attack and the beginning of a subsequent packet transmission to

counteract an ongoing jamming attack;

• in [92], only the Nash equilibrium (NE) is studied, whereas in our

work we study both the NE and SE. Furthermore, we compare

the achievable performance of each player, and find that the

SE dominates the NE (i.e., both players improve their achieved

utilities), thus allowing each player to improve its own utility;

• in our work, the target node is able to transmit covert informa-

tion even if the jammer has successfully disrupted all the bits

contained in a packet. On the other hand, the authors in [92]

assume that the jamming attack is successful if the Signal-to-

Interference ratio (SIR) of the attacked node measured at the

receiver side is higher than the one of the target node. In our

approach, instead, we do not make any assumption on the SIR
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as, by exploiting our proposed timing channel implementation, it

is possible to transmit some information even when the jammer

has successfully corrupted each packet.

Power control has been recently proposed to overcome possible

reactive jamming attacks [93, 94]. The intuition is that by control-

ling the transmission power of users, it is possible to let the received

power at the jammer remain under the triggering threshold [94]. In

[93], authors propose a joint frequency hopping (FH) and power con-

trol scheme to avoid reactive jamming attacks. The proposed solution

consists in selecting users’ transmission power such that the senders’

power at the receiver side is higher than that of the jammer. However,

the latter approach fails when dealing with systems such as the one

we consider in this thesis where FH is not possible. In this thesis, we

also propose a novel centralized anti-jamming solution which exploits

power control to avoid jamming attacks while guaranteeing a mini-

mum QoS service level over a finite time window. Also, our proposed

solution differs from the already existing literature as we tackle the

worst case scenario where no information w.r.t. the jammer position

and attack strategy is available.

2.3 Network Management through Soft-

ware Defined Networks (SDNs)

The proliferation of new services and applications in the Internet with

different requirements in terms of availability, service quality and re-

silience, is making management of the backhaul a key challenge. In

this evolving scenario, Telco Operators (TOs) which own the CN show

increasing interest in “softwarizing” their networks, so making deploy-

ment, configuration, management and updating of network functions

faster and easier, and thus achieving numerous advantages in terms
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of both Capital Expenditure (CAPEX) and Operational Expenditure

(OPEX).

In SDNs, control and data planes are decoupled. Network control

and management are implemented in software, while the data/for-

warding plane consists of an underlying physical network composed

by several SDN-compliant switches and links. Two key enabler of this

evolution which is gaining the interest from both the industry and the

academic communities for the simplification in management processes,

is Software Defined Networking [95–97].

Even though there are several ways to implement SDNs, OpenFlow

[98] is the most popular implementation of SDNs as its specifications

are easy to be implemented and they provide procedures to support

dynamic resource allocation SDNs networks.

An important concept in SDNs is multitenancy. Multitenancy

refers to the possibility for several users, i.e., the tenants, to share

certain resources such as physical network elements and links and use

them as they were the sole users of those resources. In the last years,

increased attention has been paid to the application of the multite-

nancy concept in the networking domain. Even if most efforts have

been focused on the application of multitenancy concepts to the dat-

acenter domain [99, 100], in many other scenarios, such as the one we

consider in this thesis, such concept can be exploited beneficially. Two

relevant scenario, for example, are that of virtual network operators in

which several companies sell network access services using the network

infrastructure owned by a third party [101], and that of NFV [102].

In multi-tenant scenarios, the owner of the network infrastructure

has two major needs: i) to maximize the quality of service experienced

by its customers, that is, render its customers satisfied ; ii) to maxi-

mize its revenue. In order to meet both of them, efficient resource

management mechanisms should be considered [103–110].

To properly manage interactions among different tenants, Open-
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Flow provides a FlowVisor [111], which is a high-level controller that is

designed to act as a proxy between the physical network and multiple

customers. By exploiting FlowVisor protocols, OpenFlow fully sup-

ports the multitenancy principle. In fact, FlowVisor and OpenFlow

together allow the network owner to divide the network resources into

slices and give full control of each slice to one customer that, to this

purpose, runs a software program referred to as Controller. Open-

Flow and FlowVisor ensure isolation between slices and therefore, each

Controller can use its share of the network resources as if it was the

sole controller doing it. In the following, we will identify the network

owner with the FlowVisor and its customers with the corresponding

Controllers.

So far, in OpenFlow implementations, construction of the slices

has been static [112]. This is problematic if the interest of the Con-

trollers for a certain network resource changes over time, for example

due to dynamics in the generated traffic and/or to the occurrence of

unexpected situations generating abnormal traffic load.

To provide optimal resource allocation schemes, several centralized

approaches have been proposed in the literature [113–115]. However,

such solutions often lead to NP-hard problems that can be imple-

mented in real systems only if sub-optimal solutions and performance

losses are tolerable [114, 115]. Also, centralized solutions require per-

fect information and cooperation among the centralized entity and

the other agents in the network, i.e., the Controllers. Unfortunately,

Controllers are likely not to share their private information, act self-

ishly and individually seek to maximize their own profits. Therefore,

most of the above approaches cannot be used to solve resource alloca-

tion problems where privacy-preserving solutions which do not require

cooperation among users are required.

Accordingly, and in line with a large body of literature on the

design of efficient and distributed resource management techniques
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spanning most networking domains [116–119], we consider auctions

as the allocation instrument. In [120, 121], auctions have already

been identified as promising resource allocation mechanisms in SDNs.

However, [120, 121] do not provide any rigorous formulation and anal-

ysis of the problem. Instead, we are the first to theoretically formulate

the resource allocation problem and solve it. In this perspective, we

formulate a game-theoretic auction-based resource allocation mecha-

nism where the FlowVisor acts as the auctioneer while the Controllers

act as the bidders. Periodically the FlowVisor starts a new auction

to sell a certain amount of resources of the backhaul and each Con-

troller makes a bid. Controllers determine their bids based on their

interest in the resources, i.e. the object of the auction. The FlowVisor

then assigns each Controller a portion/share of the resources which is

proportional to the submitted bid.

2.4 Services Management through Net-

work Function Virtualization (NFV)

NFV, on the other hand, brings virtualization concepts from cloud

computing to the network in order to let software-based network func-

tions, also called virtualized network functions (VNFs) [122, 123], run

on commodity hardware infrastructures in the CN or in the Internet

network. However, as compared to purpose-built networking hardware

or middle boxes devices, deterrents to this approach are the achievable

performance and the scalability. Key elements for the design of these

systems are resource allocation, and VNF orchestration.

Although similar design problems can be met in cloud computing

scenarios [124–127], there are important differences stemming from the

fact that servers in data centers are connected to each other through

high-capacity and high-speed networks, so making the specifics of the
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underlying network less important. On the contrary, in NFV deploy-

ments network constraints, such as bandwidth and latency, are of cru-

cial importance [128]. Therefore, there is the need for considering

NFV-specific aspects to allocate resources and optimize the position

of VNFs, also taking into account that TOs prefer that VNFs run at

the edge of the network, rather than in its core, so as to increase relia-

bility and flexibility during the transient period of the first deployment

[129, 130].

The choice of where running VNFs has to be made by accounting

not only for the increased load in the nodes hosting the VNFs, but

also for the latency experienced to reach these nodes, which can be

different for each flow [131, 132]. Therefore, if for some flows it is

possible to let VNFs run on remote public cloud providers, for those

flows that have very stringent requirements the TO needs to create

data centers close to the users, so increasing investments. Finally, an-

other aspect that has to be considered is that, according to the NFV

specifications, the above complex tasks of management, orchestration

and resource allocation are in charge of only one entity, the Orches-

trator, which therefore requires sophisticated algorithms that are able

to simultaneously account for all the above needs [133–135].

In contrast with the above literature on NFV, we propose to dis-

tribute orchestration and resource allocation tasks, while limiting the

work of the Orchestrator to coordinate and facilitate them. More

specifically, some customers of the same TO, in the following referred

to as VNF Servers, can host and execute VNFs to process network

flows, so participating in the VNF Market as sellers. To this purpose,

they decide the price to be applied to the users, and the bandwidth to

request to the TO network to provide the service. Users, on the other

hand, according to the price specified by each server, and the corre-

sponding expected performance in terms of both experienced latency

and received bandwidth, choose one server for each VNF. In this way
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the task of associating each flow to a VNF Server is not decided by

the Orchestrator, but autonomously and in a distributed way, as a

consequence of the interaction between users and VNF Servers.



CHAPTER

THREE

POWER-EFFICIENT AND JAMMING-PROOF

RADIO ACCESS NETWORKS

In this section, we focus our attention on how to provide a RAN which

meets two important requirements. Specifically, the RAN has to be

1) power-efficient; and 2) jamming-proof.

We consider a set N = {1, . . . , N} of users that are equipped

with single-antenna transceivers and are power-constrained, i.e., their

instantaneous transmission power is limited to a maximum power

level P . We assume that users in N access the RAN through a set

K = {1, . . . , K} of non-interfering subcarriers1. In our model, we

assume Additive White Gaussian Noise (AWGN) channels with chan-

nel gains defined as i.i.d. random variables. Also, we assume that a

malicious user, i.e., the jammer, aims to disrupt ongoing communica-

tions between legitimate users and the RAN. More specifically, in our

study we consider a reactive jamming attacker where the malicious

user continuously monitors all communication channels searching for

transmission activities and jams only those channels where the re-

1In the following we interchangeably use the terms channel, subcarrier and
frequency to refer to a wireless channel.

23



24 Chapter 3. Power-Efficient and Jamming-proof Radio Access Networks

ceived signal power is higher than a given threshold Pth. In our study,

we assume that when a transmission activity is detected in a given

slot, the jammer emits a jamming signal whose transmission power is

PJ . For the sake of illustration, in the following we focus on the case

where a set of users accesses the RAN through a single BS. However,

note that our formulation can be extended to the more general case

where multiple BSs have to be managed.

It worth noting that if no jammers are attacking the network,

anti-jamming mechanisms are not required. Thus, providing a power-

efficient resource allocation scheme is the only objective of the net-

work provider. On the contrary, if jamming attacks are ongoing but

no power constraints has to be considered, e.g., users are allowed to

transmit with any transmission power level, then the resource alloca-

tion problem can be focused on only providing jamming-proof com-

munications. Therefore, there could be some scenarios where either

one of the two requirements can be relaxed.

Accordingly, in Section 3.1 we propose a resource allocation solu-

tion which jointly meets the above two requirements. Instead, for the

sake of completeness in Sections 3.2 and 3.3 we provide resource allo-

cation solutions when requirements 2) and 1) are relaxed, respectively.

3.1 A joint approach for a power-efficient

and jamming-proof RAN

In this section, we consider a centralized resource allocation scheme

to provide power-efficient and jamming-proof RAN. Specifically, we

consider the case where the network operator has to schedule network

users to maximize achievable network performance while guaranteeing

a minimum performance level to each user. We also consider the worst

case scenario where a reactive jammer is deployed within the RAN
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Figure 3.1: Considered channel model.

coverage range. Each node is affected by its jamming activity and

the transmission power of each user cannot exceed a given maximum

threshold.

We show that the above problem can be modeled as a finite-horizon

joint power control and user scheduling problem. Also, we prove that

finding an optimal solution is NP-hard. We formulate the problem

by exploiting techniques from Dynamic Programming (DP). The DP

formulation allows us to show that the joint power control and user

scheduling is a decomposable problem. That is, at each optimiza-

tion step we can sequentially solve the power control and the user

scheduling problems. We show that, under some conditions, it is pos-

sible to identify the optimal power control policy, i.e., conservative,

exploratory or aggressive. To avoid the curse of dimensionality of the

DP approach, we exploit state aggregation techniques. Finally, we

study the complexity of the proposed solution.

3.1.1 System Model and Problem Formulation

We consider a multi-carrier slotted RAN where a set of users access

the network and communicates with the BS through several non-

interfering frequencies. We assume that users can transmit on at most

one channel at a time and that a given slot on a given frequency can

be assigned to only one user. In this study, we focus on the uplink

scheduling problem. Let hnk be the channel gain coefficients between

user n and the jammer on channel k, while hk indicates the channel
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gain coefficient between the jammer and the BS on channel k. Finally,

gnk indicates the channel gain between user n and the BS on channel

k. For the sake of clarity, the considered channel model is depicted in

Fig. 3.1.

In our study, we assume block fading, that is, channel gain coeffi-

cients remain constant for a fixed number of slots2 before they change.

Let H be the number of slots where channel gain coefficients remain

constant. Therefore, the optimal scheduling problem has to be peri-

odically performed every H slots. We refer to such time period as the

scheduling cycle whose duration is H. Accordingly, H is the finite-

horizon of the optimization problem3.

3.1.1.1 Attack Model

We assume that the jammer’s attack strategy is independent of chan-

nels and users; that is, the values of Pth and PJ are constant and equal

for all k ∈ K and n ∈ N .

To model the triggering mechanism that regulates the jammer, we

define the triggering function αnk(p) : R→ {0, 1} for user n transmit-

ting on channel k. More specifically,

αnk(p) =







1 if phnk ≥ Pth

0 otherwise
(3.1)

where p is the generic transmission power for n on channel k. In-

tuitively, according to (3.1), an attack is performed only when the

received power at the jammer side (phnk) is greater than or equal to

2In this analysis, we will use the terms stage and slot interchangeably.
3Our model also applies to the scenario where a mobile jammer attacks the

network. Since the jammer wants to be undetectable and unpredictable, it moves
and changes its position every H slots. It follows that channel gain coefficients
vary in time and the network operator has to periodically find the optimal resource
allocation policy every H slots.
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the triggering threshold Pth. Clearly, αnk(0) = 0. We consider the

worst case scenario where αnk(P ) = 1, i.e., all nodes are jammed by

the jammer when they transmit with full power. However, the more

general case where αnk(P ) = 0 can be similarly treated by exploiting

the same techniques presented in this investigation.

Let us consider the generic channel k ∈ K and let pm and pM be two

feasible transmission power levels for a given user n ∈ N such that 0 ≤
pm < pM ≤ P . We further assume that αnk(p

m) = 0 and αnk(p
M) = 1,

that is, the system knows that when user n transmits with power pm

on channel k it does not trigger the jammer, while transmitting with

power pM on the same channel activates the jammer and consequently

causes a decrease in the SINR4. Therefore, the probability of triggering

the jammer when transmitting with power p given the values of both

pm and pM can be written as

Fnk(p)=Pr {phnk ≥ Pth|πnk}=Pr {Pth/hnk ≤ p|πnk} (3.2)

where πnk =
(

pm, pM
)

is a tuple that represents the history (or knowl-

edge) of the system. As shown in (3.2), the probability of trigger-

ing the jammer depends on the ratio Pth/hnk between the triggering

threshold of the jammer and the channel gain coefficient between the

jammer and the transmitter. Although in reality the position and the

triggering threshold of the jammer are unknown and, thus, the exact

value of the ratio Pth/hnk is unknown to the network operator, the

information contained in the history πnk =
(

pm, pM
)

is still available.

Note that given πnk, the exact value of the ratio Pth/hnk can be any

value in the range (pm, pM ]. Therefore, to model such uncertainty on

the knowledge of such parameters we assume that the ratio Pth/hnk is

modeled as a uniformly distributed random variable over the interval

4Note that the existence of both pm and pM is always guaranteed by our as-
sumptions and in Section 3.1.2 we provide proper mechanisms to identify the values
of both parameters.
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(pm, pM ]. Accordingly, we rewrite (3.2) as follows:

Fnk(p) =



















0 if p ≤ pm

p−pm

pM−pm
if pm < p < pM

1 otherwise

(3.3)

3.1.1.2 Problem Formulation

As a consequence of the AWGN assumption, for any given user n ∈ N
scheduled on channel k ∈ K, the SINR received at the BS side is

SNRnk(p) =
gnkp

σ2+αnk(p)hkPJ
, where p is the transmission power and σ2 is

the variance of the AWGN which we assume to be equal for all n ∈ N
and k ∈ K. We assume that the channel gain coefficients gnk can be

accurately estimated. Since the transmission power of each user is

chosen by the centralized entity and all gnk are known, the product

hkPJ can be accurately obtained by the BS by comparing the expected

received signal with the actual received signal.

Let H = {1, 2, . . . , H} be the set of slots in a scheduling cycle.

Accordingly, we define the achievable rate Rnk(p) at slot j ∈ H as

follows:

Rnk(p(j)) = log

(

1 +
gnkp(j)

σ2 + αnk(p(j))hkPJ

)

(3.4)

Let θnk(j) and pnk(j) be the allocation indicator and power control

variable, respectively. If user n is allocated to channel k at slot j, the

allocation indicator is set to one, i.e., θnk(j) = 1, otherwise it is set to

zero, i.e., θnk(j) = 0. Similarly, pnk(j) denotes the transmission power

which must take values in the range [0, P ] due to the power constraint.

Let θ(j) = (θnk(j))n,k and p(j) = (pnk(j))n,k be the scheduling policy

and power control policy at slot j, respectively. Clearly, if θnk(j) = 0,

then we set pnk(j) = 0. Also, for any n ∈ N and k ∈ K, let πnk(j) =
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(

pmnk(j), p
M
nk(j)

)

be the history up to slot j, where

pmnk(j) = max{pnk(l) ∈ p(j) : αnk (pnk(l)) = 0, l < j}
pMnk(j) = min{pnk(l) ∈ p(j) : αnk (pnk(l)) = 1, l < j} (3.5)

and p(j) = (pnk(l))n,k,l<j is the set of all the power control decisions

taken up to slot j. By assumption, we have πnk(1) = (0, P ) for all

n ∈ N and k ∈ K. Intuitively, at each slot the system keeps track of

the reaction of the jammer to different policies chosen in the past.

To evaluate (3.4), we need to know the triggering function exactly.

Unfortunately, the reaction of the jammer, i.e., the outcome of the

triggering function αnk(p(j)), is known only at the end of each slot.

Accordingly, from (3.1) (3.3) and (3.4), the expected achievable rate

for user n on channel k is

Eα{Rnk(p)|πnk(j)}=
p− pmnk(j)

pMnk(j)− pmnk(j)
log

(

1 +
gnkp

σ2 + hkPJ

)

+

(

1− p− pmnk(j)
pMnk(j)− pmnk(j)

)

log
(

1 +
gnkp

σ2

)

(3.6)

where the expectation is taken w.r.t. the output of the triggering

function given that the history of the system at slot j is πnk(j).

We define the following finite-horizon joint power control and

scheduling problem with minimum performance guarantee under jam-
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ming attacks (Problem A).

(A) : max
θ,p

Eα

{

∑

j∈H

∑

k∈K

∑

n∈N

θnk(j)Rnk(pnk(j))

}

s.t.
∑

k∈K

θnk(j) ≤ 1, ∀n ∈ N , j ∈ H (3.7)

∑

n∈N

θnk(j) ≤ 1, ∀k ∈ K, j ∈ H (3.8)

Eα

{

∑

j∈H

∑

k∈K

Rnk(pnk(j))

}

≥ R∗
n, ∀n ∈ N (3.9)

θnk(j) ∈ {0, 1}, ∀n ∈ n, ∀k ∈ K, j ∈ H (3.10)

pnk(j) ∈ [0, P ], ∀n ∈ n, ∀k ∈ K, j ∈ H (3.11)

where θ = (θ(1),θ(2), . . . ,θ(H)); p = (p(1),p(2), . . . ,p(H)) are the

decision variables; α = (αnk(pnk(j)))n,k,j is the set of all outcomes of

the triggering function according to the actual power control policy

p(j) at slot j; and R∗
n is the minimum rate requirement of user n.

In Problem (A), constraint (3.7) guarantees that at any given time a

user can be allocated to only one slot. On the other hand, constraint

(3.8) ensures that only one user can be allocated on a given slot, thus

avoiding possible collisions and/or interferences among users. The

minimum performance constraint is imposed by the non-linear con-

straint (3.9) which ensures that the expectation of the rate achieved

by any user at the end of the optimization horizon is higher than or

equal to the performance requirement R∗
n. Finally, constraints (3.10)

and (3.11) guarantee the feasibility of the decision variables.

3.1.1.3 Hardness of the Problem

(A) is a non-linear (concave) combinatorial optimization problem with

both discrete (i.e., θnk(j)) and continuous (i.e., pnk(j)) decision vari-
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ables. In this section, we prove that (A) is NP-hard by showing

that the Multiprocessor Scheduling is polynomially reducible to a sub-

problem of (A). The multiprocessor scheduling is known to be NP-

complete [136] and it is stated as follows: given m processors, a dead-

line D and a set X of jobs where each job xn ∈ X has length ln, is

there a m-processor scheduling that schedules all jobs and meets the

overall deadline D?

Theorem 1 (NP-hardness). Problem (A) is NP-hard.

Proof. LetD = H, X = N , xn = n,m = |K|. For each n ∈ N and k ∈
K we assume gn = gnk, i.e., users’ channel gain coefficients are channel

independent. Also, let us assume that the optimal power control policy

for n, which we denote as pn, is constant for all k ∈ K and j ∈ H.
Thus, the achievable rate of n on each slot is constant and equal

to Rn(pn). For any given minimum performance requirement R∗
n we

define the job’s length ln = R∗
n

Rn(pn)
T , where T = 1 is the duration of a

single slot. We have built a reduction of the multiprocessor scheduling

to an instance of a subproblem of (A). Thus, the above instance is

NP-complete by reduction [136]. Also, since this reduction can be

done in polynomial time, it follows that (A) is NP-hard and, unless

P=NP, it cannot be solved in polynomial-time.

3.1.2 Optimal Solution

In Theorem 1, we have shown that (A) is NP-hard. However, how

to find an optimal solution still remains unsolved. In this section,

we show that (A) is a dynamic problem. Moreover, we show that

at each slot the joint power control and user scheduling problem is

decomposable. That is, at each slot it is possible to separately solve

the power control and the user scheduling problems.
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3.1.2.1 Problem Dynamism and Decomposability

In previous sections, we have shown that to maximize the achiev-

able performance of the system, i.e., the overall transmission rate, the

scheduler has to evaluate the expected achievable rate for all users at

each slot. (3.6) shows that the expected achievable rate for a given

user on a given channel depends on the history parameter πnk(j). In

turn, (3.5) shows that the history πnk(j) depends on actions taken in

the past. Therefore, the knowledge and the state of the system dy-

namically evolve at each slot. Intuitively, a DP approach is well-suited

to model and solve the considered problem.

Another important issue is whether or not the problem is decom-

posable. To maximize the overall achievable rate of the RAN, the

scheduling problem requires us to first estimate the achievable perfor-

mance of each user. On the contrary, as shown in (3.6), to maximize

the single-slot expected rate, the power control problem only needs to

know the history parameter πnk(j) for all n and k. Recall that πnk(j)

does not depend on the scheduling policy at the actual slot, but only

depends on the scheduling decisions taken in the past. Hence, at each

slot, the power control problem can be solved independently of the

actual scheduling policy. However, the user scheduling problem needs

the output of the power control problem. Therefore, we first solve the

power control problem and find the optimal transmission power level

for each user on each channel. Then, we solve the scheduling problem.

3.1.2.2 Optimal Power Control

To solve the single-slot power control problem, we must find the opti-

mal transmission power level for all users on each channel. Constraints

(3.7) and (3.8) imply that no collision may occur and we can separately

solve the power control problem for any individual user.

For each slot j and channel k ∈ K, we define the single-user power
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control problem (Problem B) as follows:

(B) :max

{

max
p∈Πnk(j)

Eα {Rnk(p)|πnk(j)} , Rnk(P )

}

where Πnk(j) = [pmnk(j), p
M
nk(j)].

The challenges of (B) are twofold as: i) the problem evolves ac-

cording to past choices; ii) the reaction of the jammer is observed only

at the end of the slot. Therefore, we must consider all possible re-

alizations of the triggering function αnk(p). Let p∗nk(j) be defined as

follows:

p∗nk(j) = argmax
p∈Πnk(j)

Eα {Rnk(p)|πnk(j)} (3.12)

From (3.6), (3.12) can be rewritten as follows:

p∗nk(j) = argmax
p∈Πnk(j)

p− pmnk(j)
∆nk(j)

log

(

1 +
gnkp

σ2 + hkPJ

)

+

(

1− p− pmnk(j)
∆nk(j)

)

log
(

1 +
gnkp

σ2

)

where ∆nk(j) = pMnk(j)− pmnk(j) is the Lebesgue measure of Πnk(j). In

Proposition 1, we show that (B) admits a unique optimal solution.

