
Dottorato di Ricerca Internazionale in

Ingegneria Informatica e delle Telecomunicazioni

XXVIII Ciclo

Tesi di Dottorato

SENSING AND ACTUATION AS A SERVICE,

A DEVICE-CENTRIC PARADIGM FOR THE IOT:

ANALYSIS, DESIGN AND CASE STUDIES

Ing. Giovanni Merlino

Coordinatore

Chiar.ma Prof. V. Carchiolo

Tutor

Chiar.ma Prof. V. Carchiolo

to my families

SOMMARIO

La crescita impressionante, che non accenna ad arrestarsi, del nu-

mero di dispositivi distribuiti e connessi alla rete globale in quella

che viene definita l’Internet delle Cose, ovvero “Internet of Things”

(IoT), richiede la disponibilità di tecniche per la gestione di infras-

truttura hardware in grado di affrontare un livello di complessità

talmente schiacciante, specialmente alla luce del crescente impatto

dell’economia della condivisione e del ruolo giocato dalla cosiddetta

“coda lunga” (long tail). In questo contesto, l’approccio as-a-Service

fornisce meccanismi noti ed affidabili per il provisioning di infrastrut-

ture e servizi, ed una sfida interessante sta nel valutarne l’applicabilità

all’istanziazione e gestione del ciclo di vita di un’infrastruttura dinam-

ica, possibilmente virtualizzata, composta da sensori (ed attuatori).

A parte la flessibilità di poter noleggiare questo tipo di risorse sec-

ondo il modello delle utilities, fornendo l’accesso al livello più basso

possibile, il percorso di ricerca intrapreso per questa dissertazione è

pensato per fornire un respiro ancora più ampio in relazione agli sce-

nari presi in considerazione, a partire da una piattaforma per il mo-

bile crowdsensing di tipo opportunistico e cooperativo fino ad arrivare

ad un modello per Smart City “definite dal software”, laddove la ri-

configurazione dinamica del “cablaggio” tra oggetti in ultima istanza

abilita anelli di controllo retroazionato su scala geografica, e su richi-

v

vi

esta. Eppure nessuno di questi traguardi, ed in particulare la facoltà di

plasmare l’ambiente circostante, risulta essere obiettivo effettivamente

raggiungibile in assenza di strumenti per interagire bidirezionalmente,

e col massimo controllo esercitabile, con sistemi fisici attraverso sen-

sori ed attuatori remoti a portata di mano. La premessa dunque

risiede nell’impostare la ricerca da una prospettiva incentrata sul

dispositivo. I tentativi di gestire l’IoT a livello di infrastruttura e

piattaforma, il framework Stack4Things cos̀ı come altri risultati non

sono altro che esiti di questo approccio.

In questa dissertazione sono quindi presentate le analisi degli sce-

nari d’interesse, i dettagli relativi alle architetture ed i casi di studio

affrontati, descrivendo ed evidenziando le scelte progettuali effettuate.

ABSTRACT

The huge and steady growth in the number of distributed devices con-

nected to the global network as a so-called Internet of Things (IoT)

calls for infrastructure management techniques able to deal with this

overwhelming complexity, especially in light of the growing impact of

the sharing economy and the role played by the so-called long tail.

In this context, the as-a-Service approach provides well investigated

mechanisms for infrastructure and service provisioning, and an in-

teresting challenge lies in evaluating its application to the instanti-

ation and lifecycle management of a dynamic, possibly virtualized,

infrastructure of sensing (and actuation) resources. Apart from the

flexibility of renting this kind of resources according to the utility

model, by providing access at the lowest level where possible, the re-

search path undertaken in this dissertation is meant to provide even

bigger scope to the scenarios under consideration, from a platform

for opportunistic and cooperative mobile crowdsensing to a model for

Software-Defined Smart Cities, where dynamic reconfiguration of the

wiring among Things ultimately enables wide-area feedback control

loops on demand. Yet none of these outcomes, and in particular shap-

ing the surrounding environment, may be achievable without means

to interact bidirectionally, and with the greatest control that may be

exerted, with physical systems through remote sensors and actuators

vii

viii

at one’s own fingertips. The premise then lies in engaging the research

from a device-centric perspective. The proposed infrastructure and

platform takes on IoT, the Stack4Things framework as well as other

results are then outcomes of this approach.

Analytical descriptions of the scenarios, details of the architectures

and investigated case studies therefore are here provided, while also

reporting and highlighting design choices.

CONTENTS

Introduction 1

1 Sensing and Actuation as a Service 5

1.1 Introduction . 5

1.2 Overview: vision, approach 7

1.2.1 The big picture 7

1.2.2 Device-centric paradigms 9

1.3 A device-centric stack 12

1.3.1 High-level IaaS architecture 13

1.3.2 Core modules 15

1.4 Basic device interactions 21

1.5 Proof of concept . 24

1.5.1 Case Study . 24

1.5.2 Testing . 27

1.6 Related work . 31

2 Stack4Things: a framework for SAaaS 37

2.1 Introduction . 37

2.2 Sensing-and-Actuation-as-a-Service 38

2.3 Background . 40

2.4 Stack4Things architecture 44

ix

x CONTENTS

2.4.1 Board-side . 45

2.4.2 Cloud-side - control and actuation 47

2.4.3 Cloud-side - sensing data collection 48

2.5 Stack4Things REST API 49

2.6 Use cases . 52

2.6.1 Use case: provide the list of nodes registered to

the Cloud . 52

2.6.2 Use case: retrieve the current value of a pin on

a specific board 53

2.6.3 Use case: create an SSH connection toward a node 55

2.6.4 Use case: store readings from a sensor in the

Cloud . 57

2.6.5 Use case: inject a CEP rule and set a reaction . 59

3 Mobile CrowdSensing as a Service:

a platform for opportunistic sensing 67

3.1 Introduction and motivations 67

3.2 Preliminary concepts and related work 71

3.2.1 Mobile Crowd-Sensing 71

3.2.2 MCS taxonomy 72

3.2.3 Related work 74

3.3 MCSaaS paradigm . 76

3.3.1 Vision . 76

3.3.2 Stack . 80

3.4 Infrastructure . 82

3.5 Platform: MCSaaS module 85

3.6 Setup and deployment of MCS applications 88

3.6.1 MCSaaS platform setup 88

3.6.2 MCS application configuration and deployment 91

3.7 The MCSaaS implementation 94

3.8 MCS app: case study 96

CONTENTS xi

3.8.1 Pothole mapping 98

3.8.2 Traffic monitoring 99

3.8.3 Testing and evaluation 100

4 A crowd-cooperative approach for ITS 107

4.1 Introduction and motivations 107

4.2 Background and related work 109

4.2.1 An overview of ITS 109

4.2.2 MCS for ITS 111

4.3 A novel cooperative strategy 112

4.3.1 A distributed MCS pattern 112

4.3.2 Stigmergic approach 115

4.4 ITS implementation . 120

4.4.1 Motivating example 121

4.4.2 MoCSACO application to ITS 122

4.5 Modeling and evaluation 125

4.5.1 MA model of the MoCSACO algorithm 125

4.5.2 Results . 128

5 Network Function Virtualization for CPS 135

5.1 Introduction . 135

5.2 Network virtualization for IoT 137

5.2.1 Tunneling . 137

5.2.2 Layering . 139

5.3 A real-world example 141

6 Software-Defined City:

an elastic model for the Smart City 149

6.1 Introduction . 149

6.2 Related work . 151

6.3 Overview of the approach 152

6.3.1 Data Plane: Cyber-Physical Systems 153

xii CONTENTS

6.3.2 Control Plane: Smart Cities 154

6.4 Reference architecture 158

6.4.1 Requirements 158

6.4.2 Sensing and Actuation as a Service for SDC . . 161

6.5 Use case . 162

Conclusions and future work 167

LIST OF FIGURES

1.1 A generalized Von Neumann architecture 8

1.2 Device-centric stack: architecture and deployment . . 14

1.3 SAaaS Hypervisor: architecture 16

1.4 SAaaS Hypervisor: modules 16

1.5 SAaaS Planning Agent: architecture 19

1.6 SAaaS Task Manager: architecture 20

1.7 SAaaS: resource acquisition AD 22

1.8 SAaaS: request submission AD 34

1.9 SAaaS: submission management AD 35

1.10 SAaaS: observation access AD 35

2.1 Stack4Things: reference scenario 39

2.2 Stack4Things: distributed system 42

2.3 Stack4Things: board-side architecture 44

2.4 Stack4Things: Cloud-side architecture 45

2.5 S4T: listing of registered nodes 62

2.6 S4T: retrieving current value of a pin 63

2.7 S4T: creation of an SSH connection 64

2.8 S4T: storing readings from a sensor 65

2.9 S4T: injection of a CEP rule 66

xiii

xiv List of Figures

3.1 MCS: application scenario 72

3.2 MCSaaS: scenario . 77

3.3 MCSaaS: stack . 81

3.4 SAaaS: reference architecture 83

3.5 MCSaaS module . 86

3.6 MCSaaS: initial platform setup AD 89

3.7 MCSaaS: app negotiation and platform bootstrap AD 91

3.8 MCSaaS: app deployment AD 93

3.9 MCSaaS-driven app: deployment scenario 96

3.10 MCS and MCSaaS emulation: contribution sampling . 104

4.1 MCS patterns: centralized and distributed 113

4.2 MoCSACO: activity diagram 117

4.3 Distance graph: originating road map 121

4.4 Markovian Agents: categories 126

4.5 Results: pheromone distributions 130

4.6 Results: traffic flow intensities 133

5.1 Functional diagram of WS-based reverse tunneling . . 146

5.2 Functional diagram of tunnel-based bridging over WS 147

5.3 Virtual networking use case: workflow 148

6.1 Cyber-Physical Systems 153

6.2 Cyber-City System function virtualization 155

6.3 Control logic: approaches 156

6.4 Software Defined City 157

6.5 SD City as closed-loop system 158

LIST OF TABLES

1.1 SAaaS results: contribution overhead 27

1.2 SAaaS results: individual operation performance . . . 28

2.1 IoTronic REST API 51

3.1 Taxonomy of MCS applications 74
3.2 MCSaaS scenario: actors 79

xv

xvi List of Tables

INTRODUCTION

In recent years, the Internet of Things (IoT) has emerged as one of

the hottest trends in ICT, thanks to the proliferation of field-deployed,

dispersed, and heterogeneous sensor- and actuator-hosting platforms.

Along with the accelerating pace of development of powerful and flexi-

ble embedded systems, characterized by reprogrammable behavior and

ease of use, such things are often gaining a “smart” labeling to indicate

this evolution. Ubiquity, in terms of availability of cheap resources (of-

ten coupled with free and open software tools), as well as ever higher

board reconfigurability and embedded processing power may be taken

for granted. Thus such a stimulating albeit challenging scenario calls

for suitable approaches, technologies and solutions. In particular, on

the verge of explosive growth in demand and adoption, vertical frame-

works and closed siloes are to be considered unsustainable in the long

term and are best avoided. Moreover, beyond interoperability and

functional scope, the metric by which deployments and operations

may be considered large is naturally going to be redefined according

to the unprecedented sheer scale.

Ideally, at the very least (fleets of) devices, bought from a di-

verse range of vendors, should be manageable by resorting to a unified

framework, reconfigurable on-the-fly at runtime, even if already de-

ployed (i.e., remotely), and repurposed for a variety of duties, possibly

1

2 List of Tables

multiplexed onto the same resources concurrently, when constraints al-

low for it. This basic level of service should not preclude focusing on

more interesting usage patterns, such as opportunistic exploitation or

on-demand custom wiring of a subset of the pool of globally available

resources.

Structure of this Dissertation

In this work some approaches and solutions are presented to address

the aforementioned challenges.

This dissertation is organised in six chapters, excluding the closing

one and this introduction, as outlined in the following:

• Chapter 1 introduces the basic concepts behind Sensing and Ac-

tuation as a Service (SAaaS), a device-centric, service-oriented,

Cloud-mediated approach to sensing and actuation, including

a high-level architecture and some interaction models. It also

describes a proof of concept.

• Chapter 2 presents Stack4Things (S4T), an extension to the

OpenStack framework for SAaaS, able to enable remote con-

trol and actuation, as well as data collection. In particular, the

section includes a description of S4T architecture, a subset of its

REST APIs as well as outlining some use cases.

• Chapter 3 explores the feasibility of supporting and exposing a

platform for Mobile CrowdSensing (MCS) applications on top

of SAaaS-enabled infrastructure, a so-called MCS as a Service

(MCSaaS), proposing a two-layered approach to node-side de-

ployment as a solution to address contributor-owned devices’

churn, also presenting platform-relevant interactions, two case

studies as well as a preliminary testing and evaluation effort.

List of Tables 3

• Chapter 4 proposes a crowd-cooperative strategy which is ex-

pected in the future to leverage crowd-powered sensing-oriented

platforms such as MCSaaS. Here the approach is specifically

geared toward vehicular traffic within the context of Intelligent

Transportation Systems, featuring a real-world example, a model

and a preliminary evaluation.

• Chapter 5 describes remoting, tunneling as well as layering mod-

els and mechanisms of Cloud-enabled network virtualization for

IoT, implemented within S4T and meant to support and simplify

the management of wide-area heterogeneous sensor-/actuator-

hosting nodes. A real-world example and some considerations

on the overhead are outlined.

• Chapter 6 introduces the idea behind an elastic model for Smart

Cities, ultimately leading to the perspective of a Software-

Defined City as instance of a bundle of urban-scale, on-

demand, hierarchical feedback loops based on (possibly virtual-

ized) Cyber-Physical Systems. Requirements for such a scenario

are there enumerated, as well as some use cases described.

An ending chapter, which is not numbered, wraps up this work

with the conclusions and proposes further work related to the pre-

sented subjects.

This dissertation interpolates material from several published pa-

pers by the author, based on [1], [2] and [3], respectively for Chapters 1

and 3. Instead Chapters 2, 5 and 6 include material which has already

been accepted, yet which publication is still pending, even if some re-

sults have already been disseminated in [4] and [5]; whereas Chapter 4

material still under review for publication, albeit already presented in

a peer-reviewed workshop.

4 List of Tables

Acknowledgements

A subset of the research efforts described in this dissertation origi-

nate from activities partially funded by the S.I.Mon.E. project un-

der Sicilian POR programme, Smart Health (04a2 C, cluster OSDH-

SMART FSE-STAYWELL) and SIGMA (01 00683) projects under

Italian PON programme, and BEACON project under European

Union’s Horizon 2020 Research and Innovation programme (grant

agreement n. 644048).

Requirements, specifications and deliverables of any kind for the

relevant projects are available on the respective project websites.

CHAPTER

ONE

SENSING AND ACTUATION AS A SERVICE

1.1 Introduction

The current ICT scenario is dominated by large and complex systems,

paving the way to a ZettaBytes (BigData) [6] landscape made up of bil-

lion/trillion objects and devices (Internet of Things - IoT) [7]. Devices

usually equipped by a wide range of sensing resources and advanced

computing, storage and communication capabilities, often referred to

as smart, populate this scenario, thus highlighting the need for facili-

ties for their management. Efforts categorized under the IoT umbrella

term take some steps in this direction but mainly from a networking

perspective, where the communication among heterogeneous things is

crucial. However, other important aspects related to sensing, com-

puting and data resource management have to be addressed in these

contexts.

With regard to sensing, basically, a sensor periodically checks,

probes or queries the observed system to provide updated information

on its status. This information may be gathered, processed or also

stored for further handling. In some cases, the system may require

5

6 Chapter 1. Sensing and Actuation as a Service

multiple phenomena observations from different sources, to be prop-

erly sensed using sensor networks, which in turn may require complex

algorithms for their processing and, in particular, specific techniques

for managing the (often huge) datasets thus generated.

Taking into account the massive amounts of data this kind of de-

vices, available by the billions very soon, generate, means stepping into

the BigData realm, usually tackled at the higher levels, i.e., in terms

of storage, centralized treatment, analytics, inference, etc. What is

currently to be investigated more thoroughly is BigData at the lowest

level, i.e., closer to the source. In order to understand well the issues

and requirements in terms of the data-originating infrastructure, a

deeper look at the underlying distributed systems is called for, possi-

bly re-evaluating approaches, assumptions and theoretical frameworks

where needed.

According to the above considerations, here follows a conceptual

framework for processing duties to be pushed as close as possible to

data for sensing-originated BigData loads, thus leading to a device-

centric approach to distributed sensing systems, at the other side of

the spectrum where current data-centric approaches are positioned.

The device-centric approach, in line with the BigData principle of

bringing computing near to data, proposes to inject intelligence on

sensing devices in order to collect, preprocess, aggregate and mine

sensed data at the source, before forwarding something useful. To this

purpose a Cloud/IaaS approach is here proposed for adoption, since it

allows to easily customize sensing resources through abstraction and

virtualization solutions thus enabling the device-centric view.

This way, in the chapter a conjecture is put forward about how

a sensing IaaS infrastructure can support a sensing-enabled BigData

scenario exploiting the device-centric approach, under the guise of a

Sensing IaaS stack, as a platform enabler for BigData approaches,

providing basic services for developing data processing facilities and

1.2. Overview: vision, approach 7

APIs on top of the them, in an everything as a service (XaaS) [8, 9]

philosophy.

The implementation of the core modules of this device-centric ap-

proach to sensing BigData management has been done for Android-

based smartphones. The functional testing of such an implementation

has been also performed through a surveillance app in order to eval-

uate the feasibility of this approach, also gauging certain metrics of

interest according to different viewpoints (end user, contributors and

providers).

This effort is now contextualized and extended into a BigData

scenario, proposing a new device-centric approach. Based on this per-

spective, an architecture is henceforth provided while also develop-

ing the core building blocks of a BigData sensing IaaS stack starting

from the Cloud-enabling artifacts and modules. Although different

solutions for the management of resources and data in sensing infras-

tructures have been specified so far [10, 11], here progress beyond the

state of the art consists in investigating the problem from a different,

BigData angle, by adopting a device-centric approach rather than a

more typical data-centric one.

This way, the overarching vision about the BigData problem is

specified when it relates to (geographically dispersed) sensing data col-

lection nodes, describing the main concepts behind the device-centric

approach. A generalization of the Von Neumann architecture to dis-

tributed systems of this kind is put forward.

1.2 Overview: vision, approach

1.2.1 The big picture

From a high-level, abstract perspective, a distributed system can be

considered as a generalization of the Von Neumann architecture at

8 Chapter 1. Sensing and Actuation as a Service
Storage Sensing Computing

Communication

Figure 1.1: A generalized Von Neumann architecture

larger scale than a single computing system, as the one shown in

Figure 1.1. In this architecture, computing subsystems provide pro-

cessing facilities, storage subsystems make up the memory hierarchy,

while I/O operations are performed by sensing and actuation subsys-

tems. The communication subsystem, i.e., one or more buses per the

traditional architecture, mainly recognizable under the guise of net-

working infrastructure, allows the interconnection among members of

each class of the distributed system, as well as different instances of

the same subsystem.

In this architecture, differently from the original Von Neumann

one, all the elements, except the communication one, could be con-

sidered as optional. This way, a wide range of distributed comput-

ing (Cluster, Grid, Cloud, etc.), storage (NAS, SAN, etc.), sensing

(WSN, M2M, IoT, etc.) infrastructure and solutions can be repre-

sented through the high level model shown in Figure 1.1. Furthermore,

hybrid, hierarchical, multi-tiered architectures, including distributed

sensing, storage and/or computing systems, may be comprised in this

model. From the sensing angle, this architecture can properly repre-

1.2. Overview: vision, approach 9

sent a sensing system, where sensor data can be collected in specific

storage subsystems and processed by computing subsystems, all inter-

connected through communication subsystems such as networks. Also

sensor networks are included in the model, considering as communica-

tion subsystem an ad-hoc network, often wireless, connecting sensors

to the base station that could store and process data.

The main bottleneck of the architecture of Figure 1.1 is the com-

munication system, which also has significant impact on the overall

dependability. As a result, it is necessary to minimize the usage of the

communication subsystem in a distributed sensing system.

1.2.2 Device-centric paradigms

Putting sensing-related duties into context, a way to manage effec-

tively huge collections of incoming data (Big Data) consists in min-

imizing the communication overhead by bringing computation closer

to data, and not the other way around, as already discussed. The ap-

proaches usually adopted in sensing resource management [9, 12, 13]

can be framed into the data-centric category since the only operations

provided are data manipulation ones, considering sensing devices as

just mere source of data. A step forward, in accordance with the

BigData locality principle, is to provide to user actual, even if vir-

tual, sensing resources instead of the data they generate adopting a

device-centric paradigm.

Although the data-centric approach can be successfully applied to

different contexts, the device-centric one manifests several benefits in

comparison to the former:

decentralized control - distributed policies may be deployed on virtual

sensors and actuators through customization features allowing to de-

ploy on them user-customized software; on-board data pre-filtering and

processing - data are filtered and/or processed on the device; reduced

10 Chapter 1. Sensing and Actuation as a Service

number of data transfer - a direct link between the user and the sens-

ing resource is established thus requiring just one data transfer, while

in the data-centric approach at least two transfers are required since

data are first stored into a database that provides them to the user;

composition, repurposing - it allows to aggregate, compose and/or

repurpose sensing resources; higher security - than the data-centric

approach since it is possible to shift the burden from the resource to

the network and vice-versa according to the required level of security

and the device capabilities; information dissemination - data are dis-

seminated through the distributed sensing infrastructure thus allowing

to implement distributed data delivery algorithms optimized on the

topology improving the transfer performance.

Exploring such perspective, in the following this Von Neumann ar-

chitecture (VNA) generalization described above will be detailed by

stretching a variety of modern patterns and models into this theoret-

ical framework. Taking BigData as target domain, its whole point

is about “reliably processing unbounded streams of data”. Even re-

cently developed advanced solutions such as, e.g., real-time streaming

BigData systems, while being more tuned to the scenario under consid-

eration, i.e., less batch-oriented and more node topology-dependent,

are anyway wholly about spearheading once more the approach of

bringing computation closer to data, ideally for local (or near-local)

processing.

A requirement lies in the ability to inject at runtime custom logic

for node-local computation, possibly including variants enabled for

(explicit) node cooperation. In this sense, an equivalent for VNA

would be coprocessor-based acceleration (possibly even in cooperative

mode for multi-adapter configuration) and/or other CPU offloading

engine, such as those normally available in high-end NICs. In turn

this kind of scenario, apart from the availability of dedicated periph-

erals, e.g., sensor-hosting boards in this case, calls for the ability for

1.2. Overview: vision, approach 11

such subsystems to be reprogrammable: typically the role of tran-

sient processing logic, such as, e.g., shaders when talking about GPU

pipelines and their corresponding engines (so called shader units).

Such resources need to be managed, thus whereas the control unit

of a CPU performs this function in terms of VNA, a centralized man-

agement subsystem, such as an IaaS solution, would take on a similar

role in the aforementioned generalization. Sensor-hosting environment

virtualization may be considered a valuable addition, where multi-

plexing virtual sensors over physical ones, and composing instances

(resource slices) into more complex ones, would be advanced mecha-

nisms, in line with the aforementioned Cloud-oriented vision. In VNA

terms, virtual instances of sensors play the role of I/O virtualization.

To complete this overview, another paradigm worth mentioning is

that of Software Defined Networking (SDN) [14], or more in general

SD* (Software Defined Radio, etc.), in this case declined as Software

Defined Sensing (SDS). Indeed at the core of the SD* paradigm is

both a separation between a layer dedicated to coordination of poli-

cies (so called control plane) and another dealing with mere execution

(data plane, also called, e.g., forwarding plane, for SDNs). Whereas

control in an SDN refers to the ability to deploy and switch to, e.g., a

routing protocol, on a set of devices, the SDN forwarding fabric, typ-

ically hard-wired, just has to push packets around according to the

policy such a choice of protocol encodes. When it comes to SDS, the

reconfiguration is for a generalized control plane, made up of sensing,

storage, processing and transmission user-defined group-wide policies,

in comparison to the corresponding data plane, i.e. the aforemen-

tioned subsystems working according to such tunables, of a swarm of

boards/slices, really a sort of cross-category policy engine.

Getting back to the sensing-related IaaS-like Cloud exposed above,

the elastic on-demand allocation of resources it brings about may

be considered as a mechanism to centrally manage and coordinate

12 Chapter 1. Sensing and Actuation as a Service

slices making up a control plane, by leaving those available to (coordi-

nated if needed) mass injection of custom logic. This means imposing

whichever patterns or criteria match such separation of duties and

concerns.

Where all these paradigms get pulled together, the overarching

BigData problem may be reduced to a use case for control plane sep-

aration, in particular as a global policy, i.e., a set of directives to

migrate computation as close as possible to the data to be processed.

1.3 A device-centric stack

From a device-centric perspective there is the need to offer a stack

that provides readily available functionalities in the areas of sensor

and actuator virtualization, and service-oriented provisioning to have

(virtual) sensing resources available as endpoints, e.g., registered and

enumerable, as well as actionable items, e.g., prone to code injection

if needed. This is just a small set of Cloud-enabled functionalities,

yet it is a first step toward the kind of device-centric architecture for

BigData, ultimately leading to a generalized Von Neumann architec-

ture, discussed in previous sections. More specifically, the following

issues should be taken into account, and related functionalities pro-

vided, by the stack: Sensor and actuator abstraction: sensing and

actuation resources have to be abstracted, providing a homogeneous

view of heterogeneous sensors and actuators hosted by both mobiles

and SNs; Virtualization: resources are also going to be virtualized,

either restricting capabilities (thus exporting subsets), repurposing

them or making compositions to obtain complex virtual sensors, or

actuators on offer starting from the physical ones; Virtualization has

to also provide adequate mechanisms for customizing the virtual re-

source provided, as well as isolation and similar security-related issues;

Node management: adequate mechanisms and tools have to be pro-

1.3. A device-centric stack 13

vided to manage a sensing node, handling Cloud provider subscrip-

tion, and implementing and enforcing policies merging device owner

and Cloud provider objectives; Service oriented/Cloud provisioning

approach: allowing end users (service providers, other infrastructure

providers, organizations, etc.) to submit both functional and non-

functional requests with requirements and specifications, without any

knowledge of the system resources deployment. The provisioning of

actual, even if virtual, sensing resource has to also ensure to end user

the total control on the provided device. To this purpose a direct

connection between end users and devices has to be established and

facilities to support this mechanism have to be implemented. From

the BigData perspective, this avoids most mediated interactions in

data management thus minimizing roundtrips.

1.3.1 High-level IaaS architecture

To address all such requirements through a stack implementing the

aforementioned functionalities the proposal here is to adopt and ex-

tend an IaaS approach to the sensing domain, at the core of the device-

centric model. Through a sensing infrastructure Cloud stack physical

(or even virtual) sensing and actuation resources can be provided on-

demand, elastically, in an IaaS fashion for Cloud computing providing

virtual machines.

By approaching sensor-based services from an IaaS perspective

there are many other advantages to be reaped, such as the customiza-

tion and virtualization possibilities this approach enables, including

the ability to multiplex requests over (available) endpoints and deal

elastically with hardware resource scarcity, in typical Cloud fashion.

This way, resources get to be fully exposed as infrastructure for

the Cloud, while still preserving alternative mechanisms of interac-

tion, such as data-driven mining-related services, which may simply

14 Chapter 1. Sensing and Actuation as a Service

run in parallel, keeping one more avenue open for exploitation. In-

deed other relevant standards, such as the IoT-A model [15], may be

considered for extension by projecting the architectural considerations

under discussion into these.

Enforcer

Hypervisor

Cloud
Manager

Se
ns

in
g

In
fr

as
tr

uc
tu

re
 L

.

Node1 Node2
Node3 Noden

Contributor 1 Contributor 2 Contributor n
Contributor 3

Sensing IaaS
Infrastructure

Provider

N
od

e
L.

EndUser

Figure 1.2: Device-centric stack: architecture and deployment

This way, starting from [16], the layered architecture shown in

Figure 1.2 has been defined for the enablement of core mechanisms

needed in a device-centric stack such as custom code upload to sensor

boards, i.e., resource customization. It is composed of three modules:

the Hypervisor, the Enforcer and the Cloud Manager ones, spanning

across the node and the sensing infrastructure levels. The node level

mainly provides functionalities for locally managing a node without

any specific knowledge of being part of a sensing IaaS. At the man-

agement level the Cloud view is implemented by providing facilities

for handling sensing resources as elements of the infrastructure, or

ephemeral instances thereof, depending on whether the resource is a

tangible, physical one, or a virtualized subset.

The Hypervisor, operating at node level, implements management,

virtualization and customization mechanisms for sensing (and actua-

tion) resources enrolled either from mobiles or SN nodes. At higher

level, the Cloud Manager and the Enforcer deal with interaction mech-

1.3. A device-centric stack 15

anisms among nodes in the Cloud. The former is in charge of having

the virtual sensing resources exposed via Web service interfaces and

indexing resources. The latter implements enforcement mechanisms

of global and local Cloud policies, a subscription management subsys-

tem, and provides facilities for cooperation on overlay instantiation in

particular, per the SDS approach.

As shown in Figure 1.2, the Hypervisor and the Enforcer are de-

ployed into contributing nodes while the Cloud Manager is deployed

into the Sensing IaaS Provider servers. From a device-centric perspec-

tive, the main basic functionalities characterizing the approach are

the sensing resources abstraction, virtualization and customization.

This is the reason why, in the following, the focus rests mainly on the

Hypervisor core modules and related functionalities.

1.3.2 Core modules

Here the aim is to provide details about basic services and abstrac-

tions, as well as the corresponding components that are key enablers

for the device-centric paradigm, i.e. the ones provided by the Hypervi-

sor. It can be viewed as an essential component of this device-centric

approach to sensing platforms, tasked with the management of sensor

(and actuator) resources, as well as embedded processing and storage

ones, by introducing virtualization and customization functionalities.

A modular, high-level layout of the Hypervisor architecture con-

sists of four main building blocks: the Virtualization Unit, the Ab-

straction Unit, the Node Manager and the Adapter, as shown in Fig-

ure 1.3. The top layer of the Hypervisor is populated by the Virtu-

alization Unit, whose core task is slicing, i.e., generating compatible

partitioning schemes for a cluster of resources provided by the lower

level Abstraction Unit or Node Manager, when there is no requirement

calling for aggregation of resources, e.g., as the case of a slicing that

16 Chapter 1. Sensing and Actuation as a Service

Node Manager

Hypervisor

Abstraction Unit

Node

Mote 1
........

Virtualization Unit

Mote n
Adapter Adapter

Figure 1.3: SAaaS Hypervisor: architecture

Abstraction Unit

Planning
Aggregator

Observation
Aggregator

Resource Discovery

Customization
Manager

(a) Abstraction Unit

Interface

Adapter

Observation
AgentPlanning Agent

Interface

Translation EngineCustomization
Engine

Mote
Manager

(b) Adapter

Figure 1.4: SAaaS Hypervisor: modules

degenerates to mere mapping.

Below the Virtualization Unit lies an Abstraction Unit. As may be

noticed comparing Figure 1.4a against Figure 1.4b, the Abstraction

Unit replicates planning and observation facilities, in turn modelled

after those featured in the Adapter, this time operating on a node-

wide scale, thus combining the pool of resources of a WSN as a whole.

In particular, the Observation Aggregator exports all node resources,

while the Planning Aggregator helps in managing this set, by send-

ing commands’ combinations and tracking return codes, reacting to

(partial) failures by timely triggering of adjustments. The Resource

1.3. A device-centric stack 17

Discovery module offers an interface to motes, actively gathering de-

scriptors of underlying resources, then forwarding results to the Ag-

gregator modules. A Customization Manager acts as orchestrator for

customization engines deployed on motes.

