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ABSTRACT

The currently accepted theory that governs the dynamics of quarks

and gluons, within the Standard Model of fundamental interactions,

is the Quantum Chromodynamics (QCD). Its non-abelian nature pro-

vides two important features: while at high energies the interaction be-

comes small and quarks and gluons interact weakly (asymptotic free-

dom), at low energies the interaction becomes strong and quarks are

confined inside hadrons (color confinement). The asymptotic freedom

of QCD implies the existence of a super-dense and ultra-hot form of

matter in which the color charged particles are deconfined, the quark-

gluon plasma (QGP). Many phenomenological approaches and numeri-

cal simulations of the QCD clearly indicate the existence of a transition

from the hadronic matter to the quark-gluon plasma at large energy

density, ǫ & 0.5 − 1GeV/fm3. Creating and studying the quark-gluon

plasma in laboratory is one of the main challenges of experiments at the

Large Hadron Collider (LHC) and at the Relativistic Heavy Ion Collider

(RHIC). Through ultra-relativistic heavy ion collisions, which generate

energies of 0.9−5.5TeV per nucleon at LHC and 9−200GeV per nucleon

at RHIC, one try to get detailed information on the high temperature

and low baryon density region of the phase diagram of QCD.
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ABSTRACT

In this thesis we present our study, within the framework of relativistic

transport kinetic theory, of the formation and the dynamical evolution of

the quark gluon plasma in ultra-relativistic heavy ion collisions. In partic-

ular we investigate the time scales and the mechanisms responsible of the

isotropization of the fluid produced in the initial out-of-equilibrium stage

of the collision, aiming at spotting the impact of this pre-equilibrium

phase on collective flows of the bulk matter and on photon observables.

In the first part of this thesis we present our model of the early times

dynamics of relativistic heavy ion collisions, in which an initial color-

electric field decays to a particle plasma by the Schwinger effect. One of

the main novelties of our work consists in the coupling of field evolution

to plasma dynamics by solving consistently the classical field equations

and the relativistic Boltzmann equation; the self-consistent solution of

the problem allows to take into account the backreaction of the color

currents on the classical field. We find that the color-electric field expe-

riences a rapid decay for small η/s, in both 1+1D and 3+1D space-time

configurations; looking at the ratio of longitudinal over transverse pres-

sure we find that the system acquires a substantial degree of isotropy in

less than 1 fm/c for η/s = 1/4π, in agreement with the common lore of

hydrodynamic approaches.

In the second part of this thesis, we extend our approach up to the

implementation of a realistic initial condition in which the color-electric

field is smoothly distributed in the transverse plane. This configuration,

relevant to heavy ion collisions at RHIC and LHC energies, allows to

investigate also the effect of the pre-equilibrium dynamics on observ-

ables, such as spectrum and elliptic flow of photons emitted from the

quark-gluon plasma. To this end we compare the photon production

starting from classical color field as discussed above with the standard

initial condition of a plasma in thermal equilibrium. We find that the

pre-equilibrium stage produces abundantly photons, comparable in num-
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ber with those produced by the equilibrated quark-gluon plasma during

the whole fireball lifetime. This early contribution enhances the spec-

trum mainly in a transverse momentum range (pT & 2 − 3GeV) where

thermal emission becomes less important. The pre-equilibrium phase has

an impact also on the photon elliptic flow, since photons coming from

the early times evolution of the fireball suppress the contribution to the

momentum anisotropy brought by QGP thermal photons.
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INTRODUCTION

The current understanding of the laws which govern the evolution of

the Universe from its first moments is based on the symbiosis between the

theory of general relativity and the Standard Model of particle physics.

The latter describes in a unified way the strong and the electroweak in-

teractions and its validity is supported by a wealth of remarkably precise

observations and experiments. Strong, weak and electromagnetic inter-

actions act, through the exchange of mediating bosons, on hadrons and

leptons which compose the visible matter in the Universe.

In the ’60s Gell-Mann and Zweig developed the quark model, ac-

cording to which hadrons are not elementary objects but rather aggre-

gates composed of more fundamental particles called quarks. Quarks are

fermions of spin 1/2 with fractional electric charge and must exist in three

colors (a new quantum charge akin to electric charge) in order to explain

the observed hadron spectroscopy. Inside hadrons, quarks are held to-

gether by the strong interaction, which originate from the exchange of

elementary particles called gluons. The gluons are massless bosons of spin

1 and, owning colour charge, they can directly interact each other; this

is the main difference respect to the electromagnetic interaction among

electric charged particle, whose mediating bosons, the photons, do not
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Introduction

possess electric charge and then cannot self-interact, at least at leading

order (i.e. directly). This dynamical diversity of the strong interaction

causes its richness of interesting peculiarities.

The currently accepted theory that governs the dynamics of quarks

and gluons, within the Standard Model of fundamental interactions, is

the Quantum Chromodynamics (QCD), a Yang-Mills theory based on

the color group SUC(3). The non-abelian nature of QCD provides two

important features of the quark-gluon dynamics: while at high energies,

or equivalently for small distance, the interaction becomes small and

quarks and gluons interact weakly (asymptotic freedom), at low energies,

or equivalently for large distance, the interaction becomes strong and

quarks are confined inside hadrons (color confinement).

In the mid ’70s the particle physics community realized that the

asymptotic freedom of QCD implies the existence of a super-dense and

ultra-hot form of matter in which the color charged particles are de-

confined, the quark-gluon plasma (QGP). Many phenomenological ap-

proaches and numerical simulations of the QCD clearly indicate the exis-

tence of a transition from the hadronic matter to the quark-gluon plasma

at large energy density, ǫ & 0.5− 1GeV/fm3.

A hot quark-gluon plasma filled the early Universe about 10 − 20µs

after the Big Bang at low net baryon density and temperatures T &

150MeV ∼ 1012K, five order of magnitude hotter than the center of the

Sun. Another natural environment where the quark-hadron transition

takes place is the core of supernovae and their remnants, such as neu-

tron stars, where densities ρ & 1012Kg/cm3, several times the baryonic

density of the normal nuclear matter ρnm = 0.16 fm−3, make possible the

existence of a cold quark-gluon plasma.

The extreme conditions required for the formation of the quark-gluon

plasma are reproduced in particle accelerators by means of high energy

nuclear collisions. Creating and studying the quark-gluon plasma in lab-
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oratory has been the goal of SPS experiments at CERN, where first

signals of the quark-gluon plasma became evident for the first time, and

is still one of the main challenges of the experiments ALICE, ATLAS and

CMS at Large Hadron Collider (LHC) and the STAR and PHENIX ex-

periments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory (BNL). Through ultra-relativistic heavy ion colli-

sions, which generate energies of 0.9 − 5.5TeV per nucleon at LHC and

9−200GeV per nucleon at RHIC, one try to get detailed information on

the high temperature and low baryon density region of the phase diagram

of QCD. Moreover, these experiments are the only possibility to measure

observables that give quantitative informations about the properties of

the deconfined phase of the QCD.

However, the study of the formation and the evolution of the quark-

gluon plasma is a really complicated task, since the observables experi-

mentally accessible concern hadrons, leptons and photons and the prop-

erties of deconfined quarks and gluons have to be probed indirectly.

The majority of experimentally measured quantities are hadronic observ-

ables, hence the study of the quark-gluon plasma is partially shadowed

by the hadronization process that is still not completely understood,

especially in a QCD medium; moreover, after their emission hadrons

continue to be influenced by the strongly interacting medium suffering

further scatterings at hadronic level. Instead photons are radiated dur-

ing the whole space-time history of the expanding fireball and, due to

their electromagnetic nature, once emitted, they leave the system almost

undisturbed, reaching the detector with an unaltered imprint of the cir-

cumstances of their production; hence, photons are a very intriguing

probe for the quark-gluon plasma.

One of the most amazing discoveries of heavy ion physics was that

the system created after the collision is a strongly-coupled plasma that

exhibits a fluid behaviour with the development of anisotropic collective
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flows. Indeed, experiments have observed a large value of the elliptic

flow v2, which is a measure of the azimuthal asymmetry in momentum

space and is related to the shear viscosity to entropy density ratio η/s

of the matter created in the collision. The evidence that this liquid-like

behaviour could be studied within a relativistic hydrodynamic approach,

which does not need a detailed description of the microscopic dynamics,

paved the way to the idea of the quark-gluon plasma as an almost perfect

fluid with the smallest shear viscosity to entropy density ratio η/s ever

observed in nature. Indeed, the η/s estimated from the collective flows

is close to the lower bound η/s = 1/4π conjectured in the context of

supersymmetric Yang-Mills theory in the infinite coupling limit.

Hydrodynamical models provide a good description of the QGP ob-

servables, in particular the elliptic flow, in the low transverse momen-

tum region and in the central rapidity range, where the local kinetic

equilibrium assumed by hydrodynamics is plausible. However, hydrody-

namics formulations, even those including viscous effects, have a limited

range of validity in momentum space, in particular for the relatively

large viscosities that could be envisaged at the initial high temperatures

(T ≃ 500MeV) and in the crossover region of the quark-hadron transi-

tion. Moreover, hydrodynamic models lose their power when they try to

describe phenomena not related to the collective behaviour of the plasma

as well as out-of-equilibrium processes like those affecting the system in

the very early stages of relativistic heavy ion collision.

An alternative approach capable to study the evolution of the quark-

gluon plasma is based on transport kinetic theory. Solving the relativis-

tic Boltzmann-Vlasov equation for the one-body phase space distribu-

tion function f(x, p), one can follow the whole space-time evolution of

the system produced in high-energy heavy ion collisions, treating in a

more suitable framework non-equilibrium states and relaxation toward

the equilibrium. While in hydrodynamical formulations the dynamical
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evolution is governed by macroscopic quantities, transport theory is a

microscopic description of the system in terms of parton distribution

functions and the dissipative effects produced by a finite viscosity are

treated by means of a collision term with finite cross sections, account-

ing for the short range interaction between partons. Although inputs of

kinetic models are usually microscopic details of fields and cross sections

of a given set of microscopic processes, we perform transport simulation

at fixed η/s in order to make a more direct link to viscous hydrodynam-

ics. In other words we obtain in the limit of short mean free path an

hydrodynamical description but starting from the one-body distribution

function instead that from the energy-momentum tensor.

Transport models successfully reproduce hydrodynamical calculations for

the elliptic flow in the low pT region and supply a more reliable approach

to describe the elliptic flow for intermediate and high transverse mo-

menta. Moreover, kinetic theory, as we will show in this thesis, allow

to investigate the non-equilibrium effects of the early times dynamics of

ultra-relativistic heavy ion collisions and to follow the subsequent evolu-

tion of the fireball within a unified theoretical framework.

In this thesis we will present our study, within the framework of rel-

ativistic transport kinetic theory, of the formation and the dynamical

evolution of the quark gluon plasma in ultra-relativistic heavy ion colli-

sions. In particular we investigate the time scales and the mechanisms

responsible of the isotropization of the matter produced in the initial

out-of-equilibrium stage of the collision, aiming at spotting the impact

of this pre-equilibrium phase on observables such as photon production

and elliptic flows.

The understanding of early times dynamics and of thermalization and

isotropization mechanisms that lead to the formation of an equilibrated

quark-gluon plasma is one of the most interesting and challenging open

issue in ultra-relativistic heavy ion collisions. In the standard initial
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picture of such nuclear collisions, immediately after the two nuclei had

passed one through each other, a peculiar configuration of strong lon-

gitudinal color-electric and color-magnetic coherent fields named glasma

is produced; as the system expands quantum fluctuations, amplified by

plasma instabilities, cause the decay of the glasma to a parton liquid

which locally isotropizes and thermalizes in τeq . 1 fm/c, a scenario in

agreement both with calculations based on transport theory and hydro-

dynamic models. While in the great majority of those studies the plasma

equilibration is an initial state assumption for simulations of relativis-

tic heavy ion collisions, investigating how it is achieved in a very short

time by an initial anisotropic and not thermalized system is one of the

main goals of this thesis. Besides plasma instabilities, a possible mech-

anism causing initial field decay and quark-gluon plasma production is

the Schwinger effect, which consists of a vacuum instability towards the

creation of particle pairs by a strong electric field. First introduced in the

context of quantum electrodynamics, the Schwinger formation of pairs

in strong fields has been generalized for color-electric and color-magnetic

fields and in the last forty years has been considered as a mechanism for

color field decay and particle production in the framework of quark-gluon

plasma physics.

In the first part of this thesis we will present our model of early times

dynamics of the system produced in relativistic heavy ion collisions by an

initial color-electric field which then decays to a plasma by the Schwinger

effect. This means that we start from a color field configuration such that

the ratio of longitudinal to transverse pressure PL/PT = −1, i.e. very

far from the equilibrium condition PL/PT = 1. Our study is the first in

which a Monte Carlo method is used to simulate the Schwinger effect in

the context of high-energy collisions. Another of the main novelties of

our work consists in the coupling of field evolution to plasma dynamics

by solving consistently the classical field equations and the relativistic
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Boltzmann equations; the self-consistent solution of the problem allows

to take into account the backreaction of the color currents on the classical

field, which has been often neglected in previous studies. Moreover, with

respect to previous work where the relaxation time approximation is used

to simplify the collision integral in the Boltzmann equation, we do not

resort to such an approximation, but solve the relativistic kinetic equation

with the full collision integral.

We will see that the color-electric field experiences a rapid decay for

small η/s, in both 1+1D and 3+1D space-time configurations; looking

at the ratio of longitudinal over transverse pressure PL/PT , we will show

that the system acquires a substantial degree of isotropy in less than

1 fm/c for η/s = 1/4π, in agreement with the common lore of hydro-

dynamic approaches. For larger values of viscosity, the pressure ratio

exhibits several oscillations, following those of the color field, and its

asymptotic value is quite smaller than 1 meaning that the parton fluid

does not isotropize.

Furthermore, the implementation of the three-dimensional expansion

makes possible the study of the elliptic flows v2; indeed, starting from an

azimuthally anisotropic distribution of a pure color field, we are able to

follow the development of collective flows during the system expansion

within a single consistent scheme.

In the second part of this thesis, we extend our approach up to the im-

plementation of a realistic initial condition in which the color-electric field

is still along the beam direction but with strengths smoothly distributed

in the transverse plane. This configuration, reproducing the initial multi-

plicity and spatial anisotropy of particle created in collisions at RHIC and

LHC energies, allow to investigate also the effect of the pre-equilibrium

dynamics on photon observables experimentally measured. We will dis-

cuss our results on the spectrum and the elliptic flow of photons emitted

from the quark-gluon plasma produced in heavy ion collisions. There are
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different sources of direct photons (i.e. those emerging directly from col-

lision processes and not from hadronic decays), depending of their origin

from different stages of the expanding fireball formed after the collision.

Experiments can not distinguish between the different categories, hence

theoretical models are necessary to identify these sources and their rela-

tive importance in the spectrum. In particular, with our approach we are

interested in investigating the properties of pre-equilibrium photons and

grasping their effect on direct photon spectrum and elliptic flow observed

in ultra-relativistic heavy ion collision experiments.

Our main aim is to study the possible impact of the pre-equilibrium phase

on the final photon production. To this end we compare the photon pro-

duction starting from classical color field at τ0 = 0+, as discussed above,

with the standard initial condition of a plasma in thermal equilibrium

expanding from τ0 = 0.3− 0.6 fm/c.

We will show that the pre-equilibrium stage produces abundantly

photons, comparable in number with those produced by the equilibrated

quark-gluon plasma during the whole fireball lifetime. This early contri-

bution enhances the spectrum mainly in a transverse momentum range

(pT & 2 − 3GeV) where thermal emission becomes less important. The

pre-equilibrium phase has an impact also on the photon elliptic flow v2

since photons coming from the early times evolution of the fireball sup-

press the contribution to the momentum anisotropy brought by QGP

thermal photons.

The thesis is structured as follows. In Chapter 1 we will present the

general features of QCD and the phase transition the ordinary matter

experiences under extreme conditions. In chapter 2 we will describe the

geometry and the dynamics of ultra-relativistic heavy ion collisions and

the main probes and observables of the formation and the evolution of

the quark gluon plasma. In Chapter 3 we will discuss transport Boltz-

mann equation from its classical formulation to the quantum-relativistic
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generalization; then we will explain its numerical implementation. In

Chapter 4 we will describe our model of the early times dynamics in

which an initial color-electric field decays to a particle plasma through

the Schwinger mechanism; then we will discuss our results in the cases

of both the 1+1D and the 3+1D expanding system. In Chapter 5 we

will present our results on the impact of the pre-equilibrium dynamics

on bulk matter properties and on photon observables.

9



CHAPTER 1

QUANTUM CHROMODYNAMICS AND ITS

DECONFINED PHASE

Quantum Chromodynamics (QCD) is a quantum-relativistic field the-

ory which to current knowledge describes the dynamics of quarks and glu-

ons, the only elementary particles subject to the strong interaction. It is

a gauge theory constructed in analogy to the theory of electromagnetic

interactions, Quantum Electrodynamics (QED), but it differs from QED

in its non-Abelian nature, which provides peculiar features such as con-

finement and asymptotic freedom. QCD is part of a wider theory called

the Standard Model (SM) of particle physics, which describes strong,

weak and electromagnetic interactions and whose validity is supported

by a large number of remarkably precise experimental tests.

1.1 Quantum Chromodynamics

1.1.1 Quarks and gluons in the Standard Model

So far as we know, all of the interactions between objects in our

Universe occur through only four fundamental forces. Besides electro-

magnetic and gravitational forces, which we experience continuously in

10



1.1 Quantum Chromodynamics

our lives and therefore mankind began to investigate very early, there are

other two forces, called the weak and the strong interaction, which act

over very short distances and are confined to the scale of atomic nuclei.

The strong interaction holds quarks together to form protons and neu-

trons at the energy densities of normal nuclear matter; nevertheless the

peculiar features of strong interaction at very high energies make possible

the existence of a new and strange form of matter that have attracted

a lot of interest in the scientific community in last decades and is the

subject of this thesis.

The Standard Model Lagrangian LSM embodies our knowledge of

strong, weak and electromagnetic interactions. It contains as fundamen-

tal degrees of freedom the spin one-half quarks and leptons, the spin one

gauge bosons and the spin zero Higgs fields. Symmetry plays the cen-

tral role in determining its dynamical structure: the Lagrangian exhibits

invariance under SU(3)C ⊗ SU(2)⊗ U(1)Y gauge transformations.

In the Standard Model, the fundamental fermionic constituents of

matter are the quarks and leptons. These particles are considered as truly

elementary, because there is no experimental evidence of their composite-

ness, such as excited states or form factors associated with intrinsic struc-

ture. Both quarks and leptons have spin 1/2 and have electromagnetic

charge, but only quarks own color charge; as a consequence, quarks suf-

fer also strong interactions via the exchange of gluons, the gauge bosons

associated to the SU(3)C symmetry group, i.e. the non-Abelian group

of local phase rotations of the fields in the color space. The concept of

color, as well as the quantum dynamics of color, was first proposed by

Nambu in 1966 and the theory is now called Quantum Chromodynamics.

Quarks exists in six flavours, u, d, s, c, b, t (up, down, strange, charme,

bottom, top) in order of increasing mass. u, c and t quarks have electric

charge Q = 2e/3, while d, s and b quarks have Q = −1e/3. Each quark

flavour q has a correspondent antiquark q̄ with opposite electric charge.

11



1.1 Quantum Chromodynamics

Each species of quark may have NC = 3 different colours, conventionally

called red, green and blue; the anti-quarks carry one unit of anti-color.

Gluons have spin 1 and carry a non-neutral combination color/anti-color

which leads to the existence of a gluon octet. The hadrons observed

experimentally are all ”colourless” bound states: they may be a com-

position of three quarks (antiquarks), named baryon (antibaryon), or a

quark-antiquark pair, called meson. Data on exotic hadrons containing

more quarks (tetraquaks and pentaquarks) exist and are currently under

study. The fact that gluons, as force carriers, carry color charge make

them able to interact with each other, as opposed to photons which carry

no charge with respect to the interaction they mediate (they do not own

electric charge).

1.1.2 QCD Lagrangian

QCD is a quantum theory but we may consider its classical formula-

tion, the Yang-Mills theory for classical quark and gluon fields, to figure

out many essential aspects.

The classical Lagrangian density of QCD is given by

Lcl = q̄αi (iγ
µDµ −m)ijαβ q

β
j −

1

4
F a
µνF

µν
a , (1.1)

where qαi is the quark field with colour α = 1, 2, 3 and flavour i =

1, . . . , Nf , m is the mass matrix, which is color-independent and diagonal

in the flavour space m = δαβ diag(mu, md, . . . , mt), and γ
µ are the Dirac

matrices. Dµ is the covariant derivative acting on the color-triplet quark

field and is defined

Dµ = ∂µ + igtaAa
µ,

where Aa
µ (a = 1, . . . , 8) is the gluon field, g is the QCD dimension-

less coupling constant (akin to the QED electric charge e) and ta (a =

1, . . . , 8) are the generators of the fundamental representation of the Lie
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1.1 Quantum Chromodynamics

algebra SU(3)C , which satisfies the following commutation relation:

[ta, tb] = ifabct
c, (1.2)

being fabc the structure constant of the SU(3)C group. The covariant

derivative acting on the color-octet gluon field is defined

Dµ = ∂µ + igT aAa
µ, (1.3)

where T a (a = 1, . . . , 8) are the generators of the adjoint representation

of the SU(3)C algebra given by (Ta)bc = −ifabc.
The strength tensor of the gluon field is

F a
µν = ∂µA

a
ν − ∂νAa

µ − gfabcAb
µA

c
ν ;

defining Aµ ≡ taAa
µ and Fνµ ≡ taF a

νµ, it may be written in a more compact

way

Fµν = − i
g
[Dµ, Dν ].

Color electric and color magnetic fields may be defined from F µν in anal-

ogy to the electromagnetic ones:

Ei = F i0, Bi = −1
2
εijkF

jk, (1.4)

where εijk is a complete antisymmetric tensor with ε123 = 1.

The langrangian density so far introduced is invariant under a generic

local transformation of the SU(3)C group

V (x) = exp(−iθa(x)ta);

as a consequence quark and gluon fields transform as follows:

q(x)→ V (x)q(x), Aµ(x)→ V (x)

(

Aµ(x)−
i

g
∂µ

)

V †(x).

Due to gauge invariance terms like Aa
µA

µ
a are forbidden in the Lagrangian,

hence gluons are massless particles. The term −mq̄αi qiα does not break

gauge invariance and therefore finite quark masses are allowed.
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1.1 Quantum Chromodynamics

Applying the variational principle to the Lagrangian (1.1) classical

equation of motion are obtained, that is the Dirac equation for quark

fields

(iγµDµ −m)q = 0 (1.5)

and the Yang-Mills equation for gluon fields

[Dν , F
νµ] = gjµ,

where jµ = tajµa e jµa is the vector current of the fermionic field and is

given by

jµa = q̄γµtaq. (1.6)

In order to better understand the properties of the classical Lagrangian

(1.1), we can decompose it into its different pieces:

Lcl =q̄
α
i (iγ

µ∂µ −m)ijαβq
β
j −

1

4
(∂µA

a
ν − ∂νAa

µ)(∂
µAν

a − ∂νAµ
a)

− gq̄αi γµtaαβAa
µq

β
i

+
g

2
fabc(∂µA

a
ν − ∂νAa

µ)A
µ
bA

ν
c −

g2

4
fabcf

adeAb
µA

c
νA

µ
dA

ν
e ,

whose diagrammatic representation is shown in Fig. 1.1.

