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ABSTRACT

Within the general framework of Standard Model, the Quantum Chro-

modynamics (QCD) is the fundamental theory that governs the dynam-

ics of strongly interacting particles and has quarks and gluons as ele-

mentary constituents, they represent the fundamental degrees of free-

dom of the theory carrying the "color" charge. The QCD have two impor-

tant and characterizing features, that are the colour confinement and

the asymptotic freedom. The first one implies that quark and gluons

can only exist as a confined colorless object inside hadrons. The second

one is related to the non Abelian nature of the theory and consists in

the decrease of interaction strength with the decreasing of interaction

distance. The asymptotic freedom allow us to study the strong inter-

action in a perturbative regime for sufficiently high energy processes,

and implies that under particular condition of temperature or density

the strong interaction that confines quarks and gluons becomes smaller

enough to release them. Hence a new state of matter can exist in which

the colour charges are deconfined in a Quark Gluon Plasma (QGP), the

predictions of Lattice Quantum Chromodynamics indicate that the crit-

ical temperature in which the nuclear matter experiences a phase tran-

sition is Tc ≈ 160MeV . Heavy Ion Collisions (HIC) at ultrarelativistic
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Abstract

energy can be used to probe the properties of nuclear matter under such

extreme condition. In the studies of the Quark Gluon Plasma created in

HIC is necessary taking into account that partonic behaviour in QGP is

not directly projected on the observables measured in heavy ion collision

experiments. This happens because the quark and gluon constituents

must combine into colour-neutral objects: the hadrons. Thus the choice

of the model for Hadronization process is a crucial point in order to have

a comparison with experimental data. We are interested on an approach

with the problem of hadronization of QGP that takes care about micro-

scopic mechanism of hadronization. Within the microscopic description

two different approaches have been developed: fragmentation and co-

alescence. In the fragmentation scheme each parton fragments into

a jet of hadrons which carries a fraction of initial parton momentum.

Instead coalescence model describes the recombination of two or three

quarks adding their momenta to form mesons or baryons. The coales-

cence model that has a marginal role in the hadronization processes in

pp collisions, has been able to explain at least two unexpected observa-

tions in heavy ion collisions, that other models can not explain simulta-

neously. In particular the coalescence model can predicts the enhance-

ment of baryon to meson ratio at intermediate transverse momenta and

the scaling of elliptic flow according to the constituent quark number

that are observed in Au+Au collisions at RHIC. In this thesis we have

developed a numerical code to implement an hadronization model based

on a quark coalescence mechanism. Our first purpose has been to repro-

duce the transverse momentum spectra and the particle ratio at RHIC

and LHC for pions, kaons, protons and Lambda with an implementation

based on a coalescence model applied on a static medium. At RHIC and

LHC we obtain a good description of transverse momentum spectrum in

the whole range of momenta. Furthermore our model reproduces exper-

imental data for both proton to positive pion ratio and Lambda to kaons
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ratio specially in the intermediate transverse momenta region where an

anomalous large value is observed. The features of these ratios was one

component of the so-called "baryonic puzzle". We can see that the ratio

is quite well predicted from its rise at low transverse momenta up to the

peak region and then the falling-down behaviour. However in both cases

it is clear that in the region of pT ≈ 5−7 GeV there is a lack of baryon

yield. At both RHIC and LHC such a lack of yield appears where coales-

cence becomes less important therefore one can say that it seems that

the spectrum from AKK fragmentation function appears too flat. It is

likely that studies of in-medium fragmentation function can solve it or

it could be that coalescence contribution should extend to large pT with

respect to the present modelling. Then we have studied the hadroniza-

tion effect with a coalescence model applied in the heavy quark sector.

At both RHIC and LHC energies the relation between Heavy Quarks nu-

clear modification factor RAA and the elliptic flow v2 observed give indi-

cations that reveal a quite strong interactions between heavy quarks and

the medium which is substantially beyond the expectations coming from

perturbative QCD. Several theoretical efforts have been made to repro-

duce the RAA and the v2 observed in experiments but all the approaches

show some difficulties to describe them simultaneously. A key result of

our study is that when RAA increases, elliptic flow decreases and vicev-

ersa. Generally in order to get the same RAA that we have without

including coalescence is necessary to further increase the interaction,

which causes an additional increase of the elliptic flow. Coalescence in-

verts this relation, implying a contemporary increase of both these two

observables and this is fundamental to reproduce the experimental data.

In the final part we have presented a more realistic implementation of

coalescence model, in which we have developed a model self-consistently

applied to the freeze-out hypersurface of a Boltzmann Transport equa-

tion. Comparing the transverse momentum distribution of pions, kaons

v



Abstract

and protons with the experimental data at RHIC and LHC we find a re-

ally good agreement in the intermediate transverse momentum region.

While for higher momenta we slightly underestimate the experimental

data, however this can be ascribed to the partonic spectrum that results

over-suppressed in the region at high pT . Finally we have studied the

elliptic flow for pions and we have obtained that the coalescence overes-

timate the v2 observed experimentally in the momentum region above

2 GeV , on the other hand in the same region the elliptic flow of fragmen-

tation is about two times smaller than the experimental data. But an

approach that take in account of both coalescence and fragmentation is

able to give a reasonable description of the elliptic flow behaviour in a

quite large range of momenta.
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INTRODUCTION

Within the general framework of Standard Model, the Quantum Chro-

modynamics (QCD) is the fundamental theory that governs the dynam-

ics of strongly interacting particles and has quarks and gluons as ele-

mentary constituents, they represent the fundamental degrees of free-

dom of the theory carrying the "color" charge. The QCD have two impor-

tant and characterizing features, that are the colour confinement and

the asymptotic freedom. The first one implies that quark and gluons can

only exist as a confined colorless object inside hadrons. The second one

is related to the non Abelian nature of the theory and consists in the

decrease of interaction strength with the decreasing of interaction dis-

tance.

The asymptotic freedom allow us to study the strong interaction in a per-

turbative regime for sufficiently high energy processes, and implies that

under particular condition of temperature or density the strong interac-

tion that confines quarks and gluons becomes smaller enough to release

them.

Hence a new state of matter can exist in which the colour charges are

deconfined in a Quark Gluon Plasma (QGP), the predictions of Lattice

Quantum Chromodynamics indicate that the critical temperature in which
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Introduction

the nuclear matter experiences a phase transition is Tc ≈ 160MeV ∼
1012 K .

Heavy Ion Collisions (HIC) at ultrarelativistic energy can be used to

probe the properties of nuclear matter under such extreme condition.

Signatures of a Quark Gluon Plasma formation became manifest in the

experiment with energies up to 200 AGeV performed at Relativistic

Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Fur-

ther confirmations as well as new discoveries have been coming from

the experiments at Large Hadron Collider (LHC) started in 2010 where

it possible reach energies up to 5.5 TeV

In the studies of the Quark Gluon Plasma created in HIC is necessary

taking into account that partonic behaviour in QGP is not directly pro-

jected on the observables measured in heavy ion collision experiments.

This happens because the quark and gluon constituents must combine

into colour-neutral objects: the hadrons. Thus the choice of the model for

Hadronization process is a crucial point in order to have a comparison

with experimental data.

There are at least two different classes of approaches to deal with the

problem of hadronization of QGP. The first one is based on a statistical

model, this approach does not care about microscopic mechanism that

leads to production of hadrons, because it assumes that the number of

hadrons and the spectra follows the kinetic and chemical equilibrium

laws of statistical mechanics.

The other class of modeling takes care about microscopic mechanism

of hadronization. Within the microscopic description two different ap-

proaches have been developed: fragmentation and coalescence. In the

fragmentation scheme each parton fragments into a jet of hadrons which

carries a fraction of initial parton momentum. Instead coalescence model

describes the recombination of two or three quarks adding their mo-

menta to form mesons or baryons.

2



Introduction

The coalescence model that has a marginal role in the hadronization pro-

cesses in pp collisions, has been able to explain at least two unexpected

observations in heavy ion collisions, that other models can not explain

simultaneously.

In particular the coalescence model can predicts the enhancement of

baryon to meson ratio at intermediate transverse momenta and the scal-

ing of elliptic flow according to the constituent quark number that are

observed in Au+Au collisions at RHIC.

In this work we have used a numerical code that implement an hadroniza-

tion model based on coalescence mechanism, where fragmentation has

been taken into account to reproduce the features of hadron spectra at

high transverse momentum accounting for the transition between the

two mechanism.

Initially we have compared the experimental data at RHIC and LHC

with the transverse momentum spectra of pions, kaons, protons, Lambda

and φ, including decay of the main resonances, and also the respective

baryon to meson ratio obtained from our implementation of coalescence

model, finding a good agreement.

Then we have studied the effect of hadronization in the heavy quark sec-

tor. Heavy quarks and their bound states are recognized as probes of the

medium produced in ultrarelativistic heavy-ion collisions and its early

stages. At both RHIC and LHC energies the relation between Heavy

Quarks nuclear modification factor RAA and the elliptic flow v2 observed

is not successfully predicted by any of different models. We show in our

study that coalescence can modify the relation between these two observ-

ables and lead to a significantly better description of the experimental

data.

A more realistic implementation of coalescence model has been the fi-

nal subject of our studies. We have developed a coalescence model self-
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Introduction

consistently applied to the freeze-out hypersurface of a Boltzmann Trans-

port equation solved with the realistic initial condition of ultrarelativis-

tic heavy-ion collisions. The Relativistic Boltzmann Transport equation

describes the system in terms of a space-time evolution equation for the

one body distribution function. Within this approach we have an uni-

fied description of short range interactions, due to collisions between

particles, and long range interactions, associated to mean field dynam-

ics that drives the equation of state. A dynamical coalescence coupled

with a Boltzmann Transport Equation allow to study the effect, on final

particles, of transport coefficient of QGP, such as shear viscosity, or spa-

cial and time informations that regard particles formation of different

species. Moreover this approach can allow one to study the consequence

of initial fluctuations in phase-space or the effect of space-momentum

correlation on the final elliptic flow of mesons and baryons.

This thesis is divided in six chapter.

In the chapter 1, we will present the general features and the pecu-

liarity of Quantum ChromoDynamics.

In chapter 2, we give a primer of the ultra-relativistic heavy-ion

collisions and the main probes and observables of the formation of the

Quark Gluon Plasma.

In chapter 3, we introduce the problem of Hadronization and the

main features of three different Hadronization processes with a focus on

the coalescence model where we describe the general approach to coales-

cence process, then the Wigner formalism and the method used for the

implementation of numerical code.

In chapter 4, we will show the comparison between experimental

data from RHIC and LHC and the results of our implementation.

In chapter 5, we introduce the principal characteristics of heavy

quarks and our study of the impact of coalescence for the results for the
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Nuclear modification factor and the elliptic flow of D meson.

In chapter 6, we present the basic theory of the Boltzmann Equa-

tion, the numerical implementation and the coupling of the coalescence

model. Finally we show the results of our model for spectra and ellip-

tic flow both at RHIC and LHC in comparison with the experimental

data. A main finding is that only an hadronization by coalescence plus

fragmentation is able to correctly describe the shape of the elliptic flow

observed in experiments.
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CHAPTER 1

QUANTUM CHROMO
DYNAMICS

1.1 Introduction to QCD

The modern physics aim is to describe the elementary building blocks

of matter and the forces that rule on them. At present the Standard

Model is the most comprehensive physical theory ever developed, that

has been experimentally tested with high accuracy. In the Standard

Model, gauge bosons are defined as force carriers that mediate the strong,

weak, and electromagnetic fundamental interactions. The different type

of gauge bosons, all with spin 1, are the photon that mediate the electro-

magnetic force, W+, W−, Z0 that mediate weak interactions and gluons

that are the carriers of strong interaction between color charged parti-

cles.

The Standard Model includes 12 elementary particles of spin ½, known

as fermions. Each fermion has a corresponding antiparticle. There are

six quarks (up, down, charm, strange, top, bottom), and six leptons

(electron, electron neutrino, muon, muon neutrino, tau, tau neutrino).

These particles are considered as point particles. All the other parti-
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1.1 Introduction to QCD

cles that have been discovered over the years, the hadrons, are compos-

ite particles consisting of three or two quarks, respectively. The quarks

are fermions having not only the flavour degrees of freedom (up, down,

strange, charm, bottom, top), but also color degrees of freedom (red, blue

and green).

Isolated color has never been observed experimentally, which indicates

that quarks are always bound together to form color-white composite

objects. Baryons (proton, neutron, Λ, Σ, ... ) comprise three valence

quarks, and mesons (π, ρ , K , J/ψ ...) are made of a quark-antiquark

pair. They are the simplest color-white constructions of hadrons, but

possible multi-quark systems may exist.

The concept of color, as well as the quantum dynamics of color, was first

proposed by Nambu [1] and this theory is now called “Quantum Chromo-

dynamics” (QCD). This is a generalization of Quantum Electrodynamics

(QED), which is a quantum theory of charged particles and the elec-

tromagnetic field. QCD (respectively QED) has gluons (the photon) as

spin-1 gauge bosons that mediate the force between quarks (charged

particles). Although QCD and QED look similar, there is a crucial differ-

ence: whereas the photon is electrically neutral and therefore transfers

no charge, the gluons are not neutral in color. The fact that gluons them-

selves carry color is related to the fundamental concept of non-Abelian

or Yang-Mills gauge theory [2]. The term “non Abelian”refers to the color

SU(3) algebra on which QCD is constructed.

QCD has two main features that can be traced back to its non abelian

structure. At high energies, the interaction becomes small, and quark

and gluons interact weakly, it is called “asymptotic freedom” [3] [4],

while at low energy the interaction becomes strong and leads to the con-

finement of color. The asymptotic freedom, which is a unique aspect of

non-Abelian gauge theory, is related to the anti-screening of color charge.

Because the gauge fields themselves have color, a bare color charge cen-
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1.1 Introduction to QCD

tered at the origin is diluited away in space by the gluons. Therefore, as

one tries to find the bare charge by going through the cloud of gluons,

one finds a smaller and smaller portion of the charge. This is in sharp

contrast to the case of QED, where the screening of a bare charge takes

place due to the cloud of, for example, electron-positron pairs surround-

ing the charge.

As the typical length scale decreases, or the energy scale increases, the

coupling strength decreases in QCD. This is why we can expect QGP at

high temperature, for which the typical thermal energies of the quark

and gluons are large entering the weak regime of the interaction.

The strenght of the interaction in QCD becomes stronger at long dis-

tances or at low energies. This is a signature of the confinement of color.

Indeed, the phenomenological potential between a quark and an anti-

quark at large separation increases linearly. Consequently, even if we

try to separate the quark and the anti-quark beyond some critical dis-

tance the potential energy becomes large enough to allow a new quark-

antiquark pair pops up from the vacuum. Then, the original quark-

antiquark pair becomes two pairs. In this way, quarks are always con-

fined inside hadrons and can never be isolated.

Because the QCD coupling strength, αS, becomes large at long distances,

which means low energies (about 2-3 GeV), we encounter a technical

difficulty, i.e. we cannot adopt a perturbative method. Wilson’s lattice

gauge theory [5] may be used to circumvent this problem. It treats four-

dimensional space-time not as a continuum, but as a lattice, just as in

crystals, in which quarks occupy lattice points while the gauge field occu-

pies lattice links. By this lattice discretization, one may solve QCD uti-

lizing Monte Carlo numerical simulations. Results on quark-antiquark

interaction confirm that the potential energy is indeed proportional to

the length of the string. This agrees with that of the string model, mak-

ing the ideas of confinement feasible.

8



1.2 Classical QCD action

1.2 Classical QCD action

The classical Lagrangian density of QCD contains quark and gluon

fields as fundamental degrees of freedom; also, it is designed to have a

local color SUC(3) simmetry. For a quark with mass m, the Lagrangian

density is given by

Lcl = q̄α(i 6Dαβ−mδαβ)qβ− 1

4
Fa
µνF

µν
a (1.1)

The quark field qα belongs to the SUC(3) triplet, the gluon field Aa
µ be-

longs to the SUC(3) octet. Therefore α runs from 1 to 3, while i runs from

1 to 8.

We define 6D ≡ γµDµ, where Dµ is a covariant derivative acting on the

color triplet quark field:

Dµ ≡ ∂+ igta Aa
µ (1.2)

Here g is the dimensionless coupling constant in QCD; the ta denotes the

fundamental representation of SUC(3) Lie algebra. They are traceless

3×3 hermitian matrices satisfying the following commutation relation

and normalization:

[ta, tb]= i fabctc, tr(tatb)= 1

2
δab (1.3)

For later convenience, we also define the covariant derivative acting on

the color-octet field:

Dµ ≡ ∂µ+ igTa Aa
µ (1.4)

Here Ta are the adjoint representations of the SUC(3) Lie algebra. They

are traceless 8×8 hermitian matrices given by (Ta)bc =−i fabc.

The field strength tensor of the gluon Fa
µν is defined as

Fa
µν = ∂µAa

ν−∂νAa
µ− g fabc Ab

µAc
ν (1.5)

By introducing Aµ ≡ ta Aa
µ and Fµν ≡ taFa

µν, we may simplify Eq.(1.5) as

follows:

Fa
µν = ∂µAa

ν−∂νAa
µ+ ig[Aµ, Aν]= −i

g
[Dµ,Dν] (1.6)

9



1.3 Running Coupling Constant and Asymptotic Freedom

The Lagrangian density, Eq.(1.1), is invariant under the SUC(3) gauge

transformation

q(x)→V (x)q(x), gAµ(x)→V (x)(gAµ(x)− i∂µ)V †(x) (1.7)

where V (x) ≡ exp(−iθa(x)ta). To show this gauge invariance, it is useful

to remember that Fµν and Dµν transform covariantly; i.e

Fµν(x)→V (x)Fµν(x)V †(x), Dµ(x)→V (x)Dµ(x)V †(x) (1.8)

After the transformation, we obtain:

trc(FµνFµν)→ trc(V (x)FµνV †(x)V (x)FµνV †(x))=

= trc(V
†(x)V (x)FµνV †(x)V (x)Fµν)=

= trc(FµνFµν) (1.9)

Dµ(x)q(x)→V (x)Dµ(x)V †(x)V (x)q(x)=V (x)Dµ(x)q(x) (1.10)

in this way, the Lagrangian results invariant.

Observe, from Eq.(1.1), that the term FµνFµν contains not only the stan-

dard kinetic term of the gauge fields, but also an interaction vertex with

three gauge bosons, proportional to g, and a vertex with four gauge

bosons, proportional to g2. One can observe also that gauge invariance

has fixed the three-boson, four-boson, and boson-fermion-fermion ver-

tices in terms of a single parameter, the gauge coupling g.

1.3 Running Coupling Constant and Asymp-

totic Freedom

One of the most important feature of QCD is the asymptotic free-

dom. It was demonstrated that asymptotic freedom is possible only for

the non-Abelian gauge theories [6] [7].

This phenomenon can be investigated analyzing the renormalization of

10



1.3 Running Coupling Constant and Asymptotic Freedom

a quantum field theory. In field theories, the quantum correction calcu-

lated with the perturbation theory have ultraviolet divergences which

are originated from the states with high momenta. In the case of QCD

and QED, that are renormalizable field theories, these divergences can

always be absorbed in renormalized parameters. In QED we have the

normalization of two quantities: the charge and the mass. We are in-

terested in the charge. Can be defined a "naked" charge that is infi-

nite, but not observable, and an "effective" charge that is measurable.

As shown in Fig.(1.1) in every vertex there is a contribution due to the

naked coupling constant. But we measure the summation of all the se-

ries terms, reducing the charge to an effective charge. We can proceed

with an analogy from another physical situation, let consider a small

charged sphere immersed in a dielectric medium. The charge polarises

the near molecules of the medium which tend to become oriented toward

the sphere. This causes a screening action that macroscopically appears

as the dielectric constant. If a charged probe approaches the sphere in

order to measure its charge, the minimum distance that can be reached

is a decreasing function of the initial energy of the probe. Consequently,

higher-energy probes will "see" a larger charge on the sphere. In QED

the vacuum becomes, spontaneously, polarised at microscopic level; e+e−

pairs appear continuosly for a short time and then recombine. In pres-

ence of a charged body the pairs become oriented. This leads to the

formation of a virtual particle cloud around the charged body, that re-

duces the power of its charge at a distance by its screening action. As a

consequence the effective charge is larger at smaller distances.

Figure 1.1: Lowest order diagram contributing to an electromagnetic vertex

11



1.3 Running Coupling Constant and Asymptotic Freedom

The fine structure constant, in this way, is not constant, rather it

evolves with the momentum transfer Q or, in other cases, with the cen-

tre of mass energy at which the measurement is performed. The same

mechanism happens considering the formation of gluons from the QCD

vacuum. The fundamental difference between QED and QCD lies in the

possibility, in addition of quark-antiquark pair creation, for gluons to

split in loops where other virtual gluons can be formed. These bosonic

contributions have an opposite signs respect the fermionic loop. The ef-

fect of vacuum polarisation due to the quarks is similar to that which

we have seen in electrodynamics, with the colour charges in place of

the electric charge. The quark-antiquark pairs coming out of vacuum

shield the colour charge, reducing its value for increasing distance, or

for increasing momentum transfer in the measuring process. However,

Figure 1.2: Lowest order diagram contributing to QCD vertex

the action of gluons is a smearing of the colour charge called antiscreen-

ing. The net result is that the colour charges decrease with decreasing

distance. Complete calculation of these diagrams after a standard renor-

malization at an energy scale named “renormalization point” leads to the

expression for QCD running coupling constant in Eq.(1.11). The physi-

cal observables do not depend on the renormalization point but the cou-

pling α= g2/4π depends on it and therefore α depends on the momentum

transfer, see Fig.1.3. It is possible to show [3] [4] that, for N f ≤ 16, α is

a decreasing function of the renormalization point and therefore, in the

case of QCD, with N f = 6, α is a decreasing function of the momentum

transfer, as indicated in the formula at the leading order:

αs(Q
2)= 4π

(11− 2

3
N f )ln(Q2/Λ2

QCD
)

(1.11)
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1.4 Confinement

where ΛQCD . 200−250 MeV is an intrinsic energy scale for the strong

interactions.

Theories where the coupling becomes small in the UV are called asymp-

totically free. Asymptotic freedom implies that at large energies (and

therefore at short distances) the fields which appear in the Lagrangian

can be treated perturbatively. The other side of the coin, however, is

that in an asymptotically free theory for energy comparable with ΛQCD =
200MeV , the coupling becomes strong, and the perturbative treatment

is inadequate. This occurs at energy scales and size of the order of the

hadrons.

1.4 Confinement

An important non-perturbative feature of the QCD is the colour con-

finement. The hypothesis of confinement says that hadrons can only ex-

ist in states with zero colour charge and quarks can only exist confined

within hadrons. This hypothesis is supported by experimental results,

in fact free quarks or gluons have never been observed in experiments,

but there is no analytical description of confinement yet.

