
Dipartimento di Matematica e Informatica

Dottorato di ricerca in Informatica

IMAGE REPRESENTATION USING CONSENSUS

VOCABULARY AND FOOD IMAGES

CLASSIFICATION

MARCO MOLTISANTI

A dissertation submitted to the Department of Mathematics and Computer Science

and the committee on graduate studies of University of Catania, in fulfillment of

the requirements for the degree of doctorate in Computer Science.

ADVISOR

Prof. Sebastiano Battiato

CO-ADVISORS

Prof. Giovanni Maria Farinella

Dr. Arcangelo Ranieri Bruna

XXVIII Ciclo



Contents

1 Introduction 1

2 Feature Aggregation 5

2.1 Visual Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Capturing the shape and its layout: Pyramid of Histograms

of Orientation Gradients (PHOG) . . . . . . . . . . . . . . . . 7

2.3 Clustering Analysis and Consensus Ensemble . . . . . . . . . . 10

2.4 Consensus Clustering via Expectation – Maximization . . . . . 13

2.4.1 Experimental Results . . . . . . . . . . . . . . . . . . . 15

2.5 Semi-Naive Consensus Clustering . . . . . . . . . . . . . . . . 20

2.5.1 Experimental Results . . . . . . . . . . . . . . . . . . . 22

3 Food Classification 27

3.1 Introduction and Motivations . . . . . . . . . . . . . . . . . . 27

3.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Detection and recognition for automatic harvesting . . 30

3.2.2 Quality assessment of meals produced by industry . . . 34

3.2.3 Food logging, dietary management and food intake

monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Food classification and retrieval . . . . . . . . . . . . . 40

i



CONTENTS ii

3.3 Classification using texture-based features . . . . . . . . . . . 49

3.3.1 Experimental settings and results . . . . . . . . . . . . 51

3.4 Classifications using consensus vocabularies . . . . . . . . . . 56

Appendices 61

A Image Forensics 62

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Motivation and Scenarios . . . . . . . . . . . . . . . . . . . . . 63

A.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.4 Social Network Image Analysis . . . . . . . . . . . . . . . . . 65

A.4.1 Facebook resizing algorithm . . . . . . . . . . . . . . . 65

A.4.2 Quantitative measures . . . . . . . . . . . . . . . . . . 69

A.4.3 Quantization Tables . . . . . . . . . . . . . . . . . . . 73

A.4.4 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . 74

B Saliency-based feature selection for car detection 76

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.2 Contrast-based saliency computation . . . . . . . . . . . . . . 77

B.2.1 Global approach . . . . . . . . . . . . . . . . . . . . . 77

B.2.2 Region-based approach . . . . . . . . . . . . . . . . . . 79

B.3 Graph based visual saliency . . . . . . . . . . . . . . . . . . . 80

B.4 Frequency Tuned . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.5 Spectral Residual . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.6 Experiments and evaluation . . . . . . . . . . . . . . . . . . . 84

B.6.1 Ground-truth images . . . . . . . . . . . . . . . . . . . 84

B.6.2 Test 1: Saliency reliability . . . . . . . . . . . . . . . . 85

B.6.3 Test 2: Image Coverage . . . . . . . . . . . . . . . . . 85

B.6.4 Test 3: True Positive Rate VS Coverage . . . . . . . . 87



CONTENTS iii

B.6.5 Test 4: ROC Curve . . . . . . . . . . . . . . . . . . . . 89

B.7 Test 1: Reliability on the sequences of the TME Dataset . . . 91

B.8 Test 2: Image Coverage on the sequences of the TME dataset 98

B.9 Test 3: TPR vs Image Coverage on TME sequences . . . . . . 104

B.10 Test 4: ROC Curve on TME sequences . . . . . . . . . . . . . 110

References 115



List of publications

• Proceedings S. Battiato, M. Moltisanti, F. Rav̀ı, A. R. Bruna, and

F. Naccari, Aestethic scoring of digital portraits for consumer applica-

tions in Proceedings of SPIE 8660 - Digital Photography IX 866008

(February 4, 2013);

• Proceedings G.M. Farinella, M. Moltisanti, S. Battiato, Classifying

food images represented as Bag-of-Textons in Proceedings of IEEE In-

ternational Conference on Image Processing, pp.5212-5216, Paris, 2014;

• Proceedings S. Battiato, M. Moltisanti – The future of consumer

cameras. In Proceedings of SPIE 9399, Image Processing: Algorithms

and Systems XIII, 93990C (March 16, 2015).

• Proceedings M. Moltisanti, A. Paratore, S. Battiato, L. Saravo –

Image manipulation on Facebook for Forensics Evidence. In Image

Analysis and Processing — ICIAP 2015, V. Murino and E. Puppo, Eds.,

vol. 9280 of Lecture Notes in Computer Science. Springer International

Publishing, 2015, pp. 506 – 517.

• Proceedings G. M. Farinella, M. Moltisanti, S. Battiato – Food Recog-

nition Using Consensus Vocabularies. In New Trends in Image Analy-

sis and Processing – ICIAP 2015 Workshops, V. Murino, E. Puppo, D.

iv



CONTENTS v

Sona, M. Cristani, and C. Sansone, Eds., vol. 9281 of Lecture Notes

in Computer Science. Springer International Publishing, 2015, pp. 384

–392.

• Proceedings M. Moltisanti, G. M. Farinella, S. Battiato Semi-Naive

Mixture Model for Consensus Clustering. To appear in International

Workshop on Machine learning, Optimization and big Data, Lecture

Notes in Computer Science. Springer International Publishing, 2015.

• Book Chapter S. Battiato and M. Moltisanti, Tecniche di steganografia

su immagini digitali, in IISFA Memberbook 2012 DIGITAL FOREN-

SICS, G. Costabile and A. Attanasio, Eds. Experta, Italy, 2012.

• Technical Report A. Furnari, V. Giuffrida, D. Moltisanti and M.

Moltisanti - Reading Group Report (winner of the Reading Group Com-

petition Prize) - ICVSS 2013

• Technical Report M. Buffa, A. Furnari, O. Giudice, V. Giuffrida, M.

Moltisanti, A. Ortis, A. Torrisi, Reading Group Report - ICVSS 2014

• Accepted M. Moltisanti, G. M. Farinella, S. Battiato, A. R. Bruna

– Exploiting Visual Saliency for Car Detection and Tracking. Submit-

ted to IS&T Electronic Imaging – Image Processing: Machine Vision

Applications, San Francisco, 2016

• Submitted G. M. Farinella, D. Allegra, M. Moltisanti, F. Stanco and

S. Battiato Retrieval and Classification of Food Images. Submitted to

Computers in Biology and Medicine.



CONTENTS vi

• Other G. M. Farinella, D. Allegra, M. Moltisanti, F. Stanco, S. Bat-

tiato – Food understanding from digital images, La Simulazione nel

settore Food & Beverage, 2015.



List of Figures

1.1 Typical Bag-of-Visual-Words pipeline. . . . . . . . . . . . . . . 2

2.1 Schema of the algorithm proposed in [1]. Image courtesy of

the authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Shape spatial pyramid representation. Top row: an image and

grids for levels l = 0 to l = 2; Below: histogram representa-

tions corresponding to each level. The final PHOG vector is a

weighted concatenation of vectors (histograms) for all levels.

Remaining rows: images from the same and from different cat-

egories, together with their histogram representations. Image

courtesy of the authors. . . . . . . . . . . . . . . . . . . . . . 8

2.3 Generic representation of a clustering ensemble framework. . . 11

2.4 Visual taxonomy of different clustering combination techniques. 12

2.5 The pipeline implemented to represent images using Consen-

sus Vocabularies and crisp point-to-cluster assignment. . . . . 17

2.6 Comparison of the classification accuracies. . . . . . . . . . . . 17

2.7 Comparison of the classification accuracies. . . . . . . . . . . . 18

2.8 Classification accuracy of the E-M based Consensus Vocabu-

lary approach with soft assignment. . . . . . . . . . . . . . . . 19

vii



LIST OF FIGURES viii

2.9 Comparison of classification accuracy varying the threshold

for soft consensus representation. . . . . . . . . . . . . . . . . 20

2.10 Plot of the Two Spirals dataset with 1000 data points. . . . . 23

2.11 Mean accuracies over 10 different runs, averaging over the pa-

rameters K and H. The first bar on the left represents the ac-

curacy value obtained with the original Naive method [2], the

next bars represent the accuracies obtained using the propos-

ing method varying the number of groups S. . . . . . . . . . . 24

2.12 Max accuracies over 10 different runs, averaging over the pa-

rameters K and H. The first bar on the left represents the ac-

curacy value obtained with the original Naive method [2], the

next bars represent the accuracies obtained using the propos-

ing method varying the number of groups S. . . . . . . . . . . 25

2.13 Visual Comparison of the results. . . . . . . . . . . . . . . . . 26

3.1 Food image analysis task employed during the years. . . . . . 31

3.2 Generic food image classification pipeline. . . . . . . . . . . . 41

3.3 Generic food image retrieval pipeline. . . . . . . . . . . . . . . 41

3.4 Three different classes of the PFID dataset. Left: Crispy

Chicken Breasts. Middle: Crispy Chicken Thighs. Right:

Crispy Whole Chicken Wing. . . . . . . . . . . . . . . . . . . . 52

3.5 Classification accuracy (%) – 61 classes. . . . . . . . . . . . . 53

3.6 Classification accuracy (%) – 7 classes. . . . . . . . . . . . . . 54

3.7 Classification accuracy on the 61 categories (3.7a) and on the

7 major classes (3.7b) of the PFID dataset. . . . . . . . . . . . 60

A.1 The cameras used to build the dataset. . . . . . . . . . . . . . 65



LIST OF FIGURES ix

A.2 Column 1: indoor, column 2: outdoor artificial, column 3:

outdoor natural. Row 1: Canon EOS 650D, Row 2: QUMOX

SJ4000, Row 3: Samsung Galaxy Note 3 Neo, Row 4: Canon

Powershot A2300 . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3 Work-flow of Facebook resizing algorithm for JPEG images. . 67

A.4 The filename generated for an uploaded picture. . . . . . . . . 68

A.5 BPP comparison with respect to scene and original resolution. 70

A.6 Number of pixels in the images VS BPP. A.6a: images grouped

by input resolution (HR/LR); A.6b: images group by upload

quality (HQ/LQ); A.6c: HR input images grouped by upload

quality; A.6d: LR input images grouped by upload quality. . . 71

A.7 Number of pixels in the images VS Quality Factor. A.7a:

images grouped by input resolution (HR/LR); A.7b: images

group by upload quality (HQ/LQ); A.7c: HR input images

grouped by upload quality; A.7d: LR input images grouped

by upload quality. . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.1 Given an input image (left), we compute its color histogram

(middle). Corresponding histogram bin colors are shown in the

lower bar. The quantized image (right) uses only 43 histogram

bin colors and still retains sufficient visual quality for saliency

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.2 Saliency of each color, normalized to the range [0, 1], before

(left) and after (right) color space smoothing. Corresponding

saliency maps are shown in the respective insets. . . . . . . . . 79

B.3 Induced graph over a feature map M . . . . . . . . . . . . . . . 81

B.4 Reliability on the TME dataset . . . . . . . . . . . . . . . . . 86

B.5 Coverage on the TME dataset . . . . . . . . . . . . . . . . . . 87



LIST OF FIGURES x

B.6 TPR VS Coverage on the TME dataset . . . . . . . . . . . . . 90

B.8 Area Under the Curve . . . . . . . . . . . . . . . . . . . . . . 90

B.7 ROC Curve on the TME dataset . . . . . . . . . . . . . . . . 91



List of Tables

2.1 Transformation of data representation, from feature space (left)

to label space (right). . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Food Image Datasets. C = Classification, R = Retrieval, CE

= Calorie Estimation . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Class-based vs Global Textons Vocabularies. In all settings

class-based vocabulary achieve better results. . . . . . . . . . . 52

3.3 Per-Class accuracy of the different methods on the 7 Major Classes

of the PFID dataset. In each row, the two highest values are

underlined, while the maximum is reported in bold. . . . . . . . . 55

3.4 Per-Class accuracy of the different methods on the 7 Major Classes

of the PFID dataset. In each row, the two highest values are

underlined, while the maximum is reported in bold. . . . . . . . . 59

A.1 Resolution settings for the different devices (in pixels). . . . . 65

A.2 Quality Factors of the JPEG Compression applied by Face-

book (estimated by JPEG Snoop) . . . . . . . . . . . . . . . . 73

A.3 DQT corresponding to QF = 71.07 . . . . . . . . . . . . . . . 74

A.4 DQT corresponding to QF = 91.86 . . . . . . . . . . . . . . . 74

B.1 Confusion Matrix for a binary classifier. . . . . . . . . . . . . 88

xi



LIST OF TABLES xii

B.2 Lowest Coverage when TPRs > 0.99 . . . . . . . . . . . . . . 89



Chapter 1

Introduction

Digital images are the result of many physical factors, such as illumination,

point of view an thermal noise of the sensor. These elements may be irrelevant

for a specific Computer Vision task; for instance, in the object detection task,

the viewpoint and the color of the object should not be relevant in order to

answer the question “Is the object present in the image?”. Nevertheless, an

image depends crucially on all such parameters and it is simply not possible

to ignore them in analysis [3]. Hence, finding a representation that, given a

specific task, is able to keep the significant features of the image and discard

the less useful ones is the first step to build a robust system in Computer

Vision.

