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The ideal engineer is a composite. . .

He is not a scientist, he is not a mathematician, he is not a

sociologist or a writer; but he may use the knowledge and techniques

of any or all of these disciplines in solving engineering problems.

Nathan W. Dougherty



Abstract

In an Information and Communication Technology (ICT) system, information and

knowledge have a key role in the development as well as in the evolution of processes.

Due to the continuous improvement of the ICT, there are no limits on when, where

and how each process has to take place. In fact, there is no need that the individu-

als, involved in the process itself, have to be physically and directly connected, via

a face-to-face contact for example. This condition, if on one hand permits that all

the processes can be easily performed, on the other hand it increases the complexity

level of each process itself. The peculiarities of each process and the differences that

characterise each process can be appreciated only considering a greater detail level

and analysing for each individual the process in which it is involved. Furthermore

the development of each process is much more complicated considering the concepts

of social networking. In fact, taking into consideration the mechanism of social influ-

ence and social contagion as well as the capability and knowledge of each individual,

the network node is affected, in a positive or in a negative way, not only by the other

nodes of the network connected to it but also by its position and importance within

the network.

Considering an ICT system, there are a lot of processes that can take place within

a network. The main focus of my Ph. D. research activity has been to analyse

the decision making process taking place in a social network and, in particular,

the main features that influence the development of the process itself. In fact, due

to events and objectives that an individual, the decision maker (DM), had to face

and deal, it becomes necessary to take decisions. A decision making process con-

sists on the evaluation of a set of alternatives/actions with respect to a family of

criteria. In an ICT system, each decision making process is characterised by four

main features: dynamism, context-dependence, multiple criteria and social influ-
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ence. Dynamism expresses the continuous change of the characteristics of both

environment and of the decision maker who has to perform the process at each time

step. Context-dependence, instead, means the importance of the context, defined as

the information that is necessary to describe the situation where a decision maker

performs its processes. In fact, for example, if the same decision making process is

performed in two different context, the decisions taken by the decision maker could

not be the same in the two different context. As expressed before and as a confir-

mation of the importance of a multiple criteria decision analysis, the paradigm of

the decision making process is the evaluation of each alternative on the basis of a

set of criteria. In this way the advantages and the drawbacks of each alternative are

highlighted. Social influence has to be taken into consideration in the development

of the decision making process, because the decision maker performs its process not

alone but it is surrounded by other individuals that have a minor or a greater, a

positive or a negative, influence on it, leading its decisions near or far from its initial

inclination, as a results of social interactions among individuals. These four aspects

have to be considered together with the personal features of each decision maker,

like, for example, its psychological and psycophysical state. Thus, considering the

aspects previously introduced, this Ph. D. dissertation proposes a multiple crite-

ria and context-aware decision making model being able to represent the decision

making process of an individual in a social network. This model is able to represent

the dynamics of decision taken by an individual within a social network, consid-

ering the variation of the context and the influence that the individual perceives

from its neighborhood. The behaviour of each individual is represented by a set of

parameters, whose variation influences the dynamics of decision within the social

network. Successively, applying the same perspective to the process of knowledge

transfer and learning, it is possible to consider these processes as individual decision
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making process where each individual has to decide if accept or not knowledge from

its neighboring nodes.

In the Ph. D. dissertation the concepts and the analytical instruments provided

by the multiple criteria decision analysis (MCDA) are applied to social networks in

order to represent as much as possible realistic decision making processes involving

individuals that are parts of social networks in different contexts.

Keywords: Multiple Criteria Decision Making, Social Networks, Context-Awareness,

Dynamism, Knowledge Transfer, Knowledge Learning.
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Chapter 1

Introduction

1.1 Decision making process in ICT Systems

Everyday individuals have the need of making decisions, different in order of impor-

tance and in their consequence. The decision making process varies in importance

and complexity and depends on the number of decision makers, on the decision to

take, on the parameters and conditions that characterise the process itself. Most of

times, individuals do not know consequences and they have to deal with uncertainty.

This is particularly true in complex and dynamic environment, where the conditions

continuously change.

Hence, this statement of Thomas Saaty (Saaty, 2005) well summarises what is deci-

sion making and which is the aim of this research field:

“The purpose of decision-making is to help people make decisions according to

their own understanding. They would then feel that they really made the decision

themselves justified completely according to their individual or group values, beliefs,

and convictions even as one tries to make them understand these better. Because
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decision-making is the most frequent activity of all people all the time, the techniques

used today to help people make better decisions should probably remain closer to the

biology and psychology of people than to the techniques conceived and circulated at

a certain time and that are likely to become obsolete, as all knowledge does, even

though decisions go on and on forever. This suggests that methods offered to help

make better decisions should be closer to being descriptive and considerably trans-

parent. They should also be able to capture standards and describe decisions made

normatively. Natural science, like decision-making, is mostly descriptive and pre-

dictive to help us cope intelligently with a complex world.” .

One of the causes of the “complex world” mentioned above is the rapidly growth

in popularity, size and complexity of social networks, where often there are no limits

for each single node on the possibility to create new connections and relationships.

For this reason, there is the necessity to analyse in depth every process that takes

place in this environment, because each single entity involved in the process con-

tributes and has an impact on the whole process dynamics. Each individual, which

is the decision maker has to perform each process by taking into account not only

its personal capabilities and its indole (to be more or less rational) but also the

influence exercised, directly or indirectly, from the other individuals, composing its

neighborhood.

In this scenario, information plays a central role. A right or a wrong information,

can lead the decision making process to a direction rather than another, because it

has a great impact on the creation of the decision maker✬s knowledge. Its intrinsic

characteristic is represented by the value that it can generate in a network and for

a process, due to its constant and continuous rate of growth. In fact, from this

perspective, knowledge permits individuals to acquire more and more awareness of

5



the context, which represents the knowledge background that each individual has to

take into consideration in doing its decisions. The same decision making problem

considered in two different contexts can induce the decision makers to take different

decisions. Hence, the introduction of the concept of context-awareness leads to re-

think and redesigned the concept of space, that becomes “Smart”. In fact, “Smart

space is able to acquire and apply knowledge about its environment and to adapt

to its inhabitants in order to improve their experience in that environment” (Cook

and Das, 2007).

In this perspective, the process of decision making if on one hand can sometimes be

immediate, fast and automatic, in most cases the decision is the result of a complex

process taking place in a complex environment.

1.2 Research Guidelines

Observing the world around and the phenomena that take place was the starting

point of the research activities. In fact, understanding what happens around us is a

crucial aspect to analyse in order to predict and then optimise processes that char-

acterise real world phenomena.At this purpose, the main aim of the Ph. D. course

activities has been the research of a conjunction point between the pure mathemat-

ical theories and instruments, provided by multiple criteria decision analysis, and

the constraints and straining to which realistic processes are subjected to. Hence,

the starting point has been the consideration of an individual decision making pro-

cess taking place in a social environment. The fundamental research questions have

been:

• Which are the main features that characterise this process?

• Is it possible to create a model that takes into consideration all the
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features and the constraints that characterise a realistic environ-

ment?

• Is it possible to apply a decision making model with a social and

context-aware perspective to a supply chain problem, represented

by a supernetwork?

• Knowledge guides and directs every process in a society, a process

of knowledge transfer and learning can be look and represented as

a decision making one?

Hence, below in Figure 1.1 it is reported a conceptual map in order to give a

better representation of the main research area covered by this Ph. D. dissertation.

1.3 Dissertation Outline

The structure of this Ph. D. dissertation is as follows:

• Chapter 2 briefly introduces the main and basic concepts of decision theory:

the classification of different processes (depending on the number of decision

makers, on the decision conditions, etc.) and the main features which char-

acterise the process evolution. To give a more deepen insight on the origins

of decision theory, a little overview of the different theories that have followed

over the years is given. Furthermore, the main four features characterising

a decision making process (multiple criteria, dynamism, context-dependance

and social influence) are in-depth analysed while explaining their influence and

importance on the development of a decision making process.

• In Chapter 3 the main features, whose importance has been highlighted in the

previous chapter, are joined together in order to establish a decision making
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Figure 1.1: Conceptual map of the keywords used in the research activities

model. The research of a conjunction point among the mathematical instru-

ments of multiple criteria decision analysis and the social network analysis has

been performed. It can be considered the first step to build a tool exploitable

for the analysis of network dynamics as well as for the prediction of individual

or community behaviour and decisions. A fully versatility can be obtained by

varying the conditions and the parameters characterising the individual and

the network.

• Chapter 4 contains the analytical formulation of the model introduced in the

previous chapter. Context and the mechanism of social influence play a central

role in the dynamics of multiple criteria preferences. Furthermore, each single
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node of the network takes into account the variability of the context at each

single time step. This variability of the context, together with the influence

perceived by each single node from the rest of its social network, affects the

weights of each decision criterion while modifying its importance as well as

the final decision of each node of the network.

• Chapter 5 describes an application of the previous model to the supernet-

works, in which a supply chain problem is considered. The decision makers

represent the nodes of a network composed of various levels, where relation-

ships intra- and inter-levels exist. In particular, nodes that perform the same

task belong to the same network level. Each relationship between a couple of

nodes is represented by arches. To each arc it is associated a flow that has to

be optimised maximizing the utility function, allowing each node to decide to

whom and the quantity to sell to the other nodes.

• In Chapter 6 knowledge and the processes in which it can be involved are

presented. In particular, a context-aware multiple criteria decision making

perspective is applied to the processes of knowledge transfer and learning. The

mechanisms and the patterns of knowledge diffusion within a social network

are analysed, in order to evaluate the impact of a decision making approach

to the knowledge diffusions patterns.

• Chapter 7 includes conclusions about the research activities carried out dur-

ing the Ph. D. studies. It also contains the future research directions and the

open questions of the Ph. D. studies.
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Aware Multiple Criteria Decision Making Model in Social Networks”, Abstract

in Proc. International Conference on Information Society (i-Society 2014),

Londra (UK), 2014

• Giacchi E., Corrente S., Di Stefano A., Greco S., La Corte A., Scatá M.,
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10



context-aware approach of multiple criteria decision making for social network

analysis”, 23rd International Conference on Multiple Criteria Decision Making

(MCDM 2015), Hamburg (DE), 2 - 7 Agosto 2015, Book of Abstract p.132

• Giacchi E., Corrente S., Di Stefano A., Greco S., La Corte A., Scatá M.,
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Chapter 2

Literature Review

2.1 Decision Theory: Main Concepts

Understanding the reasons that are at the basis of an individual✬s actions can help

to comprehend individual and collective behaviours within a society. For this pur-

pose, Decision theory provides a rational framework for choosing between alternative

courses of action when the consequences resulting from this choice are imperfectly

known (North, 1968). From the ancient Greek philosophers Aristotle and Plato,

decision theory has taken contributions from a lot of disciplines, i.e. mathematics,

statistics, economy, sociology, psychology and management.

A decision making process involves an individual or a group of individuals, that are

named decision maker(s), and it produces a final choice, that is the result of the

evaluation process of the set of alternatives with respect to a finite and coherent

family of criteria. Within decision theory and depending on the approach that it is

used, it is possible to distinguish between (Oliverio, 2007):

• Normative decision theory, which studies the ideal decision making process

and suggests the best decision so that the decision maker(s), supposed to be
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fully rational, can have the maximum utility;

• Descriptive decision theory, which studies the real decision making process

performed by individual(s) acting under some rules and constraints that are

intrinsic of the process itself .

Hence, to give a first mathematical definition, assuming that {Ai | i ∈ I}is

a collection of disjoint set representing the alternatives, Ai ⊆ U , where U is the

universe, and Ai 6= Ø, a function c : {Ai} → Ai, i ∈ I is named choice function if

c(Ai) = ai, ai ∈ Ai (I represents a set of natural numbers). The decision d represents

the selected alternative ai ∈ A, non-empty set of alternatives (with A ⊆ U), on the

basis of a given criteria set C, hence (Wang and Ruhe, 2007):

d = f(A,C) = f : A× C → A,withA ⊆ U,A 6= Ø (2.1)

The set of alternatives must include at least two different alternatives, otherwise,

if the set A is composed of only one element, the decision making process cannot

be performed because the decision is obliged and it cannot be considered a decision.

On the other hand, if there are different alternatives, the decision making process

should be point out the best choice for the individual, after the evaluation alter-

natives process. The tool through which the decision maker can evaluate all the

alternatives is the decision✬s criterion. A criterion is a tool constructed for evalu-

ating and comparing potential actions according to a point of view which must be

(as far as it is possible) well-defined (Figueira et al., 2005). This evaluation must

take into account, for each action, all the pertinent effects or attributes linked to

the point of view considered. For a long time horizon, many scientists, for the sake

of simplicity, thought that a monocriterion approach (that is a single criterion that

joins the multiple aspects that characterise the decision situations in order to use
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a single scale of measures) would be the best way to perform a decision-making

process. But, with this approach, the decision making process looses its paradigm

and its intrinsic nature, that is the comparison of different points of view. In fact

if a monocriterion approach is taken into consideration there are lots of limitations,

such as ignoring certain features characterising the real process leading to a wrong

evaluation of alternatives (setting up of equivalencies of alternatives).

On the contrary, using a set of criteria, that is a multicriteria approach to perform

the decision making process, permits to avoid such limitations because the family of

criteria taken into consideration represents different points of view, as the paradigm

of the decision process is. The evaluation criteria represent different points of view

taken into account by the Decision Maker to highlight the advantages and the draw-

backs of each single alternative (Figueira et al., 2005). Hence, indicating with g

the criterion, g(a) is the evaluation of alternative a with respect to the criterion g.

The family of criteria F must satisfy important requirements such as completeness,

cohesiveness and non-redundancy (Roy et al., 2005). Furthermore, within the set F

of criteria can exist some dependency relationship or there could be some mutual as

well as antagonistic interactions (Figueira et al., 2009).

The decision making process is characterised by a finite or infinite set of actions (the

alternatives), two or more decision✬s criteria and one or more decision makers. This

is the research field of Multiple Criteria Decision Making (MCDM).

In the decision making process the decision maker has the role to take the final deci-

sion, depending on the evaluation of each single alternative. It is also important to

highlight that the number of decision makers has a strong influence on the dynamics

of the decision making process itself. Hence, it is possible to distinguish between

individual and group decision making process. To the first category belongs the de-

cision making process that involves only one decision maker that can be considered
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isolated or in a social environment (this issue will be further examined later). To the

second category, instead, belongs the process that involves a group of individuals

that, as a result of dynamic interactions among them, at the end of the process

achieves only one decision for the whole group. In this case, it is necessary much

more time to reach the final decision, due to the multitude of opinions within the

group of individuals. Among the different aspects to be taken into account in the

mechanisms of interaction for group decisions there are the different relationships

that exist among individuals, especially if there is a hierarchical relationship. The

possible configurations are shown in Figure 2.1(Cioffi-Revilla, 2013).

In the case of a chain network, each individual can only communicate with its

neighbors and not with everyone. In this way the comparison and the exchange of

ideas among all members of the group cannot occur, thus slowing down the decision-

making process. In the case of a star network, the central node is the leader of the

discussion, that can communicate with everyone directly, but if the other members

of the group have to communicate, they must make it through the leader node. The

case of a Y-shaped structure results from the combination of the two previous struc-

tures, trying to contain the centralization of a node with respect to the other. In the

case of a circle network everyone can express its own ideas and it is the most open

structure and also the most efficient, and it is the most widely used for solving the

most complex problems. In a complete network everyone can speak with all the other

members of the group, there is not a leader and the complete information exchange

is reached within a few rounds of the minimum possible (Knödel, 1975), (Farrag and

Dawson, 1987), (Lakshman and Agrawala, 1986), (Sunderam and Winkler, 1993).

In case of opinion dynamics and in many real networks, not all the members have

the same point of view, e. g. a two-party political system. In this case two oppo-

site parties are present in a structural balanced network what often can happen is
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Figure 2.1: Network configurations for Group Decision Making processes

a gridlock (e.g. the US congress in 2011 on raising the national debt ceiling: the

antagonism and ideological divide between the two main political factions leads to

a legislative gridlock)(Altafini, 2012). Also psychologically, the possibility to take a

unanimous decision involves a sense of spread of responsibilities. In fact, while in

the case of an individual decision, the responsibility lies with the individual, in the

case of a collective decision, the responsibility is divided or “widespread” among all

the members who participated in the process, leading some members, for example,
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to contribute less, not having a direct responsibility.

For the human mind the decision-making process is considered as one of the

37 fundamental cognitive processes in a layered model (Wang and Ruhe, 2007).

Hence, the decision-making process is a process of selection among the alternatives

satisfying certain criteria, aimed at achieving a specific objective (decision goal). In

particular, the number of possible decisions n may be determined by the size of A

and from that of C:

n = #A · #C (2.2)

denoting by # the cardinality of the sets, and A ∩ C = Ø.

Therefore, the result of the decision-making process is determined by the strategies

chosen by the decision maker when the alternatives of choice are identified. It can

also be defined a taxonomy of strategies and decision criteria used in the process,

divided into 4 categories: intuitive, empirical, heuristic and rational. The first two

are identifiable within the intuitive cognitive human psychology. The rational is

divisible into two sub-categories: static and dynamic. The heuristic was primarily

used by human decision makers. The strategies and criteria are shown in Figure 2.2

To reach the final decision, the conditions in which the decision making process

takes place have to be taken into consideration. At this purpose it is possible to

distinguish among three decision conditions:

• Decision under certainty;

• Decision under uncertainty;

• Decision under risk.
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Figure 2.2: Taxonomy of strategies and criteria for decision-making
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Depending on the conditions in which the process takes place, the decision is not

always the right and rational one through which the decision maker can reach the

maximum utility, because the decision✬s conditions modify and sometimes alter the

problem✬s perception of the decision maker.

2.2 From the beginning of decision theory to the

cognitive problems

To better understand the modern theories and the great interest on this research

field from a lot of disciplines, a quick overview on the origins of decision theory

could be very useful (Oliverio, 2007). One of the first pioneers was Blaise Pascal,

who developed the theory of the expected value (or mathematical expectation) for

which, considering two events a,b having probability α and (1 − α), the expected

value of a game x is:

V A(x) = (a) · (α) + (b) · (1 − α) (2.3)

Daniel Bernoulli later perfected the previously theory exposed by Pascal, pro-

viding the solution of the so-called St. Petersburg paradox, invented by his cousin

Nicolas. He considered a type of game whereby a dime (no fixed) is launched so

many times until “head” is out and the winner will receive as prize 2n, where n

is the number of throws made until it comes out “head”. Applying the theory of

Pascal and calculating the expected value which is equal to infinity, a player should

be willing to pay any amount of money to be part of the game, even though “head”

should come out on the first roll, thus bringing the payout equal to 2 . This para-

dox, therefore, emphasised the limits of the expected value theory. For this reason,

Bernoulli proposed to distinguish between the expected value of a result from its
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expected utility, which represents the importance that may have the given results for

the individual multiplied by its probability of recurrence. This is because the utility

depends on the individual himself that expresses its own preferences. For example,

the expectation of wealth utility grows with the increase of the same wealth, but

in a way inversely proportional to the quantity of wealth possessed (for a wealthy

individual a capital increase equal to 2, 000 is less significant compared to the same

amount given to an individual less wealthy). Hence, a problem, until then purely

mathematical, was enriched considering the psychological and moral dimensions,

acquiring a complexity and a greater variability, introducing new criteria and as-

pects strictly related to individuality. This leads to the introduction of the notion

of risk in the decision making process and furthermore the consideration the indi-

vidual attitude towards the risk. For these reasons, the utility function is no longer

considered as a linear function but a logarithmic function.

Later the theory was perfected by von Neumann and Morgenstern and their ex-

pected utility theory (Von Neumann and Morgenstern, 2007). Such theory is based

on two axioms:

• Completeness: if there are two possible results x1 and x2, x1 could be preferred

to x2 (x1 > x2) or x2 could be preferred to x1 (x2 > x1) or x1 and x2 are

indifferent (x1 ∼ x2);

• Transitivity: if there are three possible results, if x1 > x2 and x2 > x3 then

x1 > x3 (the same can be reported in case of relations of equality).

According to this theory, the decision maker is considered as a rational individual

which assigns a certain probability to each event. Von Neumann and Morgenstern

have shown the existence of an expected utility function that is equal to the sum

of the utilities associated to each alternative multiplied by the probability of occur-
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rence of that particular situation. According to this theory, there are three possible

functions of the expected utility, classified on the basis of the behaviour undertaken

by the decision maker: aversion, indifference or propension. An individual is risk

averse if he prefers to get a payment rather than try the game in a lottery. On the

contrary, he is indifferent to the risk if he has no preference in receiving a payment

or playing the lottery. Moreover, he has propensity to risk if he prefers to play the

lottery rather than accept a certain gain. An important aspect that needs more

explanation is that the individual is not considered to have a preliminary particular

attitude towards risk. The expected utility theory developed by von Neumann and

Morgenstern shows some limitations, mainly related to the knowledge degree and to

the rational being of the individual. In many real context such conditions are not

feasible.

As a demonstration of these limitations, Simon (Simon, 1955) stated that the real

human behaviour is characterised by a bounded rationality, which takes into ac-

count the limits of the individual selection, acquisition, processing and information

storage processes. These limitations have resulted either from lack of information,

for example if it is known only a limited number of alternatives so that the eval-

uation of them fails since not taking into account all of them. Sometimes these

limitations come from an individual inability to perform the decision-making pro-

cess when, although all the alternatives are available, the decision maker cannot

perform all the calculations necessary for a complete evaluation of them and of the

corresponding utility. In this way the decision maker can only reach a satisfactory

solution, according to which he analyses the possible alternatives and identifies one

good enough considering the acceptability thresholds: such alternative becomes the

real choice. Later, Simon also introduced the concept of ’procedural rationality’, for

which the good decision is not the best in terms of results, but the one coming from
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the resolution process tailored according to the representation that an individual

makes of the decision making process.

2.2.1 Beyond Expected Utility Theory: Prospect theory

and heuristic

After the studies conducted by Simon, many experiments were conducted, especially

from Tversky, to demonstrate the limitations of the expected utility theory of von

Neumann and Morgenstern.

One of these, which pointed out the violation of the principle of transitivity, com-

pared pairs of bets belonging to set {a, b, c, d, e}, whose chances of recurrence were

sorted in a descending scale from a to e. Hence, when comparing pairs of adjacent

bettings, the individuals looked to the possible win and not to the probability, while

for non-adjacent couples the preference was expressed on the basis of the likelihood

of recurrence.

A further example of violation of the expected utility theory is represented by the

Allais paradox (Allais, 1953):

There are three possible prizes and the decision makers had to make two indepen-

dent choices between the situation A and B, and later between the situation C and

D, as listed below:

Choice 1

A = certainty obtain 100

B → 10 % chance of winning 500, 89 % chance of winning 100, 1 % chance of winning

nothing

Choice 2

C → 11 % chance of winning 100, 89 % chance of winning nothing
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D → 10 % chance of winning 500, 90 % chance of winning nothing

This experiment showed that the majority of individuals chose in the first case the

alternative A to B, while in the second case they preferred the alternative D to C,

thus violating the independence axiom as if A > B → C > D. Whereas, considering

also the expected utilities, the violation of the affirmation made by von Neumann

and Morgenstern becomes even clearer, as computing the expected utilities in the

first case it is obtained:

U(100) > 0.10 ·U(500) + 0.89 ·U(100) + 0.01 ·U(0) → 0.11 ·U(100) > 0.10 ·U(500)

(2.4)

while in the second case:

0.10 ·U(500)+0.90 ·U(0) > 0.11 ·U(100)+0.89 ·U(0) → 0.10 ·U(500) > 0.11 ·U(100)

(2.5)

Observing the inequalities it can be noted that they contradict each other and

violate the independence axiom.