Figure 1.3: Running coupling as a function of the transfer momenta. The graphic have
been obtained performing measure at various energy scales
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1.5 Chiral Symmetry

Let us consider the simple case of a mesons. In a first approximation a

meson is made up of a quark-antiquark pair and the colour field, with all

its virtual particles, between them. The distance between quark and an-

tiquark oscillates continuously with a maximum elongation of the order

of the fermi. Indeed, the attractive force increases when the distance

increases, because the cancellation of the two antiscreening clouds de-

creases. The colour field between a quark and an antiquark at distances

of about one fermi is concentrated in a narrow "tube". When the sep-

aration between quark and antiquark increases, the length of the tube

increases, but its diameter remains approximately constant. Therefore

the field energy density remains constant and the total energy in the

tube increases proportionally to its length. When the energy in the tube

is large enough it becomes energetically convenient to break the tube

producing a new quark-antiquark pair at the two new ends. We now

have a second meson, which is colour neutral.

This can be described by a potential between a quark and an antiquark

as a function of the distance as:

V (r)= Kr− 4

3

αs

r
(1.12)

The second term is Coulomb-like while the first term, named string po-

tential, increases with the distance and is responsible for confinement.

The typical value for the string tension parameter is K ≃ 0.9 GeV f m−1.

The situation is similar for the quark confinement in a baryon, in which

there are three colour tubes.

1.5 Chiral Symmetry

Another key property of QCD is the chiral symmetry which is a global

symmetry dynamically broken at the low temperature (T . 155 MeV ).

We first introduce the left-handed and right-handed quark fields (see
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1.5 Chiral Symmetry

Appendix A for gamma matrices)
(

qL = (1−γ5)q

2
; qR = (1+γ5)q

2

)

They are eigenstates of the chirality operator γ5 with eigenvalues ±1, in

the case of free quarks with zero masses the chirality is equivalent to the

helicity σ · p̂. One says the Lagrangian of a system is chirally symmetric

if it is invariant under the global SU(N f )L ×SU(N f )R transformation

that are given by:

SU(N f )L = qL → e
−iθL

a

λa

2 qL ; SU(N f )R = qR → e
−iθR

a

λa

2 qR (1.13)

where λa are the generator of the SU(N f ) group. This symmetry is

equivalent to the symmetry that leave the Lagrangian invariant under

global vector and axial vector transformations, SU(N f )V ×SU(N f )A.

The chiral symmetry is an approximate symmetry for the Lagrangian of

QCD seen in Eq.(1.1), but in the so called chiral limit (m → 0) this sym-

metry is exact. On the other hand, from the analysis of hadrons spectra

there are no evidence of chiral symmetry and therefore one should con-

clude that chiral symmetry is not realized in the ground state (vacuum)

of QCD.

However this is not in contradiction with the QCD classical Lagrangian

that would predict a nearly exact chiral symmetry. In fact even if the

Lagrangian has a symmetry it can happens that it is not realized in the

ground state, in other words it is spontaneously broken (More precisely

is the SU(N f )V symmetry that is spontaneously broken).

A simple example for Spontaneous Symmetry Breaking is given by a fer-

romagnet. The action governing its microscopic dynamics is invariant

under spatial rotations. For instance, we can describe a ferromagnet by

an Hamiltonian of the type

H =−J
∑

i, j

si · s j
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1.5 Chiral Symmetry

introducing a vector variable si associated to each site i, where J > 0

and the sum is restricted to nearest-neighbour pairs. Above a critical

temperature a ferromagnet has a unique ground state, with zero mag-

netization. Of course this state respects the rotational invariance, since

on it the expectation value of the magnetization M = 〈si〉 vanishes, and

therefore no preferred direction is selected. Below a critical temperature

instead it becomes thermodynamically favourable to develop a non-zero

magnetization, and in this new vacuum M 6= 0 and the full SO(3) rota-

tional symmetry is broken to the subgroup SO(2) of rotations around the

magnetization axis. The original invariance of the Lagrangian is now re-

flected in the fact that, instead of a single vacuum state, there is a whole

family of vacua related to each other by rotations, since the magnetiza-

tion can in principle develop in any direction. However, the system will

choose one of these states as its vacuum state. The symmetry is then

said to be spontaneously broken by the choice of a vacuum.

The mechanism responsible for chiral spontaneous symmetry break-

ing is of non-perturbative nature and is related to the existence of a

quark condensate different from zero 〈q̂q〉 =−(240MeV )3.

The spontaneous breaking for chiral symmetry was introduced by Nambu

and Jona-Lasinio in their model of an effective theory of nucleons and

meson [8]. In 2008 Nambu was awarded the Nobel Prize "for the dis-

covery of the mechanism of spontaneous broken symmetry in subatomic

physics".

An important consequence of the spontaneous breaking of an exact con-

tinuous global symmetry is the existence of a massless mode, the so

called “Goldstone boson”, which, in the case of chiral symmetry, can

be identified with pions. If chiral symmetry was a perfect symmetry

of QCD the pions should be massless. However due to the non-zero

value of 〈q̂q〉 quark masses acquire an extra effective mass, called con-

stituent, of about m ≈ 300MeV and chiral symmetry for QCD becomes
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1.6 Quark Gluon Plasma

not exact. Hence we expect that pions have a finite mass that has to

be, however, small compared to the masses of all other hadrons, in fact

the mass of pions is about 140 MeV, quite smaller than the proton mass,

for example, that is 940 MeV. This QCD model gives rise to a dynam-

Figure 1.4: Comparison of physical quark masses with the QCD mass estimate. Light
quarks fall in the domain of chiral symmetry breaking, while all heavy
quark masses seem to arise totally from Higgs mechanism.

ical mass contribution without a need of a Higgs mechanism for spon-

taneous electroweak symmetry breaking. We understood also that for

heavy quarks such dynamical mass is not a main contribution to their

mass values, which instead depends quite uniquely on the Higgs mech-

anism (Fig.(1.4)).

1.6 Quark Gluon Plasma

Asymptotic freedom suggests that under particular condition of tem-

perature or density the interaction which confine quarks and gluons in-
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1.6 Quark Gluon Plasma

side hadrons becomes smaller enough to release them. Thus a new state

of the matter can exist in which the color charges are deconfined in a

Quark Gluon Plasma (QGP).

There are two methods for the creation of the Quark Gluon Plasma

• QGP at high T. We assume that the QCD vacuum is heated in a

box. At low temperature, hadrons, such as pions, kaons, etc., are

thermally excited from the vacuum. Note that only the color-white

particles can be excited by the confinement at low energies. Be-

cause the hadrons are all roughly the same size (about 1 fm), they

start to overlap with each other at a certain critical temperature,

TC . Above this temperature, the hadronic system dissolves into a

system of quarks and gluons (QGP). Note that in the QGP thus pro-

duced the number of quarks, nq , is equal to that of anti-quarks,

n q̄. The various model calculations and the Monte Carlo lattice

QCD simulations yield Tc = 150 ∼ 200 MeV. Although this is ex-

tremely high in comparison with (for example) the temperature at

the center of the Sun, 1.5×107 K = 1.3 keV, it is a typical energy

scale of hadronic interactions and can be obtained in laboratories,

furthermore this phase of the matter should have existed in the

early stage of Universe life up to a time of about 10−20 µs after

the Big Bang.

• QGP at high ρ. Let us put a large number of baryons into a cylin-

der with a piston and compress the system adiabatically, keeping

T ∼ 0. The baryons start to overlap at a certain critical baryon

density, ρc, and dissolve into a system of degenerate quark matter.

The quark matter thus produced is of high baryon density with

nq ≫ n q̄. Model calculations show that ρc = (several)×ρnm, where

ρnm = 0.16 f m−3 is the baryon number density of normal nuclear

matter
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1.6 Quark Gluon Plasma

Based on the two recipes for high T and high ρ, we should expect to find

QGPs in three places: (i) in the early Universe (T), (ii) at the center of

compact stars (ρ)and (iii) in the initial stage of colliding heavy nuclei at

high energies (T,ρ).

(i) In the early Universe, about 10−5 s after the cosmic Big Bang. Ac-

cording to Friedmann’s solution [9] of Einstein’s gravitational equa-

tion, the Universe experienced an expansion from a singularity at

time zero. This scenario has been confirmed by the formulation of

Hubble’s law for the red shift of distant galaxies [10]. Hubble’s law

(Fig.1.5) states that: all objects observed in deep space (intergalac-

tic space) are found to have a Doppler shift observable relative

velocity to Earth, and to each other; and that this Doppler-shift-

measured velocity, of various galaxies receding from the Earth, is

proportional to their distance from the Earth and all other inter-

stellar bodies.

v = H0 × l (1.14)

where H0 = 65−79 km s−1 Mpc−1 is the Hubble constant .

If we extrapolate our expanding Universe backward in time to-

ward the Big Bang, the matter and radiation become hotter and

hotter, resulting in the "primordial fireball," as named by Gamow.

The discovery of T ≃ 2.73 K ∼ 3×10−4 eV cosmic microwave back-

ground (CMB) radiation by Penzias and Wilson [11] confirmed the

remnant light of this hot era of the Universe. In addition, the hot

Big Bang theory explains the abundance of light elements (d, He,

Li) in the Universe as a result of the primordial nucleosynthesis.

If we go back further in time to 10−5 ∼ 10−4 s after its inception,

the Universe is likely to have experienced the QCD phase transi-

tion at T = 150∼ 200 MeV and an electro-weak phase transition at

T ∼ 200 GeV.
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1.6 Quark Gluon Plasma

Figure 1.5: Hubble law

(ii) At the core of super-dense stars such as neutron stars and quark

stars. There are three possible stable branches of compact stars:

white dwarfs, neutron stars and quark stars. The white dwarfs

are made entirely of electrons and nuclei, while the major compo-

nent of neutron stars is liquid neutrons, with some protons and

electrons. The first neutron star was discovered as a radio pulsar

in 1967 [12]. If the central density of the neutron stars reaches

5−10 ρnm, there is a fair possibility that the neutrons will melt

into the cold quark matter. There is also a possibility that the

quark matter, with an almost equal number of u, d and s quarks

(the strange matter), may be a stable ground state of matter; this

is called the strange matter hypothesis. If this is true, quark stars

made entirely of strange matter become a possibility. In order to

elucidate the structure of these compact stars, we have to solve

the Oppenheimer-Volkoff equation [13], obtained from the Einstein

equation, together with the equation of states for the superdense
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1.6 Quark Gluon Plasma

matter.

(iii) In the initial stage of the “Little Bang” by means of relativistic

nucleus-nucleus collisions with heavy ion accelerators. Suppose

we accelerate two heavy nuclei such as Au nuclei (A = 197) up

to relativistic/ultra-relativistic energies and cause a head-on colli-

sion. In such relativistic energies, the nuclei are Lorentz-contracted

as “pancakes”. When the center-of-mass energy per nucleon is

more than about 100 GeV, the colliding nuclei tend to pass through

each other, and the produced matter between the receding nuclei is

high in energy density and temperature but low in baryon density

(see paragraph 2.1).

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven Na-

tional Laboratory and the Large Hadron Collider (LHC) at CERN

provide us with this situation.

Phase diagram of the QCD

The above consideration bring us to sketch the phase diagram for the

QCD matter Fig.(1.6). In the horizontal axis there is the baryon chem-

ical potential µB, while in vertical axis there is the temperature, both

quantities are expressed in MeV. The cold nuclear matter, as one can

find in the inner part of a lead nucleus, has a temperature equal to zero

and a chemical potential µB equal to 940 MeV.

In correspondence to µB = 0 and T =170 MeV the matter undergoes

a cross over from the confined phase of hadronic gas to a quark gluon

plasma (QGP). As we have seen this phase should have existed in the

early phase of the universe after the Big-Bang. In the region of non

zero µ and low temperature there is also a phase transition towards the

QGP phase, the place in which may exist this condition is the interior

of neutron stars. The phase transition in this region seems to be of first

order. For some moderate value of µ and T a critical point is expected,
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1.6 Quark Gluon Plasma

Figure 1.6: Phase diagram of QCD matter in the (T, µ) plane

for which the first order transition becomes a cross-over. The only pos-

sibility to create the Quark gluon plasma in laboratory is to perform

ultra-relativistic heavy-ion collisions that will be discussed in the next

chapter.
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CHAPTER 2

QGP IN HEAVY ION COLLISION

A main tool to investigate the properties of nuclear systems, espe-

cially under conditions far from the one of stable nuclei, has been pro-

vided by heavy-ion collisions.

Over the years, nuclear collision energies have increased from beam

kinetic energies of a few MeV/nucleon on fixed targets in small univer-

sity laboratories to, at present, collider of very high energy of few TeV

per nucleon in large laboratories with international collaborations. As

the energy is increased, the relevant degrees of freedom change. At the

lowest energies, the nucleus may remain intact or be broken up into

light nuclear fragments. As various thresholds for particle production

are reached, some of the energy of the system may go into producing

new particles, such as pions or kaons. At high enough energies, the rel-

evant degrees of freedom are expected to be quarks and gluons, forming

the quark-gluon plasma, rather than hadrons.

The modern era of heavy-ion collisions arrived with beam energies of

10-200 GeV/nucleon at fixed-target facilities: the Alternating Gradient

Synchrotron (AGS) at Brookhaven National Laboratory (BNL) and the

Super Proton Synchrotron (SPS) at the European Center for Nuclear
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2.1 Collision Dynamics

Research (CERN). Both the AGS and the SPS accelerated protons and

several types of ions onto fixed targets of heavy nuclei.

In 2001 has started the activity at RHIC (Relativistic Heavy Ion Col-

lider) where it was possible to reach energies up to 200 GeV for nucleons.

The experiments at RHIC have supplied a large amount of observables

that have permitted to start a quantitative study of the Quark Gluon

Plasma properties [14] [15] [16] [17]. In 2010 the experiments at LHC

have started with an energy of 2.7 TeV per nucleons and in 2016 have

been performed experiments with the highest energy accessible at LHC

that is 5.5 A/TeV. In the first part of this chapter the main features of

the collision dynamic and the evolution of the matter created in such

collisions will be describe, instead in the final part of the chapter the

observables that allow us to identify if a new state of matter have been

created during the collisions, will be briefly examined.

2.1 Collision Dynamics

We will briefly sketch the main aspect of the heavy-ion collision at

the relativistic energies.

The incoming nuclei comes at a velocity close to the speed of light and

so they are strongly Lorentz contracted along the beam direction and

in the center of mass frame they appear as two tiny disk of thickness

2R/γCM, where R is the nuclear radius. The amount of contraction γCM

can be easily calculated as

γCM = 1
p

1−b2
= 1

√

√

√

√(1−
p2

z

E2
CM

)

(2.1)

Where ECM is the energy in the center of mass frame (see Appendix B).

However, due to the uncertainty principle, the longitudinal size of nuclei

cannot be smaller than a value ∆z which depends on the energy of the
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2.1 Collision Dynamics

Figure 2.1: Heavy ion collision sequence

collision; for example if the energy of the collision is about 200 GeV then

∆z is about 1 fm. This implies a geometrical delocalization of the nu-

cleons inside the nuclei that consequently pass through each other and

leave the region of the collision. Such a transparency behaviour of ultra-

relativistic nuclei increases with the energy of the collision and allows to

create in the central region of the collision a matter that in not contami-

nated by the original baryonic matter of the colliding nuclei.

As well established by the deep-inelastic lepton-hadron scattering ex-

periments, the nucleon is composed of valence quarks and the wee par-

tons (gluons and sea-quarks). Wee partons have a much smaller momen-

tum fraction (x) of the nucleon compared with the valence quarks, and

the number of wee partons increases as x approaches zero.

The wee partons may be considered as vacuum fluctuations which cou-

ple to the fast-moving valence quarks passing through the QCD vac-

uum [18]. Alternatively, the wee partons may be regarded as part of a

coherent classical field created by the source of fast partons, which is

called the color glass condensate [19]. Because of its non-perturbative

nature, the typical momentum p, of the wee partons is of order ΛQCD (∼
200 MeV), which characterizes the strong interaction scale of QCD. Since

nucleons and nuclei are always associated with these low-momentum

wee partons, the longitudinal size of hadrons or nuclei, ∆z, can never be

smaller than 1/p ∼ 1 fm owing to the uncertainty principle at ultra-high
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2.1 Collision Dynamics

Figure 2.2: Non-central (b 6=0) relativistic nucleus-nucleus collision.

energies,

∆z ≥ 1

p
≈ 1 fm (2.2)

As a consequence, the two incoming nuclei in the center-of-mass frame

before the collision wear the “fur coat of wee partons” [18] of typical size

1 fm, while the longitudinal size of the wave function of a valence quark

is ∼ 2R/γcm. Therefore, the wee partons are expected to play a vital role

at ultra-high energies which fulfil the condition

γcm > 2R

1 fm
(2.3)

in Pb+Pb collisions this condition is reached at
p

s≈ 30 GeV .

After the head-on collision of two beams of partons, many virtual quanta

and/or a coherent field configuration of the gluons will be excited. It

takes a certain proper time, τde (de-excitation or de-coherence time),

for these quanta to be de-excited to real quarks and gluons. The de-

excitation time, τde would typically be a fraction of 1 fm (∼ 1/ΛQCD)’ or it

could be much less than 1 fm. The state of matter for 0 < τ< τde is said
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2.2 Glauber Model

to be in the pre-equilibrium stage.

Since τde is defined in the rest frame of each quantum, it experiences

Lorentz dilation and becomes τ= τdeγ in the center-of-mass frame of the

collision, where γ is the Lorentz factor of each quantum. This implies

that slow particles emerge first near the collision point, while the fast

particles emerge last, far from the collision point. This phenomenon is

called the “inside-outside cascade”.

The real partons produced during the de-excitation process interact with

each other and constitute an equilibrated plasma (quark-gluon plasma).

We define τ0(> τde) as a proper time within which the system is equili-

brated. τ0 depends not only on the basic parton-parton cross-section but

also on the density of partons produced in the pre-equilibrium stage.

The highly excited matter thus produced cools down and then hadronizes

into mesons and baryons, which are eventually observed in the detectors.

This thesis focus just on the impact of the hadronization process assum-

ing that quarks can either recombine and fragment (see next chapter).

An important role in the collision dynamics is played by the geomet-

ric aspects, that can be described using the Glauber model presented in

the following section.

2.2 Glauber Model

The Glauber model is based on the geometrical configuration of the

nuclei in order to estimate the initial spatial distribution just after the

nuclei collide. It is a semiclassical model in which the nucleus-nucleus

collisions are treated as multiple nucleon-nucleon interaction:a nucleon

of incident nucleus interacts with target nucleons with a given density

distribution. Nucleons are assumed to travel in straight lines, and are

not deflected after the collisions, which holds as a good approximation

at very high energies. Also, the nucleon-nucleon inelastic cross-section,

σin
NN

,is assumed to be the same as that in the vacuum. The justification
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2.2 Glauber Model

Figure 2.3: Representation of a collision between the nuclei A and B at a given impact
parameter: (a) trasverse view, (b) longitudinal view

for the use of a geometrical model is that at high energies the De Broglie

wave length of the nucleons are smaller with respect to the typical nu-

clear sizes. Moreover nucleons are assumed to travel in straight lines

and are not deflected after the collision and according to eikonal approx-

imation the multiple interaction can be considered as independent.

In order to describe the Glauber model we begin by introducing the

nuclear overlap function TAB(b) [20]

T̂AB(b)=
∫

T̂A(s)T̂B(s−b)d2s (2.4)

where b is the impact parameter and s is the transverse coordinate;

while T̂A and T̂B are the nuclear tickness function that give the prob-

ability to find a nucleon per unit of transverse area and it is defined as

T̂A(s)=
∫

ρ̂A(s, zA)dzA (2.5)

Being ρ̂A the nuclear mass number density normalized to mass number

A, that in case of heavy ion is usually is parametrized as a Wood Saxon

distribution

ρ = ρ0

1+exp(
r−R

a
)
.
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2.2 Glauber Model

Through the nuclear thickness function and the nuclear overlap function

it is possible to evaluate the number of binary nucleon nucleon collision

Ncoll and the number of the participant nucleons Npart, that are both

strongly related to the value of the impact parameter b.

Ncoll(b)= ABT̂AB(b)σNN
inel (2.6)

Npart(b)= A

∫

T̂A(s){1− [1− T̂B(s−b)σNN
inel]

B}d2s+

B

∫

T̂B(s−b){1− [1− T̂A(s)σNN
inel]

A}d2s (2.7)

The number of binary collisions and the number of participant cannot

Figure 2.4: Cross section observed in function of Nch. On the x-axes can be seen the
relations between Nch, Npart and b

be directly measured in experiments but they are related to the charged

particle multiplicity Nch that is a measurable quantity. Exploiting the

relation between b, Npart and Nch it is possible to trace back to the im-

pact parameter of the collision performing a subdivision of Nch in terms

of centrality class, as shown in Fig.2.4. The relation between Nch and
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2.3 Time history of ultra-relavistic AA collisions

Figure 2.5: dNch /dη RHIC average values of multiplicity production per participant
pair (including PHENIX) compared to the PHENIX results [21].

Npart is shown in Fig. 2.5. is shown in figure.

The Glauber model can also be exploited to estimate the initial spatial

distribution of partons in the transverse plane. In fact if one do not per-

form the integration over s in Eq.(2.7) and in Eq.(2.4) obtain respectively

the density profile in the transverse plane of the number of participant

and that of the binary collision. Whose linear combination could well

approximate the density profile in the transverse plane of the partons

created in the heavy-ion collision.

2.3 Time history of ultra-relavistic AA colli-

sions

We now describe briefly the different stages of the evolution of rela-

tivistic heavy-ion collisions, as shown in Figs. 2.6 and Fig. 2.7
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Figure 2.6: Sketch of how relativistic ion collision evolves in different stages

Pre-equilibrium stage and thermalization: 0< τ< τ0

The nuclei meet each other at the point (z, t)= (0,0). As we have said

due to the Lorentz contraction the incoming nuclei are approximately

transparent and thus they pass through each other. However, in the re-

gion of the collision is generated a strong color field, which causes an

excitation of the vacuum and produces a dense pre-equilibrium matter

consisting mostly of gluons and also of quarks and anti-quarks. This

system takes about 1 fm/c to achieve the local thermalization and forms

the quark gluon plasma. In this very early collision stage, the pri-

mary collisions between fast partons inside the colliding nuclei generate

hard particles with either a large mass or a large transverse momenta

m, pT ≫ ΛQCD , T). Their creation involves large momentum transfer,

therefore their production can be calculated in perturbative QCD using

factorization theorems from the nuclear structure function.

