
UNIVERSITÀ DEGLI STUDI DI CATANIA

Dipartimento di Ingegneria Elettrica, Elettronica ed

Informatica

Dottorato di Ricerca in Ingegneria Informatica e delle

Telecomunicazioni

XXVII Ciclo

SECURE ACCESS TO CONTEXT-AWARE SERVICES IN

A SMART CITY

Ing. Giuseppe La Torre

Coordinatore

Chiar.ma Prof.ssa V. Carchiolo

Tutor

Chiar.mo Prof. V. Catania

To my family,

who showed me the way.

3

4

We’re still

in the first minutes of the first day

of the Internet revolution.

SCOTT COOK

5

6

SOMMARIO

Accesso Sicuro a Servizi Context-Aware

nella Smart City

La tesi affronta alcune delle problematiche inerenti l’interazione da

parte degli utenti con i servizi che saranno presenti nelle future smart

cities. Tali servizi saranno progettati per migliorare la qualità della

vita di chi la città la vive quotidianamente, ossia i cittadini, e avranno

l’obiettivo di migliorare aspetti oggi critici: la mobilità sostenibile,

il risparmio energetico, l’inclusione sociale, la sicurezza e salute del

cittadino. Il cittadino, è considerato il fulcro delle città del futuro

e attorno a lui graviteranno dei servizi di nuova generazione di tipo

context-aware, che cioè vengono erogati in funzione del contesto fisico

o logico in cui gli utenti si trovano nei momenti della loro attività

quotidiana.

La presente tesi mette in risalto come nel corso degli ultimi anni,

grazie a fattori come la trasformazione del Web (con la nascita dell’API

Economy), la diffusione dei social network, degli smartphone ed an-

v

vi

che dei wearable device, le abilità e dunque le potenzialità degli utenti

si siano evolute a tal punto da parlare oggi di veri e propri “utenti

smart”, in grado non solo di consumare ma anche di generare nuovi

contenuti e servizi e renderli disponibili ad altri utenti. Sulla scia dei

cambiamenti che il Web sta avendo ed avrà nei prossimi anni, la tesi

affronta inoltre le problematiche alla base dell’interazione tra utenti

e oggetti in scenari tipici del Web of Things prima e del Machine to

Machine in seguito, mettendo in risalto la mutazione che sta avendo

il ruolo che ha l’utente nell’interagire con i servizi. Un ulteriore as-

petto considerato nella tesi è quello della sicurezza per gli utenti nel

momento in cui accedono ai servizi offerti dalla smart city. Questo

tema è di particolare interesse dal momento che in scenari di Web of

Things gli utenti non interagiscono solo con contenuti virtuali presenti

sul Web (foto, video, etc) ma anche con oggetti reali che se usati senza

controllo possono creare dei danni tangibili. Il concetto di sicurezza

va quindi declinato non solo nella classica accezione di sicurezza in-

formatica, intesa come controllo di accesso ai servizi, ma anche nella

forma di safety, intesa come salvaguardia dell’incolumità del cittadino.

La tesi affronta con particolare attenzione gli scenari che

riguardono gli User-Provided Mobile Services (servizi forniti dagli

utenti in mobilità) e la User-Objects Interaction (interazione tra

utenti e oggetti reali) proponendo delle soluzioni che poggiano sulla

piattaforma webinos, realizzata nel corso dell’omonimo progetto eu-

ropeo conclusosi alla fine del 2013. La tesi inoltre delinea alcuni sce-

nari, nell’ambito del Machine to Machine, nei quali gli smart objects

possono cooperare tra di loro senza (o con un minimo) intervento

dell’utente, e propone una possibile architettura a blocchi per logica-

mente abilitare tale cooperazione.

SUMMARY

Secure Access to Context-Aware Services

in a Smart City

The thesis addresses some of the issues related to interaction by users

with the services that will be available in future smart cities. These

services will be designed to improve the quality of life of people who

live the city daily, ie citizens, and will aim to improve critical aspects

which today affect our cities: sustainable mobility, energy saving, so-

cial inclusion, health and safety for the citizen. The citizen is consid-

ered the heart of the future city and a lot of new generation services

will surround him. This services will be context-aware, that is, they

will be provided according to the physical or logical context where

users are located in the moments of their daily activities.

This thesis highlights how over the past few years, thanks to factors

such as the transformation of the Web (with the birth of the API

Economy), the spread of social networks, smartphones and even the

wearable device, the skills and thus the potential users have evolved

vii

viii

to the point of talking now of real “smart” users, able not only to

consume but also to generate new contents and services and make

them available to other users. In the wake of the changes that the

Web is having and will have in the coming years, the thesis also deals

with the issues underlying the interaction between users and objects

in typical scenarios the Web of Things first and Machine to Machine

later, highlighting the mutation that is taking the role that has the

user to interact with the services. Another aspect considered in the

thesis is that of security for users when accessing services offered by

the smart city. This topic is of particular interest since in scenarios

such as the Web of Things users not only interact with virtual content

on the Web (photos, videos, etc) but also with real objects that when

used without control can create tangible damage. The concept of

security should therefore declined not only in the classic sense of IT

security, understood as control of access to services, but also in the

form of safety, understood as safeguarding the citizen.

The thesis particularly focuses scenarios that concern the User-

Provided Mobile Services (services provided by mobile users) and User-

Objects Interaction (the interaction between users and real objects)

proposing solutions that rest on the platform Webinos, made during

the homonymous European project, which ended at the end of 2013.

The thesis also outlines some scenarios in the context of the Machine

to Machine, in which the smart objects can cooperate with each other

without (or with minimal) user intervention, and proposes a possible

block architecture to logically enable such cooperation.

ix

Pubblications Related To This Research

1. V. Catania, G. La Torre and D. Ventura. “Controlling Smart

Objects from Web Applications using the Webinos Platform”,

ITG-Fachbericht-Smart SysTech 2014.

2. V. Arena, V. Catania, G. La Torre, S. Monteleone and F. Ric-

ciato. “SecureDroid: An Android security framework extension

for context-aware policy enforcement”, IEEE International Con-

ference on Privacy and Security in Mobile Systems (PRISMS),

2013, pp.1,8, 24-27 June 2013.

3. V. Catania, G. La Torre, S. Monteleone and D. Panno. “A

Cloud Platform to support User-Provided Mobile Services”, The

Fourth International Conference on Cloud Computing, GRIDs,

and Virtualization (IARIA CLOUD COMPUTING), 2013, pp.

191-194, May 27 - June 1, 2013.

4. V. Catania, G. La Torre, S. Monteleone, D. Patti, S. Ver-

celli and F. Ricciato. “A Novel Approach to Web of Things:

M2M and Enhanced Javascript Technologies”, IEEE Interna-

tional Conference on Green Computing and Communications

(GreenCom), 2012, pp.726,730, 20-23 November 2012.

x

CONTENTS

1 Introduction 1

1.1 How has the role of the user changed and where it is

heading to . 1

1.1.1 The rise of social media 2

1.1.2 The iPhone and the app disruption 7

1.1.3 New kinds of interaction in the Internet Of Things 10

1.2 From the Web of Documents to Web of Services 12

1.2.1 The rise of the API economy 13

1.2.2 The impact on users 15

1.3 From the Web of Services to Web of Things 16

1.3.1 The phenomenon of makers 16

1.3.2 Social networks of things 17

1.3.3 Machine to Machine 18

1.4 Services within a Smart City 19

1.4.1 Context-aware Services 21

1.4.2 Location Based Services 22

1.5 Structure of this Dissertation 24

xi

xii CONTENTS

1.6 Acknowledgments . 24

2 State of the art 27

2.1 What is a Web Service? 27

2.1.1 REST Architecture 28

2.1.2 REST and SOAP comparison 30

2.1.3 Web Service Description 31

2.2 Web Services Mashup 33

2.2.1 Low Level Mashup 34

2.2.2 High Level Mashup 36

2.3 Semantic Web Services 37

2.3.1 RDF . 40

2.3.2 OWL . 41

2.3.3 OWL-S . 41

2.4 Platforms for the Web of Things 43

2.4.1 The COMPOSE Project 45

2.4.2 The webinos Project 47

3 From User Generated Contents to User Generated Ser-

vices 53

3.1 Current Research Issues in User-Generated Services . . 53

3.2 User-Provided Mobile Services 55

3.3 Related Work . 58

3.4 Webinos as a platform for User-Provided Mobile Services 59

4 The Web of Things: Dealing with everyday objects 63

4.1 User-Objects Interaction 63

4.2 Related Work . 68

4.3 A webinos API for smart objects 70

CONTENTS xiii

4.3.1 Why is webinos a good platform for smart objects? 75

4.3.2 Smart Object API 77

4.4 Proposed Application 82

4.4.1 Improving the scalability using Vuforia SDK . . 87

5 The Cognitive Internet of Things: How the role of the

user is going to change 89

5.1 New Kinds of User-Objects Interaction: the case of Ma-

chine to Machine . 89

5.2 Open Issues . 92

5.3 State of Art . 96

5.4 Architecture Description 99

5.5 Understanding Block 102

5.6 Task Coordinator . 104

5.7 Discovery Block . 106

5.7.1 Location Manager 107

5.7.2 Semantic Engine 110

5.7.3 User Preferences 112

5.8 Secure Communication Among Blocks 115

6 Security and Privacy issues in the Smart City 117

6.1 Access Control for Context-Aware Services 117

6.2 Related Work . 122

6.3 Access Control in Mobile Operating Systems 124

6.4 Android Security Framework 126

6.5 Policy Model . 129

6.6 SecureDroid Layer . 131

6.6.1 Policy Evaluation Order 134

xiv CONTENTS

6.6.2 SecureDroid Architecture 136

6.6.3 Decision handling 139

6.6.4 Comparison with other security frameworks . . 141

6.7 Policy Management . 143

7 Conclusions 147

LIST OF FIGURES

1.1 The rise of social media 3

1.2 The amount of User Generated Contents in 2012 5

1.3 Market forecast for smartphones until 2018 9

1.4 Time spent online by age 10

1.5 Advantaged for companies in the API Economy 14

2.1 Public APIs growth since 2005 35

2.2 An example of recipe in IFTTT 36

2.3 An overview of the webinos architecture 48

2.4 Personal Zone Proxy and webinos runtime 50

3.1 An example of using “API as service” 59

4.1 Webinos Service Address Composition 73

4.2 Intra and Inter Zone communication 73

4.3 ArUco Marker . 84

4.4 Graphical user interface for modulo operation imple-

mented by a smart calculator 85

xv

xvi List of Figures

4.5 The proposed AR application to control smart objects 86

5.1 Enabling M2M in smart spaces: the proposed architecture100

5.2 An excerpt of a smart home ontology 112

5.3 Discovery steps in the proposed M2M architecture . . . 114

5.4 PKI for the proposed system. 116

6.1 Android installation process 127

6.2 SecureDroid Architecture 136

6.3 SecureDroid dialogs in the cases of PROMPT-

ONESHOT and PROMPT-SESSION 141

6.4 Context and Policy Management 144

7.1 The evolution of Web’s users 148

CHAPTER

ONE

INTRODUCTION

1.1 How has the role of the user changed

and where it is heading to

It has been 25 years since that March 12, 1989 when Tim Berners-

Lee at CERN suggested that it was a new model for the organization

and retrieval of information. According to this model, each piece of

information was defined by links within a hypertext. That document

was the foundation of what would become the World Wide Web, the

construction of which began only a few months later by activating the

first server and bringing online the first web page ever. After 25 years

it is increasingly clear the scope of what is in fact an incredible revo-

lution that changed and still is changing the way of life of the users.

According to Wikipedia, a user is a “person who uses a computer or

network service”. Users generally use a system without the technical

1

2 Chapter 1. Introduction

expertise required to understand it fully, while power users use ad-

vanced features of programs. In its early years the Web consisted of

texts, initially in their own right, which over time have been linked

together. The main innovation of the Web was in fact the hyperlink,

which allows an immediate connection to other pages or resources.

From the user point of view this was revolutionary because it made it

possible to speed up the way he retrieved, almost instantly, contents

that were physically on the other side of the world. The Web and the

e-mail made it possible to cancel geographical distances by becoming

users “citizens of the world”.

1.1.1 The rise of social media

Since from the beginning of the new millennium, the appearance of

Web sites has begun to change, and subsequently, the way users in-

teract with them. Figure 1.1 shows the rise of social media web sites

since 2001. Users have gone from being simple passive users of infor-

mation to those who personally create and add content that is made

available to other users. The case of Wikipedia and its plans to build

the largest free encyclopedia is based on the concept of sharing user’s

“knowledge” in favor of others.

The blogging phenomenon has begun to catch on in America in

1997; July 18, 1997, was chosen as the symbolic date of birth of the

blog, referring to the development, by the US Dave Winer, the soft-

ware that allows the publication. At this stage it was used the term

weblog or blog with which we referred only to lists of links (a type of

very useful information to users before the widespread use of search

engines). The technological enabler that allowed the spread of blogs

1.1. How has the role of the user changed and where it is heading to 3

Figure 1.1: The rise of social media

was the Content Management System (CMS): a framework for cre-

ating high level web pages according to the paradigm of WYSIWYG

(What You See Is What You Get), that is, without the stringent need

to know programming languages like HTML Web. Thanks to the

CMS non-technical users were able, through their personal blogs, to

create contents that contributed to the spread of the Web. Between

the years 2009 and 2010, however, the crisis of blogs began, mainly

due to the rapid rise of social networks.However, the reason why blogs

are so popular is to be found in several factors: by the exhibition’s

public private life to the creation of complex texts and specific; at the

base of the diffusion is in any case the feature of sharing.

The phenomenon that has largely characterized Web 2.0 has been

the rise of social networks: evolution of some forms of social interaction

4 Chapter 1. Introduction

that the web has always supported (computer conferencing, email,

mailing lists, etc.). The definition of social networks is as follows:

A network of social interactions and personal relation-

ships

In more technical terms it means:

A dedicated website or other application which enables

users to communicate with each other by posting informa-

tion, comments, messages, images, etc.

Although the conceptual point of view social networks do not con-

stitute a new idea (like blogs, the key issue is that of sharing content)

they introduce some innovative aspects, including the “Profile”. Each

user of a social network has its own account which allows you to man-

age the settings in your profile that identifies the user in all respects

within the social network. In any social networks (facebook, twitter,

youtube) there is no concept of followers: Users decide among them-

selves who to follow based on the principles of friendship (Facebook),

of job skills (linkedin), of interest in what they have to say (twitter).

The main innovation introduced by Facebook was the “like”. While

it may seem a minor issue, when a user expresses his preference for a

content it adds to its popularity. This affects a lot especially for the

commercial products as to accumulate the number of likes contributes

to product advertising. Another key aspect of like it the way it is used

to “profile” the user according to his preferences. This information is

then conveyed by Facebook to provide users of commercial proposals

as they match their profile, making ad hoc campaigns to market and

1.1. How has the role of the user changed and where it is heading to 5

Figure 1.2: The amount of User Generated Contents in 2012

therefore much more effective than traditional methods of broadcast

(TV, newspapers).

Another interesting phenomenon that has been able to analyze

thanks to social networks is trending. Thanks to Twitter, for example,

you can know in real time the topic in a given time which collects more

interest in the entire globe. These information are part of the so-called

big data, thanks to techniques of data analysis (data mining) are used

to implement a number of sociological studies on how the company is

evolving.

Social networks have introduced the concept of social influencer.

Social influence occurs when one’s emotions, opinions, or behaviors

are affected by others. For Social Influencer mean a subject very spe-

cialized and active in producing information about a particular indus-

6 Chapter 1. Introduction

try/topic and with a large following on the Web. A social influencer

is not just a popular person on the Net, but specifically it is a subject

capable of: Providing ’detailed information continuously, influencing

the opinions of others and creating around him a community of people

working on a theme, which follows him every day.

The advantages of Web 2.0 are essentially related to the growth of

a sense of “social”, but it is necessary to highlight some inherent risks.

Just the fact that they contribute so substantially to the content of

a site, with a clear commitment and expenditure of energy, it makes

the user “addicted” from that site, linking it to the final data format

adopted, so any change of environment will inevitably be costly. Sim-

ilarly, if the user decides to participate in multiple social networks, in

the absence of common standards could be forced to repeat the opera-

tion several times. Some researchers point out that the distribution of

user-generated content would be detrimental to the traditional sources

of knowledge, and the fact that this content is created by users using

different systems (podcasts, blogs, wikis, chat systems, and other soft-

ware for social networking) makes it difficult to keep track of where

we find the information, and problematic access to it, both for regular

and casual users.

The semantic technologies are in a phase of diffusion also in indus-

trial reality. In a study (May 2007) Gartner foresees a wide spread

over the next ten years. Web 2.0 and the Semantic Web (or Web 3.0)

are considered two complementary approaches, rather than alterna-

tive. The Web 2.0 has a low input level (it is very easy to use), but

also quite limited horizons (in particular, the approach of folksonomy

has inherent limitations). On the other hand, the Web 3.0 requires ini-

tial investments most relevant, and therefore presents a higher input

1.1. How has the role of the user changed and where it is heading to 7

level, but has a much higher potential.

1.1.2 The iPhone and the app disruption

Steve Job’s creation was not just a cell phone; rather, it was the

world’s first, handheld computer. Its data processing capabilities -

not voice - are what disrupted the cell phone market. Although other

smartphone manufacturers offered web browsers, they were clumsy

and difficult to use. In contrast, Apple’s web browser made surfing

the Internet easy. Compared to its rivals, the iPhone’s user interface

was simple, intuitive and uncomplicated. At the swipe of a finger on

touch sensitive glass, one could get access to e-mail, text messaging,

video, photography, maps, books, music, games and mobile shopping.

The iPhone was a game-changer, the industry’s Swiss Army knife.

The market launch of the first smartphone from Apple was an

event that changed the concept of mobile phone for users. Other

products (Blackberry, Windows Phone, etc.) were already present in a

market with Personal Digital Assistants (PDA), which did not succeed.

By 2003 - 2004, there were numerous smartphones on the market

competing against personal digital assistants. Although they were

bulky, at the time PDAs had numerous advantages over smartphones,

e.g., Windows operating system, compatibility with different file types,

support for both Bluetooth and Wi-Fi, higher-performance processors,

higher quality screens and audio output. However, by the year 2006

smartphones evolved tremendously: they got support for Wi-Fi and

also featured 3G baseband, in addition, their multimedia capabilities

were a far cry from what they were just several years before that. As

a result, in 2005 - 2006 time frame the popularity of PDAs among

8 Chapter 1. Introduction

business users started to decrease and at present almost nobody use

them for business purposes.

In 2007, it was the revolution: the original iPhone blew away the

competition and was preparing to begin a new era of telephony, the

one we are experiencing today. Gradually, it has gone from revolution

to innovation, from the innovation to the improvement of the “phone

that has changed phones forever”. Maybe because this product has

become part of our daily lives, that will be the approach to the device

is pretty simple for everyone, it will be for features and ease of use of

iOS, it will be just for the brand that is created around this “different”

phone, in each case, the phenomenon iPhone was unique and probably

unrepeatable.

There were two factors that contributed to the spread of the iPhone

and subsequent radical transformation of the smartphone market. The

first was the introduction of the touchscreen, which is not so much a

technological innovation but constituted a revolution in the way the

phone could be used. With gestures and a uniform user experience

across different apps, users could use with simplicity never seen on a

smartphone. An example is the zoom feature by “pinch”: let us to en-

large or restrict what we are seeing and debugger regardless of whether

we are the browser, image gallery or a PDF reader. In a similar way

the “swipe” allows us to scroll through the content in each applica-

tion you use. The presence of menus, gestures (eg zooming), a mode of

navigation between screens have well-defined and well-established fact

that the app is being used by many age groups. Many people who are

not able to use a PC instead can use mobile applications. The second

factor that contributed to the success of the iPhone was the opening

towards the developers by Apple with the launch of the App store

1.1. How has the role of the user changed and where it is heading to 9

Figure 1.3: Market forecast for smartphones until 2018

and release of high-level tools for application development. The pres-

ence of a market with many applications has encouraged the spread

of platforms such as iOS and Android at the expense of others, such

as Windows Mobile, Blackberry and Symbian until the appearance of

the iPhone held the largest share in the PDA market.

The market launch of the iPhone has therefore initiated the era of

smartphones, today considered one of the most disruptive of the last

30 years. As shown in Figure 1.3, since 2009 (the year of release of

the iPhone 3GS) to date the number of smartphones sold is rising.

Figure 1.4 highlights two important aspects: firstly, the use of the

web from mobile devices(smartphone, tablet) has now surpassed that

of desktop computers, and secondly, this phenomenon occurs for all

10 Chapter 1. Introduction

Figure 1.4: Time spent online by age

age groups. This means that the smartphone has considerably cut

down the barrier of entry to the Web for users younger than with

desktop computers struggled to make full use of the opportunities

provided by the web. The smartphone is thus intended to be the tool

that will allow the user to interact with the services of digital cities.

It will be the point of contact between the user and the service and

will be the virtual identity of users in smart cities.

1.1.3 New kinds of interaction in the Internet Of

Things

Today users are improving themselves in the way they use mobile ap-

plications. In particular, the social applications are those with more

following and allow users to create and share virtual content: tweets,

1.1. How has the role of the user changed and where it is heading to 11

images, video, audio. However, the technological landscape is evolving

into what it is uniformly recognized as the Internet of Things: a sce-

nario where not only computers and smartphones, but all the objects

that we use every day will be connected to the Internet. The IoT will

be a real technological revolution that will make possible the applica-

tion scenarios today that will bring a new day to the transformation of

the city in which we live in the real smart cities, in which the user will

be surrounded by objects (typically sensors and actuators) with which

he can communicate and exchange information. A typical example of

IoT device which is spreading in this period is the Fitbit1: a bracelet

with inertial sensors that helps users monitor their daily physical ac-

tivity and the quality of their sleep. The data collected by the Fitbit

are carried on a cloud platform by connecting the user’s smartphone

and turn into statistics. The user then generates and uses contents

that have not been created by other users as was the case up to now,

but coming from the smart objects that are around him. Although

the smartphone is currently the best tool to enable the interaction

between users and objects, including other forms of interaction can be

used in the future, including

• Vocal interaction: a topic of much current research, some of the

most important implementations are Apple’s Siri and Google

Now.

• Gestures Recognition: when used in the world of gaming

(Kinect, Wii) is well suited for interacting with objects. Another

alternative is Leap Motion to recognize the fingers’ movement.

1www.fitbit.com

12 Chapter 1. Introduction

• Complementary interaction. Google Glass and and Apple Watch

are different, but underlie a common concept: exploiting the con-

nection and the data from the mobile in a new way to interface

with technology, such as using augmented reality.

This dissertation will take into account the concept of the Inter-

net of Things and it will be explained in what circumstances such a

concept has turned into the Web of Things. The transition from Web

Documents to the Web of Things was made possible by an intermedi-

ate step, characterized by the emergence of Web Services. The next

two sections describe the details of this transformation.

1.2 From the Web of Documents to Web

of Services

In recent years more and more big companies have adopted the strat-

egy to release public Application Program Interfaces (APIs) to en-

able third-party developers to create applications and services based

on well-established platforms. Some examples are Google, Facebook,

Twitter, which made it available to developers access to their data

(maps, user postings, tweets), which in turn used this information to

create applications for end users by generating profits. For develop-

ers, rely on already existing and well-established services, is a way of

abstracting from issues such as server management, scalability of their

product increases users who use, data backup, etc. In this section we

will analyze what were the reasons that led to the birth of the API

Economy and the immediate consequences will be described from the

point of view of the developers from the end-user.