Figure 1.1: Feynman diagrams representing quark and gluon propagators and the
three QCD interaction vertices.

The first line contains the kinetic terms for the gluon and the quark

fields, which give rise to the corresponding propagators. The colour in-

teraction between quarks and gluons is given by the second line. Fi-

nally, owing to the non-Abelian character of the colour group, the prod-

uct F a
µνF

µν
a generates the self-interaction terms corresponding to three-

gluon and four-gluon vertices shown in the last line. The strength of
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1.1 Quantum Chromodynamics

all these interactions is given by a single universal coupling gs, which

is called the strong coupling constant. As already said, the existence of

self-interactions among the gauge fields is a new feature which is not

present in QED; it seems then reasonable to expect that these gauge

self-interactions could explain properties like asymptotic freedom and

confinement, which do not appear in QED.

The strength of the strong interaction is measured by the strong cou-

pling constant αs = g2s/4π, which is similar to the fine structure constant

of QED but has a different behaviour in function of the energy that will

be explained in the next section.

1.1.3 Confinement and asymptotic freedom

Baryons and mesons are described by the colour–singlet combinations:

B =
1√
6
ǫαβγ |qαqβqγ〉, M =

1√
3
δαβ|qαq̄β〉, (1.7)

where α, β, γ indicate the color quantum number. In order to avoid the

existence of non-observed extra states with non-zero colour, one needs

to further postulate that all asymptotic states are colourless, i.e. sin-

glets under rotations in colour space. This assumption is known as the

confinement hypothesis, because it implies that free quarks can not be

observed: since quarks carry colour they are confined within colorless

bound states.

The running coupling constant of QCD, which can be derived renor-

malizing the theory1, is:

αs(κ) =
g2

4π
=

1

4πβ0ln(κ2/Λ2
QCD)

, (1.8)

where the first coefficient of the QCD beta function

β0 =
1

48π2
(11Nc − 2Nf) (1.9)

1The bare charge g and m entering the QCD Lagrangian are not physical values.
The transition from the bare parameters to physical ones, i.e. to the quantities that
can be (at least in principle) experimentally measured, is called renormalization.
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1.1 Quantum Chromodynamics

is independent by the chosen renormalization scheme. In (1.8) ΛQCD,

called QCD scale parameter, is independent from the renormalization

point κ and have to be experimentally determined. In order to estimate

its value we need to specify the renormalization scheme used and the

number of active quark flavours; for example, within the MS scheme for

Nf = 5 we obtain ΛQCD = (217± 24)MeV [1].

The negative contribution in (1.9) proportional to the number of

quark flavour Nf is due to quark-antiquark loops and is similar to the

QED result which corresponds to a screening of the interaction, which

decreases with increasing energy or, equivalently, with decreasing dis-

tances. The gluonic self-interaction introduces an additional positive

contribution proportional to the number of colors Nc which is responsible

of the completely different behaviour of QCD with respect to QED. In-

deed (1.9) is positive for Nf ≤ 5Nc, condition satisfied by QCD, and from

Eq. (1.8) follows that the QCD running coupling constant decreases with

increasing κ, leading to the characteristic asymptotic freedom of QCD

demonstrated in 1973 by Gross, Wilczek and Politzer 2 [3–5].

The electromagnetic coupling constant increases with increasing en-

ergy. Moreover, the larger the distance between electric charges, the

weaker is the interaction due to the creation from the vacuum of electron-

positron pairs (vacuum polarization) which screen the charges generators

of the electromagnetic field. In QCD this screening is still present due

to vacuum creation of quark-antiquark pairs, but gluonic self-interaction

generates a further screening effect. In agreement with Eq. (1.9) the net

effect is opposite and is named antiscreening.

Therefore, the QCD coupling constant becomes greater at low energy or

large distances. This is a hallmark of the QCD confinement. In fact,

the phenomenological potential between a quark and an antiquark in-

2Gross, Politzer and Wilczek won the 2004 Nobel Prize in physics “for the dis-
covery of asymptotic freedom in the theory of the strong interaction” [2].
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1.1 Quantum Chromodynamics

creases linearly with increasing distance between them: moving apart

color charges becomes more difficult for larger separation distance. In-

deed, over a critical separation the potential energy becomes big enough

to create a new quark-antiquark pair from vacuum. In this way, quarks

are always confined inside hadrons and can never find isolated. The non-

observation of isolated quarks and gluons leads to postulate that only

aggregates of quarks and gluons with zero total color charge have finite

energy, while colored compounds should have infinite energy. Thus their

absence is explained. Colour confinement is a consequence of QCD gen-

erally accepted but has never been established in rigorous way.

From Eq. (1.8) we see that the running coupling constant decreases

logarithmically with increasing κ. When κ ≫ ΛQCD, αs(κ) → 0 and

the use of perturbation theory is justified. At lower energy the coupling

constant becomes greater and perturbation theory is no more valid. For

κ→ ΛQCD, αs(κ)→∞; hence ΛQCD indicates the energy scale at which

the strong coupling constant diverges.

QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.2: Summary of measurements of αs as a function of the energy scale Q. The
respective order of QCD perturbation theory used in the extraction of αs

is indicated in brackets. The figure is adapted from [6].
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Fig. 1.2 shows the QCD effective coupling constant αs(Q
2) deter-

mined through several experiments at discrete energy scales Q, including

results up to N3LO (next-to-next-to-next-to leading order). Thanks to

the results from the Tevatron and from the LHC, the energy scales at

which αs is determined now extend up to more than 1 TeV. There is a

clear signature and proof of the energy dependence of αs, in full agree-

ment with the QCD prediction of asymptotic freedom. Typical values of

αs(κ) are:

αs(100GeV ) ≃ 0.12, αs(10GeV ) ≃ 0.18, αs(2GeV ) ≃ 0.30.

We can get an intuitive picture of the features of QCD that lead to the

confinement and to the asymptotic freedom assimilating the interaction

between a qq̄ to some kind of rubber band [7]. If we try to separate the

quark form the antiquark the force joining them increases. At some point,

the energy on the elastic band is larger than 2mq′, so that it becomes

energetically favourable to create an additional q′q̄′ pair; then the band

breaks down into two mesonic systems, qq̄′ and q′q̄, each one with its

corresponding half-band joining the quark pair. Increasing more and

more the energy, we can only produce more and more mesons, but quarks

remain always confined within colour–singlet bound states. Conversely,

if one tries to approximate two constituent quarks into a very short-

distance region, the elastic band loses the energy and becomes very soft:

quarks behave then as free particles.

1.1.4 Non perturbative approaches to QCD

We have seen that the QCD effective coupling constant αs(κ) = g2s/4π

decreases with increasing energy. Therefore at high temperatures it is

possible to study QCD within the perturbation theory. Although this

approach allows to understand at least in a qualitative way some charac-

teristics of quark-gluon plasma, it does not reveal the physics of a phase
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1.1 Quantum Chromodynamics

transition which is inherently non-perturbative. Furthermore perturba-

tion theory breaks down even at extremely high temperatures, because

of the so-called infrared problem: one can not calculate corrections to

pressure and self-energy in any order in gs, but encounter serious math-

ematical difficulties already at O(g6s) for the pressure and O(g4s) for the

self-energy [8].

A powerful method that overcomes the limits of perturbation theory

is the lattice QCD (lQCD), which has been increasingly used and largely

developed in recent years. This approach is highly efficient because, dis-

cretizing the QCD action on a space-time grid, one can make numerical

simulations computing many interesting quantities of strongly interact-

ing systems, such as pressure and energy density, and then the equations

of state of hadronic and QGP phases [9–11].

However, besides the obstacles imposed by the limited computing power

of modern computers, it is not possible at the moment to implement on

a grid a system of quarks and gluons with finite chemical potential, due

to the Fermi-Dirac statistics of the quarks. Nevertheless, the low-density

region of the phase diagram can be investigated with alternative tech-

niques, such as the Taylor expansion of thermodynamic quantities around

zero chemical potential and the analytical continuation from imaginary

chemical potentials [12–17].

Therefore it is important to resort also to other approaches in order to

study the non-perturbative regime of QCD and explore the full structure

of the phase diagram. To this end, various low-energy effective theo-

ries and phenomenological models were proposed, such as the MIT bag

model, the hadron resonance gas model, chiral perturbation theory, the

Nambu-Jona-Lasinio (NJL) model, the quark-meson (QM) model and

Polyakov-loop extended versions of the NJL and QM models, which are

able to describe many aspects of QCD reproducing some of its global

symmetries.
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1.2 QCD matter under extreme conditions

1.2 QCD matter under extreme conditions

In the 1970s, first speculations about possible new states of matter at

densities over the normal nuclear one [18, 19] and then also the insight

that the structure of matter should become simple at high temperatures

[20–23] began to motivate new theoretical and experimental researches to

investigate the properties of nuclear matter at ultra-high energy densities.

As we have seen, the principle of asymptotic freedom states that

the effective QCD coupling constant αs falls with increasing momentum

transfer q2 or, equivalently, with decreasing distance between particles.

In a thermal medium, the characteristic momentum transfer between

massless particles is of order the temperature T , and thus the effective

coupling between quarks and gluons must become weak when T becomes

large. The complicated structure of nuclear matter at low temperatures,

at which it is composed of hadronic particles, was thus expected to give

rise at high temperatures to a relative simple plasma composed of weakly

interacting quarks and gluons, called quark-gluon plasma [24–28].

A rough estimation of the deconfinement transition temperature can

be obtained using the bag model: one can calculate the pressure depend-

ing on the degrees of freedom in a hadron gas and in the QGP and a

phase transition occurs when the pressures become equal. The degrees

of freedom for a gas of massless pions are 3, while for a QGP with Nf = 2

they are 16 for the gluons and 24 for quarks and antiquarks. Equating

the resulting pressures leads to a transition temperature Tc ≈ 160MeV

at zero quark chemical potential. This corresponds to an energy den-

sity of ǫ ≈ 1GeVfm−3, about 7.5 times that of normal nuclear matter

(ǫ0 ≈ 0.135GeVfm−3). This value is close to the “limiting” temperature

of matter composed of hadrons first postulated by Hagedorn and defined

as the exponential slope of the mass spectrum of hadronic resonances

[29].

In order to obtain more accurate information about the transition
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1.2 QCD matter under extreme conditions

Figure 1.3: Temporal evolution of the energy density scaled by T 4 from lattice QCD
calculations with Nf = 2 + 1 flavors (u, d and s quarks). The figure is
adapted from [9].

temperature and the equation of state of QCD matter in the different

temperature domains, one have to resort to exact calculations of the

energy density by means of lattice QCD. Such computations show that

there is a rapid rise of the energy density ǫ(T ) of matter when the tem-

perature reaches T ≈ Tc ∼ 155MeV, really close to the value found using

the bag model. The energy density changes about an order of magnitude

in a narrow range of temperatures ∆T ∼ 10 − 20MeV as can be seen

from Fig. 1.3. This rapid rise can be explained as a change in the degrees

of freedom between the confined and deconfined phases, since the energy

density is roughly proportional to the number of degrees of freedom.

1.2.1 Quark gluon plasma in nature

Understanding the properties of elementary particles at high temper-

ature and density is one of the main goals of theoretical and experimental

researches in contemporary physics. Through the study of properties of

elementary particle matter exposed to such extreme conditions we hope

to learn about the equation of state that controlled the evolution of the

early Universe as well as the structure of compact stars.
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1.2 QCD matter under extreme conditions

QGP in the early Universe

While the history of the Universe after its first second is now tested

by high quality observations of light element abundances and temper-

ature anisotropies of the cosmic microwave background, the era of the

first second is the less known and maybe more interesting. The Stan-

dard Model of particle physics predicts two transitions that occurred in

that epoch after the inflation, a brief but violent period in which the Uni-

verse underwent an exponential expansion. The first transition happened

at a temperature T ∼ 200GeV and is responsible for the spontaneous

breaking of the electroweak symmetry, which gives the masses of the el-

ementary particles. The second transition, occurred at T ∼ 150MeV

about 10−5 s after the Big Bang, is the quark–hadron transition: quarks

and gluons condense to form a gas of nucleons and light mesons (the

latter decayed subsequently). At the end of the first second, neutrinos

and neutrons decouple from the radiation fluid. The quark–hadron tran-

sition and dissipative processes during the first second prepare the initial

conditions for the synthesis of the first nuclei.

The QCD phase transition is the most dramatic event in that epoch

because it correspond to a reduction of about a factor three in the number

of degrees of freedom, as previously shown in Fig. 1.3. The impact of the

QCD transition in the evolution of the Universe is evident in Fig. 1.4,

where the effective number of relativistic helicity degrees of freedom as

a function of the temperature are plotted. The two full lines show the

effective degrees of freedom of the energy density gǫ and of the entropy

density gs (upper line) for the particle content of the Standard Model

[30]. The rise of g starting at around 30 MeV is mainly due to muons

and pions, but also heavier hadrons can be excited. At the temperature

of the QCD transition (160 MeV in the figure) the number of degrees of

freedom changes very rapidly, since quarks and gluons are coloured. At

still higher temperatures again heavier particles are excited, but within
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the SM of particle physics nothing spectacular happens, the electro-weak

transition is only a tiny effect.

Figure 1.4: The effective number of degrees of freedom as a function of temperature.
The full line is the prediction of the Standard Model of particle physics,
the dashed line shows a Minimal Supersymmetric extension of the Stan-
dard Model. The figure is adapted from [30].

Quark matter in compact stars

Nuclear matter in deconfined phase can also be found in the core of

super-dense stars, such as neutron stars and quark stars. Neutron stars

are composed mainly of neutrons, with some protons and electrons. If

the density in the centre of neutron stars reaches 5−10 ρnm, the gravita-

tional collapse of stellar matter generates pressures comparable to what

is required for the formation of QGP [31]: neutrons may dissolve into a

hot plasma of quarks, with an almost equal number of quark u, d and s

(the so-called strange matter), and this state of matter could be stable,

making possible the existence of stars entirely made of strange matter,

the quark stars.

Thus, the interior of neutron stars is a possible place in which QGP
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may exist in condition of non-zero chemical potential and low tempera-

ture, a completely different region of the QCD phase diagram respect to

the area of interest for the early Universe.

1.2.2 Exploring the QCD phase diagram in labora-

tory

The extreme constraints of temperature and density energy make the

quark-gluon plasma quite rare in nature. On Earth we are limited to

study this new state of matter in laboratory, producing the so-called

“Little Bang”, i.e. colliding heavy ions accelerated at speeds close to the

speed of light. After the collision, the two nuclei deposit an enormous

amount of energy inside a relatively small volume, thus creating the de-

sired extreme conditions of temperature and density for a short time of

order 1023 − 1022 s.

Figure 1.5: QGP formation at high temperature (a) and at high baryon density (b).
Figure adapted from [32].

A large experimental program is devoted to the study of hot and dense

matter created in relativistic heavy ion collisions. Suppose to accelerate

two heavy nuclei (gold or lead ions for example) up to relativistic or

ultra-relativistic energies and to cause a frontal collision, as shown in Fig.

1.5. At these energies, nuclei are similar to “pancakes” due to Lorentz

contraction. When the center-of-mass energy per nucleon exceeds 5 −
10GeV, the colliding nuclei tend to pass through each other and while
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they move away matter with low baryon density is formed between them

at high energy density and temperature (Fig. 1.5 (a)). This is what

happens at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory (BNL) and the Large Hadron Collider (LHC) at

CERN in Geneva. When the energy per nucleon is lower, the colliding

nuclei tend to stick together (Fig.1.5 (b)); in this case one can achieve

moderately high temperatures, T . 150MeV, and large baryon density,

ρ ∼ 4ρnm = 0.64 fm−3.

Figure 1.6: Schematic representation of the phase-diagram in QCD at finite tempera-
ture and non-zero quark density, as emerging from lattice calculations at
zero (or small) quark density and from various theoretical considerations
(like pQCD) in the other domains. The figure is adapted from [33].

Heavy ion collisions at different energies along with theoretical mod-

els allow to investigate the phase diagram of QCD, obtained varying the

temperature T and the net quark density (or the quark chemical poten-

tials µf), i.e. the difference between the density of quarks and that of

the antiquarks. Fig. 1.6 is a cartoon of expected QCD phase diagram. It

has been actually demonstrated only in special corners, like the decon-
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finement phase transition with increasing T at zero (or small) density,

that has been established on the lattice, and the areas denoted as ‘nu-

clei’ or ‘neutron stars’, which are rather well understood within nuclear

theory. The ‘colour superconductor’ phase is a state of nuclear matter at

high quark density predicted by perturbative QCD. The collision process

at relativistic energies (case (a) of Fig. 1.5) is illustrated as the green

curve in Fig. 1.6, which starts from the hadronic matter (nuclei), rises in

temperature with low net baryon density into the QGP phase and then

returns to the hadronic phase.

The possible phases of QCD and the precise location of the critical

points are currently under investigation. Discovering and understanding

the phase structure of QCD is one of the main purposes of the present

and future theoretical and experimental research in the field of QCD

under extreme conditions.
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CHAPTER 2

QUARK-GLUON PLASMA IN HEAVY ION

COLLISIONS

In the previous chapter we have seen that Quantum Chromodynamics

(QCD) provides two important features of the dynamics of quarks and

gluons. At low energy they are never observed as isolated particles but

according to confinement may exist only in the form of neutral color

objects, the hadrons, which are therefore the relevant degrees of freedom.

High-energy perturbation theory applied to QCD predicts that because of

asymptotic freedom the strong interactions between partons, i.e. quarks

and gluons, become weak, hence they become the effective degrees of

freedom. This new state of matter is called quark-gluon plasma (QGP).

The extreme conditions of temperature and density energy make this

state of matter quite rare in nature. As explained in Chapter 1, it is

thought to have fulfilled the Universe in the earliest moments after the

Big Bang when the temperature was about five order of magnitude hotter

than the center of the Sun, as well as to exist in the present day in the

core of certain compact celestial objects such as neutron stars where the

gravitational collapse of stellar matter produces pressures comparable to

what is required for the formation of QGP.
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2.1 Heavy ion experiments

Heavy ion collisions are the only way we can study in laboratory the

properties of nuclear matter under extreme conditions, in the early stage

of collisions between heavy nuclei accelerated at speeds close to the speed

of light.

After a brief mention of past and present heavy ion colliders, an overall

description of the geometry and dynamics of relativistic nuclear collisions

will be given and then the more relevant experimental facts accumulated

up to now and the main signature of the QPG will be introduced.

2.1 Heavy ion experiments

The first experiments with heavy ions at relativistic energies of 10

GeV per nucleon took place at Berkeley Bevalac at the beginning of 80s

and continued towards the end of the decade at the Brookhaven Na-

tional Laboratory (BNL) and at the European Organization for Nuclear

Research (CERN). The Alternating Gradient Synchroton (AGS) at BNL

accelerated beams up to 28Si at 14 GeV per nucleon while at CERN the

Super Proton Synchroton (SPS) accelerated 16O at 60−200 GeV per nu-

cleon. In 1995 SPS started to accelerate 208Pb at 158 GeV per nucleon.

These experiments sanctioned the beginning of ultra-relativistic heavy

ions collisions (uRHICs) era.

In 2000 the first data from the Relativiatic Heavy Ion Collider (RHIC)

at BNL were collected accelerating 197Au ions at 200 GeV per nucleon.

On February 10 of that year the SPS experiment announced the creation

and observation of a new state of matter consistent with the QGP [34].

This observation has been recreated and verified by RHIC [35]. The

experiments at RHIC have provided a large amount of observables that

allowed to start a quantitative study of the QGP features [36–39].

RHIC collides two beams of heavy ions, each with an energy up to 100

GeV per nucleon. At top energy, the initial temperature reached in colli-

sions between two gold nuclei is inferred to lie between 300 and 400 MeV
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[40], well above the QCD phase-transition temperature of about 150 MeV

[9]. RHIC is a flexible facility colliding a wide range of nuclei at various

energies; this allows exploration of the phase diagram of QCD matter to

experimentally identify the conditions for the phase transition into QGP.

There are four experiments at RHIC: two larger, PHENIX (electrons,

muons, hadrons and photons) [36] and STAR (hadron production over

a large solid angle) [37], and two smaller, BRAHMS (particles identifi-

cation over a broad range of rapidity) [38] and PHOBOS (total charged

particle multiplicity and particle correlations) [39]. Each experiment was

optimized for a different set of experimental observables, but common

capabilities allow crucial cross checks.

In 2010 the heavy ion experiments at LHC started with a centre of

mass energy of 2.76 TeV per colliding nucleon pair and in 2015 began

to perform nucleus-nucleus (A−A) collisions with 5.5ATeV, that is the

highest energy accessible at LHC.

First results from Pb+Pb collisions at nearly 14 times higher energy

at the LHC confirm the physics picture derived from RHIC data. The

initial temperature at LHC is about 30% higher than at RHIC, which

translate into an energy density ǫLHC ∼ (1.3)4ǫRHIC and a lifetime of the

quark-gluon plasma about a factor of 2 larger.

Among the seven detectors constructed at the LHC, ALICE have been

designed to the study of QGP. The other experiments are ATLAS (signs

of new physics, including the origins of mass and extra dimensions),

CMS (same purpose as ATLAS), LHCb (antimatter), TOTEM (total

cross section, elastic scattering and diffraction dissociation), MoEDAL

(monopole and exotic particle) and LHCf (measurement of neutral π0

meson production in order to understand ultra high energy cosmic rays).

RHIC and LHC are therefore the two main colliders devoted to the

study of the QGP at high temperature. To this goal, in these facilities

two nuclei are accelerated close to the speed of light (nearly 99.995%c)
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and are thus Lorentz contracted. When they collide with each other the

nuclei slow down through multiple inelastic nucleon-nucleon scatterings,

depositing energy into the collision zone. If the energy density reaches

the critical value (0.5 − 1GeV/fm3) predicted from QCD for the phase

transition, the QGP is produced between the two receding nuclei, which

end up far away from the collision zone because high energy nucleons

still have a big amount of momentum in forward/backward direction.

Therefore, the net baryon number in the collision zone is small, while the

temperature is extremely high.