With another experiment, Tversky and Shafir (Tversky and Shafir, 1992) demon-

strated the violation of the axiom of independence of the alternatives by observing

that introducing another alternative to the already existing set, the volition of the

individual was to delay the decision and, in some cases, the decision was different

than the previous case. This is due to the fact that the individual has not a single

order of preferences.

Also the inversion of preferences is a clear violation of the notion of rationality under-

lying the expected utility theory. In this case, there was an experiment conducted by

Lichtenstein and Slovic (Lichtenstein and Slovic, 1971) on a sample of individuals,

who were asked to choose between two bets. In the first there was a high probability
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of winning a small sum of money and a low chance to lose an even smaller sum,

while in the second there was a low probability of winning a high sum and a high

probability of losing a low sum money. The results showed that individuals, when

asked to choose between the two bets, preferred the one which offers the highest

probability of winning. On the contrary, in the case in which they were asked to

establish the price at which they were willing to give up the bets in question, they

attributed the higher price to bet characterised by the lower probability of winning

rather than to the one whose probability was higher. What is revealed is a rever-

sal direction of preferences depending on the order of presentation of alternatives,

therefore, going to clash with the axiom of the expected utility theory according to

which the decision maker has its own order of preferences.

For this reason, Kahneman and Tversky formulated prospect theory (Kahneman

and Tversky, 1979) that, starting from the expected value theory, took into account

the aspects that characterise the real decision-making process. The prospect theory

does not refers to utility but to the value, defined as the loss or gain relative to a

certain position, considered as the neutral reference point. The representation of

what has just been said is shown in Figure 2.3.

The curve has a “S” shape, concave for the evaluation of gains and convex for

the losses. This function thus expresses both the risk aversion in the area of gains

and the trend of risk propension in the area of losses. In the area of gains the value

function grows more slowly than the decrease of the same function in the area of

losses. The effect of a marginal increase decreases as the distance from the reference

point that is represented by the origin of Cartesian axes. Near to the reference

point the steepness of the curve is greater in the case of loss since the latter will

have a greater impact on the individual. According to this theory the preferences of
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Figure 2.3: Decision maker✬s behaviour towards risk

individuals are treated as “decision weights” that do not always correspond to the

probabilities and that reflect the relative importance of them, overestimating the

low probabilities and underestimating the high chances.

In their studies Kahneman and Tversky gave a significant importance to the cog-

nitive aspect and to the reasoning related to the decision-making process. As very

often the data available for the decision making process are numerous and also the

time to process them is very restricted. In some cases, the decision maker uses its

reasoning capabilities to reduce both time and complexity of the information to per-

form the process in the necessary time. In fact, the intuitive judgments are located

between the operations of perception and reasoning. This type of reasoning is also

applied to the majority of the daily life decisions, such as for example the estimation

of a measure (size, length, etc ..).

Kahneman has outlined the distinction between intuition and reasoning processes

admitting the existence of two different systems that are present in the cognitive

process: System 1 and System 2 (Kahneman, 2003b). System 1 handles all the

processes in which it is involved in a fast and automatic way, using few resources;
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it is associative, implicit and influenced by emotions. It is affected by the routine

and difficult to control or modify. System 1 generates “impressions”, voluntary and

non-verbally explicable, linked to the attributes of the thought objects and percep-

tions.

System 2 handles all the transactions in which it is involved in a slow and serial

way, with the use of many resources, it is easily controllable, flexible and governed

by strict rules. System 2 is involved in the formulation of “judgments”, always

intentional and explicit, which originate from the combination of impressions and

thoughts. The judgments are referred to as “intuitive”, when they directly reflect

the impressions.

As in all the duals processes, one of the functions of System 2 is to monitor and

control the quality of all the operations that use both mental systems. As is in-

dicated by Kahneman and Frederick (Kahneman and Frederick, 2002), the control

performed by System 2 on System 1 is realised in a rather lax, allowing the indi-

vidual the expression of its intuitive judgments, some of which may sometimes be

erroneous.

Another key aspect that characterises information is its “availability” (Tversky and

Kahneman, 1973). In fact there are some information that come to mind much more

easily than other. Availability depends on the cognitive process which has produced

that particular information and on the stimulus/event that it has invoked. What

determines and has a strong influence on the availability of information is the “phys-

ical relevance” of an object, the “emotional significance” of a stimulus, familiarity,

emotional salience and also the temporal distance of the event taken as a reference.

In addition to the availability, “representativeness” of information may change its

perception for the individual (Tversky and Kahneman, 1981). In particular, it is

the mechanism by which to judge if an event x belongs to a class of events y, it
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is evaluated how much x is representative of y (Oliverio, 2007). In other words, it

is evaluated how much x and y are similar. In particular, the representative may

induce decision makers to make two systematic errors “conjunction fallacy” and

“basic probability fallacy” (Tversky and Kahneman, 1983). The first consists in the

representation of information so that is judged as most likely the conjunction of two

events rather than a single event, thus violating the assumption of the theory of

probability. An example of the conjuction fallacy is the following:

Linda is 31 years old, single, outspoken, and very bright. She majored in phi-

losophy. As a student, she was deeply concerned with issues of discrimination and

social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?

• Linda is a bank teller.

• Linda is a bank teller and is active in the feminist movement.

Most of individuals judges more probable the second affirmation although its

probability is less than the first one.

The second fallacy consists of expressing the evaluation of an event only on the basis

of probabilities related to the individual case and not making reference to the entire

population.

An additional systematic error which the human mind can commit is the cognitive

bias called “anchoring” (Kahneman, 2003a), according to which the evaluations of

a certain event is carried out from a specific point, taken as a reference and which is

called “anchor”. The other judgments are made depending on their distance from

that anchor, and the bias consists in the interpretation of the other information

around the anchor. A further bias that can lead to an error is represented by the

so-called “framing effect” (Tversky and Kahneman, 1985). In fact, the way in which
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information is presented, or as it is “framed”, may affect significantly preferences

and opinions. In fact, depending on whether the information is presented in terms

of losses or gains, the decision maker changes its preferences. An example of the

framing effect is the “problem of the Asian disease”, formulated by Kahneman and

Tversky in 1981. To a group of people was asked to provide an answer to the

following decision problem, according to which the health system of the USA is

preparing to face an outbreak of a rare Asian disease that will bring 600 victims. It

is possible to choose between two alternatives:

1. With the program A, 200 individuals will be saved;

2. With the program B, with a probability of 1 by 3 will be saved 600 individuals,

while with a probability of 2 by 3 no one will be saved.

The 72% of the interview people chose the program A, as it was expressed in

positive terms of saved live (highlighting an attitude of risk aversion).

On the contrary, by changing the arrangement of the questions, the answers were

very different than the previous case. If the problem was place in the following way:

1. With the program C, 400 will die

2. With the program D, with a probability of 1 by 3 no one will die, while with

a probability of 2 by 3 will die 600 individuals.

In this case the 78% of people preferred the program D to C (highlighting a

risk tolerance attitude). The difference in the two formulation was related to the

perspective used, in the first case in terms of saved lives, in the second in terms of

lost lives. Hence, the expected utility theory is violated since a way to present a

problem should have no effect on the ordering of the preferences of individuals.
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2.3 Paradigms of the decision making process

A decision making process that tries to represent in the best possible way a re-

alistic scenario is characterised by some constraints and features, typical of this

environment. In particular, the four main features that define a realistic decision

making process are: dynamism, context-dependance, multiple criteria analysis and

the mechanism of social influence. Each of this characteristic is in-depth analysed

and explained in the following sections.

2.3.1 Dynamic decision making

The first aspect that is here analysed is dynamism. As reported in the (Busemeyer,

1999) (Edwards, 1962) a dynamic decision-making process is characterised by three

basic features:

• A set of actions (alternatives) among which make the decision in order to

achieve objective(s);

• The actions at time t depend on the previous time instant;

• The environment in which decisions are made changes spontaneously or as a

consequence of the actions that have been undertaken in previous time in-

stants.

Hence, in a Dynamic Decision Making (DDM) process the decisions made are

dependent one another and the environment changes depending on the decisions se-

quence (Gonzalez et al., 2005). Being then the environment a dynamic one, also the

decision has to be taken in real-time. In dynamic systems, the state of the system

at time t depends on its state at time (t− 1) and, more specifically, it is influenced
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by both endogenous causes (which depend, therefore, on the decisions made) and

exogenous (factors that are beyond the decision makers control). The continuous

variation within a dynamic system can give rise to loops, in the sense that some

variables can have effect and influence on themselves. The dynamic decision making

processes involve a number of cognitive processes, such as monitoring, recognition,

causal inference, search, planning, judgment and choice. The ability to coordinate

these processes with each other interrelated is one of the main components of dy-

namic decision making. The cognitive model used in (Gonzalez et al., 2005) is the

IBLT (Instance-Based Learning Theory), which describes the decision-making pro-

cess based on 4 main stages: Recognition, Judgment, Choice and Feedback. In

particular, each individual stores in its mind phrases about the particular decision-

making process, phrases that will be used to make its decision in a dynamic environ-

ment. The decision maker updates the utility associated with each of this statement

following the response of the system and uses these phrases to make better decisions

and take them as a reference point for the future in case of a similar scenario. The

schematic representation reported in (Busemeyer, 1999), brings a medical dynamic

decision-making process represented by a feedback diagram, where the block S rep-

resents the dynamic environment that takes into consideration both the disturbance

w and T , that is, the action of decision-makers and provides as output the health

status H of the patient. The D block indicates the intention of the patient in the

decision-making process, as it takes as input the current status of health H and the

desired one H∗ and produces as output the action T .

The results of this experiment showed that most of the interviewed doctors lost

control of their patients, no longer able to assign the correct therapy to patients,

always moving away from the more optimal solution that would be provided by the

so schematised system. This result is due to both the behavioural component and
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Figure 2.4: Dynamic decision making process

the influences that the decision suffers from other individuals who may represent his

network of contacts.

2.3.2 Context and Context-dependant applications

The importance of the influence of context in all processes has created a growing

interest from a lot of disciplines during the last decades and several attempts to for-

malise its definition have been made in literature. Schilit et al. (Schilit et al., 1994)

stated that context is linked to the location, nearby person, host or objects, and their

evolution over time. Moreover, the three main features of the context definition are

“where you are”, “who you are with” and “what resources are nearby”. Brown et al.

(Brown et al., 1997) defined context as the information regarding location, time of

the day, season of the year, temperature, etc. Liu et al. (Liu et al., 2011) modified

the previous definitions of context, adding information regarding emotional state,

attention focus, objects and people in the user✬s environment. Snowdon and Grasso
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(Snowdon and Grasso, 2000) considered context as a multi-layered set, where each

element consists of people and of their expertise, information sources, informational

documents, the evaluation of their relevance and relevant pragmatic documents.

Ahn and Kim (Ahn and Kim, 2006) defined context as a set of interrelated events

with logical and timing relations among them, distinguishing among discrete and

continuous events.

Despite all previous examples, there is not a standard definition of context.

Several researchers accept that the definition given in (Abowd et al., 1999), where

context is defined as any information that can be used to characterise the situation

of an entity. An entity is a person, place or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves.

Furthermore, some researchers have also divided the concept of context into cat-

egories, according to its features. In particular, Henricksen (Henricksen, 2003) used

four categories: sensed (data collected directly from sensors), static (information

that does not change over time), profiled (information that change over time with a

low frequency) and derived (information obtained using primary context). Another

categorisation of context can be done as in (Yürür et al., 2016):

• Device context, which includes net connectivity, communication cost and re-

sources,

• User context, which include profile, geographical position, etc.,

• Physical context, which includes temperature, noise level, etc.,

• Temporal context, which includes day, week, month, season, etc.

Given a specific process, the aspects that characterise each of its tasks will have

a different impact on the perception of the context that, in turn, will affect the
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way the process is performed and the obtained output. Therefore, a system must

be able to distinguish and elaborate information coming from the environment,

in order to react and adapt its behaviour to the new conditions. For example,

raw sensor data incoming directly from the source of information are processed in

order to obtain context information (Perera et al., 2014). Hence, as pointed out

in (Abowd et al., 1999), a system is context-aware if it uses context to provide

relevant information and/or services to the user, where relevancy depends on the

user✬s task. Consequently, “context-awareness”, firstly introduced in (Schilit and

Theimer, 1994), indicates the ability of mobile user✬s applications to discover and

react to changes in the environment they are in. According to the different ways

the system reacts to the changing conditions of the environment, context-awareness

has been classified in (Chen et al., 2000) as follows:

• Active context-awareness: the system adapts itself to the changing environ-

ment modifying its behaviour,

• Passive context-awareness: the system presents the new or updated context

to an interested user without modifying its behaviour.

As in (Liu et al., 2011), five different classes of context-awareness can be highlighted:

Context Acquisition and Sensing, Context Modeling and Representation, Context

Filtering and Fusion, Context Storage and Retrieval, Context Application.

Due to the increasing computational capabilities of smart devices, context-aware

applications, being able to recognise user✬s social and cognitive activities anytime

and anywhere (Yürür et al., 2016), have gained a central importance nowadays.

By means of these applications, users share their information to create a common

knowledge and a large community within a smart environment.

Context-aware applications have several fields of application, like healthcare and
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well-being, transportation and location, social networking and environmental mon-

itoring. This has been made possible through the integration of context ubiquitous

sensing, micro-sensors and the geographic information systems (GIS).

For example, regarding the healthcare field, several E-health applications have been

proposed to monitor patients with different diseases, in order to guarantee an ade-

quate level of assistance. Particularly in these cases, it is important to choose neces-

sary context information in order to extract useful information and obtain knowledge

that can permit to adapt dynamically the behaviour of the system according to the

environment characteristics (Guermah et al., 2013). Considering, instead, the so-

cial networking, the SAMOA (Socially Aware and Mobile Architecture) framework

(Bottazzi et al., 2007), allows mobile users to create social networks, following its

movements. It is based on two kinds of context visibility: place visibility (place

awareness) and profile visibility (profile awareness).

2.3.3 Multiple Criteria Decision Making

In a Multiple Criteria Decision Making (MCDM) problem (see (Figueira et al., 2005)

for a collection of surveys on MCDM), a set of alternatives/actions A = {a, b, . . .} is

evaluated with respect to a finite and coherent family of criteria G = {g1, g2, . . . , gp}
(Roy, 1996), that is exhaustive (all relevant criteria are taken into account), cohesive

(if a is at least as good as b for all but one criteria and a is better than b on the

remaining criterion, then a should be preferred to b) and non-redundant (removing

one criterion from the family renders it not exhaustive or cohesive). It is possible to

suppose that each criterion is a real valued function gi : A → R having an increasing

direction of preference (the higher the evaluation of a on criterion gi, the better a is)

or a decreasing direction of preference (the higher the evaluation of a on criterion gi,

the worse a is). For example, in a project evaluation problem, different projects (the
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alternatives using MCDM terminology) can be evaluated with respect to different

aspects such as Opportunity, Potential Risks, Technology, Finance and Employment

(Tavana et al., 2015). Investment cost and Return on Investment can be considered

subcriteria of the financial aspect, while Impact and Technology Importance can be

highlighted as subcriteria in the Technology aspect. Investment Cost has a decreas-

ing direction of preference, while Return on Investment, Impact, and Technology

Importance have an increasing direction of preference.

Three main problems are considered in MCDM: choice, ranking and sorting. Choice

problems consist into choosing one or more alternatives (actions) considered the

best; ranking problems consist into rank ordering all alternatives from the best to

the worst, while sorting problems consist into assigning each alternative to one or

more contiguous classes preferentially ordered from the decision maker. In the con-

sidered example, the decision maker can be interested in choosing the best project,

in ranking all of them, or in assigning to classes, such as “bad”, “medium”, “good”,

ordered with respect to their reliability.

Looking at the evaluations of the alternatives on the considered criteria, the only

information that can be gathered is the dominance relation1 but, especially in case

of a great number of criteria, this relation is really poor since comparing alternatives

a and b, a is preferred to b on some criteria while b is preferred to a on the remaining

ones. For this reason, one needs to aggregate the evaluations of the alternatives to

get some recommendations with respect to the problem at hand. Three different

ways of aggregating the evaluations are the most known in MCDM:

• assigning a real number to each alternative being representative of its degree

of desirability as in the Multiple Attribute Value Theory (MAVT) (Keeney

1An alternative a dominates an alternative b if a is at least as good as b on all criteria and

better on at least one criterion.
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and Raiffa, 1993);

• comparing alternatives pairwise by means of binary relations, to check if one is

at least as good as the other or viceversa as in the outranking methods (Brans

and Vincke, 1985; Figueira et al., 2013);

• using a set of “if...then” decision rules as in the Dominance Based Rough Set

(DRSA) approach that, starting from preferences provided by the DM, induces

some rules expressed in a natural language (Greco et al., 2001).

The first two families of aggregation methods are based on some parameters such

as weights of criteria, marginal value functions, indifference, preference and veto

thresholds, etc. that can be obtained in a direct or in an indirect way. In the first

case, the decision maker is able to provide directly values to all of these parameters,

while in the second one the decision maker provides some preference on reference al-

ternatives, from which parameters compatible with these preferences can be elicited.

Since the direct preference information involves a great cognitive effort from the part

of the decision maker, the indirect technique is the most used in practice (Jacquet-

Lagrèze and Siskos, 2001). In the indirect way of providing preference information

and calling compatible model a set of value parameters restoring the preferences pro-

vided by the decision maker, more than one model could be compatible with them.

Each of these models provides the same recommendations on the reference alterna-

tives but different recommendations on the other alternatives on which the decision

maker did not provide any preference information. Since, using only one compati-

ble model can be considered arbitrary to some extent, Robust Ordinal Regression

(ROR) (Corrente et al., 2014; Greco et al., 2008) takes into account simultaneously

all models compatible with the preferences provided by the DM building a necessary

and a possible preference relation. The necessary and possible preference relations
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hold between two alternatives a and b if a is at least as good as b for all or for at

least one compatible model, respectively.

2.3.4 Social Networking for Decision Making

As previously introduced, a decision making process could regard an individual or

a group of individuals. Even if it is an individual decision making process, to make

the more realistic representation of the process, the decision maker is not usually

isolated, but it is necessary to consider him as a single part of a network of so-

cial relationships. A network is then composed of different parts: entities (actors,

ideas, attributes), relations (link, ties) and aggregations (dyads, triads). In order to

give a more formally definition, a network N consists of a finite set N of entities,

called nodes or vertices, denoted by {n1, n2, ..., ng} and a set of relations L, called

links or edges, {l1, l2, ..., ll} defined on the set of nodes. To have a more immediate

visual representation, a network can be represented as a graph, where the entities

become nodes and the relations become edges (Cioffi-Revilla, 2013). Graph theory

was firstly introduced by Leonhard Euler to solve the Königsberg bridge problem

(Biggs et al., 1976) and from then it is used to solve many real practical problems re-

garding physics, biology, computer science and so on. The study of network started

to develop in the 1920s and Social Network Analysis is born to study relationships

among network entities also with the instruments provided by graph theory. Due to

the complexity, dynamism, irregularity and the evolution along the time axis of the

structures, they are very often named complex networks (Boccaletti et al., 2006).

Taking into consideration the definition of network given before, a graph can be indi-

cated as G(N,K). A graph can be classified as: undirected, directed and weighted.

Considering two general nodes of the set N denoted by i and j, in an undirected

graph the link connecting the two nodes is indicated as lij and the nodes are re-
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ferred as adjacent or neighboring, as it is indicated in Figure 2.5(a). In a directed

graph the order of the two nodes is important and lij indicates a link from node i

to node j (graphically each link is represented from an arrow) and lij 6= lji.

(a) Undirected Graph (b) Directed Graph

Figure 2.5: Graphs Typologies

In a weighted graph, that could be undirected or directed, to each link it is

associated a weight wi,j, that can represent importance, cost, distance (depending

on the considered application case). To give a mathematical representation of a

graph, it is used a matrix, called adjacency matrix A. Hence, a graph G(N,K) can

be represented by a square matrix A having dimension N × N whose elements aij

(i,j=1,. . . N) is equal to 1 if the link lij exists, 0 otherwise (Boccaletti et al., 2006).

More in detail, there are two kind of measures characterising the network: nodal

measures (micro-level measures) and network measures (macro-level measures) (Cioffi-

Revilla, 2013). To the first category belong the centrality measures: degree, close-

ness, betweenness, eigenvector.

Degree centrality for a generic node i of the network N is defined as (Freeman, 1978):

Ci =

∑

j∈G aij

N − 1
(2.6)
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This measure is based on the concept that the most important node of the network

has to be the most active, having the greater number of connections.

Closeness centrality is defined as (Freeman, 1978; Wasserman and Faust, 1994):

Ci =
N − 1
∑

j∈Gdij

(2.7)

where dij is the geodesic distance (minimal number of links that connects node i

to node j) between nodes i and j, i.e. the minimum number of edges from i to j.

According to the previous definition a node is central if it can communicate with all

the others, not only with its neighbor.

To define betweenness centrality for the node i of the network N, it is necessary to

consider other two nodes j and k. It is defined as (Freeman, 1977; Freeman, 1978):

Ci =

∑
j<k∈G njk(i)

njk

(N − 1)(N − 2)
(2.8)

where njk is the number of geodesic between the two nodes j and k and njk(i) is the

number of geodesics in which node i is contained. This measure considers a node

central if it lies between many of the other nodes of the network or, more specifically,

if it is a bridge among the shortest path between j and k.

Eigenvector centrality for a node i is defined as (Bonacich, 1987)

λei =
∑

j

Aijej (2.9)

or, using a matrix notation:

λe = Ae (2.10)

where e is an eigenvector of A and λ is the associated eigenvalue. The largest

eigenvalue is the preferred one. This measure calculates the node✬s centrality as its

summed connections to others, weighted by their centralities.

Instead, among the principal network measures it is possible to include: size, length,
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density, average degree and compactness.

The size S is defined as:

S = card(N) = |N| (2.11)

that is the total number of nodes that constitutes the network and then the set N.

The length L is defined as the number of links that constitutes the network and the

set L. It is defined as:

L = card(L) = |L| . (2.12)

Then it is possible to define the density Q as:

Q =
L

S(S − 1)
=

L

(S2 − S)
(2.13)

which represents the ratio between the number of links actually present and the

number of possible links in the network N .

The average degree is a measure of the general connectedness of the nodes of the

network N and it is defined as:

δ =
2L

S
= Q(S − 1) (2.14)

Compactness is then defined as:

C =

∑

i 6=j
1
dij

S(S − 1)
(2.15)

dij represents the dyadic distance in the network N (Cioffi-Revilla, 2013).

2.4 Network Models

In the scientific literature there are three main network models which regroup most

of the real systems.
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2.4.1 Erdös-Rényi model

The first one is the Erdös-Rényi random graph model, firstly introduced by Paul

Erdös and Alfréd Rényi in 1959 (Erdös and Rényi, 1959). There are two possible

representation of random graphs. The first one, indicated as G(n,m), is charac-

terised by n nodes and m edges, e.g. G(5, 3) is a graph composed by 5 nodes and

3 edges. The second one, instead, is indicated as G(n, p) where n is the number

of nodes and p represents the probability of having an edge between two nodes of

the network (the lower the value of p, the smaller the number of connections in the

network). It is important to highlight that each edge is generated in a uniformly

random way. Furthermore, the probability that a node i of a network composed of

n has a degree k follows a binomial distribution:
(

n− 1

k

)

pk(1 − p)n−1−k (2.16)

Furthermore, for large value of n this distribution becomes a Poisson distribution:

(µ)k exp−µ

k!
(2.17)

where µ = np = cost.

The Erdös-Rényi random graph model is not able to represent most of real systems.

In fact in most of real systems the degree is not a Poisson distribution but follows

a power-law degree distribution. Furthermore, it shows a very low clustering coeffi-

cient, in contrast to what happen in social networks.

Most of real systems are, in fact, composed of a lot of entities (nodes) and they

are characterised by properties and constraints that makes difficult and complex its

representation without losing important information.

