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ABSTRACT

Emulating human perception is a foundational component in the re-

search towards artificial intelligence (AI). Computer vision, in particu-

lar, is now one of the most active and fastest growing research topics in

AI, and its field of practical applications range from video-survaillance

to robotics to ecological monitoring.

However, in spite of all the recent progress, humans still greatly

outperform machines in most visual tasks, and even competitive ar-

tificial models require thousands of examples to learn concepts that

children learn easily.

Hence, given the objective difficulty in emulating the human visual

system, the question that we intended to investigate in this thesis is in

which ways humans can support the advancement of computer vision

techniques. More precisely, we investigated how the synergy between

human vision expertise and automated methods can be shifted from a

“top-down” paradigm— where direct user action or human perception

principles explicitly guide the software component — to a “bottom-

up” paradigm, where instead of trying to copy the way our mind works,

we exploit the “by-product” (i.e. some kind of measured feedback) of

iii



iv

its workings to extract information on how visual tasks are performed.

Starting from a purely top-down approach, where a fully-

automated video object segmentation algorithm is extended to encode

and include principles of human perceptual organization, we moved

to interactive methods, where the same task is performed involving

humans in the loop by means of gamification and eye-gaze–analysis

strategies, in a progressively increasing bottom-up fashion. Lastly,

we pushed this trend to the limit by investigating brain-driven im-

age classification approaches, where brain signals were used to extract

compact representation of image contents.

Performance evaluation of the tested approaches shows that involv-

ing people in automated vision methods can enhance their accuracy.

Our experiments, carried out at different degrees of awareness and

control of the generated human feedback, show that top-down ap-

proaches may achieve a better accuracy than bottom-up ones, at the

cost of higher user interaction time and effort. As for our most ambi-

tious objective, the purely bottom-up image classification system from

brain pattern analysis, we were able to outperform the current state of

the art with a method trained to extract brain-inspired visual content

descriptors, thus removing the need of undergoing EEG recording for

unseen images.
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CHAPTER

ONE

MOTIVATIONS AND OBJECTIVES

Creating artificial intelligence (AI) has been one of science’s favourite

and hardest challenges of the last century. Popular culture and science

fiction have thrived on stories featuring robots and thinking machines

ever since the beginning of 20th century (not to mention mythological

references such as Hephaestus’ golden assistants from the Iliad), and

as technology quickly evolved, soon these stories attracted the interest

of the scientific community, who naturally wondered how wide the gap

between current fiction and future reality was.

Curiously enough, and understandably, AI research initially

seemed to focus on how to design artificial thought, ignoring the im-

portance and difficulty of some related tasks, e.g., how to emulate

perception. In 1966, AI pioneer and MIT professor Marvin Minsky

assigned a summer project consisting in linking a camera to a com-

1
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puter and have it recognize the surrounding environment and objects1.

Unfortunately, the task turned out to be a bit more difficult than an-

ticipated, as dozens of research groups, both in academia and industry,

are still struggling to make machines understand what their electronic

eyes see.

Computer vision is now one of the most active and fastest grow-

ing research fields in AI, and it has found its way into a wide range

of applications, including robotics, video-surveillance, ecological mon-

itoring, automated driving, visual-impairment support. At the same

time, its data-oriented nature and the intrinsic patterned structure

of the visual world made it an ideal playground for machine learning

techniques, which were historically adopted as the main way to tackle

this kind of problems.

Currently, the most widely spread and successful models for com-

puter vision applications are Convolutional Neural Networks (CNNs)

[1, 2, 3] (and variants thereof), a recently-rediscovered incarnation of a

class of biologically-inspired mathematical models suitable for learn-

ing patterns from data. In the last half-decade, a combination of

factors — mainly related to technological advances in data storage,

content sharing and computing power — have led CNNs to advance

practically any computer vision–related problem and to support the

achievement of unprecedented results in more classic AI tasks, as per-

fectly exemplified by the recent victory of Google’s AlphaGo software

over a professional player at Go, an ancient game exponentially more

complex than chess in terms of possible game states. Of course, the

price for such improvements is paid in model complexity, hardware

1Original project description at http://dspace.mit.edu/bitstream/handle/

1721.1/6125/AIM-100.pdf.

http://dspace.mit.edu/bitstream/handle/1721.1/6125/AIM-100.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/6125/AIM-100.pdf
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requirements and training time.

However, in spite of all the progress and optimism, it is undeniable

that humans are still way better than machines at making sense of the

world that they see, thanks to our multi-millenary experience in —

well — seeing things and to our main advantage over current artificial

intelligences, that is the capability to learn without anybody having

to tell us what is what and to provide examples of all aspects of how

the world works. In a more technical jargon, machines lack the ability

to perform unsupervised learning, which is the current main reason

why we are not likely to be seeing Star Wars droids walking among

us anytime soon, and which is also the reason why even the most

sophisticated computer vision systems need thousands of images to

learn to recognize concepts (e.g., “tree”) that a three-year-old child

easily grasps with a few examples.