The QGP created cools rapidly, expanding and emitting various types

of radiation, and transforms into a hadron gas through the phase tran-

sition of QCD, after which the produced particles cease to interact with

each other and move freely to the detector. Any observable measured to

probe the partonic phase is therefore mixed with signals from the later

hadronic phase; this is the main reason of the difficulty of extracting

unambiguous signals for the QGP. It is therefore mandatory to under-

stand the dynamics of such a collision and the evolution of the resulting

fireball in order to extract any information about the early phases and

the QGP. We go back to the initial formation and evolution of the QGP

from the observational data with a procedure analogous to that used to

study the early Universe measuring its “remnants”, such as the cosmic

microwave background, the abundance of atomic elements, etc. Actually,

investigating formation and evolution of the QGP is a complicated task,

since there are theoretical indications that it is not a simple gas of free

quarks and gluons, it is rather a strongly interacting system. Indeed, the

value of the viscosity over entropy density ratio is very low, η/s ∼ 0.1,

really close to the minimum limit conjectured for systems with coupling

constant g →∞.
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2.2 Collision geometry and dynamics

As the energies of the incoming nuclei in a heavy-ion collision are

typically much larger than their rest masses, all velocities in the center-

of-mass (CM) frame are close to c, the speed of light. Then the two

nuclei are strongly Lorentz contracted along the beam direction, which

is called the longitudinal direction and will be indicated in this thesis

as the z-direction of the coordinate system. Thus in the CM frame the

incoming nuclei appear as two tiny disk of thickness 2R/γCM , where R

is the nuclear radius and the amount of contraction γCM is given by

γCM = (1− β2)−
1

2 = (1− p2z
E2

CM

)−
1

2 , (2.1)

where ECM is the energy of one nucleus in the CM frame. However,

due to the uncertainty principle, the longitudinal size of nuclei cannot be

smaller than a value ∆z which depends on the energy of the collision: if

this is about 200 GeV then ∆z is almost 1 fm. This implies a geometrical

delocalization of the nucleons inside the nuclei that consequently pass

each other and leave the region of the collision.

Figure 2.1: Schematic representation of the collision between the nuclei A and B at
a given impact parameter b in transverse view (left) and in longitudinal
view (right). Figure taken from [41].
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In Fig. 2.1 a schematic representation of the collision between the

nuclei A and B is depicted. Assuming that all nucleons of each incoming

nucleus propagate along straight line, nucleons in the overlapped region

are called participants whereas nucleons which do not meet any other

nucleon are called spectators. This geometrical treatment of high energy

nucleus-nucleus collisions is known as the participant-spectator model.

The size of participant and spectator regions is determined by the impact

parameter b, which is the distance between the centres of the two colliding

nuclei and varies from one event to the other. A central collision with

b ≃ 0 has a full overlap area and have about the maximum energy density.

A peripheral collision of two nuclei with large impact parameter has a

small overlap zone and tends to be similar to a p − p (proton-proton)

collision. The systems produced from the various initial geometries are

thus different. Since the spectators keep its longitudinal velocity and

emerge at nearly zero degrees in the collision, it is relatively simple to

experimentally distinguish the spectators from the participants.

Experimentally, the collision geometry cannot be controlled. Never-

theless, in order to compare physical quantities in A − A collisions to

those in p − p collisions, one needs to know how many binary nucleon-

nucleon collisions Ncoll there are in an A−A collision. Moreover, we are

interested to know whether an observable is related toNcoll or to the num-

ber of participating nucleons Npart. Collisions with different geometries

correspond to different Ncoll and Npart.

The Glauber model has been used to describe the collision geometry,

estimating the initial spatial distribution of nucleons in the transverse

plane, and to link experimental observables with a theoretical b, Ncoll

and Npart [41].

The use of such a geometrical model is justified by the fact that at high

energies the De Broglie wavelengths of the nucleons are smaller than their

transverse size, hence the total cross section of the nuclei is approximately
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the sum of the individual nucleon-nucleon collision cross sections. Further

assumptions are that the nucleons travel in straight lines and are not

deflected after the collision. Thus, in multiple interactions each nucleon-

nucleon collision can be considered as independent according to eikonal

approximation.

The inputs for the Glauber model are the Wood-Saxon nuclear matter

density and the inelastic nucleon-nucleon cross section. Monte Carlo

simulations of the Glauber model are often carried out. Nucleons of

incident and target nuclei are distributed randomly according to a nuclear

density profile. At a given impact parameter b the impact parameter s

of all the pairs of incident and target nucleons is determined in order to

check whether they interact: a collision occurs when the nucleon-nucleon

distance is within the range of the nucleon-nucleon inelastic cross section,

i.e. b <
√

σNN
inel/π. The values of Ncoll and Npart are the output of the

Glauber model for a given b.

In order to obtain the expressions for the number of collisions and par-

ticipants in the Glauber model, we introduce the nuclear overlap function

TAB(b)

T̂AB =

∫

T̂A(s)T̂B(s− b)d2s, (2.2)

where s is the transverse coordinate; T̂A and T̂B are the nuclear thick-

ness functions which give the probability to find a nucleon per unit of

transverse area and are defined as

T̂A(s) =

∫

ρ̂A(s, zA)dzA, (2.3)

being ρ̂A the nuclear mass number density normalized to mass number

A, which in a realistic situation for a heavy nucleus such as lead or gold

is usually parametrized as a Wood Saxon distribution:

ρA(r) =
ρnm

1 + exp((r −RA)/a)
, (2.4)

where RA is the nucleus radius and a is a length representing the surface

thickness of the nucleus.

33



2.2 Collision geometry and dynamics

Through the nuclear thickness function and the nuclear overlap func-

tion it is possible to evaluate Ncoll and Npart which are both strongly

related to the impact parameter b:

Ncoll(b) = AB T̂AB(b) σ
NN
inel , (2.5)

Npart(b) =A

∫

T̂A(s)

{

1−
[

1− T̂B(s− b)σNN
inel

]B
}

d2s (2.6)

+B

∫

T̂B(s− b){1−
[

1− T̂A(s)σNN
inel

]A

}d2s. (2.7)

The inelastic nucleon-nucleon cross section σNN
inel at RHIC (

√
sNN =

200GeV) is equal to 40 mb while at LHC (
√
sNN = 5.5TeV) is equal

to 70 mb.

Figure 2.2: Qualitative behaviour of the correlation of the experimental observable
quantity Nch with Glauber calculated quantities b and Npart. Figure
adapted from [41].

The number of binary collisions and the number of participants can-

not be directly measured in experiments, therefore an observable needs
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2.3 Space-time history of ultra-relativistic heavy ion collisions

to be chosen to map the Glauber model simulation to experimental data

for the centrality definition. A basic assumption is that the observable

should be a monotonic function of the impact parameter. The inclusive

charged particle multiplicity Nch, which is a measurable quantity, can be

used as a centrality definition observable: the larger the multiplicity the

smaller the b. Exploiting the relation between b, Npart and Nch it is pos-

sible to trace back to the impact parameter of the collision performing a

subdivision of Nch in terms of centrality class. The relation between Nch,

Npart and b is shown in Fig. 2.2. The dashed lines individuate typical

centrality bins. The illustrations of various collision geometries in the

beam-line view are also depicted for different centrality classes.

2.3 Space-time history of ultra-relativistic

heavy ion collisions

Figure 2.3: Evolution of a relativistic heavy ion collision through its many dynamical
stages. Picture credit: Chun Shen (McGill University, Montreal QC,
Canada).
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2.3 Space-time history of ultra-relativistic heavy ion collisions

A relativistic heavy ion collision evolves through many different stages,

in which the dynamics is governed by different set of effective degrees of

freedom. It is a very complicated task to follow the whole evolution of the

fireball within an unified approach, due to the large range of densities and

temperature explored during the collision evolution. Nevertheless trans-

port kinetic models, which will be treated in the next chapter, allow to

describe nearly the entire dynamical evolution of the system produced

in relativistic heavy ion collisions by means of one single theoretical ap-

proach. Fig. 2.3 shows the different phases of a ultra-relativistic heavy

ion collision (uRHIC) which are explained in the following.

Pre-equilibrium stage and thermalization

As already explained, the two incoming nuclei, in a relativistic clas-

sical picture, are Lorentz-contracted as pancakes and are approximately

transparent, thus passing one through each other. In the region of the col-

lision strong color-electric and color-magnetic fields are generated, caus-

ing an excitation of the vacuum and producing a dense matter consisting

of gluons and quarks, which is highly out of equilibrium. This system

according to current studies can thermalize in less than 1 fm/c, forming

an equilibrated quark gluon plasma. In this very early collision stage, the

primary collisions between fast partons inside the colliding nuclei gener-

ate hard particles with either a large mass or a large transverse momen-

tum pT ≫ 1GeV≫ T . Their creation involves large momentum transfer,

therefore their production can be calculated in perturbative QCD. Hy-

drodynamic models cannot be used to describe the pre-equilibrium phase

because this involves out of equilibrium processes. Hence to describe

the successive stages of evolution using hydrodynamics it is necessary to

know the initial condition for energy density and spatial density and esti-

mate the time τ0 at which the system reaches equilibrium. On the other

hand, transport models can be used to describe both pre-equilibrium and
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equilibrium stages if the kinetic evolution is coupled to a mechanism of

particle production. In this thesis we follow this way, as we will explain

in the following chapters.

Among the various models of particle production, the Glasma ap-

proach with Color Glass Condensate (CGC) initial condition gives the

most efficient description of the very early stage of uRHICs [42–47]. High

energy nucleus-nucleus collisions can be viewed as collisions of sheets of

colored glass condensate whose degrees of freedom are those of high en-

ergy density gluonic fields.

Figure 2.4: The parton distribution functions from HERA, xuv, xdv, xS = 2x(Ū +
D̄), xg, at Q2 = 10GeV2. Figure adapted from [48].

The idea of color-glass condensate was motivated by the rapid rising

of the gluon density as a function of decreasing x, the Bjorken vari-

able, for large momentum transfer Q2, as shown in Fig. 2.4 [48]. As a

consequence the transverse density of gluons also increases but eventu-

ally gluons overlap each other and saturate, because they must fit inside
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2.3 Space-time history of ultra-relativistic heavy ion collisions

the size of the hadron. In other words, a hadron may be viewed as a

tightly packed system of gluons. In the momentum space there is a crit-

ical momentum Qs which distinguishes between gluons tightly packed,

those with p < Qs, and free gluons, those with p > Qs. Thus the gluon

filling of the hadron is characterized by this saturation scale Qs, which

increases with both increasing energy and size of the nucleus; hence the

total number of gluons may grow without limit.

Since the physical density of low-x gluons becomes large, the typical

separation between gluons is small and their interaction strength becomes

weak, that is αs ≪ 1; the highly coherent gluons fill the phase space up

to the maximal occupation number ∼ 1/αs and can thus be thought of

as condensed. Because of their high speed and Lorentz time dilation, the

partons of a nucleus do not evolve during the short duration of a colli-

sion; systems whose evolution happens over long time scales compared

to natural ones are glasses. Hence the name Color Glass Condensate.

An infinitesimal time after the collision of the two sheets of CGC,

a configuration of strong longitudinal color-electric and color-magnetic

fields is produced; this form of matter is named glasma1. There are no

transverse fields, except on the sheets of charge which are the sources

for the glasma field. The space-time evolution of the glasma is given by

the classical field equation of motion of SU(3) Yang-Mills theory. In Fig.

2.5 the CGC before the collision and the formation of glasma after the

collision is depicted.

The glasma fields decay in gluon pairs and in quark-antiquark giving

rise to the quark-gluon plasma. Pair creation from decaying color flux

tubes is due to the Schwinger mechanism, which will be explained in the

fifth chapter.

Once produced, the partons in the plasma begins to collide reach-

1The word ’glasma’ is a contraction of glass (from colored glass condensate) and
plasma (from quark-gluon plasma).

38



2.3 Space-time history of ultra-relativistic heavy ion collisions

(a) Color glass condensate before collision

(b) Glasma fields after collision

Figure 2.5: (a) Before the collision, the two incoming nuclei can be viewed as thin
sheets of color glass condensate, i.e. low-x gluons are described by a
configuration of classical coherent and mutually orthogonal color electric
and magnetic fields. (b) After the collision, in addition to the transverse
CGC fields on the sheets there are longitudinal color electric and magnetic
fields forming glasma. Figures adapted from [49].

ing a local thermal equilibrium. Experimental data suggest a very short

thermalization time τtherm < 1 fm/c, which denotes the moment when

local thermal equilibrium is achieved. This idea is supported by hydro-

dynamical simulations with an early starting time and is justified also

by our studies based on kinetic transport theory. In fact we will dis-
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cuss in the following chapters the dynamics of a parton plasma produced

by color-electric flux tubes decaying through the Schwinger mechanism

equilibrates within some fractions of fm/c.

Thermalization and isotropization of the system is mainly an effect

of parton rescattering, but an interesting phenomenon that could speed-

up equilibration is that of plasma instabilities: inhomogeneities in the

glasma fields are amplified by plasma instabilities, which eventually lead

to loss of coherence of the color fields and to a locally isotropized particle

plasma [50–56]. Recently, the early isotropization problem has been stud-

ied also by means of anti–de Sitter/conformal field theory (AdS/CFT)

methods [57, 58].

Hydrodynamical expansion

Once the system has reached thermal equilibrium it is characterized

by an energy density well above the critical energy density of the QCD

phase transition; thus the system is expected to be in the quark gluon

plasma phase. Driven by thermal pressure gradients the QGP expands

and cools down very quickly and the partons inside the bulk rescatter

elastically and inelastically. The elastic collision lead the system towards

kinetic equilibrium while inelastic collision cause a change in the relative

abundances of the different flavours of partons until the system reaches

chemical equilibrium.

This stage of the evolution of QGP is very well described by relativis-

tic hydrodynamics or within a transport kinetic model. The latter will

be used in this work and widely described in the next chapter.

In the hydrodynamical approach, the evolution equations of the sys-

tem are obtained from the local conservations laws for energy-momentum

and baryon number

∂µT
µν(x) = 0, ∂µj

µ
B(x) = 0. (2.8)

T µν is the energy-momentum tensor that for a perfect fluid can be written
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as

T µν(x) = [ǫ(x) + P (x)]uµ(x)uν(x)− P (x)gµν , (2.9)

where uµ(x) is the flow four-velocity and gµν is the metric tensor. jµB(x)

is the baryon number current given by

jµ(x) = nB(x)u
µ, (2.10)

where nB is the baryon number density defined in the local rest frame of

the fluid.

In order to solve the five equations (2.8) an additional equation of

the form P = P (ǫ, ρ), called the equation of state (EOS), is necessary.

Indeed, the equations (2.8) together with the EOS form a closed system,

which can be solved once the initial condition, i.e. energy density ǫ(x)

and velocity profile uµ(x), have been specified.

The ideal hydrodynamics described above is valid for a fluid in which

dissipative effects are neglected. Nevertheless, the latter ones can be

taken into account adding to the expression of the energy momentum

tensor terms that consider a finite viscosity of the fluid. This turns

out to be a non trivial extension because relativistically one has to go to

second order gradient expansion. The last involves additional parameters

and a self-consistent full derivation and implementation is still subject of

studies. In fact it seems that the quark gluon plasma has a low but non

zero shear viscosity η. More precisely, as already said, the value of the

viscosity over entropy density ratio is really close to the minimum limit

conjectured for systems with coupling constant g →∞, that is η/s ∼ 0.1.

Hadronic phase and freeze-outs

When the energy density drops below a pseudo-critical value ǫc =

1GeV/fm3 the phase transition from the parton plasma to a hadron

gas take place. There are at least two different class of microscopic

mechanisms of hadronization: fragmentation and coalescence. In the first
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one each parton fragment into a jet of hadrons that carry a fraction of the

momenta of the initial parton. This is the predominant way to hadronize

in p− p collisions for partons with transverse momentum greater than 2

GeV. In A−A collision another mechanism of hadronization is likely to

be dominant in producing hadrons up to pT ∼ 5 − 6 GeV: it consists in

the recombination of two or three quarks that form respectively mesons

or baryons [59, 60].

In the hadronic phase the hadrons rescatter one to each other until

the distance between them is larger than the range of strong interac-

tions dR ∼ 1 fm. Then at densities ρ < d3R all scatterings stop and the

hadrons decouple and free stream towards the detector; this is called

kinetic freeze-out. In the hydrodynamic approach the hadronization is

introduced by means of the Cooper-Frye formula, which consists in a

freeze-out algorithm that stops the hydrodynamic evolution and trans-

forms the hydrodynamic outputs, such as energy density, baryon density

and flow, into hadron spectra, making use of the statistical model. This

procedure correctly accounts for hadronization of the bulk, i.e. for par-

tons with pT . 2 GeV. Many efforts have being done in recent years to

describe both the QGP phase, the hadronization and the hadronic phase

within a transport kinetic model.

The kinetic freeze-out described above take place after the chemical

freeze-out, i.e. the moment when the inelastic collisions stop. Indeed

at low colliding energies the inelastic cross sections are typically smaller

than the elastic cross sections, hence during the cooling down of the

hadronic system the inelastic processes cease before the elastic collisions.

As a natural consequence Tchem > Tkin, where Tchem is the temperature of

the chemical freeze-out inferred from the studies of the ratios of hadron

multiplicities and Tkin is the temperature of the kinetic freeze-out inferred

from the studies of the transverse-momentum spectra [49].
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2.4 Physical observables of QGP

The relativistic heavy ion collisions are dynamic processes with typical

length and time scales of order 10 fm and 10 fm/c respectively. In order to

probe the formation and the properties of the QGP we need to observe

as many as possible particles and radiations emitted during the whole

space-time evolution of the collision. A selection of the main physical

observables which may give signatures of QGP is resumed in this section.

Each observables is the result of the entire evolution of the fireball

and is therefore affected by the different stage we have explained in the

previous section. Hence it is important to identify which observable

brings information on a particular phase and how it may be influenced

by other stages.

2.4.1 Global observables

An important task in heavy ion experiments is to understand how

the initial kinetic energy is redistributed after the collision of the two

nuclei in terms of observables, such as particle production and energy

per particle. A related question is that of entropy production, as the

initial nuclei form a very low entropy state and the final configuration

has a very large entropy.

Yields and spectra

Global observables such as the emitted particle number per unit rapid-

ity dN/dy and the observed transverse energy per unit rapidity dET/dy

are related to the early-time entropy density s0 and the early-time energy

density ǫ0 at the freeze-out time τf in the central A−A collisions [61, 62].

The rapidity distribution of particles dN/dy is related to the initial

entropy density through the formula

s0 =
ξ

AT τ0

dN

dy
, (2.11)
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where τ0 is the initial time, i.e. the time when the local thermalization

is reached which is less than 1 fm/c, and AT is the transverse overlap

area of the colliding nuclei (for a central collision of two identical nuclei

of radius R this is simply AT = πR2). ξ is the proportionality constant

of the relation between entropy density and number density of particles

assumed for a relativistic plasma:

s = ξn; (2.12)

for an ideal gas at high temperature ξ = 3.6 for bosons and ξ = 4.2 for

fermions.

The transverse energy dET/dy is related to the initial energy density

by the formula:

ǫ0 =
1

AT τ0

dET

dy

∣

∣

∣

∣

y=0

(

τf
τ0

)λ

, (2.13)

where λ = c2s, being c
2
s = dp/dǫ the sound velocity, and then depends by

the equation of state ǫ(p); (τf/τ0)
λ is a measure of the energy transfer due

to the work done by the pressure during the hydrodynamical expansion.

Thus we need information about the freeze-out time τf to evaluate ǫ0 by

data on dET/dy.

Figure 2.6: Pseudo-rapidity density of charged particles for different centrality bins
at RHIC (left panel) and LHC (right panel). Figure adapted from [38]
and [63] respectively.

Fig. 2.6 shows the overall multiplicity of charged particles observed in
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collisions at RHIC and LHC for various collision centralities as a function

of pseudo-rapidity. The figure in the left panel shows that the multiplicity

in
√
sNN = 200 GeV Au+Au collisions at RHIC is about dN/dη = 625

charged particles per unit of rapidity around η = 0 for central collisions.

Integration of the charged particle pseudo-rapidity distributions corre-

sponding to central collisions tells us that about 4600 charged particles

are produced in each of the 5% most central collisions; since we only

measure charged particles, and not the neutrals, we multiply this mul-

tiplicity by 3/2 to obtain the total particle multiplicity of about 7000

particles. The right panel shows that the multiplicity in
√
sNN = 2.76

TeV Pb+Pb collisions at LHC is about dN/dη = 1600 charged particles

per unit of rapidity around η = 0 for central collisions. The integral of

the most central distribution 0−5% corresponds to about 15000 charged

particles.

2.4.2 Flow observables

One of the most important discoveries of heavy ion collisions is that

the medium shows a high degree of collectivity, usually referred as flow.

As in the early stage of the collision nuclear matter is compressed,

if the interactions between the constituents of the medium have large

cross sections, density gradients are expected to translate into outward

pressure, which causes the system to expand at relativistic speed.

Figure 2.7: Qualitative picture of the shape of the nuclear overlap region between the
two nuclei in a peripheral (left) and in a central (right) collision.
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Experiments can probe this outward pressure with great precision

by characterizing non central (intermediate impact parameter) nuclear

collisions. In these reactions, the nuclear overlap region between the

two nuclei is not circular in the transverse plane, but instead is strongly

deformed, resulting elliptically shaped. The difference between the two

cases is qualitatively shown in Fig. 2.7.

Figure 2.8: Schematic illustration of how the spatial anisotropy (almond shaped im-
pact region in the reaction plane) after a non-central collision evolves in
anisotropy in momentum space.

A measure of such deformation is given by the spatial eccentricity:

ǫ(b) =
〈y2 − x2〉
〈y2 + x2〉 (2.14)

which depends on the impact parameter b and it is initially non-zero and

positive. The interactions inside the plasma transfer this spatial defor-

mation into an anisotropy in momentum space, as depicted in Fig. 2.8.

Hence the initial eccentricity influences the azimuthal momentum distri-

bution of the emitted particles. Experimentally, the azimuthal distribu-

tion of particle emission is analysed with respect to the reaction plane in

terms of a Fourier expansion of the transverse momentum spectrum as:

E
d3N

d3p
(b) =

d2N

2πpTdpTdy

(

1 +

∞
∑

n=1

2vn(pT , b) cosn(φ− ΦR)

)

(2.15)

where φ is the azimuthal angle of the particle and ΦR is the azimuthal

angle of the reaction plane in the laboratory frame. There are sophis-

ticated experimental techniques which allow to determine the reaction

plane angle in each nucleus-nucleus collision [36, 37, 39].
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For a non central collision the density distribution has many non-

zero Fourier coefficients, with the second coefficient by far the largest.

The stronger the interactions among the particles, the greater is the

translation of spatial anisotropy into momentum anisotropy of the final

observed particles.

As the system expands, the spatial distribution becomes more isotropic,

hence a large contribution to the flow must come from interactions in the

first 4-5 fm/c after the collision [64]. This momentum anisotropy is pre-

served through the transition to the final observed hadron distributions.

The experiments do not directly measure pressure gradients or flow,

but rather the coefficients of the φ angular distributions. The first two co-

efficients in (2.15) are the directed flow and the elliptic flow, respectively

given by v1 = 〈cos (φ− ΦR)〉 and v2 = 〈cos 2(φ− ΦR)〉. The amplitude of

elliptic flow grows with increasing impact parameter because the overlap

region of the incoming nuclei becomes more asymmetric. Higher Fourier

components of the angular distribution are also observed in the correla-

tion data; these arise primarily from fluctuations in the initial positions

of the nucleons within the nucleus (Fig. 2.9).