Due to the interest on network theory of a lot of disciplines and the representation

of biological, social and communication systems as a network, allows to discover that,
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despite their differences, all the systems show common properties (path lengths,

degree distribution, clustering effects, etc). Two main models are able to represent

real systems and, in particular, they are the Watts-Strogatz model and the Barabási-

Albert model.

2.4.2 Watts and Strogatz model

Watts and Strogatz in 1998 (Watts and Strogatz, 1998) noticed that most networks,

despite their large dimensions, had some links that connect more quickly different

area of the network, allowing an acceleration of communications. This characteristic

is named small-world property and the network is characterised by a high clustering

coefficient and a short path length.

To implement a Watts-Strogatz model the starting point is a ring composed of N

nodes. Each node is connected to its k neighbors. After that, each link that connects

to a clockwise neighbor is rewired to a randomly chosen node with a probability p.

If p = 0 the network created is a regular lattice, instead if p = 1 the graph obtained

is totally random. In this case, the degree distribution for p = 0 is a delta function

centered at K, while for p = 1 it is a Poisson distribution, as for the Erdös-Rényi

model. For 0 < p < 1 the degree distribution is as follows:

P (k) =

f(k,K)
∑

n=0

Cn
K
2

(1 − p)np
K

2−n
pK

2

(k−K
2
−n)

(

k−K
2−n

)

!
exp−p

K
2 (2.18)

The shape is similar to the random graph but it has a peak for k = K and after

this point it decays exponentially.

2.4.3 Barabási-Albert model

The third network model is represented by the Barabási-Albert model. The two

scientists in 1999 (Barabási and Albert, 1999) proposed a network model whose
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generation and growth mechanism are similar to the World Wide Web. In fact this

model is based on two key aspects: preferential attachment and growth mechanisms.

The concept of growth indicates the increase in the number of nodes constituting

the network over time.

The second aspect is the preferential attachment mechanism that can be explained

by this affirmation “rich-get-richer”. That is to say, nodes with high degree acquire

connections at a higher rate compared to nodes with lower degree. Hence, consid-

ering a network composed by m0 nodes, at each time step a new node joins the

network with m ≤ m0 links. The probability that a link from the new node to i will

exist depends on the degree of i:

Π(ki) =
ki

∑

l kl
(2.19)

where l is the number of pre-existing nodes. After t time steps the network will

be composed by N = m0 + t nodes and mt links. The degree distribution, which

indicates that a node will interact with other k other nodes decays with a power-law

as follows:

P (k) ∼ k−γ (2.20)

and after a long time period leads to a value of γ equal to 3. The mechanisms of

growth and preferential attachment explain and are adapt to describe many com-

plex systems as social networks, business networks and transportation networks.

Furthermore, these features can help to explain also some phenomena like economic

disparities in society, due to the biased information that are available to the more

visible nodes (richer) that leads to individual and local decisions that create inho-

mogeneities and disparities in the network.

Figures 2.6, 2.7, 2.8 represent three examples of the network models discussed
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above. All the three models are characterised by a set of nodes composed by n = 50

and differ for the other parameters characterising the network.

In the Erdös-Rényi network model the probability of having a connection between

two nodes p is set equal to 0.3. In the Watts-Strogatz network model the rewiring

probability is set equal to 0.05. At last, in the Barabási-Albert network model the

preferential attachment is linear.

Figure 2.6: Erdös-Rényi network model with n = 50 and p = 0.3
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Figure 2.7: Watts and Strogatz network model with n = 50

Figure 2.8: Barabási-Albert network model with n = 50 and linear preferential

attachment
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Chapter 3

A Dynamic Context-Aware

Multiple Criteria Decision Making

Model in Social Networks

3.1 Introduction

The future interest of ICT resides in study and analysis of innovative tools and

methodologies to extract knowledge from many heterogeneous sources and processes

mainly linked to social networks, smart environments and to the necessity to have

big data available for complex bio-inspired analysis. The innovation is in the usage

of the bio-inspired approach for the social networking, making nodes more human

through the introduction of modules which operate with cognitive and smart capa-

bilities. The ubiquitous and dynamic nature of the network requires smart entities

(node, data, internet of things), which can decide using strategies linked to the spe-

cific context. These entities actively participate to dynamic of social influence and

contagion (Christakis and Fowler, 2007), to interaction among communities and to
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decision process, which involves single entity or groups of them.

These characteristics of the network produce a large amount of data that have to

be handled and organised with more complex and appropriate analysis. In fact Big

data have changed the way to do business and also industry functions (Marz and

Warren, 2015), also in order to improve decision making processes and the whole

performance. Big data ”‘refers to datasets whose size is beyond the ability of typical

database software tools to capture, store, manage, and analyze”’ (Manyika et al.,

2011). This huge amount of data is created by emails, videos, audios, online trans-

actions, mobile sensors, social networks and so on. Big data have four principal

characteristics: volume (and then complexity), variety, velocity (Douglas, 2001) and

veracity (Data, 2015). The first one represents the data dimensions, but this is a

necessary but not sufficient condition. In fact a large amount of data in terms of

volume has not always the degree of complexity to be considered Big data with

respect to a small dataset with a higher degree of complexity that can be considered

as a big data. The second one refers to the different types of data that can be

collected, ranging from videos, texts, images, report of online transactions and so

on. On the basis of the variety, data can be divided in three categories: structured

(coming from labelled data warehouse and easily classified), semi structured (where

elements are separated by tags) and unstructured (not classified and organised).

Velocity indicates the quickness to make available data for analysis (the greater ve-

locity the greater the value that can be generated). Veracity indicates the integrity

and trustworthiness of data in order to use them for their purpose (University, 2017)

(Sagiroglu and Sinanc, 2013) (Zikopoulos et al., 2011).

The importance of big data is also represented by the the value that they can gen-

erate, giving transparency and usability of information with a very high rate. This

permits the performance improvement (and then more profits) and more customised
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products, making processes (especially the decision making ones) more accurate and

updated depending on the data collected. In this sense, with the large amount of

data available also a prediction on the next generation products and services can be

made (Manyika et al., 2011).

But, if on one hand big data generate benefits and value, on the other hand it is

necessary to understand and comprehend the intrisic meaning of data. In fact, de-

ploying new algorithms requires high skills in order to understand and extract the

full meaning and insight of each single datum, always guaranteeing the respect of

security and privacy.

Social networks are one of the source of big data. In fact in a social network the

information regarding each single user is not only the personal one but concerns

his interests and preferences and also the ones of his friends. In fact, as defined by

(Cioffi-Revilla, 2013), a social network is formed by different parts, which include

entities (actors, values, sentiment, ideas, etc..), relations (links, ties, etc..) and ag-

gregations (dyads, triads, etc..). Sociality then can be considered as a paradigm

which characterises the individuals life as every individual plays a role within a

social community (Bottazzi et al., 2007). Each entity, the network node, with its

personal knowledge together with its cognitive and reasoning capabilities, thinks,

decides and acts inside a social network, characterised by the heterogeneity of nodes

and relationships between them, so that each node is unique within the network.

All these parameters contribute to determine the network complexity but also its

structure and function.

Due to the dynamism and evolution of the network, all the processes become them-

selves complex and dynamic. In this context, decision-making process plays a central

role, because the network node, as a result of each change of the network, ranging

from its structure to its security, has to take decisions that will affect present and
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future network processes. But in a social context, where a node, the decision maker

(DM), is not alone, a decision will be the output of the system that will consider not

only the personal capabilities of the node, but also the influences from its neighboring

nodes. These influences, in the proposed model, will alter the stimulus perception

in a way that can be positive or negative, leading to a knowledge and a context-

awareness that can be near or far from reality. The decision criteria will be affected

by these dynamics, modifying its relations, both in terms of typology and impor-

tance according to time, decision✬s context and awareness. In this way the decision

cannot be always the best one and, as a consequence, it could be dangerous for the

node and for the network itself, e.g. in terms of security.

3.2 Multiple Criteria Decision Making with a so-

cial perspective

The decision-making process has been subject of study in a lot of disciplines, from

psychology to mathematics, with the target to have a model that would serve to

represent the individual or group decision-making process. In this way a significant

support in a lot of fields can be given: from electronic and telecommunications to

electrical engineer, from biology to psychology, etc... The decision-maker, both a

human or a network node, makes choices among a set of alternatives, considered in

different contexts and conditions. As defined in (Wang and Ruhe, 2007), a decision

d is the result of a choice of an alternative aj belonging to a set of n alternatives

A = {a1, a2, ..., an}, based on a set of criteria C = {c1, c2, ..., cn} to achieve one or

more objectives.

So, in the decision-making process the set C of criteria plays a central and important

role in addition to environment in which the decision has to be taken.
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From the view of SNA, the social environment can be expressed as patterns or

regularities in relationships among interacting units. The resulting structures are

complex graphs connecting social contacts and, exploiting the graph theory, it is pos-

sible to describe these relationships using metrics structurally, using metrics, such as

centrality measures, clustering coefficient, etc. Social network analysis produces a

different perspective, where the relational ties among actors within the network are

more important than the attributes of actors (Scatà et al., 2014). The behavioural

dimension means that the individuals actions have to be evaluated not in isolation,

but considering the connections with the other nodes. Moreover all these structural

and behavioural aspects have to be considered dynamically, so that connections and

behaviours between nodes change over the time and space (Easley and Kleinberg,

2010). The study of social networks, primarily designed on the basis of the inter-

actions between the different actors, is also a social influence analysis, as different

interacting actors often influence one another in terms of their behaviour. On one

hand, SNA means a study of network in terms of structure, links, relationships, and

for this aim of understanding networks, graph theory helps to develop a language

for talking about the typical structural features of networks. On the other hand,

SNA goes beyond the structure, who is linked whom, looking for behaviours, the

fact that the nodes actions have implicit consequences for the outcomes of everyone

in the system. For this reason, in addition to a language for discussing the structure

of networks, we also need a framework for reasoning about behaviour and interac-

tion in network contexts (Easley and Kleinberg, 2010). SNA is functional to the

decision-making process, as it allows to discover social patterns, behaviours, and

structural properties which influence the strategies and the decisions of the single

node, as a connected entity, and of the clusters it belongs to.
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3.3 Dynamic context-aware decision model in a

social network

3.3.1 Context-Awareness in a social network

Considering a node n1 in a social network N , composed of a finite set of N entities,

a set of relations for n1 can be defined, characterised by an intensity, an importance,

an influence level and an uniqueness within the network.

When n1 is subjected to a stimulus, its perception can vary and may be influenced

not only by its personal capabilities but also by what it receives from the rest of the

network. These causes influence the actions of the node and they can be represented

in the process as a noise, which intensity is different depending on the level of

influence. This noise alters, in a positive or negative way, the stimulus perception

as described by the Weber-Fechner Law (Dehaene, 2003). So, it is possible to

distinguish two types of noise:

• “Constructive” noise: it contains and conveys information, and it exercises a

positive influence on the node behaviour and actions. This can be defined as

a Positive Awareness;

• “Destructive” noise: it influences in a negative way because it conveys only

disorder. The stimulus perception is altered and not enriched of information.

This can be defined as a Negative Awareness.

So for a network N , in addition to the adjacency matrix Aij, it is possible to define

a new network matrix, the Awareness Matrix AWK
i⇆j, that represents the aware-

ness that each single node perceives from all the rest of the network to which it is

connected. As the expression suggests, the awareness matrix is defined for elements
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of the space of decisions context K = {K1, K2, .....Kn}. Each element awK
i→j of the

matrix AWK
i⇆j is characterised by a magnitude, a sign(±), and, in a graph, it is

represented by an arrow with a versus, as it will be reported in the following. Each

element is not symmetric, so the awareness that the i-th node has on the j-th node

is different from the awareness that the j-th has on the i-th node (awK
i→j 6= awK

i←j).

In order to evaluate the awareness on the node i from the other nodes j, in a decision-

making process of the node i, given a particular decisional context Kk, we have to

take into account both the similarity measure (homophily), which considers metrics

to evaluate bio-inspired features of each node and in terms of genotype-phenotype,

and also the centrality measures of the connected nodes to the node i, with regards

to the context Kk, so which nodes are best connected to others or have most influ-

ence. It is important to note that a node j could be central in a particular decisional

context Kk, but not in another one (Kq), so the influence on the node i from the

node j could be negligible if different decisional contexts are considered.

The awareness from node i to j, given the decisional context Kk, depends on vari-

ous parameters: the similarity between i and j, the centrality of the node i in the

context Kk, and the centrality of the node i in its community. Severe centrality

measures have been proposed over the time to quantify the importance and so the

influence produced by a node in a social network. These measures are based on two

different conceptual ideas and therefore we can distinguish two classes of centrality

measures (Latora and Marchiori, 2004). In the first class the centrality of a node in

a network is related to how is it near to the other nodes (degree and closeness cen-

tralities). The second class of centrality measures is based on the idea that central

nodes stand between others on the path of communication, these centrality measures

include betweenness, eigenvector and Katz centralities. The information centrality

(Latora and Marchiori, 2004), which is a combination of the two ideas of centrality
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discussed above, takes into account the efficient propagation of information over the

network, so it is the ability of the network to respond to the deactivation of the

node. Centralization is the process by which the activities of an organization, in

particular those regarding planning decision-making, become concentrated within

a particular location and/or a group. Another important aspect is the centrality

in the clusters. In fact, one may notice that in each community there are usually

some members (or leaders) which play a key role in that community while having

the greatest structural importance in a network. Therefore, these leader nodes are

better able to influence the nodes in the cluster even if their centrality could change

according to the decisional context.

To weight awareness, the idea is to consider the different centrality measures and

apply a new metric, starting from MCA (Multiple Centrality Assessment) (Porta

et al., 2008), moving from spatial networks and from the metric computation of

distances in the urban planning to influence networks, using the different centrality

measures, creating an influence map for decision-making.

A central problem for social influence is to understand the interplay between simi-

larity and social ties (Crandall et al., 2008). Homophily (Lazarsfeld et al., 1954) is

one of the most fundamental characteristics of social networks. This suggests that

an actor in the social network tends to be similar to their connected neighbors or

“friends”. The phenomenon of homophily can originate from many different mecha-

nisms: (a) social influence: this indicates that people tend to follow the behaviours of

their friends. The social influence effect leads people to adopt behaviours exhibited

by their neighbors; (b) selection: this indicates that people tend to create relation-

ships with other people who are already similar to them; (c) confounding variables:

other unknown variables exist, which may cause friends to behave similarly with one

another. These three factors are often interweaved in real social networks, and the
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overall effect is to provide a strong support for the homophily phenomenon.

Social influence refers to the behavioural change of individuals affected by the oth-

ers in a network. Social influence is an intuitive and well-accepted phenomenon

in social networks (Easley and Kleinberg, 2010). The strength of social influence

depends on many factors such as the strength of relationships between people in

the network, the network distance between users, temporal effects, characteristics

of network and individuals in the network. So, in a social context, the data that

an individual perceives about a situation or an event are enriched, but sometimes

also distorted, by the level of awareness that it receives from its neighborhood. It is

also important to stress the importance of the variable time t when analyzing and

modeling the stimulus perception and the influence of the network (Norwich, 1993).

Time cannot be supposed to be a constant variable, because the stimuli perception

is deeply linked with the time instant in which it is considered.

3.3.2 Dynamic criteria interaction

In a multiple criteria decision-making process, the criteria have not always the same

priority and they are not independent each other (Yu et al., 2013). Hence, in this

case, if a criterion c1 has a priority that is higher than the criterion c2, an alter-

native will not be chosen until the decision maker will not have a minimal level of

satisfaction to c1, and in particular it is not sufficient to have only a gain in criteria

c2 (Yager, 2004). Especially in a social network, where a node receives influences

by its neighborhood, the criteria relations and dominance are subjected to change

dynamically following the network evolution. As for the representation of human

belief systems (Cioffi-Revilla, 2013), the criteria can be represented as a network,

in which each node is a decision✬s criterion of the cognitive system and each edge

represents a cognitive association among the criteria. Dynamically, they are all con-

54



nected, weakly or strongly, depending on these three important dimensions: Time

(T), Decision✬s Context (K) and Awareness (AW).

In Fig. 3.1 it is represented an example considering a set C = {c1, c2, c3, c4, c5, c6} of

six decision✬s criteria, whose relations vary along the three axis. To give an example,

considering the criterion c1, in the first block, it is connected only with c2 and c3,

instead in the second one it is connected with c4, c5, and c6 losing all the connections

with c2 and c3.

The evaluation of alternatives in a decision-making process at a given time instant

t1, will depend on the level of awareness and on the decision✬s context that will deter-

mine which criterion prevails among the others. The explanation is that the social

network evolves along the temporal dimensions, modifying its structure, adding new

nodes and cutting off others, and functionality. So, the way to perform each process

and, in this case, a decision-making process, depends on when it takes place, because

the priority and the dominance of a criterion over all the others and their ties can

vary substantially.

The personal social relationships determine the awareness of a node in the network

and, in conjunction with the decisions context considered, modify the criteria rela-

tions and dominance. For example, considering a context K1 at a time t1, where

most of the network nodes consider more important a criterion c1 rather than all the

others, this affects the way for a single node to perceive the world, to decide and to

act, leading it, probably, to conform to the others, through processes of adaptation

(Cioffi-Revilla, 2013) and social contagion (Christakis and Fowler, 2007). On the

contrary, in a context K2 and at a time t2, the criterion c4 may have most impor-

tance and acquires a greater level of importance in the network. All these three

dimensions depend on each other and affect the personal perception of the world,

creating images from which each individual extracts data regarding the real world
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(Cioffi-Revilla, 2013) and the problem taken into account.

�

Figure 3.1: Modification of criteria relationships depending on time, decision✬s con-

text and awareness

3.3.3 Decision making model

As said previously, each decisional process is strictly connected to the elements of

the space K of the decisions context in which it is considered. An element K1 ∈ K

may have contexts closer or more distant, through which influences can spatially

propagate. For example, it is possible to consider a network portion N1, as reported

in Fig. 3.2, composed by a set N = {A,B,C,D,E, F} of six nodes. For each node

of the network all the metrics that characterise itself are defined, such as centrality,

betweenness, degree, etc.. All of these also contribute to define the role of the node

within the network. At a network level, the adjacency matrix for N1 is the following:
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Aij =
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1 − 1 1 1 0
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























Figure 3.2: Example of network with N = 6 nodes. The two different colors represent

the levels of similarity among the network nodes. In this case, A is similar only to

B, instead C, D, E and F are similar each other.

But, considering the space K, it is possible to introduce a greater level of accu-

racy, diversifying each relationship among all the nodes, according to the element

Kk ∈ K, in order to understand how and why certain decisions have been taken. In

Fig. 3.3, the same 6 nodes are considered in four different situations: K1, K2, K3,
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that are contexts belonging to space K and the fourth in which they do not belong

to any context of the space K.

Figure 3.3: Network representation in terms of awareness. The dashed line repre-

sents a negative awareness, instead the continuous line represents a positive aware-

ness. The different dimensions of the node represent its centrality CK
i depending on

the context.

Hence, each context modifies the network structure and its relations, giving a

significant contribution to the modification of the entire network, the node param-
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eters and measures, changing how the decision-making process performs and then

the decision itself. For more than one context, e.g. K1, K2 and K3, the awareness

matrix can be defined, but here, for the sake of simplicity, it is defined only the

awareness matrix for the context K1:

AWK1

ij =





























− +awK1

A→B 0 0 +awK1

A→E +awK1

A→F

+awK1

B→A − −awK1

B→C 0 −awK1

B→E 0

0 −awK1

C→B − 0 0 0

0 0 0 − +awK1

D→E 0

−awK1

E→A −awK1

E→B 0 −awK1

E→D − +awK1

E→F

−awK1

F→A 0 0 0 +awK1

F→E −





























For each element Kk ∈ K, the block diagram in Fig. 3.4 represents how the

decision-making process takes place, according to what expressed in the previous

paragraphs.

Figure 3.4: Dynamic Context-Aware Multiple Criteria Decision-Making Process

For each block, are listed in the following the functionalities:

• Stimuli perception + Noise: It is the block that gives as output the data

regarding the problem. These data can represent a true or a distort image of
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reality and of the problem itself, depending on the influences received from

the social network;

• Information Processing: considering a layered architecture, from the incoming

data, information, having a central role to understand the process is extracted

in order to create knowledge and a greater awareness about the problem con-

sidered;

• Inference: this block is composed by context-awareness and the evaluation of

alternatives. Having the knowledge about the problem and the real world,

the node becomes aware of the context. The node acquires the ability to

adapt according to the location, the collection of neighboring nodes, hosts

and accessible devices, as well as to changes to such things over the time.

So the node will be able to define where it is, with whom it is and what

resources it has (Schilit et al., 1994). So, at this time, defined a space of context

K = {K1, K2, .....Kk} for a network N composed by a set N = {n1, n2, .....nn}
of nodes and a set L = {l1, l2, .....ll} of relationships, it is possible to define a

function φK
i (t), which represents the decisions state of the node at a time t:

φK
i (t) = φK

i (0) + Aij ·
N−1
∑

j=1

|AWK
ij |

where φK
i (0) represents the initial condition, Aij is the adjacency matrix of

N , AWK
ij is the awareness matrix. The state of the node at a time t will

vary the criteria relations and positions in a scale of dominance, influencing

the decision. It is important to highlight that the state of the node cannot be

the real representation of the problem. After that, defined the objectives and

become aware of its state, the node can evaluate the alternatives, taking into

account the possible interferences during the inference process.
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There are two types of inference, as defined in (Di Stefano et al., 2013), (Gigeren-

zer and Goldstein, 1996):

• Inference from given: decisions are taken considering data and information

extracted from a calculation or data extracted from an experiment;

• Inference from memory: decisions are taken considering declared knowledge,

studies, memory and history.

At this time, we add another kind of inference, as it follows:

• Inference from social relationships: decisions are not only a consequence of

our history and/or information acquired, but they are related to cue values

deriving also from the social influence produced by the social relationships

and the dynamical and structural properties of the network, such as similarity

and centrality measures, which characterise the awareness of a node in the

network.

3.4 Summary remarks

In this chapter it has been described a new paradigm of decision-making process. It

can be considered a first research of the conjunction point among the mathematical

model of multiple criteria decision analysis and the social network analysis in order

to build a tool useful for the analysis of network dynamics, exploitable to predict

individual or community behaviour and decisions, while varying the initial conditions

and the structure of the network. Social networks, in fact, have had and continue

to have a rapid growth in popularity, size and complexity, allowing network nodes

to create new connections and relationships. Hence, a huge amount of information

and then knowledge is generated, allowing individuals to acquire more and more
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context-awareness, positive or negative. The model presented in this chapter has

its core idea in taking into account the dynamics and context-awareness. In fact,

the model dynamic is represented by the variation of decision✬s criteria relationships

due to the changes of the awareness matrix which, in turn, varies based on the

bio-inspired features and structure of the node and of the network.

62



Chapter 4

A context-aware and social model

of dynamic multiple criteria

preferences

4.1 Introduction

In order to extract knowledge from many heterogeneous sources and to study the

phenomena within a social network, it becomes fundamental to analyse in detail

each process that takes place within it. Indeed, every process that involves a certain

number of entities, cannot be analysed only in a macroscopic way, because each

single entity contributes to establish the path to follow for the whole system. Look-

ing much more in depth, due to the interactions and the relationships within the

network, each entity is influenced in its opinion and, consequently, in its actions

(Asavathiratham et al., 2001; Grabisch and Rusinowska, 2010a; Grabisch and Rusi-

nowska, 2010b; Barjis et al., 2011; Pachidi et al., 2014).

