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Preface 

 

The main topic of this work is to investigate on nonlinear phenomena affecting high power systems 

and on the strategies adopted to model them. In the first chapter the attention is focused on two big 

areas of high power systems: power electronics and systems/devices used to sustain plasma fusion. 

Although it is common that System Engineers tend to associate high power systems with power 

electronics, it is worth noting that power systems related to nuclear fusion represent a challenging 

area rich in nonlinearities. Specifically, while nonlinear oscillations in power electronics are due to 

oscillations of electrical nature, the ones present in nuclear fusion can also refer to other physical 

quantities. We will refer to the latter taking into account macroscopic plasma instabilities affecting 

JET plasmas, and proposing both theoretical approaches and experimental ones to describe their 

dynamic. The former rely on nonlinear mathematical equations able to mimic the nonlinear 

behavior of the system under certain conditions while the latter are based on a physical realization 

of the system starting from its mathematical model.  

High power systems related to power electronics are investigated in Chapter 2 where the importance 

of thermal modeling for the power electronics modules is pointed out and a new modeling strategy 

which starts from a distributed parameter analysis to obtain a lumped parameter model is 

introduced. 

In this case, the proposed methodology is based on the assumption that the heat transfer problem 

can be assumed to be linear and the thermal impedances approaches can be therefore used. In this 

relevant case study nonlinearities in modeling high power systems can also be neglected under 

certain conditions. In particular, concerning high power modules, it is well-known how the 

geometry of the device and the proper choice of the cooling system can play a key role for these 

simplifications. 

A data-driven approach based on neural networks to model plasma instabilities is presented in 

Chapter 3. This approach is introduced because physical models often require a deep knowledge of 

the system parameters that sometimes is difficult to obtain. 

In Chapter 4 considerations and results on new identification methodologies based on parallel 

identification models for discrete-time systems are presented.   
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1 

Introduction 

 

In this chapter, we will focus on two main categories of high power systems presenting nonlinear 

oscillations: power electronics and experimental devices for the production of fusion energy. The 

former is characterized by nonlinear oscillations of electrical nature while in the latter oscillations 

of physical quantities of different natures are also present. The insurgence of nonlinear phenomena 

in these fields will be discussed in order to define the framework in which different modeling and 

identification approaches will be discussed in this thesis.  

 

1.1  Nonlinear oscillation in power electronics 

 

Speaking about high power devices or systems the first field that comes to the Systems Engineer's 

mind is the power electronics one. Actually nonlinear oscillations are  present in high power 

systems of different natures. Power electronics, as one of the most representative field of high 

power systems, is of growing importance: it is estimated that during the twenty-first century more 

than 90% of the electrical energy generated in developed countries will be processed by power 

electronics before its final consumption [1]. Power electronic systems must be energy efficient and 

reliable, have a high power density thus reducing their size and weight, and be low cost to make the 

overall system economically feasible. High energy efficiency is important for several reasons: it 

lowers operating costs by avoiding the cost of wasted energy, contributes less to global warming, 

and reduces the need for cooling therefore increasing power density.  

Power electronic systems are found in virtually every electronic device: DC/DC converters are used 

in most mobile devices (mobile phones, PDA etc.) to maintain the voltage at a fixed value whatever 

the voltage level of the battery is. These converters are also used for electronic isolation and power 

factor correction; AC/DC converters (rectifiers) are used every time an electronic device is 

connected to the mains (computer, television etc.). These may simply change AC to DC or can also 

change the voltage level as part of their operation; AC/AC converters are used to adapt either the 

voltage level or the frequency (international power adapters, light dimmer). In power distribution 

networks AC/AC converters may be used to exchange power between utility frequency 50 Hz and 

60 Hz power grids; DC/AC converters (inverters) are used primarily in UPS or renewable energy 

systems or emergency lighting systems. When mains power is available, it will charge the DC 

http://en.wikipedia.org/wiki/Power_factor
http://en.wikipedia.org/wiki/Power_factor
http://en.wikipedia.org/wiki/Rectifier
http://en.wikipedia.org/wiki/Utility_frequency
http://en.wikipedia.org/wiki/Inverter_(electrical)
http://en.wikipedia.org/wiki/Uninterruptible_Power_Supply
http://en.wikipedia.org/w/index.php?title=Renewable_energy_systems&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Renewable_energy_systems&action=edit&redlink=1
http://en.wikipedia.org/wiki/Emergency_light
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battery. If the mains fails, an inverter will be used to produce AC electricity at mains voltage from 

the DC battery. 

The basic module of power electronic systems is then the converter. It utilizes semiconductor 

devices as switches and possibly energy storage elements such as inductors and capacitors. The 

presence of both types of component implies that the circuits are nonlinear, time-varying dynamical 

systems.  

There are several unavoidable sources of unwanted nonlinearity in practical power electronics 

circuits [1]-[3]: the semiconductor switching devices (BJTs, MOSFETs, IGBTs, thyristors, diodes) 

have intrinsically nonlinear DC characteristics. They also have nonlinear capacitances and 

inductances. The control circuits usually involves nonlinear components such as comparators, 

PWMs, etc.  

For all these reasons power converters are intrinsically nonlinear and can exhibit a variety of 

complex behaviors. Bifurcation theory has been applied successfully to simple models of power 

systems, and it has been shown that the theory of nonlinear dynamics can be used to explain 

undesirable low-frequency oscillation and voltage collapses [1]. This last phenomenon occurs 

because  many power systems are forced to operate near their stability limits and thus they are 

vulnerable to perturbations of the operating conditions. So when these limits are exceeded, the 

system can exhibit undesired transient responses with the impossibility to retain a stable voltage 

profile [4]. 

Power electronics is increasingly being used to process power on a large scale so interconnected 

systems of converters are developing for high current, high power applications. In order to 

maximize the capacity and, to reduce the cost of existing power systems as demand rises, 

progressive interlinking is taking place on a continental level. In this case undesirable nonlinear 

effects can produce catastrophic bifurcations. On the other hand nonlinear phenomena in power 

electronics could provide benefits. In fact, in [5] it has been demonstrated the feasibility of using 

chaos to depress the spectral peaks of the interference from a switched mode power supply. In 

particular a boost converter (operating at a low switching frequency, 2.5 kHz) has been used to 

show that the spectrum of the input current is spread so its peaks are reduced and EMC is improved 

compared to the case when the circuit operates periodically. Moreover there was the advantage that 

this approach did not require extra circuitry compared with other spread spectrum techniques such 

as pseudo-random modulation and PWM. 
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It means that one possible area of application of nonlinear phenomena in power electronics is in 

reducing electromagnetic interference (EMI) in switch mode power supplies which are generators 

of both conducted (450 kHz to 30 MHz) and radiated (30 MHz to 1GHz) EMI. Therefore 

suppression of EMI is a major issue in switching-mode power converter design. 

The first step in order to know how and how much nonlinear phenomena in power electronics could 

be dangerous or could bring benefits is to understand them. In many past studies the essential 

method to investigate nonlinear phenomena has been to obtain a discrete-time model of the systems 

under study and to analyze the observed phenomena in terms of the theory of bifurcations in maps 

developed by mathematicians and physicists. Several studies demonstrated that, when one 

parameter is varied while the others are kept fixed, the system behavior could change from periodic 

to chaotic [6]. The inherent sensitivity of chaotic systems to small perturbations may be exploited 

for synchronization and stabilizing limit sets such as unstable equilibriums or periodic orbits       

[7]-[10]. However, applications in power electronics are less obvious, because it is already possible 

to force large changes in behavior by means of active switching devices.  In [11] it is shown that 

chaotic power converters may also be stabilized by appropriate feedback. From nonlinear dynamic 

systems theory it is know that in most chaotic systems there are periodic windows in the parameter 

space and a small inadvertent change of a parameter can bring the system out of chaos. It means ask 

themselves the question: Are we able to ensure reliable operation of a converter under chaos? This 

also begs another question: is there any point in making a power converter chaotic? Hamill 

conjectured that power electronics converter operating under chaos instead of a stable periodic orbit 

may have a better dynamic response, for instance in moving rapidly from one commanded output 

voltage to another [12]. 

In this direction Banarjee, Yorke, and Grebogi developed the theory of robust chaos [10] 

underlining the analytical conditions under which there would be no periodic window in a chaotic 

system and demonstrated that such a condition does occur in current mode controlled converters. 

Further studies are required to attack the problem in order to make use of the chaotic regime. 

The growing interest in the chaotic behaviour that power converters can exhibit led to various 

methods for controlling chaos developed for power electronic circuits. Poddar, Chakrabarty, and 

Banerjee reported experimental control of chaos in the buck converter and the boost converter 

[6],[13]. In [14] Marrero, Font and Verghese observed that a potential advantage of using DC-DC 

converters in the chaotic regime is that the switching spectrum is flattened. 
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After a reasonable understanding of the nonlinear phenomena in power electronics is obtained the 

main question is: can we make engineering use of them?   

The above mentioned works demonstrates that research in nonlinear phenomena of power 

electronics is going through an important phase of development. The past years of research, 

characterized by engineers that observed in power devices "strange" phenomena (e.g., chaos and 

bifurcation), helped the scientific community to focus and approach the topic in order to give an 

explanation to those "bad" laboratory observations. It seems that identification work will continue 

to be an important area of investigation. This is because power electronics emphasizes reliability 

and predictability, and it is crucial to understand the system behavior as thoroughly as possible and 

under all kind of operating conditions. Knowing when and how a certain bifurcation occurs will 

automatically means, for example, how to avoid it. 
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1.2  Nonlinear oscillations in nuclear fusion 

 

Another relevant field related to high power systems is nuclear fusion [15]. Nuclear fusion is the 

process powering the Sun and stars. In the core of the Sun, at temperatures of 10-15 MK, Hydrogen 

is converted to Helium by fusion - providing enough energy to keep the Sun burning - and to 

sustain life on Earth. 

