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ABSTRACT

Large quantities of medical data are routinely generated each day in

the form of text, images and time signals, making evident the need

to develop new methodologies not only for the automatization of the

processing and management of such data, but also for the deeper un-

derstanding of the concepts hidden therein. The main problem that

arises is that the acquired data cannot always be in an appropriate

state or quality for quantitative analysis, and further processing is

often necessary in order to enable automatic processing and manage-

ment as well as to increase the accuracy of the results. Also, given

the multimodal nature of medical data uniform approaches no longer

apply and specific algorithm pipelines should be conceived and devel-

oped for each case.

In this dissertation we tackle some of the problems that occur in the

medical domain regarding different data modalities and an attempt to

understand the meaning of these data is made. These problems range

from cortical brain signal acquisition and processing to X-Ray image

analysis to text and genomics data-mining and subsequent knowledge

discovery.
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CHAPTER

ONE

INTRODUCTION

The medical domain is characterized by a profound multimodality in

the processing of data. Text, images and time signals are the pre-

dominant data formats that are used during screening and diagnostic

processes. The main problem that arises though, is that the acquired

data cannot always be in an appropriate state or quality for quantita-

tive analysis and further processing is often necessary in order not only

to enable automatic processing and management, but also to increase

the accuracy of the results.

For example, Electroencephalography, is one of the most common

examinations that is used for monitoring brain activity and for diag-

nosing conditions of the central and peripheral nervous system. Before

an EEG signal is considered, it goes under heavy filtering for removing

unwanted artifacts and noise that would render the signal unusable.

Another example is medical imaging data. Magnetic resonance imag-

ing, computer tomography, X-Ray and echography images all need an

1



2 Chapter 1. Introduction

initial preprocessing step to remove undesired information and to en-

hance the quality of the image by using image processing techniques.

Quality of the medical information is not the only desired outcome.

Manageability of the resources is another requested ability of medical

institutions worldwide. For instance, thousands of medical reports

are generated daily by medical institutions, but very often, are hand

written and when digital systems are used for their management, they

do not always use common formats and sharing or migrating text

documents between medical institutions require a further integration

step that most often comes at prohibitive costs.

Numerous research groups produce resources, but what happens

when not identical, but relevant, research tracks are combined in an

automatic and exploratory way? Is it possible to bring together re-

sources and discover hidden knowledge by analyzing their common

parts? Even more interestingly, given the widespread diffusion of med-

ical information, is it possible that disparate pieces of information that

were not considered before, if combined, could provoke a breakthrough

in biomedical research?

During my Ph.D. course, I focused my research efforts on dealing

with the aforementioned problems, and for this reason I identified 4

diverse problems of the medical domain that should be dealt with by

different approaches. In the following subsection a brief description of

such problems is given.
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1.1 Structure of this Dissertation

This dissertation is organized in seven chapters (including this intro-

duction) as follows:

Chapter 2 presents a method for generating automatically sum-

maries based on patients’ reports by employing Natural Language

Processing techniques. This method aims at creating structured text,

based on unstructured text, that can be easily managed, stored and

shared.

Chapter 3 presents a method and a suite of tools for assisting neu-

rophysiologists to create and execute large-scale experiments based on

paired-pulse Transcranial Magnetic Stimulation. The tools contained

in the suite cover completely the life-cycle of large-scale medical ex-

periments (i.e. experiment definition, stimuli administration, signal

acquisition and statistical analysis).

Chapter 4 presents a method and a tool for assessing the skeletal

bone age of an individual based on X-Ray images of the left hand. Such

a method, is important in many contexts ranging from legal rights

assessment, to devolepmental disorders. Machine learning techniques,

and in particular Hidden Markov Models, deal with the classification

task, achieving remarkable results.

Chapter 5 describes a tool (BioCloud) that conducts knowledge

discovery in the biomedical domain by processing a multitude of

sources and data formats. It is capable of processing large quantities

of scientific literature papers, online genomics databases and disease

related databases to establish and verify relations between genes, pro-

teins and biological processes that lead to disease. Given the high

volumes of data that the tool needs to process, the whole processing



4 Chapter 1. Introduction

and data flow has been parallelized and deployed as a cloud service in

order to exploit the high throughput these paradigms can offer.

Finally, in Chapter 6 conclusions are drawn and future directions

are given.

Each chapter is independent with each other, as they deal with

completely different problems of the medical domain.



CHAPTER

TWO

TEXT PROCESSING: CREATING SUMMARIES

OF UNSTRUCTURED MEDICAL RECORDS

In this chapter we present a system for automatic generation of sum-

maries of patients’ unstructured medical reports. The system employs

Natural Language Processing techniques in order to determine the

most interesting points and uses the MetaMap module for recognizing

the medical concepts in a medical report. Afterwards the sentences

that do not contain interesting concepts are removed and a summary

is generated which contains URL links to the Linked Life Data pages of

the identified medical concepts, enabling both medical doctors and pa-

tients to further explore what is reported in. Such integration also al-

lows the tool to interface with other semantic web-based applications.

The performance of the tool were also evaluated, achieving remark-

able results in sentence identification, polarity detection and concept

recognition. Moreover, the accuracy of the generated summaries was

5
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Records
evaluated by five medical doctors, proving that the summaries keep

the same relevant information as the medical reports, despite being

much more concise.

2.1 Introduction

Every day a large amount of medical reports, in the form of free text

(i.e. not structured according to a logical scheme) is generated. Not

possessing any structural information hampers the ability of automatic

document digitization and analysis and subsequently all the applica-

tions that could be built upon these. The information included in the

text can be deductible only through reading. The adoption of free

text documents is done mainly due to the doctors’ lack of time, who

have to write reports quickly, or due to hospitals’ internal procedures

or traditions. Moreover, the readability of these documents could be-

come a problem as it may not be easy for the reader to pinpoint the

most important parts.

The medical domain suffers particularly by an overload of information

and rapid access to key information is of crucial importance to health

professionals for decision making. For instance, a concise and syn-

thetic representation of medical reports (i.e. a summary), could serve

to create a precise list of what was performed by the health organiza-

tion and derive an automatic method for calculating hospitalization

costs. Given the plethora in number and diversity of sources of medi-

cal documents, the purpose of summarization is to make users able to

assimilate and easily determine the contents of a document, and then

quickly determine the key points of it. In particular, as reported in
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[1]: “A summary can be loosely defined as a text that is produced from

one or more texts, that conveys important information in the origi-

nal text(s), and that is no longer than half of the original text(s) and

usually significantly less than that”, but also denotes its most impor-

tant challenge: “Identifying the information segments at the expense

of the rest is the main challenge in summarization”. Generating sum-

maries, however, is not trivial as it implies a deep understanding of the

underlying semantics. This is even more challenging in the medical

domain since medical reports include a highly specialized vocabulary,

words in upper and lowercase letters and numbers that require ad-

hoc tokenization. These problems urged the development of domain-

specific resources such as PubMed/MEDLINE and PubMedCentral1,

ontologies and other semantic lexical resources, such as Gene Ontol-

ogy2 and Unified Medical Language System (UMLS)3, and annotated

databases, such as Entrez Gene4 which are used heavily by a variety

of text mining applications.

The objectives of the work presented herein is 1) to create automati-

cally a summary that conveys the key points of medical reports and 2)

to provide a tool for annotating the medical concepts found in the text

with Linked Life Data (LLD)5, so that the doctors or the patients can

explore further what is being reported and also enable interoperability

with other semantic web-enabled applications.

The remainder of the chapter is as follows: the next section briefly

1http://www.ncbi.nlm.nih.gov/pubmed
2http://www.geneontology.org/
3http://www.nlm.nih.gov/research/umls/
4http://www.ncbi.nlm.nih.gov/gene/
5http://linkedlifedata.com/
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presents related works, while Section 2.3 describes the method in de-

tail and in Section 2.4 a performance evaluation of the system is carried

out.

2.2 Related Work

Text summarization of medical documents was brought to the atten-

tion of the scientific community due to the tremendous growth of infor-

mation that are available to physicians and researchers: the growing

number of published journals, conference proceedings, medical sites

and portals on the World Wide Web, electronic medical records, etc.

In particular, in the clinical context, there has been an increase of in-

terest in the use of Electronic Medical Records (EMR) systems which

may contain large amounts of text data, to improve the quality of

healthcare [2]. To make full use of the information contained in the

EMR and to support clinical decision, text mining techniques based

on Natural Language Processing (NLP) have been especially proposed

for information retrieval purposes or for extracting clinical summaries.

In [3], an information extraction system that extracts three types

of information (numeric values, medical terms and categories) from

semi-structured patient records, is presented. An extension to this

system is presented in [4]: The MEDical Information Extraction (Me-

dIE) system extracts a variety of information from free-text clinical

records of patients with breast related diseases. MedIE uses GATE [5],

WordNet [6] and UMLS, and employs a graph-based approach for nu-

meric attribute extraction capable of performing the majority of in-

formation extraction tasks achieving remarkable results. In [7], the
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Keyphrase Identification Program (KIP) is proposed, for identifying

medical concepts in medical documents. KIP combines two functions:

noun phrase extraction and keyphrase identification. It automati-

cally extracts phrases containing nouns using a part-of-speech tagger

achieving fair results (0.26 in precision and 0.60 in recall, best case

scenario). KIP ranks all the noun phrases in terms of their relevance

to the main subject of the document, and selects only the most rel-

evant ones by creating a glossary database from the Medical Subject

Headings (MeSH) site. In [8] is presented a pipeline-based system for

automated annotation of surgical pathology reports with UMLS terms

built on GATE. The system implements a simple method for detecting

and annotating UMLS concepts as well as annotating negations based

on the NegEx algorithm [9], achieving very good results in terms of

precision (0.84) and recall (0.80).

While all of these tools offer great insight on how concept identifica-

tion and annotation can be done they do not offer any functionalities

for single-document text summarization. Such feature can be found

in more complex works, as in [10, 11] where summarization of sin-

gle documents is done by applying robust NLP techniques combined

with conceptual mapping based on ad-hoc ontologies or lexicons. The

main problem with these approaches is that the accuracy of the con-

cept extraction, and subsequently the accuracy of the summarization,

depends on the underlying lexicon, and in this particular case, the

ontology. Not using well established ontologies carries the drawback

of limiting the available identifiable concepts and also, their inter-

operability with other semantic web-based complementary systems.

In [12], UMLS is used for concept mapping but the system does not

deal with negative expressions leading to misinterpretations in the fi-
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nal summary.

In the next section the description of a system aiming at creating

summaries out of medical records written in free text form by imple-

menting a GATE pipeline, and also for assigning UMLS codes to the

medical entities found inside them, is proposed.

2.3 Method

In order to produce a reliable summary, the corpus of medical docu-

ments must undergo through several processing steps. In this section,

the tools used during this process are introduced and described. The

basis of the developed system is GATE, which is the most used tool

for implementing NLP-based applications. GATE uses regular ex-

pressions to configure all of its components (Tokenization, Sentence

Splitter, POS tagging, Named Entity Recognition (NER) etc...).

The general architecture of the proposed system is shown in Fig. 2.1.

2.3.1 Text processing and annotation

ANNIE [13] is the information extraction component of the GATE

platform and it substantially encapsulates the main NLP functions. In

our case, an ANNIE pipeline was defined that employs the following

components:

• English Tokenizer: The text in the corpus is divided into very

simple tokens such as numbers, punctuation symbols or simple

words. The main objective of this module is to maximize the

efficiency and flexibility of the whole process by reducing the

complexity introduced by the grammar rules.
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• Gazetteer: Its role is to identify the names of entities based on

lists, fed into the system in the form of plain text files. Each list

is a collection of names, such as names of cities, organizations,

days of the week, etc...

• Sentence Splitter: As its name suggests, it splits the text in

simple sentences by using a list of abbreviations to distinguish

sentence markers.

• Part-of-speech Tagger: Marks a word as corresponding to a

particular part of speech based on both its definition and con-

text. This is useful for the identification of words as nouns,

verbs, adjectives, adverbs, etc. The results of this plug-in are

the tokens used for the implementation of regular expressions.

• Named Entity Transducer: ANNIE’s semantic tagger con-

tains rules that work on the annotations of the previous phases

to produce new annotations. It is used to create annotations

regarding the terms related on negations, sections and phrases.

• MetaMap Annotator: This module serves the role of iden-

tifying medical terms found in text and map them to UMLS

concepts by using NLP methods combined with computational

linguistics [14].

• Words Correction: Given that the vast majority of the med-

ical reports that we are dealing with were produced in a com-

pletely manual manner, misspellings do occur, making the med-

ical term identification process less accurate. For this reason,

each unannotated term (i.e. a word that does not exist) in the
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text is used as a query term against a dataset containing med-

ical terms and the term with the smallest Levenshtein distance

is retrieved. The result is used in place of the misspelled word

in the original document.

• Negated Expressions: In order to achieve a correct interpreta-

tion of the text found in medical documents, it is very important

be able to identify negated expressions, which indicate the ab-

sence of a particular symptom or condition. MetaMap helps to

identify negated concepts by providing a pair of features, namely

”NegExType” and “NegExTrigger”; the former one identifies the

negation, while the latter one specifies the term that expresses it.

In this phase there are two problems that must be dealt with: a)

the negated medical concept must be correlated to the term that

triggers the negation effect and b) there are words that imply

negation but MetaMap cannot identify them as such (e.g. the

word inexistence). To overcome these problems, the Gazetteer

is used again, by creating a new class of annotations relating

exclusively to terms of negation.

• Section parsing: For this phase, the Gazetteer plug-in is used

by defining tags that could be possibly represent section labels.

For our experiments the following tags were defined: admitting

diagnosis, discharge diagnosis, symptoms, past medical history,

family history, social history, hospital course, medications, diag-

nostic studies, discharge instructions.
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Figure 2.1: General architecture of the proposed system.

2.3.2 Summary Generation

Not all of the annotations generated by the MetaMap Annotator are

needed in the final summary. Each MetaMap annotation contains also

the semantic type of the corresponding term (e.g. “Body Part” for

the word “leg”, “Manufactured Object” for the word “scalpel” etc...).

Inevitably, terms belonging to certain semantic types are excluded

from the summary because their importance might be negligible.

An issue that needs to be dealt with during summary generation

is that many annotated phrases should be merged to one sentence.

For example, the sentence “x-rays including left foot, right knee, left

shoulder and cervical spine” would normally be divided in the tokens

“x-rays”, “left foot”, “right knee”, “cervical spine” and “left shoulder”
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even though all of them belong to the same sentence.