Virtualization and Abstraction Units work over a Node Manager,

which acts only at node level and is in charge of operations of sensing

resources and of mandating policies, by cooperating with the Mote

Manager, in turn inside the Adapter, replicating functionalities at SN

mote level. These functionalities and roles of both modules collapse

into the Mote Manager for standalone device. The Virtualization Unit

is L-shaped in Figure 1.3 since it may work over an Agent-hosting

Adapter, with no other interposed components, at least in selected

cases, e.g., as in dealing with degenerate WSNs, i.e., a set of a single

SN mote.

The lowest component of an Hypervisor is the Adapter, which is

shown in Figure 1.4b, and plays three distinct roles: first exposing a

customer-friendly and standards-compliant Interface toward on-board

resources. It is in charge also of requests, retrievals, and eventually

pre-processing stages for measurements, by means of the Observation

Agent. The Planning Agent (PA) sends requests encoding actions

(tasks) for the device. The two aforementioned agents rely on the

availability of a platform-specific Translation Engine, in charge of the

conversion of high-level directives to native commands.

The Hypervisor, through an Adapter, may also process requests to

(re)configure a resource, leveraging an (optional) Customization En-

gine, i.e., an interpreter able to execute code needed to tailor sensing

activities to requirements, per customer demand. An autonomic ap-

proach may be adopted by delegating specific management tasks of

the Adapter to a Mote Manager, running mote-side, including oper-

ations such as power-driven self-optimization to be carried out with

help from the Node Manager.

18 Chapter 1. Sensing and Actuation as a Service

Furthermore, the main problem this layer-spanning module has to

tackle lies in providing adequate mechanisms for a customer to be

able to establish an out-of-band channel toward the system, i.e., one

that is not Agent- or Interface-mediated. This is meant for direct

interaction with either the resources or low-level modules, identifying

it as a basic module of the overall stack. In the former case, e.g., for

Agent-agnostic collection of observations, in the latter such as, e.g.,

the Customization Engine.

Planning Agent

The Planning Agent is one of the main modules of the Sensing IaaS

system, implementing very basic facilities for management of sensing

(and other) resources, including functionality reservation, parameter

tuning, and observation scheduling. These allow to manage operating

parameters for sensors, such as, e.g., sampling frequency, duty cycle,

etc., dispatching as well platform-specific commands for the reserva-

tion of relevant processing and storage quotas.

The PA runs side-by-side with the Observation Agent, and com-

plements its features. Unlike the latter, which is engaged in pro-

viding the upper layers with XML-encoded samples (observations),

measured while driving sensing resources, including feedback on rel-

evant system-wide metrics about the status of node-side processing

and storage resources, the former is devoted mainly to the tuning of

sampling parameters according to user-defined preferences, to be still

interfaced with through standard-compliant and extensible encoding

of requests for tasks, as well as corresponding responses. Beyond tun-

ing, tasks for the scheduling of observations may be consumed by the

PA: either following a predefined schedule, if a specific event occurs,

or simply as a request from a client. The main goal here consists in

exposing all underlying knobs to have those available to be operated

on transparently by customers. Even though providing standardized

1.3. A device-centric stack 19

Interface

Planning Agent

Request Dispatcher

Interface

Sensor
Prober

Task
Explorer

Task
Manager

Observation
Access
Provider

Figure 1.5: SAaaS Planning Agent: architecture

and useful mechanisms, an Observation Agent is not mandatory in or-

der to let customers tap into sensing infrastructure. Indeed a PA may

be enough to handle virtual or physical resources, once a bidirectional

communication channel is established between the mote, or sensor-

hosting mobile, and the client. Such facility then would be enough to

let customers get and store observations, working synchronously over

the channel if needed.

To meet the above mentioned requirements, an architecture, which

comprises the six modules depicted in Figure 1.5, has been conceived:

Request Dispatcher, Sensors Prober, Task Explorer, Task Manager,

Observation Access Provider and Interface.

The Request Dispatcher manages a request, demultiplexing it ac-

cordingly to the modules below. The Interface needs to interact with

Adapter services, that are: Customization Engine, Translation Engine

and Node Manager.

The Sensor Prober enumerates all sensors and actuators within

a platform, however complex and rich, by means of platform-specific

low-level system probing. These sensors get identified therefore ac-

cording to: type, observation facilities, sampling specifications, nomi-

nal features and commercial information (brand, model, etc.).

The Task Explorer enumerates available tasks, by probing avail-

able sensors and the underlying platform. Tasks related to the tuning

20 Chapter 1. Sensing and Actuation as a Service

Task Manager

Task
Submitter

State
Controller

Reservation
Manager

Feasibility
Controller

Task
Updater

Task
Canceller

Figure 1.6: SAaaS Task Manager: architecture

of parameters for sensors may be logically separated according to sen-

sor technology and type, thus it is possible to, e.g., plan the access to

temperature measurements from a thermometer, as soon as a thresh-

old has been exceeded, modify the focal length and relative position

of a camera, or simply schedule periodic retrieval of observations with

a predefined frequency, etc. Moreover, to evaluate whether a task is

feasible or else, among the ones available for selection, it is required

to query the relevant subsystem (sensing, computing, storage) to pro-

vide (runtime) confirmation of availability for servicing, or reservation

thereof, otherwise returning a denial response. It is then a preroga-

tive of the party querying the resource to decide what to do after an

assessment of feasibility for the considered task.

The Task Manager manages the lifecycle of tasks, starting from the

assessment of feasibility, through reservation and submission stages,

following then up, and acting upon, the progress of a running task.

Due to the number of operations involved, the Task Manager is orga-

nized into the six modules reported in Figure 1.6. Only two of them

are mandatory.

Mandatory functionalities are provided by Task Submitter and

State Controller modules. Respectively, their roles are enabling users

to set mandatory parameters for a task before submission to a re-

source, and submit it when ready, following up processing stages of the

task, alerting whichever agent querying about availability for task ex-

ecution after submission, about its status, i.e., busy, until completion.

Conversely, optional modules are: Reservation Manager, Feasibility

1.4. Basic device interactions 21

Controller, Task Updater, Task Canceller. These provide further fa-

cilities for management of running tasks to process, or ones yet to be

scheduled.

If needed, a task may be reserved by a user for a period of time,

during which exclusive access is granted to the provided sensing re-

source and no other user is allowed to submit or reserve it. The task

will be performed once the user confirms, in order to the processing

stages begin. It is up to the Reservation Manager both the reser-

vation of tasks, and the corresponding confirmation. The Feasibility

Controller checks if a task is serviceable, as detailed above. Such sta-

tus depends on the availability of resources(s) which are essential for

servicing the task, e.g., when not still allocated according to a previous

request.

The Task Updater refreshes configuration parameters for a task,

whenever there are modifications to be pushed after tasks have already

entered processing stages. The Task Canceller allows users to stop

and remove a task, which is already submitted or under reservation

anyway.

Once a task has been serviced, resulting observations get stored.

Any such measurement would then be accessible only through an Ob-

servation Agent. In terms of observations, the only duty left to the PA

consists in the ability of the Observation Access Provider to provide

endpoints as a way to access observations. As it depends on an Obser-

vation Agent, that makes it an optional component, which is required

only when the latter is available in the Abstraction Unit.

1.4 Basic device interactions

Once described the device-centric stack building block architecture, in

this section the focus is on the interactions among them and the end

users. An end user-system interaction is composed of three sequential

22 Chapter 1. Sensing and Actuation as a Service

macro-steps:

Sensors & Tasks Acquisition, Sensor Use / Interaction, and Ob-

servation Access.

Figure 1.7: SAaaS: resource acquisition AD

In the Sensors & Tasks Acquisition macro-step, the tasks available

over the full set of (on-board) sensing resources are counted and ac-

quired. The activity diagram (AD) of Figure 1.7 describes the required

activities for acquisition: the end user first sends a request with re-

quirements and preferences on the needed resources and tasks to the

Sensing IaaS server through the corresponding local client. On the

contributor side, the Sensing IaaS stack has to probe the contributing

nodes to find any exploitable resource available. The core resource

(information) is then obtained in two steps: a capability search is first

1.4. Basic device interactions 23

performed and then, a discovery of the tasks provided by the resources

is run on the device with matching capabilities. Once the matching

tasks are identified, a list with corresponding endpoints (void other-

wise) is sent to the end user.

When a sensing resource is acquired by the user, she can manage

and configure it through the Sensor Use / Interaction step, which

is split into Submission (Figure 1.8) and Management (Figure 1.9)

substeps.

The former details how to submit, process, execute a specific task

on the sensor. The latter describes the task management operations

a user can perform during its processing.

Specifically, in the Submission the user selects a task among the

available alternatives (if present) and configures it. Three options are

available for submitting a task:

direct submission, submission by reservation (if deferred in time),

or feasibility checking.

Through the Management a user that submitted a task can query

or manage options related to its submission.

Three kinds of requests are available: status checking, updating

and cancelling, mainly handled by the Task Manager modules.

Finally, through the Observation Access step a user can access

to the sensed data results, measurements or observations. The di-

agram shown in Figure 1.10 details the operations required by this

step that, as discussed in Section 1.3.2, usually involves the Observa-

tion Agent. This is triggered by the user through a “Describe Result

Access” request, implying a query to both Observation Agent and

Planning Agent.

24 Chapter 1. Sensing and Actuation as a Service

1.5 Proof of concept

In this section the implementation of a prototype for some core func-

tionalities of the sensing IaaS stack as discussed in Sections 1.3.2

and 1.4, in order to demonstrate the feasibility of the device-centric

approach.

A first prototype implementation of the basic functionalities of

the stack has been developed, targeting mobiles equipped with the

Android OS, leveraging the NDK, a set of native libraries and APIs

for developers.

As a reference standard, the implementation starts from the Sensor

Planning Service (SPS) [17] of the Sensor Web Enablement (SWE)

suite.

The implementation has been then tailored to a case study on a

surveillance application through smartphones.

1.5.1 Case Study

The main idea for Sensing IaaS stack case study is to monitor a given

area of interest using smartphone cameras, when available and able to

capture frames on the area of interest.

To this purpose the main functionalities on which a user is inter-

ested in are those allowing to manipulate the camera, and especially

to zoom in/out the camera on a specific point of interest. This way

a mock Sensing Cloud provider have been implemented on just one

contributing node, an Android 4.0 smartphone with a 1Ghz dual-core

processor, 1GB RAM, 4GB intern memory, a 5Mpx VGA camera and a

2150 mAh battery. The Enforcer and Hypervisor modules of the stack

have been deployed into the smartphone, while the end user interacts

with the Sensing Cloud through a client deployed on an x86-backed

running instance of the Android platform.

Following the phases and the algorithms described in Section 1.4,

1.5. Proof of concept 25

in the following the end user-contributor/device interactions are high-

lighted in the case study at hand.

At the beginning, the user needs to select the kind of sensor ac-

cording to preference, e.g., a camera, defining the area of interest and

any operations and tasks to be performed (e.g., zoom-in/out).

The corresponding request is then forwarded to the Sensing IaaS

that performs the discovery for the devices, sensors and tasks matching

the user requirements.

The resource acquisition process is triggered by the end user that

sends a request specifying the needed sensing resource (a camera) and

a list of parameters and tasks (zoom in/out) it has to provide.

The Sensing IaaS server thus performs a resource discovery with

such requirements among its contributing nodes following the workflow

of Figure 1.7.

This way, a device matching the requirements is found in the

testbed, i.e. the Android 4.0 smartphone initially enrolled by the

Sensing IaaS provider, and the related message is delivered to the

client (an Android-based emulated device).

On the other hand, if the system is not able to find any device

matching the requirements, the system sends back a negative feedback

to the end user client.

Assuming a successful discovery of the camera, it gets acquired by

the end user to which a list of all the available task for the camera is

notified.

This way, once the smartphone camera is acquired, a direct con-

nection between the end user client and the device is established. This

is exploited by the user to submit and manage task requests to the

camera. In the former case the algorithm of Figure 1.8 is followed.

It is assumed the user wants to configure the camera parameters

in the submission, specifically she wants to set 2 recording timers,

by specifying the start and stop times and duration. The request is

26 Chapter 1. Sensing and Actuation as a Service

submitted to the device in charge of enabling/disabling the targeted

features of the camera.

Once the task is successfully submitted the user may query on

its status through the management step, following the workflow of

Figure 1.9 till the task is still running.

When the task is executed by the smartphone camera, any (re-

mote, Cloud-side) user may just be interested in retrieving the col-

lected data. One of the main benefit of the device-centric approach

is that the sensed data may not just be collected, but also managed,

aggregated and preprocessed at the source, limiting transfer and the

overall impact on the network. This is possible by injecting some “in-

telligence” on the device, mainly into the Abstraction Unit and the

Adapter Observation and Planning modules.

For instance, typical BigData treatment for such kind of raw

data (e.g., video material) may entail leveraging real-time distributed

streaming architectures such as Apache Storm [18] in order to map

“topologies” (an alternative abstraction with respect to MapReduce

“jobs”) onto a set of nodes, including camera-hosting ones in the role

of “spouts” (e.g., stream sources) plus one or more local “bolts” (in-

termediate processing and forwarding), as a way to build pipelines in

place of centralized storage and multiple roundtrips.

A very simple use case may involve a generic camera-hosting node

running a spout which provides an unprocessed, full-frame raw stream,

and a couple of node-local bolts meant to extract different kinds of

features (e.g., edges, shapes, etc.) by means of unrelated machine

learning algorithms, to be fed to a variety of pipelines, according to

the needed subset of computer vision approaches to be implemented.

Anyway, as described in Figure 1.10, the retrieval of the video

recorded through the camera is performed by the user sending an

Observations Access task request to the smartphone device, which

returns the corresponding Observation Access Descriptor.

1.5. Proof of concept 27

1.5.2 Testing

In this section an evaluation of the impact and performance of the

sensing IaaS solution is put forward, from two possibly diverging per-

spectives: the contributor and user ones.

On one hand, a contributor is mainly interested in quantifying the

impact of the stack on local resources, namely battery power, network

bandwidth, computing and memory utilization.

On the other hand, the performance of a request processing is the

main metric of interest for a user, in terms of response time and sim-

ilar measurements on a complete acquisition-interaction-observation

access interaction workflow.

In the tests all such metrics, i.e. CPU, memory, bandwidth utiliza-

tion and battery depletion for contributors, were therefore measured,

whereas from the user perspective of interest were the response times

for acquisition, submission, management and observation access oper-

ations.

The tests were repeated 1000 times thus providing, in the following,

the mean value µ and the 95% confidence interval offset γ for all such

measurements.

Contribution Overhead

Param./ Battery Depletion Network I/O CPU MEM

Stat. Energy (J) Power (W) Data (KB) BWidth (KB/s) Time (ms) Usage % Cons. (MB)

µ 2.837 0.089 63.18/60.95 2.046/1.97 820.75 2.66% 1.54

γ 0.087 0.00013 0.092/0.088 0.0032/0.0030 10.43 0.051% 0.012

Table 1.1: SAaaS results: contribution overhead

The contributor-side overhead of the Sensing IaaS stack has been

measured through the surveillance service running on the above de-

scribed configuration. Inspired by literature [19, 20], the focus here

was mainly on computing and memory utilization, network bandwidth

28 Chapter 1. Sensing and Actuation as a Service

Parameter/ User Contributing Node SAaaS Framework/Network

Statistics Roundtrip time per request (ms) Service time (ms) Overhead (ms)

Acquisition
µ 383.35 294.13 89.17

γ 18.67 14.32 3.33

Configuration
µ 381.57 296.97 84.53

γ 17.84 15.35 2.88

Submission
µ 586.33 229.64 356.66

γ 29.13 12.56 16.93

Table 1.2: SAaaS results: individual operation performance

and battery power for the smartphone contributing device. The values

obtained by testing for all the considered metrics are summarized in

Table 1.1 and described in the following.

Starting with device battery power, in order to evaluate the impact

of the stack and the surveillance app on the smartphone, the Power-

Tutor tool has been used, a power monitor for Android-based mobile

platforms [21]. The first column of Table 1.1 reports the corresponding

values obtained by the power tests, specifically related to the smart

surveillance app interactions against sensing IaaS, on the contribut-

ing node. These are quantifiable in 2.837 J in terms of energy or 89

mW expressed in power unit. The impact on the smartphone power,

assuming a battery of 2150 mAh, can be estimated in about 1%.

With regard to the network bandwidth, the second column of Ta-

ble 1.1 reports the statistics obtained by the testing on the surveillance

app. In particular, the traffic incoming to/outgoing from the con-

tributing node smartphone, and specifically the KB of data received/-

transmitted and the corresponding bandwidth, is measured through

the Eclipse ADT Plugin DDMS tool.

These values highlight that a very low and balanced traffic in the

two directions is generated (∼ 60 KB, bandwidth ∼ 2KB/s), thus sus-

tainable in a 3G or higher technology smartphone. This parameter is

of strategic importance to also demonstrate the benefit of a device-

centric approach. Indeed, a very low traffic is experienced since data

are stored locally instead of being immediately transferred once ac-

1.5. Proof of concept 29

quired. The access to the data may be performed only once required,

also selecting chunks of interest or even preprocessing, filtering and/or

aggregating them. Even more important, the access to data for the

end user is direct and not mediated by any server/service, avoiding

further steps and waste of bandwidth and time.

The CPU impact is quantified in the third column of Table 1.1.

In particular the time the surveillance app and the sensing IaaS

stack spend in the CPU is measured.

The Android debug class has been used to this purpose, adding

specific log instructions in the app and the stack code, then evaluating

the trace file through Traceview.

The results thus obtained allow to quantify the impact of the

surveillance app in 2.66% on the overall CPU utilization.

The memory impact of the surveillance app over the Sensing IaaS

stack deployed on the contributing smartphone has been quantified in

the last column of Table 1.1.

As above measurements have been performed by employing the

DDMS tool of the Eclipse ADT Plugin, and specifically invoking the

System Information module.

The memory used by the app is in the average of 1.54 MB, about

the 0.15% of memory utilization out of the 1GB available in the smart-

phone.

Performance

From a provider/end user viewpoint it is important to evaluate the

temporal behaviour of the system to mainly obtain the app time to

response or similar performance indices.

This way, another testing cycle has been prepared, this time focus-

ing on the Sensing IaaS stack overhead in the contributing node and

on the end to end surveillance app performance, respectively.

In particular the response times of the acquisition, configuration

30 Chapter 1. Sensing and Actuation as a Service

and submission requests have been measured.

The measurements have been obtained through timestamps gener-

ated by the app and stack client-server, which source codes have been

enriched with proper debug instructions placed at the beginning and

at the end of each interaction or request processing. This way the

duration of each operation performed by the overall system may be

evaluated.

The results of this testing phase are reported in Table 1.2, showing

that a user request is always processed in less than 1 s, and specifi-

cally in a range between 586.33 ms for submission to 381.57 ms for

configuration, in the average. A value similar to the configuration one

characterized the acquisition end user-smartphone interaction, 383.35

ms.

In order to evaluate the overhead of the stack, the time for pro-

cessing a request have been measured on the contributing node, the

smartphone, thus obtaining 229.64 ms for the submission processing,

296.97 ms and 294.13 ms for the acquisition and the configuration

ones, respectively.

This way the overall overhead on a request may be evaluated,

taking into account both the network and the stack contributions.

The corresponding values are shown in the third column of Table 1.2.

These highlight a high overhead of submission operations, while in the

other kinds of operations the overhead is quite similar proportionally.

It is due to the fact that a submission operation is a more complex op-

eration than the others considered, since it often requires to perform a

GetFeasibility and a Reservation operation before the Submission one

as shown in the algorithm of Figure 1.8.

1.6. Related work 31

1.6 Related work

With regard to current research sensor boards and other constrained

(nodal) environments are typically not considered in terms of their

computation and storage capabilities albeit tiny, thus while an already

sizeable literature output is available on BigData, it mostly focuses on

the data treatment process in a dedicated cluster, i.e., what happens

after data collection from external sources.

Even when the collection stages are to be considered into the in-

vestigation, the focus is usually on the minimization of network traffic,

thus taking the form of communication protocol optimizations, or at

most employing mechanisms for network throughput maximization by

combining received packets together for transmission instead of just

relaying those around. Examples are erasure coding [22], random lin-

ear coding [23], and network coding [24]. Erasure codes, like [10], may

decrease network traffic at a small cost in processing power. Network

coding, theoretically, may achieve optimal network throughput [11],

while random linear coding - as a kind of rate-less erasure coding - may

achieve this with no control overhead. It’s interesting to note that in

this case there’s already the notion of non negligible computing power

and storage space, to be put at the service of such techniques, thus

trading off local capabilities in exchange for more efficient network

utilization.

Following the service oriented computing trend and its generaliza-

tion to the everything as a service (XaaS) approach [8], in literature

several works adopted and applied this paradigm in distributed sensing

and Cloud infrastructures to deal with data management issues. Most

of them just consider the Cloud as an extended application domain

from which data are retrieved and pushed according to a data-centric

approach, providing services for their management. Typical examples

in such direction are provided by [12], [13], [9] and [25], the latter

32 Chapter 1. Sensing and Actuation as a Service

of which are mainly focused on smart city contexts, also supporting

data (BigData) management through data-centric approaches for the

domain at hand.

Similarly, some works explored possible intersections between IoT

and Cloud, such as [26], mainly at high, semantic level, mapping phys-

ical IoT things into virtual environments in the Cloud. At infrastruc-

ture level, the BETaaS project [27] proposes a platform for the exe-

cution of M2M applications on top of services deployed in a Cloud of

gateways.

In heterogeneous sensing environments, interoperability and com-

munication issues call for specific software abstraction layers [28], en-

abling the dynamic reconfiguration of sensor nodes [29].

Abstraction and virtualisation are the solution proposed in [30]

to implement seamless scalability and interoperability among sensing

resources and things.

Some solutions aim at building up networks of mobiles, such as [31],

performing measurements in SWE-compliant format also resorting on

the mobile processing and storage resources.

A smartphone infrastructure is built up in [32] to opportunistically

monitor physical actions performed by their owners, such as walking,

jumping, running.

The key to understand the difference between the aforementioned

literature and the proposal put forward here thus lies in intentionally

lumping collection and treatment stages together. To be more precise

it means getting rid of a full-blown collection step, as whichever data

has to be gathered, it has to already be the output of local (or at

least proximal) processing. This approach embodies the idea that, as

long as some kind of trade-off is achievable or even already in place,

computing and storage capabilities should be leveraged to a greater

extent.

Still efforts should also be about trying to optimize against the

1.6. Related work 33

overall problem and not just limiting the engineering effort toward

networking issues alone. As data treatment logic gets loaded and

executed at the source, it has to be more and more similar to BigData

techniques (e.g., MapReduce) typically running on a cluster.

This is also dynamic in nature, considering jobs are to be dis-

patched to sensing nodes as they are generated, i.e., at runtime. This

is also not comparable to typical preprocessing duties for embedded

nodes, such as simple statistics over a certain time period or sequence,

e.g., averaging, which is another standard way to cope with scalability

for transmission purposes.

A specific solution implementing the device-driven approach is

strongly required to attack the problem from different perspectives,

and in particular from the low-level, infrastructure one, as proposed

here.

34 Chapter 1. Sensing and Actuation as a Service

Figure 1.8: SAaaS: request submission AD

1.6. Related work 35

Figure 1.9: SAaaS: submission management AD

Figure 1.10: SAaaS: observation access AD

36 Chapter 1. Sensing and Actuation as a Service

CHAPTER

TWO

STACK4THINGS: A FRAMEWORK FOR

SAAAS

2.1 Introduction

Several solutions are already present in the literature for enabling the

so-called Internet of Things, mainly focusing on lower (communica-

tion) layer and in particular on how to interconnect (among them-

selves and to the Internet) any network-enabled thing [33]. However,

in order to realize the Sensing-and-Actuation-as-a-Service vision [16],

other aspects have to be also taken into account such as solutions for

creating and managing a dynamic infrastructure of sensing and actua-

tion resources. In fact, in order to effectively control devices, sensors,

and things, several mechanisms are strongly needed, e.g., manage-

ment, organization, and coordination. Then, a middleware devoted to

management of both sensor- and actuator-hosting resources may help

in the establishment of higher-level services.

In this direction, the integration between IoT and Cloud is one of

the most effective solutions even if up to now efforts revolve around

managing heterogeneous devices by resorting to legacy protocols and

37

38 Chapter 2. Stack4Things: a framework for SAaaS

vertical solutions out of necessity, and integrating the whole ecosys-

tem by means of ad-hoc approaches [34]. According to this vision,

the Cloud may play a role both as a paradigm, and as one or more

ready-made solutions for a (virtual) infrastructure manager (VIM), to

be extended to IoT infrastructure. In particular, the proposal is to ex-

tend a well known framework for the management of Cloud computing

resources, OpenStack [35], to manage sensing and actuation ones, by

presenting Stack4Things1 an OpenStack-based framework implement-

ing the Sensing-and-Actuation-as-a-Service paradigm. Thanks to such

a framework, it is possible to manage in an easily way fleets of sensor-

and actuator-hosting boards regardless of their geographical position

or their networking configuration.

Preliminary details of the Stack4Things 2 architecture have been

presented in [37]. In this chapter, starting from a detailed requirement

analysis the whole Stack4Things architecture is described by focusing

on both Cloud and board components. In design stages a bottom-up

approach has been followed, consisting of a mixture of relevant tech-

nologies, frameworks, and protocols. In addition to the already cited

OpenStack, WebSocket technology [38] is taken advantage of, bas-

ing the communication framework on the Web Application Messaging

Protocol (WAMP) [38].

2.2 Sensing-and-Actuation-as-a-Service

In this section, the scenario under investigation is first described by

taking into consideration the main actors and entities involved. Then,

requirements are reported upon which focus is given during the design

of the Stack4Things framework, both from the functional and non-

1All the corresponding software is being developed as Open Source, making it

freely available through the Web [36]
2From now on, Stack4Things is sometimes abbreviated as s4t.

2.2. Sensing-and-Actuation-as-a-Service 39

functional points of view.

Figure 2.1 represents the scenario under consideration.

Figure 2.1: Stack4Things: reference scenario

In this scenario, Cloud computing facilities, implementing a

service-oriented approach in the provisioning and management of sens-

ing and actuation resources, are exploited to create a SAaaS Cloud.

In fact, in the SAaaS vision, sensing and actuation devices should be

handled along the same lines as computing and storage abstractions

in traditional Clouds, i.e., virtualized and multiplexed over (possibly

scarce) hardware resources. Thus, sensing and actuation devices have

to be part of the Cloud infrastructure and have to be managed by

following the consolidated Cloud approach, i.e., through a set of APIs

ensuring remote control of software and hardware resources despite

their geographical position. In other words, the idea is quite appeal-

ing and challenging since in such scenario an user could ask for handles

40 Chapter 2. Stack4Things: a framework for SAaaS

on (physical world) items to be manipulated through the user inter-

faces of the Cloud framework. Services related to the (sensing and

actuation) infrastructure provisioning should be provided on-demand

in an elastic and QoS-guaranteed way. In this way, on top of such ser-

vices, other application level services can be easily implemented and

provided to final users.

The main actors in the scenario are contributors and end users.

Contributors provide sensing and actuation resources building up the

SAaaS infrastructure. Examples of contributors are sensor networks

owners, device owners, and people offering their PDAs as a source of

data in a crowdsourcing model [39]. End users control and manage the

resources provided by contributors. In particular, end-users may be-

have as infrastructure administrators and/or service providers, man-

aging the SAaaS infrastructure and implementing applications and

services on top of it. It is assumed that the sensing and actuation

resources are provided to the infrastructure via a number of hardware-

constrained units, which are henceforth referred to as nodes. Nodes

host sensing and actuation resources and act as mediators in relation

to the Cloud infrastructure. They need to have connectivity to the

Internet in order for this approach to be applicable.

2.3 Background

The convergence of Cloud and IoT, and in particular the solutions to

scale up IoT applications and to support real-time analytics, have been

thoroughly investigated during the last years. A significant attempt

in this direction, from a paradigmatic viewpoint, is fog computing [40]

where both IoT and Cloud computing technologies are merged to pro-

vide new location-aware, reduced latency and improved QoS pervasive

and ubiquitous services. Furthermore, based on this idea, several aca-

demic prototypes [41, 42, 43, 44] and commercial offerings such as

2.3. Background 41

xively [45], ThingWorx [46] or SmartThings Open Cloud [47] are al-

ready available.

Some works focus on the implementation of an IoT/sensing

Cloud [48, 49, 50], mainly dealing with sensing resource virtualization

and management through a Cloud provisioning model. An interesting

idea is to adopt some kind of hierarchical approach do improve network

performance, adding nodes in between the device and the Cloud, as

done through Cloudlets [51]. Another remarkable approach is the soft-

ware defined one, successfully adopted in networking and data center

management and thus applied in IoT-Cloud systems. Indeed, in [52],

a first definition and a conceptual model of software defined things is

provided, mainly implemented into the Cloud abstracting and encap-

sulating the underlying resource capabilities.

At higher level, in [53] a Cloud semantic overlay on top of physical

sensing resources is proposed, specifying an IoT ontology able to pro-

vide semantic interoperability among heterogeneous devices and data

formats. Based on semantic Web and CoAP technologies, the solution

proposed in [54] mainly provide IoT service composition in a Cloud

fashion.

All these efforts are manly focused on a data-centric perspective,

mainly aiming at managing (IoT sensed) data by the Cloud. In [16]

a different approach is adopted, where the goal is to provide actual

sensing and actuation resources that could be handled by their (Cloud)

users, as computing and storage resources in IaaS or DaaS Clouds,

i.e. virtualized and multiplexed over (scarce) hardware resources. In

other words, the proposed approach aims at adopting the service-

oriented/Cloud paradigm in the management of sensing resources and

things, according to a device-centric perspective, instead of considering

the Cloud as just a complementary technology.

To this purpose, while designing the solution, efforts have been

based upon Open Source technologies and standards. The latest Ar-

42 Chapter 2. Stack4Things: a framework for SAaaS

Figure 2.2: Stack4Things: distributed system

duino YUN [55]-like boards represent here a reference in terms of IoT

nodes. Such a kind of devices is usually equipped with (low power)

micro-controller (MCU) and micro-processor (MPU) units. They can

interact with the physical world through a set of digital/analog I/O

pins while connection to the Internet is assured by Ethernet and

Wifi network interfaces. A Linux distribution (usually derived from

the OpenWRT project) can run on the MPU. Recently, the use of

BaTHOS [56] on the MCU side has become more mainstream, thus

enabling the digital/analog I/O pins to be directly accessed from the

MPU.

With respect to network connectivity, presence, and reachability,

WebSocket [38] is the leading technology. WebSocket is a standard

HTTP-based protocol providing a full-duplex TCP communication

channel over a single HTTP-based persistent connection. WebSocket

allows the HTTP server to send content to the browser without being

solicited: messages can be passed back and forth while keeping the

2.4. Stack4Things architecture 43

connection open creating a two-way (bi-directional) ongoing conver-

sation between a browser and the server. One of the main advantages

of WebSocket is that communications are performed over TCP port

number 80. This is of benefit for those environments which block non-

Web Internet connections using a firewall. For this reason, several

application-level protocols started to rely on this Web-based trans-

port protocol for communication - see for example the use of eXtensi-

ble Messaging and Presence Protocol

(XMPP) over WebSocket - also in the IoT field.