A vigorous world-wide research programme is underway, aimed at harnessing fusion energy to 

produce electricity on Earth [16]. If successful, this will offer a viable alternative energy supply 

within the next 30-40 years - with significant environmental, supply and safety advantages over 

present energy sources. 

To harness fusion on Earth, different, more efficient fusion reactions than those at work in the Sun 

are chosen by scientists, those between the two heavy forms of Hydrogen: Deuterium (D) and 

Tritium (T). All forms of Hydrogen contain one proton and one electron. Protium, the common 

form of Hydrogen has no neutrons, Deuterium has one neutron, and Tritium has two. If forced 

together, the Deuterium and Tritium nuclei fuse and then break apart to form a helium nucleus (two 

protons and two neutrons) and an uncharged neutron. The excess energy from the fusion reaction 

(released because the products of the reaction are bound together in a more stable way than the 

reactants) is mostly contained in the free neutron.  

Fusion occurs at a sufficient rate only at very high energies on earth, and temperatures greater than 

100 million Kelvin are required, as shown in Figure 1.1. At these extreme temperatures, the 

Deuterium - Tritium (D-T) gas mixture becomes a plasma (a hot, electrically charged gas). In a 

plasma, the atoms become separated - electrons have been stripped from the atomic nuclei (ions). 

For the positively charged ions to fuse, their temperature must be sufficient to overcome their 

natural charge repulsion. 

In order to harness fusion energy, scientists and engineers are learning how to control very high 

temperature plasmas. The adoption of much lower temperature plasmas are now widely used in 

industry, especially for semi-conductor manufacture. However, the control of high temperature 

fusion plasmas presents several major science and engineering challenges - how to heat a plasma to 

in excess of 100 MK and how to confine such a plasma, sustaining it so that the fusion reaction can 

become established. 
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Three parameters (plasma temperature, density and confinement time) need to be simultaneously 

achieved for sustained fusion to occur in a plasma. The product of these is called the fusion (or 

triple) product and, for D-T fusion to occur, this product has to exceed a certain quantity - derived 

from the so-called Lawson Criterion after British scientist John Lawson who formulated it in 1955. 

Attaining conditions to satisfy the Lawson criterion ensures the plasma exceeds Breakeven - the 

point where the fusion power out exceeds the power required to heat and sustain the plasma. Fusion 

reactions occur at a sufficient rate only at very high temperatures - when the positively charged 

plasma ions can overcome their natural repulsive forces.  

Typically, in JET, over 100 MK is needed for the Deuterium-Tritium reaction to occur - other 

fusion reactions (e.g. D-D, D-He3) require even higher temperatures. The number of fusion 

reactions per unit volume is roughly proportional to the square of the density. Therefore the density 

of fuel ions must be sufficiently large for fusion reactions to take place at the required rate. The 

fusion power generated is reduced if the fuel is diluted by impurity atoms or by the accumulation of 

Helium ions from the fusion reaction itself. As fuel ions are burnt in the fusion process they must be 

replaced by new fuel and the Helium products (the "ash") must be removed. The Energy 

Confinement Time is a measure of how long the energy in the plasma is retained before being lost. 

It is defined as the ratio of the thermal energy contained in the plasma and the power input required 

to maintain these conditions. On JET magnetic fields are used to isolate the very hot plasmas from 

the relatively cold vessel walls in order to retain the energy for as long as possible. A significant 

Figure 1.1: Temperature needed for 

plasma on Earth (>10
7 

K) 
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fraction of losses in a magnetically-confined plasma is due to radiation. The confinement time 

increases dramatically with plasma size (large volumes retain heat much better than small 

volumes)- the ultimate example being the Sun whose energy confinement time is massive. 

For sustained fusion to occur, the following plasma conditions need to be maintained 

(simultaneously): 

 plasma temperature: (T) 100-200 MK; 

 energy confinement time: (t) 4-6 s; 

 central density in plasma: (n) 1-2 x 1020 particles m-3 (approx. 1/1000 gm-3, i.e. one 

millionth of the density of air). Note that at higher plasma densities the required 

confinement time will be shorter but it is very challenging to achieve higher plasma 

densities in realistic magnetic fields. 

Since a plasma comprises charged particles: ions (positive) and electrons (negative), powerful 

magnetic fields can be used to isolate the plasma from the walls of the containment vessel - thus 

enabling the plasma to be heated to temperatures in excess of 100 MK. This isolation of the plasma 

reduces the conductive heat loss through the vessel and also minimizes the release of impurities 

from the vessel walls into the plasma that would contaminate and further cool the plasma by 

radiation. In a magnetic field the charged plasma particles are forced to spiral along the magnetic 

field lines (Figure 1.2).  

 

 

 

 

 

 

 

The most promising magnetic confinement systems are toroidal (from torus: ring-shaped) and, 

among these, the most advanced is the Tokamak. Currently, JET is the largest Tokamak in the 

world although the future ITER machine will be even larger. 

Figure 1.2: Trajectories of plasma ions 
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Other, non magnetic plasma confinement systems are being investigated - notably laser-induced 

inertial confinement fusion systems [17].  

In a Tokamak the plasma is heated in a ring-shaped vessel (or torus) and kept away from the vessel 

walls by applied magnetic fields. The basic components of the Tokamak's magnetic confinement 

system are : 

- the toroidal field - which produces a field around the torus. This is maintained by magnetic 

field coils surrounding the vacuum vessel (see Figure 1.3);  

- the poloidal field - which produces a field around the plasma cross section. It pinches the 

plasma away from the walls and confines the plasma. The poloidal field is induced both 

internally, by the current driven in the plasma (one of the plasma heating mechanisms) and, 

externally, by coils that are positioned around the perimeter of the vessel.     

 

 

Figure 1.3: Toroidal and poloidal coil in JET's Tokamak 

 

The main plasma current is induced in the plasma by the action of a large transformer. A changing 

current in the primary winding or solenoid (a multi turn coil wound onto a large iron core in JET) 

induces a powerful current (up to 5 MA on JET) in the plasma - which acts as the transformer 

secondary circuit. A simplified cutaway diagram of JET's Tokamak is shown in Figure 1.4. 
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Figure 1.4: Simplified cutaway diagram of JET's Tokamak. 

 

Securing future energy supply is the major challenge for Europe and the world. Global energy 

demand will increase over the next years as people in developing countries become wealthier. 

Energy sources using renewable technologies such as wind power will be necessary to satisfy future 

needs, but the strong energy demand leads us to develop new energy sources that can provide 

continuous, large-scale power for the long term without harming the environment. Fusion energy 

could represents a potential solution in this direction. Joint European Torus (JET), the major 

experiment of the European Union fusion research programme [18], has allowed studies of tokamak 

plasmas up to reactor relevant performance and to resolve key physics and engineering issues for 

the design of the International Tokamak Experimental Reactor (ITER).  

Every individual plasma experiment at JET (pulse) lasts several tens of seconds and during 

experimental campaigns there are several pulses a day. Therefore power supplies are designed to 

supply pulsed loads. Each JET pulse consumes around 10GJ of energy [18]. More than 50% of this 

power and energy is taken by the British 400kV Grid. It means that magnetic fusion experiments 

require extensive use of AC/DC conversion systems: semiconductors such as diodes and thyristors 

must be used to convert the grid AC power into a dynamic DC form suitable for JET. (The rest of 

power is taken by two local flywheel generators with diode converter). A key role in the success of 

JET has been the development of power conversion systems, which supplies the main electrical 

loads of a tokamak. European countries are not the only could give a contribute to ITER 

development.  Advanced studies in order to improve tokamaks power conversion systems are taking 
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place in  other countries of the world: in China innovative power supply systems for EAST 

Superconducting tokamak are continually evolving and could represent a testbed for the 

technologies proposed for ITER project [19].  On the one hand power electronics plays, once again, 

a key role in JET Tokamak because nonlinear phenomena are present in tokamaks power 

conversion systems. On the other hand, Tokamaks are also characterized by nonlinear oscillations 

of different nature [15]. Specifically, tokamak plasmas are affected by a series of instabilities, 

which can play an important role on the performance of the plant and even compromise the correct 

operation of experiments. A lot of progress has been achieved in the last decades to understand the 

main causes of these instabilities but various aspect of their dynamics remain not completely 

understood. Edge Localized Modes (ELMs) are instabilities that appear when the plasma is in the 

high confinement mode H-mode configuration. The higher plasma energy in these configurations is 

partly due to a “pedestal” at the edge of the pressure profile. This pedestal results from pedestals on 

both the density and temperature profiles. While it is obvious that the pedestal is advantageous to 

achieve higher confinement, the price is paid by the inevitable steep gradients at the plasma edge 

which leads to instabilities – the ELMs [15].  

One of the main macroscopic modes in a Tokamak is the sawtooth instability which is present over 

a wide range of operating conditions. This is observed as a relaxation oscillation in the centre of the 

plasma, which appears most clearly in the time evolution of the electron temperature, derived from 

the Electron Cyclotron Emission on JET. The clear signature is sawtooth-like behaviour of the time 

series waveform in the central region of the plasma, with inverted behaviour in the outer region. 

The abrupt collapse of the temperature is attributed to a central, helical instability which causes the 

expulsion of particles and energy, detected as a heating pulse propagating in the outer region. On 

the plasma with high κ (density), we can observe a synchronization between ELMs and Te (electron 

temperature) sawteeth. When temperature collapses, an ELM can be triggered. This phenomenon is 

due to energy that goes from core to edge plasma. The pressure gradient becomes too important and 

the plasma edge loses confinement. The signature of the ELMs is very clear on the electron 

temperature and on the magnetic field, as measured with the pick up coils. ELMs can be also 

identified by Dα radiation (visible radiation emitted by excited atoms of deuterium fuel). An 

explicit example in Figure 1.5 shows clearly the interaction between ELMs on Dα  and sawteeth on 

electron temperature. 
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Figure 1.5: Interaction between electron temperature (blue) sawteeth and ELMs (red) visible on Dα                       

radiation for experiment (pulse) #50722. 