Regular expressions were employed to face this problem. In our

case, the following regular expression was used:

(PRE)?(NEG)?((METAMAP )(NEG)?)+(POSTCONCEPT )?(POST )?,

where METAMAP denotes the main medical concept identified

by MetaMap (e.g. “amoxicillin”, PRE denotes attributes that can

precede the main concept (e.g. “significant”, “treated with”, “diag-

nosis of”, “presence of” etc...), POSTCONCEPT indicates a word

directly correlated to the main concept (e.g. “1 g” for expressing

dosage etc...) and POST denotes eventual tokens that may represent

a continuation of the sentence (e.g. commas, conjunctions etc...). Fi-

nally, the NEG term indicates whether a token expresses negativity

or not.

The “+” and “?” operators describe the cardinality of each term

with the “+” operator meaning “at least one or more” and the “?”

operator meaning “zero or more”.

For each identified section, the annotations relative to affirmative

and negative expressions are created and for each sentence, the an-

notations produced by MetaMap are used. The same annotations are

also used as query terms on the LLD site and the URLs pointing to the

corresponding medical concepts are embedded to the final summary

and exported in an HTML file.

An example of how the system works is shown below. Given the

following discharge summary (the underlined words represent typo-

graphical errors):
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ADMITTING DIAGNOSES: Intrauterine pregnancy at 36 weeks. Twin

gestation. Breech presentation of twin A.

DISCHARGE DIAGNOSES: Intrauterine prengancy at 36 weeks. Twin

gestation. Breech presentation of twin A. Status post primary low transverse

cesarean section for malpresentation of twins.

CHIEF COMPLAINT: At the time of admission, contractions.

HISTORY: The patient is a 32-year-old pregnant at 36 weeks with known

twins with contractions and good fetal movement, no bleeding, no loss of

fluids.

OB HISTORY: Present pregnancy with previous receipt of a steroid window.

GYN HISTORY: Significant for chamydia, which was treated.

MEDICATIONS: Prenatal vitamins.

SOCIAL HISTORY: No drinking, smoking or drug use. No domestic

violence. The father of the baby is currently involved, and the patient is

living with a friend.

PHYSICAL EXAMINATION: Temperature is 36.2, pulse 88, respirations 18

and blood pressure 121/58. HEART: Regular rate and rhythm. LUNGS:

Clear. ABDOMEN: Soft and gravid.

HOSPITAL COURSE: Postoperatively, the patient did well. She was

eating, ambulating and voiding, passing gas by postoperative day 2, and on

postoperative day 3, she continued to do well. She had been seen by Social

Work and options made aware to the patient. She was ready for discharge.

She remained afebrile throughout her hospital course.

DISCHARGE INSTRUCTIONS: She will be discharged to home to follow

up in two weeks for a wound check.

MEDICATIONS AT THE TIME OF DISCHARGE: Percocet, Motrin and

Colace.

The result is a more compact form of the input document, with

both the wrong words corrected and also contains the Linked Life Data

links identified by MetaMap:
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ADMITTING DIAGNOSIS: Intrauterine pregnancy. Breech presentation of

twin.

SYMPTOMS: contractions.

DISCHARGE DIAGNOSIS: Intrauterine pregnancy. Breech presentation of

twin. Malpresentation of twins.

DIAGNOSTIC STUDIES: Temperature 36.2, pulse 88, respirations 18 and

blood pressure 121/58. HEART. LUNGS. ABDOMEN.VAGINAL

PAST MEDICAL HISTORY : Significant for chlamydia. known twins with

contractions and good fetal movement ,. pregnancy. Receipt of a steroid

window.

PAST MEDICAL HISTORY NEGATIVE: no bleeding, no loss of fluids.

SOCIAL HISTORY NEGATIVE : No drinking, smoking or drug use. No

domestic violence.

MEDICATIONS : Prenatal vitamins. Percocet, Motrin and Colace.

By clicking on the underlined terms, the system redirects the reader

to its LLD page (Fig. 2.2).

2.4 Experimental Results

As stated in [1], evaluating the performance of a summarization sys-

tem is not a trivial task. To be more precise, while the quantitative

evaluation can be based on clear and objective metrics, the qualita-

tive one is not that straightforward because summarization efficiency

is most often expressed as a subjective opinion of the individual rater

(i.e. Inter-rater reliability). Nevertheless, because of the two-fold na-

ture of these kind of systems, their performance evaluation should

cover both these aspects. So, in order to assess exhaustively the per-

formance of the proposed system we tested it under three different

perspectives and compared the results to a hand-crafted ground-truth

http://linkedlifedata.com/resource/umls-concept/C0149973
http://linkedlifedata.com/resource/umls-concept/C0006157
http://linkedlifedata.com/resource/umls-concept/C0233365
http://linkedlifedata.com/resource/umls-concept/C1140999
http://linkedlifedata.com/resource/umls-concept/C0149973
http://linkedlifedata.com/resource/umls-concept/C0006157
http://linkedlifedata.com/resource/umls-concept/C0233365
http://linkedlifedata.com/resource/umls/id/C0233256
http://linkedlifedata.com/resource/umls-concept/C0233365
http://linkedlifedata.com/resource/umls-concept/C0005903
http://linkedlifedata.com/resource/umls-concept/C0034107
http://linkedlifedata.com/resource/umls-concept/C0035203
http://linkedlifedata.com/resource/umls-concept/C0005823
http://linkedlifedata.com/resource/umls-concept/C0018787
http://linkedlifedata.com/resource/umls-concept/C0024109
http://linkedlifedata.com/resource/umls-concept/C0000726
http://linkedlifedata.com/resource/umls-concept/C0042232
http://linkedlifedata.com/resource/umls-concept/C0008148
http://linkedlifedata.com/resource/umls-concept/C0233365
http://linkedlifedata.com/resource/umls-concept/C1140999
http://linkedlifedata.com/resource/umls-concept/C0015946
http://linkedlifedata.com/resource/umls-concept/C0032961
http://linkedlifedata.com/resource/umls-concept/C0038317
http://linkedlifedata.com/resource/umls-concept/C0019080
http://linkedlifedata.com/resource/umls-concept/C0005889
http://linkedlifedata.com/resource/umls-concept/C0001948
http://linkedlifedata.com/resource/umls-concept/C0037369
http://linkedlifedata.com/resource/umls-concept/C0242510
http://linkedlifedata.com/resource/umls-concept/C0206073
http://linkedlifedata.com/resource/umls-concept/C0772413
http://linkedlifedata.com/resource/umls-concept/C0086787
http://linkedlifedata.com/resource/umls-concept/C0699203
http://linkedlifedata.com/resource/umls-concept/C0282139
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Figure 2.2: Image showing the LLD pages of the terms Percocet

(left) and Intrauterine pregnancy (right)

(described in Subsection 4.1). For all the evaluations we employed

Precision-Recall and F1 measure values defined as follows:

Precision =
TP

TP + FP

,

Recall =
TP

TP + FN

and

F1 =
Precision×Recall

Precision+Recall

The FP , TP and FN values are defined separately for each of

the aspects tested. The obtained results were compared against a

manually created dataset by five medical doctors that contained both

positive and negative sentences. The dataset was comprised by 125

medical reports containing 3611 annotated sentences (2824 positive
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and 787 negative) and 15641 annotated medical concepts.

• Medical concept recognition: The first aspect of the system

that was tested was its ability to identify correctly the medical

concepts found inside the medical reports.

– A True Positive (TP) results when an identified medical

concept is the same with the manual annotation.

– A False Negative (FN) results when a medical concept was

not identified correctly or was not identified at all.

– A False Positive (FP) results when a medical concept was

assigned a different label or when a non medical term was

identified as such.
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Test N TP FP FN P R F1

Medical concept recognition 15641 12499 2419 3142 0.84 0.8 0.82

Sentence identification and polarity detection 3611 2808 531 803 0.84 0.78 0.81

Medical concept recognition 15641 11499 3514 4142 0.77 0.74 0.75

Table 2.1: Performance of the system in recognizing correctly the medical concepts.



20
Chapter 2. Text Processing: Creating Summaries of Unstructured Medical

Records

N TP FP FN P R F1

3611 2808 531 803 0.84 0.78 0.81

Table 2.2: Performance of the system on sentence detection and

polarity detection.

• Sentence identification and polarity detection: The

second aspect of the system that was tested was its ability to

extract correctly the single sentences in the medical report and

also to assign correctly the negation attribute to the medical

concepts detected by the previous test, using regular expressions.

– A True Positive (TP) results when an identified sentence is

found also in the ground truth and was assigned the correct

polarity.

– A False Negative (FN) results when a sentence found in the

ground truth was not identified as such or when an anno-

tated sentence was divided erroneously between two other

sentences or when the negation property was not assigned

to a negative sentence .

– A False Positive (FP) when a sentence is erroneously iden-

tified as such, but instead, in the ground truth, its terms do

not belong in the same one or when the negation property

was assigned to a positive sentence.

• Summary relevance: Additionally, the quality of the pro-

duced summary was evaluated. To achieve this, the same five

medical doctors were presented with both the original reports

and the final results and then asked to assess qualitatively

the relevance of the summaries (i.e. express their personal

opinions on what medical concepts should be included in the

final summary versus what should be excluded). After that, the

following parameters were defined:

– A True Positive (TP): A concept that the medical doctors
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N TP FP FN P R F1

15641 11499 3514 4142 0.77 0.74 0.75

Table 2.3: Performance of the system on summary accuracy. The

final result was calculated based on the sum of the votes of the medical

doctors.

felt that should be included in the final summary and it

was.

– A False Negative (FN): A concept that the medical doctors

felt that should be included in the final summary but it was

not.

– A False Positive (FP): A concept that the medical doctors

felt that should not be included in the final summary but

it was.

Sentence identification and polarity detection performance was

very good. Indeed, an F1score value of 0.81 means that the algo-

rithms employed to do this task performed very well. More detailed

inspection of the failing sentences were due to misplaced punctuation

marks and missing negative keywords from the employed dictionary

that could provoke ambiguity problems if they were ultimately in-

cluded (e.g. the word “will” in the sentence “...will develop cancer...”

does not imply that the patient has cancer). The results in medical

concept recognition are almost equal as high. An F1score value of 0.82

means that the MetaMap module is very accurate in identifying the

medical concepts found in the reports. Especially important are the
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results in the summary accuracy test where the subjective opinion of

the intended end users of the system (the medical doctors) determine

its utility, achieving an F1score of 0.75.



CHAPTER

THREE

TIMES SERIES ANALYSIS: TRANSCRANIAL

MAGNETIC STIMULATION

Transcranial magnetic stimulation (TMS) is the most important tech-

nique currently available to study cortical excitability. Additionally,

TMS can be used for therapeutic and rehabilitation purposes, re-

placing the more painful and invasive transcranial electric stimulation

(TES). In this chapter we present an innovative and easy-to-use tool

that enables neuroscientists to design, carry out and analyze scientific

studies based on TMS experiments for both diagnostic and research

purposes, assisting them not only in the practicalities of administer-

ing the TMS but also in each step of the entire study’s workflow. One

important aspect of this tool is that it allows neuroscientists to specify

research designs at will, enabling them to define any parameter of a

TMS study starting from data acquisition and sample group defini-

tion to automated statistical data analysis and RDF data storage. It

23
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also supports the diagnosing process by using on-line support vector

machines able to learn incrementally from the diseases instances that

are continuously added into the system. The proposed system is a

neuroscientist-centred tool where the protocols being followed in TMS

studies are made explicit, leaving to the users flexibility in explor-

ing and sharing the results, and providing assistance in managing the

complexity of the final diagnosis. This type of tool can make the re-

sults of medical experiments more easily exploitable, thus accelerating

scientific progress.

3.1 Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive and pain-

less technique for the evaluation of corticospinal tract function as well

as of motor cortex excitability of the human brain and it is used to

investigate the central motor pathways of several neurological and psy-

chiatric diseases. More specifically, TMS is the most important tech-

nique currently available to study cortical excitability [15], and can

be used for therapeutic and rehabilitation purposes [16] and [17], re-

placing the more painful transcranial electric stimulation (TES). In

the last twenty years, TMS has been applied to explore the patho-

physiology of many neurological and psychiatric diseases [18], such as

multiple sclerosis [19], stroke [20], dementia [21], Parkinson’s disease

[22], myelopathies [23], depression [24], schizophrenia [25], and as a

possible therapeutic tool for some of these disorders [23].

TMS produces a modification of the neuronal activity of the pri-

mary motor cortex stimulated by the variable magnetic field generated
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by a coil placed on the scalp. This variable magnetic field, produced

by the current flowing in the coil, induces an electric current in the

underlying brain tissue. The figure-of-eight or butterfly coil can stim-

ulate a relatively focal area (Fig. 3.1), whereas the circular coil a more

diffuse one [26].

Figure 3.1: Magnetic field generated by the different coils: (a) mag-

netic field by a figure-of-eight coil and (b) magnetic field by a circular

coil.

When TMS is applied to the primary motor cortex, at appropriate

magnetic field intensity, it induces motor evoked potentials (MEP),

recorded with an electromyograph, in the muscles that are contralat-

eral to the stimulated motor cortex [27].

In clinical practice, TMS may be delivered as either single or paired

pulses or regularly repeating pulses (repetitive TMS) in order to assess

different parameters about the motor system. The single pulse TMS

is used to evaluate the integrity of motor pathways and motor cortex

excitability by measuring:
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1. the MEP amplitude (defined as the distance between the lowest

negative peak and the highest positive peak and expressed in

mV);

2. the motor threshold (defined as the minimum TMS intensity

necessary to evoke small-amplitude MEPs, larger than 50 V in

amplitude);

3. the central motor conduction time (i.e. the latency difference

between the MEPs induced by stimulation of the motor cortex

and those evoked by spinal stimulation);

4. the cortical silent period (cSP, defined as a period of electromyo-

graphic suppression after a MEP).

Usually, the cortical excitability and intracortical circuits in various

diseases are studied by a paired pulse TMS paradigm that couples a

subthreshold stimulus (the amplitude is set lower than the patient mo-

tor threshold and it is called a conditioning pulse) and a suprathresh-

old stimulus (called a test pulse), at different interstimulus intervals

(ISIs) through the same coil. The effects of the conditioning pulse on

the size of the MEP depend on the duration of the ISIs. Indeed, at

ISIs within the range 14 ms there is a strong inhibitory effect on the

MEP (in the form of a reduced amplitude) [28], while at ISIs within

the range 720 ms there is a facilitatory effect on the MEP (in the form

of increased amplitude) [29].

Since there is an extensive use of TMS in different research fields

and for each use of TMS several different factors are crucial, a data

acquisition and processing system is required to create more standard-

ized conditions and to reduce the high intra- and inter-rater variability
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in the execution of the clinical experiments (typically due to coil po-

sitioning and to the time interval between each pulse administration).