Web Application Messaging Protocol (WAMP) [38] is a sub-

protocol of WebSocket, specifying a communication semantic for mes-

sages sent over WebSocket. Differently from other application-level

messaging protocols, e.g., XMPP, Advanced Message Queuing Proto-

col (AMQP), ZeroMQ, WAMP is natively based on WebSocket and

provides both publish/subscribe (pub/sub) and (routed) remote pro-

cedure call (RPC) mechanisms. In WAMP, a router is responsible of

brokering pub/sub messages and routing remote calls, together with

results/errors.

As already mentioned, with respect to the virtual infrastructure

manager, OpenStack [35] is the technology of reference. OpenStack

is a centerpiece of infrastructure Cloud solutions for most commer-

cial, in-house, and hybrid deployments, as well as a fully Open Source

ecosystem of tools and frameworks. Currently, OpenStack allows to

manage virtualized computing/storage resources, according to the in-

frastructure Cloud paradigm. The main goal in this chapter is to

propose an extension of OpenStack for the management of sensing

and actuation resources.

44 Chapter 2. Stack4Things: a framework for SAaaS

Figure 2.3: Stack4Things: board-side architecture

2.4 Stack4Things architecture

Figure 2.2 depicts at a high level the Stack4Things distributed sys-

tem, focusing on communication between end users and sensor- and

actuator-hosting nodes. It is assumed that each of such nodes is an

Arduino YUN-like smart board. On the board side, the Stack4Things

lightning-rod runs on the MPU and interacts with the OS tools and ser-

vices of the board, and with sensing and actuation resources through

I/O pins. It represents the point of contact with the Cloud in-

frastructure allowing the end users to manage the board resources

even if they are behind a NAT or a strict firewall. This is en-

sured by a WAMP and WebSocket-based communication between the

Stack4Things lightning-rod and its Cloud counterpart, namely the

Stack4Things IoTronic service. The Stack4Things IoTronic service is

implemented as an OpenStack service providing end users with the

possibility to manage one or more smart boards, remotely. This can

happen both via a command-line based client, namely Stack4Things

command line client, and a Web browser though a set of REST APIs

provided by the Stack4Things IoTronic service.

2.4. Stack4Things architecture 45

Figure 2.4: Stack4Things: Cloud-side architecture

2.4.1 Board-side

Figure 2.3 shows the Stack4Things architecture with more focus on

the board side. It is assumed that BaTHOS runs on the board MCU

while a Linux OpenWRT-like distribution runs on the MPU. BaTHOS

is equipped with a set of extensions (from now on indicated as MCUIO

extensions) that expose the board digital/analog I/O pins to the Linux

kernel. The communication is carried out over a serial bus. The Linux

kernel running on the MPU is compiled with built-in host-sideMCUIO

modules. In particular, functionalities provided by the MCUIO kernel

modules include enumeration of the pins and exporting correspond-

ing handlers for I/O in the form of i-nodes of the Linux sysfs virtual

filesystem. Upwards the sysfs abstraction, which is compliant with

common assumptions on UNIX-like filesystems, there is the need to

mediate access by means of a set of MCUIO-inspired libraries, namely

Stack4Things MCUIO sysfs libraries. Such libraries represent the in-

terface with respect to the MCUIO sysfs filesystem dealing with read

and write requests in terms of concurrency. This is done at the right

level of semantic abstraction, i.e., locking and releasing resources ac-

46 Chapter 2. Stack4Things: a framework for SAaaS

cording to bookings and in a way that is dependent upon require-

ments deriving from the typical behavior of general purpose I/O pins

and other requirements that are specific to the sensing and actuating

resources.

The Stack4Things lightning-rod engine represents the core of the

board-side software architecture. The engine interacts with the Cloud

by connecting to a specific WAMP router (see also Figure 2.4) through

a WebSocket full-duplex channel, sending and receiving data to/from

the Cloud and executing commands provided by the users via the

Cloud. Such commands can be related to the communication with the

board digital/analog I/O pins and thus with the connected sensing and

actuation resources (through the Stack4Things MCUIO sysfs library)

and to the interactions with OS tools and/or resources (e.g., filesys-

tem, services and daemons, package manager). The communication

with the Cloud is assured by a set of libraries implementing the client-

side functionalities of the WAMP protocol (Stack4Things WAMP li-

braries). Moreover, a set of WebSocket libraries (Stack4Things wstun-

nel libraries) allows the engine to act as a WebSocket reverse tunnel-

ing server, connecting to a specific WebSocket server running in the

Cloud. This allows internal services to be directly accessed by external

users through the WebSocket tunnel whose incoming traffic is auto-

matically forwarded to the internal daemon (e.g., SSH, HTTP, Telnet)

under consideration. Outgoing traffic is redirected to the WebSocket

tunnel and eventually reaches the end user that connects to the Web-

Socket server running in the Cloud in order to interact with the board

service.

The Stack4Things lightning-rod engine also implements a plugin

loader. Custom plugins can be injected from the Cloud and run on

top of the plugin loader in order to implement specific user-defined

commands, possibly including system-level interactions, such as, e.g.,

with a package manager and/or the init/runlevels subsystem.

2.4. Stack4Things architecture 47

In this sense future efforts may resume previous results [3] related

to runtime customization for further enhancements to the architecture.

New REST resources are automatically created exposing the user-

defined commands on the Cloud side. As soon as such resources are

invoked the corresponding code is executed on top of the smart board.

2.4.2 Cloud-side - control and actuation

The Stack4Things Cloud-side architecture (see Figure 2.4) consists of

an OpenStack service that has been called IoTronic. The main goals

of IoTronic lie in extending the OpenStack architecture towards the

management of sensing and actuation resources, i.e., to be an im-

plementation of the SAaaS paradigm. IoTronic is characterized by

the standard architecture of an OpenStack service. The Stack4Things

IoTronic conductor represents the core of the service, managing the

Stack4Things IoTronic

database that stores all the necessary information, e.g., board-unique

identifiers, association with users and tenants, board properties and

hardware/software characteristics as well as dispatching remote proce-

dure calls among other components. The Stack4Things IoTronic APIs

exposes a REST interface for the end users that may interact with the

service both via a custom client (Stack4Things IoTronic command line

client) and via a Web browser. In fact, the OpenStack Horizon dash-

board has been enhanced with a Stack4Things dashboard exposing all

the functionalities provided by the Stack4Things IoTronic service and

other software components. In particular, the dashboard also deals

with the access to board-internal services, redirecting the user to the

Stack4Things IoTronic WS tunnel agent. This piece of software is a

wrapper and a controller for the WebSocket server to which the boards

connect through the use of Stack4Things wstunnel libraries.

Similarly, the Stack4Things IoTronic WAMP agent controls the

48 Chapter 2. Stack4Things: a framework for SAaaS

WAMP router and acts as a bridge between other components and the

boards. It translates Advanced Message Queuing Protocol (AMQP)

messages into WAMP messages and vice-versa. AMQP is an open

standard application layer protocol for message-oriented middleware, a

bus featuring message orientation, queueing, routing (including point-

to-point and

publish-subscribe), reliability and security. Following the standard

OpenStack philosophy all the communication among the IoTronic

components is performed over the network via an AMQP queue. This

allows the whole architecture to be as scalable as possible given that

all the components can be deployed on different machines without

affecting the service functionalities, as well as the fact that more

than one Stack4Things IoTronic WS tunnel agent and more than one

Stack4Things IoTronic WAMP agent can be instantiated, each of them

dealing with a sub-set of the IoT devices. In this way, redundancy and

high availability are also guaranteed. As already mentioned in Sec-

tion 2.3, a prominent reason for choosing WAMP as the protocol for

node-related interactions, apart from possibly leaner implementations

and smoother porting, lies in WAMP being a WebSocket subprotocol

and supporting two application messaging patterns, Publish & Sub-

scribe and Remote Procedure Calls, the latter being not available in

AMQP.

2.4.3 Cloud-side - sensing data collection

The OpenStack service that collects monitoring data and events

from the infrastructure (mainly for billing and elasticity purposes)

is Ceilometer. Building on top of it, in order to allow collection of

metrics coming from the smart boards, in particular a Stack4Things

Ceilometer agent is provided, to which smart boards that need to send

metrics can connect. Such an agent translates the WAMP messages

2.5. Stack4Things REST API 49

received by the boards to AMQP messages in the form of OpenStack

notifications. Such notifications are then translated by the Ceilometer

framework in samples that are collected by the Ceilometer collector

and then stored in a non-SQL database (usually MongoDB). Metrics

and events can be accessed through the Ceilometer APIs. The

Stack4Things dashboard and the Stack4Things command line client

are also able to interact with such APIs in order to obtain/visual-

ize real-time and historical data. The Stack4Things framework also

provide complex event processor (CEP) functionalities through the

Stack4Things CEP engine. This engine can be programmed in order

to detect specific situations of interest that can then be signaled to the

Stack4Things IoTronic conductor which, in turn, can send commands

to the smart boards in order to react to the situation by actuating

actions or changing their behavior.

A prototype of the architecture so far described has been imple-

mented and source code is freely available through the Web [36].

2.5 Stack4Things REST API

Table 2.1 reports an extract of the Stack4Things IoTronic RESTful

API with exploited HTTP methods, URLs, semantics, input param-

eters, and return types. We focus on API methods that relate to

nodes, corresponding pins, services that can be accessed on the nodes,

jobs that can be scheduled to send sensor readings to the Cloud, and

injection of CEP statements with specific reactions.
API calls listed under the Nodes section provide a list of the nodes

currently registered to the Cloud (NodeCollection JSON data type
provided in the body of the response) and, if necessary, detailed in-
formation about each node (Node JSON data type). An example of
NodeCollection JSON response is the following:

{
"nodes": [

{

50 Chapter 2. Stack4Things: a framework for SAaaS

"description": "Sample node",

"links": [

{
"href": "http://s4t.org/v0.1/nodes/eaaca217-

e7d8-47b4-bb41-3f99f20eed89",

"rel": "self"

},
{
"href": "http://s4t.org/nodes/eaaca217-e7d8

-47b4-bb41-3f99f20eed89",

"rel": "bookmark"

}
],

"uuid": "eaaca217-e7d8-47b4-bb41-3f99f20eed89"

}
]

}

while the following is an example of Node JSON response:

{
"created_at": "2000-01-01T12:00:00",

"description": "Sample node",

"extra": {},
"links": [

{
"href": "http://s4t.org/v0.1/nodes/eaaca217-

e7d8-47b4-bb41-3f99f20eed89",

"rel": "self"

},
{
"href": "http://s4t.org/nodes/eaaca217-e7d8-47

b4-bb41-3f99f20eed89",

"rel": "bookmark"

}
],

"updated_at": "2000-01-01T12:00:00",

"uuid": "eaaca217-e7d8-47b4-bb41-3f99f20eed89"

}

API calls listed under the Pins section provide the interface to

access pins on nodes. In particular, it is possible to retrieve a node

layout in terms of pins and their modes and it is possible to set/unset

modes on a pin. Finally, it is possible to set/read a value from a pin.

The RESTful interface hides the complexity

2.5. Stack4Things REST API 51
#

M
e
t
h
o
d

U
R

L
S
e
m

a
n
t
ic

s
P
a
r
a
m

e
t
e
r
s

R
e
t
u
r
n

T
y
p
e

N
o
d
e
s

1
G
E
T

/
v
0
.1
/
n
o
d
e
s

R
e
tr
ie
v
e
a

li
st

o
f
n
o
d
e
s.

N
o
d
e
C
o
ll
e
c
ti
o
n

2
G
E
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}
R
e
tr
ie
v
e
in

fo
rm

a
ti
o
n

a
b
o
u
t
th

e
g
iv
e
n

n
o
d
e
.

n
o
d
e
u
u
id

(u
u
id

)
N
o
d
e

P
in

s

3
G
E
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
p
in

s
R
e
tr
ie
v
e
a

li
st

o
f
p
in

s
o
n

a
n
o
d
e
.

n
o
d
e
u
u
id

(u
u
id

)
N
o
d
e
L
a
y
o
u
t

4
G
E
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
p
in

s/
{p

in
n
a
m
e
}/

m
o
d
e

R
e
tr
ie
v
e
th

e
m
o
d
e
o
f
a

p
in

o
n

a
n
o
d
e
.

n
o
d
e
u
u
id

(u
u
id

)
P
in

M
o
d
e

p
in

n
a
m
e
(u

n
ic
o
d
e
)

5
P
O
S
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
p
in

s/
{p

in
n
a
m
e
}/

m
o
d
e

S
e
t
th

e
m
o
d
e
o
f
a

p
in

o
n

a
n
o
d
e
.

n
o
d
e
u
u
id

(u
u
id

)

-
p
in

n
a
m
e
(u

n
ic
o
d
e
)

P
in

M
o
d
e
(j
so

n
in

b
o
d
y
)

6
D
E
L
E
T
E

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
p
in

s/
{p

in
n
a
m
e
}/

m
o
d
e

C
le
a
r
m
o
d
e
se

tt
in

g
fo
r
a

p
in

o
n

a
n
o
d
e
.

n
o
d
e
u
u
id

(u
u
id

)
-

p
in

n
a
m
e
(u

n
ic
o
d
e
)

7
G
E
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
p
in

s/
{p

in
n
a
m
e
}/

v
a
lu

e
R
e
tr
ie
v
e
th

e
v
a
lu

e
o
f
a

p
in

o
n

a
n
o
d
e
.

n
o
d
e
u
u
id

(u
u
id

)
P
in

V
a
lu

e
p
in

n
a
m
e
(u

n
ic
o
d
e
)

8
P
O
S
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
p
in

s/
{p

in
n
a
m
e
}/

v
a
lu

e
S
e
t
th

e
v
a
lu

e
o
f
a

p
in

o
n

a
n
o
d
e
.

n
o
d
e
u
u
id

(u
u
id

)

-
p
in

n
a
m
e
(u

n
ic
o
d
e
)

P
in

V
a
lu

e
(j
so

n
in

b
o
d
y
)

S
e
r
v
ic

e
s

9
G
E
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
se

rv
ic
e
s

R
e
tr
ie
v
e
a

li
st

o
f
se

rv
ic
e
s
o
n

a
n
o
d
e

n
o
d
e
u
u
id

(u
u
id

)
S
e
rv

ic
e
C
o
ll
e
c
ti
o
n

1
0

P
O
S
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
se

rv
ic
e
s

A
c
ti
v
a
te

a
n
e
w

se
rv

ic
e
o
n

a
n
o
d
e

n
o
d
e
u
u
id

(u
u
id

)
-

S
e
rv

ic
e
(j
so

n
in

b
o
d
y
)

1
1

D
E
L
E
T
E

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
se

rv
ic
e
s

D
e
le
te

a
se

rv
ic
e
o
n

a
n
o
d
e

n
o
d
e
u
u
id

(u
u
id

)
-

S
e
rv

ic
e
(j
so

n
in

b
o
d
y
)

J
o
b
s

1
3

G
E
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
jo
b
s

R
e
tr
ie
v
e
a

li
st

o
f
jo
b
s
o
n

a
n
o
d
e

n
o
d
e
u
u
id

(u
u
id

)
J
o
b
C
o
ll
e
c
ti
o
n

1
4

P
O
S
T

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
jo
b
s

A
c
ti
v
a
te

a
n
e
w

jo
b

o
n

a
n
o
d
e

n
o
d
e
u
u
id

(u
u
id

)
-

J
o
b

(j
so

n
in

b
o
d
y
)

1
5

D
E
L
E
T
E

/
v
0
.1
/
n
o
d
e
s/

{n
o
d
e
u
u
id

}/
jo
b
s

D
e
le
te

a
jo
b

o
n

a
n
o
d
e

n
o
d
e
u
u
id

(u
u
id

)
-

J
o
b

(j
so

n
in

b
o
d
y
)

C
E
P

s
t
a
t
e
m

e
n
t
s

1
6

G
E
T

/
v
0
.1
/
c
e
p

R
e
tr
ie
v
e
a

li
st

o
f
c
e
p

st
a
te

m
e
n
ts

o
n

th
e
c
lo
u
d

-
C
e
p
S
ta

te
m
e
n
tW

R
e
a
c
ti
o
n
C
o
ll
e
c
ti
o
n

1
7

P
O
S
T

/
v
0
.1
/
c
e
p

A
c
ti
v
a
te

a
n
e
w

c
e
p

st
a
te

m
e
n
ts

o
n

th
e
c
lo
u
d

C
e
p
S
ta

te
m
e
n
tW

R
e
a
c
ti
o
n

-

1
8

D
E
L
E
T
E

/
v
0
.1
/
c
e
p

D
e
le
te

a
c
e
p

st
a
te

m
e
n
ts

o
n

th
e
c
lo
u
d

C
e
p
S
ta

te
m
e
n
tW

R
e
a
c
ti
o
n

-

T
a
b
le

2
.1
:
Io
T
ro
n
ic

R
E
S
T

A
P
I

52 Chapter 2. Stack4Things: a framework for SAaaS

2.6 Use cases

In this section, we propose some specific use cases that have been im-

plemented and tested in the Stack4Things middleware. In particular,

we show how the architecture components interact among themselves

to fulfill certain objectives. Each use case corresponds to a specific

call in the Stack4Things REST APIs.

2.6.1 Use case: provide the list of nodes regis-

tered to the Cloud

This use case is the basic one, consisting in a listing of all the nodes

currently registered to the Cloud. It corresponds to call #1 in Ta-

ble 2.1. The listing is useful to retrieve the unique identifiers of the

different nodes that can later be used to directly interact which each

of them. As a use case prerequisite, we assume that one or more nodes

are already registered to the Cloud. The following operations are then

performed (see Figure 2.5).

1. The user asks for the list of the nodes registered to the Cloud

through the s4t dashboard (or alternatively through the s4t com-

mand line client).

2. The s4t dashboard performs one of the available s4t IoTronic

APIs calls via REST (specifically, call #1). The call pushes a

new message into an AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from the AMQP

IoTronic queue and it performs a query to the s4t IoTronic

database retrieving the list of nodes registered to the Cloud.

4. The s4t IoTronic conductor pushes a new message into a specific

AMQP IoTronic queue.

2.6. Use cases 53

5. The s4t IoTronic APIs call pulls the message from the AMQP

IoTronic queue and replies to the s4t dashboard.

6. The s4t dashboard provides the user with the list of boards reg-

istered to the Cloud.

In this use case, no interaction with any board is necessary given

that all the information is stored on the s4t IoTronic database. How-

ever, if desired, the connectivity status of the boards that are currently

registered to the Cloud can be retrieved from the WAMP router us-

ing the presence mechanisms that it provides natively. In particular,

such an information can be collected on demand or periodically. In

the first case, when the call for retrieving the list of nodes is issued,

after querying the s4t IoTronic database, the s4t IoTronic conductor

can contact the s4t IoTronic WAMP agents to which the boards are

registered obtaining news about their connectivity status. In the sec-

ond case, the s4t IoTronic WAMP agents can periodically store such

an information on the s4t IoTronic database in a proactive way so

that the s4t IoTronic conductor is able to find it when necessary. Of

course, a tread-off between freshness of the information (first case)

and performance of the call (second case) arises.

2.6.2 Use case: retrieve the current value of a pin

on a specific board

This use case is slightly more complex than the first one as it requires

an interaction with a specific board. It corresponds to call #7 in

Table 2.1. As a use case prerequisite, we assume that one or more

nodes are already registered to the Cloud and that the user knows

both the unique identifier of the desired board (maybe retrieved by

issuing call #1 in Table 2.1) and the name of the pin from which

he/she wants to read the current value (maybe retrieved by issuing

54 Chapter 2. Stack4Things: a framework for SAaaS

call #3 in Table 2.1 to get the list of pins of a specific node). The

following operations are then performed (see Figure 2.6).

1. The user asks for the current value of a pin on a specific board

through the s4t dashboard (or alternatively through the s4t com-

mand line client).

2. The s4t dashboard performs one of the available s4t IoTronic

APIs calls via REST (specifically, call #7). The call pushes a

new message into a specific AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from the AMQP

IoTronic queue and it performs a query to the s4t IoTronic

database. In particular, it checks if the board is already reg-

istered to the Cloud and if the required pin actually exists. Fi-

nally, it queries for the s4t IoTronic WAMP agent to which the

board is registered.

4. The s4t IoTronic conductor pushes a new message into a specific

AMQP IoTronic queue.

5. The s4t IoTronic WAMP agent to which the board is registered

pulls the message from the queue and publishes a new message

into a specific topic on the corresponding WAMP router.

6. Through the s4t WAMP lib the s4t lightning-rod engine receives

the message by the WAMP router.

7. The s4t lightning-rod engine uses the s4t mcuio sysfs lib to read

the value of the specified pin and through the s4t WAMP lib

replies to the s4t IoTronic WAMP agent by writing a message

into a specific topic on the corresponding WAMP router.

8. The s4t IoTronic WAMP agent receives the message from the

WAMP router and publishes a new message into a specific

2.6. Use cases 55

AMQP IoTronic queue with the value that has been read from

the pin on the specified board.

9. The s4t IoTronic APIs call pulls the message from the AMQP

IoTronic queue and replies to the s4t dashboard.

10. The s4t dashboard provides the user with the value that has

been read from the pin on the specified board.

As already mentioned, scalability in this kind of use cases is assured

by instantiating more than one s4t IoTronic WAMP agent so that each

one of them can deal with a subset of the boards connected to the

Cloud infrastructure.

2.6.3 Use case: create an SSH connection toward

a node

This use case is a common one in classical Cloud scenarios, i.e., SSH

access into a virtualized resource. In our case, we consider the cre-

ation of an SSH connection toward a node through the help of the

Cloud management system. The use case corresponds to call #10 in

Table 2.1 that the user has to issue specifying the standard SSH port,

i.e., port number 22. Given the assumption that nodes are behind

a firewall/NAT a more complex interaction flow is needed in order

to fulfill the goal with respect to a standard Cloud scenario in which

compute nodes hosting virtual machines and frontend nodes through

which the connection is guaranteed are usually within the same local

area network. In fact, in order for a connection to be created with a

service hosted on a board, a board-initiated tunnel needs to be cre-

ated to the Cloud. As a use case prerequisite, we assume the node

of interest is already registered to the Cloud and the SSH daemon is

56 Chapter 2. Stack4Things: a framework for SAaaS

already listening on its standard port3. The following operations are

then performed (see Figure 2.7):

1. The user asks for a connection to the SSH daemon running

on a specific board through the s4t dashboard (or alternatively

through the s4t command line client).

2. The s4t dashboard performs one of the available s4t IoTronic

APIs calls via REST. The call pushes a new message into a

specific AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from the AMQP

IoTronic queue and it performs a query to the s4t IoTronic

database. In particular, it checks if the board is already reg-

istered to the Cloud and queries for the s4t IoTronic WAMP

agent to which the board is registered. Finally, it decides the

s4t IoTronic WS tunnel agent to which the user can be redirected

and randomly generates a free TCP port.

4. The s4t IoTronic conductor pushes a new message into a specific

AMQP IoTronic queue.

5. The s4t IoTronic WAMP agent to which the board is registered

pulls the message from the queue and publishes a new message

into a specific topic on the corresponding WAMP router.

6. Through the s4t WAMP lib the s4t lightning-rod engine receives

the message by the WAMP router.

7. The s4t lightning-rod engine opens a reverse WebSocket tunnel

to the s4t IoTronic WS tunnel agent specified by the s4t IoTronic

3Note that start/stop/restart commands for standard services running on the

boards registered to the Cloud has been implemented through the RPC functional-

ities provided by the WAMP mechanisms but we do note report the corresponding

execution flows for a matter of space.

2.6. Use cases 57

conductor also providing the TCP port through the s4t wstunnel

lib. It also opens a TCP connection to the internal SSH daemon

and pipes the socket to the tunnel.

8. The s4t IoTronic WS tunnel agent opens a TCP server on the

specified port. Then, it publishes a new message into a specific

AMQP IoTronic queue confirming that the operation has been

correctly executed.

9. The s4t IoTronic APIs call pulls the message from the AMQP

IoTronic queue and replies to the s4t dashboard.

10. The s4t dashboard provides the user with the IP address and

TCP port that he/she can use to connect to reach the SSH

service on the board.

11. The user connects to the specified IP address and TCP port via

an SSH client and the connection is tunneled to the board.

2.6.4 Use case: store readings from a sensor in

the Cloud

This use case (see Figure 2.8) envisions the usage of the Cloud infras-

tructure not only for the management and control of the nodes but

also as a storing platform for sensing data. In fact, the readings com-

ing from a specific sensor attached to a certain board can be stored

in the Ceilometer database and could be potentially used to take de-

cisions and react to predefined situations (see the next use case). The

use case corresponds to call #14 in Table 2.1. Other storage systems

could be used different from the Ceilometer one. For example, we

also implemented mechanisms for the storing of sensing data in exter-

nal MongoDB databases and or Open Data-compliant CKAN-enabled

storages such as the one provided by the FI-WARE [57] infrastructure.

58 Chapter 2. Stack4Things: a framework for SAaaS

As a use case prerequisite, we suppose a sensor is attached to a specific

pin of a certain board. We also suppose the board is already registered

to the Cloud.

1. The user asks for the readings from a sensor attached to a spe-

cific pin of a certain board to be stored in the Cloud with a

sampling time of choice4 through the s4t dashboard (or alterna-

tively through the s4t command line client).

2. The s4t dashboard performs one of the available s4t IoTronic

APIs calls via REST. The call pushes a new message into a

specific AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from the AMQP

IoTronic queue and it performs a query to the s4t IoTronic

database. In particular, it checks if the board is already reg-

istered to the Cloud and queries for the s4t IoTronic WAMP

agent to which the board is registered. Finally, it decides the

s4t ceilometer agent to which the readings from the sensor should

be sent.

4. The s4t IoTronic conductor pushes a new message into a specific

AMQP IoTronic queue.

5. The s4t IoTronic WAMP agent to which the board is registered

pulls the message from the queue and pushes a new message into

a specific topic on the corresponding WAMP router.

6. Through the s4t WAMP lib the s4t lightning-rod engine receives

the message by the WAMP router.

4Other mechanisms have been implemented in which the sending of the sensor

readings is triggered by a change or by the overpassing of a specified threshold but

we do not report them here for a matter of space.

2.6. Use cases 59

7. The s4t lightning-rod engine connects to the WAMP router of

the specified s4t ceilometer agent through the s4t WAMP lib.

Then, the s4t lightning-rod engine periodically reads from the

specified pin through the s4t mcuio sysfs lib and pushes a mes-

sage into a specific topic on the WAMP router.

8. The s4t ceilometer agent pulls each message from the WAMP

router and pushes a corresponding message into the Ceilometer

AMQP queue.

9. The Ceilometer collector collects the messages from the Ceilome-

ter AMQP queue and stores the contained metrics into the

Ceilometer non-SQL database. It also sends them to the s4t

CEP engine via REST for further semi real-time analysis.

Besides periodic sampling of the readings of a sensor, the user is

also allowed to program the system to send samples when specific

situations are detected, e.g., a threshold is passed, a positive/negative

change in the value occurs. Mixed data dispatching modes are also

available, e.g., allowing users to program the system to send samples

periodically and each time a threshold is passed.

2.6.5 Use case: inject a CEP rule and set a reac-

tion

This use case (see Figure 2.9) shows how real-time analysis capabilities

can be injected in the Cloud to react to specific situations of interest.

In fact, the readings coming from all the sensors attached to the boards

registered to the Cloud that have been configured to be stored in the

Ceilometer database can be also redirected to the CEP engine that

can be programmed to detect user-specified data patterns. The user

can specify both the pattern of interest (in the form of a ESPER

60 Chapter 2. Stack4Things: a framework for SAaaS

statement) and the reaction that he/she desires the system to have

as soon as a detection is performed. We designed the system so that

reactions can be in the form of REST calls to the IoTronic interface

so that, e.g., actuation commands can be send to the pins of specific

boards, the configuration of the system can be changed injecting CEP

rules, and so on. The use case corresponds to call #17 in Table 2.1. As

a use case prerequisite, we suppose that a set of metrics have already

be programmed so that they are sent to the Cloud.

1. The user asks a CEP rule to be injected in the system together

with a corresponding reaction through the s4t dashboard (or

alternatively through the s4t command line client).

2. The s4t dashboard performs one of the available s4t IoTronic

APIs calls via REST. The call pushes a new message into a

specific AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from the AMQP

IoTronic queue and it stores in the s4t IoTronic database the

reaction that it founds in the message so that it will be able to

retrieve it if the s4t CEP engine signals that the situation of

interest occurs.

4. The s4t IoTronic conductor pushes a new message into a specific

AMQP IoTronic queue.

5. The s4t CEP engine pulls the message from the queue and dy-

namically load the CEP rule so that it can be continuously

checked.

6. If a CEP rule is triggered the s4t CEP engine pushes a new

message into a specific AMQP IoTronic queue.

2.6. Use cases 61

7. The s4t IoTronic conductor pulls the message from the queue and

it queries the database for the reaction that has been associated

to that rule.

8. The s4t IoTronic conductor issues the call specified in the reac-

tion to the s4t IoTronic API actuating the reaction.

62 Chapter 2. Stack4Things: a framework for SAaaS

Figure 2.5: S4T: listing of registered nodes

2.6. Use cases 63

Figure 2.6: S4T: retrieving current value of a pin

64 Chapter 2. Stack4Things: a framework for SAaaS

Figure 2.7: S4T: creation of an SSH connection

2.6. Use cases 65

Figure 2.8: S4T: storing readings from a sensor

66 Chapter 2. Stack4Things: a framework for SAaaS

Figure 2.9: S4T: injection of a CEP rule

CHAPTER

THREE

MOBILE CROWDSENSING AS A SERVICE:

A PLATFORM FOR OPPORTUNISTIC

SENSING

3.1 Introduction and motivations

Current trends, with specific regard to cyber physical systems and

Internet of Things (IoT), suggest that one of the most interesting

thrusts towards pervasive services comes from opportunistic and par-

ticipatory sensing paradigms, such as Mobile Crowd Sensing (MCS).

MCS leverages the pervasiveness of smartphones and other portable

devices, enabling users and community groups to collectively share

data from onboard sensing resources so as to measure phenomena of

common interest, exploiting social dynamics. The contributor has

also the possibility to augment raw data with context as metadata.

This community-driven sensing trend is brought about by machine

interactions at different levels, including data communications, collec-

tion, processing and mining. Commencing crowd-sourcing and sensing

duties from mobiles, involving device owners as volunteering partici-

67

68 Chapter 3. MCS as a Service

pants, potentially renders end users both contributors and consumers

of large volumes of (curated) data.

However, there are several key issues that need to be addressed for

the MCS paradigm to experience widespread adoption [58, 59]. Firstly,

a unified architecture for supporting MCS applications is required to

enable reusability of software components, facilitating shorter time to

market cycles. Existing MCS applications are built as stand-alone

ones, while common challenges, e.g., related to resource engagement,

get independently revisited each time, or are not addressed at all. The

heterogeneity of mobile Operating Systems (OS) and sensor hardware

further amplifies the problem. As a result sensing and processing

activities usually result in carrying out similar tasks (i) within a single

device (contributing node) for different MCS applications, resulting in

energy starvation and (ii) across multiple, neighboring devices, leading

to spikes in bandwidth usage and processing requirements at the back

end. Both cases highlight a non-scalable deployment model.