1.2. From the Web of Documents to Web of Services 13

1.2.1 The rise of the API economy

According to Ross Mason’s vision [1] (the founder of the US company

MuleSoft), the API is considered a revolution as a few decades ago

it was the industrial revolution. According to Mason, four are the

conditions to start a revolution: Demand, Resources, Innovation and

Adaptation. In the case of the industrial revolution these conditions

have been characterized by:

• Demand: Population growth specialist and free trade

• Resources: The abundance of raw materials such as coal, iron,

steel

• Innovation: Some inventions of machines that sped up the work

of man

• Adaptation: Man’s ability to generate profit using manpower,

resources and innovations

The first real digital revolution has been the Web, but today we

are witnessing what is considered the second digital revolution that is

the rise of the API.

• Demand: The population of the Web will increase from 2.8 bil-

lion to 5 billion in the near future

• Resources: The enormous amount of data available (social net-

works, open data, IoT)

• Innovation: The Web is now a platform on which to build any

kind of application

14 Chapter 1. Introduction

Figure 1.5: Advantaged for companies in the API Economy

• Adaptation: The ability of companies to make a profit by creat-

ing products that use the API of the Web

As shown in Figure 1.5, for a company that wants to make profit

from the data that is available, a Web site that would cover only a

small portion of the online population (0.001%). In contrast, leverag-

ing on the APIs that allow users to access data allows to capture a wide

spectrum of customers across channels to be added to the website.

These channels consist of third-party applications, social networks,

widgets, mobile applications and everything you can take advantage

of the Web API.

In conclusion, we can say that the Web API represent a new oppor-

tunity for the business-to-business (B2B) and represent a new channel

for communicating partners (third parties) with customers, indirectly

generating profit.

1.2. From the Web of Documents to Web of Services 15

1.2.2 The impact on users

The Web services have introduced a number of advantages for devel-

opers and, indirectly, also for end users who have seen an increase in

the number of applications available to them. An important concept

originated by the presence of numerous services available on the Web

is the Mashup. Mashup means the composition of existing services

with the aim to create new applications for end-users or new services

that may in turn be used other by developers. Chapter 2 will highlight

the main benefits of mashups and the platforms which exist today and

make it possible.

Although the mashup is definitely a tool for developers, recently we

have seen the emergence of some high-level tools which allow users (not

necessarily experts) to compose, using the graphical tools, existing

services and creating new ones. A popular platform today for the

composition of services is “If This Than That” (IFTTT), which will

be described in the next chapter. Such tools thus giving users the

ability to create, as well as content, new services that can then be

used by other users. This could lead in the future to have, as is the

case today for applications, markets for services. Chapter 3 describes

the work carried out in the context of User Generated Services in which

it was considered the case in which, in addition to being generated,

the services were also provided by users through their mobile devices.

Many scenarios can be enabled in this area, one of them is known as

crowdsensing [2].

16 Chapter 1. Introduction

1.3 From the Web of Services to Web of

Things

In the previous section it was shown that users are able to exploit the

power of the Web in the form of public services it offers. This fostered

the transition to the Internet of Things in which objects of daily life

are connected to the Internet. These objects are heterogeneous from

several points of view: hardware, protocols, interfaces. In order to

control these objects we need to “virtualize” them and consider each

object as a service provider. In [3] Guinard et al. propose a pro-

cess and a suitable system architecture that enables developers and

business process designers to dynamically query, select, and use run-

ning instances of real-world services running on physical devices. It is

therefore a direct consequence that the Web of Services constitutes the

basis for the Web of Things: each object has its virtual counterpart

that implements the services that coincide with the operations that

the object is able to perform.

1.3.1 The phenomenon of makers

The more frequent appearance of new smart objects that are part of

the Web of Things was certainly encouraged by the birth of the makers

movement. The makers concept is a contemporary evolution of the

technological DIY (do it yourself) determined by a number of changes

taking place in technology and society. The makers are the natural

consequence of the Internet, social platforms and the dissemination

of techniques for rapid production. They operate within a digital

community of thousands of fans and founded on the philosophy of

1.3. From the Web of Services to Web of Things 17

knowledge sharing and open source. The birth of the subculture of

the makers is closely associated with the birth of hackerspace, spaces

for collaborative innovation. In 2009, there were over a hundred in the

United States. The secret behind the revolution lies in the intertwining

between digital and analog, and the most important technology is the

3D printer: a machine that produce a solid, three-dimensional model

from a digital computer. Many open source projects are based on

Arduino, which enabled several of possibilities related to the design of

robots, wearable, and IoT applications.

1.3.2 Social networks of things

In recent years, social networks are evolving hand in hand with the

consolidation of what is called the Internet of Things (IoT). The IoT

can be understood as the evolution of the Internet of computers to

an Internet where everyday objects are connected to each other and

exchange information with each other and with users. The concept

of IoT will be further elaborated in the course of this dissertation.

In this direction we have already seen the born of social networks

where objects are the main players and not the users. Within these

social networks objects (in most cases of simple sensors) have their

own “life” and publish on a dashboard information which they are

capable of measuring. Each object can have followers: users that can

see at any time the status of the object and control it. To simplify

the discovery, objects can be geo-located and linked to a tag helping

users to find them. Mechanisms of access control are also present, to

determine which other users, as well as the owner can view the status

of an object. In addition, some platforms provide the API to control

18 Chapter 1. Introduction

the state of objects also outside of the platform itself, for example from

a mobile app. The Web then becomes something tangible to users,

which for the first time are able to control the objects that surround

them in a completely seamless, without noticing that the resource

with which they are interacting has its real counterpart. Chapter 4

will address in detail various aspects of the interaction between the

user and objects.

1.3.3 Machine to Machine

The Machine to Machine (M2M) is considered as a special case of

the Web of Things in which objects (called Machine) have their in-

telligence and carry out specific tasks without human intervention.

Traditionally the machines involved in these scenarios are simple sen-

sors and actuators (a typical example of the M2M application is that

of monitoring the boiler with relative closing of a solenoid valve in

case of emergency). In this thesis, we want to consider machines in a

broadest sense, ie quite complex objects able to perform both low and

high level operations. For example, in the case of the smart home,

the machine are constituted by appliances such as oven, TV, air con-

ditioner, refrigerator. In a generic smart space, M2M scenarios are

those in which the objects will cooperate with each other to satisfy

goals that are expressed by users through high-level interfaces. M2M

then changes once again the role of the user: he does not anymore di-

rectly control objects to achieve a result (e.g. to manually control the

air conditioner), but he merely “asks” the desired result (goal), leav-

ing to the objects the burden of self organize them-selves and carry

out the assigned task.

1.4. Services within a Smart City 19

Various aspects of research are involved in M2M, a discussion of

all open issues will be provided in Chapter 5 together with a proposal

for a possible architecture for the deploy of M2M strategies for smart

spaces.

1.4 Services within a Smart City

The term smart city has become particularly popular in recent period.

This expression identifies an urban area that, thanks to the use and

pervasive of advanced technologies (not only ICT), is able to address

in an innovative way a series of problems and needs. There are many

forms according to which a city can become smart. Among the most

mentioned, it is possible to certainly remember the following:

1. A city that helps people to move. The city (and territories

around them develop) are becoming increasingly congested and

therefore require new models of management and governance of

mobility that enhance public transport, introducing types and

transport models (eg, patterns of sharing of the medium), pro-

viding innovative services for monitoring, analysis, planning and

management of the flows of people and resources.

2. A city that helps people to not move: In apparent contrast to the

previous point, the city is also smart to the extent that it helps

people to stay put. In particular, a widespread and pervasive

use of ICT products and services allows us to perform remotely,

without moving, a lot of activities from shopping, meetings, ac-

tivities, group work and projects.

20 Chapter 1. Introduction

3. The city that helps people to know. A smart city is able to collect

and disseminate information in an extensive and continuous, as

regards both the normal social and economic life, both as regards

the management of emergency situations.

4. The virtuous city. A smart city is able to exploit all the modern

technologies for energy saving and, in general, to reduce the

impact on the environment and on the planet that comes from

the presence and activities of thousands of people and products

in various forms consume energy and produce waste.

5. A city which is alive and dynamic. A city is smart even when it is

able to generate and promote cultural and recreational activities

that qualify the territory, attracting talent, enrich the fabric of

the city and will stimulate creativity and social growth.

6. A city which is participated. The growth of cities and their grad-

ual transformation into large agglomerations where you lose the

size of the “medieval square”, makes it more real danger of the

loss of social cohesion and the impoverishment of opportunities

to meet and socialize. A smart city is capable of inventing new

forms of participation that combining the use of new technolo-

gies and new forms of social encounter, they are able to renew

and rebuild the fabric of human relationships and opportunities

for discussion and dialogue.

7. A city which is safe. The security of people and property in

many cities has become a major concern. A smart city raises

the level of reliability through the use of innovative solutions for

ground surveillance and assistance to citizens.

1.4. Services within a Smart City 21

8. A city which is well-governed. Finally, but not least, a smart city

offers new forms of governance that can both monitor and man-

age the land and the dynamics that develop in it, is to enhance

the ongoing relationship and two-way with citizens, businesses,

entities live that operate on it and develop.

A smart city is a place where all life processes and nerve centers of

social life are read, thanks to the use of technology in order to radically

improve quality of life, opportunities, welfare, social and economic

development.

1.4.1 Context-aware Services

The context-aware applications allow to provide content, information

and services tailored to the context in which the user is located. With

the term context indicates precisely a set of data relating to the state

of the user that the environment in which this is located. The context-

aware services are intended to provide information consistent with the

situation that surrounds the user, adapting to possible changes in

circumstances.

The knowledge of the context in which the user is located allows

him to offer a wide range of services to help the customer in his daily

life, working-operative or private, to better manage time, revealing

what is around him and where are the people he want to share emo-

tions and experiences, introducing new forms of entertainment. The

CA (Context Awareness) is a set of engineering features that can add

value to services in different application segments. Context Aware-

ness applications and services may exploit these features for various

purposes:

22 Chapter 1. Introduction

• present information: services involving context information to

the customer or using context to suggest a selection of proper

care actions;

• execute commands: services that run commands or reconfigure

systems for the customer in terms of changes in the context;

• tagging of information: services to associate information or ob-

jects to to a service (documents, meeting rooms, meetings, print-

er/fax/pc, ...) with context information (time, location, identity

, activities).

A user can be in a physical context that is characterized by physical

parameters, such as his location, his status (he is moving, sitting, doing

sports), environmental data which can be snatched around him (tem-

perature and atmospheric pressure, brightness, humidity), by physi-

ological parameters (blood pressure, body temperature), etc. other

than physical, the context can be logical and consists of both user’s

real and virtual identity. The logical context can enable services to

users who are really allowed, for example in a factory only users with

a certain role may be able to use certain types of services.

1.4.2 Location Based Services

New technologies have become a mass phenomenon that involves most

of the population. Mobile, Smartphone and Social are all words that

begin to know: According to Cisco half the world’s population will

be connected to the Internet in 2017, and of these about 93 % is also

present on social networks. And, in 2017 more than a third of the

1.4. Services within a Smart City 23

world population will have a smartphone. The proportion of smart-

phone owners using geo location services (LBS - Location Based Ser-

vices) is definitely growing. Geo location, ie the identification of the

geographical position of a given object in the real world, is present in

everyday life and the concept of Check In, the action that allows a

user to share a moment, it is more and more integrated services used

from Mobile. If you want to analyze the reasons for the growth of geo

location systems. Mainly, the three factors which have fostered LBS

are: technology, data and app market. In particular:

• the increase of the precision of the devices is turned in a few

years from 100 meters to 5 meters and the time alignment of the

detection is increased from 10 seconds to 1 second, generating

a reduction of costs and the possibility of information almost in

real time;

• The emergence of indoor localization techniques which are under

study and implementation.

• the adoption and development of technology pre-installed in

smartphones has made geo location capabilities available to all;

the availability of the mobile connectivity has allowed more peo-

ple to interact with more platforms and social applications;

• the ecosystem of app stores and the API generated and accel-

erated the development of applications for mobile devices, the

ability to integrate data and generate business opportunities.

The answer to “Why are the location and the LBS becoming so

important today?” it becomes almost trivial: geo location, viewed

24 Chapter 1. Introduction

from the business answers questions important means of monitoring

and analyzing its users, not only from the point of analytically, but

mostly behavioral. Anyway, the most important aspect concerns the

“social” effects resulting from the sharing of a position, even more

analytical and strategic importance of the study of that data. Mobile

proximity marketing and social games are only a few examples of LBS

implications.

1.5 Structure of this Dissertation

The thesis is structured as follows: Chapter 2 describes the current

state of the art with regard to Web services, considering their de-

scription, use, generation and all the problems related to security and

privacy of users who use such services. In Chapter 3 a proposal for

User Generated and Provided Services is described. Chapter 4 faces

the problem of user-object interaction and provides a proposal which

exploits the webinos platform. Chapter 5 showcases a M2M scenario

where objects in a smart space work together to achieve a goal which

has been expressed by the user. Finally in Chapter 6 the author pro-

vides some security and privacy considerations that embrace all the

cases which have been taken into account in this dissertation.

1.6 Acknowledgments

Part of the results described in this dissertation comes from the re-

search funded by the EU FP7 webinos project (FP7-ICT-2009-05 Ob-

jective 1.2).

1.6. Acknowledgments 25

The code produced while working on this project is freely avail-

able at [4] and has been forked from / contributed to webinos project

repositories [5, 6]. Requirements, specifications and all the other de-

liverables are available in the project’s site.2

2http://www.webinos.org

26 Chapter 1. Introduction

CHAPTER

TWO

STATE OF THE ART

2.1 What is a Web Service?

Web services have made their appearance around the year 2000 and

since then have revolutionized the way we think the Web. A Web

service is a software system designed to support interaction between

applications, using technologies and Web standards. The mechanism

of Web Services enables users to interact in a transparent applications

developed with different programming languages, running on hetero-

geneous operating systems .

This mechanism allows users to create pieces of functionality inde-

pendently and potentially incompatible platforms interacting via the

various pieces and Web technologies to create modular architecture

easily. At present there are two approaches to the creation of Web

Service: One approach is based on the standard protocol SOAP (Sim-

ple Object Access Protocol) to exchange messages for the invocation

27

28 Chapter 2. State of the art

of remote services, intends to play in the Web an approach to remote

calls, remote procedure call, which is typical of protocols for interop-

erability such as CORBA, DCOM, and RMI.

A second approach is inspired by the traditional architectural prin-

ciples of the Web and focuses on the description of resources on how

to find them on the Web and how to transfer them from one machine

to another. This is the approach that has been the reference for this

thesis and it is named REST (Representational State Transfer).

2.1.1 REST Architecture

REST defines a set of architectural principles for the design of a sys-

tem. It is an architectural style, which does not refer to a specific,

well-defined, nor is a standard established by a standards body. Its

definition appeared for the first time in 2000 in the doctoral thesis of

R. Fielding[7], “Architectural Styles and the Design of Network-based

Software Architectures”, which was discussed at the University of Cal-

ifornia, Irvine. This thesis analyzed the basic principles of different

software architectures, including precisely the principles of software

architecture that allow to see the Web as a platform for distributed

processing.

In recent years, REST approach came to the fore as a method

for creating Web services highly efficient and scalable and has to his

credit a significant number of applications. REST architecture nor is

not a standard, but a set of guidelines for the realization of a system

architecture. In particular:

• Identify resources

2.1. What is a Web Service? 29

• Usage of explicit HTTP methods

• Self-descriptive Resources

• Links between resources

• Stateless Communication

Resources are the key elements on which RESTful Web services

are based. Conversely, SOAP Web Service-oriented are based on the

concept of remote call. A resource is any item that is being processed.

To give some concrete example, a resource can be a client, a book, an

article, an object on which operations can be performed. As in the

Web, the most natural mechanism for identifying a resource is given

by the concept of URI.

REST allows developers to perform operations on the resources

that match the verbs defined by the HTTP standard that is: GET,

POST, PUT and DELETE. The principle of stateless communication

is well known to those working on the Web. This is in fact one of

the main features of the HTTP protocol, that is, each request has no

relation to the previous requests and later. The same principle applies

to a RESTful web service, that is, the interaction between the client

and server must be stateless. The main reason for this is scalability:

keeping the status of a session has a cost in terms of resources on the

server and as the number of clients that cost can become unbearable.

In addition, a communication without a state can create clusters of

servers that can respond to clients without constraints on the current

session, thus optimizing the overall performance of the application.

30 Chapter 2. State of the art

2.1.2 REST and SOAP comparison

Although the goal of both approaches is almost the same, namely the

adoption of the Web as a computing platform, their vision and the

suggested solution are totally different. The first noticeable difference

between the two types of Web Service is the vision of the Web as

processing platform.REST offers a vision of the Web which focuses on

the concept of “resource”, conversely SOAP approach emphasizes the

concept of “action”. A RESTful Web Service is the custodian of a

set of resources on which a client can request the canonical operations

of the HTTP protocol A SOAP-based Web Service exposes a set of

methods that can be called remotely from a client. The approach of

SOAP Web services has borrowed the architecture from SOA, Service

Oriented Architecture, which has recently opposed the architecture

ROA, Resource Oriented Architecture, inspired by the principles of

REST.

SOAP (Simple Object Access Protocol) defines a data structure for

the exchange of messages between applications, presenting in a sense

of what was already the HTTP protocol. SOAP uses HTTP as the

transport protocol, but is not limited nor bound to it, since it may

very well use other transport protocols. Unlike HTTP, however, the

specification of SOAP do not address issues such as security or ad-

dressing, for which standards have been defined in part, in the specific

WS-Security and WS-Addressing. So SOAP takes full advantage of

the HTTP protocol, using it as a simple transport protocol. REST

uses HTTP instead for what it is, an application layer protocol, and

uses the full potential.

2.1. What is a Web Service? 31

2.1.3 Web Service Description

SOAP-based Web Services provide the standard Web Service Descrip-

tion Language (WSDL1) to define the interface of a service. This is

further evidence of the attempt to adapt to the Wb the approach

based on remote calls. In fact, the WSDL is nothing more than a

IDL (Interface Description Language) for a software component. On

the one hand the existence of WSDL favors the use of tools to auto-

matically create client in a particular programming language, but at

the same time causes it to create a strong dependency between client

and server. REST does not explicitly provide any standard way to

describe how to interact with a resource. The operations are implicit

in the HTTP protocol. Something similar to WSDL is WADL2, (Web

Application Definition Language), an XML application to define re-

sources, operations and exceptions provided by a Web Service REST.

WADL was submitted to the W3C for standardization in 2009, but

at present there are no plans for its discussion and possible approval.

In fact it has not had a very favorable reception from the community

REST, as it offers a static view of a Web Service, contradicting the

principle HATEOAS (Hypermedia as the Engine of Application State)

that arises in the presence of connections within the representation of

a resource the definition of a contract with the client, with a vision so

much more dynamic and a weak coupling between client and server.

Another specification, which has been used in this thesis to describe

a REST web service is SWAGGER which is discussed in next section.

1http://www.w3.org/TR/wsdl20/
2http://www.w3.org/Submission/wadl/

32 Chapter 2. State of the art

Swagger

The goal of Swagger 3 is to define a standard, language-agnostic in-

terface to REST APIs which allows both humans and computers to

discover and understand the capabilities of the service without access

to source code, documentation, or through network traffic inspection.

When properly defined via Swagger, a consumer can understand and

interact with the remote service with a minimal amount of imple-

mentation logic. Similar to what interfaces have done for lower-level

programming, Swagger removes the guesswork in calling the service.

Use cases for machine-readable API interfaces include interactive doc-

umentation, code generation for documentation, client, and server, as

well as automated test cases. Swagger-enabled APIs expose JSON

files that correctly adhere to the Swagger Specification, documented

in this repository. These files can either be produced and served stat-

ically, or be generated dynamically from your application. Without

going into a long history of interfaces to Web Services, this is not

the first attempt to do so. We can learn from CORBA, WSDL and

WADL. These specifications had good intentions but were limited by

proprietary vendor-specific implementations, being bound to a specific

programming language, and goals which were too open-ended. In the

end, they failed to gain traction. Swagger does not require you to

rewrite your existing API. It does not require binding any software

to a service–the service being described may not even be yours. It

does, however, require the capabilities of the service be described in

the structure of the Swagger Specification. Not all services can be

described by Swagger–this specification is not intended to cover every

3http://swagger.io/

2.2. Web Services Mashup 33

possible use-case of a REST-ful API. Swagger does not define a specific

development process such as design-first or code-first. It does facili-

tate either technique by establishing clear interactions with a REST

API.

2.2 Web Services Mashup

The current trend in the development of modern Web applications,

and in particular Web 2.0 applications, clearly points to involve more

and more the user. The so-called social applications are proof of the

value initially unexpected, the integration of end-users in the process

of content creation. Another practice has emerged recently is the de-

velopment of web mashups, web applications resulting from the com-

bination of content and services available on the Web in the form of

APIs (Application Programming Interface), open programming inter-

faces or, more generally, reusable services. The first and fundamental

step in the development of mashup is the production of public services,

published on the Web and therefore easily accessible and reusable.

These services are heterogeneous and can be: i) remote API ser-

vices based on the exchange of messages (eg, Web services), ii) API

based on the integration of programmatic code (as with the Google

Maps API and Twitter), iii) feed RSS / Atom feeds (for instance, in-

formation on government grants), or iv) contents from many different

websites (for example, the prices of certain products). The compo-

nents used in the development of mashup are therefore of three types:

• data services such as RSS (Really Simple Syndication) or Atom,

content formatted in JSON (JavaScript Object Notation) or

34 Chapter 2. State of the art

XML or plain text files. For example, almost all the newspa-

pers now publish the titles of their news via RSS feeds that can

be read by a so-called RSS reader and allow the user to easily

skip detail of various news.

• or Web Services API (Application Programmable Interfaces) ac-

cessible through Web services as SOAP (Simple Object Access

Protocol) or REST (Representational State Transfer). These

services typically do not provide simple data, but allow the reuse

of application logic as, for example, the calculation of the name

of a city from its GPS coordinates.

• UI components (ie have a user interface) as pieces of HTML

code or programmable interfaces in JavaScript (for example, the

so-called widget4. The typical example of a UI component is

Google Maps, which provides not only data in the form of maps

but also a user interface can be easily integrated into a Web

page that allows the user to navigate the maps. However, also

the extraction of content from traditional Web pages is still a

very common practice, especially in the absence of equivalent

services already available and ready for use.

2.2.1 Low Level Mashup

ProgrammableWeb is a portal where Web API providers and devel-

opers may end respectively publish and use of the API. The portal

provides a search engine for APIs within it. Each API, and its associ-

ated service, may be associated with the tags and categories to allow

4http://www.w3.org/TR/widgets-apis/

2.2. Web Services Mashup 35

for a more efficient search. Among the most important resources made

available to ProgrammableWeb we find:

• The API directory where developers can search for APIs to in-

clude in their next software development project.

• The Mashup Directory to see a showcase of Web applications

that put Web APIs to work

• A list of How-To’s and Source Code; a resource that we think

developers will find useful for enhancing their skills

• The ProgrammableWeb Research Center where audience mem-

bers can view or download the latest statistics on the API econ-

omy.