 

There are three categories of ELMs [15]: 

 Type I ELMs are essentially giant ELMs. This type is particular threat because of the large 

heat loss pulse involved and the consequent unacceptably high heat load on the divertor. 

 Type II ELMs are intermediate category which avoid the heat pulse of type I but do not lead 

a severe loss of general confinement. 

 Type III ELMs are continuous grassy ELMs which are associated with a substantial 

deterioration of confinement. 
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1.2.1 Modeling plasma instabilities by using theoretical approaches 

Particular attention has been given to the modeling of instabilities rising evident macroscopic 

implications, such as ELMs, sawtooth and Neoclassical Tearing Modes. Models can be derived 

from experimental observations, by means of data fitting or neural networks approximations [20], 

or applying approaches based on geometrical consideration exploiting the peculiar characteristics of 

the reactor. An example of the first approach is based on neural networks for modeling ELMs and 

sawtooth instabilities [20], while an example of the second approach can be found in [21] where a 

nonlinear gross behavior model for tokamak plasmas has been introduced starting from symmetry 

considerations. This ideal nonlinear model is essentially based on the relatively simple application 

of the equivariant bifurcation theory and it is able to reproduce the principal qualitative 

characteristics of ohmically heated tokamak discharges. Following [21], let us consider some 

simplificative hypotheses on tokamak geometry. A realistic geometric approximation is to consider 

the tokamak as a periodic cylinder. Thanks to this simplification the simplest realistic nonlinear 

model satisfying rotational simmetry constraints can be described considering the generic unstable 

modes of amplitude      with an angular coordinate φ, so that the solution may be written as: 

                            

where   is the integer mode number and the    denotes the complex conjugate. If the dynamics of 

the mode is ideal (Lagrangian), imposing invariance under rotation we obtain the following 

equation: 

                       

Equation       can be rewritten as the following system of two first-order differential equations: 

 
                        

              
                

The dynamic characteristics of model (1.3) allows to mimic two important peculiarities of tokamak 

plasmas, i.e. the occurrence of saturated traveling waves and the bursty and sawtoothing behavior. 

This makes the model suitable for fitting real data acquired during experiments in which the 

occurrence of ELMs and sawtooth can be observed. Furthermore, quantitative information 

regarding the nonlinear terms in the real experiment can be useful to derive a more accurate model. 

An example of bursty oscillations is shown in Figure 1.6 in which the solution of the system (1.3) is 

obtained for             initial conditions           and       . 
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Figure 1.6: Solutions of the system (1.3) for           and initial conditions          ,     

      . 

 

1.2.2 Modeling plasma of instabilities by using experimental 

approaches 

Although the dynamics of nonlinear systems can be studied by using numerical simulations, in 

some cases the particular characteristics of the considered system suggest to investigate it also in 

presence of  non ideal conditions, e.g. considering an experimental approach based on electronic 

analogue [22]. In fact, an electronic circuit, designed starting from the mathematical model of a 

dynamical system, can be easily implemented and its behavior can be characterized observing the 

electrical waveform generated by the circuit itself. Especially in presence of parameters which can 

lead to bifurcations, the behavior of the system can be more rapidly investigated with such 

experimental approach. The parameter values are designed applying the harmonic balance principle 

[23] in order to derive the conditions allowing the observation of the onset of stable nonlinear 

oscillations. The model introduced represents a generalization of the conservative analytical model 

(1.3) obtained introducing dissipative terms. The considered model is then of interest in the field of 

modeling physical phenomena as it represents the generalization of the plasma gross behavior 

model. Let us consider the following dynamical system: 
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where  ,  ,   and   are design parameters and                  is a nonlinear functional. The 

system in Eqs (1.4) represents a nonlinear oscillator with dissipative terms and a cubic nonlinearity 

involving a derivative term. In order to obtain stable oscillations, system parameters can be 

designed following the harmonic balance approach based on the describing function (DF) 

approximation  [24]. The analysis based on the harmonic balance method allows to identify whether 

or not a limit cycle                  is a stable solution for the considered system, provided 

that it has been rewritten in the so-called Lur'e form. Lur'e systems are nonlinear systems of the 

simplest architecture formed by a dynamical part      and a feedback nonlinear part   as shown in 

Figure 1.7.  

 

Figure 1.7: Lur'e system block diagram. 

 

More in detail the nonlinearity   can be approximated with the corresponding static and dynamic 

describing function [25]    and   , where the amplitude   and the bias   of     can be derived 

solving the equations: 

               

                         
                   

where      has been considered for     . Solving Eqs. (1.5) means to express   as a function 

     from the static equation and the to consider the intersections between the curve       and the 

curve               in the complex plane. At each intersection corresponds a limit cycle with a 

given frequency, amplitude, and bias level. The stability of the predicted limit cycle can be inferred 
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applying the Loeb criterion [26]: if the points near the intersection along the curve               

for increasing values of   are not encircled by the curve      , then the limit cycle is stable. The 

system in Eqs (1.4) can be rewritten according to the Lur'e form as the following second-order 

differential equation:                              

                                     

where             , and         . The linear part of the oscillator is described by the 

transfer function        
 

       
 , while the dynamic nonlinearity               can be 

approximated by the following static and dynamic describing functions: 

        
 

 
         

                                                  
 

 
          

 

 
          

        (1.7) 

Substituting Eqs. (1.7) in (1.5), a unique solution                 can be found with          

   
 

  
   

  

 
    ,    

                 
 
 
    
 
       

     
 
       

 , and      
  

 
. 

Hereinafter, the uniqueness of the limit cycle with respect to a given set of parameters will be 

exploited in order to design and implement a circuital analogue of the proposed oscillator. At this 

point, the aim of is to design a circuital implementation of the nonlinear model in Eqs. (1.4). Let us 

consider the circuit's schematic reported in Figure 1.8  

 

Figure 1.8: Circuit implementing system in Eqs. (1.3) 

It has been designed following the state variable approach [27], hence the circuital equations 

governing the circuit are: 
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OP-AMPs U1 and U3 implement an active integrator made by a passive RC group and an algebraic 

adder, the two cascaded multipliers M1 and M2 realize the cubic nonlinearity      while OP-AMP 

U2 allows to set parameter  . Even if the circuit is designed in order to compensate the dissipative 

terms involved in the integrators transfer function, dissipative effects cannot be completely avoided 

due to tolerances in circuital components. This means that   and   are small but different from zero. 

Furthermore, a temporal scaling      has to be introduced to make signals frequency compatible 

with analog circuitry. We fixed    
 

    
 

 

     
       . 

 Although the nonlinear block should realize a cubic nonlinearity, the actual nonlinearity is of the 

form considered in Eqs. (1.4). According to [28], the model of the analog multiplier based on [29] 

involve further terms, in which the multiplication between the input and its derivative appears, 

whose coefficients are functions of the frequency of the input signal. In order to evaluate these 

coefficients, let us start from the assumption that the maximum signal frequency is sufficiently 

small, so that the higher order derivatives of the output signal can be neglected, the model of the 

single multiplier realizing the square term can be written as: 

     
                            

The parameters   and    can be estimated by applying a DC voltage at one of the input ports and a 

sinusoidal sweep signal at the other input port. Measuring the zero-frequency values of the voltage 

gain and the group delay relative to the AC signals using an AD633 multiplier at the time-scale of 

the circuit,          and             have been identified. Thus the model of the two 

cascaded multipliers is given by: 

     
           

            
         

                  

 

By expanding products in (1.10) and neglecting the   
  terms the model can be rewritten as follow: 
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obtaining a value for parameter    
 

     
.                  . The circuit parameters of 

Figure 1.8 are chosen so that equations (1.8) match equations (1.2) with:               , 

                      ,                         (potentiometer), 

                                              ,           . In this 

case, the values of parameters can be identified as                    , and          .   

The harmonic balance method allows to determine the unique stable solution of Eqs.(1.7) as shown 

in Figure 1.9. 

 

Figure 1.9. Plot of       (blue line) and               (black dashed line) in the complex plane 

for the parameter values implemented in the circuit. 

 

The circuit, shown in Figure 1.10, has been implemented with  off-the-shelf components and then 

analysed by acquiring the waveforms generated.  
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Figure 1.10: Circuit implementing system in Eqs. 1.3 

 

The dataset shown in Figure 1.11 has been acquired by using a National Instruments (NI-USB6251) 

data acquisition board with a sampling frequency         , and represents the limit cycle shown 

by the circuit when      . Furthermore, the behavior of the circuit with respect to system 

parameter   has been studied. According to the harmonic balance theory, the frequency of the limit 

cycle is directly dependent on        , and, in fact, this relationship can be observed on the 

frequency of the limit cycle for increasing values of  , as shown in           Figure 1.12. 
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Figure 1.11: Limit cycle shown by the nonlinear circuit for       

 

 

           

          Figure 1.12: Frequency of the limit cycle shown by the circuit as a function of  . 

 

 

The model proposed above has important features which make it suitable for representing the 

behavior of Tokamak plasmas affected by several macroscopic and microscopic instabilities whose 
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interactions are essentially nonlinear [15]. The model in Eq. (1.3) is the conservative representation 

of the system considered. Under this perspective, the circuital analogue presented can be used in 

assisting the refinement of models for the nonlinear behavior of oscillations in presence of plasma 

instabilities exploiting approaches based on synchronization [30].  

 

1.2.3 Remarks on modeling of high power systems 

The study discussed in the previous section underlines the importance to build the model of the high 

power system in order to characterize its nonlinear oscillations. More in general, the characteristics 

of the power devices require the definition of new identification strategies to work alongside the 

existing ones. According to our analysis the following emerging issues may be identified. 