Furthermore, MCS applications rely on every single contributor

for local deployment duties. While most MCS apps require a critical

mass of contributors to be deemed useful, app adoption is bounded

by the rate at which users keep track of, and install, newly introduced

ones. A substantially low rate as, according to recent reports, e.g., in

2014 nearly 80% of the 1.2 million apps available at the Apple App

Store had hardly any downloads at all1. Providing resources on a

volunteer basis is one of the foremost limitations to the large scale

exploitation of the MCS paradigm, as it naturally bears constraints

related to contribution churn. In terms of MCS applications this sets

the need for “marketing” strategies aimed at increasing the number of

subscriptions, stimulating, retaining and rewarding potential contrib-

utors through incentives. However, even if the enrollment activities

(or even mechanisms, such as credit-reward systems) may be highly

1https://www.adjust.com/assets/downloads/AppleAppStore Report2014.pdf

3.1. Introduction and motivations 69

effective, the subscription process is usually characterized by long and

smooth dynamics. Therefore a significant time delay may be experi-

enced before getting a significant stream of sensing data. This issue

may strongly confine the scope of the MCS paradigm to a shortlist of

applications featuring broad, long-established supporting communities

of potential contributors.

From a different perspective, another significant trend moves IoT

towards service-oriented and Cloud computing paradigms [60, 61, 62].

In this view, the Cloud is not just a technology to support the archiving

of sensed data coming from pervasive IoT infrastructure, but also a

model and a paradigm to adopt in the management of the underlying

resources and things.

Following this IoT-Cloud research trajectory, in this chapter, a

novel platform for opportunistic (mass) exploitation of contributed re-

sources for MCS apps is presented to get more insights as to whether

the MCS paradigm may indeed be applied at large-scale in the IoT con-

text. The proposed approach overcomes several of the aforementioned

hurdles, by facilitating what is essentially the most difficult endeavor

for prospective MCS entrepreneurs, i.e., offering a level playground,

with homogeneous access to wildly different underlying ecosystems.

To this end, two classes of concerns are identified with regard to (unas-

sisted) dissemination of MCS apps; (i) infrastructure-related, mostly

focused on mechanisms to enroll and manage voluntarily contribut-

ing nodes, as well as to abstract sensing resources and enable uniform

access, and (ii) application-related, mainly devoted to mechanisms

for interfacing with enabled infrastructure, asking for the required

sensing resources and, once obtained, deploying the MCS app onto

the resource-hosting nodes. This way infrastructure resources (sup-

ply) may be decoupled from application requirements (demand) as in

Cloud contexts, making development, deployment and operation fully

independent.

70 Chapter 3. MCS as a Service

For delivering this novel MCS approach, the Sensing and Actua-

tion as a Service (SAaaS) framework, proposed in [16], is adopted as

the lower-level (infrastructure domain) enabler. SAaaS is based on the

service-oriented (and Cloud-inspired) approach of elastically providing

(virtual) sensing and actuation resources on demand, gathered from

underlying (contributed) physical nodes. The study at hand extends

and adapts the SAaaS paradigm for enabling rapid MCS app deploy-

ment and streamlining their operation, actually providing an MCS as

a Service (MCSaaS) platform.

There are a number of advantages in dealing with MCS from the

(SA)aaS angle. Virtualizing and customizing sensing resources, start-

ing from the capabilities provided by the SAaaS model, allows for con-

current exploitation of pools of devices by several platform/application

providers. Delivering MCSaaS may further simplify the provisioning

of sensing and processing activities within a device or across a pool of

devices. Moreover, decoupling the MCS application from the infras-

tructure promotes the roles of a sensing infrastructure provider that

enrolls and manages contributing node(s), below, and of a platform

provider on top of that, acting as a broker between (i) the former and

(ii) the MCS application provider, enabling the latter to focus on the

application and leave concerns and enforcement about requirements

(type of resources, availability, etc.) to the platform.

In this chapter a high level overview of the proposed MCSaaS ap-

proach is provided complemented by a description of the distinct ar-

chitectural elements and their interactions. Moreover the benefits of

the proposed framework are here highlighted as opposed to the con-

ventional MCS approach, by means of (i) a prototype implementation

of the MCSaaS framework and the emulation of a real-world appli-

cation deployment; and by (ii) modeling with generalized stochastic

Petri nets (GSPN) [63].

3.2. Preliminary concepts and related work 71

3.2 Preliminary concepts and related

work

3.2.1 Mobile Crowd-Sensing

MCS [58] is an emerging trend, lying at the intersection of volunteer

and crowd-based computing, IoT, and sensing paradigms. It refers to

a broad range of community-powered sensing approaches belonging to

either participatory [64] and/or opportunistic [65] categories, aiming

at involving large population of contributors [59, 66].

A broad range of applications, from mining of urban dynamics

[67], to public safety [68], traffic and environment monitoring [69, 70],

smart lighting [71] and smart cities [72], just to name a few, may be

implemented adopting the MCS paradigm. Existing MCS applications

are comprised of two main components [58]:

i) device-specific ones, for data collection, execution of local ana-

lytics if needed, and data dissemination,

ii) the backend, for extensive data analysis, storage and visualiza-

tion duties.

A simple and generic MCS application scenario is shown in Fig-

ure 3.1, where the main elements and stakeholders involved in the MCS

system are identified based on [58]. These include the contributing

nodes, e.g., smartphones, tablets and, PDAs, shared by their Owners

or Contributors to build up the sensing infrastructure environment, as

well as the Application Service Provider (MCS ASP), that manages

and supervises the whole process, gathering and processing sensed

data through the application server, which also interfaces with the

End User of the MCS application.

72 Chapter 3. MCS as a Service

Node1 Node2
Node3

Noden

MCS Application
Server

Contributors

MCS App/
Service
Provider

MCS App
End Users

MCS App
Client

Figure 3.1: MCS: application scenario

3.2.2 MCS taxonomy

One of the main categorizations of MCS spans the participatory-

opportunistic spectrum. On one hand, participatory sensing may be

defined as any crowd-sourced sensing activity where each member of

the crowd is actively involved, giving feedback when asked or other-

wise tagging measurements on a voluntary basis. Conversely, an op-

portunistic perspective sensing is essentially unmanned : MCS would

tap into mobile devices just because people carry those around in

their pockets all day long anyway. Thus also the device owners may

be included in the data feeding process. Their mobility and situation

awareness may be leveraged, in an opportunistic and participatory

3.2. Preliminary concepts and related work 73

fashion, to support the collection of fine grained information and se-

mantically tagged data.

Without proper incentives, the owners may not be willing to con-

tribute with their resources. For the MCS success appropriate incen-

tive mechanisms are required to recruit, engage and retain human par-

ticipants [73]. In this sense, a centralized credit system, assigning and

managing credits and rewards, is usually adopted as incentive mecha-

nism in a participatory strategy, while, in opportunistic scenarios, the

gamification approach [74] is preferred. As a more subtle distinction

of the two approaches, users benefiting from the crowd-sourcing may

be identified. In participatory MCS systems, and services that may

derive from it, the community, or the public at large is the main tar-

get of the benefits. Whereas in opportunistic MCS systems it is single

individuals mainly taking advantage.

Still according to the end-user perspective, another aspect to be

considered is how information produced by an MCS system is con-

sumed, or made relevant to the situation under which fruition would

occur. A typical proactive, participatory pattern for users may consist

in merely consulting an MCS-derived knowledge base, thus leveraging

information as-is, i.e., non-contextually and in a pull fashion. Con-

versely, an opportunistic fruition mode would be based implemented

by push-based notifications. Moreover, also in terms of interactions,

at least first-time enrollment requires input on the side of owner on a

client-server model basis. Yet even opportunistic schemes, featuring

distributed behavior and cooperative strategies, may be considered,

dependent on the underlying topology, as is the case for mesh-like

ones in device-dense environments.

A synthesis of the approaches and categories of MCS applications

is presented in Table 3.1. This way, a wide range of possibilities for

MCS application paradigms, from pure participatory to wholly oppor-

tunistic ones, may be identified, also including hybrid solutions.

74 Chapter 3. MCS as a Service

Table 3.1: Taxonomy of MCS applications

MCS Approach

categorized (by) Participatory Opportunistic

Owner involvement
Active, human-assisted Background, unmanned

sensing / tagging data collection

Incentive mechanism Credit systems (bank) Credit collection race

User benefit Public interest Individual utility

Fruition modality Pull / non-contextual Push / contextual

Interaction model Centralized (client-server) Distributed (mesh)

3.2.3 Related work

So far, several MCS applications [75, 76, 69, 77] have been devel-

oped in different contexts, demonstrating the MCS paradigm is useful

in applications directly and indirectly involving different stakeholders

and huge populations of users. This has drawn the attention of both

the academic and business communities, which, on one hand, started

developing new middlewares implementing mechanisms and tools for

MCS system management [78, 59] while, on the other, are investi-

gating potential exploitations of the MCS approach both in scientific

applications and in commercial ones. Therefore, the current state of

affairs highlights the need for suitable methodologies and techniques

able to bring order in the MCS field, adopting engineering practices

and tools to explore the untapped potential of the paradigm.

With specific regard to the issues raised in the previous section,

several frameworks have been proposed to support expedite MCS ap-

plication development and deployment. AnonySense [79] is a privacy-

aware framework for opportunistic and participatory sensing. Ap-

plications specify the sensing task behavior using a Domain Specific

Language (AnonyTL) and then submit it to the AnonySense compo-

nents and mobile nodes. A polling model is used for task distribution.

Downloaded tasks are matched to the nodes based on their context.

Medusa [78] is a programming framework that specifies the work-

flow of sensing tasks to be executed in smartphones and onto the

Cloud. It defines the Med-Script programming language that pro-

3.2. Preliminary concepts and related work 75

vides high-level abstractions for the various stages in crowd-sensing

tasks as well as for flow control. Moreover it provides a distributed

runtime between the Cloud and smartphones.

Pogo [80] proposes a middleware for building large scale sensing

testbeds using mobile phones. Both researchers and device owners,

each category running the middleware differently, depending on their

role. Pogo relies on the XMPP protocol for communication between

nodes. Experiments are written in JavaScript.

Vita [81] supports the development, deployment and management

of multiple MCS applications/tasks. It consists of both a mobile and

a Cloud platform. The former provides the appropriate services (e.g.,

map and location) that enable the execution of sensing tasks. It opti-

mizes the allocation of a task to a group of users or Cloud servers by

using Genetic Algorithms and K-means clustering. The Cloud plat-

form streamlines the development and deployment of MCS applica-

tions, integrates and stores uploaded sensing data, as well as metrics

related to system operation.

PRISM [82] is also a platform for community-sensing applications

that allows the deployment of binaries ready for execution onto mo-

biles. Method call interposition is used to sandbox-untrusted appli-

cations to ensure security and privacy. PRISM follows a push-based

model for the automatic deployment of applications to an appropriate

set of phones. Efficient tracking of mobiles is implemented mitigating

privacy risks and reducing communication overhead.

Most of the aforementioned frameworks propose custom languages

for hardware and OS abstraction of the contributing devices or specify

ad-hoc sandboxed environments for secure execution of applications.

Although convenient, the fact that only pre-programmed functions

and software modules are provided to developers results in a less flex-

ible and not as powerful application development environment. In

fact, only PRISM [82] allows for native MCS applications deployment

76 Chapter 3. MCS as a Service

(although sensors can only be accessed through a sandbox), while

also providing a mechanism for selection of contributing devices. By

not spinning a service-oriented model for (sensing) infrastructure out

from the platform that is meant to exploit it, sandboxing and access

to hardware resources need to be crafted explicitly for the platform

itself, instead of delegating such duties to an IaaS-level framework.

With regard to the deployment of sensing applications and tasks,

the above frameworks allow for rapid installation and execution on

all contributing devices indiscriminately. Additionally, Medusa pro-

vides specific rewards and incentives to stimulate user participation

while it allows smartphone owners to specify limits on usage of system

components. However, most of these frameworks do not provide any

advanced mechanisms for targeted selection of contributing devices,

despite that such a process could significantly increase efficiency in

the exploitation of available resources, as well as minimize impact on

existing MCS-dependent services running on the same devices. This

is a consequence of the lack of infrastructure ready to be exploited in

a controlled way for MCS, as resources are still to be enrolled with

ad-hoc mechanisms as provided by the aforementioned platforms.

In closing, it is notable that none of the above frameworks tackles

support to contribution churn as a platform-provided feature, as a way

to enable on-demand expansion or shrinkage of the user base of MCS

apps, according to the needs of application developers and providers.

3.3 MCSaaS paradigm

3.3.1 Vision

The MCSaaS framework attempts to address the basic limitations of

existing MCS applications, such as explicit and time-consuming de-

veloper efforts in the engagement of resources, while instead support-

3.3. MCSaaS paradigm 77

Node1 Node2
Node3

NodenContributor 1

Infrastructure
Provider

MCS App/
Service 1
Provider

MCS
App 1

MCS
App 2

MCS
App m

MCSaaS

Contributor 2

Contributor n

Contributor 3

MCSaaS
Provider

SAaaS DaaS
IaaS

Infrastructure
Provider

Infrastructure
Provider

App1
End Users

App2
End Users

Appm
End Users

SAaaS
Client

MCSaaS
Client

MCS App
Client

SAaaS
FE Server

MCSaaS
FrontEnd

Server

MCS App/
Service 2
Provider

MCS App/
Service m
Provider

Application Domain

Infrastructure Domain

Figure 3.2: MCSaaS: scenario

ing contributor recruitment by MCS ASPs. Specifically, in MCSaaS

these issues are addressed by making infrastructure available on de-

mand. This way, MCS application/service providers can immediately

deploy and run their applications and services on promptly available

resources, ready to use once configured or customized for deploying

the MCS application. Another important benefit of this approach lies

in having real-time requirements fulfilled mostly for free, by design

due to the paradigm shift, since QoS requirements can be satisfied by

providing a certain guaranteed number of devices in face of loss.

From a high level point of view, this approach can be imple-

mented by functionally and administratively splitting the MCS ap-

plication/service deployment into two domains: i) the infrastructure

domain, which includes (embedded) sensing devices, providing ser-

78 Chapter 3. MCS as a Service

vices for resource management (brokering, interoperability, etc.) and

facilities for customizing and deploying the MCS application; and ii)

the application domain, hosting the frontend and backend (analytics)

services for the (filtered and pre-processed) data provided by the in-

frastructure modules, exploiting infrastructure/low level application

deployment and data/node management facilities to implement the

MCS application or service.

This strongly impacts on the MCS paradigm, significantly chang-

ing the scenario by introducing new stakeholders, and enabling further

avenues for exploitation, not only in terms of research but also from

a business perspective, such as an open market of MCS(aaS) sensing

resources and services. More specifically, as can be seen in Figure 3.2,

different application service providers (MCS ASPs) may leverage the

facilities an MCSaaS platform provider has on offer, including tradi-

tional enterprise-level infrastructure providers such as the incumbent

players for both processing and storage resources, i.e., Infrastructure

as a Service (IaaS) and Data as a Service (DaaS), respectively. Under

the sensing Cloud a few kinds of infrastructure contributors are de-

picted: as we are talking about SAaaS here, the owners / admins are

contributors sharing resources under their control, such as mobiles,

PDAs or even Wireless Sensor Networks (WSNs).

The differences between the “traditional” MCS scenario and the

proposed MCSaaS one are clear by comparing Figure 3.1 and Fig-

ure 3.2, and have been summarized in Table 3.2, where the main

MCSaaS actors with their duties, as well as the pros and cons of their

roles, are described. More specifically, within the “plain” MCS domain

(Figure 3.1), a potential contributor directly interacts with an MCS

ASP to be engaged in an MCS activity. According to the MCSaaS sce-

nario in Figure 3.2, contributors are node owners/administrators that

are sharing resources under their control via registration to a sensing

Infrastructure Provider (SaaS), possibly retained by means of suitable

3.3. MCSaaS paradigm 79

Actor
Description

Pros Cons

Contributor
Volunteering contributor of sensing resources, stimulated by appropriate incentives.

- Possibility to earn credits, rewards.

- Free or remunerated.

- Multiple MCS application contributions through a single subscription (del-

egation pros).

- Possibility to be both user and contributor.

- Privacy and security due to two layers of isolation.

- The node contri-

bution is initially

managed by a third

party broker (delega-

tion cons).

InP
A sensing infrastructure provider enrolls and manages contributors according to specific service level

agreement.

- Enlarge the business customer portfolio (due to mashups). - Third party broker-

ing and monitoring.

MCSaaS-P
The MCSaaS-P provides resources mashup and brokerage services to MCS ASPs, along with cus-

tomization service for the engaged resources and MCS application deployment service.

- New business opportunities.

- Increased resource utilization and throughput.

- To reach a wide audience.

- Big data - analytics.

- Involving sensor networks.

- Actuation.

- Resource manage-

ment.

- Duties on security,

privacy and SLA to

both sides.

MCS ASP
Application provider that delivers a single or multiple MCS applications/services to MCS End Users.

The MCSaaS ASP deploys the MCS application(s) utilizing the MCSaaS framework.

- Wider application domains involving mobile and/or static (SN) sensors

and actuators.

- No problems of enrollment and management of sensing resources.

- QoS-guaranteed resource provisioning.

- Real-time applications suitability.

- Increased application reliability, availability and performance.

- Capillarity, worldwide coverage, # of contributors.

- Heterogeneous resources (computing, storage, sensing) provided.

- Facilities for the application deployment (configuration, customization,

setup, analytics tools).

- Customizability of resources (pre-processing, filtering, client-side function-

alities, reduced overhead, bandwidth-local processing trade-off).

- Abstracted/homogeneous access (APIs) where resources are what is cus-

tomized to meet the needed abstraction (SAaaS-unique).

- Resources handling capabilities due to the device/resource-centric ap-

proach vs the data-centric one, enabling enhanced features and new ap-

plications.

- New applications involving actuation resources.

- May be charged.

MCS EU
The consumer of the MCS services provided by the MCS ASP.

- High performance, low delays.

- The role of an MCS EU may naturally coincide with the role of Contrib-

utor.

- May be charged.

Table 3.2: MCSaaS scenario: actors

incentives. The contribution is therefore managed at a lower level, thus

lending a degree of freedom to resource sharing (multiple MCS app

contributions, contribution profiles, credits, money, etc.) but this re-

quires to delegate resource control to the infrastructure provider. The

MCSaaS scenario is thus enriched by new stakeholders, such as the

Infrastructure Providers (InP) and the MCSaaS Provider (MCSaaS-

80 Chapter 3. MCS as a Service

P) in between the MCS ASP and the Contributors. This brings about

several benefits and is advantageous in particular for MCS ASPs, who

can rapidly develop and deploy their apps onto MCSaaS-enabled in-

frastructure.

A service-oriented provisioning model is the best way for the

MCSaaS-P to provide the required resources to MCS ASP, enabling

customization facilities while ensuring the required service levels for

provisioning. The MCSaaS-P can provide support to single or multi-

ple MCS applications/services to be delivered transparently to MCS

End Users (EU), as in the traditional MCS scenario. In order for

the MCSaaS-P to provide the requested sensing resources to the MCS

ASP, the two parties have to negotiate the set of required resources

and then, upon agreement, the ASP deploys the MCS app to the cor-

responding set of registered contributing nodes provided by the InP

through the MCSaaS platform. Details on this process are reported

in Section 3.6.

3.3.2 Stack

The main idea we propose in this work is therefore to adopt a Cloud

and service-oriented approach for the on-demand provisioning of MCS

resources and services. This way, the SAaaS sensing Cloud becomes a

pillar of the MCSaaS infrastructure. Furthermore, a higher platform-

like layer to provide services for the resource management (mashup,

brokering, interoperation, etc.) as well as for deploying and customiz-

ing the app on top of such infrastructure is mandatory. Sensing and

actuation resources are involved in the Cloud not as simple endpoints,

as in current mobile Cloud trends, but rather in the same way as com-

puting, storage, and network resources usually are in more traditional

Cloud stacks: abstracted, virtualized and grouped in Clouds, to un-

lock new value-added services by mixing the potential of the Cloud

3.3. MCSaaS paradigm 81

Infrastructure

Node-Hw

Platform

MCSaaS

SAaaS
Cloud

IaaS
Cloud

DaaS
Cloud

Devices Sensor
Networks

Application-SaaS

MCS
Services

MCS
Apps

End User

MCS ASP

MCSaaS
Provider

Infrastructure
Provider

Contributor

Figure 3.3: MCSaaS: stack

with that of the IoT.

Our goal is therefore to provide a conceptual framework, and cor-

respondingly a software stack, able to deal with such issues, while

aiming at the MCSaaS vision as the whole. To this purpose, we adopt

a multi-tiered approach as depicted in Figure 3.3, where a layered

scheme comprising the node and the infrastructure Clouds below the

platform (PaaS) and the application-Software as a Service (SaaS) on

top, is proposed.

At a lower level of the MCSaaS stack we have contributors sharing

their nodes with infrastructure providers that enroll them to provide

(virtual) sensing and actuation resources as a service (SAaaS). Op-

tionally also computing (IaaS) and storage (DaaS) providers could be

included at this level. On top of the basic infrastructure mechanisms,

82 Chapter 3. MCS as a Service

services mainly related to the specific configuration, customization,

and management of virtual resources for MCS applications are pro-

vided by the MCSaaS Cloud platform. Facilities to expose resources

provided by different categories (i.e., IaaS, DaaS, SAaaS) of infrastruc-

ture providers may be implemented by the MCSaaS platform. At a

higher level, an MCS application employs such infrastructure and plat-

form facilities to eventually enable and provide SaaS services. How-

ever, an MCS ASP may just deploy an application, collecting and/or

displaying data, without necessarily building up a Web service out of

it, or otherwise becoming an (MCS-powered) Software as a Service

provider.

3.4 Infrastructure

As seen in the previous section, the MCSaaS scenario may involve

third parties to provide IaaS/DaaS resources where needed for devel-

opers of MCS applications, but here the focus is on the main building

block of any kind of MCS-centered facility: (mobile) sensing infras-

tructure, under the guise of service-oriented Cloud-enabled resources,

a so-called Sensing and Actuation as a Service (SAaaS).

SAaaS is a paradigm aimed at developing a sensing infrastructure

based on sensors and actuators from both mobile devices and SNs,

providing virtual sensing and actuation resources in a Cloud-like fash-

ion. More specifically, it delivers the basic mechanisms and tools for

enabling a Cloud of sensors and actuators, which have to be suitably

extended and customized by providers to implement enhanced services

and provisioning models. To this end, the main issues to be addressed

include: abstraction of sensing and actuation resources, virtualization,

customization, monitoring, SLA and QoS management, subscription,

churn and policy management, enrollment, indexing and discovery,

security and fault tolerance.

3.4. Infrastructure 83

SAaaS
Sensing Cloud

Device

Autonomic
Enforcer

Hypervisor

SN

VolunteerCloud
Manager

Autonomic
Enforcer

Hypervisor

Node-HW

Infrastructure

Figure 3.4: SAaaS: reference architecture

This fosters the design of a software stack that implements the

following main functionalities: (i) involvement of SNs, smartphones

or other devices endowed with sensors and/or actuators, and their en-

ablement for interoperation in a Cloud environment; (ii) distributed

mechanisms and tools for self-management, configuration and adapta-

tion of nodes; (iii) functions and interfaces for enabling and managing

contributing resources.

To implement such ambitious idea, i.e., a Cloud of sensors based

on the SAaaS paradigm, in [16] the whole stack was introduced with

a high-level blueprint of the architectural modules, the three main

components of which are shown in Figure 3.4, bottom-up: Hypervisor,

Autonomic Enforcer and VolunteerCloud Manager.

The SAaaS stack and modules span to the two lower layers of

Figure 3.3: from the Cloud Infrastructure one, providing support to

the MCSaaS PaaS and MCS SaaS software applications and services,

to the node layer, covering edge devices. Through the SAaaS stack,

84 Chapter 3. MCS as a Service

any device, either mobile or static, may be engaged in crowdsensing

activities, as well as any sensor network, regardless of the software

environment and operating system. This way, the term SAaaS node is

used in the following to indicate a smart device equipped with sensors,

such as a smartphone, or a frontend to a possibly large number of

smaller sensing devices (i.e., motes), such as the gateway of an SN.

Furthermore, since the SAaaS implements a device-centric ap-

proach, providing actual sensing and actuation resources, even if mul-

tiplexed and/or virtualized, it allows for customization and configu-

ration capabilities typically unexposed higher up to MCS ASPs, that

may in turn explore previously neglected application domains.

The lowest block, the Hypervisor, operates at the level of a single

node, where it abstracts the available sensors. The node can be a

standalone resource-rich device, such as a smartphone, or it can be an

embedded system which belongs to a network (such as a WSN). The

main duties of the Hypervisor are: communications and networking

virtualization primitives, abstract description of devices and capabil-

ities according to the relevant information model, virtualization of

sensing resources, customization, isolation, semantic labeling.

The Cloud modules, under the guise of an Autonomic Enforcer

and a VolunteerCloud Manager, deal with issues related to the inter-

action among nodes. The former is responsible of the node-internal

enforcement of Cloud policies, local vs. global policy tie-breaking,

cooperation on overlay instantiation, enrollment initiation and sub-

scription(s) bookkeeping. Whenever suitable it operates according to

autonomic principles. The latter is instead in charge of the following

functionalities: exposing the Cloud of sensors via Web Service inter-

faces, indexing of subscribers and contributed resources, monitoring of

Service Level Agreements (SLAs) and Quality of Service (QoS) met-

rics. These layers thus form a coupled, two-level Cloud stack, where

many mechanisms are split in both modules, dealing with node-wise

3.5. Platform: MCSaaS module 85

actions and self-organizing properties in the lower one, and centrally

managed Cloud-wise methods in the upper one.

Indeed, taking as an example device enrollment, the lower Cloud

module is in charge of node-side initiation of the enrollment process,

including one-time interaction with the contributor, e.g., for excluding

or limiting access to certain device-hosted resources, by pushing the

description of enumerated resources to the Cloud, as well as of book-

keeping of any Cloud instance the node has successfully subscribed to.

The centralized module is instead in charge of Cloud-side acceptance

or rejection of the enrollment request as well as indexing of resources

(and the corresponding nodes) to provide querying capabilities to the

end user of the Cloud.

At this level, having communication among the Cloud modules lay-

ered on top of ubiquitously available protocols and services for IoT and

M2M such as WebSockets [38] means getting access to lots of avail-

able gadgets and personal devices that would otherwise go untapped,

unless major revisions in terms of their firmware, and communication

stacks in particular, get planned. This choice directly reverberates on

the widening possibilities a MCS app developer may experience as a

result of the potential expansion of the pool of resources.

3.5 Platform: MCSaaS module

For the design of the MCSaaS stack, the need comes up to define

what an MCSaaS platform should offer. PaaS is an intermediate ser-

vice model for Cloud computing, between IaaS and SaaS, where the

consumer creates software using tools, libraries, etc., available from

the provider, also controlling software deployment and configuration

settings. The PaaS provider usually hosts lots of ancillary facilities

to the main infrastructure under consideration (in this case SAaaS

mainly), e.g., networks, servers, storage, sensors.

86 Chapter 3. MCS as a Service

MCSaaS Module

Orchestrator Customization
Service

Infrastructure Interface

Cloud
Broker

Deployment
Manager

Platform Interface

Figure 3.5: MCSaaS module

A platform like MCSaaS must cater for domain-specific APIs for

MCS, such as pre-filtering and pre-processing mechanisms to be lever-

aged both at the node endpoint (e.g., the mobile) and at the Cloud,

while considering the trade-off between communication overhead and

local computation. Other APIs would include general-purpose analyt-

ics frameworks, in this case to be leveraged only at IaaS/DaaS level.

Issues related to federation, inter- or multi-Cloud setups, privacy, se-

curity and trust, which would ideally fall under the scope of MCSaaS,

have not been investigated for this specific effort. Thus application

hosting and a deployment environment are the main focus in this con-

text. Moreover a PaaS typically also includes facilities for application

design, application development and testing as well as typical services

for developers and integrators, such as team collaboration, Web service

integration, database-driven persistence, state management, applica-

tion versioning, application instrumentation / profiling and facilities

for community nurturing.

All aforementioned functionalities are synthesized in the MCSaaS

module implementing a PaaS service at the platform layer (see Fig-

ure 3.5). The Infrastructure Interface provides the means to interact

with the underlying sensing Clouds. Standard interfaces such as OCCI

[83] and/or specific techniques following the multi-Cloud approach can

be adopted. On top of the Infrastructure Interface, four MCSaaS core

3.5. Platform: MCSaaS module 87

sub-modules are defined, namely Cloud Broker, Orchestrator, Cus-

tomization Service and Deployment Manager.

An incoming MCSaaS request is forwarded by the Platform In-

terface to these sub-modules. Such interface should be RESTful and

expose as entities useful abstractions, e.g., application bundle objects.

This is initially managed by the Orchestrator, which identifies the re-

sources required by the MCS application extracting requirements and

dependencies from the request encoding the high level workflow of the

application. This kind of service may conform to available standards,

e.g., TOSCA [84], in terms of exposed functionalities and relevant

APIs. It therefore iteratively interacts with the Cloud Broker to re-

serve resources according to the aforementioned requirements provided

by the MCS ASP, the Broker in turn planning in advance the engage-

ment of sensing devices as needed through SAaaS InPs. Following

a successful negotiation and the allocation of required resources to

the MCS application the application setup phase is launched by both

the Customization Service and the Deployment Manager. The Cus-

tomization Service mainly focuses on customizing the resources and

(virtual) devices, setting specific low-level parameters such as duty cy-

cle, sampling frequency and scale range for sensing resources, as well

as high level configurations of the software environment hosting the

injected code of the MCS application. This is achieved by translat-

ing high-level directives in terms of uniform low-level primitives, still

expressed in a generic form, as those are ultimately relayed to the

SAaaS for further processing. The Deployment Manager instead is

aimed at deploying the required modules on the available resources,

adapting them to the hosting environment. Pre-configured packages

or bundles may be provided, where the payload may contain a whole

application environment or parts of it, or even extra tools that imple-

ment advanced features such as analytics, interfaces, domain-related

plugins and add-ons. As the latter modules are here the main focus

88 Chapter 3. MCS as a Service

for the initial implementation, in Section 3.6 the workflows involved

are described and in Section 3.7 more details are given in terms of the

corresponding software design.

3.6 Setup and deployment of MCS appli-

cations

Within the proposed paradigm, the actions and interactions of the

main stakeholders (depicted in Figure 3.2) through the blocks and

the modules identified above, are of high practical importance. Thus,

the main activities related to MCS application setup, deployment and

management into the MCSaaS framework, are described through the

following Activity Diagrams (AD). More specifically, two main per-

spectives associated with the MCSaaS-P and the MCS ASP are taken

into account in the description of these main activities, which include

(i) setting up an MCSaaS platform (Section 3.6.1), followed by (ii)

the configuration and deployment of a specific MCS application on it

(Section 3.6.2), respectively.

3.6.1 MCSaaS platform setup

With regard to enablement of PaaS over potentially exploitable in-

frastructure (SAaaS), there is the need to first describe a bootstrap

scenario, where mandatory MCSaaS components are pushed to the

mobiles in a PaaS-agnostic way. In more detail, the following kind of

interaction is envisioned: the MCSaaS provider needs to choose the

appropriate infrastructure, given a set of available InPs, to offer MCS

as a service.

Afterwards a phase of bootstrap ensues, where the MCSaaS-P must

enable every mobile, booked through the SAaaS InP, for easy MCSaaS-

assisted deployment of MCS applications. For this purpose SAaaS-

3.6. Setup and deployment of MCS applications 89

Platform

PaaS-
enablement

for
infrastructure

platform
frontend
config

going live

MCSaaS
Provider

Figure 3.6: MCSaaS: initial platform setup AD

90 Chapter 3. MCS as a Service

provided services, powered by the Hypervisor, are employed to deploy

the node-side MCSaaS module.

The MCSaaS module enables contributors to choose their level of

involvement and resource sharing for MCS apps, i.e., not only sensing

resources as in pure SAaaS scenarios, but also CPU time, memory

and/or on-board storage. Moreover, this module is in charge of duties

related to MCS app deployment, i.e., activating endpoints for, and

then cooperating with, the Deployment Manager in Figure 3.5, also

enforcing the aforementioned choices in terms of local computing and

storage resources when receiving and deploying the next MCS app.

