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CHAPTER 1

Introduction

An architect, a hooker and a programmer

were talking: ”Everyone knows mine is the

oldest profession,” said the hooker. “But be-

fore your profession existed, there was not the

divine architect of the universe?” The archi-

tect asked. Then the programmer spoke up:

“and before an architect, what was there?”

“Darkness and chaos,” the hooker said. “And

who do you think created chaos?” the pro-

grammer said.

Science is a hobby of mine as well as strolling, and such two hobbies do not differ

so much after all. Science is the act of walking around concepts, theories, approaches

and experiments by continuously getting lost along the paths of thoughts and streams

of consciousness. Both such two hobbies of mine can be extremely satisfactory when

you finally reach new and unknown places, nevertheless it has been said that the

way itself should matter more than the destination, and I agree. As a matter of

fact, along the trip that I am called to recap in this thesis, I’ve increasingly found
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10 CHAPTER 1. INTRODUCTION

myself unable to write anything regarding my destination without accounting the

path itself. Therefore, in the following pages, I will try to explain the destination of

my researches, which is intriguingly contained in the title of this thesis, however not

before I have asked for the reader’s kindness in order to be followed along the quite

loopy upcoming path. I make a promise though: every bit of information contained

in such a path will be shown to be a mandatory piece to build our destination. As

for the title of this work I am well aware that every name contains a promise, and

my promise is to keep up with a challenge: trying to tackle with the nature itself

of human intelligence, trying to model it, manage it, predict it. In the very end,

only to ennoble it. Of course, after a fast scroll through the table of contents, it

will be obvious that the linchpin of this work is all about crowdsourcing: the nature

itself, the involved architecture, the manageability, the possible improvements and the

related ethical consequences. The latter are the motif forces that drive the entireness

of this work, on the other hand I will briefly discuss about them only at the very

end of this thesis. One of the step to undertake to understand this work involves

a new conception of crowd and crowd sourcing models, that in a certain portion of

this work will be modeled similarly as clouds of some-how-connected brains that,

not differently from hardware processors and computational nodes, are concurrently

involved on the solution of a set of tasks. The definition is not occasional since also

the major crowdsourcing platform, the Amazon’s Mechanical Turk, has been defined

by its founder as: an Artificial Artificial Intelligence. Despite that, in this thesis,

I would like to improve and exceed the limits of such a definition which, as it will

be unveiled, is not only literally disrespectful of the human nature of the Turkers,

the back end workers of the Mechanical Turk, but also disagreeable in its profound

implications. As for any other scientific work also this thesis is born from a couple of

questions: is it possible to do it better? Is it possible to join both the clear advantages

of crowdsourcing with a more agreeable consequences for the workers? Is it possible

to obtain an automatism of some kind to model and manage such human worker

crowds?

Those questions have been asked in a precise moment and in a precise place:

the year is 2015, the place is the Lipari isle. The occasion to ask such questions and
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elaborate on them was given by a fortunate meeting with prof. Michael Bernstein from

Stanford University and actual inspirer for the title of this thesis. The conclusions

we reached were few but important:

1. Crowdsourcing is based on the certainty of workers availability

2. A skill-based pyramidal structure tampers with the previous point

3. It is paramount then to model availabilities from human behaviors

4. The execution of a crowd-based workflow should become predictable

5. New approaches to crowd modeling and behavior prediction are required

Surprisingly, I discovered that the best part of the researches performed during and

before my PhD studies, were complying with many of the key points needed for what

prof. Bernstein was calling the “crowdsourcing revolution”. At that point the path

of this thesis simply unfolded by itself: the milestone where there, the rest was only

a matter of connecting them. As said before, the path is what matters. During my

studies and my personal growth I had the undeserved fortune to be led on a path

crossing disciplines and methods, mixing Physics, Astrophysics, Cosmology, Engi-

neering, Energetics, and, finally, Computer Science. This path gave me a personal

perspective on chaotic phenomena that I tried to apply at the best of my possibil-

ities to the topic of this thesis. The results were as surprising as unexpected, but,

eventually, quite interesting. Modeling human beings is not an easy task and I would

not have been up to this challenge if I would have only based my approach on my

own ab initio assumptions. Instead of that I have tried to let the models emerge by

themselves while applying some mathematical methods such as wavelet analysis and

several advanced tools such as neural networks.

The developed methodologies and algorithms have been published or submitted

to important international journals such as IEEE Transactions on Neural Networks,

IEEE Transactions on Industrial Informatics, Neural Systems, Applied Energy, the In-

ternational Journal of Mathematics and Computer Sciences, etc. Note that a portion

of the mainstream concepts have been based on countless insights received while pre-

senting our solutions to conferences such as the IEEE International Joint Conference
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on Neural Networks, the International Conference on Artificial Intelligence and Soft

Computing and IEEE Symposium Series on Computational Intelligence, for several

editions. The help of the scientific community, its constant support, the comments

and criticisms received, has been fundamental for the continuation and improvement

of the presented research works. A special tribute of gratitude must be anyway rec-

ognized to prof. W lodzis law Duch, now deputy Minister for Science and Education

in Poland, former head of the Department of Informatics at the Nicolaus Copernicus

University, not only an esteemed scientist but also excellent teacher with whom sev-

eral times I had the privilege to chat, in front of a cup of tea or sandwiches, and learn

the fundamentals of Neural Network and Neurocognitive Informatics directly by one

of the main contributors of such fields, vastly known in the scientific community for

his computational approach to human mind modeling using Information Theory and

Neural Networks.

As I will explain in Chapter 2 the possibility to play with chaos and extrapolate

chaotic models take advantages of centuries of meditations and has very long roots.

Taking advantage of the gigantic studies already performed by the greatest names

of Science I have tried to interpret chaos and find a peculiar order in it starting

with Information Theory and Wavelet Analysis. I will give the mathematical basis

in Chapter 3. Wavelet analysis permits us to pack the information related to a phe-

nomenon into a few numerical coefficients, this is the perfect kind of set you can try to

model using neural networks. Of course to let the reader appreciate the advancement

proposed in the field of Neural Networks I firstly propose some mathematical basis

in Chapter 4, then I will explain in Chapter 5 how I have decided to enhance those

tools by means of a personally developed new architecture called Wavelet Recurrent

Neural Network, then an extended set of examples and ground tests will be given to

the reader. The developed approach, especially when bound to specific mathematical

formulations of the problem, among all the other proposed applications, gives us a

way to obtain resources availability predictions beforehand in order to preserve the

Quality of Service for distributed systems. As it will be shown, this approach has

been shown to be extremely useful when applied, in a particular fashion, to workers

availability for crowdsourcing projects. In Chapter 6 this thesis will finally enter on
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the playground of the Mechanical Turk itself while a new conception of Artificial2

Intelligence will be formulated by using Radial Basis Probabilistic Neural Networks

as classifiers. The latter will be constituting optimal crowd clustering tools in or-

der to understand, model and predict the behavior of human groups as well as their

natural predisposition to connect in social or collaborative networks. The developed

approach will be used for the specific purpose of this thesis, in fact in Chapter 7 it

will be shown that it is possible to model and create workgroups of people in order

to better accomplish a certain task basing on their characteristics, professional skills,

experiences, etc. As a matter of fact it will be shown that it is possible to concentrate

all those choices, generally made by a company manager, into an Inanimate Rea-

soner. Finally, this last frontier of automated company management based on Radial

Basis Probabilistic Neural Network will be joined with the said Wavelet Recurrent

Neural Networks, also providing an appropriate mathematical model and the related

software system in order to model, manage and optimize the execution of complex

workflows. Therefore in Chapter 8 the Artificial3 Intelligence will be presented as an

overall ensemble of mathematical and technological tools that jointly aims at making

the announced “crowdsourcing revolution” possible. Due to the the complexity of the

path it seemed reasonable to split it in steps, namely one for each chapter. At the

end of each chapter therefore a specific section will try to summarize the meaning

and implications of the chapter itself and lead the reader to the following chapter by

highlighting the connections and motifs. Finally, in the remaining part of this thesis,

and oppositely with respect to this Introduction and, eventually, the final Acknowl-

edgments, the use of singular pronouns will be abandoned. In fact, despite of the

traditions and rules which compel me to write only my name as author of this thesis,

none of the following content would have been possible without the key contribution

of a lot of other co-authors which populate part of the bibliography nearing my name.

Therefore, from this moment I will use the plural noun “we”, since this is not a one

man work but the non-linear superposition of contributions coming from an active

collaboration of which I am only a very small part. Enjoy the reading.





CHAPTER 2

Bringing chaos into order

Chaos: When the present determines the fu-

ture, but the approximate present does not

approximately determine the future.

Edward Norton Lorenz

In 1795, by a decree of the National Convention, a new professor of mathematics

was called to join the École Normale de Paris. He was named Pierre Simon, marquis

de Laplace, but he is now universally known as Laplace. Laplace was also recognized

for his so called newtonian fever and he left no occasion to remark his deep beliefs on

the deterministic nature of the Universe. Therefore, the words he pronounced during

his Course of Probability (reported on A Philosophical Essay on Probabilities, [118]

one of his most famous writings) are not surprising: !We may regard the present

state of the universe as the effect of its past and the cause of its future. An intellect

which at a certain moment would know all forces that set nature in motion, and

all positions of all items of which nature is composed, if this intellect were also vast

enough to submit these data to analysis, it would embrace in a single formula the

movements of the greatest bodies of the universe and those of the tiniest atom; for

such an intellect nothing would be uncertain and the future just like the past would

be present before its eyes." These are known facts, as well as the invitation that the

15



16 CHAPTER 2. BRINGING CHAOS INTO ORDER

same École Normale de Paris extended in 1797 for the same position, yet held also

by Laplace, to Giuseppe Lodovico Lagrangia, also known as Joseph-Louis Lagrange.

Laplace and Lagrange soon established a deep bound of respect and friendship, on

the other hand, as Cournot let us know [54], the two mathematicians were also well

known for the strength of their verbal fightings. During one of such verbal fights

Lagrange pronounced his famous sentence: !I regard as quite useless the reading of

large treatises of pure analysis: too large a number of methods pass at once before

the eyes. It is in the works of applications that one must study them; one judges

their ability there and one apprises the manner of making use of them.". Also

the words of Lagrange are not surprising, in fact Marcus Du Sautoy describes him

pronouncing similarly strong words [65] during a successive episode. The mentioned

episode recalls both Lagrange and Laplace while participating to an high level cultural

gala in the Palais du Luxembourg. During this gala a colleague senator, Cauchy his

name, while accompanied by his very young son, met the mathematicians. After

an interesting talk with the senator’s son, Lagrange gave further use of his strong

speaking, addressing the other numerous dignitaries of France, while pointing his

fingers to the young boy in a corner: !See that little young man? Well! He will

supplant all of us in so far as we are mathematicians", and then addressing his

father !Don’t let him touch a mathematical book till he is seventeen [...] if you don’t

hasten to give Augustin a solid literary education his tastes will carry him away"

[18]. Augustin Louis Cauchy was indeed the name of the boy: “the” Cauchy, father of

modern Math. Was Lagrange saying that mathematical education was not important

in XIX century? Of course not. Lagrange was well aware that great changes would

suddenly reform the basis of mathematics, logics and sciences. The optimistic view

of Laplace was in facts definitively doomed: the scientific community was beginning

to recognize that, despite the perfection and elegance of pure analysis, it was not

sufficient to describe the rounding nature and its phenomena. The scientist, under

the newtonian assumption of a deterministic world, were convincing themselves that

starting by an approximated knowledge of the initial status of a dynamic system,

it would have been possible to determine its temporal evolution. This philosophical

assumption was at the very core of XIX century science revolution. Despite of that
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assumption, in fact, there were increasingly strong evidences of systems that were not

describable by the existent analytical laws which, while able to describe the vastness

of planetary motion, where completely falling apart when trying to the describe the

motion of dust.

2.1 Building chaos

In 1870s finally the word chaos was legitimately admitted in the scientific dictionary

thanks to Ludwig Boltzmann and James Clerk Maxwell and their theory of statis-

tical thermodynamics. Their molecular chaos assumption postulated that during

a two-body collision, between particles in an ideal gas system, there is no correla-

tion of velocity. This assumption allowed us to develop a molecular chaos theory of

bodies in gas phase. As a side effect the theory finally introduced the concept of

chaotic dynamics. Since that moment the most important scientists contributed to

the foundation of chaos theory: from Poincaré to Hadamard, from Lorenz to Kol-

mogorov. The latter, Andrëı Nicoläıevitch Kolmogorov, can be surely considered the

legitimate father of modern chaos theory due to his revision of the theories yet de-

veloped by Poincaré [112]. Kolmogorov demonstrated that a quasiperiodic regular

motion can persist in an integrable system even when a slight perturbation is intro-

duced. This statement is also know as the KAM theorem due to the initials of the

authors, Kolmogorov, Arnold and Moser, who independently reached the same con-

clusions [112, 140, 197]. While the intentions of the authors were to indicate the limits

to the integrability of map functions, this theorem also gives the basis to understand

the transition of a stationary deterministic system into a chaotic state. As a matter

of fact in an integrable system all the possible status transitions are regularly quasi

periodic and introducing a neglectable perturbation with respect to the system, the

quasi periodic properties are not affected. On the other hand, as shown by the KAM

theorem, if we consider an increasingly strong perturbation, the probability to affect

the quasi periodicity of the system increases until chaotic trajectories are developed

and a totally chaotic status is reached. In this latter stage the constants of motion are

not preserved excepted the total energy, for this reason the consequences of the KAM
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theorem are also generally called ergodic principle. Despite its apparent strangeness

with respect to the topic of this thesis, the ergodic principle gives us the very deep

meaning of this work when applied to complex systems. In a system describable by

means of linear equations, an effect is simply a sum of a certain number of causes in

a totally deterministic fashion, accordingly to the principle of causality postulated by

René Descartes. On the other hand, such equations are rarely found to be accurate

when trying to describe a natural phenomenon in detail due to its intrinsic discontin-

uous or non stationary nature. The latter requires more complex models using non

linear solutions in order to reach an accurate enough description of the physical laws.

Unfortunately, the non linearity of such systems makes it impossible to preserve the

causality principle as described by Descartes since the effect of a small interaction

is not anymore accountable by such mathematical models. Non linear models, as

developed in the XIX century, were often not robust enough with respect to small

interactions, therefore small variations of the initial conditions can lead them to non

deterministic states.

2.2 Chasing butterflies

While the KAM theorem and the ergodic principle gave the basis to understand chaos,

also due to the works of their predecessors, the official discoverer of chaos is consid-

ered Edward Norton Lorenz with his work on deterministic nonperiodic flow [124].

Ironically, the bases of his theory were discovered by chance in 1961 while playing

with different approximations with the aim to produce accurate weather forecast

with a quite primitive computer. It is reported in literature [86] the famous episode

of Lorenz obtaining different solutions to his algorithm basing on the different ap-

proximations (3 or 6 decimal digits). The problem, discovered Lorenz, was not the

approximation capabilities of the machine, but the non linear nature of the system

that, due to small multiplication errors at each iteration, was suffering of an in-

duced exponentially divergent trajectory in the state space. In 1972, Philip Merilees,

chairman of the International Conference of the Association for the Advancement

of Science, invited Lorenz to present his work, but was Merilees itself to decide the
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title. The paper was entitled “Predictability: Does the Flap of a Butterfly’s wings

in Brazil Set off a Tornado in Texas?” [123], it contained the formulation of what

is commonly called the butterfly effect. Finally, in 1975, Edward Norton Lorenz

produced the results of a computer simulation graphically describing the divergence

effect caused by approximation, and suddenly he understood that the simulations

should have been reversible. The consequent results contributed to another discov-

ery: the Lorenz’s attractors. These attractors were immediately defined by Lorenz

itself “strange attractors” due to their shape and evolution in double spirals like the

wings of a butterfly. The comprehensive theory including Lorenz’s discoveries will

then be called with the name of Chaos Theory by James A. Yorke [120]. Yorke will

say that Lorenz’s attractor was capable to devise the intrinsic structure and the sta-

bility of systems that apparently show no stability or structure. On the other hand

no one was yet aware of the real capabilities offered by the newborn theory.

2.3 Chaotic influences

As shown by Yorke, Lorenz, Packard, Mandelbrot, and many others it was possible

to devise structures, recurrences and mathematical properties from a multitude of

apparently indeterministic phenomena. Chaos theory was shedding light on a new

interpretation of nature’s complexity: a natural order describing the interaction of

forces and evolution of states that, despite of the intrinsic complexity of such phe-

nomena, could be defined by fairly simple solutions. In such an interpretation a

stationary phenomena is nothing more than a stable and totally deterministic sys-

tem, therefore predictable, where even a small interaction can lead to non determin-

istic states, therefore a non predictable behavior. The key factor for such a kind

of systems is the minimum amplitude that a small interaction should have in order

to break the linearity of the system. The first to take into account such a question

was Henry Bérnard in 1901 while studying the water movements when exposed to

an heat source: he discovered that, while heating the water, it exists a critical tem-

perature after which the water begins to move in small vertical independent cells of

fluid. Unfortunately Bérnard, while responsible of describing the phenomenon, was
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not able to explain it, in fact an explanation was firstly given after sixteen years by

John William Strutt, baron of Rayleigh, that we universally know as Lord Rayleigh.

It must be said that the given explanation was technically wrong since Rayleigh was

basing its interpretation on slightly different conditions, on the other hand the baron

had caught the general reasons at the basis of the phenomenon: during its heating

process, the water undergos a reckless battle between viscosity and heat. The first is

responsible of maintaining the original uniformity of status and no coherent motion,

the second is responsible of breaking the original status introducing a collection of

states in uniform motion. Rayleigh understood that such dynamic systems are gen-

erally lead by two kinds of forces concurrently trying to impose a configuration by

eliminating the other one. Therefore it exists a minimum perturbation amplitude af-

ter which the new forces are capable to win the inertia of the system, driving it away

from its original configuration and letting its steady and uniform status to undergo

a chaotic transition. Fortunately chaos theory can provide us the mathematical tools

to build a perturbative model. On the other hand, while it is possible to use chaos

theory to model such physical phenomena, is it possible to use the same approach

for far more complex system such as a social system? The field of social systems

involves far more complex phenomena with respect to any other system. Certainly,

as the history of Internet and communication networks shows, social systems do not

share the same geometrical properties and spatial symmetries of a pot of water on

the fire. On the other hand, such a very complex social system manifests a different

kind of order of its own, a set of symmetries that must be extrapolated and that

are not evident at a first sight. Bérnard experiment shows that a chaos can emerge

from order, but, as Rayleigh has proven, also from chaos a peculiar kind of order

can emerge, but only after a chaotic transition. In order to understand a social sys-

tem then, it is paramount to understand its chaotic transitions. As Mark Buchanan

suggests [32], a typical example of chaotic transition is the explosion of a riot: two

man have a fight into a bar, someone else get involved, and so on, until the bar is

on fire as well as neighboring shops and hundreds of policemen are fighting against

hundreds of hooligans for several weeks (Bradford, April 2001). Despite the cultural

and psychological interpretations of the single phenomenon, the answer should be
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searched elsewhere. In 1978 Mark Granovetter, working with Christopher Winship,

Douglas Danfort and Bob Philips, mathematically demonstrated that models of col-

lective behavior are developed for situations where actors have alternatives and the

cost or the benefits of each depend on how many other actors choose which alternative

[88]. The key concept is that it exists a threshold for the number of actors choosing

the same alternative, this threshold acts as a transition point from the steady equi-

librium status to a chaotic evolution until a new status is reached. This threshold

is of course different for each individual, on the other hand it is also susceptible of

the influences of the collective in which the individual is integrated. Granovetter also

demonstrates that a small variation on such an individual threshold for one of the

actors can have a profound influence on the entire group. Such influences have been

proven to be both hierarchical and iterative processes. The first property results more

evident in the social context of companies or working environments, the second in

groups of people with common interests. In the year 2000 Malcom Gladwell proved

[85] that viral content gets amplified from an individual to another creating a series

of iterations and reaching out to the masses. In other words it is possible to build

maps of influence starting from a main influencer and building hierarchical or interest

based relationships to his second grade influencers and so on. It means that chaotic

transitions in social systems are started by influences mappable in peculiar kinds of

networks: the small world or scale free networks.

2.4 A small world

In 1998 an article appears in the international journal Nature showing a simple net-

work model that can be tuned to introduce increasing amounts of disorder showing

that such systems can be highly clustered while preserving a small characteristic path

lengths like random graphs [199]. The authors of the article are Duncan Watts and

Steven Strogatz, and they call those systems small world networks, by analogy with

the small-world [135] phenomenon (popularly known as six degrees of separation).

The neural network of the worm Caenorhabditis elegans, the power grid of the west-

ern United States, and the collaboration graph of film actors are shown in the article
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to be small-world networks. Such networks are represented by the authors as mathe-

matical graph where very few nodes are neighboring each others, while in few hops it

is possible to reach any destination node starting from any other node. In this kind

of networks the distances in terms of numb of hops δpn0, n1q among two nodes n0 and

n1 is generally proportional to the logarithm of the size of the network itself, defined

as the number of nodes N, therefore

δpn0, n1q9 logN (2.1)

This so called small world effect is particularly noticeable in many social contests

such as social networks, collaborative networks, companies and workgroups. The

underlying structure of the Internet itself shows to be a fairly evident small world

network. Successively, in 2002, Reuven Cohen and Shlomo Havlin have shown that

some yet known small world networks, in particular, shares a peculiar property: their

degree distribution follows a power law, at least asymptotically [52]. In other words,

in such particular networks, considering the nodes retaining a number k of connections

as a fraction P pkq of the total number of nodes in the network, this fraction P pkq

typically [43] scales as a power law

P pkq9k´γ (2.2)

where generally γ P r2, 3s Ă R. Cohen and Havlin have also shown that the average

distance between nodes in scale free networks is much smaller than that in regu-

lar random networks. Moreover, their studies on percolation in scale free networks

demonstrates that while a chaotic transition generally occurs only in the limit of

extreme dilution, several nodes are often critical to determine the evolution of the en-

tire network. Finally, in [51] Cohen and Havlin demonstrate that scale free networks

are ultra-small worlds. Speaking of a whole network in its entirety, in a small-world

network if we define a diameter d as

d “ max
n0,n1PV

tδpn0, n1qu (2.3)
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where V represents the set of nodes composing the network, then, due to (2.1), it

immediately follows that

d9 logN (2.4)

On the other hand, as the authors demonstrated, scale free networks within the

constraint γ P r2, 3s Ă R have a much smaller diameter with

d9 log logN (2.5)

While the derivation is valid for uncorrelated networks, the authors also detail that

for assortative networks the diameter is expected to be even smaller. This latter

kind of networks was described by Newman in [160] where he gives the definition

of assortative network as a network where the nodes that have many connections

tend to be connected to other nodes with many connections. Newman also finds that

social networks are mostly assortatively, while technological and biological networks

that tend to be disassortative, moreover he finds that assortative networks percolate

more easily being also more robust to vertex removal. These considerations paint a

unique picture: social networks are stable and resilient and therefore prone to spread

influences among nodes, whether we are talking of diseases in a city, information

in an online social network, interactions among workers of a company, or influences

among users or maintainers of a service. Influence spreading on a social network have

therefore peculiar patterns that guarantee the outcome. A question remains: is it

possible to model such patterns and then predict the behavioral evolution of a social

network over time? Again a bit of chaos theory, and in particular the ergodic principle,

should be taken into account. If, in fact, as said before, chaotic transitions in social

system are started by influences, and given that such influences resulted mappable as

scale free networks, it seems legitimate to ask if it is possible to study social networks

in terms of chaotic transitions. In this latter scenario two elements must be defined:

the influences leading to such transitions, and a critical threshold driving the system.

From this point the next step is obvious, since there exists only one considerable

kind of influences flowing uninterruptedly in a social network: information. As a

matter of fact, it has been proven many times that information dynamic does not
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differ from epidemic dynamic and that there is no difference between the spreading

of a pathogen or the diffusion of an idea, the models are similar, both of them non

linear, both of them chaotic, both of them ergodic. But in order to define things such

as transitions, thresholds and system energy, it is imperative to quantify by means of

a measurement. It is then imperative to measure information.

2.5 All form is formless

While trying to analyze social networks in terms of information flows is an inevitable

starting point, it is also a comforting arrival point that closes the circle of chaos

theory. As a matter of fact, it would be impossible to understand any aspect of

chaos theory without considering its interpretation under the lights of information

theory. This latter, on the other hand, is based on a primitive concept: information.

Due to the primitivity of this concept, it is quite difficult to give an appropriate

definition of information. Generally speaking, in order to measure information, it

would seem necessary to give an a priori definition of the form in which information

is retained. Fortunately, whether or not information and its form can be properly

defined, information can certainly be measured and algebraically represented. As well

as Lorenz can be considered the legitimate author of Chaos Theory, the same role,

relatively to Information Theory, should be assigned to Claude Elwood Shannon, but

without forgetting that his work has been based on the previous studies of Gibbs,

Boltzmann and a lot of other predecessors. Shannon’s work [183] explains that there is

no real need to know the form as far as it is possible to define a proper mathematical

domain describing the information flow. The Shakespeare’s character of Cardinal

Pandulph would say that !all form is formless, order orderless", as he does in the

third act of King John, unwillingly giving us a perfect definition of information: a

structure-less structure. If it is in fact impossible to obtain an a priori definition of

information, on the other hand it is quite easy to measure it once its mathematical

definition has been given. Shannon’s work not only gives that, but he also assigns a

prediction probability, nowadays known as Shannon’s entropy, in order to universally

define the information content. In particular, given a content carrying information,
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and known a certain portion of such a content, we could want to immagine the rest of

the message. If we assign a probability pi to each possible outcome, we can measure

the information carried by that outcome as

H “ ´
ÿ

i

pi log2 pi (2.6)

The consequence is quite obvious as its interpretation: if we are able to completely

determine with total certainty the outcome without having seen it, then its infor-

mation content is zero [184]. As a matter of fact, we have no new information after

the outcome becomes known, and, from this point of view, this kind of information

measures tell us how much unexpected is an outcome. Therefore it is the quantity

of information characterizing our a priori knowledge that affects the quantity of in-

formation we can get from the outcome. Certainly this aspect of Shannon’s entropy

should affect also our mathematically exact analytical models, as well as any other

reproducible algorithm. As a matter of facts, given detailed enough initial conditions,

a mathematical model is able to predict one and only one result with an outcoming

probability of 1. Shannon’s interpretation of such a model is simple and terrible: the

model predicts nothing. In facts no information is predicted by an analytical model,

due to its certainty, therefore all the information must be contained in the initial

data. It is only well hidden. Then, if wherever it is possible to formulate a working

mathematical set of laws and conditions capable to predict the future outcome of a

phenomena starting by a data set of initial conditions and boundary conditions, it

means that all the information is contained in such a data set, the next question can

be only one. Where is such information hidden? The reason to bind wavelet analysis

with neural networks is contained in the last question as well as in this chapter. While

the historical importance of chaotic models has been shown, we hereby propose a new

methodology to cope with non linear phenomena without imposing any constraint or

mathematical model ab initio. Wavelet analysis will permit us to obtain a different

representation of the data. Such a representation will be more suitable for neural

networks which will be used to cope with chaotic systems due to their robustness to

noise and misleading data. By binding the said two approaches it will be shown that



26 CHAPTER 2. BRINGING CHAOS INTO ORDER

it is possible to model the chaotic behavior of non linear systems, then allowing us

to tackle with the nature itself of human behavior in terms of chaotic transitions and

information measurements. The purpose is to let the models be born from the ex-

perimental data themselves making no unjustified assumption. This will be possible

only thanks to the high versatility of the used mathematical and computational tools

as well as their yet proven suitability for chaotic models.



CHAPTER 3

Bringing order into chaos

Chaos was the law of nature.

Order was the dream of man.

Henry Adams

The wavelet analysis give us a powerful tool to achieve major improvements on

information-based representation of data especially when such data are affected by

an apparently chaotic behavior. In general wavelet decomposition is used to extract

a shortened number of non-zero coefficients from a signal representative of the phe-

nomenon. In this manner the wavelet analysis can be used in order to reduce the data

redundancies so obtaining representation which can express their intrinsic structure.

The main advantage of the wavelet use is the ability to pack the energy of a signal,

and in turn the relevant carried informations, in few significant uncoupled coefficients.

In particular the performance of the wavelet decomposition can be noticed for non-

linear dynamical systems and predictors [57]. The wavelet transform, in fact, packs

the energy of a signal reducing the redundancies and showing the intrinsic structure

in time and frequencies. The so obtained representation with wavelet decomposition

offer advantages while used with neural networks, as will be introduced in the next

chapters. For now we will give a general description of the mathematical support.

27
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3.1 Wavelet theory

A general isomorphic linear application on a metric field, e.g. R, which is able to

describe a signal as a series expansion of waveforms, e.g. the Fourier expansion, is

called linear time-frequency transform. The waveforms involved in such a transform

are called time-frequency kernels and can be used as basis elements of an Hilbert

space. Considering a signal represented by a function f : R Ñ R, and f P L2pRq, it

is possible to define a transform as a bijection T : L2pRq Ñ L2pRq so that

#

T rfptqs “ ξptq

T´1rξptqs “ fptq
(3.1)

where T´1 : L2pRq Ñ L2pRq represents the inverse transform.

In order to understand the (3.1) it is necessary to recall few elements of algebraic

and functional analysis. Let Sn be a n-dimensional a linear space, therefore a set of

n linearly independent elements txk P S
nunk“1 form a basis for that space. Moreover,

since Sn is a finite-dimensional linear space, it can be equipped with an inner product.

Such a product allow us to obtain an orthonormal basis of Sn from any other basis

using the Gram-Schmidt process [187]. Finally any basis tvk P S
nunk“1 for Sn is the

image under an invertible linear transformation of an orthonormal basis of Sn. In a

more extensive scenario, taking into account also infinite-dimensional spaces, let SH

be an Hilbert space, or, in other words, let SH be an abstract vector space possessing

the structure of an inner product that allows lengths and angles to be measured

and that, consequently, is also a complete metric space with respect to the distance

function induced by the inner product [14].Under the said conditions, a collection

of vectors txk P SHukPZ is a Riesz basis for SH if it is the image of an orthonormal

basis for SH under an invertible linear transformation. In other words, if there is an

orthonormal basis tekukPZ for SH and an invertible transformation M such that

Mek “ xk @ k P Z (3.2)

Finally, if txk P SHukPZ is a Riesz basis for SH then there is a unique collection
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tx̃j P SHujPZ such that xxk|x̃jy “ δkj, where δkj is the Kronecker delta. Such collection

tx̃j P SHujPZ is called biorthogonal basis with respect to txk P SHukPZ for SH , and it

is also a Riesz basis of SH . If txk P SHukPZ and tx̃k P SHukjPZ are Riesz basis forSH

then there are non-negative constants α and β with α ď β such that

@ x P SH ñ α||x||2 ď
ÿ

kPZ

|xx|xky|
2
ď β||x||2

@ x P SH ñ α||x||2 ď
ÿ

jPZ

|xx|x̃jy|
2
ď β||x||2

(3.3)

The (3.3) si also called Cauchy-Schwarz frame inequality for Hilbert spaces [44]. It is

important to highlight that if txk P SHukPZ and tx̃k P SHukPZ are orthonormal basis

then the biorthogonality condition is obvius (e.g. taking x̃k “ xk) and the (3.3) is

trivially verified by means of the Plancherels formula with α “ β “ 1. In fact if

txk P SHukPZ and tx̃k P SHukPZ satisfies the frame inequality with α “ β “ 1 and

if |xk| “ |x̃k| “ 1 @ k P Z, then txk P SHukPZ and tx̃k P SHukPZ are biorthonormal

basis for SH . A different way to characterize some of these properties is to think of

two operators T and T´1 associated to the Riesz basis txk P SHukPZ. The first can

be called analysis operator T : SH Ñ L2 given by T pxq “ txx|xkyukPZ; the second

can be called synthesis operator T´1 : L2pRq Ñ SH given by T´1pT pxqq “ x. In

this formalism, txk P SHukPZ is a Riesz basis if and only if T is a bounded linear

bijection from SH onto L2, but then it follows that SH “ L2pRq. It follows then it

is possible to define a transform as a bijection T : L2pRq Ñ L2pRq so that, given a

signal f : L2pRq Ñ L2pRq,
#

T rfptqs “ ξptq

T´1rξptqs “ fptq

where T´1 : L2pRq Ñ L2pRq represents the inverse transform, coming back to the

(3.1).