-  The need of make use of multi-physics techniques by integrating distributed parameters modeling 

strategies and lumped parameter ones. Power devices have traditionally been modeled using 3D 

field solvers based on the finite element method (FEM). This approach, which can be described as 

physical modeling, entails decomposing the device/system geometry into a collection of volume or 

surface elements (meshing), and then solving a system of partial differential equations for the field 

values at the element control points. The use of multi-physics field solver allows the designer to 

investigate on the presence of nonlinearities of different nature. Specifically, for high power 

systems/modules it is of relevant importance the study of thermal aspects to ensure the reliability of 

the device itself that is subject to strong thermal constraints. However, often, FE modeling requires 

an high computational cost and for this reason the need arises to integrate it with lumped parameters 

modeling strategies that allow a fast simulation of the system/device. Particularly, in the thermal 

domain, this integration is possible by designing passive electrical networks reproducing the 

thermal behavior of the system/device. In Chapter 2 a new modeling methodology related to this 

approach has been proposed. 

- The need of nonlinear models that rely on data-driven approaches to identify nonlinearities in high 

power systems. This is due the fact that physical models require a detailed knowledge of the 

device/system physics parameters that are often difficult to find. A neural network approach based 

on the identification of dynamical equations from data in Nuclear Fusion is presented in Chapter 3. 

- The need to investigate on new identification methodologies based on parallel identification 

models to reproduce the system behavior. Specifically the approaches based on parallel 

identification models are more powerful than simple series parallel identification model (predictor) 
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that require the continuous measurement of the state of the plant. In Chapter 4 an investigation on 

this techniques based on adaptive control is proposed. 
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2 

Thermal modeling of high power modules 

 

Power electronic modules are realized by integrating several semiconductor chips inside one 

package. In this chapter, a new thermal modeling procedure and its application to a power 

electronic module are presented [31]. The adopted modeling strategy consists of the derivation of 

numerical thermal impedances by 3D Finite Element (FE) models,  validated by comparison with 

available experimental data, and of the coefficients identification of the RC passive network, 

through a specific topology, here introduced, to obtain a lumped parameter model of the thermal 

behavior of the module. 

 

2.1 Thermal modeling 

 

The growing demand for high power devices concentrated in small volumes is driving the industrial 

research towards the design of integrated power modules [32],[33]. They are realized by integrating 

several chips (IGBT, diodes, MOSFET) inside one package. This causes high power density that 

produces strong thermal constraints on the package. Furthermore, the different chips included in the 

device are thermally coupled, so that the thermal power generated by one chip causes the heating of 

both that chip and all the others in the package. Thermal aspects become dominant and strongly 

influence both the module working conditions and its lifetime. As a result, the probability of failure 

due to the thermal stress significantly increases, thus impacting on the reliability [34]-[36]. In order 

to keep the devices in safe operating conditions, the silicon chips junction temperature (both in 

transient and in steady-state regime) should be controlled. On the one hand, thermal  simulators 

need to be more and more capable to reproduce the device thermal behavior. On the other hand, if 

more than just a few chips need to be thermally modeled, the simulation time of three-dimensional 

models increases enormously. A trade-off is therefore necessary. This study addresses the problem 

of reproducing the thermal behavior of high power modules by means of equivalent circuit models. 

Many papers describing numerical methods for thermal analyses of multichip power modules have 

been published [34]-[45]. Two main strategies are proposed in the literature to model the thermal 

behavior of a power electronic module. The first one, is a distributed parameter approach [37]-

[41],[46] relying on the underlying physical mechanisms of the devices to develop a system of 

equations that fully describes the system response on the thermal domain. The system of equations 

can be solved employing different numerical methods, such as the Finite Element Method (FEM) 
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[37],[39]-[41],[46] and the Boundary Element Method (BEM) [38]. The second one, called lumped 

parameters approach, reproduces the thermal behavior of the semiconductor components by 

deriving a thermal equivalent circuit or by using an analytical expression able to assess the thermal 

response of the system [42]-[44]. Both approaches lead to the derivation of thermal impedances, 

which represent in a concise way the thermal response of the module, at selected locations of the 

device. The Foster type network topology is generally proposed in the literature [42] to reproduce 

the behavior of both thermal self impedances and mutual impedances. Other strategies for lumped 

parameters modeling rely on mathematical relations to fit the thermal mutual impedance to address 

this problem [37]. 

The novelty of the proposed approach can be essentially summarized in the following points: 1) to 

have adopted an integrated procedure starting from FE models validated by experimental data; 2) to 

have introduced a new topology for the equivalent RC network used to model the thermal response 

of the system. The proposed topology allows to model large delays which are observed for mutual 

thermal impedances. The procedure is tailored on a new power module fabricated by 

STMicroelectronics that required a specific investigation design tool. The proposed modeling 

strategy consists of different steps. Firstly, a thermal 3D FE model has been derived and validated 

by comparison with experimental data. Then, the thermal impedances extracted from the FE model, 

have been reproduced by means of passive circuit topologies whose parameters are identified using 

optimization algorithms. Thermal data, collected by measurements or FE simulations, can be used 

for modeling in an electrical circuit simulator, if an electrical equivalent network whose step 

response describes the transient thermal impedance is available. Although the idea of finite element 

analysis and equivalent circuits is not new, the typical passive network topologies used to address 

this problem  (Foster and Cauer networks) have significant limitations in accurately representing 

thermal mutual impedances. In this paper an  electrical passive network topology is presented to 

emulate the transient mutual impedances which are characterized by slow transients. More 

specifically, the relevant quantity used to estimate the transfer function  is the temperature response 

from the output port of the equivalent circuit. As explained in Section 2.3, thermal mutual 

impedances are often characterized by a time delay depending on the chips mutual position inside 

the package. The proposed passive network topology is able to properly reproduce both the thermal 

impedances transient behavior and their steady state regime.  
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2.2  A new integrated procedure for power electronic modules 

 

The methodology introduced to characterize the thermal behavior of a power module consists of 

different steps shown in Figure 2.1. The first step is to collect thermal data. Thermal impedances 

waveform can be obtained  from both a FE model or experimental data (FE Model/Experimental 

Characterization). The FE model allows to obtain the spatial distribution of temperature, while 

experimental data are usually related to temperature information at some critical points (Thermal 

Data). Once thermal impedances are available, the next step of the procedure is the choice of the 

model. In particular, the model structure is fixed (as discussed in Section III), while the order N of 

the system has to be selected. This step is indicated as choice of the RC equivalent model. The 

circuit parameters are identified by using optimization techniques based on the Nelder-Mead 

simplex method which minimizes the error between the thermal impedance provided by the 

network and the one extracted from the FE model or from experimental data (Parameters 

Identification). At this point it is possible to check whether the chosen order N of the equivalent RC 

network suffices to properly fit the thermal impedances (Validation stage). If the order N is not able 

to ensure a good fit, the procedure steps back to the choice of the order of the   equivalent RC 

model. The last step of the developed procedure consists of performing the fast simulation of the 

whole module thermal behavior by means of a generic circuit simulator (Fast Simulation of  thermal 

behavior). As mentioned above, two different approaches may be adopted to extract the thermal 

behavior of the module. In the proposed approach, thermal data have been generated by numerical 

models built-up exploiting the COMSOL Multiphysics software, a commercial FE-based software 

able to solve both partial and ordinary differential equations. 
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Figure 2.1: Flow Diagram of the proposed methodology. 

 

 

The heat conduction equation describing the temperature field in the computational domains is [47]: 

 

    
  

 
 
 

 

  

  
              

 

where   represents the temperature,   the thermal diffusivity,   is the thermal conductivity and    the 

volumetric heat generation. Eq (2.1) is solved by using the FE method, mainly consisting in the 

discretization of the continuous equations on the physical computational domains by means of 

chosen numerical elementary entities, i.e. the finite elements. This step allows the partial 

differential equation to turn into an algebraic system of equations, which is solved applying the 

unsymmetric multifrontal package direct solver [48]. Once initial and boundary conditions are 

assigned, the solution can be computed and gathered in terms of temperature distribution all over 

the module. Typically, power modules are made by thin vertical layers and have large horizontal 

dimensions. It means that the heat flux predominantly flows from the top to the bottom of the 

module. Therefore, the flux through the lateral sides can be neglected, and adiabatic constraint can 

be assumed as the boundary condition. A properly designed heat sink allows to dissipate the whole 
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heat generated; then, the baseplate’s bottom side can be assumed as an isothermal surface. In these 

conditions the heat transfer problem can be assumed to be linear [37],[45] and this approximation 

finds good agreement with most of the power electronic applications. Under this hypothesis, the 

superposition principle can be used. The thermal behavior of the module may be therefore obtained 

by assuming, at each time, only one device acting as a heat source and evaluating the temperature 

along the module. The procedure is then repeated for each device of the module and the results 

added to obtain the complete thermal response. In particular, a power pulse (     ) is applied only on 

a single chip and then the thermal responses on all chips are obtained. The temperature of the 

bottom side of the baseplate is called reference temperature (   ). The approach is schematically 

shown in Figure 2.2. More specifically, the input power is applied as a surface power density 

uniformly distributed on the chip top surface equivalent to a power of       . The reference 

temperature is           . 

 

Figure 2.2: Approach used to evaluate thermal responses on the different chips of the module. 

 

To characterize the thermal response of all chips, the generic thermal impedance is defined as: 

 

          
      

  
    (2.2) 

 

where    is the power applied on chip j and      is the temperature on the centre of the chip i top 

area, when chip j is heated. If     the response        is named thermal self impedance while if 

    the resulting        is named thermal mutual impedance and represents the thermal coupling 

effect between the two considered devices. Then, for a module having n devices, it is possible to 

assemble the following matrix of thermal impedances: 
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        (2.3) 

 

in which the entries in the main diagonal are the self impedances of each chip while the other terms 

are the mutual impedances describing the coupling effects between chips. 