Figure 2.1: Public APIs growth since 2005

36 Chapter 2. State of the art

ProgrammableWeb does not provide a hosting for Web services to

which the API reference: it only allows developers to enter a pre ex-

isting API documentation and create a pointer to the endpoint where

the service is actually hosted. For these reasons ProgrammableWeb

can not be used by a user that is completely foreign to the world

of server-side Web programming. However, ProgrammableWeb is a

very valuable resource for developers of applications and new services

through mashups.

2.2.2 High Level Mashup

High Level Mashup means the ability to create new services by simply

reusing APIs made available by service providers. One of the plat-

forms of high level mashup that is currently gaining the momentum is

IFTTT 5 (If This Than That).

Figure 2.2: An example of recipe in IFTTT

IFTTT is aimed at users who do not have expertise in Web devel-

opment and allows to create through a wizard a sort of rules called

“recipes”. As shown in Figure 2.2 each recipe consists of a trigger

and an action: the trigger is a condition that once occurred triggers

5https://ifttt.com

2.3. Semantic Web Services 37

the action. IFTTT offers to its users over 140 channels (services like

Facebook, Evernote, Twitter, ...) that can be used both as a trigger

and as action. The trigger is the “this” part of the rule. An example

of a trigger is “Check in on Foursquare” or “I’m tagged in a photo on

Facebook ”. The action is instead the “that” part of the rule. Some

example are: “create a status message on Facebook” or “send me a

text message”. Each user can create personal recipes, enable or dis-

able them at their convenience. IFTTT runs a polling in accordance

with a predetermined time to control the triggers and possibly trigger

the actions. IFTTT then provides two services for end users. The

first is to help them through a wizard when creating the recipe: users

then do not need any knowledge of software development. The second

service provided by IFTTT is the hosting on its servers for mashups

created by users.

2.3 Semantic Web Services

A semantic description of a Web Service is required in order to obtain

its discovery, its composition with other Web services and its imple-

mentation on the part of users and heterogeneous platforms. Existing

technologies for Web services descriptions provide only the syntac-

tic level, making it difficult for applicants (requester) and providers

(ISP) to interpret or represent the meaning of the inputs and out-

puts or application constraints. This restriction can be relaxed by

providing a rich set of semantic annotations that enrich the descrip-

tion of the service. A Semantic Web Service is defined through an

ontology of service (service ontology) that enables the interpretation

38 Chapter 2. State of the art

by machines of its capabilities as well as integration in a knowledge

domain. The infrastructure[8] for Semantic Web Services, as already

said, can be characterized along three orthogonal directions: usage

activities, architecture and service ontology. The usage activities de-

fine the functional requirements that a framework for Semantic Web

Services must support. The architecture of a SWS describes the com-

ponents necessary to achieve an activity defined by the SWS, while the

service ontology aggregate all the concepts related to the description

of a Semantic Web Service.

The publication (publishing) or insertion (advertisement) of SWS

enables software agents or other applications to discover services based

on their skills and their objectives (goals), a semantic register is used

to record the instances of the ontology of the individual service. The

ontology of the service must distinguish between the information that

is used for matching during the discovery of the service, from that used

for the invocation of the service itself. In addition, the domain knowl-

edge (ontology) should be posted or linked to the ontology service.

The discovery of a service consists of a semantic matching between

the description of a service request and the published service descrip-

tion. Any queries that involve the service name, inputs, outputs, the

precondition, and other attributes can be constructed and used to

search the semantic registry. The matching can also be done at the

level of tasks or objectives to be achieved, followed by a selection of

the services that fulfill the given task. The degree of matching can

be based on different criteria, such as the inheritance relationships

between types: Inputs of type Professor for a service provider can

“match as” a kind of Academic input of a service request. The selec-

tion of a service is required when there is more than one service that

2.3. Semantic Web Services 39

corresponds to a given request. At that point may be used in non-

functional attributes, such as the cost or quality, for the choice of the

appropriate service. The composition or choreography enables SWS

to be defined in terms of other services. A workflow that expresses

the composition of atomic services can be defined in the ontology of

service using the appropriate control constructs. This description may

be based on a syntactic description such as BPEL4WS [9]. The in-

vocation of a SWS involves a series of steps, once the required inputs

were provided by a service request. First, the service and the associ-

ated domain ontology must be instantiated. Second, the input must

be validated with respect to the types of ontology. Finally, the service

can be invoked or a workflow can be run through the base provided. It

is also important to monitor the status of the decomposition process

and notify the applicant in case of exceptions or problems. Deploying

a Web Service from a provider is independent from the publication

of his descriptive semantics, since the same Web Service can perform

different functions, but the architecture of SWS can provide help for

the deployment of code for a given description semantics.

In recent years, many tools and frameworks have been developed

that support the publication, discovery and composition of Seman-

tic Web Services. These initiatives include OWL-S [10], WSMO [11],

SWSF [12] and WSDL-S [13], but despite these, no tool or frame-

work provides everything required for modeling platform for general

Web Services ready for the Semantic Web. All these standards are

still incomplete and may not meet the future demands of the industry

such as increased complexity, scalability, reliability, to name a few.

Moreover, the semantic information of a Web Service must be general

enough to allow the support of automated interactions between Web

40 Chapter 2. State of the art

services and software agent. Ideally, the language of the Semantic Web

Services should allow dynamism in all types of use of a Web Service,

such as the selection, discovery, composition, invocation, negotiation

and recovery after a failure. Furthermore it has to be extensible and

tightly integrated with the knowledge resources of the Semantic Web.

The next few sections of this article will address a list and compari-

son of existing languages and modeling framework of Semantic Web

Services.

2.3.1 RDF

The Resource Description Framework (RDF) is the basic tool proposed

by W3C for encoding, exchange and reuse of structured metadata and

enables interoperability between applications that share information

on the Web. The term “resource” is used from the beginning of the

web to indicate anything available on the Internet through the use of

its protocols and the generality of this term has encouraged a process

of generalization methods of access to the resources themselves: from

an initial idea (URL) of simply locating a resource, it has gone to

the idea of being able to identify regardless of location (URI) and fi-

nally (RDF) to want to be defined by semantic connections. The basic

RDF syntax provides the conceptual links among resources by defining

predicates (or properties) that connect a subject and an object pro-

viding a means to build relational tuples. Each of the participants in

these conceptual links is actually a URI and each URI can participate

in other relationships, even with different roles. However, while RDF

provides more syntactic details which are more subtle and powerful of

the sole definition of semantic tuples, it is not enough to implement

2.3. Semantic Web Services 41

features in the semantic web applications. To obtain a complete se-

mantic enable we need to add special links to RDF: this is the purpose

of OWL.

2.3.2 OWL

The goal of OWL (Ontology Web Language) is naturally not only to

allow the attribution of meaning to resources (enough an efficient com-

puterized vocabulary), but also to make these meanings computable,

ie to allow automatic mechanisms (especially to computers or com-

puter networks) to evaluate inferences about these meanings. A set

of definitions that respects the syntax OWL is called ontology, for the

love of a kind of metonymic brevity common jargon used for computer

and mathematical formalism in general. RDF specifications, finally,

allow to conceive open architecture and is easily understandable as

the extensive use of URI allows any ontology using other ontologies

already defined elsewhere. An OWL ontology may include descriptions

of classes, properties and their instances. Given such an ontology, the

OWL formal semantics specifies how to derive its logical consequences,

ie facts not literally present in the ontology, but entailed by the se-

mantics. These entailments may be based on a single document or

multiple distributed documents that have been combined using pre-

defined OWL mechanisms.

2.3.3 OWL-S

OWL-S (Ontology Web Language for Services) is an ontology of ser-

vices defined in Owl, developed by DARPA, to help to users and soft-

42 Chapter 2. State of the art

ware agents for the discovery, invocation, composition and monitoring

of Web Services . This ontology has been submitted to the W3C in

November 2004. The structure of Owl-s can be divided into three

main parts:

• Service Profile for publication and discovery services; Process

Model for the description of the operation of a service; Ground-

ing to define the interoperability of a given service.

• The Service Profile, describes the three basic types of informa-

tion: the organization that provides the service, what it does

or what provides the service and other features of the service.

The Service Profile is mainly used for the discovery of a ser-

vice; the description of the service (and the query) is built from

functional properties (such as inputs, outputs, precondition and

effect - IOPES) and from non-functional (property interpretable

by human users as the service name and parameters for define

metadata about the service itself, such as the quality of service).

• The Process Model describes the composition or the orchestra-

tion of one or more services in terms of their constituent pro-

cesses. This is used both to perform a reasoning on the possible

compositions of services (for example to determine if a model is

executable given a specific context) is to control the invocation

of a service.

As described previously, the OWL language has three dialects accord-

ing to a progressively higher level of expressiveness: OWL Lite, OWL

DL and OWL Full. OWL DL is designed for maximum expressiveness

2.4. Platforms for the Web of Things 43

without losing computational completeness (it is guaranteed that all

the implications will be computed) and decidability (all computations

will be completed in a finite time) and is therefore the main choice

when you are interested in having an efficient support systems of rea-

soning (”systems thinking”). Ontologies OWL-S are written in OWL

DL, to support applications where the computational completeness is

guaranteed.

2.4 Platforms for the Web of Things

The acceleration that we have seen in recent years toward the Web

of Things was mainly due to the appearance on the market of board

prototyping and development tool suited to the average user.

Arduino6 is an open-source electronics platform based on easy-

to-use hardware and software. Arduino senses the environment by

receiving inputs from many sensors, and affects its surroundings by

controlling lights, motors, and other actuators.

Tessel7 is a microcontroller that runs JavaScript. Tessel runs

JavaScript server side scripts. Just like web or mobile development,

use your own IDE and libraries to program physical applications. Tes-

sel supports modules that add new capabilities to the board and inter-

act with the physical world from sensing to actuation to connecting

with other devices, combining multiple modules for unique experi-

ences.

In addition to hardware support consists of the prototyping board,

6http://www.arduino.cc
7https://tessel.io/

44 Chapter 2. State of the art

some platforms to support the Web of Things have recently appeared.

WEIO8 is a Web of Things platform. It lets users connect and

control their objects from any device using only the web browser.

Connect easily objects between them or with Internet services like

social networks, It’s Node-compatible and ships with Wifi built in.

Xively9 is IoT public cloud, web-based tools and developer re-

sources empower organization, allowing customers to focus critical

resources on connected product innovation rather than on enabling in-

frastructure. Xively’s Platform as a Service (PaaS) provides the tools

and services needed to create compelling products and solutions on the

Internet of Things. Xively provides free, open and supported libraries

along with tutorials and documentation to allow users to connect to

Xively using the hardware they want and the languages they know. To

make it even easier, the company certifies Xively Enabled hardware

platforms every day from a variety of vendors. The libraries lever-

age standards-based API over HTTP, Sockets and MQTT to make

connecting to the Internet of Things simple, intuitive and fast.

SmartThings10 is a commercial solution for the Web of Things,

which leverages on its ease of use. Users can purchase different types of

smart objects (sensors, bells, smart lock). These objects communicate

through a hub that has Internet connectivity and can be controlled

by the user with a dashboard through a website or a mobile app.

SmartThings makes it easy to connect the things in the physical world

to the Internet: it allows to monitor, control, automate them from

anywhere - at home, office, or on the go.

8http://www.we-io.net/
9https://xively.com/

10http://www.smartthings.com/

2.4. Platforms for the Web of Things 45

2.4.1 The COMPOSE Project

The COMPOSE 11 project aims at enabling new services that can

seamlessly integrate real and virtual worlds through the convergence

of the Internet of Services with the Internet of Things. COMPOSE will

achieve this through the provisioning of an open and scalable market-

place infrastructure, in which smart objects are associated to services

that can be combined, managed, and integrated in a standardised way

to easily and quickly build innovative applications. The COMPOSE

project builds upon existing European research projects and ongo-

ing standardisation activities to provide a comprehensive marketplace

framework that will be able to cover the whole service lifecycle by

integrating a number of innovative technological enablers in a coher-

ent way. The project will develop novel approaches for virtualising

smart objects into services and for managing their interactions. This

includes solutions for managing knowledge derivation, for secure and

privacy-preserving data aggregation and distribution, and for dynamic

service composition advertising and discovering objects’ capabilities

and service provisioning and monitoring.

The plan is to apply Web Technologies and to build a working im-

plementation as a testbed for the ideas, and to use that to bootstrap

a community of users and developers of innovative services. This can

build upon a wide variety of existing standards, and this report pro-

vides a survey of uses cases, requirements, architectural concepts and

technologies as a basis for identifying relevant standards and stan-

dards development organizations. The vision [14][15] of the COM-

POSE Project is to advance the state of the art by integrating the

11http://www.compose-project.eu/

46 Chapter 2. State of the art

IoT and the IoC with the IoS through an open marketplace, in which

data from Internet-connected objects can be easily published, shared,

and integrated into services and applications. The marketplace will

provide all the necessary technological enablers, organized into a co-

herent and robust framework covering both delivery and management

aspects of objects, services, and their integration.

• Object virtualization: enabling the creation of standardized ser-

vice objects Interaction virtualization: abstract heterogeneity

while offering several interaction paradigms

• Knowledge aggregation: creating information from data

• Discovery and advertisement: of semantically-enriched objects

and services

• Data Management: handle massive amounts and diversity of

data/metadata

• Ad hoc creation, composition, and maintenance: of service ob-

jects and services Security, heterogeneity, scalability, and re-

siliency: incorporated throughout the layers

The COMPOSE project is expected to give birth to a new busi-

ness ecosystem, building on the convergence of the Internet of Services

with the Internet of Things and the Internet of Content. The COM-

POSE marketplace will allow SMEs and innovators to introduce new

Internet of Things-enabled services and applications to the market

in a short time and with limited upfront investment. At the same

time, COMPOSE will allow major European players in the informa-

tion and communication industry, particularly cloud service providers

2.4. Platforms for the Web of Things 47

and telecommunications companies, to reposition themselves within

new Internet of Things-enabled value chains.

2.4.2 The webinos Project

Webinos [16] is an Open Source Cross-Device Platform for widgets and

mobile/web applications that allows developers to write applications

able to run on multiple devices belonging to different domains (mobile

devices, TV and automotive). In fact, the main goals of the project

are applications’ interoperability across devices and usability in order

to create a multi-device user experience based on data synchronization

and context-awareness taking into account the related security aspects.

Webinos provides a web runtime extension for browsers, which

supports widget and web applications written with standard web tech-

nologies such as HTML, CSS and Javascript. webinos further provides

a set of device-specific Javascript APIs to

• Provide access to hardware and software capabilities offered by

a device such as address book, telephony manager, messaging

manager, information about device status and so on.

• Access to capabilities on remote devices inter or intra Personal

Zones.

The first characteristic allows developers to interact with the de-

vice, for example sending an SMS or getting geo location and contacts

information using the set of Javascript APIs. The second characteris-

tic represents the most innovative contribution of webinos and allows

applications running on a device to use APIs provided as services by

other devices. This mechanism will be further described in the rest

48 Chapter 2. State of the art

Figure 2.3: An overview of the webinos architecture

of this section along with a comprehensive description of the webinos

architecture. Webinos introduces the concept of Personal Zone (PZ),

defined as the set of all devices owned by a user. Each PZ has a

main component called Personal Zone Hub (PZH), which is the point

where the devices are registered and also provides data synchroniza-

tion, communication among other PZs and secure access to the PZ

from Internet. Multiple PZHs, one for each user, may also be linked

together creating relationships among users as it happens in social

networks. Figure 6.2 describes the overall webinos architecture.

Each webinos-enabled device placed inside a PZ has two main

components called Personal Zone Proxy (PZP) and webinos runtime

(WRT). The WRT represents the environment where the apps are ex-

ecuted. webinos provides two kinds of WRTs: the first is a browser

extension for the execution of web applications, the second is a wid-

get runtime for the execution of locally stored applications (widgets).

Webinos provides a WRT version for each the considered domains

2.4. Platforms for the Web of Things 49

(mobile, PC, in-car units and home media), this means that the same

application may run over all these domains without the need of a code

refactoring.

The PZP connects the device to the PZH and enables the com-

munication among devices inside the same PZ and exposes the we-

binos APIs. WRT and PZP act respectively as browser and local

server, allowing each device to communicate with each other passing

through the PZH (canonical way) or through a direct communication

PZP-to-PZP in those situations where an Internet connectivity is not

available. Also devices belonging to different PZs can communicate

if their PZHs are connected. The PZH is responsible to issue identi-

ties (through PKI mechanism) and acts as messaging hub for devices

and as a synchronization agent for data. User’s data and services

can be shared securely with other people connecting together multiple

PZHs using a permission-based infrastructure. Both PZP and PZH

represent the main components of webinos cloud architecture. Each

user’s content, such as an address book’s contact, a calendar’s event

and so on, could be synchronized in every devices belonging to the

user. Contents thus, are not related to a single devices but they are

stored in the cloud. Although this concept is not too distant from

Apple’s iCloud, the most significant innovation provided by webinos

is the possibility to share not only contents among devices but also

services. In such way, devices belonging to different domains, with dif-

ferent OSs and produced by different manufacturers could seamlessly

interoperate with each others.

Using webinos, users get all the benefits of a cloud platform with

also the possibility to ensure privacy for their contents: Webinos also

provides to each user the possibility to get all the benefits of a cloud

50 Chapter 2. State of the art

Figure 2.4: Personal Zone Proxy and webinos runtime

platform Webinos provides users with all the benefits of a cloud plat-

form offering also the possibility to ensure privacy for their contents

by setting up a PZH in a private device. Figure 2.4 shows a detailed

representation of PZP and WRT modules placed inside each webinos

enabled device.

Other components inside PZH and PZP, called managers, are re-

sponsible for authentication, policy management, context handling,

messaging, etc.

The main characteristic, which differentiates webinos from other

apparently similar platforms such as Phonegap or Titanium or even

respect mobile operating systems like Android or iOS, is the possibil-

ity to consider each API as a service provided by the device. As a

consequence of this approach it is possible to create applications by

invoking API on devices different from the one where the application

is executed.

One of the demos presented in the webinos context, which mainly

2.4. Platforms for the Web of Things 51

stands out the potentiality offered by the platform, is the webinos

Travel application [17]. It enables user to manage his point-of-interests

while a user is traveling. POIs are automatically synced between the

user’s devices. There is no 3rd party server integrated, where the

information is stored. Syncing mechanism of the app is based on the

webinos personal zone middleware. All data is owned by the user and

resides inside zone. The application enables the interaction with the

in-car navigation system. POIs can be pushed for guidance to the in-

car navigation software. When the vehicle is parked, the smartphone

can pick up the guidance.

52 Chapter 2. State of the art

CHAPTER

THREE

FROM USER GENERATED CONTENTS TO

USER GENERATED SERVICES

3.1 Current Research Issues in User-

Generated Services

The growing popularity of Internet-enabled devices and the consol-

idation of social networks have increased the amount of multimedia

contents generated by users. Everyday people live a second life on

social networks generating original contents such as pictures, videos,

comments and so on [18]. Table 3.1 contains some statistics about

user content generation.

This phenomenon has been encouraged by the spread of many

kinds of Internet-enabled devices such as smartphones, tablets and

entertainment devices.

Shipments of Internet-enabled devices are projected to hit 503.6

53

54 Chapter 3. From User Generated Contents to User Generated Services

Table 3.1: Statistics related to user-generated contents

Average amount of

tweets per day

190 million

Average pictures up-

loaded to Flickr per

minute

3000

Total amount of

articles hosted by

Wikipedia

17 million

Total pieces of con-

tent shared on Face-

book each month

70 billion

million units in 2013, up from 161 million in 2010. By 2015, however,

shipments of Internet-enabled consumer devices are projected to break

three-quarters of a billion units - at 780.8 million units - exceeding PC

shipments of 479.1 million units [19]. Mobile devices give a new ex-

perience to users, offering them the possibility to obtain information

about the surrounding environment through several built-in sensors

(GPS, accelerometer, gyroscope). All these information let users cre-

ate context-related contents, like geolocalized photos or tweets, which

embed current user’s position. A key role in this scenario is played

by end-users, which are becoming the main contributors of the con-

tents available on the web. The most likely next step in this direction

will be the generation of services by non-expert users. Generating

new service implies the creation of a set of API to interact with the

service itself. According to the Service Oriented Architecture (SOA)

3.2. User-Provided Mobile Services 55

paradigm, a new service could also be generated by composing one

or more existing services. The result of this operation is commonly

referred as “mashup”. In this paper, we want to emphasize that in a

not too distant future, services will be not only generated but also pro-

vided by users, primarily through mobile terminals. In particular, we

refer to common users who do not have an advanced computer knowl-

edge. A series of both software and hardware resources are necessary

in order to support the user in generating and providing a service,

especially if this is provided by means of a mobile device. Devices

such as smartphones or tablets have peculiar characteristics due to

their portability and small size. Battery life, reception problems, re-

duced computational and storage resources are just an example of the

limitations which characterize this kind of devices. In addition, is-

sues related to the publication of a new service, its discovery, privacy

and access control raise the need of a platform to support the user

in the generation and supply of services through mobile devices. In

this paper, we describe webinos, a cloud platform for running appli-

cations and services over heterogeneous devices belonging to different

domains. In the following, we will show how webinos can be adopted

to solve typical problems of generation and supply of mobile services.

3.2 User-Provided Mobile Services

The aim of this section is to explain what is meant by mobile ser-

vices and then outline the main issues that there are when this kind

of services is provided by users through their devices. We have al-

ready said that users are increasingly involved in the generation of

56 Chapter 3. From User Generated Contents to User Generated Services

multimedia web content. The role of users gains even more and more

importance also in the field of service generation. The emergence of

Services Oriented Computing (SOC) allows end-users to develop appli-

cations by composing existing services. In this context, tools such as

Yahoo Pipes [20] provide users the possibility to create own mashups

composing web services. As a result, the Web is rapidly progressing

towards a highly programmable platform and end-user programming

has become a very popular and common trend nowadays. This enables

end-users to take advantage of different Application Programming In-

terfaces (APIs) to create and publish their own contents and services.

Major companies like Facebook, Google and eBay have already pro-

vided interfaces to their services extending their market possibilities.

In this article, we focus on those services generated by users based on

other applications or services provided by other mobile devices.

Mobile services are those services designed to be accessed through

mobile devices. Their main aspect is the mobility for what concerns

both their invocation and their supply. The difference with traditional

services is remarkable: a service that allows a user to view bus timeta-

bles can be provided through a web site and can be accessed in the

same way on a personal computer or on a smartphone. The same ser-

vice designed to be used on the move will take into account the user’s

context. For example the mobile service could give information for

only those buses which route is close to the user’s position that can

be obtained through smartphone’s GPS.

The potentialities of mobile services are huge. To date, there are al-

ready many context-aware applications for smartphones allowing users

to benefit from mobile services. Considering the evolution of user’s role

from consumer to producer of content and services, is presumably that

3.2. User-Provided Mobile Services 57

in the next few years, the average user will be able to create applica-

tions for his smartphone making a mashup of services also offered by

other devices. As an example, suppose that the mobile phone owned

by an elderly person provides the ability to be managed remotely.

In this way, using this “device ability” a more experienced user could

help the elderly to perform operations such as the remote phonebook’s

management.