To describe the successive stages of evolution it is necessary to know the

initial condition, for the energy and spatial density. Moreover is neces-

sary to estimate the time τ0 at which the system reaches the equilib-
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Figure 2.7: Schematic representation of the various stages of a HIC as a function of
time t and the longitudinal coordinate z (the collision axis). The ‘time’
variable which is used in the discussion in the text is the proper time

τ≡
p

t2 − z2, which has a Lorentz–invariant meaning and is constant along
the hyperbolic curves separating various stages in this figure.

rium. The initial energy density ǫ0 can be estimated knowing the energy

density released in the collision region (dET /d y), which is accessible if

one measure the total energy of the final products collected in the detec-

tors. The initial energy density is

ǫ0 =
1

πR2
0τ0

dET

d y

and the Bjorken estimate for RHIC is between 5 and 7 GeV / f m3 [22], as-

suming an isoentropic expansion and neglecting the work needed by lon-

gitudinal expansion. Taking into account the expansion of the plasma,

the previous estimation must be corrected to a value ǫ0 ∼ 10÷15 GeV / f m3

at RHIC, this energy density is very greater than the critical energy den-

sity estimates by the lattice QCD. A further correction would be neces-

sary if the expansion of the system were not iso-entropic and dissipation

is taken in account. However the corrent estimated value of viscosity

would lead to correction of about 10-15%.
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Thermalization and expansion

Once the system has reached a kinetic equilibrium it is character-

ized by an energy density well above the critical energy density of the

QCD phase transition (∼ 1 GeV f m−3); at RHIC for example, this en-

ergy density is about 10÷15GeV / f m3, and at LHC the energy density is

∼ 2.5÷2.7 ǫRHIC
0 . Thus the system is expected to be in the quark gluon

plasma phase. Actually due to the predominant presence of gluons with

respect to quarks, at the beginning of this phase the system is often

considered as a gluon plasma (Glasma). Driven by thermal pressure

gradients the QGP expands and cools down very quickly and the par-

tons inside the bulk rescatter elastically and inelastically. In particular,

the elastic collisions lead the system towards kinetic equilibrium, while

inelastic collisions cause a change in the relative abundances of the dif-

ferent flavours of partons, leading the system towards chemical equilib-

rium [23] [24]. This phase of the evolution of QGP can be described by

relativistic hydrodynamics or using kinetic theory. In the more simple

hydrodynamical approach, the equation of motion is obtained from the

local conservations law for energy-momentum and baryon number

∂µTµν(x)= 0 ; ∂µJ
µ

B
(x)= 0 (2.8)

where Tµν is the energy momentum tensor, that for a perfect fluid can

be written in the following way

Tµν(x)= [ǫ(x)+P(x)]uµ(x)uν(x)−P(x)gµν (2.9)

where uµ(x) is the four flow velocity and gµν is the metric tensor.

In the local rest frame

T00 = (ǫ+P)−P = ǫ, T ii =−P

In order to solve the five equations (2.8) an additional equation is needed,

in the form P = P(ǫ,ρ), that is the Equation Of State of the system and
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drives its evolution. In fact together with the EOS, the equations (2.8)

form a closed system, that can be solved once the initial condition, i.e the

energy density ǫ(x) and the velocity profile uµ(x), have been specified.

The expression for the energy momentum tensor can be modified adding

terms that enable to take into account the dissipative effect present in

a viscous fluid. In fact it seems that the quark gluon plasma has a low

but non zero shear viscosity η/S to entropy density ratio close to the con-

jectured lower boundary equal to 1/4π, expected for system in the infinite

coupling limit.

When the energy density reaches the critical value ǫc≃0.5−1 GeV / f m3,

the hadronization process take place. This argument will be widely

treated in the next chapter.

After the hadronization process the system unfergoes hadronic rescat-

terings during the further expansion of the fireball. The collisions can

be either elastic or inelastic. When the probability of inelastic collision

becomes negligible, the specie of hadrons doesn’t change, and the system

reaches the so-called chemical freeze-out. Studies by mean of statistical

model show that at RHIC and LHC T chem
f o

∼ 155−165 MeV When the

mean distance between particles exceed the interaction range, there are

no more collisions and there is the kinetic freeze-out at a temperature

T f−o ∼ 120MeV .

2.4 Principal observable probes for QGP

There are several suggestions at present to identify whether the mat-

ter produced in a high energy heavy ion collision is the Quark Gluon

Plasma phase. One approach is to look for primordial remnants in the

observed hadron features: discontinuities in the momentum distribution

of the secondaries reflecting a first order phase transition or strangeness

enhancement which is expected to be significantly larger if it arises from

34



2.4 Principal observable probes for QGP

the QGP. Another usual suggestion is to look for signals produced at

early times and are not affected by the subsequent hadronization. Possi-

ble observables of this type are thermal dileptons and thermal photons,

which are emitted by the plasma and then escape. This would provide

a direct signal from the QGP but the drawback is that there are many

others sources of dileptons and photons that generate a very large back-

ground.

In the same context, one may also study the effect of the produced dense

medium on the observed production of heavy quark bound states, like

J/Ψ suppression or hard jets.

In the following a list of the principals observables of the QGP will

be presented

Global observables

Figure 2.8: Lattice calculations of the energy density scaled by T4 showing the transi-
tion to QGP. The hadronic matter dissolves into QGP with a finite number
of degrees-of-freedom.
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The aim of this group of signatures is to measure the equation of

state and the thermodynamic parameters of the superdense matter. For

example one wants to search for a rapid rise in the effective number of

degrees of freedom, for N f = 2 the hot hadron gas has only three light de-

grees of freedom (π+,π0 and π−) neglecting the states with mass m > T,

while the QGP has about 37 degrees of freedom (quarks and gluons).

This is reflected as a rapid change in ǫ/T4 or s/T3 across the critical

temperature, see Fig.2.8. The experimental transverse energy, dET /d y,

the hadron multiplicity, dN/d y, and the average transverse momentum,

〈pT〉, roughly correspond to ǫ, s and T respectively. Therefore, a plot of

〈pT〉 as a function of dET /d y or dN/d y may show characteristic correla-

tions reflecting the QCD equation of state [25]. These quantities would

exhibit a discontinuity, if there were a first-order phase transition. In

real heavy ion collisions, we may expect a steep, continuous rise even if

the phase transition is 1st order because the system is finite and ther-

modynamics discontinuity are damped.

The rapidity distribution of particles dN/d y, in Fig.2.9, and transverse

Figure 2.9: Charged particle multiplicity distributions for collisions at RHIC with four
different energies as a function of pseudorapidity.

energy density dET /d y allow for the determination of temperature, en-
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2.4 Principal observable probes for QGP

tropy and energy density of the system created in a heavy ion collision.

The transverse energy density dET /d y is related to the energy density

by the formula:

ǫ= 1

τf S

dET

d y
≃ 3

2

〈mT〉
τf S

dNch

d y
(2.10)

where τf S is the formation time, conventionally taken as τf S ≃ 1 f m/c,

S is the transverse overlap area of the colliding nuclei (for a central col-

lision of two identical nuclei of radius R this is simply S = πr2) and mT

is the mean value of the transverse mass of secondary particles, and

dNch/d y is the measured density of charged particles per unit of rapid-

ity.

Strangeness and Anti-baryon enhancement

Enhancement of strangeness and antibaryon production is a frequently

discussed signal, it is due to the reduction of the threshold for production

of strange hadrons from 2mK −2mπ ≈ 700 MeV to 2ms ≈ 300 MeV and

baryon-antibaryon pairs from ≈ 2GeV to almost zero. The strongest sig-

nal is obtained by considering strange antibaryons which combine both

effects [26] [27] [28]. The enhanced strange quark production in decon-

fined quark-gluon plasma leads to chemical equilibrium abundances for

all strange quarks. The strangeness abundance for hadronic matter in

chemical equilibrium is smaller. This signal was first predicted [27] as

a consequence of the interaction between partons in the QGP. It has in-

deed been observed at both the SPS and the RHIC energies. When the

collision volume becomes larger the number of baryons increases with

respect to the baseline (a pp or a Be−Be collision). This is also observed

at Pb−Pb collisions at LHC, however the enhancement is smaller than

that at lower energies as shown in Fig. 2.10.
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2.4 Principal observable probes for QGP

Figure 2.10: Enhancement of the multi-strange baryon yields as a function of the num-
ber of participants in Pb-Pb collisions at LHC compared with pp colli-
sions, together with similar measurements at SPS (compared with pBe
collisions) and RHIC.

J/Ψ suppression

J/Ψ particles are bound states formed by a charm and an anticharm

quark (cc̄). They are produced mostly by the hard scatterings in the

first stage of the collision. When they are created in p+p collisions, they

can freely escape from the collision region. On the other hand, the J/Ψ

produced in nucleus-nucleus collisions crosses the QGP and feels screen-

ing effects in the medium. Although the J/Ψ meson is a tightly bound

particle, in a quark-gluon plasma environment the charm-anticharm

potential is screened, like in the analogous phenomenon called Debye

screening in QED. As a consequence, the interaction between the c̄ and

c quark is strongly weakened when rcc̄ > λD , with λD the Debye screen-

ing length. For sufficiently high density, λD is so small that the J/Ψ

dissociates, leading to a suppression of the observed yield compared to

p+p or p+nucleus collisions [29].
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2.4 Principal observable probes for QGP

Figure 2.11: RAA measurements for J/ψ at RHIC (PHENIX) and LHC (ALICE). Value
under the unity reveals a suppression in the J/ψ production compared
with pp collisions

But first runs at LHC gave a different result when compared with the

observations from lower energies (see Fig. 2.11). While a similar sup-

pression is observed also at LHC energies for peripheral collisions, when

moving towards more head-on collisions the suppression no longer in-

creases. Despite the higher temperatures attained at LHC, more J/ψ

are produced in Pb − Pb with respect to pp. The picture arises from

these observations is consistent with the formation of a deconfined sys-

tem that can suppress the J/ψ meson, followed by a regeneration process

that ultimately give a J/ψ yield larger than that observed at lower ener-

gies.

Photons, and lepton pairs

During the evolution of a nuclear collision are created photons and

dileptons that can be used to probe the QGP. The importance of this

probes is due to the fact that they do not interact strongly and so there is

a little possibility that they interact after their creation. Therefore these
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2.4 Principal observable probes for QGP

probes provide information of the phase of the evolution in which they

are originated. There are many sources which can produces photons or

dileptons, hence the analysis of this kind of observables is quite difficult.

But very recent and upcoming data are likely to make accessible this

probe sheding new light into the initial stage of the collision

Elliptic flow

In the hydrodynamic expansion following a heavy-ion collision, the

matter develops a flow pattern. The flow pattern is related to the equa-

tion of state of the system through the pressure gradient, the tempera-

ture and the density. The phenomenon of this collective flow has been

investigated over a wide range of energies, from tens of MeV per nu-

cleon to the RHIC regime. To study the collective flow in experiments,

it is important to determine the reaction plane, a reference plane, of the

collision. In Cartesian coordinates, the ẑ unit vector is in the beam di-

rection. The x̂ unit vector lies in the direction of the impact parameter

vector and forms the reaction plane with the ẑ vector. The ŷ unit vector

is normal to the reaction plane, see Figure 2.2

Particle rapidity, pT and azimuthal angle with respect to the reaction

plane can be determined from its motion. The azimuthal distribution of

emitted particles in a given rapidity range can be characterized using

the Fourier expansion

dN

dpT dφd y
=

∞
∑

n=0
2 vn(pT )cos(nφ) (2.11)

where φ is the azimuthal angle with respect to the reaction plane.

• The v0 coefficient describes the overall yield of particles in the

given rapidity range. It is typically taken to be an overall nor-

malization parameter allowing all the higher order coefficients to

be given as a percent.
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• The v1 coefficient gives the strength of the directed flow in the re-

action plane with preferred emission at φ= 0 in the forward hemi-

sphere and φ = π in the backward hemisphere. It is manifested

by the reflection of incoming matter by the first produced regions

of highly compressed nuclear matter. The magnitude of deflection

probes the compressibility of the nuclear matter. It also carries in-

formation of the system at early time because the deflection takes

place during the passing time of colliding nuclei. In the case of

symmetric AA collisions, v1 must be zero around midrapidity. The

directed flow measured at midrapidity by RHIC is very small, of

the order of 1%.

• The coefficient v2 is called elliptic flow and can be determinated

from the following formula

v2(pT , b)= 〈cos(2φ)〉 = 〈
p2

x− p2
y

p2
x+ p2

y

〉 (2.12)

The higher order Fourier moments can help match the simplistic Fourier

expansion to the shape of the measured experimental distribution. How-

ever notice that by simmetry all odd vn terms should be vanishing. For

collisions with
p

sNN < 1.5 GeV (see Appendix B), the elliptic flow corre-

sponds to an out-of-plane squeeze-out with maximum emission at φ=π/2

and 3π/2. When
p

sNN > 1.5 GeV , the elliptic flow is oriented in the re-

action plane with maximum emission at φ = 0 and π [30]. The main

reason of this pattern is the shadowing caused by the spectator that

vanish at higer energies, because they quickly leave the central region

of reaction. The most flow is generated from collisions that are not

fully central but still have significant overlap. The shaded overlap re-

gion formed by the participants is initially an ellipsoid shaped some-

what like an almond with maximum compression along the broad flat
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sides. The initial azimuthal anisotropy, with arrows indicating the di-

rection of particle motion, is shown in Fig.(2.12). As the system expands

and cools, its coordinate-space shape becomes more spherical. However,

the momentum-space distributions retain the memory of the early pres-

sure anisotropies (note that the coordinate space distributions are not

directly experimentally observable). The comparison of different colli-

sion systems as a function of centrality is a good way to study the effect

of the initial coordinate-space azimuthal anisotropy, measured by the ec-

centricity,on the observed momentum-space elliptic flow. The strongest

elliptic flow effects in experiments [31] are seen for the more peripheral

45-85% collisions, roughly corresponding to b ∼ 12 f m, the weakest for

the 0-10% most central events, corresponding to b ∼ 3 f m.

The eccentricity is defined as

E =
σ2

y−σ2
x

σ2
y+σ2

x

(2.13)

where σx and σy are the widths of the particle distributions in the x̂ and

ŷ directions. In the most central collisions, σ2
y ∼ σ2

x in a symmetric AA

collision, resulting in a small eccentricity, while the eccentricity is larger

in more peripheral collisions.

The observation of very large v2 is the prominent indicator of low vis-

cosity of the matter created in heavy-ion and collisions [32] [33]. Both

hydrodynamical and parton cascade model calculations have shown that

the generation of the elliptic flow saturates within the first 4-5 f m/c, and

therefore such an observable is useful to study the QGP.

In Fig.(2.13) are shown the results for the elliptic flow obtained at RHIC

as a function of the transverse momentum for different hadronics species

compared to hydrodynamical calculations. From these figure it can be

observed that in the region of low transverse momenta, pT ≤ 2 GeV , the

measured anisotropy is in agreement with an hydrodynamical descrip-
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Figure 2.12: A semi-central collision of two equal size nuclei is shown in the trans-
verse plane. The x and y unit vectors are on the page plane. The z axis
(the beam axis) goes into the page. The shaded overlap region indicates
the nucleon participants in the collision. The ellipsoid of hot participant
matter left behind at midrapidity after the spectators have departed. The
arrows indicate the direction of the expansion.

tion with negligible viscosity over entropy ratio. The failure of the hydro-

dynamic predictions for pT greater than 1.5 GeV indicates a breakdown

of local thermal equilibrium for particles with high momenta, that is

predicted by parton cascade model [34].

There is another important information that can be derived from the

Fig.(2.13), i.e the different value of the elliptic flow measured for mesons

and baryons. In particular these last species have a v2 considerable

larger with respect to mesons. This difference has not found an expla-

nation in the hydrodynamical framework but can be explained by the

coalescence model for hadronization. This model predicts that the v2 of

any hadron species follows the partonic flow scaled by the number n of

(recombined) constituent quarks in the hadron, see Fig.(2.14) [39][40].

vhadron
2 (pT )≈ nqv

quark

2 (pT /nq) (2.14)

where nq =2 for mesons and nq =3 for baryons. In Fig.(2.14) is shown

the quark number scaling of the elliptic flow. This scaling indicates that

the flow is developed at the quark level, thus quarks are the degrees of

freedom of the created matter.
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Figure 2.13: v2 for several hadron species from a minimum-bias sample of Au + Au
collisions at

√

SNN = 200GeV measured by the Solenoidal Tracker at
the Relativistic Heavy Ion Collider (STAR) [35] and Pioneering High En-
ergy Nuclear Interaction Experiment (PHENIX) [36] collaborations. The
curves show the results from hydrodynamic model calculations [37] [38].
v2 values also show that baryon production at intermediate pT is en-
hanced in the in-plane direction, leading to larger baryon v2. This ob-
servation is incompatible with the expectation of v2 arising from parton
energy loss.

However, at LHC, a breaking of quark number scaling has been ob-

served, it is of the order of 20% in the peak region and is not yet clarified.

Nuclear modification factor and Jet quenching

In the first stage of a ultra-relativistic heavy ion collision are pro-

duced particles with high transverse momentum that propagate trough

the plasma interacting with the bulk and losing energy. This particles

can be be used to probe the QGP as proposed long ago in Ref.[41] [42]

[43] [44] [45].

The production of high pT partons can be theoretically predicted using

the perturbative QCD (pQCD) frame-work thanks to the factorization
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Figure 2.14: The elliptic anisotropy parameter v2 scaled by quark number n and plot-
ted against pT /n.

theorem, see next chapter.

The high energy partons lose energy in the plasma through elastic

scattering with the components of the bulk and also radiating gluons

in a way similar to the bremsstrahlung photons emitted in QED. The

main difference between the radiative energy loss in QED and in QCD,

results from the fact that, due to the non-Abelian nature of QCD, the

emitted gluons carries color charges and interact with the color charges

that are in the medium (at variance with photons in QED). This emitted

gluons travel a random walk inside the plasma causing a non-linear de-

pendence of the energy loss on the thickness of the medium. In the eval-

uation of the radiative energy loss must be also considered the Landau-

Pomeranchuk- Migdal effect (LPM) that takes into account the coher-

ence effect, due to the interaction of the hard partons with more than one

scattering center. At high parton energy the radiative mechanism is the

main responsible for the parton energy loss. Many different approaches

have been developed in order to estimate the energy loss suffered by

high pT partons in the expanding fireball created in the collisions [46]
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Figure 2.15: The nuclear modification factor RAA measured at LHC Pb+Pb collisions
at

p
sNN = 2.76AGeV for charged hadrons, pions, protons and kaons at

various centralities

[47] [48] [49] [50] [51] [52].

The energy loss of high pT partons causes an attenuation or disappear-

ance of the spray of hadrons, called jet, resulting from the fragmenta-

tion of these high partons. This phenomenon of suppression is called jet

quenching and is one of the most important probe of the formation of the

Quark Gluon Plasma. The suppression can be quantified by the nuclear

modification factor RAA that is given by the ratio between the spectrum

of partons produced in ion-ion (AA) collision and that relative to proton-

proton collision multiplied by the scaling factor Ncoll

RAA(pT )≡ d2N AA /dpT dη

Ncoll ·d2σNN /dpT dη
(2.15)

if RAA is equal to one means that AA is only a superposition of pp colli-

sions. In experiments at RHIC and LHC a very low value of RAA (∼ 0.2)

has been measured, indicating that the medium created has a very large

density. Several models associates an RAA ∼ 0.2 to initial density of

10− 20 GeV / f m3 in agreement with estimates coming from other ob-

servables. One of the open challenge regarding the jet quenching is to
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explain the difference in the suppression between the different hadron

species. This is strongly related to the different energy loss experienced

by quarks and gluons, but also to the inelastic collisions that change the

relative abundances.
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CHAPTER 3

HADRONIZATION

3.1 Introduction

In this chapter, we discuss the problem of the hadronization of the

matter created in ultra-relativistic heavy ion collisions. Since no sin-

gle quark or gluon are observed but only hadrons, the produced partons

must due to confinement in a length scale of about 1 f m before observa-

tion.

There are two different class of approaches to deal with the problem

of hadronization of the QGP. One approach is based on the statistical

model (see paragraph 3.3) in which the number of partons produced for

each species and then spectra can be evaluated using the conservation

laws (for Energy-momentum, intrinsic angular momentum, etc.).

This approach does not care about the microscopic mechanism that leads

to the production of hadrons, because it assumes that whatever is the

hadronization mechanism the number of hadrons and the spectra fol-

lows the kinetic and chemical equilibrium laws of statistical mechanics.

The other class of approaches to deal with the hadronization instead
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takes care about the miscroscopic mechanism of hadronization.

Within the microscopic approach there are two different ways in which

partons can form hadrons: the fragmentation (see paragraph 3.2) and

the coalescence (see paragraph 3.4).

In the first one each parton fragment into a jet of hadrons which carries

a fraction of the momenta of the initial parton, while the second one con-

sists in the recombination of two or three quarks that form respectively

mesons or baryons.

The fragmentation is the dominant way to hadronize in ultra-relativistic

proton-proton collisions at least at mid-rapidity.

3.2 Statistical Model

Particle production observed in heavy-ion collisions allows a system-

atic study of the thermal properties of the final state. In a wide en-

ergy range, from the SIS up to RHIC, the yields of produced particles

have been shown to be consistent with the assumption that hadrons

originate from a thermal source with a given temperature and a given

baryon density. By using only two thermal parameters, a successful de-

scription of particle ratios measured in heavy-ion collisions over a wide

range of center of mass energies could be made. The extracted chemical

freeze-out parameters, the temperature T and the baryon chemical po-

tential µB can be characterized by a constant average energy per hadron

〈E〉/〈N〉. The extrapolation of this freeze-out curve towards vanishing

µB is bounded by the critical phase transition temperature as calculated

in Lattice Gauge Theory.

The equilibrium behavior of thermodynamical observables can be

evaluated as an average over statistical ensembles (rather than as a

time average for a particular state). The equilibrium distribution is thus
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h̄/h Ratio mixed Ratio
π+/π− 0.9998+0.0002

−0.0010 K+/π+ 0.180+0.001
−0.001

K+/K− 1.002+0.008
−0.002 K−/π− 0.179+0.001

−0.001
p̄/p 0.989+0.011

−0.045 p/π− 0.091+0.009
−0.007

Λ̄/Λ 0.992+0.009
−0.036 Λ/p 0.473+0.004

−0.006
Ξ̄

+/Ξ− 0.994+0.006
−0.026 Ξ

−/Λ 0.160+0.002
−0.003

Ω̄
+/Ω− 0.997+0.003

−0.015 Ω
−/Ξ− 0.186+0.008

−0.009

Table 3.1: Particle ratios in central Pb-Pb collisions at freeze-out conditions expected
at the LHC: T = (170±5) MeV and µB = 1+4

−1 MeV.

obtained by an average over all accessible phase space.

In the analysis is used as statistical operator the Hamiltonian that

lead to the full hadronic mass spectrum. In some sense this is syn-

onymous with using the full QCD Hamiltonian. The only parameters

in the statistical operator describing the grand-canonical ensemble are

temperature T and baryon chemical potential µB. The charge chemical

potential is constrained by the initial isospin asymmetry of the nuclei,

whereas the strange chemical potential µS, depending on both T and

µB, is determined by strangeness neutrality. Thus, any particle ratio

is uniquely determined by only two parameters, T and µB at chemical

freeze-out. The particle ratio expected at the LHC conditions are shown

in Table 3.1.

The basic quantity required to compute the thermal composition of

particle yields measured in heavy ion collisions is the partition function

Z(T,V ). In the Grand Canonical ensemble,

ZGC(T,V ,µQ)= Tr
[

e−β(H−∑

i µqi
qi

]

(3.1)

where H is the Hamiltonian of the system, q j = (Q j, N j,S j,C j,B j) are

the conserved abelian charges (i.e. electric charge, baryon number, strangeness,

charm and beauty) and µQ i
are the chemical potentials that guarantee

that the charges q i are conserved on the average in the whole system.

Finally β= 1/T is the inverse temperature.

50



3.2 Statistical Model

In this approach, the multiplicity for each hadron species j is given

by

〈n j〉 =
(2J j +1)V

(2π)3

∫

d3 p

[

e
(
√

p2+m2
j
+µ·q j)/T ±1

]−1

(3.2)

where J j and m j are, respectively, the spin and the mass of the hadron

j; the upper sign applies to bosons and the lower sign to fermions.