Consider now a complete generator set for L2pRq and let the elements of such a

set be time-frequency kernels tφγuγPΓ where φ represents a multi parametric function

of index γ and Γ is the indexing frame. Moreover let it be φγ P L
2pRq with ||φγ|| “ 1

so that the set tφγuγPΓ is a Rietz basis for L2pRq. It is then possible to define a
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time-frequency transform Tγ : L2pRq Ñ L2pRq as

Tγ rfptqs “ xf |φγy “

`8
ż

´8

fptqφ˚γptqdt (3.4)

For such a transform, thanks to the Parseval theorem it is possible to demonstrate

that

Tγ rfptqs “

`8
ż

´8

fptqφ˚γptqdt “
1

2π

`8
ż

´8

fpωqφ˚γpωqdω (3.5)

Then it is possible to decompose the signal function f into a continuous superposition

of γ-intervals both in the time domain and in the frequency domain. Therefore if the

value of φptq is near to zero for any t in a small interval around a certain value tu, then

xfptq|φγy will depend only from the value of fptq on the selected interval. Analogously

if φγpωq is near to zero for any ω in a small interval around a certain frequency ωu,

then the second member of the (3.4) proofs that xfpωq|φγy reveals the properties of

fpωq around ωu. The two properties yet explained have tremendous consequences for

the field of signal analysis since, due to this theorem, it is possible to construct a short

time Fouriers transform by means of a small subdomain g, called shifting window,

and then translate it by a shift tu and modulating it by a frequency ωu so that

φγptq “ gωutuptq “ eiωutugpt´ tuq (3.6)

Similarly, it is possible to construct a wavelet kernel by means of a scaling factor s

and a shifting factor tu starting from a motherwavelet function ψ :: L2pRq Ñ L2pRq
so that

φγptq “ gstuptq “
1
?
s
ψ

ˆ

t´ tu
s

˙

(3.7)

This latter is also called time-frequency scaling and shift relation. By using the

wavelet kernels defined in (3.7) it is then possible to transform the space L2pRq by

means of a complete Rietz basis tφγuγPΓ by varying on a specific set of scaling and

shift parameters for each φγ. The main advantage of such a decomposition is the pos-

sibility to identify precise and specific locations in the time-frequency domain where
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the signal amplitude is distributed. In this manner it is possible to associate to each

signal in L2ppRq an unique energy distribution known as time-frequency signature of

the signal in the wavelet domain. Such a signature it is often more useful with respect

to the classical spectrum resulting from a Fourier transform (continuous or discrete),

since this latter only decompose a signal in limited frequency bands. By using a

time-frequency representation such as the wavelet decomposition a greater number

of information can be carried. It is finally possible to reconstruct the original in-

formation with the time-frequency product xf |φγy represented on the time-frequency

plan tpt, ωqu Ă R2 as a geometrical region. The position and surface of such a region

depend by the time-frequency spread of the kernel φγ and therefore are mainly de-

termined by the wavelet scaling factor s and shift factor tu. One of the properties of

a motherwavelet is the unitary norm, therefore

||φγptq||
2
“

`8
ż

´8

|φγ|
2dt “ 1 (3.8)

It this the possible to cope with |φγptq|
2 as with a probability distribution centered

on a point tuγ defined as

tuγ “

`8
ż

´8

t|φγ|
2dt (3.9)

following this mental schema interpreting |φγptq|
2 as a probability distribution, it is

also possible to define a standard deviation and consequently to obtain the definition

of a variance

σ2
tupγq “

`8
ż

´8

pt´ tuγq
2
|φγptq|

2dt (3.10)

It is then possible to recognize σ2
tupγq as the time-frequency spread of the kernel φγ

associated to the scaling factor s and the shift factor tu. By the Plancherel theorem
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it is possible also to prove

σ2
tupγq “

`8
ż

´8

|φγ|
2dω “ 2π||φγ||

2 (3.11)

It is then possible to represent an equivalent of (3.9) on the frequency domain. This

point is the central frequency of φγ and is defined as

ωuγ “
1

2π

`8
ż

´8

ω|φγpωq|
2dω (3.12)

similarly it is possible to represent the time-frequency spread also on the frequency

domain as

σ2
ωupγq “

`8
ż

´8

pω ´ ωuγq
2
|φγpωq|

2dω (3.13)

It is now clear how important is the time-frequency spread associated with a certain

wavelet decomposition starting from the chosen wavelet kernels tφγu: such a spread

determines the resolution in time and frequency of each wavelet kernel. Basing of such

resolution the wavelet transform is able to devise the time-frequency signature of a

signal by characterizing the energy distribution for each one of the different time and

frequency resolutions resulting from the wavelet kernels. For a given time-frequency

plan tpt, ωq P R2u, each wavelet kernel φγ selects a region Ωγ Ă tpt, ωq P R2u called

Heisemberg box and defined as

Ωγ “

„

tuγ ´
σ2
t pγq

2
, tuγ `

σ2
t pγq

2



ˆ

„

ωuγ ´
σ2
ωpγq

2
, ωuγ `

σ2
ωpγq

2



Ă R2 (3.14)

Finally it is possible to prove [200] the existence of a minimum for such a region and,

due to the (3.8) it results [128] a typical Heisemberg’s formula

surfpΩγq “ σ2
t pγqσ

2
ωpγq ě

1

2
(3.15)

Since the time-frequency resolution of the related φγ is defined as the surface Ωγ, it
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follows that, differently with respect to the Fourier transform, it is not possible to

obtain a point to point bijective correlation between a signal and its wavelet transform

since the time-frequency signature of such a signal is not concentrated in a point

but results from the superposition of different scales (therefore a different scaling

factors) at different time and frequencies (different values of tu and ωu) at different

time-frequency resolutions. In an over-simplified example, let suppose that for a

pair ptu, ωuq P tpt, ωqu Ă R2 we use an unique wavelet kernel φγptu,ωuq centered in

ptu, ωuq, then it is possible to obtain the related time-frequency resolution Ωγptu,ωuq
.

The obtained Ωγptu,ωuq
is a rectangular neighborhood of ptu, ωuq where it is possible to

locate a portion of the energy of the signal f as

ε
“

fpΩγptu,ωuq
q
‰

“
ˇ

ˇxf |φγptu,ωuqy
ˇ

ˇ

2
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ż

´8

fptqφ˚γptu,ωuqptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

(3.16)

3.2 Wavelet transform

As devised in the previous section, transforming the L2pRq space by using a Rietz

basis of time-frequency kernels allow us to let different properties of a signal emerge in

the time-frequency plan. Since different signals can be characterized by very different

properties both in time and frequency domains, it is therefore agreeable that a lot of

different time-frequency kernels basis can be used and customized in order to analyze

specific kinds or families of signals. A quite sizable group of time-frequency decom-

positions constitutes the wavelet transform family. A wavelet transform decomposes

a signal transforming the space with a specific basis computed starting by a common

motherwavelet function properly shifted and scaled. Specifically we call wavelet a

linear function ψ : L2pRq Ñ L2pR quadratically summable and with zero average and

belonging to a class of γ-neighborhoods centered on a point tu “ 0. Then it follows

that
`8
ż

´8

ψptqdt “ 0 (3.17)
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`8
ż

´8

|ψptq|2dt “ 1 (3.18)

While the latter is the normalization condition ||ψ|| “ 1, due to the said properties,

as in (3.7), it is possible to obtain the time-frequency scaling and shift relations

ψtusptq “
1
?
s
ψ

ˆ

t´ tu
s

˙

(3.19)

Moreover for each resulting kernel the normalization condition must be preserved so

that

||ψtus|| “

`8
ż

´8

|ψtusptq|
2dt “ 1 @ tu, s (3.20)

If the enlisted conditions are verified, given a signal f P L2R, a shift factor tu and a

scaling factor s, it is possible to define the wavelet transform centered on tu at a scale

s as the functional application Wstu : L2RÑ L2R so that

Wsturf s “

`8
ż

´8

fptqψ˚tusptqdt “

`8
ż

´8

fptq
1
?
s
ψ˚

ˆ

t´ tu
s

˙

dt (3.21)

From (3.21) follows the wavelet convolution rule

#

Wsturf s “ xf |ψtusy “ f ‹ ψ̃sptuq

ψ̃sptuq “ 1?
s
ψ˚

`

´t
s

˘ (3.22)

Changing to the frequencies domain it is possible to transform ψ̃sptq obtaining its

Fourier transform

F̂ rψ̃sptqs “ ψ̃spωq “
?
sψ˚psωq (3.23)

Since due to (3.17) it is

ψpωq
ˇ

ˇ

ω“0
“

`8
ż

´8

fptqψptqdt “ 0 (3.24)
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starting from (3.23) it is possible to demonstrate that ψpωq act trivially as a band-

pass filer on the signal f . Therefore computing the convolution f ‹ ψ̃sptuq of (3.22)

we obtain a wavelet scale transform as a band-pass filter on f properly scaled and

shifted by means of the factors s and tu.

3.3 Wavelet filters and projectors

Since the wavelet transform, once selected a scale factor s and a shift factor tu , acts

as band-pass filters it is natural to associate the overall wavelet transform to a filter

banks varying the parameters s and tu. Let Ψ a set of dyadic wavelet kernels

Ψ “

#

ψjn

O

ψjnptq “
1
?

2j
ψ

ˆ

t´ 2jn

2j

˙

+

j,nPZ

(3.25)

it is possible to show that Ψ is an orthogonal basis of L2pRq, and then that

fptq “
ÿ

j,n

xfptq|ψjnyψjnptq “
ÿ

j,n

djnptqψjnptq @ f P L2
pRq (3.26)

where djn “ xfptq|ψjny are called wavelet coefficients. The (3.26) is the practical

link among the wavelet functions and the classical functional analysis based on the

Fourier transform. The wavelet family Ψ is called biorthogonal wavelet family and

is composed by kernels ψjn that are computed starting by the same motherwavelet

ψ “ ψ00 by using a scaling factor 2j and a shift factor 2jn. In this manner each

one of the wavelet kernels ψjn identifies a portion of the information carried by the

signal on the band with resolution 2j. Using a truncated approximation of (3.26)

it is then possible to obtain a multi-resolution approximation of the signal since the

wavelet kernels act in this case as ideal conjugate mirror filters, and in this case

the overall decomposition resembles a multi-rate filter bank. Taking advantage of

such similarities, the wavelet transform can be easily implemented as filter banks

and therefore lowering the computational complexity of the operation. For a discrete

signal composed by N samples then the computational complexity is in the order of
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OpNq operations. For discrete signals then is possible to construct orthogonal wavelet

basis with compact support by means of unidimensional filters. In this manner the

construction of a wavelet basis is reduced to the resolution of a multi resolution

approximation problem for a signal. Let f P L2pRq be a signal, then the expansion

(3.26) can be interpreted as the difference of an approximations of the signal with

resolution 2´j`1 with respect to another approximations of the signal with resolution

2´j. The multi resolution decomposition of a signal represents the signal itself by

means of its projection of a set of orthogonal spaces tVjujPZ. Such projection are

performed by means of the devised filters which acts as a orthogonal projectors on for

the orthogonal spaces. The multi resolution analysis of a signal allows us to highlight

some characteristics of the signal itself by means of the time-energy signature even

when such characteristics are hidden because of interferences, noise or aberrations

of the signal, since those interferences generally presents different signatures. The

approximation of a signal f at a resolution 2´j is performed by means of a grid o

samples and the related local means on a dimension proportional to 2j. Formally it

is possible to define the approximation of a function f P L2pRq at a resolution of 2´j

as the orthogonal projection of f on the space Vj Ă L2pRq. Moreover, in the space

Vj are contained all the possible approximation of f at resolution 2´j. It follows that

@ f P L2
pRq D

!

fνj “ P ν
Vj rf s

M

fνj P Vj Ă L2
pRq

)

ν
@ j P Z (3.27)

therefore by fixing a general approximation basis for L2pRq, the orthogonal projection

of f in Vj results to be the function fj P L
2pRq so that ||f ´ fj|| is minimal. Then it

follows the definition of Mallat [127] and Meyer [134] of multiresolution. A set tVjujPZ
of closed subspaces of L2pRq is called multi resolution if the following conditions are
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verified
Vj`1 Ă Vj @ j P Z

fptq P Vj ô fpt{2q P Vj`1 @ j P Z

fptq P Vj ô fpt´ 2jkq P Vj @ j, k P Z

lim
jÑ`8

Vj “
č

jPZ

Vj “ t0u

lim
jÑ´8

Vj “
ď

jPZ

Vj “ L2
pRq

(3.28)

then it is possible to state that it exists a set of motherwavelets tΦpt´ nqunPZ which

is a Rietz basis for V0. Intuitively it follows that Vj is invariant for any translation

proportional to the scale factor 2j. As a result of such properties, a sequence thku

exists such that the scaling function satisfies a refinement equation

ϕpxq “ 2
ÿ

k

hkϕp2x´ lq (3.29)

The set of functions tϕj,lpxq|l P Zu with

ϕj,lpxq “
?

2jϕp2j x´ lq (3.30)

is a Riesz basis of Vj. Define now Wj as a complementary space of Vj in Vj`1 , such

that Vj`1 “ Vj ‘Wj, vp2xq P Wj`1, and vpxq P W0 ô vpx` 1q P W0. Consequently

`8
à

j“´8

Wj “ L2
pRq (3.31)

A function φpxq is a wavelet if the set of functions tϕpx´ lq|l P Zu is a Riesz basis of

W0 and also meets the following two conditions:

`8
ż

´8

ψpxqdx “ 0 (3.32)
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and

}ψpxq}2 “

`8
ż

´8

ψpxqψ˚pxqdx “ 1 (3.33)

If the wavelet is also an element of V0, a sequence tgku exists such that

ψpxq “ 2
ÿ

k

gk ϕp2x´ lq (3.34)

The set of functions tϕj,lpxq|l P Zu is now a Riesz basis of L2pRq. The coefficients in

the expansion of a function in the wavelet basis are given by the inner product with

dual wavelet ψ̃j,lpxq “
?

2jψ̃p2jx´ lq such that

fpxq “
ÿ

j,l

xf, rψj,lyψj,lpxq (3.35)

Likewise, a projection on Vj is given by

Pjfpxq “
ÿ

l

xf, rϕj,lyϕj,lpxq (3.36)

where ϕ̃j,lpxq “
?

2jψ̃p2jx´ lq are the dual scaling functions. The dual functions have

to satisfy the biorthogonality conditions

xϕj,l, rϕj,l1y “ δl´l1 (3.37)

and

xψj,l, rψj1,l1y “ δj´j1δl´l1 (3.38)

They satisfy refinement relations similar to (3.29) and (3.34) involving sequences

th̃ku and tg̃ku. In case the basis functions coincide with their duals, the basis is

orthogonal. As shown by Cybenko [56], given a continuous function f : R Ñ R it

exist a discriminating function σ so that is possible to obtain a representation

fpxq “
8
ÿ

i“1

wiσpa
ᵀ
i x` biq (3.39)
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where wi, bi P R and ai P Rn is a n-dimensional real vector. If σ is dense in r0, 1sn it

follows that any continuous function f can be approximated by a finite sum. Analo-

gously according to wavelet theory we can state that

fpxq “
8
ÿ

i“1

wi detpD
1{2
i qψpdix´ tiq (3.40)

is dense in the L2pRnq. We will call tdiudilatation vector and ti translation vector,

while will be Di “ diagpdiq and ψ will be called mother wavelet function whose

translates and dilates forms the basis for the L2pRnq space [176]. In this scenario,

as a matter of facts, the space Vj can be interpreted as a topological grid of cells

of dimension 2j characterizing a resolution of 2´j. From the (3.28) also follows that

given an approximation with a resolution 2´j it contains all the information in order

to compute a further approximation with a resolution 2´j´1. By iterating the process

the resolution of course will be reduced of a factor of 2 for each iteration, therefore,

approaching 0, all the information details will be lost since

lim
jÑ´8

||fj|| “ 0 (3.41)

On the other hand, if we immagine on the opposite to make the resolution diverge to

`8 it obviously follows that the approximation should converge to the original signal

itself and that

lim
jÑ`8

||fj ´ f || “ 0 (3.42)

where the norm ||fj ´ f || is indeed the approximation error.

3.4 Conjugate wavelet mirror filters

As explained in the previous section, it is possible to generate an orthogonal basis

for each Vj starting from a scaling function Φ. Each one of the generated function

can also be described by means of conjugate filters. From (3.28) follows that, given a



40 CHAPTER 3. BRINGING ORDER INTO CHAOS

function Φ generating an orthonormal basis for V0 it is possible to obtain it using

1
?

2
Φ

ˆ

t

2

˙

P V1 Ă V0 (3.43)

and since tΦpt´ nqunPZ is an orthonormal basis for V0 it is possible to decompose it

as the expansion
1
?

2
Φ

ˆ

t

2

˙

“
ÿ

nPZ

hrnsΦpt´ nq (3.44)

where h[n] represents the discrete conjugate filter

hrns “
A 1
?

2
Φ

ˆ

t

2

˙

ˇ

ˇ

ˇ
Φpt´ nq

E

(3.45)

Applying the Fourier transform to the members of the (3.44) it follows that

$

’

’

’

&

’

’

’

%

Φp2ωq “ 1?
2
hrωsΦpωq

hrωs “
ř

nPZ
hrnseinω

(3.46)

At this point it is useful to represent Φrωs as direct product of hrωs so that

Φp21´pωq “
1
?

2
hr2´pωsΦp2´pωq @ p ě 0 (3.47)

and then by substitution and truncation to the P ´ th factor it is possible to obtain

Φpωq «

˜

P
ź

p“1

hr2´pωs
?

2

¸

Φp2´Pωq (3.48)

If Φpωq is continuous in 0 then lim
PÑ`8

Φp2´Pωq “ Φp0q, and therefore

Φpωq “

˜

`8
ź

p“1

hr2´pωs
?

2

¸

Φp0q (3.49)
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Since then it is possible to implement the wavelet scaling function by means of conju-

gate mirror filters both in the time and frequency domain, then it is logical to use such

filters in order to implement a fast computation method for wavelet decomposition.

A solid theoretical support on the topic was developed by Cohen [46, 47].

3.5 Orthogonal wavelet basis

It is finally possible to introduce the orthogonal wavelet basis. Since the approxima-

tion of the signal f P  L2
pRq at a scale 2j corresponds to its orthogonal projection on

Vj Ă Vj´1 Ă L2pRq, if Wj is the orthogonal complement of Vj in Vj´1, then

Vj´1 “ Vj ‘Wj (3.50)

where Vj ‘Wj represents the direct sum among the two spaces Vj and Wj. The

orthogonal projection of f in Vj can be expanded as the sum

PVj´1
rf s “ PVj rf s ` PWj

rf s (3.51)

where PVj´1
,PVj and PWj

are the orthogonal projector operators respectively associ-

ated to Vj´1,Vj and Wj. It is evident that PWj
is able to give as output the details

of the signal f at a scale 2i´1 that are evidently neglected at a scale 2j. The Mallat-

Meyer theorem demonstrates that it is possible to construct an orthonormal basis

of Wj by scaling and translation of a wavelet basis Ψ. From this theorem follows a

lemma to demonstrate that the wavelet family Φ “ tψjnuj,nPZ is an orthonormal basis

of Wj if and only if

$

’

’

&

’

’

%

1
2
|grωs|2 ` 1

2
|grω ` πs|2 “ 1

grωsh˚rωs ` grω ` πsh˚rω ` πs “ 0

(3.52)
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where grωs and hrωs are the Fourier transforms of the filters grns and hrns defined as

$

’

’

&

’

’

%

grns “
A1

2
ψ

ˆ

t

2

˙

ˇ

ˇ

ˇ
ψpt´ nq

E

hrns “
A1

2
Φ

ˆ

t

2

˙

ˇ

ˇ

ˇ
Φpt´ nq

E

(3.53)

It finally follows the Mallat-Mayer formula

ψpωq “
1
?

2
g
”ω

2

ı

Φ
´ω

2

¯

(3.54)

From the inverse Fourier transform of (3.53) and from (3.54), it is finally possible to

express the wavelet decomposition equations in filter form as

grns “ p´1q1´nhr1´ ns

grωs “ e´iωh˚rω ` πs
(3.55)

The (3.55) represent the main equations to implement the commonly used algorithms

of fast wavelet transform. All the wavelet kernels Φ and ψ families associate to the

coniugate filter banks hrns and grns can be composed to form many orthonormal

basis for Vj and Wj. Now on we will call these latter spaces, respectively, space

of the residuals and space of the coefficients (or details) of the signal at a wavelet

scale of 2j. The Fast Wavelet Transform (FWT) algorithms are computed as cascade

convolutions where hrns and grns constitutes subsampling filters for the signal.

3.6 Fast Orthogonal Wavelet Transform

The FWT algorithm is a procedural and iterative decomposition of the signal which

makes use of the discrete conjugate wavelet filters of (3.55). The algorithm decom-

pose iteratively the signal obtaining, at the j-th step, an approximation PVj rf s and

the related coefficients PWj
rf s, then it iterates by obtaining from PVj rf s a coarser

approximation PVj`1
rf s and the related coefficients PWj`1

rf s. Viceversa the inverse

transform reconstructs an approximation PVj rf s from a coarse approximation PVj`1
rf s
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and the related coefficients PWj`1
rf s. Given an orthonormal basis tφjnuj,nPZ of Vj and

an orthonormal basis tψjnuj,nPZ ofWj, it is so possible to define the related projections

aj “ ajrns “ xf |φjny P Vj
dj “ djrns “ xf |ψjny PWj

(3.56)

By means of the decomposition theorem of Mallat, from the properties of the wavelet

filters, it follows that

aj`1 “ aj ‹ h
˚
r2ns

dj`1 “ aj ‹ g
˚
r2ns

(3.57)

and viceversa, for the inverse transform, it follows that

aj “ aj`1 ‹ hrns ` dj`1 ‹ grns (3.58)

Finally, considering a0 “ f , all the properties of the wavelet transform are verified

both for the signal analysis and synthesis. Using (3.57) and (3.58) it is then possible

to construct the analysis and synthesis schema by recursion. Starting from a0 “ f ,

each successive iteration will compute the wavelet coefficients dj`1 and the residuals

of aj`1 at an approximation scale of 2j`1 from the aj residuals. At each iteration,

then, the resulting aj`1 will constitute a subsampling of the signal with a factor 2

with respect to aj. Viceversa, for the synthesis procedure, starting from a signal aj`1

and the related details dj`1 at each iteration a finer approximation aj can be obtained

incrementing the signal resolution of a factor 2. Considering the FWT schema, it is

possible to obtain an orthogonal representation of aL “ xf |ψLny, this latter will be

composed by a collection of wavelet coefficients obtained by the projection PWj
f at

a scale 2j with 2L ă 2j ď 2L`J , where J represents the maximum approximation

level and therefore 2L`J the maximum approximation scale. It is finally possible to

formalize an operative definition of the complete wavelet transform to the scale 2L`J ,

or simply a J-levels wavelet transform of aL as

ŴJ raLs “ pdL`1|dL`2| ¨ ¨ ¨ |dJ´1|dJ |aJq (3.59)
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and similarly the inverse J-levels wavelet transform of ŴJ raLs as

W̃J rpdL`1|dL`2| ¨ ¨ ¨ |dJ´1|dJ |aJqs “ aL (3.60)

3.7 Biorthogonal wavelet basis

The biorthogonal wavelets use a particular transform, which is invertible but not

necessarily orthogonal, based on coupled filters. Biorthogonal wavelets allows more

degrees of freedom respect to traditional orthogonal (and of course the not orthogonal)

wavelets, it because these have two different scaling functions which can generate

twin resolution analysis with two different wave functions ψ and ψ1. The freedom

hypothesis lead us to conclude that the size N and M of the coefficients sets tau and

ta1u can differ. The scaling sequence must satisfy the biorthogonality condition

N
ÿ

n“1

ana
1
n´2m “ 2δm0 @ m P r1,M s X N (3.61)

The wavelet coefficients set in his general form are generated by

$

’

’

&

’

’

%

bn “ p´1qna1N´1´n

b1n “ p´1qna1M´1´n

(3.62)

The main idea of the proposed algorithm is that the underlying filtering operations,

rather than being one sided, are two sided: filters are not required to be symmetric,

but they must be of length 2k` 1 (k P N) and the middle sample being taken as the

filter coefficient attached to zero lag [37].

3.8 Biorthogonal Wavelets filters

The definitions and notions given until now are mandatory in order to understand

the biorthognoal wavelets. As presented before, to obtain the wavelet decomposition
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or synthesis of a signal it is necessary to use conjugate mirror filter banks, on the

other hand such filters responds as finite functional pulses. As shown by the Vetterli

theorem [196], two wavelet filters h̃ and g̃ perfectly decompose or reconstruct a signal

if and only if

$

’

’

&

’

’

%

F̂
”

h˚rω ` πs
ı

F̂
”

h̃rωs
ı

` F̂
”

g˚rω ` πs
ı

F̂
”

g̃rωs
ı

“ 0

1
2
F̂
”

h˚rωs
ı

F̂
”

h̃rωs
ı

` 1
2
F̂
”

g˚rωs
ı

F̂
”

g̃rωs
ı

´ 1 “ 0

(3.63)

By this theorem it is also possible to demonstrate that for any class of filters h and

g it exists a special pairs of filters ph̃, g̃q named exact or perfect filters. Such filters

can perfectly decompose and reconstruct the signal and are completely computable

starting by a general pair of filters ph̃, g̃q by solving the composite filters problem

(3.63) here also proposed in matricidal form:

¨

˝

F̂
”

hrωs
ı

F̂
”

grωs
ı

F̂
”

hrω ` πs
ı

F̂
”

grω ` πs
ı

˛

‚ˆ

¨

˝

F̂
”

h̃˚rωs
ı

F̂
”

g̃˚rω ` πs
ı

˛

‚“

˜

2

0

¸

(3.64)

and by a 2ˆ 2 inversion as

¨

˝

F̂
”

h̃˚rωs
ı

F̂
”

g̃˚rωs
ı

˛

‚“
2

∆rωs

¨

˝

F̂
”

grω ` πs
ı

´F̂
”

hrω ` πs
ı

˛

‚ (3.65)

where ∆rωs is the determinant

∆rωs “ F̂
”

hrωs
ı

F̂
”

grω ` πs
ı

´ F̂
”

hrω ` πs
ı

F̂
”

grωs
ı

(3.66)

By the determinant in (3.66) depends the stability of the filters bank [193], in facts

the stability condition is verified only if

D ω˚ P r´π, πs : ∆rω˚s ‰ 0 (3.67)
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as proven by Vaidyanathan. Finally it is possible to extend the theorem to the finite

response filters [194]. On the other hand, for the finite case, two parameters must be

introduced: an amplification coefficient a P Rzt0u and a shift l P Z so that

$

’

’

&

’

’

%

F̂
”

grωs
ı

“ ae´ip2l`1qωF̂
”

h̃˚rω ` πs
ı

F̂
”

g̃rωs
ı

“ 1
a
e´ip2l`1qωF̂

”

h˚rω ` πs
ı

(3.68)

and by the normalization condition a “ 1 and with null shift for l “ 0 it is possible

to obtain the system on the time domain

#

grns “ p´1q1´nh̃r1´ ns

g̃rns “ p´1q1´nhr1´ ns
(3.69)

ad consequently the following properties for the perfect biorthogonal conjugate mirror

filters

pg, h̃q “ pg̃, hq (3.70)

It is then obvious that the couples of stable filters pg, hq and stable filters pg̃, h̃q have

a symmetrical role and can be substituted each other. This inversion in (3.70) is

very useful in order to interprete the discrete wavelet decomposition operated by

the conjugate filter banks as a functional expansion in a base of `2pZq. Therefore the

residuals aj and the details dj can be expressed as inner products expansions in `2pZq,
and therefore it follows that

aj`1 “
ÿ

nPZ

ajrnshrn´ 2ls “xajrns|hrn´ 2lsy

dj`1 “
ÿ

nPZ

djrnsgrn´ 2ls “xdjrns|grn´ 2lsy
(3.71)

Similarly it is possible to expand a synthesized signal as

aj “
ÿ

lPZ

aj`1rlsh̃rn´ 2ls `
ÿ

lPZ

dj`1rlsg̃rn´ 2ls “ xajrns|hrn´ 2lsy (3.72)
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From (3.71) and (3.72) it follows

aj “
ÿ

lPZ

xf |hrn´ 2lsyh̃rn´ 2ls ` xf |grn´ 2lsyg̃rn´ 2ls (3.73)

The (3.73) is immediately recognizable as the decomposition of a signal aj P L
2pRq

by two dual sets of filters th̃rn´ 2ls, g̃rn´ 2lsulPZ and thrn´ 2ls, grn´ 2lsulPZ. These

latter sets, by theorem, and basing on the definition given at the beginning of this

chapter, constitutes two families of orthogonal Riets basis of the set `2pRq, moreover,

these sets are also biorthogonal since given

xh̃rns|hrn´ 2lsy “ xg̃|grn´ 2lsy “ δrls (3.74)

it immediately follows that

xh̃rns|grn´ 2lsy “ xg̃|hrn´ 2lsy “ 0 (3.75)

An infinite cascade of filter pairs ph, gq and ph̃, g̃q constitutes the scaling function and

the motherwavelet function so that their Fourier transforms verifies the conditions

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

F̂
”

φp2ωq
ı

“ 1?
2
F̂
”

hpωq
ı

F̂
”

φpωq
ı

F̂
”

ψp2ωq
ı

“ 1?
2
F̂
”

gpωq
ı

F̂
”

ψpωq
ı

F̂
”

φ̃p2ωq
ı

“ 1?
2
F̂
”

h̃pωq
ı

F̂
”

φ̃pωq
ı

F̂
”

ψ̃p2ωq
ı

“ 1?
2
F̂
”

g̃pωq
ı

F̂
”

ψ̃pωq
ı

(3.76)

while in the time domain the following conditions are verified

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

φptq “
?

2
ř

nPZ
hrnsφp2t´ nq

ψptq “
?

2
ř

nPZ
grnsψp2t´ nq

φ̃ptq “
?

2
ř

nPZ
h̃rnsφ̃p2t´ nq

ψ̃ptq “
?

2
ř

nPZ
g̃rnsψ̃p2t´ nq

(3.77)
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When using wavelet filters organized with the presented structure, due to the complete

analogy among the filter themselves with respect to the biorthogonal basis of `2pRq, it

is finally possible to implement the biorthogonal FWT by using pairs of exact filters,

therefore it is possible to apply such a transform to sampled signals. Let xrns be a

digital signal sampled with discrete time intervals of N´1 “ 2L, then exists f P VL so

that

aLrns “ xf |φLny “
xrns
?
N

(3.78)

If as before we call ajrns “ xf |φjny and djrns “ xf |ψjny it is possible to compute

iteratively the approximations and details of a biorthogonal wavelet decomposition

as
aj`1 “ aj ‹ hr2ns

dj`1 “ aj ‹ gr2ns
(3.79)

As well as it will be possible to synthesize the signal by the inverse biorthogonal

wavelet transform by iterating

aj “ aj`1 ‹ h̃rns ` dj`1 ‹ g̃rns (3.80)

Basically if xrN s is constituted by N samples, then, by means of (3.79) and (3.80) it

is possible to decompose the signal to the successive level or to synthetise the signal to

the previous level with OpNq operations. One example of wavelet performances can

be noticed for nonlinear dynamical systems [177]. Another good example, often used

as a benchmark for nonlinear predictors can be the Mackey Glass chaotic time series

[58]. It has been repeatedly shown in literature that a very compact representation

of the input data are ideal to be used with Neural Networks technology. In Chapter 5

we will show how to bound toughener Wavelet Analysis and Neural Networks, but

before that we will introduce, in the next chapter, the mathematical basis behind the

Neural Network we are going to use for this work.



CHAPTER 4

AI : Artificial Intelligence

Intelligence is the ability to adapt to change.

Stephen Hawking

Neural networks constitutes an exceptional set of powerful tools to solve classifi-

cation problems as well as linear regression problems, non linear control, prediction,

forecast etc. One of the main advantage of such an approach is the heuristically ap-

proach to problem solving which is generally implemented by emulation of known so-

lutions. Another advantage is on the elaboration speed of such network once trained,

as well as the possibility to extract phenomenological models from that a without any

a priori assumption. This characteristics give us an alternative to analytical studies

that sometimes are not possible due to the lack of experimental evidences appreciable

at a first sight, or due to their unfeasibility when it comes to non deterministic be-

haviors or chaotic dynamics. The inspiration for the development of artificial neural

network architectures came from the studies on the biological neural system. Starting

from the features manifested in the human brain and nervous apparatus, until today

many different kind of artificial neural networks has been realized in order to solve a

wide range of problems. Here the basis of such architectures are devised.

49
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4.1 Biological and Artificial Neural Networks

In the human physiology the neurons are biological cells electrically active which, only

the human brain, reach a magnitude of 1011. The neural dendrites can be considered

the electrical input of the neural cell as well as the axion can be considerate its

electrical output. The neuron can communicate by means of the junctions among

axons and dendrites, such junctions are called synapsis and allows the neurons to

tap into network of thousands of reciprocally connected units. The human neurons

have several resemblances with respect to the logic gates of a calculator, in facts,

just like logic gates, the neurons can be found in two states respectively of activity

or rest. When the neuron is activated it causes a electrical potential difference, such

a potential make it possible to transport electrical receptors along the axion to the

synapsis which, consequently, release chemical substances called neurotransmitters.

Through the synapsis the neurons can modify their electrical potential as well as

modify the electrical state of charge of neighbor neurons, and moreover, exchange

neurotransmitters. Such neurotransmitters are excitants or inhibitors of the neural

activity, therefore the exchange of these molecules can increase or decrease the activity

of the neighboring neurons, sometime with cascade effects. The effect produced by

a certain concentration of neurotransmitters is somehow similar to an algebraic sum

of positive and negative weights to determine the aptitude and effect of a certain

activation function. While this description represents of course a quite mechanical

ad inaccurate view of the mechanisms at the basis of the human brain, it is a quite

self explanatory representation of the basis functionalities of a network of biological

neurons. In such a view it is then possible to artificially emulate the devised processes

by means of electrical units or software systems. If we imagine the activation of a

neuron as a function, and if we imagine the output of this function to be null when

the inputs values are less or equal than a certain threshold, it is then quite easy to

design an electrical circuit or software equivalent in order to implement the described

process. A collection of so manufactured units can be then called artificial neural

network. From this point, if not differently specified, the term neural network will be

referred to such artificial neural networks.
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4.2 Activation functions

The artificial neuron is are the information processing units used for the construction

of neural networks. It is possible to agree on the fact that the principal elements of a

neuron (both artificial neuron or biological neuron) are constituting by bidirectional

information buses for the information transfer, independently by the artificial or bi-

ological nature of this kind of connection. Therefore from an informational point of

view the human brain and an artificial neural network shares the same functioning

processes. Each synapses, or link, represents such kind of information bus and is

characterised by specific properties such as the throughput, the amplification factor,

the speed or the responsiveness to a stimulus, as well as the influence on a linked neu-

ron. The neurons, in facts, are constantly exposed to electrical or biochemical signals

(or their digital counterpart), and the resulting effect is given by the superposition

of all those signals, opportunely mediated by the synapses. At the end, the synaptic

mediation is the responsible mechanism for the functionalities of the human brain and

the nervous system. In the human nervous system, while a synapse transmits an out

coming signal of a certain strength, such a strength is amplified or damped propor-

tionally to the synaptic section and length, moreover such signals can be amplified,

damped or delayed by means of special neurotransmitters. In a quite oversimplified

analysis of the mechanism it is then possible to imagine a neuron as a concentrated

functional unit. The input of this functional units is given by an algebraic sum of

different contributions corresponding to the different input synapses, on the other

hand different synapses in different moments are capable of enhancing or reducing

the signal strength, therefore such an algebraic sum should also take into consider-

ation a multiplicative weight representing the synaptic effect on each contribution.

Finally we can imagine a neuron as a function f : R Ñ R, and its response as a out

coming signal

y “ f

˜

ÿ

i

wixi

¸

(4.1)
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Figure 4.1: On the left: a typical neuron unit. On the right: the signum function of
(4.2).

where wi and xi represent respectively the synaptic weight and the related original

signal to be transmitted.The result of the neural function will determine the activa-

tion of the neuron and the consequent signal transmission, therefore the function f

will be called activation (or transmission) function. Unfortunately it is not possible

to concentrate in an unique and simple description all the possibilities concerning ac-

tivation functions since it exist a very large set of possible functions granting different

performance when used in different contests. Moreover sometime several activation

functions cannot be used in certain situations due to problems raising from the in-

trinsic structure of the function itself. As a general condition every function which

permits to finitely integrate its absolute value within a finite interval can be used

as an activation function. In set theory then an activation function is a function

f P L1pRq, on the other hand this condition, while mandatory, is not sufficient to

grant the optimality of the selected function. A suitable activation function must

be able to correctly discriminate whether activate the neuron or not, and the output

values to transmit to the successive neuron. In order to correctly set few ideas on

the activation functions a very simple example could be helpful. Suppose to select

as activation function the signum function sgn : R Ñ t0, 1u, then suppose to use

this function to activate a neuron which receives a tuple of input data pxiq to which

correspond a synaptic weights tuple pwiq. In this scenario (as in Fig. 4.1) the output
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y of the neuron can be defined as

y “ sgn
´

ÿ

i
wixi

¯

“

#

`1 if
ř

iwixi ě 0

´1 if
ř

iwixi ă 0
(4.2)

It is trivial to recognize that the signum function is able to recognise and act differ-

ently when it receives two possible configurations os total inputs since it differently

responds basing on the sign of the algebraic sum of the inputs. Such kind of activation

function perfectly emulate some neurobiological functions based on thresholds, on the

other hand many phenomena cannot be modeled in terms of thresholds and binary

activation threes, therefore, often, more complex activation functions are required.