Proposition 1. Problem (B) always admits a unique solution pOPT
nk (j)

defined as

pOPT
nk (j) =







p∗nk(j) if Eα{Rnk(p
∗
nk(j))}≥Rnk(P )

P otherwise
(3.13)

To prove the uniqueness, it suffices to prove the strictly concavity

of Eα {Rnk(p)|πnk(j)}. The second part can be proved by inspection.

Proposition 1 suggests that there are some scenarios where trans-

mitting with the highest power, i.e., P , and triggering the jammer is

the optimal power control solution. For example, if the jammer is in
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(a) (b) (c)

Figure 3.2: Comparison between different realizations of the ex-
pected achievable rate (solid lines) as a function of the transmission
power p. Gray dots represent optimal transmission power policies: a)
conservatory; b) aggressive; and c) exploratory. Dashed-dotted lines
show the achievable rate when no attacks are performed (α(p) = 0).
Dashed lines show the achievable rate when the user is under attack
(α(p) = 1).

proximity of a user but far away from the BS, it is reasonable to as-

sume that even low transmission power levels can trigger the jammer.

Therefore, to transmit with a low power level to avoid the jammer can

be inefficient. It follows that transmitting with the highest power P

and triggering the jammer can be the only optimal policy. Clearly,

pOPT
nk (j) depends on the values of several parameters such as PJ , chan-

nel gain coefficients and πnk(j). Therefore, it is hard to know a priori

the optimal policy chosen by the scheduler. However, to better un-

derstand the dynamics that regulate the power control problem, we

define three different policies:

• conservative: is a policy where pOPT
nk (j) = pmnk(j). Recall that

αnk(p
m
nk(j)) = 0. Therefore, under such a policy (Fig. 3.2(a)),

the scheduler chooses to avoid the jammer by choosing a safe

strategy which ensures that the jammer will not be triggered;

• aggressive: is a policy where the optimal power control pol-

icy consists in transmitting with full power, i.e., pOPT
nk (j) = P .
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In general, such a policy is optimal when jamming activities

does not affect the performance of the system significantly (Fig.

3.2(b));

• exploratory : in this case, a transmitting power p ∈
(pmnk(j), p

M
nk(j)) is optimal (Fig. 3.2(c)). The scheduler decides

to take the risk by exploring new transmitting power levels to

which jammer’s reaction is unknown.

The above policies are in line with the vast body of literature on

the exploration-exploitation trade-off [137], where the decision maker

has to choose between gathering new information by exploring new

actions, or exploit the already explored actions whose system reac-

tions are already known. When an exploratory policy is chosen, the

scheduler takes the risk and explore new power control policies, even

though such decision could trigger the jammer. When conservative

and aggressive policies are chosen, the reaction of the jammer, to-

gether with the achievable performance under such policies, can be

exactly predicted. Therefore, conservative and aggressive policies are

exploitation decisions. In the rest of this study, we will refer to the

exploration of new power control policies as the learning dynamics (or

learning process) of the system.

Since the system is able to detect the presence or the absence

of a jamming attack only when a slot ends, the achievable rate and

the jammer’s reaction to a given policy are known only at the end

of each slot. Therefore, the history of the system is updated at the

beginning of each slot according to the reaction of the jammer to

decisions taken in the previous slot. Note that the history of the

system is updated only when a user is scheduled on a given channel.

That is, if
∑

k∈K θnk(j) = 0 for a given j ∈ H and n ∈ N , we have

that πnk(j+1) = πnk(j). Instead, when a user is scheduled on a given

channel and j > 1, the history of the system is updated according to
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the history update dynamics in (3.14).

πnk(j+1) =



















(

pmnk(j), p
OPT
nk (j)

)

if αnk(p
OPT
nk (j)) = 1 ∪ pOPTnk (j) 6= P

(

pmnk(j), p
M
nk(j)

)

if αnk(p
OPT
nk (j)) = 1 ∪ pOPTnk (j) = P

(

pOPTnk (j), pMnk(j)
)

otherwise

(3.14)

where we recall that πnk(1) = (0, P ).

In Proposition 2, we illustrate how sistem’s learning dynamics im-

pact the choice of the optimal power control policy.

Proposition 2. Let n ∈ N , k ∈ K and j, l ∈ H. There exist

δCnk(j), δ
A
nk(j) ∈ R such that 1) if ∆nk(j) ≤ δCnk(j) a conservative policy

is optimal, 2) if ∆nk(j) ≥ δAnk(j) an aggressive policy is optimal, and

3) if either conservative or aggressive policies are optimal at slot j,

these policies will be optimal for any l > j.

Proof. To prove the first part, let rnk(p) be the first order derivative

of Eα {Rnk(p)}. A conservative policy is optimal if i) rnk(p
m
nk(j)) ≤

0; and ii) Rnk(p
m
nk(j)) ≥ Rnk(P ). i) holds if ∆nk(πnk(j)) ≤ δ̃Cnk(j),

and ii) holds if ∆nk(πnk(j)) ≤ δ̂Cnk(j) for some δ̃Cnk(j), δ̂
C
nk(j) ∈ R.

Therefore, a conservative policy is optimal at slot j if ∆nk(πnk(j)) ≤
min

{

δ̃Cnk(j), δ̂
C
nk(j)

}

. Similarly, we can prove that statement 2) holds

as well. The last part of the proof is a direct consequence of the

history update mechanism in (3.14). When pOPT
nk (j) is conservative or

aggressive, we have πnk(j + 1) = πnk(j). Thus, the same policy will

still be optimal for all l > j, i.e., πnk(j) = πnk(l) = · · · = πnk(H).

Proposition 2 gives us an important insight on the learning dy-

namics of the system. We have shown that πnk(j) = πnk(j
′) for all

j > j′ if either conservative or aggressive policies are chosen at slot

j′. That is, anytime that either conservative or aggressive policies are

optimal for a given user on a given channel, the learning process for

that user on that considered channel is stopped.
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Although we proved that the optimal power control policy is al-

ways unique and we have shown the dynamics regulating the choice

of the optimal policy, how to obtain the value of pOPT
nk (j) still remains

unsolved. A closed-form for pOPT
nk (j), can be derived only by solving

(3.12), which is not possible for our problem. To find the solution

of (3.12), we exploit techniques from stochastic approximation theory

and exponential mappings. For the sake of simplicity, in the following

of this section we omit the subscripts n, k and the slot index j. Let

us define R̃(p) = Eα(p) {R(p)}, and let r(p) denote the first derivative

of R̃(p) w.r.t. p. We also assume pm = 0 and pM = P . However, the

more general case where 0 < pm < pM < P can be treated in a similar

way5.

The measure of the feasible power level set is ∆ = pM − pm = P .

Finally, in (3.15) we consider the discrete-time stochastic approxima-

tion algorithm with exponential mappings







z(i+ 1) = z(i) + γir(p)

p(i+ 1) = ∆ ez(i+1)

1+ez(i+1)

(3.15)

where i is the iteration index and γi is a variable step-size [138]. It can

be shown that the discrete-time stochastic approximation algorithm

in (3.15) converges to the optimal solution of (3.12) for any possible

feasible initial condition if
∑

i γ
2
i <

∑

i γi = +∞ (e.g., γ = 1/iβ,

β ∈ (0.5, 1]). p(i) is always bounded in [0,∆]. That is, the proposed

algorithm in (3.15) always generates feasible transmission power up-

dates6.

5Note that we can define an auxiliary variable p′ = p − pm, p′ ∈ [0, pM − pm].

Our results still hold as r(p)= dR̃(p)
dp

= dR̃(p′+pm)
dp′

=r(p′).
6The same result also holds for the general case where p(i) ∈ [pm, pM ].
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3.1.2.3 Optimal User Scheduling

In this section, we define the finite-horizon DP-based algorithm to

solve (A). To properly define the DP framework, we must take into

account the uncertainty introduced by the jammer’s behavior and its

impact on the dynamics of the problem. Thus, in the language of DP,

we define:

• System state: we define the system state at slot j as the tuple

(π(j),ρ(j)), where π(j) = (πnk(j))n,k denotes the history vector

at slot j. At each stage, πnk(j) is updated according to (3.14).

On the other hand, ρ(j) = (ρn(j))n denotes the residual per-

formance vector. Each ρn(j) specifies the remaining amount of

performance that has to be allocated to user n from slot j to the

horizon H to satisfy its minimum performance request R∗
n. At

each stage, ρn(j) is updated as follows:

ρn(j+1) =







R∗
n if j = 1

ρn(j)−
∑

k∈K θnk(j)Eα
{

Rnk(p
OPT
nk (j))

}

otherwise

(3.16)

• Action: at each stage j, the actions of the scheduler are the op-

timal scheduling and power control policies, i.e., θ(j) and p(j),

respectively. For any scheduling policy θnk(j) ∈ θ(j), it must

hold that θnk(j) = {0, 1}. Instead, p(j) contains the optimal

power control policies chosen when the history of the system is

π(j). The generic element pnk(j) ∈ p(j) is trivially defined as

pnk(j) = 0 if θnk(j) = 0 and pnk(j) = pOPT
nk (j) if θnk(j) = 1,

where each pOPT
nk (j) is given in (3.13);

• Single Stage Reward : we define the function

Φ(π(j),ρ(j),θ(j),p(j), j) as the reward, i.e., the to-

tal transmission rate, that the system achieves at slot
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j when policy (θ(j),p(j)) is chosen and the state is

(ρ(j),π(j)). Therefore, Φ(π(j),ρ(j),θ(j),p(j), j) =
∑

k∈K

∑

n∈N θnk(j)Γnk(π(j),p(j), j),

where Γnk(π(j),p(j), j) = Eα
{

Rnk(p
OPT
nk (j))

}

and pOPTnk (j) ∈
p(j) and it is calculated in (3.13). Thus, the dependence

of Γnk(π(j),p(j), j) from π(j) is implicit in the definition of

pOPTnk (j).

Now, we are ready to write the Bellman’s equation:

J (π(j),ρ(j), j) = max
θ(j),p(j)

Φ(π(j),ρ(j),θ(j),p(j), j)

+ E {J (π(j + 1),ρ(j + 1), j + 1) |π(j),ρ(j)} (3.17)

s.t.
H
∑

i=j

∑

k∈K

θnk(j)Eα
{

Rnk

(

pOPTnk (i)
)}

≥ ρn(j) (3.18)

∑

k∈K

θnk(j) ≤ 1, ∀n ∈ N (3.19)

∑

n∈N

θnk(j) ≤ 1, ∀k ∈ K (3.20)

θnk(j) ∈ {0, 1}, pnk(j) ∈ [0, P ], ∀n ∈ n, ∀k ∈ K (3.21)

where we set J(π(j),ρ(j), H + 1) = 0 for all π(j) and ρ(j).

Each stage of the Bellman’s equation consists in a (binary) inte-

ger linear programming (ILP) problem. ILP problems are known to

be NP-Complete and their exact solution can be computed through

standard Branch-and-Bound methods. Finally, by using backwards

induction we solve the Bellman’s equation and find the optimal solu-

tion to (B).
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3.1.3 Discretization of the Problem

In the previous sections, we have shown that DP can solve our con-

sidered problem. However, it is well known that DP suffers from the

”curse of dimensionality” [139]. That is, when the state space and

the number of variables increase, the number of possible combinations

that we need to solve considerably increases. As an example, the

power control variables p(j) are defined over the continuous set [0, P ].

It follows that the number of possible combinations of both the system

state and the feasible actions is infinite.

DP can theoretically still provide an optimal solution to such con-

tinuous space problem. However, from a practical point of view, it

is unrealistic to implement the Bellman’s equation on discrete-time

systems. Therefore, we now propose a discretization of the continuous

problem by exploiting state aggregation techniques [139].

State aggregation allows to aggregate one or more spaces of the

original problem to create several lower dimension abstract spaces.

For example, we can aggregate spaces by quantizing the power control

action space to create a discretized version of it. Furthermore, both

the history π(j) and the residual performance vector ρ(j) depend

on p(j), which contributes to further increase the dimension of the

problem.

In the following, we show that by discretizing both the power con-

trol variable and the residual performance vector, it is possible to

significantly reduce the complexity of the problem while guaranteeing

users’s QoS requirement.

3.1.3.1 State Aggregation Approach

Let ξp be the power quantization step. Without losing in generality,

we assume that the power quantization step is chosen such that ξp is

a divisor for P .



3.1. A joint approach for a power-efficient and jamming-proof RAN 41

Let ⌈·⌉ and ⌊·⌋ be the ceiling and floor operators, respectively. For

any p ∈ [0, P ], let p =
⌈

p
ξp

⌉

ξp and p =
⌊

p
ξp

⌋

ξp be the higher and lower

quantized power level values, respectively.

In the discretized version of the problem, we use our quantization-

based state aggregation to discretize p∗nk(j). That is, we calculate its

quantized equivalents p∗nk and p∗nk. Let p̂
∗
nk(j) be defined as follows:

p̂∗nk(j) =







p∗nk(j) if p∗nk = p∗nk

argmaxp={p∗
nk
,p∗

nk
} Eα(p) {Rnk(p)} otherwise

Thus, p̂OPT
nk (j) = argmaxp={p̂∗

nk
(j),P} Eα(p) {Rnk(p)} is the solution

to the discretized version of (3.13) 7.

Let p(j) and θ(j) be the optimal power control and scheduling pol-

icy at stage j, respectively. Similarly to the continuous space problem,

for any pnk ∈ p(j) we have pnk = p̂OPT
nk (j) iff θnk(j) = 1. Otherwise,

p̂OPT
nk (j) = 0. At each stage, the history of the system πnk(j) is up-

dated according to (3.14).

So far, we have discretized the state of power control variable.

However, from (3.4) and (3.16), it is clear that both the achievable rate

and the residual performance vector have a continuous state space.

Let ξr be the performance quantization step. We assume that the

network operator forces each user to submit a minimum performance

requirement, R∗
n, such that the latter is an integer multiple of ξr.

To overcome the high-dimensionality caused by the definition of the

residual performance vector, we modify the update dynamic of ρ(j)

as follows:

ρn(j + 1) =







R∗
n if j = 1
⌊

ρn(j)
ξr
−

∑

k∈K θnkEα{Rnk(pnk)}

ξr

⌋

ξr otherwise
(3.22)

7Note that even though p̂∗nk(j) is optimal for the discretized version of (3.12),
it is sub-optimal for the continuous space problem, unless that p∗nk(j) = p̂∗nk(j).
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Table 3.1: Simulation Setting used in Section 3.1.4

Parameter Value

Carrier frequency fc = 2.4GHz

Channel bandwidth B = 10.93KHz

Noise spectral density σ2 = 584µW

Maximum transmission power of users P = 0.6W

Triggering threshold Pth = 0.5µW

Edge of the simulated square area L = 200m

Horizon duration H = 10

Figure 3.3: Topology of the simulated 1-dimensional scenario.

where pnk ∈ p(j).

Let Np and Nr denote the maximum number of power and trans-

mission rate quantized levels, respectively. Trivially, Np = (P/ξp + 1)

and Nr = (Rmax/ξr + 1), where Rmax = max
{

R∗
1, R

∗
2, . . . , R

∗
|N |

}

.

Now, we apply the Bellman’s equation to the discretized problem

and find its optimal solution.

3.1.4 Numerical Analysis

In this section, we evaluate the achievable performance of the pro-

posed solution through simulation results. We consider N = 3 legiti-

mate users that access the RAN. Unless otherwise stated, we consider

K = 2 channels whose gain coefficients gnk, hnk and hk are generated

according to the path-loss model. As depicted in Fig. 3.3, we consider

a 1-dimensional scenario where users (i.e., U1, U2, U3), the BS and the
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Figure 3.4: Expected rate of the system as a function of the position
of the jammer xJ for different QoS requirement settings and values of
PJ (Solid lines: PJ = 0.5W; Dashed lines: PJ = 1W).

jammer (i.e., J) are located along the same axis8. Other relevant sim-

ulation parameters are reported in Table 3.1. Finally, unless otherwise

stated, we assume PJ = 0.6W .

To investigate the impact of the position xJ of the jammer on the

achievable performance of the network at the RAN level, in Fig. 3.4

we evaluate the expected transmission rate as a function of xJ un-

der two different minimum QoS requirements. Specifically, we con-

sider the case where all users request a same minimum QoS level

R∗
n = 10.93Kbit/s (Case A), and the case where no requirements are

submitted by users (Case B). Fig. 3.4 shows that when the jammer is

at the border of the considered scenario, its attacks have limited effect

on RAN performance. Instead, when the jammer approaches the BS

and the users, the achievable rate of the RAN considerably decreases.

8This is just an illustrative example. However, our approach is independent of
the actual RAN topology.
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Also, when no QoS constraints are considered and rate maximization

is the only objective of the network operator, system performance are

higher than those achieved in Case A.

Finally, in Figs. 3.5(a) and 3.5(b) we compare the performance of

the system when different scheduling policies are considered. Specifi-

cally, we compare our proposed solution to random, round-robin and

greedy scheduling policies.

Fig. 3.5(a) shows that our proposed solution reaches high trans-

mission rates and it outperforms random and round robin policies.

The achievable performance of the RAN under the proposed solution

and a greedy policy are comparable. However, in Fig. 3.5(b) we plot

the per-user normalized residual performance variable ρ̄ at the hori-

zon H defined as ρ̄ = 1
N

∑

n∈N
ρn(H)
R∗

n
. ρ̄ represents the QoS-gap, i.e.,

the per-user amount of performance that has not been provided to

users at the end of the scheduling cycle. Thus, the desirable value is

ρ̄ = 0, while ρ̄ > 0 indicates unfeasible solutions. Our solution is the

only one that guarantees ρ̄ = 0, i.e., all minimum QoS requirements

are satisfied. Therefore, even though greedy policies allow to achieve

high performance, they do not guarantee minimum QoS levels. Fig.

3.5(b) also shows that ρ̄ for greedy policies is constant and high. On

the contrary, the value of ρ̄ under random and round robin policies is

low for small values of the transmission power of the jammer, but it

increases when the value of PJ increases as well.

3.2 Power-efficient RAN access

In this section, we consider the problem of efficient power allocation

in the RAN. To this purpose, we consider the case where users uni-

laterally maximize their transmission rate under power and pricing

constraints. We provide a game-theoretic formulation for the above

problem and we show that the resulting game admits a unique equi-
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Figure 3.5: a) Expected rate of the system under different scheduling
policies as a function of PJ ; b) Average per-user normalized residual
performance at the end of the joint power control and user scheduling
cycle as a function of PJ .

librium for almost every realization of the system’s channels. We then

propose a distributed procedure which converges to equilibrium very

rapidly using only local CSI and SINR measurements. Importantly, we

are able to show that the algorithm retains its convergence properties

even in the presence of imperfect measurements.

3.2.1 System Model and Problem Formulation

As we have already done in Section 3.1, in we focus our analysis on

the uplink case. Also, we consider that an OFDM scheme is employed

and users can simultaneously transmit on the available orthogonal

frequencies. Under the AWGN assumption, the aggregate received

signal yk over the k-th subcarrier is given by the familiar signal model:

yk =
∑

n∈N
hnkxnk + zk (3.23)

where xnk ∈ C denotes the transmitted signal of user n ∈ N over

subcarrier k ∈ K, hnk ∈ C is the corresponding channel coefficient
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(assumed fixed for the duration of the transmission) and zk ∈ C is

the noise in the channel, including thermal, atmospheric and other

ambient effects – and modeled as a zero-mean Gaussian vector zk ∼
CN (0, σ2

k) with non-singular covariance.

In this context, the average transmit power of user n on subcarrier

k is

pnk = E
[

|xnk|2
]

(3.24)

and we will be assuming that each user’s total transmit power pn =

E[x†
nxn] =

∑

k pnk satisfies the constraint:

pn =
∑

k∈K
pnk ≤ Pn (3.25)

where Pn denotes the maximum transmit power of user n ∈ N . Ac-

cordingly, the set of admissible power allocation vectors for user n will

be

Xn =
{

pn ∈ RK : pnk ≥ 0 and
∑

k∈K pnk ≤ Pn
}

(3.26)

and the system’s state space,i.e., the space of all admissible power

allocation profiles p = (p1, . . . ,pN), will be denoted by X =
∏

nXn.
On that account, each user’s achievable transmission rate will de-

pend on his individual SINR

SINRnk(p) =
gnkpnk

σ2
k +

∑

ℓ6=n gℓkpℓk
(3.27)

where gnk = |hnk|2 denotes the channel gain coefficient for user n over

the k-th subcarrier. Thus, in the single user decoding (SUD) regime

– where interference by other users is treated as (possibly colored)

noise – the maximum information transmission rate (achievable with

random Gaussian codes) will be:

Rn(p) =
∑

k∈K
log (1 + SINRnk(p)) (3.28)
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Given the form of this objective, each user will saturate the power

constraint (3.25) and transmit with maximum possible power in order

to maximize his throughput. In practical scenarios however, power

consumption carries a commensurate cost, so we will instead consider

the energy-aware utility model

Un(p) = Rn(p)− Γn(pn) (3.29)

where pn = E[x†
nxn] =

∑

k∈K pnk denotes the user’s total transmit

power and Γn : [0, Pn]→ R+ is a user-specific cost function measuring

the impact of power consumption.

The utility/cost model above admits several interpretations, de-

pending on one’s point of view. Perhaps the most straightforward one

is that of cn representing the monetary cost to be paid to the network

operator to access the RAN, or the effective cost of power consump-

tion (whether the cost is paid up front or postponed to the moment

where the battery of the wireless device will need to be recharged).

Alternatively, from the viewpoint of energy efficiency, the cost func-

tion cn could represent the user’s adversity to transmit with higher

power when not absolutely necessary. To keep things as general as

possible, we will only consider cn as a generic “price” function and

assume that it is convex and increasing in pn (in tune with standard

economic assumptions).

With all this in mind, unilateral utility maximization leads to a

non-cooperative game G = G(N ,K,U) for cost-efficient power alloca-

tion defined as follows:

1. The set of players of G comprises the set of wireless transmitters

N = {1, . . . , N}.

2. Each player’s set of strategies consists of the corresponding fea-

sible power allocation profiles pn ∈ Xn = {pn ∈ RK : pnk ≥
0 and

∑

k∈K pnk ≤ Pn}.



48 Chapter 3. Power-Efficient and Jamming-proof Radio Access Networks

3. Each player’s utility Un : X → R is given by (3.29).

We will thus say that a power allocation profile p ∈ X is a NE of G
when

Un(pn;p−n) ≥ Un(p′
n;p−n) (3.30)

for all p′
n ∈ Xn and for all p−n ∈ X−n ≡

∏

ℓ6=nXℓ.
As the next lemma shows, an important property of the game G

is that the players’ objectives are aligned along a (concave) potential

function (in the sense of [140]):

Lemma 1. The (concave) function

V (p) =
∑

k∈K
log
(

1 +
∑

n
gnkpnk

/

σ2
k

)

−
∑

n∈N
Γn(pn) (3.31)

is a potential function for G; more precisely:

Un(pn;p−n)− Un(p′
n;p−n) = V (pn;p−n)− V (p′

n;p−n) (3.32)

for all pn ∈ Xn, p−n ∈ X−n, and for all n ∈ N .

Sketch of proof. The claim follows by carrying out the calculation at

the right-hand side of (3.32).

By exploiting the game’s potential property, it is easy to see that

the game’s set of equilibria coincides with the set of maximizers of

V [141]; as such, we are led to the (nonlinear) concave maximization

problem:

maximize V (p1, . . . ,pn)

subject to pnk ≥ 0 and
∑

k∈K
pnk ≤ Pn

(3.33)

Remark 1. The first term of the potential function V is simply the

system’s sum rate under successive interference cancellation (SIC). As

a result, maximizing V over the set of feasible power allocation profiles

p ∈ X is equivalent to maximizing the users’ aggregate utility (sum
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rate minus aggregate cost) in a centralized environment where one

can apply more sophisticated successive interference cancellation (SIC)

techniques.