Given these premises and acknowledged the objective difficulty of

current models to explicitly emulate the human visual system, espe-

cially the scene understanding processes, the question that we intend

to investigate in this thesis is in which ways humans can support the

advancement of computer vision techniques. More precisely, we intend

to test and evaluate different modalities, with different degrees of in-

volvement and awareness, for including humans in automated vision

approaches.

Per se, this is nothing new: several “interactive” approaches fol-

lowing the “human-in-the-loop” paradigm have been proposed to help

solving computer vision tasks — most notably, object segmentation,

i.e. extracting object contours from an image. At a more basic level,

crowdsourcing has been largely employed in computer vision to anno-

tate image datasets for algorithm benchmarking, by asking users to
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specify the category (class) or to draw contours of objects in an image.

However, these kinds of interactions are still too explicit, by which

we mean that users’ actions are consciously targeted at the computer

vision task they are working at, and as a consequence they need an

incentive to motivate them to perform the task, which often amounts

to monetary reward. A slightly less explicit user involvement modality

is gamification, that is the process of putting a job in the form of a

game, thus aiming to attract potential participants in a more natural

way than crowdsourcing. The difficulty lies in how to make a game

out of a job which is inherently non-entertaing, for there would be no

need to perform gamification otherwise.

In these examples, human feedback is generated through an ex-

plicit and voluntary action by an operator working at a task. Here,

we aim at exploring more implicit modalities for human knowledge and

capabilities to back up computer vision, by integrating a kind of hu-

man feedback which comes in the form of physiological measurements

taken while performing a task designed to solicit such reactions and to

make them useful to automated methods. The idea behind this work

is that implicit feedback can be potentially more informative than ex-

plicit, due to being generated by — and, in a sense, “closer to” — the

very underlying physiological processes employed by humans to solve

vision tasks, thus switching the paradigm from “human-in-the-loop”

to “human-driven”. In a different but orthogonal sense, we will in-

vestigate how the synergy between human potential and automated

methods can be shifted from a “top-down” paradigm — where di-

rect user action or human perception principles explicitly guide the

software component — to a “bottom-up” paradigm, where instead of

trying to copy the way our mind works, we exploit the “by-product”
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(i.e. some kind of measured feedback) of its workings to extract infor-

mation on how visual tasks are performed.

In particular, we will investigate the employment of eye-tracking

devices and electroencephalography (EEG) machines to collect, re-

spectively, eye-gaze data and brain activity patterns while users sim-

ply watch videos or look at images on a screen, and how to extract

information useful to the analysis of the observed scenes from the

collected data. One might object that having a person sit down and

watch a computer screen or, even worse, having him or her go through

the hassle of mounting an EEG cap and watch a monitor screen are

hardly “implicit” ways to get information on visual processes, in the

sense that they still require the user to dedicate time exclusively to

the experiment. While it is true that current eye-tracking and EEG

recording protocols are relatively invasive (not in a medical sense, but

in a time- and effort-demanding sense), this is merely a technolog-

ical limitation: in fact, eye-tracking through smartphone cameras is

currently being investigated [4], as well as headbands integrating EEG

recording electronics2. While technology non-invasiveness is desirable,

as it helps to attract potential participants, this is not what we mean

by “implicitness”, which instead refers to the degree of consciousness

and control over the collected data — for instance, user clicks collected

while playing a game represent a more “explicit” kind of feedback than

EEG tracks recorded during daily routines.

In the following chapters, after an introduction to the state of the

art of the current literature on the mentioned subjects, we will review

different strategies of integrating the human factor in computer vision

2http://www.daqri.com

http://www.daqri.com
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methods and provide examples of practical applications.

The very first method we propose, in Chapter 3, is actually purely

automated, with no human intervention, and exemplifies the class of

approaches where human knowledge is “injected” in a top-down fash-

ion, by explicitly defining a mathematical model encoding principles

of human perceptual organization. The problem which we tackle is

video object segmentation, i.e. identifying and extracting the contours

of moving objects in a video. Although this is a well-known problem,

optimal and general solutions are hard to find, as current methods

strongly depend on video and target object characteristics. By enforc-

ing perceptual organization, we aim at providing useful constraints to

an automated system for identifying objects which are more likely to

represent structures from the real world.

In Chapter 4, we start by attempting to solve the same task

through gamification. Since people can easily recognize moving ob-

jects from moving background (which can be present due to camera

motion), the easiest way to support automated methods is to have the

users identify those objects for them. The game we designed consists

in asking the user to click on such objects while the video is played

at above-than-normal speed, thus making the task challenging. The

gathered data may be affected noisy and requires some pre-processing,

but provides useful insights on object locations that can be exploited

to simplify the approach presented in Chapter 3. Then, we explore a

more implicit and bottom-up kind of human involvement, by replacing

user clicks with eye-gaze data captured while users watch the videos.