Nevertheless, while mathematically selectable, not every function in L1pRq resembles

a good activation function for many possible reasons such as too large or frequent

oscillations, local minima or maxima or other strange mathematical characteristics

that can have bad influence on the behavior of the function when exposed to certain

classes of inputs. The purpose of a good activation function is to both discriminate

and generalize so that, jointly with an appropriate and feasible selection of synaptic

weights, the resulting neurons can constitute a model of the relations that links the

inputs to the outputs. Such generalization and discrimination capabilities strictly

depends on the selection of an adeguate activation function for the artificial neurons.

4.3 Feedforward neural networks

Basing on the given description of artificial neurons and activation functions, it is now

possible to introduce a simple model of neural network. Mathematically a neuron

model is constituted by a weighted functional expansion of non linear isomorphisms

capable to transform an independent input vector u into a dependent output vector

y. More in depth, lets suppose to organize a set N of neurons γj into several disjoint

ordered subsets Ni, so that
ď

i

Ni “N

č

i

Ni “H
(4.3)
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and let suppose that the neurons inputs and outputs are organized as a chain so that

the composite output of the neurons in a set is used also as input for the neurons in

the successive set, therefore

γ
piq
ji
P Ni ô γ

piq
ji

:
|Ni´1|
à

ji´1“1

Cod
´

γ
pi´1q
ji´1

¯

Ñ

|Ni`1|
à

ji`1“1

Dom
´

γ
pi`1q
ji`1

¯

(4.4)

where Codpγq indicates the codomain of the function γ, Dompγq the domain of the

function and the operator ‘ defines the direct sum. Within the given organization,

each set Ni is called layer and the resulting network is called neural network. There-

fore it will follow a natural formalism where, if we call xpiq the tuple of outputs of the

i-th layer, it will also identify the tuple of inputs of the pi` 1q-th layer. Finally, if for

each layer Nl it exist a layer activation function γl and a tuple of weights
´

w
plq
jk

¯|Nl´1|

j“1

so that for each γlkl P Nl it follows

γ
plq
k

`

xpl´1q
˘

“ γl

˜

|Nl´1|
ÿ

j“1

w
plq
jkx

pl´1q
j

¸

(4.5)

then the resulting structure is called multilayer neural network. From this point the

term neural network will refer to such a kind of networks if not differently specified.

It follows that

xplq “
´

γ
plq
k px

pl´1q
q

¯|Nl|

k“1
(4.6)

The functional form of the isomorphism representing a multilayer neural network then

strictly depends from its topological structure (now on simply called topology), by the

layer activation function (now on only activation function if not differently specified)

e by the tuple of weights (now on layer weights). It follows that in general a neural

network is representable as a vectorial application ν : RN ˆRP Ñ RM so that for an

input vector u P RN , and given a multidimensional matrix of weights W , it associates

an output vector y “ νru,W s. As a trivial extension of the given formalism, then,

we will call xp0q “ u input layer. Moreover, if the inner topology of the network is

composed by L ´ 1 layers, called hidden layers, then we will call y “ xpLq output
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layer. It is possible to expand the (4.5) considering x
p0q
i “ ui @ i P r1, N s X N. It

follows that

x
p1q
j “ γp1q

˜

N
ÿ

i“1

w
p1q
ij x

p0q
i

¸

@ j P r1, |N1|s X N (4.7)

where γp1q is the activation function of the first hidden layer and xp1q “
´

x
p1q
j

¯|N1|

j“1
the

related output. Continuing from (4.7), if the topology consists of L ą 1 hidden layer,

it follows

x
plq
k “ γplq

˜

|Nl|
ÿ

j“1

w
p1q
jk x

pl´1q
j

¸

@ k P r1, |Nl|s X N, @ l P r2, Ls X N (4.8)

Finally, given y P RM it follows

γm “ xpLqm “ γpL´1q

˜

|NL´1|
ÿ

k“1

w
pLq
kmx

pL´1q
k

¸

@ m P r1,M s X N (4.9)

Reading back from (4.9) to (4.7) it is evident that each element γm of the output

vector y depends from a multiplicity of nested functional sums:

γm “ γpLq

˜

|NL´1|
ÿ

k“1

w
pLq
kmγ

pL´1q

˜

|NL´2|
ÿ

j“1

w
pL´1q
jk ...γp1q

˜

N
ÿ

i“1

w
p1q
ij x

p0q
i

¸

...

¸¸

(4.10)

Adopting as a convention the b operator to define the nested sum of (4.10) it is

common use to describe a feedforward neural network with the compact expression

y “
L
â

l“0

wl`1xplq (4.11)

It is also possible to have a more rigorous formulation by using bidimensional a index

µl on a range Ωl given as the cartesian product of the indexing ranges of the l-th layer

and the pl ´ 1q-th layer, so that

y “
L
â

l“0

xγ̂l|w
l
µl
xl´1
µl
y (4.12)
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In literature it is often used the ‘ operator instead of the b, on the other hand the

adopted notation avoids any confusion with the direct sum operator, yet used in this

chapter.

4.4 Approximation theorem

While aesthetically pleasant and mathematically comforting, the given formalism is

far away from an efficient description of how a neural network operates. As a matter

of facts, a neural network can be used to create models of phenomena with an un-

clear nature, or that require a too complex model to be deduced analytically. In order

to exploit such a feature a neural network must undergo a process called training.

The Cybenko theorem (also known as universal approximation theorem in its general

form), support the latter statement. Such a theorem, in its general form [55], states

that a feedforward network with a single hidden layer containing a finite number

of neurons (i.e., a multilayer perceptron), can approximate continuous functions on

compact subsets of Rn, under mild assumptions on the activation function. The theo-

rem thus states that simple neural networks can represent a wide variety of functions

when provided with an appropriate weights set, and it does not touch upon the algo-

rithmic learnability of those parameters. The first versions of the theorem was proved

by George Cybenko for sigmoid activation functions [56], while two years later Kurt

Hornik showed [97] that it is not the specific choice of the activation function, but

rather the multilayer feedforward architecture itself which gives neural networks the

potential of being universal approximators. In this proof the output units are always

assumed to be linear, on the other hand the general case can easily be deduced from

the following set up. Let γ be a non-constant, bounded, and monotonically-increasing

continuous function, then given a continuous function f defined in the M-dimensional

unitary hypercube of RM so that f P Cpr0, 1sMq, it is possible to demonstrate that

exists an approximation f̃ of the function f in the form

f̃N
`

x|W, tαiu
N
i“1, tβiu

N
i“1

˘

“

N
ÿ

i“1

αiγ

˜

M
ÿ

j“1

Wijxj ` βi

¸

, W P RNˆM (4.13)
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also granting that@ ε ą 0 D Nε P N so that

@ i P r1, Nεs X N D tαi, βi P RuNεi“1 : @ x P r0, 1sM ñ ||f̃Nε ´ f || ă ε (4.14)

Notice that (4.14) does not give any constraint on the W , that because, independently

from W , the (4.14) has a form of a limit. Indeed the theorem proofs that for any

positive value of ε, as small as wished, it exists an approximation of f truncated to

the Nε-th order. Then it follows that

lim
N0Ñ8

f̃N0

`

x|W, tαiu
N0
i“1, tβiu

N0
i“1

˘

“ fpxq (4.15)

The (4.15) reveals then that, given γ with the specified properties, any f P Cpr0, 1sMq

can be expressed in the form of a Fourier expansion

fpxq “
8
ÿ

i“1

αiγ

˜

M
ÿ

j“1

Wijxj ` βi

¸

(4.16)

This also means that tfNu is dense in Cpr0, 1sMq and it obviously holds replacing

r0, 1sM with any compact subset of RM @ M P N. Finally it has to be noticed

that γ presents all the properties of a transfer function, therefore it is immediately

verified that (4.13) describes the output of a single layer neural network with M input

neurons, N hidden neurons implementing a transfer function γ, a synaptic weights

matrix W , neural biases βi associated to the neurons, and amplification factors αi

resulting from the linear combination of outputs of each hidden neurons. The (4.13)

is the very backbone of the mathematical structure that permits to model signals or

make predictions by means of neural network. If carefully analyzed (4.13) actually

states that it should be possible to approximate any function by means of a single

layer neural network with no constraint on the related weights, since, the theorem

hold also if we assume Wij “ 1. On the other hand this theorem does not give

any information relatively to the optimum setup in terms of number of neurons or

the approximation error held by f̃ or, above all, generalization capabilities. For this

reason at the moment of the computational implementation it is ofter preferable to
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select a fixed number of neurons N organized in one more than one layer, sometime

implementing different transfer functions, and then solve an optimum problem by

searching for the best performing weight matrix W . It is in this process that such a

matrix gains a very important role for the neural network training.

4.5 Network training

The essence of the modeling capabilities of a neural network is the possibility to train

the networks in order to approximate the often unknown mathematical functions at

the basis of a certain phenomena. A successful network training should solve the

problem of mapping a set of inputs into a set of known outputs, called targets, by

reconfiguring the synaptic weights in order to reach an optimal approximation point.

As explained before a neural network transforms an input u into an output y only after

weights W has been assigned. The neural network training takes care of the selection

and modification of the best performing weights. An adeguate selection of weight is

responsible for the correct functioning of the neural network and it is at the basis of its

capability to model phenomena and correlate inputs and outputs revealing the under-

lying model. Given a network topology T , the topology-dependant sets of activation

functions tγplquT , weights tW plquT , and an input u, the tuple pT , tγplquT , tW plquT , uq

represents the neural network to which is associated a discrete functional NT so that

yT “ NT rus (4.17)

After a topology T has been selected in terms of neurons, layers and connections, as

well as the layer-related activations function set tγplquT , it is necessary to train the

network searching for the optimal weights twplquT in order modify the outputs yT ,

which depends from the topology T , in order to have those outputs to manifest the

correct correlation with the inputs u. The training procedure is generally performed

starting from a set of known data, these latter set permits us to adjust the weights

embedded in the network in order enable it to correlate the inputs set to the yet known

outputs set. The known outputs used to train the network constitute a target point
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for the association capabilities of the neural network, therefore this set is also called

targets set. To grant consistency with the algebraic formalism used in chapter, the

targets will be now interpreted as a vector and the target vector will be represented

as t. In this form the neural network training corresponds to the resolution of the

functional equation

ÑT rus « t (4.18)

Please notice that in (4.18) we denote with ÑT the neural network, with a slightly

different notation with respect to NT as used in (4.17). The difference is due to the

interpretation of the neural network status in these equations: while in (4.17) the

neural network is interpreted as a finalized structure that generates an output vector

y starting from an input vector u, in (4.18) both the input vector u and the target

vector t are known, while the network ÑT is being adjusted in order to obtain the

best possible approximation of t. In general the procedure is performed starting by

several configurations taking into account families of networks with similar topologies

and activation functions, on the other hand neglecting any constraint on the degrees

freedom related to topologies and functions, it would be impossible, both for humans

and computers, to tackle the problem. A more pragmatic and practical approach

then would start considering a certain topology by reducing the freedom degrees

(e.g. fixing the number of layers and the adopted activation functions) and then,

considering a selected number of neurons, trying to adjust the weights of the network.

Let now suppose that a certain phenomena is obser and that As a consequence of

the Cybenko theorem in its maximum generalization, we can assume that, fixed the

number of layers and the related activation functions, it exists at least one perfect

topology T‹ so that, given two vectors u and y it follows that

NT‹rus “ y (4.19)

on the other hand such a perfect topology T‹ is unknown, and, since it is up to the

human choices to shape the topology of a neural network, it is also highly improbable

to easily select such a T‹ among all the possible combinations. For this reason, starting

from an arbitrary topology T the only applicable solution on the problem is to modify
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the weights in order to permit to the network NT to act as closely as possible with

respect to NT‹ .

4.6 Learning from errors

The training procedure starts from a random state of NT , more in detail i starts with

random weights, on the other hand during the training some choice functions are to

be applied in order to modify such weights. Each step of the training procedure is

called epoch and it ends after the weights of the network, and consequently its status,

has been modified, and the network is then ready to undergo a new training epoch.

During each epochs the performance of the network must be estimated in order to

proceed further. Let consider a trainee network and let N τ
T be the network state

after its t-th training epoch, then it follows that, at each epoch τ , we can obtain an

estimate of the network performances starting from the distance of the given output

ỹpτqq with respect to the expected output, therefore with respect the target t. Then

it is necessary to obtain an estimate of the network accuracy after each training epoch

by using some kind of error function. It is of course possible to define different kind

of error functions, for practical reasons only one example will be given. Let immagine

the output to be M -dimensional so that t, ỹpτq P RM @ τ P N. It is possible to

compute the vectorial distance δpτq among those vectors as

δpτq “ ypτq ´ t (4.20)

and consequently to define an error function, like the Mean Square Error EMSEpτq

, as

EMSEpτq “
1

M

M
ÿ

m“1

δ2
mpτq “

1

M

M
ÿ

m“1

pympτq ´ tmq
2 (4.21)

In this particular case the Mean Squared Error (MSE) is also called instantaneous

error energy E pτq. Each successive training epochs should reduce the value of E pτq.

so that

E pτ ` kq ď E pτq @ τ P N (4.22)
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So that for an ideal training algorithm it should be possible to obtain

lim
τÑ8

E pτq “ 0 (4.23)

On the other hand it is not possible to reach such a result due to a lot of different

reasons from the unknown analytical structure of such ideal training procedure, which

should also depend by the problem itself, as well as due to the numerical approxima-

tions occurring when using a finite precision calculator. Moreover it is not possible

to conceive a properly defined algorithm requiring an infinite number of epochs in

order to assure the null error energy condition of (4.23). For these reason during

the training algorithms are mainly concerning the step-by-step minimization of E pτq

with all related the consequences in terms of possible loops, deadlocks, local minima

etc.. In general the most diffuse training algorithms differently implement the delta

minimization rule, also called minimization process of Widrow-Hoff [201]. In order

to understand the process let suppose, with vivid imagination, that in order to train

the neural network we could focus only on the last layer, therefore modifying only the

synaptic weights wpLqkm related only to the neuron in the L-th layer, where L is the

total number of layers in the network. In this scenario after the τ -th training epochs,

following the Widrow-Hoff rule, the weights will be updated by adding a factor

∆w
pLq
km “ ηδmpτqx

pL´1q
k pτq (4.24)

where η identifies a constant called learning rate. In other words the Widrow-Hoff

rule states that the status update must be proportional to the error signal as well as

the input signal. Of course, from a software point of view it means that the error

signal must be measurable and visible, as well as the inputs to the neurons. Such

visibility is often an important concern at the moment of the parallelization of neural

networks in high performances environments [143, 27, 22, 26]. From (4.24) it follows

that at each epochs pτ ` 1q the weights status will have been modified with respect

to the previous status at τ , therefore

w
pLq
kmpτ ` 1q “ w

pLq
kmpτq `∆w

pLq
kmpτq (4.25)
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Since the (4.25) correspond to an evolution equation for the layer weights vector wpLq

it is possible to rewrite it as

wpLqpτ ` 1q “ Û pLqτ wpLqpτq (4.26)

where Û
pLq
τ represents the evolution operator for the L-th layer at a time step τ .

From this basis it is possible to extend the application to consider multilayer neural

network. This will be done by propagating from the last to the first layer the necessary

adjustments to the related synaptic weight, for this reason the algorithm is called

backpropagation.

4.7 Backpropagation algorithm

To correctly define the backpropagation algorithm it is necessary to introduce a gen-

eral simplified notation for the indexes in order to narrow the upcoming formulas. In

the following the latin indexes (i,j,k...) will be used to identify neurons in different

layers, moreover we will label the layers with the same letter used as index for their

neurons, but in uppercase form. In this manner a neuron indexed with i will belong

to the layer I, a neuron indexed with j will belong to the layer J , and so on. Finally

the layers will also be ordered basing on the letters, therefore layer I will precede layer

J that will precede layer K and so on. Within the given notation, at the n-th step,

we will call djpnq the desired output of the j-th neuron within the J layer, while the

obtain output from the same neuron will be written xjpnq, this latter is also called

signal function. Following the instructions it is possible to define the error signal of

the j-th neuron a the n-th time step as

ejpnq “ xjpnq ´ djpnq (4.27)

and and instantaneous energy error value for the j neuron at the n-th time step as

Ejpnq “
1

2
e2
jpnq (4.28)
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Similarly to (4.22) it is possible to define an instantaneous value for the total error

energy as

E pnq “
ÿ

j

Ejpnq “
1

2

ÿ

j

e2
jpnq (4.29)

The backpropagation algorithm considers the transfer functions of the neurons as an

induction field, therefore it exist an ideal local field vjpnq representable as

vjpnq “
ÿ

j

wijpnqxjpnq (4.30)

so that the function signal xjpnq, exiting as output of the j-th neuron of layer J at

the n-th step is

xjpnq “ γpJqrvjpnqs (4.31)

where γpJq represents the transfer function for the layer J . The back propagation al-

gorithm then updates the weights wijpnq by means of an additional variation ∆wijpnq

proportional to the partial derivative of E pnq with respect to wijpnq. On the other

hand, applying the derivation rule for composite functions it also follows that

BE pnq

Bwijpnq
“
BE pnq

Bejpnq

Bejpnq

Bxjpnq

Bxjpnq

Bvjpnq

Bvjpnq

Bwij
(4.32)

Differentiating both the members of (4.29) with respect to ejpnq it also follows

BE pnq

Bejpnq
“ ejpnq (4.33)

Moreover differentiating (4.27) with respect to xjpnq it results

Bejpnq

Bxjpnq
“ ´1 (4.34)

and trivially (4.31) with respect to vjpnq it is possible to write

Bxjpnq

Bvjpnq
“ γpJq

1
rvjpnqs (4.35)
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where γpJq
1

represents the first total derivative of γpJq with respect its argument.

Finally differentiating (4.30) with respect to wijpnq then it results

Bvjpnq

Bwijpnq
“ xjpnq (4.36)

Substituting (4.33), (4.34), (4.7) and (4.35) in , (4.32) it trivially follows that

BE pnq

Bwijpnq
“ ´ejpnqγ

pJq1
rvjpnqsxjpnq (4.37)

It is now useful to recall the definition of local gradient Γ
pJq
j pnq as

Γ
pJq
j pnq “

BE pnq

Bvjpnq
“
BE pnq

Bejpnq

Bejpnq

Bxjpnq

Bxjpnq

Bvjpnq
(4.38)

And basing on the same substitution operated to obtain (4.37), from (4.38) it is

possible to deduce

Γ
pJq
j pnq “ ejpnqγ

pJq1
rvjpnqs (4.39)

Eventually, applying the delta rule, it is possible to compute the weights update factor

as

∆wijpnq “ ´η
BE pnq

Bwijpnq
“ ηΓ

pJq
j pnqxjpnq (4.40)

so that

wijpn` 1q “ wijpnq ` ηΓ
pJq
j pnqxjpnq (4.41)

It appears now obvious that the weights update procedure in the backpropagatio

algorithm is driven by the layer local gradient Γ
pJq
j pnq. This gradient, as visible in

(4.39) is computed for each neuron from the product of the related error signal and

the total derivative of the activation function with respect to its argument. The back

propagation algorithm is then applied in two steps: a forward and a backward step.

The forward pass does not update yet the weights while, instead, it computes the

function signals xj of the network on all the neurons starting from the local field

vjpnq. As the name suggest the forward step proceeds from left to right, from the
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first to the last layer of the network. After the forward step, the backward step,

viceversa, will proceed from right to left, therefore from the last to the first layer of

the network. During the backward step the local gradients Γ
pJq
j are computed for

each neuron and consequently the related updates ∆wij. Finally the weights wij are

modified accordingly to the computed updates ∆wij.

4.8 Stopping criteria

For many reasons, as explained previously, the training algorithm cannot reach a zero

error point, on the other hand a well performing training algorithm should manifest

a certain convergence until minimum is reached and it is not possible to improve it.

Moreover there is no fixed rule to determine when to stop the training procedures as

well as it is not possible to predetermine a well defined number of training epochs. On

the other hand some criteria can be applied accordingly to the logical structure of the

back propagation algorithms. One of the most important and applicable criterion on

the stopping conditions has been formulated by Karmer and Sangiovanni-Vinticelli

[113] and is well known in literature as the KSV principle. Basing on the KSV rule,

the algorithm is considered concluded by convergence when the euclidean norm of

the error vector lowers down to a certain threshold. The main problems of the KSV

principle is that it is impossible to estimate a priori if the prefixed threshold can be

reached and how much time it should require to be reached, moreover it requires to

compute the euclidean norm of the error vector at each step, which is computationally

unadvisable. On the other hand, with a different approach, Haykin [93] suggests to

consider a more suitable convergence condition by fixing a threshold not just for the

error itself but for the absolute gradient ratio for the total error energy (e.g. estimated

by means of the MSE). This approach considers the algorithm converged when it is not

possible anymore to lower the error of a considerable quantity. The selection of a stop

criterion also concern the resulting trained network and its generalisation capabilities,

the Haykin’s criterion ha been now generally adopted in literature, as well as for the

presented approach, because this criterion make it possible to obtain good enough

generalisation capabilities of the trained network. As a matter of facts, the intrinsic
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nature of the training procedure is prone to the so called polarisation effect. This

effects is highly probable when unsuitable stop criteria or learning rates are selected

for the training procedure, on the other hand can be easily triggered by numerical

effects given by the coupling among certain topologies, the related activation functions

and the datasets used to train the network. When a network polarises it outperform

the expected approximation capabilities announced by the Cybenko theorem, on the

other hand it become able to perfectly reproduce the model only for the given training

set, while missing its goal when exposed to new inputs. In facts in order to keep

under control the polarisation effect during the training procedure the network is also

regularly exposed to a small set of data, called validation set, in order to verify if the

neural network predicts within the same errors both the targets and the validation

targets while not trained on the latter. This procedure is also part of the so called

early stopping method [74] which as been prove to be one of the best training methods

actually implemented. The early stopping method makes use of three separated data

sets: a training set, a validation set and a test set then monitoring the performances

of the network while trying to predict these different sets. Early stopping is in facts a

typical methods to regularise parametric regression problems as the problem of neural

network training. For a given input space X output space Y and samples drawn from

an unknown probability measure ρ : X ˆ Y Ñ r0, 1s Ă R, the goal of a regression

problem is to approximate a regression function fρ : X Ñ Y given as

fρpxq “

ż

Y

ydρpx, yq (4.42)

where ρpx, yq is the conditional distribution at x induced by ρ [186]. Regularisation

is, therefore, especially important for these methods. The early stopping rule solve

the regularisation problem using an iterative procedure such as gradient descent and

analysing at each step the upper bounds on the generalization error as a function of the

iteration number [211]. Moreover, while the global error of the network is evaluated

basing on the training set, it is the error on the prediction of the validation set that

permits to evaluate the generalisation capabilities. Those two errors should proceed

tighter, in facts if the training errors drops down dramatically while the validation
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error increases ti ca be interpreted as a clue of possible polarisation. Finally the test

set is used independently independently from the predecessors in order to obtain a

finalised estimate of the network performances after the training. Finally it must be

highlighted that pushing further the training, far over the early stopping point, where

the training error set decreases and the validation error increases, it is equivalent to

train the network to overfit the training set, or, in other words, to train the network to

reproduce only a specific portion of a signal and the related noise, being the incapable

to reconstruct any different signal from a different input.

4.9 Recurrent neural networks

The neural networks model has been implicitly describe until now as feedforward neu-

ral networks. On the other hand such models lacks of a temporal dynamics since are

not capable of retain any memory of the past data. As a matter of facts the temporal

dynamics is a paramount characteristic in order to model time-evolving phenomena.

this kind of dynamics characterises the Recurrent Neural Networks (RNN), which are

so called due to the typical recursive feedback that are typically used to reintroduce

as inputs the outputs coming from a previous temporal stage, therefore introducing

memory by means of delayed input lines. Starting from the recurrent neural net-

work topology several different kind of neural architectures can be built (e.g. fully

recurrent or layer recurrent, with complete or incomplete feedbacks, with or without

delayed lines etc...). While the explained characteristics makes the network suitable

for time-evolving models, the presence of the described feedbacks and delays intro-

duces instabilities that mainly outburst during the training procedure. Moreover the

over-structure represented by feedbacks and delayed lines introduces more degrees

of freedom on the topological characteristics of the network, therefore it makes even

harder to find an optimal setup that, ultimately, has to be constructed by a try and

check process. While is not possible to discuss here all the stability conditions con-

cerning Recurrent Neural Networks, it is available a quite extensive literature on the

matter [10, 50, 89, 96, 172]. From this moment the terminology Recurrent Neural

Network will be used referring to fully connected multilayer networks with global
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feedbacks, input delay lines but no internal layer feedback if not differently specified.

In facts the mathematical model for such a kind of topology naturally comes from

the yet described model of feedforward neural network. A Recurrent Neural Network,

as told, is composed by a single input vector u with several delay lines (also called

memories) and delayed feedbacks from the output vector y. Let now suppose to have

q delay lines for the inputs, as well as r delay lines from the output. In this scenario,

at a time step n, the input values are represented as upnq, while the output values as

ypnq. On the other hand, with this topology, the signal vector xp0q constituting the

input layer, or if preferred, the input to the first hidden layer, is not equivalent to

the input vector u, since it is also constituted by the relative input delays and output

feedbacks, therefore it will be

xp0qpnq “
“

upnq| ¨ ¨ ¨ |upn´ qq|b|ypn´ 1q| ¨ ¨ ¨ |ypn´ rq
‰

(4.43)

where b is a constant, or bias, used for stability and rescaling purposes. In this

case the upnq vector will be also called exogenous input vector, since coming from

an external source with respect to the network itself, while the delayed elements

of y will be called regressive set, since originated within the network in previous

time steps. This kind of network topology is therefore also called NARX (Nonlinear

AutoRegressive with eXogenous inputs). Starting from this topology it is possible to

create infinite different similar and affine networks called generalised NARX networks

where also the possibility of internal layer or multilayer feedbacks is introduced. This

latter represents the most general form of artificial neural network and is used to

create functional models on sates spaces in order to simulate finite states automation

[137, 114] which make it possible to use this kind of topology in order to reconstruct,

model or simulate phenomena with a temporal dynamics [93]. Of course the modeling

capabilities of such network are entirely dependent by the success of the adopted

training procedure.
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4.10 Real time learning algorithm

On the field of training algorithms a lot of different choices are available, on the

other hand, as generalized by Williams and Zipser [203], those algorithms are mainly

classifiable in two principal categories: epochwise training and continuous training.

In the fist kind are classified all those algorithms that starts from an initial random

state of the network and than proceed with the training sequence until a predefined

number of epochs has been reached making it possible for the network to reach a new

state. In such conditions the training is thens topped and the network reset to a new

initial state. The algorithms classifiable as continuous, on the other hand, does not

require any reset or stop while proceeding trough different training epochs. On the

other hand, while in this latter option the network states are continuously updated,

such an approach does not take advantage of any predefined stop condition. Since

no predefined stop condition is defined, then an external stopping criterion must be

adopted by mens of a control agent. The stopping criteria generally applied in lit-

erature with this kind of algorithms belong to the yet devised category of the early

stopping criteria. Different training algorithms presents several generalizations and

modifications in order to make them suitable for both the approaches. On the other

hand it is also common to attribute different names to very similar algorithms basing

on the implemented approach: e.g. the yet defined back propagation algorithm, when

strictly applied to an epochwise training paradigm is called BackPropagation Trough

Time algorithm (BPTT), while, on the contrary, if applied within a strictly contin-

uous training paradigm is called Real Time Recurrent Learning algorithm (RTRL).

On the other hand, while applied to different paradigms, those two algorithms re-

tains and commonly share several main characteristics that are typical of the back

propagation. As a matter of fact, among all the other common features, the most im-

portant is related to the weight update procedure that, in both the implementations,

is based on a gradient descent approach. Another important advantage on the adop-

tion of the back propagation approach si the standardized implementation that, due

to its robustness and reliability, often compensates the long convergence time which

typically characterizes this approach. On the other hand, focusing on a continuous
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Figure 4.2: A typical model of nonlinear autoregressive with exogenous inputs recur-
rent neural network.

training approach, also more commonly used to train the nonlinear autoregressive

with exogenous inputs neural networks, the real time recurrent learning algorithms

is also advantageous because it uses the minimum possible information since the up-

dates procedure computes the instantaneous gradient values in order to determine

the update parameters for the synaptic wights embedded within the network. As

a matter of facts the name of real time recurrent learning algorithms derives from

the techniques adopted to update the neural network synaptic weights, in facts the

updates are performed while the algorithms continues to process the signal functions

without any interruption [202]. Due to the optimal performance of the approach this

has been adopted for this work. Now the algorithmical model will be described. Let

start from a general nonlinear autoregressive neural network with exogenous inputs

as in Fig. 4.2, and let suppose that it consist of q neurons with m exogenous inputs

and p outputs. As seen before the input layer of the network will results from the

concatenation of the exogenous input vector with both the delayed inputs and the

regressive set given as feedback from the previous output states. For simplicity let
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differ this ideal network from Fig. 4.2 supposing that only one hidden layer is present

(the counter generalization is trivial). It is possible to describe the non linear states

space by the non linear system of equations

$

&

%

xpn` 1q “ ϕ̃
”

Ŵxpnq ` V̂ upnq
ı

ypnq “ Ĉxpnq
(4.44)

with Ŵ P Rqˆq, V̂ P Rqˆpm´1q and Ĉ P Rpˆq and finally ϕ̃ P Rq Ñ Rq is a topological

map function so that

@ x “ rxis
q
i“1 ÝÑ ϕ̃ rxs “ rϕpxiqs

q
i“1 (4.45)

for a generic transfer function ϕ : R Ñ R. Therefore the system (4.44) maps by

means of ϕ the status of each neuron, in facts, expanding the first equation of (4.44)

and transforming it in explicit variables it follows that

xpn` 1q “
“

ϕ
`

ŵᵀ
j ξpxq

˘‰q

j“1
(4.46)

While equation (4.46) is symbolic, in order to give it a meaning it must be assigned

the values of the adopted a equivalent weights matrix ŵ as

ŵj “

»

—

—

—

–

”

Ŵij

ıq

i“1

”

V̂ij

ıq

i“1

fi

ffi

ffi

ffi

fl

@ j P r1, qs X N (4.47)

and defining the equivalent input signal function ξ as

ξpnq “

«

xpnq

upnq

ff

(4.48)

where xpnq is the input signal function represented by a vector of q ˆ 1 elements

and xpnq the exogenous inputs vector composed of pm ` 1q ˆ 1 elements, where the

pm ` 1q-th element is the bias constant. In order to simplify the indexes which
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would otherwise require a too heavy notation several matrix have to be introduced:

Λ̂jpnq, Ûjpnq, and Φ̂pnq. The first is Λ̂jpnq P Rqˆpq`m`1q and is defined as the partial

derivative of the input signal function vector with respect to the weights associated

linearized vector

Λ̂jpnq fi
Bxpnq

Bŵj
@ j P r1, qs X N (4.49)

Also the second matrix belongs to the same space so Ûjpnq P Rqˆpq`m`1q but is defined

as null matrix excepted for the j-th rows which is identically equal to the transposition

of ξpnq, therefore

Ûjpnq fi
“

δijξ
ᵀ
pnq

‰q

i“1
(4.50)

where δij is the Kronecker delta. Finally the third is a diagonal matrix Φ̂pnq P Rqˆq so

that the only non null elements, on the first diagonal, are defined as the first derivate

of the activation functions with respect to their argument so that

Φ̂pnq fi
“

δijϕ
1
`

ŵᵀ
j ξpnq

˘‰q

i,j“1
(4.51)

again where δij is the Kronecker delta. Within the given definitions it is then pos-

sible to differentiate (4.46) with respect to ŵj by applying the composite functions

derivation rule and obtaining the following recursive equation

Λ̂jpn` 1q “ Φ̂pnq
”

Ŵ pnqΛ̂jpnq ` Ûjpnq
ı

@ j P r1, qs X N (4.52)

The (4.52) finally perfectly describes the temporal evolution of the dynamical non

linear states of an nonlinear auto recursive with exogenous inputs recurrent neural

network during the realtime recurrent learning procedure. On the other hand one

piece is still missing in order to complete the analytical description of the process: the

correlation among the matrix Λ̂jpnq to the error gradient computation. Starting from

(4.44), at each time step n, it is possible to obtain a vector epnq P Rpˆ1 representing

the error with respect to an expected value epnq P Rpˆ1 so that

epnq “ dpnq ´ ypnq “ dpnq ´ Ĉxpnq (4.53)
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and immediately follows the definition of the total error at a time step n as

E pnq “
1

2
eᵀpnqepnq (4.54)

In this notation the final goal of the learning process is not just the reduction of the

instantaneous error itself, but the minimization of the cumulative sum of the total

error trough the time steps ETOT defined as

ETOT “
ÿ

n

E pnq (4.55)

Differentiating (4.54) with respect to ŵj also follows

BE pnq

Bŵj
“
Beᵀpnq

Bŵj
epnq “ ´Ĉ

Bxpnq

Bŵj
epnq “ ´ĈΛ̂jepnq @ j P r1, qs X N (4.56)

Then it follows that the weight update applicable to ŵjpnq relative to the j-esime

neuron at a time step n is immediately computed as

∆ŵjpnq “ ´η
E pnq

Bŵj
“ ηĈΛ̂jpnqepnq @ j P r1, qs X N (4.57)

where again η represents the learning rate and the matrix Λjpnq results self deter-

ministic by means of the autoregression expressed in (4.52). In this set up only one

freedom degree is allowed and depends by the initial conditions of the system which

in the practice are generally random. Just for completeness reason here those initial

conditions can be defined as

Λ̂jp0q “ 0 @ j P r1, qs X N (4.58)

It immediately follows that the computational complexity of such the modeled real-

time recursive learning algorithm is of OpNwN
2
sLq operations with Nw weights, Ns

states and L epochs. Finally, as it has been anticipated in Chapter 3, we will in-

troduce in the following chapter our developed methodology to bound both Neural

Networks and Wavelet Analysis.





CHAPTER 5

The next generation

Prediction is very difficult,

especially if it’s about the future.

Niels Bohr

In the previous chapters the basis concepts of wavelet analysis and neural networks

has been introduced. The combined usage of both the wavelets and Recurrent Neural

Networks (RNN), and more specifically, of the yet explained models autoregressive

recurrent neural networks with exogenous inputs, permits us to create new tools for

prediction, forecast and modeling purposes: the Wavelet Recurrent Neural Networks.