As reported in (López-Pintado, 2008), individual decisions are often influenced by
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the decisions of other individuals. Without considering any interaction, nodes, in-

volved in a decision making process, easily rank criteria in terms of importance

following an individual cognitive model (Korhonen and Wallenius, 1997). However,

every individual cannot be considered as an isolated entity deliberating carefully

considered decision. Instead the behaviour of each entity is the result of the in-

teraction between its preferences and the dynamic social effects that affect every

individual decision (Pentland, 2014). These processes of influence are present in

different social phenomena such as diffusion of innovations, cultural fads, local vari-

ability in crime activities and other conventions that share the contagion logic. As a

consequence of the influence exercised by the nodes in the network, the preferences

of each node can change during the decision making process bringing therefore to

different decisions at different time instants. Focusing on the psychological, social

and behavioural aspects of a decision making problem, as done in the Behavioural

Operational Research (BOR), would help in making a better use of operational re-

search models (Hämäläinen et al., 2013). A first input to this research field has

been done proposing an interactive multiple criteria decision making method, pay-

ing much more attention to the behavioural realities of decision making (Korhonen

et al., 1990). This is why many subjects such as economics, finance and game the-

ory have addressed their attention to the behavioural research topics (Ackert and

Deaves, 2009; Camerer et al., 2003).

As highlighted in the previous chapter, a fundamental aspect in each decision making

process is represented by the context in which the decision has to be taken. Although

different definitions of context have been given in the literature (Liu et al., 2011),

for the social decision-making model described below the most suitable is “any in-

formation that can be used to characterise the situation of an entity” (Abowd et al.,

1999). As a consequence, the decisions taken from each node are not dependent on
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its preferences only but also on the context in which the decisions have to be taken

and, more specifically, on the context-awareness. Indeed, a different awareness of

the context in which the decision making process takes place can bring to different

decisions. For this reason, it is necessary for the single node taking into account the

context and, in particular, its variability.

In particular, it has been considered a decision making problem in which a node has

to decide among different alternatives evaluated on the basis of several evaluation

criteria. The evaluation criteria represent different points of view taken into account

by the Decision Maker (DM) to highlight the advantages and the drawbacks of each

single alternative (Figueira et al., 2005). The model is based on a weighted sum in

which a weight is assigned to each evaluation criterion. The weight represents the

importance assigned to the criterion by the node.

This model presents two novelties:

• The variability of the weights of criteria depending on the context in which

the decision has to be taken;

• The variability of the context during the time.

On one hand, it is assumed that the preferences of each node in the network and,

consequently, the weights assigned to the different criteria are not fixed during the

decision making process. The preferences of the single nodes will evolve depend-

ing on their inclination to be more or less influenced by the other components of

the network. In particular, the preferences will change according to the similarity

between nodes. The more the preferences, expressed in terms of weights and past

choices, are similar between nodes nh and nk, the more the nodes will influence each

other.

On the other hand, we assume that the decisions taken by the nodes in the network
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at previous instants can influence the decision of each node at the current time.

Indeed, the consideration of the decisions taken previously by the components of

the network brings the node to be more or less aware of the context in which the

decision has to be taken.

We shall point out that the inclination of each node to be influenced by the other

components of the network, as well as the consideration of the context, cause dif-

ferent dynamics of the decisions taken by the nodes showing that the two different

aspects are therefore really relevant in a decision making process.

The proposed model could be applied to different network structures. For this rea-

son, the model has been applied to the celebrated El Farol bar problem (Arthur,

1994), supposing that the network follows, on one hand, the Erdös-Rényi model

(Erdös and Rényi, 1959) and, on the other hand, the Barabási-Albert model (Barabási

and Albert, 1999). In the following, for the sake of simplicity, the abbreviation ER

model and BA model will be used instead of Erdös-Rényi model and Barabási-Albert

model.

4.2 Social Networking and model of influence in

Decision-Making Process

Several research works have analysed the importance of social networking in the

decision making process. Some of these underline the problem of influence inside

networks. In particular, recently some scientists have considered the influence max-

imisation in viral marketing applications, in which competing entities try to expand

their market and maximise their share (Kempe et al., 2015). To give an example a

model for the diffusion of competing alternatives in a social network, in which nodes

decide between some different alternatives has been presented (Anagnostopoulos
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et al., 2015). Nodes usually interact and influence each other, furthermore this in-

fluence is not only restricted to the connected neighbours, but also includes those

nodes affected by their behaviours, due to social connectedness and contagion (Chris-

takis and Fowler, 2013). Social network analysis allows to describe and analyse the

interconnections among individuals and how these relationships drive the processes

and phenomena inside the network. Therefore, it represents a central analytical

tool for understanding the dynamics and diffusion of social behaviours. It allows

to unveil how highly connected systems and entities, which form a complex social

structure, operate (Aggarwal, 2011). In terms of network theory, nodes represent

the individual actors, while ties, referred also as edges, links, or connections, are the

relationships among individuals. The resulting structures could be different com-

plex graphs. For this reason, graph theory could be applied to describe structurally

the relationships between nodes using metrics, such as betweenness, centrality, de-

gree, closeness, clustering coefficient, community detection, etc (Fortunato, 2010;

Wasserman and Faust, 1994). The power of social network analysis is that it pro-

duces a different view, where the attributes of individuals are less important than

their relationships and ties with other actors within the network. Furthermore, the

behavioural dimension means that the individual✬s actions have to be evaluated not

in isolation, but considering the connections with the other players, who can use dif-

ferent strategies (Easley and Kleinberg, 2010). All these structural and behavioural

aspects have to cope with the network dynamics, so that connections and behaviours

between nodes change over the time.

Large amount of data is available for the case of online social networks. Thus these

networks have become much more robust in terms of statistical significance and

useful for the verification of some structural properties, such as the small world phe-

nomenon (Watts and Strogatz, 1998), preferential attachment (Barabási and Albert,
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1999), and other structural dynamics.

From the decision-making perspective, these relationships, together with the struc-

tural properties of the network, could affect the node✬s decisions also more than the

features of the single individual, when considered isolated. Some research studies

shed light on the difference between the social mechanisms represented by social se-

lection or homophily (similarity breeds connection (McPherson et al., 2001) (Di Ste-

fano et al., 2015)), and influence (the tendency for characteristics and behaviours

to spread through social ties such that friends increasingly resemble one another

over time, and this influence may affect the choices (Lewis et al., 2012)). Recent

empirical analysis with social network data has suggested that social influence plays

an important role in the spread of some behaviours and psychological states (Ca-

cioppo et al., 2009),(Christakis and Fowler, 2007),(Christakis and Fowler, 2008). In

fact, Christakis and Fowler have suggested how social influence is significant in some

phenomena, such as the spread of obesity, smoking, or happiness. These behaviours

spread through the network, producing a social contagion effect. More than social

influence, this social contagion process is able to amplify the spread of information

in a social network, and this is the reason why understanding the mechanics of social

contagion is crucial to predict how far it will spread and with what intensity.

In terms of decision making, social influence mechanisms have been analysed in sev-

eral works. In (Hoede and Bakker, 1982), an acceptance-rejection decision-making

problem, in which each node in a social network has to choose between being in

favor or against a certain decision, is taken into account. The basic assumption is

that each node has its own inclination towards a certain decision and its final choice

can be different from this inclination, due to the influence of the other nodes in the

network. Not taking into account any external cause of influence, the final choice

of the node can be different from its inclination only due to the influence exercised
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from the other nodes in the network. The social influence mechanism can also be

described, taking into account the example reported in the following (Rusinowska

and de Swart, 2006). The authors use a vector to represent the inclination of each

node; different values imply different degrees of influence among nodes. In another

work(Grabisch and Rusinowska, 2010a), a direct and an opposite influence are de-

fined. On one hand, the direct influence is ruled from a coalition when it succeeds

in leading the decision of a single node to the coalition✬s inclination, even if the

node✬s inclination was different. On the other hand, a coalition exercises an oppo-

site influence on a single node when, although they have the same inclination, the

node decides in a different way. In contrast with the work previous cited, in another

model the authors considered that the node has an ordered set of possible actions

to choose from, and the concepts of direct and opposite influences are generalised

using the concepts of positive and negative influences. The positive influence mea-

sures the attraction carried on by a coalition on a node having at the beginning an

inclination different from that one of the coalition while, eventually, the final choice

is closer to the coalition✬s inclination. The negative influence is instead exercised in

the opposite direction, but also in this case the final decision is a consequence of the

coalition✬s influence (Grabisch and Rusinowska, 2010b).

The mechanism of social influence is also considered in the model suitable for large

and complex engineered networks, like power grids, communication networks, etc.

In the model, the authors try to understand the basic features of the network✬s global

behaviour and the reason of certain spatial and temporal organisation. Based on a

network of interacting Markov chains, where each chain corresponds to a node of

the network and it is admitted that each chain can differ from one site to another,

one of the most relevant aspects is the influence of the other chains on the dynamics

of each one related to its neighboring sites on the network (Asavathiratham et al.,
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2001). In the same direction, a dynamic model is presented in which the choice of a

node to adopt or not a particular behaviour is a function of the actions made by its

neighbors, which are a random sample of the total population in the previous step

(López-Pintado, 2008).

4.2.1 A unified framework of Social Influence and Context-

Awareness

The model presented in chapter 3 is examined in depth and the analytical formu-

lation is given. To make a brief summary of the key aspects of the model, it is

important to highlight that each process taking place in a social network is charac-

terised by two main features: complexity and dynamism. To perform the different

processes, each node has to take into account not only its personal knowledge but

also the influences perceived from its surroundings. Considering this scenario, every

decision will be the result of a complex and dynamical process, affecting the present

and the future status of the node.

Consequently, given a set of alternatives A and a set of criteria G within social

network, the definition of decision (Wang and Ruhe, 2007)

d = f(A,G) = f : A×G → A (4.1)

has to be extended including the influence that a node can have on the preferences

of the other nodes in the network. In this context, it is important to distinguish

between positive and negative influences. On one hand, a node x positively influ-

ences a node y, if x supports y in its decisions while, on the other hand, x negatively

influences y, if x acts leading y to wrong decisions. For this reason, before making its

decisions, the node has to become aware of what it has nearby and what resources

it has. A crucial part of the decision process is therefore the context-awareness,
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that allows a node to make an aware cognitive decision on the basis of the available

information.

Furthermore, the previous model took into account a particular scheme of the de-

cision✬s criteria that, as a result of the interaction among nodes in the network,

can assume different priorities depending on three dimensions: Time, Context and

Awareness. For example, in a context K1 and at time t1, as a consequence of the

interactions among the nodes in the network and through processes of adaptation

(Cioffi-Revilla, 2013) and social contagion (Christakis and Fowler, 2007), criterion

gi1 may be perceived as the most important one, while in another context K2 and

at a different time t2, criterion gi2 may be considered as the most important one.

So, applying this assumptions, the inference process not only has a dependence from

given and from memory as indicated in (Gigerenzer and Goldstein, 1996), but also

from social relationships, determined by the network properties and structure and

by the perceived influences.

4.3 A Dynamic Multiple Criteria Decision Mak-

ing model with a social perspective

As previously described, a social decision making process is characterised by two

fundamental aspects, that is, the dynamism and the context-awareness.

We shall suppose that m nodes are individually involved in a decision making choice

problem in which a finite set of alternatives is evaluated with respect to p criteria.

In the description of our model we shall use the following notation:

• N = {n1, . . . , nh, . . . , nm}, a finite set of nodes;

• A = {a, b, . . .}, a finite set of alternatives;
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• G = {g1, . . . . . . , gp}, a finite set of criteria.

Since each decision depends on the context in which it has to be taken and, as

defined in (Abowd et al., 1999), context is dependent on the information at hand

that varies over time, the variability of the context should be taken into account in

each decision problem. For this reason, in our model we consider a further criterion

gp+1, such that gp+1(a; t) is the evaluation of a relative to the considered context

at time t. This evaluation is not fixed over time but it varies according to the

variability of the context, following a rule that we shall describe later. Note that

the introduction of criterion gp+1 implies that the new set of criteria that has to be

considered in the decision problem is G = {g1, . . . . . . , gp, gp+1}.

The preferences of node nh are represented by the vector of weights wh =
(

w1
h, . . . , w

p
h, w

p+1
h

)

, where wi
h is the importance given to criterion gi by node nh.

As can be noticed, we introduced also the weight w
p+1
h of criterion gp+1, which rep-

resents the importance given by node nh to the variability of the context and being

dependent on its context-awareness.

Definition 4.3.1. Given a node nh, its vector of weights wh =
(

w1
h, . . . , w

p
h, w

p+1
h

)

and the vector g(a; t) = (g1(a), . . . , gi(a), . . . , gp(a), gp+1(a; t)) composed of the eval-

uations of alternative a ∈ A at time t, the comprehensive value of a is obtained as

follows:

Uh(a; t) =

p
∑

i=1

[

wi
h · gi(a)

]

+ w
p+1
h · e−gp+1(a; t). (4.2)

On the basis of equation (4.2), we shall consider the preference relation %t
h of node

nh at time t defined as follows:

a %t
h b iff Uh(a; t) ≥ Uh(b; t), a, b ∈ A.

Consequently, node nh will choose the alternative a ∈ A such that a %t
h b for all

b ∈ A, that is Uh(a; t) = max
b∈A

Uh(b; t). Without loss of generality, in equation (4.2)
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we shall suppose that criteria g1, . . . , gp have an increasing direction of preference

while criterion gp+1 has a decreasing direction of preference. In the following, we

shall provide two examples to explain the meaning of the variability of the context

and to justify the decreasing direction of preference of criterion gp+1.

Example 4.3.1. Suppose that a consumer has to buy a good, choosing it among a

set of alternative goods. These goods are evaluated with respect to different criteria,

such as quality, aesthetics and price. While the evaluation of the goods with respect

to quality and aesthetics can be supposed constant over time, the price of the goods

evolves in consequence of the choices made by the other DMs in the considered

market. Such a variability of the price can be included in our model as the variability

of the context in which the choice has to be made. Obviously, in this problem price

will have a decreasing direction of preference.

Example 4.3.2. Being inspired by the El Farol bar problem (Arthur, 1994), suppose

that a consumer has to choose a bar to spend the evening. The bars are evaluated

on the basis of criteria such as location, quality of service and people attendance.

Moreover, suppose that DMs prefer less crowded bar. While the location of the bars

and the quality of the provided service can be supposed not variable, the frequency

of people going in the bars changes over time in consequence of the choices made by

the other DMs. In this case, the variability of frequency of people in each bar can

be interpreted as the variability of the context. Furthermore, the preference of the

DM for less crowded bars justifies the decreasing direction of preference of criterion

gp+1.

Note 4.3.1. it is worth noting that in the two examples above mentioned, a great

number of nodes choosing an alternative a will affect negatively the comprehensive

evaluation of a. In the first example, the increase of the price is obviously not ap-

preciated by the buyer and, analogously, in the second example, the increase of the
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number of people going in the bar will reduce the appreciation of the customer for

the same bar.

In some other cases, the increase of the number of nodes choosing an alternative a

will affect positively the comprehensive evaluation of a. For example, in the fashion

market, the increase of the number of people choosing a good will increase the appeal

of the same good generating, therefore, an increase of the good demand and an im-

itation effect in the other buyers. In these cases, equation (4.2) should be modified

replacing w
p+1
h e−g

p+1(a;t) with w
p+1
h ·

(

1 − e−g
p+1(a;t)

)

so that the comprehensive eval-

uation of alternative a will increase due to the fact that several nodes have chosen

this alternative. These cases have been studied in the models of herd behaviour (Av-

ery and Zemsky, 1998; Banerjee, 1992; Bikhchandani et al., 1992; Brunnermeier,

2001). Of course we can have cases in which an attractive and a repulsive effect of

increasing the number of customers can be simultaneously present.

Being the node nh part of a network, its preferences can change during the

decision making process as a consequence of the influence that the nodes in the

network can exercise on it and on the node✬s inclination to be affected by these

influences. On one hand, a node that is not influenced at all by any other node in

the network will not change its preferences. On the other hand, a node more or less

influenced by the other nodes will modify its preferences taking more into account

the preferences of the nodes closer to it and the preferences of the nodes that have

made similar decisions in the past. As a consequence of the previous remarks, the

weight wi
h(t) assigned to criterion gi by node nh at time t will change according to

the following law:

wi
h(t) = δhw

i
h(t− 1) + (1 − δh)

∑

k 6=h

wi
k(t− 1) · f(dhk(t− 1)) · akh
∑

k 6=h

f(dhk(t− 1)) · akh
(4.3)
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where:

• ahk ∈ {0, 1} is an element of the adjacency matrix Ahk representing the con-

sidered network; if ahk = 0, then nodes nh and nk are not linked and do not

influence each other while, if ahk = 1, then nodes nh and nk are linked and

they can influence each other. For the sake of simplicity, we shall suppose that

Ahk is symmetric and therefore the influence exercised by nh over nk is the

same as the influence exercised by nk over nh. Consequently, for each node nh

we can define the set Nh = {nk ∈ N : ahk = 1}, that is the set of nodes that

are linked to nh and that could influence its decisions.

• δh ∈ [0, 1] represents the node✬s inclination to be influenced by the nodes

belonging to Nh; the less δh, the more nodes in Nh will influence the preferences

of nh; in particular, if δh = 0, then the preferences of nh will be completely

dependent on the preferences of the nodes in Nh, while, in the opposite case,

if δh = 1, then the preferences of nh are not affected by the nodes in Nh. For

the sake of simplicity we shall suppose that nh can be influenced in the same

way by nodes in Nh; however, it could be reasonable to consider an inclination

δhk, representing the inclination of nh to be influenced by nk;

• f(dhk(t − 1)) is the importance given by nh to the preference of node nk on

criterion gi at time t− 1 (wi
k(t− 1)); moreover f is a non-decreasing function

of the distance dhk(t − 1) that will be described later. For the moment, we

assume that:

f(dhk(t− 1)) =
1

d2hk(t− 1)
. (4.4)

The idea under equation (4.3) is that the preferences✬dynamics of node nh is depen-

dent on its inclination to be influenced by nodes belonging to Nh. In particular,

on one hand, preferences of nh at time t will be dependent on its preferences at
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time t− 1 and, on the other hand, nh will give a weight to the preferences of node

nk ∈ Nh depending on the distance dhk(t− 1) between the two nodes. This distance

is computed in terms of similarity between the preferences of the two nodes and in

terms of similarity between the choices made by the two nodes at previous times.

The idea is that the more the preferences (the weights and the past choices) are

similar between nodes nh and nk, the more nk influences node nh.

Obviously, the more similar are preferences and choices of nodes nh and nk, the

more importance will be assigned to the preferences of nk from nh.

From an analytical point of view, dhk(t), that is the distance between nodes nh and

nk at time t, is computed in the following way:

dhk(t) =

√

√

√

√

p
∑

i=1

[

wi
h(t− 1) − wi

k(t− 1)
]2

+ xhk(t). (4.5)

The first part is the Euclidean distance between the weights vectors of nh and nk

representing the distance between the preferences of the two nodes. The second part,

instead, is a measure of the number of times nodes nh and nk have taken different

decisions in the previous considered time instants. With respect to the second part,

the importance given to the decisions will be dependent on the instants in which

they have been taken. In particular, the more recent they are, the more importance

they have. Formally, xhk(t) can be expressed as:

xhk(t) =

#PT
∑

r=1

βγr−1, (4.6)

where:

• #PT is the number of considered previous time instants and it can be in-

terpreted as the memory of the system. If #PT=0 then the system will be

memory less. Therefore the output of the system will be based only on the
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current system state and it will not take into account its history. Instead, if

the system has a memory, as proposed in our model, the output of the system

is not dependent on the current state only but also on some previous instants.

This can be considered an important property of the system, because having

memory of what previously happened, influences the behaviour of each sin-

gle node, contributing to increase or decrease the distance between nodes, as

indicated in equation (4.5).

• β =























1 if at the considered time instant, nodes nh e nk

have not taken the same decision

0 otherwise























.

• γ ∈ [0, 1] is a damping coefficient used to weigh the decisions taken in different

time instants.

It is worth noting that the two parts of equation (4.5) are not expressed in the

same scale. Indeed, the distance between the weight vectors can assume values

in the interval [0,
√

2], while xhk(t) can take a value in the set
{

0, γ, . . . , γ#PT−1}.

To make commensurable these two values, xhk(t) has been normalised using the

following equation:

xhk(t) ·
√

2(1 − γ)

1 − γ#PT
. (4.7)

In this way xhk(t) will assume values in the interval [0,
√

2] as the first part of equa-

tion (4.5).

As explained above, the variability of the context plays a central role in the

dynamics of node✬s preferences. Since the modification of the context is due to the

decisions taken by all nodes in the network, it is assumed that the evaluation of an

alternative at time t and, therefore, in a certain context, depends on its evaluation
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at time t − 1 and on the number of times the alternative has been chosen by the

nodes in the network at times t−1 and t−2. Formally, the evaluation of alternative

a at time t in a considered context will be obtained as follows:

gp+1(a; t) = gp+1(a; t− 1) + α
[M(a; t− 1) −M(a; t− 2)]

|N | (4.8)

where M(a; t− 1) and M(a; t− 2) indicate the number of times that the alternative

a has been chosen at the time instants t− 1 and t− 2, while α is a coefficient that

represents the relevance of the increase or decrease of the number of times that

alternative a has been chosen in the variation of the context.

Referring to examples 4.3.1 and 4.3.2, in the first one the variation of the context

will provide a variation on the price of the considered goods while, in the second

one, the variation of the context will affect the number of people going into the bar.

On one hand, the increase of the demand of a particular good will cause an increase

of its price while, on the other hand, the increase of the number of people going into

a bar will convince more other people to go there.

4.3.1 Main components of the model

For a given network, i.e. for given values ahk, the two components that affect the

dynamics of the model are δh and α.

As introduced in the section above, δh, h = 1, . . . ,m, represents the node✬s incli-

nation to be influenced by the other nodes in the network connected to it. So, its

introduction, as a parameter that influences the dynamics of the entire system, is

representative of the behavioural sphere, and in particular of the node volition to

be part of a community and to take into account the others✬opinion. δh can assume

values in the interval [0, 1]. If δh = 0, then node nh is totally influenced by other

nodes in the network to which it is connected. Notice that, in equation (4.3) the
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first term will be equal to 0, and the weights updating process will continue till the

new weight will be equal to the barycenter of the group. Instead if δh = 1, then

nh will not take into account the others✬opinion and its preferences will not change.

Unlike the previous case (δh = 0), and according to (Schelling, 1969), this can be

considered a point of stable equilibrium, where a mechanism of complete segregation

is active and no node will move towards another choice.

In addition to δh, another important parameter of the model is α. It is a coefficient

that represents the relevance of the increase or decrease of the number of times that

an alternative has been chosen in the variation of the context. The introduction of

α changes the behaviour of the nodes, inducing the whole system to oscillate much

more before stabilizing itself. As pointed out in the literature review section, context

plays a central role because different issues can have different perception and rep-

resentation, due to different contexts, leading to different level of awareness about

the task. The parameter α can assume values greater than zero. If α is equal to

zero, the context has no importance on the system✬s dynamics, because it assumes

always the same value, and it can be compared to a static model.

4.4 Model Performance and discussion

In this section, the proposed model is applied to Example 4.3.2 considering two

network structures. In the first part of the section, it is assumed that the network

follows the ER model (Erdös and Rényi, 1959). It will be highlighted how the

variation of the main components of our model, that are the nodes✬inclination and

the variability of the context, will affect the dynamics of the preferences.

In the second part, instead, the network will follow the BA model (Barabási and
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Albert, 1999) and it will be underlined how the dynamics of preferences is subject

to the network structure modification.

As shown in Figure 4.1, in the ER model, all nodes have approximately the same

number of connections, while in the BA model only some nodes have high degree.

For example, considering node n13 in Figure 4.1, one can see that in the ER model,

shown in the left side, its degree is 16, while in the BA model, shown in the right

side, its degree is 1.

Figure 4.1: Degree of node n13, the red one having the greatest size, in the ER

model and in the BA model

The network is composed of m = 100 nodes representing customers that have to

choose a bar to spend the night. Each bar is evaluated on three criteria Location

(L), Quality of Service (QoS) and People Attendance (PA) as shown in Table 4.1.