The light-flavoured multiplicities in Au-Au collisions at RHIC show

a good agreement with the prediction of the model, as shown in Figure

3.1.

Figure 3.1: Upper panel: measured vs theoretical multiplicities of light-flavoured
hadrons in Au-Au collisions at

p
s= 200GeV . Lower panel: fit residuals

A further interesting systematic behavior of thermal parameters has

emerged from particle yields in heavy-ion collisions from SIS up to RHIC.

With increasing collision energy, there is an increase of the chemical

freeze-out temperature, T , and a corresponding decrease of the baryon
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Figure 3.2: Description of chemical freeze-out by different criteria

through AGS, SPS and RHIC points, with a temperature at µB = 0 that

corresponds to the critical temperature expected for deconfinement in

Lattice Gauge Theory.

There are properties of the thermal fireball at chemical freeze-out that

are common to all collision energies. Such common properties provide

unified chemical freeze-out conditions in heavy-ion collisions at all ener-

gies.

There are different criteria to quantify the chemical freeze-out criteria,

the comparison of each of these with all known freeze-out parameter are

shown in Figure 3.2.

The statistical model give, on a phenomenological level, quite satis-

factory descriptions of the particle multiplicities and the relative abun-

dances measured in heavy-ion collisions, and predict the relation be-

tween T and µB at freeze-out for different energies. This hadronization

mechanism which stops the parton evolution and translates the fluid
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profile into hadron spectra can account correctly for bulk properties.

3.3 Fragmentation in pp collisions

In order to have a description of the collision it is necessary to con-

sider both the hard scattering between partons of the different colliding

hadrons, that can be treated perturbatively, and also the internal dy-

namics of hadrons that involve a long range interaction and therefore

cannot be treated pertubatively.

This separation in two steps is called the factorization theorem, and con-

sists in factorizing the cross section in two parts [53] [54] [55] : the short

distance part which can be calculated in the framework of pQCD, and

the long range part that involves hadronic wave functions, and leads

to hadronization that cannot be calculate within pQCD. However these

last non-perturbative quantities have important properties that allows

to determine their matrix elements.

The first property is the possibility to calculate the matrix element for

any momentum transfer scale Q2, once they are known for a particular

Q2
0, towards the Doskshitzer-Gribov- Lipatov-Altarelli-Parisi (DGLAP)

equations [56] [57] [58].

The second property is their universality, i.e they are independent from

the specific process. This means that if they are measured in one process

then they can be applied to another process, they should be the same in

e+e−, pp, or pp̄ collisions.

The perturbative QCD parton model is based on this factorization pic-

ture of hard process. Using this factorization picture the cross section of

a typical hard process can be expressed as the convolution of the initial

parton distributions, the perturbative parton scattering cross section,

and the partons fragmentation function.

In Eq.(3.3) is shown schematically the cross section relative to a collision
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Figure 3.3: The diagrams for e+e− → qq̄ (left) and e+e− → qq̄g (right).

between a nucleon A and a nucleon B.

dσAB = fa/A(x1,Q2)⊗ fb/B(x2,Q2)⊗dσhard
ab (x1, x2,Q2)⊗Dc→h(z, h) (3.3)

where f are the parton distributions in the nuclei, that give the probabil-

ity to find inside a nucleon a parton that has a fraction x of the momen-

tum of the hadron; σhard
ab

is the parton-parton cross section and finally D

are the fragmentations functions, that give the probability that a parton

c forms a hadron that carries a fraction z of the momenta of the parton

(z = phadron/ppartons) [59] [60].

Fragmentation functions are not reliably calculable from first principles

in QCD. However, they are observables and can be inferred experimen-

tally and parametrizations using data mostly from e++ e− collisions are

available from several groups [61] [62].

In order to discuss about fragmentation functions it is useful to start our

discussion with collisions e+e− since electrons are point particles and

they provide a clean initial state. Let us say that in an e+e− collision, a

quark-antiquark pair is produced, e+e− → qq̄, as shown in Fig.3.3. After

the quark is produced, it fragments into a hadron, h, which is ultimately

observed in the detector.

If we identify the center-of-mass energy of the e+e− collision as Q, the

electron beam energy, Ebeam, is Q/2. The produced quark always has
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energy Eq equal to the beam energy of the electron or positron in the

center-of-mass frame. Thus if the final-state hadron has energy Eh, the

fraction of the quark energy it carries away is

z = Eh

Eq

= 2Eh

Q
(3.4)

The differential cross section for inclusive hadron production as a func-

tion of z is

dσ(e+e−→ hX )

dz
=

∑

q

σ(e+e−→ qq̄)[Dh
q(z)+Dh

q̄(z)] (3.5)

Note that a quark or antiquark of any flavour can produce the hadron.

Like the parton densities, the fragmentation functions are subject to mo-

mentum and probability constraints. The sum of the energies of all pro-

duced hadrons has to add up to the energy of the parent quark,

∑

h

∫1

0
zDh

q(z) dz = 1 (3.6)

The relation also holds if q is replaced by q̄ in Eq.(3.6).

In addition, the multiplicity of h is given by the sum of probabilities for

producing h from all possible parent quarks and antiquarks,

∑

q

∫1

zmin

[Dh
q(z)+Dh

q̄(z)] dz = nh (3.7)

The lower limit on the integral over z is the threshold energy for produc-

ing a hadron of mass mh, zmin = 2mh/Q, since the threshold energy is

equal to the rest energy.

Fig.3.4 shows the KKP [62] fragmentation functions for charged pions,

charged kaons and protons/antiprotons as functions of z for Q = 3GeV ,

a typical value for RHIC. Note that the charged pions from u and ū are

identical.

While production by gluons is greatest at small z, at higher z production

by quarks and antiquarks soon dominates, particularly for kaons and
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3.3 Fragmentation in pp collisions

Figure 3.4: The KKP fragmentation functions [62] for (a) charged pions, (b) charged
kaons and (c) protons and antiprotons as a function of z. The curves show
the contribution from u quarks (dotted), ū quarks (dashed) and gluons
(solid) with initial momentum of 3 GeV.

protons. Thus, while gluon production may dominate parton produc-

tion in hadronic collisions, production of final states by gluons may be

smaller, especially in certain regions of phase space where z is large.

While some changes are expected as a function of scale, the general

trends do not change substantially. As we already mentioned, the frag-

mentation function parameterize properties intrinsic to the partons and

are thus universal, regardless of the parton production mechanism. Then

once the fragmentation functions are fixed in e+ e− collisions, they can be

applied to other collisions such as ep, pp and pp̄. Thus, schematically,

the production of hadron h in ep collisions as a function of z is

dσ(ep → hX )

dz
∝

∑

q

e2
q f

p
q (x)Dh

q(z) (3.8)
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3.4 Coalescence

where f
p
q (x) is the parton distribution function for a quark q that carries

a fraction x of the proton momentum. In pp collisions, the inclusive pT

distribution of produced hadron h is

dσ(pp → hX )

dpT

= 2pT

∫θmax

θmin

dθcm

sinθcm

∫

dx1

∫

dx2

× f
p

i
(x1,Q2) f

p

j
(x2,Q2)

Dh
q(z,Q2)

z

dσi j

dt
(3.9)

For an integral over all rapidity, θmin = 0 and θmax = π. The 2 → 2 hard

scattering partonic cross sections are given by dσi j/dt.

3.4 Coalescence

Coalescence models were first suggested shortly after the theory of

QCD was developed in the 1970s. These models successfully described

hadron production in the very forward region of hadronic collisions [63].

The observed relative abundances of hadrons clearly deviate from expec-

tations for fragmentation. This is known as the leading particle effect

[64].

As an example, a clear asymmetry between D− and D+ mesons was

found in fixed target experiments with π− beams on nuclei by the Fermi

National Accelerator Laboratory (FNAL) E791 collaboration [65]. The

measured D−/D+ asymmetry goes to unity in the very forward direc-

tion, whereas fragmentation predicts that this asymmetry is very close

to zero. This result can be explained by coalescence of the c̄ from a cc̄

pair produced in the collision with a d valence quark from the π− beam

remnants. This mechanism is enhanced compared to the c+ d̄ coales-

cence, which involves only a sea quark from the π− [66].

We arrive at the important conclusion that the presence of any reservoir

of partons leads to significant changes in hadronization. Vacuum frag-

mentation is no longer valid in this situation. The reservoir of partons in

the case of the leading particle effect is the soft debris from the broken
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3.4 Coalescence

beam hadron. In heavy ion collisions it is the distribution of thermal

partons.

First applications of the coalescence picture to nuclear collisions ap-

peared in the early 1980s [67] [68], and they eventually led to the de-

velopment of the algebraic coalescence rehadronization (ALCOR) model

in the 1990s [69] [70] [71]. ALCOR focuses on hadron multiplicities and

was successfully applied to hadron production at RHIC and to the lower

energies at the Super Proton Synchrotron (SPS) at the European Labo-

ratory for Particle Physics (CERN).

The idea is rather simple: quarks and antiquarks can combine with co-

moving partons to form mesons and baryons. Two or three comoving

partons in the quark-gluon plasma combine their transverse momen-

tum to produce a final-state meson or baryon with higher pT than the

partons themselves. In addition to the hard partons produced by ini-

tial interactions governed by perturbative QCD, the other partons in the

medium have “soft” thermal distributions. The partons that combine can

all be hard, all soft, or a mixture of the two [72]. There is thus a compe-

tition between the effects of fragmentation and coalescence. At central

impact parameters, coalescence effects should be most important while,

in more peripheral collisions, fragmentation should be a better descrip-

tion of hadronization. A schematic picture of the two effects, leading to

the same pT of the final-state hadron is shown in Fig.3.5. While frag-

mentation functions demand z < 1, reducing the parton momentum, the

coalescence function, δ(pTh
− pT1 − pT2) sums the momenta of two par-

tons to obtain the final-state hadron momentum. For the production of

a hadron with momentum P via fragmentation we need to start with

a parton with momentum P/z > P. The fragmentation functions favor

small values of z, i.e. the situation where the energy of the fragmenting

parton is not concentrated in one hadron. On the other hand, the trans-

verse momentum spectrum of partons is steeply falling with PT . This
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3.4 Coalescence

Figure 3.5: The competing effects of coalescence and fragmentation on a final-state pT

distribution [73]

makes it clear that fragmentation is a rather inefficient mechanism for

the production of high PT hadrons, since it has to overcome the limited

availability of partons at even higher transverse momentum. As a re-

sult, the average 〈z〉 is larger than what is expected from the shape of

the fragmentation functions.

An outgoing high energy parton is not a color singlet and will therefore

have a color string attached. The breaking of the string will initiate the

creation of quark-antiquark pairs until there is an entire jet of partons,

which have to share the energy of the initial parton. They will finally

turn into many hadrons. The creation of several hadrons from one frag-

menting parton is the reason why fragmentation functions prefer small

values of z.

If phase space is already filled with partons, a single parton description

might not be valid anymore. Instead one would have to introduce multi-

ple parton fragmentation functions. In the most extreme case, if partons

are abundant in phase space, they might simply recombine into hadrons.
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3.4 Coalescence

This means that a u and a d̄ quark that are “close” to each other in phase

space can bind together to form a π+. The scale of being close will be set

by the width of the pion wave function.

In this scenario the total pion momentum will be just the sum of the

individual quark momenta. We immediately notice that this coales-

cence mechanism is very efficient for steeply falling spectra: in order

to produce a 5 GeV pion we can start with two quarks having (on aver-

age) about 2.5 GeV/c transverse momentum and each being therefore far

more abundant (on average) than a 10 GeV/c parton that could produce

the pion via fragmentation. Of course the recombining partons must

be close in phase space, i.e. coalescence will be suppressed if the phase

space density is low.

For the coalescence of three quarks into a proton the momenta of three

partons have to be added up, but only two momenta in the case of a pion.

The coalescence model is motivated by several unexpected observations,

collectively known as the baryon puzzle. This term refers to measure-

ments of baryon production in the intermediate transverse momentum

region (1.5 < pT < 5 GeV /c). Both the yield and the elliptic flow of

baryons exhibit strange features. In nucleon-nucleon collisions at pT =
3 GeV /c, only one baryon is produced for every three mesons (1:3), re-

flecting the larger mass and the requirement of a non-zero baryon num-

ber to form the baryon. In Au+Au collisions at RHIC, however, baryons

and mesons are created in nearly equal proportions (1:1) despite those

differences.

The hadron spectra at high transverse momentum are dominantly pro-

duced from minijet partons originated from initial hard processes be-

tween colliding nucleons. The amount of energy loss of minijet par-

tons, particularly gluons, is consistent with the scenario that they have

traversed through a dense matter that consists of colored quarks and

gluons. Conversions of minijet partons to high transverse momentum
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3.4 Coalescence

hadrons is usually modeled by fragmentation functions which describe

how minijet partons combine with quarks and antiquarks from the vac-

uum to form hadrons as they separate.

In the coalescence model these minijet partons are allowed to recombi-

nate with thermal quarks and antiquarks from the quark-gluon plasma

created in the collisions to form hadrons. Using the minijet partons

predicted from the perturbative QCD, this mechanism is important for

production of hadrons with intermediate transverse momentum, lead-

ing to comparable antiproton and pion yields in this momentum region

as observed experimentally. It further predicts that the antiproton to

pion ratio would decrease as their transverse momenta become large. In

this high transverse momentum region, independent fragmentations of

minijet partons dominate particle production and lead to a very small

antiproton to pion ratio.

In the same pT region, hadron elliptic flows of identified particles have

been measured, and except for pions they essentially follow the quark

number scaling, i.e., the dependence of hadron elliptic flows on hadron

transverse momentum becomes similar if both are divided by the num-

ber of constituent quarks in a hadron, i.e., two for mesons and three for

baryons.

The scaling of hadron elliptic flows according to their constituent quark

number has a simple explanation if hadronization goes through coales-

cence, in this model the anisotropy of constituent quarks at partonic

level propagates at hadronic level according to

v2,M(pT )≈ 2 v2,q(pT /2), v2,B(pT )≈ 3 v2,q(pT /3) (3.10)

in this way the coalescence mechanism tanslates the hydrodynamical

behavior into higher pT at hadronic level with the effect being larger for

baryons.

The coalescence has the characteristic feature, for baryons, of a larger

elliptic flow and a shift of the pT at which the v2 reaches the maximum
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3.4 Coalescence

value.

3.4.1 Basic Theory

Coalescence or recombination of particles is a very general process

that occurs in a wide array of systems from the femtometer scale to as-

trophysics. In all these fields the first approach is to discard the details

of the dynamical process in favor of exploiting an adiabatic approxima-

tion, in which a projection of the initial state onto the final clusterized

state is considered. In the specific case of coalescence of partons, most

of the work described in the literature uses an instantaneous projection

of parton states onto hadron states. The expected number of hadrons h

from a partonic system characterized by a density matrix ρ is given by

Nh =
∫

d3P

(2π)3 〈h;P | ρ | h;P〉 (3.11)

Here instantaneous means that the states are defined on a hypersurface,

which is typically taken to be either at constant time, t = constant, or

on the light cone, t =±z.

In this case information about the hadron bound state is schematically

encoded in a wave function or a Wigner function.

This approach leads to very simple math, but it has the disadvantage in

that only three components of the four-momentum are conserved in such

a 2→ 1 or 3→ 1 coalescence process.

In this section, we focus on the instantaneous projection formalism.

All available models of instantaneous coalescence can be traced back to

the following basic formula, which can be derived from Eq.(3.11). The

number of mesons with a certain momentum P is [74]

dNM

d3P
=

∑

a,b

∫

d3R

(2π)3

d3q d3r

(2π)3
Wab(R− r

2
,
P

2
−q;R+ r

2
,
P

2
+q)ΦM(r,q) (3.12)

Here M denotes the mesons and a, b are its coalescing valence partons;

Wab and ΦM are the Wigner functions of partons and of the meson re-

spectively, while P and R are the momentum and the spatial coordinates
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3.4 Coalescence

of the meson, and q and r are related to the relative momentum and po-

sition of the quarks. The sum runs over all possible combinations of

quantum numbers of the quarks in the hadron, essentially leading to a

degeneracy factor CM.

Note that coalescence, just like its counterpart in exclusive processes,

is based on the assumption of valence quark dominance, i.e., the lowest

Fock states are the most important ones.

The corresponding formula for baryons containing three valence quarks

can easily be given as well.

For a meson consisting of two quarks, its Wigner function is formally

defined as

ΦM(r,q)=
∫

d3sexp−is·qϕM(r+ s

2
)ϕ∗

M(r− s

2
) (3.13)

where the two-quark meson wave function in position space φM can be

represented as

〈r1;r2 | M;P〉 = exp−iP·(r1+r2)/2ϕM(r1 −r2) (3.14)

To evaluate Eq.(3.12), expressions for the hadron wave functions and for

the distribution of partons are used as input. Let us emphasize two com-

mon features of all implementations. First, the Wigner function for the

multiparton distribution Wab is usually approximated by its classical

counterpart, the phase-space distribution of the partons on the hyper-

surface of hadronization. Second, Eq.(3.12) is made explicitly Lorentz

covariant to account for the relativistic kinematics.

Our approach is based on the Wigner formalism [75] that allows a

more direct connection with the dynamical phase-space description of

heavy-ion collisions. In this formalism the transverse momentum spec-

trum of hadrons that consist of n (anti-) quarks is given by the overlap

between the hadron wave function and the n quark phase-space distri-
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bution function fq(xi, pi):

dNH

d2PT

= gH

∫ n
∏

i=1

d3 pi

(2π)3E i

pi ·dσi fq(xi, pi) fH(xi..xn, pi..pn)

δ(2)

(

PT −
n
∑

i=1
pT,i

)

(3.15)

where fH(xi..xn, pi..pn) is the Wigner distribution function and is the

probability for n quark to form an hadron, dσ denotes an element of a

space-like hypersurface, gH is the probability of forming a color neutral

object with the spin of the hadron considered from n colored quarks (see

Eq.(3.21)).

The function fq(x, p) is the covariant distribution functions of quarks

(and antiquarks) in the phase space, and it is normalized to their num-

bers, i.e.
∫

p ·dσ d3 p

(2π)3E
fq,q̄(x, p)= Nq,q̄ (3.16)

In Eq.(3.15) it is already assumed that the n quark phase space distri-

bution is approximated by the product of the single quark distribution

function

fq(xi..xn, pi..pn)=
n

∏

i=1
f (xi, pi) (3.17)

and therefore no quark-quark correlations are included.

As light hadrons wave function we have used a sphere in both space and

momentum, with radii ∆r and ∆p, respectively, which in the Wigner for-

malism are related by ∆r ·∆p = 1 . The multidimesional integral Eq.(3.15)

is evaluated in the full 6D phase space by the Monte Carlo method via

test particle method.

In the case of meson we have that the number of particle formed from

coalescence of quark and antiquarks can be written as

NM = gM

∫

p1 ·dσ1 p2 ·dσ2
d3 p1

(2π)3E1

d3 p2

(2π)3E2

× fq(x1; p1) f q̄(x2; p2) fM(x1, x2; p1, p2) (3.18)
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3.4 Coalescence

gM is the statistical factor for forming a colorless meson from spin 1/2

coloured quark and antiquark. For mesons considered here. i.e. π, ρ,

K and K∗, the statistical factors are gπ = gK = 1/36 and gρ = gK∗ = 1/12

The function fM(x1, x2; p1, p2) in Eq.(3.18) is the Wigner function and as

already said is the probability for a quark and an antiquark to form a

meson and it is linked to the meson wave function by Eq.(3.13). It de-

scribes the dynamic process of converting a quark and an antiquark to

a bound state meson in the presence of a partonic matter. It depends on

the overlap of the quark and antiquark wave functions with the wave

function of the meson. Neglecting the off-shell effects and taking the

wave functions of quark and antiquark to be plane waves, the coales-

cence probability function is then simply the covariant meson Wigner

distribution function.

We take it to have a uniform distribution

fM(x1, x2; p1, p2) = 9π

2(∆x∆p)3 Θ(∆2
x − (x1 − x2)2)

× Θ(∆2
p − (p1 − p2)2+ (m1 −m2)2) (3.19)

where ∆x and ∆p are the covariant spatial and momentum coalescence

radii. The factors before theta functions are introduced to obtain the cor-

rect normalization for the meson Wigner function in the nonrelativistic

limit, i.e.
∫

d3x d3 p fπ(x, p) = (2π)3 . Here we use ħ = c = 1. For ul-

trarelativistic heavy ion collisions at RHIC, it is convenient to introduce

rapidities variables y and η in the momentum and the coordinate space

(see Appendix C).

y= 1

2
ln

E+ pz

E− pz

, η= 1

2
ln

t+ z

t− z

In Eq.(3.18) the momentum volume element and the spatial volume ele-

ments are given by

d3p

E
= d yd2pT , (3.20)
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p ·dσ= τmT cosh(y−η) dη d2rT (3.21)

if a hypersurface of constant longitudinal proper times is adopted.

From Eq.(3.16), (3.20), (3.21), the quark and antiquark phase space dis-

tribution function is given by

fq,q̄(x, p)= (2π)3

τmT cosh(y−η)

dNq,q̄

dηd2rT d yd2pT

(3.22)

We substitute in Eq.(3.18) the space-momentum volume and the dis-

tributions calculated in Eq.(3.20), (3.21) and (3.22). Then inserting the

identity 1=
∫

d2 pTδ
(2)(pT − p1T − p2T ), and differentiating both sides of

the equation respect to pT we obtain

dNM

d2 pT

= gM

∫

dη1 d2r1T dη2 d2r2T d y1d2p1T d y2d2p2T

×
dNq

dη1d2r1T d y1d2p1T

dNq̄

dη2d2r2T d y2d2p2T

× fM(x1, x2; p1, p2)δ(2)(pT − p1T − p2T ) (3.23)

For central rapidities in relativistic heavy ion collisions (see Appendix

C) is satisfied the Bjorken correlation for rapidity and pseudorapidity,

i.e η= y.

The quark and antiquark phase space distribution functions in the ra-

pidity range ∆y can then be expressed as

dNq,q̄

dηd2rT d yd2pT

= δ(η− y)

∆y

dNq,q̄

d2rT d2pT

∣

∣

∣

∣

|y|≤∆y/2
(3.24)

In our calculation we will consider −0.5 ≤ y ≤ 0.5 and so ∆y = 1. This

is the rapidity interval at which the detectors are usually put in the

experiments.

This leads to the following meson transverse momentum spectrum from
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coalescence of quarks and antiquarks

dNM

d2 pT

= gM

(∆y)2

∫

d2r1T d2 p1T d2r2T d2 p2T

×
dNq

d2r1T d2 p1T

∣

∣

∣

∣

|y1|≤∆y/2

dNq

d2r2T d2 p2T

∣

∣

∣

∣

|y2|≤∆y/2

×
∫

dη1 d y1 dη2 d y2 δ(η1 − y1)δ(η2− y2)

× FM(x1, x2; p1, p2)δ(2) (pT − p1T − p2T ) (3.25)

To generalize the results to formation of baryons and antibaryons from

the parton distribution functions, we take the baryon coalescence prob-

ability function as [75]

FB(x1, x2, x3; p1, p2, p3) = 9π

2∆3
x∆

3
p

Θ

(

∆
2
x −

1

2
(x1 − x2)2

)

× Θ

(

∆
2
p −

1

2
(p1 − p2)2

)

× 9π

2∆3
x∆

3
p

Θ

(

∆
2
x −

1

6
(x1 + x2 −2x3)2

)

× Θ

(

∆
2
p−

1

6

[

(p1+p2−2p3)2−(m1+m2−2m3)2)
]

(3.26)

where we have taken for simplicity the same space and momentum coa-

lescence radii for the relative Jacobi coordinates among three quarks.