One of the most popular model to represent images is the Bag-of-Visual-

Words (BoW) model. Derived from text analysis, this model is based on

the generation of a codebook (also called vocabulary) which is subsequently

used to provide the actual image representation. Considering a set of images,

the typical pipeline, depicted in Fig. 1.1, consists in:

1. Select a subset of images to be the training set for the model;

1
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2. Extract the desired features from the all the images;

3. Run a clustering algorithm on the features extracted from the training

set: each cluster is a codeword, the set containing all the clusters is

the codebook;

4. For each feature point, find the closest codeword according to a distance

function or metric;

5. Build a normalized histogram of the occurrences of each word.

…

Input Images

Feature Extraction

Codebook generation
Codeword assignment

Normalized histogram
Figure 1.1: Typical Bag-of-Visual-Words pipeline.

The choices made in the design phase influence strongly the final out-
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come of the representation. For example, choosing a feature which is able

to capture changes in the local gradient (e.g. SIFT [4]) will give different

results than choosing a feature which is able to describe textures (e.g. Tex-

tons [5, 6]). In this work we will discuss how to aggregate different kind of

features to obtain more powerful representations, presenting some state-of-

the-art (Chapter 2) methods in Computer Vision community. We will focus

on Clustering Ensemble techniques (Section 2.3), presenting the theoretical

framework (Section 2.4) and a new approach (Section 2.5).

In the second part of this work, we discuss about food image analysis.

Understanding food in everyday life (e.g., the recognition of dishes and the

related ingredients, the estimation of quantity, etc.) is a problem which has

been considered in different research areas due its important impact under

the medical, social and anthropological aspects. For instance, an insane

diet can cause problems in the general health of the people. Since health

is strictly linked to the diet, advanced Computer Vision tools to recognize

food images (e.g., acquired with mobile/wearable cameras), as well as their

properties (e.g., calories, volume), can help the diet monitoring by providing

useful information to the experts (e.g., nutritionists) to assess the food intake

of patients (e.g., to combat obesity). On the other hand, the great diffusion

of low cost image acquisition devices embedded in smartphones allows people

to take pictures of food and share them on Internet (e.g., on social media);

the automatic analysis of the posted images could provide information on

the relationship between people and their meals and can be exploited by

food retailer to better understand the preferences of a person for further

recommendations of food and related products. Image representation plays

a key role while trying to infer information about food items depicted in the
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image. We propose a deep review of the state-of-the-art Section 3.2 and two

different novel representation techniques (Section 3.3, Section 3.4).



Chapter 2

Feature Aggregation

2.1 Visual Phrases

The Bag-of-Visual-Word (BoW) model relies on the generation of a vocabu-

lary using a clustering method. This approach, first proposed in [7], is widely

employed for its simplicity and flexibility, but, in its original formulation, it

suffers from the limitation of being able to use only one kind of feature at a

time. To overcome this restriction, several solutions have been proposed.

Hu et al. in [8] develop two methods based on the extraction of multiple

features, in particular the Feature Coherent Phrase (FCP) model and the

Spatial Coherent Phrase model. First, given an image,local regions are lo-

cated by using some detector [9] or using dense sampling [10]. For each

extracted region, K different descriptors φik are computed, generating a de-

scriptor φi = {φi1, φi2, . . . , φiK}. The final descriptor is obtained mapping

every φi to a K−tuple of visual words. This tuple is called a visual phrase.

Hence, mapping all the φi extracted from an image to the corresponding

visual phrases and computing the frequency histogram of the co-occurrence

gives the final representation of the image. The authors of [8] propose two

5
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different coherent models:

a) The Feature Coherent Phrase (FCP) model;

b) The Spatial Coherent Phrase (SCP) model.

In the first case, the visual phrase is built out of different kind of features

extracted on the same image region; specifically, they use SIFT [4] and SPIN

[11] features. In the second case, the same kind of feature is extracted from

the same region varying the scale at which the descriptor is computed.

An improvement to the Bags of Visual Phrases model is proposed by

Battiato et al. [1]. In their work, the authors propose to exploit the coherence

between feature spaces not only in the image representation, but also during

the generation of codebooks. This is obtained by aligning the codebooks

of different descriptors to produce a more significant quantization of the

involved spaces of descriptors. The algorithm, depicted in Fig. 2.1, starts

detecting a set of keypoints from a training dataset of images. Then, SIFT

[4] and SPIN [11] are computed and vocabularies are built separately in these

two feature spaces. The use of two different vocabularies poses a cluster

correspondence problem. To deal with it, a similarity matrix is obtained

counting the number of elements (i.e. local image regions) they share, and

the Hungarian algorithm is used to find the pair the corresponding clusters.

Using this correspondence information, a new vocabulary is created, taking

into account both the common and the uncommon elements between aligned

clusters. The representation of training images consists in a two-dimensional

histogram of co-occurrence of visual words related to the generated codebook.
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Figure 2.1: Schema of the algorithm proposed in [1]. Image courtesy of the

authors.

2.2 Capturing the shape and its layout: Pyra-

mid of Histograms of Orientation Gradi-

ents (PHOG)

Bosch et al. [12] set as their goal to represent an image by its shape local

shape and the spatial layout of the shape. The idea is illustrated in Fig. 2.2.

The descriptor consists of a histogram of orientation gradients over each

image subregion at each resolution level – a Pyramid of Histograms of Ori-

entation Gradients (PHOG). The distance between two PHOG image de-

scriptors then reflects the extent to which the images contain similar shapes

and correspond in their spatial layout. To encode the local shape, a classic
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Figure 2.2: Shape spatial pyramid representation. Top row: an image and

grids for levels l = 0 to l = 2; Below: histogram representations corresponding

to each level. The final PHOG vector is a weighted concatenation of vectors

(histograms) for all levels. Remaining rows: images from the same and from

different categories, together with their histogram representations. Image

courtesy of the authors.

BoW approach is employed, using SIFT features, while the spatial layout

is captured following the well-known scheme of spatial pyramid matching

proposed by Lazebnik et al. [10]. Each image is divided into a sequence

of increasingly finer spatial grids by repeatedly doubling the number of di-

visions in each axis direction (like a quadtree). The number of points in

each grid cell is then recorded. This is a pyramid representation because

the number of points in a cell at one level is simply the sum over those con-

tained in the four cells it is divided into at the next level. The Histograms

of Oriented Gradients (HOG) [13] vectors are computed for each grid cell at

every pyramid resolution level, and subsequently concatenated to form the

PHOG descriptor. However, shapes and their layouts could not be sufficient
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to discriminate among different kind of images; then, the authors propose

to consider also the appearance as a feature, in order to perform the image

classification with a standard SVM. To deal with the combination of such

aspects, they introduce two kernels, suitable for combining or selecting be-

tween shape representation and appearance, alongside with a kernel which

encodes the similarity between PHOG descriptors. While the last kernel is

a simple χ2 distance matrix (see Eq. 2.1), the first and the second combine

in different ways the shape representation and the appearance, as shown in

Eq. 2.2 and Eq. 2.3.

K (SI , SJ) =
∑
l∈L

αldl (SI , SJ) (2.1)

In Eq. 2.1, the distance between the representation of two images SI , SJ , I �=
J is computed at each of the L levels of the spatial pyramid, and the value

for each cell of the kernel is obtained summing over all the l ∈ L. The

kernels in Eq. 2.2 and Eq. 2.3 show the combination of two kernels, one

for appearance (KA) and one for shapes (KS), both derived from the χ2

kernel in Eq. 2.1. Please note the change of notation: in facts, while in

Eq. 2.1 the inputs are generic image representations of images SI , SJ , the

kernels proposed in Eq. 2.2 and Eq. 2.3 take as input the image indexes

x, y, and two different representation are considered as input to KA and KS.

The parameters α and β, in both Equations 2.1 and 2.2 are learned from

data, and two different strategies have been tested: a global approach, where

the weights are optimized over all the classes together, and a class-specific

approach, where the weights are optimized for each class separately.

K (x, y) = αKA (xapp, yapp) + βKS (xshape, yshape) (2.2)
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K (x, y) = max [KA (xapp, yapp) , KS (xshape, yshape)] (2.3)

2.3 Clustering Analysis and Consensus En-

semble

The definition of clustering encloses a wide range of different techniques, all

of them aiming to group similar objects according to a similarity or distance

function. The factors in this definition, together with the choice of the clus-

ter model (e.g. connectivity model, centroid model, distribution model, etc.)

lead to the high variability in the clustering algorithms family [14]. Among

the different employments of clustering algorithms, the Bag-of-Words model

is one of the most popular, especially in Computer Vision community.

In [15], Kleinberg defines some desirable properties, proving that there is

no clustering function able to satisfy them all together:

Scale-Invariance: insensitivity to changes in the units of distance measure-

ments;

Richness: every partition of the data space S should be a possible output

of the algorithm;

Consistency: changing the distance function to reduce intra-cluster dis-

tances and augment inter-cluster distances, the output partition should

be the same.

Combining more partitions of the same space can be interpreted as a

partitioning task itself. Typically, each partition in the combination is rep-

resented as a set of labels assigned by a clustering algorithm. The output
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partition (i.e. the combined one) is generated taking as inputs the labels

of the contributing clustering algorithms, which are processed by another

clustering algorithm. In general, the clustering ensemble framework can be

pictured as shown in Fig. 2.3. Classifying and clustering ensembles, although

Data

Clustering Algorithm #1

Clustering Algorithm #2

Clustering Algorithm #3

Clustering Algorithm #H

Partition 1

Partition 2

Partition 3

Partition H

Generic Clustering 
Ensemble Framework Combined Partition

.

.

.

.

.

.

Figure 2.3: Generic representation of a clustering ensemble framework.

similar, are still different problems. Designing a cluster ensemble framework

is more difficult than designing a classifier since a correspondence problem

arises, for the cluster labels are merely symbolic. Moreover, it is not pos-

sible to know in advance the number of clusters, and the high variability

of the number and shapes of input clusterings must be taken into account.

Ghaemy et al. [16] define the problem of clustering ensembles (or clustering

combination) as follows:

Given multiple clusterings of the dataset, find a combined

clustering with better quality.

The combination problem poses three specific problems [17, 18]:

1. The choice of the consensus function : combination of different clus-

terings outcomes, label correspondence problem, symmetry and equity

with respect to all the input partitions;
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A visual taxonomy of different clustering ensembles techniques is reported in

Fig. 2.4. This taxonomy is proposed in [16], together with a deep review of

state-of-the-art methods.

2.4 Consensus Clustering via Expectation –

Maximization

Topchy et al. [2] modeled the problem using a Gaussian Mixture Model

(GMM) in order to find the consensus partition by solving a Maximum

Likelihood optimization. Given N data points, X = {x1,x2, . . . ,xN}, they
consider the outcomes of H different clustering algorithms, each of which

establish a partition in the feature space. They refer to the partitions as

H = {π1, π2, . . . , πH}. It is straightforward that every clustering algorithm

assigns each data point xi to a partition:

xi → {π1 (xi) , π2 (xi) , . . . , πH (xi)}, i = 1, . . . , N

Therefore, each data point xi has two representation: the first is a d−dimensional

vector that lies in original the feature space, while the second is a vector with

H elements that belongs to the labels space (Tab. 2.1). The vector composed

by the labels for the i−th data point will be named yi. The whole labels

set will be denoted as Y = {y1, . . . ,yN}. The rationale behind this ap-

proach is that the labels can be modeled as random variables, drawn from a

GMM. Hence, the probability for each label yi can be expressed as in Eq. 2.4,

where αm, , with m = 1, . . . ,M , are the mixture coefficients and θm are the

parameters of each component of the mixture.

P (yi|Θ) =
M∑

m=1

αmPm (yi|θm) (2.4)
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π1 · · · πH

x1 x11 · · · x1d π1 (x1) · · · πH (x1)

x2 x21 · · · x2d π1 (x2) · · · πH (x2)
...

xN xN1 · · · xNd π1 (xN) · · · πH (xN)

Original Features Labels

Table 2.1: Transformation of data representation, from feature space (left)

to label space (right).

Using this model under the assumption that the data points are independent

and identically distributed, the consensus partition can be found optimizing

as the partition which maximize the probability, for each yi, of having been

drawn from the m−th mixture. Hence, the problem can be formulated as

finding the GMM’s parameters that maximize the label-to-mixture assign-

ment probability.

Θ∗ = argmax
Θ

logL (Θ|Yi) . (2.5)

where L is a likelihood function, as defined in Eq. 2.6

logL (Θ|Y) = log
M∏

m=1

P (yi|θm) =
N∑
i=1

log
M∑

m=1

αmPm (yi|θm) (2.6)

To complete the definition of the model, it is needed to specify the condi-

tional probabilities for the labels vector yi (see Eq. 2.7) and the probability

density for each component (see Eq. 2.8). In [2], the authors assume that the

components of yi are conditionally independent.

Pm (yi|θm) =
H∏
j=1

P (j)
m

(
yij|θ(j)m

)
(2.7)
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P (j)
m

(
yij|θ(j)m

)
=

K(j)∏
k=1

ϑjm(k)
δ(yij ,k) (2.8)

Note that the probabilities ϑjm(k) sum up to 1. In Eq. 2.8, the function δ is

a classic Kronecker delta function and the index k = 1, . . . , K(j) is used to

enumerate the labels in the j−th input mixture.

The solution to the consensus partition problem can be found optimizing

Eq. 2.4, hypothesizing the existence of a set of hidden variables Z and esti-

mating the values of each zi using the Expectation-Maximization algorithm.

For completeness sake, in Equations 2.9, 2.10, 2.11 we report the formulas

to compute the parameters of the mixture with the EM algorithm.

E [zim] =

α′
m

H∏
j=1

K(j)∏
k=1

(
ϑ′
jm(k)

)δ(yij ,k)
M∑
n=1

α′
n

H∏
j=1

K(j)∏
k=1

(
ϑ′
jn(k)

)δ(yij ,k) (2.9)

αm =

N∑
i=1

E [zim]

N∑
i=1

M∑
m=1

E [zim]

(2.10)

ϑjm(k) =

N∑
i=1

δ (yij, k)E [zim]

N∑
i=1

K(j)∑
k=1

δ (yij, k)E [zim]

(2.11)

2.4.1 Experimental Results

We applied this approach to the Near Duplicate Image Retrieval problem.