The Wavelet Recurrent Neural Network architecture introduces a great deals of im-

provement in the accuracy of a forecasting model since this is also achieved by using

the properties of a wavelet-based transform by means of a combination of artificial

neural networks (ANNs). As it will be shown the Wavelet Recurrent Neural Networks

are able to reconstruct a signal from wavelet coefficients, on the other hand those net-

works are also able to predict the wavelet coefficients in a future time step and then

to reconstruct and predict the signal. This technique permits a better prediction and

several advantages. In order to understand how this architecture works, the second-

generation wavelets must be introduced too, since those play an important role in the

75
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Wavelet Recurrent Neural Network model. As a matter of fact this is the key point

to understand the novelty of the approach since, until now, in literature, the various

attempt to create wavelet neural networks has been limited to simple feed-forward

working on the wavelet coefficients domain [57, 99, 216, 188], on the other hand here

a novel contribution is presented.

5.1 Second generation wavelets

While the wavelet analysis gives us a powerful mathematical tool, in order to become

suitable to our purposes some limitations must be worked out. In particular the

wavelet transform is usually designed for infinite or periodic signals but it is sometime

tricky its adaption to a bounded domain. While in the wavelet theory it is quite

common to describe a signal as a function in L2pRq, in the real practice signals are not

continuous function of integrable square, the signal domain is far from being infinite,

and, finally, signals are not periodic. Moreover, due to the digitalization procedure,

such signals are sampled, and also, often, not regularly sampled. Therefore it became

inconsistent with the problem a mathematical model that tends to analyze functions

defined of surfaces or manifolds of a regular, flat and continuos metric field. That

said, in the previous decade, a non trivial problem was raised on the applicability of

the wavelet analysis to the real-world signals, or, at least, if there were any possibility

to find a different approach while preserving the nature and the properties of the

wavelet transform. Mainly it become necessary to extend beyond the regularity of

a flat geometry the frequency localization and scaling properties of the wavelet, as

well as their suitability for digital analysis due to their representability as digital

filters. The solution was originally proposed by two independent works of David

Donoho and Harten at the beginning of 1990s and the answer was to abandon the

Fourier-like analytical models as well as the classical approach based on shifting and

scaling of mother functions. The basic idea, which inspired its name,is to start with

a very simple or trivial multiresolution analysis and gradually work ones way up to a

multiresolution analysis with particular properties. The lifting schema allows one to

custom-design the filters needed in the transform algorithms to the situation at hand.
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In this sense, it provides an answer to the algebraic stage of a wavelet construction

[45]. Wavelet functions ψjm are traditionally defined as the dyadic translations and

dilations on one particular L2pRq function, i.e., the mother wavelet ψ so that

ψjm “ ψp2jx´mq (5.1)

Of course (5.1) refers to a first generation wavelet construction schema. On the

contrary the lifting schema makes use of a more general setting where the wavelets are

not necessarily translations and dilations of each other but still retains all the powerful

properties of first generation wavelets. As a matter of facts in the second generation

wavelet transform (SGWT) there are not mother wavelets or filters explicitly designed

ab initio, in factor the transform consist of a sequence of steps of lifting, therefore this

approach is also called lifting schema. Moreover it has to be noticed that the lifting

schema, once known, can be represented as a regular discrete wavelet transform.

On the other hand this latter is an unnecessary procedure since the lifting schema

itself provide both the design and the application of the second generation wavelet

transforms by its own. This happens because the lifting schema avoids the necessity

to design the wavelet transform in the frequency domain as for the classical wavelet

transform or, as it will be called from now, the first generation wavelets such as the

Discrete Wavelet Transform and the Continuous Wavelet Transform.

5.2 The lifting schema

The complete formulation of the lifting schema is due to Win Sweldens [189] and

presents a both general and simple but quite powerful tool, to construct second gen-

eration wavelets. The so called lifting is made by a space-domain construction of

biorthogonal wavelets. The basic idea is to first split a signal into its even and odd

samples. Let the signal be representable as an array of 2N values x, therefore it is
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Figure 5.1: The lifting schema and its stages: split, predict, and update.

possible to split it into two half-sized arrays xo and xe so that

xo “ rx2k´1skPr1,NsXN

xe “ rx2kskPr1,NsXN

(5.2)

where xo is called odd set and xe is called even set with respect the original signal x.

It is now necessary to recall that wavelet theory is mainly based on the locality of the

signal structure which is highly correlated. The goal of the lifting schema is the to

predict the odd set xo starting from the values of the even set xe. The odd set xo will

take the same role of the residuals in the first generation wavelet since is as a matter

of facts it is low-resolution representation of x, while the unpredictable portion of xe,

which will be determined as a prediction error, will constitute the details. The even

samples xe then needs to be adjusted in order to represent the coarse version of the

original signal. These adjustments are performed so that the average of the fine and

coarse version of the signal remains constant. The procedure can be summarized in

the following steps

1. Split x in xo and xe

2. Predict xo from xe

3. Update xe using xo
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The prediction stage consists in generating the wavelet details d as the error in pre-

dicting xo from xe using a prediction operator P̂ so that

d “ xo ´ P̂ xe (5.3)

The update stage consists in combining xe and d to obtain the scaling coefficients

c which represent a coarse approximation to the original signal x. This is accom-

plished by applying an updating operator Û to the wavelet coefficients and adding

the resulting vector to xe so that

c “ xe ` Ûd (5.4)

Tese three steps form a lifting stage. This procedure is repeated until it ends up with

a signal consisting of a single number equal to the average value of the original signal.

Iteration of the lifting stage on the output c creates the complete set of discrete wavelet

transform (DWT) scaling and the wavelet coefficients cpjq and dpjq . The lifting steps

are easily inverted even if P̂ and Û are nonlinear or space-varying. Rearranging (5.3)

and (5.4) it follows the non linear system describing the lifting schema (Fig. 5.1):

#

xe “ c´ Ûd

xo “ d` P̂ xe
(5.5)

The described lifting schema also leads to a fast in-place calculation of the wavelet

transform, i.e., an implementation that does not require auxiliary memory. In the

lifting framework, the update structure depends on the predictor structure. Hence,

if P̂ is space-varying or nonlinear, then so is Û , and the design procedure becomes

unwieldy. A crafty detour around this problem is to perform the update step first,

followed by the prediction. The relevant equations then become

#

c “ xe ` Ûxo

d “ c´ P̂ xe
(5.6)
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After designing an update filter to preserve the first M low-order polynomials in the

data, we can apply any space-varying or nonlinear predictor without affecting the

coarse approximation c. Since the update and predict lifting stage creates c prior to

d, the prediction operator can be designed to optimize the performance criteria in

addition to polynomial suppression capability [45]. To see the method more clearly,

let us say that we have a signal spkq, where j represents the sampling level. The

lifting procedure yields spj´1q and dpj´1q. The step is repeated on the coarse signal

multiple times in order to complete the wavelet transform at the desired level, since,

after each step, it is possible to obtain the details of the decomposition. Moreover,

since at each step the signal length it reduced by one half, iterating the procedure

the outputs will finally end in a a single value vector, then no more iterations will

be possible. This single values, as told before, must be equal to the average value of

the original signal. The lifting schema not only provides for the second generation

wavelet decomposition, but also for the signal reconstruction. The original signal

can be reconstructed from the derived second generation wavelet details by means

of an inversion algorithm. While the diagram in Fig. 5.1 represents the forward

second generation wavelet transform, the inverse transform is trivially constructed

starting by the same diagram by changing the verse of the arrows in Fig. 5.1. It is

immediately clear that the inverse transform acts very similarly to the first generation

wavelet inverse transform, and this fact is far from being surprising. As a matter of

facts, as told at the beginning of this chapter, after the design of the P̂ and Û

operators, the lifting schema can be easily represented as a first generation discrete

wavelet transform, therefore is quite trivial that the reconstruction procedure follows

the same steps of a first generation discrete wavelet inverse transform. Moreover

it is also easy to extrapolate similarly the Fourier coefficients by using the coarse

signal c and the details d as it was done with the first generation wavelets. Another

advantage of the presented schema is on the preservation of its functionalities also for

signals that are defined on a finite interval as well as being unevenly sampled, since,

due to their attributes, the predict and update operator are not localized and can

vary on the application interval. Finally, depending on adopted the meshing while

defining the functional relations held by the prediction and update operator, it is
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possible to generalize to higher dimensions and manifolds. Another important aspect

on the adoption of the second generation wavelet lifting schema is that both the

forward and inverse transforms are invertible, moreover the possibility to invert those

transform does not depends on the selection of P̂ and Û . This means that second

generations wavelets allows us both to construct wavelets transforms with any degree

of smoothness, as well as to find a solution in terms of P̂ and Û to implement both

the forward and inverse wavelet transform starting from any kind of first generation

wavelet mother function. This last property is extremely powerful and important,

for this reason it represents the key point of this work as well as a bridge among the

wavelet analysis field and the neural network design.

5.3 A neural network based approach

Here a completely new paradigm is proposed for the second generation wavelet analy-

sis that substitutes the lifting schema with a recurrent neural network based approach

for the buildup of the prediction and update operators P̂ and Û , as yet published in

[39]. In [142] and [141] the same authors have proven that Recurrent Neural Networks

are able to exploit the intrinsic features of time series in order to predict its temporal

evolutionIn the aim to design a predictive neural network, wavelet coefficients as input

set give a better and efficient expression of these intrinsic features, packing in a few

significant coefficients all the energy and information carried by the input signals. In

[37] and [39], the authors also shown that a properly designed hybrid neuro-wavelet

recurrent network that is also able to execute wavelet reconstruction and prediction

of a signal. It is now understandable why it is here proposed to derive a lifting and

updating construction based on a polynomial signal suppression and preservation ar-

gument. Exploiting the generalization and prediction properties of the RNNs, we

realize both the operators P̂ and Û , thereby tailoring the relative structures to do

the lifting and predicting stages. More generally, we let the signal itself dictate the

structure of the predictor. In a scale-adapted transform, we adapt the predictor in

each lifting stage in order to match the signal structure at the corresponding scale.
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Table 5.1: Number of neurons (2N) used for the different kinds of wavelets, the rela-
tive RMS, the correlation coefficient (Γ) between the experimental and the predicted
data, and the convergence epochs

Kind 2N RMS Γ Epochs

Biort. 2.8 6 ă 3 % 0.9987 5000

Biort. 3.7 10 ă 1 % 0.9991 8000

Biort. 3.9 10 ă 1 % 0.9990 10000

Coiflet 2 12 ă 1 % 0.9988 11000

Daub. 4 8 ă 3 % 0.9985 6000

Daub. 6 12 ă 1 % 0.9985 6000

Daub. 8 12 ă 1 % 0.9988 12000

Simlet 4 12 ă 1 % 0.9986 10000

Simlet 7 12 ă 1 % 0.9988 9000

The basic idea is to use an RNN to adapt the predictor to the signal. This optimiza-

tion produces predictors that can match both polynomial and non-polynomial signal

structures. The optimization itself is a straightforward N -dimensional constrained

least squares problem. The constraint is that we require the predictor to suppress

N ď M -th order polynomials, they being related to the well known vanish moments

characterizing the various wavelet systems and summarized in Table 5.1. Now let xo

denote the odd-indexed data we wish to predict, and let Xe : rXesn,k “ xern ´ ks be

a matrix composed of the even-indexed data used in the prediction. The vector of

prediction errors then is given by

e “ xo ´Xep (5.7)

The goal is to find the prediction coefficients that minimize the sum of squared pre-

diction errors eᵀe while satisfying the N ď M polynomial constraints. This we solve

as

min }xo ´Xep}
2 (5.8)

The optimal prediction coefficients for this constrained least squares problem can be

found efficiently. We call the proposed system Wavelet Recurrent Neural Network.

In fact, it is able to reconstruct a signal from wavelet coefficients, and also to predict
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Figure 5.2: Selected RNN topology for the buildup of P̂ and Û .

these wavelet coefficients aiming to reconstruct and forecast the signal. To obtain this

behavior hidden layers’ neurons transfer function has to simulate a wavelet function.

It is not possible to implement a wavelet function itself as transfer function for a

forecast-oriented time-predictive neural network, because wavelets do not verify some

basic properties such as the absence of local minima and do not provide by themselves

a sufficiently graded response [91]. In the existing range of possible transfer functions,

only some particular classes approximate the functional form of a wavelet, such as

Radial Basis Functions. Radial Basis Functions are chosen as transfer functions for

the selected Wavelet Recurrent Neural networks because these particular kinds of

functions well describe half of a wavelet in first approximation, even though these do

not verify the properties shown by (3.32) and (3.33). Anyway, after scaling, shifting,

and repetition of the chosen activation function, it is possible to obtain several mother

wavelet filters. Let f : r´1; 1s Ñ R` be the chosen transfer function; then it verifies

all the properties of a wavelet function

f̃px` 2kq “

#

`fp2x` 1q x P r´1, 0s

´fp2x´ 1q x P r0,`1s
@ k P Z (5.9)

So it is possible for the selected neural networks to simulate a wavelet by using the

radial basis functions defined in the r´1; 1s real domain. It is indeed possible to verify
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Figure 5.3: (a) RBF transfer function fpxq and (b) relative wavelet function f̃pxq.

that
ż 2k`1

2h`1

f̃pxqdx “ 0 @ h ă k P Z (5.10)

It was shown that, in order to simulate a wavelet function, these chosen transfer func-

tions have to be symmetrically periodic to emulate a wavelet. This is the reason why

we choose a pair of neurons with the aim of having the same number of positive and

negative layer weights in the reconstruction layer. Theoretically, if this happens, then

the neuron pairs of the second layer emulate exactly a reconstruction filter. Although

this is a theoretical schema, there are strong reasons for the weights in this experimen-

tal setup to have a nonzero sum because the neural network beyond to perform the

inverse wavelet transform must perform also the signals prediction. Initially, several

wavelet decompositions were used to obtain an input vector of wavelet coefficients,

with the aim to study the capability of the selected neural network to reconstruct

and predict the signal simulating different kinds of wavelet functions. Different kinds

of topology and size variations were also implemented to select the better performing

neural network design. The implemented wavelet decompositions permit the location

of the coefficient bands related to the timescale relative to the prediction goals. By

thresholding to zeros the bands unrelated to the selected timescales, the resulting co-

efficients and residuals carry relevant information for the predictions. These wavelet

coefficients were then provided as input (~uiptq) to the system. The selected neural
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network is composed of two hidden layers of 16 neurons and a single output neu-

ron. The wavelet decomposition of the time series is given as N ˆ 4 input vectors at

time t0 with a three-step delay and a one-step output feedback to predict the output

signals spt0 ` 1q. To improve the generalization of the selected RNN, we have used

the common method called early stopping. The considered RNN topology for the

proposed novel buildup of P̂ and Û is shown in Fig. 5.2. The novelty of this approach

is that the proposed WRNN does not provide the wavelet coefficients coming from

the intrinsic information from other input coefficients; indeed, it is able to recon-

struct them directly from the sampled signal from band- selected coefficients. From

the computational point of view, the proposed approach is very efficient because of

the fast convergence of the neural network, as well as robust to data errors. Finally,

it represents an innovation from the methodological point of view. The simulation

results obtained with the proposed forecasting method show a very low RMS error

compared to those obtained by other solar radiation prediction methods based on

hybrid neural networks already developed.

5.4 WRNN based approximators

Since the developed wavelet recurrent neural network presents many interesting char-

acteristics, this novel approach to multi resolution analysis and modeling has been

tested by applying it to different fields. During one of the first applications of the

developed architecture the approximation capabilities of such a kind of neural net-

work have been tested. Due to the yet encountered Cybenko-Hornik, a good neural

network should also serve its scope as function approximator, therefore the appli-

cation of wavelet recurrent neural networks for such a purpose permits emulate the

functional trends embedded in a signal in order to let us devise some information

even when a portion of the signal is missing. This properties were tested and then

applied for the reconstruction of missing data in a astronomical photometric surveys

[40]. Photometrical surveys are vastly used for the investigation of solar-like oscilla-

tions in order to probe the star interiors. For ground based observations the most

important difficulties in properly identifying the true oscillation frequencies of the



86 CHAPTER 5. THE NEXT GENERATION

stars are produced by the gaps in the observation time-series and the presence of

atmospheric plus the intrinsic stellar granulation noise, unavoidable also in the case

of space observations. Then my innovative neuro-wavelet method has been applied

for the reconstruction of missing data from photometric signals i by using a compos-

ite neuro-wavelet reconstruction system composed by two wavelet recurrent neural

networks separately trained. The combination of these two neural networks obtains

a ”forward and backward” reconstruction. For ground-based observations the most

important difficulties in properly identifying the true oscillation frequencies of the

stars are produced by the gaps in the observation time-series and the presence of

atmospheric plus the intrinsic stellar granulation noise, the latter unavoidable also in

the case of space observations. The gaps are caused by the alternation of day and

night and casual interruptions of data flow due to bad weather conditions; the first

introduces possible shifts of 11.57 µHz n the identified frequencies and the second

spurious frequencies. The noise can produce peaks whose amplitude is even larger

than the real stellar frequencies. All the mentioned disturbs make the identification

of stellar oscillations uncertain in several cases. The developed approach permitted

to reduce the data redundancies and selectively remove stellar granulation noise so

obtaining a representation that can express their intrinsic structure, while exploiting

the complexity of non-linear data correlation and to perform the data prediction.

Moreover the idea to implement two different networks for forward and backward

reconstruction permits to minimize the error propagation. The first one is trained

to predict the signal samples one step ahead in the future, while the second one is

trained to predict the signal samples one step backward in the past. The combina-

tion of these two neural networks obtains a ”forward and backward” reconstructor

(FWBWR) as shown in Fig. 5.4. This composite ForWard and BackWard Recon-

structor uses as input several time steps of the signal, in the past and in the future

with respect to the gap. The data used in the experimental testing were collected by

Kepler satellite with a sampling rate of about 58.7 s, as light flux measurement and

corrected flux estimation with the related absolute error. The presence of huge gaps

equally spaced in the time-series, as in the case of the daily gap, causes the arising of

fictitious peaks in the power spectrum, which are not real frequencies of oscillation
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this because wavelets do not verify some basic properties such as the absence of
local minima, and does not provide by itself a sufficiently graded response [17].
In the existent range of possible transfer functions only some particular classes
approximate the functional form of a wavelet. In this work the radial basis func-
tions (radbas) were chosen as transfer functions, indeed this particular kind of
functions well describes in first approximation half of a wavelet, even if these
functions do not verify the properties shown by (1) and (2). Anyway, after scal-
ing, shift and repetition of the chosen activation function, it is possible to obtain
several mother wavelet filters. Let f : [−1; 1] → R+ to be the choosen transfer
function, then

f̃(x) = f̃(x+ 2k) =

{
+ f(2x+ 1) x ∈ [− 1 , 0 ]
− f(2x− 1) x ∈ [ 0 , 1 ]

∀k ∈ Z (4)

verifies all the properties of a wavelet function. So it is possible for the selected
neural networks to simulate a wavelet by using the radbas function defined in
the [−1; 1] real domain. It is indeed possible to verify that

∫ 2k+1

2h+1

f̃(x) dx = 0 ∀ h < k ∈ Z (5)

It was shown that, in order to simulate a wavelet function, the chosen transfer
functions must be symmetrically periodical to emulate a wavelet. This is the
reason for choosing a pair number of neurons in the aim to have the same number
of positive and negative layer weights in the reconstruction layer. Theoretically,
if this happens, then the neuron pairs of the second layer are emulating exactly
a reconstruction filter. Althoug this was a theoretical schema, there are strong
reasons for the weights, in this experimental setup, to have a non-zero sum,
because the neural network beyond to perform the inverse wavelet transform
must perform also the signal prediction.

Figure 5.4: Neural networks structures (left), Forward and Backward reconstruction
(right)

and that consequently affect the identification of the true p modes by hampering the

true pattern of the solar-like excess of power in the power spectrum. The applica-

tion of the wavelet recurrent neural network (WRNN) approach is highly suitable for

deterministic dynamical behaviors, since the observation at a current time point can

be modeled as a function of a certain number of preceding observations. Of course

the neural network do not try to achieve credit assignment back through time but

instead use the previous state as a part of the current input. Such a simple approach

may be seen as a natural extension to feedforward the networks in much the same

way that ARMA models generalize autoregressive models. As a matter of fact the

implemented WRNNs has been able to be fed of a signal represented by its wavelet

coefficients, to predict these wavelet coefficients for a future step, and, then, to re-

construct the predicted signal. To obtain this behavior some rules had to be applied

during the design and implementation work. For reasons that will be cleared ahead,

all the hidden layers have a pair neuron number, and, also, to permit in sequence

the wavelet coefficient exploitation and the signal reconstruction, a double hidden

layer is required in the proposed architecture. The trained forward and backward

reconstruction system was able to reconstruct the missing data with an error greatly
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4 Results and conclusion

We performed simulations on one month photometric survey of the star KIC
3102411 observed during the season Q2.2 from the Kepler orbital telescope with
a sampling rate of about 58.847 s and so a sampling frequency of almost 1.7·10−2

Hz. Wavelet analysis was used in order to remove the data sparsity and to thresh-
old the higher frequencies (mostly characteristic of the star granulation and in-
trinsically affected by a signal-correlated time-evolving noise). In particular the
lower two sub-bands of the decomposition were substituted with zero-vectors.
In this manner the filtered reconstructed signal was transferred to the neural
networks. To test the capabilities of the system, several gaps, ranging from 2 to
10 samples, were artificially placed at random positions in the data series. The
trained forward and backward reconstruction system was able to reconstruct the
missing data with an error greatly lower than the absolute a priori measurement
error. The reconstructed signal frequency spectrum matches the expected spec-

Figure 5.5: Simulation results of the forward and backward reconstruction
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4 Results and conclusion

We performed simulations on one month photometric survey of the star KIC
3102411 observed during the season Q2.2 from the Kepler orbital telescope with
a sampling rate of about 58.847 s and so a sampling frequency of almost 1.7·10−2

Hz. Wavelet analysis was used in order to remove the data sparsity and to thresh-
old the higher frequencies (mostly characteristic of the star granulation and in-
trinsically affected by a signal-correlated time-evolving noise). In particular the
lower two sub-bands of the decomposition were substituted with zero-vectors.
In this manner the filtered reconstructed signal was transferred to the neural
networks. To test the capabilities of the system, several gaps, ranging from 2 to
10 samples, were artificially placed at random positions in the data series. The
trained forward and backward reconstruction system was able to reconstruct the
missing data with an error greatly lower than the absolute a priori measurement
error. The reconstructed signal frequency spectrum matches the expected spec-

Figure 5.6: Simulation results in the frequency domain

lower than the absolute a priori measurement error. The reconstructed signal fre-

quency spectrum matches the expected spectrum with high accuracy, as shown in

Figs. 5.5 and 5.7. The novelty of the Wavelet Recurrent Neural Networks then leads

to implement a new generation of tools based on recurrent neural networks with the

future possibility of developments such as embedded system for data reconstruction

of corrupted time-series for noise-affected survey contests.
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5.5 WRNN based forecast

If the developed wavelet recurrent neural networks are able to reproduce a function

or a signal in order to reconstruct some missing portion, it should be also possible to

reconstruct such a portion when this is located to the end of a signal. In other words,

such networks, if properly trained, are able to predict the temporal evolution in the

future of signal if such a signal is expression of a law, therefore if the signal outcome

from measurements of a physical phenomena. This is the case of a second testing

ground for the wavelet neural network: the prediction of the temporal evolution of

incoming solar radiation. Solar radiation is considered as the most important param-

eter in meteorology, solar conversion, and renewable energy applications, particularly

for the sizing of stand-alone photovoltaic (PV) systems [69], [133], [95], [159]. The

behavior of solar radiation is complex, either periodic or random, and the wavelet-

transformed frequency components corresponding to various time-frequency domains

of solar radiation show a similar behavior. This type of data is usually presented

as a time series, whose prediction is an important scientific task. Situations where

an underlying model generating the observed data is not known are especially chal-

lenging. Modeling a time series includes the stochastic prediction and the optimal

prediction of a signal sample (in a minimum mean-square sense), given a finite num-

ber of past samples. In the literature, several methods to predict solar radiation

have been reported, in particular statistical methods. The conventional statistical

models can be considered as times-series-based models. These include auto-regressive

(AR) and AR integrated moving average (ARIMA) models, Markov chains, and the

Markov transitions matrix (MTM) approach. It is well known that these models are

based on simplifying statistical assumptions about the measured data, which are not

always true. Many researchers have attempted modeling solar radiation. The existing

models established by classical approaches include, e.g., the so-called clear-day solar

radiation, half-sine, ColaresPereira and Rabl, and ARIMA hour-by-hour solar irra-

diation models [4], [111], [126], [139], [8]. Most existing models give relatively large

errors and are sometimes difficult to use widely. For this reason I’ve implemented the

wavelet neural network architecture to find a forecasting model for the prediction of
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solar radiation. The main objective of this application was to investigate the Wavelet

Recurrent Neural Network architecture for modeling and prediction of the daily total

solar radiation. The IDRILAB laboratories of the University of Catania provided

the experimental study of the electrical behavior of PV modules and strings. The

facility incorporates meteorological instrumentation with a data acquisition system,

and electronic loads to obtain the plot of the current versus voltage (IV curves) of the

PV modules, while recision spectral pyranometers (thermopile and photodiode) are

used to measure the total solar radiation. A three-cup anemometer and wind vane as-

sembly is used to measure the wind speed and wind direction. Ambient temperature

is measured using a perforated-tip type-T thermocouple sensor enclosed in a natu-

rally ventilated multiplate radiation shield. The meteorological data are provided in

wireless mode by means of a ZigBee interface in conjunction with a software platform

based on the functional schema of the meteorological data station. The meteorological

variables are stored in a MySQL database. The power supply of the sensor module

has two voltage levels: 5 VDC for the anemometer, ambient temperature, relative

humidity, and photodiode pyranometer; and ˘12 VDC for the termopile pyranome-

ter. The processed data was gathered by a WSENS metero unit from the following

sensors. The utilize data comes tom a long-term survey made from June 2007 to

November 2008. During the acquisition period, the data were registered as described

in the following: wind velocities were recorded using a polycarbonate cup with mag-

netic switch, capable of measurements in the range 3241 km/h with 5% accuracy. RH

measurements were made with a capacitive polymer with digital output, providing

2% accuracy in the range 10%-90%. For the temperature measurements, we used a

digital bandgap in the range ´20˝C to 50˝C with 1˝ uncertainty. The solar radiation

on the horizontal plane was measured by the pyrometer. The experimental data were

collected at sampling intervals of 10 min and automatically stored as synchronized

time series by the information infrastructure managed by the laboratory staff. The

collected input dataset was at first decomposed using the wavelet decompositions

reported in Table 5.1. The wavelet scale was chosen to have a dyadic expansion so

that the first band could be representative of 2-day time steps. This was made for

the temperature, RH, and wind speed time series. The measured horizontal plane
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Figure 5.7: Wavelet biortogonal 2.8 decomposition set.

solar radiation ranged from 0 to 1300 Wm2. The input pattern was composed of 12

element vectors (4 elements of 3 types of measurements). The input elements were

the a1pt0q residues, and the d1pt0q, d2pt0´q, and d2pt0`q details. The neural networks

were trained to predict 1-D output signals spt1q at about two days in the future. In

Table 5.1, we report the main features of the different networks implemented for the

different kinds of wavelets relative to the simulation results depicted in Figs. 5.7–5.15.

The data series are very long, therefore, in order to plot in a clear manner the ob-

tained solar radiation prediction, only a small part is presented Figs. 5.7–5.15, and

the data sample was chosen in an arbitrary manner. The quality of prediction was the

same for the time data series as a whole. Here, the time refers to 10000 epochs. As

shown in Table 5.1, the number of neurons doubles the number of vanishing moments

plus a variable number. In fact, the synthesis filter affects this variable because of

the use of this filter by the network for the prediction in the wavelet domain.

The good forecasting performance the implemented neural networks should lead to

the following conclusions: the novelty of this approach is that the proposed WRNN

does not provide the wavelet coefficients coming from the intrinsic information from

other input coefficients; indeed, it is able to reconstruct them directly from the sam-

pled signal from band-selected coefficients, thereby, a relatively accurate forecast of

solar irradiation could be achieved due to its robustness to data errors. In facts the

simulation results show a very low RMS error compared to those obtained by other
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Figure 5.8: Wavelet biortogonal 3.7 decomposition set.

Figure 5.9: Wavelet biortogonal 3.9 decomposition set.

solar radiation prediction methods based on hybrid neural networks as in [37].

5.6 WRNN based predictors

Due to the low error and the high performance shown by the WRNN technology when

predicting non periodical signal, such as the shown example of solar radiation time se-

ries, it comes naturally possible also to implement this architecture for the prediction

of the connection requests to online services. In the following an example will be given

regarding the application of WRNN based predictors to the field of online services
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Figure 5.10: Wavelet coiflet 2 decomposition set.

Figure 5.11: Wavelet Daubechies 4 decomposition set.

ad mean to predict resource availability and preserve the related quality of service.

For distributed systems to properly react to peaks of requests, their adaptation ac-

tivities would benefit from the estimation of the amount of requests. The developed

WRNNs permitted us to propose a solution to produce a short-term forecast based

on data characterising user behaviour of online services. Thanks to this kind of pre-

dictions, advance resource provision can be performed for the duration of a request

peak and for just the right amount of resources, hence avoiding over-provisioning and

associated costs. Moreover, reliable provision lets users enjoy a level of availability

of services unaffected by load variations. Artificial neural networks have been used
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Figure 5.12: Wavelet Daubechies 6 decomposition set.

in several ways to provide an accurate model of the QoS evolution over time. Linear

regression models have been applied with the support of neural networks in [102],

however without some proper mechanisms, such as time delays or feedback, it is still

not possible to dynamically follow the evolution of the extended time series. Machine

learning approaches have also been used [173], however such approaches were not

designed for on-the-fly adaptation, and are unable to give advantages with respect to

user perceived responsiveness [180]. For the above approaches in which the amount

of connection requests is unknown, to avoid overloading the server-side, only load

balancing and admission control policies have been used. Still when the amount of

requests overcomes the available resources, service usability worsening or denial of

service cannot be avoided. On the other hand, when more resources can be dynami-

cally allocated, since the amount of the required resources is unknown in advance, it

often results in over-provisioning, with negative effects on management and related

cost. In our experiments, the proposed WRNN has been used to analyse data for

the Page view statistics Wikimedia(TM) project, produced by Domas Mituzas and

released under Creative Common License. The estimated result is fundamental for a

management service that performs resource preallocation on demand. The precision

of our estimates allows just the right amount of resources to be used. The proposed

WRNN has two hidden layers with RBF transfer function. The the initial dataset
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Figure 5.13: Wavelet Daubechies 8 decomposition set.

Figure 5.14: Wavelet Simlet 4 decomposition set.

was a time series representing access requests coming from users. Each row of this

dataset is given as input value to the M input neurons of the proposed WRNN. The

properties of this network make it possible, starting from an input at a time step

τn, to predict the effective number of access requests at a time step For this usage,

a 4-level wavelet decomposition has been selected that properly characterises data

under analysis. Therefore, the devised WRNN uses a 5 neuron input layer (one for

each level detail coefficient di and one for the residual a5). Inputs are given to the

WRNN in the following form:
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Figure 5.15: Wavelet Simlet 7 decomposition set.

• The wavelet decomposition of the time series upτnq for time step τn

• The previous delayed decompositions upτn´1q and upτn´2q

• The last four delayed outputs xpτn`rq predicted by the WRNN

As said before for the case study proposed in this paper we have used the raw data

of connection requests over time to predict the behaviour of the users of a widely

used an internet service, i.e. the one provided by Wikimedia(TM). Raw data were

taken from the page-view statistics Wikimedia(TM) project and released by Domas

Mituzas under Creative Common License. Original data report the amount of ac-

cesses and bytes for the replies that were sampled in time-steps of one hour for each

web page accessible in the project. Data were collected for the whole services offered

by Wikimedia projects including Wikipedia(r), Wikidictionary(r), Wikibooks(r) and

others. Data were gathered and composed by an automatic procedure, obtaining the

total requests made to the wikimedia servers for each hour. Therefore, a 2-years long

dataset of hourly sampled access requests has been reconstructed. Then, this dataset

was decomposed by using a wavelet biorthogonal decomposition identified by the cou-

ple of numbers 3.7, which means that are implemented by using FIR filters with 7th

order polynomials degree for the decomposition and 3rd order for the reconstruction.

The network was trained by using a gradient descent back-propagation algorithm
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Figure 5.16: Error while training the net-
work
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dicted values

with momentum led adaptive learning rate as presented in [94]. For a prediction 6

hours in advance of the time series of the amount of requests, the root mean squared

error of prediction for the access requests over time was of 1.3156¨1004 requests, which

means a relative error of less than 0.6 per thousands (less than six requests over ten

thousands). Figure 6.4 shows the shape of the mean square error while training is

being performed. Figure 6.5 shows the actual time series of the incoming requests in

black, and the predicted values for the incoming requests in red for a time period of

500 hours. The actual values for the shown time period had not been given as input

to the neural network for training, however have then been used to compare with the

predicted values and to compute the error (see the bottom part of Figure 6.5). A

smaller period of time has been shown in Figure 5.18 to highlight the differences of

actual and predicted values. As can be seen, the implemented wavelet recurrent neu-

ral networks manage to closely predict even relatively small variations of the trends.

The output of the neural network was then given to a resource management service to

perform allocation requests in terms of needed bandwidth and virtual machines [80].

We can then affirm that the developed ad-hoc WRNN based architecture has been

able to predict the amount of incoming requests performed by users when access-

ing a website. Moreover the performed experiments have proven that the provided

ensemble is very effective for the desired prediction, since the computed error can
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Figure 5.18: Top of the curves for actual time series and predicted values, for an
arbitrary chosen time-interval

be considered negligible. Estimates can be fundamental for a resource management

component, on a server side of an internet based system, since they make it possible

to acquire just the right amount of resource (e.g. from a cloud). Then, in turn it is

possible to avoid an unnecessary cost and waste of resources, whilst keeping the level

of QoS as desired and unaffected by variations of requests.

5.7 A P2P model for WRNNs

The features shown by the WRNN architecture also permits us to implement it as

a modeling tool for various purposes. In the following example the WRNNs has

been used to model the availability of resources on BitTorrent also by using a file

fragments diffusion model. As it is well known BitTorrent splits into fragments the

files that are shared on a P2P network and then spreads file fragments by giving the

highest priority to the rarest fragment. In [149] we propose a mathematical model

for regulating fragment diffusion that factors in peer distances, as communication
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delays, and the fragment availability at future time points, which in our approach

is estimated by means of a neural network modelling the behaviour of peers. The

ensemble comprising the proposed mathematical model and neural network provides

a solution for choosing the file fragments that have to be spread first, in order to

ensure their continuous availability, taking into account that some peers will discon-

nect. In peer to peer (P2P) systems using BitTorrent, a shared file will be split into

fragments and the least available file fragments are automatically chosen to be sent

first to users requesting the file [49]. Fragments availability is measured by the num-

ber of peers storing a file fragment at a given moment, and periodically computed

by a tracker server storing peer ids, fragments held, and files requested [48]. For

computing the scattering priority for fragments, data synchronisation towards the

tracker is paramount, at best fragment availability has been freshly updated, however

peers can leave the system anytime hence changing file fragment availability, possibly

before the rarest fragments have been spread [106]. This occurs so frequently that

such a fundamental BitTorrent mechanism may become ineffective, and as a result

some fragments can quickly become unavailable. Moreover, the mechanism choosing

fragments to spread is unaware of communication latencies among peers, as a con-

sequence a fragment spreading occurs sooner on peers nearby the ones holding the

fragment to be spread and the furthest peers could disconnect before receiving the

whole fragment. The proposed model for spreading file fragments that considers: (i)

latencies among peers, (ii) a time-dependent priority for a fragment to spread, and

(iii) the behaviour of peers for estimating their future availability. We take into ac-

count the fact that more time is needed to have a replica on the farthest peer ready

to be served to other peers, when compared to a nearer peer. Moreover, priority of

fragments to spread will be computed again over time, as their availability changes.