There are several issues to consider in the creation and sharing

of services across multiple devices. In particular, there would be the

need of:

• A protocol to describe services and their exposed features.

• An access control mechanism to specify, through policies, the

access / composition constraints of each service.

• Hosting environments (service providers) where to run services.

• Repositories where services have to be registered.

• A discovery mechanism to retrieve services (eg. by exposed fea-

tures).

• A toolkit to help users to create, deploy and manage services.

In the next sections, we will give an overview of the state of the art

in the field of user-generated mobile services. We will also present the

webinos platform and how it can help to satisfy the aforementioned

requirements.

58 Chapter 3. From User Generated Contents to User Generated Services

3.3 Related Work

The scientific interest about User Generated Service (UGS) and User

Generated Content (UGC) fields is growing in these last years. Zhao

et al. present in [21] a comprehensive survey of current state of art

in UGSs. They give the specific description of UGS by comparison

with the concept of UGC, and then go through different technologies

to analyze the challenges of UGS describing advantages and limita-

tions of each approach. Jensen et al. describe in [22] some guidelines

to support users creation and management of services. Tacken et al.

investigate in [23] the state of the art and the requirements to let the

vision of the super prosumer concept become true. They review the

current technologies for an easy creation and discovery of mobile ser-

vices and list the identified requirements for user generated mobile ser-

vices. In [24], authors discuss the concept of mobile-services generated

by the user itself. They investigate some conceptual requirements and

concluded with an architecture proposal for IT service providers. Au-

thors also provide a proof-of-concept system development performed

within the European-funded project m:Ciudad. The European FP7

research project m:Ciudad - a metropolis of ubiquitous services - aims

at the empowerment of users to create services on mobile terminals.

The project demonstrates various scenarios in which users either act

as creator of services or interact with the system to search for services

or service construction components. m:Ciudad envisions a system for

service providers, which enables a mobile user to create and consume

mobile services on the fly on his mobile device. m:Ciudad architec-

ture is exhaustively described in [25]. In the next section, we are

going to introduce another European funded project called webinos.

3.4. Webinos as a platform for User-Provided Mobile Services 59

Figure 3.1: An example of using “API as service”

In particular, we are going to describe how webinos can be adopted

as a platform to allow mobile service to be created and shared among

users. The main advantages of webinos compared to other platforms

will be discussed.

3.4 Webinos as a platform for User-

Provided Mobile Services

Webinos introduces new scenarios for the generation and sharing of

mobile services. Figure 3.1 shows a use-case where user has registered

a personal computer and a car inside his PZ. Each of these devices

has a PZP, which implements and exposes the webinos geo location

API. In the case of the example, a user is watching his car’s position

through an application running on his PC, which uses the geolocation

API provided by the car. Thus, each webinos API implemented by a

PZP can be considered as a service provided by a device. The PZP

then turns each device in a server able to accept requests from other

devices

60 Chapter 3. From User Generated Contents to User Generated Services

Webinos provides both the mechanism for dynamic registration of

new services and for discovering these services by searching the devices

able to provide them. For example when a new device is added to a

user’s personal zone, the PZH registers all the services exposed by this

new device and makes them discoverable, or not, according to the secu-

rity policy set by the user. All services provided by devices registered

inside a PZ could be retrieved using the webinos.discovery API. We

have said in the previous section that webinos provides the possibility

to connect each other multiple PZH. Each PZH represents a user and

his devices. Linking together multiple PZH means that when a user

search for a service (for example the geolocation service) his PZH will

query not only devices inside his PZ but also those devices belonging to

linked PZs. M:Ciudad project considers only user generated services

provided by smartphones, webinos instead takes into account differ-

ent domains such as automotive, home-media devices and even smart

objects belonging to the domain of Internet of Things. Especially in

the case in which more PZHs are mutually connected, a mechanism

for controlling access to services is of fundamental importance. Each

PZP in fact, has an access control module based on XACML [26] spec-

ifications, which checks whether the request from an external device

to a certain API may or may not take place.

Besides the possibility of calling APIs as services provided by other

devices, webinos offers the possibility to create applications that can

communicate with other applications installed on different devices.

The webinos App2App messaging API specification defines interfaces

to create, send and receive messages between applications in the we-

binos system. It provides generic messaging primitives, which can be

applied in different application scenarios. The messaging is indirect,

3.4. Webinos as a platform for User-Provided Mobile Services 61

meaning that applications do not directly address each other but use

a channel to route the messages to connected applications. A unique

namespace (within a PZ) is used as a key to find and connect to chan-

nels. This API can be used by third-party application developers to

implement custom message-based protocols by taking advantage of the

features offered by the webinos message handling system and overlay

networking model. The App2App API represents a starting point to

allow the creation of new applications in the form of services, realized

as a mashup of existing other services.

The possibility offered by webinos application to call an API ex-

posed by another device may give rise to some problems of content

management. Suppose that an application running on Alice’s tablet

was able to access the webinos Contacts API provided by Bob’s smart-

phone to read and save locally Bob’s contacts. In this case, which

assumes that Bob had given access control rights to Alice, privacy

concerns may arise if a third person, such as Carol, uses the Contacts

API provided by Alice’s tablet to read Bob’s contacts.

Our future work will be exploiting the potential of webinos and in

particular of the App2App API in order to make it possible for users

to create and share webinos services obtained from the composition of

services provided by multiple devices. In particular, we would like to

• Extend the registration and discovery mechanism to ensure that

each new service created is associated with semantic information.

• Extend the current security mechanism in order to solve prob-

lems related to data handling and privacy of contents.

62 Chapter 3. From User Generated Contents to User Generated Services

CHAPTER

FOUR

THE WEB OF THINGS: DEALING WITH

EVERYDAY OBJECTS

4.1 User-Objects Interaction

With the increase of sensors and actuators connected to the Internet

and the spread of technologies such as RFID, NFC or visual tags, the

interaction between users’ devices and real-world objects is gaining

more and more attention. In a not too distant future, every object

will have its virtual counterpart in the web that will provide services

and augmented information. Although the increase in the number of

mobile devices, such as smartphones and tablet, seemed disruptive in

recent years, it will be nothing compared to the spread of smart objects

that will occur in the coming years. The number of things connected

to the Internet will be soon larger than the number of people which

use them. We are immersed in a continuous flow of data generated by

63

64 Chapter 4. The Web of Things: Dealing with everyday objects

users’ devices and common objects that will bring soon new and more

complex interactions.

Through the introduction of more mature and cheap technologies,

the spread of IoT will be prominent in the domains of Smart Cities

and Home / Building Automation. An often cited example is the

smart fridge which will be able to: check the status of foods, take an

inventory of what the fridge contains and send a notification with a

shopping list for the missing products.

‘Internet of Things (IoT) is a dynamic global network infrastruc-

ture with self-configuring capabilities based on standard and interoper-

able communication protocols where physical and virtual ’things’ have

identities, physical attributes and virtual personalities and use intel-

ligent interfaces and are seamlessly integrated into the information

network.” 1 According to the Internet of Things (IoT) vision, real de-

vices will be connected as Web pages and will be accessible via URIs.

On the other hand, it should be said that the real objects can have

completely different requirements compared to web pages: i) unlike

a website, only a few people should access objects inside the house,

ii) we do not care where the server which hosts a web page is physi-

cally located, but we need to know where the objects that we want to

control are placed, iii) the web pages are made with standard technolo-

gies, the real objects instead are produced by different manufacturers

and with different specifications. The main scenario of the Internet of

Things is one in which the objects of everyday life can be controlled

by the user via the REST web services. These objects are then de-

fined “smart objects” because they must be provided with a minimal

1Definition by ITU and IERC-Internet of Things European Research Cluster

4.1. User-Objects Interaction 65

processing capability and at least a communication interface.

A fundamental aspect of IoT has always been the identification

of objects. Several technologies have been proposed to identify smart

objects: bar and QR codes, RFID and recently NFC. Each of these

technologies has a different peculiarity that makes it suitable in certain

contexts.

• QR code is a cheap approach which requires only a simple tag

stuck to the object. Using QR codes we can achieve a direct

identification of the object (the one we point). On the other

hand this approach require a good camera for the recognition

and might not be so fast.

• RFID (radio frequency identification) is a technology that allows

the identification of objects by the application of passive tags

that respond to queries made by a transmitter in a range of a

few meters. Unlike the QR code, the RFID approach is not

directional and can be used to find multiple items at the same

time (for example, all the objects in a room).

• NFC (Near Field Communication) NFC is a standard for the

transmission of data between two devices placed in contact or

distances up to 4 cm. NFC is mainly used for contactless trans-

actions such as micro-payments with smartphones, which are

going to support this communication. Even NFC technology

can be used for a short range identification of objects.

These approaches for objects’ identification could be adopted to-

day without any problems. The next step, however, should be to lay

the foundations for facilitating the interaction with the desired object.

66 Chapter 4. The Web of Things: Dealing with everyday objects

The objects that we consider are those that can be found in the domes-

tic environment: such as ovens, air conditioners, TVs, media players.

These objects are often heterogeneous and each of them has a control

interface which differs from the others. Setting up a timer for an air

conditioner (e.g. 25 ◦C from 4pm to 8pm) should not be so different

that setting up a cooking program for an oven. But, as things stand,

these two operations may require two completely different procedures

on the two devices, which more often require the user to refer to sev-

eral user manuals. In recent years, more and more users have acquired

the ability to deal with a mobile application right from the first use. In

contrast to what happens for objects such as house hold appliances,

there is not a user manual for mobile applications. This has been

made possible by a well-designed application design based on user-

experience. In a future where smart objects can be controlled through

web services, it will be crucial to find the best way by which users

can interact with these objects. Smart objects can provide several

features in different ways, and users may wish to access this features

with any device connected to the network, e.g. smartphone, laptop,

board computer car, tablet. We think that the approach adopted for

web applications is the one which makes sense to use: we need to in-

teract with smart objects using the virtual abstraction which mobile

applications can provide.

Considering smart objects as service providers may lead to some

new issues never considered before. The possible huge amount of het-

erogeneous smart objects connected to the Internet would complicate

the discovery and use of the services they expose. Traditional web

search engines represent a limit for discovery of smart objects since

they require a mechanism for understanding their capabilities and

4.1. User-Objects Interaction 67

functionalities which users can exploit. Another important aspect

is to consider privacy and data security while accessing objects. The

amount of sensitive and context data is very large and they give some

information about habits and characteristics of the user. Connecting

to the Internet objects of everyday life can give rise to serious secu-

rity problems. These objects in fact, may be found via search engines

and used by unauthorized persons. The search engine Shodan sorts

background data on every computer attached to the Internet-including

industrial control systems and computers embedded in household ob-

jects: such as televisions and garage doors. The issue of safety related

to the search engines in the domain of WoT is treated in a compre-

hensive manner in [27]. If a user has a smart object, it should be

himself to decide who can access to it. So, in a IoT environment it’s

necessary to handle the access to resources in a dynamic and safe way

and provide mechanisms to prohibit or restrict the use of objects in

agreement with user needs.

In this chapter we introduce briefly the webinos platform realized

within the EU FP7. Webinos defines a set of software components to

enable the sharing of services from different devices owned by users.

Each webinos enabled device can expose its capabilities as services.

What we propose in this paper is an extension of the webinos platform

by introducing a new API for controlling smart objects through web

applications. We finally present a testbed application which, using the

augmented reality and the proposed API, allows user to identify and

control real objects considering the home automation scenario.

68 Chapter 4. The Web of Things: Dealing with everyday objects

4.2 Related Work

The scientific interests about the Internet of Things have been going on

for more than ten years, since in the 1991 Mark Weiser introduced for

the first time the concept of ubiquitous (or pervasive) computing [28].

From that moment many things have changed and many efforts have

been made to accomplish what Weiser had only thought.

Research on IoT leads to talk about “things” equipped with sen-

sors for data acquisition, actuators to perform some operations and

low computational capacity. Over the years, many researchers have

discussed on which features a smart object should have and which ac-

tivities it should be able to run. Obviously many of these definitions

are strictly dependent on technological progress. Lev Manovich [29]

describes smart objects as “objects connected to the Net; objects that

can sense their users and display ‘smart’ behavior”.

Thompson et al. [30] list the some requirements that a smart object

should provide.

• communications: to send and receive queries or commands;

• identity and kind: every smart object should be able to be iden-

tified in order to understand what are its skills and should be

able to self-describe its capabilities when the other smart objects

ask its to identify itself;

• memory and status tracking: the smart objects should have per-

sistent memories;

• sensing and actuating: to understand what happens in the en-

vironment and to act accordingly;

4.2. Related Work 69

• reasoning and learning: a form of intelligence which could be

not necessarily sophisticated.

Kortuem et al. [31] have identified three canonical smart object

types that represent fundamental design and architectural principles:

activity-aware objects, able to collect data about the environment or

their own use but don’t provide interactive capabilities; policy-aware

objects, able to interpret events and activities with respect to prede-

fined policies; and process-aware objects, that are the most complete

of the three object types because they create a context-aware workflow

model that defines timing and ordering of activities.

Around the concept of smart objects, many architectures, that

allow users to use different types of smart objects, were proposed.

Guinard et al. [32] contributed to a step towards the definition of the

Web of Things by creating RESTful APIs to integrate the services

offered by devices and objects in the real world such as wireless sen-

sor networks, embedded devices and household appliances with any

other Web content. They propose two ways to integrate devices to

the Web using REST: direct integration and a Smart Gateway-based

approach for resource-limited devices. Mingozzi et al. [33] propose

the BETaaS platform for virtualization of real things as services. The

platform exposes to applications a unified service-oriented interface to

access physical objects regardless of their physical location and physi-

cal model. Estrada et al. [34] have realized UbiSOA (from Ubiquitous

Service-Oriented Architecture), a platform for building smart environ-

ments using IoT technologies, and sentient visors, which are systems

comprised of user devices and specialized services that together al-

low users to interact with their environments. UbiSOA provides three

70 Chapter 4. The Web of Things: Dealing with everyday objects

basic mechanisms: discovery of services, for the detection and identi-

fication of components at runtime; common messaging with semantic

contents; and event notification, to allow an application to respond

to changes in the environment. Sentient visor uses the concept of

augmented reality to enable users to interact with objects and obtain

relevant information superimposed on the screen of user device. In

our previous work [35], we proposed the adoption of Webinos [16] as

a viable platform for WoT. We have shown how Webinos enables vir-

tualization of real objects in the form of services that can be used by

web applications using the API. In particular, in that paper we have

explained the webinos APIs for generic sensors and actuators.

Son et al. [36] highlight the need to use semantic communication

between smart objects to discover and identify who they are and what

they can do so that they can be able to collaborate together. Se-

mantic communication should be leveraged with visual identification

which lets to know what the user is aiming at. Information about

objects displayed by augmented reality is enriched with contextual

information that provide personalized contents to users.

4.3 A webinos API for smart objects

Webinos is an EC FP7 project which aims at defining and deliver-

ing an open-source platform and software components for the Future

Internet in the form of web runtime extensions, to enable web appli-

cations and services to be used and shared consistently and securely

over a broad spectrum of converged and connected devices, including

mobile, PC, home media (TV) and in-car units. The webinos basic

4.3. A webinos API for smart objects 71

concept is “write once, run anywhere”. It is an approach to applica-

tion development that is independent from the operating system and

concerns web applications executed in the browser. In fact a devel-

oper has only to have knowledge about CSS, HTML and JavaScript

to implement a webinos application.

Webinos introduces the concept of “personal zone” as the set of all

devices owned by a user, taking into account several domains such as:

mobile (smartphones, tablets), home-media (PC, TV, set-top boxes),

automotive (in-car computers) and IoT (sensors, actuators). Webinos

further provides a set of JavaScript APIs to allow developers to cre-

ate web applications which exploit the features (software / hardware)

provided by these devices. Each webinos device implements all, or a

subset of, these APIs: a webinos application can then behave, without

being changed, in the same way on different devices.

The innovation proposed by webinos, which makes it different from

other platforms, is considering each device as a “service provider”.

The various features offered by a device (filesystem access, location,

contact management, etc..) are exposed as remote services that can

be invoked from other devices. This approach opens the door to new

scenarios in which applications become cross-device since applications

can use features which do not reside on the same device in which the

applications are running, but in any other device that: i) belongs to

the same personal zone, ii) belongs to another personal zone (hence to

another user) in case the owners have agreed to share their services.

We can think at a personal zone as a set of services from several de-

vices. Each device must be registered to the personal zone through an

enrollment phase during which it is identified and information about

its services is saved and synchronized to the already registered devices.

72 Chapter 4. The Web of Things: Dealing with everyday objects

To make this possible, webinos defines two main components: the Per-

sonal Zone Hub and the Personal Zone Proxy. The Personal Zone Hub

(PZH) is the connection point for devices in the personal zone. It is

responsible for the registration of the devices and the synchronization

of services. The PZH can be installed on a user’s machine or it can

reside on the cloud. The PZP is a software component that must be

installed on each webinos device. The PZP provides for a device the

point of access to the personal zone: it is the component that com-

municates with the PZH for the registration and synchronization of

services. In a basic webinos scenario, a personal zone contains two

devices D1 and D2 which have been registered on the same PZH. If an

application which runs on D1 wants to use a service from D2, it has

to ask the PZH for this service, using the discovery API specified by

webinos. As already said, webinos defines a set of APIs for developing

web applications that can be executed on multiple classes of devices.

Each API defines a set of JavaScript methods to access certain de-

vice’s capabilities. The most important APIs defined by webinos are:

file, geo location, TV, devicestatus and sensors and actuators APIs for

IoT devices. Each capability can be considered as a service offered by

a device and it is identified by: an ID, an URI and a service address.

To better understand the components on which it is based webinos

platform, we report the service address used to uniquely identify a PZP

inside the PZHs. The service address, as we can see in Figure 4.1 ,

contains the following information:

• PZH identifier, composed by the user’s nickname and the IP

address of the device which provides the service;

• name of PZP where the service resides.

4.3. A webinos API for smart objects 73

Figure 4.1: Webinos Service Address Composition

Figure 4.2: Intra and Inter Zone communication

The webinos Discovery API can be used within a web application to

search for a service based on its URI. It allows also to specify the

device (or even the personal zone) where the service resides.

Each personal zone has a one-to-one correspondence with a user.

Webinos provides the ability to connect together two or more per-

sonal zones. The services provided by devices of each personal zone

are shared with the other zones and can be invoked by any device

inside one of the involved zones. Obviously, for security reasons, webi-

nos allows each user to specify for every service which other user can

access it. Figure 4.2 shows a scenario where two users (Alice and Bob)

connect together their zones which are identified by their PZHA and

PZHB. In case 1, PZP1 is using a service from PZP2 which resides

74 Chapter 4. The Web of Things: Dealing with everyday objects

in the same personal zone. This is a case of intra-zone communica-

tion: only PZHA is involved. In case 2, PZP1 requires a service from

PZP4 which belongs to another personal zone. This could happen

only after the two users have agreed to connect their zones and Bob

has further decided to share services from PZP4 to Alice. This is a

case of inter-zone communication where both PZHA and PZHB are

involved.

In [35] we discussed how the webinos platform can well suit the

IoT world. We argued about the APIs webinos provides to deal with

generic sensors and actuators. Every sensor or actuator is virtualized

as a service in order to obtain an abstraction of the real object. How-

ever, considering generic sensors or actuators as smart objects is too

restrictive. An actuator may be a simple light bulb but also something

more complex that we call smart object. Sensors and Actuators APIs

could present limits in some contexts since they were designed to inter-

act with basic devices like current (or voltage) sensors or switches. If

we consider a more complex object like an oven, it may perform many

high-level operations, for example setting the cook program ‘180◦C -

Fan” from 6pm to 8pm.

Webinos is a modular platform: users can decide which API install

on their PZPs in accordance with the capabilities of the devices. For

example if a user doesn’t care about NFC functionality he can avoid

to install the NFC API. This is a very important feature to avoid over-

loading devices with not useful APIs. This approach allows to users

to exploit the resources that are actually needed and to developers to

add, modify and remove APIs in simple way.

In this section we have shown how webinos allows to consider each

device’s capability as a service. This characteristic can be exploited to

4.3. A webinos API for smart objects 75

model the behavior of real objects. Webinos can be extended by the

introduction of new APIs and also provides the possibility to decide

in a flexible manner which services a device must be able to exhibit.

These interesting features are the prerequisites for using webinos as

platform for smart objects. In the next section we will describe how

we extended the webinos platform by introducing a new API for de-

scribing and controlling smart objects from web applications.

The interaction between users and smart objects will enable very

important scenarios in the coming years. The reduction of the cost

of technology will facilitate the deployment of smart objects, catching

on the home environment. Some companies including Samsung, Qual-

comm, Ericsson are moving in this direction by developing proprietary

protocols for their products. Defining the functional requirements that

a platform for smart object must offer will constitute an important re-

search activity in the near future.

In the first part of this section we are going to describe the main

features that make webinos able to support the interaction between

users and smart objects. To achieve this, we have introduced a new

API to allow web applications to communicate with objects. This API

will be described in the second part of the section.

4.3.1 Why is webinos a good platform for smart

objects?

Webinos is not intended only for general purpose devices such as

smartphones or tablet that implement the entire set of APIs. Each

device can selectively choose which API to implement according to

their characteristics. This modular approach allows the installation

76 Chapter 4. The Web of Things: Dealing with everyday objects

of webinos on devices with limited memory and computational re-

sources. For these types of devices, webinos introduces the concept of

“microPZP”. MicroPZP is an implementation of the PZP when the

device is too low spec to deploy a full PZP. A device supporting a mi-

croPZP typically has a target memory of 2 MB. A full-featured PZP

implements a rich set of functionality, including the ability to run in-

teractive webinos apps, to expose locally-implemented APIs to those

apps, and also expose locally implemented APIs to remote connected

clients. This functionality naturally entails that the device hosting

the PZP has certain capabilities - either explicitly (for example means

for display and user interaction) and also implicitly (for example hav-

ing sufficient memory and connectivity to be able to support a PZP).

However, there is a wide class of potential webinos applications, rang-

ing from small personal devices to mass-deployed IoT nodes, that are

not required to support the full range of PZP functionality and have

only limited hardware capability; factors such as device cost, battery

life or connectivity would prevent such devices from being able to

host a fully-featured PZP. These might be intended to expose locally-

implemented APIs to remote clients, but are not required to support

other PZP functionality such as being able to run local applications.

The microPZP is therefore a perfect abstraction of a generic smart

object capable of supporting the webinos platform. For the purposes

of this paper we have a little forced the specification, whereas a Rasp-

berry PI as a microPZP. Thanks to the webinos approach, the user’s

personal zone will not only contain TVs, tablets, etc., but also it will

include smart objects such as the fridge or the oven. Another impor-

tant feature taken into account by webinos regards both security and

privacy of users. If the security problem is important in computer

4.3. A webinos API for smart objects 77

science, such as for documents’ protection, it will certainly even more

delicate with regard to access to objects. Within webinos, each user

(the owner of a Personal Zone) can specify a set of security policies

to decide which services have to be shared and which users will have

the right to invoke them. Since webinos applications are cross devices,

they can use services that are not on the same device on which they

are installed. A fine-grained access control to services is therefore es-

sential to ensure the security of users and thus of their devices. This

user-oriented security management applies well to smart objects, es-

pecially in the home scenario where most items can be used by several

categories of people: parents and children, but also by people who

are not strictly part of the family. For example, we can think at a

smart door which can be unlocked through a web service invocation:

parents, which have a young child, could authorize their baby sitter to

open and close the door only in the morning, revoking the right in the

rest of the day. Webinos therefore presents good conditions for being

able to manage the user’s smart objects.