3.2.2 Nash Equilibrium Analysis

3.2.2.1 Existence and Uniqueness of the Nash Equilibrium

With Lemma 1 at hand, establishing the existence of NE for G is

trivial; in fact, since the game’s potential is concave, it follows that

the set of NE of the game is a convex subset of X [141, 142]. As it

turns out, this convex set is almost surely a singleton:

Proposition 3. The cost-efficient power allocation game G admits a

unique NE for almost every realization of the channel coefficients hnk.

Proof. First, note that V is not strictly concave: V (p) = V (p′) when-

ever
∑

n gnkpnk
/

σ2
k =

∑

n gnkp
′
nk

/

σ2
k and pn = p′n. These liner relations

define a convex subset of maximizers of V which lie at the intersection

of X with an affine space of “degenerate” directions along which V is

constant. By using a graph-theoretic method introduced in [143], it

can be shown that the quilibrium point lies in the interior of a face

of X with dimension at most K − 1. Since the Nash set of G is a

convex polytope of dimension NK −K, we conclude that any NE lies

at the intersection of a g-independent (K − 1)-dimensional and a g-

dependent (NK −K)-dimensional subspace of RNK . However, since

NK −K +K − 1 < NK, the intersection of these subspaces is trivial

on a set of full measure with respect to the choice of g, implying that

there exists a unique NE.

3.2.2.2 Convergence to the Nash Equilibrium

The fact that the cost-efficient power allocation game G admits a

unique equilibrium for almost every channel realization is significant
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from the point of view of managing the system because it guarantees

a unique stable solution. That said, it is far from clear how the sys-

tem’s users could actually reach this equilibrium state, so our goal in

this section will be to provide a distributed, adaptive learning mech-

anism that can be employed by the system’s users in order to reach

this stable state.

In the absence of power considerations, [48] examined this problem

by means of a continuous-time learning scheme based on the replicator

dynamics of Evolutionary Game Theory (EGT) [144] driven by the

users’ so-called marginal utility functions ∂Rn

∂pnk
. Unfortunately how-

ever, this approach cannot be applied in our case because replicator-

driven techniques require the problem’s state space to be a product

of simplices – which, in our case, would amount to players saturating

the total power constraint (3.29) by default.

To overcome this issue, let pn,0 denote the unused power of user n,

i.e.

pn,0 = Pn − pn = Pn −
∑

k∈K
pnk (3.34)

so that
∑K

α=0
pnα = Pn (3.35)

for all n ∈ N . Accordingly, letting the index “0” denote a virtual, “un-

used” channel and writing K0 = K⋃{0} = {0, 1, . . . , K} for the sys-

tem’s artificially augmented channel set, the concave problem (3.33)

may be reformulated as:

maximize V0(p1, . . . ,pN)

subject to pn ∈ ∆n ≡
{

pn ∈ RK0 : pnα ≥ 0 and
∑

α∈K0
pnα = Pn

}

(3.36)



3.2. Power-efficient RAN access 51

where now pn = (pn,0, pn,1, . . . , pn,K) and

V0(p1, . . . ,pK) =
∑K

k=1
log
(

1 +
∑

n∈N
gnkpnk

/

σ2
k

)

−
∑

n∈N
Γn(Pn − pn,0) (3.37)

Hence, drawing on the analysis of [48] for power allocation problems

with fixed transmit power pn, we will consider here the marginal util-

ities :

vnα =
∂Un
∂pnα

=







Γ′
n(Pn − pn,0) if α = 0

gnk
/(

σ2
k +

∑

ℓ gℓkpℓk
)

otherwise
(3.38)

Importantly, these marginal utilities can be calculated by each user

with only local information at hand (such as SINR measurements).

Indeed, vn,0 only depends on the user’s total transmit power pn = Pn−
pn,0 so the same applies to the user’s cost function Γn; furthermore,

for k = 1, . . . , K, some easy algebra yields

vnk =
1

pnk

SINRnk

1 + SINRnk

(3.39)

so any learning scheme that relies on these marginal utilities may be

implemented in a completely distributed fashion.

Remark 2. A case of particular interest is when the users’ cost func-

tions are linear, i.e., Γn = λnpn where λn denotes the cost incurred by

the user (monetary or otherwise) per Watt. In this context, the user’s

marginal cost vn,0 will be:

vn,0 = λn (3.40)

so a higher price per Watt increases the user’s tendency to allocate

power to the “unused” channel.

In view of the above, we will consider the following exponential
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learning process in continuous time:











ẏnα = vnα

pnα = Pn
eynα

∑

β∈K0
eynβ

(XL0)

Of course, in the above formulation, “power” allocated to the virtual,

“unused” channel 0 means “power unused due to cost considerations”;

accordingly, by exploiting the properties of the exponential map, we

may reformulate this learning scheme as:











żnk = vnk − vn,0
pnk = Pn

eznk

1 +
∑

ν∈K e
znν

(3.41)

This last process admits the following reinforcement interpretation:

each (actual) channel k ∈ K is scored by aggregating the difference

between its marginal utility vnk and the marginal power consumption

cost vn,0, and power is allocated with exponential sensitivity to these

cumulative performance scores.

The first thing that can be verified with respect to the exponential

learning scheme (3.41) is that it respects the constraints imposed by

the users’ power considerations: indeed, pnk ≥ 0 by definition and
∑

k pnk = Pn
∑

k exp(znk)
/(

1 +
∑

ν exp(znν)
)

≤ Pn for any possible

value of the performance scores znk. More importantly, as the next

proposition shows, the learning scheme (3.41) guarantees that users

converge to a NE of the energy-efficient power allocation game G:

Proposition 4. Let p(t) be the adaptive power allocation policy in-

duced by the continuous-time learning scheme (3.41) for some initial-

ization znk(0) of the channels’ performance scores. Then, for almost

every realization of the system’s channel coefficients hnk, we will have

limt→∞ p(t) = p∗ where p∗ denotes the game’s (unique) NE.
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Moreover, p(t) converges to p∗ exponentially fast:

DKL(p
∗ ‖p(t)) = O(e−ct) (3.42)

where c > 0 and DKL(p
∗,p) =

∑

n,k p
∗
nk log

(

p∗nk
/

pnk
)

, denotes the

Kullback-Leibler divergence between p∗ and p.

Proof. By decoupling the exponential learning scheme (3.41), it can be

shown that its solution trajectories p(t) satisfy an augmented version

of the replicator equation of [48] with an extra strategy to account for

the “unused power” channel 0 ∈ K0. Our claim may then be proved

by adapting the proof of Theorem 6 in [48].

Despite its appealing convergence properties, (3.41) is a dynamical

system that evolves in continuous time, so it is not clear if it can be

implemented as a bona fide, discrete-time learning algorithm. In this

regard, there are two key challenges to overcome: a) to establish

a properly discretized version of (3.41) which retains its convergence

in discrete time; and b) to ensure the algorithm’s robustness in the

presence of impefect CSI and noisy SINR observations.

To that end, we will work here with the following stochastic

diminishing-step discretization of (3.41):











znk(m+ 1) = znk(m) + γm
[

v̂nk(m)− v̂n,0(m)
]

pnk(m+ 1) = Pn
eznk(m)

1 +
∑

ν e
znν(m)

(3.43)

where m = 1, 2, . . . , is the iteration counter of the process, γm is a

variable step size whose role will be discussed below and v̂nα represents

a perturbed version of the user’s marginal utility at the n-th update

period. In particular, to account for as wide a range of measurement
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errors as possible, we will assume that

v̂nk(m) = vnk(m) + ξnk(m) (3.44)

where the observational error ξnk is a bounded martingale difference

(not necessarily independent and identically distributed (i.i.d.)), i.e.

‖ξnk‖ ≤ Σ for some Σ > 0 and E
[

ξnk(m) | ξnk(n− 1), . . . , ξnk(1)
]

= 0.

By employing the stochastic optimization techniques of [145], it is

then possible to show:

Proposition 5. Let γm be a variable step size sequence such that
∑

n γm → +∞ and
∑

n γ
2
m < +∞. Then, for almost every realization

of the system’s channel coefficients hnk, the iterates of the learning

scheme (3.43) with imperfect measurements given by (3.44) converge

to the game’s (unique) NE.

Proof. the learning scheme (3.43) can be seen as a greedy mirror de-

scent method [145] for V with respect to the L1 norm on X and with

the Shannon–Gibbs entropy as a “distance-generating function” in the

sense of [145]. With this in mind, the analysis of [145] can be used to

show that E[V0(p(m))−V0(p∗)] = O
(

∑m
j=1 γ

2
j

/
∑m

j=1 γj

)

, where p∗ is

the game’s unique equilibrium. In turn, this implies that p(m)→ p∗

and establishes our claim.

3.2.3 Numerical Analysis

To validate the predictions of Section 3.2.2.2 for the performance of

the learning scheme (3.43) in power-constrained RANs, we conducted

extensive numerical simulations from which we illustrate here a selec-

tion of the most representative scenarios.

Throughout this section, and unless explicitly stated otherwise, we

will assume a population of N = 10 users and K = 20 subcarriers,

while the channel gain coefficients hnk will be drawn randomly from
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[0, 1]. For simplicity, we also assume symmetric channels and users,

i.e. σk = 1 for all k ∈ K and Pn = P = 1W for all n ∈ N .

With regards to the cost function cn of the utility model (3.29), we

will consider three distinct cases: no pricing (NP), linear pricing (LP),

and nonlinear pricing (NLP). Specifically:

1. The NP model is defined trivially as cNP(p) = 0.

2. The LP model is defined as cLP(p) = λp for some λ > 0.

3. The NLP model is defined as cNLP(p) = λ
(

ep/P − 1
)

.9.

Fig. 3.6 shows how the users’ average transmit power, achieved

transmission rate and sum-rate evolve at each iteration of the the

learning scheme (3.43). As expected, the end-state of the learning

scheme (3.43) depends quite strongly on the number of users and

available channels: as could be expected, best performance is achieved

in the uncontested regime where the number of available channels is

higher than the number of users trying to access them, i.e. N/K < 1.

Fig. 3.6 also shows how the NLP model affects the power allocation

process; in fact, since NLP leads to a sharp increase of the transmis-

sion cost for higher powers, it follows that the corresponding loss in

transmission rate is not negligible compared to the LP scheme.

In Fig. 3.7 we plot the sum-rate, average allocated power and its

respective cost as a function of different pricing models and values

of the pricing parameter λ for different network configurations. The

most interesting result is that three distinct regions can be identified:

a) For λ below a certain threshold λl, the transmission cost in neg-

ligible compared to the contribution of the transmission rate in the

utility function, so pricing does not impact the system’s performance

at equilibrium; b) in the second region, say λl < λ < λu, the average

9Note that the constant term in cNLP (p) does not affect the equilibrium of the
game as it represents a flat power rate for each user.
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Figure 3.6: Evolution of the average allocated power, sum-rate and
average transmission rate for the LP (solid line) and NLP (dashed
line) models for different network configurations.

allocated power and the sum-rate decrease with λ, thus leading to a

nontrivial trade-off between achievable transmission rate and the cost

of power consumption; finally, for large λ > λu the transmission cost is

so high that it ends up dominating each user’s utility function, so users

remain relatively quiet due to the high cost of power consumption. An

important result is that the average cost paid by users for each trans-

mission is maximized at λ = λl (recall that for λ ≤ λl the exact value

of λ does not affect network performance and users don’t mind paying

a small cost in order to maximize their throughput). This result could

be interesting and useful in all of those scenarios where the receiver of

the uplink channel, e.g., the network operator which sells its channels

by applying a pricing model, wants to maximize its revenues while

maintaining high network performance.10 Fig. 3.7 also shows that LP

performs better than NLP in terms of the users’ transmission rate,

10Note that the revenue/profit maximization occurs when λ = λl but, this prob-
lem lies beyond the scope of this thesis.
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Figure 3.7: Sum-rate, average allocated power and respective cost as
a function of the pricing parameter λ for different channel configura-
tions.

precisely because users incur a higher cost under the NLP model (so

users will allocate less power on each available channel thus decreasing

their achievable transmission rates).

We also investigated the impact of different values of the ratio be-

tween the number of channels K and the number of users N on the

system’s overall performance. As shown in Fig. 3.7, the congested

regime N > K leads to worse aggregate throughput values, as ex-

pected; in fact, an increase in the number of users reduces the SINR

of each user transmitting on the same channel. On the other hand,

if N ≤ K there is a reduction in the multiuser interference, so higher

transmission rates can be achieved for all users.

Finally, to assess the the learning scheme’s convergence speed, we

plotted the system’s equilibration level (EQL), defined as follows:

EQL(m) =
V0(p(m))− V0,min

V0,max − V0,min

(3.45)
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where p(m) is the users’ power profile at the m-th iteration of the

exponential learning (3.41) and V0,min (resp. V0,min) denotes the max-

imum (resp. minimum) value of the game’s potential V0 [48]. In

Fig. 3.8 we plot the equilibration rate of (3.41) for different pricing

models and values of the step-size parameter γm. In the case of a

diminishing step size, our exponential learning scheme converges to

equilibrium more slowly than if a constant step size is used, and the

learning scheme’s convergence speed increases with γm. In Fig. 3.8

we further investigate the impact of different pricing strategies in the

game. When power consumption carries no cost (the NP regime),

the learning scheme converges very fast to an equilibrium point which

saturates the users’ power constraint; otherwise, the learning scheme’s

convergence to equilibrium is slower in the LP than in the NLP case,

a phenomenon which implies that the optimal choice of step size for

the learning scheme (3.43) depends delicately on the users’ pricing

scheme.11

In Fig. 3.9 we plot the game’s equilibration level (EQL) under

the linear pricing model for γm = 1.25, 2.5 and different values of K

and N : as expected, the convergence rate with γm = 2.5 is faster

compared to the one achieved for γm = 1.25. The most interesting

result concerns the scalability of the algorithm: as a matter of fact,

the algorithm converges to equilibrium within a number of iterations

that is roughly independent of the underlying network configuration.

11Importantly, the convergence of the learning scheme (3.43) with a variable
step-size γm = 1/m is guaranteed by Proposition 5; this result does not apply to
the constant step-size case, but, nonetheless, the learning scheme converged to the
game’s (unique) NE in all our simulations.
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Figure 3.8: Evolution of the equilibration rate for different pricing
models and values of the step-size γm.

3.3 Jamming-proof RAN communica-

tions

In this section, we provide a jamming-proof resource allocation scheme

that exploits timing channels to establish secure communications be-

tween network users and the RAN.

A timing channel is a communication channel which exploits si-

lence intervals between consecutive events, such as packet transmis-

sions, to encode information [86]. Accordingly, in a timing channel

the output alphabet is made up of different time values, and coding

consists in defining the inter-arrival time between an event and the fol-

lowing one. Also, timing channels have been shown to be well-suited

communication channels to provide jamming-proof communications

[35, 71, 90, 91].

In the following we analyze the interactions between a rective jam-

mer and network users whose transmissions are under attack. Specif-

ically, we assume that network users want to maximize the amount of
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Figure 3.9: Evolution of the equilibration rate for the LP model for
different values of the step-size γm and network configurations.

information that can be transmitted per unit of time by means of the

timing channel. Instead, the jammer wants to minimize such amount

of information while reducing the energy expenditure. As the target

node and the jammer have conflicting interests, we develop a game

theoretical framework that models their interactions. We investigate

both the case in which these two adversaries play their strategies si-

multaneously, and the situation when the target node (the leader)

anticipates the actions of the jammer (the follower). To this purpose,

we study both the Nash Equilibria (NEs) and Stackelberg Equilibria

(SEs) of our proposed games.

More in detail, we prove the existence, uniqueness and convergence

to the NE under best response dynamics; we prove the existence and

uniqueness of the equilibrium of the Stackelberg game where the target

node plays as a leader and the jammer reacts consequently. Finally,

we investigate the impact on the achievable performance of imperfect

knowledge w.r.t. jammer’s system parameters.
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3.3.1 System Model and Problem Formulation

We consider the challenging case where all frequency channels in K are

attacked by the jammer. Also, to properly exploit timing channels, we

assume that only one network user is allowed to access a subcarrier

at any given time 12. However, note that the case where multiple

users access the same subcarrier can be tackled by exploiting timing

channel-based MAC protocols such as the one proposed in [10].

For the sake of illustration, in this thesis we focus on a single user

n ∈ N which is attacked by the malicious node. However, the same

formulation also holds for any other user in N . Thus, in the following

we refer to the malicious node as the jammer, J , and the user under

attack as the target node, T .

The jammer senses the wireless channel continuously. Upon detect-

ing a possible transmission activity performed by T , J starts emitting a

jamming signal. As shown in Fig. 3.10, we denote as TAJ the duration

of the time interval between the beginning of the packet transmission

and the beginning of the jamming signal emission. The duration of

the interference signal emission that jams the transmission of the j-th

packet can be modeled as a continuous random variable, which we call

Yj. To maximize the uncertainty on the value of Yj, we assume that

it is exponentially distributed with mean value y.

We assume that when no attack is performed the target node

communicates with the receiver by applying traditional transmissions

schemes; on the other hand, when it realizes to be under attack, it

exploits the timing channel to transmit part of (or all) the informa-

tion13. The latter is encoded in the duration of the interval between

12The approach we propose in this thesis is general and we do not make any
assumption of the mechanism that the network operator allocates the considered
subcarriers in K.

13Attack detection can be achieved by the target node either by means of explicit
notification messages sent back to T by the receiver or by inference after missing
reception of ACK messages. Details on attack detection operations are however
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and SJ are the set of strategies of the target node and the jammer,

respectively.

In our model we assume that the jammer is energy-constrained,

e.g., it is battery-powered; hence, its choice of y (i.e., the average

duration of the signal emission that jams the packet transmission)

stems from a trade-off between two requirements, i.e., i) reduce the

amount of information that the target node T can transmit to the

perspective receiver, and ii) keep the energy consumption as low as

possible. Observe that requirement i) would result in the selection of a

high value for y, whereas requirement ii) would result in a low value for

y. On the other hand, the target node has to properly choose the value

of x (i.e., the maximum silence period duration scheduled following the

transmission of the j− th packet and the subsequent jamming signal)

in order to maximize the achievable capacity C(x, y), i.e., the amount

of information that can be sent by means of the timing channel, while

minimizing its energy consumption. Therefore, it is reasonable to

consider that the values of x and y represent the strategies for the

target node T and the jammer J , respectively. Accordingly, the set of

strategies for both players, ST and SJ , can be defined as the set of all

the feasible strategies x and y, respectively.

The utility set of the game is defined as U = (UT ,UJ ), where UT
and UJ are the utility functions of the target node and the jammer,

respectively. As already said, the target node aims at maximizing

its own achievable capacity, C(x, y) while also minimizing its energy

consumption. The jammer, on its side, aims at reducing the capacity

achieved by the target node by generating interference signals, whose

duration is y (in average), while keeping its own energy consumption

low. Accordingly, the utility functions UT (x, y) and UJ(x, y) to be
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maximized are defined as follows:

{

UT (x, y) = +C(x, y)− cT ∗ · TP · P
UJ(x, y) = −C(x, y)− cT · y · PJ

(3.46)

where P and PJ are the transmission power of the target node and

the jammer, respectively, TP is the duration of a transmitted packet

in seconds, cT ∗ and cT are positive transmission costs expressed in

[bit/(s · J)] which weight the two contributions in the utility functions

and therefore, in the following will be referred to as weight parame-

ters. Note that while the energy consumption of the jammer varies as

a function of the strategy y of the jammer itself, on the contrary the

energy consumption of the target node during a cycle only depends on

the duration TP of the packet and not on the strategy. Furthermore,

a low value of cT means that the jammer considers its jamming effec-

tiveness more important than its energy consumption, while a high cT

value indicates that the jammer is energy-constrained and, as a conse-

quence, it prefers to save energy rather than reducing the capacity of

the target node. We observe that cT = 0 models the case of continuous

jamming without any energy constraint, which is of limited interested

and out of the scope of this thesis, since we focus on studying the

trade-off between the achievable capacity and the consumed energy.

Let us now calculate the capacity C(x, y) which appears in the

utility function (3.46). To this purpose, we denote the interval between

two consecutive transmissions executed by T as a cycle. The expected

duration of a cycle is

tCycle = TAJ + y + x/2 (3.47)

The capacity C(x, y) can be derived as the expected value of the infor-

mation transferred during a cycle, cCycle(x, y), divided by the expected

duration of a cycle, tCycle. It is easy to show that cCycle(x, y) is ap-
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proximately

cCycle = log2 (x/∆) (3.48)

Note that at each timing channel utilization the target node T is

expected to transmit at least one bit; then, from (3.48) it follows that

x ≥ 2∆.

(3.47) and (3.48) can be exploited to calculate the capacity C(x, y),
i.e.,

C(x, y) = log2 (x/∆)

TAJ + y + x/2
(3.49)

3.3.2 Nash Equilibrium Analysis

In this Section we solve the game described in Section 3.3.1, and we

find the NE, in which both players achieve their highest utility given

the strategy profile of the opponent. In the following we also provide

proofs of the existence, uniqueness and convergence to the NE under

best response dynamics.

Let us define a NE for game G:

Definition 1. A strategy profile (x∗, y∗) ∈ S is a NE if ∀(x′, y′) ∈ S

UT (x∗, y∗) > UT (x′, y∗)
UJ(x∗, y∗) > UJ(x∗, y′)

that is, (x∗, y∗) is a strategy profile where no player has incentive to

deviate unilaterally.

One possible way to study the NE and its properties is to look

at the best response functions (BRs). A best response function is a

function that maximizes the utility function of a player, given the

opponents’ strategy profile. Let bT (y) be the BR of the target node

and bJ(x) the BR of the jammer. These functions can be characterized

as follows:
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bT (y) = argmax
x∈ST

UT (x, y)

bJ(x) = argmax
y∈SJ

UJ (x, y)

In our model it is possible to analytically derive the closed form of the

above BRs by analyzing the first derivatives of UT (x, y) and UJ (x, y),
and imposing that ∂

∂x
UT (x, y) = 0 and ∂

∂y
UJ (x, y) = 0.

It is easy to see that ∂
∂x
UT (x, y) = 0 leads to

1

x
− 1

2
log
( x

∆

) 1

TAJ + y + x
2

= 0 (3.50)

(3.50) can be rewritten as follows:

2(TAJ + y)

e∆
=

x

e∆
· log x

e∆
(3.51)

Note that (3.51) is in the form β = α logα, and, by exploiting the

definition of Lambert W-function, say W (z), which, for any complex

z, satisfies z = W (z)eW (z), it has solution α = eW (β).

Therefore, (3.51) can also be rewritten as

x = ∆e
W

(

2(TAJ+y)

e∆

)

+1

which is, by definition, bT (y).

In order to derive the closed form of bJ(x) we first solve
∂
∂y
UJ (x, y) = 0. It can be easily proven that ∂

∂y
UJ (x, y) = 0 leads

to

log
( x

∆

)

= η
(

TAJ +
x

2
+ y
)2

which can be rewritten as follows:

bJ(x) =

√

log( x
∆
)

η
− TAJ −

x

2
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where η = cT · PJ · log 2.
Therefore, we can write

bT (y) = ∆eψ(y)+1 (3.52)

bJ(x) =







χ(x), if χ(x) > 0

0, if χ(x) < 0
(3.53)

where

ψ(y) = W

(

2[TAJ + y]

e∆

)

, χ(x) =

√

log( x
∆
)

η
− TAJ −

x

2
(3.54)

Note that the best response of the jammer bJ(x) depends on the value

of the weight parameter cT . Also, it can be shown that there exists a

critical value of the weight parameter, say c
(max)
T , such that bJ(x) < 0

∀x ∈ ST , ∀cT ≥ c
(max)
T . In fact, since the function χ(x) is strictly

decreasing in cT , limcT→+∞ χ(x) < 0 and limcT→0 χ(x) = +∞, the

intermediate value theorem ensures the existence of c
(max)
T . By looking

at the first derivative of the χ(x) function in (3.54), it can be shown

that c
(max)
T = 1

PJ log(2)
1

2∆(∆+T )
. Therefore, if cT ≥ c

(max)
T the only possi-

ble strategy of the jammer is bJ(x) = 0, and then, as the strategy set

of the jammer (SJ ) is a singleton, the game has a trivial outcome.