We used the UKBench [27] dataset, which contains a total of 10200 images of

2550 different objects with four near duplicate images (photometric and/or

geometric variations) for each object [27]. We proceeded extracting SIFT [4]
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and SPIN [11] features using a dense sampling approach. For comparison

purposes, we computed the bi-dimensional histogram of co-occurrences as

in [8]. Initially, we used a subset of the dataset restricted to the first 1000

images, in order to perform a parameter tuning phase and looking forward

to extend the approach to the whole dataset. The parameters involved in

the tuning step are:

• The number of clusters in the feature spaces: K;

• The number of output clusters after the consensus aggregation: M ;

• The number of different partitions used as input to the consensus pro-

cedure: H.

The pipeline is depicted in Fig. 2.5. After the dense sampling and the

feature description, H vocabularies are built using the BoW approach (H
2

using the SIFT descriptors and H
2
using the SPIN descriptors). Then, each

point is labeled using the cluster index to which it has been assigned. In

other words, we are moving from the feature spaces to the label spaces.

The E-M Consensus Clustering algorithm takes as input these labels and

produces the final consensus partition, selecting the most likely among the

M clusters for the given data point. The Consensus Vocabulary is used to

build a representation in the BoW fashion, and then using a standard SVM

with a χ2 kernel to perform classification. The accuracy is referred to this

task, while the retrieval performances are estimated using the mean Average

Precision (mAP) as shown in Eq. 2.12

mAP =

Q∑
q=1

AveP (q)

Q
, where Q = number of queries (2.12)

We performed a first bank of tests varying the dimension of input vocabular-
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the framework introducing a soft assignment instead of the crisp one. The

image representation is then a normalized histogram (one bin per cluster) of

the probabilities that the represented image belongs to the considered bin

(see Eq. 2.13).

hSC (I) = (p1 (I) , p2 (I) , . . . , pM (I)) (2.13)

Fig. 2.7 and Fig. 2.8 shows the accuracy of the method adding the soft

assignment.
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Figure 2.7: Comparison of the classification accuracies.

Despite the improvement is considerable, the method proposed in [8] was

still better. Looking at the histograms representing the images, we noticed

that many of the bins after the normalization had very very low values, but
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Figure 2.8: Classification accuracy of the E-M based Consensus Vocabulary

approach with soft assignment.

different than zero. We considered this as a sort of noise in the representation

of the image, so we simply applied a threshold followed by a re-normalization

step, in order to make the distinctive bins of the histograms stronger. The

results, shown in Fig. 2.9, achieved almost the 77% in terms of accuracy, out-

performing the bi-dimensional co-occurrences histogram. For the evaluation

of the threshold, we selected the combination of parameters that had the best

performances in the previous step of the tests. Thus, we used M = 500 and

H = 6. It is important to point out that, while the representation proposed

by [8] had a cardinality of K×K = 2500 bins, ours is more efficient in terms

of space requirements, using only M = 500 bins.

Once we found the configuration, we ran the algorithm with the tuned
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Figure 2.9: Comparison of classification accuracy varying the threshold for

soft consensus representation.

parameters using the whole dataset. Unfortunately, the chosen parameters

did not fit the scale of the problem, so a new tuning step should have been

performed, requiring a lot of time because of the complexity of the approach

which, because of its intrinsically sequential nature, could not even be par-

allelized. We then decided to try the approach on a different dataset (see

Section 3.4 and to improve the framework by considering a semi-naive ap-

proach instead of the full naive one (see next Section).

2.5 Semi-Naive Consensus Clustering

In order to model the problem in a Semi-Naive way, we relax the Bayesian

Naive assumption [28, 29], by grouping the labels and imposing that the
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labels belonging to the same group are drawn from a probability distribution,

while the groups are conditionally independent. In [2], it is assumed that the

labels yi are conditionally independent, as modeled in Eq. 2.7, in order to

make the problem tractable. Thus, given the H labels in yi, we create S

partitions of size D = H
S

mutually conditionally independent. Thus, the

probability becomes:

Pm (yi|θm) =
S∏

s=1

P (i)
m

(
Fis|θ(i)m

)
. (2.14)

In Eq. 2.14, Fis =
{
yiσ(s,1), yiσ(s,2), . . . , yiσ(s,D)

}
are the labels belonging to

the s−th group, while σ (s, j), j = 1, . . . , D is a random permutation function

within the range 1, . . . , H. The labels Fis are dependent, thus the probability

P
(i)
m

(
Fis|θ(i)m

)
, s = 1, . . . , D has to be expressed as a joint probability over

the elements of yi (see Eq. 2.15).

P (i)
m

(
Fis|θ(i)m

)
= P (i)

m

(
yiσ(s,1), yiσ(s,2), . . . , yiσ(s,D)|θ(i)m

)
(2.15)

We define now an enumeration function T to assign a unique numerical

label to each of the elements in Fis, i = 1, . . . , N , s = 1, . . . , S. The values

of T lie in the range {1, . . . , K(1)×K(2)×K(S)}. As shown in Section 2.4,

k = 1, . . . , K(j) is an index referring to the labels in the j−th clustering.

T (Fis) : {1, . . . , K(1)} × {1, . . . , K(2)} × . . . {1, . . . , K(D)} −→ N (2.16)

We can now formulate the probability density (see Eq. 2.17) for each group

Fis in the form of a multinomial trial, as in [2].

P (s)
m

(
Fis|θ(s)m

)
=

K(1)×K(2)×K(S)∏
k=1

ϑsm(k)
δ(T (Fis)),k) (2.17)

The consensus partition can still be found using the EM algorithm using

the new equations formulated above. Thus, the expected values for each
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component of the hidden variables vectors Z = {z1, . . . , zN} can be computed

from Eq. 2.18 using Eq. 2.17 as the component probability, together with the

mixture weights α (Eq. 2.19) and the mixture parameters ϑ (Eq. 2.20).

E [zim] =

α′
m

S∏
s=1

K(1)×...×K(S)∏
k=1

(ϑsm(k))
δ(T (Fis),k)

M∑
n=1

α′
n

S∏
s=1

K(1)×...×K(S)∏
k=1

(ϑsn(k))
δ(T (Fis),k)

(2.18)

αm =

N∑
i=1

E [zim]

N∑
i=1

M∑
m=1

E [zim]

(2.19)

ϑsm(k) =

N∑
i=1

δ (Tis, k)E [zim]

N∑
i=1

K(1)×...×K(S)∑
k=1

δ (Tis, k)E [zim]

(2.20)

2.5.1 Experimental Results

To test our approach, we used the well-known Two Spirals dataset, proposed

by Alexis Wieland1. The key feature of this dataset is that the points form

two spirals as shown in Fig. 2.10. For our experiments, we chose to use 1000

data points.

The experiments have been performed varying the parameters of both

the original Naive [2] and the proposed Semi-Naive algorithms. In the first

case, the parameters are the number of input clusterings H and the number

of clusters K to be generated by the runs of the input clusterings. H takes

values in the range {5, . . . , 50}, while K varies in the range {2, . . . , 20}. In

addition to these parameters, the number of groups S has been taken into

account, considering the range {2, . . . , 10}.

1http://www.cs.cmu.edu/Groups/AI/areas/neural/bench/cmu/











Chapter 3

Food Classification

3.1 Introduction and Motivations

It is well-known that a non healthy diet can cause health problems such as

obesity and diabetes, as well as risks for people with food allergy. The cur-

rent mobile imaging technologies (e.g., smartphones and wearable cameras)

give the opportunity of building advanced systems for food intake monitoring

in order to assess the patients’ diet [30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

Related assistive technologies can also be useful to increase the awareness of

the society with respect to the quality of life. In this context the ability to

automatically recognize images of food acquired with a mobile camera is fun-

damental to assist patients during their daily meals. Automatic food image

retrieval and classification could replace the traditional dietary assessment

based on self-reporting that is often inaccurate. As pointed out in different

works [40, 41, 42, 40, 43, 44, 45, 46, 47, 48], food understanding engines

embedded in mobile or wearable cameras can create food-logs of the daily

intake of a patient; these information help the experts (e.g., nutritionists,

psychologists) to understand the behavior, habits and/or eating disorders of

27
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a patient.

However, food has a high variability in appearance and it is intrinsically

deformable. This makes classification and retrieval of food images difficult

tasks for current state-of-the-art methods [49, 50, 51], and hence an inter-

esting challenge for Computer Vision researchers. The image representation

used to automatically understand food images plays the most important role.

Despite many approaches have been published, it is difficult to find works

where different representation techniques are compared on the same dataset.

This makes difficult to figure out peculiarities of the different techniques,

as well as to understand which is the best representation method for food

retrieval and classification.

To find a suitable representation of food images it is important to have

representative datasets with a high variety of dishes. Although different

retrieval and classification methods have been proposed in literature, most

of the datasets used so far have not been designed having in mind the study

of a proper image representation for food images. Many food datasets are

composed by images collected through the Internet (e.g., downloaded from

Social Networks), where a specific plate is present just once; there is no

way to understand if a specific type of image representation is useful for the

classification and retrieval of a specific dish acquired under different points

of view, scales or rotation angles. Also the food images collected through the

Internet have usually a low resolution and have been processed by the users

with artistic or enhancement filters.

The automatic analysis of food images has a long history. The article

by Parrish et al. [52], which is probably the first using Computer Vision

techniques for a food analysis tasks, dates back to 1977. Looking at the

literature in this context, it is quite evident that between 1980s and 2000s the
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interest on food image understanding was mainly for engineering applications

related to the production chain and the assessment of the quality of the

marketed food. From the beginning of the new century, with the proliferation

of high performance mobile devices, the research has focused more and more

on aspects which are strictly related to everyday life, and hence on problems

and applications for food intake monitoring.

3.2 State of the art

Food image analysis has a long history. With the aim of giving a survey of

the main works in the literature, we have identified four application areas:

• Detection and recognition of food for automatic harvesting;

• Quality assessment of meals produced by industry;

• Food logging, dietary management and food intake monitoring;

• Food classification and retrieval.

Despite most of the “ingredients” involved in the solutions proposed in

the different application areas overlap, the main aims of the final systems are

different. For instance, if a certain accuracy obtained by a system for the de-

tection and recognition of food for automatic harvesting could be acceptable

by a robotic industry, the same accuracy could be not sufficient in systems

dedicated to the diet monitoring for patients with diabetes or food allergy.

This motivated us in grouping the works in the literature by considering the

four aforementioned areas. In Fig. 3.1 is shown a timeline which identifies

the periods on which the different areas become of interest and have got



CHAPTER 3. FOOD CLASSIFICATION 30

highest popularity by taking into account the published papers in literature

over the years.

Automatic detection and recognition of fruits and vegetables is useful to

enhance robots affordable and reliable vision systems in order to improve the

harvesting procedures both in terms of quality and speed. In the late 80s,

industrial meals production knew a large scale expansion, so the evaluation

of the quality of the produced food with vision systems became an interesting

and valuable challenge. From late 90s, the growth of the number of people

affected by diseases caused by a non healthy diet, moved the focus to the us-

age of Computer Vision techniques to help experts (e.g., nutritionists) for the

monitoring and understanding the relationships between patients and their

meals. This particular researches can take advantage of the huge diffusion

on low-cost imaging devices, such as the current smartphones and wearable

devices. The large and fast growth of mobile cameras, together with the

birth and diffusion of social network services - such as Facebook, Instagram,

Pinterest - opened the possibility to upload and share pictures of food. For

these reasons, in the past few years, classification and retrieval of food images

become more and more popular.

In the following section we will review the state-of-the-art in the field in

order to give to the reader an overview of what have been done in the four

application domains mentioned above.

3.2.1 Detection and recognition for automatic harvest-

ing

Among the several techniques used for the harvesting of fruits, the more

desirable are the ones which do not cause damages to the fruit and/or to the

tree. Thus, accurate systems for fruits detection and recognition from images
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Figure 3.1: Food image analysis task employed during the years.

are needed in order to perform the task correctly. One of the first Computer

Vision approach has been designed by Parrish et al. [52], and focuses on

apples detection task. The vision system is composed by a B/W camera and

an optical red filter. The image is binarized through thresholding operation,

then smoothed to suppress noise and artifacts and finally, for each of the

segments, the difference between the lengths of the horizontal and vertical

extrema are computed, in order to estimate the roundness of the region.

Then, the density of the region is computed by placing a window, whose

size is determined by the mean value of the extrema, on the centroid. If

the density of the region is found to be greater than a preset threshold, the

region is accepted as an apple.

In [53], a robot vision system called AID is implemented for oranges

recognition. A pseudo-grey image is obtained by means of an electronic filter

used to enhance the image. During digitization, 6 bits are used to codify

the pixel value which is proportional to the closeness of the actual pixel hue

to a preset reference hue. Subsequently, the image is filter using the Sobel

operator in order to get a gradient image and a direction image. Finally, the

scene interpretation is done through searching for a match with an object
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model previously stored. This gradient direction template is moved step by

step throughout the direction image. Approximately 70% of the visually rec-

ognizable fruits were detected.

An orange recognition method, based on color images, is proposed in [54].

Here, Hue and Saturation components of each pixel are employed to form a

two-dimensional feature space. Then, two thresholds based on the maximum

and minimum values for each component are used as linear classifiers in or-

der to define a square region in the feature plane. Approximately 75% of the

pixels were correctly classified. In [55], the same authors extend their ear-

lier study employing a traditional Bayesian classifier, using the RGB values

instead of the Hue and Saturation components, with the goal of segmenting

the fruit pixels from the background pixels. The tests show that 75% of the

pixels are correctly classified.