As far as we know, very few software-based approaches have been

proposed for supporting neuroscientists in performing TMS experi-

ments. The first attempt was developed in 2000 by Kaelin-Lang and

Cohen [30] who tried to help neuroscientists in the execution of TMS

experiments, but the system was designed only for data acquisition

and for data post-processing, and not for supporting researchers in

the whole life-cycle of a research study. In order to improve the func-

tionalities of this system, we have recently proposed a flexible TMS

data acquisition and processing system affording the scientists an easy

and customizable interaction with the TMS hardware, for more effi-

cient and accurate data recording and analysis [31]. In this chapter

we expand this work by presenting a system that, beyond the cus-

tomization of the TMS experiments, uses machine learning techniques

to assist scientists in the diagnosing process. In detail, here we pro-

pose an easy-to-use tool that enables neuroscientists to design, carry

out and analyze scientific studies based on TMS experiments for both

diagnostic and research purposes, and assists neuroscientists in each

step of the entire study’s workflow. The tool allows neuroscientists to

specify any research design, by defining any parameter of a TMS study

starting from data acquisition to sample group definition to statistical

data analysis. All the data used in the proposed tool, including exper-

iment protocol data, is also stored in RDF, thus they can be shared

with other systems compliant to semantic web standards. Finally, the

tool is also provided with on-line support vector machines (SVM) to

help neuroscientists in the diagnosis process.

The remainder of the chapter is as follows: the next section intro-
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duces the signals and the parameters involved in a TMS experiment.

In Section 3 the proposed tool is presented, following each step of the

workflow carried out by scientists for TMS experiments, from hard-

ware interfacing to protocol definition, to experiment execution, to

statistical analysis and RDF data storage. In the same section, the

proposed on-line SVM approach for supporting scientists in the diag-

nosis is described, pointing out its advantages.

3.2 Transcranial Magnetic Stimulation

As mentioned in Section 1, TMS may be administered as either sin-

gle or paired pulses or regularly repeating pulses (repetitive TMS).

Single and paired pulses TMS are used for diagnostic purposes in or-

der to assess different parameters about the motor cortex excitability,

whereas repetitive TMS is used for therapeutic purposes. Investigat-

ing the motor cortex excitability involves measuring MEP amplitudes,

motor threshold and silent period by using the single pulse TMS and

the intracortical inhibition (ICI) and facilitation (ICF) by using the

paired pulses TMS. The single pulse TMS consists of administering a

single pulse and of recording the electromyographic (EMG) response,

whereas TMS paired pulses consists of the administration of two pulses

(a conditioning one and a test one) with a certain delay, called Inter-

Stimulus Interval ISI. Fig. 3.2a shows the MEP response when a paired

pulse stimulus is administered to a patient.

In such signals it is possible to identify:

• The latency, which is the time interval between the instant when

the stimulation is administered to the subject and the instant
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Figure 3.2: Example of: (a) MEP response when a paired pulse TMS

is administered to a patient and (b) cortical excitability curve.

when the muscle starts to move. Latency tends to increase with

age and height.

• The amplitude of the muscular response, which is the peak-to-

peak excursion expressed in volts of the instrument that mea-

sures the muscle response.

The intracortical inhibition (ICI) and facilitation (ICF) are, in-

stead, related to the cortical excitability that is estimated by a graph

that describes the obtained amplitudes of the muscular responses at

varying of the ISIs with respect to the amplitude obtained at ISI =

0. An example of a cortical excitability curve is shown in Fig. 3.2b.

Currently all the TMS experiments are carried out by interacting man-

ually with the TMS hardware, hence by setting only one ISI per time,

whereas the number of repetitions for each ISI is performed by the

experimenter by clicking a button on the coil as many times as the

number of repetitions. Indeed, although the available TMS equipment

is provided with tools allowing the automatic parameter setting, such
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tools use proprietary script languages (similar to programming lan-

guages, e.g. the software Signal of the Cambridge Electronic Design)

that make the task of designing TMS experiments very difficult and

tedious for medical doctors.

In the next section the proposed customizable acquisition and pro-

cessing system that permits the full customization of all currently used

TMS paradigms (single pulse and paired pulse TMS) is described.

3.3 The Proposed Tool

This section describes a customizable data acquisition and process-

ing tool that supports neuroscientists in the automatization and cus-

tomization of all currently used TMS paradigms, in the data storage

and experiment management and in the diagnosis. The architecture

of the proposed system is shown in Fig. 3.3 and consists of three main

modules:

• Hardware interaction module: it handles the interaction with

the hardware equipment for executing TMS experiments;

• Experiment data management module: it allows neuroscientists,

through an intuitive interface, to store patient data in RDF for-

mat, to set the parameters of TMS experiments, to process the

acquired data, to define research studies involving several pa-

tients and to analyze data from such studies with statistical

tests;

• Diagnosis support system module for supporting neuroscientists

especially in the differential diagnosis. This module performs
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on-line training from data to handle uncertain cases.
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Figure 3.3: The proposed architecture.
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3.3.1 Hardware Interaction Module

A hardware-interface communicates with the TMS equipment that

interacts with a real-time data acquisition unit. This module imple-

ments a common programming interface in order to support different

data acquisition systems. It is sufficient to import a library (spe-

cific for the hardware) for enabling the communication with the TMS

hardware.

To date, only the library for communicating with the CED 14011

is present in our system. The CED 1401 A/D is one of the most

common signal acquisition systems for TMS response acquisition and

stimulation synchronizer and it usually comes with MagStim2 stimu-

lators. It features 4 analog inputs capable of acquiring signals with 16

bit resolution at a 500 kHz sampling rate, 2 digital inputs and 2 digi-

tal outputs. One of the analog inputs is used to acquire the response

signals through a small signal amplifier (CED 1902). Therefore, the

CED 1401 receives the user-commands, and synchronizes two stimula-

tors MagStims 200, connected on its digital outputs, for the creation

of the single pulses, which are further combined in a paired pulse

by the Magstim BiStim and are administered to the patient’s cortex

through the coil. After the TMS stimulus administration, the muscu-

lar response (MEP) is registered by using single-use, low-noise, high

conductivity electrodes. Such motor responses are then amplified, us-

ing the CED 1902, with a gain ranging from 100 to 1,000,000 (V/V)

and a maximum voltage input range 10 V.

1http://ced.co.uk/
2http://www.magstim.com/
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3.3.2 Experiment data management module

To assist the neuroscientists in the entire life-cycle of a TMS based

research, the proposed tool provides the users with a set of flexible

functionalities for setting all the necessary parameters, for processing

the acquired data and for storing the information in order to be pro-

cessed by other semantic-based applications or to be shared with other

researchers. This module consists of four sub-modules:

• Experiment setting sub-module, for establishing the parameters

of a TMS paradigm (ISI, number of repetitions, etc.), the criteria

for patients enrollment and the variables (clinical, neuropsycho-

logical, etc.) of the patients that should be investigated for the

specific scientific research;

• Signal post processing sub-module, for processing the acquired

muscular responses in order to remove noise and other inconsis-

tencies that may affect the quality of the acquired data;

• Statistical analysis sub-module, for assessing the results of the

performed studies;

• Data storage sub-module, for handling the storage of any data

produced in the system, from the patient’s data, to statistical

analysis results, to classifier’s parameters. It is provided with

different RDF repositories for each type of produced data.

Experiment setting module

Usually, a research study starts with the definition of a paired TMS

protocol that involves the specification of the protocol variables to
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be analyzed (clinical, psychiatric, neurophysiological, etc.) that are

strictly related to the disease/diseases under investigation, and the

TMS parameters, namely the ISIs to administer, the number of rep-

etitions for each ISI and the modality of administration (random or

sequential). The schema of this module is shown in Fig. 3.4 and the

graphical user interface for protocol definition is shown in Fig. 3.5.

Figure 3.4: Experiment data management module’s architecture.
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Figure 3.5: The graphical user interface for protocol definition.
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After the protocol definition for a paired-pulse TMS, the data of

each patient belonging to a specific study can be acquired. Among the

variables specified in the protocol for each study, the common neuro-

physiological parameters such as motor threshold, silent period must

be estimated using the single pulse TMS. After entering relevant de-

mographic/clinical data of the patient under investigation, the paired-

pulse TMS with the parameters set during the protocol definition can

be administered to the patient. Fig. 3.6 shows the user interface while

administrating paired-pulse TMS (with MEP responses) according to

a specific protocol: in the left side the plots of MEP responses for a

specific ISI are shown, whereas in the right side the TMS protocol set-

tings are listed and the monitoring of the subject’s relaxation status

is displayed.
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Figure 3.6: The graphical user interface for protocol execution.
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Signal post processing module

After protocol setting and execution, the acquired data are processed

by the signal post processing module. Indeed, the acquired MEP re-

sponses to the administered TMS stimuli rarely respect the quality

criteria imposed by the experimenter because of both the variability

of the MEP signals during the recording and the noise affecting such

signals. MEP signals show, typically, a high variability in the values

depending on two main factors: (1) the misalignment of the coil over

the patient’s head, which can be corrected by adjusting the coil’s po-

sition, and (2) the stimulus administration when the relaxation level

of the patient invalidates the muscular response; indeed, if the patient

is relaxed the muscular response is generally accurate, whereas if the

patient is nervous, suffers from a disease or is on medications that alter

the electrical signals that the brain sends to the peripheral nerves, the

acquisition of muscular responses is difficult, and often not possible.

To deal with this problem, the proposed system includes an on-line

monitoring module (right side in Fig. 3.6) that continuously evalu-

ates the relaxation level of patients. This module checks the patient’s

relaxation level in real-time and eventually informs, in case of inappro-

priate levels, the experimenter, who can discard manually the acquired

signals. Moreover, the system can be set to discard automatically the

MEP responses according to the evaluated relaxation condition. The

automatic MEP signal elimination is implemented by estimating if, at

the time of the pulse administration, the relaxation level (computed

as the area under the muscular response detected by the EMG, e.g.

the curve of the MEP signal shown in the right side of Fig. 3.6) is in

the range µ ± σ where µ and σ are, respectively, the mean and the
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standard deviation of the previously evaluated relaxation level.

The accuracy of the acquired signals may be also influenced by

noise. For example, high amplitude 50 − 60 Hz alternate currents

are commonly found in any intrinsically noisy environment such as

hospitals. The 50 − 60 Hz AC noise is easily predicted and it can

be removed by using notch filters in the appropriate frequency range

(49 − 51 Hz for Europe, 59 − 61 Hz for the USA). Another type of

environmental noise is the high frequency interference due to the us-

age of other electrical/electronic devices near to the TMS acquisition

equipment. Unfortunately, it is difficult to eliminate such noise with-

out altering substantially the base response signal thus our system is

provided with a noise removal tool based on Fourier Signal Decom-

position. This tool addresses only sinusoidal and predictable noise by

analyzing the signal’s frequency components and therefore, the vali-

dation of the results is based on visual inspection carried out by the

experimenters. The tool permits to re-administer a stimulus if the

noise cannot be removed.

Statistical analysis module

After completing the data acquisition phase from the subjects sam-

ple, according to the designed protocol, the statistical analysis is per-

formed. Usually, this step is done by a statistician, but often medi-

cal research centers are not provided by a statistics unit and this is

a bottleneck. Therefore, the proposed system implements a statistics

module that performs the most common tests for data statistical anal-

ysis, in an automatic and transparent way. This module exploits the

functionalities of the IBM SPSS software by using the SpssClient API.
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Depending on the variables that the study’s protocol contains, the sta-

tistical analysis module is able to automatically decide the appropriate

statistical tests to perform. Moreover, according to the distribution

of the values of the variables involved in a defined protocol, a specific

test is selected. For example, in Fig. 3.7 we have the summary of a

TMS protocol carried out on two groups of patients: control patients

and patients affected by vascular depression. The variables defined in

the protocol are Mini Mental State Examination (MMSE), Familiar

History (F-Hyst), Personal History (P-Hyst) and the average (aver-

aged on the number of repetition of each ISI) amplitude at ISIs 1, 3,

5, 7, 10 and 15 extracted from the cortical excitability curve.
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Figure 3.7: A subset of the patients group on which the vascular depression protocol has been executed. The comparison

between these two groups (controls, vascular depression) is performed automatically by means of statistical tests.
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According to the type of variable to be compared, our system

checks if the variable is a numeric value or a percentage and also

performs the normality test to decide if parametric or non-parametric

tests should be executed. In the case shown in Fig. 3.7 we have that

the MMSE is a numeric variable and it is not normally distributed,

therefore the MannWhitney test is performed, whereas since the vari-

able P-Hyst is boolean, the comparison between the two groups is

performed using the Chi-square test. Fig. 3.8 shows the output of the

statistical analysis for the above described example.
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Figure 3.8: Results of the statistical tests performed on the patients group shown in Fig. 3.7
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Data storage module

The nature of the data processed by the proposed platform permits the

adoption of semantic repositories to be used as the system’s storage

servers. In fact, by using well established ontologies, like FOAF, and

controlled vocabularies, like MeSH3, and by creating an appropriate

schema to describe the whole data structure, including data relation-

ships, data can be easily processed by intelligent medical systems, such

as the one proposed herein, and by semantic tools. In particular, the

whole experiment workflow is enriched with information following an

RDF schema that includes:

• The FOAF ontology to describe patient and neuroscientists in-

formation;

• The MeSH controlled vocabulary for coding disease, symptoms

and signs associated to diseases;

• A set of RDF classes and properties that describe a TMS based

scientific study including protocols, variables and TMS technical

parameters.

A complete description of the RDF schema is beyond the aim

of this chapter, although we provide here some highlights about the

underlying design. The variables used in the protocol definition are

stored in RDF and are structured as a SKOS vocabulary. In detail,

they are grouped in several categories and we have a SKOS collec-

tion for each category, e.g. for clinical variable, for neurophysiological

variable, for neuropsychological variable, for medical imaging variable.

3https://www.nlm.nih.gov/mesh/
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We have also defined a class TMSProtocolVariable, for describing the

variables (different from the ones above listed) that can be derived

only from the TMS, which is also a subclass of SKOS:concept. This

allows us to create a collection of TMS variables and to add other

features (such as the range of the variables) that are not included in

SKOS. In Fig. 3.9 an example of an RDF instance of the proposed

schema and describing a generic TMS study is shown.

Personal information about the patient is inserted exclusively by

the neuroscientist who carries out the examination and, for privacy

purposes, our semantic system replaces the patient’s FOAF profile

URI with an appropriate MD5 hash string. The data storage has

been implemented by semantic repositories using SESAME servers

(see Fig.3.10) to make these information available for other purposes.

In detail, four distinct RDF repositories are available:

• The patient master data store is the semantic database where all

the information about patients is stored, including parameters

for statistical analysis, like age, smoker, gender, etc.

• The variables data store is used for the variables defined during

the TMS protocol design.