For boost-invariant dynamics with Bjorken spatial and momentum ra-

pidities correlation, we obtain following baryon transverse momentum

spectrum from coalescence

dNB

d2 pT

= gB

(∆y)3

∫ 3
∏

i=1
d2r iT d2 piT

dNq

d2r iT d2 piT

∣

∣

∣

∣

|yi|≤∆y/2

×
∫ 3

∏

i=1
dη i d yi δ(η i − yi) FB(x1, x2, x3; p1, p2, p3)

× δ(2)

(

pT −
3

∑

i=1
piT

)

(3.27)

In the above, gB is the statistical factor for formation of a baryon from

three quarks. For baryons and antibaryons considered in present study,
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i.e., p, ∆, p̄ and ∆̄, the statistical factors are gp = g p̄ = 1/108 and g∆ =
g∆̄ = 1/54. The Eq.(3.27) can also be used for antibaryons by replacing

quark momentum spectra by the momentum spectra of antiquarks.

3.4.2 Monte-Carlo Method

The multidimensional integrals in the coalescence formula, given by

Eqs.(3.25) and (3.27) are evaluated by the Monte-Carlo method via test

particles. Specifically, we introduce a large number of test partons with

uniform momentum distribution. To take into account the large differ-

ence between numbers of partons at different momenta we associate dif-

ferent probability to each parton and such probability is proportional to

the parton momentum distribution, e.g., dNq/d2 pT for quarks, with the

proportional constant determined by requiring that the sum of all par-

ton probabilities is equal to the parton number. With test partons, the

coalescence formulas, Eqs.(3.25) and (3.27), can be rewritten as

dNM

d2 pT

= gM

∑

i, j

Pq(i)P q̄( j)δ(2)(pT − piT − p jT )

× fM(xi, x j; pi, p j). (3.28)

and

dNB

d2 pT

= gB

∑

i 6= j 6=k

Pq(i)Pq( j)Pq(k)

× δ(2)(pT − piT − p jT − p jT )

× fM(xi, x j, xk; pi, p j, pk). (3.29)

Pq(i) and P q̄( j) are probabilities carried by i-th test quark and j-th test

antiquark. The Monte-Carlo method introduced here allows us to treat

the coalescence of low momentum partons on the same footing as that of

high momentum ones. We find that despite a decrease of eight orders-of-

magnitude in real particle spectra, about equal numbers of test hadrons

are formed at all momenta.
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CHAPTER 4

PARTICLE SPECTRA AT RHIC
AND LHC

In this chapter are shown calculations based on the coalescence plus

fragmentation hadronization approach as described in the previous chap-

ter, and the results obtained are compared with the experimental data

at RHIC and at LHC.

We have evaluated the coalescence integral for the main produced par-

ticles (π, K, p, p̄, Λ, φ) using the method described in Eq.(3.28) and

Eq.(3.29)

In order to reproduce the spectra of such particle the contribution com-

ing from the decay of some resonances (ρ, ∆, ∆̄, K∗, Σ) has been added,

higher state resonances have not been included because they would give

their main contribution to the yield at low transverse momentum pT .

1 GeV which is not the focus of our study.

The approach used to describe hadron production in uRHIC’s is based on

a fireball where the bulk of the particles is a thermalized system of glu-

ons and u, d, s quarks and antiquarks at the temperature Tc = 165 MeV

which is about the temperature for the cross-over transition in the real-

istic lattice QCD calculation.
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4.1 Parton Distribution and Fireball

4.1 Parton Distribution and Fireball

Numerically we solve the coalescence integrals (for pions, protons

and kaons) by using the Monte-Carlo method in which we assume a prob-

ability for each test-particle, as described in the paragraph 3.4.2.

The main features of our model can be sketched as follows:

Test-particles are spatial distributed inside a cylindrical fireball. The

distribution is uniform on the plane transverse to beam direction. The

z-coordinate is assigned by z = τsinh y, where the rapidity y is uniform

in the interval [−0.5,0.5] (η≃ y in the Bjorken approximation).

Then momentum coordinates are assigned. The module is randomly ex-

tracted in the range from zero to a maximum momentum value. The

azimuthal angle (φ) distribution is determined by the elliptic flow and

the higher order momentum anisotropy vn. In this way the quark trans-

verse momentum distribution is given by

dNq

d2 pT

=
dNq

pT dpT dφ
=

dNq

pT dpT

[

1+2
nmax
∑

n=1
vn(pT )cos(nφ)

]

. (4.1)

The partons are boosted to take into account for the quark-gluon

plasma collective flow. We assume for partons a velocity with the follow-

ing radial profile βT = βmax

r

R
, where R is the transverse radius of the

fireball and βmax is the maximum collective flow velocity of the quark-

gluon plasma.

In the following subsections will be described the parton distributions

used as input for our coalescence model and the shape of the fireball,

that provides the spatial limits of the coalescence integral.

4.1.1 Thermal Distribution

For partons in the quark-gluon plasma we take a thermal distribu-

tion for transverse momenta up to p0 = 2−3 GeV . Therefore for light
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quarks and antiquarks transverse momentum spectra are given by

dNq, q̄

d2rT d2 pT

=
gq,q̄τmT

(2π)3
exp

(

−
γT (mT − pT ·βT ∓µq)

T

)

(4.2)

where gq = g q̄ = 6 are the spin-color degeneracy of light quarks and an-

tiquarks, and the minus and plus signs are for quarks and antiquarks,

respectively. The slope parameter T, as said before, is T = 165 MeV .

Masses of light quarks and antiquarks are mu,d,ū,d̄ = 330 MeV and ms,s̄ =
450 GeV , similar to the masses of constituent quarks. The quark chem-

ical potential µq used has a value such that light antiquark to quark

ratio leads to the antiproton to proton ratio observed at midrapidity in

heavy ion collisions experiments, which means µq = 10MeV at RHIC

while at LHC we have approximated µq to zero. For gluons the spin-

color degeneracy is gg = 16, for the mass we take it to be similar to that

of light quarks in order to take into account non-perturbative effects

in the quark-gluon plasma. This implies a number of quarks per unit

of rapidity within the fireball at RHIC is dN/d yu,d ∼ 230, dN/d yū,d̄ ∼
210 anddN/d ys,s̄ ∼ 150, while at LHC there are dN/d yu,ū,d,d̄ ∼ 530 and

dN/d ys,s̄ ∼ 360.

4.1.2 Minijet Distribution

Partons at high transverse momenta (greater than p0 = 2−3 GeV )

are mainly from the minijets produced in initial hard collisions among

nucleons. The transverse momentum distribution of minijet partons in

the midrapidity can be obtained from an improved perturbative QCD

calculation [76]. We have considered the initial pT distribution accord-

ing to the pQCD and the thickness function of the Glauber model to go

from pp collisions to AA ones.Then we have quenched the spectra to

have a nuclear suppression factor RAA(pT ) as observed experimentally

up to pT ≈ 10GeV for pions. These spectra can be parametrized at RHIC
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4.1 Parton Distribution and Fireball

as
dN jet

d2 pT

= A

(

B

B+ pT

)n

(4.3)

the parametrization at LHC is

dN jet

d2 pT

= A1
[

1+
(

pT

A2

)2]A3
+ A4

[

1+
(

pT

A5

)2]A6
(4.4)

with the values given in the Tables (4.1), (4.2)

A[1/GeV2] B[GeV] n
g 3.2 ·104 0.5 7.1
u, d 9.8 ·103 0.5 6.8
ū, d̄ 1.9 ·104 0.5 7.5
s 6.5 ·103 0.5 7.4
s̄ 8.0 ·103 0.5 7.6

Table 4.1: Parameters for minijet parton distributions given in Eq.(4.3) at midrapidity
from Au+Au at

p
s = 200 GeV

A1 A2 A3 A4 A5 A6

g 23.46 4.84 8.08 2.78 2.79 2.31
quark 24.68 5.11 8.01 0.55 5.65 2.56

Table 4.2: Parameters for minijet parton distributions given in Eq.(4.4) at midrapidity
from Pb-Pb at

p
s = 2.7 TeV

We note that the separation into a thermal spectrum at p < p0 and a

power law spectrum from the hard parton process at higher pT is merely

a first-order approximation. In fact, the parton radiating in the QGP

medium creates a parton shower that can lead to a coalescence process

or an in-medium modification of the fragmentation function that is not

accounted for in our approach. One can expect this to be particularly

relevant in the region of pT around 2−3GeV at parton level that means

a pT ≈ 5 GeV in the hadronic spectra.
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4.1 Parton Distribution and Fireball

In the next chapter, we will discuss the extension of coalescence plus

fragmentation model coupling it to transport simulation which naturally

supply parton distribution function from the thermalized region (pT ∼ T)

up to high pT ≫ΛQCD , T.

Our present work based on a simplified underlying parton distribution

allows one indeed to spot, especially for baryons, the importance of con-

sidering a more realistic gluon radiation and splitting in the interme-

diate pT region. In fact, we will see that in our approach we find a

systematic lack of yield in such a pT region. This aspect is currently

under investigation also by other groups [77]

4.1.3 Fireball Parameters

The energy density of Quark Gluon Plasma fireball is related to the

charged particle multiplicities and the transverse energy of particles.

The volume V = πR2τ(in one unit of rapidity) and the radial flow βmax,

are constrained imposing the total multiplicity dN/d y and the total trans-

verse energy dET /d y to be equal to the experimental data, and they

could be in general considered as parameters evaluated accordingly to

the typical value of lifetime of the QGP and, assuming a constant ac-

celeration, we connect the radial expansion with the radial flow R⊥ =
R0 + 0.5βmaxτ. The charged particles multiplicity per unit of rapidity

and the transverse energy at RHIC and at LHC are

dNch

d y
≃ 680,

dET

d y
≃ 760 GeV (RHIC)

dNch

d y
≃ 1800,

dET

d y
≃ 2200 GeV (LHC) (4.5)

standard fireball modelling lead to estimate the relation between the τ0

at LHC and RHIC that is τLHC
0 ∼ 2 · τRHIC

0 . Coupling this to a radial

uniform expansion to values of βmax, R⊥ and τ as shown in Tab.(4.3),

in quite good agreement also with simulations in hydrodynamical or ki-

netic transport approaches. Such values correspond in one unity of ra-
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4.2 Spectra and ratio of hadrons at RHIC

pidity to a volume of V ∼ 1100 f m3 at RHIC, while at LHC corresponds

to V ∼ 2500 f m3, which means an increase of a bit more than a factor of

two in agreement with the estimate from pion HBT interferometry.

R⊥ τ βmax

RHIC 8.7 fm 4.5 fm/c 0.37
LHC 10.2 fm 7.8 fm/c 0.60

Table 4.3: Parameters for radial flow and fireball dimension at RHIC and LHC

4.2 Spectra and ratio of hadrons at RHIC

We start with comparing the results obtained using the coalescence

model with the spectra of pions, protons,antiprotons, kaons and Lamb-

das at RHIC in Au+Au collisions at
p

s= 200 GeV . We consider collisions

in the class of centrality 0-10%. As already seen in paragraph 3.4.1, the

main parameters of our model are the widths of Wigner function. Here

for mesons we choose ∆p = 0.187GeV as momentum coalescence radius.

Instead in the case of baryons we use a momentum coalescence radius

∆p = 0.355 GeV . To include the important contribution to hadron pro-

duction that is given by the fragmentation process we use the Kniehl,

Kramer and Pötter fragmentation function (KKP) [62], fundamental to

reproduce measured high transverse momentum spectrum.

Are also considered contribution from resonances (shown in Tab.(4.4))

which has allowed to improve the description of the spectra especially at

low pT , but the presence of resonance decay does not affect significantly

the intermediate pT region and, consequently, the baryon/meson ration

around the peak.

In Fig.4.1, we show the transverse momentum spectrum of pions.

The data from PHENIX experiment for charged pion are shown by cir-
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4.2 Spectra and ratio of hadrons at RHIC

π(I = 1,J = 0) k∗ (I = 1,J = 1
2 ) −→ kπ

ρ (I = 1,J = 1) −→ππ

∆ (I = 3
2 ,J = 3

2 ) −→ Nπ

p(I = 1
2 ,J = 1

2 ) ∆ (I = 3
2 ,J = 3

2 ) −→ Nπ

k±(I = 0,J = 1
2 ) k∗ (I = 1,J = 1

2 ) −→ kπ

Λ(I = 0, J = 1
2 ) Σ0(1193) (I = 1,J = 1

2 ) −→Λγ

Λ(1405) (I = 0,J = 1
2 ) −→Σπ

Σ(1385) (I = 1,J = 3
2 ) −→Λπ B.R.= 88%

−→Σπ B.R.= 11.7%

Table 4.4: Contribution from resonances decay channel to particle spectra

0 1 2 3 4 5 6 7 8 9
P

T
 [GeV]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

d
3
N

/d
p

T

2
d

y
 [

G
eV

-2
]

PHENIX π

PHENIX π
0

π coal. + fragm.

π coalesc. with  decays

π direct

from ρ decay

from ∆ decay

from k* decay

fragmentation AKK 

Figure 4.1: Pion transverse momentum spectrum at RHIC in Au+Au collisions atp
s = 200 GeV . Pion production from coalescence (dashed line). Pion from

minijet fragmentation (dot-dashed line) . Sum of both hadronization pro-
cesses (red solid line). Experimental data from PHENIX [78] [79].

cles [78] and for π0 are shown by triangles [79]. The black solid curve is

the spectrum formed from parton coalescence, including the pions from

resonances. Pions from fragmentations of minijet partons are shown by

the dashed blue curve. The solid red curve is the sum of coalescence and
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4.2 Spectra and ratio of hadrons at RHIC

fragmentation.

We can also see the contribution for the decay into pions coming from

resonances, which shows that contribution from ρ → ππ, dashed ma-

genta line, dominates up to about pT ∼ 3 GeV which is about the region

where anyway the fragmentation is starting to take over. The contribu-

tion from K∗ (dashed double-dotted violet line) and ∆ (double-dashed dot

orange line) are instead quite less relevant and only contribute to some

little improvement of the description at very low pT .

Of course for the pions it is known more or less all the hadrons contribute

to the feed-down but in the region we are interested in the resonances

included are sufficient to have a good description of the pion spectra at

pT ≥ 1GeV .

Instead, at high transverse momenta the main contribution is that of

fragmentation of quenched minijets. The two different type of hadroniza-
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Figure 4.2: Antiproton transverse momentum spectrum at RHIC in Au+Au collisions
at

p
s = 200 AGeV , 0−10% centrality. Antiproton production from coales-

cence thin solid line. Direct antiproton are shown by the violet dash-dotted
line; from ∆ decay are the dash double-dotted line. Antiproton from minijet
fragmentation are the dashed line. Sum of both hadronization processes
shown by thick solid line. Experimental data from PHENIX [78].
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4.2 Spectra and ratio of hadrons at RHIC

tion become comparable in the region near pT ≃ 3.5 GeV . We observe

that as the momentum decreases coalescence become determining to re-

produce data and for pT ≈ 2 GeV the spectrum of pions coming only

from fragmentation of minijets is almost one order of magnitude lower

than spectrum experimentally observed. For high momenta instead the

impact of coalescence becomes negligible and fragmentation alone can

explain the experimental data.

In Fig.4.2 we show the anti-proton transverse momentum spectrum at
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Figure 4.3: Kaon transverse momentum spectrum at RHIC in Au+Au collisions at
p

s =
200 AGeV , 0−10% centrality. Kaon production from coalescence is the thin
solid. Direct kaons are shown by the dash-dotted line. Kaons from K∗

decay are the dash-dotted line. Kaon from mini-jet fragmentation is the
dashed line. Sum of both hadronization processes is shown by thick solid
line. Experimental data from PHENIX [78] are shown by the circles, STAR
[80] data are shown by the squares.

RHIC including coalescence and fragmentation by thick solid red line

together with the available experimental data (circles) from Ref. [78].

Again the description appears to be quite good; we show also the relative

contribution from coalescence and fragmentation by thin solid black line

and by dashed blue line respectively. We notice that for anti-protons the

two mechanism become comparable at pT ≃ 5 GeV which means that
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4.2 Spectra and ratio of hadrons at RHIC

the coalescence contribution for protons extends in a region at higher

momentum with respect to pions.

In Fig.4.3 we can see that also for Kaons the agreement with experimen-

tal data from PHENIX [78] at low pT , circles, and STAR [80], squares, is

fairly good in all the range of pT . By dash double dotted orange line in

Fig.4.3, we see that at low pT the contribution from K∗ decay becomes

important and contributes to have the correct slope of the spectrum as

measured experimentally. One can notice as in the case of pions that

there is some lack of yield at pT ≃ 4GeV where the fragmentation, the

dashed blue line, is starting to be dominant. We anticipate that such a

systematic is observed also at LHC and from the ratio baryon/meson we

will see that it is even more marked for baryons and in particular for

Lambda.
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Figure 4.4: Λ transverse momentum spectrum at RHIC in Au+Au collisions at
p

s =
200 GeV , 0− 10% centrality. Λ production as sum of both hadronization
processes is shown by thick solid line; from coalescence only by thin solid
line. Direct Λs are shown by the dash-dotted line. Λ from resonance decay
are: Σ

0 (dashed double dotted line), Σ(1385) (double dashed dotted line),
Λ(1405) (dashed line with ∗ symbols). Λ from mini-jet fragmentation is the
dashed line. Experimental data from STAR [81].
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The pT distribution for Λ(1116) is shown in Fig.4.4 by thick solid red

line along with the experimental shown by circles [81]. For the Λ there

are indeed several hadronic states that have a significant contribution

(see Table 4.4). Also for the Lambda the coalescence plus fragmentation

model appear to be able to correctly described the experimental data

in a wide range of pT . We also find similarly to the anti-proton that

the contribution from independent fragmentation according the AKK

parametrization becomes dominant at pT ≥ 6GeV .
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Figure 4.5: Particles ratio at RHIC from Au+Au collisions at
p

s= 200 GeV .
(Left) Proton to positive pion ratio (blue solid line), antiproton to negative
pion ratio (orange solid line). PHENIX [78] data are shown by circles, STAR
[80] data by triangles. Data in pp collision are shown by the corsses and
the x symbols
(Right) Antiproton to proton ratio (solid line), PHENIX [78] data (rhom-
buses), STAR [80] data (star symbols)

The coalescence mechanism has had the merit to naturally predict a

baryon/meson enhancement at intermediate transverse momentum, es-

pecially in the region pT ≃ 2−4GeV where the p/π+, p̄/π−, Λ/2K0
s reaches

a value of the order of unity which is a strong systematic enhancement

with respect to the one observed in pp collisions [83]. We therefore show
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Figure 4.6: Lambda to kaon ratio at RHIC from Au+Au collisions at
p

s = 200 AGeV.
The model prediction is the solid line. STAR data by circles [82].

the p/π+, Λ/K0
s in the Fig.s 4.5 and 4.6. We can see that the ratio is quite

well predicted from its rise at low pT up to the peak region and then the

falling-down behavior. However in both cases it is clear that in the region

of pT ≃ 5−7GeV there is a lack of baryon yield. This is a feature that

could not be observed when the coalescence plus fragmentation model

was applied a decade ago to hadronization at RHIC because there were

no data available for proton (anti-proton) at pT & 4GeV, nonetheless it

appears systematically, we will see it also at LHC energy.

4.3 Spectra, ratio at LHC

In this section we show the results of our model for some observables

measured at LHC in ALICE experiment.

We have considered Pb+Pb collisions at
p

s= 2.7 TeV , in the class of cen-

trality 0-10%. The fireball condition and the parton distribution varies

as already described in paragraph 4.1.3, we remind that the radial flow

and volume of the hadronizing fireball that as described above is self-

consistently constrained but the total transverse energy and the multi-

80



4.3 Spectra, ratio at LHC

plicity that at LHC
p

s = 2.76 ATeV is about a factor 2.4 and 2.7 larger

with respect to RHIC
p

s = 200 AGeV . As widths of Wigner function

we used the same of those assumed at RHIC as due to their physical

meaning they should not change at varying the collision energy but are

properties of the baryons.
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Figure 4.7: Pion transverse momentum spectrum from Pb+Pb collisions at
p

s =
2.7 TeV . The dashed curve includes contributions from coalescence pro-
cess. The solid line is the sum of coalescence and fragmentation contribu-
tions. The filled circles are the experimental data from ALICE experiment
[84] [85]. The dot-dashed curve shown the pion transverse spectrum at
RHIC.

In Fig.4.7 we show the sum of coalescence and fragmentation con-

tribution to pion spectrum by thick solid red line which is in quite good

agreement with the experimental data from ALICE Collaboration [84]

[85] in all the pT range, except some lack of yield at pT . 0.5 GeV due

to absence of all the resonance decays feed-down. By the thin solid or-

ange and the dashed blue line we show the contribution from coalescence

and fragmentation respectively. We notice that the two yields cross at

pT ≃ 4 GeV which is a shift of about 1 GeV with respect to RHIC, see
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Fig. 4.1. Such a shift is due to the larger collective flow present at LHC

that shifts to larger pT the hadrons from coalescence . The very good

agreement of the pT distribution at LHC already shows that the model

is able to correctly predict the evolution of the absolute yield and es-

pecially its pT shape correctly, in fact no parameter of the coalescence

process, essentially the Wigner wave function width ∆p of the hadrons,

has been modified with respect to those used in the previous Section for

RHIC.
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Figure 4.8: Proton transverse momentum spectrum from Pb+Pb collisions at
p

s =
2.7 TeV . The dashed curve shows the contribution from coalescence pro-
cess. The solid line is the sum of coalescence and fragmentation process.
The filled circles are the experimental data from ALICE experiment [84].

In Fig.4.8 it is shown the proton spectrum at LHC by thick solid red

line and compared to the experimental data [84]. The agreement also in

this case is very good for pT > 1GeV up to 5GeV that is the maximum

value with available data. At very low pT as said in before we should

not expect the approach to really apply. Still we can notice that the co-

alescence over predict the yield. The effect was partially present also at

RHIC, see Fig. 4.2.

82



4.3 Spectra, ratio at LHC

In Fig.4.8 we can also see that the yield of the fragmentation process,

shown by the dashed blue line, becomes comparable to the one from co-

alescence (thin black line), at a pT ≃ 6GeV which is about a 50% larger

with respect to the pions and also a shift of about 1.5GeV with respect

to RHIC. This is what one would expect due to the larger flow at LHC

and the fact that baryon are more affected by it.

0 1 2 3 4 5 6 7 8 9 10
p

T
 [GeV]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

d
3
N

/d
p

T

2
d

y
 [

G
eV

-2
]

K data

K coal+ frag.

K coal. total

fragmentation AKK

Figure 4.9: Kaon transverse momentum spectrum from Pb+Pb collisions at
p

s =
2.7 TeV, 0−10% centrality. The dashed curve includes contributions from
coalescence process. The thick solid line is the sum of coalescence and
fragmentation contributions. Kaons from mini-jet fragmentation are the
dashed line. The squares are the experimental data from ALICE experi-
ment [84, 86, 87].