Figure 2.9: Elliptic (left) and triangular (right) flow patterns arise from the locations
of individual nucleons at the instant when two nuclei interpenetrate. The
nucleons of one nucleus are shown in yellow and the other in orange.
Red indicates those nucleons in the overlap region, which actually collide.
Figure from [65].
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Elliptic flow

The elliptic flow v2 is the largest contribution in the azimuthal asym-

metry of the momentum distributions and can be determined from the

following formula:

v2(pT , b) = 〈cos 2φ〉 =
〈

p2x − p2y
p2x + p2y

〉

, (2.16)

which gives the exact shape of the ellipse.

Experiments have extensively measured the elliptic flow for a broad

range of hadron species over a significant kinematic range [36, 37, 39].

In p − p reactions a significant v2 coefficient is observed owing to hard

parton-parton scattering creating opposing jets of hadrons. In heavy ion

reactions, the Fourier decomposition really measures particle emission

directly correlated with the orientation of density gradients, as demon-

strated by the fact that the v2 for all charged particles at low-pT scales

linearly with the eccentricity of the nuclear overlap region.

The elliptic flow is the prominent indicator of the low viscosity and the

fast thermalization of the matter created in heavy-ion collisions [66, 67].

Both hydrodynamical and parton cascade calculations have shown that

the generation of the elliptic flow saturates in the first 4−5 fm/c making

this observable sensitive to the QGP phase.

In Fig. 2.10 the elliptic flow coefficient v2 for several hadron species

is plotted as a function of their transverse momentum pT , compared to

calculations with hydrodynamical models. Up to pT ∼ 1.5 GeV, the

elliptic flow v2(pT ) follows the hydrodynamical predictions for an ideal

fluid, i.e. with negligible viscosity, as is expected from a medium in local

thermal equilibrium with low viscosity. Provided that more then 99%

of all final hadrons have pT < 1.5 GeV, it is evident that a very low

viscosity fluid is created in ultra-relativistic heavy ions collisions, giving

the name of “almost perfect fluid” to the quark-gluon plasma. The fall of

the hydrodynamic predictions for pT > 1.5 GeV indicates a breakdown of
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Figure 2.10: Elliptic flow as a function of transverse momentum of a variety of hadron
species for gold-gold collisions at

√
sNN = 200 GeV measured by the

PHENIX [68] and STAR [69, 70] collaborations. Hydrodynamic calcula-
tions are indicated by lines. Figure from [71].

the local thermal equilibrium for particles with high momenta and, on the

other hand, the necessity to include dissipative terms in hydrodynamics

equations.

An important additional measurement from the PHOBOS experiment

indicates that v2 drops significantly for charged particles as one moves

away from mid-rapidity [72, 73]. This observation contradicts many hy-

drodynamic calculations invoking the Bjorken scenario [62]. Additionally,

some have interpreted this as evidence for incomplete equilibration and

thus for a breakdown in the hydrodynamic assumption [74].

There is another important information from the figure: baryons have

a considerable larger v2 with respect to mesons. This difference has

not found an explanation in the hydrodynamical framework but can be

explained by the coalescence model for hadronization, which predicts

that the v2 of any hadronic species follows the partonic flow scaled by

the number nq of (recombined) constituent quarks in the hadron under
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Figure 2.11: Scaling properties of azimuthal anisotropy at RHIC are evident from the
behaviour of v2/nq vs pT /nq (left) and v2/nq vs KET /nq for several
particle species obtained in minimum bias Au+Au collisions. Figure
from [76].

consideration [59, 75]

vhadron2 ≃ nqv
quark
2 (pT/nq), (2.17)

with nq = 2 for mesons and nq = 3 for baryons. In fig 2.11 is shown

the quark number scaling of the elliptic flow. Such a scaling clearly

indicates that the flow is developed at the quark level, hence quarks are

the true degrees of freedom of the matter created in relativistic heavy ion

collisions. Actually, a 20% breaking of this scaling has been observed at

LHC, but even in the coalescence model the scaling is approximated.

2.4.3 Hard observables

Jet quenching

In the first stage of a ultra-relativistic heavy ion collision particles

with high transverse momentum are produced and propagate through the

plasma interacting with the bulk matter and loosing energy. Such parti-
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cles can be used to probe the plasma as proposed long time ago in [77–81].

The production of high pT partons can be theoretically predicted using

the perturbative QCD (pQCD) framework. The high energy partons lose

energy in the plasma through elastic scattering with the components of

the bulk and radiating gluons in a way similar to the bremsstrahlung

photon emission in QED. The main differences between QED and QCD

radiative energy loss are due to the non-Abelian nature of QCD: the

emitted gluons itself carry color charges and interact with all the color

charges in the medium (both quarks and gluons), whereas photons does

not interact with themselves. Emitted gluons travel a random walk in-

side the plasma causing a non-linear dependence of the energy loss on the

thickness of the medium. In the evaluation of the radiative energy loss

must be also considered the Landau-Pomeranchuk-Migdal effect (LPM)

that takes into account the coherence effect, due to the interaction of

the hard partons with more than one scattering center. At high parton

energy the radiative mechanism is the main responsible for the parton

energy loss. The energy loss of high pT partons causes an attenuation

or disappearance of the hadrons jet resulting from the fragmentation of

these high partons. This phenomenon of suppression is called jet quench-

ing and is one of the most important probe of the formation of the QGP.

The suppression is quantified by the nuclear modification factor RAA

which is given by the ratio between the spectrum of partons produced in

A−A collision and the one relative to p− p collisions multiplied by the

scaling factor Ncoll:

RAA(pT ) ≡
1

Ncoll

d2NAA/dpTdη

d2Npp/dpTdη
(2.18)

A RAA = 1 meant that A−A collision would be only a superposition

of p − p collisions. On the other hand a RAA greater then one indicates

the formation of a system different from the one created in p−p collisions.
One of the open challenge regarding the jet quenching is to explain the
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difference in the suppression between the different hadron species. This

is strongly related to the different energy loss experienced by quarks

and gluons but also to the inelastic collisions which change the relative

abundances of quarks and gluons.

Heavy quarks

Heavy-flavor particles (charm and bottom quarks) are particularly

valuable probes for the properties of the medium produced in ultra-

relativistic collisions of heavy nuclei. In the context of QGP physics

they are considered heavy because their mass, mQ, is large not only with

respect to ΛQCD but also to the temperature T of the plasma. This

property has important implications [82, 83]. Fist of all, mQ ≫ ΛQCD al-

lows to determine the initial heavy-quark spectra by means of pQCD and

makes them a suitable probe of the out-of-equilibrium stage: the produc-

tion time is much smaller than the QGP lifetime, tQ0 ≪ tQGP , therefore

heavy quarks pass through the entire evolution of the fireball; their equi-

libration time tQeq is of the order of the QGP lifetime, but smaller than

the light-quark one, tQeq ∼ tQGP ≫ tqeq, hence in principle they carry more

information. Moreover, mQ ≫ T implies that the momentum exchange

by collisions (dominated by elastic processes) is |q2| ≪ m2
Q, then the

dynamics can be treated as a Brownian motion by means of a Fokker-

Planck equation (derived from an expansion in momentum transfer of

the Boltzmann equation) which constitutes a significant simplification

for the study of transport properties; nevertheless, this approach is a

good approximation for the b flavor, while in the case of c quarks a full

Boltzmann treatment is more appropriate [84].

Gluon bremsstrahlung of heavy quarks differs from the case of mass-

less parton considered in the previous section. Due to the large mass mQ

the radiation probability with respect to the light quark case is smaller

at low pT and the distribution of soft gluons radiated by heavy quarks is
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2.4 Physical observables of QGP

suppressed because of the dead-cone-effect: gluon emission is restricted

to angles higher then θ0 = mQ/EQ with respect to the heavy quark

direction [85].

The two key observables in heavy quark sector are the nuclear mod-

ification factor RAA given by Eq. (2.18), which gives an estimate of the

total energy loss experienced by heavy quark in the bulk medium, and

the elliptic flow v2 given by second Fourier coefficient of Eq. (2.15), which

measures the azimuthal momentum anisotropy of heavy mesons. Both

observables for heavy mesons and their decay products have been mea-

sured at RHIC and LHC facilities and it was surprisingly observed a low

RAA and a high v2 comparable to those of light hadrons, giving raise to

the so called RAA − v2 puzzle; the simultaneous description of these two

observables and a consistent explanation of this puzzle is a challenge for

all the existing models [86].

J/ψ suppression

J/ψ particles are bound states of a charm and anticharm (c − c̄).

They are produced mostly by the hard scatterings in the first stage of

the collision. They are created also in p − p collisions and in this case

they can freely escape from the collision region. Instead, in the case of

nucleus-nucleus collisions, the J/ψ are produced in the QGP phase and

feel the screening effects of the medium. In fact, although the J/ψ me-

son is a tightly bound particle, in a quark-gluon plasma environment the

charm-anticharm potential is screened, in a way similar to the analogous

phenomenon called Debye screening in QED. As a consequence, the inter-

action between the c̄ and c quarks is strongly weakened when rcc̄ > λD,

with λD the Debye screening length. For sufficiently high density λD is

so small that the J/ψ dissociates leading to a suppression of the observed

yield compared to p− p or proton-nucleus collisions [87].
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2.4 Physical observables of QGP

2.4.4 Electromagnetic probes

During the evolution of a nuclear collision photons and dileptons are

created and may be used as signatures of the QGP. Such probes are very

much important because, interacting only electromagnetically, they do

not suffer further scatterings after their emission. Therefore photons and

dileptons provide information related to the phase of the fireball evolu-

tion in which they originate. Unfortunately there are so many sources

which can produce photons or dileptons that the analysis of such kind of

observables is quite difficult.

For the purposes of this thesis photon observables of the quark gluon

plasma deserve a more detailed analysis and therefore they will exten-

sively treated in next chapters.
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CHAPTER 3

BOLTZMANN TRANSPORT THEORY

Relativistic quantum transport theory plays an important role in the

space-time description of matter under extreme conditions of high energy

density and it is the most efficient approach to describe out-of-equilibrium

situations.

Transport kinetic approaches aim to describe highly dynamical sys-

tems where the time dependence of the phenomena to be studied cannot

be neglected.

Transport theory is one of the pillars on which this thesis is based

and thus we dedicate this chapter to present its main features, from the

classical relativistic formulation and its relation to relativistic hydrody-

namics to the applications in quantum field theory. Finally, we explain

how it can be numerically implemented in a box.

3.1 Classical relativistic transport theory

Considering a classical relativistic many-particle system, the proba-

bility to find a particle in the 8-dimensional phase space volume element

d4x d4p at the position x with momentum p is

dP (x, p) ≡ f(x, p)d4xd4p, (3.1)
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3.1 Classical relativistic transport theory

where f(x, p) denotes the corresponding phase space density. f(x, p) is

a Lorentz scalar, while xµ = (t, x) and pµ = (p0,p) are four-vectors. In a

classical system the four-momentum is usually on-shell, such that not all

components of p are independent but are related by the condition p0 =
√

p2 +m2 which express the energy in terms of the three-momentum

and particle mass; we assume that this constraint is incorporated in the

phase space density:

f(x, p)|p0=ǫ(p) ≡ f(x,p, t).

In kinetic theory all macroscopic quantities are defined through the

distribution function. If one is interested to the collective behaviour of

the system or the behaviour of a typical particle, the knowledge of the

one-body density f(x, p) is equivalent to the full solution. Instead, in

order to study the correlations among particles one should consider also

two-body distributions f(x1, x2, p1, p2) or even higher order many-body

distributions. In general, this is quite complicated and not necessary,

as physical quantities experimentally accessible, such as spectra, are ex-

pressed in terms of one-body distribution density, on which we restrict

our attention.

For a system composed by N relativistic particles the phase space

density can be written as

f(x, p) =
N
∑

i=1

δ4 [xi(τ)− x] δ4 [pi(τ)− p] ,

where τ is the relativistic proper time.

The evolution of the one-body density f(x, p) from one time-like hy-

persurface to another follows from the Liouville’s theorem [88], which

states: iff there are only conservative forces then the phase space density

is a constant of motion.

From this theorem we derive the evolution equation for f in terms of
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3.1 Classical relativistic transport theory

proper time τ as follows:

0 =
d

dτ
f(x, y) ≡ d

dτ

∑

i

δ4 [xi(τ)− x] δ4 [pi(τ)− p]

=
∑

i

{

dxµi
dτ

∂

∂xµ
+
dpµi
dτ

∂

∂pµ

}

δ4 [xi(τ)− x] δ4 [pi(τ)− p]

=

{

1

m
pµ

∂

∂xµ
+ Fµ(x)

∂

∂pµ

}

f(x, p), (3.2)

where we used the constancy of the density that is represented in terms of

the particle trajectories {xi(τ), pi(τ)} in the first line, carried out the dif-

ferentiation in the second and employed definition of the four-velocity and

equation of motion in the last; Fµ(x) denotes external or self-consistent

internal four-forces. This is the relativistic Vlasov equation.

The Vlasov equation (3.2) is appropriate for a system in which there

are only conservative forces, because it does not take into account dissi-

pative effects that arise from incorporating two-body correlations in the

one-body treatment. More generally, allowing for scattering of particles

into and out of phase space volume elements, the distribution function

is no more a constant of motion, i.e. (d/dτ)f(x, p) 6= 0, but changes as

a consequence of collisions. Then the Vlasov equation is replaced by the

Boltzmann equation:

{

1

m
p · ∂x + F(x) · ∂p

}

f(x, p) = C[f ](x, p), (3.3)

where C[f ] denotes the collision term.

In general, the exact equations are the coupled integro-differential

equations for the many-particle distribution function:

f [j](x1, x2, ..., xj ,p1,p2, ...,pj , t),

where j runs from 1 to the total number of particles N . The coupled

equations have a hierarchical structure in which f [j] is related to f [j+1];

this is the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy.
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3.1 Classical relativistic transport theory

The Boltzmann equation can be derived from this set of equations

with the following assumptions.

• Only binary collisions contribute.

• The correlation between the two particles before the collision is

neglected and the number of binary collisions is supposed to be

proportional to the product of the distribution functions of the

colliding particles and to a transition rate, which is a measure of

the probability of the scattering process. As a consequence, the

two-particle distribution reduces to a product of the one-particle

distributions: f(x1, x2, p1, p2) = f(x1, p1)f(x2, p2). This is known

as Boltzmann’s “Stosszahlansatz” (collision number hypothesis) or

molecular chaos assumption.

• The distribution function varies slowly in space-time, i.e. the changes

over a characteristic interaction length and during a characteristic

interaction time are negligibly small.

In this way the collision term turns out to be a non-linear functional

of the one-body densities.

In the non relativistic limit the Boltzmann-Vlasov equation Eq. (3.3)

reduces to:
{

∂

∂t
+ v · ∇x + F · ∇p

}

f(x ,p, t) = C[f ](x ,p, t). (3.4)

We have seen that the Vlasov equation (3.2) is appropriate for systems

with only conservative forces and thus describes non-dissipative phenom-

ena, whereas the Boltzmann equation incorporates dissipative scattering

processes which lead to entropy production.

If the system is close to local equilibrium or when the mean free path,

i.e. the average distance traversed by a particle between two successive

collisions, is very small, one may linearize the right-hand side of the
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3.1 Classical relativistic transport theory

transport equation in δf = f−f0 ≪ f obtaining the so called Relaxation

Time Approximation (RTA), in which the collision term assumes the

simple form:

C[f ] ≃ − 1

τr
(f − f0), (3.5)

where τr denotes the relaxation time parameter, which characterizes the

typical time scale for the system to relax towards the local one-body

equilibrium distribution f0. The relaxation time collision term could be

derived rigorously as an approximation of a two-body scattering term

but can also be seen as a phenomenological ansatz taking the dissipation

into account. The relaxation time may be estimated by the mean free

time between the collisions,

τ =
λmfp

v
=

1

nσtotv
,

where σtot is an averaged total cross-section of the binary collision, v is

the averaged relative velocity of particles and n is the averaged particle

density of the system.

The distribution function evolving through the Boltzmann equation

(3.3) tends to a definite limit as time evolves and the state of the system

turn into an equilibrium state. In this stable state the entropy of the

system reaches its maximum value. Then the vanishing of entropy pro-

duction in the whole space-time is a necessary condition for equilibrium.

This requirement along with the fact that the equilibrium distribution

function is a solution of the transport equation uniquely determines its

form.

The equilibrium distribution function is expressed in terms of the den-

sity, the temperature and the global four-velocity of the system. All

other thermodynamic variables may be evaluated explicitly as functions

of these parameters, giving a exhaustive macroscopic description of a rel-

ativistic system in equilibrium.

A particular equilibrium solution of the Boltzmann equation (3.3) is the
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3.2 Relation to relativistic hydrodynamics

Jüttner distribution,

fJ(x, p) ≡
1

(2π)3
e−β(U ·p+µ),

where the local parameters {β ≡ 1/T, Uµ, µ}(x) denote inverse temper-

ature, flow four-velocity and chemical potential respectively.

In the non relativistic case this equilibrium function reduces to the

Maxwell-Boltzmann distribution,

fMB(x, p) ≡
1

(2πT )3/2
e−β(p−p0)

2/2m,

which is solution of the classical Boltzmann equation (3.4).

3.2 Relation to relativistic hydrodynamics

As we said in the previous section, in kinetic theory all the macro-

scopic observables are described by the phase space density f(x, p) in-

troduced in Eq. (3.1). The particle number four-current and the energy-

momentum tensor are defined respectively:

jµ(x) ≡
∫

d4p pµf(x, y),

T µν(x) ≡
∫

d4p pµpνf(x, y).

These are the main quantities of interest in the hydrodynamic descrip-

tion of matter, where one integrates out the momentum space information

contained in the distribution function [89].

In ideal hydrodynamics the motion of the fluid, which characterize the

evolution of the system, is given by the laws of conservation of energy-

momentum and baryon number Eq. (2.8), where T µν and jµ are deter-

mined through macroscopic quantities by Eq. (2.9) and (2.10) respec-

tively.

It is straightforward to show that jµ and T µν , as defined in transport

theory, satisfy the appropriate continuity equations related to mass (or
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3.2 Relation to relativistic hydrodynamics

charge) and four-momentum conservation [90]. Using the Boltzmann

equation (3.3) together with Eq. (3.5) we obtain:

∂µj
µ =

∫

d4pp · ∂xf = −m
∫

d4p

(

F · ∂pf +
f − f0
τr

)

= −m
τr

∫

d4p(f − f0) ≡ −∂µδjµ,

where we find a dissipative contribution δjµ on the right-hand side, which

vanishes only if the ordinary density equals the equilibrium density deter-

mined by f0. This condition for ideal hydrodynamics has the underlying

hypothesis that the mean free path is so small that the f(x, p) is always

at equilibrium during the evolution.

Similarly, one obtains:

∂µT
µν = −m

∫

d4ppν
(

F · ∂pf +
f − f0
τr

)

= mFν

(
∫

d4pf

)

− m

τr
(jν − jν0 ),

where the second term on the right-hand side is related to a dissipative

contribution −∂µδT µν to the energy-momentum tensor, while the first

term presents the external or self-consistent force density acting on the

system; jµ0 is defined like jµ with f replaced by f0.

We have already said that a distribution function f 6= feq is associated

also to entropy production. Entropy may be useful even to delineate the

bulk properties of matter produced in relativistic collisions; indeed, as

we have seen in Section 4.2.1, it can be related to the observed particle

multiplicities [62, 89].

The entropy four-current is defined as

Sµ(x) ≡
∫

d4p pµf(x, y)[1− log
f(x, y)

f0(x, y)
];

proceeding similarly to what we have done for jµ and T µν we obtain the
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3.3 Collision integral

entropy production formula:

∂x · S =

∫

d4p p · ∂x[f(1− log
f

f0
)] = −

∫

d4p (p · ∂xf) log
f

f0

= m

∫

d4p

(

F · ∂pf +
f − f0
τr

)

log
f

f0
=
m

τr

∫

d4p (f − f0) log
f

f0
.

Since (log x)(x − 1) ≥ 0 for all x ≥ 0 we recover Boltzmann’s “H-

theorem”:

∂x · S ≥ 0,

expressing a positive entropy production which vanishes only in equilib-

rium, when f = f0.

3.3 Collision integral

We have seen that the Vlasov equation (3.2) does not take into ac-

count collisions among particles. In order to consider those dissipative

effects we need to add a collision term C[f ](x, p) on the right-hand side

of the Vlasov equation, obtaining the Boltzmann equation (3.3).

Usually the collision term includes two-body collision process C22 and

for high densities or in case of radiative processes 2→ 3 process C23. In

our model we consider only binary collisions. Assuming that there are no

particle correlations before each collision (molecular chaos hypothesis),

the C22 term is related to the product of the phase space densities of the

colliding particles and is given by

C22 =
1

2E1

∫

d3p2
(2π)32E2

1

ν

∫

d3p′1
(2π)32E ′

1

d3p′2
(2π)32E ′

2

(f ′
1f

′
2 − f1f2)

× |M12→1′2′ | (2π)4δ(4)(p′1 + p′2 − p1 − p2),
(3.6)

where ν = 2 if one considers identical particles in order to avoid double

counting, otherwise ν = 1. Mi→f is the invariant matrix element, i.e. the

transition amplitude for the scattering process. Along with the molecular

chaos hypothesis it is also assumed that collisions are local: the difference

62



3.4 Quantum transport theory

in space-time coordinates of the particles before and after the collision

can be neglected. On the other hand, after a scattering the momenta of

colliding particles are changed statistically according to the differential

cross section.

If we have to deal with particles following the Fermi-Dirac statistics,

we can account for the quantum effect of Pauli-blocking with the following

substitution in the collision term:

f ′
1f

′
2 − f1f2 −→ f ′

1f
′
2(1− f1)(1− f2)− f1f2(1− f ′

1)(1− f ′
2),

which does not allow scattering if the final momenta have occupation

number equal to one. This is called the Boltzmann-Nordheim collision

integral.

On the other hand, the Bose-Einstein statistics is included in the

collision integral by substituting:

f ′
1f

′
2 − f1f2 −→ f ′

1f
′
2(1 + f1)(1 + f2)− f1f2(1 + f ′

1)(1 + f ′
2),

which favours scattering if the final momenta have non-zero occupation

number.

In this cases the solution of the local equilibrium condition C[f ] = 0

is given by the Fermi-Dirac and Bose-Einstein distribution respectively:

fFD/BE(x, p) =
1

(2π)3
1

e(p·u(x)−µ(x))/T (x) ± 1
.

3.4 Quantum transport theory

In the previous section we have discussed how we get the correct quan-

tum equilibrium distribution for a fermionic or bosonic many-particle

system as fixed point of the relativistic transport equation.

Then we may ask whether there exists a quantum mechanical density

function which yields the expectation value of operators in the form of
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3.4 Quantum transport theory

phase space integrals. One possible answer is provided by the Wigner

function.