4.3.2 Smart Object API

In the previous section we have shown how webinos well suits the

IoT domain by defining generic APIs for sensors and actuators. How-

ever, what we propose in this paper is something different: in order

to bridge the gap between real objects and their virtual instances we

have a support for smart objects. The webinos platform is fully ex-

tensible by adding new APIs (or even new drivers) to support new

devices. Hence, one possible approach to handle smart objects such

as household appliances, could be to consider them as microPZPs and

78 Chapter 4. The Web of Things: Dealing with everyday objects

create a new API for each of the appliances. For example, the oven

could be a microPZP which only exposes the “Oven API” allowing

users to set a cook timer, regulate the temperature or the cook pro-

gram, etc. The same could be for the fridge which can implement an

API to provide its state, the best before of the food it contains and so

on. Unfortunately this would lead to a huge number of APIs.

The API we are proposing provides two public methods:

• getMethods : returns a description of all the functionalities pro-

vided by the object in a well defined JSON format. The de-

scription comprises information about the method itself (name,

human readable description), and information (type, accepted

values, etc.) about all the input and output parameters which

the method expects.

• callMethod : is used to invoke a specific method (functionality)

of the object.

• callAsyncMethod : is used to invoke a specific method (function-

ality) of the object. The result of the operation will be sent back

as a callback function’s parameter.

For the sake of clarity, let’s think about a smart calculator which

implements the webinos API for smart objects. The manufacturer

should provide some information about the object in a JSON array

with the description of its methods:

exports.name = ‘‘calculator’’;

exports.description = ‘‘a simple calculator’’;

exports.type = ‘‘office.calculator’’;

4.3. A webinos API for smart objects 79

exports.definition =

{

"swagger": 2,

"info": {

"version": "1.0.0",

"title": "Smart Calculator API",

"description": "An API to control a smart calculator",

},

"host": "http://localhost:3000",

"basePath": "/calculator",

"schemes": ["http"],

"consumes": ["application/json"],

"produces": ["application/json"],

"paths": {

"/moduloMath": {

"get": {

"description" : "Finds the remainder of division of

one number by another",

"parameters" : [

{

"name": "dividend",

"in": "query",

"description": "The dividend number",

"type": "number"

},

{

"name": "divisor",

"in": "query",

"description": "The divisor number",

80 Chapter 4. The Web of Things: Dealing with everyday objects

"type": "number"

}

],

"responses": {

"200": {

"description": "The result of the modulo

operation",

"type": "number"

}

}

}

}

}

}

Each smart object must provide a private implementation of all

the exposed methods:

exports.moduloMath = function(params){

try{

var res = params.dividend % params.divisor;

return {

results: [

{

moduleResult: res

}

],

status:{

code : "200",

type : "success",

4.3. A webinos API for smart objects 81

message : "Operation has been successfully

completed"

}

}

}catch(e){

return {

results: [

{

moduleResult: undefined

}

],

status:{

code : "400",

type : "error",

message : "Invalid operation"

}

}

}

};

}

In this example we suppose that the calculator has a method called

“moduloMath” which accepts two input parameters (“dividend” and

“divisor”) and returns as output a JSON object which contains the

result of the operation. A web application which wants to invoke

the modulo operation from this smart calculator has to discover the

“calculator” service through the webinos Discovery API, and then has

to call the desired functionality using the callMethod method:

// calculator refers to the smart calculator object

82 Chapter 4. The Web of Things: Dealing with everyday objects

var params = {dividend: 5, divisor : 2};

calculator.callMethod(’moduloMath’, params);

Summarizing, the proposed smart object API allows applications, and

therefore users, to control all the real objects that implement the API.

The objects capability to expose their functionality as services, can be

used not only to make them controllable by users, but also, in the fu-

ture, to ensure that multiple objects can cooperate among themselves

and autonomously carry out their tasks.

4.4 Proposed Application

Every day people use several applications for mobile devices, partic-

ularly web applications. Numerous studies have been carried out on

how to design graphical user interfaces that allow users to learn and

understand how to use an application from the first time. On the

other hand, the interaction with objects such as ovens, washing ma-

chines, still requires the average user to consult the instruction manu-

als supplied by the manufacturers and to deal with different interfaces

(embedded displays, remote controllers, knobs, etc.).

In this Section we propose an application which, relying on the

webinos platform and in particular on the API for smart objects de-

scribed before, allows users to interact with real objects in a domestic

environment. Thanks to the proposed application, a user can head his

device towards a smart object to get a description about all services

and functionalities that object is able to provide. This description

is provided by the smart objects API in the form of a JSON object.

Using a proper transformation algorithm, the application uses the in-

4.4. Proposed Application 83

formation received from the object to create an on-the-fly graphical

interface that allows the user to invoke the desired method by provid-

ing the required parameters. The user interface is created by the ap-

plication in an intelligent way: it’s adapted to the focused object and

tries to render the best components depending on the object which the

user is framing. For example, if a user frames an oven, the augmented

interface will show knobs and wheels, but if he frames a thermometer,

the application will display on the screen a gauge in the form of a

thermometer. The purpose of this adaptive and consistent interface is

to allow an easier and more intuitive use of all functionalities of the

smart objects.

Although a smart object has different functionalities, at the end,

only the basic ones are used because they are easy to set up and keep in

mind. On the other hand, using the proposed application, the average

user will be able to realize which features the smart object is capable

of providing, and use them, without the burden of reading complex

instruction manuals. Using augmented reality we want to simplify the

interaction between user and real objects and provide the same user-

experience of web applications. Azuma et. al [37] claim that An AR

system supplements the real world with virtual (computer-generated)

objects that appear to coexist in the same space as the real world. This

suggests that users, framing an object with their devices’ webcam,

can view supplementary information on the screen such as sounds,

videos, graphics or GPS data. Augmented reality requires the object

identification in order to provide in real-time a graphical layer on the

screen of the device with object-specific information. The application

uses an ArUco [38] marker to identify objects. Each marker is a 5x5

matrix where each row is composed by 2 bits of data (in green on the

84 Chapter 4. The Web of Things: Dealing with everyday objects

Figure 4.3: ArUco Marker

figure 4.3) and 3 bits of parity (in blue) thus 4 possible codes (the

matrix on the right side in the image). Each row is decoded using bits

on column 2 and 4. The 5 rows are then gathered to generate a 10

bits code that represents a number. We decided to use markers such

as ArUco because they are simple to apply on any smart object and

don’t require special additional costs. A user can realize and print his

marker and stick it on a smart object in his home. We preferred to

use ArUco rather than QR codes since the web library for decoding

ArUco markers is faster and lighter. We tested the same scenario using

QR codes but we noticed some issues using the decoding library on

mobile devices (e.g. smartphones and tablets). As described in the

introduction, other technologies usually adopted to identify objects are

RFID and NFC. We did not take into account RFID since we don’t

have it on our smartphone or tablet yet. Moreover, although NFC is

becoming available on mobile devices it requires short distances so, it

could be suitable in the case of mobile payment or to open a gate but

not for controlling an air conditioner.

Referring to the example of the smart calculator described in the

4.4. Proposed Application 85

previous section, we show in the figure 4.4 the graphical interface

created on-the-fly using the information in the description given by

the “getMethods” of the framed smart object. On the left side, there

Figure 4.4: Graphical user interface for modulo operation imple-

mented by a smart calculator

is the list of all the services that the calculator implements. In our

case, there are only addition and modulo operations. When the user

selects one of the services, on the right side the application generates

a graphic interface which suits the input fields of the description.

Let’s assume that the user wants to carry out the modulo operation.

According to the description format discussed in the previous section,

the calculator’s service provides a method called “moduloMath”

which requires two numbers (dividend and divisor) as inputs. The

application, which can interpret this description, generates on the fly

two text fields for the required inputs. When the user provides values

for dividend and divisor and presses the button, the “callMethod”

function is called on the calculator’s service, passing the name of

86 Chapter 4. The Web of Things: Dealing with everyday objects

Figure 4.5: The proposed AR application to control smart objects

the method to call and an object which contains the input parameters.

calculator.callMethod(’moduloMath’, {dividend: tf1.value,

divisor: tf2.value}, successCB, errorCB);

function successCB(output){

if(output.status.type=="success")

divResult.innerHTML=(output.results.moduleResult);

}

Once the required operation has been carried out by the object, a

callback method (success or error) is executed. The success callback

receives as input parameter an object which contains the final result

of the operation and information about the outcome. If the status has

no errors, then the current value of the operation is shown to the user.

4.4. Proposed Application 87

The application can be used for more concrete and real scenar-

ios, such as the domotic. We have considered a scenario where three

smart objects are located in two different rooms (a kitchen and a liv-

ing room). Each smart object is considered as a microPZP hosted on

a Raspberry PI. Such objects are: a DVD recorder and an air condi-

tioner placed in the living room and an oven in the kitchen. On each

Raspberry PI we have stuck an ArUco marker to identify the related

object. Each object is installed with a webinos PZP and has been reg-

istered in the user personal zone. Using the proposed application the

user can use his tablet to point the object and interact with it using a

UI built at run time, according to the methods’ description provided

by the smart object API which each object implements. This means

that the application will provide a different UI depending on the ob-

ject which is currently framed. Figure 6.2 shows the instant when the

user points his tablet towards the oven. The communication between

the tablet and the oven is mediated by the PZH: i) the application

on the tablet reads the oven’s id from the ArUco tag and asks for the

PZH the service provided by the oven (since it implements the smart

object API), ii) the application invokes the getMethods on the service

to build the UI at run time, iii) the application invokes the callMethod

on the service to interact with the oven.

4.4.1 Improving the scalability using Vuforia

SDK

Currently add a new object means to include it in the personal zone,

print qrcode with the id assigned to the object and place the qrcode

on the object itself. This approach is not very scalable and requires

88 Chapter 4. The Web of Things: Dealing with everyday objects

a commitment on your part. For this reason we have improved the

application by using an augmented reality framework called Vuforia.

VuforiaTM is the software platform that enables the best and most

creative branded augmented reality (AR) app experiences across the

most real world environments, giving mobile apps the power to see.

The Vuforia platform uses superior, stable, and technically efficient

computer vision-based image recognition and offers the widest set of

features and capabilities, giving developers the freedom to extend their

visions without technical limitations. With support for iOS, Android,

and Unity 3D, the Vuforia platform allows developers to write a single

native app that can reach the most users across the widest range of

smartphones and tablets. Vuforia first detects feature points of the

target image [Web-based target management] and then uses the data

to compare the features in target image and the frame received by the

camera. In addition Vuforia provides support for Unity 3D framework

which can be used to build attractive UI which can both help and

involve users in the way they interact with smart objects.

CHAPTER

FIVE

THE COGNITIVE INTERNET OF THINGS:

HOW THE ROLE OF THE USER IS GOING TO

CHANGE

5.1 New Kinds of User-Objects Interac-

tion: the case of Machine to Machine

The first concepts of pervasive Internet were developed in the early

90s by the pioneer Marc Weiser at Xerox PARC in Palo Alto, but it is

only in the few last years that the interests of the academic world and

the most important technological players have been focusing towards

this topic, thanks to the emerging of a new context which goes under

the name of Internet of Things (IoT). The IoT paradigm is based on

the concept of URI (universal Resource Identifier): this is a way to

uniquely identify an object in a network structure. Internet of Things

89

90
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change
was initially focused on technologies for identification and tracking

of real objects in the industrial field such as RFID but it is quickly

spread over a wide range of sectors, from domotic to industrial au-

tomation. Moreover, recently, Bluetooth low energy (BLE) and Near

Field Communication (NFC) technologies, has opened completely new

scenarios.

Over the years the scientific progress on the miniaturization tech-

niques for integrated circuits and the relative cost reduction for elec-

tronics components has been fostered the appearance on the market

of the first microcontrollers which can host small web servers and then

provide RESTful services: the objects become part of the Web and

can be controlled by the user remotely through REST technology.

The IoT paradigm evolved in the Web of Things (WoT) whose tran-

sition was undoubtedly accelerated by the appearance on the market

of easy to use and low cost prototyping boards. One of the most

famous of these board is Arduino, an open-source electronics proto-

typing platform based on flexible, easy-to-use hardware and software.

Arduino can be used to create applications for home automation that

are managed by the user’s smartphone. Today the interest around

WoT is constantly growing: several companies are beginning to put

on the market proprietary systems which allow users to interact with

everyday objects. However, the absence of a common international

standard has made it difficult to adopt a single platform to guarantee

the interoperability with objects produced by different manufacturers.

A further IoT evolution which is gaining more and more interest

is the Machine to Machine (M2M), where objects are able to interact

each other without a direct intervention by the user[39, 40, 41]. The

machines typically considered in M2M applications are often simple

5.1. New Kinds of User-Objects Interaction: the case of Machine to Machine 91

sensors or actuators, but from the point of view of the present pa-

per, we identify the machines involved in M2M systems with the so-

called “smart objects”. Smart objects can be defined as autonomous,

physical/digital objects augmented with sensing/actuating, process-

ing, storing, and networking capabilities. Common objects from daily

living such as TV, air conditioners, oven and in general all the home

appliances inside our homes will become in the near future smart ob-

jects, and enable new application scenarios where they will interact

with each other, under user control or autonomously. The main ap-

plication fields of M2M are related to industrial automation, however

today we are assisting to the transition of the technology from fac-

tory to the smart homes. The home automation involves areas such

as lighting control, energy management, remote home management,

assisted living. Although this field is not new, it has not been suc-

cessful due to the high cost for installing a domotic system, which is

probably caused by the lack of a de facto standardization. Several

attempts to realize an easy, scalable, simple to use system was made

over the years, but there isn’t till now a solution universally accepted

by the major players.

in the future,the smart objects will surely be Home automation

protagonists. In facts, thanks to their ability to interact with the

physical world they let our homes to become “smarter” and help us

to improve our life quality. In this sense, the role of users and the

way they interact with objects will change: while currently they use

to control the surrounding objects (e.g. through smartphones), in the

future they will only supervise objects interactions, which will take

place automatically i.e. the user merely expresses a “goal”, leaving to

objects the responsibility to coordinate themselves to reach the given

92
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

goal.

In this paper, we will consider the adoption of the M2M into the

Smart Home scenario, showing the main issues that affect the de-

sign of a M2M home automation system, and proposing a cloud-based

goal-oriented architecture which, by exploiting semantic and location

awareness, helps smart objects to autonomously carry out complex

tasks.

5.2 Open Issues

The evolution of the objects towards autonomous systems will involve

several scientific and technological fields. For example, in order to

cooperate with other peers to carry out a task, each object needs to

know which operations the other objects are able to perform. There-

fore each object must provide a description of all its capabilities, in a

machine-readable form to be understood by the other objects. In this

context, a good approach is the adoption of techniques which use se-

mantic for describing smart objects. Semantic technologies have been

introduced in the last years on the web to give a semantic meaning to

the contents, with the aim of converting the current web, where data

are mainly unstructured or partially structured, in a web 3.0 where

data are highly structured and can be processed by computers. In the

smart objects context, it is possible to use these techniques - by defin-

ing ontologies - to describe the meaning of the services that each object

is capable of delivering. Associating each object’s functionality to an

ontology is very important, since these functionalities will be used by

the objects themselves to communicate each other in order to perform

5.2. Open Issues 93

complex tasks. For example, if a smoke detector has to notify that the

smoke level is above the threshold, it should contact an object which

can alert the user (for example a buzzer or whatever is able to emit

a sound). Using a semantic reasoning, it is possible to autonomously

understand which objects have the capability of “alerting”.

Another important aspect to take into account concerns the posi-

tion of the user (which is, for our purposes, identified by the smart-

phone) inside the environment. Being able to figure out when the user

is inside a particular section of the environment (e.g. inside a partic-

ular room) is very important for the system to be able to meet a goal

which is related to the user position. Moreover, in a goal-oriented ar-

chitecture, it is not necessary an user indoor localization system which

is “always on”: it is the system that determines when the position is

needed, and activates the user localization process in order to perform

a particular task. This kind of approach lets the system to reduce

power consumption.

In the following we give a brief summary of several indoor user

localization techniques which we examined for this article:

• Audio Systems: exploit some characteristics of sound signals

to locate a smartphone inside a building. They are low-cost

systems, and usually they do not need to deploy infrastructures

inside the building[42, 43, 44].

• VLC (Visible Light Communication) Systems: exploit some

LEDs properties to enable visible light communication which in

turn is used to perform very accurate indoor positioning. Sim-

ple and power-efficient switch-mode amplifiers can be used on

the transmission side. On the receiver side, the camera sensor

94
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

is able to decode the location information transmitted by the

lights, and also to compute accurately the position relative to

this lights and even the device orientation in space.

• Radio Signal Systems: use radio signals to determine the posi-

tion of a device. They are the most used and studied by the

scientific community for several reasons: i) they do not require

a line of sight, ii) they use technologies which are already em-

bedded in modern smartphones, iii) and they can easily work

in background mode. The classical approach for these systems

is to use the RSSI (Received Signal Strength Indication) to lo-

calize the smartphone inside an indoor environment. This can

be achieved (a) by measures the RSS values and compares them

with previously measured values saved in a database to estimate

the position of the user (this approach, often used with wi-fi

signals which are available for free in the buildings, provides a

good level of accuracy but needs experienced personnel to create

the fingerprint for each new area), or (b) by using triangulation

algorithms (this approach is less accurate in real environments

due to the multipath problem).

One of the most recent promising technologies to perform a low-cost

indoor localization is the Bluetooth low energy (BLE), which is a ra-

dio technology which let two devices to communicate each other with

a reduced power consumption compared to the classic bluetooth, but

with a low data rate transmission. In a BLE configuration we can

identify Slaves devices which broadcast an “I’m here” signal which

is called “advertisement” and Master devices which listening for ad-

vertisements and extract information from them (e.g. the IDs of the

5.2. Open Issues 95

slaves) or connect to the slaves to exchange data. Almost every mod-

erns mobile operating systems natively support the bluetooth low en-

ergy. Apple has recently proposed iBeacon standard which relies on

bluetooth low energy technology. It allows mobile applications to lis-

ten for BLE signals from a new generation of low-cost, wireless trans-

mitter called ibeacons placed inside environments in a known point,

in order to understand the smartphone micro-location in an accurate

way: when the device gets within range, it is able to sense ibeacons,

localize itself in term of proximity to the beacons and enable some

functionalities programmed by the app developer. Many manufactur-

ers are currently producing devices iBeacon-enabled.

Moving the focus on objects deployed in security/privacy-critical

environments such as industrial automation or smart homes, it is im-

portant to pay particular attention in ensuring the access to the smart

objects functionalities only to those users who have permission. In

facts, making the objects publicly available on the internet through a

public IP address lead to potential unconditional accesses to them by

anyone. It was found out that some search engines allow to find on the

Internet all those objects that expose a Web server and do not have

any form of protection. In this way it is possible for an attacker to

access, for example, to a private webcam placed in the homes of unsus-

pecting users which can be spied. Privacy and security issues, which

were already extensively discussed in the field of web services, if con-

sidered in the context of smart objects may imply critical problem in

relation to the safety (non only the security) of users. While a privacy

fault in a social network can lead to the inadvertent spread of contents,

on the other hand, a wrong security configurations of the objects in-

side a smart home can allow strangers to attempt the safety of the

96
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

users. It becomes clear that is absolutely necessary that these objects

implement some sort of security mechanisms (eg. firewall whitelist or

by exchange of documents) to avoid unwanted intrusions, but most of

the time the object has limited resources in terms of memory and pro-

cessing capability, therefore it is impossible for it to handle complex

algorithms such as cryptography. For these reasons, often the security

problems for limited-resource objects are resolved at the architectural

level, by avoiding to publicly expose them on the Internet: individual

objects connect with the outside world through a gateway, which will

be a more powerful element able to guarantee the adequate security

and to control the access to the objects from the web in a safe way.

5.3 State of Art

In the last few years a lot of architectures, models and frameworks

have been introduced to enable the simple management of smart-home

appliances and services. All these works are characterized by the as-

sumption that users interacts (almost) directly even with a Smart

Home management system to fulfill their needs. Recently some com-

mercial solutions have been presented by companies like LG, Revolv,

Samsung, SmartThings and Staples that understood the importance

of this new market. Some of these solutions are already available (see

Revolv [45], SmartThings [46] and Staples [47]) and basically consists

of one or more physical hubs and an application for handset to put

together and manage hardware like lights, locks, speakers and sensors

produced by different manufacturers. Other commercial solutions like

those presented by Samsung [48] or LG [49] promise to give a seam-

5.3. State of Art 97

less experience while managing the smart-home but probably will work

only with their respective appliances. For what concerns academic ac-

tivity, many solution have been proposed and implemented.

In [50] authors considers those problems related to the configuration

and the updating of applications in the Smart Home context. They

present a distributed system that allows the remote managing and de-

ployment in the context of a distributed and pervasive environment

for cognitively impaired people.

In [51] authors present a platform and a framework for design, devel-

opment and deployment of smart-home services. Their work embeds

the use of OSGi technology develop and deploy home services using

common automation technologies. The authors propose also the RO-

Cob API Specification to enable developers building different kind of

applications, such as presentation layer applications (e.g. a web based

UI), monitoring applications to collect data and send them to a back-

bone server and other home control and pervasive applications.

In these works, the main objectives were focused on how to manage

in a simple way, remotely or not, Smart Home services and objects.

Users still needed to interact with the Smart home giving precise and

step-by-step commands to achieve their objectives. This paper, in-

stead, presents a system that, through the introduction of some more

intelligence in the Smart Home, enables users setting their goals but

not the required steps.

Other works that take into account the existence of an intelligent home

and user defined rules to cover different aspects are [52, 53, 51, 54, 55].

Most of the works cited can be revised due to the advancements in

IT and electronic technologies. For example in recent years, new gen-

eral purpose platforms based on cloud computing are spreading. They

98
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

could be used not only in smart-home context but also in other dif-

ferent domains, such as health, smart-cities, logistics/retail. They,

also, provide an infrastructure to enable device-to-client and device-to-

device communication between heterogeneous devices and to develop

innovative applications. In recent times, some platforms like Xively,

Evrythng and Alljoyn, designed to manage IoT objects and commu-

nication, gained a good success. Xively [56] is a web platform based

on PaaS infrastructure. The aim of this platform is supporting the

use, composition and sharing of “things”. To achieve such a goal, it

provides a range of services to read/write from/to user devices, store

data and selectively share them. Along the same line, Evrythng [57]

supports the creation of an online profile, called Active Digital Iden-

tity (ADI), for products or other physical objects. An ADI is simply a

web resource, identified by an URI, with information about a “thing”

in the form of dynamic attributes (e.g. where it is now) called “Prop-

erty”, or static attributes (e.g. when and where it has been made)

called “Custom Field”. One of the most important international play-

ers which aim to propose a cross-platform technology to provide this

common language is the Allseen alliance, a non profit consortium who

is developing and proposing Alljoyn: “an open source project that

provides a software framework and set of services that enable interop-

erability among connected products and software applications, across

manufacturers, proximal to create dynamic networks”. It give to de-

velopers and companies the possibility to easily create applications for

internet of everythings and aim to become the basis for a standard de

facto IoT intercommunication technology. Our work differs from those

presented because it is not only about “things composition” and “data

sharing” but covers all the aspects needed to understand the goal a

5.4. Architecture Description 99

user wants to achieve, to break it up in tasks and to manage them

to get the desired results. To conclude this overview on the state of

the art, it is important to mention also a couple of ongoing projects

for home automation operating systems which are HomeOS [58] from

Microsoft Research Lab and Linux MCE [59] these projects represent

the growing interest in this area.