The Purdue University (USA) and The Volcani Center (Israel) developed

a vision system for melon harvesting [56]. A B/W image is analized to

locate the melon and estimate its size; this first stage performs an image

enhancement, a thresholding, a parameter extraction and hypothesis genera-

tion. Shape and texture parameters in the neighborhood of the hypothesized

position are computed to obtain the final candidates. Then, a knowledge-

based evaluation using rules which allow to avoid noisy detections and to

eliminate multiple occurrences is performed. If the second step is not em-

ployed, approximately 89% of success and relatively high rates of false de-

tections are found, but when using the knowledge-based rules, 84% and 10%

rates are obtained, respectively

A robotic system for greenhouse operation, AGROBOT, was developed at

CIRAA in Italy [57]. The vision system used for this project is based on a

color camera that supplies the HSI color components. Hue and Saturation
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histograms are employed to perform a thresholding to segment the image.

The 3-dimensional information is obtained by a stereo-matching of two dif-

ferent images of the same scene. About 90% of the ripe tomatoes are detected

and the most frequent errors are due to occlusions.

Jiménez et al. [58] built a system for automatic harvesting of spherical fruits.

Using a 3D laser scanner, they acquire the whole natural scene. This specific

sensor provides the spherical coordinates of each scene point as well as a value

indicating the attenuation of the laser energy due mainly to the distance, the

surface type and orientation of the sensed surface. So, for each scan, four

images are produced as output, representing respectively the azimuth and

elevation angles, the distance from the sensor and the attenuation values.

Exploiting the sensor model, these images are processed, and taking advan-

tage of the information retrieved by the scanner, four images are produced in

output. Of these four, three are actually used for the orange recognition: one

is an enhancement of the previous image representing the distance from the

sensor, the others encode respectively the apparent reflectance and the re-

flectance of the surfaces. The image analysis focuses on the last two images.

The apparent reflectance image is thresholded to separate the background

from the foreground and then the remaining pixels are clustered using the

Euclidean distance. The detected clusters without a minimum number of

pixels belonging to it are rejected as valid fruit in order to eliminate the

possibility of random small areas of a highly reflective non-fruit object. This

method, though, is not able to detect fruits whose reflectance is under 0.3.

To cope with these kind of items, the Circular Hough Transform is employed

on the distance image to detect fruits.

Many other methods have been developed over the years: for an accurate

review of this techniques, the reader should refer to [58].
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3.2.2 Quality assessment of meals produced by indus-

try

The assessment of the food quality produced by an industry is a crucial task

needed to guarantee a good experience to the final customer. Alongside with

human control of the product chain, Computer Vision systems can be used to

perform the quality assessment through the automatic inspection of images.

In [59, 60, 61], a review of methods for food quality assessment is pre-

sented. The authors considers different acquisition systems, the features that

can be employed in different tasks, as well as the machine learning algorithms

used to perform the decision among the quality of the food items.

In a typical computer vision based pipeline for quality assessment, an

image preprocessing, a feature extraction process, and a classification are

performed.

Munkevik et al. [62] propose a method to check the validity of industrial

cooked meals. In particular, fish burger with peas and smashed potatoes

have been considered. As first step, the images of the food are segmented.

Then 18 features are extracted from the segmented image, in order to capture

different aspects. Specifically, the features are related to the size of the food

items on the plate, to the overlapping between different food items, to the

shape of the food and to the colors. Eventually, the extracted features are

used to train a Self Organizing Feature Map [63], which is employed to learn

the model of a meal that fits the standards, and therefore to detect the

deviations from this standard model in order to accept or discard a dish.In

[64] the approach is refined and extended by considering more food items and

employing an Artificial Neural Network (ANN) for classification purposes.

A beans classification system was proposed by Kilic et al. [65] in 2007. For

testing purposes, they considered a dataset of images with variable number
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of beans. The main aim was the assignment of a quality label to each bean.

After a segmentation stage using morphological operators, the 1st to 4th

order statistics on the RGB channels of the image are computed. Three

quality levels for both color and integrity of the sample were defined, but

only 5 out of the 9 possible combinations were used to better separate top

quality beans from medium and low quality ones. In other words, given

a rating from A to C for both colors and integrity, the considered classes

are AA, BB, BC, CB, CC. The classification was performed using an ANN,

using 69 samples for training and 71 for validation, while the testing set is

composed by 371 beans images.

The quality of pizza production has been explored by different researchers.

In [66, 67] methods for inspecting shapes, toppings and sauce spread in pizza

production are proposed. Different features were computed for the shape,

sauce and topping inspection. Specifically, to assess the quality with respect

to the shape, the area ratio, aspect ratio, eccentricity, roundness have been

considered. For sauce and topping the Principal Component Analysis (PCA)

on the histograms computed in the HSV color space have been exploited. The

food items are classified considering 5 quality levels concerning the sauce

spread and topping, and in 4 quality levels with respect to the shape. The

quality classification task was performed using a set of binary Support Vector

Machine (SVM) classifier (one-vs-all) organized in a Directed Acyclic Graph

(DAG). A food item follows a classification path from the root down to the

leaves and then the quality level is assigned. The system is trained using

120 images for the shape, 120 images for the sauce and 120 images for the

topping.

Despite the quality assessment and inspection of food is not strictly re-

lated to the application domain of dietary food monitoring, we have decided
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to include information on this application domains such that the reader can

have a better overview of what has been done in the context of food image

analysis. The inspection of the food quality is usually performed in con-

strained settings to analyze small number of food classes and variabilities.

Usually, simple approaches (e.g., very simple features such as shape mea-

surement) are enough to address the problem and the results claimed by the

authors are very good. This scenario is very different from the one where

images of food are acquired during meals of a patient or they are downloaded

from a social network. The systems for generic food intake monitoring have

to deal with a higher number of food classes, mixed food, and a number of

image variabilities, such as different environment illumination, different point

of view in the acquisition, and different acquisition devices (i.e., different res-

olution, compression factors, etc). Moreover, usually these systems have to

be able to work without prior knowledge. For instance, differently than an

industrial production chain where the different ingredients (e.g., to make a

pizza) are known in advance, in a generic food image understanding problem

there are not a priori assumption by making the task more challenging.

3.2.3 Food logging, dietary management and food in-

take monitoring

Diet monitoring has a key role for the human health and can help to reduce

disease risks such as diabetes. For this reason, since the ’70, the computers

have been employed to help the medical teams for dietary assessment of the

patients. However, the primordial systems for food logging and intake mon-

itoring did not use the Computer Vision; they were calculators for nutrition

factors from a predefined food list [68, 69].

During the last century, despite the great steps forward in the knowl-
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edge of nutrition, there has been a dramatic increase of food-related illnesses

[70]. It has been proved that food diaries are efficient instrument to boost

self-awareness of eating habits, and augmenting written diaries with pho-

tographs have a more effective impact on the patients. Hence, Computer

Vision researchers have put effort in order to provide reliable tools to make

the automatic detection and recognition of meals images more accurate.

Among these systems, FoodLog1 [42, 40, 43, 44, 45] is a multimedia Inter-

net application that enables easy capture and archival of information regard-

ing daily meals. The goal of this framework is to assist the user to keep note

of their meals and balance the nutritional values coming from different kinds

of food (e.g. carbohydrates, fats, etc.). The user upload the pictures on a

remote folder, where the archive is maintained. In [42], the images containing

food items are identified by exploiting features related to the HSV and RGB

color domain, as well as the shape of the plate. A SVM classifier is trained to

detect food images. More specifically, the images are divided in 300 blocks

and each block is classified as one of the five nutritional groups defined in

the “My Pyramid” model2 (grains, vegetables, meat & beans, fruits, milk)

or as “non-food”. In [40] more local features are considered. Color statistics

were coupled with SIFT descriptor [4] obtained with three different keypoint

selection methods (Difference of Gaussians, centers of grid, centers of circles).

In [44] the approach has been extended, adding also a pre-classification step

and the personalization of the food image estimator. In [45] the Support

Vector Machine is replace by a Naive Bayesian Classifier.

The goal of the approach proposed in [71] is to help people affected by

diabetes in following their dietary prescriptions. The authors used object-

1http://www.foodlog.jp
2http://www.mypyramid.gov/
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related features (color, size, texture and shape) and context-related features

(time of the day and user preference). Using an ANN as a classifier, the

authors proved that the context information can be exploited to improve the

accuracy of the monitoring system.

Food recognition and 3D volume estimation is the goal of the work by

Puri et al. [72]. The images, taken under different lighting conditions and

poses, are normalized by color and scale, by means of dedicated calibration

patterns placed besides the food items. They use an Adaboost-based fea-

ture selection method to combine color (RGB and LAB neighborhood) and

texture (Maximum Response filters) information, in order to perform a seg-

mentation by classification of the different food items in a dish. The final

classifier is obtained as a linear combination of many weak SVM classifiers,

one for each feature. Moreover, they reconstruct the 3D shape of the meal

using dense stereo matching, after a pose estimation step performed using

RANSAC [73].

Chen et al. [74] aim to categorize food from video sequences taken in a

laboratory setting. The dishes are placed on a turntable covered with a black

tablecloth. They consider an elliptical Region-of-Interest (ROI), inside which

they first extracted MSER [75], SURF [76] and STAR [77] features. Since

these detectors work on monochrome images, a color histogram in the HSV

color space is computed inside the ROI, in addition to the aforementioned

detectors, in order to capture the richness of food images in terms of colors.

The images are then represented using the Bag of Words paradigm; they

create a vocabulary with 10000 visual words using k-means clustering and

subsequently each data point is associated with the closest cluster using the

Approximated Nearest Neighbor algorithm. For each image, hence, a Bag

of Word representation and the color histogram in the HSV color space are
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provided. The goal is to classify the dish in a specific frame. The authors

propose to do that comparing the frame under examination with a frame

already classified, in a retrieval-like fashion. To do so, a similarity score is

computed separately for the Bag of Words representation and for the color

histograms. For the first representation, the term frequency- inverse docu-

ment frequency (tf-idf) technique is employed; for the second, the correlation

coefficient between the |L1|-norm of the histograms is computed. The two

scores are then combined with different weights to obtain the global score

for the considered frame. Since the calories for the reference dish are known,

the similarity is able to coarsely quantify the difference of food in the two

frames.

3D reconstruction is used in [78] for volume computation. A disparity

map is computed from stereo pairs, and hence a dense 3D points cloud is

computed and aligned with respect to the estimated table plane using a

specific designed marker. The different food items present in the image are

assumed to be already segmented. Each food segment is then projected on

the 3D model, in order to compute its volume, which can be defined as the

integral of the distance between the surface of each segment and either the

plate (identified by its rim and reconstructed shape), or the table (identified

by the reference pattern).

Food consumption estimation is also the goal in [37]. The authors pro-

pose a wearable system equipped with a camera and a microphone. When

the microphone detects a chewing sounds, the Computer Vision part of the

framework is activated. The algorithm tries to identify keyframes containing

food by using very simple features such as ellipse detection and color his-

tograms. The first step is to perform an ellipse detection. When the ellipse

is found, it is split in four quadrants and, for each quadrant, the color his-
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Table 3.1: Food Image Datasets. C = Classification, R = Retrieval, CE =

Calorie Estimation

Dataset Related Works Classes Images per Class Total # of Images Task Link

UEC FOOD 100 [82, 83, 84, 85, 86, 87, 39] 100 ≈ 100 9060 C http://foodcam.mobi/dataset.html

PFID [49, 50, 88, 89, 90, 51, 91] 101 18 1818 C/R http://pfid.intel-research.net/

FRIDa [92] 8 ND 877 CE http://foodcast.sissa.it/neuroscience/

NTU-FOOD [93] 50 100 5000 C http://www.cmlab.csie.ntu.edu.tw/project/food/

Food-101 [94] 101 1000 101000 C http://www.vision.ee.ethz.ch/datasets/food-101/

UNICT-FD899 [46, 48, 95] 899 3/4 3583 R http://www.iplab.dmi.unict.it/UNICT-FD889/

FooDD [96] 23 ND 3000 CE http://www.eecs.uottawa.ca/~shervin/food/

togram is computed in the C-color space [79]. Then, the difference between

the histograms computed over subsequent frames are computed to evaluate

the food consumption.

3.2.4 Food classification and retrieval

The approaches we have reviewed so far aim to solve specific food-related

task, such as fruit recognition, quality assessment or food logging for dietary

management. All of these application domains share a key component related

to the recognition of the food. In last years, this aspect has been considered

by many computer vision researchers thanks to the increasing availability of

large quantity of image data in Internet and the explosion of posts portraying

food in social media. This led to the proliferation of datasets with a consis-

tently increasing number of classes and samples. In Table 3.1 we summarize

the main features of the publicly available datasets which have been used in

the state-of-the-art works in the last years.3

In order to recognize food depicted in images, two type of techniques can

3Some other datasets have proposed in literature [80, 78, 81, 38]. However these

datasets have been not included in Table 3.1 because they are not publicly available. More

information on these datasets can be found at URLs http://www.tadaproject.org and

http://gocarb.eu.
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be considered: classification and retrieval. In both cases the task is to iden-

tify the category of a new food image observation on the basis of a training

set of data. The main difference between the two approaches stay in the

mechanism used to perform the task. In case of classification the training

set is used just to learn the decision function by considering the represen-

tation space of the images. Hence, the training images are represented as

vectors in a feature space through a transformation function (e.g., Bag of

Visual Word approach by considering SIFT or Textons features [11, 97]) and

a learning mechanism is used to train a classifier (e.g., a Support Vector

Machine) to discriminate food images belonging to different classes. After

this phase, the training dataset is discarded and a new observation can be

classified by considering the feature space used during the training phase

and the trained classification model. In case of retrieval, the training set is

maintained and the identification is performed comparing the images through

similarity measures (e.g. Bhattacharyya distance [98] after their representa-

tion in the feature space. In Fig. 3.2 and Fig 3.3 the generic pipeline for

food classification and retrieval are shown.