3.3.2.1 Existence and Uniqueness of the Nash Equilibrium

It is well known that the intersection points between bT (y) and bJ(x)

are the NEs of the game. Therefore, to demonstrate the existence of

at least one NE, it suffices to prove that bT (y) and bJ(x) have one or

more intersection points. In other words, it is sufficient to find one or

more pairs (x∗, y∗) ∈ S such that

(bT (y
∗), bJ(x

∗)) = (x∗, y∗) (3.55)
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To this aim, in the following we provide some structural properties

of the utility functions, UT (x, y) and UJ (x, y), that will be useful in

solving (3.55).

Lemma 2. For the utility functions UT (x, y) and UJ (x, y), the fol-

lowing properties hold 15:

• UT (x, y) is strictly concave for x ∈ [2∆, x′] and is monotonically

decreasing for x > x′ where x′ = bT (y)

• UJ (x, y) is strictly concave ∀y ∈ SJ .

Theorem 2 (NE existence). The game G admits at least an NE.

Proof. If we limit the strategy of the target node to [2∆, x′], it follows

from Lemma 2 that there exists at least an NE since both the utility

functions are concave in the restraint strategy set [146]. However,

this does not still prove the existence of the NE in the non-restraint

strategy set ST . Let (x∗, y∗) denote the NE with a restraint strategy

set [2∆, x′]; we can easily observe that (x∗, y∗) is also the NE of the

jamming game with non-restraint strategy set. To show this, recall

Lemma 2 that states that UT (x, y) is monotonically decreasing for

x > x′. The transmitter has thus no incentive to deviate from (x∗, y∗)

and the jammer has no incentive to deviate from it either. Therefore,

(x∗, y∗) is the NE of the jamming game.

After proving the NE existence in Theorem 2, let us prove the

uniqueness of the NE, that is, there is only one strategy profile such

that no player has incentive to deviate unilaterally.

15The proof of Lemma 2 which is straightforward (although quite long), consists
in calculating the first and second derivatives of the utility functions and studying
them.
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Theorem 3 (NE uniqueness). The game G admits a unique NE that

can be expressed as

(xNE, yNE) =

=











(

∆e
1
2
W

(

8
η∆2

)

, ∆
2

[

1
2
W
(

8
η∆2

)

− 1
]

e
1
2
W

(

8
η∆2

)

− TAJ
)

if cT < c̃T
(

∆eW ( 2T
e∆

)+1, 0
)

otherwise

(3.56)

where η = cT · PJ · log 2 and

c̃T =
4

∆2PJ log 2
e−2[W( 2T

e∆)+1]/

(

W

(

2T

e∆

)

+ 1

)

(3.57)

The proof consists in exploiting formal and structural properties of

the best response functions to show that their intersection is unique,

that is, (3.55) admits a unique solution. For a detailed proof see

Appendix A

3.3.2.2 Convergence to the Nash Equilibrium

We now analyze the convergence of the game to the NE when play-

ers follow Best Response Dynamics (BRD). In BRD the game starts

from any initial point (x(0), y(0)) ∈ S and, at each successive step,

each player plays its strategy by following its best response function.

Thereby, at the i-th iteration the strategy profile (x(i), y(i)) can be

formally expressed by the following BRD iterative algorithm:







x(i) = bT (y
(i−1))

y(i) = bJ(x
(i−1))

Let b(x, y) = (bT (y), bJ(x))
T be the best response vector and Jb
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be the Jacobian of b(x, y) defined as follows

Jb =





∂
∂x
bT (y)

∂
∂y
bT (y)

∂
∂x
bJ(x)

∂
∂y
bJ(x)



 =

[

0 ∂
∂y
bT (y)

∂
∂x
bJ(x) 0

]

(3.58)

It has been demonstrated [147] that, if the Jacobian infinity matrix

norm ||Jb||∞ < 1, the BRD always converges to the unique NE. In the

following we prove the following theorem:

Theorem 4 (NE convergence - sufficient condition). The relationship

cT >
1

9∆2 log 2PJ

1
(

W
(

2TAJ

e∆

)

+ 1
)

e
2
(

W
(

2TAJ
e∆

)

+1
) (3.59)

is a sufficient condition for the game G to converge to the NE. Fur-

thermore, it converges to the NE in at most logJmax
b

ǫ
||s1−s0||

iterations

for any ǫ, where Jmaxb = max Jb and si = (xi, yi).

To demonstrate the theorem,

1. we prove that the relationship

max
x∈ST

(

1

ηx2 log( x
∆
)

)

< 9 (3.60)

is a sufficient condition for the BRD to converge to the NE in at

most logJmax
b

ǫ
||s1−s0||

iterations. This is the focus of Lemma 3;

2. we define a game G ′ and demonstrate that G converges to G ′ in
two iterations at most. This is the focus of Lemma 4;

3. we demonstrate that the condition in (3.59) is a sufficient con-

dition for G ′ to satisfy (3.60) and converge to the same NE of G.
This is the focus of Lemma 5.
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Lemma 3. The BRD converges to the unique NE from any

(x(0), y(0)) ∈ S if maxx∈ST

(

1
ηx2 log( x

∆
)

)

< 9 in at most logJmax
b

ǫ
||s1−s0||

iterations.

The proof is based on showing that the above relationship is a

sufficient condition for the Jacobian infinity matrix norm ||Jb||∞ to

be always lower than 1, and thus, according to [147], convergence of

the BRD follows. We refer the reader to Appendix B for a detailed

proof of Lemma 2.

Let us now observe that bJ(x) is lower-bounded as it is non-negative

(bJ(x) > 0) and, since it is concave, it has a maximum, say yM , for

x̂ = ∆e
1
2
W ( 2

η∆2 ), and thus it is upper-bounded (bJ(x) 6 yM = bJ(x̂)).

Also, it is easy to prove that bT (y) is a non-negative strictly increasing

function, hence, it is lower-bounded by xm = bT (0). We can thus define

a new strategy set S ′ = ST ′ × SJ ′ = [xm, xM ]× [0, yM ], where S ′ ⊂ S
and xM = bT (yM), which is relevant in the following lemma:

Lemma 4. Given any starting point (x(0), y(0)) ∈ S, the BRD is

bounded in S ′ in at most two iterations. That is, (x(i), y(i)) ∈ S ′

for i = 2, 3, ...,+∞.

Proof. Let S(1) be the strategy set at the first iteration. From (3.52)

and (3.53) we have that bJ(x) is lower and upper-bounded by y = 0

and y = yM , respectively, thus y(1) ∈ [0, yM ]. Furthermore, as bT (x)

is lower-bounded by x = xm and y(0) ∈ SJ = [0,+∞[, it follows

that x(1) ∈ [xm,+∞). Hence, we have that S(1) = ST (1) × SJ (1) =

[xm,+∞) × [0, yM ], S(1) ⊂ S. Due to the boundedness of y(1) which

assumes values in SJ (1), it can be shown that at the second iteration

x(2) ∈ [xm, xM ] while y(2) ∈ [0, yM ], thus, we have that (x(2), y(2)) ∈
S ′. We can extend the same reasoning to the j-th iteration (∀j =

3, 4, ...,∞) to obtain that (x(j−1), y(j−1)) ∈ S ′. Therefore, it follows

that (x(j), y(j)) is still in S ′, which concludes the proof.
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Lemma 5 (NE convergence). If the parameter cT satisfies the condi-

tion:

cT > c′T =
1

9∆2 log 2PJ

1
(

W
(

2TAJ

e∆

)

+ 1
)

e
2
(

W
(

2TAJ
e∆

)

+1
) (3.61)

then G ′ converges to the NE of G.

Proof. Since the function on the left-hand side of (3.60) is non-

negative and strictly decreasing, and the minimum value of ST is

xm = ∆e
W

(

2TAJ
e∆

)

+1
, then

max
x∈ST

(

1

ηx2 log( x
∆
)

)

=
1

ηx2m log(xm
∆
)

(3.62)

It is easy to show that if (3.61) holds, then

1

ηx2m log(xm
∆
)
< 9

and therefore, recalling (3.62), (3.60) holds. From Lemma 3 we thus

obtain that G ′ converges to its NE.

We still need to demonstrate that G and G ′ converge to the same

equilibrium point. To this purpose it is sufficient to prove that the

equilibrium point of G is in S ′. Theorem 3 guarantees that the game

G admits a unique equilibrium, which has to be in S. Let (xNE, yNE)

be the NE, i.e., the unique intersection point between bT (y) and bJ(x).

As bJ(x) takes values in [0, yM ] it follows that yNE ∈ [0, yM ]; therefore,

xNE = bT (yNE) ∈ [xm, xM ]. It follows that (xNE, yNE) ∈ S ′, which

concludes the proof.
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3.3.3 Stackelberg Game

In a Stackelberg game one of the players acts as the leader by antici-

pating the best response of the follower. In our scenario, the jammer

plays its strategy when a communication from the target node is de-

tected on the monitored channel; thus, it is natural to assume that

the target node acts as the leader followed by the jammer. Obviously,

given the strategy of the target node x, the jammer will play the

strategy that maximizes its utility, that is, its best response bJ(x)
16.

This hierarchical structure of the game allows the leader to achieve

a utility which is at least equal to the utility achieved in the ordi-

nary game G at the NE, if we assume perfect knowledge, that is, the

target node is completely aware of the utility function of the jammer

and its parameters, and thus it is able to evaluate bJ(x). Whereas, if

some parameters in the utility function of the jammer are unknown

at the target node, i.e., the imperfect knowledge case, the above result

is no more guaranteed as it is impossible to evaluate the exact form

of bJ(x). In this section we analyze the Stackelberg game and provide

useful results about its equilibrium points, referred to as Stackelberg

Equilibria (SEs).

Definition 2. A strategy profile (x∗, y∗) ∈ S is a Stackelberg Equilib-

rium (SE) if y∗ ∈ SJ NE(x) and

x∗ = argmax
x′
UT (x′, y∗)

where SJ NE(x) is the set of NE for the follower when the leader plays

its strategy x.

In the following we will prove that, in the case of perfect knowl-

edge, there is a unique SE for any value of the weight parameter cT ,

16In the following, given that the value of cT∗ does not impact on the game, for
worth of simplicity we assume that cT∗ = 0.
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and we demonstrate that the target node can inhibit the jammer un-

der the perfect knowledge assumption. Next, we will investigate the

implications of imperfect knowledge on the game outcome.

3.3.3.1 Perfect knowledge

Under the perfect knowledge assumption, the target node selects x

in such a way that UT (x, bJ(x)) is maximized, where UT (x, bJ(x)) is

calculated in (3.63a) and (3.63b) by replacing expression (3.53) in

(3.49) and (3.46).

UT (x, bJ(x)) =

=











√

cTPJ log2

( x

∆

)

− cT ∗ · TP · P if χ(x) > 0 (3.63a)

log2

( x

∆

)

/
(

TAJ +
x

2

)

− cT ∗ · TP · P otherwise (3.63b)

By analyzing the first derivative of χ(x), it can be shown that χ(x)

has a maximum in x̂ = ∆e
1
2
W ( 2

η∆2 ) and, consequently, χ(x) is strictly

decreasing for x > x̂ and strictly increasing for x < x̂.

In the following we show that for any value of cT there exists a

unique Stackelberg Equilibrium, and this is when the jammer does

not jam the timing channel17. Furthermore, we show that the leader

can improve its utility at the Stackelberg equilibrium if and only if

cT < c̃T .

Theorem 5. For any value of the parameter cT , the Stackelberg game

GT has a unique equilibrium.

Proof. First, we prove that the game admits a unique equilibrium for

cT ≥ c
(max)
T . Recall that cT ≥ c

(max)
T implies bJ(x) = 0; therefore,

17In this case the jammer is expected to transmit the interference signal for a
short time interval only because this suffices to disrupt communications, as occurs
in traditional communication channels.
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SJ is singleton and the unique feasible strategy for the jammer at

the SE is ySE = 0. In fact, due to the high cost associated to the

emission of the jamming signal, the jammer is inhibited ∀x ∈ ST .
Hence, it can be easily proved that the strategy profile at the SE is

(xSE, ySE) = (∆eW (
2TAJ
e∆

)+1, 0), that is, at the SE the target node selects

the strategy that maximizes the capacity of the non-jammed timing

channel (where indeed ySE = 0).

Instead, if cT < c
(max)
T , from (3.54) we have that χ(x̂) > 0. Thus,

for the intermediate value theorem there exist x1 < x̂ and x2 > x̂ such

that χ(x1) = χ(x2) = 0, as shown in Fig. 3.11.

Let us denote ST 1 = {x ∈ [2∆, x1]}, ST 2 = {x ∈ [x1, x2]}, ST 3 =

{ST r(ST 1∪ST 2)}, and x′ = ∆eW (
2TAJ
e∆

)+1. It can be easily proved that

x′ maximizes (3.63b) and, since χ(x′) > 0, it follows that x′ ∈ ST 2.

Therefore, the utility function of the target node as defined in (3.63b)

increases for x < x′ and decreases for x > x′. The latter is fundamental

to prove the theorem; in fact, as shown in Fig. 3.11, for x ∈ ST 1 the

utility of the target node is defined by (3.63b) and strictly increases

as x increases; therefore, we have that in ST 1 the maximum utility is

achieved in x1. On the contrary, in ST 2 the utility is defined by (3.63a),

which is a strictly increasing function that achieves its maximum value

for x = x2. Finally, for x ∈ ST 3 we have that the utility of the

transmitter defined by (3.63b) strictly decreases as x > x′; hence, the

maximum value is achieved for x = x2.

Since UT (x, bJ(x)) < UT (x2, bJ(x2)) with x 6= x2, it follows that,

to maximize its own utility, the target node must play the unique

strategy x = x2. Note that χ(x2) = 0 by definition, thus from (3.53)

we have that the strategy of the jammer at the equilibrium is ySE = 0.

Therefore, xSE = x2 is the strategy of the target node at the SE, and

we can identify the unique SE as (xSE, ySE) = (x2, 0), which concludes

the proof.
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Figure 3.11: Graphical representation of χ(x) and UT (x, bJ(x)) in
the Stackelberg game. The solid line is the actual utility of the target
node in each strategy subset.

Let us remark that the above Theorem also highlights an insight-

ful side-effect: at the Stackelberg equilibrium, pursuing the goal of

inhibiting the jammer makes the target node prefer to increase trans-

mission delay rather than reduce its achievable capacity.

Let us also note that, although an analytical closed form for xSE

cannot be easily derived, its value can be determined by means of

numerical search algorithms such as the bisection search algorithm.

Obviously, such algorithms will not give the exact value of xSE; in

fact, they will return an interval [xm, xM ] small as desired, containing

the solution, i.e., xSE ∈ [xm, xM ], and eventually the target node will

select the minimum or the maximum value of the interval which gives

the highest utility function. Let ǫ(xm, xM) denote the loss in the utility

of the target node due to the fact that it cannot determine the exact

value of xSE. Given that the utility function is continuous and that its
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derivative is upperbounded by umax =
√
cT · P/(4∆ log 2) in [x1, xSE],

it is possible to show that selecting the interval size in such a way that

xM − xm ≤ ǫ∗/umax (3.64)

the loss in the utility of the target node, ǫ(xm, xM), is lower than

ǫ∗. In other terms, by using numerical search algorithms such as the

bisection search algorithm, the target node can make the loss in its

utility as small as desired.

In the following we provide an approximation x′SE that can be

helpful from a practical point of view. Let us assume that
(

TAJ +
x
2

)

≈
x
2
, therefore, (3.54) can be rewritten as follows

log( x
∆
)

log(2)cTP
=
(x

2

)2

(3.65)

By means of simple manipulations it can be easily shown that (3.65)

admits the following solution:

x′SE = ∆e
− 1

2
W

(

−
log(2)cT P∆2

2

)

(3.66)

In Section 3.3.4 we will provide numerical results that show how much

the approximation in (3.66) affects the outcome of the Stackelberg

game.

Theorem 6. In the Stackelberg game the target node improves its

utility as compared to the NE if and only if 0 < cT < c̃T .

Proof. Let us start with the proof of the sufficient condition implied

by the Theorem 6. According to (3.56) and (3.63a), proving that

UT (xSE, bJ(xSE)) > UT (xNE, yNE) is equivalent to showing that

√

cTP log2(
xSE
∆

) >
1

log 2

2

∆
e
− 1

2
W ( 8

η∆2 )
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that is
1

2
W (

8

η∆2
) < log(

xSE
∆

)

This only holds if xSE > ∆e
1
2
W ( 8

η∆2 ) = xNE. Recall that if 0 < cT < c̃T ,

the NE is an interior NE, that is, χ(xNE) > 0. Therefore, as χ(xSE) =

0, it must hold that xNE < xSE, which proves the sufficiency condition.

As for the necessary condition, we have to show that, if cT > c̃T , no

improvement can be achieved by the target node. In fact, if cT > c̃T

it is straightforward to prove that the NE and the SE coincide, and

thus, the utilities of the target node at the SE and NE are equal.

3.3.3.2 Imperfect knowledge

We now investigate the implications of imperfect knowledge on the

weight parameter cT in (3.46). In Theorem 5 we proved that the

optimal strategy in the Stackelberg game is xSE such that χ(xSE) =

0. According to (3.54) the value of cT is needed to evaluate xSE.

However, it is reasonable to assume that in realistic scenarios the value

of cT is not available at the target node, while instead, only statistical

information on the distribution of cT is likely known. Let us denote as

fcT (ξ) the probability density function (pdf) of the random variable

representing the weight parameter cT . We also denote as g(ξ) the

function returning the strategy of the target node at the SE, xSE,

when the weight parameter for the jammer is cT = ξ.

The resulting utility function of the target node Uξ
T =

UT (g(ξ), bJ(g(ξ)) can be calculated as

Uξ
T =



















√

cTP log2

(

g(ξ)

∆

)

if ξ > cT (3.67a)

log2

(

g(ξ)

∆

)

/

(

TAJ +
g(ξ)

2

)

if ξ ≤ cT (3.67b)
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Let us refer to E{Uξ
T} as the expected value of the utility function

of the target node. Assuming that fcT (ξ) is a continuous function, it

follows that

E{Uξ
T} =

∫ +∞

−∞

UT (ξ|cT = α)fcT (α)dα =

=

∫ ξ

−∞

UT (ξ|cT = α)fcT (α)dα +

∫ +∞

ξ

UT (ξ|cT = α)fcT (α)dα

From (3.67a) and (3.67b) we have

E{Uξ
T} =

∫ ξ

−∞

√

αP log2(
g(ξ)

∆
)fcT (α)dα +

∫ +∞

ξ

log2(
g(ξ)
∆

)

(TAJ +
g(ξ)
2
)
fcT (α)dα =

=

√

P log2(
g(ξ)

∆
)

∫ ξ

−∞

√
αfcT (α)dα +

log2(
g(ξ)
∆

)

(TAJ +
g(ξ)
2
)

∫ +∞

ξ

fcT (α)dα

(3.68)

By exploiting the relationship in (3.54), (3.68) can be rewritten as

E{Uξ
T} = P

(

TAJ +
g(ξ)

2

)

√

ξ

[∫ ξ

−∞

√
αfcT (α)dα +

√

ξ

∫ +∞

ξ

fcT (α)dα

]

(3.69)

Note that the target node has first to find ξ∗ = argmaxξ E{Uξ
T},

and then, the optimal strategy is evaluated as xSE (ξ
∗) such that

χ (xSE(ξ
∗)) = 0.

In the following we analyze the especially relevant case when the

random variable ξ is uniformly distributed in a closed interval18, that

18Note that the uniform distribution represents the worst case, as it is the dis-
tribution that maximizes the uncertainty on the actual value of cT , given that a
minimum and a maximum values are given.
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is, the pdf of ξ is defined as

fcT (ξ) =







1
ξmax−ξmin

if ξ ∈ [ξmin, ξmax]

0 otherwise
(3.70)

By substituting (3.70) in (3.69), we obtain the following expression

E{Uξ
T} = P

(

TAJ +
g(ξ)
2

)

ξmax − ξmin

[

ξξmax −
1

3
ξ2 − 2

3
ξ

1
2 ξ

3
2
min

]

(3.71)

In order to maximize the expected utility we study the first derivative

of (3.71), which leads to:

W
(

−P log(2)∆2

2
ξ
)

1 +W
(

−P log(2)∆2

2
ξ
)

(

ξmax −
1

3
ξ − 2

3

ξ
3
2
min√
ξ

)

= 2ξmax −
4

3
ξ − 2

3

ξ
3
2
min√
ξ

(3.72)

The solution of (3.72), say ξopt, is the value of ξ that maximizes the

expected utility of the target node. Regrettably, ξopt can be evaluated

only numerically. Thus, in the aim of providing practical methods to

choose ξ, in the next section we will discuss some analytical results

that show how ξ = ξmax well approximates ξopt. In fact, if we assume

W
(

−P log(2)∆2

2
ξ
)

/
[

1 +W
(

−P log(2)∆2

2
ξ
)]

≈ 1, then, (3.72) can be

reformulated as

ξmax −
1

3
ξ = 2ξmax −

4

3
ξ

whose solution is ξ = ξmax. Furthermore, we will show that the above

approximation guarantees high efficiency at the SE even if the uncer-

tainty on the actual value of cT is high, as in the case of a uniform

distribution.
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Name Value Unit
TAJ 15 µs
∆ 1 µs
P = PJ 2 W
TP 50 µs

Table 3.2: Parameter settings used in our simulations.

3.3.4 Numerical Analysis

In this section we apply the theoretical framework developed in the

previous sections to numerically analyze the equilibrium properties for

both the ordinary and Stackelberg games. As introduced in Section

3.3.1, the settings of the relevant parameters are those in Table 3.2.

It is also assumed that both the target node and the jammer transmit

their respective signals by using the same transmitting power, i.e.,

P = PJ .

3.3.4.1 Nash Game

In Fig. 3.12 we show the best response functions of both the target

node and the jammer for different values of the weight parameter cT .

As already said, the NE is the intersection point between the best

response functions. As expected, the best response of the target node

does not depend on the value of cT , while this is not true for the best

response of the jammer. Note that for high cT values the jammer

reduces its jamming signal duration y, and the strategy of the target

node consists in reducing the maximum silence duration x.

Figs. 3.13 and 3.14 illustrate the strategy of the players at the NE

as a function of cT for different values of the transmitting power P .

Note that, as cT increases, the target node decreases the maximum

silence duration and the jammer reduces the jamming signal duration
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Figure 3.12: Best response functions for both the target node and
the jammer.

as well. In fact, upon increasing cT the jammer acts in an energy

preserving fashion and this causes a decrease in y. Such a behavior

allows the target node to behave more aggressively by reducing the

maximum silence duration x. Furthermore, upon increasing P , the

strategies x and y decrease as higher P values force the jammer to

reduce the jamming signal duration and, thus, the energy consump-

tion. Also, the target node can reduce x, thus increasing its achieved

capacity.

Figs. 3.15 and 3.16 illustrate how the BRD evolves at each iteration

for different values of the weight cT . Since we proved that the game

converges to the NE, Figs. 3.15 and 3.16 show how, as expected, the

players’ strategies converge to the strategy set S ′ in 2 iterations (as

discussed in Lemma 4) and to the NE in at most 7 iterations19. It

is also shown that an increase in the value of cT causes a decrease in

19Note that, although we proved that the convergence to the NE is guaranteed
only if cT < c̃T , in our simulations the game always converges to the NE in a few
iterations, independently of the value of cT .
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Figure 3.13: Strategy of the target node at the NE as a function of
the weight parameter cT for different values of the transmitting power
P , (Pmax = 2).

the strategies of both players due to the aggressive behavior of the

jammer.

3.3.4.2 Stackelberg Game

We now turn to the analysis of the Stackelberg game, where the target

node anticipates the jammer’s reaction. In this regard, Fig. 3.17

compares the utilities achieved by each player at the NE and SE.