5.4 Architecture Description

The architecture proposed in this thesis is depicted in Figure 5.1.

We can distinguish the smart home side, the user side, and three

macro blocks which are named “Understanding block”, “Discovery

block” and “Task Coordinator block”.

The smart home side contains the smart objects. Generally speak-

ing, a smart object can be defined as an item equipped at least with:

• Sensing and/or actuating capabilities: these allow the smart ob-

ject to interact with the physical world, by sensing something

from the environment and by doing something else when certain

conditions occurs.

• Microprocessor: it enables the smart object to elaborate the

data received from sensors and to send commands to actuators

in order to perform some tasks.

• Power source: most of the time is a battery, and it is used to

power the electric circuits.

• Communication device: it is typically a low power radio com-

munication system, that give to the smart object the ability to

100
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

Figure 5.1: Enabling M2M in smart spaces: the proposed architec-

ture

communicate each other, with the internet, or with a gateway.

We can identify, according to their roles, two kind of smart objects:

• smart home objects: are the smart objects which are inside each

room, as the lights, lamps, alarm clocks, smart home appliances,

etc. They are responsible for performing tasks.

• smart gateway objects: are deployed one for each room in a

known position, and are a sort of central units which, when the

indoor positioning module is waked up, perform the advertising

5.4. Architecture Description 101

operation, in order to communicate their position to the smart-

phone (and then the user) that is inside the room.

On the user side we have the smartphone (which in our hypothe-

sis identify the user) and an application which: (a) enables the user -

through the UI - to set the goals and the preferences.(b) Is responsible

for performing indoor/outdoor localization of the user. The goals and

the preferences expressed by the user are passed to the understanding

block. The understanding block it is responsible for translating the

goal in a common format which the task coordinator block is able to

read. To perform the translating of the goal expressed by the user

in natural language (by talking to the phone, or by writing a text

message) the understanding block contains a Natural Language Pro-

cessing block (NLP). Otherwise data are translate through a command

interface (e.g. HTML).

The outdoor/indoor localization information collected by the

smartphone are sent to the discovery block and elaborated by the loca-

tion manager which is responsible for enabling the indoor localization

system to locate the user inside the house. The indoor localization

process is better explained in section XXX. Once the location man-

ager obtains the information about the position of the user inside the

smart home, it can communicate it to the

The cloud blocks, namely “understanding block”, “discovery

block” and “task coordinator block” mentioned before, are detailed

in the following three sections.

102
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

5.5 Understanding Block

The part of the system which mediates between the user and the rest

of the platform is the “understanding” macro block. In our vision,

users express the objectives (goals) and expect that objects coordinate

themselves to meet these goals. The understanding block stands in the

middle between the user and the task coordinator. Its main role is to

translate a goal, which could be provided by the user in several ways,

to a machine readable format which the task coordinator will able

to understand. Assuming that the entry point for the user to the

system is the smartphone, he could specify and assign goals to the

objects inside the house by using his voice, a text message or through

an assisted user interface. The user interface can be built with Web

technologies in order to be cross platform for different devices. The

interface guides the user in specifying the goal through the typical

HTML controls (radio buttons, selction boxes, etc..). The conversion

of the goal, in the format understandable by the task coordinator in

this case is straightforward. Goals expressed through voice commands

or text message are considerably more complicated to be handled. A

voice command needs to be converted into a text passing through a

“speech to text” block, afterward it can be considered in the same

way as a text message. A Natural Language Processing (NLP) block

receives as input a string of text in natural language and extrapolates

the SVO (Subject-Verbs-Object) elements of the sentence. The most

difficult task which the NLP block should carry out is to recognize the

semantic meaning the user wanted to attribute to the sentence. NLP

comprises several outgoing research tasks.

5.5. Understanding Block 103

Using tools such as Link Grammar1 or the Stanford Parser2, the

command “Start the washing machine with the program J at 8:00 PM

if the washing machine is full load” is split into its main components:

(ROOT

(SINV

(VP (VBD Start)

(NP (DT the) (JJ washing) (NN machine))

(PP (IN with)

(NP (DT the) (NN program) (NN J)))

(PP (IN at)

(NP (CD 8:00))))

(NP (NNP PM))

(SBAR (IN if)

(S

(NP (DT the) (JJ washing) (NN machine))

(VP (VBZ is)

(NP (JJ full) (NN load)))))))

The output provided by the understanding block to the task coor-

dinator is a JSON object which contains information about the goal,

split into an action (A) and a trigger (T).

A: {

verb: ’set’,

what: ’conditioner’,

where: ’living room’,

1http://www.abisource.com/projects/link-grammar/
2http://nlp.stanford.edu:8080/parser/index.jsp

104
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

how: ’25 C’,

for: ’1h’

}

T:{

combine: ’and’

matches: [

{

match: {

what: ’washing machine’,

where: ’bathroom’

},

func: ’=’,

value: ’loaded’

}

]

}

5.6 Task Coordinator

The Task Coordinator (TC) is the heart of the proposed architecture.

His job is to take care of the goals expressed by users and generate

tasks to be distributed to various objects in the house to get to the

satisfaction of the goal.

The part of this system that cares about “understanding” provides

the task coordinator with some structured information that describe

user defined goals. Each goal is formed by two parts: the action (the

final result to be achieved) and the trigger (a condition that, once

5.6. Task Coordinator 105

verified, triggers the action).

There are three main types of triggers:

• Time-dependent: the action will be carried out at a certain time

(eg July 4th, 2014 at 8:30 AM) or in accordance with a certain

periodicity (eg. every Friday at 7:00 am, every day of May at

5:00).

• User Position-dependent: the action will be performed when the

user is in a certain position within the home. With appropriate

indoor localization techniques, the system can track users (their

smartphone location) and ensure that the action “turn on the

TV” could be launched only when a user enters the living room.

• Object-dependent: the execution of an action will be subjected

to the occurrence of appropriate situations that relate to the

status of one or more objects. For example, a rule for a wash-

ing machine could state “start every day at 5:00 AM using the

program 6” only if the machine is full loaded.

In the case of an object-dependent task, the Task Coordinator:

1. Obtains, from the Discovery Block, which objects will be respon-

sible for generating all the information needed for the trigger and

the methods and parameters useful to retrieve them. For exam-

ple, if the trigger is: “if the temperature in the kitchen is less

than 30 degrees”, the Discovery Block will return the URI of

the object that can measure the temperature in the kitchen, the

name of the method to invoke (e.g. getTemperature) and an

array (empty in this case) containing the types of the needed

parameters.

106
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

2. Uses the information retrieved to get the status of the subject

(e.g. temperature). The Task Coordinator could start a thread

that periodically listens to changes in the state until it satisfies

the trigger condition (e.g. temperature is less than 30 degrees).

3. Requires from the Discovery Block, when the condition associ-

ated with the trigger occurs, the object that can carry out the

action and the information to invoke it.

4. Performs the action on the latter object by calling the appropri-

ate method.

In the case of a time-dependent task, the task coordinator will

perform 3rd and 4th steps at a certain time of the day.

In the case of a user-position dependent task, the Task Coordinator

waits until it is notified that the user has entered a specific area or

environment. In facts, the user through the smartphone, which is able

to sense advertising signals sent by control units placed in every room,

can notify the Task Coordinator of his presence in a specific room.

5.7 Discovery Block

The role of the Discovery block is to provide to the Task Coordinator

those objects able to perform a certain task. Since we are considering

a smart space, the selection of these objects depends on several factors:

the position where the object is located, the possibility that an object

to perform an operation,

The Bootstrap phase occurs when an object for the first time makes

its entry into the system. This phase requires user interaction: once

5.7. Discovery Block 107

activated, the object must be configured through a direct wifi connec-

tion between user’s smartphone and the object itself. The configura-

tion will consist of specifying the credentials to access the wifi network

of the smart space and assigning the room in which the object is lo-

cated. During the rump bootstrap, the object notifies the system of

the operations that is able to fulfill: these operations are described by

means of RDF ontologies of which will be discussed later. The user

then has the fundamental task of configuring the new object and then

“accept” in the system.

5.7.1 Location Manager

The location manager is the block which is responsible for locating the

user, who is identified by his own smartphone, inside the smart home.

The whole process of indoor user localization can be summarized in

the following steps:

1. The user has installed on the smartphone an app which con-

stantly monitors his geographical position. The app works both

in foreground and background modes and uses the classical lo-

calization system embedded on smartphone (GPS, Wi-Fi, Cell

towers) to locate the user in an safe-battery way. The localiza-

tion accuracy needed in this step is quite large (an approximation

of about 500mt is permitted, but it should be set appropriately

based on the user requirements).

2. The user moves towards the smart home (e.g. he left the office

and went to home for dinner): when the position detected by

the smartphone is in the previously set proximity range of the

108
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

smart home (e.g. 500mt), it put itself in the discovery mode and

send this information to the location manager which elaborate it

and activate the indoor localization system of the smart home,

by enabling the smart gateway objects (if they are not already

enabled because of another user of the smart home) to advertis-

ing its known ID and position. In order to distinguish situations

where an user is always near the smart home but he is not mov-

ing towards it (e.g. he works in an office near the smart home)

the set proximity range must meet the user requirements and

some algorithms to discriminate this kind of ambiguity should

be implemented.

3. The user enter inside the room for which the task was set. Be-

cause the smartphone is in discovery mode, and the smart gate-

way objects are in advertising mode, the smartphone can sense

the smart gateway object of the room in which it is inside. It

send the information to the task coordinator which is responsi-

ble for performing the previously set task and related to the user

position (e.g. turn on the lights on the room).

Another responsibility of the location manager is to determine if

a smart object it is available at the moment of the task execution, or

if it is not reachable because it is turned off or it is no longer inside

the smart home. To achieve this the location manager try to reach

the smart objects involved in the task and analyze the response.If

the response is “not available” the location manager eliminate it from

the list of smart objects which are involved in the task execution and

which must be passed to the semantic manager for the next steps.

5.7. Discovery Block 109

Speaking about the smart homes of the future, it is clear that

the problem of the indoor localization of the user is one of the major

challenges to be addressed: as we said above, knowing the user position

let the domotic system to perform position-related tasks such as turn

on lights in the room on which the user is inside, or turn off particular

devices, etc. Moreover, in order to save energy, the home automation

system should be ”smart”, by activating the indoor positioning system

of the smart home just when it is needed and by deactivating it when

the task is over.

Think about the architecture proposed in the present paper, we

need an indoor localization system which is capable to detect when a

user enter inside a room. Because in our approach the user is identi-

fied by the smartphone, the problem become to understand when the

the smartphone is inside the room. We can exclude all approaches

which need a line of sight for locating the smartphone (such as visible

light systems), because the localization process must be transparent

for the user and must be work even if the smartphone, e.g. is in the

pocket. We also can exclude approaches which uses audible sounds

because they are too invasive and annoying for the user. Audio finger-

print approaches are not accurate enough to use it standalone. From

our point of view the best solution is to use iBeacons and BLE tech-

nology because it is simple to deploy, low-cost and low-energy: the

smart gateway object can act as iBeacons and advertise his ID (which

is associated to a known room) when the smartphone is in the set

proximity range of the smart home. The smartphone can put itself in

discovery mode and sense the iBeacon signal.

110
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

5.7.2 Semantic Engine

The semantic engine is the most complex part and at the same time the

most important discovery of the macro block. It acts in two different

phases:

• during the object’s bootstrap: the semantic engine is responsible

to keep the ontology updated. Whenever a new object performs

the bootstrap, the semantic engine is notified with information

about the description of its services and its relative position in

home, set by the user through the appropriate application of

control;

• during a user’s request to perform a task: the task coordina-

tor needs to know what object can perform the goal or unlock

the condition. The semantic engine is interrogated by the task

coordinator during the research phase of smart objects.

For building the ontology is needed information about the features

of the objects and the room in which they are located inside the house.

In the proposed architecture, every object has got a file that contains

a description of its services enriched with semantic information. The

file has to be built directly from the manufacturer and follow the

guidelines analyzed below. For example, we suppose a user has got a

washing machine that exposes a service that lets us know if the object

contains clothes to be washed, i.e. if the washing machine is loaded.

In order for this method can be invoked, the semantic engine has to

know that it exists, what it does and on which physical variables it

acts. Therefore a description of the service in a standard way that can

be analyzed and interpreted by a machine is necessary.

5.7. Discovery Block 111

The code shows the format of the service description we have used:

"paths": {

"/temperature": {

"post": {

"description" : "Sets the temperature to achieve",

"parameters" : [

{

"name": "temperature",

"in": "body",

"description": "The temperature to achieve",

"required": true,

"schema" : {

"type" : "number",

"minimum" : 14,

"maximum" : 35

},

"what": "NS:Temperature"

}

],

"verbs": ["set", change", "alter"],

"what": "NS:Temperature"

}

}

}

All the descriptions from objects are transformed by the semantic

engine to RDF tuples which are merged to build up an ontology for

the smart space. Figure 5.2 shows a graphic representation for a smart

space’s ontology.

112
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

Figure 5.2: An excerpt of a smart home ontology

The ontology is used by the semantic engine to derive information

about what objects can directly or indirectly do. Lets think at a radio

alarm whose main functionality is to wake up the user. An alarm

could be either a sound or a light. According to the ontology, an HiFi

system and a TV con emit sounds: therefore they can be used to wake

up the user when the radio alarm is not available. The ontology helps

the system to find out objects’ indirect capabilities.

5.7.3 User Preferences

As already mentioned, in typical CIoT scenarios the user has a dif-

ferent role than the one he holds in the Web of Things: he does not

directly control objects but supervises their work. This supervision

firstly includes the generation of a goal that objects will have to com-

5.7. Discovery Block 113

plete by interacting with natural language or through ad hoc UI. We

have seen how this is carried out bu the understanding macro block.

Apart from the generation of a goal the user can help the system

to choose the most suitable objects to perform a given task. These

preferences can be taken into account characteristics such as efficiency

(the time required by an object to perform its tasks), effectiveness (the

quality with which the task is executed) or criteria for access control

(not all users of the smart space can have access to all objects). The

two blocks described below are used to support the user to express the

criteria with which the objects are selected at the moment in which

they will be called upon to perform the task.

Policy Manager

The policy manager is a fundamental building block to ensure con-

trolled access to objects that are part of a smart space. Such envi-

ronments are in fact characterized by being multi-user: it is therefore

necessary to be able to choose which user can control which object.

The user who for the first time registers the object in the system be-

comes the owner. He can specify fine-grained policies deciding which

other users can use the object (that is, if the object can be used by

the system to perform the tasks for that user), specifying the decision

for any transaction which is the subject able to accomplish. How a

policy manager works will be widely described in Chapter 6.

Preference Manager

The preference manager contains user preferences about the object to

be selected by the system to perform a certain task. For example, if

114
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

the goal expressed by the user is to change the temperature in a certain

room, and in this room there are two objects that can accomplish the

task (for example, the window and the air conditioner) the preference

manager allows the user to establish a priority with which these objects

will be selected.

In summary, when the Task Coordinator requires from the Dis-

covery Block the objects that can perform a certain task, a series of

filtering is done on objects available in the smart space (Figure 5.3).

The first filter is applied by the Location Manager that selects only

the objects present in the environment in which the action will take

place. The next filter is applied by the Semantic Engine that selects

only those objects with useful features to perform the action. The last

filter is applied by the Preference Manager, based on user preferences

for a given action, which choose the object to utilize among multiple

objects with similar capabilities.

Figure 5.3: Discovery steps in the proposed M2M architecture

5.8. Secure Communication Among Blocks 115

5.8 Secure Communication Among

Blocks

As already mentioned the Task Coordinator takes care of the goals

defined by a user. To reach the proposed objectives it has to com-

municate with all the objects which work is needed to achieve each

goal. Since, Task Coordinator and objects are connected to the Inter-

net, the communication between them is exposed to security risks that

can lead to safety risks when an uncontrolled (or unwanted) object’s

behaviour can harm people around it. Managing security might not

be easy in the current scenario in which the different kind of elements

(devices) that need to be secured have different hardware resources

and in particular might not have big computation resources.

One solution to cope with these issues is the use of VPNs (Virtual

Private Networks). A VPN allow to extend a private network, such

as a LAN (Local Area Network) across a public network, such as the

Internet. In a secured VPN all the nodes (clients) can communicate as

they are in the same network and in a secure way. In our scenario, all

the objects without enough resources to manage cryptography func-

tions (needed to act as a VPN client) can connect to a VPN router

that will create the needed LAN among objects and Task Coordinator.

Another approach, consists in reducing the resources needed to cre-

ate a secure channel between each object and the Task Coordinator.

This second method is more close to the IoT/WoT philosophy that

promotes unique URIs (IP addresses in VPN are private addresses:

they are not reachable out of the network and are not unique). The

basic idea is that every Home has its own components to guarantee a

116
Chapter 5. The Cognitive Internet of Things: How the role of the user is going

to change

reasonable security level for the communication among objects inside

the Home itself and among components that reside in the Cloud or

are external to the defined environment. To secure communication we

propose the structure depicted in 5.4.

Figure 5.4: PKI for the proposed system.

A Certification Authority associated to each home and manages

certificates for all the entities, i.e. Task Coordinator, Smart Objects

and users, that interact within the proposed system. Each entity the

first time (e.g. user registration, object setup, Task Coordinator/re-

mote components binding) requests a certificate from the HomeCA.

This certificate is exchanged among entities the first time they come

in touch. Then, it will be possible to instantiate SSL/TLS channels to

communicate. Some works like [60] [61] provide solutions to use pub-

lic key cryptography and SSL also on cheap 8 bit platforms. These

solution make possible to ensure the secure communication among the

various entities.

CHAPTER

SIX

SECURITY AND PRIVACY ISSUES IN THE

SMART CITY

6.1 Access Control for Context-Aware

Services

Mobile devices became in last decade the central hub for our personal

information due to the amount of private data they might control

locally (e.g. address and phone books, texts and emails) as well as

the capability to manage remote information and systems (e.g. again

emails, social networks, cloud storage and enterprise systems). In

addition, smartphones are one of the main sources of personal infor-

mation that can feed remote systems like social networks. Examples

of this information are the photos and videos recorded on the devices

and the multitude of data that might be gathered by sensors like GPS,

accelerometer, etc. To manage all these data and obviously for other

117

118 Chapter 6. Security and Privacy issues in the Smart City

purposes, users make an extensive use of applications: pieces of soft-

ware that may also substitute operating system modules for some core

operations and functionalities (e.g. configuration, keyboard). One of

the factors that contributed to the success of some mobile operating

systems like Android and iOS is the availability of application mar-

kets, which provide a very large number of applications. Malicious

applications - and the ones that do not take care about users’ privacy

- may access private data, manipulating and spreading them uncon-

trollably. These applications may also access system’s functionalities

impacting on user’s bill without his conscious consent (e.g. using SMS,

call and Internet services, especially while roaming). Modern mobile

operating systems commonly prompt the user with an authorization

dialog showing the list of functionalities which an application will have

access to. This prompt appears only during the application’s instal-

lation process and it is not possible to define access control policies

to be enforced at run-time. In addition, the user can only decide to

install or not a certain application without any degree of flexibility.

It is not possible, for instance, to decide to install an application and

then constraint the access to some functionalities during run-time, in

the case some specified conditions occur.

Modern mobile operating systems allow users to install applica-

tions in an easy way. This feature opens big chances for users that

are now able to customize devices following their needs and moods

but on the other side, it poses strong security and privacy concerns.

Smartphones other than handling personal and reserved data, provide

also services which have a cost for users. The resources that require

protection can be distinguished into:

6.1. Access Control for Context-Aware Services 119

• User’s personal/reserved data: address and phone books, call

lists, stored messages, passwords, codes, etc.;

• Applications’ reserved data: every application has files related

to its configuration or its data, that should be reserved (like

passwords). An unwanted access can modify the behavior of the

application, its configuration and its stored data;

• System’s and device’s reserved data: configuration and all the

information related to the device (e.g. IMEI, model);

• System functionalities: making calls, sending messages, connect-

ing to Internet, localizing the user are just examples of function-

alities that the system provides to applications and that can

affect user’s privacy or can lead to unwanted expenses. These

functionalities have to be provided only to those applications

that effectively required them and only following user consen-

sus;

We will cover in detail how Android manages the security of its appli-

cations. In short, the choice adopted by Android is that each applica-

tion states, during its installation process, all the system’s permissions

that it will require at run-time. The user can give his assent to allow

the application to use requested functionalities or stop the installation.

In other words, Android bases its security permission granting system

on a ”prompting” approach at installation time. In addition, the user

does not have a centralized control (thus offered by the system) to

change the behavior of applications while they are running. This type

of control can be only provided independently by single applications.

The ability to grant or to reject authorizations to an application at

120 Chapter 6. Security and Privacy issues in the Smart City

run-time goes against one of the principles of usability that Android

developers have decided to follow:

Android has no mechanism for granting permissions dy-

namically (at run-time) because it complicates the user

experience to the detriment of security1.

We agree that subjecting the user to repeated grant requests could se-

riously damage the device usability. However, we think that a policy-

based mechanism to specify a priori the behavior of applications should

be introduced. In [62], authors examined the efficacy of privacy sig-

naling provided by Android during installation process. As a result of

their research they found that the average user does not pay much at-

tention to warning messages, as he often is not able to understand the

consequences that may arise allowing a set of permissions to an appli-

cation. Conversely, the “download count” information related to an

application has a strong effect on the users’ decisions. We believe that

the Android security model may be enriched with new functionalities.

First of all, more and more applications offer a lot of functionalities and

then require a large number of permissions during their installation.

Users may be interested only in a subset of these functionalities, which

might require a limited number of permissions. In the case, for exam-

ple, of a photo editing application, the user may be only interested on

storing photos and not on geo-tagging functions. In this scenario the

user is forced to consent to all of the requirements of the application,

otherwise the system would prevent the installation. Moreover, lat-

est generation of mobile devices are able to obtain information about

user’s context. Information from sensors such as GPS, accelerometer,

1http://developer.android.com/reference/android/Manifest.permission.html

6.1. Access Control for Context-Aware Services 121

gyroscope can be used together with information coming from social

networks or provided by OS, to determine user’s context in a specific

instant. We believe that all this user’s information can be used by the

system to allow the user to decide how his applications should behave

according to what his context is. As an example, user might specify

the following policies

• Application X does not have the rights to access Internet if the

device is roaming

• Service Y must be halted if battery level is lower than 10%

These context-aware policies could be defined by users for each in-

stalled application. Another interesting scene could be the one where

context-aware policies are not chosen by the user but are imposed to

him by other authorities. As an example, we could consider an IT

department of an enterprise that may like to impose some policies on

employees devices (for instance only during work hours or only to some

applications or only when the device is within company site): in this

case we need a very flexible policy language and enforcer in order to

express more complex and context-aware polices. The needed flexibil-

ity becomes even more pushing if we consider the same context, where

a Bring-Your-Own-Device [63] policy is in place, and we need to adapt

policy based on type of applications, context - private or enterprise -

and source of applications. In the consumer segment, other examples

can be a policy enforced by a museum to its guests to prevent them

using smartphones’ camera inside some rooms, or again policies which

constraint access to sensors and network communication, etc..