• The experiment data store is a combination of a semantic repos-

itory and a file server. The semantic database stores signal in-

formation, such as amplitude, latency, ISI. The file server retains

the whole muscular responses in order to extract the aforemen-

tioned values and to export the acquired signal in a human read-

able format (e.g. an image).
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• The classifier data repository, where the classifier’s parameters

for diagnosis support are stored.
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Figure 3.9: Example RDF schema instance.
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3.3.3 Diagnosis support system

Currently, the diagnosis of many neurodegenerative and vascular dis-

eases is mainly based on clinical evidence and on imaging techniques

such as MRI, PET and SPECT. Often, especially at a very early stage,

the clinical evidence of neurodegenerative disorders (e.g. Parkinson

disease, Alzheimer disease, etc.) may be very similar to the one of

vascular diseases. Medical imaging techniques (especially MRI) may

help in such cases: indeed the MRI shows mainly atrophy of the brain

in neurodegenerative disorders [32] and ischemic lesions in vascular

diseases [33]. The problem arises when both types of evidence are

present in an MRI, especially in elderly people who may have brain’s

atrophy due to the advanced age, although the main cause of their

symptoms could be a vascular disease [34]. An example is the mixed

dementia, i.e. the case when neurodegenerative dementia and vascu-

lar dementia occur at the same time [35]. The differential diagnosis

is difficult not only in the above cases, but also among neurodegen-

erative diseases (e.g. Alzheimer disease vs Lewy body disease [36] or

Parkinson disease vs Lewy body disease [37]) that could exhibit sim-

ilar features at early stages. Therefore, it is necessary to identify the

main cause of the observed signs and symptoms in order to provide

the appropriate treatment. As mentioned in the introduction, TMS-

studies have demonstrated, by investigating motor threshold, cortical

silent period ICF and ICI, that the various neurological diseases may

involve motor pathways in different ways. Hence, given that TMS pro-

vides detailed information about the motor system and since motor

system’s alterations have been identified in many neurological dis-

eases, an appropriate processing of MEP responses may be used for
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supporting the diagnosis.

Under this scenario, a diagnosis support system may play a double

role: first, assess if the obtained MEP responses are evidence of neu-

rological disorders, and second, support neuroscientists in differential

diagnosis. To address the first need, two methods [38] and [39] have

been proposed for classifying diseases such as Alzheimer and Subcor-

tical ischemic vascular dementia by analyzing the MEP responses of

a TMS paradigm. In particular a fuzzy system [39] and a neural net-

work [38] were proposed and assessed for the differential diagnosis of

Alzheimer and Vascular Dementia by using the following features: la-

tency, amplitude, max and min module of the Fourier Transform, max

and min module of the Hilbert transform of the MEP responses for

ISI 1, 3, 5, 7, 10, and both of them achieved an average accuracy of

about 92%. However, since these approaches are disease-specific (the

training is done off-line) they cannot be used in a dynamic research

and clinical context, such as the one here foreseen, where different

TMS paradigms may be implemented for analyzing different diseases.

For all of the above reasons, the proposed system is provided with an

on-line diagnosis support system (DSS) that uses the above features

extracted from a MEP response and it is based on a modified version

of a support vector machine for large-scale problems (typically, about

1000 exams per year are executed in a single neurophysiological unit),

capable of learning incrementally (averagely, between three and five

exams per day are executed). Support vector machines (SVM) have

been widely used for implementing classifiers because of their good

generalization property [40]. Their main shortcoming is that training

is time consuming, thus preventing their use in large-scale problems

such as the one at hand. A solution is to resort to a modified SVM
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that supports on-line incremental learning. Several approaches for

incremental learning have been proposed. The first attempts were de-

veloped by Syed et al. in [41] and by Ruping in [42] by re-training the

SVM through new examples combined with the already computed sup-

port vectors; however, these approaches are very memory demanding.

Differently, to address large-scale issues, approaches based on cluster-

ing techniques for down-sampling the size of the examples and using

the most representative ones for re-training have been proposed [43]

and [44]. Therefore, the problems to be solved for on-line SVM are:

the on-line selection of the learning data and the re-use of the already

computed support vectors. Our diagnosis support system relies on the

on-line SVM proposed in [45] that implements on-line training and, at

the same time, solves the large scale problem. A detailed evaluation

of the achieved performance, in terms of accuracy, and the compari-

son with the existing on-line classification systems are beyond the aim

of this article, although we can report that in 18 uncertain diagnosis

cases, over a totality of about 70 patients, the DSS performed well

identifying the four diseases these cases belonged to. The DSS mod-

ule is, therefore, used when a new patient whose diagnosis is unknown

is inserted into the system (see Fig. 3.11 for the related GUI).
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Figure 3.11: Interaction between the data storage module and the other modules of the proposed system.
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CHAPTER

FOUR

IMAGE PROCESSING: SKELETAL BONE AGE

MODELING BY HIDDEN MARKOV MODELS

Having an objective means to evaluate accurately the effective age

of individuals, is a problem far from been resolved. Such solution

would be very useful in many contexts: from pediatrics, to criminal

investigation and to human rights. Assessing effectively the skeletal

bone age based on X-Ray images is one way to achieve it but, given

the excessive variability in the of the human species machine learning

methods are employed to tackle the problem of universal application.

There are two globally recognized methods for bone age assess-

ment: the Greulich and Pyle method (GP), which is based on the

comparison of the X-Ray with an atlas, and the Tanner and White-

house method (TW2), which compares the developmental state of a

set of bones.

In this chapter, a method and a tool for assessing the skeletal bone

55
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age using X-Ray images of hands, implementing the TW2 bone age

assessment method, is presented. The method combines image pro-

cessing methods for enhancing the quality of the input images and

Hidden Markov models for the classification task. The method was

tested on a dataset made by two expert radiologists and its perfor-

mance compared against state-of-the-art methods achieving very high

accuracy in the evaluation of the skeletal bone age.

4.1 Introduction

The advancements in computer science have always boosted a large

number of scientific fields by both facilitating and hastening the exe-

cution of repetitive and/or complex tasks. Image processing methods,

in particular, have been used in a variety of applications in diagnostic

medicine since their mere conception [46, 47] improving the diagnostic

accuracy [48, 49].

Projection radiography was the first non-invasive method to depict

the internal structures of the human body and it is currently one of

the most used imaging methods. During the last decades a notable

increase of interest in determining accurately the bone age by pro-

cessing X-Rays, has been observed. This interest arises from the fact

that having an accurate and, more importantly, objective assessment

of the age of an individual results useful in many applications ranging

from detecting and evaluating hereditary, hormonal or developmen-

tal disorders [50, 51] to creating indisputable evidence in legal cases

where the real age of a person can determine his eligibility for criminal

sanctions [52], legal rights [53] etc.
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In the clinical practices two different approaches have been used

for skeletal bone age assessment: the Greulich and Pyle (GP) [54] and

the Tanner and Whitehouse (TW) [55] methods. Both approaches

have been tested from the scientific community and their validity is

already confirmed [56, 57, 58, 59].

The GP method, which is the simplest and most intuitive one,

relies on comparing a subject’s X-Ray of the left wrist to a gold stan-

dard atlas categorized according to age and sex. The TW2 method

uses a-priori knowledge and creates a detailed analysis of the features

of twenty predetermined regions of interest (ROIs) located in the left

hand’s bones, including epiphysis/metaphysis ROI (EMROI), carpal

ROI (CROI), radius, and ulna. Each ROI is evaluated by assigning

to it a letter, which represents the developmental status, ranging from

A, meaning that the bone is completely absent, to I, which represents

a fully developed, mature bone. As a final step, by summing up all

the ROI scores the effective bone age is calculated.

The GP method is less complicated and generally faster to im-

plement than the TW2 method. However, the latter offers better

reproducibility and accuracy [60] and, because of its modular nature,

TW2 is proner to automatization [61].

Although much research has been carried out the problem of es-

timating accurately the bone age of an individual, is far from being

solved. This is demonstrated by the evergrowing number of surveys

and future directions works (e.g. [62, 63, 64]).

In this chapter, we present a method and a tool aiming at de-

termining skeletal bone age based on X-Rays of the left wrist using a

modified version of the TW method based on EMROIs only, combined

with Hidden Markov Model-based classifiers for refining the obtained
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results. In the next section a review of the existing approaches is

found while Section 3 describes in detail the application and its inner

workings. The last section shows some performance measurements

obtained by the actual usage of the system.

4.2 Related Works

Early attempts for “automating” the process of skeletal bone age as-

sessment can be dated back to the early 90’s, and in particular, in [65]

where the authors present the first system employing simple image pro-

cessing techniques, namely Sobel Gradient and thresholding, in order

to make the image more suitable for the bone age assessment task.

Measurements of the phalanxes were compared to the standard pha-

langeal length table [66] and the effective age was calculated. While

this method suffered from the classical “infancy” problems (e.g. image

quality, reproducibility etc..), it can be considered as one of the first

steps towards more complex and accurate systems for bone age assess-

ment. The methods for assessing skeletal bone age can be categorized

in three main groups: fuzzy based, deformable models and machine

learning mainly trying to reproduce the TW2 method.

Many methods have been proposed for dealing with the skeletal

bone age estimation, by using fuzzy logic-based approaches. In [67]

the authors present an automatic skeletal bone age assessment system

for young children (from 0 to 7 years old) using only carpal bones.

This method initially employs fully automatic carpal bone segmen-

tation and morphological feature analysis and subsequently applies

a fuzzy classification approach in order to assess the real bone age.
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Other fuzzy-based methods combined with morphologic features of

the carpal bones can be found in [68] where the authors also integrate

Principal Component Analysis and statistical correlation or Support

Vector Machines [69] in order to build a growth model of the carpal

bones, declaring a success rate of 87%-89%, although they considered a

relatively large admissible error of 1.5 years. Fuzzy classifiers are used

in [70] for automating the GP method. Although it achieves a very

high accuracy rate at lower age groups (0 to 2 years), its performance

deteriorates when X-Rays of older subjects were used.

Deformable models (and especially Active Shape Models) have

been largely used for skeletal bone age assessment [71, 72, 73]. Despite

deformable model based approaches are capable of modeling EMROI

shapes, they are ad-hoc solutions relying on many parameters with

results that depend largely on the quality of the input images. The

authors in [74] suggest that one of the main difficulties in assessing the

age of an individual, is the irregular (i.e. largely varying) development

of the trapezium and trapezoid bones and they propose a method,

based on the integration of anatomical knowledge and trigonometry

theory for the TW2 assessment.

Machine learning techniques have been also employed in automatic

skeletal bone age assessment systems. In [75], the X-Ray image is seg-

mented by using a K-means clustering algorithm applied on a gray-

level co-occurrence matrix but, even though it is stated that the ac-

curacy of the method is high, no performance evaluation was carried

out extensively. A Support Vector Machine and correlation proto-

types [76], and in [77], Support Vector Regression and smart class

mapping have been proposed that, however, perform poorly in terms

of accuracy.
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Contrary to the majority of the existing systems based on a single

evaluation method, BoneXpert [78] is a system for automatic skeletal

bone age assessment that combines both the TW and GP methods.

The main drawback of BoneXpert, however, is its high image rejec-

tion rate, meaning that it does not process low quality images and it

often requires a heavy preprocessing step in order to make the image

appropriate for processing.

While there exist many computer-based EMROI classification sys-

tems that employ machine learning approaches (e.g. Neural Networks,

Fuzzy Classifiers, Support Vector Machines etc.) one of the main lim-

itations is the lack of methods to model bone shapes effectively and

dynamically. To deal with this issue we employ Hidden Markov Mod-

els which is a model of a sequential process changing states at discrete

sequence intervals thus able to model ROIs’ discrete stage. A further

contribution of this chapter is the integration of several existing works,

from preprocessing to finger extraction to stage assignment, into a uni-

fied tool which can be used by clinicians. In the following section we

present a new approach, which extends our previous work [74], for

efficiently assessing the skeletal bone age from an X-Ray of the left

hand of a subject.

4.3 The Proposed Tool

Generally, the existing applications for skeletal bone age evaluation

follow a standard workflow (Fig. 4.1) model. In such model, the in-

put image is initially processed by noise removal (for enhancing the

clearness of the input image) and background subtraction algorithms



4.3. The Proposed Tool 61

(aiming at identifying the parts necessary for classification). Many

algorithms, optionally include a machine learning step to aid in the

classification process.

Figure 4.1: Generic workflow of the currently existing skeletal bone

age assessment tools. Note that the classifier stage is optional (i.e. it

does not exist in all the systems).

Before the presenting the method, a brief description of the TW2

method is necessary.

The Tanner-Whitehouse Method

The TW2 method is based on a predefined standard of bone matu-

rity depending on age. It employs 20 ROIs located on the first, third

and fifth finger and the carpus. The finger ROIs are called EMROIs

(Epiphyses/Metaphyses ROI) and the carpal ones (including the long

bones radius and ulna) CROIs (Fig. 4.2). The maturity of the bone is

determined by the state of the epiphysis: if it is completely absent it

represents an initial developmental state, else, if it is completely fused

to the metaphysis bone maturation has completed. This development

progression of each ROI can be divided into descrete stages, with each

one assigned a letter from A (epiphysis is absent) to I (epiphysis-

metaphysis fusion complete). A numerical score is further associated
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with each stage of each bone and the overall maturity score is calcu-

lated by adding the individual ones. This score is then used to find

the age according to the graphs in Fig. 4.3.

Figure 4.2: The bones considered for the assessment of the bone

age using the TW2 method. The identification and analysis of carpal

bone regions of interest (CROI) is much more complex because of the

intrinsic properties of the hand structure (high variability in density

and morphology, contours not always visible etc.)

Figure 4.3: Correspondence between TW2 final score and calculated

age for males (Left) and females (Right).
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Preprocessing and Orientation Correction

Raw X-Ray images often contain some impurities and noise that

make automatic processing difficult. For this reason it is necessary

to enhance the clearness of the images and remove any unnecessary

parts, such as background and radiological markers. As background

we define an area outside the field of the radiation, which should be

entirely black. In order to obtain a high hand-to-background ratio we

employ a flood-fill approach [74]. After background removal, the next

step is orientation correction. If the input image contains misaligned

hands, it will be impossible, firstly, to identify the starting points for

the algorithm, and, ultimately have an accurate assessment of the

skeletal bone age.

To achieve this, we use wedge functions (i.e. binary functions aiming

at identifying which part of an image belongs to the background and

which one to the foreground [79], Fig. 4.7, left) to detect the middle

finger and identify the axis (r2) passing from the midpoint of the

width at half-way the finger’s length, and the midpoint of the width

at its base (Fig. 4.5, Left). After identifying the angle of the r2 axis

with the vertical one, the image is rotated, obtaining the one shown

in Fig. 4.5, right. The GUI of the tool showing the above operations

is shown in Fig. 4.6

Finger Identification and EMROI Extraction

The next step after preprocessing of the input image, is to identify

the fingers and extract the EMROIs from them. The TW2 method

uses information contained in the first (thumb), third (middle) and
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Figure 4.4: Left: Original image. Right: The same image after the

background removal algorithm was applied.

fifth (pinkie) fingers. Identifying the third and fifth fingers is trivial.