Note that, as proven in Theorem 6, the utility achieved by the target

node at the SE is higher than, or at least equal to, the utility achieved

at the NE. Moreover, at the SE the utility is higher than at the NE for

the jammer as well. In fact, the target node increases the maximum

silence duration x, that is, it increases transmission delay, and inhibits

the jammer. Accordingly, the jammer stops its disrupting attack, and

thus, it saves energy; as a result, its utility increases when compared to
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weight parameter cT for different values of the transmitting power P ,
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Figure 3.16: Strategy of the jammer at each iteration.

that at the NE. We further observe that, as expected, for high values

of cT , the improvement in the achieved utility becomes negligible, as

already proven in Theorem 6.

Under the perfect knowledge assumption, at the SE the strategy

of the target node, xSE, coincides with the solution of χ(x) = 0, which

can also be approximated to x′SE as given in (3.66). Accordingly, in

Fig. 3.18(a) we compare the utilities of the target node at the SE, in

its exact and approximated strategies xSE and x′SE, respectively. Fig.

3.18(b) shows that the approximation accuracy of x′SE, defined as the

ratio between UT (x′SE, bJ(x′SE)) and UT (xSE, bJ(xSE)), strongly depends
on the value of cT . As shown in Fig. 3.18(c), the error introduced by

the approximation
(

TAJ +
xSE
2

)

≈ x′SE
2

is low when low values of cT

are considered, because, in this case, the strategy of T at the SE, xSE,

consists in choosing larger silence durations, and thus xSE
2
≫ TAJ . On

the contrary, when cT is high, there is no need for the target node

to choose high xSE values, thus the above approximation introduces

a non-negligible error on the estimate of x′SE. Note that, although
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Figure 3.17: Comparison between the utilities achieved by each
player at the NE and SE as a function of the weight parameter cT
(cT ∗ · P = 2 · 106).

the approximation is affected by errors, Fig. 3.18(b) shows that the

approximation accuracy is still high (i.e. larger than 82%).

To evaluate the impact of imperfect knowledge on the utility of

the target node, let us now define the equilibrium efficiency e(ξ) as

follows:

e(ξ) =
Uξ
T

UcT
T

(3.73)

Fig. 3.19 illustrates the equilibrium efficiency of the target node as a

function of cT for different choices of ξ. More in detail, we considered

ξ ∈ {ξopt, ξmean, ξmax, ξmin }, where ξmean = (ξmax + ξmin)/2, ξmin =

105 and ξmax = 109. Note that in our simulations ξmin = 105 and

ξmax = 109 are realistic setting assumptions. In fact, lower values of

ξmin or higher values of ξmax lead to unbalanced settings as one of the

terms in (3.46) will always dominate the other. The most important

result is that the equilibrium efficiency when ξ ∈ {ξopt, ξmean, ξmax}
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Figure 3.18: Impact of the approximation x′SE in (3.66) on the
Stackelberg game outcome as a function of the weight parameter cT
(cT · P = 2 · 106).

is always higher than 75%, while the case ξ = ξmin achieves a very

low equilibrium efficiency (and thus, it is not reported in Fig. 3.19).

As demonstrated in Section 3.3.3.2, Fig. 3.19 shows that ξmax well

approximates ξopt, i.e., e(ξopt) ≃ e(ξmax). Therefore, from a practical

point of view, if the computation of ξopt is not feasible (e.g., high

computational cost and low hardware capabilities) it is still possible

to achieve a high equilibrium efficiency by choosing ξ = ξmax.

Finally, in Fig. 3.20 we compare the utility functions of the target

node and the jammer obtained at the NE and SE with what is obtained

in the cases the two players select their strategies without considering

the strategies of each other. More specifically we will consider the two

following cases:

• Case A: The target node selects its strategy x in such a way that

its capacity is maximized without considering that the jammer

will try to disrupt the communication in the timing channel as

well. In other terms, the target node will assume that y ≈ 0.

• Case B: The jammer selects its strategy y assuming that the

target node is not aware that it (the jammer itself) is trying

to disrupt the communication in the timing channel. In other

terms, the jammer will assume that x ≈ bT (0).
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Figure 3.19: Equilibrium efficiency e(ξ) as a function of the weight
parameter cT (cT · P = 2 · 106).

When compared to the NE and SE cases the utility function of

the target node will decrease in Case A and increase in Case B. The

viceversa holds for the utility function of the jammer. We observe

that the gap between the utility functions obtained in Cases A and

B compared to the NE and SE decrease when the cost cT increases.

This is because when the cost cT increases the jammer becomes more

concerned about the energy consumption and therefore the value yNE

becomes smaller. Accordingly, the assumptions considered in Cases

A and B become accurate and consequently the behavior approaches

what is obtained when each player takes the strategy of the opponent

into account.
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CHAPTER

FOUR

NETWORK AND SERVICE MANAGEMENT

FOR THE MULTI-TENANT BACKHAUL

To provide efficient network and service management in the backhaul,

opportunistic and dynamic resource allocation is desirable. Recently,

software-defined networking and virtualization of network functions

have attracted interests from both the academia and the industry as

they provide flexible and dynamic resource management. Also, by

exploiting SDNs and NFV it is possible to support the multitenancy

concept.

Multitenancy allows several tenants to share the backhaul. On the

one hand, it makes possible to share network resources and, if proper

network management and control is performed, to avoid resources

wastage. On the other hand, it also leads to competition among

tenants. In fact, tenants are often competitors and aim at maximiz-

ing their revenues. Therefore, the competitive and non-cooperative

nature of multi-tenant networks calls for privacy-preserving resource

allocation schemes. To this scope, allocation of resources has to be

performed by avoiding (or limiting) interactions and exchange of mes-

sages among tenants.

91
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Accordingly, to address the above issues we exploit analytical tools

from game theory which naturally provides mechanisms to model in-

teractions such those we consider in this section. Specifically, in Sec-

tion 4.1 we propose an auction-based game-theoretic resource alloca-

tion scheme that relies on a SDN approach for dynamic and flexible

management of network resources in a backhaul shared among multi-

ple tenants. Instead, in Section 4.2 we exploit tools from hierarchical

and evolutionary game theories to provide service and network func-

tion management in the CN through NFV.

4.1 Network Management in the Multi-

tenant Backhaul

In SDNs, control and data planes are decoupled. Network control

and management are centralized and implemented in software, while

the data/forwarding plane consists of an underlying physical network

composed by several SDN-compliant switches and links. Although

there are several ways to implement SDNs, in this thesis we consider

OpenFlow [98] as it is the most popular implementation of SDNs. As

we show later, OpenFlow specifications already provide procedures to

support dynamic resource allocation in multi-tenant backhauls.

In a SDN, multiple tenants can coexist; thus, to properly manage

their interactions, OpenFlow provides a FlowVisor [111], which is a

high-level controller that is designed to act as a proxy between the

physical network and multiple tenants. By exploiting FlowVisor pro-

tocols, OpenFlow fully supports the multitenancy principle. In fact,

FlowVisor and OpenFlow together allow the backhaul owner to divide

the backhaul resources into slices and give full control of each slice to

one tenant that, to this purpose, runs a software program referred
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to as Controller 1. OpenFlow and FlowVisor ensure isolation between

slices and therefore, each Controller can use its share of the network

resources as if it was the sole controller doing it.

In this thesis, we consider OpenFlow and we address the case where

the FlowVisor reserves a portion of the network resources and divides

it among the Controllers that compete with each other to obtain such

resources. Our problem formulation is general and can be applied

to several resource allocation problems in SDN scenarios. However,

for illustration purposes we focus on two relevant resource allocation

problems where each Controller competes to obtain either additional

space in OpenFlow routing tables, i.e., Flow Tables, to store its rout-

ing policies, or bandwidth on a certain backhaul link to improve its

achievable throughput.

4.1.1 System Model and Problem formulation

The backhaul consists of a physical network of switches operating un-

der an OpenFlow framework that enables software-defined networking.

The behavior of OpenFlow switches is completely determined by the

content of a Flow Table (or several) [98]. Each entry of such tables

specifies a flow and how packets of such flow must be treated. More

specifically, each entry contains three sections [98]:

• Rules: it is used to identify packets belonging to the flow. In

fact, it specifies the values in the header of the packets which

determine the belonging to the considered flow.

• Actions: it specifies how packets belonging to the flow should

be treated, e.g., where a packet should be forwarded, whether it

1In the following of this thesis,the terms tenant and Controller are used in-
terchangeably. Also, we will refer to the backhaul operator that possesses the
backhaul as the FlowVisor.
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should be dropped, whether and how they should be modified,

etc.

• Stats: it contains statistical information which can be used by

the elements in the control plane to tune their policies.

The FlowVisor manages a set of OpenFlow-compliant network

slices (logical sub-networks composed of switches and links that are

isolated from one another even if they share the same underlying phys-

ical resources of the backhaul), each of which is assigned to a single

Controller who is able to fully control decisions based on its own re-

quirements and forwarding policies. The Controllers enforce their poli-

cies by inserting appropriate entries in the Flow Table. Instead, the

FlowVisor is able to control both the backhaul topology and the net-

work status by monitoring parameters such as delay, network load and

link utilization.

In this context, we consider an auction-based resource manage-

ment scheme for SDNs where a portion of the available resources in

the backhaul is leased to interested tenants NC = {1, . . . , NC}. Let

R̂ denote the total amount of the shared resource. Without losing in

generality, we assume that R̂ is finite. i.e, R̂ < +∞. However, note

that we do not make any assumption on the type of the shared re-

source. In fact, in our context backhaul resources could be identified

with bandwidth (like in traditional networks) as well as Flow Table

entries. It follows that our model is able to capture a wide variety of

scenarios. Furthermore, let R ≡ ξR̂ denote the fraction of the total

resource that the FlowVisor decides to lease via the auction mecha-

nism to the Controllers that want to improve the capability of their

slices.

In the auction, the FlowVisor acts as the auctioneer and the par-

ticipating Controllers act as independent bidders that do not com-
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municate with each other2. Each bidder i ∈ NC submits a bid

bi ∈ Bi ≡ [0, Bi] where Bi denotes the maximum admissible bid of

the i-th Controller. Note that since Bi is a function of i, our model

can also capture the case in which Controllers are heterogeneous w.r.t.

their economic resources. When the auction is over, the FlowVisor col-

lects all bids and assigns to each bidder i ∈ NC a fraction ̺i of the

available resource proportional to the corresponding bid, i.e.

̺i(b) = R
bi

∑

j∈NC
bj

(4.1)

In (4.1), ̺i is the portion of the available resource that is assigned to

Controller i as a function of the bid bi. The allocation of said por-

tion of available resource is temporary and resource leasing expires as

soon as the auction is repeated [117] – typically in time intervals of

fixed or variable width according to traffic dynamics of the considered

application scenario. To the best of our knowledge, even though this

proportional allocation auction scheme has been exploited in other rel-

evant application scenarios [148], its use in this context is novel. For

continuous good allocation problems of this type, we could alterna-

tively consider an optimal auction in the sense of Myerson [149] or a

continuous second-price sealed-bid auction (Vickrey auction) for mul-

tiple continuous goods [150, 151]. The advantage of using (4.1) is that

it is much simpler to implement, so it can be deployed in the context

of SDNs with minimal computational overhead.

It is evident that each Controller may have a different interest

on a particular resource depending on several factors, such as the

amount of traffic that flows through a link or a switch, the resource

already assigned to the Controller, the number of network users, etc.

To account for this, let θi ∈ [0, 1] denote the interest factor of bidder i

2For simplicity, in what follows, we will use the terms “bidder”, “Controller”
and “player” interchangeably.
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representing the benefit that it expects to receive for a unit of resource

(specifically, θi = 0 implies that the i-th bidder has no interest in

the auction)3. On the other hand, from a benefit perspective, we

assume that the user’s benefit from a resource can be modeled as

an increasing concave function ωi(b) : Bi → R in the submitted bid,

i.e., Controllers experience diminishing returns when increasing the

amount of the submitted bid.

Furthermore, when submitting a bid, each Controller faces an in-

curred cost (e.g., a monetary cost) which can vary from one Controller

to another. The effective cost to each Controller might be different

than the actual monetary value of the Controller’s bid. The reasons

for this are diverse: for instance, each bid could be subject to a value

added tax (VAT) or other form of taxation which would increase the

actual cost to the user. When the auction ends, additional resources

are allocated to participating Controllers. Such resources need to be

properly managed and, in general, lead to an additional cost in the

network management process. Therefore, Controllers can be charged

for this additional management cost. Furthermore, the same mone-

tary amount may have a vastly different impact to Controllers with

different budgets, and this impact does not have to be linear in the

monetary value of each Controller’s bid. For example, when Con-

trollers have a finite budget, doubling a large bid is much costlier (in

relative terms) than doubling a small bid [152]. Thus, in tune with

standard economic assumptions [152], we posit in what follows that

the effective cost to the i-th Controller is given by an increasing con-

vex cost function Γi : Bi → R, called the cost function of Controller

i.

In view of this cost-benefit analysis, the utility of bidder i can be

3In principle, θi changes over time, however, we assume that auctions take
place often enough so that the evolution of θi can be neglected. This assumption
is justified by the rapid convergence to the equilibrium as discussed in the following
Section 4.1.3.
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expressed as the difference between the bidder’s expected benefit and

the cost to achieve it. More specifically:

Ui(b) = ωi(b)− Γi(bi), (4.2)

where ωi(b) is the benefit function for Controller i (which also incor-

porates the dependency on ̺i), and b = (b1, . . . , bNC
) ∈ B ≡ ∏i Bi

denotes the bid profile of the Controllers participating in the auction.

In reality, different scenarios have different features and issues.

Therefore, no unique model to represent users’ benefits and costs in

SDNs exists. On the contrary, the definitions of ωi(b) and Γi(bi) in

(4.2) depend on the considered application scenario. For this reason,

in Section 4.1.1.1 we consider two relevant SDNs scenarios and we

propose different benefit function models that are representative of a

wide variety of SDNs scenarios. Finally, in Section 4.1.1.2 we propose

several cost function models that reflect realistic costs experienced in

SDN scenarios.

4.1.1.1 Benefit Function Models

Flow Table Auction This is the case where the auctioneer, i.e.,

the FlowVisor, decides to sell a fraction (or all) the available space of

a given flow table stored inside a specific switch. We assume that each

switch stores a single flow table, and each flow table is stored inside a

cache memory. Accordingly, the same flow table is shared among all

Controllers that have access to the same switch. To process a flow,

the corresponding flow entry has to be defined in the flow table. We

assume that each flow entry requires the same amount of space in

the flow table. Let f denote this amount of space. Upon receiving

each packet, the receiving switch first tries to find a matching rule, or

matching entry, for the flow to which the packet belongs to. Then, if a

matching rule exists, the corresponding action is performed. Instead,
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if no matching entries are found, the switch asks the corresponding

Controller for a rule for that flow through a PacketIn message. Then,

a FlowMod message which contains the rule and the corresponding

action to be executed for all packets belonging to the same flow is

sent by the Controller to the requesting switch. Finally, if the flow

table has some available storage space, the requesting switch stores

the new flow entry in its flow table.

It is important to focus on the impact of the above operations on

backhaul performance. Clearly, if a matching rule is found, the search

operation introduces a small delay, say TH . On the contrary, when

no matches exist, the transmission of both PacketIn and FlowMod

messages causes a requesting delay TR that depends on the distance

between the requesting switch and the corresponding Controller. For

example, the requesting delay TR can grow up to approximately 100ms

in many cases [153].

In realistic scenarios, we have that TR >> TH . Also, note that

cache memories, i.e., the storage space available for each flow table,

are finite. Accordingly, the number of flow entries that can be stored

in flow tables is limited. Thus, all Controllers compete with each other

to get as much space as possible to store their own entries and reduce

the expected forwarding delay:

Ti = THP
H
i + (1− PH

i )TR (4.3)

where PH
i is the hit probability of the i-th Controller, i.e., the proba-

bility that a rule for the considered flow already exists in the table. It

can be easily shown that minimizing the expected delay amounts to

maximizing the hit probability PH
i . Also, one can show that the hit

probability depends on the amount ̺i of available resources to store

the additional rules in the flow table that the Controller obtains at

the end of the auction.
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Accordingly, in the flow table auction scenario the benefit function

ωi(b) of the i-th Controller is given by:

ωi(b) = θiP
H
i (b) (4.4)

However, the hit probability for a given flow depends on the proba-

bility distribution of that flow. Therefore, we consider two relevant

scenarios depending on the flows’ distribution:

• Uniform distribution: in this case, Controller’s flows are uni-

formly distributed. Accordingly, the benefit function can be

written as

ωi(b) = θi
Li + ̺i/f

Ni

(4.5)

where Li is the number of rules already stored by Controller i in

the flow table, Ni is the number of flows of Controller i and ̺i is

defined in (4.1) and represents the space in the flow table, i.e.,

the cache size, obtained at the end of the auction by Controller

i. Accordingly, ̺i/f represents the number of additional flow

entries (and thus, rules) that can be stored in the flow table by

the i-th Controller normalized by the cache size. Clearly, this

is the worst case scenario where all flows are expected to arrive

with the same probability and the uncertainty in predicting flow

arrivals is maximized.

• Zipf distribution: in this case, we assume that flows are dis-

tributed according to a Zipf’s law [154]. Consequently, there

are some popular flows that are expected to arrive with higher

probability than unpopular flows. Under the finite cache and

infinite request stream assumptions, it has been shown in [155]

that the hit probability is asymptotically ≈ O(R1−α
cache), where

α ∈ [0, 1] is the Zipf distribution parameter and Rcache is the

available storage space in the cache. Accordingly, we have
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PH
i (b) ≈ O(Li+ ̺i/f)

1−α. Finally, by exploiting the Bernoulli’s

inequality for binomial series, the benefit function ωi(b) can be

approximated and linearized as follows:

ωi(b) = θiL
−α
i (Li + (1− α)̺i/f) (4.6)

Bandwidth Auction The FlowVisor is able to continuously moni-

tor bandwidth and link utilization on each physical link in the back-

haul. Therefore, to avoid inefficient resource allocation and to improve

link utilization, it is possible to sell the available unused bandwidth

on the backhaul link in question.

In this scenario, each Controller seeks to maximize the amount of

bandwidth achieved on the considered link at the end of the auction.

Accordingly, and in line with traditional auction-based bandwidth al-

location schemes, we define the following benefit function:

ωi(b) = θi̺i (4.7)

In view of the above examples, we will mostly focus on the case

where the Controllers’ benefit functions are linear in the fraction of

the obtained resource, i.e., ωi = ai + ci̺i for some suitable constants

ai and ci.

4.1.1.2 Cost Function Models

When the auction mechanism is over, additional backhaul resources

are allocated to SDN Controllers. To manage such resources, addi-

tional network management procedures have to be performed by the

backhaul operator, leading to extra costs in the network management

process. For example, at the end of the flow table auction new flow

entries are created and inserted in the flow table. For each incoming

flow the switch accesses the flow table and searches for a matching
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entry. Such a search procedure introduces a cost which is expected to

increase as the number of stored entries increases as well [156]. Intu-

itively, highly populated flow tables lead to larger search times. On

the contrary, when the number of stored flow entries is small, the time

needed to access them is small. For example, the time complexity of

most search algorithms is well known to be either O(F ) or O(logF ),
where F is the number of entries in the flow table. Thus, since the

auction increases the number of entries stored in the flow table, it also

increases the cost to search and access such entries.

Similarly, the bandwidth auction also causes an increase in the

amount of available bandwidth on each considered link. Thus, Con-

trollers are likely to increase the transmission rate and the amount

of data flowing through the backhaul. As a consequence, the utiliza-

tion factor of the network is expected to increase as well. Thus, to

guarantee the correct operation of the network and manage this ad-

ditional data traffic, additional resource management and control is

required (e.g., congestion control, traffic balancing and other similar

procedures).

Accordingly, we consider two different models for the cost function

Γi(bi) in (4.2): linear cost (LC), and non-linear cost (NLC). More in

detail:

• in the LC scheme we define Γi(bi) = λbi/Bi;

• in the NLC scheme we consider an exponential-based cost

scheme [13], i.e., Γi(bi) = λ(ebi/Bi − 1).

where λ ≥ 0 is a non-negative cost imposed by the auctioneer to any

bidder that buys some resources.

With all this in mind, we can define the following non-cooperative

auction game G = G(NC,B,U):

• The set of players (or bidders) is NC = {1, . . . , NC}.
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• The action space of each bidder i ∈ NC is Bi.

• The players’ utility functions Ui : B ≡
∏

i Bi → R, given as in

(4.2).

Accordingly, we will say that a bid profile b ∈ B is a NE of G when

no bidder has an incentive to change its bid unilaterally. In a more

formal way, this can be stated as:

Definition 3. A bid profile b∗ = (b∗1, . . . , b
∗
NC

) ∈ B is called a Nash

equilibrium (NE) of the auction game G if

Ui(b∗i , b∗−i) ≥ Ui(bi, b∗−i) (4.8)

for every bid bi ∈ Bi of player i and for all i ∈ NC.

The Nash equilibria of G represent stable resource management

policies where each Controller is satisfied with respect to its individual

cost-benefit characteristics and with the existing resource allocation

scheme.

As such, the analysis in the following sections will focus on the NE

of G and we will show that the system admits a unique stable state

which can be reached by the players in a distributed fashion, i.e., with-

out requiring any coordination among Controllers or the transmission

of private information (for example related to each Controller’s bids).

4.1.2 Nash Equilibrium Analysis

In this section, we examine the existence and uniqueness of the Nash

equilibrium and propose an exponential learning mechanism through

which the bidders can converge to the equilibrium.
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4.1.2.1 Existence and Uniqueness of the Nash Equilibrium

Theorem 7 (NE existence and uniqueness). The game G always ad-

mits a NE. In addition, if ωi(b) is linear in the amount of the obtained

resource ̺i(b), the NE of G is unique.

Proof. Note first that each player’s payoff function Ui is concave in

bi being it defined as the difference between a concave and a convex

function; thus, existence of NE follows from the general theory of [146].

To prove the uniqueness of the NE, we define the linear benefit function

ωi(b) = ai+ci̺i(b), where ai and ci are two non-negative real numbers,

and ̺i(b) is defined in (4.1) and represents the resource obtained by

Controller i at the end of the auction. Likewise, we prove uniqueness

by establishing the Diagonal Strict Concavity (DSC) condition [146],

i.e.
∑

i∈NC

rivi(b) · [bi − b∗i ] < 0 for all b ∈ B, (4.9)

for some r1, . . . , rNC
> 0 and for all Nash equilibria b∗ of G, where

vi(b) is the so called players’ marginal utility that we introduce in

(4.10). For that, by using the analysis in [157], it suffices to show that

a) each utility function Ui is strictly concave in bi and convex in b−i;

and b) the function σ(b, r) =
∑

i∈NC
riUi(b) is concave in b for some

r = (r1, . . . , rNC
) ∈ RNC with ri > 0.

For the first condition, strict concavity is ensured by the fact that

Ui(bi, b−i) is a sum of a strictly concave and a concave function (in bi);

convexity in b−i is also straightforward. For the second condition, if

ri = c−1
i , then we can rewrite σ(b, r) = 1+

∑

i∈NC
riai−

∑

i∈NC
riΓi(bi);

given that the cost functions Γi are convex, σ(b, r) is concave in b.

Therefore, the claim of the theorem follows from [157].

Remark 3. From Theorem 7, we have that the game G with benefit

and cost functions being defined as in Sections 4.1.1.1 and 4.1.1.2

admits a unique NE.
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4.1.2.2 Convergence to the Nash Equilibrium

Theorem 7 shows that the auction initiated by the FlowVisor admits

a single stable state where each Controller is unilaterally satisfied with

respect to its individual assigned resource and cost-benefit character-

istics. However, we still have to prove whether this stable policy can

be reached in a distributed fashion. To that end, we propose below a

simple learning scheme that allows the bidders to converge to game’s

unique NE.