In quantum theory the evolution of a system may be described in

terms of the density matrix operator:

ρ̂ =
∑

i

wi|Ψi〉〈Ψi|,

and the expectation value of any observables can be computed as

〈Ô(t)〉 = Tr[ρ̂(t)Ô]. (3.7)

For any operator one can define its Weyl transform:

Ã(x, p) =

∫

dy

2π~
eipy/~〈x+|Â|x−〉,

where x± = x± y/2 and which satisfy the following property:

Tr[ÂB̂] =

∫

Ã(x, p)B̃(x, p)dxdp. (3.8)

The Weyl transform of the density operator is calledWigner function:

W (x, p) =

∫

dy

2π~
eipy/~〈x+|ρ̂|x−〉 =

∫

dy

2π
eipyΨ∗(x+)Ψ(x−).

From Eq. (3.7) and the property (3.8) follows:

〈O(t)〉 =
∫

W (x, p)Õ(x, p)dxdp,

which shows that the Wigner function in quantum theory plays in many

aspects the same role of the distribution function in statistical mechanics.

We can obtain the quantum version of the Vlasov equation for the

evolution of the Wigner function simply performing a Wigner transfor-

mation of the Schroedinger equation or, equivalently, of the Heisenberg

equation. Starting from this latter equation of motion for the density

operator,
∂ρ̂

∂t
= [ρ̂, Ĥ],
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3.5 Transport equation in Quantum Field Theory

with Ĥ = p̂2/2m+ Û , and applying the Wigner transform,

∫

dy

2π~
eipy/~〈x+|

(

∂ρ̂

∂t
− [ρ̂,

p̂2

2m
+ Û ]

)

|x−〉 = 0,

after some calculations we get the equation of motion for the Wigner

function:

∂W

∂t
+
p

m

∂W

∂x
+
∑

k=0

1

(2k + 1)!

(

~

2

)2k

U(x)(
←−∇x ·

−→∇p)
2k+1W (x, p) = 0.

(3.9)

No approximation has been made so far, hence this equation is exactly

equivalent to the Heisenberg equation or to the Schroedinger equation.

If the gradient of the potential is not too strong, the summation over

k index can be truncated at the first term, in which ~ does not ap-

pear explicitly, still accounting for quantum evolution; then the previous

equation can be written as

∂W

∂t
+
p

m

∂W

∂x
+∇xU · ∇pW (x, p) = 0,

which has the same form of the classical transport equation. Since

Eq. (3.9) contains only odd derivative of the potential, the previous

equation remains exact for linear or quadratic potentials (for example

an harmonic oscillator potential).

3.5 Transport equation in Quantum Field

Theory

In quantum-relativistic field theory, in order to obtain a function anal-

ogous to the classical distribution function we start defining the Wigner

operator:

Ŵαβ ≡
∫

d4y

(2π~)4
e−ip·y/~ψ̄β(x)e

1

2
y·∂†

e−
1

2
y·∂ψα(x)

=

∫

d4y

(2π~)4
e−ip·y/~ψ̄β(x+)ψα(x−),
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3.5 Transport equation in Quantum Field Theory

where ∂† and ∂ play the role of translation generator acting to the left

and right respectively, the spinors are Heisenberg operators, Ŵαβ is a

4×4 matrix and the spinor indices α and β run from 1 to 4. The Wigner

function is the ensemble average of the previous Wigner operator:

W (x, p) ≡ 〈: Ŵ (x, p) :〉.

The brackets indicate ensemble averaging and the colons normal order-

ing with respect to the vacuum state. The physical interpretation of the

Wigner function become clear if we note that in terms of the four mo-

mentum operator p̂µ = 1
2
i(∂µ − ∂†µ) the integration over y gives formally

Wαβ(x, p) = 〈: ψ̄β(x)δ
4(p− p̂)ψα(x) :〉.

In this way TrW (x, p) measures the scalar density at space-time point

xµ with momentum pµ.

The Wigner function matrix can always be decomposed in terms of

the 16 independent generators of the Clifford algebra. We choose the

conventional basis Γi = 1, iγ5 = −γ0γ1γ2γ3, γµ, γµγ5, σµν , which under

hermitian conjugation transforms in the following way:

Γ†
i = γ0Γiγ

0. (3.10)

The expansion on this basis of the Wigner function reads:

W (x, p) = WS(x, p) + iγ5WP (x, p) + γµW
µ
V (x, p)

+ γµγ5W
µ
A(x, p) +

1

2
σµνW

µν
T (x, p).

The functionsWS ≡ 1
4
TrW ,WP ≡ −1

4
iTr[γ5W ],W µ

V ≡ 1
4
Tr[γµW ],W µ

A ≡
1
4
Tr[γ5γµW ] and W µν

T ≡ 1
4
Tr[σµνW ] are all real due to property (3.10)

and behave under Lorentz transformation like a scalar, a pseudo-scalar,

a vector, an axial-vector and an antisymmetric tensor respectively. They

represent physical current densities; for example the vector current is

given by

jµ(x) = 〈ψ̄γµψ〉 =
∫

d4pTr[γµW (x, p)] = 4

∫

d4pW µ
V (x, p),
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3.5 Transport equation in Quantum Field Theory

where the trace is over spinor indices.

The pseudo-scalar WP and axial-vector WA parts vanish in the case

of locally spin-saturated system [91] and the tensor part can be neglected

in the classical limit [92], so that the Wigner function in this case can be

written as

W (x, p) =WS(x, p) + γµW
µ
V (x, p). (3.11)

The procedure to derive the quantum-relativistic transport equation

for the Wigner function is similar to that used in the previous section,

making the Wigner transformation of the field equation of motion. We

consider a system described by a fermionic field which interacts through

a scalar field and derive the transport equation in this simplified case.

From the Lagrangian of such a system,

L = ψ̄(x)(iγµ∂
µ − gsσ)ψ(x)−

1

2
m2

sσ
2,

we obtain the following equation of motion for the fermionic field:

[iγµ∂
µ − (m− gsσ)]ψ(x) = 0. (3.12)

The Wigner transformation of the previous equation is given by:

∫

d4y

(2π~)4
e−ip·y/~ψ̄β(x+)[iγµ∂

µ − (m− gsσ)]ψ̄α(x−) = 0;

after some calculations we get

(

γ · p+ i

2
γ · ∂ −m

)

βδ

Wδα(x, p)

+

∫

d4y

(2π~)4
e−ip·y/~〈: ψ̄β(x+)ψ̄α(x−)σ(x−) :〉 = 0.

(3.13)

The previous equation is exactly equivalent to the Dirac equation (3.12),

since no approximation has been made to obtain it. However to derive

the usual expression of the quantum relativistic transport equation one

makes two approximations.
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3.5 Transport equation in Quantum Field Theory

• The evaluation of the integrals in Eq. (3.13) is considerably sim-

plified if we use the Mean Field Approximation (MFA) in which

the quantum fluctuations are neglected, treating the scalar field as

a classical function and thus keeping it out from the expectation

value.

• Using the so called semiclassical approximation the field can be

expanded in a Taylor series at the spacetime point x and, if its

gradient is not too strong, it is reasonable to truncate the expansion

at the first order.

With the previous simplification the scalar field is given by

σ(x−) ≃ σ(x)− yµ

2
∂xµσ(x); (3.14)

substituting it in Eq. (3.13) we get:
(

γ · p+ i

2
γ · ∂ −m∗(x)− i

2
∂xµσ(x)∂

µ
p

)

W (x, p) = 0,

where m∗(x) = m− σ(x) is the effective mass.

Including higher order derivatives in (3.14) we would get an expan-

sion in terms of higher order derivatives of the field and of the Wigner

function.

The previous equation can be decomposed in two equations, one for

the imaginary part and the other for the real part. For the latter we

have:

(γ · p−m∗(x))W (x, p) = 0,

whereas for the imaginary part we get:

(

γ · ∂ − ∂xµm∗(x)∂µp
)

W (x, p) = 0.

The real part contains the mass-shell condition; indeed, multiplying the

left-hand side for (γ · p + m∗(x)) and taking the trace over the Dirac

indices we obtain
(

p2 −m∗2
)

W (x, p) = 0;
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3.6 Numerical implementation of transport equation

including more terms in the gradient expansion (3.14) would have brought

terms breaking the mass-shell constraint.

Making use of the decomposition of W (x, p) into scalar and vector

components as shown in Eq. (3.11), writing all in terms of the scalar

partWS(x, p) and using the relation between the latter and the one-body

phase space distribution f(x, p) =WS(x, p)/m
∗(x) we get:

(

p · ∂ +m∗(x)∂µm
∗(x)∂µp

)

f(x, p) = 0. (3.15)

This is the Vlasov equation which describes the evolution of the phase

space density f(x, p) for fermions interacting through a scalar field σ.

The quantum effects are encoded in the fields, while the evolution of

f(x, p) appears as the classical one.

Dissipative effects arising from collisions are taken into account adding

the collision integral C[f ] on the right-hand side of Eq. (3.15) and thus

finding the quantum-relativistic Boltzmann transport equation for the

system under consideration:

(

p · ∂ +m∗(x)∂µm
∗(x)∂µp

)

f(x, p) = C[f ](x, p). (3.16)

The above equation describes the motion of particles considering both

collisions, i.e. short range interactions, and mean field, i.e. long range

effects. Therefore, a Boltzmann-like kinetic transport equation can be

derived under pertinent approximation, as discussed above, also in the

relativistic quantum field theory.

3.6 Numerical implementation of transport

equation

In order to numerically implement the Boltzmann equation we divide

the space into a three-dimensional lattice and we use the standard test

particle method to sample the distribution function f(x, p); the collision
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3.6 Numerical implementation of transport equation

integral C[f ] is solved by means of a stochastic algorithm.

Both techniques will be explained in this section.

3.6.1 Test particle method

The test particle method was introduced by Wong [93] and is used

in almost all transport calculations [94–98]. In this method the phase

space distribution function is sampled by means of a large number of so

called test particles. Usually the test particles are chosen point-like both

in coordinate and momentum space, hence the phase space distribution

can be written as a sum of δ functions:

f(r,p, t) = ω
Ntest
∑

i=1

δ(3)(r− ri(t))δ
(3)(p− pi(t)),

where ri(t) and pi(t) indicate respectively the position and the momen-

tum of the i-th test particle, Ntest is the total number of test particles

and ω is a renormalization factor, such that the integral over coordinates

and momenta of the phase space distribution is equal to the total number

of real particles Nparticles:
∫

d3r

∫

d3p

(2π)3
f(r,p, t) =

ω

(2π)3
Ntest = Nparticles;

hence (2π)3/ω is equal to the number of test particles per unit real parti-

cle. With the introduction of test particles the solution of the transport

equation reduces to solve the classical equation of motion for the test

particles. Indeed, it can be shown by means of the Liouville theorem

that the phase space distribution given as a collection of point-like test

particles is a solution of the Boltzmann equation (3.16) if positions and

momenta of the test particles satisfy the relativistic Hamilton equations:

ṙi =
pi

Ei

, ṙi = −∇rEi + coll,

where the term coll contains the effect of the collision integral. The

previous equation of motion are numerically implemented in the following
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3.6 Numerical implementation of transport equation

way:

ri(t+∆t) = ri(t−∆t)− 2∆t
pi(t)

Ei(t)

pi(t+∆t) = pi(t−∆t)− 2∆t∇rEi + coll,

where the index i refers to the i-th test particle and ∆t is the mesh time.

3.6.2 Stochastic method

The numerical implementation of the collision integral is based on the

stochastic method introduced by Xu and Greiner in a parton cascade [99].

In this algorithm a probability P22 is associated to a collision between two

particles; whether the collision happen or not is sampled stochastically:

it will occur only if a number randomly extracted between 0 and 1 is

lower than P22. The probability P22 may be derived directly from the

collision term (3.6) of the Boltzmann-Vlasov equation (3.16). Indeed,

the collision probability per unit volume ∆3x and unit time ∆t can be

defined as the ratio between the number of collisions occurring in such

unit box ∆3x during the time interval ∆t and the total number of pairs

present in the unit box:

P22 =
∆N2→2

coll

∆N1∆N2
. (3.17)

The number of binary collision ∆N2→2
coll can be derived directly from

the collision term of the Boltzmann equation [99–102]: assuming two

particles in a spatial volume element ∆3x with momenta in the range

(p1,p1 + ∆3p1) and (p2,p2 + ∆3p2), the collision rate per unit phase

space for such particle pair derived from Eq. (3.6) is given by

∆N2→2
coll

∆t 1
(2π)3

∆3x∆3p1
=

1

2E1

∆3p2
(2π)32E2

f1f2
1

ν

∫

d3p′1
(2π)32E ′

1

d3p′2
(2π)32E ′

2

|M12→1′2′ | (2π)4δ(4)(p1 + p2 − p′1 − p′2).

Employing the definition of cross section for particles with mass mi,

σ22 =
1

4F

1

ν

∫

d3p′1
(2π)32E ′

1

d3p′2
(2π)32E ′

2

|M12→1′2′ | (2π)4δ(4)(p1 + p2 − p′1 − p′2),
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3.6 Numerical implementation of transport equation

where F =
√

(p1 · p2)2 −m1m2 is called invariant flux, ∆N2→2
coll can be

written in a more compact way:

∆N2→2
coll =

1

(2π)3
f1∆

3p1
1

(2π)3
f2∆

3p2∆
3x∆tσ22

F

E1E2
. (3.18)

The total number of pair present in a unit box is given by

∆N1∆N2 =
1

(2π)3
f1∆

3x∆3p1
1

(2π)3
f2∆

3x∆3p2. (3.19)

The relative velocity between the two particles can be computed from

the invariant flux F :

vrel =
F

E1E2

=

√

[s− (m1 +m2)2][s− (m1 −m2)2]

2E1E2

,

where s = (p1 + p2)
2 is the Mandelstam variable. Inserting Eq. (3.18)

and Eq. (3.19) in (3.17) and employing the definition of σ22 and vrel, the

collision probability can be expressed as

P22 = vrelσ22
∆t

∆3x
.

If the test particle method is employed, P22 has to be divided by Ntest in

order to scale the cross section σ → σ/Ntest and get the correct collision

probability .

In [99] it is shown that the numerical solution obtained with the

stochastic method converges to the exact solution of the Boltzmann equa-

tion in the limit ∆t→ 0, ∆3x→ 0. Hence we divide the space into suffi-

ciently small spatial cells and we use sufficiently short temporal steps in

such a way that the typical scales of spatial and temporal inhomogeneities

of the particle densities are larger than ∆3x and ∆t respectively; there-

fore the configuration of particles can be considered locally homogeneous

both in space and time, a necessary condition to get stable results from

this numerical algorithm. A particle may collide only with another par-

ticle in the same cell and the collision probability has to be calculated

for each pair inside the cell and compared with a random number. This

procedure is replicated for all cells in spatial lattice and for all time steps.
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3.6 Numerical implementation of transport equation

Strictly speaking, such collisions have not to be considered as real col-

lisions but as a manner to map the evolution of the phase space induced

by the matrix elementMi→f : this is the stochastic sampling.

3.6.3 Trasport theroy at fixed viscosity

Usually inputs of a transport approach are cross sections of a given set

of microscopic processes, but in our approach we start from a fixed value

of the viscosity over entropy density ratio η/s and compute cross sections

according to the Chapman-Enskog (CE) equation [103], simulating a fluid

with the desired shear viscosity [97, 103–107]. In this way we make

a more direct link between transport theory, based on a description in

terms of parton distribution functions, and hydrodynamical formulations,

in which the dynamics is governed by macroscopic quantities. In the

Chapman-Enskog approach η/s is related to the temperature T , the total

cross section σtot and the density ρ [103]; therefore, we fix the shear

viscosity and compute cell by cell the correspondent cross section by

means of the relation

σtot =
1

5

T

ρ g(a)

1

η/s
, (3.20)

which is valid for a generic differential cross section

dσ

dt
∼ α2

s

(t−m2
D)

2

as proved in Ref. [103]. In the above equation a = mD/2T , with mD the

screening mass regulating the angular dependence of the cross section,

while the function g(a) reads

g(a) =
1

50

∫

dy y6
[(

y2 +
1

3

)

K3(2y)− y K2(2y)

]

h

(

a2

y2

)

,

whereKn are the Bessel functions and the function h relates the transport

cross section to the total one:

σtr(s) = σtot h(m
2
D/s),
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3.6 Numerical implementation of transport equation

being h(ζ) = 4ζ(1 + ζ)[(2ζ + 1) log(1 + 1/ζ)− 2]. The g(a) is the proper

function accounting for the correct relaxation time τ−1
η = g(a) σtot ρ as-

sociated to the shear viscosity transport coefficient. For isotropic cross

section, i.e. mD → ∞, the function g(a) is equal to 2/3 and Eq. (3.20)

reduces to the relaxation time approximation with τ−1
η = τ−1

tr = σtr ρ,

while for finite values of mD, corresponding to anisotropic scatterings,

g(a) < 2/3.

In the regime where viscous hydrodynamics applies the specific micro-

scopic details of the cross section are irrelevant, hence our approach is

an effective way to simulate a fluid at a given η/s by means of transport

theory [107], with the advantage to start from the one-body distribution

function instead of the energy-momentum tensor.
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CHAPTER 4

MODELLING THE PRE-EQUILIBRIUM STAGE

OF RELATIVISTIC HEAVY ION COLLISIONS

The understanding of early stage dynamics and of thermalization

mechanisms that lead to the formation of the quark-gluon plasma is one of

the most interesting and challenging open issue of ultrarelativistic heavy

ion collisions. In Chapter 2 we have seen that in the standard initial

scenario of such nuclear collisions, immediately after the two nuclei had

passed one through each other a peculiar configuration of strong longi-

tudinal color-electric and color-magnetic coherent fields named glasma is

produced [42–47]; as the system expands quantum fluctuations cause the

decay of the glasma to a parton liquid which thermalizes in τeq . 1 fm/c,

a scenario in agreement both with hydrodynamic models [67] and cal-

culations based on transport theory [99, 107]. Quantum fluctuations

in the glasma fields are amplified by plasma instabilities, particularly

the Weibel instability, which eventually lead to loss of coherence of the

color fields and to a locally isotropized and thermalized particle plasma

[53, 54, 56, 108–112].

Among the other approaches, models based on the AdS/CFT cor-

respondence [57, 58, 113–115], in which thermalization appears as the
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formation of a black hole horizon in the dual theory, have been devel-

oped recently in order to study the early equilibration problem.

Besides plasma instabilities, a possible mechanism causing initial field

decay and quark-gluon plasma production is the Schwinger effect. It was

first introduced in 1936 by Heisenberg and Euler [116] and formalized in

the context of quantum electrodynamics by Schwinger more than sixty

years ago [117]. The Schwinger mechanism consists of a vacuum instabil-

ity towards the creation of particle pairs by a strong electric field, and it

is related to the existence of an imaginary part in the quantum effective

action of an electric field; see Ref. [118] for a review.

In this chapter we present our model of early times dynamics of the

system produced in relativistic heavy ion collisions by an initial color-

electric field which then decays to a plasma by the Schwinger effect.

One of the main novelties of our study consists in the coupling of field

evolution to plasma dynamics by solving consistently the classical field

equations and the relativistic Boltzmann equations; the self-consistent

solution of the problem allows, among other things, to take into account

the backreaction of the color currents on the classical field, which has

been often neglected in previous studies. Moreover, since we solve the

full kinetic equation without resorting to relaxation time approximation,

we can explore the early time dynamics in a more suitable way than how

has been done in [119]. Even more, we do not rely on linear response

theory to relate the color currents to the electric field, thus going beyond

what has been done previously in [120].

In this Chapter, we focus on a single flux tube of a given transverse

area and with a longitudinal chromoelectric field that we assume ho-

mogeneous in the transverse plane. Although this geometry is a strong

simplification of the realistic initial conditions relevant for heavy ion col-

lision experiments, this implementation allows to better understand the

physics which underlies the formation of the quark-gluon plasma and
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4.1 From chromoelectric flux tubes to the quark-gluon plasma

to compute quantities which serve as indicators of thermalization and

isotropization of the system and of timescales of such processes.

In the next chapter we will describe a more realistic initial condition,

developed in order to simulate RHIC and LHC collisions and to investi-

gate the effect of the pre-equilibrium dynamics on photon emission.

4.1 From chromoelectric flux tubes to the

quark-gluon plasma

In order to describe the initial stage of relativistic heavy ion collisions

we simulate the formation of a quark-gluon plasma resulting from the de-

cay of color flux tubes created just after the collision of the two incoming

nuclei. The production of the parton plasma is due to the Schwinger

effect, whereas the dynamical evolution of the system particles+field is

obtained coupling in a self-consistent way relativistic kinetic equations

to field equations.

Due to the complexity of the physical problem, we do not insist on

implementing the most realistic geometrical and dynamical conditions

relevant for heavy ion collision experiments, in which one should take

into account several flux tubes in the transverse plane more similar to

the glasma configuration and express the color field evolution by means

of Yang-Mills equations; rather we consider a simpler situation imple-

menting an Abelian Flux Tube (AFT) model [42–44] with the following

main ingredients:

• the initial condition consists of a longitudinal color-electric field

which is produced by color charges in the colliding nuclei, hence

neglecting initial color-magnetic fields and ignoring initial trans-

verse fields originated from quantum fluctuations;

• the color-electric field decays into particle pairs by the Schwinger

mechanism;
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4.1 From chromoelectric flux tubes to the quark-gluon plasma

• the particles propagate in the medium colliding and interacting

with the background color field;

• particle creation as well as particle currents affect in a self-consistent

way the color-electric field;

• we neglect the non-Abelian term in the evolution equation of the

electric field (see the next section for more details).

The last assumption allows the easiest implementation of the coupling

of classical field equations to relativistic kinetic theory in the presence of

the Schwinger mechanism. Nevertheless, even though the model is called

Abelian, such nomenclature simply refers to the fact that in the evolution

equation for the classical field self-interaction terms coming from non-

vanishing structure constants of the color gauge group are neglected [49].

Gauge self-interactions are still present in this simulations, thanks both

to the Schwinger effect which produces charged gluons from the classical

field and to displacement currents which affect the evolution of the field.

Coupling field equations to kinetic equations for the many particle

system produced through the Schwinger mechanism, we can follow the

entire dynamical evolution of the system produced in relativistic heavy

ion collisions, from the very early beginning to final stages, within one

single theoretical approach.

4.1.1 Schwinger mechanism

The problem of pair formation in strong electric fields has been in-

vestigated recently by means of real-time lattice simulations [121, 122];

moreover non-Abelian generalizations of the Schwinger probability have

been discussed in the case of both static and time-dependent fields [123–

126]. In the last forty years, Schwinger particle production has been

considered as a mechanism for the color field decay in the framework of

quark-gluon plasma physics [49, 119, 120, 127–142].
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4.1 From chromoelectric flux tubes to the quark-gluon plasma

In this subsection we describe our implementation of Schwinger parti-

cle production, assuming that the initial longitudial color field is polarized

along the third direction of adjoint color space, meaning that only one

particular color charge is present in the two colliding nuclei [119].