The aforementioned approach, apart from avoiding layering (IaaS

/ PaaS) violations, also enables the implementation of the mobile-side

SAaaS components to cope just with sensing infrastructure concerns

and SAaaS scenarios. This focus then carries over also in terms of

sandboxing and other security-related mechanisms, e.g. dealing with

user-mandated restrictions, only with regard to SAaaS-relevant sens-

ing resource usage and interactions.

In the same fashion, any node-side operations dictated by the Cus-

tomization Service, would just be dealt with by the bootstrapped en-

vironment, thus leading to the development of certain security-related

mechanisms, such as checking permissions of MCS apps in terms of,

e.g., access to any kind of user data, to be implemented only at this

level, i.e., in the MCSaaS bootstrapped component itself.

Figure 3.6 depicts MCSaaS-P activities related to the platform

setup, starting with a macro-step including all actions involved in

PaaS-enablement for infrastructure, such as identifying and selecting

potential InPs, exposing relevant APIs and service endpoints. After-

wards a phase of platform frontend configuration follows: this entails

the setup of a Software as a Service instance, i.e., a Rapid Application

Development (RAD) environment available to application developers.

As soon as the frontend is ready, the MCSaaS-P can “go live” and

3.6. Setup and deployment of MCS applications 91

start servicing customers, e.g. MCS ASPs.

3.6.2 MCS application configuration and deploy-

ment

The MCS application configuration / deployment is performed by the

MCS ASP using the services provided by an MCSaaS-P and is bro-

ken down into the (i) application negotiation and platform bootstrap

stages and (ii) the actual app deployment, detailed in Section 3.6.2

and Section 3.6.2 respectively.

Negotiation and Bootstrap

InfrastructurePlatformApplication

send
request

confirm
reservation

resource
planning

MCS
ASP Infrastructure

Providers

MCSaaS
Provider

requirement
-constraint
matching

ok

ok

platform
bootstrap

bootstrap
module

deployment

store rsv
info

register
resource EPR

Figure 3.7: MCSaaS: app negotiation and platform bootstrap AD

92 Chapter 3. MCS as a Service

Figure 3.7 describes the (PaaS-mediated) app negotiation and plat-

form bootstrap stages. The former entails identifying the required

building blocks for the app, in terms of IaaS/DaaS/SAaaS resources,

with a phase where the developer (or MCS ASP) pushes the cor-

responding plan to the platform frontend (resource planning). It is

followed by a negotiation of the requirements to be matched, co-

ordinated by the Cloud Broker, possibly with iterations involving

the MCS-ASP still into the planning stages (requirement-constraint

matching). Upon agreement and following the MCS ASP confirma-

tion (confirm reservation), the platform modules have to be deployed

into the provided sensing resources, through the interaction between

the MCSaaS-P (platform bootstrap) and the InP (bootstrap module

deployment). Thus, the end-point references (EPR) of the reserved

sensing resources are fed back to the MCSaaS-P and stored (register

resource EPR) and the reservation data forwarded to the MCS ASP

(store rsv info).

Deployment

Field deployment of an MCS app, as detailed in Figure 3.8, starts with

the MCS ASP choosing among available APIs (choice of API), for ba-

sic as well as advanced operations (e.g. pre-filtering, analytics). This

is followed by the platform’s artifact contextualization of the MCS ap-

plication and the configuration of the infrastructure sensing resources

on the specific application domain (app domain configuration), trans-

lating at the same time customer-driven constraints on resources and

APIs by wiring up infrastructure endpoints accordingly (service end-

point wiring).

Then, an initial set of requirements is submitted by the application

(requirement push), which is the “recipe” (including high-level code)

obtained during the bootstrap phases as discussed in Section 3.6.2.

This step kickstarts the artifact deployment (binaries, configurations,

3.6. Setup and deployment of MCS applications 93

InfrastructurePlatformApplication

requirement
push

artifact
deployment

dataset sharing
service

deployment

MCS
ASP

orchestration

app domain
configuration

choice of
APIs

artifact
contextualization

resource
contextualization

service
endpoint wiring

Figure 3.8: MCSaaS: app deployment AD

system images, etc.) to VMs, storage objects and, in the case of

SAaaS, contributor-owned mobiles. Behind the scenes the deployment

would be preceded by translation of recipes in artifacts, e.g. compila-

tion/packaging, still up to the Deployment Manager. Activation of the

endpoints, and subsequent mapping of the wiring (as shown in the cor-

responding AD of Figure 3.8) over allocated resources (orchestration),

are up to the Orchestrator. For the operations of the Orchestrator to

be effective, or even just feasible under most circumstances, platform-

initiated activations and (re)wirings are required, thus leading to a

need for an always-on (anytime) push-to-client messaging channel for

each registered device, powered by environment-agnostic bi-directional

asynchronous exchange primitives.

Afterwards, a phase of resource contextualization, by means of the

Customization Service, is called for, either in terms of configuring

or even customizing the underlying resources, e.g., by iteratively in-

94 Chapter 3. MCS as a Service

volving the SAaaS services, where relevant. Mapping and, especially,

customization could possibly lead to a mismatch between initial re-

quirements and actual setup, thus requiring eventual iterations with

MCS ASP to reach a convergence or at least a satisfactory trade-off be-

fore stopping the matchmaking process. Furthermore, the MCS ASP

can start exposing a portal or useful Web services to share and visual-

ize full datasets, or any compact representation thereof in the dataset

sharing service deployment. These datasets may therefore be provided

to third parties (also as OpenData) to let them develop applications

centered around such datastores.

3.7 The MCSaaS implementation

In the following a description and some details regarding the MCSaaS

stack implementation are provided.

With regard to the node-side runtime, there are the Sensing APIs

and the environment-provided notification subsystem which are of par-

ticular relevance to this design. Whilst the former is opaque in terms

of the MCSaaS, as its Customization Service has to relay sensor re-

configuration and tuning requests to the SAaaS device-side subsystem,

the latter is useful at both Cloud layers, to minimally involve platform-

provided Cloud-based mechanisms for push-based communication to

devices, avoiding to tackle corner cases in terms of reachability, and

tracking of networking conditions in general.

The server-side logic, available in the Orchestrator and the

Cloud Broker, has been developed in Java and Python, resorting to

servlets [85] in terms of the user-facing interaction model and RESTful

endpoints as Cloud-private interfaces to the mechanisms implemented

in Python.

Apache Tomcat [86] is used as the Java servlet container.

For example, Google notification service, Google Cloud Messaging

3.7. The MCSaaS implementation 95

(GCM) [87], is used for exchanging (MCSaaS-bootstrapping) asyn-

chronous messages in Android-powered mobiles, as needed to support

Cloud-initiated primitives and runtime customizable mechanisms, as

well as for on-demand activation of a WebSocket-based subsystem.

This preference towards a (partially) custom communication bus lies

in the inherent limitations (and costs) borne by the use of GCM, which

is simply not meant for big payloads (e.g., file transfers), but is specif-

ically designed and marketed for push notifications and in this case

employed also for signaling.

In terms of the main modules, the Broker keeps track of the reser-

vations and transfers resource requests to the Orchestrator. The latter

in the current implementation mainly deals with churn, which at MC-

SaaS level means reacting to fluctuations in the number of active con-

tributors for any of the MCS apps hosted by the system. In particular,

as soon as in a certain area such population falls below a threshold,

according to parameters set by the MCS developer, the churn man-

agement routines running in the Orchestrator look up other platform-

enabled nodes in the same area to push notifications through GCM,

meant for triggering the nodes to retrieve the package, install and

launch the corresponding payload, the MCS app. The whole MCSaaS

population is continuously under tracking so any query is expected

to be serviced in the order of fractions of a second. The client-side

component of the Deployment Manager listens for incoming payloads,

tagged as such by the server-side logic, to automate the installation of

the app as soon as it is downloaded onto the device. This is to let the

app be installed without any user intervention, albeit the process gets

inevitably visible at times, as some windows would pop up anyway

during installation stages, albeit for very short time intervals (e.g.,

less than a second for any window instance).

96 Chapter 3. MCS as a Service

3.8 MCS app: case study

In this section examples of MCS applications deployed using the MC-

SaaS platform are discussed, highlighting the benefits of MCSaaS.

To compare the proposed approach against the traditional MCS one,

two possible use cases in an IoT / Smart City scenario are consid-

ered, involving two different MCS applications: (i) a multi-purpose

community-focused app for pothole mapping and (ii) a traffic moni-

toring app serving the Messina, Milan and Athens urban areas (Fig-

ure 3.9).

UMePMiNTUA
MCSaaS

UMe SAaaS
Cloud

UMe
Cloud

PoliCloud
DaaS Cloud

PotHole
Mapping

Traffic
Monitoring

Me-Contr. 1
Me-Contr. n

PMi SAaaS
Cloud

NTUA
SAaaS
Cloud

UMePMiNTUA
MCSaaS-P

UMe SAaaS
Provider

PMi SAaaS
Provider

NTUA SAaaS
Provider

PotHole Mapping
ASP

Traffic Monitoring
ASP

UMe IaaS
Provider

PMi DaaS
Provider

Mi-Contr. 1
Mi-Contr. n

Ath-Contr. 1
Ath-Contr. n

PM
End Users

TM
End Users

PM/TM
End Users

Figure 3.9: MCSaaS-driven app: deployment scenario

The UMe (University of Messina), PMi (Politecnico di Milano)

and NTUA (National Technical University of Athens) SAaaS (InPs)

are used in the deployment scenario, leveraging their private IaaS and

DaaS providers if needed (such as the OpenStack-powered UMe and

3.8. MCS app: case study 97

PMi PoliCloud [88]). However, any private or public company/insti-

tution (e.g., mobile telcos) could take up the role of the InP. These

SAaaS Clouds feature smartphone sensors from volunteering Contrib-

utors (roaming users). Smartphones are bound to be extremely useful

in such scenarios, as they are equipped with several relevant sensors

e.g., for positioning (GPS,GSM, WiFi) and motion detection (gyro-

scope), while supporting (always-on) Internet access. Roaming users

become Contributors by discovering and (non-exclusively) subscribing

to SAaaS Clouds.

The UMePMiNTUA MCSaaS-P is established according to the

workflow depicted in Figure 3.6. After the selection of the appropri-

ate InPs (subscribed to services, signed SLAs, etc.), UMePMiNTUA

discovers, collects and exposes generic (templatized) WS endpoints

(URIs), typically for RESTful consumption, and corresponding APIs

documentation within an HTML5-powered RAD IDE.

On top of this platform, the pothole mapping and traffic monitor-

ing apps are provided by two different MCS ASPs. Contributors may

be engaged for both pothole mapping and traffic monitoring MCS apps

concurrently, a desired outcome and one of the main drivers behind

this effort. The MCS End User (EU) (e.g., a taxi driver), uses the cor-

responding mobile (or Web-based) apps for retrieving the information

of interest. Often an MCS EU also acts as a Contributor.

In the following, it is initially discussed how to set up and deploy

these two MCS apps (Sections 3.8.1 and 3.8.2) using the proposed

MSCaaS platform. Then, in Section 3.8.3, (i) preliminary results of the

prototype in the context of the traffic monitoring use case are reported,

and (ii) benefits of the MCSaaS approach against the conventional

MCS one highlighted through an analytic model.

98 Chapter 3. MCS as a Service

3.8.1 Pothole mapping

A pothole mapping MCS application automatically collects road con-

dition information once it is started, without human intervention. It

requires just an accelerometer and a positioning system at the core,

to be sampled for detection of abrupt vertical displacements and geo-

localization. Data validation including the removal of outliers and

elimination of false positives is facilitated by the crowdsensing ap-

proach collecting, analyzing and clustering input coming from a di-

verse range of users.

In the current MCS app deployment scenario, the pothole app re-

quires just a database and a server for the Web UI. Therefore planning

the requirements in terms of IaaS/DaaS is quite straightforward. On

the other hand, the high-level constraints for the sensing infrastructure

to be transmitted / negotiated include (i) sensing potential (accelerom-

eters and positioning at least) (ii) geographical area and (iii) device

mobility (vehicular, e.g., bikes and cars). The app design stage re-

quires to leverage a set of libraries and ready-made routines, a typical

process for a RAD environment, for, e.g., mobile-side outliers detec-

tion, as well as IaaS APIs to choose from (OGC- or M2M-compliant

REST calls) etc., following the PaaS approach.

Once the app is released, the pothole ASP has two main alter-

natives: directly enrolling contributors supporting the pothole map-

ping service in a given area of interest (traditional MCS) or asking an

MCSaaS-P, e.g., UMePMiNTUA, to provide the required (vehicular)

sensing resources. As discussed above, in the former case, user en-

rollment could be slow or even not successful, while in the other case

the MCS ASP has immediate access to the sensing infrastructure at

the cost of the provided service (MCSaaS). Combining the two ap-

proaches in a kind of “cloudbursting” fashion, the pothole ASP may

resort on-demand to third party sensing resources provided by the

3.8. MCS app: case study 99

UMePMiNTUA MCSaaS-P along the “owned” ones directly engaged

by the MCS, when required, e.g. in the case accuracy in the mapping

is required within a given time constraint.

The pothole ASP has to negotiate with the UMePMiNTUA

MCSaaS-P for the resources, required by the pothole mapping app

that needs to be deployed in the MCSaaS platform/infrastructure. In

the case of successful negotiation, the sensing resources provided by

the UMePMiNTUA MCSaaS-P have to be set up and configured to

receive the pothole app code as shown in Figure 3.7.

The pothole app deployment begins as soon as the developer lets

the output (recipe) of the design stage be consumed by the Deploy-

ment Manager, in this case just dealing with a limited subset of bina-

ries (e.g., compatible with Android-powered mobiles), with regard to

sensing resources (Figure 3.8). Finally, at instantiation time endpoints

that are provided/consumed by the application get enabled and the

(abstract) wiring in the recipe gets mapped to the infrastructure by

the Orchestrator.

3.8.2 Traffic monitoring

Another application of the MCS paradigm may be traffic monitoring,

which is a useful instance of service based on mobile contributors, still

related to drivers also as a potential pool of consumers and/or produc-

ers, and in general in the same domain. In terms of MCS, while the

sensing activities are similar to pothole mapping, e.g., still mainly en-

abled by positioning subsystems and accelerometers, the requirements

diverge remarkably.

As overall traffic and specific metrics, such as current cruising

speed and the rate of slowdowns, to name a few, need to be fed and

updated in real-time for the service to be genuinely useful, it follows

that there are constraints such as, e.g., the minimum number of con-

100 Chapter 3. MCS as a Service

tributors per area on average, to ensure accuracy on traffic monitoring

sampling. Most importantly the platform is meant for automatic de-

ployment of multiple MCS apps if needed, ready to be executed side by

side, so a scenario where both the pothole mapping application and the

traffic monitoring ones are concurrently working in background is ab-

solutely feasible and contemplated, while still addressing the specifics

of the requirements of each application, e.g., real-time constraints on

the availability of actively contributing resources in the case of traffic

monitoring only.

The latter is really a use case for the orchestration capabilities

of the platform, as exemplified by the management of node churn,

which needs to be addressed on a continuous basis, to provide the ex-

pected quality of service, or at least degrading gracefully by informing

the developer about the number of currently (or recently) involved

contributors per area, in other words, under a simplified scheme, the

confidence interval with respect to displayed metrics.

This way, resorting to the MCSaaS provider UMePMiNTUA is

maybe the only effective solution to ensure a predefined level of accu-

racy in sampling for the traffic monitoring service. Also in this case a

hybrid MCS-MCSaaS solution may be effective, exploiting the (vehic-

ular) sensing resources provided by the UMePMiNTUA MCSaaS-P to

complement and enrich the information gathered from the contribut-

ing ones engaged by the traffic monitoring ASP through a traditional

MCS enrollment process. On the other hand, the enrollment of sens-

ing resources from UMePMiNTUA follows the negotiation and deploy-

ment/configuration phases described in Figure 3.7 and Figure 3.8.

3.8.3 Testing and evaluation

To demonstrate the effectiveness of the MCSaaS model against the

traditional MCS one, evaluations follow of (i) a preliminary imple-

3.8. MCS app: case study 101

mentation of the stack for the deployment of the traffic monitoring

app and (ii) the corresponding GSPN models.

MCS Application Deployment: A Proof of Concept

The traffic monitoring application, denoted hereafter as MCS-Traffic

app, falls under the category of infrastructure MCS apps [58]. The

implementation of the MCS-Traffic application follows the same prin-

ciples as similar community-based GPS-enabled applications for nav-

igation (e.g., Waze [89]), using contributor’s location and travel times

via GPS to provide real-time traffic updates, as exemplified in Sec-

tion 3.8.2. To show the benefits of using the proposed paradigm for

the MCS ASP, as opposed to current MCS application deployment

practices, an illustrative example related to the MCS-Traffic app is

presented, specifically focusing on issues such as volunteer-based con-

tribution and node churn.

Testing Scenario The MCS-Traffic app requires real-time informa-

tion (via GPS tracking) to provide updates on (expected) travel times

for an arterial road (service area). Specifically, the minimum number

of actively probing vehicles (contributors) is crucial for establishing

the reliability of estimations in terms of link speed [90]. A link is a

section of road spanning a continuous segment with no intersections,

while the link speed refers to the distance traveled by a vehicle in a

unit of time.

The following testing scenario is considered: vehicles enter the ser-

vice area according to a Poisson process and travel times are normally

distributed [91]. It is assumed that data from at least 10 probes are

required with a sampling period of 700s to establish the reliability of

the estimate on link speed [90]. This way, the traffic monitoring app

is able to correctly estimate and predict actual traffic in the area of

interest.

102 Chapter 3. MCS as a Service

In experiments an average population of 150 vehicles is assumed

to be in the service area. Furthermore, it is assumed that just a

part of them are also SAaaS contributors (about 8%), and similarly

that just about 5% of vehicles are MCS contributors, directly engaged

by the ASP. These values are arbitrary, however, since a conventional

MCS application needs to recruit, engage and retain participants, such

assumptions may be considered reasonable, possibly a bit conservative

in the MCSaaS case.

Testing Environment The prototype implementation at MCSaaS

and SaaS levels, described in Section 3.7, has been used to test the

deployment and operation of the MCS-Traffic app. MCS EUs / con-

tributors were emulated (running Android 4.2 / API level 8 [92]), due

to the lack of a substantial number of physical devices, as required

by the testing scenario. Android has been adopted, not only for its

widespread availability and popularity, but also for some of the facili-

ties the SDK and the runtime environment provide, e.g. the emulation

subsystem (using Genymotion [93]) and the Debug Bridge (ADB) [94]

for the management of emulated instances. Helper functions, using

shell scripting, were employed for setting up the testing scenario (e.g.,

vehicle mobility, engagement etc.) along with ADB for provisioning

and control of the emulated instances.

Experimentation Metrics The two different scenarios discussed in

Section 3.3 are examined in experiments based upon the MCS-Traffic

app: (i) the one envisioned under the conventional MCS paradigm

and (ii) the one enabled by the proposed MCSaaS paradigm.

These two scenarios are compared based on the average number

of vehicles within the service area as a function of time, serving as

active probes (Number of Contributors). For this purpose, enumerate

are the (i) MCS contributors (MCS-C), involved in the conventional

3.8. MCS app: case study 103

MCS scenario; and (ii) MCSaaS contributors (MCSaaS-C), contribut-

ing to the traffic monitoring app through the whole stack. MCSaaS

contributors are a subset of users engaged by the SaaS provider (InP)

that are denoted as SAaaS contributors (SAaaS-C).

In addition, the effect of Resource Churn is quantified, by measur-

ing on average the time required by the framework to replace MCSaaS

contributors that left the service area, restoring the MCSaaS pool to

the number required by the MCS-Traffic app.

Results and Comparison In the MCSaaS scenario, it is up to the

SAaaS provider (InP) to ensure a consistent high number of contrib-

utors engaged to a MCSaaS-P. Then it is up to the MCSaaS-P in its

turn to reserve at least the minimum required amount of MCS con-

tributors, according to the application requirements (in this case the

MCS-Traffic app).

Number of Contributors: For the set of sampling periods, on aver-

age 5.8 contributors for the conventional MCS scenario and 9.2 con-

tributors for the MCSaaS one, excluding a warm-up period of 500 s,

have been estimated. Comparing the results obtained in the case of

the MCSaaS scenario to the conventional one, it can be argued that

the MCSaaS solution succeeds in engaging contributors within the

service area, as it approximately meets the constraint posed by the

MCS-Traffic app in terms of the number of active probes (10 probes

are required).

The effectiveness of the proposed approach in addressing the re-

quirements of the application, is also visible in Figure 3.10 that is

a snapshot of the emulation within a sampling period, just report-

ing on a single testing trace. Following the 20th time unit there are

two, almost simultaneous, SAaaS contributor departures that affect

the MCSaaS provisioning service. However the framework is able to

promptly react, restoring the MCSaaS pool to 10 contributors/probes

104 Chapter 3. MCS as a Service

as requested by the MCS-Traffic app.

Figure 3.10: MCS and MCSaaS emulation: contribution sampling

Resource Churn: Through the experiments a lag of 6 time units (30

s) on average has been evaluated, due to the resource churn functional-

ity, for the MCSaaS system to actually replace contributors (MCSaaS-

C) that left the system. This lag is broken down into four intervals:

1) the time needed for the SAaaS server to identify the arrival of

a new contributor and initiate the MCSaaS client installation

process;

2) the MCSaaS client installation time;

3) the time needed for the MCSaaS server to identify the arrival of

a new contributor and initiate the MCS-Traffic app installation;

4) the application installation time.

3.8. MCS app: case study 105

This delay is also captured in the MCSaaS curve of Figure 3.10,

highlighted in the [0, 10] time unit interval.

In this evaluation the overhead introduced by the abstraction of

sensor resources and registration of infrastructure services has been

neglected, since in [95] metrics pertaining to the abstraction overhead

of sensing resources, at the SAaaS level, was measured and found to

be considered negligible for all purposes. With regard to registration,

it can be prospected as a typically one-time (SAaaS-level) operation,

so it is not so critical in the long term.

A quantitative, in-depth evaluation on the impact of the churn

management in terms of performance cannot be performed due to the

limits of the testbed and the preliminary implementation of the frame-

work. Nonetheless, some general, qualitative observations, based on

the experiments conducted, are reported in the following. The im-

pact of resource churn (and subsequent updates of resources) on the

performance of the service to be offered (i.e., the MCS application)

is rather limited by design, as long as any replacement is application-

transparent (as is the case in general for MCSaaS). The overall appli-

cation behavior may depend on the smoothness of the curve depict-

ing the ratio of available resources to the requested ones over time,

as in the case of the traffic monitoring app. Reactivity is thus key

mostly when dealing with loss of huge numbers of contributed devices.

App deployment time, depending on bandwidth and concurrent (non-

blocking) fan-out, is mostly constant, not proportional to the number

of devices to be replaced.

106 Chapter 3. MCS as a Service

CHAPTER

FOUR

A CROWD-COOPERATIVE APPROACH FOR

INTELLIGENT TRANSPORTATION SYSTEMS

4.1 Introduction and motivations

Among the strategic services addressing societal challenges, many gov-

ernments give priority to mobility and transportation, pushing for In-

telligent Transportation Systems (ITS). Some interesting results in

this direction come from ICT through crowdsourcing. If properly ex-

ploited the potential of new technologies and approaches is expected

to provide a great contribution to the development of effective ITS

solutions. With an ever growing availability of embedded, mostly per-

sonal and mobile computing devices for everyday tasks, there is an

almost limitless potential for tapping onboard resources.

A promising way to exploit this untapped potential is Mobile

CrowdSensing (MCS) [58]. It aims at gathering and harnessing the

power and wisdom of the crowds to deal mainly with human-centric

problems, typically in social, urban and citizen science applications.

MCS comprises by definition applications where individuals carrying

sensor-hosting embedded systems such as smartphones get collectively

107

108 Chapter 4. A crowd-cooperative approach for ITS

engaged in information gathering and sharing efforts to monitor and

georeference events which may be of interest for individuals and com-

munities alike. It gets applied successfully in different, more or less

intelligent, transportation systems and services, e.g., monitoring of

traffic and road conditions, mapping of road network features and of

cues for elements of interest.

One of the main advantages of MCS is the possibility to perform

sample collection, data mining, etc., without accounting for the cor-

responding experiments in advance, just leveraging natural daily life

patterns, arising from human activities, as they happen and leave be-

hind breadcrumbs in form of samplings ready to be collected. Aim of

this kind of enablement then is putting this power at the fingertips of

developers or would-be entrepreneurs, ready to kickstart whichever ef-

fort in next to no time. In particular self-provisioning and autonomous

cooperation are needed to avoid long setup times for experiments, dis-

ruptions beyond careful planning and sizing, as well as reducing the

development of ad-hoc solutions. MCS is already establishing itself

as a trendy paradigm, but most efforts go into the direction of easing

participatory (e.g. manned) patterns. Apart from privacy and secu-

rity issues, where anonymization and sandboxing respectively are key

countermeasures, most engagement chances should be meant to be

opportunistic to let MCS be truly widespread, inexpensive and wholly

disruptive as a paradigm. In this context, problems lie foremost in

enabling unassisted deployments, as well as accommodating for peer-

oriented communication and distributed self-organization, mostly due

to real-world settings and constraints, e.g. intermittently disconnected

operation.

Most MCS applications typically feature a common, simplified ar-

chitecture, made up of two main components, one running on the

embedded device to collect and disseminate measurements, and a sec-

ond one as backend. The main drawback of such siloed pattern lies

4.2. Background and related work 109

in missing exploitation of proximity or density in topologies. In par-

ticular this last point is crucial, as any kind of high-density scenario,

especially when it includes real-time constraints as in ITS, needs a

smart approach to proactively take advantage of proximal nodes and

crowded areas instead of crumbling under the weight of such scale.

Given the MCS paradigm and forthcoming use cases with specific re-

gard to ITS, where mobility is really going to match crowds at scale,

an opportunistic design pattern may be conceived. In particular, the

MCS approach perfectly fits with traffic application requirements, ask-

ing for frequent, nearly real-time, updates in both monitoring and

route planning decision making. But, due to the limitation of current

(mainly participatory) MCS patterns, it has been effectively adopted

just in traffic monitoring applications [69, 70]. In this chapter the aim

is to fill this gap, demonstrating that the MCS paradigm, through

novel opportunistic patterns, can also support and implement self or-

ganizing systems able to autonomously decide on the best route for

a vehicle based on the traffic information gathered from neighbors.

This way, the proposal is to use this new MCS development in route

planning, to implement a new generation of ITS.

4.2 Background and related work

4.2.1 An overview of ITS

A directive by the European Union Commission [96] defines ITS as

“systems in which information and communication technologies are

applied in the field of road transport, including infrastructure, vehi-

cles and users, and in traffic management and mobility management,

as well as for interfaces with other modes of transport”. From the

ICT perspective ITS may be envisioned to embrace any advanced so-

lution that integrates live data and other feedback from a number

110 Chapter 4. A crowd-cooperative approach for ITS

of heterogeneous sources, such as parking guidance and information

systems.

In particular, efforts related to ITS seem naturally poised to have as

target high-population density areas and to consider multimodal sys-

tems of transportation comprising either personal vehicles or shared

carriers for commuters, such as buses and trains. This way ITS natu-

rally spans a wide range of technologies, starting from basic manage-

ment systems such as navigation ones, possibly to be augmented in

the future by systems where artificial “co-drivers” may assist humans

during their duties [97].

Yet, there are many other examples of instances of subsystems

prone to be enhanced through ICT, e.g., traffic signal control systems,

which may leverage some kind of system-optimal routing algorithm

for road networks as well, such as game-theory based ones [98]. More-

over, from a technological viewpoint, any delay in information dissem-

ination for vehicle-to-vehicle communication networks [99], so called

VANETs [100], considering a traffic-dense configuration as the rele-

vant scenario, can be identified as one of the main challenges to be

overcome for any coordination system to really work as expected.

Even established technologies, such as Wireless Sensor Networks,

may find peculiar applications in ITS such as monitoring of conditions

for railways [101], or be revised to meet novel requirements, such as

challenging wireless communication scenarios in high-speed railway

systems [102]. Some authors [103] have leveraged Deep Learning to

predict traffic flows by dealing with Big Data sources. Such problems

were also analyzed by model-based solutions: for instance in [104] a

stochastic (hazard-based) model to evaluate the impact of a reliability-

safety tradeoff on the travel-time is proposed.

4.2. Background and related work 111

4.2.2 MCS for ITS

Several success stories demonstrate the capability of the MCS

paradigm to support the development of successful ITS applications.

Among them, mapping activities such as OpenStreetMap [105] and

BikeNet [76], aimed at creating an open geographic map of the road

networks or bike routes worldwide, respectively, or more specific pot-

hole detection and mapping application [69], gained consensus and

large scale participation. Anyway, due to the MCS potential for pro-

viding near real-time information, the ITS-related killer application

for this paradigm is traffic monitoring. Indeed, there are several so-

lutions proposed in literature addressing this problem from different

perspectives. First and foremost, CarTel [106] and NeriCell [69] pi-

oneered tackling this problem by a sensing infrastructure deployed

on-purpose, or mobiles, respectively. Then, more advanced solutions

have combined both static and mobile sensors, involving street sen-

sors such as cameras as well as smartphones or vehicle sensors. For

instance in [107] a traffic monitoring system for a public transporta-

tion service is implemented, and similarly in [70] for vehicle traffic

in general. A step further has been achieved in terms of integrating

data crowdsourced from social networks as well, towards vehicular so-

cial networks (VSN) [108, 109], where a full layered stack, including

a framework for developing context-aware applications for VSN thus

established, is proposed [110]. Also large-scale, commercial solutions

have developed traffic monitoring services (partially) based on mobile

contributions, such as those included in Google Maps (Google traf-

fic [111]), MapQuest and Baidu services.

These works demonstrate that, on one hand the MCS paradigm

perfectly fits with traffic monitoring goals, but on the other hand

it is not applied in applications requiring active involvement of end-

users/contributors through a control loop or a feedback, such as, in

112 Chapter 4. A crowd-cooperative approach for ITS

the ITS context, route planning. This is likely due to some limitations

of the current wisdom about the MCS paradigm itself, mainly focused

on participatory patterns instead of opportunistic ones. Indeed, in the

development of ITS for traffic engineering and optimization of flows

and transportation resources, two main solutions exist: the managed

or the unsupervised (cooperative) approaches. The former means re-

curring to centralized systems, such as municipality-controlled street

lights, timetables and relative information systems. The latter re-

quires leveraging cooperation among traffic vectors, such as private

vehicles or buses.

Furthermore, a traffic engineering system may be translated into

a purely distributed, network mesh-dependent subsystem. Identifying

Internet as the connection facility and things as vehicles leads to a

straightforward mapping onto the Internet of Things (IoT) paradigm,

sometimes also declined in literature [112] as Internet of Vehicles. Un-

der such premise, this ITS characterization of MCS may just become

a pattern under the IoT umbrella term, i.e. a specialization of the

platform that an IoT would represent for sensing-related, mobility-

enabled, crowd-sourced use cases.

4.3 A novel cooperative strategy

In this section an innovative distributed MCS scenario is going to be

proposed, and therefore a stigmergic strategy for achieving optimiza-

tion goals through distributed cooperation of autonomous MCS nodes.