The key quantity in what follows will be the players’ marginal

utility functions

vi(b) =
∂Ui
∂bi

, (4.10)

i.e., the marginal increase (or decrease) in the utility of player i with

respect to its own bid bi ∈ Bi. In particular, an easy differentiation

yields:

vi(b) = θiR

∑

j bj − bi
[

∑

j bj

]2 − Γ′
i(bi) = θi

̺i(R− ̺i)
biR

− Γ′
i(bi), (4.11)

where ̺i is the amount of resource obtained by player i in the auction

as defined in (4.1). Accordingly, the marginal utility of player i can

be calculated with local information only (knowledge of the amount of

resource obtained and the player’s own cost function Γi), so any learn-

ing scheme that relies only on vi will also cope with auction privacy

requirements.

According to this, in order to increase their utilities, players simply

need to pursue the direction of marginal utility increase while main-

taining their bids bi at an admissible level – i.e. between 0 and Bi. To
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this end, we propose the following exponential learning scheme:







zi(m+ 1) = zi(m) + γmvi(b(m)),

bi(m+ 1) = Bi

1+exp(−zi(m+1))
,

(4.12)

where m is the iteration index and γm is a decreasing step-size se-

quence. Importantly, this learning scheme is reinforcing because the

update step of (4.12) increases with vi; it is also fully distributed and

privacy-preserving because the marginal utilities vi can be obtained di-

rectly from (4.11) without any exchange of private information among

bidders.

The main result concerning the learning scheme (4.12) is that it

converges to the unique Nash equilibrium of the auction game G. More

formally, we have:

Theorem 8. If the user’s benefit ωi(b) is an affine function of the

obtained resource ̺i(b) and the algorithm’s step-size sequence γm sat-

isfies
∑

m γm = +∞ and
∑

m γ
2
m < +∞, then the learning scheme

(4.12) converges to the unique equilibrium of the auction game G.

Proof. The main steps of the proof consist in i) deriving the mean dy-

namics of (4.12) in continuous-time, ii) establishing their convergence

to equilibrium using the DSC condition given in (4.9), iii) obtaining

the corresponding discrete-time results using the theory of stochastic

approximation [158]. For simplicity, we take Bi = 1; the general case

follows by rescaling.

Note first that the continuous-time equivalent of (4.12) is

żi = vi, bi = [1 + exp(−zi)]−1 , (4.13)

or, after decoupling bi and zi:

ḃi = bi(1− bi)vi. (4.14)
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Hence, let ri = 1/(θiR), as in the proof of Theorem 7, and set

V (b) =
∑

i
ri

[

b∗i log
b∗i
bi

+ (1− b∗i ) log
1− b∗i
1− bi

]

, (4.15)

where b∗ is the unique NE of G. Some algebra then yields

V̇ =
∑

i
rivi(b) · [bi − b∗i ] , (4.16)

so, from (4.9) we have V̇ ≤ 0 with equality iff b = b∗. This shows that

V is a strict Lyapunov function for (4.13), i.e., b(t)→ b∗.

For the discrete-time analysis, let Vm = V (b(m)) where b(m) is the

m-th iterate of Algorithm 2. Then, writing V in terms of z as

V =
∑

i
ri [log(1 + ezi)− zib∗i ] , (4.17)

a first-order Taylor expansion yields:

Vn+1 ≤ Vm + γm
∑

i
rivi(b(m)) · [bi(m)− b∗i ] +O(γ2m), (4.18)

where the O(γ2m) remainder is uniformly bounded by 1
2
Mγ2m for some

M > 0 (simply note that the marginal utilities vi are bounded on B).
Now, if the iterates b(m) stay a bounded distance away from b∗, (4.9)

shows that we have Vm+1 ≤ Vm−γmc+O(γ2m) for some c > 0. Letting

m → ∞ and telescoping, we obtain the contradiction Vm → −∞
(note that V ≥ 0 by construction and

∑

m γ
2
m <

∑

m γm = +∞ by

assumption), so b(m) must come arbitrarily close to b∗ infinitely often.

Since b(m) is a stochastic approximation of the mean dynamics (4.13)

in the sense of [158], convergence to the unique equilibrium follows

from Theorem 6.9 in [158].
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4.1.3 Numerical Analysis

In this section, we provide some relevant numerical results that illus-

trate the dynamics of our auction-based resource management scheme

under different scenarios and cost functions. We consider NC = 30

Controllers whose interest factors are randomly generated in the inter-

val [0, 1]. Also, unless explicitly stated otherwise, we set the maximum

admissible bid of each Controller to Bi = B = 1 for all i ∈ NC. The

results have been obtained by executing a number of simulations such

that all statistical results are stated at a 95% confidence level [159].

Confidence intervals are not shown for the sake of illustration.

4.1.3.1 Flow Table Auction

At the beginning of the auction, we assume that each Controller is

provided with Li = 200 flow table entries (and thus, rules) that can

be stored. Also, the Zipf distribution parameter is set to the realistic

value of α = 0.7 [155] and we assume that each flow entry occupies a

unitary cache size, i.e., f = 1.

In Fig. 4.1 we show the per-user average hit probability as a func-

tion of the amount R of resources, i.e., the cache size, sold by the

auctioneer when different flow distributions and cost function models

are considered. Since we have assumed f = 1, R is expressed in num-

ber of flow entries. When the amount of the available cache size R

is high, Controllers are likely to obtain a large number of flow table

entries at the end of the auction, which results in high values of the hit

probability. Therefore, upon increasing the cache size, Fig. 4.1 shows

that the hit probability increases as well. Also, if the cost parameter

λ is high (λ = 5), Controllers that are not interested in the resource

experience high costs and low benefits. Thus, only Controllers that

are interested in the resource submit their individual bids. Accord-

ingly, interested Controllers improve their hit probability, while non
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interested Controllers do not obtain any additional flow entries and

their hit probability is the same as the one they had at the beginning

of the auction. Therefore, the system’s average hit probability is low.

On the contrary, when λ is low (λ = 1) or equal to zero, even

non interested Controllers are likely to submit their bids, which al-

lows them to share the available resources among all participating

Controllers. All Controllers obtain additional space to store their flow

entries. Thus, the average hit probability in the two latter cases, is

higher than the one achieved in the case λ = 5. Furthermore, Fig. 4.1

also shows that the average hit probability in the LC case is higher

than (or equal to) that achieved in the NLC case. Finally, a higher av-

erage hit probability is achieved when flows are Zipf distributed. Zipf

distribution allows to prioritize flows that are expected to arrive with

a higher probability. Accordingly, popular flows are likely to have a

matching rule in the flow tables. On the contrary, the arrival rate of

uniformly distributed flows is hard to be predicted and the only way

to achieve high hit probability consists in increasing the cache size put

up for auction.

Fig. 4.2 shows the average hit probability as a function of the ratio

Li/Ni when different cost function models are considered and λ = 1.

First we note that the hit probability at the end of the auction is always

higher than that obtained when no auction mechanisms are considered

and the resource is statically allocated to Controllers. It follows that

by putting up for auction unallocated cache resources, it is possible

to improve SDNs performance. Recall that Li is the number of flow

table entries that are already assigned at the beginning of the auction,

and Ni is the number of flows for each Controller. Accordingly, by

increasing the ratio Li/Ni, the hit probability increases as well. As

already shown in Fig. 4.1, higher average hit probabilities are achieved

when flows are distributed according to a Zipf law.
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Figure 4.1: Average hit probability as a function of the cache size
R for different cost function models (Solid lines: λ = 1; Dashed lines:
λ = 5).

Table 4.1: Simulation parameter settings.

Bidder Bi θi
C1 0.5013 0.4923

C3 0.9976 0.9727

C6 0.8944 0.7391

C8 0.39 0.0319

C13 0.3433 0.7111

C23 0.5523 0.2815

C24 0.9791 0.7311

4.1.3.2 Bandwidth Auction

Fig. 4.3 illustrates the impact of the cost function on the Controllers’

bidding strategies. Specifically, we show how the average normalized

bid strategy at the NE defined as 1/NC ·
∑

i∈NC
b∗i /Bi varies as a func-

tion of the cost parameter λ under different cost function models. As

expected, when λ = 0 each Controller submits a bid whose value is
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Figure 4.2: Average hit probability as a function of the ratio Li/Ni

for different cost function models and λ = 1.

equal to its own maximum admissible bid, i.e., bi = Bi for all i ∈ NC.

On the other hand, when LC and NLC cost models are considered,

an increase in the value of λ causes an increase in the costs experi-

enced by each Controller. Accordingly, bids submitted by Controllers

decrease as λ increases. Also, if the amount R of resources that are

leased out is small (solid lines), submitted bids are smaller than those

submitted when larger values of R are considered (dashed lines). This

latter result is caused by the fact that when R is small, only inter-

ested Controllers submit high bids. On the contrary, a larger amount

of available resources R leads non interested Controllers to submit

non-zero bids to obtain a small fraction of the considered resource.

To illustrate the bidders’ behavior and dynamics, in Fig. 4.4 we

show the Controllers’ bidding strategies for different cost function

models. For simplicity, we only show the behavior of a subset of the

participating Controllers. More specifically we consider Controllers Ci

with i ∈ {1, 3, 6, 8, 13, 23, 24} and we assume λ = 0.2. For illustration
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Figure 4.3: Average normalized bid as a function of the cost param-
eter λ for different cost function models (Solid lines: R = 10; Dashed
lines: R = 100).

purposes, we assume that the maximum admissible bid Bi and the

interest factor θi are randomly generated in the interval [0, 1]. The

considered simulation setup is reported in Table 4.1. Fig. 4.4 shows

that when no cost is charged to bidders (i.e., λ = 0 case), all bidders

submit non-zero bids. On the contrary, no bids are submitted by C8

and C23 in the LC and NLC cases. In fact, such controllers are not

interested in buying additional space in the flow table, i.e., θ8 and θ23

are small. Controllers such as C3, C6 and C24 are interested in partic-

ipating in the auction and have high budgets. Therefore, they submit

bi = Bi independently of the actual cost model. On the contrary, even

though C1 and C13 are interested in buying additional bandwidth,

their budget is low. Accordingly, their submitted bids decrease when

they experience costs as in the LC and NLC cases.
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Figure 4.4: Bid strategies and normalized allocated bandwidth for
different cost schemes.

4.1.3.3 Convergence Evaluation

As stated in Theorem 8, the convergence to the unique NE of Algo-

rithm 2 is guaranteed in the case a variable step-size (e.g., γm = 1/mβ

with β ∈ (0.5, 1]) is used. However, in the following we show that the

learning process still converges to the NE even if a fixed step-size γm is

used. For illustrative purposes, in the following we only consider the

bandwidth auction case, but the same results hold for the flow table

auction case as well.

Figure 4.5 illustrates how fast the game converges to the unique NE

by means of the proposed distributed learning procedure. Specifically,

the figure shows the Euclidian distance between the actual bidding

profile at each iteration and the NE in case of LC and NLC schemes.

As expected, the convergence rate is slow when a variable step-size

is considered. Also, by increasing the value of the parameter β, it

is possible to improve the convergence rate of the proposed learning

procedure under a varible step-size scheme. Otherwise, if a fixed step-
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Figure 4.5: Distance to the NE for different step-size schemes.

size is considered, the convergence rate increases. More specifically,

the higher the step-size, the faster the convergence rate is.

4.2 Services Management in the Core

Network

In this section, we propose a distributed service management for the

CN. Specifically, we aim to provide a framework for service provision-

ing by exploiting virtualization and softwarization of network func-

tions. Accordingly, we exploit a NFV approach where we aim to dis-

tribute orchestration and resource allocation tasks, while limiting the

work of the Orchestrator to coordinate and facilitate them.

More specifically, third-parties in the CN and/or in the cloud, in

the following referred to as VNF Servers, can host and execute VNFs

to process network flows, so participating in the VNF Market as sell-

ers. VNFs are requested by both tenants and their users. In the

following of this section, we refer to the entities which request VNFs
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as the VNF Customers4. VNF Servers decide the price to be applied

to the customers, and the bandwidth to request to the network op-

erator to provide the service. VNF Customers, on the other hand,

according to the price specified by each server, and the correspond-

ing expected performance in terms of both experienced latency and

received bandwidth, choose one server for each VNF. In this way the

task of associating each flow to a VNF Server is not decided by the

Orchestrator, but autonomously and in a distributed way, as a con-

sequence of the interaction between customers and VNF Servers. In

this thesis, we assume that VNF Servers are located in the CN. How-

ever, our formulation also holds for the more general case where VNF

Servers are in both the CN and the cloud.

To model interactions between VNF Servers and VNF Customers,

we exploit analytical tools derived from the game theory. Specifically,

we define a two-stage Stackelberg game where VNF Servers act as

the leaders of the game, and VNF Customers as the followers. VNF

Servers have conflicting interests among themselves, as their objective

is to individually and selfishly maximize a utility function. Also, as

commonly assumed in multi-player markets, VNF Servers are expected

not to cooperate with each other, and do not exchange any informa-

tion with other competitors. Therefore, their interactions are modeled

by non-cooperative game theory. Instead, customers are influenced

by social behavior, i.e., they observe other customers’ decisions and

replicate those decisions if this is expected to improve their benefit.

Therefore, interactions among VNF Customers are modeled by using

the replicator dynamics from Evolutionary Game Theory (EGT).

In the following of this section, we propose a game-theoretic frame-

work that models interactions between VNF Servers and VNF Cus-

tomers is introduced. The existence and uniqueness of the SE of the

4In the following the terms VNF Customers and customers are used inter-
changeably.
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VNF Servers are NFV-compliant nodes [160, 161] in the CN that

are able to run VNFs, to obtain economic benefits. The price that is

applied for each VNF is autonomously decided by each VNF Server.

Unlike the NFV paradigm where VNFs run on servers owned by the

Orchestrator or in public data centers, here we consider the case where

private third-parties in the CN are allowed to run VNFs. A VNF

Server can be either a stand-alone computer (e.g., a volume server),

whose resources are partially or totally dedicated to run VNFs, or an

enhanced CPE (eCPE) node. As described in [162], these are CPE

nodes that are able to run VNFs in a virtualized environment. Besides

the hardware facilities, VNF Servers need an amount of bandwidth

that is provided them by the TO.

A very important role in the system is played by the Orchestrator,

which is in charge of management of the whole system. It runs on a

dedicated server and communicates with all the NFV nodes through

the CN. The main tasks performed by the Orchestrator are:

• Exposing the list of the supported VNFs;

• Running, migrating and halting VNF instances on the VNF

Servers;

• Assigning a slice of bandwidth to the VNF Servers according to

their bandwidth requests;

• Providing each customer with the list of those VNF Servers that

are running a given VNF, including information regarding the

price applied by each VNF Server and the relevant performance

parameters, in terms of experienced latency and received band-

width.

• Setting the flow table of the SDN switches in such a way that

VNF Customers flows traverse the chosen VNF Servers.
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As regards the latency, it is evident that each VNF Server is charac-

terized by almost the same performance latency parameter for all the

customers that enter the CN through the same PE node, or through

PE nodes that are very close to each other. So, in the following we

will use the term Customer Group to indicate the set of VNF Cus-

tomers that are characterized by the same latency from the same VNF

Servers. Concerning the bandwidth provided by a VNF Server to each

customer flow, it depends on both the amount of bandwidth the VNF

Server requests to the network and the number of customers flows

using its VNFs.

Specifically, the system works as follows:

• For each VNF, the relevant VNF Server autonomously decides

the price to be applied to the customers of each Customer Group.

The amount of bandwidth needed to provide a given VNF to

the whole set of customers being served is decided by playing

a game with all the other VNF Servers that are available to

run that function, by taking into account that it will be shared

among the flows of all the VNF Customer connected to that

VNF Server.

• For each VNF, each VNF Customer chooses one VNF Server by

playing another game with all the customers that belong to its

Customer Group.

In the following, for the sake of simplicity, we will focus on one individ-

ual VNF, namely f . Let VS be the set composed by M VNF Servers

that provide f , and VU a Customer Group interested in that function.

Let di be the latency encountered by the flows of the customers be-

longing to VU to reach the VNF Server i ∈ VS . For each customer

flow traversing a given VNF Server, this Server has to allocate a given

amount of computing and storage resources, and this represents a cost

for the VNF Server.
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Considering the generic VNF Server i, as in [162] we will refer to

the cost of the incremental energy needed by a flow to use the resources

as ci. It depends on the price applied by the energy provider and the

amount of available renewable energy.

Therefore, the energy cost for a VNF Server to manage all the

customer flows, C
(F)
i , is proportional to the number of flows ni, that

is

C
(F)
i = ci · ni (4.19)

Another cost for the VNF Servers is due to the bandwidth that

they receive from the CN according to the requests issued to the Or-

chestrator. Let bi be the bandwidth received by the VNF Server i.

Also, let p
(B)
i be the bandwidth-unit price applied by the Orchestrator

to the VNF Server i. So the cost of the overall bandwidth used by the

VNF Server is:

C
(B)
i = p

(B)
i · bi (4.20)

On the other hand, the revenue for the VNF Server i is proportional

to number ni of VNF Customers that are using its VNF f :

Ri = p
(F)
i · ni (4.21)

where p
(F)
i is the price applied by this VNF Server. As said so far, the

decision regarding the amount of bandwidth that each VNF Server

requests to the Orchestrator is taken after playing a game with the

other VNF Servers. The game, which will be described in Section

4.2.2, aims at maximizing an utility function defined as follows:

U
(S)
i (b) = β1Ri − β2

[

C
(F)
i + C

(B)
i

]

(4.22)

where b = (b1, b2, . . . , bM) is the bandwidth vector that contains the

bandwidth bi provided by each VNF server, and β1 and β2 are appro-

priate constants weighing the relative relevance of revenues and costs.
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On the other hand, customers choose the VNF Server by taking into

account the latency experienced to reach it, di, and the current price

it is applying to the VNF f . However, the higher the number of

customer flows using the same VNF Server, the lower the bandwidth

allocated to each of them. With all this in mind, each VNF Customer

selects the VNF Server that maximizes the following utility function

[163]:

U
(U)
i (n) = ln

(

α1
bi
ni

)

− α2p
(F)
i − α3di (4.23)

where n = (n1, n2, . . . , nM) is the state vector that contains the num-

ber ni of flows served by each VNF Server in VS ; α1, α2 and α3 are

appropriate constants that weigh the contributions to the utility func-

tion of the bandwidth received, the price applied by the VNF Server,

and the latency encountered to reach that Server, respectively. In

the following, we will refer to α1, α2, α3, β1 and β2 as the weighing

parameters.

4.2.2 Game Model

In this section, we illustrate the proposed game-theoretic framework

which models the interactions between VNF Servers and VNF Cus-

tomers.

Decisions taken by VNF Servers and VNF Customers depend on

both individualistic interests, e.g., maximize their own utility, and

decisions taken by counterparts, e.g., opponents’ strategies. For ex-

ample, customers connect to either one of the available VNF Servers

depending on the offered bandwidth and other relevant parameters

such as proposed prices and expected communication delays. On the

contrary, VNF Servers aim to maximize their revenues and are not

likely to cooperate with each other. Also, their actions depend on the

number of VNF Customers that are connected to them to use their
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Figure 4.7: The proposed game-theoretic framework.

VNFs.

In real scenarios, VNF Servers naturally act and make decisions

by anticipating the VNF Customers. Accordingly, interactions among

VNF Servers and VNF Customers can be modeled as a two-stage

Stackelberg game where VNF Servers act as the leaders of the game

and VNF Customers as the followers. In the addressed problem we

should also consider customers that replicate other VNF Customers’

decisions. Such replicative behavior naturally arises in those scenarios

where multiple entities make decisions by replicating other entities’

behavior [164–170].

In Section 4.2.2.1 we first define a game G(VU ) where we exploit

EGT and replicator dynamics to model the decision-making process

of VNF Customers. Then, in Section 4.2.2.2 we use non-cooperative

game theory to define the game G(VS) which models competitive in-

teractions among the VNF Servers. The considered game-theoretic

model and its hierarchical structure are shown in Fig. 4.7.

4.2.2.1 Evolutionary game G(VU ) among VNF Customers

Let NV be the number of VNF Customers in the system. We assume

that each customer knows how many VNF Customers are connected

to each VNF Server at a given time. Also, we assume that each VNF
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Customer can connect to only one VNF Server at a time.

Each VNF Customer is intrinsically selfish as it makes decisions

with the aim of maximizing its own utility U
(U)
i , as defined in (4.23).

However, the higher the number ni of VNF Customer connected to the

i-th VNF Server, the lower the utility U
(U)
i of that customer. There-

fore, the decision-taking process of each customer is also influenced

by decisions taken by other VNF Customers in VU . Also, if a VNF

Customer is aware that another VNF Customer is achieving a better

utility, it can decide to imitate that customer and migrate to the same

VNF Server to which that VNF Customer is connected. In the rest of

this analysis, we refer to this phenomenon as imitation behavior.

Imitation behavior often arises when considering interactions

among entities that rationally try to maximize their benefit by im-

itating other entities’ decisions that provide better benefit. For exam-

ple, imitation is at the basis of a variety of decision making problems

in both wired [165–168] and wireless networks [169, 170] that are of-

ten modeled by exploiting theoretical tools from evolutionary game

theory.

In line with a vast body of literature, we consider the well-known

and widely used replicator dynamics [171] as the imitation dynamics

which describe the interactions among VNF Customers. Accordingly,

we define the evolutionary game G(VU ) as follows:

• Population: it consists of the set of the NV VNF Customers.

• Strategy : it is defined as the choice of the VNF Server i ∈ VS to

whom each VNF Customer in the population decides to connect;

the strategy set of each VNF Customer is VS .

• Utility : the utility, or benefit, achieved by each VNF Customer

connected to the VNF Server i ∈ VS is equal to U
(U)
i as defined

in (4.23).
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We can now define the replicator equation that describes how the

number of VNF Customers in the population that connects to available

VNF Servers varies

ṅi = ni

[

U
(U)
i (n)− 1

NV

∑

j∈VS

njU
(U)
j (n)

]

(4.24)

where n is the state vector of the replicator dynamics and the generic

element ni ∈ n denotes the number of VNF Customers which have

chosen as a strategy to connect to the i-th VNF Server.

The first term in the right-hand side of (4.24) represents the utility

of a VNF Customer that connects to the i-th VNF Server, while the

second term represents the average utility of the population which

depends on the current distribution n of the population. Therefore,

the growth rate ṅi/ni of the number of VNF Customers connected

to the i-th VNF Server is equal to the difference between the benefit

when choosing the strategy i, and the average benefit of the whole

population.

A general result from EGT shows that an equilibrium point for the

replicator dynamics is a fixed point of the replicator dynamics such

that all VNF Customers experience the same benefit, i.e., U
(U)
i = U

(U)
j

for all i, j ∈ VS .
In Proposition 6, we show that the replicator equation (4.24) ad-

mits a unique solution for any bandwidth vector b. Furthermore, we

characterize the equilibrium point by deriving the resulting state vec-

tor n∗ at the equilibrium. To this purpose, let us define φi,j as follows:

φi,j = e

[

α2

(

p
(F)
i −p

(F)
j

)

+α3(di−dj)
]

(4.25)

From (4.25), it can be easily shown that the following relationships



4.2. Services Management in the Core Network 123

hold for all i, j, k ∈ VS

φi,i = 1, φi,j = 1/φj,i, and φk,j =
φ1,j

φ1,k

(4.26)

Proposition 6. For any given bandwidth vector b, the replicator equa-

tion (4.24) admits a unique evolutionary equilibrium n∗. Also, the

number of VNF Customers n∗
i connected to the generic VNF Server

i ∈ VS at the equilibrium point can be derived as follows:

n∗
i = NV

bi
∑

j∈VS
bjφi,j

(4.27)

where bi ∈ b.

Proof. The replicator equation can be reduced to an equivalent sys-

tem of ordinary differential equations (ODEs). Thus, to show that

the replicator dynamics admits a unique equilibrium point, it suffices

to show that the right-hand side of the mean dynamic in (4.24) is

Lipschitz continuous [172]. However, from (4.24), we have that the

function in the right-hand side of (4.24) is continuously differentiable.