Combining equations (2.2) and (2.3), the complete model can be written in matrix-form as: 

 

              (2.4) 

 

where     is the     thermal impedances matrix, P is the     vector of the input powers 

P=[P1, P2, …, Pn]
T
 and    =[T1-Tr, T2-Tr,…,Tn-Tr]

T
 is a     vector of the differences 

between the temperature chip    and the reference temperature   . 

 

2.3  Lumped parameter modeling 

The thermal data extracted by the FE model are used to derive an equivalent RC network. This is 

possible thanks to the analogy between thermal and electrical quantities as reported in Table I. 

 

TABLE I: 

Analogy between thermal and electrical quantities. 

Thermal power Electrical current 

Temperature difference Voltage difference 

Thermal capacity Electrical capacity 

Thermal resistance Electrical resistance 

 

 

The aforementioned analogy leads to a wide use of RC passive circuits topologies to reproduce the 

thermal behavior of a power device [43]. The typical passive topology used to estimate the junction 

temperature of a chip is the RC Foster network [42] shown in Figure 2.3a. The junction temperature 

estimation (and consequently the linearly related thermal impedance) is given from the voltage drop 

across the input port. Nevertheless, the use of RC Foster networks for the reproduction of the 

thermal impedances is not always suitable.  In fact, we have found that this approach works well to 

reproduce the thermal self impedance behavior but is not able to fit properly the mutual impedance. 



33 

 

The reason of this is related to the delay characterizing thermal mutual impedances as underlined in 

Section 2.4. This delay increases when the distance between chips grows.  

In [37], another strategy to address the reproduction of thermal mutual impedances behavior is 

based on the use of mathematical relations. The approach proposed in this paper deals with this 

problem in the framework of passive networks by defining adequate topologies for the two cases of 

self and mutual impedances. Specifically, the Foster type network of Figure 2.3a is used to 

reproduce the self impedances behavior, while thermal mutual impedances are modeled by means 

of the circuit topology of Figure 2.3b.  

 

Pin C1 C2 C3 CNT

R1 R2 R3 RN

 

(a) 

 

R

R1 R2 R3 RN

C1 C2 C3 CNTPin

 

(b) 

Figure 2.3: RC passive networks: a) Foster RC-network for thermal self impedance; b) RC-network 

for thermal mutual impedance. 

 

By comparing the circuit of Figure 2.3a with the circuit of Figure 2.3b it is possible to point out that 

the temperature used to calculate the thermal impedances is evaluated at different network points. In 

fact, in the circuit of Figure 2.3b the output is evaluated as the voltage drop across CN. In the case of 

mutual impedance the temperature of the device changes as the result of heating the device j, and 

heat transfer occurs through several layers (involving different thermal capacity-resistance terms). 

This topology, as shown in Section 2.4, allows to fit properly the transient part of the mutual 

impedances. 

The transfer function for the RC Foster type network ( Figure 2.3a ) is: 
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while the transfer function of the RC network used for the thermal mutual impedances reproduction 

(Figure 2.3b) is obtained by following the procedure described in [49],[50]. Specifically, let us 

define the transfer function       for each cell (RC group) composing the circuit of Figure 2.3b as 

 

        
        

       
 

 

       
                         

 

 

while for the first cell made only of the resistor R, it holds: 

 

       
        

      
                 

 

Let indicate with          and           the input and output electrical impedance of the k-th cell: 

 

            
 

   
                       

 

          
           

                 
 
   

 
                       

                       

 

 

Let us further introduce the quantities: 
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Then, from equations (2.10) through equations (2.6)-(2.9) the transfer function of the RC circuit in 

Figure 2.3b is: 

  

     
    

      
                        

 

The unit step response functions of circuits 3a and 3b describe the self thermal impedance and the 

mutual thermal impedance, respectively. 

The form of these step response functions motivates the choice of  the topology in Figure 2.3b. 

Typically, thermal mutual impedances show a quite slow transient due the horizontal heat 

propagation through the layers of the module. In mathematical terms this is expressed by the fact 

that the Taylor expansion around t = 0 of the thermal response z(t), that is 

 

          
     

 
   

      

  
                   

 

needs to have small coefficients                 (z(0)=0  as it starts from zero initial conditions). 

In particular, the network of Figure 2.3b allows to obtain a step response function having all 

coefficients                 exactly equal to zero, thus facilitating to match the slow transient 

shown by FE results. In the following we relate the coefficients in the Taylor expansion of the step 

response function (2.12) with the coefficients of the transfer function of the networks of Figure 2.3a 

and 2.3b.  

Let be      the transfer functions  
    

      
  of the network in Figure 2.3a and 3b: 

 

     
   

       
        

              
            

 

Let us indicate with       
      

 
 the unit step response of the two types of networks. Then, the 

initial value theorem can be used to estimate the coefficient       . In fact, it holds under the 

hypothesis of zero initial conditions       : 
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We notice that for the network of  Figure 2.3a, being      a positive real function,      . In fact, 

the circuit of Figure 2.3a is a relaxation system [58] with alternated finite zeros and poles and 

positive residues. Thus, the relative degree of this transfer function is always equal to one. This 

implies that in a neighborhood of the time origin the step response of the network will have a 

positive slope.   On the contrary, for the network of Figure 2.3b we show that     , implying that 

the step response will start with a null slope. Furthermore,                    , nullifying 

the corresponding contribution of the high-order Taylor terms to the growth of the network step 

response. In fact, when     , for network of Figure 2.3b, we can calculate        as: 

          
   

           
    

                        

And with an analog procedure also the high order coefficients                
              

are found to be zero for the network of Figure 2.3b. In fact, the Ladder network with the  capacitors 

configuration as in Figure 2.3b is a low-pass filter with a transfer function having no finite zeros  

[59]. As an example we consider the identification of a thermal self impedance and a mutual one 

[31]. In particular we consider    and    . We have         
      

 
   and          

      

 
   with 

 

       
                                       

                                           
 

 

       
             

                                         
 

 

where the transfer functions have been obtained with the values specified in Table I. It is evident 

that     has no finite zeros and is characterized by a relative degree four while    , having three 

zeros, is characterized by a relative degree one. 

The unit step response of        and        is shown in Figure 2.4. In contrast to the thermal self 

impedance behavior, the mutual impedances are affected by a delay related to the distance between 

chips. Moreover, as underlined in the case study proposed in [31], it is possible to observe that the 

higher is the distance between chips, the higher will be the delay and the smaller will be the thermal 

coupling described by the thermal mutual impedances. 
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Figure 2.4: a) Unit step response of        ;  b)Unit step response of       ; 

 

 

TABLE I: 

RC NETWORK PARAMETERS 

     [°C/W]     [°C/W]     [°C/W]     [°C/W] 

R [Ω] - 0.0294 0.0107 0.0024 

R1 [Ω] 0.0114 0.0042
 

0.0015 0.0104 

C1 [F] 0.0046 0.4816 2.3097 3.3168 

R2 [Ω]  0.0727
 

0.3024 0.0040 0.2610 

C2 [F] 0.1108 0.0478 1.8722 0.1656 

R3 [Ω] 0.0249 1.1730 0.0639 4.3448 

C3 [F] 0.0134 0.0002 0.4014 0.0087 

R4 [Ω] 0.1888 0.2338 0.9098 54.6838 

C4 [F] 0.2243 0.0362 0.0374 0.0008 

 

 

To identify the model parameters R and C of equations (2.5) and (2.11) the Nelder-Mead simplex 

optimization method [51], [52] is used. The parameters identification was performed by comparison 

of the thermal impedance provided by the FE simulations, zFE(t), with the unit step response, zRC(t), 

of  the systems described by equations (2.5) and (2.11). 
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More specifically, the objective function          to be minimized takes into account the error 

between the two impedances and their  time derivatives: 

 

      
 

 
  

 

 

                  
 

 
 
 

 
  

 

 

   
        

                       

 

in which the first term is the Euclidean norm of the error between zRC and zFE while the second term 

is the Euclidean norm of their time derivatives and τ is the observation time. In our work we fixed    

τ =10s. Equation (2.16) is a multi objective function that takes into account the error in both the 

impedances and their time derivatives estimates (with        ). It is worth noticing that the first 

term of equation (2.16) is not able to ensure a good fit of the transient part of the impedance, 

characterized by a relevant slope. For such a reason the second term, based on the impedance time 

derivatives, has been introduced. The proposed approach can be used to properly reproduce all self 

and mutual impedances and then to describe the whole module thermal behavior. Thanks to the 

system linearity, the superposition principle can be applied and the thermal impedances extracted 

from circuits can be added according to equation (2.4). This means that by combining all derived 

RC circuits, as shown in Figure 2.5, it is possible to simulate in a fast and efficient way the module 

thermal behavior by means of a generic circuit simulator. Eventually, data acquired by using an 

experimental setup are used to validate the approach against real data. 
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Figure 2.5: RC circuits describing the thermal behavior of three different chips 
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The  approach proposed in this thesis is general as it can be used to extract the thermal networks 

either from FE models or experimental data of thermal impedances. Furthermore, the number of 

variables in the model is reduced by starting from physical considerations enabling the 

identification of the points to be used to build the model, that is, for instance, the temperatures of 

selected locations of the module (IGBTs and diodes). Finally, the order of the obtained model is 

typically low. The aforementioned methodology has been applied successfully for a case of study 

proposed in  [31].      
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3 

Identification of nonlinear oscillations in high power systems by using 

neural networks 

 

In this Chapter a brief presentation of the use of neural networks to identify nonlinear oscillations in 

JET plasmas in [20] and [60] is introduced. Then, the methodology used to predict JET instabilities 

is discussed in detail. 