In the case of a static box, the decay probability of a color-electric field

E in massless particles by means of the Schwinger effect is given by

dNjc

dΓ
≡ p0

dNjc

d4xd2pTdpz
= Rjc(pT ) δ(pz) p0 (4.1)

with

Rjc(pT ) =
Ejc
4π3

∣

∣

∣
ln
(

1± e−πp2
T
/Ejc
)
∣

∣

∣
, (4.2)

where j and c are respectively flavor and color indices: j = 0 stands

for gluons, while j = 1, Nf labels quarks and the corresponding negative

values of j labels antiquarks; the plus (minus) sign corresponds to the

creation of a boson (fermion-antifermion) pair. The momentum compo-

nent pT and pz refer to each of the two particles created from the vacuum;

E is the effective force which acts on the tunnelling pair, depends on color

and flavor and is given by

Ejc = (g|QjcE| − σj) θ (g|QjcE| − σj) ,

where σj corresponds to the string tension depending on the flavor con-

sidered and p0 =
√

p2T + p2z is the single particle kinetic energy. The Qjc

are color-flavor charges [49] which for quarks are

Qj1 = 1/2, Qj2 = −1/2, Qj3 = 0, j = 1, Nf ;

for antiquarks the color-flavor charges are just minus the corresponding

charges for quarks; finally for gluons the charges are

Q01 = 1, Q02 = 1/2, Q03 = −1/2,
Q04 = −Q01, Q05 = −Q02, Q06 = −Q03.
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We have only six gluons, corresponding to the non-diagonal color gener-

ators, as we assume that the initial color field is polarized along the third

direction of adjoint color space, therefore it cannot produce gluons with

the same color; the two gluon fields corresponding to the diagonal color

generators have vanishing coupling with the background field, hence they

cannot be produced by the Schwinger mechanism.

Eq. (4.1) is then easily generalized to the case of an expanding box, as

we will see in the next section.

4.1.2 Relativistic kinetic equations

In order to study the evolution of the system self-consistently we

couple the dynamical evolution of the color field to the dynamics of the

many-particle system produced by the decay. The latter is described

by the relativistic Boltzmann transport equation which, in presence of a

gauge field F µν , is given by

(

pµ∂µ + gQjcF
µνpν∂

p
µ

)

fjc(x, p) =
dNjc

dΓ
+ Cjc [f ] , (4.3)

where fjc(x, p) is the distribution function for flavor j and color c and F µν

is the color-electromagnetic tensor. On the right hand side dN/dΓ is the

invariant source term, which describes the creation of quarks, antiquarks

and gluons due to the decay of the color-electric field and is given by

Eq. (4.1), and C [f ] represents the collision integral described in Section

3.3, which accounts for change of f due to collision processes and is

responsible for a non-zero viscosity (η/s 6= 0). Considering only 2 → 2

body elastic scatterings, the collision integral ig given by

C22 =

∫

d3p2
(2π)32E2

d3p′1
(2π)32E ′

1

d3p′2
(2π)32E ′

2

(f ′
1f

′
2 − f1f2)

× |M|2 (2π)4δ(4)(p′1 + p′2 − p1 − p2),

where we omit flavor and color indices for simplicity;M is the transition

amplitude for the elastic process and is related to the differential cross
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section through the formula

|M|2 = 16π s2
dσ

dt
,

being s the Mandelstam variable.

In our simulations Eq. (4.3) is numerically solved as explained in Section

3.6, using the test particles method to sample the distribution function

and computing the collision integral by means of Monte Carlo methods

based on the stochastic interpretation of the transition amplitude [97,

103–107, 143–145]. Moreover we use the approach at fixed η/s described

in same section, choosing the shear viscosity over entropy density ratio of

the fluid and computing cross sections by means of the Chapman-Enskog

(CE) equation (3.20) [97, 103–107].

4.1.3 Maxwell equations

We couple relativistic kinetic theory to evolution equations of the elec-

tric field; assuming an abelian dynamics, they are given by the Maxwell

equations:
∂E

∂z
= ρ,

∂E

∂t
= −J, (4.4)

where ρ and J corresponds to color charge density and color-electric

current respectively. The color charge density is

ρ = g

Nf
∑

j=−Nf

3
∑

c=1

Qjc

∫

d3p fjc(p),

where the sum runs over quarks, antiquarks and gluons. The color-

electric current is given by the sum of two contributions:

J = JM + JD, (4.5)

where JM is the matter current and JD is the displacement current, fol-

lowing the nomenclature of Ref. [119]. Indeed, the Schwinger effect can

be thought as a dielectric breakdown in which dipoles are produced by
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quantum tunnelling, hence changing the local dipole moment of the vac-

uum and giving rise to a polarization current; then charges move in the

medium due to the residual electric field producing a conductive current.

We notice that, even if the equation of motion of the classical field is

abelian, there is a sign of the non-abelian nature of QCD because the

background field interacts with gluon quanta via JD.

The matter current is a generalization in the case of color charges of

the usual electric current density and is given by

Jµ
M = g

Nf
∑

j=−Nf

3
∑

c=1

Qjc

∫

d3p

p0
pµ fjc(p).

The displacement current arises from the polarization of the vacuum

owing to the decay of the electric field by the Schwinger mechanism; it is

given by the time derivative of the local dipole moment induced by the

particle pop-up from the vacuum, in the same way a time variation of the

local dipole moment in a medium gives rise to a change in the local electric

field [146]. The dipole moment can be computed as 2p0/E, where p0 is

the kinetic energy of the particles coming out from the vacuum; in the

reference frame where particles are produced with vanishing longitudinal

momentum the displacement current can be written as

JD =

Nf
∑

j=0

3
∑

c=1

Qjc

∫

d3p

p0

dNjc

dΓ

2pT
E
.

where the sum runs over gluon and quark-antiquark pairs. Color charges

and currents present in Eq. (4.4) depend on parton distribution functions

as well as the kinetic equations (4.3), hence allowing to solve field and

particles equations in a self-consistent way and to take into account the

back-reaction of particles on the field.
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4.2 Boost-invariant 1+1D expanding color

flux tube

We have widely tested the model of the chromoelectric flux tube with

Schwinger particle production explained in the previous section in a static

box of 5 fm sides and periodic boundary conditions for particle propaga-

tion; these results are discussed in detail in Refs. [147, 148] and provide

a further check of the numerical solution of Eq. (4.3).

In this section we focus on the case of a longitudinally expanding back-

ground [147], assuming the expansion takes place along the direction of

the electric field, which will be labelled as the z direction hereafter and

corresponds to the beam axis in an heavy ion collision; moreover, the

dynamics is assumed invariant for boosts along the longitudinal direc-

tion. This scenario is interesting because it is close to the description

of the central rapidity region in the early stage of a relativistic heavy

ion collision. Due to the symmetry of the system, assuming at initial

time a homogeneous color-electric field in the transverse plane as well

as along the beam direction, it will remain homogeneous in the trans-

verse plane during the whole dynamical evolution, then depending only

on (z, t) coordinates. Along with the field, both the currents and the in-

variant distribution functions will depend only on time and longitudinal

coordinate and not on transverse coordinates.

The evolution equations for the color-electric field are given by the

pair of Maxwell equations (4.4), where both current and charge density

are computed in the laboratory frame. Assuming boost invariance along

the longitudinal direction implies that E depends only on proper time

τ =
√
t2 − z2. We can combine the two Eqs. (4.4) to form a boost-

invariant equation, namely

τ
dE

dτ
= zρ− t J ;

using the well-known relations from relativistic kinematics z = τ sinh ηs
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and t = τ cosh ηs that link the spacetime coordinates t and z to the

longitudinal proper time τ and the spacetime rapidity ηs =
1

2
ln
t+ z

t− z ,
the previous equation can be rewritten as

dE

dτ
= ρ sinh ηs − J cosh ηs, (4.6)

where the right hand side corresponds to the electric current computed

in the reference frame where the time is the proper time. The previ-

ous equation is in agreement with the boost invariant form of Maxwell

equation used in [119, 120].

We solve Eq. (4.6) adopting a finite difference scheme and preparing

a box with a square region in the transverse plane,

−xmax ≤ x ≤ xmax and − ymax ≤ y ≤ ymax,

and with cells in spacetime rapidity, fixing the range of ηs in which we

distribute the produced particles as:

−ηmax
s ≤ ηs ≤ ηmax

s with ηmax
s = 2.5.

This implementation corresponds to have a box with a longitudinal ex-

pansion since from relativistic kinematics zmax = t tanh ηmax
s , which cor-

responds to a wall moving at ultrarelativistic speed along the longitudinal

direction.

In order to take into account the longitudinal expansion Eq. (4.3) has

to be modifed as [119]

E
dN

d4xd2pTdpz
= R(pT )δ(w)v, (4.7)

whereR(pT ) depends only on transverse momentum and is not influenced

formally by the expanding geometry; the two boost-invariant variables w

and v are defined as

w = tpz − zp0, v = p0t− zpz;
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δ(w) affects the longitudinal momentum distribution by forcing for the

produced pairs the condition

pz =
z

t
p0 = pT sinh y,

with p0 =
√

p2T + p2z; such a condition is equivalent to assume that mo-

mentum rapidity y of the produced pair is equal to his spacetime rapidity

ηs.

The procedure we implement to create pairs in the case of boost in-

variant longitudinal expansion is the following. At each time step and for

each rapidity slice, given the value of E and of the slice volume, we com-

pute the expected pair number N integrating Eq. (4.1) over the volume;

then we distribute the N pairs uniformly in the transverse plane and

with transverse momentum pT according to the distribution in Eq. (4.2).

As the pairs have to pop up from the vacuum with vanishing total and

longitudinal momenta, for a given pT we extract randomly the azimuthal

angle φ, which uniquely determines py = pT sin φ and px = pT cosφ of one

of the particles in the pair; then the momentum direction of the second

particle is given by π − φ.
In this section we study the effect of this boost-invariant longitudi-

nal expansion on particle production from the decay of a chromoelectric

flux tube with a transverse area of 1 fm2; moreover, for simplicity we

restrict in this section to the formation of only gluon pairs through the

Schwinger effect. Simulations improved with expansion of the system in

three dimensions and Schwinger production of both gluons and quarks

will be presented in the following section, whereas the more realistic case

in which a color-electric field smoothly distributed in the transverse plane

decays forming a quark-gluon plasma at RHIC and LHC energies will be

treated in the next section.

We show computations at fixed value of the viscosity over entropy den-

sity ratio, choosing different values such as η/s = 1, 3, 10 and the limit

case of η/s→∞. We have checked that calculations at fixed total cross
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section give similar results. The relation among the total cross section

and η/s we have used in the simulation is the Chapman-Enskog relation

with an isotropic cross section (3.20). The extreme case of η/s → ∞
corresponds to a zero total cross section, that is the case of a collisionless

plasma.

4.2.1 Particles formation
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Figure 4.1: Chromoelectric field strength (main panel) and particle number produced
per unit of transverse area and unit rapidity (inset panel) as a function of
time. The electric field is averaged in the central rapidity region |y| < 0.5.

In the mail panel of Fig. 4.1 we plot the chromoelectric field strength

averaged in the central rapidity region |y| < 0.5 as a function of time

for different values of η/s. The electric field is averaged at midrapidity

because in this region, within a 10% of accuracy, one has t ≈ τ with

t corresponding to the laboratory frame in which the system expands,

so a comparison with Ref. [119], where the dynamics is followed in τ ,

is more meaningful. The initial value we have used in the simulations

is E(t = 0) = 2.2GeV2, in agreement with the LHC case of Ref. [119],
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but we obtain qualitatively similar results by varying this value. We find

that the chromoelectric field experiences a rapid decay for small values

of η/s. This is due to the fact that in this case the coupling among

particles is large, meaning collisions are very effective in randomizing

particle momenta in each cell, hence damping conductive currents that

may sustain the field. On the other hand, for intermediate and large

values of η/s the electric field is affected by strong fluctuations during

temporal evolution.

In the inset of Fig. 4.1 we plot the number of produced gluons per unit of

transverse area and unit rapidity versus time for 4πη/s = 1, 3, 10. We find

that regardless of the value of η/s we use in the simulation, the particles

are produced at very early times, approximately within 0.5 fm/c, with

the only expectation of very few particles produced at later times in the

case 4πη/s = 10. We have checked that changing the initial value E0 of

the electric field does not modify the production time in a considerable

way unless E0 is very small, namely E0 ≪ 1GeV. Moreover, the value

of η/s affects the conversion of the initial classical field to gluons only

within a few percent: for example, comparing the results for 4πη/s = 1

and 4πη/s = 3 we find in the latter case a lowering of less than 10% on

the number of particles produced.

4.2.2 Plasma thermalization

In this subsection we discuss our results about plasma thermalization

and the achievement of the hydrodynamic regime. These quantities are

very important because they show that the system thermalizes within

a timescale in agreement with what is assumed a priori both in hy-

drodynamic simulation and in computation based on IP-Glasma initial

conditions, while in our case the fast thermalization is a dynamical result

of our model.

In the left panel of Fig. 4.2 we plot the proper kinetic energy density
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Figure 4.2: Proper kinetic energy density (top panel) and local temperature (bottom
panel) as a function of time. All the quantities are averaged in the central
rapidity region |y| < 0.5 and viscosity has been fixed using an isotropic
cross section.

εkin, i.e. the kinetic energy computed in each cell in the local rest frame of

the fluid, versus laboratory time; the quantity is averaged at midrapidity

(|y| < 0.5) and computations for three different values of viscosity, fixed

using an isotropic cross section, are shown. Calculations at fixed total
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cross section give similar results. We find that in the case of small η/s,

which corresponds to the case of a system with a large collision rate, the

energy density decays asymptotically as εkin ∝ t−4/3, as is expected in

the ideal hydrodynamic limit in the case of a one-dimensional expansion,

in agreement with Ref. [120]. This is an interesting result because it

shows, among other things, that within relativistic transport theory we

are able to simulate the evolution of a fluid in the hydrodynamic regime

of a very small η/s, that is large collision rate.

For the cases of larger η/s we find that the proper kinetic energy

experiences a power-law decay with a superimposed oscillation pattern.

The thin dashed line in the figure corresponds to t−4/3. These results are

in good agreement with those of Ref. [119].

In the right panel of Fig. 4.2 we plot the local temperature of the plasma

as a function of time; it is obtained by data shown in the left panel of

Fig. 4.2 by assuming a perfect gas equation of state which gives T ∝ ε
1/4
kin

with the proportionality constant being related to the number of active

degrees of freedom in the system. Our temperature is higher than the

one cited in Ref. [119] because in the latter study both quarks and gluons

have been considered in the plasma, while in our case we only include

gluons. The thin dashed line corresponds to t−1/3, which is the behaviour

expected for a one-dimensional expansion of non-viscous fluids.

In Fig. 4.3 we plot the gluon spectra at midrapidity |y| < 0.5 for two

different values of the viscosity: left panel corresponds to 4πη/s = 1,

right panel to 4πη/s = 10. For each value of viscosity the spectrum at

three different times is shown, namely t = 0.2, 1.0, 5.0 fm/c. The thin

solid black line corresponds to a thermal spectrum,

dN

pTdpTdy
∝ pT e−βpT ,

which describes a thermalized system in three spatial dimensions at tem-

perature T = 1/β. The thermal spectrum at t = 1 fm/c is computed by

taking the temperature at that time from the right panel of Fig. 4.2.
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Figure 4.3: Gluon spectra at midrapidity |y| < 0.5 for η/s = 1 (upper panel) and
η/s = 10 (lower panel). For each value of η/s the spectrum at three
different times is shown.

We find that for 4πη/s = 1 the system efficiently thermalizes within

1 fm/c, as evident by comparing the thermal spectrum (black thin line)

with simulation data (dot-dashed thin red line). For 4πη/s = 10 the

spectrum of produced gluons at t = 1 fm/c is in disagreement with the

corresponding thermal spectrum, meaning the system is not completely

thermalized in three dimensions. Moreover, the very mild change in the

slope of the spectrum we measure from t = 1 fm/c to t = 5 fm/c shows

that the system does not cool down efficiently in this case, as is expected

because the larger the viscosity the larger is the energy dissipated into

heat; therefore the system cools down more slowly than in the case of

small viscosity, which can be confirmed also by looking at the orange

curve in Fig. 4.2.

4.2.3 Plasma isotropization

In this subsection we show our results for the evolution of the ratio

PL/PT for the system produced by the decay of the color field, where PL

and PT stand for longitudinal and transverse pressure respectively. The

computation of this quantity is important because, as we will discuss,

at initial time the system is very anisotropic, but the interactions and

the decay of the classical field might lead to an almost isotropic state
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during the early evolution of the system. Moreover, it is a common

assumption of hydrodynamic calculations that the quark-gluon plasma

is very close to an isotropic system and isotropization occurs quickly:

we show how the quick (partial) isotropization scenario can be realized

within a consistent calculation. The results of this subsection, along

with those about thermalization shown in the previous one, allow to

draw a picture in which thermalization and isotropization arise within

the time range required by hydrodynamic simulations, therefore offering

a dynamical justification to early thermalization and isotropization of

hydrodynamics.
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Figure 4.4: Ratio of longitudinal pressure over transverse pressure PL/PT as a func-
tion of time. The pressures are averaged in the central rapidity region
|y| < 0.5. The different lines correspond to different values of viscosity
η/s, which has been fixed using an isotropic cross section.

In Fig. 4.4 we plot the time evolution of the ratio PL/PT for several

values of η/s. The pressures are computed cell by cell in the local rest

frame of the fluid and then averaged in the rapidity range |y| < 0.5.

The initial longitudinal pressure is negative and PL/ε = −1, because at

initial time the system is made of pure chromoelectric field for which the
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energy-momentum tensor is given by

T µν = diag (ε, PT , PT , PL) ,

where ε = E2/2, PT = ε and PL = −ε. Then, as soon as particles are

produced, they give a positive contribution to the longitudinal pressure

and the field magnitude decreases, eventually leading to a positive pres-

sure. We find that, regardless of the value of η/s, the time needed to the

total longitudinal pressure to be positive is about 0.2 fm/c. Collisions

among particles tends to bring the system towards an isotropic state, for

which PL = PT . In the case of a static box simulation, regardless of the

value of η/s, the system is very efficient in removing the initial pressure

anisotropy, since in this case collisions always lead to the equilibrium

state with PL/PT = 1, even though isotropization times are different for

different viscosities [147, 148]. Nevertheless, in the case of an expanding

box collisions may not have enough time to bring the system to a perfect

isotropic state, especially for large viscosities, because at a certain point

during the expansion the distance between particles become greater than

their mean free path.

We notice from Fig. 4.4 that for 4πη/s = 1 the large collision rate

among particles remove the initial pressure anisotropy quite efficiently

and quickly: in this case PL/PT ≃ 0.8 within 0.6 fm/c; then the ratio

tends to increase towards 1 within the time evolution of the system.

This would justify the use of viscous hydrodynamics which commonly

starts simulations at τ0 ≈ 0.6 fm/c assuming an isotropic state at that

time.

On the other hand, for larger viscosities the system reaches a less isotropic

state with PL/PT < 1 and the oscillations of the electric field strength

in Fig. 4.1 lead to many oscillations of PL/PT , which are damped by

collisions during the system evolution: the larger the η/s of the fluid, the

larger are the oscillations of PL/PT and the lower is the maximum value

reached by the pressure ratio; moreover such oscillations are damped
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more efficiently for smaller viscosities. We can better understand this

correlation comparing the cases 4πη/s = 1 and 4πη/s = 10 in Fig. 4.4:

in the latter case PL/PT experiences many oscillations which follow the

alternation of maxima of |E|, corresponding to minima of PL (since the

field gives a negative contribution to PL), and zeros of E, corresponding

to maxima of PL; moreover, at large times PL/PT is quite smaller than

one. The different behaviour of the temporal evolution of the pressure

ratio we find for different values of the viscosity is in agreement with the

results of Ref. [119].

In Fig. 4.5 we show the temporal evolution of the ratios PL/ǫ and

PT/ǫ, where ǫ corresponds to the total energy density that is the sum of

the energy densities of particles and fields. The results for three different

viscosities are plotted: 4πη/s = 1 in the top panel, 4πη/s = 3 in the

middle panel and 4πη/s = 10 in the bottom panel. In all of the three

plots the red solid curve corresponds to PL/ǫ and the thin green curve

to PT/ǫ, whereas the thin black dashed line indicates to the conformal

isotropic limit ǫ = 3P . Our results are in agreement with the same

quantities computed in Ref. [52], where a classical Yang-Mills simulation

with a 3 + 1D expanding geometry is considered. Even though the

theoretical framework of Ref. [52] is different, it is very interesting that

the final results are comparable to those of our Fig. 4.5. In the weakest

coupling case considered in Ref. [52], namely g = 0.1, PL asymptotically

approaches zero, a behaviour which we might obtain using viscosities

larger then η/s = 10/4π that we have not considered in the present

study. However, the case g = 0.5 of Ref. [52] produces PL/ǫ and PT/ǫ

which lie between our results for η/s = 3/4π and η/s = 104π.
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Figure 4.5: Ratios PL/ǫ and PT /ǫ versus time for 4πη/s = 1 (top panel), 4πη/s = 3
(middle panel) and 4πη/s = 10 (bottom panel). All the quantities are
averaged in the central rapidity region |η| < 0.5 and viscosity has been
fixed using an isotropic cross section.
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4.3 Production and 3+1D expansion of a

quark and gluon plasma

The 1+1D expansion case discussed in the previous section is interest-

ing because a longitudinal expansion characterizes the very early times on

ultra-relativistic heavy ion collisions. In this section we show results for

the more realistic case of a 3+1D expanding flux tube with the same ini-

tial condition of the one-dimensional expanding system: a homogeneous

longitudinal color-electric field. Furthermore, in this case we implement

the Schwinger conversion of color field not only in gluon pairs but also

in quark-antiquark pairs, restricting to the case Nf = 2 in which only

quarks with flavors u and d (and the corresponding antiquarks ū and d̄)

can be produced by means of the Schwinger formula (4.1).

While in the longitudinal expansion transverse components of the

color-electric field do not develop since Jx and Jy are zero due to periodic

boundary conditions in the transverse plane, in the three-dimensional ex-

pansion we allow for formation of longitudinal as well as transverse com-

ponents of currents and field. As for the case of the 1+1D expansion, we

neglect the magnetic component of the initial color field. Nevertheless, in

this case a magnetic field can be produced dynamically, even if absent in

the initial condition, because of the transverse components of the electric

field (dB/dt = −∇×E); however, we have checked that the magnitude of

the transverse components of E as well as of its curl are negligible, hence

the magnetic field behaves just as a very small fluctuation and should

not affect the dynamics of the plasma.

For a three-dimensional expanding flux tube, the Maxwell equations

for the color-electric field are given by

∇ ·E = ρ,
∂E

∂t
= −J, (4.8)

where t is the time in the laboratory frame and the current and the charge

density depend also on transverse coordinates x and y. The initial field is
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only longitudinal (as in the case of one-dimensional expansion), whereas

transverse components of E will be generated by transverse currents ac-

cording to Eq. 4.8.