It has been supposed that the evaluations of the four bars with respect to L and

QoS are expressed on a [0, 1] scale and both of them have an increasing direction

of preference. Since PA expresses the variability of the context in which nodes
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have to make their choices, the evaluations of the bars on this criterion are variable

over time, while evaluations on L and QoS are supposed fixed. In particular, it is

assumed that the evaluations of the four bars with respect to PA presented in Table

4.1 are based on an estimate of the frequency of the customers in the considered

bars. To each node a vector of weights is associated and each of them represents

the importance given by the node to the corresponding criterion.

Table 4.1: Evaluations of the bars on the three considered criteria

Bar/Criteria Location (L) Quality of Service (QoS) People Attendance (PA)

bar1 0.684 0.086 0.058

bar2 0.452 0.682 0.192

bar3 0.259 0.851 0.177

bar4 0.203 0.891 0.400

The considered network configuration has a probability p = 0.1, where p = 0.1 is

the probability of having a connection between two nodes. The network will be

represented by a graph whose vertices are the nodes of the network. Each node will

be colored according to the choice made. In all Figures in this section, the colors

associated to the four alternatives are those shown in Table 4.2.

To study the behaviour of the model in a simulation environment, it is assumed

that:

• the inclination of each node nh to be influenced by the other nodes in the

network is represented by a value δh taken uniformly in the interval [0, 1];

• α = 1;
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Table 4.2: Colors associated to the nodes depending on the choice made

Bar Color choice

bar1 Red

bar2 Yellow

bar3 Blue

bar4 Green

• there is not any external cause of influence and, therefore, the preference of

the nodes will change only as the effect of the influence exercised by the other

network✬s nodes;

• the network configuration does not change over time in the sense that the

nodes in the considered network, as well as their mutual connections, do not

change over time;

• starting from time t0, in order to update the evaluations of the four bars

with respect to the considered context (the evaluations of the alternatives

on criterion PA), the choices made by the network✬s nodes at time t0 − 1

are represented by the vector (26 − 22 − 24 − 28) meaning that, 26 people

choose bar1, 22 choose bar2 and so on. Moreover, the choices made by the

nodes at time t0 are the consequence of the application of equation (4.2) to

the evaluations in Table 4.1. For example, considering the starting vector

of weights (w1
1, w

2
1, w

3
1) = (0.491, 0.173, 0.336) and the bars✬global evaluations

(0.668, 0.617, 0.556, 0.479), node n1 will therefore choose bar1.

Note that in all performed simulations, it is considered #PT equal to 17, since it
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was observed that considering a value greater than 17 does not affect the dynamics

of the choices.

The first characteristic it is important to highlight is the dynamic behaviour of

the nodes✬choices, as shown in Figure 4.2, where the configurations of the network

with respect to the choices made by its nodes, for the first iterations, are reported.

As one can see, at time t0, the choices made by the nodes in the network are

(41 − 15 − 37 − 7) while, as a consequence of the influence mechanism and due to

influences on nodes✬inclinations, at time t0+5 the choices made by the nodes became

(3 − 79 − 0 − 18).

The variation in the choices made by the nodes at different iterations is due

to three main reasons: the variation of the importance assigned to the different

criteria, the inclination of each node to be influenced by the other nodes to which

it is connected in the network, and the variation of the context. Regarding the first

point it is reported, as example, the dynamics of weights of node n30 during the

first considered iterations, shown in Figure 4.3 on the left. As one can see, at the

beginning, the most important criterion for this node is L followed by PA and QoS;

as a consequence of the influence mechanism, at iteration t0 + 9, criteria L and QoS

assume, more or less, the same importance. Then, at iteration t0 + 13 criterion QoS

becomes more important than PA. In the end, QoS is the most important criterion

for n30 while, at the beginning it was the lowest important one.

As already mentioned before, applying equation (4.3), iteration after iteration, the

preferences of a node will be always closer to the preferences of the nodes that

have taken similar decisions in the previous iterations and more different from the

preferences of the nodes that have taken different decisions. Therefore, just after

a certain number of iterations, a cluster effect will appear in the network so that
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Figure 4.2: Dynamics of the decisions in a ER network with p = 0.1; different δh for

all h and α = 1

nodes that have taken similar decisions in the past will have approximately the same

preferences and the weights assigned to the different criteria will be subject only to

very slight modifications as shown in Figure 4.3 on the right.

The second reason for the dynamics of choices is the inclination of each node to

be influenced. To highlight this aspect, two networks are compared. They differ for

the inclination of 10 nodes only, that is, 90 nodes have the same value of δh in both

cases while δh of the 10 remaining nodes are pairwise exchanged. In this way the
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Figure 4.3: Dynamics of the weights for node n30

average inclination δh of the nodes in the two networks is the same.

Note 4.4.1. When a modification to a parameter is done, all the other parameters

remain fixed as listed in the above assumption. For example, in this comparison,

only δh is modified , while α = 1 and the vector representing the choices made by

the nodes at time t0 − 1 is (26 − 22 − 24 − 28).

As shown in Figure 4.4, only one node (n40), the node having the greatest size

in the Figure, makes a different choice in the two networks, because it chooses the

first alternative in the first case, while it chooses the third alternative in the second

case. Even if this change could appear not significant, it is possible to observe that

in the two networks the number of connections and the nodes to which they are

connected do not change. Consequently in modifying its preferences, each node will

be influenced by the same nodes. The only difference is that 10 out of the 100 nodes

change their inclination δh to be influenced and, in particular, n40 is exactly one of

them.

The third aspect, causing the dynamics of the choices and that represents one of
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Figure 4.4: Comparison between two networks differing for the values of δh of ten

nodes only

the novelty introduced in the paper, is the variability of the context. In particular,

it is shown how different values of α in equation (4.8) affect the dynamics of the

preferences. For this reason the dynamics of the same network varying only the

value of α are compared. In the first network α = 1 is considered, while in the

second network, α is equal to 2. Therefore the variability of the context is greater

in the second case.

As one can see in Figure 4.5, different values of α have a different impact on the

dynamics of the choices made by the nodes in the network since 28 of them make

different choices in the two cases.

It is worth noting that the importance of taking into account the variability of the

context in this model. As already observed above, according to the dynamics of

weights described by equation (4.3), after a certain number of iterations the weights

of the criteria will not change anymore (see Figure 4.3 on the right) and this implies
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Figure 4.5: Comparison between the same network considering different values of α

in equation (4.8)

that the preferences of the node for the considered criteria will not be subject to any

modification. Nevertheless, the introduction of the variability of the context may

bring to an oscillation of the decisions taken from the different nodes as observed in

Table 3(a).

In the first iterations, the configurations of the network will vary more deeply since

two phenomena occur simultaneously, that are, the modification of the preferences

due to dynamics of the weights described by equation (4.3) and the variability of

the context described by equation (4.8). In Table 3(b), one can instead observe a

different dynamics of the network due to the value of α = 0, implying that the vari-

ability of the context is not taken into account in the dynamic of the network. At

the beginning, the network passes through different configurations in consequence of

the variation of the preferences of the nodes, preferences that become more similar
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Table 4.3: Dynamics of the decisions taken by the nodes in the network considering

α = 1 and α = 0, respectively

(a) α = 1

Time Configuration

t0 41-15-37-7

t0 + 1 15-52-0-33

t0 + 2 37-0-63-0

t0 + 3 5-77-0-18

t0 + 4 36-0-64-0

t0 + 5 3-79-0-18

t0 + 6 36-0-64-0

t0 + 7 3-79-0-18

(b) α = 0

Time Configuration

t0 41-15-37-7

t0 + 1 37-17-44-2

t0 + 2 37-17-44-2

t0 + 3 36-18-45-1

t0 + 4 36-18-46-0

t0 + 5 36-17-47-0

t0 + 6 36-17-47-0

t0 + 7 36-17-47-0

to the preferences of the nodes that have taken similar decisions in the past. At

iteration t0 + 5 the configuration of the network becomes 36− 17− 47− 0 and from

then on, it will be always the same. Indeed, once that the weights are not subject

to great modifications, the different nodes will take always the same decision since

the context does not play anymore a role in the decisions taken by the nodes. It is

important to highlight that when it has been stated that the configuration of the

network reached at iteration t0 + 5, that is 36 − 17 − 47 − 0, does not change in

the following iterations, it means that not only that the number of nodes taking a
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certain decision does not change (that is, there will be always 36 nodes choosing the

first bar, 17 nodes choosing the second bar and so on) but also that the same nodes

will take always the same decision. This means that, beginning from iteration t0+5,

each node nh will always take the same decision.

Before concluding this part, it is necessary to interpret the oscillations in the config-

urations of the network observed in Table 4.3(a). Indeed, as previously explained,

starting from a certain iteration, the weights of the different nodes are not subject

to any modification. Nevertheless, the network oscillates always between two con-

figurations (see the configurations at the time instants t0 + 4 and t0 + 6 as well as

the configurations at time instants t0 + 5 and t0 + 7). It is possible to start the

analysis from the time instant t0 + 4 considering the network configuration at this

time instant, that is, 36 − 0 − 64 − 0. At this time instant, bar1 and bar3 are the

most crowded, while bar2 and bar4 are empty. Due to an increase of their cus-

tomers, according to eq. (4.8), the evaluations got by bar2 and bar4 will decrease

at the time instant t0 + 5 rendering the two bars more appealing for the different

customers that, consequently, will decide to leave bar1 and bar3 in favor of bar2 and

bar4. For this reason, the configuration of the network at the time instant t0 +5 will

be 3− 79− 0− 18. Analogous reasons explain why at the next time instant (t0 + 6),

the customers decide to leave bar2 and bar4 in favor, again of bar1 and bar3.

In the second part of this section how the structure of the network affects the

dynamics of the preferences is shown. For this purpose, it is assumed that the

network follows the BA model (Barabási and Albert, 1999), with a linear preferential

attachment. In a first moment it is assumed that the inclinations of the nodes, as

well as the starting weights and the parameter α, are those considered in the ER

network. By applying the model to this network structure one can observe the

dynamics of preferences shown in Figure 4.6.
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Figure 4.6: Dynamics of the decisions in a BA network with a linear preferential

attachment; different δh for all h and α = 1

In Table 4.4 the dynamics of the preferences for the first iterations in the two

different network models are reported. As one can see, at the time instant t0, the

decisions taken by the nodes in the two networks are the same decisions taken at the

time instant t0 in the ER network, since it is supposed that the nodes have initially

the same starting weights. Already at iteration t0+1, it is notable observing that the

choices done by the nodes in the two networks are different. Indeed, in the ER model,

52 customers decided to go to bar2 while, in the BA model, 59 customers decided to

go to the same bar. Moreover, while the number of customers going in bars 1 and

3 is the same in the two network models, the number of customers deciding to go
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to bar4 is different (33 in the ER model and 26 in the BA model). Another aspect

really relevant is that, while the vector of preferences begins to oscillate between

two configurations already at iterations t0 + 4 and t0 + 5 in the ER model, the same

behaviour can not be observed for the BA model. Indeed, in this model, the vector

of preferences oscillates between different configurations (36-0-64-0 and 3-79-0-18 in

the ER model and 5-79-0-16 and 33-0-67-0 in the BA model) and, moreover, these

oscillations begin later than in the ER model (at iterations t0+42 and t0+43 instead

of iterations t0 + 4 and t0 + 5 in the ER model). Because, as previously underlined,

the main components of the network (nodes✬inclinations and α) are the same, the

different dynamics of the preferences in the two networks is due to their structures

and, in particular, to the number of connections of single node. This implies that

while, on average, ten nodes can influence the variation of the weights of each node

in the ER model1, in the BA model the preferential attachment law implies that not

all the nodes are connected to the same number of nodes.

As already done for the ER model, it is shown here that the variation of the main

components of the model affects the dynamics of the preferences also with a different

network model. To highlight the influence of nodes✬inclinations on the dynamics of

the preferences, three different simulations, in which the inclinations of ten nodes

are swapped, are performed. In particular, in the first case the inclination of the

same nodes already considered in the ER model have been swapped. What one can

observed is that the dynamics of preferences in this case is very similar to that one

obtained with the starting inclinations. Presumably this behaviour is due to the fact

that the ten nodes considered in the swapping had a low degree and, consequently,

they were influenced and influenced, only a very limited number of nodes. For this

reason, in the second and in the third simulations the inclinations of the nodes have

1It has been considered an ER model with p=0.1
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Table 4.4: Comparison between the dynamics of the decisions taken by the nodes

in the two network models

(a) ER model

Time Configuration

t0 41-15-37-7

t0 + 1 15-52-0-33

t0 + 2 37-0-63-0

t0 + 3 5-77-0-18

t0 + 4 36-0-64-0

t0 + 5 3-79-0-18

t0 + 6 36-0-64-0

t0 + 7 3-79-0-18

(b) BA model

Time Configuration

t0 41-15-37-7

t0 + 1 15-59-0-26

t0 + 2 34-0-66-0

t0 + 3 7-77-0-16

t0 + 4 37-0-63-0

t0 + 5 4-80-0-16

t0 + 6 36-0-64-0

t0 + 7 5-79-0-16

been swapped not in a random way but following a certain scheme. More precisely,

in the second simulation, the inclinations of ten nodes, seven presenting an high

degree and three presenting a low degree, have been swapped. In particular, the

inclinations of five nodes having degrees 10, 8, 8, 7 and 5 have been swapped with

the inclinations of five nodes having degrees 1, 7, 2, 6 and 2, in this order. This

means that the inclination of the node with degree 10 has been swapped with the

inclination of the node having degree 1; the inclination of the first node having degree

8 has been swapped with the inclination of the node with degree 7, and so on. In
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the third simulation, instead, the inclinations of five nodes having high degree with

the inclination of five nodes having low degree, have been swapped. In particular,

the inclinations of five nodes having degrees 10, 8, 8, 7 and 7 have been swapped

with the inclinations of five nodes having degrees 1, 3, 1, 1 and 2.

Figure 4.7: Comparison of the different network configurations obtained swapping

the inclination of ten nodes

As one can see in the middle picture and on the right picture of Figure 4.7 the last two

swapping of the inclinations causes a different dynamics of preferences. In particular,

in the first swap, the network decisions oscillate between the configurations 0-84-0-

16 and 29-0-71-0 while, in the second swap, the oscillations are between 0-81-0-19

and 37-0-63-0. In these two cases, the different dynamics of the decisions is due to

the fact that at least one of the nodes involved in the swapping of the inclination

has a high degree and, consequently, more nodes influence its decisions than in the

first swapping.

In the end, the impact of the parameter α on the dynamics of preferences also for

the BA model has been analysed. To this aim it has been considered two different

values of α that are, α = 1 and α = 2. In Figure 4.8, one can observe that the value
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Figure 4.8: Decisions taken by the nodes for two different values of α for the BA

model

of α affects the dynamics of preferences and, consequently, the decisions taken by

the nodes in the network. In particular, at the same time instant, 23 nodes take

different decisions in the two network configurations. Moreover, while in the first

case the decisions oscillate between the configurations 5-79-0-16 and 33-0-67-0, in

the second one, the oscillations of decisions are between the configurations 5-56-0-39

and 42-0-58-0.

4.5 Summary remarks

In this chapter a new social network model in the Multiple Criteria Decision Making

framework has been proposed. Assuming that individual decisions are often influ-

enced by the decisions of other individuals (López-Pintado, 2008), the new model is

characterised by two main novelties that are the variability of the preferences of the
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nodes in the considered network, and the variability of the context in which the same

preferences have to be taken. On one hand, the preferences of each node are subject

to the influence exercised by the nodes in the network to which it is connected. The

node will be more or less subject to this influence depending on its own inclination

that is represented by the parameter δh. On the other hand, the variability of the

context and, in particular, the context-awareness of each node, are dependent on the

decisions taken by the nodes in the network at the previous instants that will also

influence the decisions at the current time. To show the applicability of our model

to different network structures, it has been applied to the El Farol bar problem

(Arthur, 1994) supposing that the network follows two different models that are,

the ER model (Erdös and Rényi, 1959) and the BA model (Barabási and Albert,

1999). Simulation results show that the variation of the inclination δh of each node,

as well as the variability of the context represented by the parameter α, and the

number of connections between nodes in the network, affect the dynamics of the

decisions in both network models. Moreover, different dynamics of the decisions

have been observed in the two models as a consequence of the network✬s structure.
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Chapter 5

Multiple Criteria Decision Making

and Supernetwork

5.1 The science of Supernetwork

Networks contribute to the correct functioning of a lot of processes in our societies.

It is for example possible to count transportation networks, that permit to travel all

over the world, communication networks, through which the exchange of messages

among individuals is possible, and logistical networks, that allow the circulation and

exchange of goods. As already introduced in the previous chapters, networks are

characterised by the main features of complexity, dynamism, large-scale nature with

a trend to have an increasing congestion and whose individuals have behaviours that

affected not only the single but also can have effect, positive or negative, on the other

individuals of the network. To give examples of real networks and its large-scale,

it is possible to consider that Chicago✬s Regional Transportation Network counts

12.982 nodes, 39.018 links, and 2.297.945 origin/destination (O/D) pairs (Bar-Gera,

2002), instead the Internet users around the world are about 3.675.824.813 (datum
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provided on June 30, 2016) (Group, 2016). In order to avoid problems and malfunc-

tioning of the network, processes of resources optimization are needed. In this sense,

the decision making process, whose main features are complexity and dynamism, has

a central role in the science of network. Hence, in this chapter the decision mak-

ing process is analysed and performed with the analytical tools provided by the

Supernetwork theory. It exploits the analytical instruments of optimization theory,

network theory, game theory, multiple criteria decision-making, the theory of varia-

tional inequalities (Nagurney, 2013), as well as projected dynamical systems theory

(Zhang and Nagurney, 1995; Nagurney and Zhang, 2012).

Supernetworks are defined as “networks of networks” that are “above and beyond”

the existing classical networks and they are composed of nodes, that represent the

locations in space, links, indicating connections of roads or cables, and flows, rep-

resenting vehicles or data. In particular, through the supernetwork framework the

alternatives available are shown to decision makers and their individual behaviour

is reproduced with the typical volition to optimise a particular criterion. Further-

more the flows are computed on the supernetwork, which may consist of product

shipments, travelers between origins and destinations, financial flows, information

flows, resource and energy flows, as well as the associated costs and “prices”. Su-

pernetworks are able to represent issues not only referred to physical networks but

also to abstract networks (Nagurney, 2011).

Supernetworks allow to solve problems such as:

• Financial Problems, allowing, after the initial investment, the optimisation of

distribution of assets and liabilities of goods, minimising, at the same time,

the risk aversion (Nagurney and Siokos, 2012);

• Electrical Networks, modeling the process of energy distribution, from the

producers to the final users (Liu and Nagurney, 2009);
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• Transportation and Telecommunication Network, providing the best path from

source to destionation, taking into account costs, length and traffic conditions

(Nagurney and Qiang, 2007);

• Management and Business, studying the pros and cons of companies mergers,

where each company is seen as a network of economic activities ranging from

production, distribution and storage;

• Humanitarian Logistic Activities, describing the best path to send essential

goods to people affected by catastrophic events (Nagurney and Qiang, 2012).

In the Supernetwork framework it is possible to distinguish two phases: problem

definition and problem analysis.

After that it has been identified the problem to solve, in the first phase the problem

is analysed and it is represented by a multilevel graph G = [N,L], where N and

L denote the set of nodes and arches respectively. An example of Supernetwork is

shown in Figure 5.1.

Each node of the set N represents a decision maker and, furthermore, nodes

that perform the same task independently are placed on the same network level, as

it is possible to see in Figure 5.1, where three levels are present: Manufacturers,

Retailers and Demand Market. The relationships among decision makers intra- and

inter-level are represented by the arches, to which it is associated a flow, represent-

ing an inter-level service transition from one decision maker to another. This flow

indicates the objective of the optimization process.

The second phase of the Supernetwork framework is represented by the problem

analysis. In this step, resources involved in the process and the decision criteria are

identified in order to start the optimization process. To each arc, representing a

temporal relation between two events A and B, it is associated a set of variables,
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Figure 5.1: Model of Supernetwork

earlier identified, that permits the transition from A to B. Furthermore, it is associ-

ated a cost to go from A to B and it is dependent on the resources involved; the cost

function can be one for each decision criteria to be optimised (e.g. time, cost, risk,

etc.) and to which can be associated a weight. Each arc has a global cost function

given by the sum of each single cost function and the set of all the cost function of

each arc represents the objective function of the problem. The variational formula-

tion of the objective function and finding the solution to the optimisation problem

permits to find the “optimal” resources values to involve in the process in order to

offer the best services to each decision maker to improve the system efficiency. It

is important to highlight that the flows, obtained after the first phase, are not only

admittable; in fact, often, it is necessary to define a set of constraints, called feasible

set, that the flows have to respect.
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5.2 Supplier selection and supply chain model

Supplier selection is an issue that regards and involves resources from the client side.

Choosing the right supplier implicates an evaluation based not only on the goods

price but several other criteria could have an impact and an influence on the process.

It can, in fact, be considered as a multiple criteria decision making problem and it

can be modeled through the mathematical and analytical tools provided by MCDM.

The other factors or criteria that may impact the supplier selection process can be,

in addition to price, quality, reliability and delivery performance for example. Espe-

cially in Management Science, supplier selection has received a lot of interest, due

to its classification as strategic in the Operation Management decision area (Verma

and Pullman, 1998), having a major impact on companies costs.

In one of the first works on this research area, Dickson identified over twenty selection

criteria, such as quality, delivery, performance history, warranties, price, technical

capability and financial position, for supplier selection (Dickson, 1996). Despite

the large number of selection criteria identified, several works ((Ansari and Modar-

ress, 1988),(Benton and Krajewski, 1990),(Bernard, 1989),(Weber et al., 1991)) have

shown that very often the decision is taken searching a tradeoff among three criteria:

quality, cost and delivery performance.

It is possible to distinguish two categories of supplier selection problems. To the

first one belong the processes in which the decision maker chooses the best supplier,

that satisfies its needs. It is called “single sourcing”. To the second category, named

“multiple sourcing”, belong the processes in which the decision maker cannot find

only one supplier that satisfies all its needs and in this case it decides to separate

its order among different suppliers, also increasing the level of competitiveness.

This sentence well summarises the importance that has the efficiency of the supply

chain and its influence on the whole system: “When firms make mistakes anywhere
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within a supply chain, the effects can ripple through the chain in both directions

(Flint, 2004). These effects include disruption to production, forecasting errors,

inventory imbalances, stock-outs or damaged goods, all of which usually result in

increased costs that may have to be passed on to end users, thus reducing their

satisfaction and loyalty (Ellis, 2010)”.

Supply chain is a network composed by suppliers, manufacturers, transportation ser-

vice providers, retailers, consumers, whose aim is to move products and goods from

the supplier to the customers. Supply chains are the backbone of modern economy

and they permit the production, distribution and consumption of goods as well as

services (Nagurney, 2006). There are two categories of supply chains, depending on

the number of decision makers that manages the network. In a centralised supply

chain, there is only one central entity or decision maker, a firm for example, that

controls all the activities inherent the supply chain. In a decentralised supply chain,

instead, there are several decision makers that, more or less, cooperate in a compe-

tition regime.

A supply chain can be graphically represented by a network, composed of nodes

and links and whose topology and structure reflects the real systems. Through this

representation, the supply chain properties and behaviours can be better analysed.

For example, the economic impact of the addition or removal of decision makers,

represented as nodes of the network or, equivalently, the addition or removal of dif-

ferent modes of transactions or transportation, indicated by the links among nodes.

Furthermore, different supply chain, after their representation through a network,

can highlight common properties, thus facilitating their analysis based on cases al-

ready studied (Nagurney, 2006). An example of supply chain network is depicted in

Figure 5.3.