4.3.1 A distributed MCS pattern

Framing the discussion in the aforementioned characterization, a sce-

nario is briefly described, where cooperation among nodes becomes

important, even essential, especially in the context of mobility and

4.3. A novel cooperative strategy 113

Distributed MCS Centralized MCS

Node1

Node2
Nodei Nodej

Nodek

Noden

Contributors

Service
Provider

Application
Server

End Users

End Users

Figure 4.1: MCS patterns: centralized and distributed

transportation applications. This way, the focus is on MCS oppor-

tunistic patterns, mainly characterized by push fruition modality and

distributed interaction model, according to the taxonomy in Table 3.1

(Section 3.2.2).

As shown on the right part of Figure 4.1, typical (centralized)

MCS applications mainly implement a client-server interaction pat-

tern where a service provider offers MCS-based services to end users,

leveraging contributors willingness to provide their physical (sensing)

resources. Data are therefore collected and processed by (backend and

frontend) application servers to carry out analytics and feed back rel-

evant results to end users. As discussed above this approach does not

allow to properly exploit the power of the underlying resources at the

edge of the IoT, restricting the applicability of the MCS paradigm to

just client/server applications thus requiring a centralized coordina-

tion.

A way to fully exploit this unexpressed potential is by adopting

a distributed approach. This aspect is depicted on the left of Fig-

ure 4.1, where the main differences between the decentralized versus

114 Chapter 4. A crowd-cooperative approach for ITS

the traditional/centralized MCS patterns are highlighted in red. The

main one is the opportunistic cooperation, a collaborative approach by

which nodes may interact one another to aid local computations and

perform distributed optimization on a small/medium scale. This way,

end users may leverage an MCS application by just exploiting coopera-

tion among nodes. In this scenario contributors usually also act as end

users and viceversa, directly interacting through their nodes/devices,

and there is no service provider. Furthermore, it is worth remarking

that a contributor could be involved in different MCS applications,

therefore, as highlighted in Figure 4.1, the same node may be involved

in both centralized and distributed contribution patterns.

To the best of our knowledge, this is the first attempt at exploiting

opportunistic, cooperative approaches in MCS contexts. Some work

on opportunistic IoT and sensing environment is available in litera-

ture. For example, in [113] an opportunistic IoT framework is pro-

posed, mainly extending opportunistic networking towards participa-

tory sensing, enabling opportunistic information sharing among things

to also support mobile social networking. Similarly, opportunistic mo-

bile networking is the topic of [114], mainly focusing on low level data

forwarding issues through a framework able to support and optimize

opportunistic sensing. Differently from these approaches, here the

work is placed at a high level, proposing an alternative or, to be more

precise, a complementary approach to the centralized MCS paradigm,

where backend-less operations is possible, as cooperation would work

unimpaired anyway, at least in steady-state stages of execution. Ex-

isting solutions, as the aforementioned ones, mainly operate at net-

work level and are surely of interest for the implementation of our

ideas when dealing with such concerns, which anyway are out of the

scope of the present chapter, focused on introducing and motivating

an opportunistic-cooperative approach specifically geared for MCS.

4.3. A novel cooperative strategy 115

4.3.2 Stigmergic approach

To demonstrate the suitability of the distributed MCS pattern, effec-

tive methods and tools enabling opportunistic features are required,

in particular with a focus on an ITS scenario, e.g., vehicular traffic

engineering in a urban setting.

Over such a set of (dynamic) meshes, such as a vehicular crowd,

a stigmergic approach is proposed for cooperation and optimization.

Let’s first tackle swarm optimization alone.

Ant colony optimization

Ant colony optimization (ACO) [115] is a relatively recent metaheuris-

tic based on the behavior of ants seeking a path between their colony

and a source of food. In nature wandering ants have exhibited in this

sense a provable capability to discover nearly optimal paths. The col-

lective intelligence of the swarm derives from the indirect exchange of

information among ants via the environment (the so-called stigmergy).

While traveling to search for food, ants lay down pheromones on their

way back to the nest (i.e., home colony) only when sources of food are

found. As other colony members step into pheromone trails, they tend

to stick to the beaten path accordingly. Moreover, the trace gets rein-

forced as more individuals follow the same trail, leaving pheromone of

their own, in turn resulting increasingly attractive for other ants. For

any complex problem which can be reduced to a search for optimal

paths, ACO may work as a probabilistic solver, by emulating such

naturally occurring behavior. The probability pkij for an artificial ant

k, placed in vertex i, to move toward node j is defined as follows:

pkij =
ταij · η

β
ij∑

l∈Nk
i
(ταil · η

β
il)

(4.1)

where τij corresponds to the quantity of pheromones laid over arc aij,

116 Chapter 4. A crowd-cooperative approach for ITS

ηij to a-priori attractiveness of the move, computed by some heuristic

embedding the cost of choosing arc aij along the path that leads to the

destination, and Nk
i is the set of neighbors in node i for ant k, i.e., the

nodes directly reachable by the ant. Coefficients α and β are global

parameters for the algorithm, and are typically both set equal to 1, so

that pheromones and a-priori information have the same importance

in the choice of the arc. According to typical ACO variants, ants bring

food back home after being done with their movement. Denoting T k as

the tour of ant k and n as the number of elapsed rounds, Ck is defined

as the length of T k, and used to specify the amount of pheromones to

be placed by ant k on each arc on the trail leading to the food source:

∆τ kij =

{
1
Ck if arc (i,j) belongs to T k

0 otherwise

}
(4.2)

τij(n+ 1) = τij(n) +
M∑
k=1

∆τ kij (4.3)

where M is the total number of ants in the colony.

At the end of a round, after each ant has completed a move, the

extent of pheromones laid over each arc gets reduced (e.g. evaporates),

according to:

τij(n+ 1) = (1− ρ)τij(n) (4.4)

where ρ is a global evaporation parameter as well, typically set in

literature with values ranging around 0.5, i.e., halving the pheromone

value at each iteration.

ACO algorithms yield their best performance when some form of

local search algorithm is employed.

4.3. A novel cooperative strategy 117

Initialization

ACOProbComp(arc[i+1])

Choice(arc[i])

Transit(arc[i])

DisseminatePH(arc[i])

ReceivePH()UpdatePHMat()

y

n
TrueTrueDest.?

SetNewDest

Figure 4.2: MoCSACO: activity diagram

ACO-based MCS

In order to adapt ACOs to the envisioned cooperative MCS-based

application, an adaptation of an ACO, called MoCSACO, is proposed.

Its behavior is described in Figure 4.2, where an ant corresponds to a

(physical) mobile device, i.e., a real-world agent, such as a vehicle.

Before delving into the detailed description of Figure 4.2, the over-

all rationale of this adaptation needs to be outlined.

The general objective of finding the shortest path on a (weighted)

graph is here being redefined in terms of leveraging common, state-

of-the-art and readily available heuristics for path discovery. The A∗

search algorithm is such a solution, allowing us to apply the stigmergic

approach to arc choice and weighting only, i.e., the admissible heuristic

function in case of A∗, where each arc has a cost defined by a certain

metric.

The cost of choosing an arc aij is defined as the ratio between a

certain property chosen to be used as a metric, hij, e.g., a distance or

118 Chapter 4. A crowd-cooperative approach for ITS

length, and its weight, wij:

cij = hij/wij (4.5)

In its turn, the weight of the arc wij is directly correlated to the

quantity of pheromones:

wij = γ · τij (4.6)

where γ is a constant of proportionality (may be typically set to

1) and τij represents the amount of pheromones placed on arc aij. In

order to make the a-priori cost (i.e., of choosing an arc along the path

towards destinations) explicit, let the following formula:

c
i
j→d

= cij + min
k∈Nj

c
j

k→d
(4.7)

define the cost c
i
j→d

from node i towards destination d along a

neighboring node j as the sum of the distance between i and j, cij,

and that from j to destination along the choice of node k, belonging

to the neighborhood of j Nk
j , which minimizes this distance.

Given all the above, the value of the a-priori gain, η
i
j→d
, for a

certain choice leading to destination d is computed according to the

following formula:

η
i
j→d

= δ/c
i
j→d

(4.8)

where the relationship is inversely proportional with respect to the

(weighted) distance, i.e., a cost, and δ is just a constant of proportion-

ality, which may be set to 1 according to literature, when referring to

such kind of formula, i.e., tying a-priori information to costs.

A further fix, also applicable to the standard ACO variant, would

consist in relaxing the requirement that agents, i.e., vehicles, travel

back home after finding food, in its stead leveraging the opportunistic

4.3. A novel cooperative strategy 119

inter-node communication for near-instant swarm-wide dissemination

of pheromone trails.

This way, probability pkij of Equation 4.1 has to be adapted to any

MoCSACO artificial ant, placed in vertex i, to move toward node j,

along the path to destination d, as follows:

pk
i
j→d

=
ταij · η

β

i
j→d∑

l∈Nk
i
(ταil · η

β

i
l→d
)

(4.9)

where τij corresponds to the quantity of pheromones laid over arc

aij, η
i
j→d

to a-priori attractiveness of the choice, computed by some

heuristic embedding the cost of choosing arc aij along the path that

leads to the destination d, and Nk
i is the set of neighbors in node i for

ant k, i.e., the admissible transitions for the ant. Even in this case,

pheromone gets updated as defined in Equation 4.3.

In MoCSACO, there are as many objectives as destinations, choices

are unpredictable (in the sense that an autonomous agent, e.g., a

driver, may choose to disregard indications, or even just drop off the

cooperative efforts by stopping its own instance of MoCSACO), and

there cannot be a notion of rounds for such kind of agents.

It follows that there is not an applicable notion of convergence,

and pheromone laid over each arc evaporates, still according to Equa-

tion 4.4, but on a time basis, by setting per-arc countdown timers

(possibly preset to a default value), to be reset at each pheromone

update. Moreover, A∗ may then be considered a degenerate algorithm

(for arc choice only), in the sense that a sparse density of agents, or

just slow transitions, for whatsoever reason, may induce depletion of

pheromones, which may be counter-acted upon by choosing a very low

value for the evaporation parameter and/or the timer frequency. In

turn depleted pheromones would lead to significant perturbations in

the computation of probabilities, translating into unreliable estimates

ultimately, to be accounted for by reverting arc choice to (determin-

120 Chapter 4. A crowd-cooperative approach for ITS

istic) A∗ computations each time
∑

l inNk
i
(τil) falls below a predefined

threshold.

Getting back at Figure 4.2, there are depicted the activities per-

taining to a single ant joining the distributed system, i.e., starting up

and being connected.

An Initialization phase corresponds to downloading initial

pheromone matrix P , possibly from a centralized MCS backend, with

constantly available information about traffic, if global Internet con-

nectivity is available, or reset to some predefined defaults with respect

to the graph topology, such as an inverse proportionality with respect

to the length of road segments. Afterwards there are three concurrent

(infinite) loops. The rightmost constantly listening for, and collecting,

updates (ReceivePH) from the mesh. The loop in the center of the di-

agram, periodically updating the pheromone matrix (UpdatePHMat)

immediately before every computation of the probability for the neigh-

boring arc(s) to be traversed (ACOProbComp), a function which gets

triggered by edge visits. In the leftmost (nested) loop, unless the des-

tination has been reached, the system waits for the next destination

to be set in order to re-enter the inner loop, where dissemination (Dis-

seminatePH) of an updated pheromone value is triggered by timers

resetting and thus producing evaporation, or the (arc) Transit being

over. In its turn, Transit is an (agent-performed) action that follows

another one about the Choice of the arc to be traversed by randomly

extracting one of the neighboring arcs according to the aforementioned

probability.

4.4 ITS implementation

In this Section we apply the general MoCSACO approach proposed in

Section 4.3 to the ITS application domain. In particular, we analyze an

instance of a traffic shaping problem implemented through a partially

4.4. ITS implementation 121

decentralized navigation system for automotive usage, where both the

single user and the (global transportation) system must satisfy a given

set of criteria. Such high-level requirement would translate into the

unambiguous, lower-level goals of minimizing possibly diverging at-

tributes, thus leading to a tradeoff between the number of vehicles per

road segment and the duration of the path of each user.

4.4.1 Motivating example

Figure 4.3: Distance graph: originating road map

The traffic of an urban area, near downtown the city of Messina, is

examined here. From the road map in Figure 4.3, a graph G with differ-

122 Chapter 4. A crowd-cooperative approach for ITS

ent types of nodes on the region of interest (RoI) is derived. Hexagonal

vertices denote higher-order nodes, i.e. from these nodes the vehicles

enter or leave the MCS cooperative system, e.g., through collector

roads or parking lots. The cross-shaped vertices denote destination

nodes, i.e., nodes of particular interest that have an high probability

to be the final destination of the vehicles, for instance railway stations

or schools in the morning. Both higher-order and destination nodes

are randomly placed in the RoI. Finally, the circle vertices are just

plain transit nodes. Arcs of the graph represent road segments and

the corresponding weights represent the length lij of such segments.

Given such scenario, the objective of the decentralized navigation

system is two-fold. On one hand, the single user aims to choose the

quickest path to its destination, on the other the system aims as much

as possible to preserve a low-intensity traffic in all roads, thus avoiding

traffic jams. Notice that in such problem the individualistic solution of

choosing the shortest path causes globally a traffic jam in such path.

Instead a cooperative solution may be appealing since it allows to

decrease the traffic intensity on the RoI, speeding-up the path traversal

time for most of the users.

4.4.2 MoCSACO application to ITS

From an ITS perspective, the MCS nodes depicted in Figure 4.1 are

embedded automotive devices, e.g., GPS-based navigation systems,

installed on each vehicle, or available as detachable devices (e.g., mo-

biles). Through the mesh MCS network the pheromone-encoded (im-

plicit) information about the traffic in the RoI is disseminated to all

vehicles. In such context, due to the opportunistic nature of the com-

munications [100], vehicles may have an approximated and partially

incomplete view of the whole traffic situation in the area, albeit an aid

could be within reach by planning a number of nodes available as fixed

4.4. ITS implementation 123

infrastructure (e.g., totems) at predefined sites, helping at least with

dissemination [116, 117, 118] duties by coping with uneven sparsity of

agents.

In this sense, apart from the aforementioned application of plain

A∗ in each vehicle as degenerate function for path building, costs may

always be adjusted according to a global view of the traffic provided

by a centralized server, as shown by the black arrows in Figure 4.1

connecting a subset of Internet-connected nodes to the Application

Server.

Each device-vehicle executes the algorithm of Figure 4.2 acting

as an ant, where the matrix updates originate from the continuous

exchange of information with other vehicles. The results of such pro-

cess are the quantities of pheromones laid over the roads (τij) and the

probabilities to choose such roads given a specific destination (p
i
j→d
).

These values are used to define the costs associated with the arcs

that in turn define the heuristic function used by the A∗ algorithm

executed by each embedded device. In order to implement the pro-

posed strategy in the traffic engineering application, we have to modify

Equations (4.6)-(4.8). In particular, we adapt Equation 4.5 to the ITS

domain at hand:

cij = lij · wij (4.10)

by replacing hij with lij as the (physical) length of the (road)

segment. Being T k the tour or traveled path of ant (i.e., vehicle) k, Ck

of Equation 4.2 is redefined as:

Ck =
te
T k
l

(4.11)

where te is the time spent since the trip beginning, assuming ve-

hicles continuously traveling, and T k
l is the length of T k. This way,

the amount of pheromones to be placed by ant k on each arc is still

124 Chapter 4. A crowd-cooperative approach for ITS

specified by Equation 4.2.

A further adjustment is needed to achieve a good trade-off be-

tween the objective of each vehicle, i.e., reach its destination in the

minimum time, and the one of the transportation system as a whole,

i.e., preserving low traffic intensity. A solution may come from lit-

erature, where the authors of [119] specifically tailored the algorithm

to traffic routing, a “modified ACO”. This version of the algorithm,

geared towards traffic routing, consists of a straightforward adapta-

tion of traditional ACOs. A probability threshold, t, is introduced to

modify arc traversing probabilities as given by the Equation 4.1, to

make arcs less desirable for ants. This threshold may be defined as

function t : [0, 1] → [0, 1]:

t(pkij) =
1− pkij

2
(4.12)

where pkij is the probability as originally defined for ant k choosing

arc aij. The relation for arc traversing probability is adapted by the

presence of a threshold as follows:

pkij =

{
pkij if pkij < threshold t

t(pkij) otherwise

}
(4.13)

The threshold defined above is sensitive to both collective knowl-

edge stored in the pheromone matrix as well as a-priori information.

This property is important especially when a-priori information varies

in time as traffic congestion does. Indeed, even using such a sim-

plified thresholding function, the modified algorithm quickly reacts

to changes in the environment, while defaulting to neglecting a good

routing candidate when the path is very crowded, as soon as an ef-

ficient path becomes less crowded (i.e., the probability for an ant to

choose it falls below t), the logic will switch back to privileging such

path for routing. For such reasons a threshold-enabled ACO seems an

ideal candidate to solve multi-path traffic routing problems.

4.5. Modeling and evaluation 125

Using Equations 4.7-4.5 we can compute for each destination d the

cost η
i
j→d

to take the arc (i, j) in the path towards node d without

considering the road traffic. Providing these values as a metric to

define the heuristic function of the A∗ search algorithm, we can find the

minimum length path, which can be very different from the optimal

path considering the traffic.

4.5 Modeling and evaluation

To evaluate the MoCSACO approach a specific technique able to

stochastically represent the ant colony interactions is required. The

usual way to study ACO problems is through simulation, since classi-

cal analytical techniques, such as state space-based ones, are affected

by the well-known state space explosion problem, due to the large

number of involved elements (i.e., ants and roads). However, new

stochastic entities, called Markovian Agents (MAs) [120], have been

introduced to provide a flexible, powerful, and scalable technique for

modeling complex systems of distributed interacting objects thus eval-

uated through feasible analytical and numerical solution algorithms.

Moreover, MAs are suitable to represent systems able to self-organize

their topology adapting to environmental changes [121] such as ant

colonies.

4.5.1 MA model of the MoCSACO algorithm

An MA is an entity that can evolve autonomously according to its

local behavior, but interacts with the environment and with the other

agents. In particular, an MA is a finite-state continuous-time homoge-

neous Markov chain (CTMC) that evolves according to a given transi-

tion rate matrix and is located in a specific geographical position. The

interaction among MAs is represented by the exchange of relational

126 Chapter 4. A crowd-cooperative approach for ITS

m1 m2

m3

0

0 1 1 P-2 P-1 P-1

mi
mi

λ

µ µ

λ

η

0 1i

mi

mj<>i

λ

(c) Pheromone

(b) Destination(a) Collector

mi mi

Figure 4.4: Markovian Agents: categories

entities, called messages, which are emitted by an MA and perceived

by its neighbors influencing their dynamics. The specific interactions

among agents are formalized through a perception function that rules

the aptitude of receiving messages according to agent positions. To

model heterogeneous systems, different classes of agents and type of

messages are allowed: agents belonging to the same class behave in

the same way (i.e., they have the same CMTC structure, but possibly

with different rates), and when receiving a message they may react in

different ways according to the type of message received.

In the model for the example in this Section the MAs of different

classes are placed on the vertices of the graph G according to the type

of node. A class h agent is placed in collector nodes, a class d is

placed in destination nodes and a class p agent is positioned in the

others. A vehicle, or ant, moving from vertex i to j is represented by

a message emitted by an MA located in vertex i, and received by an

MA in vertex j. Three different types of messages {m1,m2,m3} are

required to represent the three possible vehicle destinations.

4.5. Modeling and evaluation 127

The behavior of an agent collector of class h located in vertex v

(from now on called MAh(v)) is shown in Figure 4.4(a). It is char-

acterized by a single state with a self loop which rate of incoming

vehicles is η. During its transitions it can emit with equal proba-

bility messages of type mi (in Figure 4.4 they are shown as labeled

little arrows starting from the self loop) representing the incoming of

a vehicle with a probabilistic destination. Agent MAd is depicted in

Figure 4.4(b): in state 0 the agent waits for the arrival of messages;

when a message mi arrives, the agent moves to state 1i (depicted as

a dashed arrow in the figure) and then comes back to 0 retransmit-

ting a new message mj ̸= mi. This represents that, when a vehicles

reaches its final destination, it decides to change its destination mov-

ing towards other nodes. Assuming that the mean time to traverse a

node is equal to Tr, we can set λ = 1/Tr. Finally, the MAp agent

encodes in its state-space the amount of pheromone in the node. In

our model, such value is discretized in P levels ranging from 0 to a

maximum amount of P − 1 units. Thus, state 0 of the MAp agent

represents a node without pheromone, whereas states p or p mean the

presence of p units of pheromone. At the arrival of a vehicle with des-

tination i (dashed arrow labeled mi), the amount of pheromone gets

increased by one unit, when the vehicle leaves the node moving to a

neighbor node (continuous arrow with generation of message mi) the

amount of pheromone is preserved. Pheromone evaporation is rep-

resented by a local transition from a state p to a state p− 1, thus

pheromone decrements by one unit at time with rate µ.

Let us denote the total density of agents of class c in position v with

ξc(v) and ρci(t,v) the density of agents in state i and position v at time

t. The state densities are collected into a vector ρc(t,v) = [ρci(t,v)].

The routing of messages exchanged by MAp agents is ruled by the

perception function um(·) defined similarly to Equation 4.9. For each

128 Chapter 4. A crowd-cooperative approach for ITS

destination mi we have:

um(v,v
′, t) =

(E[ρp(t,v)])α · ηβ
v′ v→m∑

v′′∈Next(v′)(E[ρp(t,v′′)])αηβ
v′v′′→m

(4.14)

where the average amount of pheromone E[ρp(τ,v)] is computed

considering the pheromone level corresponding to the states of the

agents MAp. The routing probabilities among other agent classes

(i.e. MAh,MAd) are computed in a similar way. Simple corrections

on the definition of um(·) allow to include also the threshold variant

introduced by Equations 4.12-4.13.

The evolution of the entire model can be studied by solving ∀v, c
the following differential equations:

ρc(0,v) = ξc(v)πc
0 (4.15)

dρc(t,v)

dt
= ρc(t,v)Kc(t,v). (4.16)

where πc
0 is the initial probability distribution vector of a class

c agent and Kc(t,v) are the time-dependent infinitesimal generator

matrices ruling the whole behavior of agent of class c in position v.

Equation 4.15 and Equation 4.16 are discretized in time and solved by

resorting to standard numerical techniques for differential equations.

Details on both the Kc(t,v) matrices’ computation and the solution

technique can be found in [120].

4.5.2 Results

The MA model of the MoCSACO traffic engineering example has been

evaluated to provide useful insights on its effectiveness in reducing the

average traffic within the urban area. Two scenarios are investigated:

the first, called NoPh, assumes that vehicles choose roads along the

4.5. Modeling and evaluation 129

minimum-length path to their destination, ignoring any traffic infor-

mation encoded by the pheromone. In the second, identified as Ph,

vehicles still follow their minimum-length path, but also try to avoid

high traffic roads where a strong trail of pheromone is present. The

comparison between the results obtained in the two scenarios allow to

evaluate the effectiveness of MoCSACO to reduce the average traffic.

In such a complex and dynamic behavior, we first need to identify

an instant in time that well represents the average (or, i.e., steady-

state) condition for the system. The equations described in Sec-

tion 4.5.2 provide the transient analysis of the model. The MAp(v)

is said to be in a stable state when its average pheromone intensity

does not vary anymore. Let ts(v) be the first time instant at which

the MAp(v) is stable. Since the overall system reaches the stability

when all the nodes are in a stable state, the time for stability t̃ can be

defined as:

t̃ = max
v∈V (G)

ts(v). (4.17)

where V (G) is the set of vertices of the graph G. Further details on
the procedure to compute the time stability of MAp(v) can be found

in [120]. To evaluate the average behavior of the system, from now on

all the results will be computed in the stable state, i.e., at time t = t̃.

Since a possible traffic intensity measure is the number of vehi-

cles traversing a road in a unit of time and, in the model, messages

exchanges represent vehicle movements, the global rate of messages

traversing an arc is a proper metric for the traffic intensity of a road.

The rate γ(t̃,v′,v) of the whole traffic in the direct arc (v,v′) of the

graph can be obtained as the sum of the rate for all messages emitted

by any agent classes from v to v′:

γ(t̃,v′,v) =
∑
m

C∑
c=1

um(v
′,v, t̃)ϕc(m)ρc(t̃,v). (4.18)

130 Chapter 4. A crowd-cooperative approach for ITS

(a) No Ph

(b) Ph (c)

Figure 4.5: Results: pheromone distributions

4.5. Modeling and evaluation 131

where, for a given message m and a class-c agent, the rate can

be computed as the product of the density of class-c agents ρc that

generate message of type m and the corresponding generation rate

ϕc(m) modulated by the perception function. Further details can be

found in [120].

The results of the model are analyzed for the graph shown in Fig-

ure 4.3 and with destination vertices (MAd) in position {3, 15, 32},
collector vertices (MAh) in position {1, 20, 18}. In the evaluation we

set the following parameters: P = 16, λ = 10, µ = 2, η = 5. Moreover,

the vehicle behavior in the NoPh scenario can be obtained by setting

α = 0 in Equation (4.14), so that pheromone values do not contribute

to um(·). In Ph scenario the choice of an high-pheromone node is dis-

couraged by setting α = −1 (as can be inferred by Equation 4.14).

In both scenarios β = 0.5, so that the values of E[ρp(t,v)] and ηβ
v′ v→m

have the same magnitude thus setting a fair trade-off between choosing

the minimum path and avoiding high traffic roads.

Figure 4.5 shows the pheromone distribution over the nodes of the

example graph as a density plot. Ignoring the graph topology, nodes

are arbitrarily arranged in a square grid and colored according to their

pheromone intensity in the stable state, i.e. the value of E[ρp(t̃,v)].

Dark areas correspond to a low pheromone intensity, lighter ones to

high intensity. In the NoPh scenario a very congested node can be

detected in Figure 4.5(a) at position (2,4), instead in the Ph scenario

the traffic intensity of the same node strongly decreases. A slightly

reduction of traffic can be observed also for the nodes in position (1,1)

and (6,3). To be noted also that in the same time the traffic of several

low-used nodes in the NoPh scenario increase in Ph one, meaning

that, to avoid congested nodes, vehicles are redistributed along other

directions.

A quantitative analysis of the pheromone distribution also concurs

to confirm the previous observations. In fact, evaluating the mean

132 Chapter 4. A crowd-cooperative approach for ITS

value µ of pheromone intensity over the set of vertices of graph G and

its coefficient of variation cv in both scenarios, we obtain µNoPh =

2.463 and cNoPh
v = 1.195, and µPh = 2.734 and cPh

v = 0.837, for NoPh

and Ph scenario, respectively. A comparably greater value for the

coefficient of variation in the NoPh scenario supports the existence of

very congested nodes, whereas a greater mean value in the Ph scenario

suggests that traffic is more evenly distributed.

The traffic within the urban area in a given road is evaluated by

summing up the flow rate γ(t̃,v′,v) between node v and v′ in both

directions. In Figure 4.6 two isomorphic graphs of Figure 4.3 are

shown, depicting the NoPh scenario on the left, and the Ph one on

the right. The arcs are colored according to their flow rate: high traffic

roads are dark blue, whereas less used ones feature lighter hues. In

the NoPh scenario there are some very congested roads, in particular

at branches 17-18-10 and 12-20-19. The introduction of MoCSACO

allows to decrease the traffic of such roads, as shown by the Ph scenario

depicted in Figure 4.6(b), at the cost of slightly increasing the traffic

at 27-26-19.

As above, we can analyze the mean value and the coefficient of

variation of the flow rate over the set of arcs of graph G obtaining

µNoPh = 0.045 and cNoPh
v = 4, and µPh = 0.055 and cPh

v = 3.636,

for the NoPh and the Ph scenario, respectively. Analogously to the

pheromone intensity, also the traffic flow is more fairly distributed in

the Ph scenario than in the NoPh one. From these results we can

argue that the introduction of MoCSACO allows the overall traffic to

be more evenly spread out over the urban area.

4.5. Modeling and evaluation 133

(a) No Ph

(b) Ph

Figure 4.6: Results: traffic flow intensities

134 Chapter 4. A crowd-cooperative approach for ITS

CHAPTER

FIVE

NETWORK FUNCTION VIRTUALIZATION

FOR CYBER-PHYSICAL SYSTEMS

5.1 Introduction

In a typical Infrastructure-as-a-Service (IaaS) Cloud, users are able

to create and bring up virtual machines (VM), access the instances

through ssh, VNC, or Web-based virtual console as well as to instan-

tiate even topologically complex virtual networks among a set of VMs.

In a heavily distributed ecosystem, such as IoT-related scenarios,

many requirements diverge significantly in comparison to typical IaaS

Cloud environments, such as the presence of nodes installed behind

firewalls and/or NATs (especially when IPv6 deployments are not an

option) or, more in general, the necessity to deal with any restricted

environment with denied-by-default (institutional or corporate) secu-

rity policies.

Such constraints call for more powerful mechanisms to enable core

functionalities for virtual infrastructure management, i.e., remote ac-

cess to board-hosted resources and instantiation of virtual networks.

Any network virtualization [122],[123] mechanism for IoT infras-

135

136 Chapter 5. Networking Function Virt for CPS

tructure thus requires at least some form of reconfiguration capabilities

for board-side networking facilities as well. Yet, in contrast to typi-

cally datacenter-oriented IaaS, the physical environment (cabling and

media access setup, logical topologies and hierarchies, role allocation

for equipment, etc.) in IoT scenarios is not always under control of

the designer of the infrastructure, which may as well be opportunisti-

cally assembled, e.g., volunteer-contributed. Nor is the configuration

of most deployments (or their extent, ownership, etc.) completely

known in advance usually, in contrast to typical setups for certain

specialized categories, e.g., Wireless Sensor Networks (WSN), where

some advances [124] in terms of network virtualization have been ac-

complished.

As such, IoT poses unique challenges, including always-on reacha-

bility of boards, or at least suitable signaling, diagnostic and recovery

mechanisms to cope with connectivity disruptions. Even more criti-

cal, the overall approach to virtualization may be considered reversed

with respect to availability of remote access, as the latter alone may

enable the former, thus networking primitives have to be piggybacked

into the remoting framework.

This chapter describes a rationale and some mechanisms in order to

enable such functionalities when dealing with the unique requirements

and challenges of IoT environments, e.g., embedded boards and other

constrained devices. In particular, network virtualization is addressed

here on top of Cloud-managed IoT resources in a technology agnostic

fashion, still taking into account the limitations of smart devices, while

at the same time suitable to be mapped onto an IaaS-focused solution,

as investigated in [1] in terms of a device-centric approach for sensor-

hosting nodes.

The contribution here is thus three-fold: a Cloud-based framework

for the setup of virtual networks among IoT nodes, whichever the de-

ployment scenario; a customizable and layered tunneling protocol; a

5.2. Network virtualization for IoT 137

flexible and lightweight network virtualization solution, based on uni-

versally available and minimal tools, according to the Unix philosophy

of composability and modular design.

5.2 Network virtualization for IoT

The proposed approach to network virtualization is based on enabling

mechanisms in terms of custom layering and board-side tunneling fa-

cilities, to be coupled with the corresponding Cloud-side adaptations.

To this end such preliminary investigation mostly focuses on virtual-

ization architecture and patterns.

5.2.1 Tunneling

As remote infrastructure, boards are possibly going to be available over

very restrictive, IPv4-only deployments. The only assumption that

can (for all purposes, always) be considered true is outgoing Web traf-

fic being permitted, i.e., board-initiated communication over standard

HTTP/HTTPS ports. The aforementioned constraints thus suggest

resorting to an HTTP-borne mechanism for bidirectional connectivity

and reachability of internal services, namely WS.