In [82], a framework for food classification of japanese food is proposed.

The approach is trained and tested on a dataset with 50 classes. Three kinds

of features are extracted and used: a) Bag of SIFT; b) Color Histograms

c) Gabor Filters [99]. The keypoint sampling strategy on which the SIFT

descriptor have been computed is implemented with three different ways:

using the DoG approach, by random sampling and using a regular grid. To

compute Color Histograms, the images are first divided in 2× 2 regions, and

for each region a 64-bin RGB histogram is calculated. The region-based his-

tograms are then concatenated into a 256-bin. In a similar way, the images

are split in 3× 3 and 4× 4 blocks to compute Gabor Filters responses. The
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employed Gabor filters take into account four different scales and six orienta-

tion, so for the whole image a 216 or 384-dimensional vector arises as result

of the extraction step. While Color Histograms and Gabor Filters provide

a representation of the images by themselves, SIFT keypoints are clustered

generating two different vocabularies with 1000 and 2000 codewords and the

images are represented using the Bag of Words paradigm. Summing up, for

each image 9 different representation are provided, one coming from the Color

Histograms, two from the Gabor Filters with different blocking schemes and

six from the combination of sampling strategies and vocabulary size for SIFT

features.Classification is performed using a Multiple Kernel Learning SVM

(MKL-SVM) [100]. In [83] the dataset is extended up to 85 classes, and 8

variants of Histogram of Oriented Gradients (HOG) [13] are introduced as

new features. Moreover, the χ2 kernel is employed as a kernel function in

the MKL-SVM. has been used in [85] where candidate regions are identified

using different methods (whole image, Deformable Part Model (DPM) [101],

a circle detector and the segmentation method proposed in [102]). The final

segmentation arises by integration of the results of the aforementioned tech-

niques.For each candidate region, four sets of features are computed: Bag of

SIFT and Bag of CSIFT [103], Spatial Pyramid Representation [10], HOG

and Gabor Filters. Then a MKL-SVM is trained for each category, and a

score is assigned to every candidate region. The experiments are conducted

on images containing both single and multiple food-item. In successive work

[84] the same approach is used, but the scores assigned by the classifica-

tion algorithm are re-arranged applying a manifold learning technique to the

candidate regions. The dataset used in [85, 84] is called UEC FOOD 100

and is an extension of the dataset presented in [82, 83]. On this dataset,

other approaches have been tested. For instance, pre-trained Convolutional
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Neural Networks (CNN) [104] are used in [86] for feature extraction. The

CNN features are coded using the Fisher Vectors technique [105], and then

the classification is performed by means of SVM. Rav́ı et al. [39] exploited

jointly different features in a hierarchy to obtain real-time food intake clas-

sification. The hierarchy of features encodes, in some way, the complexity

of the images: on simple classes, the classification will rely on the features

at the first level, while on more complex classes more features will be used.

To represent the images, the Fisher Vector [106] technique is employed, and

PCA is applied as in [107]. To perform classification, a linear SVM is trained

using the one-vs-rest strategy. The UEC FOOD 100 has been extended to 256

categories in [87] using a so-called “foodness classifier” and transfer learning

on images coming from crowd sourcing.

Another dataset used in literature is the Pittsburgh Food Image Dataset

(PFID) [49]. This dataset is composed by 4545 still images, 606 stereo pairs,

303 360◦ videos for structure from motion, and 27 privacy-preserving videos

of eating events of volunteers. The images portrays 3 instances of 101 food

items, bought in 11 different fast food chains. In [49], a baseline for future

experiments is provided. The authors use color histograms and Bag of SIFT

features to train a multi-class SVM. In [50], an ingredient based segmentation

is performed using a Semantic Texton Forest [108]. Hence, pairwise statis-

tics of local features are computed on the segment connecting two points,

and specifically: a) orientation; b) midpoint; c) between-pair; d) distance.

Moreover, two joint features are considered (Distance + Orientation and Ori-

entation + Midpoint). A SVM with a χ2 kernel is employed for classification

purpose. The PFID is also used for calories estimation in [88]. SIFT are ex-

tracted and a cosine-based distance function is used for matching. Rankings



CHAPTER 3. FOOD CLASSIFICATION 45

on food categories can be obtained in two ways: 1) a ranking based match-

ing, based on top T items of each frame-based rankings; 2) a count-based

matching based on sum of keypoint matching counts over all video frames.

Zong et al. [89] locate the keypoints using the SIFT detector, applying the

Local Binary Pattern (LBP) [109]. Then they employ a BoW model, us-

ing a codeword filtering function to select the most discriminative words in

the vocabulary. Dictionary creation is performed in a class-based manner.

To provide spatiality, the shape context descriptor [110] is calculated on the

image space, considering the words as keypoints. The images are classified

by means a cost function which takes into account the Bhattacharyya dis-

tance and the shape context matching cost. Nguyen et al. extended the

previous mentioned approach introducing the Non-Redundant Local Binary

Pattern (NRLBP) [90] and propose two strategies to classify the images: the

first makes use of a SVM, the second is based on a cost function. Farinella

et al. propose two different approaches on the PFID: one [51] is based on

the representation of food images as Bag of Textons. Textons are computed

using the responses of MR4 filters, then clustered in a class-based fashion ob-

taining a visual vocabulary. In the other approach [47] SIFT and SPIN [11]

features are computed over a dense grid, and multiple runs of the k-means

algorithm are performed separately for SIFT and SPIN. The vocabularies

obtained in output are used as input for an Expectation-Maximization based

consensus clustering technique [2]. In both approaches, a SVM is used for

classification. These two approaches will be further explained in Section 3.3

and Section 3.4. The method proposed in [91] combines different descriptors

and statistics calculated on patched centered on the keypoints detected by

the Harris-Laplace detector. For each feature, a visual codebook with 1000

words is built, and for each set a gaussian kernel is computed. The resulting
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kernels are used as input to train a Sequential Minimal Optimization (SMO)

MKL-SVM.

Bosch et al. propose a method for food identification based on global and

local features [111]. As global features, they use: 1) 1st and 2nd moment

statistics computed on the color channels of the image; 2) entropy statis-

tics; 3) predominant color statistics. As local features, they consider small

patches, on which they calculate the following features: 1) local color statis-

tics; 2) local entropy color; 3) Tamura perceptual features; 4) Gabor filters;

5) SIFT descriptor; 6) Haar wavelets; 7) Steerable filters; 8) DAISY descrip-

tor [112]. While the global features are used as input for a SVM with a RBF

kernel, the Bag of Words approach is used with local features. Classification,

in this case, is done using a Nearest Neighbor algorithm. This approach was

tested on a subset of the dataset created at Purdue University [80]. The Pur-

due Food Dataset is an extension of the USDA Food and Nutrient Database

for Dietary Studies (FNDDS), created having in mind the goal of augment-

ing “an existing critical food database with the types of information needed

for dietary assessment from the analysis of food images and other metadata”.

Rahmana et al. in [113] present a dataset with 209 acquired using a

iPhone3, to be used for retrieval purposes. They propose, as a baseline, Ga-

bor filter variants to ensure scale and rotation invariance to their algorithm.

However, they perform also a classification task, grouping the categories in

5 groups (Bread, Cereal, Veg, Fruit, Fast).

Another system for mobile food recognition is proposed in [114]. Here,

color histograms on the RGB space are computed on 3× 3 blocks and a dic-
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tionary with 500 visual words is built on SURF descriptors, to enclose local

features in the general description of the image. To classify the images, a

linear SVM with explicit embedding [115] is employed. It is interesting to

note that the authors propose a system able to suggest the direction to which

the camera should be moved, in order to improve classifier accuracy. Also, a

dataset with 50 categories containing 100 images each is presented.

A Computer Vision system for Chinese food identification is presented in

[93]. The authors work on a database composed by 50 categories of ready-

to-eat Chinese meals, with 100 images per category. On each image, the

following features are extracted: 1) SIFT with sparse coding; 2) LBP with

multi-resolution sparse coding; 3) color histograms; 4) Gabor textures. A

SVM is trained for each feature using 5-fold cross validation; the fusion is

done using the Multi-Class AdaBoost algorithm. Marginally, the authors

propose also a quantity estimation technique using Microsoft Kinect, but

this approach has been tested only on a single item of “hot & sour soup”.

A food recognition system integrated on a chopping board is the topic of

the work by Pham et al. [116]. In this work, an imaging system composed

by a matrix of optical fibers is placed under an appropriately prepared chop-

ping board. The sensor acquires the image and afterwards a 64-dimensional

color histogram and a 64-dimensional vector of Bag of SURF features are

computed. The algorithms used to classify the images are kNN and SVM.

The training and testing phases make use of a dataset composed by 1800

pictures of 12 food ingredients.

Random Forest (RF) [117] are used in [94] for mining discriminative re-
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gions. Superpixels are generated from the images and dense SURF and color

histograms are computed and encoded using Fisher Vectors [105]. These de-

scriptors are supplied to the RF for training. Once the RF has been trained,

the leaves constitute the set of candidates for the components. Using a

probability-based distinctiveness function, the most discriminative leaves are

selected. Hence, a linear binary SVM is trained for each class, using the sam-

ples lying in the most discriminative leaves as positive samples and hard neg-

ative samples to speedup the learning process. Alongside with the algorithm,

the authors present a novel dataset, called Food-101, composed by 1000 im-

ages for each one of the 101 most popular dishes on foodspotting.com.

The UNICT-FD899 [46] has been acquired by users with a smartphone

in the last four years during meals (i.e., iPhone 3GS or iPhone 4) in uncon-

strained settings (e.g., different backgrounds and light environmental con-

ditions). Each dish has been acquired with a smartphone multiple times

to introduce photometric (e.g., flash vs no flash) and geometric variability

(rotation, scale, point of view changes). The overall dataset contains 3583

images acquired with smartphones. The dataset is designed to push research

in this application domain with the aim of finding a good way to represent

food images for recognition purposes. The first question the authors try to

answer is the following: are we able to perform a near duplicate image re-

trieval (NDIR) in case of food images? Note that there is no agreement on

the technical definition of near-duplicates. The definition of near duplicate

depends on the degree of variability (photometric and geometric) that is con-

sidered acceptable for each particular application. Some approaches consider

as near duplicate images the ones obtained by slightly modifying the original

ones through common transformations such as changing contrast or satura-
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tion, scaling, cropping, etc. Other techniques (e.g. [118]) consider as near

duplicate the images of the same scene but with different viewpoint and illu-

mination. In [46], the authors consider this last definition of near duplicate

food images to test different image representations on the proposed dataset.

Then, they benchmark the proposed dataset in the context of NDIR by using

three standard state-of-the-art image descriptors: Bag of Textons [119], PRI-

CoLBP [120] and SIFT [4]. Results confirm that both textures and colors are

fundamental properties. The experiments performed point out that the Bag

of Textons representation is more accurate than the other two approaches

for NDIR.

3.3 Classification using texture-based features

In Chapter 1 the Bag-of-Visual-Word model has been presented as one of

the most used paradigms to represent images. Recalling the steps involved

in the approach (i.e. feature detection, feature description, codebook gener-

ation and proper image representation), it is noteworthy to underline that

each of these four steps introduces a variability on the final model used to

represent the images, and influences the overall pipeline as well as the results

of the classification. Different local feature descriptors can be exploited to

generate the codebook. For instance, in [49] SIFT has been used to test

BoW paradigm on the PFID dataset. Among the other descriptors, Textons

[5] have been employed when the content of the images is rich of textures

[119, 97, 121]. Since textures are one of the most important aspects of food

images, here we treat the classification of food as a texture classification prob-

lem. In the learning stage, training images are convolved with a filter bank

to compute filter responses. This feature space is quantized via K-Means
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clustering and the obtained clusters prototypes (i.e., the visual vocabulary)

are used to label each filter response (i.e., each pixel) of the training images.

The distribution of Textons is then used to feed the SVM classifier and hence

to build the model to be used for classification purpose. During classification

phase, test images are represented as distribution on the pre-learned Tex-

tons vocabulary after filter bank processing. Each test image, represented as

Bag of Textons, is then classified accordingly with the previous learned SVM

model. In our experiments we use the Maximum Response filter bank [119]

which is composed by filters (Gaussian, first and second derivative of Gaus-

sian and Laplacian of Gaussian) computed at multiple orientation and scales.

To achieve rotational and scale invariance, the responses of the anisotropic

filters are recorded at the maximum response on both scales and orientations

(MRS4 filters). In this way, a very compact 4-dimensional vector for each

color channel is associated to every pixel of the food images. As suggested in

[119], filters are L1 normalized so that the filter responses lie approximately

in the same range. To achieve invariance to the global affine transformation

of the illumination, the intensity of the images is normalized (i.e., zero mean

and unit standard deviation on each color channel) before the convolution

with the MRS4 filter bank. Finally, the filter response r at each pixel is

contrast normalized as formalized in the following:

rfinal =
r
[
log

(
1 +

‖r‖2
0.03

)]
‖r‖2

(3.1)

Regarding the Textons vocabulary generation, differently than the classic

procedure where the feature descriptors extracted from all training images of

the different classes are quantized all together, here we consider a class-based

quantization [119]. First, a small codebook Dc with Kc Textons is built for

each food class c. Then, the learned class-based Textons vocabularies are
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collected in a single visual dictionary D =
⋃

c Dc of cardinality K =
∑

c Kc,

and the food images are represented as visual words distributions consid-

ering the vocabulary D. The rationale beyond this codebook generation is

similar to the one presented in [14]. Each class-based Textons vocabulary

is considered suitable to encode textures of a specific class of food and not

suitable to encode the textures of the other classes; this is reflected in the

image representation in which all the class-based vocabularies are collected

in a single codebook D. Intuitively, when an image of class c is encoded

as Textons distribution considering the final vocabulary D, the bins of the

sub-vocabulary Dc are more expressed than the bins related to the other

sub-vocabularies Dc′ , c
′ �= c, making the representation more discriminative.