Once again, wedge functions are used in order to isolate each finger

and find the tips, middle and base points of each one which correspond

to the wedge functions’ peaks. Each finger region is then rotated and

extracted. Thumb extraction, instead, is implemented by a differ-

ent procedure, consisting of identifying the points Tthumb, A and B

(Fig. 4.7), by the following method:

1. We define as Tthumb the right-most, firstly, and top-most, sec-

ondly, point that belongs to the hand.
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Figure 4.5: Left: Identification of the r2 axis. Right: The same

image after orientation correction algorithm is applied.

2. Starting from the Tthumb point, we scan from the X-Ray’s right

margin considering the wedges found line by line. When a non

ending wedge is detected (i.e. the base of the thumb was found),

we set as A the end point of the previous wedge found.

3. Starting from an arbitrary distance from the point A and scan-

ning along the thumb’s opposite side, we calculate the distance

from A of all the points found and set as B the point that has

the minimum one (Fig. 4.7, right).

The image is cut at the segment defined by the points A and B,

which separates the thumb from the rest of the hand.
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Figure 4.6: X-Ray preprocessing: Through this GUI, the hand is

preprocessed in order to remove unwanted signals and rotated in order

to align it for further analysis.

The EMROI extraction has been carried out by taking into ac-

count, for each finger, the average gray-level value as a representative

for each horizontal line. Along this, we compute the first-order deriva-

tive to search for local maxima in the gray-level profile: these values

indicate the bone borders for metaphysis, epiphysis, and diaphysis and

are used to extract the EMROIs. We then apply, for reducing noise,

smoothing filters on gray-level finger images. The first derivative is

applied to the smoothed signal in order to enhance the EMROI.

Finally, by thresholding the previous signal, we extract the desired

EMROIs. In fact, based on the peaks of the obtained filter, the dis-

tance between the middle and the distal part of the finger and the one

between the proximal and the middle part of the finger are calculated.
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Figure 4.7: Left: The wedge functions. The value of each wedge

is equal to one if the underlying pixel belongs to the hand and zero

otherwise. Right: Extraction and identification of the thumb

If they are out of an anatomically plausible range, a warning message

is displayed, and the procedure starts again by working on the deriva-

tive of the gray-level profile. The part of the application responsible

for EMROI extraction is shown in Fig. 4.8

EMROI Enhancement and Feature Extraction

Once the EMROIs have been extracted, the Difference of Gaussians

(DoG) filter [80] is applied for image enhancement. The DoG

filter allows us to identify the soft tissue, typically appearing as a

smooth region, by using a Gaussian function with a suitable standard

deviation and, then, to remove it by subtracting it to another one

with a less smoothing effect.
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Figure 4.8: EMROI Extraction: Following finger identification, in

this GUI the single EMROIs are shown.

By applying the DoG filter we remove all soft tissue, thus highlighting

bone contours which permits their identification (Fig. 4.9, top right).

The DoG filter, may leave bones shapes with holes and general

shape degradation which can make impossible the extraction of the

EMROIs and flood fill is applied if necessary(Fig. 4.9, bottom left).

In order to verify that the identified contours represent bone shapes

we check for a set of geometrical and morphological criteria: meta-

physis and diaphysis must touch the top and bottom margins of the

image, respectively, and the epiphysis compactness must have a much

higher value than the other ones. Additionally the relative values of
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the areas of the identified bones should be in a fixed range of values

and the finger’s middle axis should pass through each bone.

Figure 4.9: EMROI Enhancement. From top left to right: 1) Origi-

nal image 2) Image after the DoG fitler is applied 3) Enhanced image

after filling the gaps 4) Identified EMROIs (red = metaphysis, green

= epiphysis, blue = diaphysis)

In case metaphysis and epiphysis are fused (i.e. only two bones

were extracted, instead of three), the depth of the convexity defect

is calculated in order to distinguish fused bones. The fused bones

then are cut at the deepest points of such defect, making sure that no

erroneous oblique cuts will occur.

When the number of extracted bones is equal to three the labels

are assigned from left to right: metaphysis, epiphysis and diaphysis
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(Fig. 4.9, bottom right). The procedure is implemented through the

GUI shown in Fig. 4.11.

At this point, a thresholded image for each EMROI is available

that contains the extracted bone. What remains is their identification,

a task not always trivial because bad quality images may introduce

undesirable effects in the form of fused bones.

Figure 4.10: Feature vectors for each EMROI

The significant features of each detected EMROI for stage assign-

ment purposes, are derived by the Tanner and Whitehouse (TW2)

method. In detail, for each EMROI a feature vector containing the

following features (shown in Fig. 4.10) is created:

FVbonestage = [dmeta, dm1 , dnv1 , ..., dnv5 , dhepi
, area1, ..., area6]

where dmeta is the width of the metaphysis, dnv1 , ..., dnv5 are the

heights of the different lines that divide the epiphysis’ main axis in six

equal parts, and area1, ..., area6 are their areas. Finally, dhepi
is the

distance between the metaphysis and the diaphysis.



4.3. The Proposed Tool 71

Figure 4.11: EMROI Enhancement: In this GUI, the identified EM-

ROIs are enhanced by applying the filters.

Classification with Hidden Markov Models

The last module performs stage assignment and this is carried out

by Hidden Markov Model (HMM) [81], which is a statistical model,

similar to the regular Markov model with the difference that it contains

only unobservable states. This means that the internal state of the

model at any given time is not directly visible, but the output is. Each

state of the HMM has a probability distribution over its outputs.

In our case we created an HMM for each EMROI and for each

state (A-I), for a total of 72 HMM classifiers (27 HMMs for the mid-

dle finger, 27 for the pinkie and 18 for the thumb). The observations
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of the models are the feature vectors described in the previous section.

Given a feature vector of 14 elements it represents a set of 14 obser-

vations, one for each feature, that are introduced sequentially into the

respective HMM, which returns the probability that the sequence be-

longs to it. In other words, the output of the single HMM are the

probability that the fed feature vector was produced by it. Once these

probabilities are calculated the HMM representing the state with the

maximum likelihood is chosen and its respective stage label is assigned

to the EMROI. The architecture of the HMM based classifier used can

be seen in Fig. 4.12.

The output of this system is a set of letters representing the

most probable developmental state for each EMROI. By summing

up their corresponding values, the bone age of the subject is assessed

(Fig. 4.13).

4.4 Experimental Results

The proposed method was tested with k-fold cross-validation method

(k = 5). For the testing purposes we used 360 left-hand X-Ray images

(180 males and 180 females), 30 X-Rays for each year in the range of

0 − 6.

For each of the X-Rays the 14-value feature vectors were calculated

and fed to the HMM models, and for each patient the developmen-

tal status of each EMROI was evaluated and then compared to the

ones assessed by two expert physicians. While the importance of each

single EMROI is important for assessing the accuracy of the system,

calculating the discrepancy of the computed bone age with the effec-
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tive one, in order to give a global idea about the performance of the

whole system, is equally crucial.

In order to test how our approach performs compared to other

approaches, we also tested the systems described in [74], in [82] and

in [79]. The values for the StdDev1 and StdDev2 parameters of the

DoG filter were set equal to 13 and 1.85, respectively, and these values

were assessed empirically. In order to compare the performance in

accuracy of all the systems we compared the results of all of them

against the evaluations of the experts. A perfect evaluation is defined

as the result where the developmental stage assignments correspond

completely with the ones made by the experts. A good evaluation is

defined as the result obtained when the maximum discrepancy from

the expert’s evaluation is of one stage and, finally, a bad EMROI

assignment is considered when this discrepancy is of two stages or

more.

As shown in Table 4.1, the proposed method outperformed all the

others in terms of accuracy. In fact, assuming as correct evaluations

the Perfect and the Good ones (i.e. the difference in EMROI stage

assignment with respect to the radiologist’s one does not exceed one

step), the correct assignment rate is over 96% in both cases. The

rest of the systems performed well (and in particular our previous

work, [74]) but they did not, in any case, reach the performance of the

proposed method.

While Table 4.1 reflects the performance of the systems in classify-

ing correctly the single EMROIs, it should be noted that they do not

express their potential in assessing the correct age of the individual.

This aspect of the systems is shown in the Table 4.2 where the Mean

Average Error (MAE ) and the Standard Deviation (STD) between
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Method Radiologist % Perfect % Good % Bad

Proposed Method 1 87.4 9.3 3.3

2 91.1 8.2 0.7

Giordano [74] 1 82.8 8.5 8.7

2 80.5 10.1 9.4

Pietka1 [79] 1 67.4 17.6 15

2 68.1 13.8 18.1

Pietka2 [82] 1 71.2 17.1 11.7

2 66.1 15.7 18.2

Table 4.1: Number of EMROIs classified as Perfect, Good or Bad by

all the systems with respect to the evaluations of the two radiologists.
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Method Radiologist MAE STD

Proposed Method 1 0.37 0.29

2 0.41 0.33

Giordano [74] 1 0.88 0.14

2 0.61 0.22

Pietka1 [79] 1 2.63 0.93

2 2.18 1.44

Pietka2 [82] 1 1.88 0.74

2 1.98 1.07

Table 4.2: MAE and STD values, showing the discrepancy (in years)

between the tested methods and the radiologists evaluations.

the computed bone age and the evaluations of the two radiologists are

shown. Our method, achieved excellent results when compared both

with the radiologistsévaluations (MAEs of 0.37 and 0.41, with STDs

of 0.29 and 0.33, respectively). Such performance is clearly superior

with respect to the other methods tested (best case MAEs of 0.88 and

0.61, with STDs of 0.14 and 0.22, respectively).
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Figure 4.12: The HMM architecture adopted in our approach. Each

circle with a letter is an HMM that represents a developmental state.

The EMROI classifiers have the role to select the maximum output of

the underlying HMMs.
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Figure 4.13: EMROI Classification: When the processing termi-

nates the HMM-based classifiers assign the letter of the developmental

stage to each EMROI.
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CHAPTER

FIVE

KNOWLEDGE DISCOVERY IN THE MEDICAL

DOMAIN

In this chapter, we present a bioinformatics knowledge discovery tool,

BioCloud, for extracting and validating implicit associations between

biological entities. The aim of this work is to demonstrate how port-

ing a data-intensive application to the Cloud, affects positively its ef-

ficiency necessitating minimal effort. By mining specialized scientific

literature, the proposed tool not only generates biological hypothe-

ses in the form of associations between genes, proteins and diseases,

but also validates the plausibility of such associations against high-

throughput biological data (microarrays) and annotated databases.

Both the knowledge discovery and its validation are carried out by

exploiting the advantages and the potentialities of the Cloud, which

allowed us to derive and check the validity of thousands of biological

associations in a reasonable amount of time.

79
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The proposed system employs a natural language processing (NLP)

based approach for mining the scientific articles (not only abstract as

in many state-of-the-art approaches) combined with existing standard

vocabularies (MeSH, Entrez, UniProt) to infer associations, which are

then filtered out according to their evidence in experimental data.

Furthermore, starting from the valid associations, new associations

are identified by mining only the experimental data.

The results shown that deploying the proposed tool in an IaaS cloud

environment, a speed up of about 25% with respect to a locally run-

ning instance was achieved.

5.1 Introduction

A huge amount of biomedical information is hidden in millions of sci-

entific articles published in the last 25 years and this quantity is expo-

nentially increasing. This overwhelming quantity of information in the

scientific literature compels, therefore, the need for new methodologies

to discover new, previously unknown information available in the pub-

lished papers in order to support biologists in their strive towards un-

derstanding/analysing biological data. One of the most effective and

explored approaches to uncover this hidden knowledge is by mining

the scientific literature [83, 84], especially for finding gene-gene [85],

gene-disease [83] and protein-protein [86] associations. However, usu-

ally, the number of inferred associations (especially in the approaches

which retrieve also first-order associations) can be massive, thus mak-

ing the analysis and interpretation of such information as complex

(and probably more cryptic) as reading all the scientific papers the
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associations were extracted from. Therefore, issues such as validity,

plausibility and feasibility of the inferred associations arise and, for

this reason, methods, e.g. [87], to filter the obtained associations in

order to distill (i.e. identify the most significant ones) the informa-

tion and to propose it as significant scientific hypotheses have been

investigated. A significant support to meet this goal comes from the

massive publication on the Web of annotated chemical, genomic, clin-

ical and other types of databases which could provide evidence and

validate specific hypotheses. If, from one hand, experimental data

may support the literature mining process, from the other hand, sci-

entific literature may support the interpretation of such data, which

often are extremely cryptic (e.g. list of up and down regulated genes)

.

Recent knowledge discovery systems, such as PathExpress [88], Gen-

CLIP [89] and CoPub [90], ENDEAVOUR [91], GeneWizard [87], G2D

[92], have exploited this integration between the literature and exper-

imental data (biological, chemical, medical and drugs databases) for

hypothesis generation and validation. Most of these tools integrate

text mining and microarray data for extracting gene-gene and gene-

disease associations and for gene prioritization, though approaches

dealing with proteomics data [93] have been also proposed.

Therefore, digging out the “treasure” from massive biological data

represents the primary challenge in bioinformatics with a consequent

unprecedented demands on big data storage and analysis. In fact,

with the amount of data growing and the increasing complexity of

bioinformatics algorithms and tools, it is becoming highly demand-

ing the introduction of advanced computational techniques to enable

efficient knowledge discovery from data. However, it is often impos-
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sible for small laboratories or even large institutions to establish and

maintain large computational infrastructures for data processing. A

promising and recent solution to address this need is Cloud Comput-

ing [94], which exploits the full potential of multiple computers and

delivers computation and storage as dynamically allocated virtual re-

sources via the Internet, thus representing an important alternative

to ensure high performance data processing and easy management of

complex tools in different areas of bioinformatics [95], data and text

mining [96]. As a consequence of this, the number of cloud resources is

increasing at an accelerating pace, with service-based cloud environ-

ments provided by Microsoft1, Google2, Amazon3, SGI4, and more,

lending an unprecedented opportunity to evaluate the capabilities of

the Cloud for sustainable and large-scale data processing in bioinfor-

matics.