All this personal information that can be obtained from smart-

phones characterize the context of the user and allow the use of

122 Chapter 6. Security and Privacy issues in the Smart City

context-aware services. In a near future where users will be surrounded

by a large number of services, many of them may be malicious and ma-

nipulate user data for malicious purposes. The smartphone, will then

become a hub of services and mobile operative systems will necessarily

provide users the possibility to control accesses to these services.

In this Chapter, we therefore propose an extension of the Android

security framework that is able to:

• apply security policies at run-time (other than during

installation-time)

• enforce security policy and user choices taking into account some

contextual information.

• use well-known standard languages for the definition of such poli-

cies

• allow the user to choose and change the behavior of such policies

We will also present the main research areas, which can address and

improve our proposal.

6.2 Related Work

The growing of context-aware services has accelerated academic inter-

est toward context-aware policies especially for those scenarios which

put mobile devices under the spotlight. Some important contributions

in this field have been directed through the definition of policy mod-

els suitable for context-aware scenarios [64]. Access control systems

6.2. Related Work 123

should be able to support and understand any new context informa-

tion in order to address access control requirements. To make this

possible, Cheaito et al. presented an extensible access control solution

based on XACML making it able to understand new attributes data

types including the functions that are used in the policy to evaluate

users’ requests [65]. Another interesting work is [66] where Li et al.

proposed an access control policy model based on context and role

that can be appropriate for web services. The model takes context as

the center to define and perform access control policies. It uses the

contexts of user, environment and resource to execute dynamic roles

assignment and constrain the authorization decision. Another inter-

esting work, which addresses conflict problems in context-aware poli-

cies, is [67] where authors propose a framework where authorization

for a particular access request is decided dynamically based on con-

text information. They further support dynamic conflict resolution

where current policy is chosen at run time based on context infor-

mation. Finally, the emerging of context aware services and relative

mobile applications is making it necessary to redesign actual mobile

OS’s security frameworks. Current smartphone systems marginally

allow users to specify the behavior of the applications through the

presence of contextual information, Conti et al. propose CRêPE [68],

an Android security extension which allows context-related policies to

be set (even at runtime) by both the user and authorized third parties,

locally or remotely. Policies which can be defined in CRêPE are based

on the status of variables sensed by physical (low level) sensors, like

time and location. Apex [69] is an extension of the Android permission

framework which allows users to specify detailed runtime constraints

to restrict the use of sensitive resources by applications. The user

124 Chapter 6. Security and Privacy issues in the Smart City

can specify his constraints through a simple interface of the extended

Android installer introduced by authors called Poly. Within Android,

Google provide a so-called “Device Policy for Android” environment

that allows to set policies to enforce use of PIN or password and screen

lock on the device and allow an administrator to wipe the device re-

motely. This framework has the only aim of preventing physical access

to information on a device which is not under direct user control. It

has no relation with the behavior’s control of a certain application. In

the field of improvements to the security of standard operating sys-

tems, it is well-know the case of Security Enhanced Linux [70] where

on top of Linux an amended security framework was introduced to en-

hance the capabilities of the operating system. SELinux became part

of the standard Linux distribution once adopted by the community.

This article goes in the same direction, introducing a more featured

policy system on an already available platform.

6.3 Access Control in Mobile Operating

Systems

Mobile operating systems protect their data and functionalities using

several approaches. Digital signature and certification, for example,

guarantee authenticity and integrity for the applications which are be-

ing installed. Using a central repository, like an Application Market,

besides providing to users the possibility to find every kind of applica-

tions, allows them to know information about the application’s author

and to read other users’ comments about the application, which might

reveal possible bugs and unexpected or malicious behaviors. Another

6.3. Access Control in Mobile Operating Systems 125

fundamental method to guarantee applications’ security is the isola-

tion: every application is executed in a restricted execution context

where it can access only a minimum set of functionalities: it cannot

access reserved data and reserved functionalities, it cannot communi-

cate with other applications or access their data. The way in which

the main OSs such as iOS, Android and Windows Phone manage the

security of their applications is undoubtedly one of the factors that

have contributed to their success.

On the iOS platform, each application is signed with an Apple-

issued certificate. Applications can be installed only from iTunes

market. To publish an application, an author must be registered and

its application is first deeply tested. Every third-party application

is sandboxed and can access exclusively to its directory. Accessing

to protected data or functionalities and communicating with other

applications is possible only using system APIs. An application de-

clares protected functionalities that it needs during market registra-

tion phase, so security compliance is established by Apple in registra-

tion phase. A user can be advised of which functionalities an applica-

tion needs during the installation phase. Apple’s App Store acts as a

gatekeeper for the applications uploaded by developers. The Apple’s

staff checks the source code of uploaded applications and retains the

possibility to refuse them if not compliant with the security criteria.

As reported in 2 “The Windows Phone 7 and 8 security model

introduced the chamber concept, which is based on the principle of

least privilege and uses isolation to achieve it; each chamber provides

a security boundary and, through configuration, an isolation boundary

2“Windows Phone 8 Security Overview” - 2012

126 Chapter 6. Security and Privacy issues in the Smart City

within which a process can run. Each chamber is defined and imple-

mented using a policy system. The security policy of a specific cham-

ber defines what operating system capabilities the processes in that

chamber can call. Every app on Windows Phone (including Microsoft

apps and non-Microsoft apps) runs in its own isolated chamber”.

Android is based on Linux Kernel and uses its mechanisms to en-

sure security. Each application run in a different process as a differ-

ent user with an UID (User ID), with a different home directory and

no root privileges. So application’s isolation is done at kernel level

and for each application, included system and pre installed applica-

tions. Communication between apps or between apps and system is

done with IPC mechanisms that extends Linux kernel, like Binder, or

are implemented at higher level, like Services, Intents, and Content

Providers. Android has a centralized repository, Google Play Store,

where application can be published, but can also install applications

from other sources. Each application is certified and the certificate

is verified during installation. Unlike the App Store, Google Play ex-

ercises no control over the source code of applications uploaded by

users.

6.4 Android Security Framework

Protected data and functionalities are provided by Android to appli-

cations using the Android Permission System. Each kind of protected

data or functionality is associated to one permission. Android provides

a standard set of permission that includes all functionalities provided

by the system. An application can define its own permission to provide

6.4. Android Security Framework 127

Figure 6.1: Android installation process

and protect its functionalities from other applications. An application

lists permissions it needs using a Manifest file, which is read by the

system during installation. Android has four protection levels which

differ for their relevance: Normal, Dangerous, Signature, Signature-

OrSystem. Each protection level has to be specified by a developer

when he defines own permissions.

During installation, a dialog box listing all the permissions at pro-

tection level Dangerous requested by the application that the user is

trying to install, is shown. User then reads and decides whether to

install the application or not. If the application is installed, all per-

missions it declared in its manifest are registered and associated to

the UID that identifies the application itself. Every time an appli-

cation tries to access to protected functionalities or data, the system

128 Chapter 6. Security and Privacy issues in the Smart City

controls if the permission is registered for the application’s UID. If the

answer is positive, the permission is granted, else the application can-

not get access. Permission are granted once at install time at cannot

be revoked afterwards: the only chance is to uninstall the application.

Is not possible to revoke a permission during application’s execution.

It is possible making a choice only during installation. Moreover all

decisions taken are static. There is no connection between policy’s de-

cision and user’s context: battery level, position, connection, and any

other variable are not taken into account during evaluation. Google

justifies this static mechanism saying that it would be too boring for

users answering to security prompts every time an application carries

out an operation, the user would end to ignore advice, granting per-

missions without reading. So Google prefers to concentrate all user

attention at install time, where he has much focus on application, its

functionalities and problems. In this way, Google takes no account of

the correlation between security decisions and context.

Android’s security framework checks for permissions when one of

the following situations occurs. i) An application want to access to a

particular functionality protected by a permission (e.g. GPS informa-

tion), ii) An application tries to start an activity of another applica-

tion, iii) Both when an application sends and receives broadcasts, iv)

An application tries to access and operate on a content provider and

v) When binding to or starting a service.

With our work we try to take into account all of these cases. We

have studied the Android source code in order to establish which are

the most suitable points to place our run-time policy’s check.

6.5. Policy Model 129

6.5 Policy Model

We’ve customized the XACML3 policy model to suit the Android sys-

tem. The policies we consider, contain information about subject,

resources and context. More precisely, in our model: i) A Subject

represents the application to which the policy will be applied. ii) A

Resource represents the Android’s permission protected by the policy.

iii) Context is a set of information which characterize user’s or device’s

context.

Each of the above elements, according to the XACML standard, is

identified by a series of attributes.

A Subject can be specified through several attributes which are

taken from application certificate. The most important are:

• ID : The name of the application’s package,

• AUTHOR-KEY-CN : Author’s common name,

• AUTHOR-KEY-FINGERPRINT : Author’s signature.

Resources are expressed with “api-feature” attributes which are

mapped to standard Android permissions, and with “uri” in case of

accessing a content provider.

Our context model is made up of the following information:

• Location data: indicate user position eg. latitude and longitude

with a radius, or higher level information like city and nation;

• Device battery data: indicate battery level and if it is charging

or not;

3https://www.oasis-open.org/committees/xacml

130 Chapter 6. Security and Privacy issues in the Smart City

• Time data: eg. time interval or day of week information;

• Connection type used by device at that moment: this informa-

tion allow to distinguish between connections that costs money

to the users and those free of charge;

Our policy model is based on a subset of the XACML grammar

for policy definition. Mainly, a policy is composed of a target that

identifies the entity to which the policy will be applied (in our case the

subjects are applications) and one or more rules. Each rule contains

an effect, which can assume values “permit”, “deny” or “prompt”, and

a set of matches for the resources and the environment. An example

of security policy which could be defined inside SecureDroid is the

following:

<policy-set combine="deny-overrides">

<policy combine="deny-overrides">

<target>

<subject>

<subject-match attr="id"

match="com.example.exampleApp"/>

</subject>

</target>

<rule effect="deny">

<condition>

<resource-match attr="api-feature"

match="android.permission.INTERNET"/>

<resource-match attr="uri"

match="http://blockedsite.org*"/>

<context-match attr="connection-type"

6.6. SecureDroid Layer 131

match="mobile-roaming"/>

</condition>

</rule>

<rule effect="permit">

</policy>

</policy-set>

The above policy sets the behavior for an application (in this case “ex-

ampleApp”) denying Internet access toward “http://blockedsite.org*”

if the current connection is of type “mobile-roaming”. The pol-

icy contains “deny-overrides” as rule’s combination algorithm and

it is composed of two rules which are evaluated in the same order

they are written. The first rule contains itself three matches which

are evaluated with and logic (as default) since the condition ele-

ment does not have a specified value for its combine attribute. The

first match indicates the resource required by the application (an-

droid.permission.INTERNET), the second one specify a filter for the

URI (“http://blockedsite.org*”) and the last one specifies the device

context (“mobile-roaming”). According to deny-overrides algorithm,

the PDP will answer “deny” if “exampleApp” requires Internet access

while it is roaming, otherwise it will answer “permit”.

6.6 SecureDroid Layer

Controlling the way in which an application works during run-time

means changing the normal operation carried out by Android’s secu-

rity framework. A näıve solution to mediate access from applications

to Android services would be to extend the Activity redefining its get-

132 Chapter 6. Security and Privacy issues in the Smart City

SystemService method. All applications based on this “safe” version

of Activity will then be subject to a security check during run-time

whenever they try to access a service. Although it may seem a good so-

lution, using this method the control during run-time would take place

only for those applications which make use of this extended version of

Activity. All the other applications, such as those in the Android mar-

ket, would execute without any security control. For these reasons,

our choice is to extend the framework based on Android by chang-

ing the components which are responsible for granting permissions to

applications.

The security engine, presented in this paper, has been developed

taking into account one main principle: making access management

policies dynamically dependent on the context. The decision process

is carried out at each attempt to access a protected resource and its

result is derived from the evaluation of a set of policies. The flexibility

and modularity of the evaluation method is strongly dependent on

these policies, their structure and content. The rules which compose

our policies contain a set of attributes dependent on applications and

available resources but also some context-dependent. In facts, the

huge availability of context information provided by modern mobile

devices makes it possible to effectively assess the context in which a

user and his device are immersed, allowing to define policies that take

into account the variables that characterize surrounding environment

and user activity.

By setting up a context-aware security system, it is possible to au-

tomate the decision process to reduce the amount of needed user/de-

vice interactions, making the whole process transparent to the user

(that in this case would be simply notified about decisions taken by the

6.6. SecureDroid Layer 133

security engine). The definition of context-dependent policies there-

fore allows to exceed limitations, like those supposed for example by

Android’s designers, to the usability of a system that continuously

prompts a user for resources’ access authorizations. It also allows

moving away from the equally limited mechanism of security decisions

taken only during an application’s installation process. To maintain

a high dynamics of the security module proposed, it is also important

providing the capability to update during run-time, in a fast and easy

way, the access control policies. In addition, we must pay particular

attention to operations performed on policy files like editing and man-

agement in general. In order to prevent unauthorized, accidental or

malicious access to the policies, they are protected, as well as any other

resource in the operating system, by the Android’s permissions mech-

anism. In this way, maintaining coherence with system approaches

(the basic principle taken into account during the design and imple-

mentation of the whole module) it is possible to get at the same time

the protection level offered by the operating system to other private

resources and the ease of access for authorized entities. It is important

to point out that the security engine is an extension module for the

Android security framework and it preserves the underlying features

and capabilities. Our security engine might grant the requested au-

thorizations to an application after the standard security control made

by the operating system is performed, in order to avoid a privilege es-

calation. An application cannot access to a secured feature without

having first declared in its manifest file.

134 Chapter 6. Security and Privacy issues in the Smart City

6.6.1 Policy Evaluation Order

Despite the fact a smartphone belongs to a user, there are several par-

ties that can control its operations, both in a static and dynamic way.

Manufacturers, in either the case that they are owners of the operating

system (e.g. Apple) or simply customize it to suit their own devices

(e.g. Samsung), could set policies which restrict access to some func-

tionalities of their devices. A first version of iOS, for example, limited

the use of bluetooth to connect only earphones avoiding to exchange

of files. Google retains the ability of modifying some aspects of An-

droid devices over the air. Android platform allows not only remote

application’s uninstallation (via the REMOVE ASSET intent), but

also the installation of new applications (via the INSTALL ASSET

intent). In addition, Google can push a REMOVE ASSET message

down to all the Android phones in order to remote kill a particular

application deemed malicious. Also the operator may specify policies

on a terminal, which restrict access to certain features or do not allow

the use of a device with a SIM card of another operator. The same

applies to a third-party, which may require the installation of its own

policy on a device in order to limit some functionalities (as in the

case of the museum in Section 1). For these reasons, we have provided

the opportunity of evaluating multiple policies during the enforcement

phase. The policies’ evaluation order is quite important because it re-

flects the priority given by the system to each policy. SecureDroid

considers the following kinds of policies:

Manufacturer −→ Operator −→ Third-parties −→ User

The First to be evaluated is the Manufacturer’s policy because it is

the most relevant to the system. The last policy to be evaluated is the

6.6. SecureDroid Layer 135

one that the user can specify for his applications. It should be pointed

out that the permissions to add, remove or edit a certain policy have

to be granted by an upper level policy. For example if the museum

requires adding a policy to the user device, this operation must be

allowed at least by the Manufacturer’s or the Operator’s policies. Se-

cureDroid may be adopted also for Bring Your Own Device scenarios,

where companies permit employees to bring personally owned mobile

devices to their workplace, and use those devices to access privileged

company information and applications. In fact, companies may install

on these devices a third-parties policy to avoid unnecessary costs or

an incorrect use of devices that can be made by employees. All the

policies handled by SecureDroid are stored in a system folder, which

can not be accessed by normal applications. The only way to modify

or add a new policy is through a system service we have developed

which is described in Section 6.7.

The mechanism introduced by SecureDroid starts working only

after the standard security check provided by Android. If Android no-

tices that an application is attempting to access a resource for which

permission has not been declared in the Manifest, it denies access di-

rectly without going through SecureDroid. The control carried out

by SecureDroid is more complex than that performed by relying ex-

clusively on the Android permissions defined in the Manifest. In the

worse case, for each request SecureDroid has to check N policies, where

N is the number of parties which may have control of the device: from

the manufacturer to the user. Each of these policies may be more or

less complicated on the basis of the number of rules it contains. For all

these reasons, placing SecureDroid after the standard Android control

avoids unnecessary overheads due to all the applications that would

136 Chapter 6. Security and Privacy issues in the Smart City

be eventually stopped by the system, for example for the absence of a

permission in the Manifest file.

6.6.2 SecureDroid Architecture

SecureDroid acts at framework level in the Android system, its basic

architecture is depicted in Figure 6.2.

Figure 6.2: SecureDroid Architecture

• Security Manager Service is the system entry point for our se-

curity engine. It’s a system service that offers three functional-

ities: read policies, write policies and make requests. Security

Manager maps XACML responses into pre-defined system’s re-

sponses.

• Policy Enforcement Point (PEP) is the enforcement point of

policy access control. PEP is responsible for collecting both

6.6. SecureDroid Layer 137

information about UID of the application which requested access

and the permission that is being requested. Finally PEP creates

and sends a request to Context Handler.

• Context Handler (CH) links all the components, handles both

requests from PEP and information from PIP, finally forwards

requests to PDP;

• Policy Information Point (PIP) collects information about sub-

ject, resource and context attributes using system Package Man-

ager and device’s sensors;

• Policy Decision Point (PDP) is the point that reads and evalu-

ates policies. It has principally two functions: given a subject,

it reads policy and returns attributes that are necessary for the

request’s evaluation and, given a complete request, it evaluates

that and and the policy returning a decision;

• Policy Administration Point (PAP) is responsible for managing

the policies. It securely store policies and give them to PDP. It

is the only one that can have access to policies, so it is invoked

by Security Manager to modify, to read and to store policies.

Security Manager deals with creating and maintaining a reference

for all the parts making up the engine. Particular attention is required

during the creation of the PAP, which controls if there is a previous

policy stored in the filesystem and, if so, loads it. In case of absence or

corruption of a policy file, PAP uploads a default policy and passes it

to the PDP that will be able to use this policy to perform its functions.

When an application requests a resource, such as a system capability

138 Chapter 6. Security and Privacy issues in the Smart City

or some information from a content provider, its request is checked

at run-time by both ActivityManager and PackageManager which are

defined in the Android security framework. After the PackageManager

has run the standard checks on permissions declared in the applica-

tion’s Manifest, it starts running SecureDroid calling the doRequest

method provided by the Security Manager. The request which arrives

to Security Manager Service contains three information: 1) the UID

of the application which is requesting access, 2) the permission the ap-

plication is asking for and, 3) an optional URI indicating the resource

that is being requested (e.g. a contact, a picture).

Since Android checks only if some permissions have been previ-

ously granted to an application, it doesn’t provide a way to propagate,

trough ActivityManager and PackageManager, information about re-

quested resources (URIs). We have extended this mechanism carrying

URIs information up to the Security Manager. In this way, Secure-

Droid can provide a fine-grained control not only based on the per-

missions declared in the Manifest but also based on the resource itself.

Assuming that user has defined a policy (for example the one

in Section 6.5) for a certain application, the execution flow of Se-

cureDroid is shown in Figure 6.2. When the application requires

access to a resource (for example, when it attempts to open a con-

nection to a URL) the PackageManager checks if the permission an-

droid.permission.INTERNET has been granted to the application by

the user, during installation. If not, PackageManager immediately de-

nies the access, otherwise it invokes the method doRequest provided

by the Security Manager which calls the PEP. The PEP collects infor-

mation about the request (the UID of the application, the resource to

which the application wants to access and, where the requested URI)

6.6. SecureDroid Layer 139

and sends them to the Context Handler. This sends the UID to the

PIP which returns additional information about the subject (i.e. the

application) such as package name, author’s signature, etc. At this

stage, CH sends these subject information to the PDP which, know-

ing the policies, returns to CH a list of context information needed by

the PDP to make a decision (e.g. “Is the device roaming?”). CH then

requires to the PIP the current values for these context information.

The PIP returns the current context status (e.g. “Current connection

type is roaming”). At this point, CH owns all the information it needs

(subject, resource and context). It sends this information to the PDP

which evaluates the policy and takes a decision which is propagated

up to the PEP, which eventually enforces it.

6.6.3 Decision handling

The PDP takes a decision only once a request from an application ar-

rives, this decision is then propagated to the Security Manager that is

responsible for enforcing it. According to policy specification, a deci-

sion could be one of: PERMIT, DENY, PROMPT or UNDEFINED.

In the case of PERMIT, Security Manager communicates the pos-

itive outcome to the Package Manager, which continues its normal

execution, including assessment of the request in the standard mode

provided by the system and returns its standard answer.

In the case of DENY, the Package Manager returns a negative

response to the application which asked for a permission. SecureDroid

returns a value different from that returned by the standard control

system when a request from an application is not granted. In this

way, the Security Manager Service can differentiate whether a request

140 Chapter 6. Security and Privacy issues in the Smart City

has been denied by the Android standard security framework or by

SecureDroid.

In the case of PROMPT, a dialog is displayed asking the user

to grant or not a permission to the application. According to pol-

icy definition, SecureDroid handles three different kinds of prompt:

i) PROMPT-ONESHOT : the dialog appears every time the applica-

tion tries to access a function protected by the policy, ii) PROMPT-

SESSION : the choice made by the user is saved until the system reboot

or the device is turned off. iii) PROMPT-BLANKET : the choice made

by the user is stored in the filesystem and remains in effect until the

user decides to remove it. Figure 6.3 shows some screenshots of the

dialogs which the system launches when the decision taken by PDP is

PROMPT.

SecureDroid defines a new exception called PolicyDenyException

which is an extension of standard SecurityException provided by the

system. Applications which are aware of the presence of SecureDroid

are able to manage instances of denied permission. These applica-

tions can, in fact, catch PolicyDenyException and understand when

SecureDroid denies a permission. In this way applications can modify

their behavior according to which permission has been denied. Other

applications, which do not handle PolicyDenyException, in the case

of having access to resources denied by SecureDroid, are treated by

the system as those applications that try to access a system’s capa-

bility without having the correct permission in the Manifest. As we

have seen, Android grants permissions during the installation phase.

So once permission has been given in the Manifest file, an application

will always have access to the permissions declared. So it is unusual

for applications to see a permission denied during its execution. There

6.6. SecureDroid Layer 141

Figure 6.3: SecureDroid dialogs in the cases of PROMPT-

ONESHOT and PROMPT-SESSION

is no common way to manage these situations and there are not guide-

lines from Google. It is not possible to predict a priori the behavior of

an application when a permission is denied: probably if the application

does not handle this occurrence it will crash.

6.6.4 Comparison with other security frameworks

Studying other modern solutions to this problem, we found two ap-

proaches which attempt to solve the same problems that were men-

tioned. In particular, we have seen that the works that most resemble

SecureDroid are APEX and CRêPE.