 

3.1 Introduction on Artificial Neural Networks (ANN) 

 

Artificial neural networks (ANN) are mathematical models, inspired by the structure of biological 

neural networks, made up of elementary units called neurons which are able to perform simple 

computations [61], [62]. They are used to solve classification and nonlinear functions 

approximation problems. One of the neural network features is to be inspired to the structure of the 

human brain, taking advantage from the main feature, the ability to learn from experience. Neural 

networks require a training phase using examples to acquire the experience necessary to provide the 

correct output in the face of new inputs. 

Advantages: 

 A neural network can perform tasks that a linear program cannot. 

 When an element of the neural network fails, it can continue without major problems by 

their parallel nature. 

 A neural network learns and does not need to be reprogrammed. 

 It can be implemented in any application. 

 It can be implemented easily. 

 

Disadvantages: 

 The neural network needs training to operate. 

 The architecture of a neural network is different from the architecture of microprocessors 

therefore needs to be emulated. 
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 Requires high processing time for large neural networks. 

Artificial neural networks (ANNs) are among the most attractive signal processing technologies in 

the engineer's toolbox [61]. The field is highly interdisciplinary, but our approach will restrict the 

view to the engineering perspective. In engineering we can define an artificial neural network as an 

adaptive, most often nonlinear system, that learns to perform a function, an input/output map, from 

data. Adaptive means that the system parameters are changed during operation, normally called the 

training phase. After the training phase the ANN parameters are fixed and the system is deployed to 

solve the problem at hand in testing phase. The input/output data are fundamental in neural network 

technology, because they convey the necessary information to discover the optimal operating point. 

The nonlinear nature of the neural network processing elements provides the system with lots of 

flexibility to achieve practically any desired input/output map, so some ANNs are universal 

approximators [64], [65].  

 

3.2 Mathematical representation of a single neuron 

 

Let us consider an ANN as a computational system densely connected that is able to store 

knowledge by means of experiments. The acquired knowledge is stored using the values of some 

parameters, called weights, which connect the computational units, called neurons, whose values 

are fixed during the training phase. Each neuron is an entity that has multiple inputs and one output, 

so is a MISO (Multi input single output) system [62]. It receives inputs from neighboring neurons, 

processes them and sends the output to other neurons weighing it appropriately. The currently most 

widely used neuron model is shown in Figure 3.1 where    is the i-th input,    is the weight of the   

i-th input and             is a function, usually non linear, called activation function. The 

neuron has a bias which is added to the inputs weighted sum with a unit weight. The sum   

         is called net input. The output of the neuron is the value of the activation function at the 

net input. 

 



42 

 

 

Figure 3.1: Artificial neuron. 

 

The output of the neuron is then given by the formula: 

           

 

   

                          

Each neuron can use different activation functions to generate its own output. Let us consider, as 

shown in figures Figure 3.2 that a is the neuron's output while n is the net input.    

 

          

 

 

 

             

                                       (a)                                                                          (b) 

 

 

 

 

         

                   

                                       (c)                                                             (d)       

                                                            

Figure 3.2: Activation functions of an ANN: (a) hard limit, (b) linear, (c) sigmoid, (d) hyperbolic 

tangent. 
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3.3 Description of layers 

As shown on Figure 3.3, a layer [61]-[65] consists of S neurons working in parallel. Each unit 

performs a relatively simple job: it receives input from neighbors or external sources and uses this 

to compute an output signal which is propagated to other units. All neurons take their inputs from 

the same input vector                (containing R inputs). If the layers have S neurons, then 

the layer output will be a S sized vector. As a result, the weight matrix W is an SxR sized matrix, 

the bias vector b and the output vector a are vectors containing S elements.  

 

 

Figure 3.3: A hard limit neural layer. Left: detailed architecture of a neural layer. Right: compressed 

notation of a neural layer. 

 

Each neuron of the same layer has the same activation function f. We can write the layer output 

vector,               ,  as a product of matrices: 

 

                           

where  
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in fact the output of the j-th neuron is calculated as: 

       

 

   

                  

3.4  Training 

Before using a neural network, weights and biases have to be adjusted [61]. Training is a process, to 

adjust the network coefficients, that requires a set of examples of proper network behavior. The 

training process is performed by means of learning algorithms which depend on the kind of network 

used. There are several learning approaches each corresponding to a particular abstract learning 

task. These are supervised learning and unsupervised learning.  

The learning algorithms are called supervised when, during the training, we apply to the network an 

input-output dataset. The objective is to determine an adaptive algorithm or rule which adjusts the 

parameters of the network based on a given set of input-output pairs. If the weights of the network 

are considered as elements of a parameter vector ϑ, the learning process involves the determination 

of the vector    which optimizes a performance function   based on the output error. The simplest 

method used for this purpose is back propagation [65] in which the gradient of the performance 

function with respect to ϑ is computed as      and ϑ is adjusted along the negative gradient as  

                              

where  , the step size, is a suitably chosen constant and      denotes the nominal value of   at 

which the gradient is computed.  

The weights and biases of the network are then iteratively adjusted to minimize performance 

function that is typically the mean square error between the network outputs  and the target outputs. 

When the training begins, initial weights and biases are initialised randomly. This haphazard initial 

conditions permit to avoid falling always in the same local minima of a function. The training 

method is based on gradient descent therefore, the network can fall in an error local minimum if it 

always starts from the same initial weights. 
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Figure 3.4:  Example of a neural network training by means of a supervised learning algorithm. 

 

The learning algorithms are called ''unsupervised'' when we feed the network without the correct 

outputs. These algorithms are used to classify inputs in different classes identified by a different 

output value of the network.   

Once training is complete we need to test the network to verify that it works correctly. In this phase 

we apply a different dataset than that used in training phase and the weights are maintained fixed. It 

is necessary to verify that error is sufficiently low with these new sets of data. If the error is too 

high, it's both possible that network topology is wrong or that the training patterns aren't 

representative of the underlying problem.  
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3.5  Neural network topologies 

In general, a neural network consists of [63], [65]: 

1) A layer of input neurons, which only has the task of transferring input signals from outside of 

the neural network to the next layer, weighing them appropriately; 

2) One of more intermediate layers, also called hidden layers, whose input and output signals 

remain within the neural network. The hidden layer is characterized by neurons with nonlinear 

activation function. It allows the network to learn nonlinear and linear relationships between input 

and output vectors.  

3)  An output layer of neurons that produces the outputs of the network. 

This section focuses on the pattern of connections between the units and the propagation of data. As 

for this pattern of connections, the main distinction we can make is between: 

 Feed-forward neural networks where the data flow from input to output units is strictly feed-

forward. The data processing can extend over multiple (layers of) units, but no feedback 

connections are present, that is, there are no connections extending from outputs of units to 

inputs of units in the same layer or previous layers. 

 Recurrent neural networks (RNNs) that do contain feedback connections.  

 

           

Figure 3.5: Neural networks topologies. On the left: feed-forward neural network. On the right: 

recurrent neural network. 

 

 



47 

 

RNNs work cyclically :  

- its outputs are calculated from the inputs; 

- outputs are passed into the input of the RNN. 

These two steps are clearly separated and could be executed in the same time. RNNs have 

interesting dynamics property because they calculate their output taking into account the past. Feed 

forward neural networks are less powerful than RNNs because they can model only static functions.  

In mathematics, the universal approximation theorem [66] states that the standard multilayer feed-

forward network with a single hidden layer that contains finite number of hidden neurons, and with 

arbitrary activation function are universal approximators on a compact subset of   . 

The theorem was proved by George Cybenko in 1989 for a sigmoid activation function, thus it is 

also called the Cybenko theorem. 

Theorem 1: Any continuous multivariate function can be approximated with an arbitrary precision 

by a one hidden layer feed forward neural network (Cybenko, 1989). The first layer should have a 

sigmoid type transfer function. Its number of neurons depends on the quality of approximation, the 

more there are, the best it is. The second layer should be a pure linear transfer function. 

Theorem 2: Any multivariate function can be approximated with an arbitrary precision by a two 

hidden layer feed forward neural network. The first and second layer should have a sigmoid type 

transfer function. The output layer should be pure linear transfer function. 

  

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Theorem
http://en.wikipedia.org/w/index.php?title=George_Cybenko&action=edit&redlink=1
http://en.wikipedia.org/wiki/Sigmoid_function
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3.6  Identification of JET instabilities using neural networks  

As introduced in chapter 1 the identification of plasma instabilities occurring during experimental 

pulses is of particular relevance for avoiding dangerous events in high performance discharges. In 

order to predict the onset of plasma instabilities, an identification method, based on the use of 

ANNs, has been applied in [20] and [60]. The potential of the networks to identify the dynamics of 

ELMs and sawtooth instabilities has been first validated using synthetic data obtained through a 

suitable mathematical model. The networks have then been applied to experimental measurement 

from JET pulses. An appropriate selection of the network topologies allows identifying quite well 

the time evolution of the edge temperature and of magnetic fields, considered the best indicators of 

the ELMs. A quite limited number of periodic oscillations are used to train the networks, which 

then manage to follow quite well the dynamics of the instabilities. Furthermore, a careful analysis 

of the various terms appearing in the rule identified by the ANNs gives clear indications about the 

nature of these instabilities and their dynamical behavior. 

JET plasmas with evident macroscopic implications, such as ELMs, sawteeth and Neoclassical 

Tering Modes, are subject of active investigation. Among the difficulties in understanding the 

dynamics of these instabilities is the fact that the data analysis is often demanding and requires 

significant efforts. Automatic data analysis tools to identify the main aspects of the instabilities, 

from the signature they leave on the measurements, would therefore be quite beneficial. In the last 

few years, quite significant  experience has been gathered in using new machine learning tools, 

which have a lot of potential and can be quite effective in identifying even complex systems. In 

particular the use of Artificial Neural Networks (ANN) are very powerful in identifying even quite 

complex dynamic behaviour, as shown for the case of coupled pendula in [67], for the identification 

of Topping process also in the case of small datasets [68], or for the analysis of nonlinear dynamics 

in a sulfur recover unit [69]. Among the possible configurations, a RNN approach has been adopted. 