The experiments reported in Subsec. 3.3.1 show that, considering the PFID

dataset, the class-based Textons representation achieve better results than

the one learned without considering the different food classes during the

codebook generation. For classification purpose, we use a multiclass SVM

with a pre-computed kernel by considering the cosine distance. Given two

Bag of Textons signatures SIi , SIj , the cosine distance dcos is calculated as

following:

dcos
(
SIi , SIj

)
= 1− SIiS

′
Ij√(

SIiS
′
Ij

) (
SIjS

′
Ii

) (3.2)

The kernel is defined as:

kcos
(
SIi ,SIj

)
= e−dcos(SIi

,SIj). (3.3)

3.3.1 Experimental settings and results

This method have been compared against the techniques reported in [49, 122]

on the PFID dataset [49]. As in [49, 122], we follow the experimental protocol

defined for the PFID dataset: 3-fold cross-validation using 12 images from
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Figure 3.4: Three different classes of the PFID dataset. Left: Crispy Chicken

Breasts. Middle: Crispy Chicken Thighs. Right: Crispy Whole Chicken

Wing.

two instances of each class for training, and the 6 remaining images of the

third instance of each class for testing. We employed the libSVM library

[123] to assess the class-based Bag of Textons representation described in the

previous section.

Vocabulary Size 610 1220 1830 2440

Class-based Textons 27.9% 29.1% 29.4% 31.3%

Global Textons 23.1% 25.3% 26.0% 26.2%

Table 3.2: Class-based vs Global Textons Vocabularies. In all settings class-

based vocabulary achieve better results.

As in [122], we have also performed tests by re-organizing the 61 PFID

food categories into seven major groups: Sandwiches, Salads & Sides, Chicken,

Breads & Pastries, Donuts, Bagels, and Tacos. As first test, we have com-

pared the class-based Textons vocabulary with respect to the global one,

i.e., the one obtained considering all the feature descriptors of the different

classes all together during quantization. Tab. 3.2 reports the results in terms

of accuracy at varying of the vocabulary size for the classification of the 61

classes of the PFID dataset. The size of the vocabulary has been fixed by
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considering the number of class-based Textons Kc to be learned for each

food class. We have considered Kc ∈ {10, 20, 30, 40} Textons for each class

c, corresponding to a final vocabulary size of K ∈ {610, 1220, 1830, 2440}.
As expected, increasing the number of Textons, the classification accuracy

improve. Nevertheless, we do not have further improvements by consider-

ing more than 40 Textons per class. Note that the class-based vocabulary

achieve better results in all cases. The comparison of the class-based Bag of

Textons representation (with Kc = 40) against to the others state-of-the-art

methods [122, 49] is shown in Fig. 3.5 and Fig. 3.6 for both the 61 classes

and the 7 major classes respectively.

1.6%

9.2%

11.3%

18.9% 19.2%

20.8%

22.6%

21.3% 21.2%

28.2%

31.3%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Accuracy

Chance BoW SIFT Color GIR-STF D O Method BoW SIFT DO OM Class-based Bag of Textons

Figure 3.5: Classification accuracy (%) – 61 classes.

The names of the different methods are related to the original name used

by the authors in their papers. The chance recognition rate is also indicated.
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Figure 3.6: Classification accuracy (%) – 7 classes.

The classification accuracy of the class-based Bag of Textons representation

was 31.3% for the 61 classes and 79.6% for the 7 major classes. Although

its simplicity, the class-based Bag of Textons representation achieve much

better results (¿ 20%) than the global BoW considering SIFT descriptor. It

also outperforms the method proposed in [122] where OM features encoding

spatial information are used after a semantic segmentation performed trough

STF [108]. It is important to note that, differently than [122], Textons based

representation does not require any manual labeling of the different ingredi-

ents composing the food items to be employed. Although the labeling of the

different food ingredients is possible for a small set of plates, the up-scaling

to a huge number of categories (composed by many ingredients) became not

feasible, making the approach described in [122] difficult to be applied. The
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Table 3.3: Per-Class accuracy of the different methods on the 7 Major Classes of

the PFID dataset. In each row, the two highest values are underlined, while the

maximum is reported in bold.

Class Per-Class Accuracy % (# of images)

Color [49] BoW SIFT

[49]

GIR-STF

[122, 108]

OM [122] Class-based

Bag of

Textons

Sandwich 69.0 (157.3) 75.0 (171) 79.0 (180.1) 86.0 (196.1) 87.6 (199.7)

Salad & Sides 16.0 (5.8) 45.0 (16.2) 79.0 (28.4) 93.0 (33.5) 84.3 (30.3)

Bagel 13.0 (3.1) 15.0 (3.6) 33.0 (7.9) 40.0 (9.6) 70.8 (17)

Donut 0.0 (0) 18.0 (4.3) 14.0 (3.4) 17.0 (4.1) 43.1 (10.3)

Chicken 49.0 (11.8) 36.0 (8.6) 73.0 (17.5) 82.0 (19.7) 66.7 (16)

Taco 39.0 (4.7) 24.0 (2.9) 40.0 (4.8) 65.0 (7.8) 69.4 (8.3)

Bread & Pastry 8.0 (1.4) 3.0 (0.5) 47.0 (8.5) 67.0 (12.1) 53.7 (9.7)

Average 27.7 (26.3) 30.9 (29.6) 52.1 (35.8) 64.3 (40.4) 67.9 (41.6)

experiments point out that a proper encoding of textures play an important

role for food classification. Note that, even considering only a few Textons

per class (i.e., 10 Textons for a total of 610 visual word – see Tab. 3.2 and

Fig. 3.5) the accuracy obtained by the proposed method on the 61 classes

(27.9%) outperforms the ones achieved by other methods and is very close

to a more complex food classification pipeline described in [122] (28.2%).The

proposed representation outperform all the others methods with a number

of class-based Textons Kc ≥ 30. In Tab. 3.3 are reported the accuracies of

the different methods on the 7 major classes of the PFID dataset. Since

the number of images belonging to the different classes are not balanced,

for a better understanding of the results, the number of images is reported

together with the per-class accuracy. Also in the case of 7 major classes the

average per-class accuracy is in favor of the Textons based representation.
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3.4 Classifications using consensus vocabular-

ies

As an application of the study presented in Chapter 2, we applied the con-

sensus vocabulary representation model to food images for classification pur-

poses. Recalling the theoretical framework, we define

v(i)
n =

(
V1

(
x(i)
n

)
, . . . , VH

(
x(i)
n

))

as the vector that contains all the ids labels for the interesting point xi
n.

Considering the set of all vectors v
(i)
n , the consensus clustering algorithm is

used to find a consensus partition Vc called the Consensus Vocabulary.

The original formulation of the consensus clustering assigns each vector v
(i)
n

to the most likely cluster of the consensus partition in a hard way. Taking

into account possible visual words ambiguities [124, 125], we use a soft as-

signment. Specifically, we employ the probability vector z
(i)
n given by the

consensus algorithm to establish the membership degree of each vector v
(i)
n

to the different consensus clusters. Every image Ii is hence represented as

the normalized sum of all the z
(i)
n :

SIi =
1

Ni

Ni∑
n=1

z(i)n (3.4)

To represent test images I i, we first project their interesting points in the set

of vocabulary V, and then the consensus vocabulary is used to compute the

final signature in the same way as for the training images (Eq. 3.4).

To perform the classification, a multiclass SVM with a pre-computed

kernel and cosine distance is used, as shown in Equations 3.2 and 3.3.

To assess the proposed approach we have used the PFID dataset [49].

Our method has been compared against the two baseline methods reported
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in [49] as well as with respect to the different methods proposed in [122]. As

in [122], we followed the experimental protocol of [49] by performing a 3-fold

cross-validation for our experiments. We used 12 images from two instances

of each class for training and the 6 remaining images of the third instance

for testing.

A dense sampling procedure to extract the descriptors has been considered

by using a spatial grid with steps of 8 pixels in both horizontal and vertical

directions. The descriptors are computed on patches of 24×24 pixels centered

on each point of the spatial grid. The visual vocabularies to be used as input

for the consensus clustering have been obtained considering three different

runs of the K-means clustering for each descriptor. We have used K = 200

on each run with a random initialization. So, each point into the spacial

grid of the dense sampling has been projected into the 6-dimensional feature

space of the computed visual vocabularies (3 on the SIFT features and 3 on

the SPIN features). For the final consensus vocabulary, we chose a size of 300

consensus words. This means that the final food image is represented with

a very small vector. After representing images as described in Section 3.4,

we trained the SVM classifier, using the training images and pre-computed

kernel with cosine distance. The trained classifier has been then employed

on the test images. The classification accuracy achieved employing consen-

sus vocabularies on the 61 classes is reported in Fig. 3.7a, along with the

accuracies of the compared state-of-the-art approaches. The low accuracy in

discriminating among the 61 different classes is mainly due to foods items

of the PFID dataset have very similar appearances (and similar ingredients)

despite they belong to different classes [51].

It is important to note that our method, differently than [122], does not need

any manual labeling of the different ingredients composing the food items to
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be employed to produce the representation. Although the labeling of the

different food ingredients is possible for a small set of plates, the up-scaling

to a huge number of categories (composed by many ingredients) became not

feasible, making the approach described in [122] difficult to be applied.

As in [122], we have also performed tests re-organizing the 61 PFID food cat-

egories into seven major groups (e.g. sandwiches, salads and sides, chicken,

breads and pastries, donuts, bagels, tacos). Results obtained by the different

approaches are reported in Fig. 3.7b. In Tab. 3.4 the per-class accuracies of

the results of the different methods on the seven major classes of the PFID

dataset are reported. Since the number of images belonging to the different

classes is not balanced, for a better understanding of the results, the number

of images is reported together with the per-class accuracy. Also in this case,

our approach obtains better performances with respect to the best perform-

ing one proposed in [122].

We want also to underline that, despite the approach in [51] has better results

in terms of accuracy, the proposed method is valuable under a theoretical per-

spective. In fact, it shows that the results obtained using a combination of

different features are almost as good as standard techniques, but it captures

different aspects of the image, such as local gradient and textures. Note that

the representation proposed in [51] can be exploited together with SIFT and

SPIN to build a novel Consensus vocabulary which takes into account the

power of Textons in representing patterns. Moreover, the final vocabulary

size used in this approach is much lower than the one used in [51].
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Table 3.4: Per-Class accuracy of the different methods on the 7 Major Classes of

the PFID dataset. In each row, the two highest values are underlined, while the

maximum is reported in bold.

Class Per-Class Accuracy % (# of images)

Color [49] BoW SIFT

[49]

GIR-STF

[122, 108]

OM [122] Bag of

Textons

[51]

Consensus

Vocabular-

ies

Sandwich 69.0

(157.3)

75.0 (171) 79.0

(180.1)

86.0

(196.1)

87.6 (199.7) 89.0 (203)

Salad & Sides 16.0 (5.8) 45.0 (16.2) 79.0 (28.4) 93.0 (33.5) 84.3 (30.3) 69.4 (25)

Bagel 13.0 (3.1) 15.0 (3.6) 33.0 (7.9) 40.0 (9.6) 70.8 (17) 62.5 (15)

Donut 0.0 (0) 18.0 (4.3) 14.0 (3.4) 17.0 (4.1) 43.1 (10.3) 29.2 (7)

Chicken 49.0 (11.8) 36.0 (8.6) 73.0 (17.5) 82.0 (19.7) 66.7 (16) 91.7 (22)

Taco 39.0 (4.7) 24.0 (2.9) 40.0 (4.8) 65.0 (7.8) 69.4 (8.3) 50.0 (6)

Bread & Pastry 8.0 (1.4) 3.0 (0.5) 47.0 (8.5) 67.0 (12.1) 53.7 (9.7) 66.7 (12)

Average 27.7 (26.3) 30.9 (29.6) 52.1 (35.8) 64.3 (40.4) 67.9 (41.6) 65.5 (41.4)



CHAPTER 3. FOOD CLASSIFICATION 60

29.7%

31.3%

28.2%

21.2%21.3%

22.6%

20.8%

19.2%18.9%

11.3%

9.2%

1.6%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Ac
cu

ra
cy

 (%
)

Chance BoW SIFT Color GIR-STF D O Method BoW SIFT DO OM Class-based Bag of Textons Consensus Vocabulary

(a)

14.3%

55.3%

49.7%

69.0% 69.7%
71.0%

74.3% 73.8%
72.2%

78.0%
79.6% 79.2%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Ac
cu

ra
cy

 (%
)

Chance BoW SIFT Color GIR-STF D O Method BoW SIFT DO OM Class-based Bag of Textons Consensus Vocabulary

(b)

Figure 3.7: Classification accuracy on the 61 categories (3.7a) and on the 7

major classes (3.7b) of the PFID dataset.
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Appendix A

Image Forensics

A.1 Introduction

One of the most common problems in the image forensics field is the re-

construction of the history of an image or a video [126]. The data related

to the characteristics of the camera that carried out the shooting, together

with the reconstruction of the (possible) further processing, allow us to have

some useful hints about the originality of the visual document under analysis.