This is a sufficient condition for Lipschitz continuity. Thus, uniqueness

of the equilibrium is guaranteed by results contained in [172].

Now, in order to determine the unique equilibrium, it is well known

that it is reached when ṅi = 0 [172]. Such condition implies that

U
(U)
i = U

(U)
j for all i, j ∈ VS , i.e., all VNF Customers receive the same

benefit. Accordingly, we can build a system of equations withNV(NV−
1)/2 equations that can be solved by exploiting the relationship NV =
∑

i∈VS
ni. Thus, after some easy analytical derivations, we obtain the

result in (4.27).

For the sake of illustration, in the following we show how to derive

(4.27) when NV = 2. However, the more general case can be treated in

a similar way. From (4.23) and (4.25), and by imposing U
(U)
1 = U

(U)
2
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we get

ln

(

b1
b2

n2

n1

)

= ln(φ1,2) (4.28)

Recall that NV = n1 + n2. Thus, we get

n∗
1 = NV

b1
b1 + b2φ1,2

and n∗
2 = NV

b2
b2 + b1φ2,1

(4.29)

which is a specific case of (4.27).

4.2.2.2 Stackelberg game G(VS) between VNF Servers and

VNF Customers

As already discussed before, VNF Servers act as leaders of the game

between VNF Servers and VNF Customers. Also, in Proposition 6 we

have derived the distribution n∗ of the population at the equilibrium

of the replicator dynamics.

For the sake of notation, let us first define the two following aux-

iliary variables

p̃i = NV

(

β1p
(F)
i − β2ci

)

(4.30)

and

πi = β2p
(B)
i (4.31)

Accordingly, we can incorporate (4.21), (4.27), (4.30) and (4.31) in

(4.22) to rewrite the utility function U
(S)
i of the generic VNF Server

i ∈ VS as follows:

U
(S)
i (b) = p̃i

bi
∑

k∈VS
bkφi,k

− πibi (4.32)

We define the non-cooperative game G(VS) as follows:

• Player set : it consists of the set VS of VNF Servers.

• Strategy : it is defined as the amount of bandwidth bi to be re-
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quested to the TO to serve its connected customers. We assume

that such amount of bandwidth is bounded by Bi; the strategy

set is B =
∏

i∈VS
Bi, where Bi = [0, Bi] and

∏

identifies the

Cartesian product.

• Utility : the utility of each VNF Server i ∈ VS is equal to U
(S)
i

as defined in (4.32).

By calculating the first-order derivative of (4.32), it can be easily

shown that p̃i ≤ 0 leads to a non-positive first-order derivative of

the utility function U
(S)
i . In other words, the best strategy for the i-th

VNF Server is not to participate in the game by choosing bi = 0. Thus,

those VNF Servers with p̃i ≤ 0 exit the game and they can be removed

from the player set VS . Accordingly, without loss of generality, in our

model we assume that the player set VS is composed by only those

VNF Servers such that p̃i > 0.

In the following, we analyze the Stackelberg game G(VS) and pro-

vide useful results about its equilibrium points, referred to as SEs.

Definition 4. Let b∗ ∈ B. The strategy profile (b∗,n∗) is a SE for

the game G(VS) if for all b ∈ B and i ∈ VS , we have

U
(S)
i (b∗,n∗) ≥ U

(S)
i (b,n∗)

where n∗ is defined as in (4.27).

In Proposition 7, we prove that the game G(VS) admits a unique

SE.

Proposition 7. The game G(VS) admits a unique SE.

Proof. The main steps of the proof are as follows. First, we prove

the existence of the equilibrium by exploiting concavity properties of

VNF Servers’ utility functions in (4.32). Then, we show that the
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DSC property holds. The DSC property implies that VNF Servers

experience diminishing returns along any direction, i.e., along all bi ∈
b. Finally, we exploit results contained in [146, 157] to prove that a

unique equilibrium exists.

Let the marginal utility vi(b) of each player i ∈ VS be defined as

vi(b) =
∂U

(S)
i (b)

∂bi
. Therefore, from (4.32) it follows that the marginal

utility of the generic VNF Server i is

vi(b) = p̃i

∑

k∈VS ,k 6=i
bkφi,k

(
∑

k∈VS
bkφi,k

)2 − πi (4.33)

where p̃i is defined in (4.30). Also, let b−i be the bandwidth vector of

all players except i, i.e., b−i = (bj)j∈VS , j 6=i with bj ∈ b.

To show that the DSC property holds, it must be shown that: i)

U
(S)
i (b) is strictly concave in bi; ii) U

(S)
i (b) is convex in b−i; and iii)

the function ρ(b, r) defined as

ρ(b, r) =
∑

i∈VS

riU
(S)
i (b) (4.34)

is concave in b for some r = (r1, r2, . . . , rM) such that ri > 0 ∀i ∈ VS .
From (4.32), it can be shown that property i) holds as U

(S)
i (b)

is defined as the difference between a strictly concave function and

a concave function. To prove ii), it suffices to note that the Hessian

matrix of U
(S)
i (b) has all non-negative eigenvalues, i.e., the Hessian

matrix is positive semidefinite.

Let ri = 1/p̃i for all i ∈ VS . Accordingly, (4.34) can be rewritten
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as follows:

ρ(b, r) =
∑

i∈VS

bi
bi +

∑

j 6=i bjφi,j
−
∑

i∈VS

riπibi =

=
b1

b1 +
∑

j 6=1 bjφ1,j

+
∑

k 6=1

bk
bk +

∑

j 6=k bjφk,j
−
∑

i∈VS

riπibi (4.35)

From (4.26), we have that

ρ(b, r) =

=
b1

b1 +
∑

k 6=1 bkφ1,k

+
∑

k 6=1

bkφ1,k

b1 +
∑

j 6=1 bjφ1,j

−
∑

i∈VS

riπibi =

=1−
∑

i∈VS

riπibi (4.36)

Observe that ρ(b, r) is a concave function in b as required in iii).

Therefore, we have that DSC property holds and the general theory

in [146, 157] ensures the uniqueness of the equilibrium.

In (4.32), we use the equilibrium condition in (4.27). Therefore,

interactions between VNF Customers (i.e., the followers) and VNF

Servers (i.e., the leaders) modeled through the game G(VS) produce a

unique SE (b∗,n∗). However, recall that VNF Servers compete with

each other in the Stackelberg game. Accordingly, the strategy profile

b∗ discussed above also represents a NE [146] for the competitive game

among VNF Servers.

In Proposition 7, we have shown that the game G(VS) admits a

unique equilibrium. As will be shown in Section 4.2.3, we are able

to fully characterize and derive closed-form expressions for the equi-

librium of the game where M = 2 VNF Servers compete with each

other. Unfortunately, in the general case whereM > 2 we are not able

to find a proper characterization of the equilibrium point and provide

closed-form expressions. Therefore, we need to provide a robust mech-
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anism to allow VNF Servers to individually reach the equilibrium of

the game. Accordingly, in the following we propose an exponential

reinforcing learning [173] procedure, which provably converges to the

unique equilibrium of the game.

For each VNF Server i ∈ VS , we define the following learning

procedure






zi(m+ 1) = zi(m) + γmvi (b(m))

bi(m+ 1) = Bi
ezi(m+1)

1+ezi(m+1)

(4.37)

where m represents the iteration index, b(m) is the bandwidth vector

at iteration m, and γm is the step-size of the learning procedure whose

importance will be explained later.

In the following Proposition 8, we show that the proposed expo-

nential reinforcing learning procedure converges to the equilibrium of

the game.

Proposition 8. Let γm be the step-size of the learning procedure. If
∑

m γ
2
m <

∑

m γm = +∞. For any feasible initial condition in B,
Algorithm 2 always converges to the unique SE of G(VS).

The proof consists in showing that i) the mean dynamic of (4.37),

i.e., its continuous-time version, converges to the equilibrium of the

game as time goes to infinity, and ii) (4.37) is an asymptotic pseudo-

trajectory (APT) [174] for the continuous-time version of (4.37). For

a detailed and rigorous proof, we refer the reader to Appendix C.

From Proposition 8, we have that any variable step-size rule in the

form γm = 1/mβ with β ∈ (0.5, 1] will converge to the unique SE of

the game G(VS).

To compute bi(m + 1) in (4.37), each i ∈ VS is required to eval-

uate vi (b(m)) in (4.33). Note that vi (b(m)) depends on the term
∑

k∈VS
bk(m)φi,k which can be computed by each VNF Server only

if full information on other VNF Servers’ parameters and requests is

available. Unfortunately, such an assumption is unrealistic and un-
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feasible in several application scenarios where VNF Servers compete

with each other and do not exchange any information. However, the

Orchestrator collects all VNF Servers’ requests and has full access to

their parameters (e.g., di, p
(F)
i , etc...) by assumption. Accordingly, at

each iteration and for each VNF Server i ∈ VS , the Orchestrator is

able to compute the overall sum
∑

k∈VS
bk(m)φi,k and send it to the

corresponding i-th VNF Server. Also, note that the i-th VNF Server

cannot extract any private information on other VNF Servers from

the sum
∑

k∈VS
bk(m)φi,k.

Thus, under the above assumptions the learning procedure (4.37)

can be implemented in a privacy-preserving and distributed fashion.

4.2.3 The two VNF Server case

In this section, we consider the special case where two VNF Servers

provide the same function f to VNF Customers in the system, i.e.,

VS = {S1, S2}.
First, we provide theoretical results that show the stability of the

equilibrium point n∗ in (4.29). In particular, in Proposition 9 we

have shown that the equilibrium point n∗ is an evolutionary stable

strategy (ESS). ESS is a classical concept in evolutionary game theory

that expresses the robustness of a given equilibrium strategy against

mutation in the population. Specifically, a population in which all

members play an ESS strategy is resistant to invasion by a small group

of mutants who play an alternative strategy [172].

Proposition 9. The population distribution n∗ is an ESS.

Proof. Let s∗i =
n∗
i

NV
be the fraction of the population that is connected

to the i-th VNF Server at the equilibrium and s∗ = (s∗1, s
∗
2). Let

σ = (σ1, σ2) be a population distribution such that
∑

i∈VS
σi = 1 and

σ 6= s∗. To show that n∗ is ESS, according to [172] it suffices to show
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that

(σ1 − s∗1)U (S)
1 (σ) + (σ2 − s∗2)U (S)

2 (σ) < 0 (4.38)

where U
(S)
1 (σ) and U

(S)
2 (σ) are the utility functions of VNF Servers

S1 and S2, respectively.

By exploiting the two relationships σ2 = 1 − σ1 and s∗2 = 1 − s∗1,
we get

(σ1 − s∗1) ln
(

s∗1(1− σ1)
σ1(1− s∗1)

)

< 0 (4.39)

By assumption, s∗1 6= σ1. Thus, the relationship (4.39) always hold.

Accordingly, condition (4.38) is satisfied and the equilibrium point

n∗ = (n∗
1, n

∗
2) = (s∗1NV , s

∗
2NV) is ESS.

In the following, we derive closed forms for the SE (b∗,n∗) of the

game G(VU ). More specifically, we have already derived closed forms

for n∗ in (4.29). Therefore, we still need to find a closed-form solution

for b∗.

Let ki be defined as

ki =
p̃i
πi

(4.40)

Let BRj(b
′) denote the best response of VNF Server j ∈ VS to

strategy bi of VNF Server i ∈ VS . Formally, we have

BRj(b
′) = arg max

bj∈Bj

U
(S)
j (b′, bj) (4.41)

Therefore, since we assumed S = 2, we get

BR1(b2) =
√

b2φ1,2

(

√

k1 −
√

b2φ1,2

)

(4.42)

and

BR2(b1) =

√

b1
φ1,2

(

√

k2 −
√

b1
φ1,2

)

(4.43)
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By substituting (4.42) in (4.43), we obtain

b∗2 = max

{

k1k
2
2φ1,2

(k1 + k2φ1,2)2
, B2

}

(4.44)

b∗1 = max

{

k21k2φ1,2

(k1 + k2φ1,2)2
, B1

}

(4.45)

Therefore the equilibrium of the two VNF Servers is b∗ = (b∗1, b
∗
2),

where b∗1 and b
∗
2 are defined in (4.45) and (4.44), respectively. Accord-

ingly, the unique SE equilibrium is (b∗,n∗), where n∗ = (n∗
1, n

∗
2), and

n∗
1 and n∗

2 are defined in (4.29).

4.2.4 Numerical Analysis

In this section we present a numerical analysis of the proposed dis-

tributed orchestration and resource allocation scheme. First we inves-

tigate its impact on the distribution of VNF Customers and on the

VNF provisioning, showing results obtained through extensive simu-

lations.

For illustrative purposes, we primarily focus on the two VNF

Servers case (i.e., M = 2) as it allows us to highlight the dynamics

of the interactions among VNF Customers and VNF Servers together

with the impact of the various system parameters on the outcome

of the game G(VS); though, we also provide results also for the case

M > 2, which makes possible to show the feasibility of the proposed

learning procedure and to analyze the impact of latency when multiple

VNF Servers are willing to provide the considered VNF.

In our simulations, we assume a population size of NV = 3000 VNF

Customers. Unless otherwise stated, weight parameters are assumed

as follows: α1 = 1, α2 = 0.015, α3 = 0.035, β1 = 1 and β2 = 1.

Finally, and unless explicitly mentioned otherwise, we assume that

the bandwidth-unit price p
(B)
i and the cost ci are equal for both the
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Figure 4.8: Requested bandwidth and population distribution at the
equilibrium as a function of the price p

(F)
2 charged by S2 (Solid lines:

d1 = 5 DUs and d2 = 40 DUs; Dashed lines: d1 = d2 = 40 DUs).

two VNF Servers and are set to p
(B)
i = 1 PUs and ci = 10 PUs,

respectively.

4.2.4.1 Impact of pricing on the SE

In this section, we preliminarily study the impact of the pricing applied

by the VNF Servers. To this purpose, in Fig. 4.8 we show the outcome

of the game as a function of the price p
(F)
2 charged by VNF Server S2

to its VNF Customers, when the price applied by VNF Server S1 is as-

sumed constant and equal to p
(F)
1 = 60 PUs. Specifically, we show the

amount of bandwidth bi that each VNF Server requests to the TO and

the number ni of VNF Customers that connect to each VNF Server at

the SE. Also, we consider two different configurations of the latencies

di experienced by VNF Customers connected to the i-th VNF Server.

For the sake of generality, we will express latency in terms of DUs.

More in detail, solid lines illustrate the outcome of the game when

d1 = 5 DUs and d2 = 40 DUs, respectively. Instead, dashed lines refer
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to the case when d1 = d2 = 40 DUs. As expected, when p
(F)
2 is high,

VNF Customers are likely to connect to VNF Server S1 because it

applies a lower price (i.e., p
(F)
1 = 60 PUs). Accordingly, customers get

higher payoffs when they connect to VNF Server S1 independently of

the experienced connection latencies di. On the contrary, when p
(F)
2

is low, in order to attract more VNF Customers, the strategy of VNF

Server S2 consists in requesting a high amount of bandwidth to the

TO. In this way, as evident from (4.23), the utility of the customers

increases as a consequence of the increase in the shared bandwidth.

Such behavior holds for values of p
(F)
2 that are below a given thresh-

old, above which requesting more bandwidth is no more the optimal

choice. For values of p
(F)
2 higher than this threshold5, the optimal

strategy of the VNF Servers consists in reducing the amount of re-

quested bandwidth. Such behavior is motivated by the fact that an

increase in the requested bandwidth causes an increase in the costs,

which also leads to a reduction in the utilities achieved by the VNF

Servers. Accordingly, when the cost to provide more resources to the

VNF Customers is higher than the expected revenues, VNF Servers

prefer to reduce the amount of shared resource to reduce costs and

keep high revenues. Finally, it is worth noting that when d1 = 5 DUs

and d2 = 40 DUs (solid lines), both VNF Servers request to the TO a

lower amount of bandwidth than in the case when d1 = d2 = 40 DUs.

This is due to the fact that, when latencies are equal (or similar),

there is no monopolistic behavior and VNF Servers have to compete

to attract more VNF Customers, which results in higher requested

bandwidth.
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Figure 4.9: Requested bandwidth and distribution of VNF Customers
at the equilibrium as a function of the latency d2 of S2 (Solid lines:

p
(F)
1 = 20 PUs and p

(F)
1 = 60 PUs; Dashed lines: p

(F)
1 = p

(F)
2 = 60

PUs ).

4.2.4.2 Impact of latency on the SE

In this section, we investigate the impact of the latency experienced

by VNF Customers when accessing VNF Servers on the outcome of

the game G(VS). In Fig. 4.9, we illustrate the requested bandwidth

and the population distribution at the SE as a function of the latency

d2 from the VNF Server S2. We consider two different scenarios: i)

p
(F)
1 = 20 PUs and p

(F)
2 = 60 PUs (solid lines); and ii) p

(F)
1 = p

(F)
2 =

60 PUs (dashed lines). We assume that the latency from the VNF

Server S1 is fixed and equal to d1 = 40 DUs. Instead, we let the

latency d2 from the VNF Server S2 vary. Similarly to what we have

observed in Fig. 4.8, in Fig. 4.9 we can identify two regions depending

on the value of the parameter d2: a first region for low values of

d2 where the bandwidth requested by both VNF Servers increases

5Note that in general the threshold values are different for the two VNF Servers.
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as d2 increases as well, and a second region for higher values of d2,

where the bandwidth requested by both VNF Servers decreases as

the value of d2 increases. From (4.23) we have that an increase in

the latency di causes a decrease in the utility achieved by each VNF

Customer. Therefore, upon increasing the latency d2, the number

n2 of VNF Customers connected to VNF Server S2 decreases. On

the contrary, the number n1 of VNF Customers connected to VNF

Server S1 increases as the latency d2 increases as well. It is worth

noting that the bandwidth requested by both VNF Servers is the same

in the case where p
(F)
1 = p

(F)
2 = 60 PUs. However, the fraction of

VNF Customers that connect to each VNF Server is equal to 0.5 only

when d1 = d2 = 40 DUs. So, when both VNF Servers charge VNF

Customers with the same price, we have that n2 > n1 if d2 < d1.

On the contrary, we have that n2 < n1 if d2 > d1, while n1 = n2 iff

d2 = d1.

4.2.4.3 Time-varying analysis

In this section, we discuss the impact of the population size NV and

the cost ci to process each flow on the outcome of the game G(VS). To

this purpose, we simulated a NFV scenario where the number of VNF

Customers requesting a NFV and the cost ci vary in time according to

realistic night/day usage patterns. More specifically, let the number of

VNF Customers NV and the cost ci vary in a 48-hours long temporal

window as shown in Fig. 4.10.

Fig. 4.11 illustrates both the strategy of each VNF Server, i.e., the

bandwidth requested to the TO, and the distribution of the population

at the equilibrium when p
(F)
1 = p

(F)
2 = 80 PUs, d1 = 5 DUs and

d2 = 40 DUs. Observe that when the cost to process flows is low,

VNF Servers can support more customer connections. Accordingly,

VNF Servers request more bandwidth to the network to attract a

higher number of VNF Customers. However, when d1 = 5 DUs and
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Figure 4.10: Population size NV and price parameter ci as a func-
tion of time.
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Figure 4.11: Requested bandwidth and distribution of VNF Cus-
tomers at the equilibrium as a function of time when d1 = 5 DUs and
d2 = 40 DUs.
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Figure 4.12: Requested bandwidth and distribution of VNF Cus-
tomers at the equilibrium as a function of time when d1 = d2 = 40
DUs.

d2 = 40 DUs, even though the VNF Server S2 provides customers with

a higher amount of bandwidth, it also has a high latency. Therefore,

to reduce the experienced latency, VNF Customers connect to the

VNF Server S1 and thus n1 > n2. Instead, when both VNF Servers

have equal latency, i.e., d1 = d2 = 40 DUs, Fig. 4.12 shows that the

majority of the population chooses the VNF Server which provides the

highest amount of bandwidth.

4.2.4.4 Impact of the PE position on the SE

In this section, we study the impact of the position of the PE node

on the outcome of the game G(VS). We consider five VNF Servers, i.e.,

VS = {S1, S2, S3, S4, S5}, and five possible positions of the access PE,

here denoted as PEk with k = 1, 2, . . . , 5. We assume p
(F)
i = 60 PUs for

all i ∈ VS . Each access PE position corresponds to a different latency

configuration. The considered latency configurations are shown in Fig.

4.13 and, for the sake of readability, are also reported in Table 4.2.
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Table 4.2: Latency Configurations in DUs

PE1 PE2 PE3 PE4 PE5

S1 31.6228 31.6228 42.4264 58.3095 76.1577
S2 36.0555 30 36.0555 50 67.082
S3 41.2311 22.3607 10 22.3607 41.2311
S4 80.6226 60.8276 41.2311 22.3607 10
S5 80.6226 60.8276 41.2311 22.3607 10
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Figure 4.13: Latencies, requested bandwidth and distribution of
VNF Customers at the SE for different access PE positions.

In Fig. 4.13, it is shown that VNF Servers S1 and S2 provide low

latencies when VNF Customers access the network through provider

edges PE1 and PE2. On the contrary, the same VNF Servers provide

high latencies when VNF Customers access through PE4 and PE5.

The converse holds for VNF Servers S4 and S5, while S3 provides

low latencies to VNF Customers independently of the position of the

access PE. Accordingly, when VNF Customers access through PE1

and PE2 the majority of them decides to connect to S1 and S2. Thus,

to serve such a high amount of VNF Customers, S1 and S2 request a

high amount of bandwidth to the TO. As expected, the contrary holds

in the case when VNF Customers access through PE4 and PE5. That

is, few VNF Customers connects to S1 and S2 while the majority of

them decides to connect to VNF Servers S4 and S5. Since S3 provides



4.2. Services Management in the Core Network 139

low latency in almost all cases, it is worth noting that it is able to

attract VNF Customers and almost always requests high amount of

bandwidth to the TO.

4.2.4.5 Convergence Analysis

In this section, we investigate the convergence of the proposed learning

procedure in (3.15). Specifically, we are interested in analyzing the

convergence speed of (3.15) and its scalability w.r.t. the number M

of VNF Servers. Results shown in this section are averaged over 100

simulation runs where we have assumed p
(F)
i = 60 PUs for all i ∈ VS ,

while the latency parameters di have been randomly generated.

To measure the convergence speed of the proposed learning proce-

dure, at each iteration we consider the normalized Euclidean distance

between the bandwidth vector b(m) computed in (3.15) and the SE

b∗ as follows:

d(b(m),b∗) =

√

√

√

√

∑

i∈VS

( |bi(m)− b∗i |
Bi

)2

(4.46)

In Fig. 4.14, we show how fast the proposed learning procedure

converges to the unique SE of the game G(VS) when M = 10, for dif-

ferent step-size rules. Specifically, we consider both variable step-size

(i.e., γm = 1/mβ) with β ∈ {0.51, 1} and fixed step-size rules. It is

shown that fixed step-size rules converge faster than variable step-size

rules. Also, the convergence speed is faster when high values of the

fixed step-size are considered, i.e., γm = 2. Recall that convergence

of the learning procedure under variable step-size rules is ensured by

Theorem 8. Unfortunately, the same is not true for fixed step-size

rules, as in this case convergence to the SE cannot be proven analyti-

cally. Therefore, to guarantee convergence to the SE while achieving a

fast convergence speed, a variable step-size γm = 1/mβ with β = 0.51
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Figure 4.14: Distance from the SE for different step-size rules.

should be considered.



CHAPTER

FIVE

IMPLEMENTATION ASPECTS

In this section, we discuss implementation aspects of the resource al-

location schemes that we have presented in Chapters 3 and 4. Specifi-

cally, we provide algorithms and flowcharts which illustrate main pro-

cedures and message exchanges between main actors of the considered

problem. Also, we analyze the proposed algorithmic implementations

and we study their computational complexity and scalability.

5.1 Power-efficient Jamming-proof RAN

In the following, we propose and analyze algorithmic implementations

for the power-efficient and jamming-proof RAN’s resource allocation

schemes that we have proposed in Section 3.