Typical uses of the Cloud are mainly in the areas of economics, health,

and the entertainment industry, whereas its application in bioinfor-

matics has been mainly oriented to the field of comparative genomics,

e.g. the Sanger Institutes fast matching and alignment algorithm to

assemble full human genome [97], Cloud Burst [98] to map next gen-

eration sequencing data [99], Cloud Blast a ”clouded” implementation

of NCBI BLAST [100, 101]. However, other bioinformatics approaches

exploiting the potentialities of the Cloud have been proposed recently

and will be reviewed in the next section. Therefore, bioinformatics

is experiencing a new leap-forward: from in-house computing infras-

1http://www.windowsazure.com/en-us/
2https://cloud.google.com/
3http://aws.amazon.com/ec2/
4http://www.sgi.com/solutions/internet/
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tructure into utility-supplied cloud computing delivered over the In-

ternet, in order to extract knowledge from the vast quantities of bio-

logical data generated by high-throughput experimental technologies

and from the huge bulk of available scientific papers. In addition, the

Cloud does not offer only computational infrastructure for large scale

data processing, but also a set of services which can be exploited for

speeding up the research on bioinformatics.

The main contributions of this work to the research on bioinformatics

are:

• A systematic review of the existing cloud based services, ap-

proaches and tools in bioinformatics;

• One of the first examples of cloud based knowledge discovery

system, BioCloud, which generates biological hypotheses in the

form of gene-disease relationships by mining scientific papers and

then validates the inferred associations against microarray data.

The remainder of the chapter is as follows: Section 2 reviews the

existing Cloud services and infrastructure that might be adopted in

the bioinformatics research; Section 3, instead, describes BioCloud, a

knowledge discovery tool that employs a NLP based for mining the

literature and deriving associations between biological entities, which

are further validated against high-throughput data. Since the pro-

cesses of text and data mining are expensive in terms of computa-

tional resources and processing times, BioCloud uses Cloud Foundry,

a platform for development, deployment, and operation of cloud ap-

plications. In Section 4 some experimental results of BioCloud are

given.
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5.2 Cloud Technologies in Bioinformatics

The rise of Cloud technologies represents an important and incred-

ible opportunity for bioinformatics in order to satisfy the needs of

processing large amounts of heterogeneous data, of storing massive

amount of data and of using the existing tools in different fields of

bioinformatics. This importance is witnessed by the ever growing

number of bioinformatics applications (from DNA sequencing [102],

to sequence alignment and similarity search [103], data mining [104]

and knowledge discovery [96]) relying on Cloud services. However,

Cloud computing does not serve only for large scale computation but

it is changing radically the traditional way of doing research leading

to a new era of bioinformatics. In fact, the typical workflow foresees

that biologists design the experiments and send samples to sequenc-

ing centers, which make available raw data (through specific services,

such as FTP, HTTP) to biologists, who have to download in their lo-

cal institutions terabytes of data and, according to the research plans,

publish this data in public databases. At the same, biologists copy

the data into local machines for being used by bioinformaticians for

the subsequent data analysis. Bioinformaticians, on the other hand,

when process biologists’ data have also to download data from public

databases. Therefore, this typical flowchart (see Fig. 5.1) implies that

huge quantities of data are moved several times from sites to sites,

thus slowing down the analysis and the interpretation of the results.

The cloud, instead, aims at creating an infrastructure (see Fig.

5.2) where sequencing centers store their data into the cloud, public

databases are built on the top of the infrastructure, biologists access

this data directly from the cloud and share what they need with bioin-



5.2. Cloud Technologies in Bioinformatics 85

Figure 5.1: Example of the typical workflow in bioinformatics.

formaticians, who will develop large scale applications directly on the

cloud whose results will be made available to the biologists for the

interpretation. This new architecture will reduce the times data are

transferred, but also it will allow laboratories and institutions to cut

down the expenses to carry out experiments and data analysis.

In next the sections the existing Cloud services and solutions will

be reviewed according to its service model categorization: Platform

as a Service (PaaS), Software as a Service (SaaS) and Infrastructure

as a Service (IaaS).
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Figure 5.2: Changes on the bioinformatics workflow with the intro-

duction of the cloud computing

5.2.1 Platform as a Service (PaaS)

Platform as a Service offers a development environment that allows

users to create and run their applications using specific programming

languages and frameworks available in the platform itself. Examples

of PaaS environments are Google App-Engine5 and Microsoft Azure6.

However, to perform large-scale data analysis in bioinformatics it is

necessary that Cloud based environments support the communication

5http://code.google.com/appengine/
6http://www.microsoft.com/windowsazure/
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of parallel tasks in order to make full use of the available computa-

tion and storage resources. To address this need, most of the exist-

ing PaaS services are provided with an additional abstraction level

implementing the map-reduce programming model. The map-reduce

computational paradigm divides the main application into many sub-

applications, each executed or re-executed on a node of the Cloud

infrastructure, and consists of two main steps. During the first step

(map), the master node takes the input, divides it into smaller sub-

problems, and distributes them to worker nodes. The worker nodes

process the smaller problems, and pass the answer back to its master

node. In the second step (reduce), the master node collects the answers

to all the sub-problems and combines them to form the output. There

exist many frameworks implementing the map-reduce paradigm that

also provide jobs management functions for data-intensive computing

such as Apache Hadoop7 or Microsoft’s Dryad8. More in detail:

• Apache Hadoop framework, which beyond the implementation

of the map-reduce model, provides a distributed file system, the

Hadoop Distributed File System (HDFS) [105], for effective and

very low latency data storage on the worker nodes. In addition,

there are many projects built on top of Hadoop such as Pig9

which is a high-level data-flow language and execution frame-

work whose compiler produces sequences of Map/Reduce pro-

grams for execution within Hadoop, or Hive [106] which is a

data warehouse framework built on top of Hadoop, developed

7http://hadoop.apache.org/
8http://research.microsoft.com/en-us/projects/dryad/
9http://pig.apache.org/
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at Facebook, used for ad hoc querying with an SQL type query

language and also used for more complex analysis.

• Microsoft Dryad, developed by Microsoft Research, allows de-

velopers to write parallel applications executing on the Cloud

by modeling a directed acyclic graph (DAG). The DAG consists

of a set of vertices describing the operations to be performed,

which are distributed at runtime to different execution engines.

• Cloud MapReduce [107], is an implementation of MapReduce

model [108] on top of the Amazon Cloud OS. Cloud MapReduce

can be considered as an optimized version of the other MapRe-

duce implementations, thanks to an architecture that ensures

several advantages in terms of speed, scalability and simplicity.

Recently, PaaS frameworks have been applied with increasing in-

terest to bioinformatics research as demonstrated by the quantity of

works employing the map-reduce approach on the Cloud, mainly, for

parallel large scale data processing. In [109], Windows Azure was used

in particular for data storage and as VM (Virtual Machine) hosting

environment to conduct data mining for computational drug discovery.

In [110], Dryad and Hadoop were used to host two bioinformatics ap-

plications: Expressed Sequence Tag and Alu Sequencing. An accurate

performance evaluation showed the advantages of the two frameworks

with respect to traditional MPI implementations.

To the best of our knowledge there exist only few applications exploit-

ing cloud based map-reduce solutions to perform literature text mining

for biological hypothesis generation. Nazareno et al. in [111] proposes

an “ad-hoc” cloud infrastructure for identifying molecular interactions
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by mining the scientific literature, whereas Lin et al. in [112] describe,

more generally, how to process massively text data by using MapRe-

duce. However, these solutions are at a very early stage and their

implementations can not be used reliably for massive text processing

due mainly to the lack of generalization. In fact, the deployment of

these systems is too application-specific and often restricted to single

private cloud environment.

Unlike text processing, much more cloud based map-reduce methods

(mainly based on Hadoop) have been proposed for processing high

throughput data analysis. Crossbow[113] proposes solutions executing

on Hadoop for whole genome resequencing analysis and SNP genotyp-

ing from short reads. Contrail [114] uses Hadoop for de novo assembly

from short sequencing reads, whereas Myrna [115] proposes a method

for calculating differential gene expression from large RNA-seq data

sets. On clusters Myrna uses Hadoop, whereas in the Cloud it uses

Amazon Elastic MapReduce10. Analogously, a few Cloud-based meth-

ods for microarray data mining analysis have been proposed as in [116]

where the authors developed a MapReduce framework on Hadoop for

mining association rules from microarray gene expression datasets.

Delmerico et al. in [117] provide an extensive performance evaluation

of clusters and Hadoop based solutions for computing genes correla-

tions by processing microarray data. The authors state that although

the performance of the existing approaches for identifying such cor-

relations are generally improved on clusters, storage, hardware and

network (mainly) limitations restrict their scalability, on the contrary

of Hadoop, which, instead, provides a significantly better scalability.

10http://aws.amazon.com/elasticmapreduce/
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However, two are the main downsides of MapReduce solutions: first of

all, the map/reduce frameworks require re-writing most of the existing

applications, which, for several reasons, is not appreciated by bioin-

formaticians and biologists. Second, the current implementations of

map/reduce paradigm employ some overly simple mechanisms; for ex-

ample, the job scheduling is often not (well) supported, thus affecting

the tools’ performance.

5.2.2 Software as a Service (SaaS)

Software as a Service is a solution which delivers the software

applications online, thus facilitating remote access to available

bioinformatics software tools through the Internet. In SaaS services

there is no client side software requirement for the user: the ser-

vices are reachable through an access point like a web portal or a

visualization tool. The main advantage of SaaS is that it enables

large scale data analysis over the web, thus eliminating the need for

local installation of a large variety of software tools and also pro-

viding up-to-date cloud-based services for bioinformatic data analysis.

An interesting example of SaaS is EasyGenomics11 a key enabling

platform providing streamlined bioinformatics services. Basically,

most of the available tools implement the map/reduce paradigm for

parallelization and scalability, but make it trasparent for the end-user

who have to call only the service without bothering about the under-

lying software and hardware infrastructure. Relevant examples are:

CloudAligner [118] a full-featured Hadoop MapReduce-based tool for

11www.easygenomics.com
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sequence mapping and CloudBurst [98] an open source optimized tool

for mapping next-generation sequence data to the human genome with

MapReduce.

However, one of the major requirement of SaaS services in bioinfor-

matics is the interoperability between multiple cloud systems. The

main difficulties to address this need are that the mechanisms for ser-

vice publishing, searching and subscription are not well-established

and the existing technologies (WSDL, UDDI) do not describe suffi-

ciently the semantics of such services. For this reason, the current

trend is towards a metadata ontology that would help to describe the

service metadata including service providers.

5.2.3 Infrastracture as a Service (IaaS)

The infrastructure-as-a-service (IaaS) layer aims at offering computer

infrastructures, virtualized resources, storage, networks, and other

fundamental computing resources via self-services to the user. The

challenge introduced by bioinformatics on IaaS regards the enhance-

ment of flexibility of cloud platform for resource management in order

to satify user needs. The most appropriate approch to ensure such

flexibility is via virtualization that mainly involves either the gener-

ation of multiple virtual machine instances to partition the physical

resources or multi-tenancy techniques, which enable users to share ap-

plication instances and treat them as independent ones.

However, currently, the most employed approach is the creation of suit-

able virtual machine instances according to user requirements. This is

a non-trival task in bioinformatics because of dependency and version

matching issues arising when dealing with bioinformatics tools.



92 Chapter 5. Knowledge discovery in the medical domain

Amazon EC2 [119] represents the first example of such a service and

it offers a variety of VM images provided with a good variety of bioin-

formatics tools. Other important examples are: Cloud BioLinux [120]

and CloVR [121]. The former is a publicly accessible virtual machine

for high performance bioinformatics computing. The latter, instead,

is a portable virtual machine for automated sequence analysis and its

performance are discussed in [122, 123].

The main limitation of the current IaaS services is that VM creation,

update and sharing is too ad-hoc and taloired to the specific needs of

bioinformaticians and biologists, who, basically, have to create VMs

from the beginning. Recently, on-demand packaging mechanisms are

under investigation to allow an automatic creation of virtual machine

images provided with all the needed and up-to-date tools with all the

dependencies solved.

In the next section, BioCloud, a knowledge discovery tool for iden-

tifying gene-disease associations exploiting an IaaS cloud-service is

described as an example on how to execute large-scale data analysis

tool on the Cloud.

5.3 BioCloud

BioCloud is an application that allows users to produce new biological

hypotheses through an intuitive and guided interface without requir-

ing knowledge of text-mining and data-mining methods. It retrieves

automatically gene-disease (but also gene-gene, protein-protein and

protein-disease) associations by mining Pubmed abstracts and Oxford

Journals full papers and validates them against microarray data. Since
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the associations retrieval and validation involves large scale text and

data mining procedures, we have used Cloud Foundry12 a cloud com-

puting PaaS and IaaS solution developed by VMware13.

In detail, the steps performed by BioCloud for hypothesis generation

and validation are:

1. Text mining of scientific papers which involves three tasks:

• Document Retrieval and dictionaries building. A dictionary

of genes (Entrez Gene), a dictionary of diseases (MeSH) and

a set of biomedical scientific abstracts and papers (PubMed

and Oxford Journals) are used as basis of our text mining

approach. Fig. 5.3 and 5.4 show respectively, the GUIs

for document retrieval either from Pubmed or from Oxford

Journal and for protein dictionary building.

• A named entity recognition module which aims at improv-

ing the dictionaries’ creation. In fact by only using the

terms of standard vocabularies (e.g. Entrez Gene) it may

happen that no association is derived because of the dis-

similarities between the vocabularies’ terms and the terms

extracted from parsing full papers and abstracts;

• A Natural Language Processing based approach that ana-

lyzes syntax and semantics of the retrieved papers for ob-

taining relationships between the entities of aforementioned

dictionaries.

12http://www.cloudfoundry.com/
13http://www.vmware.com
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Figure 5.3: BioCloud’s GUI for document retrieval

2. Validation of the derived associations using microarray data

(gathered from the public GEO database, see Fig. 5.5) for gene-

disease associations.

3. Execution of the algorithms on the Cloud. The modular ar-

chitecture of BioCloud allows us a parallel execution on Cloud-

Foundry of each module from document retrieval to natural lan-

guage processing to microarray data analysis.

Fig. 5.6 recaps the resources and modules used by BioCloud. In

the next subsections each module is described in detail.
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Figure 5.4: BioCloud’s GUI for gene dictionary building

5.3.1 Text Mining Module for Hypothesis Gener-

ation

The text mining approach implemented in BioCloud is based on a

natural language processing method which parses fully syntax and

semantics of the retrieved papers. BioCloud infers an association

between two biological entities T1 − T2 when it finds a meaningful

triple (NOUN-VERB-ADJECTIVE) with NOUN and ADJECTIVE

being genes/diseases names (taken from the biological terms vocabu-

lary) and VERB being a verb which significantly correlates the two

biological entities (e.g. T1 activates T2). In a previous work [87]

we employed co-occurrences processing for deriving associations, that,

unlike the one herein proposed, produces a lot of noisy associations

(high recall, but low precision) making the subsequent validation very

time comsuming and sometime also useless. The proposed approach
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Figure 5.5: Microarray data retrieval using Alzheimer disease as

query term. This data is then clustered and a Gene Relevance Network

is achieved.

consists of four main steps:

1. Document Retrieval and Dictionaries Building. Since bi-

ological entities identified by mining only abstracts are underes-

timated because of abstracts’ concise nature, the proposed ap-

proach uses a set of full text articles retrieved from the Oxford

Journal system using a disease name as query term. At the same

time, since we are dealing with gene-disease associations a dic-

tionary of genes from Entrez Gene and a dictionary of diseases

from Mesh are created.