The variation of priority is regulated in our model in such a way to maximise the

availability of fragments over time. To determine the dynamic of fragment spread-

ing we use a diffusion model developed by analogy to a diffusion model on a porous

medium. Moreover, we enhanced our mathematical model by using the results of an

appropriate WRNN predictor This neural predictor aims at estimating the status evo-

lution of the BitTorrent system, hence overcoming the sparse updates between peers
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Figure 5.19: An overview of the ensemble of components for the proposed solution

and the tracker. Results provided by the neural network are fed to the above said

mathematical model computing the fragments to be spread. As a result BitTorrent

clients could take early actions in order to facilitate the diffusion of file fragments, in

order to cope with the evolving fragments availability. Figure 5.19 shows an overall

view of the proposed main components and their interactions. In order to develop our

diffusion model for BitTorrent based on a physical porous medium, some conventions

must be chosen and some extrapolations are needed. We first describe a continuum

system using a continuum metric, however later on we will single out a few interesting

discrete points of the continuum. Due to the analogy we make between a physical

system and BitTorrent, we use a distance metric (named δ), which will be defined as

the network latency among nodes, i.e. the hosts on a network holding peers, playing

as seeds (peers providing fragments) or leeches (peers downloading fragments).For

the nodes we use notations ni or niα: the first indicates a generic i-esime node on the

BitTorrent network, the second indicates the α-esime node as seen from the i-esime

node. Of course, niα and njα could be different nodes when i ‰ j. Double indexing

is needed since when we use something like δij, it will represent the distance of the

j-esime node as measured by the i-esime node. Moreover, let us express P ij
k as the

probability of diffusion for the k-esime file fragment from the i-esime node to the

j-esime node. Finally, we distinguish between time and time steps: the first will be

used for a continuum measure of temporal intervals and will be expressed by the latin

letter t, the second will indicate time steps (e.g. the steps of an iterative cycle) and

we will use for it the greek letter τ . Therefore, while δijptq will represent the contin-

uous evolution during time t of the network latency δ, which measures the distance

from the i-esime node to the j-esime node, the notation δijpτq represents the same
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measure at the τ -esime step, i.e. the time taken by a ping from the i-esime node to

the j-esime node, only for the specific time step τ . Finally, we will suppose that each

node has the fragment zk of a file z and is interested in sharing or obtaining other

portions of the same file, hence we will compute the probability-like function that

expresses how easily the k-esime shared fragment is being copied from the i-esime

node to the j-esime node at a certain step τ and we will call it P ij
k pτq. Eventually,

we are interested in an analytical computation for the urgency to share a fragment zk

from ni to nj for a time step τ , and we will call it χi,jk pτq. In the following sections we

will distinguish between a measured value and a value predicted by a neural network

using a tilde for predicted values as in x̃. In our work we compare the spreading of

file fragments for a shared file to the diffusion of mass through a porous means. To

embrace this view, it is mandatory to develop some mathematical tools, which are

explained in the following. Users in a P2P BitTorrent network can be represented

as points spread on a unidimensional space where a distance metric is given by the

corresponding network communication latency. Therefore, for each node ni P N , set

of the nodes, it is possible to define a function

δ : N ˆN Ñ R { δpni, njq “ δij @ ni, nj P N (5.11)

where δij is the amount of time taken to bring a small amount of data (e.g. as for a

ping) from ni to nj. By using the given definition of distance, for each node ni, it is

possible to obtain an ordered list Ωi so that

Ωi
“

!

niα P N
)|N |

α“0
: δpni, niαq ď δpni, niα`1q (5.12)

In such a way, the first item of the list will be ni0 “ ni and the following items will be

ordered according to their network latency as measured by ni. Using this complete

ordering of peers, it is possible to introduce the concept of content permeability

and diffusion. The adopted mathematical model will be defined in a continuous

set by means of a variable δ indicating the distance between two points. In order

to represent the BitTorrent network we need to associate one point to one peer (or

node) of the network and to obtain such a map we implement a discrete interpretation
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Figure 5.20: The adopted discretisation for the δ variable.

of this mathematical model. Therefore, while the following model will be developed

as a continuous model, then we will make use only of several discrete points, each

mapping the nodes of the network, and the model allows us to obtain their distance

as a δij. Therefore, for each node nj P N it exists a point j in our discrete set

so that it will be possible to define a discrete distance δij @ ni, nj P N , while the

points of the continuous model lacking a correspondent real node of the network

will be ignored. The motivation for having a continuous model to start with is

evident when considering how users share files on a P2P system: each file consists

of several fragments, then sharing fragments can be seen as a diffusion phenomenon.

For this reason we model fragment spreading in terms of the Fick’s diffusion law,

which is described in the following. Fick’s second law is commonly used in physics

and chemistry to describe the change of concentration per unit time of some element

diffusing into another. Using both the First and Second Fick’s laws the diffusion of a

content into a mean is given as the solution of the vectorial differential equation

BΦ

Bt
“ ∇ ¨ pD∇Φq (5.13)

where Φ is the concentration, t the time and D the permeability to the content. Since

this is a separable equation and we make use of a 1–dimensional metric based on the

distance δ, and assuming D as constant among the nodes, equation (5.13) can be

written as a scalar differential equation

BΦ

Bt
“ D

B2Φ

Bδ2
(5.14)
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The partial differential equation (5.14), once imposed the initial and boundaries con-

ditions, admits at least a solution known as the Green’s function, which describes

how a single point of probability density (in this case initially at δ “ 0) evolves in

time and space. Thus the evolution of the system from any initial condition can be

found simply by adding up the right amount of probability density at the right points

in space, given by

Gpδ, tq “
1

2π

ż

e´Dξ
2te´iξ

2δdξ (5.15)

It suffices to find a particular normalised solution, so that

ż

Gpδ, tqdδ “ 1 (5.16)

In order to find an appropriate solution for the problem of fragment spreading through

the BitTorrent network, it is possible to apply the infinite-source diffusion boundary

conditions and initial conditions. The resulting particular solution can then be written

as

Gpδ, tq “
1

?
4πDt

e´
δ2

4Dt (5.17)

The found Green’s Function permits us to study the diffusion dynamics of a single con-

tent and, as a matter of facts, it can be rewritten as a solution of the equation (5.14)

in the form:

Φpδ, tq “ Φ0Γ
´ δ
?

4Dt

¯

, Φ0 “
1

?
4πDt

(5.18)

where Γ is the complementary gaussian error function

Γpxq “ 1´
2
?
π

ż x

0

e´ξ
2

dξ @ x P R` (5.19)

The equation (5.19) can be computed as successive iterations from a Taylor series:

Γpxq “ 1´
2
?
π

8
ÿ

j“0

x

2j ` 1

j
ź

k“1

´x2

k
@ x P R` (5.20)
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Figure 5.21: An approximation of the concentration Φ as in (5.22), computed on a
set of points having distances δij.

In [42] a pure exponential approximation for the equation (5.20) has been proposed

in which, within an error of the order of 10´9, Γpxq is calculated as

Γpxq «
1

6
e´x

2

`
1

2
e´

4
3
x2

@ x P R` (5.21)

Using the (5.21) in (5.18), it eventually follows

$

’

’

&

’

’

%

Φpδ, tq « Φ0

”

1
6
epΦ0δq

2

` 1
2
e´

4
3
pΦ0δq

2
ı

Φ0 “ p4πDtq´
1
2

(5.22)

for every node at a certain distance δ P R` at a time t P R`. Figure 5.21 shows

a representation of concentration Φ, which can be computed for file fragments, as

guven by equations (5.22), while varying the amount of peers and over time. In

equation (5.22) the scaling factor Φ0 is a function of the time t. On the other hand,

the used formalism was developed mainly to focus on the distance δ and handling

t merely as a parameter. The above mathematical formalism is valid as long as
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the distances δpni, njq remain time-invariant. The common practice considers the

distance between nodes δ as time-invariant, however the actual network latencies vary

(almost) continuously, with time, and a stationary Ωi ordered set is a very unlikely

approximation for the network. In our solution, we make the latency time-dependent.

In turn, this makes it possible to choose a different fragment to be shared over time.

For the P2P system, the equation (5.22) states that a certain file fragment zik in a

node ni at a time t0 has a probability P ij
k pt0, tq to be given (or diffused) to node nj,

at a distance δijpt0q from ni, within a time t, which is proportional to the Φpδ, tq so

that

P ij
k pt0, tq “ pijk

„

1

6
epp

ij
k δijq

2

`
1

2
e´

4
3pp

ij
k δijq

2


(5.23)

where pijk “ pijk pt0, tq, i.e. it depends on time t0 and t and carries both the diffusion

factors and the temporal dynamics. And since we are interested in a simple propor-

tion, not a direct equation, we can also neglect the factor 4π and then write pijk in

the normalised form

pijk pt0, tq “
1
?

4π
¨

1
a

Dkpt0q
¨

1
?
t

(5.24)

It is now important to have a proper redefinition of the coefficient D. Let us say that

Tk is the number of users interested in file fragment zk (whether asking or offering

it), Sk is the number of seeds for the file fragment and ρk is the mean share ratio

of the file fragment among peers (including leeches), then it is possible to consider

the urge to share the resource as an osmotic pressure which, during time, varies the

permeability coefficient of the network D. In order to take into account the mutable

state in a P2P system, D should vary according to the amount of available nodes and

file fragments. We have chosen to define

Dkpt0q fi
Tkpt0q

Skpt0q ` rTkpt0q ´ Skpt0qs ρkpt0q
(5.25)

then by formally substituting D with Dk in Φ0 in equation (5.22), we obtain the

analytical form of the term pijk . Indeed, the physical nature of the adopted law works

in the entire variable space, however for the problem at hand discrete-time simplifi-

cations are needed. Let us suppose that for a given discrete time step τ “ 0 node
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ni effectively measures the network latencies of a set of nodes tnju, then an ordered

set Ωi as in equation (5.12) is computed. Now, for every node ni probability P ij
k is

computed for each of its own file fragment zk and for every node nj. This probability

corresponds to a statistical prevision of the possible file fragments spreading onto

other nodes. Suppose that for a while no more measures for δ have been taken, at a

later discrete time step τ file fragment zik will be copied to the first node to be served,

which is chosen according to the minimum probability of diffusion, latencies and time

since last measures were taken (see following subsection and equation (5.28)). Then,

such a file fragment is reaching other nodes if the latency for such nodes is less than

time tik, computed as

tikpτq “
τ
ÿ

αk“0

δpni, niαq (5.26)

Index k is used in equation (5.26) to refer to file fragment zik. Indeed, it should be

highlighted that since nodes need and offer their own file fragments, the ordered set

of nodes referred by a given node should depend on resource zk, i.e. Ωi
k “ tniαku.

It is now possible to have a complete mapping of the probability of diffusion by

reducing the time dependence from pt0, tq to a single variable dependence from the

discrete time-step τ . For each resource zk as P ij
k pτq stated that it is possible to

reduce Dkpt0, tq to a one-variable function Dkpτq by assuming that at t0 we have

τ “ 0 and considering only the values of Dkpt0, tq when t is the execution moment of

a computational step τ . Once all the P ij
k pτq have been computed, and values stored

into a proper data structure, it is actually simple to determine the most urgent file

fragment to share, which is the resource that has the least probability to be spread,

i.e. the k for which P ij
k pτq is minimum. Furthermore, we should consider that, over

time, an old measured δ differs from the actual value, hence the measure becomes

less reliable. To take into account the staleness of δ values, we gradually consider less

bound to δ the choice of a fragment, and this behaviour is provided by the negative

exponential in equation (5.27). Given enough time, the choice will be based only on

the number of available fragments. However, we consider that by that time a new

measure for δ would have been taken and incorporated again into the model choosing

the fragment. Generally, for nodes having the highest latencies with respect to a
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given node ni, more time will be needed to receive a fragment from the node ni. We

aim at compensating such a delay by incorporating into our model the inescapable

latencies of a P2P network. Therefore, the node that will receive a fragment first

will be among the farthest. For the model we have then chosen a decay law. Now it

is possible to obtain a complete time-variant analytical form of the spreading of file

fragments (see Figure 5.22) defined as in the following:

χijk pτq “
e´cτδ

ij

P ij
k pτq

(5.27)

where the decay constant c can be chosen heuristically, without harming the said law,

and tuned according to other parameters. If k indicates a file fragment and k˚ the

index of the most urgent file fragment to share, this latter is trivially found as the

solution of a maximum problem so that

k˚ : χijk˚pτq “ max
k

 

χijk pτq
(

(5.28)

Figure 5.22 shows the decay of several computed χ values for different peers requiring

a file fragment z3 (3 is the fragment index). Of course, all the priorities depend on

the value of the bidimensional matrix of values of P ij
k (we mark that the index i

does not variate within the same node ni). Among these values, there is no need to

compute elements where j “ i and for those elements where the node nj is not in the

queue for resource zk. In both cases it is assumed P ij
k “ 1. Moreover, after ni having

completed to transfer zk to the node nj, the element of indexes pj, kq is set to 1. In

a similar fashion, each peer is able to identify a possible resource to ask for in order

to maximise the diffusion of rare ones instead of common ones.

5.8 WRNN-based model enhancements

Although the model proposed is based on initial conditions, essentially fragment avail-

ability, measured at a certain time. On the other hand, only when new data are re-

ceived (e.g. when the tracker of the BitTorrent network sends new information on the
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Figure 5.22: The time decay of some normalised χjkpτq for increasing time steps τ

state of the network, the number of peers and seeds for the file fragments), then an

updated result can be obtained by changing the initial conditions in our mathemati-

cal model as well. Therefore, while integrating a certain dynamics the mathematical

model alone cannot predict or anticipate future network conditions by itself. In order

to predict the future state of the BitTorrent network, and then suggest the appropri-

ate priority actions as a consequence, we developed an appropriate predictor which

takes advantage of several analysis methods as well as machine learning techniques

in order to tamper with the timeline. This is the case of the WRNN predictors. For

this purpose the initial dataset was a time series representing the past values of χijk

in equation (5.27). For a more practical notation, we indicate such a time series as

xpτq, where τ is the discrete time step of the data, sampled with a fixed ratio. We

considered the time series complete (with no missing informations or data gaps) since

the delivery of the series is the responsibility of the tracker and since the BitTorrent

protocol requires to periodically negotiate with the tracker. On the other hand, in

the BitTorrent network, such values are given on a file-related basis, in fact we have

that a file is a set of fragments. Therefore, for the l-esime shared file, represented as

Kl, at a time t0 the raw values given by the BitTorrent tracker correspond to vector
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ξl

ξl “

¨

˚

˚

˝

Tkpt0q

Skpt0q

ρkpt0q

˛

‹

‹

‚

@ k : zk P Kl (5.29)

where Tkpt0q, Skpt0q and ρkpt0q are the ones used in equation (5.25). This means that

at time t0 we can compute Dkpt0q and consequently Φ from equation (5.22), as well

as χijk pt0q from equation (5.27). I.e. for each time step τ we indirectly obtain χijk pτq

from the data given by the tracker and then using our mathematical model. As in

equation (5.27), we note that i and j are the indexes of the nodes in the BitTorrent

network, and k represents a file fragment. Once the time series of values χijk has been

obtained, we want to predict the future availability of each k-esime file fragment.

Therefore, the above developed RNN predictor has been trained for each shared file

(not just for a file fragment, since the time series to be fed to the RNN are the same

for each fragment belonging to the same file). Moreover, given the definition of file

as a set of fragments it follows that

Kl1 XKl2 “ H @ l1 ‰ l2 (5.30)

Therefore, for L shared files we would have L neural networks (each one associated

to a file) to obtain L predictions of the parameter vectors in equation (5.29). Then,

since files are shared among nodes, the results of the predictions referring a file are
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Figure 5.24: In order: the initial condition (white cells represent the fragments), the
normalized χijk pτq for a certain node ni at different time steps τ

spread to the corresponding nodes.The L trained networks have all the same topology,

hence we need to store the trained weight matrices only,in case of restart. Then, each

node ni uses a subset of all predictions, i.e. the ones related to the files the node

has got (see Figure 5.23). For a prediction 2 hours in advance of the time series the

relative error was less than 6%.The output of the WRNN are the selected file fragment

ids that have to be sent first. By considering both the predicted x̃kpτn`rq and the

modeled χkpτn`rq, it is possible, at a time step τn, to take counteracting actions

and improve the availability estimated for a future time τn`r, hence increasing the

diffusion of rare file fragments. This is achieved, in practice, by using altered values

for Dkpτn`rq, which account for the forecast of future time steps. Such modified values

are computed by our RNNs, then predicted future values for Tkpτn`rq, Skpτn`rq and

ρkpτn`rq are send to each node active as a peer.Each time a new file becomes shared on

the P2P BitTorrent network, then a new RNN is created and trained on a server, (e.g.

requested from a cloud system [31, 154]), in order to provide predictions related to

peer availability of the novel set of shared fragments. Values indicating the prediction
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Figure 5.25: Measured node availability

are sent to the peers periodically, and allow peers to update their values of Dkpτq.

The update frequency can be tuned in order to correctly match the dynamic of peers.

Figure 5.26 shows the measured distances of the available nodes measured by the

first node (i “ 1). For our experiments we used a mixture of hosts connected by

the Italian research and education fast network (GARR). The simulated BitTorrent

network comprised 42 nodes sharing 5 files. For the sake of clarity we also simulated

a subnetwork of 10 nodes sharing 5 file fragments (see Figure 5.27). In the latter

example, at the initial condition of the system four of the file fragments happen to

be heterogeneously spread among peers of the P2P network, while a fifth fragment

(namely z2) is not present within the connected nodes. In the order, step after step

each node selected a file fragment to require and a file fragment to send: e.g. at the

time step τ “ 1 the node n1 has tried to send file fragment z4 to as many nodes as

possible because of its urgency (since it is the rarest fragment) starting from n2 (since

it is the farthest node from n0). Simultaneously, the nodes n2, n3, n6, n7, n8 and n9

were sending the only fragment they had at τ “ 0. Since both z1 and z3 are equally

rare, then the node n4 at τ “ 0 was sending these two fragments on a node distance-

basis (the farthest the first). At a successive time step (τ “ 1) the situation seems
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Figure 5.26: Distances measured by node n1 with respect to all the 42 nodes available
in the experiment

to change radically because of the fragments that have been just transferred among

nodes. In this simulation all fragments, except z2 because it is actually unavailable

on any node, have been shared among nodes, in a very low number of time steps.

It should be pointed out that from τ “ 1 to τ “ 3 some previously-rare fragments

have been rapidly spread and that only later on the most common fragments will

be transferred. At τ “ 3 the system of peers seems to reach a steady situation: all

fragments have been shared, except fragment z2, since unavailable, hence all the nodes

are waiting for it. Let us now suppose that, during the time step τ “ 4, an eleventh

node (additional to the previous network of peers) transfers z2 to n1, the result is then

depicted in the scenario at τ “ 5. In this second part of the experiment, while the

rarity of z2 is not important, then only the distance of the nodes leads to the order

of distribution. E.g. when 5 ď τ ď 6 node n1 sends the file to n9 which is the most

distant node with respect to n1. The same strategy is then adopted by other nodes

receiving it until the fragment has been shared with all nodes (τ “ 9). The described

behaviour has been determined by the model in equation (5.28). Moreover, the shown

evolution does not consider the file fragments that could have been passed among the
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Figure 5.27: The evolution of a subnet composed of 10 nodes sharing 4 different file
fragments (since z2 is missing). At a time step τ “ 4 a the fifth file fragment (z2) is
injected on node ni and then spread all over.

nodes in between two different updates, and so that for each step the value of χ for n10

would drop to zero (the highest values of χ are an indication of the urgency of receiving

a fragment). The described model and formula allow subsequent sharing activities,

after the initial time steps, to be determined, in terms of which fragments should be

sent. In the long run, this law will privilege the near nodes, while on the short term,

distant nodes are often the ones having higher priority. A more extensive comparison

was performed by simulating both our approach and the standard BitTorrent protocol.

We wanted to share a file having size 1 GB among 100 peers, therefore sharing 65536

file fragments having each size 16 KB. In our initial conditions there was only one

seed (i.e. a node with all the fragments) while each of the other peers was provided

with 1 file fragment (a different fragment for each peer, therefore multiple replica of

the fragments where on the network). We decided to start with this setup in order
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Figure 5.28: Performances of the proposed approach compared with a traditional
BitTorrent network for a 1GB file shared among 100 nodes.

to simplify the comparisons of the results excluding the transient phase (i.e. when

only one seed begins to share a file with peers that are not yet able to share the file).

Finally, we supposed that each peer could send one fragment and receive 5 fragments

at the same time. For the simulations we used network latencies and nodes availability

from real data: we measured the latencies in our network (a partial amound of data

is given in Figure 5.26), while we used a scaled profile of real peers availability on

the traditional BitTorrent network (see Figure 5.25). The resulting comparison is

shown in Figure 5.28: while our approach has a slow start (since it prefers to diffuse

replicas to remote peers instead of giving them to the nearest peers), however it

definitively prevails over the standard BitTorrent protocol due to the said ability

to quickly adapting to the number of replicas and peers available. Therefore the

proposed WRNN based models offers solutions that effectively improve the availability

of fragments on a P2P BitTorrent system by adopting a mathematical model and a

neural network, each properly devised for the problem at hand. The model is able

to precisely describe the fragments diffusion and the urgency to share fragments,

thanks to the mapping that we have proposed of a mass diffusion through a porous



5.9. THE NEXT GENERATION OF RESOURCES 115

means and the derived equations. The wavelet recurrent neural network approximates

the availability of peers, and hence fragments, at later time points, by retaining the

characteristics of the behaviour of users. This has been achieved firstly by wavelet-

transforming the time series of peer availability, and secondly by feeding such results

to a nonlinear autoregressive neural network, which is able to both perform predictions

and apply an wavelet inverse transform. By using the estimates of future fragments

availability provided by our neural network into the fragment diffusion model, we

can then select the fragments that have to be quickly spread to counteract their

disappearance due to some user disconnection.This choice would tap into a resource,

the tracker, which is an existing component which peers have to connect to. For

the computational cost, an instance of our ensemble (predicting neural network and

fragment diffusion model) suffices to give accurate suggestions for a file and all its

fragments, and updates to peers are given at widely spaced time intervals.

5.9 The next generation of resources

As this chapter demonstrates, it is possible to use the Wavelet Recurrent Neural

Networks, eventually embedded in a properly developed mathematical model, in order

to predict the availability of resource and the quality of services also when those two

depend by the human choice and behaviors. The next chapter will be dedicated to

crowd sourcing projects as new form of productive cycles. From the point of view of

process engineering as well as from a social and scientific point of view, crowdsourcing

is introducing many modification to our concept of development. Somehow the effects

of this so called crowd revolution revolution does not differs from the impact that new

production system had seven or eight decades ago on the automobile industries (e.g.

the introduction of the Toyota Production Model, also studied by Ford to improve the

productivity of his company). Speaking of production models, in a crowd sourcing

based project, each single worker can be defined as a resource, therefore it would be

agreeable to model the availability of such resources, as well as to understand how to

predict the execution of workflows and the overall temporal evolution of the project.

Following the given paragon, the application of the yet presented Wavelet Recurrent
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Neural Network can help us to tamper with the timeline, on the other hand, we are

not only willing to do that, but also to reach major improvements in the concept and

social effects of crowdsourcing. In order to do that further actions should be taken

in order to properly model human-based companies. In the following chapter we

will challenge the definition itself of crowdsourcing by creating an enhanced artificial

intelligence of our own in order to reach a better understanding of the Amazon’s

Mechanical Turk and, possibly, improve it by means of a complete revolution of the

approach.



CHAPTER 6

A2I: Artificial Artificial Intelligence

Whatever question you can come up with,

there’s a person that can provide the answer.

Jesse Heitler

Crowdsourcing and crowd-based services are increasingly becoming an effective

solution for executing tasks and deploying end-products to users. Such a solution is

an effective means for large organisations which rely on crowdsourcing to cut down

the production time and costs. However, the reliability and quality of service for such

a production process is at stake, since the crowd is a volatile resource. In this work

we use wavelet recurrent neural networks predictors to model the worker behaviours

of a crowd-based service provider. As a result we obtain a human resource avail-

ability prediction that lets us handle preemptive queue-management and resource

scheduling beforehand. Then, it is possible to satisfy the target quality of service and

possibly improve it over time. Generally, the capability of a multitude of people is

greater than that of an individual. This is not only common sense but the simplest

motivation behind crowdsourcing projects and collaborative development platforms,

as well as the main force triggering the composition of workgroups and companies.

Traditionally, enterprises and firms rely on a well-structured organisation and some

117
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defined workflows that regulate the execution of several tasks, which are entrusted

to their employees to produce a final product [31]. For modern production processes,

relying on information technologies and especially for massless products, tasks could

be outsourced, i.e. performed by workers hired on-demand, and possibly each worker

could perform just one task. Such an approach mainly relies on the availability of

a fluctuating workforce rather than on the specialisation and competence of known

employees. In order to let “interchangeable” workers intervene in to the production

process, this has to be described in terms of small and simple tasks, which can be

concluded in a small amount of time by people from the crowd (back-end workers of

a collaborative project). However, hiring such a cheap and highly available workforce

requires some organisational effort since a trade off is needed between task size, com-

plexity, cost and the entire workflow duration. I.e. the smaller and easier the task

the most affordable and unskilled workforce can be possibly found for performing it,

however the more tasks have to be completed and they have to be governed by a

workflow. Although micro-task markets have great potential for rapidly collecting

users’ manpower at low costs, special care is needed in formulating tasks in order to

harness the capabilities of the approach [109]. A notable example of tools enacting

crowd-based work is Amazon’s Mechanical Turk, which is emerging both as a pioneer

and leader among online services, mainly due to its high usability, as well as for the

potential of the paradigm itself, which enables anyone to quickly and cheaply hire a

large workforce.

6.1 Amazon’s Mechanical Turk

Crowdsourcing services, such as e.g. Amazon’s Mechanical Turk, have just begun to

provide end-users with all the major assets generally used by an actual company, such

as worker pools, design streamlines, compensation systems, recruitment procedures,

etc. It is then natural to anticipate a further increase on the popularity and diffusion

of the crowd-based approach not only for developing some kind of product but also

for providing crowd-based intelligent services. Actually, there are tasks that, though

very simple, can not be executed by a machine due to its lack of a unique feature:
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the human intelligence. On the other hand, the crowd-based approach fully relies

on such a characteristic, since it requires humans as the source of task completion.

The same humans can implement a human-based artificial intelligence (quoting the

Mechanical Turk trademark it can be called an “artificial artificial intelligence”) that

provides the required capabilities, such as e.g. discover information that is missing

from a database, perform non algorithmic functions, collect and match data, rank or

aggregate results based on fuzzy criteria, etc. [77]. Such an advanced outcome from

the crowd is highly agreeable since it could lead us to software products that integrate

a piece of human intelligence inside: the crowd intelligence. In this sense, the crowd

would then provide distributed knowledge, computation, intelligence and finalised

end-user services, by taking advantage of the back-end workers and their platforms,

in a similar manner to more classical distributed approaches, such as cloud comput-

ing [154]. Therefore, as any other distributed system, in order to properly react to

peaks of requests the workers of the crowd should be provided with a resource reser-

vation system. This would benefit from the estimation of the amount of incoming

requests as well as the amount of available back-end crowd workers. Crowdsourcing

services, such as Amazon Mechanical Turk, allow for easy distribution of small tasks

to a large number of workers. Unfortunately, since manually verifying the quality of

the submitted results is hard, malicious workers often take advantage of the verifica-

tion difficulty and submit answers of low quality. Currently, most requesters rely on

redundancy to identify the correct answers. However, redundancy is not a panacea.

Massive redundancy is expensive, increasing significantly the cost of crowdsourced

solutions. Therefore, we need techniques that will accurately estimate the quality of

the workers, allowing for the rejection and blocking of the low-performing workers

and spammers. However, existing techniques cannot separate the true (unrecover-

able) error rate from the (recoverable) biases that some workers exhibit. This lack of

separation leads to incorrect assessments of a worker’s quality. We present algorithms

that improve the existing state-of-the-art techniques, enabling the separation of bias

and error. Our algorithm generates a scalar score representing the inherent quality

of each worker. We illustrate how to incorporate cost-sensitive classification errors in

the overall framework and how to seamlessly integrate unsupervised and supervised
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techniques for inferring the quality of the workers. We present experimental results

demonstrating the performance of the proposed algorithm under a variety of settings

[101]. In this work we propose a solution to produce a short-term forecast of the fu-

ture worker availability, based on data characterising the back-end worker behaviour.

Again in order to obtain such a forecast the well explained WRNN architecture has

been used.

6.2 WRNN based crowdsourcing

In the following we will demonstrate that it is possible to manage a crowdsourcing

backend infrastructure by means of accurate predictions of the number of users that

will be available on the back-end of a crowdsourcing project. We call this series xpτq,

where τ is the discrete time step of the data, sampled with intervals of one hour. A

biorthogonal wavelet decomposition of the time series has been computed to obtain

the correct input set for the WRNN as required by the devised architecture. This

decomposition has been achieved by applying the wavelet transform as a recursive

couple of conjugate filters in such a way that the i-esime recursion Ŵi produces, for

any time step of the series, a set of coefficients di and residuals ai, and so that

Ŵirai´1pτqs “ rdipτq, aipτqs @ i P r1,M s X N (6.1)

where we intend a0pτq “ xpτq. The input set can then be represented as anNˆpM`1q

matrix of N time steps of a M level wavelet decomposition, where the τ -esime row

represents the τ -esime time step as the decomposition

upτq “ rd1pτq, d2pτq, . . . , dMpτq, aMpτqs (6.2)

Each row of this dataset is given as input value to the M input neurons of the proposed

WRNN. The properties of this network make it possible, starting from an input at a

time step τn, to predict the effective number of workers available at a time step τn`r.



6.2. WRNN BASED CROWDSOURCING 121

Figure 6.1: Devised neural netwok

In this way the WRNN acts like a functional

N̂ rupτnqs “ xpτn`rq (6.3)

where r is the number of time steps of forecast in the future. In the presented ex-

periments we wanted to recreate a typical crowdsourcing model without being linked

to the generality of a provider such as Amazon, on the other hand we cannot neglect

the importance of the Mechanical Turk as an excellent example of crowd-based ser-

vices. Moreover, we wanted to focus on a specific while still large project such as

Wikipedia. Therefore, we tried to collect all the possible assumptions regarding both

Wikipedia and Amazon’s Mechanical Turk in order to work with a scenario even-

tually compatible with both. When collecting and analysing the statistics coming

from the Mechanical Turk, it should be noted that the relatively large worker pool

is slightly more demographically diverse than common Internet users, since partici-

pation is mainly affected by compensation rate and task length, while participants

can be recruited rapidly and inexpensively [33]. On the other hand, this distributed

population of thousands of anonymous workers is changing over time, shifting from a
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primarily moderate-income worker population towards an increasingly international

group with a significant population of young and well-educated workers mainly dis-

tributed in India [179] and other highly populated countries. This information gave

us the idea to use the raw data of the Wikimedia(TM) foundation focusing on the

page edit from the indian region (selected by profile nationality or ip class), since

roughly who is willing to spend time improving text on Wiki pages for free is will-

ing to be paid for some small task to perform a somewhat similar task on his/her

computer. Original data report the amount of accesses and bytes for the replies that

were sampled in time-steps of one hour for each web page accessible in the project.

Data were collected for the whole services offered by Wikimedia projects including

Wikipedia(r), Wikidictionary(r), Wikibooks(r) and others and then restricted by re-

gion. Data were gathered and composed by an automatic procedure, obtaining the

total requests made to the wikimedia servers for each hour. Therefore, a 2-years long

dataset of hourly sampled data has been reconstructed. Then, the said dataset was

decomposed by using a wavelet biorthogonal decomposition identified by the couple

of numbers 3.7, which means that such a decomposition is implemented by using

FIR filters with 7th order polynomials degree for the decomposition (see also Fig-

ure 6.2 and 6.3) and 3rd order for the reconstruction. An accurate study has shown

that the biorthogonal wavelet decomposition optimally approximates and denoises

the time series under analysis. Such a wavelet family is in good agreement with

previous optimal results, obtained by the authors, for the decomposition of other

physical phenomena. In fact, such a decomposition splits a phenomenon in a su-

perposition of mutual and concurrent predominant processes with a characteristic

time-energy signature. For stochastically-driven processes and for a large category of

complex systems wavelet decomposition gives a unique and compact representation

of the leading features for a time-variant phenomenon. Decomposed data were then

given as inputs for the wavelet recurrent neural network implemented by means of an

object oriented toolbox presented in [155]. The network was trained by using a gra-

dient descent back-propagation algorithm with momentum led adaptive learning rate

as presented in [94]. For this work, a 4-level wavelet decomposition has been selected

that properly characterises data under analysis. Therefore, the devised WRNN uses
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Figure 6.2: Biorthogonal wavelet 3.7 de-
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Figure 6.3: Biorthogonal wavelet 3.7 high-
pass (h) and low-pass (g) filers

a 5 neuron input layer (one for each level detail coefficient di and one for the residual

a5). This WRNN architecture presents two hidden layers with sixteen neurons each

and realises a radial basis function.nputs are given to the WRNN in the following

form:

• The wavelet decomposition of the time series upτnq for time step τn

• The previous delayed decompositions upτn´1q and upτn´2q

• The last four delayed outputs xpτn`rq predicted by the WRNN

Delays and feedback are obtained by using the relative delay lines and operators.

These feedback lines provide the WRNN with internal memory, hence the modelling

abilities for dynamic phenomena. For a prediction 2 hours in advance of the time

series of the amount of crowd workers, the root mean squared error of prediction for

the access requests over time was of 0.0186 crowd workers, which means a relative

error of less than 1%. Figure 6.4 shows the actual time series of the available workers

in black, and the predicted values in red for a time period of 600 hours. Figure 6.5

shows a 10 hour interval of the same data to give the detail of the prediction and

make it possible to see the close approximation. The actual values for the shown time

period had not been given as input to the neural network for training, however have

then been used to compare with the predicted values and to compute the error.
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Figure 6.4: The curves for the actual time series and predicted values, for an overall
time-interval of 600 hours
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Figure 6.5: A detail of the curves for the actual time series and predicted values, for
an arbitrary chosen time-interval of 10 hours
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6.3 WRNN based workflow manager

This approach has provided a general architecture, based on ad-hoc WRNNs, that

can predict the amount of workers that will be valuable over time for a specific crowd-

sourcing project. This can be used as a support when having to deploy, execute, and

monitor crowd-based services, which therefore can be managed like virtual machines

on a cloud platform, and related to each other as a series of mutually dependent

tasks, hence as a workflow. Firstly, the past time series has been analysed by means

of wavelets, which appropriately retain only the fundamental properties of the series.