WebSockets [38] as channels between a browser and a server are

considered standard facilities for bidirectional communication and in

particular server-pushed messaging. The main rationale behind its

design lies in the need to replace the long-polling and Asynchronous

JavaScript and XML (AJAX) approaches. In accordance to typical

use cases targeted by these older mechanisms, WS enables the server

to push unsolicited content to the browser without waiting for a re-

quest. Messages can thus be passed back and forth while keeping the

connection open creating a two-way (bi-directional) ongoing conver-

sation between a browser and the server. One of the main advantages

138 Chapter 5. Networking Function Virt for CPS

of WS is that it is network agnostic, by just piggybacking communi-

cation onto standard HTTP interactions. This is of benefit for those

environments which block Web-unrelated traffic using firewalls. Less

explored is the creation of generic TCP tunnels over WS, a way to

get client-initiated connectivity to any server-side local (or remote)

service.

In this chapter a design and implementation of a novel reverse tun-

neling technique has been devised, as a way to provide server-initiated,

e.g., Cloud-triggered, connectivity to any board-hosted service, or any

other node on a contributed resource network, e.g., a WSN. In par-

ticular the latter may enable typical IoT scenarios, e.g., Machine-to-

Machine (M2M) interactions, by supporting these patterns in a device-

centric [1] fashion: having a gateway act not only as a proxy for access

to data gathered from mostly passive resources, but also as a relay to

activate remoting toward nodes in a masqueraded network.

Figure 5.1 depicts systems, flows and interactions of such a WS

reverse tunnel (abbreviated as rtunnel), in the case of board-provided

access to a service hosted on the board itself. By leveraging the dia-

gram, in the following the sequence of operations is outlined for the

setup of a rtunnel. The rtunnel client (e.g., a board) first sends a

WS connection request to the rtunnel server, specifying a TCP port.

When the rtunnel server receives the WS connection request, a new

TCP server is brought up listening on the specified port, the WS re-

quest is then accepted, and a WS connection (depicted in the figure

as “control WS”) is started. When an external TCP client tries to

connect to the TCP server on the rtunnel server side, the new TCP

connection is paused and, through the control WS, a WS message is

sent in order to signal the request for a new TCP connection, and

specify a unique ID for that connection. When the rtunnel client re-

ceives the message signaling the request for a new TCP connection, it

sends a new WS connection request to the rtunnel server, specifying

5.2. Network virtualization for IoT 139

the ID of the connection. When the rtunnel server receives the WS

connection request, it checks if the received ID does not match any

of the existing TCP connections and, if so, it accepts the request and

opens a new WS connection (depicted in figure as “WS tunnel”). The

new TCP connection thus gets piped to the new WS connection (that

acts as a WS-encapsulated tunnel for TCP segments) and then re-

sumed. On the WS rtunnel client side, as soon as the new WS tunnel

is established, a new TCP client is brought up connecting to the local

service of interest, and such a new TCP connection gets piped to the

new WS tunnel. TCP segments coming from the external TCP client

are now able to reach the local service, and traffic thus gets to flow

back and forth until the rtunnel is torn down.

5.2.2 Layering

As long as WS-based tunnels may be instantiated by the Cloud, a ro-

bust mechanism is already in place for accessing board-hosted services.

What is missing to bridge the gap between remoting only and level-

agnostic network virtualization are mechanisms to overlay network-

and datalink-level addressing and traffic forwarding on top of such

a facility. There are already solutions [125] for setting up VPNs on

top of WS, but without decoupled control machinery nor the inherent

flexibility of an on-demand mechanism.

A detailed description of the proposed layering for WS tunnel-

based layer-2 virtual networks follows. In Figure 5.2 a diagram is

modeled after the low-level reverse tunnel one, but focused on the in-

stantiation of, e.g., a virtual bridge between two boards. Still sticking

to the setup of a control WS, as a preliminary step in this workflow,

in this case a rtunnel gets activated for each board to be virtually

bridged. As a simplified scenario, the diagram depicts just two such

boards, but no limitation is in place on the number of remote boards

140 Chapter 5. Networking Function Virt for CPS

to be virtualized in terms of networking. As any board here, from now

on referred as client, needs to go through the same set of operations,

just a single instance will be described in full, for the sake of brevity.

Taking into consideration the uppermost board in the diagram,

a preliminary step lies in setting up a TCP connection based on a

WS-based rtunnel, which consists in exposing, on the server side, a

listening socket on a local port, as soon as the rtunnel server accepts a

request for a new rtunnel. The TCP connection just established gets

piped to the rtunnel that encapsulates TCP segments in a WS-based

stream.

On the WS rtunnel client side, as soon as the rtunnel is established,

a new TCP client is brought up connecting to a local (socat-provided

listening) port, and such TCP connection gets piped to the rtunnel.

A level-3 tunnel is then to be established over this TCP-based

tunnel, by employing an instance of an executable called Socat, which

operates in listening mode on both sides of the chain and, on connec-

tion, starts exposing a virtual (TUN) device on either side, both set

up with IP addresses of choice, as long as those belong to the same

subnet.

Speaking about virtual devices setup and binding, Socat is a net-

working “swiss army knife” available as command-line tool for Unix

systems. Similarly to its close counterpart, Netcat (nc), the more

full-featured Socat brings a host of functionalities and quick shortcuts

to network experimenters, such as socket piping and tuning, setup of

virtual (TUN/TAP) devices, process control, and more. The minimal

build-time dependencies (just the C library) translate into a signif-

icantly flexible tooling also when it comes to IoT-class, constrained

devices, as long as a stripped-down version of a POSIX-compatible

system and the relevant networking stack are available.

Even if the above reported steps are to be considered logically

operations to be performed early on, all steps are to be considered

5.3. A real-world example 141

timing insensitive, by employing retries and listening sockets where

needed, possibly recurring to the TCP gender-changer technique when

both ends of the pipe are required to be in listening mode.

In order to then set up a level-2 encapsulation over the aforemen-

tioned IP-based communication, the system has to bring up a GRE

tunnel, where the endpoints are the previously configured TUN IPs

and the type of tunnel-hosting virtual device is set to TAP, thus ex-

posing an Ethernet-compatible interface. Adding such interface to a

dedicated virtual bridge on the server concludes the workflow.

As one of the technologies needed is IP-based tunneling, the choice

has fallen on Generic Routing Encapsulation (GRE) [126], an IETF

standard for a no-frills IP-in-IP tunneling protocol. Indeed, GRE sup-

port is not limited to level-3 encapsulation, but also available for tun-

neling of level-2 (Ethernet) frames over to the corresponding virtual

(TAP) device.

By the kind of reversed layering here devised, it is thus possi-

ble to provide an initial, basic but effective mechanism for instan-

tiation of a virtual network that exposes boards as either placed in

the same broadcast domain, just routable or alternatively reachable

higher up in the networking stack. Ultimately this means being able

to set up, according to user needs, either a virtual bridge, i.e., same

level-2 broadcast domain, by means of GRE TAP-based tunnels, vir-

tual NICs, socat piping, and reverse tunneling over WS, or a virtual

private network, i.e., level-3 reachability, by leveraging just a subset of

the aforementioned mechanisms, plus static routes configured on the

server for board-to-board forwarding.

5.3 A real-world example

As anticipated, use cases which may reasonably be envisioned, for

IaaS-mediated functionalities exposed by IoT boards, are mostly about

142 Chapter 5. Networking Function Virt for CPS

board-hosted resources, such as sensors and actuators, being available

over the Web as services, as well as board-related remote access facil-

ities, modeled after the ones users typically expect for standard VMs,

such as ssh or VNC. Such connectivity capabilities are enabled by

runtime-instantiated ad-hoc tunnels exposing services running on the

boards, advertised as available, and requested by user through the

Cloud portal.

Even before getting remote access to the boards, for instance for

deploying an application, the user may arrange a certain topology

among boards by network virtualization, in order to accomodate the

requirements of the application itself. In particular, an interesting case

is that of the AllJoyn framework, which comprises a DBus-derived ap-

plication protocol useful for messaging, advertisement and discovery

of services, working via selected mechanisms on available transports.

A very simple actuator-driving application has been designed, e.g.,

switching a bell on and off, triggered upon reaching a certain thresh-

old, for measurements by sensors sampling certain phenomenona on

another board, in this case light intensity through a photodiode. The

distributed system works by letting these two boards interact through

AllJoyn over an IP-based network and the corresponding transport

implementation, where mDNS and a combination of multicast and

broadcast UDP packets are used. A limitation indeed is that the pro-

tocol is currently designed to work only as long as the communicating

boards are on the same broadcast domain. Therefore, such a case may

be tackled by leveraging the Cloud to instantiate a bridged network

among the two boards, coupled with the availability of remote access

for deployment and execution of the required binaries.

To streamline the description of the use case, the nodes are as-

sumed to be already registered to the Cloud.

A high-level description of the workflow, from the point of view of

the user, comprises the following steps:

5.3. A real-world example 143

• Request for a bridge between two managed boards.

• Request for exposing SSH service on both boards.

• Connect via SSH to both boards for deploying and launching

the AllJoyn applications.

The following list of sequences is then expected to take place, with

(low-level) interactions as depicted and numbered in Figure 5.3.

1) The user requests the setup of a bridge between two specific

boards, either through the dashboard or, in alternative, through

the command line client.

2) The dashboard performs one of the available IoTronic APIs calls

via REST, which pushes a new message into a specific AMQP

queue.

3) The conductor pulls the message from the AMQP queue and

correspondingly performs a query on the IoTronic database. In

particular, it checks if the board is already registered to the

Cloud and looks up the WAMP agent to which the board is

registered. At last, it decides the WS tunnel agent to which the

user can be redirected and randomly generates a free TCP port.

4) The conductor pushes a new message into a specific AMQP

IoTronic queue.

5) The WAMP agent to which the board is registered pulls the

message from the queue and publishes a new message into a

specific topic on the corresponding WAMP router.

6) Through the WAMP lib the lightning-rod engine receives the

message by the WAMP router.

144 Chapter 5. Networking Function Virt for CPS

7) The lightning-rod engine sets up a rtunnel with the WS tunnel

agent specified by the conductor, also providing the TCP port

through the wstunnel lib. It also brings up a number of sockets

to be piped and overlaid over the rtunnel, plus the corresponding

virtual interfaces, as described in Section 5.2.2.

8) The WS tunnel agent follows up with its own set of server-side

network virtualization duties, still according to Section 5.2.2.

Then, it publishes a new message into a specific AMQP queue

confirming that the operation has been correctly executed.

9) The IoTronic APIs call pulls the message from the AMQP queue

and replies to the s4t dashboard.

10) The user gets notified of the success of the operation.

This first sequence has to be replicated for both nodes, as well as

the following two.

In order not to stretch the description, here only phases which are

different from the previous use case are outlined. In particular, the

second sequence (remote access) steps 2-6,9 remain unchanged, step

1,7-8,10 are changed as follows:

1) The user asks for a connection to the SSH service local to a spe-

cific board, either through the s4t dashboard or, in alternative,

through the s4t command line client.

7) The lightning-rod engine sets up a rtunnel with the WS tunnel

agent specified by the conductor, also providing the TCP port

through the wstunnel lib. It also opens a TCP connection to the

internal SSH daemon and pipes the socket to the tunnel.

8) The WS tunnel agent brings up a TCP server on the specified

port, and then publishes a new message into a specific AMQP

queue confirming that the operation has been correctly executed.

5.3. A real-world example 145

10) The dashboard provides the user with the IP address and TCP

port that she can use to connect to the SSH daemon running on

the board.

And an additional step is present:

11) As the user employs an SSH client to connect to the specified

IP address and TCP port, the session is tunneled right to the

board.

In the following some theoretical considerations will be laid out,

such as packet size and overhead estimates, that can be considered

a preliminary analysis, to be conducted more extensively in a future

work, taking into account specific key performance indices. More in

detail, WS introduces 6 bytes of overhead (2 for the header and 4 for

the mask value) and TCP tunneling 20 bytes in the best case. GRE-

based encapsulation takes up additional 8 bytes, whereas Ethernet

framing amounts to 18 bytes, adding up to 52 bytes. Switching to TLS

for security, as for Secure WS, 41 bytes have to be added, thus totaling

93 bytes per packet overhead. It can be seen then that, with regard

to the various encapsulations, the effects on the size of packets are

still in line with those imposed by a typical VPN, such as OpenVPN,

roughly weighting 69 bytes per packet (41 security and 28 tunneling

overheads, respectively), i.e., only slightly smaller compared to this

solution.

146 Chapter 5. Networking Function Virt for CPS

Figure 5.1: Functional diagram of WS-based reverse tunneling

5.3. A real-world example 147

Figure 5.2: Functional diagram of tunnel-based bridging over WS

148 Chapter 5. Networking Function Virt for CPS

Figure 5.3: Virtual networking use case: workflow

CHAPTER

SIX

SOFTWARE-DEFINED CITY:

AN ELASTIC MODEL FOR THE SMART CITY

6.1 Introduction

The Smart City scenario is a fertile application domain for different

sciences and technologies, in particular for the information and com-

munication ones, as also confirmed by ongoing projects [127] high-

lighting the need to equip cities with Cyber-Physical subsystems in

a Smart City fashion. From this perspective, cities may be regarded

as complex “ecosystems” composed of heterogeneous interconnected

“things” providing sensing and actuating facilities, such as traffic sen-

sors, security cameras, traffic lights as well as citizens’ smartphones.

However, from a higher level and more urban-focused perspective,

specific facilities for management, organization, and coordination of

devices, sensors, objects and things are also required to build up a

dynamic Smart City infrastructure. To this purpose, on the one hand

the capabilities provided by existing solutions in the management of

distributed systems, ensuring flexibility and dealing with the com-

plexity of large scale systems, should be exploited to implement basic

149

150 Chapter 6. Software-Defined City

mechanisms and tools for the resource management, also taking into

account IoT solutions. On the other hand, it is necessary to provide

and implement advanced solutions and policies able to manage and

control the Smart City infrastructure, implementing strategies aim-

ing at satisfying higher (applications and end users) requirements, on

top of basic facilities provided at a lower level. This two-layer model

recalls the Software Defined Ecosystem model, where the data plane

provides basic, customizable functionalities and the control plane im-

plements advanced mechanisms and policies to control the ecosystem

by enforcing strategies on nodes and objects through the lower level

basic mechanisms. Thus, the main idea proposed in this chapter is to

treat a Smart City as a Software Defined Ecosystem, adopting a two-

layer Software Defined model to manage the underlying infrastructure

towards Software Defined Cities (SDC).

To implement the SDC concept, Cloud computing facilities, apply-

ing a service-oriented approach in the provisioning and management

of resources, may be exploited. The Cloud-based SDC approach could

be a good solution to address Smart City-related issues, fitting with

the requirements of relevant service users and application providers:

on-demand, elastic and QoS-guaranteed, to name a few, all needed

properties for a Smart City service platform, to be addressed mainly

at the SDC control plane.

The contribution of this chapter can be summarized as fourfold:

a conceptual framework for function virtualization of Cyber-Physical

Systems and the modeling of a Smart City as a Software Defined

subsystem; a requirement analysis for an enhanced IaaS framework

able to include and provide urban facilities as reconfigurable and com-

plex CPS; an architecture of node-side modules and the corresponding

mechanisms needed to empower City-scale virtualization of sensing

and networking functions; an emergency management scenario cou-

pled with two related use cases, respectively about automatic reaction

6.2. Related work 151

to situations of risk and seamless exploitation of field deployments.

6.2 Related work

Several works deal with infrastructure issues and solutions related to

Smart Cities and their relationship with IoT and Cloud. For exam-

ple, a platform for managing urban services that include convenience,

health, safety, and comfort is proposed in [128, 129, 130], in the lat-

ter two cases based on Cloud computing infrastructure. Taking into

account other experiences, such as the earliest experiments around

Smart City planning, e.g., projects like SmartSantander [34], typ-

ically most efforts revolve around managing heterogeneous devices,

usually by resorting to legacy protocols and vertical solutions out of

necessity, and integrating the whole ecosystem by means of an ad-hoc

solution. The intuition here is that the Software Defined approach

coupled with service-oriented Cloud-enabled frameworks may play a

role as a paradigm for IoT, at the same time leveraging to a great

extent one or more ready-made solutions for the infrastructure man-

agement, to be adapted and extended to IoT. Indeed, even if a lot of

applications in a Smart City scenario have been proposed so far, there

is a lack of common initiatives and strategies to address most issues

at an infrastructural level in a comprehensive way, nor is any of these

efforts geared towards establishing a more general framework, i.e., one

which is geared toward Software Defined control loops.

In order to fill the gap between Smart City applications and the

underlying infrastructure in the SDC perspective, this chapter pro-

poses to extend a well known framework for the management of Cloud

computing resources, OpenStack, to sensing and actuation ones, im-

plementing in the Stack4Things solution an infrastructure-oriented[16]

two-layer approach, managing policies at control plane while coping

with communication requirements and scalability concerns at data

152 Chapter 6. Software-Defined City

plane, by leveraging Cloud-focused design choices and architectural

patterns. In [37] details have been laid of a first step in the direc-

tion of standardized, cross-domain approaches, where the focus was in

integrating an OpenSource framework for Cloud management, Open-

Stack with the IoT, addressing the data collection and visualization

stages by leveraging existing functionalities and built-in scalability of

the framework.

6.3 Overview of the approach

In order to manage heterogeneous and complex socio-technical sys-

tems on the scale of whole cities, where both social and technological

issues merge, an overarching approach able to deal with all related

issues in an all-encompassing fashion is required. Specifically, on the

one hand the goal is to provide a uniform representation of connected

smart objects by abstracting, grouping, and managing them as a uni-

fied ecosystem of smart objects to be configured, customized and con-

textualized according to the high level, application, requirements. On

the other hand, a management layer able to control the ecosystem

dynamics, able to map such requirements into lower level ones, imple-

menting and enforcing specific policies to satisfies such requirements

is needed.

A suitable solution may therefore lie in adopting a Software Defined

approach, where basic mechanisms provided by the smart cities objects

at data plane, are used by the control plane to implement policies

related to application/end user-level requirements. In the following

this idea is detailed focusing on the two levels of the proposed Software

Defined Cities approach.

6.3. Overview of the approach 153

Physical system

board

Control logic

S A

(a) Plain CPS

server

Physical system

board

API

S A

Control logic

southbound interface

northbound interface

(b) CPS function virt

Figure 6.1: Cyber-Physical Systems

6.3.1 Data Plane: Cyber-Physical Systems

A Cyber-Physical System (CPS) at its core may be defined as a sys-

tem of computational elements interacting with physical entities. Of-

ten in the past such elements were referred to as embedded systems,

where more emphasis is placed on the processing capabilities of such

machines, compared to their pivotal arrangement at the boundary

with the real world. Such a generic description lends itself to a di-

verse range of nuanced interpretations, yet in contrast to the typical

CPS/IoT (Internet of Things) analogy, a couple of significant distinc-

tions may be found squarely in the name itself, which sounds obviously

rooted in the sensor/actuator-induced coupling between physical world

phenomena and the digital domain, thus deemphasizing the role (in-

ter)connectivity plays with regards to the IoT. More in general IoT

154 Chapter 6. Software-Defined City

evokes an internetwork of (possibly) autonomous systems, while CPS

is seen first and foremost as a system, underlining the organic, possi-

bly centralized coordination, or even planned growth. Even if, when

dealing with actual instances of complex real-world setups, most dif-

ferentiations tend to blur, such conceptual framing helps in casting

the discussion that follows on more convenient grounds.

Putting aside the definition of a CPS, it is now time to describe

what a CPS may look like. In Figure 6.1 there are a couple of op-

tions to sketch a simple instance of a CPS, i.e., one that includes a

single smart interface interacting by means of its transducers (sensors

and actuators) with a physical entity. The standard configuration,

as depicted in Figure 6.1a, features a “plain” CPS, thus the interface

subsystem (e.g., a board) acts on its own, and any end-user interacts

with the physical world through the node itself. A first useful abstrac-

tion needed for investigation further along this chapter is represented

in Figure 6.1b, where the role played by the interface gets (partially)

shifted from the actual hardware instance of the sensor-/actuator-

hosting platform to another (physically detached, possibly remote)

machine, whose only requirements are some available processing (and

storage) quotas. This means exposing a northbound interface mostly

equivalent to the one provided by a plain configuration, by leaving

to a southbound interface to expose just low-level I/O primitives. In

order to capture this notion, such configuration may be aptly labelled

as CPS function virtualization.

6.3.2 Control Plane: Smart Cities

In line with the overarching CPS virtualization approach, such fore-

seeable outcome ultimately calls for function virtualization at a

metropolitan scale, a Cyber-City System (CCS), as depicted in Fig-

ure 6.2, where Cloud-hosted virtual boards are introduced and two

6.3. Overview of the approach 155

virtual boardvirtual boardvirtual board

City

Control
logic

board

API

S A

board

API

S A

board

API

S A

board

API

S A

...

P
hy

si
ca

l
sy

st
em

I/O
 la

ye
r

Ia
aS

 la
ye

r

Control
logic

Control
logic

Application /
Service

Application /
Service

...

...

Figure 6.2: Cyber-City System function virtualization

“cyber” levels may be identified above the large-scale physical system

that is the City: a distributed I/O layer and a centralized one modeled

as an Infrastructure-as-a-Service layer.

Zooming in on the virtualization blocks, a series of approaches may

be envisioned, represented in Figure 6.3, to the design of control logic

as empowered by the function virtualization capabilities: at a min-

imum there should be the option to just get passthrough access, as

depicted in Figure 6.3a, from the application directly to I/O logic, to

just let the virtual board drive the transducers and leave all other du-

ties to the application itself. Shifting more duties from the application

level to the (virtual) infrastructure may be obtained by injecting (a

part of, or the whole) control logic as rules for a Complex Event Pro-

cessing engine to consume and act upon, as described in Figure 6.3b.

In the end, the developer may skip this abstraction altogether and just

inject some custom code, featuring both the rules and the I/O driving

156 Chapter 6. Software-Defined City

passthroughvirtual board

Control
logic

board

API

S A

Application /
Service

I/O logic

(a) Passthrough

virtual board

Control
logic

board

API

S A

Application /
Service

I/O logic

Complex Event
Processing

(b) Complex Event Process-

ing

Custom logic

virtual board

Control
logic

board

API

S A

Application /
Service

(c) Custom code

Figure 6.3: Control logic: approaches

logic, as highlighted in Figure 6.3c.

Getting back at the level of the whole Cyber-City System, the

proposal is to extend the approach even to include dynamic reconfigu-

ration of the networking subsystem of the underlying nodes, according

to Software Defined Networking techniques and the more general SD*

paradigm, leading to the definitive abstraction of a so-called Software

Defined City, as sketched in Figure 6.4, where one or more central-

ized controllers remotely deploy (and therefore implement) the needed

topologies among nodes by means of generalized rules according to

predefined policies. This means that an unlimited number of control

6.3. Overview of the approach 157

virtual boardvirtual boardvirtual board

City

Control
logic

board

API

S A

board

API

S A

 board

API

S A

board

API

S A

...

P
hy

si
ca

l
sy

st
em

I/O
 la

ye
r

Ia
aS

 la
ye

r

Control
logic

Control
logic

Application /
Service

Application /
Service

...

Networking Networking Networking Networking

Control
plane

...

Figure 6.4: Software Defined City

loops of any scope and scale may be overlaid onto the SDC.

Plenty of applications may thus be envisioned, as long as all the

aforementioned capabilities fall into place, from traffic monitoring to

energy management, from e-health to e-government, from crowd to

emergency management.

A middleware devoted to management of both sensor- and

actuator-hosting resources may help in the establishment of these

higher-level services, including policies for “closing the loop”, such

as, e.g., configuring triggers for a range of (dispersed) actuators based

on sensing activities from (geographically non-overlapping) sensing re-

sources. Figure 6.5 represents a high-level depiction of the overall sce-

nario, where there need to be mechanisms to rewire such a “nervous

system” into a number of elastic control loops.

158 Chapter 6. Software-Defined City

Figure 6.5: SD City as closed-loop system

6.4 Reference architecture

6.4.1 Requirements

The main actors in any SDC scenario are contributors and end users.

Contributors provide sensing and actuation resources building up the

Smart City infrastructure pool. End users control and manage the

resources provided by contributors. In particular, end-users may be-

have as SDC infrastructure administrators and/or service providers,

managing the raw resources and implementing applications and ser-

vices on top of it. It is assumed that sensing and actuation resources

are provided to the infrastructure pool via a number of hardware-

constrained units, from now on referred to as nodes. Nodes host sens-

ing and actuation resources and act as mediators in relation to the

6.4. Reference architecture 159

Cloud infrastructure.

In order to actually accomplish the prospect of an SDC, a sys-

tematic requirement analysis is needed. A subset of requirements,

shared by both virtualization and centralized control/orchestration

objectives, are the ones relative to the contributor:

• Out-of-the-box experience - letting nodes and the corresponding

sensors and actuators be enrolled automatically in the Cloud at, e.g.,

unpacking time.

• Uniform interaction model - resources should be hooked up (or

unenrolled, when preferred) with the minimum amount of involve-

ment for the contributor to feed the enrollment process with details

about their hardware characteristics.

• Contribution profile - each contributor should be able to specify

her profile for contribution in terms of resource utilization (CPU

utilization, memory or disk space) and contribution period (frame

time when the contributor is available for contribution).

and others coming from the end user such as:

• Status tracking - monitoring the status (presence, connectivity,

usage, etc.) of nodes and corresponding resources, in order to, e.g.,

track significant outages or load profiles.

• Lifecycle management - exposing a set of available management

primitives for sensing and actuation resources to, e.g., change sam-

pling parameters when needed or, e.g., reap a pending actuation

task to free the resource for another higher-priority duty.

• Ubiquitous access - enabled through instant-on bidirectional com-

munication with resources as exposed from sensor-hosting nodes,

whichever the constraints imposed by node-side network topology

(e.g., NAT) and configuration (e.g., firewall).

160 Chapter 6. Software-Defined City

• Ensemble management - letting nodes and the corresponding

sensors and actuators be made available as pools of resources, e.g.,

to be partitioned in, and allocated as, groups according to require-

ments.

• Instance provisioning - resources should be made available (pro-

visioned) subject to certain user-mandated constraints (geograph-

ical context, etc.), decoupling specific instances from the function

they embody.

• Orchestration - exposing interfaces for the orchestration (e.g.,

dependency-based startup, endpoint wiring, etc.) of ensembles of

resources.

A certain subset of end user requirements instead needs to be ad-

dressed by just providing the facilities for function virtualization, and

the same considerations apply, for another subset, mainly in order

to support a centralized orchestration of virtualized networking in-

stances. With regard to the former, essential ones exclusively for this

case are:

• Delegation capabilities - providing client-less (Cloud-enabled)

interactions, by switching to alternative Cloud-hosted controlling

surfaces (e.g., Web-based graphical or textual terminal) as needed,

e.g., clients may need to disconnect at any time.

• Uniform information model - resources (e.g., down to single I/O

pins) should be indexed according to a suitable model and search-

able through standardized query syntax and predefined rules.

In relation to the latter, the case-specific list includes:

• Service-oriented interfaces - exposing primitives as asyn-

chronous service endpoint, in order to ease development and third-

party software integration.

6.4. Reference architecture 161

• Environment customization - enabling runtime modifications to

the software environment hosted by the node.

• Topology rewiring - providing mechanisms for the networking

configuration underneath nodes to be modified at any time.

6.4.2 Sensing and Actuation as a Service for SDC

In the pursuit for integration of IoT infrastructure with paradigms

and frameworks for heterogeneous resource management, a bottom-

up approach is being followed, consisting of a mixture of relevant,

working frameworks and protocols, on the one hand, and interesting

use cases to be explored according to such integration effort, on the

other.

To this purpose, Cloud computing facilities, here also implement-

ing a service-oriented [16] approach in the provisioning and manage-

ment of sensing and actuation resources, are exploited to enable a

Sensing and Actuation as a Service (SAaaS) paradigm for SDC. In

fact, in the SAaaS perspective, sensing and actuation devices should

be handled along the same lines as computing and storage abstractions

in traditional Clouds, i.e., on the one hand virtualized and multiplexed

over (scarce) hardware resources, and on the other grouped and or-

chestrated under control of an entity implementing high level policies.

This way, sensing and actuation devices have to be part of the Cloud

infrastructure and have to be managed by following the consolidated

Cloud approach, i.e., through a set of APIs ensuring remote control of

software and hardware resources despite their geographical position.

A Cloud-oriented solution indeed may fit the SDC scenarios, meet-

ing most requirements by default to cater to the originally intended

user base, while at the same time also addressing other more sub-

tle functionalities, such as a tenant-based authorization framework,

where several actors (owners, administrator, users) and their interac-

162 Chapter 6. Software-Defined City

tions with infrastructure may be fully decoupled from the workflows

involved (e.g., transfer, rental, delegation). Bonus points include recy-

cling existing (compute/storage-oriented) deployments, getting most

visualization and monitoring technologies for free, as those are typi-

cally already available in such systems, possibly even enabling feder-

ation of different administrative Cloud-enabled domains.

Putting aside the core IaaS framework, as anticipated some addi-

tional facilities are needed for the envisioned Software Defined City

paradigm and the specifics of the domain at hand (IoT), among which

here two classes of mechanisms may be described that are core to the

overall approach: those needed to access locally and transparently re-

mote (I/O) resources, and those to set up arbitrary topologies among

nodes.

CCS Functions Virtualization

With regard to the former, in Figure 2.3 (Section 2.4) a logical archi-

tecture may be found of the node-side stack needed for pub/sub or

even RPC-style I/O primitives to be exposed to remote hosts through

the Cloud, one of the core mechanisms for Cyber-City System function

virtualization.

6.5 Use case

Once the SDC scenario has been laid out, it is easier to frame the

discussion in terms of a focused scenario, such as management of large-

scale emergency situations for civilians. A common trait in terms

of requirements revolves around the assumption that, to be resilient

while facing natural disasters, the population has to be kept in the

loop as much and as early as possible, thus leading mobiles and other

personal devices to be excellent candidates for prompt notifications,

6.5. Use case 163

or even lean feedback loops where users are actively involved, when

needed.

A peculiar feature of such scenario lies in the lack of predefined

boundaries in terms of the sensing infrastructure, which may span

multiple geographical areas and administrative domains. Whichever

the footprint of alerting and support activities for civilians, the fore-

most quality here is the dynamic involvement of infrastructure as well

as the mapping this entails with regards to contributors, as mostly

overlapping with end-users. Ultimately, these unique challenges may

translate into requirements for:

• On-demand solicitation and collection of measurements by

authorities (e.g., when an emergency gets forecasted), based on lo-

cation of contributing devices.

• Access and priority overrides - to bypass standard checks with

regard to QoS and SLA.

• Federating domains - where a central authority may not obtain

enough permissions over, and thus control of, resources on certain

areas of interest.

A scenario-specific use case with detailed description of the corre-

sponding interactions follows, with a focus on the low-level manage-

ment and use of SDC infrastructure facilities.

Reactive urban facilities to emergency events

In such a scenario a use case may be identified in the on-demand

setup of facilities in the City that are ready to react to certain events

which could anticipate an impending emergency, and may avoid or at

least contain damages and/or casualties. For instance, a bridge may

be considered at risk and put under control by placing the required

164 Chapter 6. Software-Defined City

sensing infrastructure to monitor critical parameters, such as oscilla-

tions, load, and torque or compressive stress of certain sections and

elements. In terms of actuators, the most fitting example may be gates

at either side of the bridge, only involving entry lanes in order not to

impact vehicular outflow, to be closed at the occurrence of such kind

of event, as a precautionary step to be taken before deeper investiga-

tions. An operator of the emergency management services with access

to the infrastructure just needs to put in place reactive mechanisms

(switching the logic and replacing nodes to be involved, when needed)

by invoking the SDC framework and resorting to:

• Complex event processing with I/O function virtualization for CPS

The aforementioned use case is implemented by deploying at least

two transducers, a sensor and an actuator respectively, where a board

driving an actuator hosts an application that operates it when trig-

gered upon detection of an event of interest. The latter gets generated

by a CEP engine every time predefined patterns (e.g., steady-state

and/or structural anomalies) get recognized out of measurements by

one or more sensors sampling the corresponding phenomena on (possi-

bly other) boards. Interesting patterns are set by loading rules written

in an engine-specific language.