A node origin, indicated as Organization (indicating government, corporations,
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Figure 5.2: Supply Chain Network

humanitarian organizations, etc.) is considering nM manufacturing facilities/plants;

nD distribution centers and it has to serve the nR demand points with respective
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demands given by dR1
, dR2

,. . . , dRnR
. The links from the top-tiered node 1 are con-

nected to the possible manufacturing nodes of the organization, which are denoted,

respectively, by M1,. . . ,MnM
, and these links represent the manufacturing links. The

links from the manufacturing nodes, in turn, are connected to the possible distri-

bution center nodes of the organization, and are denoted by D1,1,. . . ,DnD,1. These

links correspond to the possible shipment links between the manufacturing plants

and the distribution centers where the product will be stored. The links joining

nodes D1,1,. . . ,DnD,1 with nodes D1,2,. . . ,DnD,2 correspond to the possible storage

links. Finally, there are possible shipment links joining the nodes D1,2,. . . ,DnD,2

with the demand nodes: R1,. . . ,RnR
.

The supply chain network consisting of the graph is indicated as G = [N,L], where

N denotes the set of nodes and L the set of links. The objective of the supply

chain is to optimise resources and costs. In particular, the organization wishes to

determine which manufacturing plants it should operate and at what level; the same

for the distribution centers and how much of the product should be outsourced. In

addition, the organization seeks to determine the capacity levels of the mode of

transportation/shipment it is necessary to use to have the best efficiency. Due to

continuous change of market conditions, supply chains change along time, modifying

dynamically the network structure.

5.2.1 Supernetwork and Multiple Criteria Decision Making:

a unified framework

The model proposed considers a Supernetwork composed of three levels. The first

one is represented by service providers, that offer basic services, whereas the second

one is composed by the producers of combined services, that receive at least one

basic services from the nodes of the first level. The third level contains end users
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that can decide to buy composed services from the second level or basic services

from the first level. The supply chain is represented by a graph G = [N,L], where

N denotes the set of nodes and L the set of links, as reported in Figure 5.3

Figure 5.3: Supply Chain Network

The supply chain model considered is composed, on the first level, of I basic services

and H distinct service providers, each of which offers a specific basic service denoted

by hi; the second level is formed by S distinct producers, whose service producer

is denoted by s. The third level is composed by K end users with typical end user

denoted by k.

The operation scheme of the supply chain proposed in this model is explained be-

low. The H service providers could offer and deliver at least one basic services or

directly to the end users or, alternatively, to intermediate producers. The nodes of

the second level, after receiving basic services from level one, build more sophisti-

cated services that they can offer and deliver to the end users. At the end of the
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supply chain the role of end users is to decide if it is more convenient to buy basic

or combined services deciding, furthermore, from which provider or producer.

The models already available in the scientific literature that joints the concepts of

supernetwork and social network, do not consider the powerful instruments provided

by the social network analysis (Nagurney et al., 2007), (Cruz et al., 2006), (Nagurney

et al., 2006). In fact, in these cases the flows among the different level are considered

as the social links between different entities, neglecting the concept of social influ-

ence and its significant importance and role in each single transaction involving a

decision making process. Furthermore, context and then context-awareness are not

considered and do not play any role in the decision dynamics. Context is considered

fixed and does not dynamically change at the variation to which the process and its

components are subjected.

The main novelty introduced in this model, and graphically it is visible from the

red links present in Figure 5.4(simplification of a supply chain), is the influence that

each decision maker exercises on its neighbors at the same level. The concept of

influence is borrowed from social network analysis and it is important to consider

it, as highlighted in the previous chapter, in the decision making process.

As for the definition given before, the alternatives of the decision making process,

represented by the nodes to which sell or to buy from, are evaluated on the basis of

two criteria: cost and quality of service. The objective of the model is to identify

optimal values that allow each decision maker to maximise its utility, minimising,

at the same time, fruition costs and guaranteeing an adequate level of quality of

service.

After its definition, the problem is analysed, identifying resources involved in each

state of the process and select the criteria to be optimised. To each link that con-

nects two nodes it is associated a specific costs as well as specific risk and time. Each
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Figure 5.4: Supply Chain Network

decision maker associates a weight to each decision criterion, weight that represents

the importance of that criterion in the process. The combination of all cost func-

tions associated to a link (adequately weighted) represents the objective function

for that specific link. Combining all the individual objective functions, the objec-

tive function of the whole process is obtained, which can be subject to constraints.

After applying the optimization process to the objective function the solution to the

problem is found that indicates the optimal value for the involved resources, i.e. the

value that optimises (i.e. minimises or maximises depending on the objectives) ser-

vices offered, improving of the whole process. In this model, the objective function

is represented by the utility function, i.e. the objective of each decision maker is to

choose the alternative(s) that maximise its utility.
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5.3 Model Description

In the description of the model, it is used the following notation:

• l which indicates the number of levels of the network. In this case it is set to

3;

• Na = n1a , . . . , nsa , . . . , nza representing the finite set of nodes of level a, where

a = 1, . . . , l; in this case the set Na become:

– N1 = {n11 , . . . , ni1 , . . . , nm1
};

– N2 = {n12 , . . . , nj2 , . . . , nn2
};

– N3 = {n13 , . . . , nk3 , . . . , nh3
};

• Aa =
⋃l

b=1;b 6=a N
b represents the set of alternatives for each decision maker nsa

and it is composed by nodes that belong to the level b 6= a.

• G = {g1, g2} is the set of decision criteria that are price and quality of service;

• Ra = {r1a , . . . , rsa , . . . , rza} is the set of the resources✬ vector involved in the

transition for each node nsa . In the considered case the vector rsa is composed

by:

rsa = (xsa1b , ysa1b , . . . , xsaib , ysaib , . . . , xsazb , ysazb) where b = 1, . . . , l and b 6= a.

In particular, xsavb represents the order quantity that node nsa places with the

supplier nib and ysavb is the unitary price for order that node nsa places with

the supplier nib .

• Up bounda = ub1a , . . . , ubsa , . . . , ubza represents the maximum value that the

resources✬ vector can assume. Each element ubsa = (ub xsa , ub ysa) where

ub xsa and ub ysa represent the maximum value of order quantity and unitary
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price. These values change along time due to the continuous variation of mar-

ket. In particular, the variations of quantity and price are described by the

following laws:

ub xsa(t) = δsaub xsa(t−1)+(1−δsa)

∑

h 6=s,a ub xha
(t− 1) · f(dsaha

(t− 1)) · asaha
∑

h 6=s,a f(dsaha
(t− 1)) · asaha

(5.1)

ub ysa(t) = δsaub ysa(t−1)+(1−δsa)

∑

h 6=s,a ub yha
(t− 1) · f(dsaha

(t− 1)) · asaha
∑

h 6=s,a f(dsaha
(t− 1)) · asaha

(5.2)

where:

– δsa represents the inclination of node nsa to be influenced to the nodes to

which it is connected, in particular δsa ∈ [0, 1]. There are two limit cases

δsa = 0 and δsa = 1. In the first case, node nsa is totally influenced by

its neighborhood and its preferences depend at all by the nodes to which

it is connected. Instead, in the second case, node nsa will not take into

account and then it will not be affected by the preferences of the other

nodes.

– asaha
represents an element of the adjacency matrix of the network. If

asaha
= 0 nodes nsa and nha

are not connected and they do not influence

each other in the decision making process; instead, if asaha
= 1 nodes nsa

and nha
are connected and they influence reciprocally.

– f(dsaha
(t−1)) is the importance given by node nsa to the decisions taken

by node nha
at the time instant (t− 1), and it is assumed that it is a non
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decreasing function of the distance between nsa and nha
as follows:

f(dsaha
(t− 1)) =

1

d2saha
(t− 1))

(5.3)

where:

dsaha
(t) = [ub xsa(t− 1) − ub xha

(t− 1)] + xsaha
(t) (5.4)

The first term of Eq. 5.4 indicates the distance in terms of preferences

between nodes nsa and nha
. The second term, instead, represents the

number of times that the two nodes have taken different decisions. As it

is possible to see, xsaha
(t) is a measure time-dependent and it means that

the more recent the decisions are, the more importance they have in the

calculation of the distance between the two nodes. It is expressed as:

xsaha
(t) =

#PT
∑

i=1

βsaha
(i) · γi−1 (5.5)

✯ #PT is the number of previous time instants considered by the model

and represents the memory owned by the system. If #PT = 0 then

the system can be considered as memory less and therefore the out-

put of the system will be based only on current system state, with-

out taking into account its previous history. On the other hand, if

#PT 6= 0, it means the system keeps memory of previous history,

as it happen in this model; in this case, the output is not depen-

dent on the current state only but it takes into account also what
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happened in previous time instants. This can be considered an im-

portant property of the system, as the memory of what happened

in previous instants of time can significantly influence the behaviour

of each single node, contributing to increase or decrease the distance

between two nodes in the network;

✯ βsaha
(i) is a coefficient, whose values belong to the set [0, 1], which

takes into account how much decisions taken by nodes nsa and nha

match with regards to the alternative set Aa. In particular, βsaha
(i)

is 0 if nsa and nha
have taken, at the considered instant of time, the

same decision, 1 if they have taken a different decision, any value

between 0 and 1 if there is a partial match only between decisions

taken by the two nodes;

✯ γ ∈]0, 1[ is a damping coefficient which is used to weight decisions

taken at different instants of time.

• Low bounda = {lb1a , . . . , lbsa , . . . , lbza} represents the minimum value that the

resources✬vector can assume. As for the Up bound, each vector of low bound

is composed as follows:

lbsa = (lb xsa , lb ysa) where lb xsa and lb ysa represent the minimum value of

order quantity and unitary price. These values do not change along time and

are fixed.

• gp(nvb , t) is the evaluation of alternative nvb with regards to criterion p at time

t.

As expressed above, the criteria considered in this case are two: cost and quality of

service. Due to the continuous change of the network and market conditions, the

evaluation of each alternative with respect to the two criteria has to be updated at
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each time instant, following these laws:

g1a(nvb , t) =

∑|Na|
sa=1

xsavb
ysavb

min(ub xvb
,ub xsa )·min(ub yvb ,ub ysa )

|Na| (5.6)

g2a(nvb , t) =

∑|Na|
ia=1 xiavb(t− 1)

∑|Na|
ia=1 ub xia(t− 1)

(5.7)

Equation 5.6 says that the evaluation of each alternative with respect to the price

criterion is updated as the average of products of order quantity and unitary price

involved in transitions between all decision nodes of a given network level a 6= b

and the node nvb normalised with regards to upper bounds. Instead, Equation 5.7

expresses that the evaluation of each alternative, with respect to the quality crite-

rion, is updated depending on how much decision nodes from the other levels have

exchanged with that alternative at time t−1. It is important to highlight that Equa-

tion 5.7 regards the producers, because it means that the greater the quantity the

alternative received by all decision nodes in the level at time t− 1 is (the maximum

value is when upper level value is reached), the greater the quality of the alternative

is, as the alternative is globally recognised as a good buyer. For the consumer the

evaluation is updated according to:

g2a(nvb , t) = 1 −
(

∑|Na|
ia=1 xiavb(t− 1)

∑|Na|
ia=1 ub xia(t− 1)

)

(5.8)

In this case, the greater the quantity that all the other decision makers nodes in

the level received by the alternative at time t−1 (the maximum value is when upper

level value is reached), the lesser is the quality of goods provided the alternative, as

the quality could be degrading with excessive use.
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In this model, until now, it has not been taking into account the importance of the

variability of the context. Due to the importance that it has in the decision making

process, context has been introduced as the third criterion of the model. Hence the

set G, earlier defined, become:

G = {g1, g2, g3}
that, in order, represent cost,quality of service and context, respectively.

To each decision criteria, each node assigns a weight, that represents the importance

the node nsa gives to the specific criterion and it is represented by the vector wsa =

(w1
sa
, . . . , wp

sa
, wp+1

sa
), that in this model it is represent by wsa = (w1

sa
, w2

sa
, w3

sa
). These

weights change dynamically, according to what happen to the network and in the

network and this is expressed by the following law:

wj
sa

(t) = δsaw
j
sa

(t− 1) + (1 − δsa)

∑

h 6=s,a w
j
ha

(t− 1) · f(dsaha
(t− 1)) · asaha

∑

h 6=s,a f(dsaha
(t− 1)) · asaha

(5.9)

Whilst the meaning and the values of the parameters δsa and asaha
are the same as

before, the function f(dsaha
(t − 1)) expresses the importance given by node nsa to

the preferences of node nha
and it is a non decreasing function of distance as follows:

f(dsaha
(t− 1)) =

1

d
2

saha
(t− 1))

(5.10)

where:

dsaha
(t) =

√

√

√

√

p
∑

j=1

[

w
j
sa(t− 1) − w

j
ha

(t− 1)
]2

+ xsaha
(t) (5.11)

The first part of Equation 5.11 represents the Euclidean distance between the

weight vectors of nsa and nha
(belonging to the same level in the network), and

indicates the distance between the preferences of the two nodes. The second part,

on the other hand, is a measure of the number of times nodes nsa and nha
have taken
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different decisions in previously considered time instants. Furthermore,the second

part is strictly dependent from time, and in particular, the more recent decisions

are, the more importance they have in the calculation of the distance between the

two nodes, as it possible to see from Equation 5.12:

xsaha
(t) =

#MEM
∑

i=1

βsaha
(i) · γi−1 (5.12)

where:

• #MEM is the number of previous time instants considered by the model and

represents the memory owned by the system. If #MEM = 0 then the system

can be considered as memory less and therefore the output of the system

will be based only on current system state, without taking into account its

previous history. On the other hand, if #MEM 6= 0, it means the system

keeps memory of previous history, as it happen in this model; in this case, the

output is not dependent on the current state only but it takes into account also

what happened in previous time instants. This can be considered an important

property of the system, as the memory of what happened in previous instants of

time can significantly influence the behaviour of each single node, contributing

to increase or decrease the distance between two nodes in the network;

• βsaha
(i) is a coefficient, whose values belong to the set [0, 1], which takes into

account how much decisions taken by nodes nsa and nha
match with regards

to the alternative set Aa. In particular, βsaha
(i) is 0 if nsa and nha

have taken,

at the considered instant of time, the same decision, 1 if they have taken a

different decision, any value between 0 and 1 if there is a partial match only

between decisions taken by the two nodes;
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• γ ∈]0, 1[ is a damping coefficient which is used to weight decisions taken at

different instants of time.

The two terms of Equation 5.11 are not expressed on the same scale. In or-

der to make them commensurable, because the Euclidean distance can assume

values in the interval
[

0;
√

2
]

and the second term assumes the following values
{

0, βsaha
(i)γ, . . . , βsaha

(#MEM − 1)γ#MEM−1}, the normalization is xsaha
(t)·

√
2(1−γ)

1−γ#MEM .

The preferences of each node in the network continuously change, strictly depend-

ing both on decisional context and on the other nodes in the network. Therefore it

is possible to assume the evaluation of an alternative nvb at time t and in a given

context, depends on the evaluation of the alternative at time t−1 and on how much

decisions taken by other nodes in the network with regards to that alternative differ,

both in terms of quantity and cost, at instants t − 1 and t − 2, respectively. Also,

the evaluation of an alternative, with regards to context criterion, change depending

on the role the node has in the transition, that can be producer or consumer. In

particular, producer decision maker nodes have to evaluate an alternative taking

into account the order quantity and the unitary cost of all the other nodes (from all

levels indiscriminately) have exchanged with that alternative: the greater the orders

exchanged are, the more reliable it is supposed that alternative to be.

The mathematical formulation expressing the evaluation of an alternative with re-

gards to a given context from the producer point of view is reported below:

g3(nvb , t) = g3(nvb , t− 1) + α

∑|Na|
sa=1

∑|Na|
za=1,za 6=sa

asaza·xzavb
(t−1)·yzava (t−1)

∑|Na|
sa=1

∑|Na|
za=1,za 6=sa

asazamin(ub xza , ub xvb)
+

−
∑|Na|

sa=1

∑|Na|
za=1,za 6=sa

asaza · xzavb(t− 2) · yzava(t− 2)
∑|Na|

sa=1

∑|Na|
za=1,za 6=sa

asazamin(ub xza , ub xvb)

(5.13)

where α is a coefficient representing the importance given to the context variability.
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On the other hand, it is not enough for the consumer or buyer decision maker nodes

to evaluate an alternative taking into account the order quantity and the unitary

cost all the other nodes have exchanged with that alternative only. Another impor-

tant factor to be considered for them is the quality of service provided, which, in this

model, it is assumed to be inversely proportional to the order quantity exchanged

by the alternative with the other nodes in the network: the greater is the quantity

received by other nodes from the evaluated alternative, the slower the service pro-

vided is. Then, the evaluation of an alternative with regards to a given context from

the consumer point of view can be expressed by following equation:

g3(nvb , t) = g3(nvb , t− 1) +
α

2

∑|Na|
sa=1

∑|Na|
za=1,za 6=sa

asaza · xzavb(t− 1) · yzava(t− 1)
∑|Na|

sa=1

∑|Na|
za=1,za 6=sa

asazamin(ub xza , ub xvb)
+

− α

2

∑|Na|
sa=1

∑|Na|
za=1,za 6=sa

asaza · xzavb(t− 2) · yzava(t− 2)
∑|Na|

sa=1

∑|Na|
za=1,za 6=sa

asazamin(ub xza , ub xvb)
+

+
α

2
·

(

∑|Na|
sa=1 xsavb(t− 1) +

∑|Nc|
sc=1,c 6=a,b xscvb(t− 1)

)

∑|Na|
sa=1 min(ub xsa , ub xvb) +

∑|Na|
sc=1,c 6=a,b min(ub xsc , ub xvb)

+

− α

2

(

∑|Na|
sa=1 xsavb(t− 2) +

∑|Nc|
sc=1,c 6=a,b xscvb(t− 2)

)

∑|Na|
sa=1 min(ub xsa , ub xvb) +

∑|Na|
sc=1,c 6=a,b min(ub xsc , ub xvb)

(5.14)

As above mentioned, the aim of each decision maker is to maximise its utility,

finding the optimal values of order quantity and price. The utility function can be

calculated as the weighted average of evaluations of all the alternatives with regards

to each criterion multiplied by the weight that each decision maker gives to that

criterion. Formally, if node nsa is a producer from the alternative nvb it could gain:

Usa(nvb , t) =
2

∑

j=1

[

wj
sa
· gj(nvb , t)

]

+ w3
sa
· exp−g

3(nvb
,t) (5.15)
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Instead, if node nsa is a consumer:

Usa(nvb , t) =
2

∑

j=1

[

wj
sa
· gj(nvb , t)

]

+ w3
sa
· expg3(nvb

,t) (5.16)

Considering the consumer or the buyer node, the context variability affects neg-

atively the utility and it is possible to see in which manner: if many people choose

a given alternative, the preference of the node towards that alternative decreases.

This fact can cause a degradation in services quality. On the contrary, it can be ob-

served that the context variability affects positively the utility for producer nodes:

in fact, if many people choose the services provided by a given alternative, such

alternative is assumed to be reliable. The constraints related to utility and other

parameters cited above change on the basis of the different roles that nodes can have

in the transitions and of the level taken into account. From these statements, three

different optimization problems can be recognised according to the reference level,

as reported in the following:

• Nodes of level 1 represent the producers selling their products to nodes of

levels 2 and to nodes of level 3. Considering the consumers, at each instant of

time, the sum of quantities of the alternatives received at the previous instant

of time determines, in a proportional way, the quality of what such consumers

have bought. The optimization problem is:
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maxUsa(nvb , t) =
∑2

j=1

[

wj
sa
· gj(nvb , t)

]

+ w3
sa
· expg3(nvb

,t)

(xsavb , ysavb) ∈

b · (xsavb)
A ≤ ub xsa

max(lb xvb, lb xsa) ≤ xsavb ≤ min(ub xsa , ub xvb)

ysavb ≤ min(ub ysa , ub yvb)

xsavb ≤
∑|Na|

za=1,za 6=sa
asaza ·xzavb

∑|Na|
za=1,za 6=sa

asaza ·up xzavb

The third condition is the Cobb-Douglas production function: the produced

quantity must be less than the maximum capacity of the producer. In such

a case, b is a positive constant which represents the total factor productivity

while A is the return to scale i.e. the relation between the output modification

and the change in levels of inputs used in production. In this model A = 0.75

represents a decreasing return to scale: in other words, an increase of 1% in

input leads to a 0.75% increase in output. Condition 4 and condition 5 come

from the following assumptions:

– The order quantity which is transferred from a node nsa (in level 1) to an

alternative nvb (in level 2 or 3) has to be greater than the lower bound of

the alternative while has to be lower than its buying demand (represented

by its upper bound);

– The order quantity which is transferred from a node nsa (in level 1) to an

alternative nvb (in level 2 or 3) has to be greater than the lower bound of

the node while has to be lower than its maximum capacity (represented

by its upper bound);

– Typically, the node involves some constraints also on price. Therefore,

the unitary price has to be lower than the maximum price imposed by
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the node (upper bound of the price of the node);

– The unitary price has to be lower than the maximum price related to the

alternative (upper bound of the price of the alternative).

The 6-th condition represents the reliability can be associated to the alterna-

tives. Considering a certain level, such reliability is influenced by the decisions

of the other nodes in the same level. This fact can be modeled by taking into

account the constraint that each node imposes on the order quantity delivered

to a given alternative, which depends on the quantities delivered by the other

nodes of the same level. Specifically, the amount of order quantity transferred

from the node to an alternative, in percentage with respect to the total ca-

pacity of the node, cannot be greater than the percentage of order quantity

transferred to the same alternative from other nodes of the same level.

• Nodes of level 2 represent the consumers receiving goods from level 1 as well

as the producers which resell to level 3 the goods coming from level 1. Con-

sidering the consumers and referring to the alternatives in level 1, the quality

of each alternative is inversely proportional to the quantities received by the

nodes in level 2 by the specific alternative. Indeed, the greater is the total

quantity transferred by the alternative, the lower is its quality. Considering

instead the producers and referring to the alternatives in level 3, the quality

of each alternative is directly proportional to the total quantity received by

the alternative from all nodes in the level. In case of transition from level 1 to

2, the optimization problem is:
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maxUsa(nvb , t) =
∑2

j=1

[

wj
sa
· gj(nvb , t)

]

+ w3
sa
· exp−g

3(nvb
,t)

(xsavb , ysavb) ∈

max(lb xvb, lb xsa) ≤ xsavb ≤ min(ub xsa , ub xvb)

ysavb ≤ min(ub ysa , ub yvb)

∑|Nb|
vb=1 xsavb ≤ ub xsa

ysavb ≥ yvbsa

xsavb ≤
∑|Na|

za=1,za 6=sa
asaza ·xzavb

∑|Na|
za=1,za 6=sa

asaza ·up xzavb

Conditions 3 and 4 establishes that the quantity ordered by a node nsa in level

2, coming from an alternative nvb in level 1 has to be greater than the lower

bound of the alternative while has to be lower than its capacity (the latter

being its upper bound). Condition 5 expresses that the total amount of prod-

uct received by a node of level 2 from all alternatives of level 1 cannot exceed

its maximum capacity in term of buyer demand, represented by its quantity

upper bound in the model. Considering condition 6, it can be observed that

each node of level 1 (i.e. each alternative for nodes in level 2) has already

identified its own optimal choices as quantity and price to be submitted to al-

ternatives in level 2 and 3. Such values can be assumed as having function of

constraints when focusing on optimal values for nodes in level 2. Specifically,

for each instant of time, the unitary price assigned to products bought by a

node nsa in level 2, coming from an alternative nvb in level 1, must be greater

than the optimal price of the alternative. The 7-th condition points out that

in the evaluation of reliability of alternatives, each node is influenced by the

decisions of the other nodes of the same level. This fact can be modeled by

taking into account the constraint that each node imposes on the order quan-
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tity received a given alternative, which depends on the quantities received by

the other nodes from the same alternative. Specifically, the amount of order

quantity received by the node from an alternative, in percentage with respect

to the total capacity of the node, cannot be greater than the percentage of

order quantity transferred from the same alternative to the other nodes of the

same level.