In Fig.4.9 the pT distribution for K+ is shown by thick solid line

and again one can see the good agreement with the experimental data

[84] [86][87] in the entire range of pT . We can notice that at RHIC for

both pions and kaons there was some lack of yield in the region where

the fragmentation takes over, while at LHC energy for both cases the

agreement appears quite better. This can be expected because the inde-

pendent fragmentation function picture should be better constrained at
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energies of the order of TeV. In Fig.4.10 the experimental data for the
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Figure 4.10: Λ transverse momentum spectrum from Pb+Pb collisions at
p

s =
2.76 TeV, 0−10% collisions. The thin solid curve includes all contributions
from coalescence process.Λ from mini-jet fragmentation is the dashed line.
The sum of coalescence and fragmentation contributions is shown by the
thick solid line. The circles are the experimental data from ALICE exper-
iment [86] [87].

transverse momentum spectrum of Λ is shown by circles together with

the results from the coalescence plus fragmentation shown by thick solid

red line. The different contribution from excited state have been calcu-

lated and have a similar relative contribution as at RHIC, see Fig.4.4 We

can see also for this case the good agreement for pT > 1GeV , but while

for p and p̄ the data are available only up to 4-5 GeV, in this case we have

the availability of data up to 9 GeV and this allows us to see that in the

pT region where the fragmentation starts to dominate, pT ≃ 6−7 GeV

there is some lack of yield. At both RHIC and LHC such a lack of yield

appears where coalescence becomes less important therefore one can say

that it seems that the spectrum from AKK fragmentation function ap-

pears too flat. This may very well be because the fragmentation func-

tion for baryons in general and in particular for Λ are known to be not

very well constrained. On the other hand we notice that the fragmen-
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tation contribution has been calculated for all hadrons considered with

the same Q2 = (phad/2z)2 and this gives a global good description of the

spectra for π,K at pT > 5GeV and for p, p̄,Λ for pT > 8GeV . Some im-

provement for the baryons can be achieved if one set a harder scale for

them, however the issue of some lack of yield at intermediate pT per-

sists. It is likely that studies of in-medium fragmentation function can

solve it [88, 89] or it could be that coalescence contribution should extend

to large pT with respect to the present modeling having simple spheres

in momentum space as Wigner function and no dynamical role of the in-

teraction that could lead to an extension of the coalescence to pair with

larger relative momentum.
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Figure 4.11: Proton to pion ratio in Pb+Pb collisions at
p

s = 2.7 TeV . The solid line
is the prediction of our model. The empty circles are data from ALICE
experiment in collision Pb+Pb at 0-5% centrality. The filled circles are
data from p+p collisions

We mention that recently it has been developed a process that within

the coalescence plus fragmentation approach could be quite important in

solving this issue [88]. The idea is to describe the in-medium fragmen-

tation as a quark recombination of shower partons taking into account

also the gluon splitting into quark pairs that recombine.
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In Fig.4.11 we compare the p/π ratio vs pT shown by solid line with

the experimental data of the ALICE Collaboration [90] shown by open

circles. The description is overall quite good with some quite limited

lack of proton yield at pT ∼ 6 GeV . In Fig.4.11 it is also shown by

dashed line the p/π ratio if the coalescence between soft partons from

the QGP and a mini-jet. We can see that the contribution is significant

for pT > 3GeV . The impact of radial flow of the soft partons is shown by

dashed double-dotted line. In Fig. 4.12 we show the results for the Λ/K

ratio in comparison with the experimental data shown by circles [86].

We can see generally a good overall description of the ratio especially

in the region of the peak. Comparing the dashed-dot line with the thick

solid line we can see that in the peak region a quite good agreement with

the experimental data is reached thanks to a recombination of thermal

soft partons with a mini-jet parton. The relevance of such a process is

present also in the EPOS approach Ref.[89], ad it is an idea that can be

traced back to ref.[91] However as discussed above at pT ∼ 6GeV there
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Figure 4.12: Lambda to kaon ratio in Pb+Pb collisions at
p

s= 2.7TeV . The solid line is
the prediction of our model. The circles are data from ALICE experiment
in collision Pb+Pb at 0-5% centrality. [86]
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is a significant lack of Λ yield that here in a linear scale appears quite

large. A tendency to underestimate the yield is visible also in [89] even

if quite smaller thanks to a different fragmentation scheme with respect

to AKK. The low ratio is only slightly low because of the large K yield

in this pT range,see Fig.4.9, and most of the disagreement with the data

comes from the lack of yield in the Λ
′s distribution from fragmentation

that appears too soft in this pT range. In Fig.4.12 we also show the be-

havior of the Λ/K ratio if only coalescence is considered, dashed line, or

if only fragmention is included.

In Fig. 4.13 we show also the φ meson spectra obtained rescaling

the width parameter ∆meson , according to harmonic oscillator width
√

mq/ms . It is often discussed whether the pT spectra of φ meson would

have a slope close to the one of the proton like in a hydropicture or would

behave like other mesons being formed by two quarks. We briefly men-

tion that indeed also in a coalescence process one can and should expect

that there is a radial flow mass effect like in a hydropicture. In fact for a

proton there is a combination of three quarks flowing each with a mass

of about 330MeV while for a φ meson there are two quarks flowing each

with a mass of about 550 MeV. The difference between these two cases

is of course only marginal; in fact we can see in Fig. 4.13 that at low pT

the slope of φ (orange thin solid line) is quite similar to the one of the

proton. In the inset we show more in detail the p/φ ratio including only

coalescence for φ (solid line). We can see that at pT . 2 GeV the ratio

is nearly flat. At higher pT there is a peak at about 4 GeV which sig-

nals that the slope of the φ is stiffer; on the other hand as we see for the

other mesons at such a pT there is a significant contribution from frag-

mentation. Unfortunately there are no φ AKK (or KKP) fragmentation

functions and it is not possible to perform a solid prediction at higher

pT . However, considering that the prediction for the φ in a coalescence
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Figure 4.13: Proton and φ transverse momentum spectrum from Pb+Pb collisions atp
s = 2.76 TeV , 0%−10% centrality. The solid thick line is the sum of co-

alescence and fragmentation process; for φ see the text. The solid thick
orange line is the total φ spectrum and the light thin line is the contri-
bution from only coalescence (see text). The circles are the experimental
data from ALICE experiment [84, 92]. In the inset the p/φ ratio is shown

plus fragmentation approach is particularly awaited, we show in the in-

set (dashed line) and in the main panel (thick solid line), what would be

the pT distribution of φ if one adds a fragmentation corresponding to the

same fragmentation over the coalescence ratio as for the K+ meson. We

can see that as for the other ratios we have quite good agreement with

the data by ALICE shown by circles [92].
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CHAPTER 5

HEAVY QUARKS

Heavy quarks (charm and bottom) and their bound states (charmo-

nia and bottomonia) are recognized as particularly suitable probes of the

medium produced in ultrarelativistic heavy-ion collisions. In particular

heavy quark states are created essentially in the early stage of the col-

lisions and since their masses are much larger than the temperature of

the medium, their thermal production is marginal. A puzzling relation

between Heavy Quarks nuclear modification factor RAA and the ellip-

tic flow v2 has been observed both at RHIC and LHC energies. In fact

different models if succeed in correctly predict RAA than the associated

v2 is generally quite smaller with respect to experimental data. The

hadronization mechanism, and specifically coalescence, can modify the

relation between these two observables. In this chapter we show our

study of the impact of coalescence for the results for RAA and v2 of D

meson.

5.1 Introduction

In discussing the heavy quarks physics in QGP we refer exclusively

to the charm and bottom flavours. The top quark that has a mass of
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5.1 Introduction

174 GeV has a lifetime of about 10−24s and decays directly in t → bW

without creating bound states. Therefore its lifetime is too small with

respect to the QGP lifetime and they cannot be observed directly and till

now are not considered as a probe of the plasma dynamics. The charm

quark has a mass of 1.3 GeV , the bottom quark has a mass of 4.5 GeV .

These masses are significantly larger than the ΛQCD and thus, their dy-

namics should be reasonable well described in a perturbative regime. In-

deed next-to-leading order calculation have successfully predicted charm

and bottom production in pp collisions at RHIC and LHC energy. How-

ever experimental results have shown that for charm quarks perturba-

tive interaction is too small to reproduce the observed nuclear modifica-

tion factor. This means that after they are produced their coupling to the

bulk QGP medium is quite strong.

Another peculiar characteristic of heavy quarks is that their masses are

well above the typical temperature of the system, (i.e. mQ ≫ T). There-

fore, their thermal production is negligible, and the production of heavy

quark pairs Q̄Q is related with the initial collisions of nucleons. The

successive interactions with the evolving and expanding medium would

not change the number of heavy quark, with no contribution of thermal

excitation of the vacuum to produce c̄c or b̄b.

The thermal relaxation time for light quark and gluon is τq,g ≃ 0.3−
1 f m/c that is smaller than the estimated QGP lifetime of τQGP ≃ 5 f m/c

in central Au− Au collisions. But for heavy quark the thermalization

time is expected to be larger by a factor ∼ mQ /T ≈ 8−30. So, τHQ is of

the same order or larger than τQGP for charm quark and significantly

larger in the bottom quark case. Thus, heavy quarks are not expected

to reach thermal equilibrium. But their re-interactions should create

noticeable modifications on the initial momentum spectrum, so the final

spectra may therefore carry a sort of "memory" of the interaction history

throughout the evolving fireball.
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5.1 Introduction

The typical thermal momentum of a heavy quark p2
th

≃ 3mQT ≫ T2 is

much larger than the momentum transfer from the medium, Q2 ∼ T2. So

the interaction of heavy quarks can be treated as a Brownian motion in

a bath of light quarks and because of the momentum transfer smallness,

a Fokker-Planck description of the diffusion is possible.

The heavy flavour investigation started at RHIC Au+Au collisions at
p

sNN = 200 GeV per nucleon by the measurement of single nonpho-

tonic high pT electrons originated by the semi-leptonic decay of heavy

mesons with no possibility to distinguish between electrons coming from

D or B meson. The spectra depends from the differential distribution

of produced heavy quarks, the branching ratio for semi-leptonic decay

of heavy meson, and from the fragmentation function of HQ into open

heavy flavoured meson, used here with the parametrization given by the

Peterson’s function [93].

D(HQ → hHQ)(z)∝ 1

z

[

1− 1

z
− ǫ

1− z

] (5.1)

where z denotes the fraction of the heavy quark momentum carried by

the heavy flavoured hadron and ǫ is the mass squared ratio between the

light quark (antiquark) and the heavy antiquark (quark) forming the

bound mesonic state.

Among the several physical quantities we have already discussed for

probing QGP properties, there are principally two main observables for

the investigation of heavy flavour sector both at RHIC and LHC. The

nuclear modification factor RAA and the elliptic flow v2.

First predictions of a RAA ≈ 0.6 for charm quarks and RAA ≈ 0.8−0.9

for bottom quarks in central collisions at intermediate transverse mo-

mentum associated with a small value of elliptic flow with regard to the

equivalent for light quarks were soon retracted by the measures of such

observables. The measured values of RAA for single non-photonic elec-

trons at RHIC and for D mesons at LHC are respectively of 0.5 and 0.4
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5.2 Transport equation for heavy quarks

at pT ≈ 5GeV while the corresponding v2 at RHIC shows a characteris-

tic bump at pT ≈ 2GeV .

These indications reveal a quite strong interactions between heavy quarks

and the medium which is substantially beyond the expectations coming

from perturbative QCD.

Several theoretical efforts have been made to reproduce the RAA and the

v2 observed in experiments within the Fokker Planck approach [94][95]

[96] [97][98][99][100] and the relativistic Boltzmann approach [101][102]

[103][104]. However all the approaches show some difficulties to de-

scribe simultaneously RAA and v2.

In our research group, has been thoroughly studied the differences be-

tween Fokker-Planck and Boltzmann approach, the first one in fact is an

approximation of the Boltzmann equation, valid when the momentum

transferred is smaller than the heavy quark momentum. The results of

these studies have shown that the Fokker-Planck approximation is not

provides a good description of the integrated observables, like the RAA

but is less efficient to reproduce more differential observables , like the

elliptic flow. In particular, it seems that the Fokker-Planck slightly un-

derestimates the elliptic flow [103].

In this work the heavy quark dynamics is obtained solving the full Boltz-

mann collision integral.

5.2 Transport equation for heavy quarks

In heavy quarks scenario hydrodynamics is not applicable by the fact

that they are produced in the early out-of-equilibrium stage of QGP for-

mation. Furthermore their relaxation time is comparable to τQGP and

as a consequence they do not evolve as a probe in thermal equilibrium.

Heavy quarks probe the QGP because they collide with the bulk con-

stituents, thus enclosing the heavy quarks interaction in the collision

integral of the Boltzmann equation appears to be a suitable way to tackle
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5.2 Transport equation for heavy quarks

the problem. The relativistic collision integral for two-body collisions can

be written in another form in order to show explicitly the collision rate

C22(x, p1)=
∫

d3
~q [w(p1 + q, p1) f (x, p1 + q)−w(p1, q) f (x, p1)] (5.2)

where w(p1 + q, p1) and w(p1, q) are respectively the rate of gain term

for which particle changes momentum from p1 + q to p1 and the rate of

loss term which changes momentum form p1 to p1 − q by the transfer of

the same amount of momentum q.

The total collision rate is the sum of three contribution which represent

each one the collision rate for HQ + q, HQ + q̄ and HQ + g scattering

processes. Hence

w(p1, q)= wq(p1, q)+wq̄(p1, q)+wg(p1, q) (5.3)

and for example wg(p1, q) is defined as

wg(p1, q)= γg

∫

d3~l

(2π)3 fg(~l) vrel σHQ+g→HQ+g (5.4)

where γg is the degeneracy factor for gluons (γg = 2 ·8), vrel is the rela-

tive velocity between the heavy quark and the gluon and σHQ+g→HQ+g

is the total cross section for the elastic heavy quark-gluon scattering.

A successful way to account for non-perturbative dynamics is a quasi-

particle approach, in which the interaction is encoded in the quasi-particle

masses [105]. The mass of the particles can be viewed as arising from

the energy contained in a strongly coupled volume determined by the

correlation range of the interaction. Once the interaction is accounted

for in this way, the quasi-particles behave like a free gas of massive con-

stituents. The T-dependent quasi-particle masses are included in the

following way

mq =
1

3
g2

s(T)T2 mg =
3

4
g2

s(T)T2 (5.5)
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To successfully reproduce the thermodynamics of Lattice QCD the strong

coupling constant gs(T) is evaluated by making a fit of the energy den-

sity obtained by lattice QCD calculations and can be parametrized as

g2(T)= 48π2

(

11Nc −2N f

)

ln
[

λ

(

T

Tc

− Ts

Tc

)]2
(5.6)

In order to deal with the hadronization mechanism we use the model

of coalescence and fragmentation treated for light quark hadronization

in Chapter 4.

We assume that in our system the collisions between light quarks and

heavy quarks are stopped when the temperature of a cell drops below

the critical temperature, that here has been setted at T = 150 MeV .

Fragmentation is the predominant hadronization mechanism for heavy

quark with high momentum transferred, while the coalescence mecha-

nism become predominant when the quarks have low momenta.

5.3 Comparison with the experimental ob-

servables

We present in this section results for nuclear modification factor RAA

and for elliptic flow v2, and the comparison with experimental data. We

calculate RAA, using our initial t = 0 and final t = t f heavy meson distri-

bution as RAA(p)=
f (p, t f )

f (p, t0)
=

dN/d2 pT d y|t=t f

dN/d2 pT d y|t=t0

.

The anisotropic momentum distribution is calculated by means of the

elliptic flow v2, that is the second harmonic in azimuthal distribution:

v2 =
〈

p2
x − p2

y

p2
T

〉

(5.7)

We have carried out simulation of Au + Au collisions at
p

s = 200GeV .
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Figure 5.1: D meson RAA in Au+Au collisions at
p

s = 200GeV and centrality 0−10%
compared to STAR data [106]

The initial condition for the bulk in coordinate space are given by the

standard Glauber condition. While in the momentum space a Boltzmann-

Juttner distribution function is used, up to pT = 2GeV , and mini-jet dis-

tributions at larger momenta, the last one are calculated by pQCD at

NLO.

Initial maximum temperature at the center of the fireball is setted at

T0 = 340 MeV , and the initial time is τ0 = 0.6 f m/c.

Initial distribution of charm quarks are taken from Ref. [107] and given

by f (p, t = 0)= (a+bp)−n with a= 0.70, b = 0.09 and n = 15.44. The above

function gives a good description of D meson spectra in pp collision at

highest RHIC energy.

To describe the bulk evolution we have developed an approach in which

fixed η/s the cross-section is evaluated [108] [109]. Chapman-Enskog

approximation is used in order to evaluate locally the cross section from

η/s. In this way we are able to simulate the dynamical evolution of a

fluid with specified shear viscosity by means of the Boltzmann equation,

in analogy with hydrodynamical simulations.

The bulk dynamical evolution is constrained by an η/s = 1/4π, in such
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5.3 Comparison with the experimental observables

Figure 5.2: D meson RAA inAu+Au collisions at
p

s = 200GeV and centrality 20−30%
compared to STAR data [106]

way the model reproduces experimental data for bulk elliptic flow .

When the system reaches locally the critical temperature the one body

distribution function of heavy quark is frozen and momentum distribu-

tion, nuclear modification factor and elliptic flow of D mesons are evalu-

ated after the hadronization process.

In Fig.5.1 and Fig.5.2 the nuclear modification factor as a function of

pT in Au+ Au collisions at
p

s = 200GeV for centralities 0-10% and 20-

30% is depicted and compared with experimental data observed at STAR

[106].

In this figures we compare the impact of coalescence on RAA , showing

the nuclear modification factor obtained considering only fragmentation

(orange line) with results for RAA obtained including coalescence mecha-

nism, that are indicated with the black line. We can observe that coales-

cence implies an increasing of RAA for momenta larger than 1GeV , thus

a reduction of the suppression. This is due to the hadronization mech-

anism which implies that a D mesons with a given momentum is the

results of the coalescence of one light quark and a charm quark having

a smaller momentum with respect to the D mesons. This along with the
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fact that charm spectrum decreases with pT implies that the final spec-

trum of D meson does not scale with the spectrum of the original charm

and an increasing in the number of particle in the region of pT > 1GeV

is observed. The impact of coalescence decreases with transverse mo-

mentum because at higher pT the D meson spectrum is dominated by

the fragmentation mechanism of hadronization.
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Figure 5.3: Coalescence probability as a function of transverse momentum

As shown in Fig.5.3 where the probabilty of a charm quark to hadronize

through coalescence is plotted as a function of pT , coalescence probabil-

ity decreases fast, and becomes negligible starting from intermediate

transverse momentum region (4−5GeV ).

In Fig.5.4 is shown the D meson elliptic flow in Au+ Au collisions at
p

s= 200GeV and centrality 20−30% compared to STAR data [110].

The different lines allow us to show the impact of coalescence on the gen-

eration of the elliptic flow. The thin solid red line indicates the original

charm quark elliptic flow without considering any hadronization mech-

anism, while the dashed double dot black line indicates the D mesons

v2 obtained considering fragmentation as the only hadronization mech-

anism. Contributions from D and Ds that comes only from the coales-
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Figure 5.4: D meson elliptic flow in Au+ Au collisions at
p

s = 200GeV and centrality
20−30% compared to STAR data [110]

cence are shown with dashed blue and green line. Coalescence mech-

anism gives a D meson elliptic flow that is larger than charm quark

elliptic flow. The explanation is that D meson comes from coalescence of

a charm quark and a light quark and thus the final anisotropy in mo-

mentum space reflects both heavy quark and light quark anisotropies in

momentum space, with the latter that is larger than the first.

The dashed orange line is the elliptic flow that comes from fragmen-

tation of quarks that have not undergo coalescence. In this case the el-

liptic flow is smaller than that obtained when fragmentation is the only

hadronization mechanism, indicated by dashed double dotted black line.

This result is an indirect consequence of the phase space selection that

coalescence mechanism entails. In fact a charm quark will couple with a

light quark to form a D meson if quark momenta are similar (and if they

are close in the phase space in a way that satisfy conditions imposed by

Wigner function widths). Since probability to find a light quark with a

given momentum is not isotropic in transverse plane, as explicitly indi-

cated by the non zero elliptic flow, thus also coalescence probability is

not isotropic. As a consequence all heavy quarks undergoing coalescence
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Figure 5.5: D meson RAA in Pb+Pb collisions at
p

s = 2.7TeV and centrality 0−20%
compared to ALICE data [111]

have an elliptic flow that tends to be similar to that of light quark, the

final effect is that coalescence tends to remove those heavy quarks which

have high elliptic flow. So the elliptic flow of that heavy quarks which

do not coalescence results to be smaller than the elliptic flow calculated

initially for all charm quarks. The solid black line is the weighted mean

of coalescence and fragmentation contribution.

In Fig.5.5 are shown the results for D meson RAA in Pb + Pb colli-
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Figure 5.6: D meson RAA in Pb+Pb collisions at
p

s = 2.7TeV and centrality 30−50%
compared to ALICE data [111]
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s = 2.7 TeV and centrality
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sions at
p

s = 2.7 TeV and centrality 0−20% compared to ALICE data

[111]. In this case the initial maximum temperature in the center of

the fireball is T0 = 510 MeV and the initial time for the simulations is

τ0 ∼ 1/T0 = 0.3 f m/c. In Fig.5.6 and Fig.5.7 are plotted the results for D

meson RAA and elliptic flow in Pb+Pb collisions at
p

s = 2.7 TeV and

centrality 30−50% compared to ALICE data [111].

For both centralities, coalescence (solid black line) implies an increasing

of the nuclear modification factor for momenta larger than 1GeV , how-

ever the effect seem to be smaller than at RHIC.

In Fig.5.7 are shown the different contributions from coalescence, frag-

mentation and initial charm elliptic flow. The final effect of coalescence

here, is analogous as in the case of RHIC but is smaller in magnitude.

The impact of coalescence at LHC is smaller than at RHIC, because the

spectra of charm quarks has less prominent slope, moreover the model

predicts a larger relative production of D mesons coming from charm

quark fragmentation at LHC with respect to RHIC.

The nuclear modification factor and elliptic flow are related one to an-

other. A key result of our study is that when RAA increases, elliptic flow
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decreases and viceversa. Generally in order to get the same RAA that

we have without including coalescence is necessary to further increase

the interaction, which causes an additional increase of the elliptic flow.

Coalescence inverts this relation, implying a contemporary increase of

both these two observables. Finally we can state that, in light of these

outcomes, hadronization via coalescence is fundamental to reproduce the

experimental data.
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CHAPTER 6

DYNAMICAL COALESCENCE
COUPLED TO BOLTZMANN

TRANSPORT THEORY

In this chapter we discuss the Transport Boltzmann equation start-

ing from the classical equation to the relativistic generalization. The

Transport Theory is particularly suited to deal with the hadronization

process because is constructed on a one-body distribution function, and

thus allows for a direct treatment of hadronization. Moreover the trans-

port approach can describe non-equilibrium states treating in a unified

way short range interactions, due to collisions between particles, and

long range interactions, associated to mean field dynamics that drives

the equation of state.