The layout of RNNs can take many different forms but the ones, whose results are presented in this 

chapter, are the input-output type, which means that there is a basic feedback loop from the outputs 

to the input of the entire network. In Section 3.6.1 the main lines of the identification approach are 

discussed, in Section 3.6.3 the results for type I and type III ELMs and the core considerations on 

the proposed approach are discussed.  
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 3.6.1 The identification approach 

The general topology of the network used to identify the time trend of the edge temperature and of 

magnetic fields corresponds to the following generic ansats: 

 
 

 
                                                     

                    

                                                 

                                           

               

The topology of the network implementing ansatz (3.5) is shown in Figure 3.6. The squares 

correspond to nonlinear neurons, whereas the diamonds are linears ones. The activation function 

chosen for the nonlinear neurons is the sigmoidal functions (i.e. hyperbolic tangents). 

 

Figure 3.6: Topology of the network corresponding to the general "ansatz" of relation (3.5).  

 

The training process consists first of the identification of a certain number of instability cycles with 

the one step ahead approach. The network is trained to estimate the signals at the next time step. In 

this sense, the network is trained as a feed-forward neural network. To prove the quality of the 

identification, the network is then applied in recurrent configuration by short circuiting the outputs 

to the inputs. This can be tested not only on the signals used for the training but also to subsequent 
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time intervals, considering that the parameters of the dynamic system are stationary. To assess the 

potential of the approach, the network has been trained and tested with synthetic signals obtained by 

using the model (1.2) reproducing the dynamics related to ELMs instability [21]. The shape of these 

synthetic signals has been chosen such that they are representative of experimental cases and also 

quite challenging because they present abrupt variations.  In the same Figure 3.7 the outputs of the 

network and the original signals are both reported to show the quality of identification.  

 

Figure 3.7: Continuous lines (blue): Synthetic signals used for the training; dashed lines (red): 

outputs of the ANN. The functions of relation (3.5) used to identify the signals are: 

f1,f2,f3,f4,g1,g2,g3,g4. 

 

These outputs have been obtained with both outputs fed back to the inputs, so with both branches of 

the network in recurrent configuration, starting from suitable initial conditions.  
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 3.6.2 Examples of ELM identification 

As a relevant experimental example, the previously described approach has been applied to the 

identification of ELMs on JET. Since various types of ELMs have been experimentally and 

theoretically investigated, the long term goal of this type of work could be the automatic 

discrimination of the various types of ELMs. In this perspective, the first step consists of proving 

the capability of RNNs to identify the experimental signals, which present clear signatures of 

ELMs. After a careful analysis of the available signals, it has been decided to start by trying to 

identify the perturbations caused by the ELMs on the edge temperature, as measured by the 

Electron Cyclotron Emission Diagnostic (ECE), and on the magnetic field, as measured with the 

pick up coils. The former diagnostic system, ECE, is able to obtain time evolution of electron 

temperature with high temporal ( microsec) and spatial ( 1cm) resolutions. Pickup coils are used 

to measure the component of the local magnetic field perpendicular to the plane of the coil. There 

are several pickup coils subsystems at JET placed in different positions [15]. In Figure 3.8 the 

pickup coil used in this study is shown. 

 

Figure 3.8: Position of the pickup coils around the first wall. The red arrows indicates the coil I802 

used in this work. 



52 

 

Examples of the time evolution of these signals for type I and type III ELMs are reported in Figure 

3.9 andFigure 3.10.  

 

Figure 3.9: Time evolution of the signals for a type I ELM. Top: electron temperature at the radius 

measured with the ECE; middle: magnetic field measured with a fast coil; bottom: a    signal in 

the outer divertor. 

 

 

Figure 3.10: Time evolution of the signals for a type III ELM. Top: electron temperature at the 

radius measured with the ECE; middle: magnetic field measured with a fast coil; bottom: a    

signal in the outer divertor. 



53 

 

The D signal is unfortunately too affected by the atomic physics at the edge and is therefore not a 

good descriptor of the ELM instabilities for the purposes of identification, which are the subject of 

this work. Given the quality of the signals and the fact that the discharges are not strictly stationary, 

some form of signal preprocessing is necessary. Filtering, to eliminate the highest frequency 

components of the noise, and detrending, to eliminate the slow drifts, are the first steps. 

Specifically, both signals T and B show abrupt variations, which correspond to high frequencies 

components. As a result, quick signals variations appear to be an essential part of the dynamics and 

cannot be filtered out. The main problem is to discriminate between the signals high frequency 

harmonics and noise. To detect the discontinuities, features of both signals, the first derivative of 

the signals using finite differences has been calculated : 

  

  
    

           

 
         

Noise induces also high derivatives and could be wrongly considered as a discontinuity. The only 

characteristic to distinguish high derivatives due to the dynamics of the signal from the ones caused 

by noise is the amplitude of the signal variations. Whereas the noise amplitude is very low, the 

discontinuity amplitude is higher. We can use this discrimination to separate noise from 

discontinuities. 

We can therefore assume that we have a signal discontinuity when: 

               
                                     

where      
      

  

  
   

According to formula (3.7), we can choose a coefficient  , which permits to discriminate parts of 

the curve with a high slope. After data filtering, detrending has been performed using an opportune 

low pass filter that exponentially cuts off the Fourier transform of signals above a certain frequency 

f1: 

       
                                    

    
  
    
  

                  
     

              

 

The filter parameters f1 and f2 are properly chosen in order to filter the flat noise component of the 

signal. An example of detrending is shown in Figure 3.11. 
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(a) 

      

                                                                       (b) 

 

Figure 3.11: Detrending of signals: a) T signal versus time with noise (blue) and T filtered (red); b) 

Frequency spectrum of T with noise (blue) and filtered (red). f1=f2=5Hz. 

 

The normalization of the signals is performed next to give to the RNNs inputs in the interval                  

[-0.8,0.8] as required for the optimal use of the tanh activation functions to avoid saturation.      
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After identifying the signals with the network corresponding to the full topology, the weights of the 

various terms in Eq. (3.5) have been analysed. The smallest ones have been then eliminated up to 

the point when the performance of the networks degrades. This method allows converging on 

networks topologies with the minimum number of elements in the ansatz capable of learning the 

dynamics of the signals. For the ELM I case of Figure 3.9, the process converges on the following 

equations for the network: 

 
                                                   

                                                                                   
                

 

The test signals overlapped with the network outputs are shown in Figure 3.12. 

 

Figure 3.12: Top: test signal T (blue) and network output signal T (red) in recurrent configuration 

on T; bottom: test signal B (blue) and network output signal B (red) in recurrent configuration on B. 

At this point the f  and g functions can be extracted by analyzing the output of the corresponding 

non linear neuron. Specifically, according to the definition of neuron we can apply the following 

formula: 
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where         and    are the input, output and bias weights of the non linear neuron j. For 

equations (3.9) the functions    and g  are shown in Figure 3.13.  

 

                                                                             (a) 

 

                                                                            (b) 

Figure 3.13: Nonlinear functions for equations (3.9): a) f1, f2, f3, f4 ; b) g2, g5 
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For the case of the type ELMs of Figure 3.10 , the final ansatz, after the elimination of the non 

relevant elements in Eq. (3.5) is: 

 

 
                                                              

                                      
                

 

Test signals and network outputs are compared in Figure 3.14.                                      

 

Figure 3.14: Top: test signal T (blue) and network output signal T (red) in recurrent configuration 

on T; bottom: test signal B (blue) and network output signal B (red) in recurrent configuration on B 

 

In Figure 3.15 the nonlinear functions of equations (3.11) are shown.  
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                                                                                (a) 

 

                                                                                (b) 

Figure 3.15: Nonlinear functions for equations (3.11): a) f3, f5 ; b) g2, g3, g5 
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The identification has been repeated for a number of cases but the statistics is limited by the quality  

of the measurements available. The optimal configurations of the networks for the various cases in 

summarized in Table I.  

 

Table I 

Summary of the ansatzes found optimal for examples of Type I and Type III ELMs. 

 

 

The results of the identification process indicate that there seems to be a systematic difference 

between the two types of ELMs. In particular, the Type III ELM analyzed is the only one which 

does not require f2 (feedback on the temperature at time    ); it is also the only case, which 

requires g3 (feedback on the field at time    ). The ansatzes of the Type I ELMs are not exactly 

identical but certainly much more similar to one another than to the Type III case. Of course the 

limited statistics available and the preliminary nature of the present studies do not allow drawing 

conclusions on the physics of the instabilities. On the other hand, these preliminary results indicate 

that RNNs are very powerful and they have the potential to identify complex instabilities in 

thermonuclear plasmas, provided measurements of acceptable quality are available.  

The potential of recurrent neural networks, to identify complex dynamical systems, has been 

investigated. In addition to the case of synthetic signals, the RNNs have also been applied to 

experimental data. In particular the time evolution of the edge temperature and magnetic field due 

to Type I and Type III ELMs have been identified quite successfully with networks of the 

appropriate topology. The identification of experimental signals has proved to be quite challenging 

mainly because of two main factors: a) the complex dynamics of the instabilities b) the significant 

level of noise. Notwithstanding these difficulties, the results are quite encouraging. The long term 
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objective of this line of research consists of deriving quantitative information about the ELMs 

dynamics (both type I and type III) by investigating the topology of the networks more suited to 

identify them.    