In case of transition from level 2 to 3, the optimization problem is:
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maxUsa(nvb , t) =
∑2

j=1

[

wj
sa
· gj(nvb , t)

]

+ w3
sa
· expg3(nvb

,t)

(xsavb , ysavb) ∈

max(lb xvb, lb xsa) ≤ xsavb ≤ min(ub xsa , ub xvb)

ysavb ≤ min(ub ysa , ub yvb)

b · (xsavb)
A ≤ ub xsa

xsavb ≤
∑|Nc|

zc=1,c<a xsazc

ysavb ≥ median(yvbzc),

zc = 1, . . . , |N c| , c < a

xsavb ≤
∑|Na|

za=1,za 6=sa
asaza ·xzavb

∑|Na|
za=1,za 6=sa

asaza ·up xzavb

Condition 3 and condition 4 come from the following assumptions:

– The order quantity which is transferred from a node nsa (in level 2) to an

alternative nvb (in level 3) has to be greater than the lower bound of the

alternative while has to be lower than its buying demand (represented by

its upper bound);

– The order quantity which is transferred from a node nsa (in level 1) to an

alternative nvb (in level 2 or 3) has to be greater than the lower bound of
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the node while has to be lower than its maximum capacity (represented

by its upper bound);

The 5-th condition is the Cobb-Douglas production function, as mentioned

above. According to this function, the produced quantity must be less than

the maximum capacity of the producer. In such a case, b is a positive constant

which represents the total factor productivity i.e. an index of the efficiency of

the available technology. A is the return to scale i.e. the relation between the

output modification and the change in levels of inputs used in production. In

this model A = 0.75 represents a decreasing return to scale: in other words,

an increase of 1% in input leads to a 0.75% increase in output. The 6-th

condition deals with the assumption to have already solved the optimization

problem related to transactions from nodes in level 2 towards alternatives in

level 1. Each node of level 2 has already identified the optimal value in terms

of quantities of orders to be submitted to alternatives of levels 1. The sum of

such quantities determines the current capacity of the producer node in level

2. As each node cannot sell more than what it has bought, a constraint can be

detected in terms of limits on the quantity delivered by the node nsa in node 2

to each alternative nvb in level 3. Such quantity must be lower than the current

capacity of the node, which is calculated, for each instant of time, by the sum

of all the optimal quantities transferred from alternatives of level 1 to the node

in level 2. Condition 7 implicates that the unitary price for orders transferred

to alternatives of level 3 must be greater than the median of unitary prices

involved in transactions done towards nodes in level 1. The 8-th condition

points out that in the evaluation of reliability of alternatives, each node is

influenced by the decisions of the other nodes of the same level. This fact

can be modeled by taking into account the constraint that each node imposes
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on the order quantity transferred to a given alternative, which depends on the

quantities transmitted by the other nodes to the same alternative. Specifically,

the amount of order quantity transferred by the node to an alternative, in

percentage with respect to the total capacity of the node, cannot be greater

than the percentage of order quantity transferred to the same alternative from

the other nodes of the same level.

• Nodes of level 3 represent the consumers evaluating the quality of potential

producers in levels 1 and 2. The quality for each alternative in level 3 is

inversely proportional to the quantities received by nodes in level 3 from the

specific alternative. The optimization problem is:

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maxUsa(nvb , t) =
∑2

j=1

[

wj
sa
· gj(nvb , t)

]

+ w3
sa
· exp−g

3(nvb
,t)

(xsavb , ysavb) ∈

max(lb xvb, lb xsa) ≤ xsavb ≤ min(ub xsa , ub xvb)

ysavb ≤ min(ub ysa , ub yvb)

ysavb ≥ ysavb

∑|Nb|
vb=1 xsavb ≤ ub xsa

xsavb ≤
∑|Na|

za=1,za 6=sa
asaza ·xzavb

∑|Na|
za=1,za 6=sa

asaza ·up xzavb

Condition 3 and condition 4 come from the following assumptions:

– The order quantity which is transferred from an alternative nvb (in level

1 or 2) to a generic node nsa (in level 3) has to be greater than the

lower bound of the alternative while has to be lower than its capacity

(represented by its upper bound);

– The order quantity which is transferred from an alternative nvb (in level
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1 or 2) to a generic node nsa (in level 3) has to be greater than the lower

bound of the node while has to be lower than its maximum capacity

(represented by its upper bound);

– The unitary price has to be lower than the maximum price imposed by

the node (upper bound of the price of the node).

The 5-th condition deals with the assumption to have already solved the op-

timization problem related to transactions from nodes in level 1 and level 2.

Each node of level 1 and 2 has already identified the optimal value in terms

of quantities and price to be submitted to alternatives of levels 3. Such values

should be considered as constraints, when calculating optimal values for nodes

in level 3. Specifically, for each instant of time, the unitary price for products

bought by a node in level 3, from an alternative in level 1 or 2 must be greater

than the optimal value of the price of the alternative. The 6-th condition

points out that the total amount of quantities received by a node of level 3

from all alternatives of level 1 or 2 cannot exceed its maximum capacity in

term of buyer demand, represented by its quantity upper bound in the model.

The 7-th condition points out that in the evaluation of reliability of alterna-

tives, each node is influenced by the decisions of the other nodes of the same

level. This fact can be modeled by taking into account the constraint that

each node imposes on the order quantity to be received by a given alternative,

which depends on the quantities received by the other nodes from the same

alternative. Specifically, the amount of order quantity received by the node

from an alternative, in percentage with respect to the total capacity of the

node, cannot be greater than the percentage of order quantity received from

the same alternative by the other nodes of the same level.
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5.4 Model Perfomance

In this section, the performance of the model has been analysed using a supplier

selection problem, even if the model perfomance are still under investigation. In

particular, the model is characterised by the following parameters:

• l = 3 the number of levels;

• N1 = 10, the number of producers (nodes of the first level);

• N2 = 5, the number of service producers (nodes of the second level);

• N3 = 8, the number of consumers (nodes of the third level);

• each network level follows the Erdös-Rényi model (Erdös and Rényi, 1959)

with a probability p = 0.5 of having a connection between two nodes of the

same network level;

• α = 1, the importance given to the context variability according to Equations

5.13 and 5.14;

• γ = 0.75, the damping coefficient used to weight decisions taken at different

time instants, according to Equation 5.12;

• #PT = 1, the number of previous time instants considered by the model when

updating upper bounds;

• #MEM = 5, the number of previous time instants considered by the model

when evaluating weight, representing the system memory;

• the number of criteria is equal to 3, that are cost, quality of service and context;

124



• the number of iterations is set equal to 30, that are the number of iterations

the simulation run before collecting results.

It is also assumed that the network conguration does not change over time, i.e.

the numbers of nodes in the network, as well as the mutual connections between

them do not change over the time and the upper bounds are not fixed, as they can

vary over the time, depending on the sales✬trend. The objective of the model is to

determine the optimal values of xsavb and ysavb , that are the order quantity that

node nsa places with the supplier nvb and the unitary price for order that node nsa

places with the supplier nvb after the whole number of iterations.

In Figure 5.5, the configuration of each single level of the supernetwork is reported.

In Table 5.1 the values of δsa are shown:

Table 5.1: Values of δsa for the three network levels

Level 1 Level 2 Level 3

node1 0.3404 0.6855 0.1416

node2 0.8595 0.8485 0.1595

node3 0.9261 0.9941 0.0768

node4 0.4761 0.1824 0.5244

node5 0.5485 0.7532 0.2389

node6 0.0116 0.7606

node7 0.1178 0.2209

node8 0.0174 0.9132

node9 0.4607

node10 0.6761

As it is possible to see from the analytical model presented above, a central role

in the optimisation process is played by the distance, as expressed from Equation

125



(a) Level 1 (b) Level 2

(c) Level 3

Figure 5.5: Network Configuration of each single level of the supernetwork

5.11. Focusing, at the moment, on the nodes of level 1 and in the transaction with

nodes of level 2, in Table 5.2, it is reported the values of distance at the first time

instant considered. As it is possible to see, there are nodes that are closer than

others because they attribute similar weights to the decision criteria and they have

similar decision at the previous time instant, as for Equation 5.11.
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Table 5.2: Values of distance of nodes of level 1 at the first time instant

Node 1 2 3 4 5 6 7 8 9 10

1 0 1.24054 0.6749718 1.30899 1.267738 0.6206993 0.9713021 1.173467 1.387209 1.025032

2 1.24054 0 1.160094 0.9727207 1.020966 1.285829 1.210442 0.7100727 0.655453 1.125473

3 0.6749718 1.160094 0 1.121376 0.9290651 0.8274152 0.4408313 0.7840344 1.273789 0.8143048

4 1.30899 0.9727207 1.121376 0 0.1895117 1.430761 0.92565 0.4547227 0.8966495 0.8370998

5 1.267738 1.020966 0.9290651 0.1895117 0 1.397337 0.8501497 0.5279076 0.9655578 0.7652098

6 0.6206993 1.285829 0.8274152 1.430761 1.397337 0 1.161181 1.262961 1.451201 0.9590901

7 0.9713021 1.210442 0.4408313 0.92565 0.8501497 1.161181 0 0.9935836 1.246772 0.5578671

8 1.173467 0.7100727 0.7840344 0.4547227 0.5279076 1.262961 0.9935836 0 0.7197188 0.9023894

9 1.387209 0.655453 1.273789 0.8966495 0.9655578 1.451201 1.246772 0.7197188 0 1.154072

10 1.025032 1.125473 0.8143048 0.8370998 0.7652098 0.9590901 0.5578671 0.9023894 1.154072 0
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After completing all the 30 iterations, in most cases the distance values have

changed according to the dynamics of the network, due to the variability of the

preferences and of the context. Hence, after the selected simulation interval has run

out, the new distance values are reported in Table 5.3. It is observable that the

closer two nodes are in terms of distance the more similar are their optimal values of

xsavb and ysavb , giving rise to clusters of nodes, formed on the basis of their distance,

and then on the decisions taken at the previous time instants.
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Table 5.3: Values of distance of nodes of level 1 at the time instant 30

Node 1 2 3 4 5 6 7 8 9 10

1 0 1.425069 1.261559 1.361509 1.40536 1.118815 1.169347 1.057354 1.332275 1.414797

2 1.425069 0 1.430072 1.424432 1.413692 1.330389 1.413303 1.427588 1.221282 1.424983

3 1.261559 1.430072 0 0.6888702 0.3296515 0.7860841 1.0643 0.3504881 1.263556 1.420406

4 1.361509 1.424432 0.6888702 0 0.2767589 1.408236 1.419299 0.5078736 1.418611 1.419685

5 1.40536 1.413692 0.3296515 0.2767589 0 1.034831 1.322879 0.8058399 1.119167 1.417201

6 1.118815 1.330389 0.7860841 1.408236 1.034831 0 0.4638859 1.376642 0.8121496 1.042882

7 1.169347 1.413303 1.0643 1.419299 1.322879 0.4638859 0 1.418065 0.8119163 1.153946

8 1.057354 1.427588 0.3504881 0.5078736 0.8058399 1.376642 1.418065 0 1.418701 1.417589

9 1.332275 1.221282 1.263556 1.418611 1.119167 0.8121496 0.8119163 1.418701 0 1.415337

10 1.414797 1.424983 1.420406 1.419685 1.417201 1.042882 1.153946 1.417589 1.415337 0
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With respect to the model presented in the previous chapter, in this case it can

not happen that two nodes have the same values of xsavb and ysavb , but their values

can be similar. This explains why, to form clusters it has been set two tolerance

thresholds for xsavb and ysavb that are 3 and 0.75. If the optimal values of two nodes

differ for a quantity less than the tolerance threshold, they belong to the same

cluster. In the considered case, there are 5 clusters, as it follows:

Table 5.4: Clusters of level 1

Cluster Node

c1 1,2

c2 3,8

c3 4,5,6,7

c4 9

c5 10

Analysing in deepen, even if nodes 1 and 2 are not directly connected and c1 can

not be considered a “real” cluster, node 1 is influenced in its decisions by node 2 due

to its high value of δsa and this influence is transmitted by its common neighbor,

node 8.

Clusters c2 and c3 are formed by nodes with the smaller distance, as reported in

Table 5.3. Instead, clusters c4 and c5 are composed of only one node because its

preferences in the previous time instants are far from the ones expressed by the

other nodes of the network.

In Figures 5.6, 5.7, 5.8, 5.9 and 5.10 are shown the optimal values of the nodes of

the first level, grouped in clusters.

Comparing these results with the ones of the model presented in the previous

chapter, in this case δsa has not a direct influence on the optimisation process and
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(a) Node 1 (b) Node 2

Figure 5.6: Cluster c1, composed of nodes 1 and 2

(a) Node 3 (b) Node 8

Figure 5.7: Cluster c2, composed of nodes 3 and 8

then on the decisions taken by nodes. What plays a central role in this model is the

distance between a couple of nodes. The less is the distance the more similar are the

decisions taken by nodes. Despite this it is possible to state that the influence of δsa
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(a) Node 4 (b) Node 5

(c) Node 6 (d) Node 7

Figure 5.8: Cluster c3, composed of nodes 4, 5, 6 and 7

is not so directly visible but it is present. In fact, each node follows who is connected

to it and has a greater value of δsa with respect to it, that it is not necessarily the

greatest of those connected to it.

For the transaction between nodes of level 1 and 3 it is possible to state the same

as what has been said until now.

For the following levels 2 and 3, for the sake of simplicity, it is reported only the

values of distance obtained at the last iteration and the optimal values of xsavb and
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Figure 5.9: Cluster c4, composed of node 9

ysavb , grouped as the clusters collected during simulation. For level 2 Table 5.5 shows

the distance values at 30th iteration, while Figures 5.11, 5.12, 5.13 and 5.14 show

the optimal values for each node of the four clusters.

Table 5.5: Values of distance of nodes of level 2 at the time instant 30

Node 1 2 3 4 5

1 0 0.2512896 0.9930421 0.920659 0.8812107

2 0.2512896 0 1.066269 0.940367 0.9459873

3 0.9930421 1.066269 0 0.5781873 0.6612002

4 0.920659 0.940367 0.5781873 0 0.517191

5 0.8812107 0.9459873 0.6612002 0.517191 0

For level 3 Table 5.6 shows the distance values at 30th iteration, while Figures

5.15, 5.16, 5.17 and 5.18 show the optimal values for each node of the four clusters.
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Figure 5.10: Cluster c5, composed of node 10

Table 5.6: Values of distance of nodes of level 3 at the time instant 30

Node 1 2 3 4 5 6 7 8

1 0 0.8932003 0.6017647 0.2944246 0.7025607 0.4490914 0.8129531 0.9260177

2 0.8932003 0 0.7284354 0.8347655 0.7810337 0.7209168 0.6308429 0.5054292

3 0.6017647 0.7284354 0 0.5323445 0.8099842 0.6615017 0.6175259 0.7443524

4 0.2944246 0.8347655 0.5323445 0 0.6971354 0.5238086 0.8095658 0.9406174

5 0.7025607 0.7810337 0.8099842 0.6971354 0 0.623389 0.5792234 0.7821023

6 0.4490914 0.7209168 0.6615017 0.5238086 0.623389 0 0.6942684 0.872521

7 0.8129531 0.6308429 0.6175259 0.8095658 0.5792234 0.6942684 0 0.6092165

8 0.9260177 0.5054292 0.7443524 0.9406174 0.7821023 0.872521 0.6092165 0

In this case it is important to note that in cluster c2 node 2 can be considered as

a sort of bridge between nodes 7 and 8, that among them differ of quantities greater

than the thresholds set above, but both differ less than the threshold from node 2.

This phenomenon may be due to the high value of δsa of node 8, that has a great
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Figure 5.11: Cluster c1, composed of node 1

(a) Node 2 (b) Node 5

Figure 5.12: Cluster c2, composed of nodes 2 and 5
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Figure 5.13: Cluster c3, composed of node 3

influence on node 2 and then on node 7. 1

5.5 Summary remarks

In our society, most processes, more or less, can be considered as decision making

processes. In particular, they are individual decision making process, where the

decision makers decide also under the influence of other individuals composing their

network.

In this chapter, the model proposed in chapter 4 has been fit and customised for a

1The Figures of the optimal values of xsavb
and ysavb are referred to the transitions from level

1 to level 2, from level 2 to level 1 and from level 3 to level 1. For the sake of simplicity the

other transactions have been not reported, even if the clustering effect is the same as for the other

transactions.
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Figure 5.14: Cluster c4, composed of node 4

supply chain problem, which is a multiple criteria decision making problem. Other-

wise, in this case a model of influence has been introduced, making more complex

the problem itself. In addition to the variation of preferences and of the context, in

this case the theory of supernetwork is introduced to solve the supply chain problem.

In this way, every node of the network, solving the optimisation problem, finds the

best solution for it in order to have the maximum utility, i.e. the greater gain. The

first result obtained shows that, despite the previous model, other parameters have

a greater influence on the model dynamics, leading to a different network behaviour.

In fact, if on the previous model the inclination to be influenced had a great impact

on the decisions of the node, in this case the importance of this inclination is not so

direct and, hence, its effect can be seen not directly.

This work can be considered as a first attempt to join a context-aware and social

multiple criteria decision making with the theory of supernetwork.

137



Figure 5.15: Cluster c1, composed of node 1
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(a) Node 2 (b) Node 7

(c) Node 8

Figure 5.16: Cluster c2, composed of nodes 2, 7 and 8
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Figure 5.17: Cluster c3, composed of node 3

(a) Node 4 (b) Node 5

Figure 5.18: Cluster c4, composed of nodes 4 and 5
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Figure 5.19: Cluster c5, composed of node 6
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Chapter 6

A dynamic and context-aware

model of knowledge transfer and

learning using a decision making

perspective

6.1 Introduction

In the era of innovation and technology advance data, information and knowledge

play a central role in any process regarding the development and the progress level

of a society. The main aim for all the countries is to become “knowledge societies”

in continuous development thanks to the limitless knowledge growth which generate

incommensurable value (Fedoroff, 2012). Furthermore, thanks to the evolution of

the Information and Communication Technology (ICT) there are no limits on when,

where and how knowledge has to be transferred among individuals. Individuals

create knowledge and thanks to the “communities of interaction”, that can have the
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boundaries of an organization or can spread through the Internet, new knowledge is

generated and improved, starting from the individual one. In fact, the innovation of

an organization can be considered as a process through which a problem is defined

and solved by the creation of new knowledge (Nonaka, 1994). Looking much more

in detail, each individual decides (Guy et al., 2015) and acts within a social network,

characterised by a dynamic, ubiquitous, complex and context-dependent nature. For

each entity (Cioffi-Revilla, 2013), representing the network node, the consideration of

who is connected to whom as well as the structure of the network have an important

effect on the type of information passed, on its quantity and on the efficiency of the

process itself (Cowan and Jonard, 2004). Furthermore, by taking into account the

role of the context, the importance of each single relation (Barrat et al., 2004) and

the structure of the network itself can vary depending on the considered context. In

fact it is different the level of awareness held by the single node.

In this chapter a process of knowledge transfer is considered using a context-

aware decision making perspective in which, before accepting or rejecting knowledge

from one of its neighbors, a network node judges if its evaluation satisfies some

criteria, i.e. knowledge distance and confidence, and, after that, it decides what

to do. If the process takes place and the receiver node accepts the transfer, it will

perform a control on what it has just accepted on the basis of three parameters.

If the control result is positive, the receiver node will increase its confidence in the

sender node. On the contrary case it will decrease its confidence and it will learn

only a percentage of the received knowledge.
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6.2 Knowledge and its Processes within a Net-

work

Taking into consideration a small network or a big one, knowledge guides every

process in it and this is the reason why it is subject of interest of many research

fields. From Plato to Locke and Kant it is an evidence of the endless research for the

definition of knowledge, whose notion and meaning has not a single interpretation.

Two of the main feature of the processes that involve knowledge are complexity,

due to the complexity that characterises the definition of knowledge itself, and dy-

namism, caused by the continuous change of knowledge characteristic. Both these

features are also related to the property of the environment itself in which the pro-

cesses are considered.

Between the definition of knowledge and information there is a substantial difference,

even if in some cases they are used indifferently. Information is compared to a “flow

of messages” (Machlup, 1983; Nonaka, 1994) that can contribute to shape an indi-

vidual outlook or insight (Davenport and Prusak, 1998). Knowledge instead is based

on information and it includes know-how (Zander and Kogut, 1995). More specifi-

cally ”knowledge is a fluid mix of framed experience, values, contextual information,

and expert insight that provides a framework for evaluating and incorporating new

experiences and information” (Davenport and Prusak, 1998). Information, then, is

necessary to create knowledge both from a “syntactic” (the volume of information)

and “semantic” (the meaning of information) point of view (Shannon and Weaver,

1949),(Dretske, 1981).

In the Knowledge Management field it is also important to distinguish between two

categories of knowledge: tacit and explicit. Tacit knowledge was firstly introduced

in 1967 (Polanyi, 1967) and its meaning is well summarised from the sentence ”We
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can know more than we can tell”. In fact, it refers to knowledge that is difficult

to express and transmit because it depends on human and personal qualities of the

individual, that make it not easily transferable among individuals (Nonaka, 1994).

It involves both cognitive (mental models, through which represent by the means

of analogies and originating perspectives of the world (Johnson-Laird, 1983)) and

technical (know-how and skills) elements. Explicit knowledge is easily formalised,

codified, transmitted in a formal and a systematic language (Nonaka, 1994),(Brown

and Duguid, 1991). It can be found in databases, manuals and documents.

Making a comparison with the theory of signals, tacit knowledge can be considered

as an analog signal and explicit knowledge to a digital one. A process that involves

the share of tacit knowledge uses a “parallel processing” to resolve the complex as-

pects of the problem and all the different dimensions of the process are processed

simultaneously. Instead explicit knowledge is formalised in databases, archives ex-

pressed as a sequence (Bateson, 1972).

As previously said, individuals create knowledge and what is at the basis of this

process is commitment (Polanyi, 1967), which is originated from three factors: in-

tention, autonomy and environmental fluctuation. Intention represents the vision

of the surrounding environment through the individual approach. Autonomy is the

self-motivation to create new knowledge, based for example on deep emotions. Fluc-

tuations represents, instead, events that create discontinuity and chaos with respect

to previous environment state. These breakdowns lead individuals to reconsider

their previous perspectives, allowing them to adjusting their thoughts and commit-

ments (Winograd and Flores, 1986). Social interactions represent the principal key

factor to create new knowledge and, furthermore, allowing the process of conver-

sion from tacit to explicit knowledge and viceversa. Taking as a reference point

the ACT model (Adaptive Control of Thought) developed by Anderson (Anderson,
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2013), Nonaka (Nonaka, 1994) identified four modes of knowledge creation, as it is

represented in Figure 6.1.

Figure 6.1: The four different modes of Knowledge Creation

The first one represent the process of “SOCIALIZATION”. Individuals can get tacit

knowledge through interactions among them, without the need to express knowledge

through language. Then, sharing experience has a central role for the success of this

process.

The second one is the process of “COMBINATION”. The conversion of explicit

knowledge in explicit knowledge among individuals is possible exchanging knowledge

and who receives new knowledge will sorting, adding, recategorizing and recontex-

tualizing it.
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The third and forth processes are called “INTERNALIZATION” (from explicit to

tacit knowledge, through a process of learning and assimilation) and “EXTERNAL-

IZATION” (from tacit to explicit knowledge, through a process of concept formali-

sation). The basic idea that underlies both these processes is that tacit and explicit

knowledge are complementary and increase their value over time through a pro-

cess of mutual interaction. These four modes expressed above can be represented

by a spiral process, that expresses graphically the fundamental concepts of social

interactions that underlies all the processes of conversion, as reported in Figure 6.2.

Figure 6.2: The Spiral of Knowledge

Knowledge increase its value along two dimensions: epistemological and ontological.