6.1 Classical Boltzmann Equation

The general idea in order to describe the macroscopic properties of

a dilute gas is to define a "grid" in phase space consisting of volume

elements d3x and d3 p in position and momentum space, which are in-

finitesimally small on a macroscopic scale over which the bulk properties
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6.1 Classical Boltzmann Equation

like the density of gas particles and the momentum-distribution of par-

ticles change.

Hence, instead of describing the system of N particle writing down every

single equation of motion, taking in account of 3N position coordinates

and 3N momentum coordinates and follow their trajectories in the 6N

dimensional phase space with time, we study the properties and the evo-

lution of the single particle distribution f (x, p, t) which is defined such

that

dN = d3x d3 p
g

(2π×)3
f (x, p, t) (6.1)

is the number of particles contained in the portion of phase-space vol-

ume considered at the instant of time, t.

We assume that the gas is sufficiently dilute that only binary collisions

need to taken into account.

From one single particle distribution function is possible to get the

spatial density ρ(x) by performing on integration over momenta

N

V
=

∫

d3 p f (x, p)= ρ(x) (6.2)

The average value of any physical observable O(x, p) can be evaluated

as

〈O(x, p)〉 = 1

ρ(x)

∫

d3 p O(x, p) f (x, p) (6.3)

In the simple case when there are no collisions, for a single particle

after a time t+δt the coordinates (x, p) transforms in (x+ vδt, p+Fδt),

where F is an external force applied to the particle and v = p/m is its ve-

locity. Therefore, without collisions, all the particles in the initial volume

element d3x d3 p will be after a time δt in the volume d3x′ d3 p′ centered

in (x+vδt, p+Fδt). This is equivalent to say that

f (x+vδt, p+Fδt, t+δt)= f (x, p) (6.4)
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6.1 Classical Boltzmann Equation

By making a first order expansion δt we obtain the equation of motion

for the distribution function
(

∂

∂t
+ p

m
·∇x +F ·∇p

)

f (x, p)= 0 (6.5)

When the collisions between particles are also considered, the equation

6.5 is modified by additional terms that is a functional of the distribution

function and is called collision integral C [ f ] because

f (x+vδt, p+Fδt, t+δt)= f (x, p)+C [ f ] (6.6)

it brings the information about the change of the distribution function

due to collisions. By making a first order expansion in δt, as we did

previously for the case without collisions, the following expansion is ob-

tained
(

∂

∂t
+ p

m
·∇x +F ·∇p

)

f (x, p)=C [ f ] (6.7)

.

An explicit form for the collisional integral can be obtained assuming

that particles interact through binary collisions and there are no exter-

nal forces.

The number of transitions 12 → 1′2′ in a volume element d3x at r,

owed by collisions during the time interval δt is

dN12 dP12→1′2′ δt

Where dN12 is the initial number of colliding pairs with momenta (p1, p2)

and can be written as

dN12 = f̂ (x, p1, p2, t) d3x d3 p1 d3 p2 (6.8)

introducing the two-particle correlation function f̂ . The other quantity

which is necessary in order to define the number of transitions is the
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6.1 Classical Boltzmann Equation

collision probability dP12→1′2′ . A collision is a transition from the ini-

tial state to a set of final states. For final states in the infinitesimal

momentum-space element d3 p′
1 d3 p′

2 we have

dP12→1′2′ = d3 p′
1 d3 p′

2 δ
4(P f −Pi)|T f i |2 (6.9)

δ4(P f −Pi)≡ δ3(Pf −Pi)δ(E−E′)

where T f i is the transition amplitude for the scattering process and

δ4(P f − Pi) is the energy-momentum conservation, which restricts the

final allowed phase space states only to those accessible by elastic on-

shell process.

An explicit form for C [ f ] can be obtained considering that during the

time interval δt some particles in the volume element at (r, p, t) will be

removed by collision. The volume element is so small that any collision

that a particle suffers will knock it out of the volume element. These

particles will not be in the volume element at (r+vδt, p+Fδt, t+δt). On

the other hand, there are particles outside the initial volume element

which, through collisions, will get into it during the time interval δt.

Therefore the number of particles in the final volume element at t+δt,

as δt → 0, equals the original number of particles in the initial volume

element at time t plus the net gain of particles due to collisions during

the time interval δt. This statement may be expressed in the form

C [ f ]δt = (R̄−R)δt (6.10)

where R(R̄)δtd3r d3 p is the number of collisions occurring during the

time between t and t+δt in which one of the initial (final) particles is in

d3r d3 p about (r, p).

To proceed further, we assume that the gas is dilute, so that we may

consider only binary collisions and ignore the possibility that three or

more particles may collide simultaneously. Using Eq.(6.8) the rates can

be written as

R δt d3r d3 p1 = δt d3r d3 p1

∫

d3 p dP12→1′2′ f̂ (x, p1, p2, t) (6.11)
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and using Eq.(6.9)

R =
∫

d3 p2 d3 p′
1 d3 p′

2 δ
4(P f −Pi)|T f i |2 f̂ (x, p1, p2, t) (6.12)

and similarly

R̄ =
∫

d3 p2 d3 p′
1 d3 p′

2 δ
4(Pi −P f )|Ti f |2 f̂ (x, p′

1, p′
2, t) (6.13)

The δ functions in Eq.(6.12) and Eq.(6.13) are identical, and |T f i | = |Ti f |.
So Eq.(6.10) becomes

C [ f ]= (R̄−R)
∫

d3 p2 d3 p′
1 d3 p′

2 δ
4(P f −Pi)|T f i |2 ( f̂1′2′ − f̂12) (6.14)

where f̂1′2 = f̂ (x, p′
1, p′

2, t). The expression obtained is exact for a suffi-

ciently dilute gas. But the correlation function f is unknown. Now we

can consider the "assumption of molecular chaos", that says that the mo-

menta of two particles in the volume element d3r are uncorrelated, so

that the probability of finding them simultaneously is given by the prod-

uct of the probability of finding each alone. This means that we assume

that

f̂ (x, p′
1, p′

2, t)≈ f (x, p1, t) f (x, p2, t) (6.15)

Substituting in Eq.(6.7) we obtain the Boltzmann transport equation
(

∂

∂t
+ p1

m
·∇x +F ·∇p1

)

f1 = (6.16)
∫

d3 p2 d3 p′
1 d3 p′

2δ
4(P f −Pi)|T f i |2( f ′2 f ′1 − f2 f1)

which is a non-linear integro-differential equation for the distribution

function.

6.2 Relativistic Transport Equation

In relativistic kinetic theory, macroscopic quantities are defined thanks

to a scalar distribution function f (x, p) which depends on space-time co-
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6.2 Relativistic Transport Equation

ordinates x= xµ = (t,x) and four momentum p = pµ = (p0,p) which satis-

fies the mass-shell relation p0 =
√

p2 +m2.

The spatial density of Eq.(6.2) is not a Lorentz scalar but it transforms

as the time component (µ= 0) of the following four-vector:

Nµ(x)=
∫

d3 p

p0 pµ f (x, p) (6.17)

while µ= 1,2,3 are the components of the current j. The transport equa-

tion derivation in the relativistic case is similar to the classical case ex-

cept for appropriate formal changes. In the following we will derive the

transport equation for a system of N relativistic particles non interact-

ing. In this case the distribution function can be written as:

f (x, p)=
N
∑

i=1
δ4(xi(t)− x)δ4(pi(t)− p) (6.18)

where xi(t) and pi(t) coordinates and momenta of the i-th particle at

time t.

The time evolution of the phase space density is described by the Liou-

ville Theorem: if there are no dissipative forces, the phase space density

is a conserved quantity, i.e. d f (x, p)/dt =0.

Using the Liouville theorem, it is possible to obtain the equation of mo-

tion for f (x, p):

d

dt
f (x, p) =

N
∑

i=1

[

dx
µ

i

dt

∂

∂xµ
+

dp
µ

i

dt

∂

∂pµ

]

δ4(xi(t)− x)δ4(pi(t)− p)=

=
(

pµ

m

∂

∂xµ
+Fµ(x)

∂

∂pµ

)

f (x, p) (6.19)

where Fµ(x) represents an external force.

In this way, the condition d f (x, p)/dt =0 becomes
(

pµ

m

∂

∂xµ
+Fµ(x)

∂

∂pµ

)

f (x, p)= 0 (6.20)

Eq.(6.20) is the relativistic Vlasov equation which in the classical limit

gives the Boltzmann transport equation in Eq.(6.16).
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6.2 Relativistic Transport Equation

The Vlasov equation can describe systems with conservative forces while

it does not permit to take into account dissipative effects. In presence of

two body scatterings in fact the phase space density is no more a con-

served quantity ( d f (x, p)/dt 6= 0) but changes as a consequence of the

collisions. It is possible to derive the equation of motion for f (x, p) adding

the collision term C [ f ] on the right hand side of Eq.(6.20), where C [ f ]

has to be specified. Without external forces we have

pµ ∂µ f (x, p)=C [ f ](x, p) (6.21)

which is the equation that we solve numerically for the determination of

characteristics of the Quark-Gluon Plasma.

A more general expression is obtained by considering the role of an effec-

tive mass which allows one to take into account for a mean scalar field.

We write below such expression

{pµ ∂µ+m∗(x)∂µm∗(x)∂µ} f (x, p)=C [ f ](x, p) (6.22)

An equilibrium solution of the Boltzmann equation is the so called Maxwell-

Juttner distribution which is the relativistic extension of the Maxwell

distribution and is defined as

feq = exp
[

−
pµuµ(x)−µ(x)

T(x)

]

(6.23)

feq is equal to the classical limit T →∞ of the Bose and Fermi distribu-

tions.

Taking into account only two body collisions the collision integral is de-

noted by C22[ f ]. The collision term can be approximated as

C [ f ]≃ f − f0

τr

(6.24)

where τr is the relaxation time of the system, i.e. the time scale required

to the system to approach the equilibrium state described by f0. This is

the so called Relaxation Time Approximation.
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6.3 Numerical implementation

The explicit expression for the collision integral without approxima-

tion in terms of distribution functions is indicated below

C22 =
1

2E1

∫

d3 p2

(2π)3 2E2

1

ν

∫

d3 p′
1

(2π)3 2E′
1

d3 p′
2

(2π)3 2E′
2

f ′1 f ′2

×|T1′2′→12|2 (2π)4 δ4(p′
1 + p′

2 − p1 − p2)+

− 1

2E1

∫

d3 p2

(2π)3 2E2

1

ν

∫

d3 p′
1

(2π)3 2E′
1

d3 p′
2

(2π)3 2E′
2

f1 f2

×|T12→1′2′|2 (2π)4δ4(p1 + p2 − p′
1 − p′

2) (6.25)

where ν= 2 if we are considering indistinguishable particles, otherwise

ν= 1. T f→i is the transition amplitude scattering. The two terms in C22

are respectively the gain term in the phase space considered, due to a

collision of type 1′2′ → 12 which enriches the number of particles in the

state 1, while the loss term describes the inverse scattering 12 → 1′2′

which brings particles out of the volume of phase space considered.

6.3 Numerical implementation

In this section we discuss the numerical implementation of the Trans-

port equation. In particular we discuss the test-particles method, used

to sample the distribution function and to solve the Vlasov equation of

sampling the distribution function, and the stochastic method, used to

evaluate the collision integral.

6.3.1 Test-particle method

In order to solve the transport equation we use the test particle method,

introduced by Wong [112] and used in almost all transport calculations

[113][114][115]. The test particle method consists in sampling the phase

space distribution function by a large number of test particles. Usually

the test particles are chosen point-like, i.e. δ function in coordinate and
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6.3 Numerical implementation

momentum space,hence the phase space distribution can be written as a

sum of the δ test particle distribution:

f (x, p, t)= A
Ntest
∑

i=1
δ3(x− xi(t))δ

3(p− pi(t)) (6.26)

where xi(t) and pi(t) are respectively the position and the momentum of

the i-th test particle; Ntest is the total number of test particles while A is

a normalization factor that is related to the total number of particles in

a way that the integral over the phase space of the distribution function

is equal to the total number of particles:
∫

d3x

∫

d3 p

(2π)3 f (x, p, t)= A

(2π)3 Ntest = Nparticles (6.27)

where (2π)3/A is equal to the number of test particles per real particles.

Once the test particles have been introduced, the solution of the trans-

port equation reduces to solve the classical equation of motion for the

test particles. The i-th test particles in momentum space belongs to the

mass-shell hypersurface pµpµ = m2. It can be shown, using the Liou-

ville theorem, that the phase space distribution given as a collection of

point-like test particles is a solution of the Boltzmann-Vlasov equation

(6.22) if the positions and momenta of test particle obey the relativistic

Hamilton equations

ẋi =
pi

E i

; ṗi =−∇xE i + coll (6.28)

where the term coll indicates the effect of the collision integral, whose

numerical implementation will be described in the next subsection. The

equation of motion that are solved numerically are

pi(t+∆t)= pi(t−∆t)−∇xE i + coll

xi(t+∆t)= xi(t−∆t)−2∆
pi(t)

E i(t)
(6.29)

where index i refers to i-th test particle and ∆t is the time discretization.

The partonic cascade code we used to perform our tasks is composed of

four routines written in FORTRAN programming language.

110
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• The head of the code is a main routine, named i.e. "cascade" which

reads the input files and calls the other routines which compose

the body of the simulation.

• In the "init" routine all initial particles spectra in coordinate and

momentum space are set up in the centre of mass frame of the

system. Test particles of each flavour are randomly sampled in

every cell, and their motion and momentum variation can than be

followed during the whole simulation.

• In the "prop" routine test particle positions and momenta coordi-

nates are changed at each mesh time δt by solving the equation of

motion Eqs. (6.28) which are thus numerically implemented like














~pi(t+δt)=~pi(t−δt)−2δt ·
(

∂~pi

∂t

)

coll

~r i(t+δt)=~r i(t−δt)−2δt ·
(

~pi

E i(t)

)

The jump to the new trajectory point is evaluated by knowing at

first the momentum and energy at time t and the variation of

their values after a time step δt. A key point of the code opera-

tion is that all test particles must satisfy on-shell condition E i(t)=
√

|~pi(t)|2 +m2
i

which is checked at every period interval. The vari-

ation of particles momentum is evaluated by a third important rou-

tine which solves numerically the collision integral C [ f ].

• In the "coll" routine the numerical implementation of the collision

integral C [ f ] of Boltzmann equation is pursued. In order to solve

numerically the collision integral we make use of the stochastic

method employed for the first time by Greiner and Xu in their par-

tonic cascade code BAMPS [23]. In contrast to more widespread

algorithms which face the problem of collisions in a geometrical

approach and which has been proven not conserve Lorentz covari-

ance entailing a violation in the causality. The stochastic model,
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6.3 Numerical implementation

instead, appears to be a good algorithm for overcoming such prob-

lem, as thoroughly studied in ref.[23].

6.3.2 Simulation of quark dynamics

In this subsection we will discuss the numerical implementation of

the collision integral based on the stochastic method. In this method a

probability collision P22 is associated to pairs of particles: if probability

is grater than a random number between 0 and 1 the collision takes

place. The P22 can be derived from the collision term of the Boltzmann-

Vlasov equation. The probability in unit volume ∆
3x and unit time ∆t

can be defined as the ratio between the number of collisions that happen

in such volume ∆
3x during the time ∆t and the total number of pairs

present in the same unit volume

P22 =
∆N2→2

coll

∆N1∆N2
(6.30)

where ∆N2→2
coll

coll is simply derived from the collision integral that in

discretized form can be written as

∆N2→2
coll

∆t
1

(2π)3∆
3x∆3 p1

= 1

2E1

∆
3 p2

(2π)3 2E2
f1 f2

1

ν

∫

d3 p′
1

(2π)3 2E′
1

d3 p′
2

(2π)3 2E′
2

×

× |T12→1′2′|2 (2π)4δ4(p1 + p2 − p′
1 − p′

2) (6.31)

Let us introduce the definition of cross section for a particle of mass mi

σ22 =
1

4F

1

ν

∫

d3 p′
1

(2π)3 2E′
1

d3 p′
2

(2π)3 2E′
2

|T12→1′2′ |2 (2π)4 δ4(p1 + p2 − p′
1 − p′

2)(6.32)

where F =
√

(p1 · p1)−m2
1m2

2 is the so called invariant flux and from

which the relative particle velocity comes out

vrel =
F

E1E2
=

√

[s− (m1 +m2)2][s− (m1 −m2)2]

2E1E2
(6.33)
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introducing the Mandelstam variable s = (p1 + p2)2 which is equivalent

to the square of total centre of mass energy of the collision. Using the

definition of cross section the collision rate ∆N2→2
coll

becomes

∆N2→2
coll =

(

∆
3 p1

(2π)3
f1

)(

∆
3 p2

(2π)3
f2

)

∆
3x∆tσ22 vrel (6.34)

The total number of pair present in a unit volum is given by

∆N1∆N2 =
(

∆
3 p1∆

3x

(2π)3 f1

)(

∆
3 p2∆

3x

(2π)3 f2

)

(6.35)

The definition of probability P22, finally becomes

P22 = vrel σ22
∆t

∆3x
(6.36)

If one uses the test particle method the probability has to be multiplied

by 1/Ntest. In the limit ∆t → 0 and ∆
3x → 0, P22 is a Lorentz invariant

and the stochastic method converges to the exact solution of the Boltz-

mann equation. The space-time discretization has to be chosen smaller

than the typical scales of spatial and temporal inhomogeneities of par-

ticles densities. Only particles being in the same cell can collide each

other, and the collision probability has to be calculated for each pair in-

side the cell and compared with a random number extracted between 0

and 1. If the random number is less than the collision probability the

collision will occur and the momenta of the particles after the collision is

sampled according to the differential cross section. This approach repro-

duces the proper collisions rate. Strictly speaking, such collisions have

not to be considered as real collisions but as a way to map the evolu-

tion of the phase space induced by the matrix element Ti→ f (sampled

stochastically).

6.4 Coalescence

The coalescence model described in 3.4.2 is able to describe well both

spectra and ratio at RHIC and LHC, as shown in Chapter 4. Further-

more we have also said that a colescence approach to hadronization can
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explain the behaviour of particles elliptic flow observed at RHIC. In par-

ticular a naïf approximation leads to a perfect quark number scaling (see

Eq.3.10). But a more realistic approach to coalescence in three dimen-

sions with radial flow correlations, finite hadronic wave function widths,

and resonance decays shows that about a 10% breaking has to be ex-

pected at intermediate pT , and quite a larger one at low pT . At LHC

energy experimental data show a larger breaking of the scaling with

respect to the one observed at RHIC or predicted by more realistic coa-

lescence models.

However, we note that these data are based on event-by-event analysis

that shows the presence of higher harmonics like v3, v4, v5 which also

have a quite large variance. This can be expected to further break the

naïf quark number scaling of the v2(pT ). A quantitative approach to this

problem requires an extension of the present model.

The coalescence implementation described so far is obtained by a "freez-

ing snapshot" of our system, all the informations are encoded in a distri-

bution function created by fixing an hypersurface in space-time. Within

this approach only averaged or integrated quantities such as the parton

transverse momentum distribution and elliptic flow profile in pT can be

taken into account.

These intrinsic limitations do not come from the model itself but are due

to implementation.

It is natural, with the purpose of a more realistic and deep analysis, to

apply the coalescence model to a Boltzmann Transport Equation, there-

fore extending our approach to an event-by-event Monte Carlo one.

An approach of this kind can allow new considerations. Such as to study

the effect, on final particles, of transport coefficient of QGP, such as shear

viscosity, or spacial and time informations that regard particles forma-

tion of different species. Moreover this approach can allow one to study

the consequence of initial fluctuations in phase-space, or other possible
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effects due to presence of correlations between particles that are cur-

rently ignored, or the effect of space-momentum correlation on the final

v2 of mesons and baryons.

The basic idea is that, when the energy density of a fluid cell drops

below the critical energy density value, a freeze-out occurs and all the

informations about quarks in that cell, i.e. position, proper time, mo-

mentum and energy, are stored and are not allowed to change further.

Once the freeze-out occurs for all the test-particles, than the coalescence

integral is evaluated.

Fixing the i-est test-particle, probability to coalesce into a test-meson is

obtained counting all the j-est test-particle whose coordinates and mo-

menta satisfy the conditions given by the Wigner function widths.

So coalescence integrals in Eqs.(3.28), (3.29) are evaluated with the dis-

tributions described in Eq.(6.18) as Pq(i).

The generic meson coalescence integral in Eq.(3.18)

NM = gM

∫

p1 ·dσ1 p2 ·dσ2
d3 p1

(2π)3E1

d3 p2

(2π)3E2

× fq(x1; p1) f q̄(x2; p2) fM(x1, x2; p1, p2)

using Eq.(3.19) becomes

NM = gM

N2
test

Ntest
∑

i, j

fM(xi, x j; pi, p j)=

= gM

N2
test

9π

2(∆x∆p)3

Ntest
∑

i, j

Θ
(

∆
2
x − (xi − x j)

2)

Θ
(

∆
2
p − (pi − p j)

2 + (mi −m j)
2)

(6.37)

The factor 1/N2
test in the equation above is necessary to normalize to the

real pion number. Proceeding in a similar way we get also the number

of baryons produced.
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NB = gB

N3
test

Ntest
∑

i, j,k
fB(xi, x j, xk; pi, p j, pk)=

= gB

N3
test

(

9π

2(∆x∆p)3

)2 Ntest
∑

i, j

Θ

(

∆
2
x −

1

2
(xi − x j)

2
)

Θ

(

∆
2
p −

1

2
(pi − p j)

2
)

×Θ

(

∆
2
x −

1

6
(xi + x j −2xk)2

)

×Θ

(

∆
2
p −

1

6

[

(pi + p j −2pk)2 − (mi +m j −2mk)2]
)

(6.38)

We can also obtain the mesons and baryons momenta distribution since

we have all the informations about momenta, rapidity and position.
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Figure 6.1: Pions and protons multiplicity at zero rapidity for different values of Ntest

After numerical implementation, it is important to check if results

converge varying the number of test-particles used to sample the phase

space. In Fig.6.1 are shown the multiplicity dN/d y with y = 0, as a

function of test-particle number. We can see a satisfying stability in the

number of pions (black squares) and protons (red circles) produced for
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ntest values around 300.

Another interesting test is the percentage of particles subjected to

freeze-out with respect to the total number of particles. As shown in

Fig.6.2 RHIC and LHC have a different lifetime of the fireball. Where at

RHIC energies at 5−6 f m/c the percentage of particle available for the

hadronization is almost the total number. A different time can be needed

to reach a satisfying percentage when the system dimensions change, as

shown by the LHC energies where in this case we have that the lifetime

is about 9−10 f m/c. Hence this quantity is affected by the system size,

and can change varying the energy density at which hadronization oc-

curs. An higher value of freeze-out energy density is expected to give a

faster rise in the in the number of particle subjected to freeze-out.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t [fm]

0

10

20

30

40

50

60

70

80

90

100

%
 p

ar
ti

cl
e 

fr
ee

ze
-o

u
t

RHIC

LHC

Figure 6.2: Percentage of test particles subjected to freeze-out for a single quark flavour
at RHIC (red circles) and at LHC (blue diamond)

6.4.1 Results

Some preliminary results about pions, kaons and protons transverse

momentum distribution in Au+ Au collision
p

s= 200GeV at centrality

0−5% are shown in this section. In our calculation the initial conditions
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Figure 6.3: Different η/s parametrization as a function of T/Tc

are longitudinal boost invariant with the initial parton density dN/d y=
1400 (2500) at RHIC (LHC). The partons are initially distributed in co-

ordinate space according to the Glauber model while in the momen-

tum space we have a thermalized spectrum with a maximum temper-

ature in the center of the fireball T = 340 MeV = 2Tc at RHIC and

T = 510 MeV = 3Tc at LHC. We have massive quarks, with masses set at

mu,d,ū,d̄ = 330 MeV and ms,s̄ = 450 MeV , as used in the previous model.