5.1.1 Joint Power-efficient and Jamming-proof

Approach

In this section, we consider the centralized resource allocation scheme

to provide power-efficient and jamming-proof RAN as described in

141
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Figure 5.1: Structure of the dynamic programming problem.

Section 3.1 and we propose an algorithmic implementation for the

latter problem.

The building blocks of our proposed solution are shown in Fig.

5.1. In Section 3.1.3.1, we have exploited Bellman’s equation which we

solve by exploiting backward induction. Backward induction implies

that we start from slot j = H and go backwards in time.

Therefore, at each stage we first solve the power control problem

by exploiting the system state parameter π(j) in (3.14). The solution

of the power control problem consists in the power control vector p(j)

whose elements pOPTnk (j) ∈ p(j) are calculated in (3.22). To solve the

scheduling problem, the system requires p(j) and the residual per-

formance vector ρ(j) in (3.22). The scheduler solves the single-stage

reward maximization problem and provides the optimal scheduling

policy θ(j). Finally, each element in p(j) is modified such that each

pnk(j) ∈ p(j) is set to pnk(j) = 0 if θnk(j) = 0 and the optimal joint

power control and user scheduling policy (θ(j),p(j)) is found.

At each stage j, the number of possible combinations of

ρ(j) and π(j) are Nr
N and (Np(Np−1)

2
)NK , respectively. Find-

ing the maximum of the single-stage reward maximization prob-

lem has complexity O (ω), where ω = (max{K,N})min{K,N}. Fi-

nally, the number of possible combinations in (3.17) is O(KNH).

Therefore, the overall complexity of the Bellman’s equation is

O
(

ωKN
(

Nr
NK

p (Np−1)K

2K

)N

H

)

. However, if K < N , by exploiting
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constraints (3.19) and (3.20) we can reduce the complexity of the

single-stage maximization problem to O
(

N !
(N−K)!

)

. Thus, the com-

plexity becomes O
(

KN N !
(N−K)!

(

Nr
NK

p (Np−1)K

2K

)N

H

)

. In the special

case where N = O(logH), the proposed algorithm has polynomial

complexity. That is, to solve the problem in polynomial time, we

should consider either a low number of users that scales as the log-

arithm of the horizon H, or a large horizon. In all other cases, the

complexity of the algorithm exponentially increases with the number

of users in the system.

5.1.2 Power-efficient Approach

In Section 3.2, we have discussed the problem of power-efficient re-

source allocation for the RAN when no jamming attacks are per-

formed. Accordingly, in Algorithm 1 we propose an algorithmic imple-

mentation of the learning scheme (3.43) we have described in Section

3.2.

Algorithm 1 Learning Scheme for Power-efficient RAN

Parameter: step size γm (default: γm = 1/m).

Initialize: m← 0; scores znk ← 0 for all n ∈ N , k ∈ K.
Repeat

m← m+ 1;

for each user n ∈ N do simultaneously

set transmit power pnk ← Pn
eznk

1 +
∑

ν e
znν

;

measure SINRnk;

update marginal utilities: vnk ←
1

pnk

SINRnk
1 + SINRnk

from (3.38);

update marginal power cost: vn,0 ← Γ′
n(Pn − pn) from (3.40);

update scores: znk ← znk + γm
[

vnk − vn,0
]

;

until termination criterion is reached.
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Figure 5.2: Evolution of the equilibration rate for different pricing
models and network configurations as a function of the step-size γm.

where γm is the step-size parameter; Pn is the maximum transmission

power for user n ∈ N and SINRnk is defined in (3.27).

It can be easily shown that the computational complexity of Algo-

rithm 1 at each iteration is O (NK). That is, the complexity of the

proposed Algorithm 1 for power-efficient resource allocation in RAN

is linear with both the number of users (N) and frequencies (K).

To investigate the algorithm’s scalability, we plotted in Fig. 5.2

the number of iterations needed to reach the equilibrium for different

network configurations as a function of the step-size parameter γm.

Specifically, we considered N/K = 0.5 and varied K to study the

impact of the number of users on the algorithm’s convergence rate:

Fig. 5.2 shows that the proposed distributed algorithm scales well

with the number of users, especially if higher values of the step-size

γm are used in the learning process. More precisely, even for a large

number of users, the algorithm converges to the game’s equilibrium

within a few iterations, and this convergence rate is approximately

independent of the exact number of users.
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5.1.3 Jamming-proof Approach

In Section 3.3, we have proposed a resource allocation scheme that

exploits timing channels to provide jamming-proof access to the RAN.

Also, we have shown that an optimal resource allocation solution exists

in both the Nash and Stackelberg games. We have derived a closed-

form solution for the NE and a closed-form approximation for the SE

in (3.56) and (3.66), respectively. Accordingly, it can be shown that

the computational complexity of the timing channel-based jamming-

proof resource allocation scheme in Section 3.3 has complexity O(K).

5.2 Network Management

In this section, we propose an algorithmic implementation for the

SDN-based multi-tenant backhaul management we have proposed in

Section 4.1. Specifically, we first propose an algorithmic implemen-

tation of the learning procedure in (4.12) and investigate its com-

putational complexity. Then, we focus on the bandwidth auction

and we show how OpenFlow’s procedures can be exploited to imple-

ment (4.12) and to efficiently allocate resource among several tenants

through network slicing.

To implement the learning procedure in (4.12) we propose the fol-

lowing Algorithm 2.

where γm is the step-size parameter and Bi is the maximum admissible

bid for tenant i ∈ NC.

The computational complexity of Algorithm 2 is O(NC). That is,

the proposed learning scheme has linear complexity w.r.t. the number

of tenants.

OpenFlow specifications provide the fvctl add-slice

[options ] <slicename > <controller-url > <admin-email >

command that can be easily exploited to create/modify slices. Specif-
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Algorithm 2 Learning Scheme for SDN-based multi-tenant Network
Management

Parameter: step-size sequence γm (default: γm = 1/m).

Initialize: m← 0; zi ← 0 for all i ∈ NC.

Repeat
m← m+ 1;

for each bidder i ∈ NC do simultaneously

bid bi ← Bi [1 + exp(−zi)]−1;

measure marginal utility vi from (4.11);

update scores: zi ← zi + γmvi;

until termination criterion is reached.

ically, it is used at the high-level by the FlowVisor during the start-up

phase to create a new slice whose name is <slicename >, and assign

it to a given Controller at a specific URL (i.e., <controller-url >

could be tcp:hostname:port) [111]. It is also possible to specify

some additional options and the email address of the tenant.

In order to limit the maximum bandwidth that each tenant can

use in its slice, we exploit the OpenFlow Rate Limiter [175]. Rate

Limiter is a software element in the switch that continuously monitors

and measures the rate of packets on a given link. When the rate

of the traffic generated by a given Controller exceeds the maximum

threshold, Rate Limiter executes a drop action on those packets that

are not allowed to flow through the network.

In the following, we show the basic operations performed by both

the FlowVisor and the Controllers before, during and after the auction.

The communication link between each Controller and the FlowVisor

can exploit either TCP or UDP protocols. For the sake of simplicity,

let us focus on the simple case when the FlowVisor monitors only

a single link connecting two different OpenFlow-compliant switches.

Let us denote as l the monitored link. In our model we assume that

R = ξR̂, where ξ ∈ [0, 1] is the fraction of the available bandwidth
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that the FlowVisor is willing to sell1. As discussed in Section 4.1.3,

the FlowVisor also fixes a cost λ that each Controller has to pay.

In Figure 5.3 we provide a flowchart of the relevant operations

executed by the both the FlowVisor and the i-th Controller during

the auction.

A notifyAuction() message is sent to each Controller by indicat-

ing the link l, the amount of bandwidth R to be sold and the cost

λ. Each Controller evaluates its interest θi in buying some additional

bandwidth on the link l, determines its bid according to Algorithm 2,

and sends a sendBid() message including the bid bi to the FlowVisor.

By simply using a timeout, the FlowVisor is able to collect the bid-

ding vector b containing all the bids submitted by the interested Con-

trollers and modify the bandwidth allocation policy by modifying the

Rate Limiter’s settings on each switch connected to the correspond-

ing link. Specifically, the FlowVisor assigns an additional bandwidth

̺i to each Controller according to (4.1).

Hence, each Controller re-executes Algorithm 2, the bidding profile

is updated and sent to the FlowVisor until the convergence criterion is

reached and a notifyAuctionEnd() message is sent by the FlowVisor

to the Controllers.

When the auction is over, each Controller that has successfully

submitted a bid, sends the payment notification that depends on the

cost parameter λ.

Finally, in Figure 5.4 we investigate the scalability of the pro-

posed learning procedure as the number of bidders participating in

the auction increases, and we also show how fast the learning process

converges to the unique NE as a function of the fixed step-size γm for

different cost schemes. Figure 5.4 shows that an increase in the step-

1For example, the FlowVisor could be interested in keeping unused some band-
width to provide additional best-effort services or avoid congestion caused by a
sudden increase in the traffic rate on the considered link.
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Figure 5.3: Flowchart of the operations performed by the FlowVisor
and the generic Controller Ci.

size causes an improvement in the convergence rate of the learning

process in both the LC and NLC scheme as defined in Section 4.1.1.2.

For low values of the step-size γm, if a small number of bidders is con-

sidered (NC = 10), the Algorithm 2 converges fast to the equilibrium

point, while the convergence rate is slower when the number of bidders

increases. By increasing the value of γm, the convergence rate of the

learning process is fast even in highly populated auctions with a large

number of participants. Therefore, an increase in the step-size helps
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Figure 5.4: Number of iterations needed to reach the NE as a func-
tion of the step-size γm for different network configurations and cost
functions.

in improving the scalability of the proposed approach; in fact, with

large values of γm the number of iterations needed to reach the equilib-

rium in scarcely populated auctions (NC = 10) and highly populated

auctions (NC = 60) are comparable and anyway small.

5.3 Service Management

In this section, we propose an algorithmic implementation of the learn-

ing scheme in Section 4.2 for NFV-based service management in the

CN. Specifically, the algorithmic implementation of (4.37) is presented

in Algorithm 3.

where γm is the step-size parameter and Bi is the maximum admissible

requested bandwidth for NFV Server i ∈ VS . Also, the computational

complexity of Algorithm 3 isO(|VS |), i.e., it is linear w.r.t. the number

|VS | of NFV Servers.

For the sake of illustration, in Fig. 5.5 we show exchanged mes-
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Algorithm 3 Learning Scheme for NVF-based Service Management

Parameter: step-size sequence γm (default: γm = 1/m).

Initialize: m← 0; zi ← 0 for all i ∈ VS .
Repeat

m← m+ 1;

for each VNF Server i ∈ VS do simultaneously

requested bandwidth bi ← Bi [1 + exp(−zi)]−1;

measure marginal utility vi from (4.33);

update scores: zi ← zi + γmvi;

until termination criterion is reached.

Figure 5.5: Flowchart of main operations executed by the Orches-
trator, VNF Servers and VNF Customers under the proposed resource
allocation and orchestration scheme.

sages and main procedures executed by the Orchestrator, VNF Servers

and VNF Customers. Specifically, the Orchestrator notify the start

of the resource allocation scheme to all VNF Servers in VS . Each
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VNF Server i ∈ VS executes Algorithm 3 until convergence criterion

is reached. When the equilibrium is reached, the Orchestrator collects

payments from VNF Servers. Thus, a VNF Servers Catalog that, for

each i ∈ VS , contains the offered bandwidth bi, the price p
(F)
i to ac-

cess the considered function and the latency parameter di is sent to

all VNF Customers in VU . VNF Customers evolve according to the

replicator dynamics in (4.24) from VNF Servers. Finally, when the

evolutionary equilibrium is reached, VNF Customers send payments

to the Orchestrator and the resource allocation scheme is stopped until

the allocation period expires and it is started again.

In Fig. 5.6, we show how many iterations the proposed learning

procedure needs to reach the equilibrium as a function of the step-size

γm for different values of the number M of VNF Servers. More in

detail, we let the learning procedure run until the stopping condition

is reached, i.e., d(bi(m), b∗i ) ≤ 0.01 for all i ∈ VS . As expected, an

increase in the value of the step-size improves the convergence speed

of the learning procedure. Furthermore, in Fig. 5.6 we show the scal-

ability of the proposed learning procedure w.r.t. the number M of

VNF Servers. It is important to note that an increase in the value of

the step-size γm allows to improve the convergence speed of the learn-

ing procedure even when high number of VNF Servers are considered,

e.g., M = 50. Thus, by properly increasing the value of the step-size,

it is also possible to improve the scalability of the learning procedure.
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CHAPTER

SIX

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have studied the problem of user-centric resource al-

location for power-efficient and jamming-proof RAN on top of a multi-

tenant backhaul. We have surveyed previous work on the considered

topic and we have identified crucial issues and challenges to design a

holistic approach for efficient resource management in the considered

scenario.

We have tackled energy consumption and security issues by pro-

viding centralized and distributed algorithms for power-efficient and

jamming-proof access to the RAN. By exploiting SDNs and network

slicing, an auction-based resource allocation scheme for flexible and

dynamic network management of the multi-tenant backhaul has been

proposed. Also, a NFV-based approach for service and network func-

tion management in the CN has been investigated by exploiting hier-

archical and evolutionary game theory.

Our work focused on the analysis of the existence and unique-

ness of optimal resource allocation policies and particular interest has

been given to the computational complexity and the scalability of the

proposed solutions. As a result, we have shown that the proposed

153
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resource allocation schemes have very low computational complexity

and well-scales with the number of users and tenants in the network.

Even though we have devised a holistic approach for resource man-

agement in modern communication networks, there are still open

issues and challenges that must be addressed. A promising ap-

proach that is expected to revolutionize next-generation communica-

tion paradigms consists in the exploitation of heterogeneous networks

together with the softwarization of network control and management

in the cloud. Future works will be focused on the extension of our work

to the case where heterogeneous RANs composed by GSM/UMTS, wi-

fi and WiMax radios are shared among several network operators and

resource are dynamically allocated according to time-varying user and

traffic patterns. Our approach will be focused on the implementation

aspects of a cloud-based resource management and control by exploit-

ing the resource allocation solutions which have been proposed in this

thesis.

Another future direction consists in the exploitation of human so-

cial behavior to design optimal resource allocation schemes. It is well-

known that users often move in groups. Also, it is most likely that

users in the same group have similar interests and behavior. Further-

more, users in the same group are expected to be in proximity and

D2D communications can be exploited to offload the RAN. Accord-

ingly, it would be useful to provide dynamic network resource man-

agement and control for efficient information delivery in social groups

in heterogeneous networks.
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CHAPTER

SEVEN

APPENDICES

A Proof of Theorem 3

Proof. In order to prove the theorem we have to solve (3.55), that is, find

a pair (x, y) which solves the following system of equations:







y = χ(∆eψ(y)+1)

x = ∆eψ(y)+1
(7.1)

By exploiting the Lambert W-function definition and the relationship

z/W (z) = eW (z), where z =
[

2(TAJ+y)
e∆

]

, it can be proven that the above

system leads to

(y + TAJ)
2 =

1

η
· ψ2(y)

ψ(y) + 1
(7.2)

Given that the first derivative of the Lambert W-function is defined as

W ′(z) =
W (z)

z(W (z) + 1)
(7.3)

(7.2) can also be rewritten as

e
W

(

2(TAJ+y)

e∆

)

=
1

η
· 2

∆e
·W ′

(

2(TAJ + y)

e∆

)

(7.4)
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Note that the function on the left-hand side is strictly increasing, while the

one on the right-hand side is strictly decreasing. These structural properties

imply that the two functions have no more than one intersection point.

Therefore, the game admits a unique NE.

Now we focus on finding a closed form for the unique NE.

To this purpose, (7.4) can be reformulated as

e
2W

(

2(TAJ+y)

e∆

)

(W

(

2(TAJ + y)

e∆

)

+ 1) =
1

η

(

2

e∆

)2

which, by exploiting the relation z = W (z)eW (z), can be rewritten as fol-

lows:

W

(

2(TAJ + y)

e∆

)

=
1

2
W

(

8

η∆2

)

− 1 (7.5)

It is easy to prove that (7.5) has the following solution

y∗ =
∆

2

(

1

2
W

(

8

η∆2

)

− 1

)

e
1
2
W

(

8
η∆2

)

− TAJ (7.6)

By substituting (7.6) in (3.52) we obtain x∗ = ∆e
1
2
W ( 8

η∆2 ). As the point

(x∗, y∗) has been obtained as the intersection between the best response

functions in (3.52) and (3.53), it follows that (xNE, yNE) = (x∗, y∗) is the

unique NE.

Finally, we prove that the NE (xNE, yNE) is an interior NE. An interior

NE happens when it is not on the border of the strategy set; therefore,

we aim at proving that xNE > 2∆ and yNE > 0. As xNE = ∆e
1
2
W ( 8

η∆2 ),

proving that xNE is not on the border is trivial; from (7.6) it can also be

easily proven that the condition yNE > 0 implies 0 < cT < c̃T , where c̃T

is given in (3.57); therefore, an interior NE exists only if 0 < cT < c̃T .

Theorem 2 states that an NE must exist for any given weight parameter

cT . Since we already proved that an interior NE exists only if 0 < cT < c̃T ,

we can deduce that the NE is on the border if cT > c̃T .

From (3.53) we know that for cT > c̃T the best response function of

the jammer, bJ(x), is continuous, and it is upper-bounded by bJ(x̂) where

x̂ = ∆e
1
2
W ( 2

η∆2 ), and lower-bounded by 0; thus, as the NE has to be at the
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border, it follows that the only feasible solution is yNE = 0. Hence, from

(3.52) and (3.53), it is easy to derive closed form solutions on the border

NE, (xNE, yNE) =
(

∆eW (
2TAJ
e∆

)+1, 0
)

, which concludes the proof.

B Proof of Lemma 3

Proof. To prove the Lemma, it will be shown that the condition in (3.60)

implies that the Jacobian matrix norm ||Jb||∞ in (3.58) is lower than 1. In

fact, the condition ||Jb||∞ < 1 leads to:

max

(∣

∣

∣

∣

∂

∂y
bT (y)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂

∂x
bJ(x)

∣

∣

∣

∣

)

< 1

Note that
∣

∣

∣

∂
∂y bT (y)

∣

∣

∣ can be calculated as

∣

∣

∣

∂
∂y bT (y)

∣

∣

∣
= 2

W (
2(TAJ+y)

e∆
)+1

The above function is non-negative and strictly decreasing, thus it

achieves its maximum value when y = 0. Accordingly, it is sufficient to

show that

max
y∈SJ

(

2

W (2(TAJ+y)
e∆ ) + 1

)

< 1 , ∀y ≥ 0

or, equivalently, that

max
y∈SJ

(

2

W (2(TAJ+y)
e∆ ) + 1

)

=
2

W (2TAJ

e∆ ) + 1
< 1 , ∀y ≥ 0

which is indeed satisfied for all values of y in the strategy set; therefore,
∣

∣

∣

∂
∂y bT (y)

∣

∣

∣
< 1, ∀y ∈ SJ .

Concerning the condition
∣

∣

∂
∂xbJ(x)

∣

∣ < 1, by deriving bJ(x), it follows

that
∣

∣

∣

∣

∣

1

2

[

1

x
√

η log x
∆

− 1

]∣

∣

∣

∣

∣

< 1 (7.7)

The expression on the right-hand side of (7.7) is a non-negative strictly
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decreasing function, so again (7.7) results in

max
x∈ST





∣

∣

∣

∣

∣

∣

1

2





1

x
√

η log
(

x
∆

)

− 1





∣

∣

∣

∣

∣

∣



 < 1 (7.8)

Note that (7.8) can be rewritten in the form given in (3.60) and ||Jb||∞ =

||Jb|| as Jb is diagonal. Let si = (xi, yi), it then follows that

||si+1 − si|| ≤ ||Jmaxb || · ||si − si−1|| ≤ · · · ≤ ||Jmaxb ||i||s1 − s0||

where ||Jmaxb || = max Jb. The above equation indicates that given any

ǫ > 0, after at most logJmax
b

ǫ
||s1−s0|| iterations, the game converges to the

NE as ||si+1 − si|| ≤ ǫ which thus concludes the proof.

C Proof of Proposition 8

Proof. The mean dynamic of (4.37) is







żi = vi(b)

bi = Bi
ezi

1+ezi

(7.9)

At any given time t, let b(t) be a solution for (7.9). In system theory,

such solution is often referred to as solution orbit or trajectory of the sys-

tem. In the following, we show that i) b(t) converges to b
∗ as t → +∞,

and ii) (4.37) is an asymptotic pseudo-trajectory (APT) [174] for the mean

dynamic (7.9) and converges to b
∗ if some mild conditions on the step-size

are satisfied.

From Proposition 7, we have that U
(S)
i (b) is a strictly concave function

in bi. Therefore, vi(b)(bi − b∗i ) < 0 for all bi ∈ [0, Bi] by definition. By

exploiting this latter result, it can be shown that the function V (b) defined

as

V (b) =
∑

i∈VS

Bi ln

(

Bi − b∗i
Bi − bi

)

+ b∗i ln

(

b∗i
bi
· Bi − bi
Bi − b∗i

)

(7.10)
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is a strict Lyapunov function for (7.9). In fact, we have that V̇ =

dV (b)/dt =
∑

i∈VS
vi(b)(bi − b∗i ) < 0, V (b∗) = 0 and V (b) > 0 for all

b 6= b
∗. It can be shown that V (b) is radially unbounded. A function V (b)

is said to be radially unbounded if V (b)→∞ when ‖b‖ → ∞. Therefore,

the equilibrium point b∗ is also globally asymptotically stable (GAS), which

leads to the conclusion that b(t) converges to b∗ as t→ +∞. Now, we prove

the second part of the proposition which consists in showing that also the

discrete-time algorithm asymptotically converges to the equilibrium. By

decoupling (7.9), we get

ḃi =
dbi
dt

= bi

(

1− bi
Bi

)

vi(b) (7.11)

The latter result will be useful to show that the discrete-time algorithm

tracks the continuous-time system up to a bounded error that asymptoti-

cally tends to 0 as i increases.

A second-order Taylor expansion of (4.37) leads to

bi(m+ 1) = bi(m) + γmb(m)

(

1− bi(m)

Bi

)

vi(b(m)) +
1

2
µγ2m (7.12)

for some bounded µ . Note that µ is bounded as ∂
∂bi
vi(b) is bounded

by definition. Intuitively, (7.12) is the discrete version of (7.11) up to a

bounded error. Since, by assumption,
∑

m γ
2
m <

∑

m γm = +∞, theoretical

results in [174] show that bi(m) is an APT for (7.9).

It still remains to prove that bi(m) → b∗i . By decoupling zi and bi, we

obtain zi = ln
(

bi
Bi−bi

)

. By rewriting V (b) in terms of z, we obtain V (z).

By considering a Taylor expansion of V (z), we obtain

V (z(m+ 1)) = V (z(m)) + γm
∑

i∈VS

(bi(m)− b∗i ) vi (bi(m)) +
1

2
µ′γ2m (7.13)

for some bounded µ′ > 0.

Since b∗ is GAS, it follows that B is a basin of attraction for b∗. There-

fore, there must exist a compact set L ⊂ B containing b
∗. If we prove that

there also exists a large enough m′ such that b(m′) ∈ L, then, the proof is
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concluded. Assume ad absurdum that such m′ does not exists. Recall that

vi(b)(bi(m) − b∗i ) < 0 by definition. Therefore, it must exist some β > 0

such that
∑

i∈S vi(b)(bi(m) − b∗i ) ≤ −β for a large enough m. It follows

that

V (z(m+ 1)) ≤ V (z(m))− γmβ +
1

2
µ′γ2m (7.14)

which yields to

V (z(m+ 1)) ≤ V (z(0))− β
∑

m

γm +
1

2
µ′
∑

m

γ2m (7.15)

By assumption
∑

m γ
2
m <

∑

m γm = +∞. Thus, (7.15) leads to V (z(m +

1)) ≤ −∞, which is a contradiction as V (z) is lower bounded by construc-

tion. Therefore, [174] ensures that there must exist m′ such that b(m′) ∈ L
and limm→+∞ b(m) = b

∗, which concludes the proof.