  



61 

 

4  

Identification of a stable LTI plant by using a predictor and a parallel 

model 

This chapter is the result of a selected part of the work during my period at Yale where I had the 

pleasure to join the research team of Professor Narendra at the School of Engineering. As 

mentioned in Chapter 1, the need to investigate on new powerful identification techniques pushes 

the researcher towards new challenging areas. Firstly, a brief description of series parallel model 

and parallel model is introduced to underline the importance of the parallel models as a "true 

model" for identification purposes. Then results are shown for a second-order LTI system, whose 

dynamic is characteristic of a wide range of electronic circuits. The considerations and results here 

obtained want to pose the problem for future research development. 

 

4.1 Series parallel model and parallel model 

Let us start from the simplest identification problem, as described in [71]. Consider the 

identification problem of a plant described by first-order linear time-invariant differential equation 

with unknown coefficients   and  : 

                                       

The equilibrium state of the plant is assumed asymptotically stable  (     and the identification 

problem consists of the determination of    and   from the observed input-output pairs      and 

     . For this purpose we take into account two different identification models (Figure 4.1): the 

parallel model and the series-parallel model (predictor). The input   and output     of parallel 

identification model has the following structure 

 

                                                 

while for the series parallel model we obtain 

                                                                 (4.3) 

where       and       are the estimates of   and   at time    
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(a) 

 

(b) 

Figure 4.1: Two different identification models: a) parallel model; b) series parallel model. 

 

By observing the structure of the two different models one notices that the series parallel model it is 

not a true model but it is a predictor that requires to be fed by the output of the plant       to 

produce the estimation       . On the contrary the parallel identification model can be considered a 

"true model" that after the identification phase can be used independently from the plant to 

reproduce its dynamic. 
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4.2 Statement of the problem 

Let us focus our attention on discrete-time systems. Given a discrete-time plant    (stable with state 

accessible) described by the state equations: 

                                                                                               

where         
    ,          .        

      and       are in a companion form. The 

elements of last row of the matrix     are   
                        and are assumed to be 

unknown.              and the input   is bounded. The problem is the identification of the plant 

described by (4.3) by using different models. Specifically a series-parallel model (predictor) and a 

parallel model are studied for this purpose. The aim of the predictor is  providing an estimation of 

the plant parameters to the parallel model. The identification problem is initialized by using the only 

predictor, then according to a switching criterion from the predictor to the parallel model, only the 

latter will be used for the plant identification. A predictor with a stable adaptive law for the 

estimation of   
  is presented in section 4.3. The switching criterion is discussed in section 4.4. A 

parallel model is presented in section 4.5. The aim of the activity is evaluate the use of a parallel 

model for the plant identification. Since the parallel model can perform the identification only if its 

parameters lie in a neighborhood of those of the plant the first step of the procedure consists of 

using a predictor to obtain a first plant estimation and then switching to the parallel model. 

 

4.3 Identification by using a Series-Parallel-Model (Predictor) 

 An identification model     , described by the following equation is set up to identify    :  

                                                       

where       is a matrix in companion form,  whose last row 

  
                                    is the estimate of the plant parameters.    is a stable 

matrix known. Let us indicate the parameter error with               and the identification 

error with                   . The error equation can be written: 

                                   

The following stable adaptive law assures the boundedness of both the identification error and the 

parameter error [72]: 
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where                      . 

The adaptive law       can be rewritten as: 

              
       

    

             
          

where       is the last row of       

 

4.4 Switching criterion 

In this section the criteria to switch from the predictor to the parallel model during the identification 

procedure is described. Let us define the following error that takes into account the sum of the 

square identification error into a preset time window   : 

         
         

 

       

                            

where       is the identification error of the series parallel model at time    The parallel model starts 

at      when 

                                

where      is a preset threshold and    is the switching time from the series parallel model to the 

parallel model. It means that for       only the predictor will be used for the plant identification 

while for      only the parallel model with its own adaptive law will be used for identification 

purposes. The smaller is   the better is the parameters estimation provided by the predictor to the 

parallel model.  
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4.5 Identification by using a parallel model  

An identification model     is described by the following state equations: 

                                            

where        is a matrix in a companion form such that the last row is 

                           . The following error equation can be written: 

                                         

where                      and                 . 

Let us define         as: 

                   
                            

where           is the last row of         . Using the projection algorithm proposed in [72], 

the following difference equation can be used to adjust      for the parallel model: 

            
            

             
              

Alternatively, in order to damp the oscillations during the convergence the following difference 

equation can also been used: 

   

            
 

 
       

   

       

                                    

where         
            

         
    

. Equation (4.14) can be used to adjust      every   steps taking 

into account the previous values of  . This allows a smoother behavior during the parameter 

convergence. 
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4.6 Simulation results 

Let us consider a second order plant described by (4.3) , with         
  
      

  and initial 

conditions                
 .           

  

  
         

   

  
  ,         . 

Let us consider a predictor (4.4) with        
  

        
  and initial conditions               

Initial conditions for                  . 

The following cases with different switching parameters have been considered: 

case 4.6.1 : According to the switching criteria introduced in section 4.4 the following parameters 

have been chosen:             . 

case 4.6.2 : According to the switching criteria introduced in section 4.4 the following parameters 

have been chosen:           . 

case 4.6.3 : According to the switching criteria introduced in section 4.4  the following parameters 

have been chosen:          . 

case 4.6.4 : In this case no predictor has been used and the only constraint for the parallel model is 

that the initial conditions for   are such that        is stable. Specifically 

                     . Initial conditions:             . 
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Figure 4.2: Case 4.6.1, plant parameter estimation by using the parallel model in a neighborhood of 

the plant parameters. The parallel model estimation starts at k=32 from                      . 

 

Figure 4.3: Case 4.6.1, identification error between the parallel model and the plant. 
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Figure 4.4: Case 4.6.2, plant parameter estimation by using the parallel model in a neighborhood of 

the plant parameters. The parallel model estimation starts at k=14 from                        

 

Figure 4.5: Case 4.6.2, identification error between the parallel model and the plant. 
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Figure 4.6: Case 4.6.3, plant parameter estimation by using the parallel model in a neighborhood of 

the plant parameters. The parallel model estimation starts at k=10 from                     . 

 

Figure 4.7: Case 4.6.3, identification error between the parallel model and the plant. 
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Figure 4.8: Case 4.6.4, plant parameter estimation by using the parallel model without the predictor. 

                     . 

 

Figure 4.9: Case 4.6.4, identification error between the parallel model and the plant. 
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Experiments 4.6.1 - 4.6.4 show that the better is the estimation provided by the predictor at the time 

    the better will be the parallel model identification for     . Moreover, the larger is   the 

smaller is the switching time    from the predictor to the parallel model. The previous experiments 

show how the parallel model is able to identify the stable plant both starting from a good estimation 

of the plant provided by the series parallel model and also in the case (4.6.4) in which there is no 

series parallel model with the only constraint that the initial parameters of the parallel model      

are inside the stability region. These results can be used as a starting point to assess the use of the 

parallel model identification scheme in a wide range of application in which the designer requires a 

true model instead of a predictor. 

 

4.7 Considerations on the applied procedure to derive the adaptive 

law for the parallel model 

The idea behind equation (4.13) used to adjust the parallel model parameters vector   in section 4.5 

lies on an intriguing procedure. Starting from the consideration that the plant is unknown while the 

parallel model parameters are known, the problem is how to adjust the parallel model parameters 

vector    to converge towards   . Let us treat, theoretically, the parallel model as a reference model 

and our target is that the plant follows the "reference model". Then, the problem becomes a standard 

control problem. At each step, once we calculate the quantity    of which we have to move the 

plant towards the reference model (Figure 4.10) we move the parallel model of the opposite 

quantity (   ). 

 

Figure 4.10: base idea to adjust the parallel model parameter vector  . 
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Let us define                                    , then we can write: 

                      
                             

and we can calculate: 

                                       
                     

then 

                               
                         

and 

        
               

         
    

 
            

         
    

   (4.18) 

where            is the last row of           
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5 

Concluding remarks 

This thesis focused on the study of nonlinear oscillations in high power systems in two reference 

frameworks (systems/devices used to sustain plasma fusion and power electronic modules). The 

systems studied have been analysed, identified and modeled using different approaches.  

The modeling of macroscopic JET plasma instabilities has been treated by proposing both data-

driven modeling approaches and model-based ones. The former involved empirical models 

described by mathematical equations that are not derived from the physical knowledge of the 

system but from analysis of time series data using neural networks. The motivation that pushed 

toward the use of this approach is twofold: the lack of a detailed knowledge of the system and the 

availability of a considerable amount of data describing the problem. 

In the same context, a model-based approach has also been proposed to face with the modeling 

problem from a different perspective: the study of a mathematical model capable of reproducing 

plasma instabilities behavior through the experimental observations of a rescaled electronic 

analogous. 

Concerning the power electronics framework, the high power density characterizing power 

electronic modules for industrial applications makes of primary importance the investigation on 

thermal behavior of these devices. For this purpose, an integrated procedure starting from FE 

models validated by experimental data has been introduced. In the proposed methodology FE 

models are used to provide source information to a lumped parameter modeling that allows a fast 

prototyping of the devices.  

The proposed methodology is based on the assumption that the heat transfer problem can be 

assumed to be linear and the thermal impedances approach can be therefore used. The approach 

used is general as it can be used to extract the thermal networks either from FE models or 

experimental data of thermal impedances. In fact, the use of FE model is only finalized to get the 

thermal impedances  curves to derive lumped parameter models, so it will be used only once. Then, 

it is possible to simulate the module thermal behavior by means of a generic circuit simulator at 

least at some  "critical" points in a faster way than a FE model which needs of a specific FEM tool. 

Secondly, the lumped parameter thermal model obtained can be easily integrated with a power 

module electrical model. 
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In the last chapter a study on new identification techniques based on parallel identification models 

is also proposed for discrete-time systems. This study has been motivated by the importance of 

investigating on new identification methodologies that lie on the implementation of a true 

identification model. The results obtained can be used to set the problem for new research 

developments. 
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