Secondly, the neural network has been used to embed both the ability to perform

wavelet analysis and prediction of the future amount of available workers. The per-

formed experiments have proven that the provided ensemble is very effective for the

desired prediction, since the computed error can be considered negligible. Estimates

can be fundamental for a crowd management component since they make it possible

to acquire just the right amount of workforce. Then, in turn it is possible to avoid un-

necessary costs and waste of resources, whilst keeping the level of quality of service as

desired and unaffected by variations of workers availability avoiding negative effects

on the production time and costs. Moreover, the obtained human resource availabil-

ity prediction permits us to: (i) improve the quality of service, since other factors

being equals we can determine the priority of tasks to carry out; and (ii) preserve

such quality over time, by performing queue-management and resource scheduling

beforehand. The proposed solution is independent from the specific service to be pro-

vided, as well as being general and therefore applicable to a wide range of different

crowd-sourcing environments. Such an approach can also be used in order to schedule

and manage the task executed by a crowd in relation to the availability windows of

the crowd-based service workers. The proposed solution can be also embedded in a

component devised specifically in order to minimise the possible delays affecting a

crowd-based service, which are mainly caused by a temporary unavailability of work-

ers or by a work distribution that could benefit of further optimisation. The latter

can be easily provided thanks to the proposed approach by modeling the incoming

worker availability and the completion time of their tasks in order to schedule future
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work. Then, the solution here devised can be very beneficial for the management

of the operations on crowd-based resources in advance, hence shunning delays, and

also avoiding over-provisioning as an alternative to reduce delays, hence emerging as

a cost-effective solution. As seen also before, distributed systems to properly react

to peaks of requests, their adaptation activities benefits from the estimation of the

amount of requests. Several means are needed, including client devices, such as smart

phones, to request transportation vehicles, and a cloud-based intelligence that serves

requests by governing the available resources. An enterprise providing services han-

dled by means of workflows needs to monitor and control their execution, gather usage

data, determine priorities, and properly use computing cloud-related resources. This

paper proposes a software architecture that connects unaware services to components

handling workflow monitoring and management concerns. Moreover, the provided

components enhance dependability of services while letting developers focus only on

the business logic. business enterprises organise their provided operations by means

of a pre-defined workflow, i.e. a flow of execution relating activities supported by

software services and regulated by an engine [71, 145]. Generally, several services

connect with others, or provide data to others, according to a predefined workflow,

while sharing common computing resources, available e.g. as a cloud-computing fa-

cility [12, 191]. By resorting to cloud-computing, transparent access e.g. to shared

services, hardware and data is made possible, thus enabling a higher level of avail-

ability as well as higher performances [154]. One of the primary needs for enterprises

is to handle service executions in such a way to: (i) monitor human activities, (ii)

have a smooth execution on servers, and (iii) achieve a defined degree of depend-

ability [13]. For the latter, when a server handles numerous requests, to counteract

slowing responsiveness and enhance availability, services can be activated on other

cloud resources [27] or by means of software agents [148]. For an enterprise, monitor-

ing their workflows means gaining metrics related to business service performances,

employee productivity, etc. Such metrics enable decision making for optimising how

human resources provide their assistance, handling priorities, such as the allocations

of tasks to human resources or processes to hosts. Services activated by means of

a workflow could include the additional code that supports both dependability and
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monitoring issues, however such a solution would bring a high complexity level for

services, lower maintainability and increase development costs [171, 192, 146]. More-

over, when using other traditional solutions for supporting additional concerns, such

as non-functional ones, services have to conform to an ad-hoc supporting framework

or development model [125, 169]. This limits modularity and forces some compo-

nents to be manually adapted. In order to support modularity, we propose a software

infrastructure that seamlessly activates workflow execution, provides services with

monitoring and enhances dependability. The technology empowering the said seam-

less integration is aspect-orientation (AO), defined in [107, 116]. A software aspect is

a module that includes portions of code (comparable to methods) that are injected

into an existing component according to defined rules. AO systems have been built

to separate QoS-enhancing code from functional code, design pattern-related code

from classes [15, 82, 84] etc. Unlike previous approaches our proposal can be applied

to services, and workflows, without relying on any assumptions, is not intrusive for

the underlying support (such as JVM or OS libraries), enhances modularity, and is

not disrupting in terms of execution flow, development process and freedom for ser-

vice developers. A typical enterprise workflow is generally formalised by means of

a description, which is given to a workflow engine, e.g. JBOSS jBPM, that timely

starts the several services described [71]. The workflow engine is able to send noti-

fications about the state (e.g. just started, executing, finished) of the services on a

workflow, and therefore alert humans or gather statistical data about the execution.

Figure 6.6 shows an example of a simplified workflow, dubbed city planning, whereby

several services are executed each corresponding to a step that can be performed af-

ter receiving a user request for a permit. A reference model for the software system

assisting such steps will have one or more client applications enabling the user to

submit a request or to gather replies. Hence, e.g. the step send permit request could

be performed using a web browser or an ad-hoc application connecting to a service,

receive possible date could be a message received as a status update on a web page or

an email, etc. Services on the server side are processes running, or started, according

to the indication given by the workflow steps, hence e.g. receive requests is the first

step of an ad-hoc workflow, and is a process listening for incoming requests, analyse
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Figure 6.6: An example of workflow city planning on a distributed system

city plan is a process started as a second step of the workflow once the previous step

has been performed, etc. Services within a workflow are generally of different nature,

e.g. have their own data or processing requirements, hence they should be handled

differently when dealing with dependability. Let us suppose that analyse city plan is

a resource consuming process whose execution time has to be guaranteed, instead,

another service could simply provide immutable stored documents. Then, handling

requests that trigger service execution requires the provisioning of ad-hoc computing

resources to ensure dependability.

6.4 Companies as humans’ clouds

Cloud-based solutions provide a means to limit costs for an enterprise needing high-

performance hardware resources [12]. Therefore, the server-side software components

can be partially or wholly supported by cloud-based resources. In such a scenario,

additional concerns can be identified, as workflow monitoring and dependability en-

hancements. Our contribution provides such features by inserting support into exist-

ing services. Business related services are automatically provided with monitoring,

i.e. how and when such services are used. Monitoring allows typical usage behaviour

of enterprise employees to be detected, thanks to their interactions with services.

This makes it possible to compute metrics on productivity, workflow execution time,
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and potential bottlenecks of workflows. Data gathered while monitoring services and

workflows are sent to components located on cloud-based resources, such that even

though large amount of data are accumulated, they can be easily processed. There-

fore, our monitoring concern is different from cloud metering services that observe

resource consumption and exhibit the status of several resource-based metrics. As

a means to improve availability, we resort to an automatic and transparent support

that detects whether a service to be executed needs to be assisted by secondary,

cloud-based hosts, which execute services and provide contents. By delegating a por-

tion of the service processing requested to the secondary host, we enhance overall

response times and limit the workload on hosts. The further benefit given by the

use of secondary hosts is a marked reliability increase for the whole system, for ad-

ditional hosts can easily take over the workload assigned to one that incidentally

incurs into faults. This makes the overall enhanced system capable of providing un-

interrupted service under load peaks and faults. In order to support the features

outlined above, we propose a few software components that enhance services. The

connection between provided components and workflow services is accomplished by

means of aspect-oriented programming. A software aspect is a component defining

pointcuts and advices [107, 116]. The pointcuts trigger execution of advices when

given join points, i.e. some points on the code of a service, are executed. Aspects

allow crosscutting concerns to be dealt with in a modular way, thus making compo-

nents maintainable and prone to be reused [82, 84, 83]. Figure 6.7 shows how our

components operate, as seen by an external observer. The chief actors are: the de-

ployed services, such as Web-Service1 (the middle layer), which clients can connect

to; a set of cloud-servers, such as Cloud-Server1 (the rightmost layer); a set of regular

clients. Services, comprising their business logic, can be exposed on the web, hence

users can interact with their browser, or reside on a cloud resource. Our provided

aspect Reporter connects services exposed on the web with other cloud-based services.

For this, an ensemble of several supporting classes are used, i.e. mainly ReqHandler,

Scheduler, NNPredictor, LocalTimingStore. In the example above (see Figure 6.6), the

steps of a defined workflow are associated with indications that allow resource allo-

cations. Table 6.1 provides the workflow services with such additional data. In our
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Client1

Web-
Service1

1: send permit request

Cloud-
Service2

Cloud-
Server1

Client2

2.1: start host
2.1: analyse city plan

2.3: schedule 
meeting

2.4: propose
meeting

Figure 6.7: Client requests served by a web server and a cloud-server

Table 6.1: The characterisation of services for workflow city planning in order to
manage of cloud resources

service name start, end status resource type
receive requests on, on no cloud
analyse city plan off, off dedicated, large VM
schedule meeting standby, standby shared, small VM
plan evaluation off, off shared, medium VM

solution, a component, dubbed Controller, takes as input the above data and accord-

ingly during runtime handles the current request. Typically in our scenario, a new

instance of a workflow is started by means of a request coming from a web service

(see the following section), then Controller is alerted, finds the workflow that has to

be executed, and starts operations on cloud resources for the following services. In

the above example, after executing service receive requests on a web server, Controller

receives an alert, finds the related workflow and prepares resources for the execution

of service analyse city plan by starting a dedicated VM. From the second row in the

above table, we can see that the service has to be started on a dedicated large VM.

For each workflow, additional data have to be provided, such as e.g. the priority,

the allowed deadline, the number of instances that can be concurrently executed.

Moreover, for each service on the workflow, the number of its instances that can be

concurrently active is also given. Aspect Reporter enhances a service responding on



6.4. COMPANIES AS HUMANS’ CLOUDS 131

<<aspect>> 
Reporter

:LocalTiming
Store

start()

:aService:Client

doPost()
trapRequest()

:Controller

wfhandling()

Figure 6.8: Sequence diagram showing aspect Reporter that monitors invocations to
a service performed by a client class Client and connect the proper workflow related
service

a known IP address, and transparently provides it with abilities to effectively han-

dle request bursts. Such an aspect relies on other components that are located on

cloud-based servers. Aspect Reporter connects with services listening HTTP requests,

monitors the timing of their execution, and triggers execution of other offloading ser-

vices when needed. Once Reporter has gathered workflow-related metrics, data are

sent to the local class LocalTimingStore. In turn, such data will be periodically sent to

service TimingStore located on a cloud server. The latter appropriately merges data

coming from different users and services, or different instances of the same service.

Figure 6.8 shows an UML sequence diagram for the said measuring operations, since

when Reporter pointcut trapRequest() intervenes into the execution of a service. We

have defined pointcuts for capturing a variety of possible implementations, because

an HTTP request can be handled by a servlet, or as a EJB. Servlet implementations,

which handle HTTP requests, are subclasses of HttpServlet class (available into Java

package javax.servlet.http) and have to have methods doPost() or doGet(). Whereas

when having services implemented as EJBs, annotation @WebService is used, or to

expose only a method as a part of a web service, annotation @WebMethod is used

(such annotations are defined into package javax.jws). The corresponding pointcuts

trapRequest() and trapRequestWebServ() are shown in the listing of Figure 6.9. The

first pointcut captures all the points of the program that invoke methods doPost()

or doGet() implemented in a subclass of HttpServlet; whereas the second pointcut
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captures all the invocations to any method of a class that has been marked with

annotation @WebService. The timing of operations exposed as a web service gives a

great amount of details on the workflow activities that are performed. This aspect

encapsulates a concern that is crosscutting both for the components of a service, and

for several services available within workflows defined by the enterprise. Nevertheless,

the code of such an aspect is independent of any observed services. Compared with

alerts that can be set up on the workflow engine to be notified of service execution, as-

pect Reporter additionally gives a means to control operations within a service, hence

supports fine-grained monitoring and adaptivity. Thanks to this aspect, workflows

and services can be given resources according to different policies. For the proposed

solution to be effectively used, aspect Reporter needs to be deployed enterprise-wide.

I.e. aspect Reporter has to be deployed on every service to be enhanced with the mon-

itoring and dependability support. Aspect Reporter temporarily stops an incoming

HTTP request and Controller determines whether the request should be handled by

the local host, or by another service on a cloud resource. How to handle a request

depends on the current load, request type, requesting user, and the applicable work-

flow. For each service, Controller holds the configuration needed, including: priority,

number of allowed concurrent instances, flavour and status of the VM, etc. From

such data and the actual status Controller determines whether to let the request for-

ward, start another VM, etc. Controller is the main component assisting Reporter.

Figure 6.10 shows the relevant interactions, i.e. when a request arrives on a han-

dling web service, Reporter aspect intervenes to let the request be served according

to our model. Hence, pointcut trapRequest() is activated by rules defined as in Fig-

ure 6.8 and the listing in Figure 6.9. Such an aspect then extracts data to identify

the request. The activated advice checks with Controller the priority and whether

the current request is allowed and can continue execution on the local host (see call

to Controller.wfhandling()). The check is handled by first calling getResources() (Fig-

ure 6.10), and this finds which service and host are needed to serve the response.

When the host on the local web server can not handle the request, then the list of

needed resources is passed to CloudFacade class, calling its startVM() method or a

proper method (such as e.g. enqueRequest(), etc.), which allow the requested service
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public aspect Reporter {
private final LocalTimingStore lts =

LocalTimingStore.getInstance();

// capture method invocations on a servlet
pointcut trapRequest() :

call(void HttpServlet+.doPost(..)) ||
call(void HttpServlet+.doGet(..));

void around() : trapRequest() {
HttpServlet t = (HttpServlet) thisJoinPoint.getTarget();
Object[] arg = thisJoinPoint.getArgs();
HttpServletRequest r = (HttpServletRequest) arg[0];
lts . start (t , r , System.nanoTime());
if (! Controller .getInstance ().wfhandling(t))

proceed();
lts .end(t, r , System.nanoTime());

}

// capture method invocations on annotated classes
pointcut trapRequestWebServ() :

call(@WebService ∗ ∗.∗(..));

void around() : trapRequestWebServ() {
Object t = thisJoinPoint.getTarget();
lts . start (t , System.nanoTime());
if (! Controller .getInstance ().wfhandling(t))

proceed();
lts .end(t, System.nanoTime());

}
}

Figure 6.9: Aspect Reporter that intercepts invocations on operations of classes im-
plementing a service exposed as HTTP and records the starting and finishing time
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:NNPredictor:Controller

wfhandling()

:CloudFacade

startVM()
updSeries()

getResources()

Figure 6.10: Sequence diagram showing interactions with a cloud and the resource
usage predictor

to be later executed on the cloud resource. Class CloudFacade handles the details

for the operation to be started on a cloud facility. Whenever a new request arrives,

an hybrid neural network engine [39] is updated for the benefit of future forecasts

using the updSeries() call. Moreover, NNPredictor subsystem periodically computes

the load estimate as an amount of received requests to services of the enterprise and

will boot up or shut down cloud-hosted servers. NNPredictor can estimate up to six

hours ahead with a relative error of 0.6 per thousands [145]. When a subsequent

service on the same workflow instance has to be executed, the needed cloud resorces

have been started and made ready to serve by NNPredictor. Thus, Controller collects

the addresses of which host will be assisting the current session in order to let the

following service execute. Each client is identified by a set of characteristics, such as

IP address, user id, priority, etc. and may pertain to different categories, such as re-

sponse time, connections per second, etc. Accordingly, Controller determines whether

to accept the current request, and in case it is allowed compute a priority for all the

services of the related workflow. The priority is based on the identity of the requester

and the workflow whereby the current request belongs, and in turn according to such

a priority cloud resources (e.g. VM flavours) are selected. As far as the load balancing

part is concerned two important benefits are achieved: (i) the load of a request in a
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workflow instance is distributed according to the several hosts involved in the execu-

tion, and their state, (ii) initial requests can be accepted, put on hold or rejected, by

our Controller.

6.5 A lesson from Quantum Electrodynamics

Quantum electrodynamics inspired us an ad-hoc description for a computational cloud

in order to follow the dynamical state of the system during time. If we define a

computational cost for a task (such a cost could refer to memory, cpu time, complexity

or other software measurements), then it is possible to use the defined cost for an

appropriate fitness function. Since we are interested in finding the optimum solution

for the allocation of resources on a cloud, it would be equivalent to compute the

local minima of such a fitness function, once taken into account all the constraints of

the case. Such a problem is similar to a typical partitioning problem for a fermion

particle gas, therefore solvable with a few basic tools from quantum electrodynamics.

In our description, then, the said computational cost will have the same meaning of

the energy of a fermion. Therefore, the resources provided by a VM can be seen as the

local minima of a potential cost field. Similarly to fermions that naturally tend to the

minimum energy state, then our cloud must evolve in order to reach the minimum cost

state. In particle physics the fermions exhibit antisymmetric wave functions, beside

the mathematical formulation and the physical meaning, front this fact depends what

is generally known as the Pauli exclusion principle. Such a principle states that in

a quantum system two fermions can not share the same pure state, in facts the

Pauli exclusion principle is a selection rule for forbidden states. While in quantum

mechanics such a rule is taken into account as a brute fact, this natural feature of

our universe can as well give us the solution to the considered problem. Within the

parallelism among cloud computing and quantum electrodynamics, we will describe

the available resources of a cloud as points of local minima for a fitness function.

We decided then to use as a fitness function the total energy of a quantum system

defined by a partition function for fermion particles, therefore describing the system

by a Fermi-Dirac statistical distribution. We ordered the resources according to their
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related potential cost, so that the resource Ri covers a less or equal potential cost with

respect to Ri`1. Then we have imagined the resource requests as free particles, while

we described an assigned resource as a bound unoccupied state. Therefore, inspired by

the statistical thermodynamics of a fermions gas, we defined an occupation function.

Let us suppose to have Nr resources Ri P R waiting to be occupied in order to fulfil

Nq requests qj P Q. The sets R and Q are continuously populated each time new

resources are freed (or added) to the cloud and each time new resource requests are

made. Suppose also that while time goes pairs pri, qjq are formed. In this case, if

we define εpriq the potential cost of a resource ri, and εpqjq the effective cost1 of a

request, then the occupation function will be algorithmically populated by using the

following rule:

Zn “ pri, qjq : εpriq ě εpqjq @ Zn P R ˆQ (6.4)

where Zn is the n-esime occupation. For each Zn then we can obtain an energy

difference defined as δ : R ˆQÑ R so that

δpZnq “ δpri, qjq “ εpqjq ´ εpriq @ Zn P QˆR (6.5)

We then define a fitness function fpτq : RˆQÑ R where τ identifies a discrete time

step, so that
“

fpZnq
‰

τ
“
“

fpri, qjq
‰

τ
“
“

δpri, qjq ´ wi
‰

τ
(6.6)

with rwis0 “ 0 @ ri P R if τ “ 0 is the first time step. By means of this fitness function,

it is possible to identify a subset of perfectly matching pairs Ω “ tZn : rfpZnqs0 “ 0u.

Moreover, we can define the set of non matching pairs as the complementary set

Θ “ tZn : Zn R Ωu. While Ω identified the pairs of resources and requests that

naturally permit us to waste virtually no resources, it is still needed to find the

minimum configuration for the pairs in Θ. Therefore, at each time step a gradient

descent algorithm [29, 38, 22] is applied in order to modify the coefficients rwisτ so

that:

rwisτ`1 “

„

wi ´ ηfpZnq
Bf

Bw



τ

@ Zn P Θ (6.7)

1We intend as affective cost the real cost that will be paid when chosing resource ri.
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Algorithm 1 Minimization Gradient Descent Algorithm
1: Start,
2: Define fitness condition fp¨q,
3: Define step size η and time horizon T ,
4: Crossmatch the resources and the requests,
5: Compute the perfectly matching pairs set Ω,
6: Compute the complementary set Θ,
7: t “ 1,
8: while t ď T do
9: Compute rwist using (6.7),

10: t``
11: end while
12: Return ΩYΘ,
13: Stop.

where η is a fixed step size. Coming back to the imagined fermion gas, this gradient

descent algorithm is equivalent to the natural motion caused by the difference of

energy with respect to the bound state which is therefore unstable. By imposing as

constraint (as it is in nature) that all the free particle states have higher energy with

respect to the bound states, then the system naturally evolves to the lowest energy

overall state. The same concept is applicable then to the potential cost corrected

with the terms rwisτ . It comes trivially that the system also evolves naturally to the

optimum, moreover adding or removing resources and requests to the system does not

modify the dynamic evolution of the system, but, in this latter case, before to apply

the evolutionary algorithm expressed by (6.7), it could be necessary to recompute the

population of Ω and Θ. The adopted gradient descent algorithm is a local optimization

technique generally based on algorithmic attempts. Such techniques permits to obtain

the optimum configuration with a very simple procedure, therefore computationally

advantageous with respect to more computationally expensive analytical calculations.

The presented numerical algorithm searches for a solution in the defined space by

means of recurrent adjustments dependent by the gradient of the fitness function. In

Algorithm 1 the developed gradient descent algorithm is presented. The algorithm

starts with the population of the perfectly matching pairs set Ω and by computing

its complementary set Θ. In the successive steps it computes the gradient ∇f and
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then the results of equation (6.7). It has to be noticed that it is the gradient sign

that determines the direction of the function descent. At the end of each time step

the new configuration of Ω is computed, and the algorithm is iterated until a time

horizon T is reached, or it comply with a predefined stop condition.

6.6 Assisting workflow executions

In this chapter it was shown that the presented architectures tackle the need of

starting workflow services, while monitoring their execution and controlling the used

resources. Services that are part of a workflow can be controlled by our proposed

aspect-oriented solution and make these able to automatically resort to cloud re-

sources, without any reengineering effort. Aspects can collect timing related data

about the usage of any service involved in the workflow, thus allowing the compu-

tation of several metrics about the usage of the services. The automatic scaling on

cloud resources, whose number is estimated by a neural network predictor, is per-

formed by distributing requests according to a fitness function that minimises costs.

Thus enhancing the availability of services (appropriately replicated on cloud hosts)

without having to bear the cost due to in-house hosting. In the previous chapter

it was shown that Wavelet Recurrent Neural Networks are able to tamper with the

timeline in order to predict the availability of resource. Is it the possible to model

human resources with wavelet recurrent neural network, therefore, to manage human

workers as if they were nodes on a cloud? Before to answer to such a question a fur-

ther step must be taken toward models of the human behavior, or, better, to model

the human interaction within groups of human. Therefore in the next chapter the

radial basis neural networks will be presented as an useful tool to model the behaviors

of the living component of the mechanical turk: the human workers.



CHAPTER 7

Inanimate reasons

One old lady, in particular, who had not for-

gotten the tales she had been told in her youth

[...] went and hid herself in a window seat, as

distant as she could from the evil spirit, which

she firmly believed possessed the machine.

Karl Gottlieb Windisch

All people, when participating in online activities, social networks, or just while

surfing the web, constantly provide personal information, discuss topics of interest,

disseminate data regarding their activities. In this work we want to obtain accurate

models of some people’s behaviour, namely the workers of a crowdsourcing project,

in order to create an accurate predictor for their availability in crowdsourcing related

projects. In order to do so we will generally refer to users of an online service, trying

then to detail the approach for the workers we want to model.

7.1 Keeping a profile

Such a modeling procedure starts by gathering data related to the users’ activities in

order to build for them an identity out of sparse data. Such an extrapolated identity

139
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provides us with further knowledge and can also indicate some anomalous activities,

such as e.g. the tentative of some users to deceive others. In our approach, user

profiles are processed by a Radial Basis Probabilistic Neural Network that retains

relevant profiles data. Moreover, similarity indexes are computed for user data gath-

ered from profiles and activities. Our analysis unveils the most likely user category

and shows commonalities on user behaviours. Given the great importance that on-

line social networks are assuming, it seemed the perfect field of application of the

developed techniques also due to the importance that trust and reliability issues as-

sume in this context for both providers and subscribers. However, analysing social

networks is greatly expensive in terms of computational time, i.e. data could easily

grow into hardly manageable amounts, even when considering high end computers,

and such data have to be periodically explored to scan user triggered updates. The

large size of an online social network, in terms of subscribers, number of mutual in-

teractions and links (such as friendship, following, message exchange, endorsements,

group memberships, etc., according to the social network at hand), generates a big

amount of data that can only be handled by an automatic support to efficiently ensure

security and validate the provided content. In this field, user feature classification

and behavioural analysis can be considered an interesting and important means to

help providers check that contents are suitable and safe for subscribers. This paper

provides a solution built upon the said means. There are many ways for identifying

categories of users. Interesting performances have been given by user field-of-interest

detection, however, in general, such systems lack of scalability and are only intended

for a small context, or for an analysis on a single-user basis. Moreover, mathemati-

cal statistical methods make it possible to characterise specific features and interests

for a single user [108], however it is still difficult to obtain a valid analytical model

describing user interactions. The main problem of analytical approaches lies in the

vastness of the datasets describing the activities typical of an online social network,

such as the number of connections, and the undetermined number of attributes that

have to be gathered in order to recognise a user behaviour, etc. A huge amount of

categories could be used to characterise subscribers, however a significant portion

of values for the attributes in each category could be missing for many subscribers,
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Figure 7.1: An overall schema of the proposed architecture

making it difficult to obtain a correct and complete formulation of a comprehensive

analytical system. Other limitations of an analytical model for representing a social

network, and restraining the possibility to analyse the behaviour of subscribers, are

given by the dynamic changes of the state, i.e. the whole amount of data available

on the online social network itself. Such changes would require frequent reiterations

on the formulation of the analytical model. Moreover, since data are continuously

updated and modified, defining the appropriate variable and parameter size needed

to solve the problem analytically can be rather difficult. Despite such difficulties, it

is highly desirable to have an automatic support that can dynamically incorporate

new data from the online social network over time, and that could be largely used for

advanced services. We propose a solution based upon a specific architecture called

Radial Basis Probabilistic Neural Network (RBPNN) described in the following. Such

an architecture is well known for its capability to classify and generalise given datasets

by creating a model of input sets. Since Artificial Neural Networks can be continu-

ously trained to recognise novel features on data, an Artificial Neural Networks can
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easily cope with the rapid changes of the dataset, without the need to start all over

the analysis. The proposed approach puts forward a classification model computed

out of the large amount of data coming from user profiles of different portions of the

social networks [103]. As for any social networks, so as for online social networks (like

Facebook), the main difficulties are due to, firstly, the unknown total size in terms of

the number of: subscribers, friendship relations, groups, followers, etc.; and secondly,

the unknown size of data and features for each subscriber. We overcome such difficul-

ties thanks to the use of RBPNN that can cope with partial data and act as a modeler

for dynamically changing user profiles. On top of our proposed solution several more

specific user behaviour analyses can be additionally built. E.g. it would be possible

for an administrator to mark a profile for a subscriber that has been recognised as

bad behaving, and let the RBPNN find other profiles having strong similarities. The

proposed RBPNN analyses a large amount of users and finds categories for them as

well as profiles of possibly bad behaving users, which can be further investigated.

Furthermore, the early identification of autogenous threats can be automated, the

proposed RBPNN identifies incoherent profiles, when the predicted user behaviour

does not match the real behaviour, or when the characteristics of a subscriber defi-

nitely match other known profiles of undesirable users. The proposed approach also

makes use of a massively parallel solution to compute metrics for large amounts of

data produced by online social network users. Figure 7.1 shows an overview of our

proposed solution.

7.2 Social networks dynamics

It is possible to represent a social network or any other kind of collaborative network

as a graph, where nodes are the users and arcs are the relations among users (i.e.

friendship, sharing, following, etc.). Social networks follow a scale-free behaviour [16],

i.e. a few nodes act as important hubs centralising a large number of links. However,

in ‘ego’ social networks, the small-world properties [6] represent an important char-

acteristic related to the real social dynamic of the network, as it will be described

in the following. This work analyses social networks, and Facebook is a significant



7.2. SOCIAL NETWORKS DYNAMICS 143

representing example. We consider that a bidirectional interaction between a pair

of subscribers exists when a friendship exchange exists between the pair. Moreover,

Facebook provides groups, i.e. a user is given means to broadcast contents to all the

members of the same group where s/he belongs to. Users belonging to the same group

have a relationship with each other. As social networks can be represented as graphs

where the users are nodes, and the arcs are their interactions, then we state that a

user is an element in a set U that we call user pool, since it consists of all the users of

the social network. On such a set it is possible to abstract the users in several ways

(i.e. an adjacency graph, based on mutual relationships), to uncover different prop-

erties of the social networks. As much as users, interactions, information exchange

and mutual properties can be formalised. We define three kinds of singular or mutual

properties among users, as follows:

1. feature: a function

f : U Ñ PpFq,

where PpFq is the part set of the feature set F ;

2. relation: a binary function

r : U ˆ U Ñ t1, 0u;

3. category : an equivalence class C of U with respect to users, features or relations.

The given definitions make it possible to obtain a functional F : U ˆ U Ñ PpFq
which associates a pair of users u0, un P U with the set of features that the said users

share. Hence, we have that

F pu0, unq “ fpu0q X fpunq (7.1)

Examples of features can be gender, age, city, work, etc., or some interest or profile

content, as well as any other comparable characteristic (also the color and theme of the

page could be interpreted as features, though the latter were not used for this work).
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While the described features characterise the commonalities among two users (hence,

among two nodes of the equivalent graph), we will now extend the given formalism

in order to represent the interactions among users (hence, the arcs of the graph). In

the most popular social networks, when user u1 performs an interaction with user u2,

then u1 will be a friend or a follower (or endorser, or any other similar definition)

of u2. Since for such an interaction it is involved a mutual exchange of information

(profile content, posts, interests, shared content, etc..), we will call this interaction a

“mutual interaction”. The given formalism describes such a mutual interaction as a

relation rf among two users u1 and u2 so that rf pu1, u2q “ 1 when u1 has established

a mutual interaction with u2. In the same way and for the same reasons regarding

the mutual exchange of information and content, we want to additionally describe

the interaction occurring when two users have a membership to the same group (e.g.

a Facebook group, which is also the selection of users having a common interest). In

this case we will make use of another relation that we will indicate as rg, in order

to distinguish it from a friendship (or similar) relation rf . Now, within the given

formalism, it is possible to define the categories as classes of equivalence C among

users according to a given mix of features and relations, i.e. categories depend on the

features, interactions and common interests among users (as well as possible derived

data). Therefore, categories model the partitions of users according to their interests

and behavioural patterns.

7.3 Paths and distances

The relations and features give us a set of mathematical tools that we use to represent

an online social network as a graph with convenient properties. Once complete, this

formal structure will allow us to define two kinds of distances for users in the social

network. Such distances will be of key interest in order to characterise the social

network. Now on we will represent the social network by means of a graph, therefore

we will use a pair of sets pU , Aq. While U is the set of users in the social network

and will act as a vertex set for the graph, the set A is the arc set A, which, in the
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proposed formalism, is defined as

A “ tapui, ujq : rf pui, ujq ` rgpui, ujq ě 1u (7.2)

@ pui, ujq P U ˆ U and whereby rf and rg are the mathematical relations defined yet.

If there is a finite number of arcs a P A that go from a vertex u0 to a vertex un of U ,

then it exists at least one path

PGpu0, unq “
 

apui, ui`1q
(un

u0
(7.3)

where apui, uiq are arcs from ui to ui. If a path exists from u0 to un, then a length

lrPGpu0, unqs can be attributed to this path. In this work we will define the length of

a path as the cardinality |PGpu0, unq|, that is the number of arcs forming the path.

With the given definitions of arcs and length it is then possible to devise a graph

distance dG : U ˆ U Ñ R`0 as

dGpu0, unq “

$

’

’

&

’

’

%

0 u0 “ un

min
 

lrPGpu0, unqs
(

DPGpu0, unq

`8 EPGpu0, unq

(7.4)

The graph distance allows us to consider the existence of two different kinds of links

among users: a direct link when a pair of users has exchanged a friendship, then the

distance is simply 1, otherwise an indirect link, when a pair of users are “friends of

a friend”. In this case the distance is greater than 1 as, from the definition (7.4),

graph distance is the minimum count of friendship-hops separating the pair of users

sharing such an indirect link. Following the definition given in equation (7.2), users

that are members of the same group are linked by an arc, which reflects their existing

relation, hence the value of rg is 1. In this case, for such a pair of users, since in our

representation they are connected by one arc, the distance is cut down to 1. This

kind of property is obtained because of the structure of the arc set and is helpful

in order to characterise the commonality of interests of the users, which in general

can decide to become members of the same group. As a matter of fact, groups could
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be also described as a means for the information to rapidly flow across users who

generally share no friendship (or equivalent relation in other online social networks).

Finally, as anticipated earlier, our model makes use of two kinds of distances. These

two kinds of distances are needed in order to compute the numerical indexes that are

of high significance. We will now introduce a second kind of distance, with respect

to dG. This second kind of distance takes in consideration the features characterising

the users. As said before, each user on a social network has a profile with a certain

number of features which has been formalised as a function to the set F . On the

other hand, by means of its algebraical properties, F is also a basis for an Hilbert

space. In such a space a user u can be classified according to a feature vector φpuq

that we defined as

φpuq “
”

ϕupfαq
ıN

α“1
: u P U , fα P F (7.5)

where N “ |F |, and ϕupfαq “ 1 if the profile of user u shows the feature fα, otherwise

with ϕupfαq “ 0. The given definition of feature vector takes into consideration pairs

of users u0 and un, then it is possible to define a feature distance dFpu0, unq as

dFpu0, unq “ 1´
1

N

N
ÿ

α“1

δ
´

ϕu0pfαq, ϕunpfαq
¯

(7.6)

where δ represents the delta of Kronecker. It follows that two hypothetical users

pu1, u2q with the same profile (let us assume that each feaure has the same value

for the users) will have a distance dFpu0, unq “ 0, while two other users u3, u4 with

nothing in common will have a distance dFpu3, u4q “ 1. This definition of distance

can be implemented in a simple manner by using the Hamming distance, since it is

trivial to reduce it to the cardinality of the set resulting from the functional F pu0, unq

computed as in (7.1). In the same manner, other kinds of mutual information indexes,

such as the Jaccard similarity are appropriate to find the degree of commonalities for

user profiles.
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7.4 A lesson from Mutual Information Theory

The aim of the defined distances is to obtain significative and coherent information

about the behavioural proximity of different users of a certain social network, on the

other hand this task can be formalised as the computation of the mutual similarities

starting from a set of features. In the introduced formalism for each user we have

defined a feature vector φpuq of boolean values that identifies the presence or absence

of certain features on the user profile. Since the features fαpuq are independent of

each other (let there be N different features), it is possible to define from φpuq the

relative partially ordered set

Φpuq “ tpfαpuq, αq : α P r1, N s Ă Nu @ u P U (7.7)

Starting from such a set of ordered features, it is then possible to give a similarity

meaning to the defined distances using a pair of sets pΦpu0q,Φpunqq and by computing

the Jaccard similarity coefficient and Hamming distance.