The creation of the disease’s dictionary is restricted to the C

branch of MeSH that contains only the classification of diseases.

2. Natural Language Processing for Parsing Full Text. In
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Figure 5.6: Outline of the modules and resources used in BioCloud

parallel to dictionaries building, the retrieved papers are parsed

by using the ANNIE (a Nearly New Information Extraction Sys-

tem) module included in GATE [124]. The text parsing consists

of the following modules: 1) Text Tokenizing to break the text

into tokens, which provide useful information such as token cat-

egory (proper noun, verb,adjective), token length and orthogra-

phy (hyphenation, capitalization, word breaks) and 2) Sentence

Splitter to split tokens into sentences.
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3. Named Entity Recognition. We used ABNER [125] to tag

the biological entities within a sentence.

4. Associations discovery between meaningful terms. For

each sentence all the triples (NOUN, VERB, ADJECTIVE) are

detected, and then, only those containing valid biological en-

tity names (the ones in the dictionaries and validated by the

NER) and consistent verbs (previously defined) are considered

as hypotheses which are subsequently validated with microarray

data.

BioCloud, moreover, allows the users to re-use the inferred associ-

ations in different mining processes in order to achieve multiple first

order associations: i.e. if in a mining process we obtain an association

between the gene G1 and the disease D1 and in another mining process

we infer an association between the gene G1 and the disease D2, then

a graph is created with a connection between D1 and D2 through the

gene G1. Fig. 5.7 shows the case of multiple associations between dis-

eases and genes, whereas Fig. 5.9 shows multiple associations between

proteins.

5.3.2 Validation of Hypothesis Generation

against Experimental Data

For the validation of the generated hypotheses (gene-disease as-

sociations) we use microarray data from the GEO database using

a disease-gene pair of a specific association. Once a microarray is

selected, the tool starts data analysis in order to construct the relative

gene relevance network (GRN) (i.e. a list of relevant genes for the
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Figure 5.7: Multiple disease-gene associations. Diseases are green-

coded, while genes are blue-coded.

given disease) containing the gene of the gene-disease association

to be validated. The genes of the GRN are then re-codified using

DAVID [126]. The microarray analysis modules are based on the

Java classes from the MEV (MultiExperiment Viewer) software [127].

The first step of the data analysis is to apply Hierarchical Clustering

to the microarray data to obtain clusters of genes. Then the cluster

containing the gene under examination is selected and a GRN (“Main

GNR”) is derived from it by applying Cluster Affinity Search [128].

Since, often, the GNR may not contain a sufficient number of genes

due to several factors (ranging from the clustering settings to the
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microarray data quality) we iterate the procedure on building GNR

for all the genes that make part of the “Main GNR”. In detail, for

each gene of the GRN, the microarray datasets that contain it are

downloaded from the GEO database and then, according to the

described procedure, another gene relevance network that will be

connected to the main GRN (i.e. the one containing the disease

under investigation), is built. Finally, the genes of this extended

GRN are used to query the Gene Ontology (GO) database in order

to investigate the biological meaning of such genes with respect to

the given disease.

It is understandable that this validation process may not be executed

on a single machine since it involves, first, a computational intensive

text mining procedure and, second, a recursive data mining phase

(several clustering steps executed on matrices with thousands of

elements) for building the extended GRN.

Beyond gene-disease associations, BioCloud allows users also to

extract protein-protein and protein-disease associations as shown in

Fig.5.8. The main differences are the use of 1) UniProt14 to build

the proteins’ dictionary and 2) UniProtJAPI15 for implementing the

NER. An example of derived protein-protein associations is depicted

in Fig. 5.9.

The validation of protein-protein associations is, instead, performed

by using BioContrasts16 and STRING 9.017, which is a database

of known and predicted protein interactions that makes use of

14http://www.uniprot.org
15http://www.ebi.ac.uk/uniprot/remotingAPI/
16http://biocontrasts.biopathway.org/
17http://string-db.org/
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genomic and high-throughput experiments data. In detail, each

identified protein-protein association is first passed for validation

to BioContrasts which identifies contrasts between proteins by

identifying patterns in the form of “A but not B” in MEDLINE

abstracts. If there is not a contrast between the two proteins, the

final validation step is to check if the association exists in STRING

9.0, which also provides a set of further proteins involved in the

association. Similarly to the case of gene-disease association, we

use the Gene Ontology to investigate the biological meaning of the

proteins previously identified.

Protein-disease associations are instead automatically validated

against the Human Protein Atlas18 and the Human Protein Reference

Database19.

5.3.3 Data Analysis on the Cloud

CloudFoundry20 offers the PaaS and IaaS cloud service models.

The whole platform is controlled by a command line utility, called

VMC, which allows the user to customize the hardware and software

components that fit her needs. In CloudFoundry several database

engines can be bound to each deployed application. In our case, each

application instance was assigned two CPU cores, 2GB of memory

and 1GB of hard disk space. For data management, a MySQL

database combined with the Hibernate library was chosen. The cloud

18http://www.proteinatlas.org
19http://www.hprd.org
20http://www.cloudfoundry.com/
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Figure 5.8: Biological entities associations supported by BioCloud.

execution requires to remove the interface part, thus we only execute

the application engine giving the needed parameters/settings in a

XML file.

As soon as the platform is set up, the application launches. The

execution time is monitored by the VMC itself but the running

application’s standard output can be checked. When the program’s

execution ends, all the retrieved and produced data can be found

in the database. This data can also be used in order to derive

performance parameters (such as recall, efficiency metrics etc...).

Despite the fact that the virtual machine’s hardware specifications

were not top-performing, as shown from the experimental results,

this configuration achieved more than adequate performance.
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Figure 5.9: Multiple protein-protein associations. The associations

are divided into positive ones, and contrastive ones and are depicted

with different colors in the graph.

5.4 Experimental Results

As its name implies, knowledge discovery systems often produce re-

sults that are based on true scientific basis but not always hold true.

This means that performance analysis of knowledge discovery systems

is quite approximate given that it is not always easy to differentiate a

valid discovered association from an invalid one. Therefore, the only

reliable way to examine accurately the performance of a knowledge

discovery system is to employ gold standard annotations and then
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Number of diseases 110

Number of articles examined 220782

Number of relevant associations 1318

Table 5.1: Synthesis of the dataset used for our experimental evalu-

ation.

compare the obtained associations against them.

The performance evaluation of BioCloud was divided in two main

sections: 1) comparison, in terms of valid (i.e. that have evidence in

experimental data) retrieved associations, between the NLP method,

and the co-occurrence-based approach [87] for reference, 2) assessment

of how the cloud implementation combined with the NLP method af-

fects the efficiency of the operation. The local computer that we tested

the tool on, had an Intel Core 2 Duo CPU running at a frequency of

2.67GHz with 4GB of RAM, while the cloud computing instance was

the one described in Subsection 3.3.

As a gold standard (Table 5.1) we used the list of 110 diseases with

1318 associations to genes, described in [129]. For consistency, only

the diseases with a minimum count of 100 retrieved documents were

considered. For the totality of the diseases the application retrieved

220782 articles.

The time needed to complete the processing of this articles in each

setting is shown in Table 5.2. It is clear how the cloud infrastructure

used boosts the performance of the application. In fact, comparing it

against locally running instance we observed a speed up in efficiency

of about 25% when the NLP module was used (1715 against 2281 min-

utes) and about 26% when the co-occurrence module was used (3207
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Local Cloud

NLP Co-occurrence NLP Co-occurrence

Time needed in minutes 2281 4307 1715 3207

Table 5.2: Performance in terms of time needed for each setting to

process the whole stack of documents.

minutes against 4307). From the same table we can also observe that

the cloud-based solution offers a net speed up, when the NLP imple-

mentation was used instead of the co-occurrence method, of about

47%.

It is important to notice that the overall speed-up of the cloud-

based implementation is due to the fact that file transfer and IO oper-

ations are done between entities that are on the cloud, meaning that a

cloud-optimized NLP module would perform even better in this con-

text.

Table 5.3 shows the achieved results of the cloud implementation

in terms of valid associations/retrieved associations and recall. Under

this aspect both the solutions performed identically because the algo-

rithm’s logic was identical. Observing the results it can be deduced

that consistently better recall values are achieved when the NLP mod-

ule is used. While the PA parameters (in Table 5.3) could be consid-

ered as False Positive values (i.e. associations that did not exist in the

gold standard dataset but the tool found the opposite), it represents

possible hidden information, that must be further investigated.
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Disease RA DA
Co-occurence NLP

TP PA RC TL TC TP PA RC TL TC

Anemia 5810 33 20 18 0.61 10 7 26 21 0.79 4 3

Breast Cancer 10000 24 15 13 0.63 219 165 21 16 0.88 62 49

Diabetes Melitus 10000 38 13 19 0.34 190 143 28 28 0.74 123 91

Hypertension 10000 13 7 2 0.54 202 142 9 3 0.69 98 73

Leukemia 10000 39 20 16 0.51 233 178 24 26 0.62 146 113

Liver Cancer 8175 10 4 4 0.40 177 125 6 7 0.60 114 82

Lymphoma 10000 10 6 7 0.60 225 159 6 9 0.60 133 103

Melanoma 7931 6 3 7 0.50 181 143 4 4 0.67 113 84

Obesity 10000 24 15 15 0.63 145 114 17 21 0.71 110 86

Prostate Cancer 7652 14 5 8 0.36 120 85 11 8 0.79 76 58

Table 5.3: Experimental results of a subset of the dataset in terms

of valid associations/retrieved associations per disease, average preci-

sion and recall. RA is the number of the retrieved articles from Ox-

ford Journal when the corresponding diseases name was queried, DA

denotes the number of the existing associations in the gold standard

dataset. TP is the number of gene-disease associations that were both

in the gold standard dataset and the applications output and PA de-

notes the number of associations that did not exist in the gold standard

dataset but the tool marked them as valid (Possible Associations). RC

represent the recall for the corresponding disease. TL and TC is the

time, in minutes, needed in order to complete the processing, respec-

tively, for the local instance and the cloud.



CHAPTER

SIX

CONCLUSIONS

Medical data come in many formats and each format need completely

different thinking and processing. During my Ph.D course, I identified

four distinct problems that the medical world needs to deal with and

tried to tackle them using a multitude of methods.

In Chapter 2, a system that automatically generates summaries

taking as input the corpus of unstructured medical reports, was pre-

sented. Such summaries, are also annotated with links which the

reader can follow in order to get a short description of the corre-

sponding medical concepts achieving very good performance. The

same system could be configured to use the International Classifica-

tion of Diseases (ICD) dictionary, instead of or in addition to UMLS,

to assign codes to diseases making the system more compatible with

existing systems.

In Chapter 3 we presented a software tool that covers the whole

workflow of a TMS experiment. This tool is composed of four dis-
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tinct modules, each one addressing a specific aspect of a TMS-based

experiment. In particular, the experiment data module manages the

patients and the results of the experiments, while the hardware inter-

face module is responsible for the experiment execution and for the

interaction with the acquisition equipment. The diagnosis support

system is based on an on-line SVM to automatically classify patients

based on the MEP responses. The entire platform’s data is handled

by the data storage module that incorporates semantic web standards

to store the data in four distinct repositories for faster access, sensitive

data isolation and easier data sharing. Moreover, the proposed RDF

schema to describe TMS data allows neuroscientists to share with the

neuroscience community both single experiments and entire scientific

research studies (data sets and results) with the main aim to standard-

ize the method (i.e. the used variables and procedures/protocols) of

studying cortical excitability using TMS. The tool was used during a

TMS experiment for evaluating objective parameters for the diagnosis

of Vascular Dementia in older patients[130].

Future work on the tool will regard enhancing the automatic sig-

nal correction and denoising algorithms for more accurate results. An-

other important enhancement should be the integration of an advanced

dynamic feature selection module so that the DSS can use not only the

features derived from MEP signals but also the other patient’s vari-

ables. To achieve an even tighter integration between non TMS data

collection procedures and their joint analysis with TMS data, we are

currently working on adding to the proposed tool all the tests (neuro-

physiological, neuropsychological, etc.) that can be performed using

a computer, and also on including available modules for automatic

analysis of medical images, in particular the segmentation approaches
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proposed in [131] and [74] and the MRI lesion classification module

proposed in [132], to reduce the time and effort that the MRI-related

variables calculation requires. Finally, a personal health record man-

agement system, such as the one in [133], is under development to

make the system’s patient records globally available.

In Chapter 4 we presented an automatic skeletal bone age as-

sessment method (and the related tool) that implements the TW2

method for EMROI classification and employs Hidden Markov Models

for modeling the different stages of development of the bones. The tool

can be downloaded at http://perceive.dieei.unict.it/. The sys-

tem was tested and compared against existing state-of-the-art meth-

ods and outperformed all of them achieving a correct detection rate

of more than 95%, when single EMROIs are concerned. Although the

system’s performance are very good in terms of accuracy there is much

space for improvement and in particular in the preprocessing step,

where the DoG filter could be replaced by more sensitive and precise

image segmentation methods, such as Markov Random Fields [134].

Moreover, data-mining approaches [135, 136] combined with multime-

dia retrieval applications [137] could be integrated in order to make

more efficient and precise the training process.

In Chapter 5 we have presented BioCloud, an open source, cloud-

based platform that assists life science researchers in knowledge dis-

covery. In particular, by integrating text mining methods on sci-

entific documents found in PubMed and Oxford Journal with high-

throughput microarrays, BioCloud is able to identify possible gene-

gene, gene-disease, protein-disease and protein-protein associations

that may be involved in biological processes. A natural language pro-

cessing module was included in order to find gene-disease relations

http://perceive.dieei.unict.it/
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in the examined documents. Given that knowledge discovery appli-

cations often produce invalid results, the obtained associations were

validated against high-throughput annotated biological data. The re-

sults shown how parsing full text papers and porting an application

on the cloud with minimal effort in terms of programming, increases

the efficiency of the platform giving it a net advantage against locally

executed processes.

In the near future, we aim at publishing the tool as a free SaaS

service to make it available for other users who may want to integrate

it in their platform. Since this tool is written in the Java programming

language, a transition in the SaaS service model will be quite indolent.

Future development will be focused on implementing and optimizing

the program for cloud execution. These modifications will regard the

complete parallelization of the tool in order to reduce drastrically the

time required for processing, even when the number of documents is

much larger than the one herein used. Multimedia retrieval meth-

ods [138] and image processing [139, 140] could be used for extracting

semantic information from images contained in the scientific papers

under examination of the application in order to increase the number

of the discovered associations.
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[83] A. Özgür, T. Vu, G. Erkan, and D. Radev, “Identifying gene-

disease associations using centrality on a literature mined gene-

interaction network,” Bioinformatics, vol. 24, no. 13, pp. i277–

i285, 2008.