For example, if an image has been subjected to more than one JPEG com-

pression, we can state that the considered image is not the exact bitstream

generated by the camera at the time of shooting. In a digital investigation

that includes JPEG images (the most widely used format on the network

[127] and employed by most of cameras [128, 129]) as evidences, the classes

of problems that we have to deal with, are essentially related to the authen-

ticity of the visual document under analysis and to the retrieval of the device

that generated the image under analysis. About the possibility to discover

image manipulations in JPEG images, many approaches can be found in lit-

erature, as summarized in [130] and [131]. A first group of works (JPEG

62
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blocking artifacts analysis [132, 133], hash functions [134], JPEG headers

analysis [129], thumbnails analysis [135], Exif analysis [136], etc.) proposes

methods that seek the traces of the forgeries in the structure of the image

or in its metadata. In [93] some methods based on PRNU (Photo Response

Non-Uniformity) are exposed and tested. This kind of pattern characterizes,

and allows to distinguish, every single camera sensor. Other approaches, as

described in [137, 138, 139], take care of analyzing the statistical distribution

of the values assumed by the DCT coefficients. The explosion in the usage

of Social Network Services (SNSs) enlarges the variability of such data and

presents new scenarios and challenges.

A.2 Motivation and Scenarios

Investigators nowadays make extensive use of social networks activities in

order to solve crimes12. A typical case involves the need to identify a sub-

ject: in such a scenario, the information provided by the naming conventions

of Facebook3, jointly with the possible availability of devices, can help the

investigators in order to confirm the identity of a suspect person. More about

Social Network Forensic can be read in [140]. Another interesting scenario

consider the detection of possible forgeries, in order to prove the authenticity

of a picture. Kee and Farid in [129] propose to model the parameters used in

the creation of the JPEG thumbnail4 in order to estimate possible forgeries,

while Battiato et al. in [134] use a voting approach for the same purpose. For

1http://edition.cnn.com/2012/08/30/tech/social-media/fighting-crime-social-media/
2http://www.usatoday.com/story/news/nation/2015/03/20/facebook-cracks-murder-

suspect/25069899/
3http://facebook.com
4http://www.w3.org/Graphics/JPEG/
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this task, the information inferred from this study can provide some priors

to exclude or enforce such hypotheses.

Our analysis will focus on Facebook, because its pervasive diffusion5 makes

it the most obvious place to start for such a study.

A.3 Dataset

As previously stated, we refer in this phase to the Facebook environment,

taking into account capabilities, data and related mobile applications avail-

able during the experimental phase.

In order to exploit how Facebook manages the images uploaded by the users,

we decided to build a dataset, introducing three types of variability: the

acquisition device, the input quality (in terms of resolution and compression

rate) and the kind of scene depicted. Specifically we used the following imag-

ing devices (see Fig. A.1), which are respectively a reflex camera, a wearable

camera, a camera-equipped phone and a compact camera:

• Canon EOS 650D with 18-55 mm interchangeable lens - Fig. A.1a;

• QUMOX SJ-4000 - Fig. A.1b;

• Samsung Galaxy Note 3 Neo - Fig. A.1c;

• Canon Powershot A2300 - Fig. A.1d.

The considered scenes are 3 (i.e. indoor, natural outdoor, artificial out-

door); for each scene we choose 10 frames, keeping the same point of view

when changing the camera. Moreover, we took each frame 2 times, changing

the camera resolution (see Tab. A.1). The whole dataset is composed by 240

pictures.
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Camera Low Resolution (LR) High Resolution (HR)

Canon EOS 650D 720× 480 5184× 3456

QUMOX SJ4000 640× 480 4032× 3024

Samsung Galaxy Note 3 Neo 640× 480 3264× 2448

Canon Powershot A2300 640× 480 4608× 3456

Table A.1: Resolution settings for the different devices (in pixels).

(a) (b) (c) (d)

Figure A.1: The cameras used to build the dataset.

Facebook actually provides two uploading options: the user can choose

between low quality (LQ) and high quality (HQ). We uploaded each picture

twice, using both options, and subsequently we downloaded them.

The whole dataset with both original pictures and their downloaded versions

is available at http://iplab.dmi.unict.it/UNICT-SNIM/index.html. A subset

is shown in Fig. A.2.

A.4 Social Network Image Analysis

A.4.1 Facebook resizing algorithm

Our first evaluation focus on if and how Facebook rescales the uploaded

images. We implemented a tool to ease the upload/download process of

5http://newsroom.fb.com/company-info/
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Figure A.2: Column 1: indoor, column 2: outdoor artificial, column 3: out-

door natural. Row 1: Canon EOS 650D, Row 2: QUMOX SJ4000, Row 3:

Samsung Galaxy Note 3 Neo, Row 4: Canon Powershot A2300

the images. The different resolutions, related to the devices, are shown in

Tab. A.1. Performing a fine-grained tuning using synthetic images, we found

out that the resizing algorithm is driven by the length in pixels of the longest

side of the uploaded image coupled with the high quality option (on/off).

Figure A.3 report the overall flow of the resizing pipeline. Let I be a

picture of size M × N . If max (M,N) ≤ 960, I will not be resized; if

960 ≤ max (M,N) ≤ 2048 and the user selected the HQ upload option, I
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Figure A.3: Work-flow of Facebook resizing algorithm for JPEG images.

will not be resized; if the user did not select the HQ option, then I will be

scaled in such a way that the resulting image I ′ will have its longest side

equal to max (M ′, N ′) = 960 pixels. If max (M,N) > 2048 Facebook scales

I both in the case the HQ option is switched on or not. In the first case, the

scaled image I ′ will have its longest side equal to 2048 pixels; in the second

case, the longest side will be scaled down to 960 pixels.

Naming of the files

Facebook renames the image files after the upload. Nevertheless, it is still

interesting to do a brief analysis on how this renaming is performed, in order

to discover patterns in the name of the file and potential relationships among

the different elements involved in the upload process: the user, the image
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itself, the options.

We found that the generated name is composed by three numeric parts: the

first e and the third ones are random generated IDs, while the second part

corresponds to the photo ID (see Fig. A.4).

10996172︸ ︷︷ ︸
Random

745317175583308︸ ︷︷ ︸
Photo ID

271105793478350229︸ ︷︷ ︸
Random

(n|o)].jpg

Figure A.4: The filename generated for an uploaded picture.

The photo ID can be used to retrieve several information about the pic-

ture, using for instance the Facebook OpenGraph tool6. Just using a com-

mon browser and concatenating the photo ID to the OpenGraph URL, it is

possible to discover:

• The direct links to the picture;

• The description of the picture;

• The URL of the server where the picture is hosted;

• The date and time of the creation;

• The date and time of last modification;

• The name and the ID of the user (both personal profile or page) who

posted the photo;

• The name(s) and ID(s) of the user(s) tagged in the picture;

• Likes and comments (if any).

Moreover, OpenGraph shows the locations of all the copies at different

resolutions of the picture, created by Facebook algorithms to be used as

6http://graph.facebook.com
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thumbnails to optimize the loading time.

It is also interesting to note that the resizing algorithm adds a suffix to the

name of the file, depending on the original dimensions and on the upload

quality option. Specifically, if the dimensions are beyond the thresholds set

in the resizing algorithm and the high quality option is selected, the suffix

“ o” will be added; otherwise the added suffix will be “ n”.

A.4.2 Quantitative measures

In this Section, we show how the processing done after the upload modify the

Bits Per Pixel and the Compression Ratio for the images in the dataset. BPP

are calculated as the ratio between the number of bits divided by the number

of pixels (Eq. A.1); CR, instead, is computed as the number of bits in the

final image divided by the number of bits in the original image (Eq. A.2).

It is possible to compute the CR of a single image simply considering the

uncompressed 24-bit RGB bitmap version.

BPP =
# bits in the final image

# pixels
(A.1)

CR =
# bits in the final image

# bit in the original image
(A.2)

Eq. A.3 is a trivial proof that BPP and CR are proportional.

BPP ·# pixels = CR ·# bits in the original image =

= # bits in the final image

BPP = CR · # bits in the original image

# pixels
(A.3)

The charts in Fig. A.5 report the average BPPs for the images, grouped

by scene, which have been taken with the same camera, distinguished de-
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pending on the acquisition resolution. Since BPP and Compression Rate

are proportional, we refer the reader to the supplementary material 7 for the

charts related to CR.
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(b) BPP Indoor scene HR.
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(c) BPP Outdoor artificial scene LR.
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(d) BPP Outdoor artificial scene HR.
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(e) BPP Outdoor natural scene LR.
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(f) BPP Outdoor natural scene HR.

Figure A.5: BPP comparison with respect to scene and original resolution.7 http://iplab.dmi.unict.it/UNICT-SNIM/index.html
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In Fig. A.6 and A.7 we reported the relation of the number of pixels

respectively with the BPP and the Quality Factor (QF) as estimated by

JPEG Snoop8. Observing the graph in Fig. A.6, it emerges a relation of

inverse proportionality between the number of pixels and the maximum BPP;

this would support the hypothesis of a maximum allowed size for the uploaded

images.

(a) (b)

(c) (d)

Figure A.6: Number of pixels in the images VS BPP. A.6a: images

grouped by input resolution (HR/LR); A.6b: images group by upload qual-

ity (HQ/LQ); A.6c: HR input images grouped by upload quality; A.6d: LR

input images grouped by upload quality.
8http://www.impulseadventure.com/photo/jpeg-snoop.html
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(a) (b)

(c) (d)

Figure A.7: Number of pixels in the images VS Quality Factor. A.7a: images

grouped by input resolution (HR/LR); A.7b: images group by upload quality

(HQ/LQ); A.7c: HR input images grouped by upload quality; A.7d: LR

input images grouped by upload quality.

A more interesting observation can be deducted from Fig. A.7: trivially,

we observe the same six vertical lines corresponding to the different sizes of

the images, but all the points are vertically distributed in 17 discrete po-

sitions, corresponding to the quality factors reported in Tab. A.2. Thus,

we suppose there should be 17 different Quantization Table used in the up-

load process of the pictures belonging to the proposed dataset. A further

discussion about the quantization tables follows in Subsec. A.4.3.
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Quality Factor

1 71.07 10 81.99

2 71.93 11 83.11

3 72.91 12 84.06

4 74.16 13 84.93

5 74.75 14 86.93

6 77.09 15 88.93

7 78.93 16 90.06

8 79.94 17 91.86

9 81.09

Table A.2: Quality Factors of the JPEG Compression applied by Facebook

(estimated by JPEG Snoop)

A.4.3 Quantization Tables

The images considered in our dataset are all in JPEG format, both the orig-

inal versions and the downloaded ones. Thus, we want to find out how the

JPEG compression affects the pictures, focusing on the Discrete Quantiza-

tion tables used for that purpose. In fact, the Discrete Quantization Tables

(DQT) can, in some way, certify that an image has been processed by some

specific tool ([129]). We extracted the tables using JPEGSnoop. In Tab. A.3

and Tab. A.4 we report the DQTs for Luminance and Chrominance relative

to the lowest and the highest quality factor.

Moreover, we performed the same operation on some pictures belonging

to the authors that were uploaded previously, to check if the tables changed

over the years.
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DQT Luminance

9 6 6 9 14 23 30 35

7 7 8 11 15 34 35 32

8 8 9 14 23 33 40 32

8 10 13 17 30 50 46 36

10 13 21 32 39 63 60 45

14 20 32 37 47 60 66 53

28 37 45 50 60 70 70 59

42 53 55 57 65 58 60 57

DQT Chrominance

10 10 14 27 57 57 57 57

10 12 15 38 57 57 57 57

14 15 32 57 57 57 57 57

27 38 57 57 57 57 57 57

57 57 57 57 57 57 57 57

57 57 57 57 57 57 57 57

57 57 57 57 57 57 57 57

57 57 57 57 57 57 57 57

Table A.3: DQT corresponding to QF = 71.07

DQT Luminance

3 2 2 3 4 6 8 10

2 2 2 3 4 9 10 9

2 2 3 4 6 9 11 9

2 3 4 5 8 14 13 10

3 4 6 9 11 17 16 12

4 6 9 10 13 17 18 15

8 10 12 14 16 19 19 16

12 15 15 16 18 16 16 16

DQT Chrominance

3 3 4 8 16 16 16 16

3 3 4 11 16 16 16 16

4 4 9 16 16 16 16 16

8 11 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

Table A.4: DQT corresponding to QF = 91.86

A.4.4 Metadata

Among others, Exif data[141] contain some additional information about

the picture, such as camera settings, date, time and generic descriptions.

Moreover, a thumbnail of the picture is included. These kind of data has

been used for forensic purposes, because it can provide evidences of possible

forgeries (e.g. the thumbnail is different from the actual photo). Often, if

the camera is equipped with a geo-tagging system, it is possible to find the

GPS coordinates of the location where the photo has been captured.
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Using JPEGSnoop, we extracted the Exif data from the downloaded images,

and we found that Facebook completely removes them. Since no specification

is available, our best guess is that, since removing the Exif data reduces the

size in byte of the image, this procedure allows to save space on the storing

servers, given the huge amount of pictures uploaded in the social network.



Appendix B

Saliency-based feature selection

for car detection

B.1 Introduction

Car detection and tracking is a challenging problem Computer Vision, and

it is of great interest because the benefits that such a system brings when

mounted on surveillance cameras and autonomous vehicles. Among the in-

formation used to deal with the tracking problem are the one extracted with

the well-known optical flow algorithm. The motion vectors extracted can be

used to estimate the global motion of the scene or of the Region Of Inter-

est (ROI) to be tracked with the popular RANSAC [73] algorithm. Several

variants of RANSAC already exists, each of which introduces different ele-

ments in the filtering step, in the estimation step or in both. Among these

methods, MLESAC [142] is a generalization of RANSAC, which provides a

more robust estimation by minimizing a negative log likelihood function. We

propose to improve MLESAC considering the approach proposed in [143],

and in particular using Visual Saliency as a prior in the computation of the

76
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likelihood function. Visual Saliency is an important cue related to human

perception of what is important in the scene. In the next Sections we will

present a study of some saliency computation methods and the tests we have

performed to verify the applicability of this approach to the car detection

problem.