Jpu0, unq “
|Φpu0qXΦpunq|
|Φpu0qYΦpunq|

Hpu0, unq “ 1´ |Φpu0qXΦpunq|
N

“ dF

(7.8)

Jpu0, unq is the Jaccard similarity coefficient and Hpu0, unq the Hamming distance

of user u0 with respect to user un; such parameters have been computed for this

work in a highly parallelised way [147], since such computations can be managed

independently. The two indexes J and H are relevant for suggesting an effective

affinity of interests among users who are not necessarily linked directly. Figure 7.2

shows the Jaccard coefficients for each pair of users examined, according to their

features. In our analysis, we consider that when a user posts a content into a group,

then this results as a one-to-all interaction with other members of the group, who

generally share a limited number of interests with each other. From the friends list

of each subscriber, we identify clusters of users Ωk Ă U . A cluster consists of users

having a higher number of friendships toward users within the same cluster rather
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Figure 7.2: Jaccard similarity coefficient Jpu0, unq computed for the features of user
pairs.

than toward users not belonging to the cluster. Therefore, we have that

maxtdGpuk0, uknqu ă mintdGpuk0, uk˚qu

@ uk0, ukn P Ωk Ĺ U
@ uk˚ P UzΩk ‰ ∅

(7.9)

Analogous to the distance between users, we define dC as the distance between a

cluster pair as the minimum count of hops separating one user on the first cluster

from one in the second cluster:

dCpΩh,Ωkq “ mintdGpuh, ukq : uh P Ωh, uk P Ωku (7.10)

It follows that if Ωh X Ωk ‰ m ñ dCpΩh,Ωkq “ 0, otherwise if Ωh X Ωk “ m, the two

clusters can be considered independent parts of the social network that still satisfy

the scale-free properties. Let us suppose that two users belong to different clusters,

while being on the same group. When considering the relationship between users

and a group, we can see that a group is acting as a bridge for the contents to flow
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from a cluster to another (the clusters of the correspondent users). Hence, different

parts of the network become mutually capable of exchanging contents, fostering the

small-world behaviour of the social network [181]. In this way, user clusters, repre-

senting small parts of the social network, communicate by using weak links, i.e. their

mutual membership to the same group, rather than using strong, i.e. their mutual re-

lations. Nevertheless, clusters generally consist of users sharing a set of interests and

activities, and users on a cluster form a sort of social neighbourhood [87]. Such an

assumption makes it possibile to represent a network as a certain number of indepen-

dent adjacency structures, each focusing on a partition of a social network graph. I.e.

an adjacency structure is representing a cluster of socially close people and their rel-

ative bridges to other clusters. The main difference between a formal scale-free graph

and an online social network is given by the percolation of links [182, 9]. In real life,

how worth a certain friend is tends to decrease if there is no good reason to maintain

the relationship. This decrease of interest is still true even in a social network, how-

ever it has no corresponding support in practice. The impossibility to accordingly

classify links results into inaccurate data when performing an automatic analysis.

Generally, for social networks that let users participate in a group, an average sub-

scriber tends to sign into a large number of groups, while only a small amount of

such groups are really interesting for the user. The said widely-spread user behaviour

provides additional inaccuracy on the data to be analysed. In turn, automatic selec-

tions and suggestions of the posts provided by friends or their groups becomes less

useful, because of such inaccuracies. Moreover, it is difficult to distinguish between

trustworthy users and dishonest or unreliable ones. Even though the profile of a user

can be potentially genuine, differently from social networks, human networks evolve

following a homophily law [132] leading a person to connect with others having sim-

ilar ‘real’ interests. Hence, the homophily law lets us detect and reason with small,

though relevant, differences between social networks and theoretical scale-free net-

works. Because of such differences, an existing online social network cannot adhere

to a simple mathematical model, instead, since the stochastic behaviour typical of

human beings is exhibited, an advanced nonlinear model is needed, which cannot be

built using an analytical solution. Due to the said untrustworthy, erratic, inconstant
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and unreliable behaviour of users, we maintain that it is paramount to uncover hid-

den or un-explicit interests, which give a representation of the effective relationships

among users. Such (hidden) relationships are significant to find categories of users

that unveil their real behaviour. In this way, clustered users uncover the existence of

a non-explicit group. The clustering operations are performed by means of a specific

neural network architecture: the yet encountered which is explained in the following

section.

7.5 The RBPNN classifier

Classical models suffer of the incompleteness of the initial input dataset. In the past,

to overcome such problems neural networks have been largely used to uncover data

classification and to find probabilistic categories for data clustering. For the work

proposed here, we use Probabilistic Neural Networks (PNN), relying on the hypoth-

esis that it is possible to define groups of users as statistical categories. PNNs have a

topology similar to common FeedForward Neural Networks (FFNN) with BackPropa-

gation Training Algorithms (BPTA): the primary difference only lies in the activation

function that, instead of being a sigmoid function or a similar activation function,

is a statistical distribution or a statistically significant mathematical function. The

kinds of activation functions used for PNNs have to meet some important properties

to preserve the generalisation abilities of the ANNs. In addition, these functions have

to preserve the decision boundaries of the PNNs. This kind of neural architecture

if correctly trained is capable to generate a model for the latent features [136] for

which there is a non explicit link among users [121]. Figure 7.3 shows the selected

RBPNN architecture that takes advantage from both the PNN topology and the Ra-

dial Basis Neural Networks (RBNN) used in [24]. In a RBPNN both the input and

the first hidden layer exactly match the PNN architecture: the input neurones are

used as distribution units that supply the same input values to all the neurones in

the first hidden layer that, for historical reasons, are called pattern units. In a PNN,

each pattern unit performs the dot product of the input pattern vector u by a weight

vector Wp0q, and then performs a nonlinear operation on the result. This nonlinear



7.5. THE RBPNN CLASSIFIER 151

Figure 7.3: A representation of a Radial Basis Probabilistic Neural Network

operation gives output xp1q that is then provided to the following summation layer.

While a common sigmoid function is used for a standard FFNN with BPTA, in a

PNN the activation function is an exponential, such that, for the j-esime neurone the

output is

x
p1q
j 9 exp

ˆ

||Wp0q ¨ u||

2σ2

˙

(7.11)

where σ represents the statistical distribution spread. The given activation function

can be modified or substituted while the condition of Parzen (window function) is

still verified. In this case, while preserving the PNN topology, to obtain the RBPNN

capabilities, the activation function is substituted with a radial basis function (RBF);

an RBF still verifies all the conditions stated before. It then follows the equivalence

between the Wp0q vector of weights and the centroids vector of a radial basis neural

network, which, in this case, are computed as the statistical centroids of all the input

sets given to the network. We name f the chosen radial basis function, then the new

output of the first hidden layer for the j-esime neurone is

x
p1q
j fi f

ˆ

||u´Wp0q||

β

˙

(7.12)

where β is a parameter that is intended to control the distribution shape, quite similar

to the σ used in (7.11). The second hidden layer in a RBPNN is identical to a PNN,

it just computes weighted sums of the received values from the preceding neurones.
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Figure 7.4: Setup values for the proposed RBPNN: NF is the number of considered
features, NS the number of analysed subscribers, and NG is the desired number of
groups.

This second hidden layer is called indeed summation layer: the output of the k-esime

summation unit is

x
p2q
k “

ÿ

j

Wjkx
p1q
j (7.13)

where Wjk represents the weight matrix. Such weight matrix consists of a weight

value for each connection from the j-esime pattern units to the k-esime summation

unit. These summation units work as in the neurones of a linear perceptron net-

work. The training for the output layer is performed as in a RBNN, however since

the number of summation units is very small and in general remarkably less than in

a RBNN, the training is simplified and the speed greatly increased [59]. The devised

topology enables us to distribute to different layers of the network different parts of

the classification task. While the pattern layer is just a nonlinear processing layer,

the summation layer selectively sums the output of the first hidden layer. The output

layer fullfils the nonlinear mapping such as classification, approximation and predic-

tion. In fact, the first hidden layer of the RBPNN has the responsibility to perform

the fundamental task expected from a neural network [217]. In order to have a proper

classification of the input dataset, i.e. of users into groups, the size of the input layer

should match the exact number NF of features given to the RBPNN, whereas the size

of the pattern units should match the number of subscribers NS. The number of the

summation units in the second hidden layer is equal to the number of output units,

these should match the number of groups NG we are interested in for classifying users
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(Figure 7.4).

7.6 User clustering from RBPNNs

As described in the previous section, the implemented RBPNNs, once trained, starting

from the features vector φpunq given as the input vector upunq of the network, assign

the user un to one category. Moreover, the RBPNNs are designed to choose among

the available categories by means of a probabilistic deduction performing a max-

argument selection of the input values given to the last neuron. By dynamically on

the fly the weight values, it is possible to intercept the last chosen category for a

certain user, and then force to zero the corresponding input (modifying to zero the

relative connection weight) given to the last neuron, and subsequently ask for a second

choice, as a second–best category. By iteration this process produces the top-ranking

category list. Then, when some conditions are satisfied, the weight can be simply

restored to the original value before another user is processed. It follows that for each

user it is possible to use the RBPNNs to obtain a categories set (unordered)

Γpunq “ tCkpunqu @ un P U (7.14)

where Ckpunq represents the selected categories and k a numerical index. With such

categories the RBPNN is able to perform user clustering, e.g. in order to suggest

new groups to the users, to identify anomalous behaviour, control the autogenous

threats or simply obtain an accurate statistic on the user preferences. The imple-

mented RBPNN is able to classify users starting from a set of inputs given to the

network. Therefore it is important to feed the network with appropriate inputs capa-

ble to characterise the users and their similarities. While the user profile features are

characterised by the feature vector φpuq as defined by equation (7.5), it is also useful

to characterise the distances among the same user and a group (or category) of users

of interest: e.g. what is the average distance between the user u and the users be-

longing to a certain group, or, in alternative, measure the average distance between u

and several users yet identified as dangerous or misbehaving. To obtain the distances
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Figure 7.5: The JC pu0, unq similarity coefficients

we will make use of the analytical form of equations (7.4). On the other hand, in

order to obtain dF , instead of using (8.4), basing on equations (7.7) and (7.8), it is

appropriate to make use of mutual information indexes. Moreover, while dF can be

computed as the Hamming distance yet introduced for from the features vector φpuq,

it is useful to obtain at a minimum cost (within the same computation) other mutual

information indexes such as the Jaccard similarity coefficient. Moreover, also dC can

be computed in a similar manner with

JC pu0, unq “
|Γpu0qXΓpunq|
|Γpu0qYΓpunq|

HC pu0, unq “ 1´ |Γpu0qXΓpunq|
MC

(7.15)

where MC is the total number of considered categories. Basing on the previously given

information, let suppose to classify users into three different categories pC1,C2, ...,CMq.

for each user classified, the output set will be a vector composed of three binary com-

ponents, in order to encode the membership of the user to the three given categories,

e.g. p1, 0, ..., 1q will indicate that the user belongs to the categories C1 and CM but
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don’t belongs C2. On the other hand the input set will depend by the categories them-

selves. In facts in this specific example we will feed the RBPNN with the following

input set:

u “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f1

...

fN

1

ă dG ą1

ă H ą1

ă J ą1

ă JC ą1

ă HC ą1

...

ă dG ąM

ă H ąM

ă J ąM

ă JC ąM

ă HC ąM

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(7.16)

where f identifies the features as in (7.7), followed by a bias equal to 1, followed by

some average measurements. Such measurements are a group of five indexes for each

output categories and are computed as the mean mutual index among the users to

which is referred the input vector, and all the other users belonging to the category

where to classify the input vector. This groups of five index is composed by:

1. the average graph distance ă dG ą from (7.4);

2. the average Hamming index ă H ą from (7.8);

3. the average Jaccard index ă J ą from (7.8);

4. the average Hamming index ă HC ą from (7.15);

5. the average Jaccard index ă JC ą from (7.15).
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Figure 7.6: The relative ratio Jpu0, unq{JC pu0, unq

Although the high-level point of view masks the size of the data involved in order to

create such an input vector, an example the dimension of the problem could be devised

by Figure 7.5 where are shown the values of the Jaccard similarity coefficients for user

pairs when considering categories (a black dot indicates a high level of similarity).

As well, Figure 7.6 shows whether two users are similar for their features vs their

categories (or groups or behaviour). It is trivial to understand that in order to

obtain average values for each users, with respect to each user in each category,

the problem size increases dangerously. Therefore, while the architecture is linear

enough, the support of parallel method is required in order to cope with the required

computations. In the following section the proposed parallel implementations are

explained.

7.7 A parallel implementation

The above example has examined a very small cluster consisting of 350 users with

their 250 features, considering only 32 categories for the classification. For this cluster,
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the needed data to train the RBPNN and calculate Jaccard similarity coefficient and

Hamming distance amounted to a few MB input files, so as the resulting output. On

the other hand, data sizes can dramatically increase when considering more users.

For a cluster of Nu users characterised by Nf features to classify in Nc categories, the

input data sizes can be described as:

1. size of the graph for the cluster:

Sg “ N2
u ˆ sizeofpdoubleq

2. size of the users feature list:

Sf “ Nu ˆNf ˆ sizeofpintq

3. size of the users categories list:

Sc “ Nu ˆNc ˆ sizeofpintq

It follows that the size SD of the datasets scales as

SD “ Sg ` Sf ` Sc9N
2
u ` OpNuq (7.17)

SD further increases when a user appears into several clusters or when a larger number

of categories is considered. A social networks like Facebook handles 1.01 billion users

and 630 million groups (data released by Facebook Inc. on september 2012): it means

that, counting only the 250 features used for this work, and neglecting the repetition

of users in different clusters, the total amount of data is of the order of 2.0721ˆ 1025

entries, for a total amount of 1.2061 ˆ 1015 TB of data. Therefore, evaluating only

small but relevant portions of a social network can not be performed by a single ma-

chine, moreover it would be impossible to obtain the result of N2
u`OpNuq operations

in an acceptable timeframe. The size of data due to the activities of a social networks

requires that selection rules are put into place in order to select portions of the social
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network to be analysed. While administrators can be empowered to request a specific

analysis on selected users or categories, indeed an automatic means should be provided

to continuously explore and analyse the social network. Several kind of selection rules

can be set to cluster the network and choose the raw data to analyse. The same care

should be applied on the selection of the categories used to classify the users. While

for some kinds of categories (e.g. the category of badly behaving users) there is an

evident and explicit a priori interest, it would be also important to automatically find

anomalous or endangering groups to use as a category for the identification of treats

and suspect users. Such automatic selection could refer to a linguistic interpretation

of the contents shared on the groups (e.g. post and comments). Once the selection

of users and categories ends, then the analysis can be performed. Still given the

large amount of data selected, it is desired to use a massively parallel system for the

proposed analysis. The following describes a hybrid architecture taking advantage of

both Message Passing Interface (MPI) and GPGPU Computing. A GPGPU consists

of several MIMD (multiple instruction multiple data) multiprocessors each containing

a set of SIMD (single instruction single data) processors. Each MIMD multiprocessor

is equipped with a shared memory that can be accessed from each of its SIMD proces-

sors, and a global memory common to all multiprocessors. In CUDA programming

model, an application consists of a host program that executes on the CPU and other

parallel kernel programs executing on the GPU [167]. A kernel program is executed

by a set of parallel threads. The host program can dynamically allocate device global

memory to the GPU and copy data to (and from) such a memory from (and to) the

memory on the CPU. Moreover, the host program can dynamically set the number

of threads that run on a kernel program. Threads are organised in blocks, and each

block has its own shared memory, which can be accessed only by each thread on the

same block. For maximum performances, threads on a GPU should ideally be given a

task that can run unconstrained, i.e. without having to synchronise with others [161].

Moreover, it is paramount that interactions between CPU and GPU are minimised,

this avoids communication bottlenecks and delays due to data transfers. Following

such general guidelines, we have developed a parallel software system, that takes as
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input the list of features associated to a user in the cluster under analysis, and com-

pletes the set with the classification resulting from the RBPNN-performed analysis

running on the node. We have used arrays for holding relevant data, since they can be

easily and efficiently passed to the GPU, i.e. the host program allocates memory and

transfers data to such a memory, which CUDA kernel program can use, by calling the

standard cudaMemcpy() function. The computation tasks are performed on the GPU

devices and programmed in a kernel function calling two different device functions for

each of the two implemented metrics to compute. The values on the arrays are read

by each thread, however threads need not write any value on the arrays, hence no

synchronisation has been used for accesses. For the device functions computing the

similarity metrics, each available thread is given a range of users pairs, representing

a subset of all the available pairs to be analysed. For the given range of users, a

thread executing inside our function computes all the Jaccard similarity coefficient

and Hamming distance values between one fixed user and all the other users. The

selection of the range of user pairs to be given to a thread is easily determined by the

maximum number of pairs available, the maximum number of cores on the device and

the ThreadId, available in CUDA programs, indicating the current working thread.

Each thread stores results into its own local array, i.e. separately from other threads,

hence minimising the need of synchronisation. Given the large amount of pairs, only

meaningful values are stored, i.e. only values that are greater than zero (otherwise we

risk filling up all available memory). Once a thread has finished executing, it will have

computed and stored a given amount of results, which likely differs in number from

that of other threads. This is because each thread will find a different number of zeros

as a result. The meaningful values will have to be stored on a globally accessed array,

so that other functions on the device can use them. For this, each thread reserves an

amount of locations to store its computed values. Reservation has been performed

by updating a global variable, shared by threads, hence by using the atomicAdd()

function. This is the only moment for threads to synchronise with each other.The

gain that we have obtained is in good agreement with previous assessments of other

programs, when we compare an appropriate solution using GPU resources with an

optimised solution on a CPU [119].
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7.8 Cloud-based strategies

The aim of the proposed solution is to perform fast and distributed computation

while preserving the independency of the data sources and authorised clients that

access results. Moreover, since the workload for the analysis is unpredictable, and

we want to handle the analysis for different kinds of clusters, even when required by

an administrator, the proposed solution includes the ability to allocate and release

computation resources over time.

To satisfy such requirements, the proposed solution takes advantage of cloud-based

resources. We assume that a resource manager is put into place to find and allocate

resources. Basically, when new data have been produced on the social network,

then gathered and properly enqueued for analysis, the resource manager indicates an

available idle node to handle the processing, thus dequeueing data. On the other hand,

when the queue reaches a given threshold, meaning that the analysis being performed

is slow compared with the rate of data produced, new nodes will be allocated and

used as parallel resources that can perform the desired computation. Moreover, as

an optimisation for the classification task that has to be performed, our solution

recognises the kind of RBPNN topology and training required, among available ones

that have been previously employed, for the new set of data at hand. This allows

starting with the proper trained RBPNN and avoid time consuming training of new

neural networks. When a data set matches the training and topology of an existing

neural network, the input will be sent to the node having used it, or, if needed, a

new node is required from the cloud and the neural network is simply created as

a copy of the existing one. The tasks performed to initialise and run analyses can

be divided into several main phases and relative steps, here we propose a simplified

schema. Analyses are performed both periodically and when requests arise by an

administrator of the social networks. Firstly, users, their connections and categories

(i.e. groups or some identified types of users) are selected for being analysed as a result

of a query considering multiple criteria, such as e.g. a set of keywords, changing user

locations, etc. For each included user the features on his/her profile are gathered,

here some rules can be set up by an administrator to extract only some features
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Figure 7.7: The cloud architecture selected.

for the further analysis to be performed. Once users, feature kinds and categories

have been selected, the handling system can connect to cloud-resources. When an

analysis is required on demand, it is also possible for the administrator to choose a

set of users (or even pick up only one user) and then provide a set of rules to limit

the analysis to a certain cluster: in this case it is mandatory to select a threshold

TdG for the graph distance dG. In this way, a user u will be considered belonging to

the cluster only if D uΩ P Ω : dGpu, uΩq ă TdG , where uΩ is a subscriber selected by

the administrator to begin the analysis, and Ω indicates the selected cluster. Another

possibility for selection is given when the analysis on different clusters has to be started

simultaneously, then clusters can be selected by means of a set of composition rules.

In the latter case a a threshold TdC for the cluster distance dC is mandatory: a cluster

Ω will be analysed only if it was manually selected a cluster Ω˚ : dCpΩ,Ω˚q ă TdC .

Before starting the analysis, if it is the first time that some user categories have been

selected, the administrator should provide a training set of human-driven associations

of users and categories, so that the mapping user-cluster is later on possible on a

neural network. The proposed distributed software architecture mainly consists of

the following components and resources (see Figure 7.7).

• The data collector on a storage node holding row data

• A resource and queue manager (RQM) holding the state of each virtual machine
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available from the cloud

• Several skimming nodes (SN), each building a RBPNN, by creating and training

it using a category

• Several computing nodes (CN) analysing data according to an existing RBPNN

• A repository for the resulting data elaborated by CNs

Cloud communication is managed by using specialised components (named COM in

Figure 7.7). Moreover, management services (SRV ) and application tasks (APP ) are

separate and independent from each other. The initialisation phase is as follows.

Firstly, RQM allocates virtual machines to select the social network data according

to the rules set up by the administrator. When a graph distance was provided for

clustering purposes then users are separated into clusters with dG ă TdG ą, other-

wise if a cluster distance was provided, only clusters with dC ă TdC ą are formed.

When such an analysis ends, then the data are gathered and sent to RQM. Compo-

nent SRV CloudSrv within RQM handles the requests of task allocation into cloud

resources, the number of resources required is according to the number of users and

clusters to analyse. Then the distribution of data is performed by means of com-

ponent APP DataCrt. Each different collection of features or categories corresponds

to a RBPNN topology. This means that each RBPNN has to be trained separately

and that its analysis differs from other analyses on different RBPNNs. Accordingly,

for each RBPNN topology RQM selects a SN among available ones. Component

APP CloudSize within RQM is responsible to check the amount of cloud-based re-

sources used and trigger the growth (or decrease) as necessary, hence installing on

each SN the required software packages. Each SN creates and initialises its own

RBPNN using component APP NnetIni, then the RBPNN is trained using compo-

nent APP NetTrn and selected data. Once the RBPNN has been trained and validated,

then it is possible for SN to request other cloud resources and perform parallel analy-

ses, given that the same classification task is required. The newly allocated resources,

named computing nodes (CN), have a simpler analysis task and perform faster than



7.9. FACEBOOK AS A TEST GROUND 163

TN, however given the big amount of data these are added on demand. Cloud re-

sources newly available are given a replica of the working RBPNN by an SN. The

amount of CNs requested is so that the enqued data on RQM can be quickly pro-

cessed. Each SN, after the expansion phase works, as a CN, for analysing a chunk of

data.Since RQM holds the state of each available node, it determines the allocation

between raw data and CNs. Then, data are transferred from the storage nodes to an

available CN. The target CN is chosen taking into account that raw data are appro-

priately tagged, hence the matching RBPNN will be sought. Once data are received,

each CN performs two tasks: RBPNN data classification; and the mutual information

analysis obtained by computing the Jaccard similarity coefficient and the Hamming

distance. The first task is performed by component APP NnetExe; the second task is

executed by component APP GPUKer. The latter invokes a massively parallel process

on the GPU accelerator that computes N ´1 indexes and compare each pair of users.

Once CN has finished such tasks the output will be sent to a repository, and since CN

has become ready to receive data its state update will be sent to RQM. The above

sequence of steps will be iterated till data remain or an administrator terminates

the tasks. The said analysis produces results that are sent to a database that acts

as a repository, which can be accessed by authorised clients. Data are continuously

updated, however they can be explored in real time so as to have fresh results for

analysed users. As a final remark, the developed distributed analysis is able to con-

tinuously receive and analyse data without any intervention from an administrator,

once appropriate rules have been defined, hence it perfectly suits for network analysis

automata.

7.9 Facebook as a test ground

The proposed RBPNN architecture has been tested using data collected on Facebook.

The dataset consists of features and friends lists from Facebook profiles. Data were

collected by surveying participants using a Facebook application. The dataset is

provided in anonymous form as part of the DARPA project by the Stanford University

and the SNAP graph library for the Stanford Large Network Dataset Collection, which
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Figure 7.8: The feature list representation for each subscriber. Each row represents
a different feature, while columns are the different profiles.

is publicly released [131]. For the provided feature lists, the interpretation of these

features has been obscured, however understanding what the features are would have

no use for the scope of this work neither for the analysis performed. The dataset

used contains all boolean values for the features of each examined profile, group

memberships for the user, and his/her friend list. As far as the collected feature lists

is concerned (Figure 7.8), the data provide boolean values for the content of the profile

for each user. The presence or absence of a specific value is expressed as a boolean

flag, e.g. 1 if the user has declared his job or 0 if no job information is given in the

profile. Among such boolean values there are also mutually exclusive values such as

the gender, e.g. 1 if male or 0 if female. Note that the intrinsic structure of the dataset

prevents us from considering only a reduced portion of the feature list for a user. A

piece of information is usually largely spread over a certain number of variables, e.g.

a boolean variable could express if the gender is stated or not, and only if stated a

second variable could report if the user is male or female; then in case a selection of

the profile excludes the gender, the second variable has no meaning and can not be

taken into account. However, since the dataset is unlabelled, we can not exclude any
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Figure 7.9: The distribution of the examined users for the considered groups

feature. Although data are anonymised, users are identified with a unique ID, and

such IDs are used to characterise the friendship links between users, and reported as

IDs pairs. On the contrary, the memberships of users to groups is indirectly identified

from the list of subscribers to each group. Data that have to be given as input to our

neural network for classification purposes, have been passed to a preprocessing stage.

In this preprocessing, for each user the relative feature list has been associated to a

list of group memberships, this contributes to realise a statistically driven classifier

that identifies the main concerns regarding the group chosen by the users. Starting

from the features of the profile, the described RBPNN was then used to determine

such groups. We report an example for a dataset describing 350 users and 32 groups

(Figure 7.9). For this dataset, the profile was characterised using 250 different boolean

features (Figure 7.8) that was passed to the RBPNN as input set. Initially, we have

asked the network to correctly reconstruct the groups of a set of 250 users. For this,

both the user profiles, consisting of the features, and the membership to groups were

provided to the network during the training step. Therefore, the RBPNN has learnt

how to reproduce the correct paths to associate lists of profile features with groups

(Figure 8.3). The RBPNN was able to correctly attribute the subscribers to the
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Figure 7.10: Group membership reconstruction made by the RBPNN: in black are
the correct associations, while in red the associations that the RBPNN was unable
to reproduce.

proper groups with only a 5.67% of missing associations: as a remarkable side effect

of such an architecture, while a few groups were not associated, no false positive was

given in the associations. Then, after the RBPNN had been trained with the first

dataset, we have asked the RBPNN to identify groups for new users. In this case,

the RBPNN was unaware of the actual preferences of users for groups. Figure 7.11

shows new users (in black and green) that are proposed for a group they have not

expressed preferences in. For an appreciable percentage of total users (shown in

green), i.e. about 20%, the proposed RBPNN has indicated for them a group that

corresponds to one of the existing groups (unknown to the RBPNN) for which users

have expressed actual membership. Again, no false positive was given as a result of

the RBPNN analysis.
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Figure 7.11: An heuristic assignment to groups for subscribers unknown to the
RBPNN: in green are the subscribers identified as belonging to legitimate categories
(according to the groups they belong to) proposed by the RBPNN.

7.10 Comprehensive identities

Categories have been chosen by the RBPNN classifier alone, which is statistically

driven and such categories have a probabilistic meaning that contributes to identify

the most appropriate conceivable model for users. The so called ‘model’ should be

intended as a kind of representation of the behaviour of a user on the social network.

The identified category, provided by the RBPNN, can complement and integrate the

online identity of each subscriber. Such a comprehensive identity, assigned automat-

ically to users, can help further understand the behaviour of users and given as an

alert to the social network administrator for checking whether users are honest and

reliable, or whether their profiles match more with misbehaving ones. When a user

posts a content or subscribes to a group, then the social network administration will

be alerted and aware of the implicit or explicit choices made by that user. A part

of such data, once given to the RBPNN, can then be used to identify specific cat-

egories of users, and eventually such categories would depend only on past choices
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Figure 7.12: Feature rates for users of the same group (black). The RBPNN could
not classify in such a group some users with a very different feature set (red).

and activities of the user, rather than on tentative categories identified a priori. We

want to point out that the results of the RBPNN can be intended as an extension

of the user identity. That extension is useful especially when no categorisation can

be performed. Considering Figure 8.3, for some users the RBPNN was unable to

provide a categorisation (red spots), however, on the other hand, if we compare the

set of features for such uncategorised (unclassified) users and the average feature set

of the group where they belong, relevant differences in their feature set can be un-

covered with respect to the average (and correctly categorised) user of the group (see

Figure 7.12). Eventually, just for validation purposes, we have performed the same

comparison for users with an almost empty profile that the RBPNN could not insert

into any cluster. Such users had not provided a significative feature set and then the

RBPNN could not be able to find any statistical affinity with any of the categories

used for the training. Figure 7.13 shows the different values of the features for an

average user on a group (in black) and an unclassified one (in red). Theoretically, the

RBPNN unveils a behavioural pattern that the user is expected to follow. If a user

begins to act according to a different behaviour with respect to those for which s/he
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Figure 7.13: A test made with an almost empty profile which the RBPNN could not
classify. The feature rates for a average user of a selected group are in black and the
features for the almost empty profile are in red.

has been classified by the RBPNN, then this variation can be used as an alert that en-

ables an administrator to monitor him/her and possibly apply some restrictions after

a deeper check has occurred. E.g. if a bad behaving user takes over the account of a

different legitimate subscriber, then an alert would arise as soon as the identity thief

subscribes to groups or posts contents that contrast with the habits of the original

user. The alerts arising from the RBPNN can be a notice that is sent to administra-

tors of the social network, then further checks of the profile and the current usage is

expected. Once a user account has been detected as compromised, or belonging to a

bad behaving user, the automatic detection system can even be set to rise a warning

toward all the users that are the target of the activities of the perpetrator, in order

to possibly avoid tentative deceptions. The RBPNN can be used to avoid autogenous

threats, such as a misbehaving user or a thief, as much as a wide range of other online

frauds and several violations. The more online behaviour are modeled, by training

the RBPNN with existing user data, the more positive and negative activities can

be identified for other users. Although in this work the RBPNN has been used to
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assign categories, which correspond to groups, the term ’categories’ has been used

for its more general meaning. The RBPNN is able to find and propose non explicit

groups, i.e. groups that have not yet been chosen by a subscriber, but which are very

likely to be eventually chosen since they match the preferences of the subscriber. In

a similar way, this RBPNN can be arranged to select users having an high affinity

toward a group. Hence, the RBPNN can be asked to unveil the affinity of a user

with a certain category of users, who exhibit a common behaviour. Let us suppose

that a user is inclined toward a bad behaviour, then the RBPNN would associate

such a user with a category previously built by administrators, consisting of other

misbehaving users. For building such a category, administrators would simply need to

manually flag some selected users. Such a category identification would be expected

to be silent, i.e. without any interaction or explicit advice toward users. Then, when

e.g. a user is found to post inappropriate contents, s/he will be selected to belong to

a pertinent category of users, which has been built to label users performing similar

activities. Such a category can then become one among the categories identified by

the RBPNN, and can be used for the early identification of users that could eventu-

ally act in the same way. Such a control system, although in some moments would

depend on human activities (i.e. administrators), can then be used automatically

to restrict, when urgent actions are needed, a small number of possibly dangerous

users. This automatic selection of users would avert the risk of having to restrain

the entirety of subscribers. The proposed a solution for automatic analysis of data

collected on a social network and have shown that interesting results can be found

when gathering sparse data related to the behaviour of users. The proposed solution

is based on both similarity coefficients and RBPNNs in order to find for a user the

most similar group/category s/he could belong to when considering user declared

data (features) and their behaviour collected from their activities. Moreover, we have

shown a parallel solution that thanks to cloud-based and GPU-equipped resources

can handle massive amount of data, which are continously produced by users. The

key strategies for having a high degree of parallelism are the ability to run replicas

of trained RBPNN, and the largely independent threads running on GPUs without

need to synchronise. Both strategies allows us to drastically reduce computing time
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and hence afford an unprecedented analyses. The proposed solution can be integrated

with the servers handling data of user on a social network. This would provide higher

security levels as misbehaving and deceiving users could be timely detected. The

safety of subscribers would then be preserved, e.g. by timely warning administrator

to intervene to check and stop autogenous threats.

7.11 The inanimate reasoner

Of course the results obtained with the proposed RBPNN classifier are very interesting

when applied to the field of online social networks, also for security and protection

purposes. On the other hand, as it is said at the beginning of this chapter, we

want to obtain accurate behavioral model for the workers of a crowdsourcing project,

moreover, as said in the previous chapter, we wanted to use such a technology in

order to model human resources as on a cloud. Everything is now ready, after a

very long series of concepts, from chaos theory, to wavelet analysis, from neural

networks, to second generation wavelets, from wavelet recurrent neural networks, to

information theory and, finally, from workflow models to RBPNN classifiers. Now we

are able to mix all those concepts to create a properly said inanimate reasoner. An

Artificial Intelligence used to manage people, groups, companies, in order to improve

what we know as crowdsourcing model, the artificial artificial intelligence, as it is

called by Amazon. Since the author of this thesis does not believe that humans can

be subjected to a mere emulation of an artificial intelligence, therefore completely

rejecting the definition of Artificial Artificial Intelligence, it seems reasonable, then,

to name the upcoming model an Artificial Artificial Artificial Intelligence or A3I.





CHAPTER 8

A3I : Artificial A2I

The only source of knowledge is experience.

Albert Einstein

The introduced artificial intelligence methods for obtaining user classifiers can be

additionally used in order analyze employees to form work groups. This can be done

by means of a solution that analyses workers by using data gathered from their pro-

fessional attitudes and skills, then suggests how to form groups of human resources

within a company that can effectively work together, as well as for an online cooper-

ative service such as the yet encountered crowd-sourcing oriented projects (e.g. the

Amazon’s Mechanical Turk). The same proposed tool provides employers, workers

or crowd-sourcing projects’ back-end users, with a fair and effective means for em-

ployee evaluation. In our approach, employee profiles are processed by a the Radial

Basis Probabilistic Neural Network based classifier, which is able to find non-explicit

custom-created groups. The accuracy of the classifier is very high, revealing the po-

tential efficacy of the proposed classification system. The dedicated classifier helps

us to create groups of workers automatically extrapolating a model that can easily

be implemented in public administrations or companies, consisting of collaborative

networks of people who share a common vision and goal. Moreover, since often novel

173
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groups of employees coming from several branches have to be created in order to

achieve some new goals, or for special tasks, we propose an automatic system that

unveils professional affinities among employees, in order to create efficient teams.