The epistemological dimension represents the conversion from tacit to explicit on
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the basis of the four modes expressed before; the ontological one, instead, indicates

the transfer of knowledge from the single individual to organizations. Hence, in a

network as well as among different individuals, knowledge can be shared, transferred

and exchanged (Graham et al., 2006). Knowledge sharing corresponds to the pro-

vision of information and know-how of a task among individuals inside and outside

a group (Cummings, 2004). Knowledge transfer includes two phases: the sharing of

knowledge from a source and its acquisition from a recipient. Knowledge exchange

involves both knowledge sharing through which a source provides knowledge and

knowledge seeking, where a receiver searches knowledge from sources (Wang and

Noe, 2010). Several works have analysed the processes involving knowledge in a

network by using different perspectives (Lambiotte and Panzarasa, 2009),(Tasselli,

2015),(Hatak and Roessl, 2015).

6.3 Model Description

A model of knowledge transfer is characterised by three main features i. e. the

dynamism, the complexity and the context-dependence. The model presented in this

chapter looks at the knowledge transfer process as a decision making one, taking as

reference points two models reported in the scientific literature (Cowan and Jonard,

2004; Luo et al., 2015). These two existing models do not consider the process of

knowledge transfer and learning as a decision making one and, hence, they do not

investigate the factors and parameters that are at the basis of the exchange process,

e. g. the decision criteria. The previous works analyse in depth the effect of the

transfer process on the network parameters and structures, given a detailed analysis

on them. Instead, in this work it is assumed that the process of knowledge transfer

is an individual decision making process where each node, part of a network, is
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involved in a process of knowledge transfer. In particular, it has to decide whether

to accept or not knowledge coming from its neighboring nodes which represent the

set of alternatives. In a first stage, it has been chosen to take into account only

a single process regarding explicit knowledge, due to its unambiguous and clear

characteristics of easy codification and transmission. For the description of the

model the following notation has been used:

• N = {n1, . . . , ni, . . . , nm}, a finite set of nodes;

• K = {K1, . . . , Kk, . . . , Kp}, a finite set of contexts;

• vKk

i (t) =
{

vKk

i,1 (t), . . . , vKk

i,l (t), . . . , vKk

i,q (t)
}

, the knowledge vector of the node

ni with respect to the q categories and the context Kk at time t;

• AKk

ij =
{

aKk

ij

}

, the adjacency matrix representing the network in the context

Kk. aKk

ij = {0, 1} is each single element which identifies if the link between

nodes ni and nj is present or not;

• NKk

i =
{

nj ∈ N : aKk

i,j = 1
}

, the set of nodes linked to node ni in the context

Kk. It represents the set of alternatives for node ni.

As explained in Section 6.1 one of the context roles is to characterise and differ-

entiate the strength of each node✬s connection and the structure of the network

itself. In order to do so, it has been considered the vector of weights wKk

i =
(

wKk

i,1 , . . . , w
Kk

i,j , w
Kk

i,m

)

, where each element wKk

i,j represents the strength of the re-

lation between node ni and node nj in the context Kk. wKk

i,j can be different from

wKk

j,i (wKk

i,j 6= wKk

j,i ). With respect to the previous models, the decision whether to

accept or not the knowledge offered from another node in the network is based on

two criteria i. e. knowledge distance and confidence. Each alternative nj ∈ NKk

i
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has an evaluation on each of the two criteria. The first criterion is defined as:

dKk

ij,l(t) = vKk

j,l (t) − vKk

i,l (t) (6.1)

This distance represents the quantity of knowledge that node ni could receive from

node nj in the category l within the considered context. The knowledge distance

can be considered the expression of the knowledge heterogeneity of the two nodes

involved in the process. If there is a high knowledge gap between two network nodes

(high heterogeneity), node ni could have no gain from the knowledge received from

node nj (Luo et al., 2015).

The second criterion is represented by the confidence. In particular, at the

moment, it has been supposed that the confidence cKk

i,j that the node ni has in node

nj in the context Kk is defined as:

cKk

i,j (t) =
wKk

i,j (t) + JKk

i,j

2
(6.2)

where wKk

i,j (t) is the weight that node ni gives to the link with node nj. JKk

i,j is the

Jaccard similarity (Jaccard, 1901) i. e. an expression of the concept of homophily

(Lazarsfeld et al., 1954; Di Stefano et al., 2015), calculated as the ratio of the

common neighbors of the nodes ni and nj to the number of nodes that are neighbors

of at least one between ni and nj. The greater the confidence that ni has in nj,

the more susceptible node ni is to learn from node nj (Pentland, 2014). In order to

ensure that the knowledge transfer process to take place, the evaluation of alternative

nj belonging to the set NKk

i in each of the two decision criteria has to satisfy at the

same time this two condition:

• dKk

ij,l(t) ≤ d, that is the knowledge distance has to be under a knowledge dis-

tance threshold;

• cKk

i,j (t) ≥ c, that is the confidence has to be over a certain confidence threshold.
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Among the set of nodes satisfying at the same time both conditions related to the

two criteria, node ni for each knowledge category will accept knowledge from the

one that can give it the greatest amount of knowledge. The knowledge level of node

ni in the category l in the context Kk will become:

vKk

i,l (t + 1) = vKk

i,l (t) + max
nj∈N

Kk
i

((λKk

ij,l(v
Kk

j,l (t) − vKk

i,l (t))) (6.3)

where:

• vKk

i,l (t) (vKk

j,l (t)) represents the knowledge level of node ni (nj) in category l in

the context Kk at time t;

• λKk

ij,l represents the absorptive capacity of node ni with respect to the knowledge

received from node nj in the category l. In this model, it has been assumed that

the value of λKk

ij,l is strictly related to the risk attitude of node ni (Kahneman

and Tversky, 1979). As shown in Figure 6.3, it has been assumed that the

process of knowledge transfer is located into the region identified by the red

box i. e. the greater the amount of knowledge received by node ni (x1 < x2)

the greater its utility is (u(x1) < u(x2)) but the greater its risk aversion is

with the increasing quantity of knowledge that a node nj wants to transfer to

node ni (Binswanger, 1980; Holt and Laury, 2002), in order, for example, not

to imperil its security (La Corte et al., 2011). Hence, the value of λKk

ij,l will be

a function of the knowledge distance and it can be expressed as:

λKk

ij,l(t) =
1

expd
Kk
ij,l(t)

(6.4)

According to this formulation, the values that λKk

ij,l(t) can assume are included

in the set
[

1
expd

; 1
]

. In such a way if the values are closer to 1
expd

it means that

node ni is more risk averse and then it assimilates less knowledge, than a node

that has a value of λKk

ij,c(t) near to 1 that it assimilates more knowledge.
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Figure 6.3: Utility function in the prospect theory

After that, node ni will make a control on the received knowledge before learning

it, that is the evaluation of its quality on the basis of three criteria (Bukowitz and

Williams, 2000; Suwa et al., 1982):

• Accessibility, defined as the capability for the receiver node to easily access to

the whole knowledge that it has received;

• Guidance, defined as the knowledge property to be divided into topics or

domain in order to avoid an information overload;

• Completeness, defined as the knowledge property to contain all the information

requested by the receiver node

If the evaluation of the received knowledge exceeds the quality threshold in at least

two of the three criteria, node ni will learn and assimilate knowledge at all. Fur-

thermore, it will increase the weight and then the confidence in node nj. On the
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contrary, node ni will learn only the 20% of the received knowledge and its confi-

dence in node nj will decrease. In particular, the weights will increase or decrease

as follows:

wKk

i,j (t + 1) = wKk

i,j (t) ±
q

∑

l=1

dKk

ij,l

100
(6.5)

In the proposed model every network node thinks, acts and decides in several and

different contexts that are related each other, modifying the measures that charac-

terise the network. In order to calculate and analyse this correlation, we consider

each context as a plane of the space and, taking one as a reference plane, the greater

the cosine of the angle between two planes is the more similar they are, on the con-

trary they are less similar. In Figure 6.4 the correlation among contexts is shown.

Furthermore, its dynamic nature is shown, because the reference context and the

position of each plane in the space can vary at different time instants.

Figure 6.4: Contexts correlation in the space
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6.4 Results and Discussion

In this section, the model performance under different simulation hypothesis have

been analysed, considering for example a scenario in which network nodes have to

accept knowledge, defined in Section 6.2, from their neighbors through emails, social

networks or via a face-to-face contacts. The results of two networks that follow the

first one the Erdös-Rényi model (Erdös and Rényi, 1959) and the second one the

Barabási-Albert model (Barabási and Albert, 1999) have been compared. Both

networks are characterised by the following parameters:

• m = 500, the number of nodes composing the network;

• the number of categories q is set to 5;

• the distance threshold is set to 0.2;

• the confidence threshold is set to 0.4;

• the quality threshold is set to 0.5;

• each knowledge category has a fixed evaluation on each single quality param-

eter i.e. accessibility, guidance and completeness;

• the network configuration does not change over time i.e. the number and the

mutual connections do not change;

• only one context Kk has been considered;

• for the Erdös-Rényi model, a probability p = 0.3has been considered, where p

represents the probability of having a connection between two nodes;

• the Barabási-Albert model follows a law of linear preferential attachment.
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In the two cases, two measures have been used in order to evaluate in which manner

the two network models perform. The two measures are:

• the knowledge percentage held by node ni at time t + T in the context Kk:

vKk

i (t + T ) =

∑q

l=1(v
Kk

i,l (t + T ) − vKk

i,l (t))

q · 100
(6.6)

• the confidence value of each node at time t + T in the context Kk:

cKk

i (t + T ) =

∑

i 6=j(c
Kk

i,j (t + T ) − cKk

i,j (t))

|N | (6.7)

In order to show the dynamism of the proposed model, considering the Erdös-Rényi

network configuration, in Figures 6.5 and 6.6, the knowledge level for each node

of the network in all the categories q and the confidence level at time t have been

reported, respectively. The first value is calculated as the ratio of the sum of the

knowledge level held by node ni in all the categories to the number of categories.

Instead, the second one is calculated as the ratio of the sum of the confidence of

all the relations of node ni to the total number of nodes of set N . Each node is

colored according to the knowledge and confidence level held at time t and the colors

association is shown in Table 6.1 and in Table 6.2.

Considering Equation 6.6, in order to track the dynamics of the knowledge trans-

fer process, it has been taken into account 3 time instants, that are t+ 5, t+ 10 and

t + 15. In Figure 6.7, each node is colored according to the percentage of increased

knowledge that it holds after each t+ T time instants, and, in particular, the colors

associated to each percentage interval are shown in Table 6.3. As it is possible

to see by observing Figure 6.7 and considering different time instants, the level of

knowledge of each node changes dynamically. In particular it increases, but due to

the static nature of the network, that is no nodes are added or removed, after a
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Figure 6.5: Starting Knowledge Level for the network nodes

Table 6.1: Colors associated to the nodes depending on the knowledge level held at

time t

Starting Knowledge Level (z) Color

0 ≤ z ≤ 0.2 Red

0.2 < z ≤ 0.4 Yellow

0.4 < z ≤ 0.6 Brown

0.6 < z ≤ 0.8 Blue

0.8 < z ≤ 1 Green

certain time instant the process of knowledge transfer will stop. What it is possible

to highlight is the progressive development of the knowledge level in the network,

due both to the risk aversion of each node, through which the more it receives the

more it is adverse to assimilate, and the quality control of the received knowledge

introduced in this model. Considering Equation 6.7 and the time instants t+5, t+10
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Figure 6.6: Starting Confidence Level for the network nodes

Table 6.2: Colors associated to the nodes depending on the confidence level that it

is associated for each node at time t

Starting Confidence Level (s) Color

s ≤ 0.07 Light Blue

0.07 < s ≤ 0.08 Orange

0.08 < s ≤ 0.09 Grey

0.09 < s ≤ 0.1 Blue

s > 0.1 Pink

and t + 15, Figure 6.8 reports how dynamically the confidence level changes over

time. Each node is colored according to its increasing or decreasing value of confi-

dence with respect to the other network nodes. The colors are associated as shown

in Table 6.4. The reason of the dynamical behaviour of the increasing/decreasing

confidence level is that, the knowledge of the categories that they transferred in a
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Table 6.3: Colors associated to the nodes depending on the knowledge percentage

held

Knowledge Percentage (vKk

i (t + T )) Color

vKk

i (t + T ) = 0 Red

0 < vKk

i (t + T ) ≤ 0.016 Yellow

0.016 < vKk

i (t + T ) ≤ 0.036 Brown

0.036 < vKk

i (t + T ) ≤ 0.06 Blue

0.06 < vKk

i (t + T ) ≤ 1 Green

Table 6.4: Colors associated to the nodes depending on their confidence values

Confidence Value (cKk

i,j (t + T )) Color

s = 0 Light Blue

s > 0 Orange

s < 0 Grey

first period was not of a good quality, but after a certain time interval they start to

transfer knowledge in other categories whose quality is good, or viceversa.

As for the Erdös-Rényi model, now, using a Barabási-Albert model, it will be

shown how the network structure will affect the knowledge dynamics. In Figure

6.9 and 6.10 it is reported the knowledge and confidence level for the network at

time t and each node is colored according to Tables 6.1 and 6.2. Due to the fact

that not all the nodes are connected to each other and there are nodes with a very

few number of links, the starting confidence level is really low, compared to the

previous model, in fact for all the nodes it is under the value of 0.07. At the same

time instants, the dynamics of the two network models are different because the

level of knowledge increases slower than the previous case, as shown in Figure 6.11.
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(a) Time t+ 5 (b) Time t+ 10

(c) Time t+ 15

Figure 6.7: Dynamic of the knowledge transfer process for the Erdös-Rényi model

This is due to the structure of the network itself. In fact, in this case the colors

associated are different, because in order to appreciate the knowledge increasing we

have to change the scale (The higher increasing percentage is 0.00001%). Similarly

to what happens for the knowledge, the mechanism of increasing/decreasing of the
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(a) Time t+ 5 (b) Time t+ 10

(c) Time t+ 15

Figure 6.8: Dynamic of the confidence level for each node in the network following

the Erdös-Rényi model

confidence level is not so evident due to the high centrality held by a little percentage

of nodes. From these results, it is observable that in a more distributed network

configuration the dynamics of knowledge diffusion and of the confidence level are
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Figure 6.9: Level of Knowledge for the network nodes

observable much more than a centralised structure.

6.5 Summary remarks

Nowadays, data, information and knowledge represent the core part of the network.

The analysis of their diffusion✬s patterns could be helpful to predict and study phe-

nomena and node✬s behaviour within the network itself. Furthermore, by considering

the context as a variable that affects the network structure and the knowledge held

by the single node, adds further complexity and dynamism to a process that al-

ready has these features. Compared to the previous works, the main aim of the

model presented in this chapter is to understand why a node, part of a network and

considered as a decision maker, decides whether to accept or not knowledge from
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Figure 6.10: Level of Confidence for the network nodes

its neighboring nodes that represent the set of alternatives. The decision is based

on the evaluation of each alternative based on two decision criteria, the knowledge

distance and the confidence. In such a way, the structure of the network and, in

particular, the typology of the node✬s connections, both depending on the context,

affect the node✬s decision. This process is also characterised by a mechanism of

confidence increasing and decreasing, that occurs after the evaluation of the quality

of the knowledge received at each time instant and which adds dynamism to the

model. In this sense, this work is a first attempt to investigate how the introduction

of a context-aware decision making perspective in the processes involving knowledge

may vary its diffusion✬s pattern.
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(a) Time t+ 5 (b) Time t+ 10

(c) Time t+ 15

Figure 6.11: Dynamic of the knowledge transfer process for the Barabási-Albert

model
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(a) Time t+ 5 (b) Time t+ 10

(c) Time t+ 15

Figure 6.12: Dynamic of the confidence level for each node in the network following

the Barabási-Albert model
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Chapter 7

Final remarks

Nowadays, due to the continuous growth and diffusion of social networks, individuals

are flooded with information, right or wrong as well. Understanding in order to

extract much more important information is a complex and difficult activity, but

it is necessary for each individual to acquire knowledge of good quality that it can

use to perform each of its activities. Most of them can be modeled using a decision

making perspective, where a set of alternatives or actions are evaluated using a

set of criteria. But decision making process is characterised by a complex nature

and it has a lot of facets that can not be caught if it is observed and analysed only

superficially. Representing the decision making process as a flowchart where actions

or alternatives, state of being and consequences follow each other not emphasise the

importance of who, when, where and how it takes place and its impact on the process

dynamics. In fact, each decision maker has sets of values and objectives that most

of time are in conflict each other, expression of the non linear and complex nature

of the decision maker and of the process itself. In this way, reaching an optimal

final decision is not always a simply task, particularly as the decision makers are

not fully rational. But, what it is important to highlight is that each decision has an
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effect, more or less significant, on the decision maker(s). Assuming that “individual

decisions are often influenced by the decisions of other individuals” (López-Pintado,

2008), the main guideline, that was the basis of the research activities developed

in the three years of this Ph. D. course, has been to look at the decision making

process not only from a mathematical point of view but also the consideration of

all the constraints that characterise a realistic process. In fact an interdisciplinary

research activity had a central role in the Ph. D. studies. On one hand, multiple

criteria decision analysis provides the mathematical instruments that are appropriate

to build the analytical model of the decision making process. On the other hand,

looking at the decision making process with a more engineered perspective, the

features of sociality, context-dependance and dynamism are highlighted and their

importance is considered in the process. To build as a more realistic model the

union between the two points of view becomes necessary. In this way, the model is

enriched of a lot of facets not visible applying only one perspective. Hence, the main

contributions proposed in this Ph. D. dissertation are that answer to the question

of Section 1.2:

• The identification of the four main features that characterise a decision making

process: context-awareness, social influence, dynamism and multiple criteria.

• The construction of an analytical model which is expression of the interdisci-

plinary perspective of the decision making process, characterised by a context-

aware, social, dynamic and multiple criteria nature. Hence, the model repre-

senting an individual decision making process taking place in a social network,

has to main novelties that are the variability of the preferences of the decision

makers (preferences that are influenced by the other decision makers) and the

variability of the context;
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• To tailor the theory of supernetworks to the social and context-aware decision

making process. Applying the obtained model to a supply chain network in

order to analyse the impact of the introduction of the features of context-

awareness, social influence and dynamism on the process;

• To apply the decision making perspective to the processes of knowledge trans-

fer and learning taking place in a social network. In this model the importance

of each single connection, context and the quality of knowledge transferred

have a central role in the dynamic of the process itself.

Considering the theory and the model presented in this Ph. D. dissertation a

first attempt to analyse in deepen decision making processes, the future research

directions will be addressed by the same aim.

The perfomance of the models presented in this Ph. D. thesis have been analysed in

a limited number of applications. Using a social and context-aware decision making

perspective, several processes can be analysed and modeled using this framework.

The model presented in chapter 4 could be applied to various socio-economic con-

texts, such as fashion economy, housing location and viral marketing, where the role

of the process of social influence is crucial. In fact, the single user behaviour when

he has to choose a neighborhood to buy a house or a dress to wear for example,

is influenced by his network and, in particular, by the behaviour of his members

(Leskovec et al., 2007), (Chen et al., 2010), (McCormick and Livett, 2012), (Allenby

et al., 1996).

The model presented in chapter 5, can be studied for different supply chain problems,

from transportation to electric and electronic problems (Ramadurai and Ukkusuri,

2010), (Xuan et al., 2011).

Instead, the last model presented in chapter 6 is suitable to model problems refer-

ring to the sharing of files through the Internet or also the network of collaboration
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among scientists. More generally the model can be used to represent processes where

knowledge has a central role and it is expected to be shared among different entities

(Chiu et al., 2006), (Leonardi, 2017).

Furthermore, the common guidelines will be to improve these models in order to rep-

resent the wide variety of processes listed above, making as much realistic as possible

the analytical model. This will be possible, introducing more decision’s criteria, a

stronger behavioural component and a much more complex network structure and

evolution.
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Scatà, M., Di Stefano, A., Giacchi, E., La Corte, A., and Li, P. (2014). The bio-

inspired and social evolution of node and data in a multilayer network. In

5th International Conference on Data Communication Networking DCNET,

Vienna, Austria.

Schelling, T. (1969). Models of segregation. The American Economic Review, pages

488–493.

183



Schilit, B., Adams, N., and Want, R. (1994). Context-aware computing applications.

In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First

Workshop on, pages 85–90. IEEE.

Schilit, B. and Theimer, M. (1994). Disseminating active map information to mobile

hosts. Network, IEEE, 8(5):22–32.

Shannon, C. E. and Weaver, W. (1949). The mathematical theory of communication.

Urbana: University of Illinois Press, 29.

Simon, H. A. (1955). A behavioral model of rational choice. The quarterly journal

of economics, 69(1):99–118.

Snowdon, D. and Grasso, A. (2000). Providing context awareness via a large screen

display. Proceedings of the CHI 2000 Workshop on The What, Who, Where,

When, Why and How of Context-Awareness.

Sunderam, V. S. and Winkler, P. (1993). Fast information sharing in a complete

network. Discrete Applied Mathematics, 42(1):75–86.

Suwa, M., Scott, A. C., and Shortliffe, E. H. (1982). An approach to verifying

completeness and consistency in a rule-based expert system. Ai Magazine,

3(4):16.

Tasselli, S. (2015). Social networks and inter-professional knowledge transfer: The

case of healthcare professionals. Organization Studies, page 0170840614556917.

Tavana, M., Keramatpour, M., Santos-Arteaga, F., and Ghorbaniane, E. (2015). A

fuzzy hybrid project portfolio selection method using Data Envelopment Anal-

ysis, TOPSIS and Integer Programming. Expert Systems with Applications,

42(22):8432–8444.

184



Tversky, A. and Kahneman, D. (1973). Availability: A heuristic for judging fre-

quency and probability. Cognitive psychology, 5(2):207–232.

Tversky, A. and Kahneman, D. (1981). Judgments of and by representativeness.

Technical report, DTIC Document.

Tversky, A. and Kahneman, D. (1983). Extensional versus intuitive reasoning: The

conjunction fallacy in probability judgment. Psychological review, 90(4):293.

Tversky, A. and Kahneman, D. (1985). The framing of decisions and the psychology

of choice. In Environmental Impact Assessment, Technology Assessment, and

Risk Analysis, pages 107–129. Springer.

Tversky, A. and Shafir, E. (1992). Choice under conflict: The dynamics of deferred

decision. Psychological science, 3(6):358–361.

University, V. (2017). What is Big Data?

Verma, R. and Pullman, M. E. (1998). An analysis of the supplier selection process.

Omega, 26(6):739–750.

Von Neumann, J. and Morgenstern, O. (2007). Theory of games and economic

behavior. Princeton university press.

Wang, S. and Noe, R. A. (2010). Knowledge sharing: A review and directions for

future research. Human Resource Management Review, 20(2):115–131.

Wang, Y. and Ruhe, G. (2007). The cognitive process of decision making. Journal

of Cognitive Informatics and Naturale Intelligence, 1:73–85.

Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and appli-

cations, volume 8. Cambridge university press.

185



Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of small-worldnetworks.

nature, 393(6684):440–442.

Weber, C. A., Current, J. R., and Benton, W. (1991). Vendor selection criteria and

methods. European journal of operational research, 50(1):2–18.

Winograd, T. and Flores, F. (1986). Understanding computers and cognition: A

new foundation for design. Intellect Books.

Xuan, J.-z., Zhang, J.-h., and Zhang, H.-b. (2011). Super network model and equilib-

rium analysis of electric power supply chain. Complex Systems and Complexity

Science, 8(1):20–26.

Yager, R. R. (2004). Modeling prioritized multicriteria decision making. IEEE

Transactions on Systems, Man and Cybernetics, 34(6):2396–2404.

Yu, X., Xu, Z., and Liu, S. (2013). Prioritized multi-criteria decision making based

on preference relations. Computers and Industrial Engineering, 66(1):104–115.
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