B.2 Contrast-based saliency computation

B.2.1 Global approach

Cheng et al. [144] propose an approach based on pixelwise differences in the

L*a*b* color space. Thus, for every pixel Ik ∈ I, Eq. B.1 is computed.

S (Ik) =
∑
∀Ii∈I

D (Ii, Ik)) (B.1)

where D is a metric in the L*a*b* color space.

Since the number of possible pairs can be very large, the authors reason

about how to reduce the computational complexity of the method.

Switch to the color space Pixels with the same color have the same

saliency, according to Eq. B.1, which becomes

S (Ik) = S (cl) =
n∑

j=1

D (cj, cl)) (B.2)

where cl is the color value of pixel Ik, n is the number of distinct pixel colors,

and fj is the probability of pixel color cj in image I.

Reduce the number of colors In the RGB color space we have 2563

possible colors It is clear that such a number it too large to deal with; thus,

the authors perform a quantization of the original color space using just 12
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colors per channel, but 123 is still a big number. Nevertheless, in natural

images only a fraction of the color space is present. The authors keep only

the colors needed to cover the 95% of the image, and replace the remaining

5% with the closest color in the histogram. This gives an average amount of

85 colors per image. The result is shown in Fig. B.1, taken from [144].

Figure B.1: Given an input image (left), we compute its color histogram

(middle). Corresponding histogram bin colors are shown in the lower bar.

The quantized image (right) uses only 43 histogram bin colors and still retains

sufficient visual quality for saliency detection.

Smoothing Colour quantization can introduce artifacts in the final saliency

maps, for example when similar non frequent colors are assigned to differ-

ent bins in the histogram. To face this problem, the authors apply a linear

smoothing function (Eq. B.3) to the saliency values histogram, considering m

neighbours of the saliency value. Saliency maps before and after smoothing

are shown in Fig. B.2, from [144]

S ′ (c) =
1

(m− 1)T

m∑
i=1

(T −D (c, ci))S (ci) (B.3)
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Figure B.2: Saliency of each color, normalized to the range [0, 1], before

(left) and after (right) color space smoothing. Corresponding saliency maps

are shown in the respective insets.

B.2.2 Region-based approach

The authors also propose to perform segmentation before computing the

saliency maps. They use the algorithm by Felzenswalb et al. [145], and then

they apply the algorithm described above to regions, instead of pixels. In

this way, pixels belonging to the same region will have the same saliency

value. Eq. B.4 shows the formula for saliency computation.

S (rk) =
∑
rk �=ri

w (ri)Dr (rk, ri) (B.4)

where w (ri) is the size of the region ri and D (see Eq. B.5)is a color metric.

D (r1, r2) =

n1∑
i=1

n2∑
j=1

f (c1,i) f (c2,i)D (c1,i, c2,j) (B.5)

Spatial information Including spatial relationships can help to emphasize

the effect of the differences between close regions and decrease those between

far regions. This is done applying Eq. B.6

S (rk) = ws (rk)
∑
rk �=ri

e
Ds(rk,ri)

−σ2 w (ri)Dr (rk, ri) (B.6)

where Ds is the spatial distance between the regions, σs is a spatial weighting

term, ws is a spatial prior related to center bias.
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Border refinement To refine the saliency maps, the authors put border

regions saliency values to 0. They define a 15-pixels wide border; if a region

lies for more than a fixed threshold, its pixels will be put to 0. After this,

the saliency is recomputed.

B.3 Graph based visual saliency

This approach, proposed by Harel et al. [146], aims to estimate human fixa-

tion points, while [144] has the goal to detect salient objects. This approach

is based on biological considerations. The authors define three standard steps

for each saliency map computation:

1. Feature maps computation;

2. Activation maps creation;

3. Normalization and combination.

In [146], the focus is on step 2) and 3).

They start from feature maps M : [n]2 → R and try to find points somehow

“unusual” that attract beholders’ attention. The first choice would be to

define “unusual” as unlikely, but this has been already done in the state of

the art. Thus, they define a dissimilarity measure between points of a

given map. So, given two points M (i, j) and M (p, q), let the dissimilarity d

be

d ((i, j) ‖ (p, q)) �
∥∥∥∥log M (i, j)

M (p, q)

∥∥∥∥ (B.7)

Eq. B.7 induces a graph over the map, as shown in Fig. B.3. Let’s call this

graph GA. The weights of the edges are proportional to the dissimilarity

between the connected nodes and their closeness in the the space of M ,
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Figure B.3: Induced graph over a feature map M .

according to Eq. B.9.

w1 ((i, j) , (p, q)) � d ((i, j) ‖ (p, q)) · F (i− p, j − q) , where (B.8)

F (a, b) � exp

(
−a2 + b2

2σ2

)
(B.9)

Such a graph can be directly translated into a Markov Chain by:

1. Normalizing the weights of outbound edges to 1 for each node;

2. Mapping nodes to states;

3. Mapping edges to transitions.

The resulting Markov Chain is:

irreducible - each state can be reached from each other;

aperiodic - starting from a state i, it is possible to come back at i within a

any number of steps;

recurrent - the probability of coming back at any state is always greater

than 0.
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Thus, the Markov Chain is ergodic and it has an equilibrium distribu-

tion π, defined as follows. Let S be the set of all the states and be P =

{pij|si, sj ∈ S} be the transition matrix. The distribution π has the follow-

ing properties

1. 0 ≤ πj ≤ 1, ∀j ∈ {1, . . . ,#S};

2.
∑

j∈S πj = 1;

3. πj =
∑

i∈S πipij;

4. πj =
C
Mj

, where C is a normalization constant and Mj is the expected

coming-back time;

5. lim
n→∞

p
(n)
ij = C

Mj
.

The computation ends giving out the amount of time a random walker would

spend in the node. Such a value is taken as an activation pixel-wise measure,

that forms an activation map.

The whole process is then iterated over the activation map, giving the saliency

as a result.

B.4 Frequency Tuned

Achanta et al. [147] analyse the relationship between saliency and frequen-

cies, considering different approaches in the state-of-the-art. Then, they

define some requirements for a saliency detector:

• Emphasize the largest salient objects.

• Uniformly highlight whole salient regions.

• Establish well-defined boundaries of salient objects.
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• Disregard high frequencies arising from texture, noise and blocking

artefacts

• Efficiently output full resolution saliency maps.

They claim that, since a saliency map should contain a wide range of fre-

quencies, using a Difference of Gaussian filter can be a good choice to build

such a map, by setting in the proper manner the involved frequencies (i.e.

the low-cut frequency σ1 and the high-cut frequency σ2, σ1 ≥ σ2). The imple-

mentation of this filtering process is somehow unusual, since they compute

saliency using B.10

S (x, y) =
∥∥Iμ − Iωhc

(x, y)
∥∥ (B.10)

where Iμ is the arithmetic mean of the values of all the pixels in the image

I, and Iωhc
is the gaussian blurred version of I. The image is represented in

the L*a*b* color space.

B.5 Spectral Residual

Hou et al. [148] investigated the visual saliency in natural images for ob-

ject detection purposes. They observed that the Log Spectrum curve of the

Fourier Transform of natural images tend to have the same trend, no mat-

ter the subject. They define the visual saliency as the singularities in the

spectrum. The approach can be summarized as follows. Given an image I:

• Compute the Fourier Transform F (I);

A = R (F (I));

P = I (F (I));

• Compute the logarithm of the real part of the transform: L = log (A);
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• Compute the residual R = L − hn ∗ L, where hn is a box filter of size

n× n;

• Compute the saliency map

S = g (x) ∗ F−1 [exp (R+ P)]2 .

B.6 Experiments and evaluation

We performed four different evaluations to assess the impact of the saliency

methods described above in a car detection scenario. We used the Toyota

Motor Europe (TME) Motorway Dataset [149], which

is composed by 28 clips for a total of approximately 27 min-

utes (30000+ frames) with vehicle annotation. Annotation was

semi-automatically generated using laser-scanner data. Image se-

quences were selected from acquisition made in North Italian mo-

torways in December 2011. This selection includes variable traffic

situations, number of lanes, road curvature, and lighting, cover-

ing most of the conditions present in the complete acquisition.

The test have been run on the images from the right camera, as

suggested by the authors of the dataset.

B.6.1 Ground-truth images

The dataset provides bounding boxes annotations for each frame.

Given an image Ii, and its bounding boxes annotations, we define

the union of all the boxes as

B(i) =

ni⋃
k=1

b
(i)
k
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where bk =
(
xk
1, x

k
2, y

k
1 , y

k
2

)
. Then we generate a ground truth

image G such that

G (x, y) =

⎧⎪⎨
⎪⎩
true if (x, y) ∈ B(i)

false otherwise

We will use these images for our experiments.

B.6.2 Test 1: Saliency reliability

We investigated the reliability of the different saliency methods

with respect to the car detection task. For each image, we com-

pute the ratio between the sum of the saliency values that lie

inside the bounding boxes and the bounding boxes theirselves,

posing false = 0 and true = 255. Formally, given a saliency map

S computed over an image I, the reliability is

R =

∑
(x,y)∈B(i) S (x, y)∑
∀(x,y) G (x, y)

(B.11)

where S (x, y) ∈ (0, 255), and therefore 0 ≤ R ≤ 1. The rationale

behind this measurement is to catch how much of the ground

truth is correctly highlighted by the saliency methods. Fig. B.4

show the distribution of the reliability values, highlighting the

maximum value for each saliency method.

B.6.3 Test 2: Image Coverage

This test is meant to evaluate the percentage of the image covered

by binarized saliency maps varying the threshold τ from 0 to 255.
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Figure B.4: Reliability on the TME dataset

So, given an image I and the corresponding saliency map S, we

first performed a binarization obtaining a map

Bτ (x, y) =

⎧⎪⎨
⎪⎩
1 if I (x, y) > τ

0 if I (x, y) ≤ τ

(B.12)

the coverage Cτ is computed as

Cτ =
1

N

∑
(x,y)

Bτ (x, y) (B.13)

where N is the number of pixels in B.
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Figure B.5: Coverage on the TME dataset

B.6.4 Test 3: True Positive Rate VS Coverage

True Positive Rate (TPR) and False Positive Rate (FPR) are

two measures of the goodness of a binary classification algorithm.

Given a set of predictions P and the corresponding real labels L,

we define the confusion matrix as shown in Tab. B.1:
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Actual

Value

Prediction outcome

p n total

p′ True

Positive

False

Negative
P′

n′ False

Positive

True

Negative
N′

total P N

Table B.1: Confusion Matrix for a binary classifier.

TPR, also known as sensitivity or recall, is the ratio between

the true positives and the positives in the ground truth, i.e.

TPR =
TP

P
=

TP

TP + FN
(B.14)

In this test, we evaluate the trend of TPR with respect to the im-

age coverage (see Subsec. B.6.3) varying the binarization thresh-

old in the range [0, 255]. Therefore, for each threshold τ we obtain

a confusion matrix, and more precisely we calculate the TPR and

the Coverage. It is important to note that the Coverage can be

calculated as shown in Eq. B.15.

Coverage =
TP + FP

TP + FN + FP + TN
(B.15)

This measurement is useful in order to find out how much of the

true positives (i.e. the interesting pixels that have been correctly
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detected) still remain in the pixels when the non-salient parts are

discarded.

The results, shown in Fig. B.6 and Tab. B.2, demonstrate that

a high TPR (over 99 %) can be reached using only the % of the

image with the GBVS saliency method [146].

Saliency Method TPR Coverage

FT 0.9917 0.9953

GBVS 0.9914 0.6363

HC* 0.9720 0.9755

RC 0.9901 0.9109

SR* 0.9631 0.7406

Table B.2: Lowest Coverage when TPRs > 0.99

* This method never reaches TPR > 0.99

B.6.5 Test 4: ROC Curve

In the last test, which confirmed the previous one, we compute

the Receiver Operator Characteristic (ROC) Curve for the afore-

mentioned saliency methods. The ROC Curve show the trend

of TPR (see Eq. B.14) with respect to FPR as the binarization

threshold changes. The chart in Fig. B.7 can be summarized

calculating the Area Under the Curve (AUC) for each line in the

chart. The bigger the area, the more accurate is the classification.

AUCs are reported in Fig. B.8.
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Figure B.6: TPR VS Coverage on the TME dataset

Figure B.8: Area Under the Curve
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Figure B.7: ROC Curve on the TME dataset

B.7 Test 1: Reliability on the sequences

of the TME Dataset
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(a) TME 08

(b) TME 11
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(c) TME 12

(d) TME 16
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(e) TME 17

(f) TME 18
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(g) TME 32

(h) TME 35
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(i) TME 42
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B.8 Test 2: Image Coverage on the se-

quences of the TME dataset

(a) TME 08

(b) TME 11
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(c) TME 12

(d) TME 16
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(e) TME 17

/

(f) TME 18
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(g) TME 32

(h) TME 35
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(i) TME 42
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B.9 Test 3: TPR vs Image Coverage

on TME sequences

(a) TME 08

(b) TME 11
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(c) TME 12

(d) TME 16
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(e) TME 17

/

(f) TME 18
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(g) TME 32

(h) TME 35
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(i) TME 42
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B.10 Test 4: ROC Curve on TME se-

quences

(a) TME 08

(b) TME 11
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(c) TME 12

(d) TME 16
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(e) TME 17

/

(f) TME 18



APPENDIX B. SALIENCY-BASED FEATURE SELECTION 113

(g) TME 32

(h) TME 35
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(i) TME 42
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