The found ’non-explicit’ groups of employees, who possibly work on different areas

or branches, could form a successful team because of the similarities underlying some

of their attributes, such as interest, skill, competence, etc. What we tried to do is to

emulate a decision making process by means of mutual information theory indexes

and Radial Basis Probabilistic Neural Networks (RBNN) in order to unveil the un-

derlying affinities in human groups of employees. Our solution takes advantage of

the well known classification, clustering and generalization capabilities of the Radial

Basis Probabilistic Neural Networks which from sparse datasets creates a model of

the input sets even for partial input data [67]. Moreover, RBNNs can be continuously

trained to recognize novel features, hence can easily cope with a changing dataset,

as previously shown in [23]. Let us now present the collaborative group theory, our

relation model and the classifier.

8.1 A network of collaborations

In general, it is possible to represent a collaborative network as a graph describing

the collaborative relations among the agents represented as nodes in the network. In

a work-related collaborative network, nodes are employees and arcs are professional

relations among different employees in terms of collaborations, office dependencies

or hierarchies involved to perform a task (e.g. employees of an area are connected

with their area manager). In a very similar way with respect to the social network

scenario, analyzed in the previous chapter, it is possible to represent a collaborative

network as a graph describing the collaborative relations among the agents repre-

sented as nodes in the network. Collaborative networks, like social networks, follow a

scale-free behavior (see [16]). A few nodes act as important hubs (i.e. employees who

hold key positions or play important roles with major responsibilities). These hubs

have a large number of relations with other employees (sometimes in different depart-

ments), hence the work of such hubs widely reflects that of collaborative networks.
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I.e. generally, the distribution of a complex job handled by the employees in differ-

ent departments follows a scale-free pattern. Moreover, the emerging small-world

properties are important characteristics to consider in order to understand the social

dynamics involved in the work flow and the related management [6]. Both the scale-

free behavior and small-world properties make it difficult to analyze the network with

conventional means, e.g. a stationary or analytical model describing job-related area.

The analysis is complex because of an uncontrolled growing number of parameters. In

order to obtain a fair evaluation of human resources, one can choose affine employees

as a sampling cluster, i.e. the aim is to measure the performance of an employee with

respect to the mean behavior of other employees. However, a sampling cluster should

not trivially map a department or an office, because results would be affected by the

mutual interactions of people under evaluation. Therefore, an appropriate employee

clustering for a collaborative network becomes paramount for gaining accurate human

performance measures. Moreover, successful positioning of new human resources, as

well as their relocation or assignment to a different position within a company are

critical decisions. Therefore, homogeneous and harmonious work groups that share a

common background as well as professional attitudes and complementary skills need

to be properly created, possibly, with little effort. Let us now present definitions and

mathematical models of the collaborative network, which can be represented as a

graph whereby the nodes are the employees and the arcs professional connections like

dependencies, collaborations and interactions. We state that employee is an element

in an employee pool U , which consists of all the employees in the analyzed company.

In order to formalize the structure and functions in collaborative networks we need

to define the following:

• employee: ui P U “ temployees setu,

• feature: f P F “ fpUq “ tf : U Ñ t0, 1uu,

• relation: r P R “ tr : U ˆ U Ñ t0, 1uu,

• category : an equivalence class C of U with respect to several features or rela-

tions.
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It is then possible to define F as a finite set of features related to an employee. If the

feature list of an employee u shows a feature f then fpuq “ 1, otherwise fpuq “ 0.

Examples of features can be the gender (1 if male or 0 if female), the academic

degree (1 if achieved or 0 if not), each of several responsibilities (1 if accountable for,

otherwise 0), a professional achievement (1 if completed or 0 if still in completion or

not compatible with the professional figure), etc. Moreover, it is possible to define a

mutual interaction rf among two employees u1 and u2 so that rf pu1, u2q “ 1 when a

professional relation exists (an edge in the collaborative network links u1 and u2). In

the same way, relation rg indicates whether two employees are members of the same

group (i.e. they are part of an existing team, office, division, etc.). Then, it is possible

to define categories as classes of equivalence C among employees according to groups,

relations, employee features, or other kinds of provided data. Therefore, categories

can be used to model partitions of employees according to their features, skills, groups,

area of interests, etc. The collaborative network graph is mathematically defined as

G “ pU , Aq, where the vertexes set is V “ tvi „ ui P Uu, and the arcs set is

A “ tapvi, vjq : rcpui, ujq ` rgpui, ujq ě 1u , (8.1)

whereby pui, ujq P U ˆ Uztuiu identifies a pair of employees, and where rc and rg are

two relations. Basing on the given definition of relations, rcpui, ujq “ 1 if employees

ui and uj have professional relations, otherwise rcpui, ujq “ 0 if they do not share any

professional collaboration. Similarly, rgpui, ujq “ 1 if the two employees belong to

one team or an explicitly defined area within the company, otherwise rgpui, ujq “ 0.

If there is a finite number of arcs a P A that connect two vertexes v0, vn P V , then it

exists at least one path PGpv0, vnq “ tapvi, vjqu
vn
v0

where apvi, vjq are arcs from vi to

vj, and the length l0,n is given as the cardinality |PGpv0, vnq|, when PGpv0, vnq ‰ H,

that is the number of arcs, from v0 to vn, used to form a path. The graph distance
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dG : V ˆ V Ñ R`0 , is

dGpv0, vnq “

$

’

’

&

’

’

%

0 v0 “ vn

min tl0,nu PGpv0, vnq ‰ H

`8 PGpv0, vnq “ H

. (8.2)

The given definition of arcs and graph distance allows us to consider the existence

of two different kinds of relations: when a pair of employees are linked by an arc

a P A, indeed the distance is 1, otherwise the distance is the minimum number of

hops separating the pair. On the other hand, if the employees belong to the same

group, (rg “ 1) the distance is cut down to 1. With this definition of distance it

is possible to unveil the professional affinity of one employee with other employees.

For our model, employees with similar interests and skills should have a very small

distance, whereas employees having very high distances perform very different jobs

and need not collaborate. The defined distance will be used as an adjunct parameter

(other than employee features) for the developed classifier. The feature set F has to

be profiled for each employee. Moreover, F can be a basis for a Hilbert space where

the employees can be classified according to their features. Thanks to the formalism

that we have just introduced, we can attribute a natural number to each employee, so

that it will be possible to compare employee pairs u0, un P U Ă N. For each employee

ui we define a feature vector φi consisting of boolean values, each identifying the

presence or absence of a certain feature for the employee profile

φi “ rf1puiq, f2puiq, ..., fNpuiqs @ fα P F , ui P U . (8.3)

Then, it is possible to define a feature distance

dFpu0, unq “
1

ř

α δpfαpu0q, fαpunqq
, (8.4)

whereby δ represents the delta of Kronecker and conventionally xφ0|φny “ 0 ñ

dFpu0, unq “ `8. The aim of such a defined distance is to obtain significant and

coherent information about the behavioral proximity or affinity among employees in
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a given collaborative network. Distances dG, dF are then used to pilot the RBPNN

classifier in order to create collaborative work groups on demand. In this case, dis-

tances and similarity indexes among selected employees are used to qualify affinity

when forming a new team.

8.2 RBPNN continuous learning

While this theoretical asset is quite solid, it still has to cope with the versatility

of a real company or, even worse, with all the continuous changes that can affect a

service such as the Amazon’s Mechanical Turk or other crowdsourcing oriented initia-

tives. In order to give a more suitable dynamic to the implemented machine learning

mechanism, we created an agent driven learning system that continuously train the

RPBNNs to recognize novel features, hence can easily cope with changing data. The

proposed neural network has been embedded into a Classification Agent that builds

a model out of data coming from workers or back-end user profiles, and handled by

other agents, such as a Profiling Agent and a Crawler Agent, which retain useful data.

Specifically, our Classification Agent, according to the proposed RBPNN solution, can

handle partial data, acting as a modeler for dynamically changing the profiled iden-

tities of the workers. For this reason our solution comprises different collaborating

agents that make the company administrators able to classify and monitor the workers

behaviour, other than enhancing their productivity rearranging them in new work-

groups according to their skills. As said above, we used an actor-critic reinforcement

learning architecture with Back Propagation Tranining Algorithms (BPTA). The cor-

rectness evaluation of the decision in the applied RBPNN is performed with respect

to the human-made choices, where ξ is the error function. We consider that this

evaluation is performed by a stationary agent (critic). It is possible both to use the

critic in order to filter the effectiveness of RBPNN outputs (a human supervisor who

can acknowledge or reject RBPNN suggestions) and to train an adaptive critic, which

in the long run simulates the decisions of the human critic and then diminishes the

need for human driven control. The adaptive critic needs to learn and this learning

process is done by BPTA, which uses ξ as error function. For this reason the adaptive
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critic can be trained by means of the traditional gradient descent algorithm so that

the weight modification ∆wij is

∆wij “ ´µ
Bξ

Bwij
“ ´µ

Bξ

Bf̃i

Bf̃i
Bũi

Bũi
Bwij

, (8.5)

where f̃i is activation of i-th neuron, µ the learning rate, and ũi is the i-th input to

the neurone weighted as

ũi “
ÿ

j

wij f̃jpξiq. (8.6)

The results of the adaptive critic determines whether or not to continue the training of

the RBPNN with new data, as well as whether the last training results should be saved

or discarded. Figure 8.1 shows the agents for our designed system: a Crawler Agent

periodically and autonomously gathers user information from their company profiles,

other than the list of their activities. After some preprocessing tasks, data are given

to the Classification Agent that using the inner RBPNN assigns worker profiles to

known categories, according to the statistical model built on user information during

training phases. Due to the intrinsic dynamics that the social network imposes, this

model is constantly and incrementally updated. The classification results, i.e. the

associations between profiles and categories, are given to the Verification Agent, that

asks the Category Agent to provide the categories already assigned to a specific user (if

any), comparing them with the ones just given from the Classification Agent results.

If a specific user had no category assigned, the Verification Agent will notify the

Category Agent with the newly one found; if instead the user already had a category

assigned, but differing from the one just discovered, we could think of this as a clue for

a possible mismatch and should be reported to the administrator for further surveys

on the worker and possible reassignment to a different group. This is achieved by

giving the profile of the worker to the Alert Agent, that constantly handles all the

received notifications, timely warning the administrator with the potential problems

intercepted. The administrator has also the ability to manually define categories built

over the activity information of several selected workers; if one of these categories is

assigned to a user profile during classification, the Verification Agent will ask the Alert
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Figure 8.1: Schema of the data flow through the agents of the proposed system

Agent to notify the administrator with the detected issue. The administrator is then

able to gather deeper information on the worker activities using the functionalities

provided by another agent, the Profiling Agent. Using this information, s/he can

decide what to do according to company policies. If the worker is considered not

compliant with such policies, the administrator has the ability to use the classification

information to automatically identify other workers in the company with the same

behaviour, asking the Classification Agent to update the inner RBPNN model. On

the other hand, if the behaviour of the worker can be considered aligned with his

workgroup, then the new classification label can be simply passed to the Category

Agent. Since we can see a group of a workers as a category of profiles, that gets

together people with common goals, we can use the same approach just seen to

classify profiles with the workgroups that better suit their professional skills. This

type of classification results could be directly provided by the Classification Agent as

recommendations for workgroups that workers can join.
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Figure 8.2: The feature list representation for each employee in a company, where
each diagram represents a different company. In the charts, each row represents a
different profile feature, while columns are the different employees.

8.3 RBPNN driven workgroups

RBPNN classifier has been tested using data collected in anonymous form from public

and private companies. Datasets describe up to 200 employees and 32 groups for

each one of the analysed companies, for a total of 7 companies. The profiles were

characterized using 250 different boolean features that compose coded profile values

passed to the RBPNN classifier as input sets. The dataset contains all boolean

values for the features of each examined employee, work group memberships for the

employee and his/her professional relations within the company. Figure 8.2 shows

boolean diagrams representing each company, where employee profiles were coded to

test our classifier. The intrinsic structure of the dataset prevents us from considering

only a reduced portion of the feature list for an employee: a piece of information is

usually largely spread over a certain number of variables (a boolean value expresses

the gender, the academic degree, professional achievements, previous projects, etc.).

Although data are anonymous, employees have been identified with a unique ID.



182 CHAPTER 8. A3I: ARTIFICIAL A2I

Employees

Ex
is

tin
g 

w
or

kg
ro

pu
s

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Employees

Ex
is

tin
g 

w
or

kg
ro

pu
s

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Employees

Ex
is

tin
g 

w
or

kg
ro

pu
s

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.3: Group membership reconstruction, for each of the analyzed companies,
performed by our RBPNN: green dots show the correct associations, while black dots
give the associations that the RBPNN was unable to reproduce.

These IDs are used to characterize the links among employees themselves and reported

by the classifier as IDs pairs. On the other hand, the memberships of employees to

work groups are indirectly identified from the list of employees in each group. In

RBPNN input data (coded employee profiles) preprocessing, for each employee the

relative feature list has been associated to a list of memberships, this contributes

to realize a statistically driven classifier that identifies the main concerns regarding

the group chosen by the employees. Starting from the profile features, the described

RBPNN was then used to determine potentially most efficient collaborative groups for

future projects. Initially, we have asked our RBPNN model to correctly reconstruct

the groups from the input sets. For this, both the employee profile features and

the membership to work groups were provided to the network during the training

step. Therefore, the RBPNN has learnt how to reproduce the correct paths of the

collaborative network model to associate the lists of profile features with existent

work groups. Figure 8.3 shows the results of the associations. Our RBPNN model

was able to correctly attribute employees to the proper groups with an error less than
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Table 8.1: The RBPNN classifier examinations results for each analysed company.
analysed employees profiles

Case study 50 100 197

Total
combinations

1600 3200 6304

Correct
results

1593 3182 6261

Wrong
results

7 13 43

Correct
assignments

11 17 34

Unmatched
assignments

6 13 27

Missed
assignments

1 5 16

Assignments
correctness

61.11% 48.57% 44.16%

Overall
correctness

99.56% 99.44% 99.32%

1%. As a remarkable side effect of such an architecture, while a few work groups were

not assigned, no false positive occurred. Then, after the RBPNN has been trained

with the first dataset, we have asked it to assign employees into new work groups.

In this case, RBPNN results were successively compared to assignments made by a

human employer, unaware of the RBPNN results. Finally, Table 8.1 summarises the

main statistical values, which show that the proposed RBPNN classifier can efficiently

build collaborative work groups for various companies. The table orderly reports three

case studies, respectively with 50, 100 and 197 analysed employees, and the related

number of total employee-group combinations, number of correctly given results on

those combinations and the overall ratio of correctness. Moreover, along with such

information also the number of correct assignments is reported, as well as the number

of missed or unmatched assignments. The classification results are very promising and

show the power of our presented solution. In conclusion, the classifier is statistically

driven by means of categories with a probabilistic meaning and contributes to identify
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the most appropriate conceivable model to have affinity-oriented work groups. The

RBPNN classifier can be continuously trained to reflect the changes that affect the

company while time goes on, using new employee profiles. New features and data can

be continuously fed into the RBPNN, hence possible work group suggestions can be

either confirmed, changed or withdrawn by the RBPNN according to recent activities.

Thus, the presented solution can perform a refined analysis and advices can be given

at any time. The proposed classifier could be integrated with the company servers

handling employees data, by providing the employers with a useful tool for preemptive

work group testing and hypothetical simulations of new human resource assets.

8.4 Smart workflows

Since the proposed RBPNN should assist companies to form work groups, it seems

natural to apply the same concept to crowdsourcing. In particular, knowledge on the

back-end users availability gives us a picture, changing over time, of an organizable

asset. Each step on a workflow can then be organized using the crowd as we would do

with a company, then, iterating each time step we can think to organize and manage

an entire crowdsourcing project. On the other hand to reach such a level of optimiza-

tion, it is necessary to organize each worker by representing his/her work as one of

the services of a complex workflow for the execution of the crowdsourced project. As

said before, workflows have become a recurrent solution to organise the execution of

services assisting the operations of a large organisation, and cloud computing is the

norm to rent computing resources. If it works on cloud environments then, since we

are able to similarly model the crowd, we can apply the same concepts for the de-

ploying and execution of workflows on a crowd-based infrastructure. The developed

system, in fact, provides the needed support for deploying, executing, and monitor-

ing the jobs handled by the crowd. The proposed solution, while being independent

of the specific workflows, has shown that an additional description is paramount to

determine e.g. the life-time of services executed by the crowd, or whether their exe-

cution has to be performed by one particular worker or not. Moreover, our suggested

components realise all the interconnection work needed to let a workflow be executed
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by the crowd. In our solution, several components have been specifically devised in

order to minimise the possible overhead affecting some operations, such as e.g. hiring

workers, split them into workgroups, etc. Such components also model the incoming

workflows and their execution time in order to predict future workload. Then, we can

start management operations on crowd resources in advance, hence shunning delays,

and also avoid overheads, hence emerging as a cost-effective solution. Since, actually,

it would not be possible to verify the approach with the help of a real crowdsourcing

provider (e.g. such as Amazon), we then conducted our experimental campaigns by

replicating the effect of the crowd by simulating it on a computational cloud. There-

fore, a set of cloud-related services have been developed keeping in mind that they

could be either executed on cloud nodes, or be real tasks performed by human work-

ers, since the model does not depend on their implementation. Our model essentially

depends on the execution time and availability of nodes/workers. In an example of

a elementtary workflow, can involve citizens that are able to actively cooperate with

the institutions to make the urban environment properly function by notifying the

need for an improvement, due e.g. to failures on a road. In this workflow several

services (activities) are executed, where each corresponds to a step that can be per-

formed, starting from a user notification of an urban issue. In our reference model for

the software system assisting such steps we will have one or more client applications

enabling the user to submit a notification, and wait for a reply. Hence, e.g. the report

urban issue step could be performed using a dedicated smartphone app that lets the

user send detailed data about the urban issue, together with photos and GPS position

automatically gathered. Services on the server side are processes running, or started,

according to the indication given by the workflow description, hence e.g. receive re-

quests is the first step of an ad-hoc workflow, and is a process listening for incoming

requests, residing inside a persistent web service; and filter redundant requests is a

process started as a second step of the workflow once the previous step has been per-

formed, etc. Since each service needed for a workflow completion in general can have

its own preconditions, data, and processing requirements, then each service should be

handled ad-hoc to provide a proper quality of service. Let us suppose that filter re-

dundant requests is a CPU-bound process whose execution time has to be guaranteed,
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because, e.g. it could involve an image processing task to recognise, starting from

the photo sent by the user, the type of issue it refers to, avoiding to notify it twice.

Instead, another service could simply provide immutable stored documents. Then,

handling requests that trigger service execution requires the provisioning of ad-hoc

computing resources to ensure the quality of service. To let services be handled prop-

erly, each workflow activity has to be tagged with some details that are specifically

crafted in order to let the managment component provide the service with the right

corresponding resources during execution. We will see in the following how the flexi-

bility of cloud environment can satisfy such requirements. In the above example (see

Figure 6.6), the steps of a given workflow are associated with some indications that

allow resource allocations. In our solution, a component, dubbed Workflow Scheduler,

takes as input the above data and handles at runtime the current request. Typically

in our scenario, a new instance of a workflow is started by means of a request coming

from a Web Service (see the following section), then Workflow Scheduler is alerted,

finds the corresponding workflow, and starts operations on cloud resources for the

services within the workflow, as well as the services. In the above example, after the

execution of service receive requests on a web server, Workflow Scheduler receives an

alert, finds the related workflow and prepares resources for the execution of service

filter redundant requests. We can see how each service is characterised with a start and

an end status, together with a description of the cloud resource type: the start status

is the condition in which we expect to find the service execution environment, such

as already active, waiting for new process submissions (on); that has to be created

and then turned on (off); that was already created but now it is in a standby state,

in order to reduce resource consumption while reducing response time avoiding the

creation of a dedicated service. If we specify that dedicated resources are needed, we

will assign a separate and dedicate service for the execution of the corresponding task,

while indicating that only shared resources are needed (useful e.g. to handle simple

tasks like querying or updating a database or retrieving a document from the object

storage) then we will run a separate process inside a shared service, that is the process

execution environment. Not all the services need cloud resources; this is the case of

the web application waiting for user requests (receive requests), and then triggering an
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Figure 8.4: The adopted WRNN predictor models and predicts the future trends
regarding the number of requests to a service and the related throughput. A predictor
is specialised for one service, hence a set of predictors ae used.

actual workflow instantiation; in such cases, we will mark the related activities as a

no cloud service. Together with the activity data described above, we have to provide

additional data related to the whole workflow, such as e.g. the priority, the allowed

deadline and the number of instances that can be concurrently executed. Moreover,

for each service (regardless of the involving workflow), the number of its instances

that can be concurrently active is also given. This is an important information to

properly manage the constraints that must be applied for the concurrent execution

of different instances of the same service inside the cloud. Even if we can think of

a cloud as a limitless resource provider, we are forced to trade with the pay-per-use

model to access resources. Therefore, the considered resource constraints are needed

to limit the costs related to resources. The proposed workflow management system

takes care of the current requests and the related workload. On the other hand, re-

source allocation is traditionally a contingency topic. In order to perfect allocation

startegies, the knowledge of the actual requests is not enough since to make the right

allocation choices it would be helpful to predict the future workload. The module

for this purpose was called Workload Predictor, and its aim is to predict the future

workload of the system in terms of number of incoming requests for a service and the

related service throughput. Therefore, the number of active requests serviced in the
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future and the estimated completion time can be easily computed. Prediction is based

on the time series of service requests and throughput, observed by the said Workflow

Manager. By considering the future expected workload a fine-tuned management

of resources can be achieved, hence avoiding both server-side overloading and over-

provisioning. Without a prediction system, resources are usually managed by load

balancing and admission control strategies. Generally, the benefits of such strategies

decrease with the workload increase. Moreover, when the amount of requests over-

come available resources, service availability worsening or denial of service cannot be

avoided. On the contrary, to obtain an effective and stable level of availability server

replicas are needed. However, since the amount of required resources is unknown in

advance, it often results in over-provisioning and possibly over-design, with negative

effects on management. As anticipated, a Wavelet Recurrent Neural Network is the

basis of our proposed Workload Predictor. This component predicts over time the

amount of incoming requests estimating also the throughput of the resources related

to each service and therefore the service workload. The prediction are then used by

Workflow Manager to allocate resources according to the predicted workload. The

predictor is used to model two different characteristics of the workflow execution: on

one hand it estimates the number of incoming requests, and on the other hand it

estimates when the service will be available again to process new requests. Moreover,

the module here presented is able to specialise a neural network to make predictions

related to one selected service (see Fig. 8.4). By specialising a neural network for

each service provided on the cloud, it is possible to obtain a set of predictions that

precisely map the status of the cloud-oriented services. In order to operate with the

WRNN the workload predictor transforms the said time series in the wavelet domain.

The wavelet transform permits us to reduce data redundancies and obtain a repre-

sentation that can express the intrinsic structure far more precisely than traditional

analysis methods (e.g. Fourier transform). While the wavelet analysis exposes the

time-frequency signature of the time series on different scales, the WRNN topology is

the perfect complement to model the complexity of non-linear data correlational and

perform data prediction on different scales. Thereby, a relatively accurate forecast

of the request number and throughput time series can be achieved even when load
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peaks arise. The proposed WRNN consists of an input layer of 8 neurons, two hidden

layers of 16 neurons with a radial basis activation function, a linear output layer with

two neurons, and two delay lines in input as well as 4 feedback delay lines from the

output (see Fig. 8.5). The neural network is fed with the data constituted by time

steps of a time series representing service requests and throughput. Using a discrete

time index τ we can call qµpτq the number of requests received at a time τ for a

certain service µ, and rµpτq the throughput reached at the same time by that service.

By applying the wavelet transform to the time series qµpτq and rµpτq we obtain the

related representation in the wavelet space. Since we used a 5 level transform then it

follows that

qµpτq
Ŵ
Ñ

“

qµa0pτq, q
µ
d0
pτq, qµd2pτq, q

µ
d3
pτq, qµd4pτq

‰

rµpτq
Ŵ
Ñ

“

rµa0pτq, r
µ
d0
pτq, rµd2pτq, r

µ
d3
pτq, rµd4pτq

‰

(8.7)

where the arrows represent the transform operation, Ŵ represents the biorthogonal

wavelet decomposition and the resulting vectors are made of the components on the

different decomposition scales (from scale 4 to scale 0, where the letter d indicates the

wavelet coefficients and a0 the residuals on the most gross scale). For reasons related

to the noise signature we are not interested in the last component of the transformed

series, therefore we are interested in an input vector xµpτq in the form of

“

qµa0pτq, q
µ
d0
pτq, qµd2pτq, q

µ
d3
pτq, rµa0pτq, r

µ
d0
pτq, rµd2pτq, r

µ
d3
pτq

‰

(8.8)
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Figure 8.6: From left to right and top to bottom: the predicted (red) and measured
(black) throughput, the errors on the throughput predictions, the predicted and mea-
sured number of requests, the errors on the requests predictions.

The overall input set, considering N time steps, can be then represented as a N ˆ 8

matrix where the i-th row represents the i-th time step. Each row of this dataset is

given as input value to the 8 input neurons of the proposed WRNN. The properties

of this network make it possible, starting from an input at a time step τn, to predict

the number of requests and throughput at a time step τn`δ. In this way the WRNN

acts like a function N̂µ so that

x̃µpτn`δq “ N̂µrx
µ
pτnqs (8.9)
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where δ is the number of time steps of forecast in the future, and the tilde on the

symbol x̃ indicates that it is a prediction instead of a measurement. The number

δ is not specified in the equation since it depends on the sampling frequency of the

input and output time series. In our work, the data had a sampling period of 10

minutes, while we predicted the incoming service requests and throughput 2 hours

ahead. To model the time series and then to predict their future evolution the neural

network is firstly trained with the historical time series, several training epochs are

interleaved with the related supervised pruning procedure. When the process in

concluded, a network starts to provide forecasts related to a specific service for which

it was trained. By collecting each service forecast we obtain a complete map S̃pτn`δq,

predicted beforehand, constituted as

S̃pτn`δq “ tx̃
µ
pτn`δq @ µu . (8.10)

The results of the WRNN predictor are shown in Fig. 8.6. The predictor was able to

propose an early estimate of the future service throughput with a maximum error of

one service with respect to the successively measured throughput. Also the number

of requests for each service was accurately predicted in advance with a minimum

error (less than 8 requests). In our experiments the WRNN predictors have been

used in order to schedule resources and manage the execution of services, and such

operations are made possible thanks to predicted values, due to their availability in

advance. Moreover, since each service has been associated to a WRNN predictor, the

proposed solution is general for any number of production services constituting any

number of workflows. Finally due to the paralelisation technology, the system could

be expanded and scaled on demand.

8.5 Dear Jeff

Until now, all the presented approaches ended up in several main branches of solutions

to:

• Model and predict resources availability
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• Model and manage human work groups

• Model and optimize workflow execution

• Model and enhance crowdsourcing processes

In the latter point we refer to the promise to enhance crowd sourcing processes like

the Amazon’s Mechanical Turk. Actually, the last paragraph shows how an accurate

workflow execution optimization can effectively end in a real economical benefit for

the company. In order to well organize those workflows of course workgroups of people

must be created, and in this scenario the RBPNN classifier, when jointly used with

the WRNN technology, can do the trick. But is it only about production efficiency

and resource cost? In December 2014, Kristy Milland, a 35-year old Canadian, wrote

an email to Jeff Bezos, founder and CEO of Amazon. Kristy Milland is one of the

back end users of the Amazon’s Mechanical Turk, one of the resource, one of the real

workers behind the so called Artificial Artificial Intelligence. After having completed

more than 830.000 tasks on the Mechanical Turk in nine years earning an average of

20 cents of canadian dollars for each, she decided to write to Jeff in order to make

him !realise that there are living, breathing human beings who rely on this service he

provides to feed and shelter themselves and their families". With the strong words

!I am a human being, not an algorithm" Kristy Milland pointed out that there is

not a minimum income for the tasks performed on the Mechanical Turk and very few

warranties for the workers. Since that moment a media campaign started, and several

thousands of people decided to write similar “Christmas letters”. The campaign was

named Dear Jeff, for obvious reasons. The intent of the letters, as the “Turkers”

state on their website, is to affirm that Turkers are not only actual human beings,

but people who deserve respect, fair treatment and open communication; that Turkers

are human beings, not algorithms, and should be marketed accordingly; that Turkers

should not be sold as cheap labour, but instead skilled, flexible labour which needs

to be respected. The sentiment has not been ignored by the scientific community.

In [78] Gaikwad writes that while crowdsourcing marketplaces provide opportunities

for autonomous and collaborative professional work as well as social engagement, on

the other hand, in these marketplaces, workers feel disrespected due to unreasonable
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rejections and low payments, whereas requesters do not trust the results they receive.

The lack of trust and uneven distribution of power among workers and requesters

have raised serious concerns about sustainability of these marketplaces.

8.6 Artificial3 Intelligence

The major crowd-sourcing services providers, such as Amazon’s Mechanical Turk,

are maybe conceiving the human resources in an unsatisfactory fashion, maybe with

no particular attention to their skills, capabilities, their possibility to be grouped in

work groups basing on such characteristics, the professional relevance of their figures.

While the Amazon’s services are called The Mechanical Turk, the Turkers are called by

Amazon itself an Artificial Artificial Intelligence: humans that artificially contributes

to the operation of an artificial intelligence-like system. Is that so? For the author

of this thesis the definition, in this interpretation, is not satisfactory, therefore a

better kind of crowdsourcing model must be reached. Is it possible to challenge this

definition of crowdsourcing and, possibly, completely change the approach? Despite

the criticism, projects like the Mechanical Turk show an extreme flexibility and are

prone to changes. So it seems reasonable to introduce in the Mechanical Turk, or in

any other crowd sourcing project, a hiring component that recognizes the abilities of

the workers, their skills their experiences. It can be done by using both the WRNN

and RBPNN approaches jointly to our workflow models. As a matter of fact, an

expert worker can easily be recognized as a supervisor, and therefore, be entitled of

the execution a specific control job, while other users, not expert enough, can be

entitled of low-level jobs. Also the payment can reflect the positioning of the workers

in a pyramidal fashion, hence resembling the structure of conventional companies.

The only problem in doing so, also by taking advantage of our workflow models, is

that, differently from a standard company, a crowdsourcing context does not have

the certainty of the number of workers in a certain moment of time, as well as their

availability or possibility to work for the same project. Actually, a job is performed

on such a platform by randomly creating, on-demand, groups of people sharing no

common ground or knowledge and assigning them an elementary portion of a complex
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task. This can now change. Workers availability can be predicted by means of

the WRNNs as shown, and workgroups can be created by means of the RBPNNs,

moreover, by joining the WRNN approach with the needed workflow model, jobs

can be differentiated basing on competence, required skill, throughput of the worker,

experience. Finally, the entire workflow can be predicted and optimized in this fashion

by means of the technology developed and presented in this thesis.



CHAPTER 9

Conclusions

Science is the best achievement of the human

mind. Human mind will be the best achieve-

ment of science.

Christian Napoli

In this thesis we hope to have fairly kept up with the promise contained in the

title itslef. We invented new neural architectures taking advantage of quite complex

mathematical tools and complicated portions of software in order to scratch the sur-

face of an enormous field of study. By means of wavelet analysis, neural networks,

and the results of our own creations, namely the wavelet recurrent neural networks

and the radial basis probabilistic neural networks, used in the described fashion, we

tried to better understand, model and cope with the human behavior itself. And as

far as it is true that the first idea was to model the workers of a crowdsourcing project

as nodes on a cloud-computing system, we also hope to have exceeded the limits of

such a definition. We hope to have opened a door on new possibilities to model the

behavior of socially interconnected groups of people cooperating for the execution of

a common task. We showed how it is possible to use the Wavelet Recurrent Neural

Networks to model a quite complex thing such as the availability of resources on an

195
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online service or a computational cloud, then we showed that, similarly, the availabil-

ity of crowd workers can be modeled, as well as the execution time of tasks performed

by crowd workers. Doing that we created a tool to tamper with the timeline, hence

allowing us to obtain predictions regarding the status of the crowd in terms of avail-

able workers and executed workflows. Moreover, with our inanimate reasoner based

on the developed Radial Basis Probabilistic Neural Networks, firstly applied to social

networks, then applied to living companies, we also understood how to model and

manage cooperative networks in terms of workgroups creation and optimization. We

have done that by automatically interpreting worker profiles, then automatically ex-

trapolating and interpreting the relevant information among hundreds of features for

each worker in order to create workgroups based on their skills, professional attitudes,

experience, etc. Finally, also thanks to the suggestions of prof. Michael Bernstein of

the Stanford University, we simply proposed to connect the developed automata. The

result was called an Artificial3 intelligence. We decided for this name due to the mis-

conceptions we believe was introduced with crowdsourcing projects like the Amazon’s

Mechanical Turk. Despite the Amazon’s definition of artificial artificial intelligence

for their workers, we believe that humans cannot be resembled as pieces of software or

technology. Therefore while representing a third level artificial intelligence, the title

of this thesis also wants to challenge the original definition given by Amazon which

implies it as being artificial. As for the first and deeper meaning of the title, we hope

that the concept has been well unfolded in the previous chapters. We made use of

artificial intelligence to model the availability of human resources, but then we had

to use a second level of artificial intelligence in order to model human workgroups

and skills, finally we used a third level of artificial intelligence to model workflows

executed by the said human resources once organized in groups and levels according

to their experiences. In our best intentions, such a three level artificial intelligence

could address the limits that, until now, have refrained the crowds from growing up

as companies, with a well recognizable pyramidal structure, in order to reward expe-

rience, skill and professionalism of their workers. We cannot frankly say whether our

work will really contribute or not to the so called “crowdsourcing revolution”, but

we hope at least to have shedded some light on the agreeable possibilities that are
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yet to come. Certainly, a lot of steps have yet to be undertaken, and a lot of work

and energy will have to be spent on perfecting this technology. As I said on the first

introduction, modelling the human behavior is not an easy task, mainly due to the

very source of the related a phenomena: the human mind. And I am both unsettled

and reassured by the littleness of the knowledge we have actually acquired regarding

the human mind.

This long journey, represented by the topics summarized in this thesis, started

several years ago, long before the beginning of the PhD studies of which this thesis

should represent the conclusion. On the other hand, while this work did not start

with this PhD course, we also believe that this work will not end with it. As a matter

of fact, the only conclusion we can reach so far is that there is no conclusion. This is a

continuing work, an unfading challenge, and of course, a pleasant journey. Therefore,

with the same perseverance, and stubbornness, and satisfaction we dare to stand to

the challenge. If science is the best achievement of the human mind, human mind

will be the best achievement of science. With this certainty, we commit ourselves to

the future. Thanks for the reading.
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you as you walk, forcing the next person to find his own way. I can finally conclude

that I have found my path, and while this path rolls up behind, I realize that I’ve
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I begin this new chapter of my life with more questions than answers, with more

doubts than assurances, with an unshakeable sense of wonder for the universe that

surrounds me, with a deep sense of gratitude for its greatness, with a restless will to

investigate it, realizing how ridiculously lucky I am to do what I love for living.
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