[84] S. Ananiadou, D. B. Kell, and J.-i. Tsujii, “Text mining and its

potential applications in systems biology.,” Trends in biotech-

nology, vol. 24, pp. 571–579, Dec. 2006.

[85] Y. Liu, S. Navathe, J. Civera, V. Dasigi, A. Ram, B. Cil-

iax, and R. Dingledine, “Text mining biomedical literature

for discovering gene-to-gene relationships: a comparative study

of algorithms,” Computational Biology and Bioinformatics,

IEEE/ACM Transactions on, vol. 2, no. 1, pp. 62–76, 2005.

[86] C. Von Mering, L. Jensen, B. Snel, S. Hooper, M. Krupp,

M. Foglierini, N. Jouffre, M. Huynen, and P. Bork, “String:

known and predicted protein–protein associations, integrated



BIBLIOGRAPHY 125

and transferred across organisms,” Nucleic acids research,

vol. 33, no. suppl 1, pp. D433–D437, 2005.

[87] A. Faro, D. Giordano, and C. Spampinato, “Combining liter-

ature text mining with microarray data: advances for system

biology modeling,” Brief. Bioinformatics, vol. 13, pp. 61–82,

Jan 2012.

[88] S. Ekins, Y. Nikolsky, A. Bugrim, and et al., “Pathway mapping

tools for analysis of high content data.,” Methods in molecular

biology (Clifton, N.J.), vol. 356, pp. 319–350, 2007.

[89] J. Wu, X. Mao, T. Cai, J. Luo, and L. Wei, “KOBAS server:

a web-based platform for automated annotation and pathway

identification,” Nucleic Acids Res., vol. 34, pp. W720–724, Jul

2006.

[90] R. Frijters, B. Heupers, P. van Beek, and et al., “CoPub: a

literature-based keyword enrichment tool for microarray data

analysis,” Nucleic Acids Res., vol. 36, pp. W406–410, Jul 2008.

[91] L. Tranchevent, R. Barriot, S. Yu, S. Van Vooren, P. Van Loo,

B. Coessens, B. De Moor, S. Aerts, and Y. Moreau, “Endeav-

our update: a web resource for gene prioritization in multiple

species,” Nucleic acids research, vol. 36, no. suppl 2, pp. W377–

W384, 2008.

[92] C. Perez-Iratxeta, M. Wjst, P. Bork, and M. Andrade, “G2d: a

tool for mining genes associated with disease,” BMC genetics,

vol. 6, no. 1, p. 45, 2005.



126 BIBLIOGRAPHY

[93] F. Azuaje, J. Dopazo, and J. Wiley, Data analysis and visualiza-

tion in genomics and proteomics. Wiley Online Library, 2005.

[94] P. Mell and T. Grance, “The nist definition of cloud computing

(draft),” NIST special publication, vol. 800, p. 145, 2011.

[95] A. Bateman and M. Wood, “Cloud computing,” Bioinformatics,

vol. 25, no. 12, pp. 1475–1475, 2009.

[96] A. Hey, S. Tansley, and K. Tolle, The fourth paradigm: data-

intensive scientific discovery. Microsoft Research Redmond,

WA, 2009.

[97] H. Li and R. Durbin, “Fast and accurate short read align-

ment with burrows–wheeler transform,” Bioinformatics, vol. 25,

no. 14, pp. 1754–1760, 2009.

[98] M. Schatz, “Cloudburst: highly sensitive read mapping with

mapreduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369,

2009.

[99] J. Shendure and H. Ji, “Next-generation dna sequencing,” Na-

ture biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008.

[100] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Com-

bining mapreduce and virtualization on distributed resources

for bioinformatics applications,” in eScience, 2008. eScience’08.

IEEE Fourth International Conference on, pp. 222–229, IEEE,

2008.



BIBLIOGRAPHY 127

[101] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGin-

nis, and T. Madden, “Ncbi blast: a better web interface,” Nu-

cleic acids research, vol. 36, no. suppl 2, pp. W5–W9, 2008.

[102] L. Stein et al., “The case for cloud computing in genome infor-

matics,” Genome Biol, vol. 11, no. 5, p. 207, 2010.

[103] H. Li and N. Homer, “A survey of sequence alignment algo-

rithms for next-generation sequencing,” Briefings in Bioinfor-

matics, vol. 11, no. 5, pp. 473–483, 2010.

[104] R. Grossman and Y. Gu, “Data mining using high performance

data clouds: experimental studies using sector and sphere,” in

Proceeding of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pp. 920–927, ACM,

2008.

[105] D. Borthakur, “The hadoop distributed file system: Architec-

ture and design,” Hadoop Project Website, vol. 11, p. 21, 2007.

[106] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,

H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing so-

lution over a map-reduce framework,” Proceedings of the VLDB

Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[107] H. Liu and D. Orban, “Cloud mapreduce: a mapreduce im-

plementation on top of a cloud operating system,” in Cluster,

Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM

International Symposium on, pp. 464–474, IEEE, 2011.



128 BIBLIOGRAPHY

[108] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-

cessing on large clusters,” Communications of the ACM, vol. 51,

no. 1, pp. 107–113, 2008.

[109] P. Watson, D. Leahy, H. Hiden, S. Woodman, and J. BerryLiu,

“An azure science cloud for drug discovery,” Microsoft External

Research Symposium, 2009.

[110] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox,

R. Barga, and D. Gannon, “Cloud technologies for bioinformat-

ics applications,” in Proceedings of the 2nd Workshop on Many-

Task Computing on Grids and Supercomputers, p. 6, ACM, 2009.

[111] F. Nazareno, K. Lee, and W. Cho, “Mining molecular interac-

tions from scientific literature using cloud computing,” in Bioin-

formatics and Biomedicine Workshops (BIBMW), 2010 IEEE

International Conference on, pp. 864–865, IEEE, 2010.

[112] J. Lin and C. Dyer, “Data-intensive text processing with mapre-

duce,” Synthesis Lectures on Human Language Technologies,

vol. 3, no. 1, pp. 1–177, 2010.

[113] B. Langmead, M. Schatz, J. Lin, M. Pop, and S. Salzberg,

“Searching for snps with cloud computing,” Genome Biol,

vol. 10, no. 11, p. R134, 2009.

[114] M. Schatz, D. Sommer, D. Kelley, and M. Pop, “De novo assem-

bly of large genomes using cloud computing,” in CSHL Biology

of Genomes conference, 2010.



BIBLIOGRAPHY 129

[115] B. Langmead, K. Hansen, and J. Leek, “Cloud-scale

rna-sequencing differential expression analysis with myrna,”

Genome Biol, vol. 11, no. 8, p. R83, 2010.

[116] M. Karim, A. Bari, B. Jeong, and H. Choi, “Cloud technology for

mining association rules in microarray gene expression datasets,”

[117] J. Delmerico, N. Byrnes, A. Bruno, M. Jones, S. Gallo, and

V. Chaudhary, “Comparing the performance of clusters, hadoop,

and active disks on microarray correlation computations,” in

High Performance Computing (HiPC), 2009 International Con-

ference on, pp. 378–387, IEEE, 2009.

[118] T. Nguyen, W. Shi, and D. Ruden, “Cloudaligner: A fast and

full-featured mapreduce based tool for sequence mapping,” BMC

research notes, vol. 4, no. 1, p. 171, 2011.

[119] V. Fusaro, P. Patil, E. Gafni, D. Wall, and P. Tonellato,

“Biomedical cloud computing with amazon web services,” PLoS

computational biology, vol. 7, no. 8, p. e1002147, 2011.

[120] K. Krampis, T. Booth, B. Chapman, B. Tiwari, M. Bicak,

D. Field, K. Nelson, et al., “Cloud biolinux: pre-configured and

on-demand bioinformatics computing for the genomics commu-

nity,” BMC bioinformatics, vol. 13, no. 1, p. 42, 2012.

[121] S. Angiuoli, M. Matalka, A. Gussman, K. Galens, M. Vangala,

D. Riley, C. Arze, J. White, O. White, and W. Fricke, “Clovr:

A virtual machine for automated and portable sequence analysis

from the desktop using cloud computing,” BMC bioinformatics,

vol. 12, no. 1, p. 356, 2011.



130 BIBLIOGRAPHY

[122] S. Angiuoli, J. White, M. Matalka, O. White, and W. Fricke,

“Resources and costs for microbial sequence analysis evaluated

using virtual machines and cloud computing,” PloS one, vol. 6,

no. 10, p. e26624, 2011.

[123] J. Dudley, Y. Pouliot, R. Chen, A. Morgan, and A. Butte,

“Translational bioinformatics in the cloud: an affordable alter-

native,” Genome medicine, vol. 2, no. 8, p. 51, 2010.

[124] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan,

N. Aswani, I. Roberts, G. Gorrell, A. Funk, A. Roberts,

D. Damljanovic, T. Heitz, M. A. Greenwood, H. Saggion, J. Pe-

trak, Y. Li, and W. Peters, Text Processing with GATE (Version

6). 2011.

[125] B. Settles, “Abner: an open source tool for automatically tag-

ging genes, proteins and other entity names in text,” Bioinfor-

matics, vol. 21, no. 14, pp. 3191–3192, 2005.

[126] B. Sherman, Q. Tan, J. Kir, D. Liu, D. Bryant, Y. Guo,

R. Stephens, M. Baseler, H. Lane, R. Lempicki, et al., “David

bioinformatics resources: expanded annotation database and

novel algorithms to better extract biology from large gene lists,”

Nucleic acids research, vol. 35, no. suppl 2, pp. W169–W175,

2007.

[127] A. I. Saeed, V. Sharov, J. White, and et al., “TM4: a free, open-

source system for microarray data management and analysis,”

BioTechniques, vol. 34, pp. 374–378, Feb 2003.



BIBLIOGRAPHY 131

[128] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene ex-

pression patterns,” Journal of Computational Biology, vol. 6,

no. 3/4, pp. 281–297, 1999.

[129] K. Goh, M. Cusick, D. Valle, B. Childs, M. Vidal, and

A. Barabási, “The human disease network,” Proceedings of the

National Academy of Sciences, vol. 104, no. 21, pp. 8685–8690,

2007.

[130] C. Spampinato, E. Aguglia, C. Concerto, M. Pennisi, G. Lanza,

R. Bella, M. Cantone, G. Pennisi, I. Kavasidis, and D. Gior-

dano, “Transcranial magnetic stimulation in the assessment of

motor cortex excitability and treatment of drug-resistant ma-

jor depression,” Neural Systems and Rehabilitation Engineering,

IEEE Transactions on, vol. 21, no. 3, pp. 391–403, 2013.

[131] D. Giordano, R. Leonardi, F. Maiorana, G. Scarciofalo, and

C. Spampinato, “Epiphysis and metaphysis extraction and clas-

sification by adaptive thresholding and dog filtering for auto-

mated skeletal bone age analysis,” in Engineering in Medicine

and Biology Society, 2007. EMBS 2007. 29th Annual Interna-

tional Conference of the IEEE, pp. 6551–6556, IEEE, 2007.

[132] A. Faro, D. Giordano, C. Spampinato, and M. Pennisi, “Statisti-

cal texture analysis of mri images to classify patients affected by

multiple sclerosis,” in XII Mediterranean Conference on Medical

and Biological Engineering and Computing 2010, pp. 272–275,

Springer, 2010.

[133] A. Faro, D. Giordano, I. Kavasidis, and C. Spampinato, “A



132 BIBLIOGRAPHY

web 2.0 telemedicine system integrating tv-centric services and

personal health records,” in Information Technology and Appli-

cations in Biomedicine (ITAB), 2010 10th IEEE International

Conference on, pp. 1–4, IEEE, 2010.

[134] D. Anguelov, B. Taskarf, V. Chatalbashev, D. Koller, D. Gupta,

G. Heitz, and A. Ng, “Discriminative learning of markov random

fields for segmentation of 3d scan data,” in Computer Vision

and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, vol. 2, pp. 169–176, IEEE, 2005.

[135] A. Zhang, F. Cao, E. Pietka, B. J. Liu, and H. Huang, “Data

mining for average images in a digital hand atlas,” in Proceedings

of SPIE, vol. 5371, pp. 251–258, 2004.

[136] C. Faloutsos and K.-I. Lin, FastMap: A fast algorithm for index-

ing, data-mining and visualization of traditional and multimedia

datasets, vol. 24. ACM, 1995.

[137] D. Giordano, I. Kavasidis, C. Pino, and C. , “A semantic-based

and adaptive architecture for automatic multimedia retrieval

composition,” in Content-Based Multimedia Indexing (CBMI),

2011 9th International Workshop on, pp. 181–186, IEEE, 2011.

[138] D. Giordano, I. Kavasidis, C. Pino, and C. Spampinato, “A

semantic-based and adaptive architecture for automatic multi-

media retrieval composition,” in CBMI 2011, pp. 181 –186, june

2011.

[139] D. Giordano, R. Leonardi, F. Maiorana, G. Scarciofalo, and

C. Spampinato, “Epiphysis and metaphysis extraction and clas-



BIBLIOGRAPHY 133

sification by adaptive thresholding and dog filtering for auto-

mated skeletal bone age analysis,” in EMBS 2007, pp. 6551 –

6556, aug. 2007.

[140] D. Giordano, C. Spampinato, G. Scarciofalo, and R. Leonardi,

“An automatic system for skeletal bone age measurement by ro-

bust processing of carpal and epiphysial/metaphysial bones.,”

IEEE T. Instrumentation and Measurement, vol. 59, no. 10,

pp. 2539–2553, 2010.


	Introduction
	Structure of this Dissertation

	Text Processing: Creating Summaries of Unstructured Medical Records
	Introduction
	Related Work
	Method
	Text processing and annotation
	Summary Generation

	Experimental Results

	Times Series Analysis: Transcranial Magnetic Stimulation
	Introduction
	Transcranial Magnetic Stimulation
	The Proposed Tool
	Hardware Interaction Module
	Experiment data management module
	Diagnosis support system


	Image Processing: Skeletal Bone Age Modeling by Hidden Markov Models
	Introduction
	Related Works
	The Proposed Tool
	Experimental Results

	Knowledge discovery in the medical domain
	Introduction
	Cloud Technologies in Bioinformatics
	Platform as a Service (PaaS)
	Software as a Service (SaaS)
	Infrastracture as a Service (IaaS)

	BioCloud
	Text Mining Module for Hypothesis Generation
	Validation of Hypothesis Generation against Experimental Data
	Data Analysis on the Cloud

	Experimental Results

	Conclusions