Even in this case we assume boost invariance along the longitudinal di-

rection; this implies that Ez depends on the proper time τ . Combining

the two Eqs. 4.8 we obtain the following equation for the longitudinal

component of the electric field:

dEz

dτ
= ρ sinh ηs − Jz cosh ηs − sinh ηs

(

∂Ex

∂x
+
∂Ey

∂y

)

, (4.9)

where the color-electric current and charge density are computed in the

local rest frame of the fluid. The equations for the transverse electric

field components are:

∂Ex

∂t
= −Jx,

∂Ey

∂t
= −Jy. (4.10)

In order to solve Eqs. (4.9) and (4.10) we use a finite difference scheme

and a discretized spacetime using (x, y, ηs) coordinates.

The numerical implementation of the simulation is analogous to that

used for the 1+1D expanding system of the previous section, but in this

case there are no boundary conditions on the transverse plane. Even the

procedure of particles production is equivalent to that used for the longi-

tudinal expansion, but with Eq. (4.7) evaluated in each cell in (x, y, ηs)

rather than in rapidity slices.

In the following we discuss the effect of a three-dimensional expan-

sion on particle production from the decay of a flux tube with a trans-

verse area of 28 fm2 and with homogeneous initial chromoelectric field

Ez = 2.2GeV2; furthermore, unlike the 1+1D case in which we restricted

to the formation of only gluon pairs, in this section we allow for produc-

tion of both gluon and quark pairs through the Schwinger mechanism.

These simulations constitute the base and a numerical check for the re-

sults presented in the next chapter. Indeed, in order to describe photon
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production of heavy ion collisions, we will consider more realistic initial

conditions with a color-electric field smoothly distributed in the trans-

verse plane that decays forming a quark-gluon plasma which expands in

all spatial directions and emits photons through some basic scattering

processes.

As in the previous section, we show computations at fixed value of the

viscosity over entropy density ratio (η/s = 1, 3, 10) using the Chapman-

Enskog formula with an isotropic cross section (3.20) to relate total cross

section to the fixed η/s.

4.3.1 Conversion of color field to particles
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Figure 4.6: Longitudinal (main graph) and transverse (inset) components of the color-
electric field strength averaged in the central rapidity region |y| < 0.5 as
a function of time. The different curves correspond to different values of
η/s.

In Fig. 4.6 we plot the components of the color-electric field strength

averaged in the central rapidity region |y| < 0.5 as a function of time. The

behaviour of the longitudinal component Ez, plotted in the main panel for

three different values of viscosity, is similar to the one of the 1+1D case

treated in the previous section; nevertheless, after a quick decay in less
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than 0.5 fm/c for all values of viscosity, Ez experiences fluctuations for

large viscosity that are weaker than those found in the one-dimensional

case, as we can see comparing maroon dashed lines (4πη/s = 3) and red

dot-dashed lines (4πη/s = 10) of this figure and Fig. 4.1 (main panel);

this is due to the fact that in the 3+1D case the transverse expansion of

particles damps longitudinal currents which sustain the electric field. In

the inset graph the transverse components of the electric field are shown

for 4πη/s = 1; such components are tiny and do not affect the dynamics

of the system, since there is no substantial formation of electric currents

in the transverse plane.
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Figure 4.7: Particle number produced per unit of transverse area and rapidity as a
function of time. Full lines correspond to the total particle number, while
with dashed and dot-dashed lines are indicated gluon number and quark
number respectively. The different curves correspond to different values
of η/s.

In Fig. 4.7 we show the number of particles produced per unit of

transverse area and rapidity versus time for three values of viscosity: be-

sides the total number of particles produced (full lines), the gluon number

(dashed lines) and the quark number (dot-dashed lines) are plotted. We

find that as in the 1+1D result particles are produced very early, within
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0.5 fm/c, independently of the value of η/s, which affects very mildly

the conversion of the initial field to a plasma. For a system of massless

particles in a volume V in equilibrium at a temperature T the particle

number can be computed as

N = ρV = γ
V

(2π)3

∫

d3p e−p/T = γ
V T 3

π2
,

where γ is the degeneracy factor; then the ratio between quark and gluon

numbers reduces to the ratio of the degeneracies, which for Nf = 2 is

given by γq/γg = 24/16 = 1.5. We can see from Fig. 4.7 (right panel)

that the quarks over gluons ratio is about 1.6 in our case, meaning that

when the field is totally converted to particles the system has reached a

nearly chemically equilibrated phase.

We notice from Fig. 4.7 that this mechanism of particle production allows

a very quick quark-gluon plasma formation, with a copious amount of

quarks; this is in disagreement with previous works supporting a scenario

in which at initial times the high energy system is made mainly of gluons,

obtained from the decay of the glasma flux tubes, and the dynamical

evolution lead to a locally thermalized and nearly chemically equilibrated

quark-gluon plasma. Inelastic collisions would anyway quickly drive the

system to a chemical equilibrated plasma. Nevertheless those studies

end up with a final state which consists mainly of quark-antiquark pairs

rather than gluons, in agreement with our result. In the next chapter we

will discuss the effect of this fast quark-gluon plasma formation on photon

production, since processes that emit photons always involve quarks.

4.3.2 Plasma isotropization and thermalization

We now study thermalizaton and isotropization of the quark-gluon

plasma for a realistic 3+1D expanding system.

In Fig. 4.8 the ratio of longitudinal pressure PL over transverse pres-

sure PT as a function of time is plotted. Pressures are computed cell by
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Figure 4.8: Longitudinal over transverse pressure ratio as a function of time for sev-
eral values of η/s. Pressures are averaged at mid-rapidity |y| < 0.5 and
in a central region of the transverse plane.

cell in the local rest frame of the fluid and then averaged in the midra-

pidity region |y| < 0.5 and in a central portion of transverse plane. At

initial time PL/PT = −1 since the initial color-electric field is purely lon-

gitudinal, as in the case of the one-dimensional geometry discussed in the

previous section. While particles pop-up from the vacuum, producing a

positive longitudinal pressure, the field strength decreases; at ∼ 0.2 fm/c

the longitudinal pressure and then the pressure ratio become positive,

regardless of the value of the viscosity. The qualitative behaviour of the

pressure ratio is similar to that found in the 1+1D case, as we can see

comparing this figure to Fig. 4.4: the larger the viscosity of the fluid

the larger are the oscillations of PL/PT , which follow those of the field

strength. Therefore oscillations of PL/PT are more efficiently damped

in this case than in the one-dimensional expansion: while in the latter

case oscillations affect all the evolution of the pressure ratio almost for

4πη/s = 10, in the 3+1D expansion oscillations of PL/PT are damped in

the first 3 fm/c for 4πη/s = 10 and even early for smaller viscosities. For

4πη/s = 1 the pressure ratio is about 0.6 at 1 fm/c, then reaching the
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value 0.7 as the most isotropic value, hence maintaining a higher level

of anisotropy respect to the 1+1D case; this fact, visible also for larger

viscosities, is due to the transverse expansion which, causing a quicker di-

lution of the system, makes collision less efficient in isotropizing particle

momenta.
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Figure 4.9: Temporal evolution of the local temperature, averaged in the central
rapidity region |y| < 0.5 and in a central portion of the transverse plane.
The different curves correspond to different values of η/s.

In Fig. 4.9 we plot the temporal evolution of the local temperature of

the fluid, defined by the ratio T = E/3N as in the case of a thermalized

system. T is evaluated in the local rest frame of the fluid and averaged

in the same rapidity and transverse plane regions of the pressures. We

find that the temperature scales as t−1/3 for about t = 1 − 2 fm and

as t−1 for t > 4 fm, meaning the longitudinal expansion characterizes

early times after particles production ceases while the three-dimensional

expansion becomes dominant at later times. These time dependences of

temperature are in agreement with expectations from ideal hydro for a

longitudinal and three-dimensional expansion respectively, see for exam-

ple [67, 149].
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4.3.3 Effect of quark production
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Figure 4.10: Comparison of longitudinal field decay (upper left panel), total particle
number per unit transverse area and rapidity (upper right panel), pres-
sure ratio PL/PT (lower left panel) and local temperature T (lower right
panel) as a function of time in the case of a gluon plasma (thin curves)
and a quark-gluon plasma (thick lines). Field strength, pressures and
temperature are averaged at midrapidity |y| < 0.5 and in a central re-
gion of the transverse plane. The different colors correspond to different
values of viscosity η/s.

In Fig. 4.10 we compare the quantities previously discussed with those

obtained with simulations starting with the same initial condition (tube

with transverse area of 28 fm2 and with constant longitudinal chromo-

electric field Ez = 2.2GeV2) but for creation of only gluon pair by the

Schwinger effect. In the upper left panel the field strength Ez, in the up-

per right panel the total particle number per unit rapidity and transverse

area d2N/d2xTdη, in the lower left panel the pressure ratio PL/PT and

in the lower right panel the local temperature T = E/3N are plotted

as a function of time. Thick and thin lines correspond to simulations

102



4.3 Production and 3+1D expansion of a quark and gluon plasma

with Nf = 2 and Nf = 0 respectively, whereas blue and red curves

indicate computation with η/s equal to 1/4π and 10/4π respectively.

Field strength, pressures and temperature are averaged at midrapidity

|y| < 0.5 and in a central region of the transverse plane. All the quan-

tities show that in the quark-gluon plasma formation case the dynamics

of field conversion to particles as well as of equilibration of the system

is quicker than in the case of only gluon creation; this is simply due to

the fact that in the latter case there are less channels through which

the color field can convert in particle pairs by means of the Schwinger

mechanism. However, the qualitative behaviour and timescales of all the

quantities considered does not change in a remarkable way when turning

from quark-gluon plasma formation to the case in which only gluon are

produced.
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CHAPTER 5

PRE-EQUILIBRIUM CONTRIBUTION TO

PHOTON PRODUCTION

As introduced in Chapter 2, radiation of photons is considered to

be an important and efficient probe to scrutinise the properties of the

quark-gluon plasma. While hadrons are emitted from the freeze-out sur-

face after suffering also hadronic scatterings, photons are radiated during

the whole spacetime history of the expanding fireball. Because of their

electromagnetic nature and being αem ≪ αs, photons mean free path is

much larger then the typical size of the system; then, once produced,

photons leave the fireball almost undisturbed, and reach the detector

with an unaltered imprint of the circumstances of their production.

In this chapter we discuss our results on the spectrum and the el-

liptic flow of photons emitted from the quark-gluon plasma produced in

heavy ion collisions at both RHIC and LHC energies. Simulating the

space-time evolution of the fireball by solving the relativistic Boltzmann

transport equation and including two-particle scattering processes with

photon emission allows us to make a first step in the description of pho-

tons produced both in the pre-equilibrium phase and in the thermal QGP

phase within a unique theoretical framework.
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Therefore our approach allow us to consider not only a standard

Glauber initialization, like the one commonly used in hydro calculations,

but also an initial condition based on the dynamics of a classical gluon

field which produces quarks and gluons since the very beginning of the

evolution by means of the Schwinger effect.

With this study we aim at spotting the impact of early stage non-

equilibrium dynamics on the photon production.

5.1 Direct Photons

Although radiation of photons is a promising tool to probe the QGP,

a big issue concerning his diagnostics is the large background. Indeed, we

are interested only in photons emerging directly from a collision process,

called direct photons, but more than 90% of all detected photons - the

inclusive photon yield - come out from the decay of final state hadrons.

This huge background have to be eliminated in order to recover the direct

photon signal; several experimental techniques have been developed to

this end, such as invariant mass analysis [150, 151], mixed event analysis

[152], internal conversion method [153, 154], tagging of decay photons

technique [155, 156]. However, the identification of decay photons is a

really complicated task and experimental data on direct photon produc-

tion could not be obtained very accurately so far, especially those on flow

observables.

In a heavy ion collision there are different sources of direct photons,

depending of their origin from different stages of the expanding fireball

formed after the collision:

• prompt photons, which originate from initial hard scatterings;

• pre-equilibrium photons, produced before the medium gets ther-

malized;
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5.1 Direct Photons

• thermal photons from the quark-gluon plasma as well as from the

hadron gas;

• jet conversion photons, which come out from passage of jets through

the plasma.

Figure 5.1: Schematic diagram of different sources of photons and their relative pT
spectra. Figure taken from [157].

In Fig. 5.1 we represent qualitatively the contribution of each photon

source to the direct photon spectrum. Experiments can not distinguish

between the different sources, hence theoretical models are necessary to

identify these sources and their relative importance in the spectrum.

In particular, with our approach we are interested in investigating the

properties of pre-equilibrium photons and grasping their effect on photon

observables of ultra-relativistic heavy ion collisions.
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5.2 Implementation of photon production

5.2 Implementation of photon production

At the leading order in the electromagnetic and strong coupling, the

photon production processes are the QCD Compton scattering and the

quark-antiquark annihilation shown in the diagrams of Fig. 5.2, which

generate the leading logarithmic contribution to the photo-production

rate. Although these processes were originally believed to give the com-

plete leading order contribution [158–160], it was later demonstrated that

the two-to-three processes known as bremsstrahlung and inelastic pair an-

nihilation contain collinear enhancements which make them contributing

at the same order in coupling, O(αemαs), as the two-to-two processes

of Fig. 5.2 [161–163]. A complete calculation in leading order, includ-

ing also the Landau-Pomeranchuk-Migdal (LPM) effect (a suppression

of these processes due to multiple scatterings during the photon emis-

sion), was first made by Arnold, Moore and Yaffe [163] which provided a

parametrised form for the rates.

The great majority of models available until now, especially those using

hydrodynamics formulations, integrate these rates over a spacetime vol-

ume in order to obtain the the total photon emission. This procedure

assumes, among other things, that the system producing photons is in lo-

cal thermal equilibrium, therefore this approach cannot describe photon

emission in the pre-equilibrium phase where the system is out of equilib-

(a) QCD Compton scattering (b) quark-antiquark annihilation

Figure 5.2: Feynman diagrams of the two-to-two particle processes constituting the
dominant contribution to the photo production rate. Time may be viewed
as running from left to right.
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5.2 Implementation of photon production

rium. We go beyond this approach by computing the collision integral

with the inclusion of the scattering processes rather than integrating a

thermal rate.

For this thesis we have implemented in the collision integral of the

relativistic Boltzmann equation the 2→ 2 scatterings of Fig. 5.2, i.e. the

QCD Compton scattering q/q̄ + g → q/q̄ + γ and the quark-antiquark

annihilation q + q̄ → g + γ, whose differential cross sections, in terms of

the Mandelstam variables s, t and u 1, are given respectively by

dσcompton

dt
= −πααs

3s2
u2 + s2

us
,

dσannihil

dt
=

8πααs

9s2
u2 + t2

ut
.

(5.1)

We have done numerical tests of our implementation of photons pro-

duction processes, comparing the results of our code with known analyt-

ical results.

The thermal emission rate of photons with energy E and momentum

p from a system at temperature T is related to the imaginary part of the

photon self-energy by the following relation

E
dR

d3p
=
−2
(2π)3

ImΠR,µ
µ

1

eE/T − 1
, (5.2)

where ΠR,µ
µ is the retarded photon self-energy at finite temperature T .

This relation is valid in the perturbative [164, 165] as well as non-perturbative

[166] limits. It is also valid to all orders in the strong interactions and

to order e2 in the electromagnetic interactions. If the photon self-energy

is approximated by carrying out a loop expansion to some finite order,

then the formulation of Eq. (5.2) is equivalent to relativistic kinetic the-

ory. This connection was first illustrate by Kapusta, Lichard and Seibert

[158], which computed analytically thermal emission rates of photons.

1For a generic two-to-two scattering a + b → c + d the Mandelstam variables
are invariant quantities encoding energy, momentum and angles of particles in the
process and are defined as s = (pa + pb)

2 = (pc + pd)
2, t = (pa − pc)

2 = (pb − pd)
2

and u = (pa − pd)
2 = (pb − pc)

2.
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5.2 Implementation of photon production

Using relativistic kinetic theory formulation, the contribution to the pho-

ton production rate of a process i can be written as [158, 159]

Ri =N
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

d3p3
(2π)32E3

d3p

(2π)32E
|Mi|2

× (2π)4δ(4)(p1 + p2 − p3 − p)f1(E1)f2(E2) [1± f3(E3)] ,

(5.3)

where N is a degeneracy factor, E and p are respectively energy and mo-

mentum of the emitted photon,Mi represents the transition amplitude

for the considered process and the functions fi are the Fermi–Dirac or

Bose–Einstein distribution. The plus or minus sign in the last part of

the equation accounts for Bose enhancement or Pauli suppression respec-

tively. For massless particles the amplitude of a process can be computed

through the relation |M|2 = 16π s2 dσ/dt using the appropriate differ-

ential cross section, which for the QCD Compton scattering and the

quark-antiquark annihilation is given by Eq. (5.1).

The total cross section can be obtained by integrating dσ/dt of the pro-

cess under consideration over t. The differential cross sections (5.1) have

a singularity at t = 0 and/or u = 0 and the total cross section is infinite

as the processes involve exchange of massless particle. A simple way to

obtain finite cross section consists in isolating the region of phase space

causing the divergences, performing the integration over

− s+ k2c ≤ t ≤ −k2c , 2k2c ≤ s ≤ ∞, (5.4)

being T 2 ≫ k2c > 0 an infrared cutoff. In the limit k2c → 0 and using

Boltzmann distributions in the final state, the photon emission rates for

the two processes in Fig. 5.2 reads [158]

E
dRcompton

d3p
=

5

9

2αemαs

π4
T 2e−E/T

[

ln

(

4ET

k2c

)

+
1

2
− CEuler

]

,

E
dRannihil

d3p
=

5

9

2αemαs

π2
T 2e−E/T

[

ln

(

4ET

k2c

)

− 1− CEuler

]

.

(5.5)

In these equations the factor 5/9 arises from the sum of the squares of the

electric charges of the u and d quarks, the factor αemαs comes from the
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5.2 Implementation of photon production

topological structure of the diagrams, a factor T 2 comes from phase space

which gives the overall dimension to the rate, e−E/T is the Boltzmann

factor for photons of energy E and the logarithm arises due to the infrared

behavior. If the infrared divergence is regulated in a different way, for

example by giving the quarks a thermal mass rather than putting a cutoff

on the four-momentum transfer, the constant terms in parentheses may

change but the dominant logarithmic behaviour is still present.

In order to check if we have correctly implemented photon production

processes, we performed simulations in a static box of volume V at fixed

temperature T with periodic boundary conditions for particle propaga-

tion and computed the thermal photon emission in such a condition. In

this case, assuming a system of massless particles in which there are no

external forces, the transport equation (3.3) becomes:

p · ∂xf(x, p) = C[f ](x, p), (5.6)

which we solve using the stochastic algorithm and the test particle method

described in Chapter 3. As we have already mentioned in the previous

chapter, for such a system in a volume V in equilibrium at temperature

T the particle number is given by

N = ρV = γ
V

(2π)3

∫

d3p e−p/T = γ
V T 3

π2
,

where γ is the degeneracy factor. These particles are distributed uni-

formly in coordinate space while in momentum space, being the system

in thermal equilibrium, we employ the Boltzmann distribution:

dN

N E2 dE
=

1

2T 3
e−E/T .

We simulated thermal emission putting in the collision integral the cross

sections given by Eq. (5.1) with the strong running coupling constant αs

appropriate for the box temperature. Turning on separately one process

or the other, we computed the rate R = dN/d4x, i.e. the number of
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Figure 5.3: Comparison of photon production rates for QCD Compton scattering
(dark green points) and quark-antiquark annihilation (blue points) with
KLS analytic rates [158] of the two processes (full lines). For complete-
ness, the result with photon emission from both processes is also shown
(red points). The simulations are made in a static box at T = 0.4GeV.

reactions per unit time per unit volume which produce a photon, and

compared it with the correspondent analytical KLS result in Eq. 5.5 for

several values of temperature. As we can see from Fig. 5.3, where the case

with T = 0.4GeV is reported, the rates coming out from our simulations

agree very well with the KLS analytical computations.

In order to perform more realistic simulations of QGP photon pro-

duction, which we will show in the next section, we have used in our code

the differential cross sections 5.1 with an effective temperature-dependent

strong coupling constant such to reproduce the complete leading order

photon production rate [163] for the whole range of temperature explored

in relativistic heavy ion collisions. In Fig. 5.4 we compare the photon

spectrum obtained with our simulation in a static box at three different

temperatures with the correspondent analytical result evaluated by AMY

[163], showing a very good agreement for pT & 0.7GeV.
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Figure 5.4: Comparison of photon production spectra obtained in our simulation
(squares) with the correspondent AMY analytical results [163] (dashed
lines). The three data sets correspond to T = 0.4GeV (orange points),
T = 0.3GeV (green points) and T = 0.2GeV (cyan points). In our sim-
ulations kc = 0.1GeV2 and an effective temperature-dependent strong
coupling constant are used.

5.3 Effect of pre-equilibrium on photon pro-

duction

In this section we discuss the effect of pre-equilibrium stage on direct

photon production. For this purpose we compare simulations starting

at t0 = 0.01 fm/c with the model described in the previous chapter to

simulations with an equilibrium initial condition.

For simulations at RHIC energy we refer to Au-Au collisions at
√
s =

200AGeV, for those at LHC we refer to Pb-Pb collisions at
√
s =

2, 76ATeV; in this study we focus on collisions at 20-40% centrality,

which corresponds to an impact parameter b ≃ 8.1 fm at RHIC and

b ≃ 8.5 fm at LHC.

The equilibrium initialization is based on the Glauber model, with a

spacial distribution given by the standard mixture 0.85Npart + 0.15Ncoll
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5.3 Effect of pre-equilibrium on photon production

and a thermalized momentum spectrum in the transverse plane at the

initial temperature T0: simulations of the plasma fireball created at RHIC

starts at t0 = 0.6 fm/c with T0 = 340MeV; for simulations at LHC energy

the maximum temperature is T0 = 510MeV at the starting time t0 =

0.3 fm/c. We named these cases Th-Glauber following the nomenclature

of Ref. [106], while we refer to simulations with the Abelian flux tube

model described in Chapter 4 as AFTm.

In the AFTm simulation we assume the initial chromo-electric field is

boost invariant in the longitudinal direction and smooth in the transverse

plane, with the specific configuration given by a Glauber-type distribu-

tion:

E0
z (x, y) = E0

max (cc ρcoll(x, y) + cp ρpart(x, y)) , (5.7)

with cp = 1 − cc. The two free parameters E0
max and cc are fixed in

order to match at t0 = 0.6 fm/c for RHIC and at t0 = 0.3 fm/c for LHC

particle multiplicity and eccentricity of the bulk medium with those of

the Th-Glauber case at the same time.

For RHIC collisions at b = 8.1 fm we obtain an initial longitudinal field

with

E0
max = 3.0GeV2 and cc = 0.70, (5.8)

while for LHC collisions at b = 8.5 fm the initial configuration of Ez has

E0
max = 6.0GeV2 and cc = 0.85. (5.9)

The shape of the initial field in the two cases is shown in Fig. 5.5.

All the results of this section are obtained with a viscosity over en-

tropy density ratio 4πη/s = 1, which is fixed using an anisotropic cross

section through the Chapman Enskog relation Eq. (3.20).