The interactions are here described, when requesting for a number

of boards currently enrolled to the Cloud to be booked, mapped to

an enumerable set of resources, ultimately exposed for seamless in-

teraction to a CEP engine, and the corresponding rules, deployed in

Cloud-hosted VM:

1. Book two (or more) managed boards.

2. Request the instantiation of a VM based on an image, where

a resource discovery service and CEP engine (plus the rules) is

already deployed.

6.5. Use case 165

3. Push a list of reserved boards and their corresponding endpoints

to the VM, in order to let the discovery service enumerate and

expose as local I/O a set of remote resources, according to pre-

defined policies.

4. Connect to the VM to start up the CEP, which is already con-

figured to leverage the aforementioned resources.

According to the description of the core mechanisms for the Soft-

ware Defined City, built on top of the IaaS framework, the first request

is a routine one for the framework once extended to include enrollment

of IoT nodes, as well as the second and the fourth one even when IoT

extensions are not considered. The third request instead requires the

framework to deploy (IaaS-context) data into a VM, but then the

enumeration may take place only if the WAMP subsystem is avail-

able. Exposing remote resources as local I/O needs a wrapper around

the same subsystem too.

166 Chapter 6. Software-Defined City

CONCLUSIONS

This dissertation proposed a new device-centric perspective to ap-

proach the IoT problem domain, typically concerned with BigData

management in sensing environments, with specific reference to data

collection, with data-oriented interfaces as first-class mechanisms, and

as such data-centric by definition. To this purpose an Infrastructure-

oriented Cloud paradigm, Sensing and Actuation as a Service (SAaaS),

is proposed for adoption in this context, since it provides mechanisms

for customising resources through abstraction and virtualization tech-

nologies, and to provide any resource on demand, as a service. The

Stack4Things framework has been therefore proposed as an implemen-

tation of the SAaaS vision within an OpenStack-based environment.

A novel Mobile CrowdSensing (MCS) as-a-Service paradigm has been

then proposed, under the guise of a platform for MCS mass deployment

that essentially splits the MCS service application and infrastructure

into two distinct levels of concern and supported functionalities, and is

layered on top of SAaaS. Delving deeper into MCS use cases, a specific

scenario has been defined, focusing on opportunistic contribution pat-

terns and self-organizing, distributed approaches, to unlock the MCS

potential for the design of innovative ITS applications. The solution

proposed to exploit this distributed MCS pattern adapts and extends

an ant colony optimization metaheuristic to a problem of pathfinding

167

168 Chapter 6. Software-Defined City

and graph traversal according to a given distance metric, and has been

then characterized into the ITS application domain, by dealing specif-

ically with a traffic engineering problem, exploiting the opportunistic

pattern for route planning. In order to enable elastic instantiation of

overlay networks useful for similar crowd-powered scenarios, a novel

take on network virtualization mechanisms for infrastructure manage-

ment in IoT Clouds have been investigated. As an example of such

a scenario, the Software Defined paradigm has been presented, to be

considered as an approach to provide a simplified and programmable

exploitation of the underlying ecosystem of devices so that innovative

and powerful services can be realized.

Future work on Stack4Things will be devoted to extending and in-

tegrating other OpenStack services (e.g., Neutron) with SAaaS func-

tionalities thus enabling more interesting use cases. Amid ongoing

development efforts for MCSaaS, other interesting use cases and ap-

plication scenarios are envisioned to be investigated going forward,

including experimentation on actual devices and heterogeneous plat-

forms. A refinement of the MCS-enabled cooperative ITS strategy

for hierarchical meshes and correspondingly wider-scope optimization

interplay is ongoing. Among forthcoming developments with regard

to the proposed approach to network virtualization for IoT, a deeper

integration of the design into the OpenStack fabric is expected to be

investigated next, by leveraging Neutron directly, in order to enable

more complex setups and higher-level abstractions. Future work on

the Software-Defined City will include the validation of the whole ar-

chitecture in a real-world Smart City scenario involving at first the Mu-

nicipality of Messina, among other stakeholders, under the #SmartME

umbrella project.

BIBLIOGRAPHY

[1] S. Distefano, G. Merlino, and A. Puliafito, “Device-centric sensing: an alternative to data-centric ap-

proaches,” Systems Journal, IEEE, vol. 9, pp. –, Oct 2015.

[2] G. Merlino, S. Arkoulis, S. Distefano, C. Papagianni, A. Puliafito, and S. Papavassiliou, “Mobile crowd-

sensing as a service: a platform for applications on top of sensing clouds,” Future Generation Computer

Systems, pp. –, 2015.

[3] M. Fazio, G. Merlino, D. Bruneo, and A. Puliafito, “An architecture for runtime customization of

smart devices,” in International Symposium on Network Computing and Applications, (Los Alamitos, CA),

pp. 157–164, IEEE COMPUTER SOC, 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMI-

TOS, CA 90720-1264 USA, 2013.

[4] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito, “Stack4things: an openstack-based

framework for iot,” in Future Internet of Things and Cloud (FiCloud), 2015 International Conference on,

pp. –, Aug 2015.

[5] G. Merlino, D. Bruneo, F. Longo, S. Distefano, and A. Puliafito, “Cloud-based network virtualization:

An iot use case,” in Ad Hoc Networks (N. Mitton, M. E. Kantarci, A. Gallais, and S. Papavassiliou, eds.),

vol. 155 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pp. 199–210, Springer International Publishing, 2015.

[6] Cisco Visual Networking Index (VNI), “The Zettabyte Era: Trends and Analysis - White Paper,” June

2014.

[7] Gartner Inc., “Top 10 strategic technology trends for 2013,” 2013.

[8] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huberman, J. Manley, C. Patel, P. Ranganathan,

and A. Veitch, “Everything as a service: Powering the new information economy,” Computer, vol. 44,

pp. 36–43, March 2011.

[9] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a service model for smart cities

supported by internet of things,” Transactions on Emerging Telecommunications Technologies, vol. 25,

no. 1, pp. 81–93, 2014.

[10] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE Transactions on, vol. 52, pp. 2551–2567, June

2006.

[11] M. Wang and B. Li, “R2: Random push with random network coding in live peer-to-peer streaming,”

IEEE J.Sel. A. Commun., vol. 25, pp. 1655–1666, Dec. 2007.

[12] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Sensing as a service: Challenges, solutions and future direc-

tions,” Sensors Journal, IEEE, vol. 13, no. 10, pp. 3733–3741, 2013.

169

170 BIBLIOGRAPHY

[13] R. Mizouni and M. El Barachi, “Mobile phone sensing as a service: Business model and use cases,” in Next

Generation Mobile Apps, Services and Technologies (NGMAST), 2013 Seventh International Conference on,

pp. 116–121, 2013.

[14] Open Networking Foundation, “Software-Defined Networking: The New Norm for Networks,” White

Paper. April 13, 2012.

[15] IOT-A Project Consortium, “Final architectural reference model for the iot,” tech. rep., http://www.iot-

a.eu/public/public-documents/d1.5/view, 2013.

[16] S. Distefano, G. Merlino, and A. Puliafito, “Sensing and Actuation as a Service: A new development

for Clouds,” in Proceedings of the 2012 IEEE 11th International Symposium on Network Computing and

Applications, NCA ’12, (Washington, DC, USA), pp. 272–275, IEEE Computer Society, Aug 2012.

[17] Open Geospatial Consortium, OGC(R) Sensor Planning Service Implementation Standard. OGC, 2.0 ed.,

2011.

[18] Apache Foundation, Apache Storm, 2015 (accessed January 6, 2015). https://storm.apache.org/

documentation/Tutorial.html.

[19] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-stealing smartphone applications

(on android),” in Trust and Trustworthy Computing, pp. 93–107, Springer, 2011.

[20] E. Fernandes, A. Crowell, A. Aluri, and A. Prakash, “Anception: Application virtualization for android,”

CoRR, vol. abs/1401.6726, 2014.

[21] M. Gordon, L. Zhang, and B. Tiwana, “PowerTutor A Power Monitor for Android-Based Mobile Plat-

forms,” 2011.

[22] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based routing for opportunistic networks,”

in Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking, WDTN ’05, (New

York, NY, USA), pp. 229–236, ACM, 2005.

[23] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong, “A random linear network

coding approach to multicast,” Information Theory, IEEE Transactions on, vol. 52, pp. 4413–4430, Oct

2006.

[24] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Transactions on

Information Theory, pp. 1204–1216, 2000.

[25] T. Clohessy, T. Acton, and L. Morgan, “Smart city as a service (scaas) - a future roadmap for e-

government smart city cloud computing initiatives,” in The 1st International Workshop on Smart City

Clouds: Technologies, Systems and Applications, no. DOI 978-1-4799-7881-6/14, (London), pp. 836–842,

December 2014.

[26] S. Alam, M. Chowdhury, and J. Noll, “Senaas: An event-driven sensor virtualization approach for in-

ternet of things cloud,” in Networked Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE

International Conference on, pp. 1 –6, nov. 2010.

[27] B. Consortium, “Betaas building the environment for the things as a service,” 2012.

[28] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure - physical sensor management with virtual-

ized sensors on cloud computing,” in Network-Based Information Systems (NBiS), 2010 13th International

Conference on, pp. 1 –8, sept. 2010.

[29] M. Avvenuti, P. Corsini, P. Masci, and A. Vecchio, “An application adaptation layer for wireless sensor

networks,” Pervasive Mob. Comput., vol. 3, pp. 413–438, Aug. 2007.

[30] M. Iqbal, D. Yang, T. Obaid, T. J. Ng, and H. B. Lim, “Demo abstract: A service-oriented application

programming interface for sensor network virtualization,” in Information Processing in Sensor Networks

(IPSN), 2011 10th International Conference on, pp. 143 –144, april 2011.

https://storm.apache.org/documentation/Tutorial.html
https://storm.apache.org/documentation/Tutorial.html

BIBLIOGRAPHY 171

[31] J. Jamsa, M. Luimula, J. Schulte, C. Stasch, S. Jirka, and J. Schoning, “A mobile data collection

framework for the sensor web,” in Ubiquitous Positioning Indoor Navigation and Location Based Service

(UPINLBS), 2010, pp. 1–8, 2010.

[32] G. Gil, A. Berlanga de Jesus, and J. Molina Lopez, “incontexto: A fusion architecture to obtain mobile

context,” in Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on,

pp. 1–8, 2011.

[33] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A vision, architectural

elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660,

2013.

[34] L. Sanchez, J. Galache, V. Gutierrez, J. Hernandez, J. Bernat, A. Gluhak, and T. Garcia, “Smartsan-

tander: The meeting point between future internet research and experimentation and the smart cities,”

in Future Network Mobile Summit (FutureNetw), 2011, pp. 1–8, June 2011.

[35] “OpenStack documentation [URL].” http://docs.openstack.org.

[36] “Stack4Things source code [URL].” https://github.com/MDSLab.

[37] G. Merlino, D. Bruneo, S. Distefano, F. Longo, and A. Puliafito, “Stack4things: Integrating IoT with

OpenStack in a Smart City context,” in Proceedings of the IEEE First International Workshop on Sensors

and Smart Cities, SMARTCOMP 2014, (Washington, DC, USA), IEEE, 2015.

[38] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455, RFC Editor, December 2011.

[39] S. Papavassiliou, C. Papagianni, S. Distefano, G. Merlino, and A. Puliafito, “M2m interactions paradigm

via volunteer computing and mobile crowdsensing.,” in Machine-To-Machine Communications - Archi-

tectures, Technology, Standards, and Applications (J. M. Vojislav Misic, ed.), Oxford: Taylor & Francis,

2014.

[40] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in

Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, (New York,

NY, USA), pp. 13–16, ACM, 2012.

[41] Fox, G.C. et al., “Open Source IoT Cloud,” 2015. https://sites.google.com/site/opensourceiotcloud.

[42] G. Fox, S. Kamburugamuve, and R. Hartman, “Architecture and measured characteristics of a cloud

based internet of things,” in Collaboration Technologies and Systems (CTS), 2012 International Conference

on, pp. 6–12, May 2012.

[43] F. Li, M. Voegler, M. Claessens, and S. Dustdar, “Efficient and scalable iot service delivery on cloud,”

in Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on, pp. 740–747, June 2013.

[44] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud Computing: From Parallel Processing to the

Internet of Things. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 2011.

[45] I. LogMeIn, “xively,” 2015. https://xively.com/.

[46] PTC, “ThingWorx - Internet of Things and M2M Application Platform,” 2015.

http://www.thingworx.com/.

[47] SmartThings, Inc., “SmartThings Open Cloud,” 2015. http://www.smartthings.com/opencloud/.

[48] A. Alamri, W. S. Ansari, and M. M. Hassan, “A Survey on Sensor-Cloud: Architecture, Applications,

and Approaches,” International Journal of Distributed Sensor Networks, vol. 2013, 2013.

[49] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure - physical sensor management with virtual-

ized sensors on cloud computing,” in Network-Based Information Systems (NBiS), 2010 13th International

Conference on, pp. 1–8, Sept 2010.

172 BIBLIOGRAPHY

[50] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of sensor-cloud integration opportunities and

challenges,” in Proceedings of the 3rd International Conference on Ubiquitous Information Management and

Communication, ICUIMC ’09, (New York, NY, USA), pp. 618–626, ACM, 2009.

[51] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in mobile

computing,” Pervasive Computing, IEEE, vol. 8, pp. 14–23, Oct 2009.

[52] S. Nastic, S. Sehic, D.-H. Le, H.-L. Truong, and S. Dustdar, “Provisioning software-defined iot cloud

systems,” in Proceedings of the 2014 International Conference on Future Internet of Things and Cloud,

FICLOUD ’14, (Washington, DC, USA), pp. 288–295, IEEE Computer Society, 2014.

[53] S. Alam, M. Chowdhury, and J. Noll, “Senaas: An event-driven sensor virtualization approach for in-

ternet of things cloud,” in Networked Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE

International Conference on, pp. 1–6, Nov 2010.

[54] J. Soldatos, M. Serrano, and M. Hauswirth, “Convergence of utility computing with the internet-of-

things,” in Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth Interna-

tional Conference on, pp. 874–879, July 2012.

[55] “Arduino [URL].” http://www.arduino.cc.

[56] “BaTHOS [URL].” https://github.com/ciminaghi/bathos-mcuio.

[57] FI-WARE team, “Fi-ware project website,” 2011.

[58] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and future challenges,” Communications

Magazine, IEEE, vol. 49, no. 11, pp. 32–39, 2011.

[59] Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan, “Lowering the barriers to large-scale

mobile crowdsensing,” in Proceedings of the 14th Workshop on Mobile Computing Systems and Applications,

HotMobile ’13, (New York, NY, USA), pp. 9:1–9:6, ACM, 2013.

[60] European Commission, “Definition of a research and innovation policy leveraging cloud computing and

iot combination. tender specifications, smart 2013/0037,” tech. rep., European Commission, 2013.

[61] J. Zhou, T. Leppanen, E. Harjula, M. Ylianttila, T. Ojala, C. Yu, H. Jin, and L. Yang, “Cloudthings: A

common architecture for integrating the internet of things with cloud computing,” in Computer Supported

Cooperative Work in Design (CSCWD), 2013 IEEE 17th International Conference on, pp. 651–657, June

2013.

[62] A. Botta, W. de Donato, V. Persico, and A. Pescape, “On the integration of cloud computing and internet

of things,” in Future Internet of Things and Cloud (FiCloud), 2014 International Conference on, pp. 23–30,

Aug 2014.

[63] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte, Modelling with generalized stochastic

Petri nets. John Wiley & Sons, Inc., 1994.

[64] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivastava, “Participa-

tory sensing,” in In: Workshop on World-Sensor-Web (WSW’06): Mobile Device Centric Sensor Networks

and Applications, pp. 117–134, 2006.

[65] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell, “A survey of mobile phone

sensing,” Communications Magazine, IEEE, vol. 48, no. 9, pp. 140–150, 2010.

[66] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “From participatory sensing to mobile crowd sensing,” in Pervasive

Computing and Communications Workshops (PERCOM Workshops), 2014 IEEE International Conference

on, pp. 593–598, March 2014.

[67] X. Yu, W. Zhang, L. Zhang, V. O. Li, J. Yuan, and I. You, “Understanding urban dynamics based on

pervasive sensing: An experimental study on traffic density and air pollution,” Mathematical and Com-

puter Modelling, vol. 58, no. 56, pp. 1328 – 1339, 2013. The Measurement of Undesirable Outputs: Models

Development and Empirical Analyses and Advances in mobile, ubiquitous and cognitive computing.

BIBLIOGRAPHY 173

[68] E. Aubry, T. Silverston, A. Lahmadi, and O. Festor, “Crowdout: A mobile crowdsourcing service for road

safety in digital cities,” in Pervasive Computing and Communications Workshops (PERCOM Workshops),

2014 IEEE International Conference on, pp. 86–91, March 2014.

[69] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich monitoring of road and traffic conditions

using mobile smartphones,” in Proceedings of the 6th ACM conference on Embedded network sensor systems,

SenSys ’08, (New York, NY, USA), pp. 323–336, ACM, 2008.

[70] S. Hu, L. Su, H. Liu, H. Wang, and T. Abdelzaher, “Smartroad: A crowd-sourced traffic regulator

detection and identification system,” in Proceedings of the 12th International Conference on Information

Processing in Sensor Networks, IPSN ’13, (New York, NY, USA), pp. 331–332, ACM, 2013.

[71] G. Merlino, D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and A. Al-Anbuky, “A smart city lighting

case study on an openstack-powered infrastructure,” Sensors, vol. 15, no. 7, p. 16314, 2015.

[72] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and R. Curtmola, “Fostering

participaction in smart cities: a geo-social crowdsensing platform,” Communications Magazine, IEEE,

vol. 51, pp. 112–119, June 2013.

[73] D. Zhao, X.-Y. Li, and H. Ma, “Budget-feasible online incentive mechanisms for crowdsourcing tasks

truthfully,” Networking, IEEE/ACM Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[74] F.-J. Wu and T. Luo, “Wifiscout: A crowdsensing wifi advisory system with gamification-based in-

centive,” in Mobile Ad Hoc and Sensor Systems (MASS), 2014 IEEE 11th International Conference on,

pp. 533–534, Oct 2014.

[75] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao, “Automatically characterizing places with opportunistic

crowdsensing using smartphones,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing,

UbiComp ’12, (New York, NY, USA), pp. 481–490, ACM, 2012.

[76] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T. Campbell, “Bikenet: A

mobile sensing system for cyclist experience mapping,” ACM Trans. Sen. Netw., vol. 6, pp. 6:1–6:39, Jan.

2010.

[77] X. Chen, E. Santos-Neto, and M. Ripeanu, “Crowdsourcing for on-street smart parking,” in Proceedings

of the second ACM international symposium on Design and analysis of intelligent vehicular networks and

applications, DIVANet ’12, (New York, NY, USA), pp. 1–8, ACM, 2012.

[78] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: a programming framework for crowd-

sensing applications,” in Proceedings of the 10th international conference on Mobile systems, applications,

and services, MobiSys ’12, (New York, NY, USA), pp. 337–350, ACM, 2012.

[79] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Triandopoulos, “Anonysense: Privacy-

aware people-centric sensing,” in Proceedings of the 6th International Conference on Mobile Systems, Ap-

plications, and Services, MobiSys ’08, (New York, NY, USA), pp. 211–224, ACM, 2008.

[80] N. Brouwers and K. Langendoen, “Pogo, a middleware for mobile phone sensing,” in Proceedings of the

13th International Middleware Conference, pp. 21–40, Springer-Verlag New York, Inc., 2012.

[81] X. Hu, T. Chu, H. Chan, and V. Leung, “Vita: A crowdsensing-oriented mobile cyber-physical system,”

Emerging Topics in Computing, IEEE Transactions on, vol. 1, pp. 148–165, June 2013.

[82] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma, “Prism: platform for remote sensing

using smartphones,” in Proceedings of the 8th international conference on Mobile systems, applications, and

services, pp. 63–76, ACM, 2010.

[83] T. Metsch, A. Edmonds, R. Nyrén, and A. Papaspyrou, “Open cloud computing interface–core,” in Open

Grid Forum, OCCI-WG, Specification Document. Available at: http://forge. gridforum. org/sf/go/doc16161,

2010.

174 BIBLIOGRAPHY

[84] O. T. T. Committee, “Topology and Orchestration Specification for Cloud Applications,” tech. rep.,

OASIS.

[85] R. Mordani and S. W. Chan, “Java servlet specification,” Sun Microsystems Inc., version, vol. 3, 2009.

[86] “Apache Tomcat.”

[87] A. Developers, “Google cloud messaging for android.”

[88] “PoliMi POLICLOUD.”

[89] “Waze: Free gps navigation with turn by turn,” 2012.

[90] R. Long Cheu, C. Xie, and D.-H. Lee, “Probe vehicle population and sample size for arterial speed

estimation,” Computer-Aided Civil and Infrastructure Engineering, vol. 17, no. 1, pp. 53–60, 2002.

[91] W. F. Adams, “Road traffic considered as a random series.(includes plates).,” Journal of the ICE, vol. 4,

no. 1, pp. 121–130, 1936.

[92] “Android open source project.”

[93] “Genymotion.”

[94] “Android Debug Bridge.”

[95] S. Distefano, G. Merlino, and A. Puliafito, “A utility paradigm for iot: The sensing cloud,” Pervasive

and Mobile Computing, vol. 20, no. 0, pp. 127 – 144, 2015.

[96] European Parliament, “Directive 2010/40/EU,” 2010.

[97] M. Da Lio, F. Biral, E. Bertolazzi, M. Galvani, P. Bosetti, D. Windridge, A. Saroldi, and F. Tango, “Ar-

tificial Co-Drivers as a Universal Enabling Technology for Future Intelligent Vehicles and Transportation

Systems,” Int. Transp. Sys., IEEE Trans. on, vol. 16, pp. 244–263, Feb 2015.

[98] N. Groot, B. De Schutter, and H. Hellendoorn, “Toward sys.-optimal routing in traffic networks: A

reverse stackelberg game approach,” Int. Transp. Sys., IEEE Trans. on, vol. 16, pp. 29–40, Feb 2015.

[99] L. Du and H. Dao, “Information dissemination delay in vehicle-to-vehicle communication networks in a

traffic stream,” Int. Transp. Sys., IEEE Trans. on, vol. 16, pp. 66–80, Feb 2015.

[100] E. Lee, E.-K. Lee, M. Gerla, and S. Oh, “Vehicular cloud networking: architecture and design principles,”

Communications Magazine, IEEE, vol. 52, pp. 148–155, February 2014.

[101] V. Hodge, S. O’Keefe, M. Weeks, and A. Moulds, “Wireless sensor networks for condition monitoring in

the railway industry: A survey,” Int. Transp. Sys., IEEE Trans. on, vol. PP, no. 99, pp. 1–19, 2014.

[102] B. Ai, X. Cheng, T. Kurner, Z. dui Zhong, K. Guan, R.-S. He, L. Xiong, D. Matolak, D. Michelson, and

C. Briso-Rodriguez, “Challenges toward wireless communications for high-speed railway,” Int. Transp.

Sys., IEEE Trans. on, vol. 15, pp. 2143–2158, Oct 2014.

[103] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big data: A deep learning

approach,” Int. Transp. Sys., IEEE Trans. on, vol. PP, no. 99, pp. 1–9, 2014.

[104] S. Hamdar, A. Talebpour, and J. Dong, “Travel time reliability versus safety: A stochastic hazard-based

modeling approach,” Int. Transp. Sys., IEEE Trans. on, vol. 16, pp. 264–273, Feb 2015.

[105] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” Pervasive Computing, IEEE,

vol. 7, pp. 12–18, Oct 2008.

BIBLIOGRAPHY 175

[106] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan, and

S. Madden, “CarTel: A Distributed Mobile Sensor Computing Systems,” in Proc. of the 4th Intern. Conf.

on Embedded Networked Sensor Sys., SenSys ’06, (New York, NY, USA), pp. 125–138, ACM, 2006.

[107] A. Petkovics and K. Farkas, “Efficient event detection in public transport tracking,” in Telecommunica-

tions and Multimedia (TEMU), 2014 Intern. Conf. on, pp. 74–79, July 2014.

[108] X. Hu, X. Li, E.-H. Ngai, V. Leung, and P. Kruchten, “Multidimensional context-aware social network

architecture for mobile crowdsensing,” Communications Magazine, IEEE, vol. 52, pp. 78–87, June 2014.

[109] X. Hu and V. C. Leung, “Towards context-aware mobile crowdsensing in vehicular social networks,” in

Cluster, Cloud and Grid Computing (CCGrid), 15th IEEE/ACM Intern. Symp. on, pp. 749–752, May 2015.

[110] X. Hu, J. Zhao, B.-C. Seet, V. Leung, T. Chu, and H. Chan, “S-aframe: Agent-based multilayer frame-

work with context-aware semantic service for vehicular social networks,” Emerging Topics in Computing,

IEEE Trans. on, vol. 3, pp. 44–63, March 2015.

[111] D. Barth, “The bright side of sitting in traffic: Crowdsourcing road congestion data,” 2009.

http://googleblog.blogspot.ca/2009/08/bright-side-of-sitting-in-traffic.html.

[112] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From intelligent grid to autonomous cars

and vehicular clouds,” in Internet of Things (WF-IoT), 2014 IEEE World Forum on, pp. 241–246, March

2014.

[113] B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou, “Opportunistic iot: Exploring the harmonious interac-

tion between human and the internet of things,” Journal of Network and Computer Applications, vol. 36,

no. 6, pp. 1531 – 1539, 2013.

[114] D. Zhao, H. Ma, S. Tang, and X.-Y. Li, “COUPON: A Cooperative Framework for Building Sensing Maps

in Mobile Opportunistic Networks,” Parallel and Distributed Sys., IEEE Trans. on, vol. 26, pp. 392–402,

Feb 2015.

[115] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA, USA: Bradford Company, 2004.

[116] Y.-T. Yu, Y. Li, X. Ma, W. Shang, M. Sanadidi, and M. Gerla, “Scalable opportunistic vanet content

routing with encounter information,” in Network Protocols (ICNP), 2013 21st IEEE Intern. Conf. on,

pp. 1–6, Oct 2013.

[117] Y.-T. Yu, X. Li, M. Gerla, and M. Sanadidi, “Scalable vanet content routing using hierarchical bloom

filters,” in Wireless Communications and Mobile Computing Conf. (IWCMC), 2013 9th Intern., pp. 1629–

1634, July 2013.

[118] F. Bruno, M. Cesana, M. Gerla, G. Mauri, and G. Verticale, “Optimal content placement in icn vehicular

networks,” in Network of the Future (NOF), 2014 Intern. Conf. and Workshop on the, vol. Workshop,

pp. 143–147, Dec 2014.

[119] P. Kromer, J. Martinovic, M. Radecky, R. Tomis, and V. Snasel, “Ant colony inspired algorithm for adap-

tive traffic routing,” in Nature and Biologically Inspired Computing (NaBIC), 2011 Third World Congress

on, pp. 329–334, Oct 2011.

[120] D. Bruneo, M. Scarpa, A. Bobbio, D. Cerotti, and M. Gribaudo, “Markovian agent modeling swarm

intelligence algorithms in wireless sensor networks,” Performance Evaluation, vol. 69, pp. 135–149, 2012.

[121] D. Cerotti, M. Gribaudo, A. Bobbio, D. Bruneo, and M. Scarpa, “An intelligent swarm of markovian

agents,” tech. rep., Università del Piemonte Orientale, Alessandria, Italy, TR-INF-2014-06-01-UNIPMN

2014.

[122] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Computer Networks, vol. 54,

no. 5, pp. 862 – 876, 2010.

176 BIBLIOGRAPHY

[123] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach, “Virtual network embedding: A

survey,” Communications Surveys Tutorials, IEEE, vol. 15, pp. 1888–1906, Fourth 2013.

[124] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things virtual networks: Bringing net-

work virtualization to resource-constrained devices,” in Green Computing and Communications (Green-

Com), 2012 IEEE International Conference on, pp. 293–300, Nov 2012.

[125] “VPN-WS [URL].” https://github.com/unbit/vpn-ws.

[126] S. Hanks, T. Li, D. Farinacci, and P. Traina, “Generic Routing Encapsulation over IPv4 networks,” RFC

1702, RFC Editor, October 1994.

[127] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris, “Smarter cities and their innovation

challenges,” Computer, vol. 44, pp. 32–39, June 2011.

[128] J. Lee, S. Baik, and C. Choonhwa Lee, “Building an integrated service management platform for ubiq-

uitous cities,” Computer, vol. 44, pp. 56–63, June 2011.

[129] Z. Li, C. Chen, and K. Wang, “Cloud computing for agent-based urban transportation systems,” IEEE

Intelligent Systems, vol. 26, pp. 73–79, Jan. 2011.

[130] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi, “Combining cloud and sensors in a smart

city environment,” EURASIP J. Wireless Comm. and Networking, vol. 2012, p. 247, 2012.

	Introduction
	Sensing and Actuation as a Service
	Introduction
	Overview: vision, approach
	The big picture
	Device-centric paradigms

	A device-centric stack
	High-level IaaS architecture
	Core modules

	Basic device interactions
	Proof of concept
	Case Study
	Testing

	Related work

	Stack4Things: a framework for SAaaS
	Introduction
	Sensing-and-Actuation-as-a-Service
	Background
	Stack4Things architecture
	Board-side
	Cloud-side - control and actuation
	Cloud-side - sensing data collection

	Stack4Things REST API
	Use cases
	Use case: provide the list of nodes registered to the Cloud
	Use case: retrieve the current value of a pin on a specific board
	Use case: create an SSH connection toward a node
	Use case: store readings from a sensor in the Cloud
	Use case: inject a CEP rule and set a reaction

	Mobile CrowdSensing as a Service: a platform for opportunistic sensing
	Introduction and motivations
	Preliminary concepts and related work
	Mobile Crowd-Sensing
	MCS taxonomy
	Related work

	MCSaaS paradigm
	Vision
	Stack

	Infrastructure
	Platform: MCSaaS module
	Setup and deployment of MCS applications
	MCSaaS platform setup
	MCS application configuration and deployment

	The MCSaaS implementation
	MCS app: case study
	Pothole mapping
	Traffic monitoring
	Testing and evaluation

	A crowd-cooperative approach for ITS
	Introduction and motivations
	Background and related work
	An overview of ITS
	MCS for ITS

	A novel cooperative strategy
	A distributed MCS pattern
	Stigmergic approach

	ITS implementation
	Motivating example
	MoCSACO application to ITS

	Modeling and evaluation
	MA model of the MoCSACO algorithm
	Results

	Network Function Virtualization for CPS
	Introduction
	Network virtualization for IoT
	Tunneling
	Layering

	A real-world example

	Software-Defined City: an elastic model for the Smart City
	Introduction
	Related work
	Overview of the approach
	Data Plane: Cyber-Physical Systems
	Control Plane: Smart Cities

	Reference architecture
	Requirements
	Sensing and Actuation as a Service for SDC

	Use case

	Conclusions and future work