APEX is an extension of the Android security framework which

allows the user to have more control during application installation.

142 Chapter 6. Security and Privacy issues in the Smart City

At this stage, in fact, the user can specify security options for each

permission required by the application being installed. APEX defines

a new syntax for the policy, we have preferred to rely on an already

well-established standard such as XACML, also used by another on-

going project called webinos [71]. APEX also allows users to specify

the policy with static attributes (for example, to restrict the use of a

resource to a maximum number of times per day, or to deny access to

the resource after a certain time of day). From our point of view it

is important allowing the user to specify policies that depend on his

context.

CRêPE has more than one point in common with SecureDroid.

Like our solution, CRêPE offers the ability of specifying parameters

related to user’s context while defining policy. Also CRêPE acts at

the system level but, unlike SecureDroid, performs its checks before

the standard permission control offered by Android. We preferred to

place our control after that standard to avoid repeated checks on re-

quests made by the system itself. These kinds of requests should be

always accepted by SecureDroid in order to not destabilize the whole

system. In addition, it might be pointless to grant or not a particular

permission at SecureDroid level (thus evaluating the entire chain of

policy that we discussed) if we eventually find out that the applica-

tion did not declare such a permission inside its Manifest file. Another

difference between our framework and CRêPE is that the latter takes

into account both access control policies and obligation policies. An

obligation policy defines an action that the system will perform under

certain conditions. For example it could be possible to automatically

disable certain features of the system (such as the camera) when the

battery charge drops below a certain threshold. The obligation pol-

6.7. Policy Management 143

icy, in the case of CRêPE, can be activated when certain conditions,

which depend on the user’s context, are met. To support obligation

policies CRêPE must perform an onerous procedure. Initially CRêPE

gets information about those parameters that characterize context and

thresholds that would trigger the action. Subsequently CRêPE starts

monitoring these parameters to detect, moment to moment, if one of

the conditions related to the obligation policy is met and, if that hap-

pens, it triggers the action. This continuous monitoring activity could

be computationally heavy and can effect the energy consumption of

the device. Keeping always on the accelerometer, GPS or WiFi etc.

can drastically reduce the battery life. Unlike CRêPE, SecureDroid

does not perform a repetitive control of context variables. This check

is performed only at the instant when an application requests access

to a resource. In this way we simplify the architecture of the system

and reduce energy consumption. In addition to these considerations

on energy saving, one of the reasons why we decided to do not take

into account obligation policies is because we believe that they should

be handled at application level and not at system level.

6.7 Policy Management

Security Manager Service is a system service, accessible to applications

through a client interface. It exposes two methods: readPolicy and

writePolicy. Each of these methods is protected by an Android per-

mission so it cannot be used by applications which do not have proper

rights. Security Manager Service defines also READ POLICY and

WRITE POLICY permissions which must be declared by an applica-

144 Chapter 6. Security and Privacy issues in the Smart City

Figure 6.4: Context and Policy Management

tion if it intends to read or edit system policies. These permissions

are defined with a signatureOrSystem protection level, so only system

application can get access to them. We wanted to give SecureDroid

the possibility to set policies both from a user input and from the ex-

ternal. A user interface is provided through an application by which

users can create context specifications and choose which permission to

grant and which others to deny for each context (Figure 6.4). Users

can define several contexts specifying some parameters such as time

constraints, battery levels, location, connection, etc. Subsequently,

user can specify for each application which permissions have to be al-

lowed when a particular context is active. SecureDroid provides also

the possibility to set policies from the external using a system service

which listens to various interfaces (NFC, SMS, Internet, Bluetooth)

for policy updating requests. Each request contains information about

6.7. Policy Management 145

the policy provider’s identity and the policy itself. A policy provider

may be a manufacturer, an operator or whatever third-party and it

is identified by a signature. The identity of the policy provider indi-

cates the priority that will have the policy in the chain of evaluation

defined in section 6.6.1. This means that if the policy provider is

a third-party, his policy will be integrated into the system only in

the case both manufacturer and operator policies allow this opera-

tion. A policy update may regard a single application as well as all

applications: it is possible, for example, to block the permission an-

droid.permission.CAMERA for the application com.android.camera or

to block android.permission.CAMERA for all applications.

146 Chapter 6. Security and Privacy issues in the Smart City

CHAPTER

SEVEN

CONCLUSIONS

The smart cities will replace the cities we know today in a future that

is becoming increasingly close. The smart city will be a container of

services offered to their citizens, in order to simplify their lives and

make more effective and efficient processes that still make up the weak

point of many cities. The objectives of the new smart city will be to: i)

improve public transportation in order to reduce the traffic, ii) reduce

energy consumption, iii) let citizens participate in the administration

of the city. Current technologies and those that will spread in the

coming years in the fields of electronics, IT and telecommunications,

will enable and accelerate the transformation of cities in smart cities.

In this scenario, the user, and therefore the citizen, will be the

focus of services ecosystem which will be a key part of the economy

of these new cities. These services, which will be gradually more and

more, will be delivered to users in an intelligent way in order to fit

their needs. Services of the smart city will be proposed to users with

147

148 Chapter 7. Conclusions

the aim to adapt to what is the physical/logical context in which the

user is located. Therefore services of the smart city will be proposed

to citizens based on their context, which can be characterized by:

position, movement, social interactions, etc.

Figure 7.1: The evolution of Web’s users

Figure 7.1 shows the evolution of the user over the past years. In

particular, at the dawn of the Web user was a simple passive consumer

of contents available on Web pages. Along with the introduction of

Web 2.0 and the emergence of first social networks and blogs, the user

turned in the so-called prosumer, that can both use and generate con-

tents. With years to come and the spread of the API economy, the

number of services that users have been able to use grew exponentially.

These services were at the first stage used statically by desktop com-

149

puters and later in mobility using smartphones. Moreover, the spread

of high level tools for the services mashup have enabled users not only

to generate new contents but also new services that may be used by

other users. Tools for high and low level mashup are increasingly nar-

rowing the skills required to create new services and make them avail-

able on the Web. Within a few years more and more users will be able

to generate services and this will constitute a substantial boost to the

API which will be the mainstay of the smart city economy. Another

important phenomenon that has been treated in this thesis is the Web

of Things, which was certainly helped by advances in electronics and

the availability of virtualization platforms for creating virtual copies

of real objects and then considering such items as service providers.

In the Web of Things, users interact with real objects, but they do so

in a completely transparent with respect to their normal interactions

with the content of the Web. In the cities of the future users, as well

as their friends, will follow on the social networks also items such as

the refrigerator (which notifies when the food it contains is expiring),

their plants (which will communicate their health status), and so on.

There will not exist, therefore, a clear separation between user and

object, and between real and virtual world. Finally it was shown an

evolution of the concept of IoT that has led to the Cognitive Internet

of Things (CIoT): a future scenario in which the objects (supported

by appropriate platforms) come with an intelligence and are able to

self-organize themselves with the aim of satisfying the goals expressed

by users. The CIoT requires users to be surrounded by smart objects

that can understand who among them is able to perform a certain

task. This is a further development of the role of the users who no

longer have to interact directly with objects but will be limited to ex-

150 Chapter 7. Conclusions

press the objectives to be achieved, then the objects around him will

coordinate themselves in order to accomplish the tasks.

The role of the user is therefore evolving and goes hand in hand

with technological developments. Cities of the future should benefit

from this new ability of users but at the same time cities must support

their citizens in their daily lives through services tailored to them. As

the title says, in this thesis the author has addressed some important

issues to provide users with secure access to context-aware services

in a smart city, providing contributions in the form of solutions or

suggestions to these problems. The content of research in this the-

sis have benefited from a research, design and implementation that

the author has actively played [6] within the European FP7 Webinos

project. The platform Webinos was therefore taken as a reference for

the study of the issues addressed during the period in which the au-

thor has done his research. In particular, in Chapter 3 the author

has proposed to adopt the webinos platform to allow users to generate

and provide services to other users, using their mobile devices. Using

webinos, smartphones become tiny servers and can host services en-

abling scenarios like crowdsensing and mobile distributed computing.

Chapter 4 has addressed the problem of interaction between user and

heterogeneous objects, namely, that have different modes of interac-

tion and various control procedures. The idea was to provide to users

a mobile application that, through the recognition of a QR-Code as-

sociated with each object, was able to generate on the fly a graphical

interface that allow him to control the object. For this purpose the

author proposes the extension of the webinos platform by introduc-

ing of a new API for smart objects: through this API applications

may require a description of the capabilities offered by the object, and

151

use this description to dynamically generate the graphical interface.

Chapter 5 has described a scenario in which objects of a smart space

can work together to accomplish the tasks determined by the user. In

this context, the author proposes a cloud architecture and method-

ologies to enable the implementation of such scenarios. The concept

of Cognitive Internet of Things discussed in this chapter is a new and

challenging topic which embraces many disciplines such as semantic,

artificial intelligence, machine learning. Finally, Chapter 6 was fo-

cused on the security and privacy issues that may arise in scenarios

where users deal with context-aware services because the context is

characterized by personal and private information that users do not

want to disclose. Since users access these services from their mobile

devices, the author proposes an extension of the Android mobile oper-

ative system in order to allow users to specify security access control

policy to discriminate which personal information can be disclosed and

which services are allowed when the user is in a certain context.

Writing this thesis, the author has not got the claim to propose

definitive solutions to topics that today are under study and standard-

ization. The aim of this thesis is to show how over the years, due to

technological developments on many fronts, skills, and the ability of

users have evolved and brought them to be the next citizens of smart

cities. The author hopes that the reading of this thesis may give rise

to constructive criticism and valuable insights to undertake new and

promising research activities.

152 Chapter 7. Conclusions

BIBLIOGRAPHY

[1] R. Mason, “Welcome to the api economy,” 2014.

[2] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current

state and future challenges,” Communications Magazine, IEEE,

vol. 49, no. 11, pp. 32–39, 2011.

[3] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,

“Interacting with the soa-based internet of things: Discovery,

query, selection, and on-demand provisioning of web services,”

Services Computing, IEEE Transactions on, vol. 3, pp. 223–235,

July 2010.

[4] G. L. Torre, “Contributed code repositories:

https://github.com/glatorre,” 2013.

[5] webinos Project Team, “webinos repositories:

https://github.com/webinos,” 2013.

[6] webinos Project Team, “webinos apps repositories:

https://github.com/webinos-apps,” 2013.

153

154 Bibliography

[7] R. T. Fielding, Architectural styles and the design of network-

based software architectures. PhD thesis, University of California,

Irvine, 2000.

[8] Appuntisoftware.it, “Semantic web services,” 2010.

[9] P. Wohed, W. M. van der Aalst, M. Dumas, and A. H. Ter Hof-

stede, “Analysis of web services composition languages: The

case of bpel4ws,” in Conceptual Modeling-ER 2003, pp. 200–215,

Springer, 2003.

[10] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,

S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,

et al., “Owl-s: Semantic markup for web services,” W3C member

submission, vol. 22, pp. 2007–04, 2004.

[11] J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp,

M. Kifer, B. König-Ries, J. Kopecky, R. Lara, E. Oren, et al.,

“Web service modeling ontology (wsmo),” Interface, vol. 5, p. 1,

2005.

[12] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger,

R. Hull, M. Kifer, D. Martin, S. McIlraith, D. McGuinness, et al.,

“Semantic web services framework (swsf) overview,” World Wide

Web Consortium, Member Submission SUBM-SWSF-20050909,

2005.

[13] R. Akkiraju, J. Farrell, J. A. Miller, M. Nagarajan, A. Sheth, and

K. Verma, “Web service semantics-wsdl-s,” 2005.

Bibliography 155

[14] C. Doukas and F. Antonelli, “Compose: Building smart &

context-aware mobile applications utilizing iot technologies,” in

Global Information Infrastructure Symposium, 2013, pp. 1–6,

IEEE, 2013.

[15] J. L. Pérez, Á. Villalba, D. Carrera, I. Larizgoitia, and V. Trifa,

“The compose api for the internet of things,” in Proceedings of

the companion publication of the 23rd international conference

on World wide web companion, pp. 971–976, International World

Wide Web Conferences Steering Committee, 2014.

[16] C. Fuhrhop, J. Lyle, and S. Faily, “The webinos project,” in

Proceedings of the 21st international conference companion on

World Wide Web, WWW ’12 Companion, (New York, NY, USA),

pp. 259–262, ACM, 2012.

[17] webinos, “webinos travel,” Feb. 2013.

[18] Statistic Brain, “Social networking statistics,” Feb. 2013.

[19] TG Daily, “Internet-enabled devices to outpace pc shipments by

2013,” Feb. 2013.

[20] Yahoo, “Pipes: Rewire the web,” Feb. 2013.

[21] Z. Zhao, N. Laga, and N. Crespi, “A survey of user generated

service,” in Network Infrastructure and Digital Content, 2009.

IC-NIDC 2009. IEEE International Conference on, pp. 241 –246,

Nov. 2009.

156 Bibliography

[22] C. S. Jensen, C. R. Vicente, and R. Wind, “User-generated con-

tent: The case for mobile services,” Computer, vol. 41, pp. 116–

118, Dec. 2008.

[23] J. Tacken, S. Flake, F. Golatowski, S. Prüter, C. Rust, A. Chapko,

and A. Emrich, “Towards a platform for user-generated mobile

services,” in Advanced Information Networking and Applications

Workshops (WAINA), 2010 IEEE 24th International Conference

on, pp. 532–538, april 2010.

[24] D. Werth, A. Emrich, and A. Chapko, “An architecture proposal

for user-generated mobile services,” in Mobile, Ubiquitous, and

Intelligent Computing (MUSIC), 2012 Third FTRA International

Conference on, pp. 142 –147, Jun. 2012.

[25] A. Emrich, A. Chapko, and D. Werth, “Context-aware recommen-

dations on mobile services: The m:ciudad approach,” in Smart

Sensing and Context (P. Barnaghi, K. Moessner, M. Presser, and

S. Meissner, eds.), vol. 5741 of Lecture Notes in Computer Sci-

ence, pp. 107–120, Springer Berlin Heidelberg, 2009.

[26] OASIS, “Oasis extensible access control markup language (xacml)

tc,” Feb. 2013.

[27] X. Qian and X. Che, “Security-enhanced search engine design in

internet of things.,” J. UCS, vol. 18, no. 9, pp. 1218–1235, 2012.

[28] M. Weiser, “The computer for the 21st century,” Scientific amer-

ican, vol. 265, no. 3, pp. 94–104, 1991.

Bibliography 157

[29] L. Manovich, “The poetics of urban media surfaces,” First Mon-

day, vol. 0, no. 0, 2006.

[30] C. Thompson, “Smart devices and soft controllers,” Internet

Computing, IEEE, vol. 9, no. 1, pp. 82–85, 2005.

[31] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy,

“Smart objects as building blocks for the internet of things,” In-

ternet Computing, IEEE, vol. 14, no. 1, pp. 44–51, 2010.

[32] D. Guinard and V. Trifa, “Towards the web of things: Web

mashups for embedded devices,” in Workshop on Mashups,

Enterprise Mashups and Lightweight Composition on the Web

(MEM 2009), in proceedings of WWW (International World

Wide Web Conferences), Madrid, Spain, 2009.

[33] E. Mingozzi, G. Tanganelli, C. Vallati, and V. Di Gregorio, “An

open framework for accessing things as a service,” in Wireless

Personal Multimedia Communications (WPMC), 2013 16th In-

ternational Symposium on, pp. 1–5, 2013.

[34] P. E. Estrada-Martinez and J. A. Garcia-Macias, “Semantic in-

teractions in the internet of things,” Int. J. Ad Hoc Ubiquitous

Comput., vol. 13, pp. 167–175, July 2013.

[35] V. Catania, G. La Torre, S. Monteleone, D. Patti, S. Vercelli, and

F. Ricciato, “A novel approach to web of things: M2m and en-

hanced javascript technologies,” in Green Computing and Com-

munications (GreenCom), 2012 IEEE International Conference

on, pp. 726–730, 2012.

158 Bibliography

[36] H. Son, S. Han, and D. Lee, “Contextual information provision

on augmented reality with iot-based semantic communication,”

in Ubiquitous Virtual Reality (ISUVR), 2012 International Sym-

posium on, pp. 46–49, 2012.

[37] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and

B. MacIntyre, “Recent advances in augmented reality,” Computer

Graphics and Applications, IEEE, vol. 21, no. 6, pp. 34–47, 2001.

[38] S. Garrido-Jurado, R. MuÒoz-Salinas, F. Madrid-Cuevas, and

M. Mar̀In-JimÈnez, “Automatic generation and detection of

highly reliable fiducial markers under occlusion,” Pattern Recog-

nition, no. 0, pp. –, 2014.

[39] P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaidonis,

V. Foteinos, G. Poulios, P. Demestichas, A. Somov, A. Biswas,

and K. Moessner, “Enabling smart cities through a cognitive

management framework for the internet of things,” Communi-

cations Magazine, IEEE, vol. 51, pp. 102–111, June 2013.

[40] G. Niezen, “Ontologies for interaction: Enabling serendipitous

interoperability in smart environments,” Journal of Ambient In-

telligence and Smart Environments, vol. 5, no. 1, pp. 135–137,

2013.

[41] Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long,

“Cognitive internet of things: A new paradigm beyond connec-

tion,” Internet of Things Journal, IEEE, vol. 1, pp. 129–143,

April 2014.

Bibliography 159

[42] A. Mandal, C. V. Lopes, T. Givargis, A. Haghighat, R. Jurdak,

and P. Baldi, “Beep: 3d indoor positioning using audible sound,”

in Consumer Communications and Networking Conference, 2005.

CCNC. 2005 Second IEEE, pp. 348–353, IEEE, 2005.

[43] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Indoor

localization without infrastructure using the acoustic background

spectrum,” in Proceedings of the 9th international conference on

Mobile systems, applications, and services, pp. 155–168, ACM,

2011.

[44] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Demo: in-

door localization without infrastructure using the acoustic back-

ground spectrum,” in Proceedings of the 9th international confer-

ence on Mobile systems, applications, and services, pp. 385–386,

ACM, 2011.

[45] Revolv Inc, “Revolv: The universal smart home automation hub

and app,” June 2014.

[46] Physical Graph Corporation, “Easy & affordable smart home au-

tomation,” June 2014.

[47] Staples Inc, “Home automation hub & kits,” June 2014.

[48] Samsung Electronics CO Ltd, “Samsung unveils new era of smart

home at ces 2014,” June 2014.

[49] LG Electronics, “Lg homechatTMmakes it easy to communicate*

with smart appliances. - lg us blog,” June 2014.

160 Bibliography

[50] C. Gouin-Vallerand and S. Giroux, “Managing and deployment of

applications with osgi in the context of smart home,” in Wireless

and Mobile Computing, Networking and Communications, 2007.

WiMOB 2007. Third IEEE International Conference on, pp. 70–

70, IEEE, 2007.

[51] N. Papadopoulos, A. Meliones, D. Economou, I. Karras, and

I. Liverezas, “A connected home platform and development

framework for smart home control applications,” in Industrial

Informatics, 2009. INDIN 2009. 7th IEEE International Confer-

ence on, pp. 402–409, IEEE, 2009.

[52] A. M. Bernardos, L. Bergesio, J. Iglesias, and J. R. Casar, “Mec-

cano: a mobile-enabled configuration framework to coordinate

and augment networks of smart objects,” Journal of Universal

Computer Science, vol. 19, no. 17, pp. 2503–2525, 2013.

[53] C. Y. Leong, A. R. Ramli, and T. Perumal, “A rule-based

framework for heterogeneous subsystems management in smart

home environment,” Consumer Electronics, IEEE Transactions

on, vol. 55, no. 3, pp. 1208–1213, 2009.

[54] V. Ricquebourg, D. Menga, D. Durand, B. Marhic, L. Delahoche,

and C. Loge, “The smart home concept: our immediate future,”

in E-Learning in Industrial Electronics, 2006 1ST IEEE Interna-

tional Conference on, pp. 23–28, IEEE, 2006.

[55] D. Zhang, T. Gu, and X. Wang, “Enabling context-aware smart

home with semantic web technologies,” International Journal of

Bibliography 161

Human-friendly Welfare Robotic Systems, vol. 6, no. 4, pp. 12–20,

2005.

[56] LogMeIn Inc, “Xively by logmein ñ business solutions for the

internet of things,” June 2014.

[57] Evrythng, Ltd, “Evrythng: Make products smart,” June 2014.

[58] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu,

and P. Bahl, “An operating system for the home,” in Proc. NSDI,

2012.

[59] Linux MCE community, “Home: Linuxmce home automation,”

June 2014.

[60] M. Sethi, J. Arkko, and A. Keranen, “End-to-end Security for

Sleepy Smart Object Networks,” pp. 964–972, 2012.

[61] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura,

H. Eberle, and S. Chang Shantz, “Sizzle: A standards-based end-

to-end security architecture for the embedded internet,” Perva-

sive and Mobile Computing, vol. 1, no. 4, pp. 425–445, 2005.

[62] K. Benton, L. J. Camp, and V. Garg, “Studying the effectiveness

of android application permissions requests,” in Fifth Interna-

tional Workshop on SECurity and SOCial Networking, 2013.

[63] G. Thomson, “Byod: enabling the chaos,” Network Security,

vol. 2012, no. 2, pp. 5–8, 2012.

[64] H. Yahyaoui and M. Almulla, “Context-based specification of web

service policies using wspl,” in Digital Information Management

162 Bibliography

(ICDIM), 2010 Fifth International Conference on, pp. 496 –501,

july 2010.

[65] M. Cheaito, R. Laborde, F. Barrere, and A. Benzekri, “An ex-

tensible xacml authorization decision engine for context aware

applications,” in Pervasive Computing (JCPC), 2009 Joint Con-

ferences on, pp. 377 –382, dec. 2009.

[66] H. Li, Y. Yang, Z. He, and G. Hu, “Context-aware access control

policy research for web service,” in Instrumentation, Measure-

ment, Computer, Communication and Control, 2011 First Inter-

national Conference on, pp. 529–532, oct. 2011.

[67] A. Mohan and D. M. Blough, “An attribute-based authorization

policy framework with dynamic conflict resolution,” in Proceed-

ings of the 9th Symposium on Identity and Trust on the Internet,

IDTRUST ’10, (New York, NY, USA), pp. 37–50, ACM, 2010.

[68] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich,

“Crêpe: A system for enforcing fine-grained context-related poli-

cies on android,” Information Forensics and Security, IEEE

Transactions on, vol. 7, no. 5, pp. 1426–1438, 2012.

[69] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android

permission model and enforcement with user-defined runtime con-

straints,” in Proceedings of the 5th ACM Symposium on Infor-

mation, Computer and Communications Security, ASIACCS ’10,

(New York, NY, USA), pp. 328–332, ACM, 2010.

[70] P. Loscocco and S. Smalley, “Integrating flexible support for se-

curity policies into the linux operating system,” in Proceedings

Bibliography 163

of the FREENIX Track: 2001 USENIX Annual Technical Con-

ference, (Berkeley, CA, USA), pp. 29–42, USENIX Association,

2001.

[71] J. Lyle, S. Monteleone, S. Faily, D. Patti, and F. Ricciato, “Cross-

platform access control for mobile web applications,” in Policies

for Distributed Systems and Networks (POLICY), 2012 IEEE In-

ternational Symposium on, pp. 37–44, 2012.