5.3.1 Quark-gluon plasma properties

In this subsection we show quantities related to the properties of the

bulk medium, i.e. the plasma of quarks and gluons. We have already
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5.3 Effect of pre-equilibrium on photon production

(a) RHIC

(b) LHC

Figure 5.5: Configuration of the initial longitudinal color-electric field for simulation
with impact parameter b = 8.1 fm at RHIC (a) and b = 8.5 fm at LHC
(b) energies. The maximum value is E0

max = 3.0GeV2 for RHIC and
E0

max = 6.0GeV2 for LHC.

114



5.3 Effect of pre-equilibrium on photon production

discusses in Section 4.3 some important quantities indicating thermal-

ization and isotropization of the quark-gluon plasma in the AFTm case;

even though we used in those simulations a simplified initial condition

of a circular flux tube with homogenous chromoelectric field, qualitative

behaviour and time scales of all the quantities considered are very sim-

ilar to those obtained with the more realistic initialization explained in

this Chapter and shown in Fig. 5.5. Here we collect other results on

the quark-gluon plasma medium produced through the Schwinger mech-

anism and compare them with the same quantities computed with the

Th-Glauber initialization.

0 0.2 0.4 0.6 0.8 1 1.2
 t  [fm/c]

0

500

1000

1500

2000

2500

P
a

rt
ic

le
 N

u
m

b
e

r

Th-Glauber

AFTm

Th-Glauber, gluons

AFTm, gluons

Th-Glauber, quarks

AFTm, quarks

200A GeV @ RHIC

Au-Au  20-40%

0 0.2 0.4 0.6 0.8
 t  [fm/c]

0

1000

2000

3000

4000

5000

P
a

rt
ic

le
 N

u
m

b
e

r

Th-Glauber

AFTm

Th-Glauber, gluons

AFTm, gluons

Th-Glauber, quarks

AFTm, quarks

2.76A TeV @ LHC

Pb-Pb  20-40%

Figure 5.6: Gluon number, quark number and total particle multiplicity for 20-40%
central collisions at RHIC (left panel) and LHC (right panel) energies.
All calculations are performed with 4πη = 1.

The total particle multiplicity in simulations with Th-Glauber ini-

tial condition is fixed in such a way that dN/dy for charged particle

correctly reproduces the experimental one; even the AFTm simulations

show the correct experimental charged particle multiplicity, since the

shape of the initial field is fixed to match at t0 = 0.6 fm/c for RHIC and

at t0 = 0.3 fm/c for LHC particle multiplicity and eccentricity of the bulk

medium with those of the Th-Glauber case. The total particle number
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5.3 Effect of pre-equilibrium on photon production

for the two initializations and for both RHIC and LHC collisions is shown

in Fig. 5.6 along with the gluon and quark numbers.
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Figure 5.7: Time evolution of eccentricity averaged at midrapidity |y| < 0.5 for RHIC
collisions at impact parameter b = 8.1 fm (left panel) and for LHC col-
lisions at b = 8.5 fm (right panel). All calculations are performed with
4πη = 1.

In Fig. 5.7 we plot the space eccentricity ǫx averaged at midrapidity

|y| < 0.5 as a function of time for RHIC (left panel) and LHC (right

panel) collisions at 20-40% centrality. For each of the two collision types,

we represent by indigo line the results obtained with Glauber initializa-

tion and by orange line those obtained by the AFT initialization. Re-

gardless of the collision energy, the bulk eccentricity at initial times is

the same for the Th-Glauber and the AFTm cases due to the matching

before explained; we find the even its time evolution is very similar for

the two different initializations.

In the top panel of Fig. 5.8 we plot the gluon (left panel) and quark

(right panel) spectra dN/d2pTdy integrated over the momentum rapidity

range |y| < 0.5 for both Th-Glauber and AFTm case reproducing RHIC

initial conditions at impact parameter b = 8.1 fm. For the Th-Glauber

case we shown spectra at the starting time t0 = 0.6 fm/c of the simulation

(dashed lines) and final spectra (full lines with points); for the AFTm
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Figure 5.8: Time evolution of spectra at RHIC (top panel) and LHC (bottom panel)
energy obtained by equilibrium initial condition (magenta and red curves)
and with the AFT model (blue and green lines). For each collision type,
gluon spectra are shown in the left panel and quark spectra in the right
panel. All calculations are performed with 4πη = 1.

simulation besides final spectra we plot those at t = 0.1 fm/c, which

are not actual initial spectra, since at the initial time of the simulation
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5.3 Effect of pre-equilibrium on photon production

(t = 0.01 fm/c) the system is made of a pure longitudinal color electric

field. In the bottom panel of Fig. 5.8 the same spectra are shown in the

case of LHC collisions at b = 8.5 fm. We find that at t = 0.1 fm/c the

AFTm spectrum is far from a spectrum thermalized in the transverse

plane, as is expected since particle formation through Schwinger effect

is not ended (see points in Fig. 5.6). Moreover, we notice that for both

RHIC and LHC collisions final spectra are very similar with the two

simulations.
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Figure 5.9: Differential elliptic flow v2 of gluons and quarks at RHIC (left panel)
and LHC (right panel) energies obtained by equilibrium initial condition
(magenta and red curves) and with the AFT model (blue and green lines).
All calculations are performed with 4πη = 1.

In Fig. 5.9 we plot the elliptic flow v2(pT ) for RHIC (left panel)

and LHC (right panel) collisions at impact parameter b = 8.1 fm and

b = 8.5 fm respectively, corresponding to 20-40% centrality. We find

that, even though the eccentricity at mid-rapidity shown in Fig. 5.7 has

the same evolution for both simulations with the different initialization,

the final elliptic flow is lower in the AFTm case, meaning that the pre-

equilibrium dynamics delays the conversion of the space eccentricity to

momentum anisotropy. As we will see in the next section, this fact has

an impact on the formation of the photon elliptic flow which reflects
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5.3 Effect of pre-equilibrium on photon production

the degree of anisotropy at the emission time as photons do not further

interact with the medium.

5.3.2 Photon observables at RHIC and LHC

Here we show results about spectrum and elliptic flow of photons

focusing on the impact of the pre-equilibrium stage, which the majority

of models developed until now cannot explore. Simulations commonly

starts at a certain initial time assuming that the quark-gluon plasma is

in local equilibrium. The main novelty of our work is that thermalization

and isotropization are dynamical achievement in our simulations, instead

of being assumed a priori. In this way we can study the impact on

observables of the initial phase that, as we have shown in Chapter 4, is

strongly anisotropic, not thermalized and with negative pressure. The

aim of this chapter is to spot the impact of early stage non-equilibrium

dynamics on photon production.

Our present formulation of the problem misses some ingredients for a

complete description of photon production, such as hadronic thermal

emission; this put comparison with data on a preliminary level. In-

stead, secondary processes like jet-photon conversion affect significantly

the spectrum at higher transverse momenta, a pT -range which is not the

focus of our work. However, with our model we are in condition to cap-

ture the essential influence of early times dynamics on the subsequent

evolution of the fireball created in relativistic heavy ion collisions.

Photon spectrum

In Fig. 5.10 we plot our result for final photon spectrum (main panel)

and time evolution of photon number (inset panel) obtained in the Th-

Glauber and in the AFTm cases for RHIC collisions at 20-40% centrality,

corresponding to an impact parameter b = 8.1 fm. The dashed blue

lines are obtained with the equilibrium initial condition, while the solid
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Figure 5.10: Photon spectrum at midrapidity |y| < 0.5 (main panel) and total photon
number (inset panel) obtained by AFTm (solid maroon line) and Th-
Glauber (dashed blue line) simulations. The dot-dashed orange curve
corresponds to an AFTm simulation in which photon production is en-
abled from t = 0.6 fm/c.

maroon lines are the result of the AFTm simulation. In the inset panel

we show also the curve obtained with the AFTm model in which photon

production is artificially started at t = 0.6 fm/c; comparing the latter

with the Th-Glauber case, we notice that the time evolution of the photon

number is similar in the two simulations, meaning the system evolves

in the same way after t = 0.6 fm/c with Glauber and non-equilibrium

initial conditions. Thus, we can consider the differences between AFTm

and Th-Glauber curves as due to pre-equilibrium photons. In the main

panel the red curve, being the difference between the AFTm and the

Th-Glauber lines, accounts for the equilibrium contribution to the total

photon spectrum at RHIC energy; it is evident that the pre-equilibrium

stage gives a substantial contribution to the total photon production

from the quark-gluon plasma for pT & 1.5GeV. This fact emerges also

from the photon number shown in the inset panel, as we find that the
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5.3 Effect of pre-equilibrium on photon production

pre-equilibrium photons constitute the 30% of the total produced in our

AFTm simulation.

We stress that we do not compute photon production by integrating

photon rate over a space-time volume, as it is done in hydrodynamics

calculations. Indeed, we use scattering matrix elements in the collision

integral; this allows to follow photon production since the very early stage

as soon as particles pop up from the vacuum.
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Figure 5.11: Comparison of our final photon spectrum with the one obtained by Pa-
quet et al. from the McGill University [168] (dot-dashed red line). In the
dashed indico curve McGill’s prompt photons are added to our AFTm
result (thin solid maroon line). Experimental data are from PHENIX
Collaboration [167].

In Fig. 5.11 we compare the direct photon spectrum obtained by our

AFTm simulation with experimental data [167] and with the photon

spectrum computed in Ref. [168]. The latter includes not only QGP

thermal photons but also thermal hadronic emission as well as prompt

photons, while does not take into account photon production before QGP

equilibration. In the figure we plot also our result in which prompt pho-

tons from Ref. [168] are added. We notice that we need to include in
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5.3 Effect of pre-equilibrium on photon production

our simulations hadronic thermal production which would enhance the

direct photon yield mainly at pT . 2GeV. On the other hand our model

allows to describe pre-equilibrium photons which play an important role

at higher transverse momenta (pT > 2GeV) where, as shown in Fig. 5.11,

our result is comparable with the one of Ref. [168]. Therefore, the inclu-

sion of hadronic thermal photons will reduce the tension between theory

and experimental data.
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Figure 5.12: Photon spectrum at midrapidity |y| < 0.5 (main panel) and total photon
number (inset panel) obtained by AFTm (solid maroon line) and Th-
Glauber (dashed blue line) simulations. The dot-dashed orange curve
corresponds to an AFTm simulation in which photon production is en-
abled from t = 0.3 fm/c.

In Fig. 5.12 we show the photon spectrum (main panel) and the pho-

ton number (inset panel) found with the Th-Glauber (dashed blue line)

and the AFTm (solid maroon line) simulations at LHC energy. As in the

RHIC case, we find an impact of the pre-equilibrium stage on the total

photon number produced from the parton plasma: the photon number

is enhanced of about 25% by the pre-equilibrium contribution. For what

concern the spectrum, photons from the early stage become important
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for pT & 3GeV, but do not affect considerably the total result at lower

transverse momenta.
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Figure 5.13: Comparison of the final photon spectrum obtained by Paquet et al. from
the McGill University [168] (dot-dashed red line) with our results. In the
dashed indigo curve McGill’s prompt photons are added to our AFTm
result (thin solid maroon line). Experimental data are from ALICE
Collaboration [169].

In Fig. 5.13 we compare our photon spectrum obtained by the AFTm

initialization with experimental data [169] and with the McGill result of

Ref. [168]. The latter corresponds to the dot-dashed red line and contains

contribution of thermal photons (from both QGP and hadron gas) and

prompt photons; the thin solid maroon line is our AFTm result, includ-

ing QGP thermal photons as well as pre-equilibrium photons; adding to

this curve prompt photons from Ref. [168] we obtain the dashed indigo

curve. As discussed before for the RHIC case, also our LHC simulation

shows that the photon production from the quark-gluon plasma (pre-

equilibrium and thermal) is comparable with the McGill result at high

transverse momenta (pT & 2.5GeV), but the description of the experi-

mental photon spectrum need the inclusion of thermal hadronic emission.
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Photon elliptic flow
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Figure 5.14: Elliptic flow v2(pT ) at midrapidity |y| < 0.5 for different initial conditions
and 4πη/s = 1. The calculations refer to Au-Au collisions at

√
s =

200GeV and b = 8.1 fm. Experimental data are from the PHENIX
Collaboration [170].

In Fig. 5.14, we show our results for the differential elliptic flow for

the case of a Au-Au collision at
√
s = 200GeV with impact parameter

b = 8.1 fm, which corresponds to the 20–40% centrality class at RHIC.

The dashed blue curve indicates simulation with Glauber equilibrium

initial condition, while the solid maroon line is the result with the AFTm

initialization; green points are experimental data for direct photon v2(pT )

in the pertinent centrality class from the PHENIX Collaboration. In

both cases the calculated elliptic flow systematically underestimates data,

especially for the AFTm initialization, in which photons coming from

the early times evolution of the fireball suppress the contribution to the

momentum anisotropy brought by QGP thermal photons. However, we

remind that our simulations do not include any hadronization process,

so we cannot describe the thermal photon emission from hadrons, which

124



5.3 Effect of pre-equilibrium on photon production

is expected to give a substantial contribution to the final elliptic flow:

since photon azimuthal asymmetry reflects the one of the system at the

emission time, we expect that thermal photons from hadron gas would

bring a much higher momentum anisotropy, thus reducing the tension

between our model and the data once the experimental uncertainties are

taken into account. This further step is currently under progress.
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Figure 5.15: Elliptic flow v2(pT ) at midrapidity |y| < 0.5 for Pb-Pb collisions at
√
s =

2.76TeV and b = 8.5 fm. Simulations at fixed viscosity 4πη/s = 1 with
the two inizializations are shown, along with experimental data obtained
by the ALICE Collaboration [171].

We obtain similar results at LHC energy, as we can from Fig. 5.15

where our computations of elliptic flow for b = 8.5 fm are shown. Again,

the dashed blue line corresponds to our hydrolike calculation, in which

the initial distribution is assumed to be thermalized in the transverse

plane, while the solid maroon line is the results obtained with the non-

equilibrium initial condition of the AFT model. In the figure we also

plot experimental data for v2(pT ) in the 0-40% centrality class from the

ALICE Collaboration [171]. Both the two simulations with different ini-

tialization undershoot experimental points but, considering the statistical
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and systematic errors, the tension between our results and data will be

reduced after the inclusion of thermal photons from the hadronic gas.

With respect to the RHIC case, for LHC simulations we expect a higher

impact of hadronic thermal photons; indeed, due to the longer lifetime of

the quark-gluon plasma the elliptic flow of the bulk medium is completely

developed in the QGP phase, then hadrons bring a higher level of mo-

mentum anisotropy that transfer to the thermal photons emitted. Thus

a significant quantity of the final photon elliptic flow develops during the

hadronic phase.

The recent observations of direct photons by the PHENIX and the

ALICE Collaborations gave rise to a ”puzzle” for the theoretical under-

standing of photon production: on one hand a large direct photon yield

seems to favour photon emission at early time when the temperature of

the fireball is high, but photons produced in this stage are expected to

possess low momentum anisotropy; on the other hand the large elliptic

flow observed, comparable in size to that of pions, indicates that photons

are emitted at later time when the flow of matter is largely developed.

The tension in reproducing consistently both spectrum and elliptic

flow of direct photons is a common issue of all current theoretical ap-

proaches and its solution is one of the more challenging aspects of the

present research on the quark-gluon plasma physics.
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In this thesis we have investigated the pre-equilibrium stage of ultra-

relativistic heavy ion collisions, focusing on the time scales and the mech-

anisms responsible of the isotropization of the matter produced from an

initial color-electric field and concentrating on the impact of this out-of-

equilibrium phase on collective flows of the bulk matter and on photon

observables. This studies have been performed within the framework

of transport kinetic theory. Solving the relativistic Boltzmann-Vlasov

equation coupled to color fields for the phase space distribution function

f(x, p) allows to follow the entire space-time evolution of the quark-gluon

plasma by means of a single self-consistent scheme: starting at t = 0+

with particle formation from the decay of an initial color field, we are

able to describe the relaxation of the system toward a thermalized and

isotropic state and investigate the development of anisotropic flows at

final times.

We have build a model in which gluon and quark pairs are produced

by means of the Schwinger mechanism from the decay of color-electric

flux tubes, which are expected to be produced in the early stage of ultra-

relativistic heavy ion collisions. The Schwinger effect consists in a vacuum

instability towards the creation of particle pairs by a strong electric field
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and is considered as a possible mechanism for color field decay and par-

ticle production in the context of quark-gluon plasma physics. We have

coupled the evolution equation of the initial field to the relativistic trans-

port equation which describes the dynamics of the many particle system

and leads to an isotropic and thermalized state by means of collisions.

This self-consistent solution of the problem allows, among other things,

to take into account the backreaction of the color currents on the classical

field, which has been often neglected in previous studies. According to

the general understanding of high-energy nuclear collisions, this work is

relevant not only for heavy ion collisions but also for proton-nucleus and

proton-proton collisions, once the pertinent configuration of the initial

color flux tubes is adopted.

We have studied the effect of different ratios of viscosity to entropy

density η/s on quantities such as decay time of the color-electric field

and isotropization and thermalization rates of the produced fluid. To

this end, we have formulated transport theory in terms of a fixed value

of η/s rather than insisting on a set of specific microscopic processes.

Thus, we can simulate the fireball evolution with the same language of

hydrodynamics but in a wider range of transverse momentum of particles

and also in out-of-equilibrium phases. Indeed, in the great majority of

hydrodynamical simulations of relativistic heavy ion collisions the plasma

equilibration is an initial state assumption, while with our model we

have investigated how it is achieved in a very short time by an initial

anisotropic and not thermalized system.

We have focused first on the boost invariant longitudinal expansion

of a single flux tube with a longitudinal color-electric field homogeneous

in the transverse plane. In particular, we have found that the decay time

of the color-electric field is a small fraction of fm/c. We have computed

the time evolution of the longitudinal to the transverse pressure ratio

PL/PL, which at initial time is equal to −1 since the system is made of
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a pure color field; longitudinal pressure becomes positive in t ≈ 0.2 fm/c

due to the fast particle production that gives a positive contribution to

the pressure.

For η/s 6 0.3 the strong interactions among the particles remove the

initial pressure anisotropy quite efficiently and quickly, then the ratio

tends to increase towards 1, which corresponds to an isotropic system.

For larger values of η/s plasma oscillations cause the system to be less

isotropic. We have also studied proper energy density and temperature

evolution as well as particle spectra in the transverse plane for several

values of η/s. In the case of small viscosity the dynamics is very efficient

in getting a quick thermalization; indeed, for η/s = 1 we have found

that the system gets thermalized in less than 1 fm/c; however, increasing

η/s results in a longer thermalization time. The fact that we have found

for a lowly viscous system an isotropization time of less than 1 fm/c

would justify the use of viscous hydrodynamics with initial times t0 ≈
0.6–0.8 fm/c for 4πη/s = 1− 3.

Even though the 1+1D expanding system is interesting because a lon-

gitudinal expansion characterizes the very early times on ultra-relativistic

heavy-ion collisions, a more realistic system experiences a 3+1D expan-

sion. Therefore, we have extended our model allowing the formation of

longitudinal as well as transverse components of currents and field. As

in the 1+1D case, we have found that particles are produced very early,

within 0.5 fm/c, independently of the value of η/s, which affects very

mildly the conversion of the initial field to a plasma. The qualitative be-

haviour of the pressure ratio PL/PT is similar to that found in the 1+1D

case: the larger the viscosity of the fluid the larger are the oscillations

of PL/PT . Nevertheless, with respect to the one-dimensional expansion

oscillations of PL/PT are more efficiently damped in a three-dimensional

expanding system, vanishing after about 3 fm/c even for large viscosity.

Furthermore, asymptotically PL/PT ≃ 0.7 for 4πη/s = 1, maintaining a
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higher level of anisotropy respect to the 1+1D case; this is due to the

transverse expansion which, causing a quicker dilution of the system,

makes collision less efficient in isotropizing particle momenta. However,

the qualitative behaviour and time scales of all the quantities consid-

ered does not change in a remarkable way when turning from the 1+1D

expansion to the 3+1D expansion.

The implementation of the three-dimensional expansion has allowed

us to study the impact of the early times dynamics on the behaviour of

physical quantities measured in experiments. We have used a realistic ini-

tial condition with a smooth distribution of the longitudinal color-electric

field such to reproduce multiplicity and spatial anisotropy of particle cre-

ated in collisions at RHIC and LHC energies; then we have investigate

the effect of the pre-equilibrium stage on observables such as spectrum

and elliptic flow of photons emitted from the quark-gluon plasma pro-

duced in heavy ion collisions. We do not compute photon production

by integrating photon rate over a space-time volume as it is done in hy-

drodynamics calculations, but we use scattering matrix elements in the

collision integral; this allows to follow photon production since the very

early stage as soon as particles pop up from the vacuum.

We have found that the pre-equilibrium stage gives a substantial con-

tribution to the total number of photons emitted from the quark-gluon

plasma, being the pre-equilibrium photons about 30% of the total. This

early contribution enhances the spectrum for pT & 1.5GeV at RHIC en-

ergy, while it becomes important for higher transverse momenta at LHC

collisions (pT & 3GeV). Thus, there is no dark age for the quark-gluon

plasma, since it shines brightly in all the stages of its lifetime, even before

its thermalization. Photons produced in the early stage are comparable

in number with those emitted by the equilibrated quark-gluon plasma

and give an important contribution in a pT range (pT & 2 − 3GeV)

where thermal emission (both from QGP and from hadron gas) becomes
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less important. Nevertheless, in order to reduce the tension with ex-

perimental data on direct photon spectrum, we need to include in our

simulations hadronic thermal production which would enhance the direct

photon yield mainly at pT . 2GeV.

We have computed also the elliptic flow v2 of photons produced from

the quark-gluon plasma; our results systematically underestimates data,

both at RHIC and LHC energies. Moreover, we have found that photons

coming from the early times evolution of the fireball suppress the contri-

bution to the momentum anisotropy brought by QGP thermal photons.

As for the spectrum, hadrons is expected to give an even more significant

contribution for the description of the final elliptic flow: since photon az-

imuthal asymmetry reflects the one of the strongly interacting system

at the emission time, we expect that thermal photons from hadron gas

would bring a much higher momentum anisotropy.

The tension in reproducing consistently both spectrum and elliptic

flow of direct photons is a common issue of all current theoretical ap-

proaches and its solution is one of the more challenging aspects of the

present research on the quark-gluon plasma physics. The inclusion in our

simulations of thermal photon production from the hadronic phase, a step

which we are currently carrying out, will allow us to further improve our

description of the experimental photon observables and to better under-

stand the relative importance of the different source of photon emission.

Another main development of our work will be to progress in our

description of the pre-equilibrium phase including a longitudinal color-

magnetic field, which is expected to be present in a more complete de-

scription of the Glasma initial state and might induce some modification

of the Schwinger amplitude of particle production. Moreover, we have

neglected fluctuations of the color-electric field both in rapidity and in

transverse plane, which would permit the study of the higher flow har-

monics vn. It is interesting to add these ingredients to our approach for a
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more complete comprehension of the early times dynamics of relativistic

heavy ion collision and of its impact on the subsequent evolution of the

fireball.
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