We start our simulation at t0 = 0.6 f m/c at RHIC and at t0 = 0.3 f m/c in

the LHC case, similarly to hydrodynamical initial conditions.

We have performed calculations with two values for the viscosity, 4πη/s=
1 (dashed orange line in Fig.6.3) and 4πη/s= 2 (dot-dashed red line) and

the viscosity is maintained fixed during the whole evolution of the sys-

tem. Moreover we have performed simulations with an η/s that changes

with temperature and assumes a value 1/4π in QGP phase and increases

in the cross over region towards the estimated value for hadronic mat-

ter 4πη/s = 6, this case is depicted in Fig.6.3 by solid blue line. Another
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case, shown by double dotted-dashed green line, has been considered in

which the viscosity in the QGP phase is expected to have a minimum of

4πη/s= 1 close to Tc, while at high temperature η/s∝ T as suggested by

quasi-particle models [105].

The spectra obtained are comprehensive of contributions that come from

resonance decays with the same method discussed in Chapter 4.

In Fig.6.4 the pion spectrum at viscosity 4πη/s = 1 and all the con-
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Figure 6.4: Pion transverse momentum distribution at viscosity 4πη/s = 1 including
contribution from resonances in Au+Au collision

p
s = 200GeV at central-

ity 0−5%, data by PHENIX [78] [79]. Direct pions are shown by the solid
red line, pions from ρ resonance are indicated by the dashed blue line, pi-
ons from K* are the dot-dashed green line and pions from ∆ are shown by
the double dashed-dot violet line. The total pion spectrum is shown by the
solid orange line

tributions from resonances decay are shown for Au+ Au collision
p

s =
200 GeV at centrality 0−5% in comparison with data by PHENIX [78]

[79]. We find a really good agreement in the intermediate transverse mo-

mentum region. There is a lack of yield in the region below pT ∼ 1 GeV .

This region, as said in Chapter 4, is dominated by the resonances and in

this calculation we take into account only pion coming from ρ, K* and ∆.
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In Fig.6.5 pions, kaons and protons spectra at viscosity 4πη/s = 1, in-

clusive of all the contributions from resonances decay are depicted for

Au+ Au collision
p

s= 200GeV at centrality 0−5%, in comparison with

PHENIX [78] [79] and STAR [80] data. The dashed lines represent the

contribution from the fragmentation, such contribution became relevant

for momenta higer than 3 GeV since in the region at lower momenta co-

alescence is the predominant hadronization mechanism. The final frag-

mentation hadronic spectrum comes from

dNH

d2 pT

=
∫1

0
dx x

∑

f

dN f

d2 pT

DH
f (x,Q2) (6.39)

where x = pH
T

/p f

T
is the fraction of the f parton carried by the hadron

H and Q = p
f

T
/2 is the energy scale, and dN f /d2 pT are the spectra ob-

tained from the parton Boltzmann Transport Equation.

The thick solid lines are the sum of coalescence and fragmentation
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Figure 6.5: Total pion, proton and kaon spectra in Au+ Au collision
p

s = 200GeV at
centrality 0−5%. Data are from PHENIX [78] [79] and STAR [80] experi-
ment

distribution. As already discussed our results describe reasonably well
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6.4 Coalescence

the region at low and intermediate momenta, while for higher momenta

(pT > 4−5 GeV ) we underestimate the experimental data, however this

is not due to the hadronization process but it has to be ascribed to the

partonic spectrum, that is oversuppressed in the region at high pT . In

fact our approach of fixing the viscosity to get the interaction is effec-

tive to reproduce the correct dynamics in the low momentum region

(pT < 4 GeV ), but overestimates the interaction for higher momenta.

Moreover one ingredient which is necessary to describe this region of

momenta, i.e. the radiative mechanism, have not been taken into ac-

count in the present Boltzmann transport approach.

The total distribution obtained by the sum of coalescence and fragmen-

tation are represented by the solid thick lines, we can see how also for

kaons and protons our results are in good agreement with the experi-

mental data.

In Fig.6.6 pions, kaons and protons spectra at viscosity 4πη/s= 1, inclu-
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Figure 6.6: Total pion, proton and kaon spectra in Pb+Pb collision
p

s = 2.76 TeV at
centrality 0−5%. Data are from ALICE experiment [84–87]

sive of all the contributions from resonances decay and fragmentation

121



6.4 Coalescence

are shown for Pb+Pb collision
p

s = 2.76 TeV , in comparison with AL-

ICE experiment [84–87] data. Also at LHC energy our results give a

good description of experimental data, similar to RHIC case we have

a lack of yield in the low momentum region due to missing of all reso-

nances contribution.

It is interesting to investigate the effect of shear viscosity to entropy

density ratio.

In Fig.6.7 we show pion spectra obtained with different values of viscos-

ity. Viscosity temperature dependence leads to not negligible differences

in the spectra, especially in the region of intermediate and high momen-

tum. It is interesting to note that in this approach coalescence give an

higher production in a zone that is dominated by fragmentation.

In Fig.6.8 are shown pion spectra with different viscosity for Pb+Pb
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Figure 6.7: Total pion spectra for different η/s scenarios dependence in Au+ Au colli-
sion

p
s = 200GeV at centrality 0−5%

collision
p

s = 2.76 TeV at centrality 0−5%. As shown we have a good

description of the experimental data, for viscosity 4πη/s ∼ 2 which is a
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factor two larger than the η/s extracted at RHIC energies. Therefore the

comparison between our results with experimental data at RHIC and

LHC suggest that they are consistent with a temperature dependent η/s

in agreement with the one obtained by viscous hydrodynamical calcula-

tions [116].

In order to study the effect of the kinetic freezeout on the generation

of the elliptic flow we have performed three kind of calculations that are

shown in Fig.6.9, one with a constant 4πη/s = 1 during all the evolution

of the system (orange line), another with 4πη/s = 2 (red solid line), and

the last one with η/s ∝ T at higher temperature and an increasing η/s

in the cross over region towards the estimated value for hadronic matter

4πη/s= 6 (green solid line).

In a similar way as observed in previous studies [117], the effect of η/s

ratio is a reduction of the elliptic flow of pions of about 10% for both en-

ergies. In fact at RHIC energies, the life time of the fireball is smaller
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Figure 6.9: Differential v2(pT ) at midrapidity and for (20-30)% collision centrality. The
comparison is between the two systems: Au+Au at

p
s = 200 GeV (left) and

Pb+Pb at
p

s = 2.76 TeV (right). The orange line refer to the case with a
constant 4πη/s = 1 during all the evolution. The red lines refer to the case
with 4πη/s= 2 while the green lines refer to the case withη/s∝ T at higher
temperature and with an increasing η/s ratio at lower temperature.

than that at LHC energies, that are approximatively 5 f m/c at RHIC

and about 9−10 f m/c at LHC (see Fig.6.2).

As a consequence at RHIC the elliptic flow has not enough time to fully

develop in the QGP phase. Whereas at LHC we have that the v2 can

develop almost completely because the fireball spend more time in the

QGP phase.

As we can see in Fig.6.9, at RHIC the pion elliptic flow is essentially not

sensitive to the dependence of η/s on temperature in the QGP phase (see

Fig.6.3), in fact in the left panel, the line with 4πη/s= 1 (orange) and the

line with η/s with temperature dependence (green) are very close.

At LHC energies the build-up of v2 is more affected by the η/s in the QGP

phase and on average it is reduced of about a 10% and tends to the line

at higher viscosity.

In Fig. 6.10 and Fig.6.11 we compare the elliptic flow of pions at

midrapidity for 20-30% centrality class with the experimental data from

PHENIX [118] and ALICE[119](open circles).

In the figures are shown the elliptic flow of pions produced via coales-

cence (orange solid line), the v2 at partonic level (green dashed line),

and the elliptic flow obtained with both coalescence and fragmentation
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Figure 6.10: Elliptic flow of pions in function of transverse momentum in Au+Au col-
lisions at

p
s = 200 GeV . Elliptic flow of partons is given by the dashed

green line. The solid orange line shown the elliptic flow of pion produced
by coalescence. The solid blue line represent the elliptic flow obtained
with both coalescence and fragmentation. Experimental data by PHENIX
experiment are shown by circle[118]

(blue solid line).

The comparison with experimental data of the elliptic flow obtained with

only coalescence overestimate the v2 observed experimentally in the mo-

mentum region above 2 GeV , on the other hand the elliptic flow of par-

tons is about two times smaller than the experimental data.

As said before the fragmentation process play a relevant role in the re-

gion at higher momenta (pT > 3 GeV ), therefore in order to get the el-

liptic flow of pion at high pT it is necessary to take into account the

contribution due to the fragmentation process. Assuming that the par-

ticle produced by the fragmentation are emitted collinearly with respect

to the initial direction of the initial parton, thus the elliptic flow of the

produced hadrons will results substantially unchanged with respect to

the partonic elliptic flow. The final elliptic flow is given by the weighted

average of partonic and coalescence elliptic flow where the weight is the

transverse momentum distribution.
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6.4 Coalescence

Our model is the first attempt to combine a microscopic partonic ap-

proach with a coalescence model, this at difference with the other coa-

lescence models allow us to evaluate the elliptic flow while in standard

approaches the partonic v2 is just an input determined to reproduce the

pion one and predict the elliptic flow of other hadrons and in particu-

lar of baryons. Although the elliptic flow that we obtain does not ex-

actly reproduce the experimental data it gives important indication that

an approach in which the elliptic flow is obtained only via coalescence

overestimates the experimental data, on the other hand in the region

of intermediate momentum the elliptic flow of the partonic medium is

substantially below the experimental data. Instead a model that take in

account of both coalescence and fragmentation is able to give a reason-

able description of the elliptic flow behaviour in a quite large range of

momenta.
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Figure 6.11: Elliptic flow of pions in function of transverse momentum in Pb+Pb colli-
sions at

p
s= 2.7TeV . Elliptic flow of partons is given by the dashed green

line. The solid orange line shown the elliptic flow of pion produced by co-
alescence. The solid blue line represent the elliptic flow obtained with
both coalescence and fragmentation. Experimental data by ALICE [119]
experiment are shown by circle.

Ultimately, preliminary study about the implementation of a coales-
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cence approach to hadronization coupled to a Transport Equation seems

to give satisfying results in the description of final particle momentum

distribution. We note that the approach developed will allow in the up-

coming future to investigate the quark number scaling of the elliptic flow

in a coalescence approach that is at an higher level of sophistication. In

fact the coupling of hadronization to distribution function coming from

realistic simulation allows to study the impact of realistic hypersurface

and event-by-event fluctuations of a naïf quark number scaling. This

would provide an appropriate framework to scrutinize the sources of the

quark number scaling violations observed experimentally at LHC en-

ergy.
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OUTLOOKS

In this thesis we have developed a numerical code to implement an

hadronization model based on a quark coalescence mechanism.

Our first purpose has been to reproduce the transverse momentum spec-

tra and the particle ratio at RHIC and LHC for pions, kaons, protons

and Lambda with an implementation based on a coalescence model ap-

plied for a fixed hyper-surface. At RHIC, we obtain a good description

of transverse momentum spectrum in the whole range of momenta. At

low momenta we show that the coalescence process is dominant, and

we have seen that in the region below 1 GeV a significant contribution

comes from the decay of the resonance produced. Instead the fragmenta-

tion from minijets becomes dominant in the region of higher momenta.

For the intermediate transverse momentum, between 3 and 5GeV , the

two contribution are comparable and combining both coalescence and

fragmentation hadronization process results necessary for a correct de-

scription of the experimental data.

Furthermore our model reproduces experimental data for both proton

to positive pion ratio and Lambda to kaons ratio specially in the inter-
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mediate transverse momenta region where an anomalous large value is

observed. The features of these ratios was one component of the so-called

"baryonic puzzle".

We can see that the ratio is quite well predicted in its rise at low trans-

verse momenta up to the peak region as well as in the falling-down re-

gion. However in both cases it is clear that in the region of pT ≈ 5−7 GeV

there is a lack of baryon yield.

We find a good agreement of the transverse momentum distribution at

LHC, the model is able to correctly predict the evolution of the absolute

yield and especially its pT shape correctly, is important to notice that no

parameter of the coalescence process has been modified with respect to

those used for RHIC. In the pT region where the fragmentation starts

to dominate, pT ≃ 6−7 GeV there is some lack of yield. At both RHIC

and LHC such a lack of yield appears where coalescence becomes less

important therefore one can say that it seems that the spectrum from

AKK fragmentation function appears too flat. It is likely that studies

of in-medium fragmentation function, with the idea to describe the in-

medium fragmentation as a quark recombination of shower partons tak-

ing into account also the gluon splitting into quark pairs that recombine,

can solve it or it could be that coalescence contribution should extend to

large pT with respect to the present modelling.

The baryon to meson ratios at LHC present similar features of that at

RHIC, but with a shift in the peak of about 0.5 GeV , and this is well

predicted by our coalescence plus fragmentation model, most of the dis-

agreement with the data comes from the lack of yield in the distribution

from fragmentation that, as said, appears too soft in this pT range.

Ultimately we show also the φ meson spectra, it is often discussed whether

the pT spectra of φ meson would have a slope close to the one of the

proton like in a hydropicture or would behave like other mesons being

formed by two quarks. We briefly mention that indeed also in a coales-
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cence process one can and should expect that there is a radial flow mass

effect like in a hydropicture. In fact for a proton there is a combina-

tion of three quarks flowing each with a mass of about 330 MeV while

for a φ meson there are two quarks flowing each with a mass of about

550 MeV . We can see that as for the other ratios we have quite good

agreement with the data.

Then we have studied the hadronization effect with a coalescence model

applied in the heavy quark sector. At both RHIC and LHC energies the

relation between Heavy Quarks nuclear modification factor RAA and the

elliptic flow v2 observed which indicate a quite strong interactions be-

tween heavy quarks and the medium which is substantially beyond the

expectations coming from perturbative QCD. Several theoretical efforts

have been made to reproduce the RAA and the v2 observed in experi-

ments but all the approaches show some difficulties to describe them

simultaneously.

Comparing the D meson nuclear modification factor obtained consider-

ing only fragmentation with results for RAA obtained including coales-

cence mechanism we can observe that coalescence implies an increasing

of RAA for momenta larger than 1 GeV , thus a reduction of the suppres-

sion. The impact of coalescence decreases with transverse momentum

because at higher pT the D meson spectrum is dominated by the frag-

mentation mechanism of hadronization. At the same time coalescence

gives a D meson elliptic flow that is larger than charm quark elliptic

flow. We obtain analogous results at both RHIC and LHC, but at LHC

the final effect of coalescence is smaller in magnitude.

A key result which emerges from our study is that in order to get the

same RAA that we have without including coalescence is necessary to

further increase the interaction, which causes an additional increase of

the elliptic flow. Coalescence inverts this relation, implying a contempo-

rary increase of both these two observables and this is fundamental to
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reproduce the experimental data.

In the final part we have presented a more realistic implementation of

coalescence model, in which we have developed a model self-consistently

applied to the freeze-out hypersurface of a Boltzmann Transport equa-

tion. Comparing the transverse momentum distribution of pions, kaons

and protons with the experimental data at RHIC and LHC we find a re-

ally good agreement in the intermediate transverse momentum region.

While for higher momenta we slightly underestimate the experimental

data, however this can be ascribed to the partonic spectrum that results

over-suppressed in the region at high pT .

Finally we have studied the elliptic flow for pions and we have obtained

that the coalescence overestimate the v2 observed experimentally in the

momentum region above 2 GeV , on the other hand in the same region

the elliptic flow of fragmentation is about two times smaller than the

experimental data. But the final elliptic flow is given by the weighted

average of fragmentation and coalescence elliptic flow and although the

elliptic flow that we obtain does not exactly reproduce the experimental

data it gives important indication that an approach that take in account

of both coalescence and fragmentation is able to give a reasonable de-

scription of the elliptic flow behaviour in a quite large range of momenta.

The results of our work can be a starting point for further investigations.

We note that the approach developed will allow in the upcoming future

to investigate the quark number scaling of the elliptic flow in a coales-

cence approach that is at an higher level of sophistication. In fact the

coupling of hadronization to distribution function coming from realistic

simulations will allow to study the impact of realistic hypersurface. In

particular it will be possible to study the role of the initial state fluctua-

tions on the final anisotropic flows of hadrons (π,p, k, ...) extending the

possibility to study the higher order harmonics like v3, v4, v5 that can

be expected to break the naive quark number scaling of the v2(pT ). This
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provides an appropriate framework to scrutinize the sources of the quark

number scaling violations observed experimentally at LHC energy.
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Appendix A: Dirac Matrices

Dirac γ matrices satisfy

{

γµ,γν
}

≡ γµγν+γνγµ = 2ηµν

Therefore γ2
0 = 1 and, for each i, (γi)2 = −1; γ0 is hermitian while, for

each i, γi is antihermitian,

(γ0)† = γ0, (γi)† =−γi

or, more compactly, (γµ)† = γ0γµγ0.

The matrix γ5 is defined as

γ5 =+iγ0γ1γ2γ3,

and satisfies

(γ5)2 = 1, (γ5)† = γ5,
{

γ5,γµ
}

= 0.

Two particularly useful representations of the γ matrix algebra are

γ0 =
(

0 1
1 0

)

, γi =
(

0 σi

−σi 0

)

, γ5 =
(

−1 0
0 1

)
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(here 1 denotes the 2×2 identity matrix), which is called the chiral or

Weyl representation, and

γ0 =
(

1 0
0 −1

)

, γi =
(

0 σi

−σi 0

)

, γ5 =
(

0 1
1 0

)

which is called the ordinary, or standard, representation.

The Pauli matrices (σi) are

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i

i 0

)

, σ3 =
(

1 0
0 −1

)

and satisfy

σiσ j = δi j + iǫi jkσk.
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Appendix B: Laboratory frame and centre-

of-mass frame

Consider the following reaction with a two-body initial state:

a+b → c+d+ e+ ...

and call a the projectile and b the target particle. In the laboratory frame

the target is at rest and the projectile strikes it with an energy Elab and

a momentum plab. After the collision, the particles in the final state,

c, d, e, ..., are usually moving. In the center-of-mass frame, which actually

means the center-of-momentum frame, the sum of the momentum vectors

of all particles in the initial state and that in the final state vanish.

Namely, the two frames are defined as follows:

• Laboratory frame

plab
b = 0, Elab

b = mb

• Centre of mass frame

pcm
a + pcm

b = pcm
c + pcm

d + pcm
e + ...= 0

where mb is the rest mass of particle b. In the center-of-mass frame, both

particles, a and b, in the initial state approach each other with equal but

opposite momentum. Only the energy available in the center-of-mass

frame can be used to produce new particles or to excite internal degrees

of freedom. In order to obtain the relation between the energies in the

laboratory and center-of-mass systems, we utilize Lorentz invariance.

We define the following Lorentz scalar quantity, s, which is one of the

Mandelstam variables:

s≡ (pa + pb)2 ≡ (pa + pb)µ(pa + pb)µ

where pa (pb) is the four-momentum of the particle a ( b ). By definition,

s, is the same in all coordinate systems.
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Consider a relativistic collision between two particles with the same rest

mass m, using the equations above, we obtain

• Laboratory frame

plab
a = (Elab, plab)

plab
b = (m,0)

s ≡ (pa + pb)2 = (plab
a + plab

b )2

= (Elab +m)2 − (plab)2 = (Elab +m)2 − [(Elab)2 −m2]

= 2mElab +2m2

• Centre of mass frame

pcm
a = (Ecm/2, pcm)

pcm
b = (Ecm/2,−pcm)

s ≡ (pa + pb)2 = (pcm
a + pcm

b )2 = (Ecm)2

(6.40)

and we obtain

Elab = (Ecm)2

2m
−m

With Elab ≫ m, which corresponds to an extremely relativistic or ultra-

relativistic case, the energy Ecm(=
p

s) becomes

p
s = Ecm ≃

√

2mElab

This equation shows that the centre of mass energy which is useful for

producing new particles increases only as the square root of the labora-

tory energy in relativistic energies. This is the reason why we have to

construct relativistic collider-type accelerators.
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Appendix C: Rapidity and pseudo rapidity

In relativistic mechanics, the addition law of the velocities moving

along, for example, the z-axis is non-linear:

v = v1 +v2

1+ v1v2

c2

or β= β1 +β2

1+β1β2

where β = v/c. Let us introduce a function y ≡ y(β) so as to make the

addition law of y linear in y.

Recalling the following addition law:

tanh−1β1 ± tanh−1β2 = tanh−1 β1 ±β2

1±β1β2

we obtain

y= tanh−1β= 1

2
ln

1+β

1−β

which we call rapidity.

For small β, we have y ≃ β; i.e., the rapidity is a relativistic analogue

of the velocity. The rapidity increases without bound as the particle ve-

locity approaches the velocity of light. Since β= pz/E, the rapidity may

also be expressed as follows:

y= tanh−1β= 1

2
ln

E+ pz

E− pz

where pz indicates the momentum along the z-axis (longitudinal mo-

mentum).

A Lorentz boost along the longitudinal axis from a frame S to a new

frame S′ thus changes the rapidity in a simple additive way:

y′ = y′+ tanh−1β

where β is the velocity of S′ with respect to S. Consequently, a particle

distribution expressed as a function of y has a shape that is invariant

under such a boost.
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The transverse momentum, pT and the longitudinal momentum, pz of

a particle having rest mass m and momentum vector p = (Px, py, pz) are

given by

pT =
√

p2
x + p2

y = |p|sinθ, pz = |p|cosθ

where θ is the polar angle of the vector p with respect to the z-axis. By

using these variables we define the transverse mass, mT , as

m2
T = p2

T +m2, E2 = p2
z +m2

T

Then the rapidity can be rewritten as follows

y= ln
E+ pz

mT

The four-momentum, pµ, and the space-time coordinates are thus con-

veniently parametrized as

pµ = (E, px, py, pz) = (mT cosh y, pT cosφp, pT sinφp, mT sinh y)

= (mT cosh y, pT , mT sinh y)

xµ = (t, x, y, z) = (τcoshη, rT ,τsinhη)

with τ the proper time, and rT the transverse coordinates.

This parametrization is valid also for an off-shell time-like particle if we

define m2 = p2.

Next we define the pseudo-rapidity

η≡− ln
(

tan
θ

2

)

.

If the particle masses are negligible, i.e. E2 = p2 +m2 ≃ p2, we

y≃ 1

2
ln

p+ pz

p− pz

= 1

2
ln

1+cosθ

1−cosθ
=− ln

(

tan
θ

2

)

= η

Therefore, at extremely high energies (E ≫ m), the rapidity, and the

pseudorapidity are equivalent. The pseudo-rapidity is useful because it

can be determined directly from the particle production angle, θ, mea-

sured with respect to the beam axis in experiments.
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