Although the nature of the recorded data is homogeneous to those

collected through the game (both being punctual screen coordinates),

here we remove any kind of top-down guidance or instructions, leav-
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ing only the subject’s own attention processes to decide where to look.

While this necessarily affects the reliability of the feedback, this ap-

proach has the advantage of requiring less interaction effort from the

participant subjects, and we will see that it allows to achieve satisfying

results, at the expenses of segmentation accuracy.

Our most ambitious attempt at transferring human capabilities to

computer vision approaches is presented in Chapter 5: “reading the

mind” of a person to predict the content of what he or she is currently

looking at. In more practical and less magic-show terms, we investi-

gate an automated approach to the problem of image classification —

i.e. assigning a category to an image, based on its content — through

the analysis of a subject’s EEG tracks. Moreover, we also propose

a methodology for learning a brain-inspired mathematical represen-

tation of visual content and building a model which extracts such

representation from unseen images, thus allowing to perform the clas-

sification even without associated EEG signals.
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CHAPTER

TWO

LITERATURE REVIEW

Computer vision is a vast and rapidly-evolving research field, to review

which would require several books of their own. Our focus, however,

does not lie in computer vision itself, but rather on exploring the

different roles that humans can play to support computer vision ap-

proaches. Hence, for the sake of brevity, we will take the liberty of

simplifying the architecture of an automated vision system by split-

ting it into two main tasks: detecting the presence of objects in visual

media (i.e. images or videos) and identifying what these objects are.

Of course, since our main interest is studying new modalities of

human involvement in automated vision algorithms, a background on

interaction strategies targeted at computer vision is in order, and it

should encompass both traditional top-down approaches employing

“direct” interfaces such as computer mice, and more subtle modalities

based on eye-tracking and brain activity analysis.

Therefore, in this chapter, we will introduce the reader with the

9



10 Chapter 2. Literature Review

state of the art on the above-mentioned notions, in order to give the

necessary basis to understand all specifics of this thesis work.

2.1 Automated object segmentation and

classification

Identifying moving objects is one of the first and basic steps in a

video processing pipeline. The most intuitive solution — which has

been widely adopted and is particularly suitable for scenarios with a

static, non-moving camera — is background modeling [5]: under the

assumption that in the absence of motion each pixel in a video is not

subject to strong colour/luminosity variations, moving object detec-

tion can be performed by identifying pixels which exhibit a variation

with respect to a model of its recent history of colour/intensity values.

Unfortunately, in realistic settings, this assumption is only partially

valid. Even when a pixel localizes a background area, external factors

(e.g., weather, artifical illumination changes, shadows, environmental

and camera noise) may strongly affect its appearance on the captured

image. In addition, certain moving areas should actually be considered

as background, for example trees swaying in the wind or undewater

plants moved by currents.

Classic background modeling methods are density-based, where

background pixel appearance is modeled by a probability density func-

tion over pixel colour; commonly employed distributions are Gaussian

[6] and Gaussian Mixture Models [7]. More recently, methods based on

kernel density estimation [8] or non-parametric ones such as [9] have

demonstrated superior performance also in complex dynamic scenes
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[10]. In order to reduce the risks of false positives associated to using

pixel colour only, recent research [11, 12, 13] has moved towards us-

ing a proper combination of visual features (colour, texture, motion).

Also, explicitly modeling the characteristics of foreground pixels, as

well as the background’s, seems to enhance performance as well [8].

However, modeling individual pixels ignores the spatial regularity

of the visual world, since it is statistically unlikely that two adjacent

pixels have markedly different appearance models. In the last years,

a trend towards modeling spatio-temporal uniform (with respect to

apperance or motion) regions instead of single pixels has been ob-

served [14, 15]. Spatial uniformity has been usually enforced by seg-

menting images into superpixels (small groups of similar pixels), which

can then be used as atomic image units to reduce the amount of com-

putation and simplify the models. Establishing temporal relations

between pixels or superpixels in consecutive frames is more compli-

cated and computationally costly. It is typically performed by means

of optical flow (e.g., [16]), a class of algorithms which attempt at estab-

lishing pixel correspondences across two frames. In this thesis, we will

take into consideration superpixel-based methods only, due to their

simplicity, efficiency and suitability to being integrated with human

feedback.

In some scenarios, for example video-surveillance and home alarm

systems, identifying moving objects can be the final purpose of a vision

system. In most cases, however, this may not be enough: for example,

an ecological monitoring system needs to be able identify the species

of the living organisms under observation [17].

Understanding what is illustrated in an image is a classic prob-

lem in computer vision. Depending on the image type and on the
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desired detail of the analysis, several variants of this task can be de-

fined, from image captioning (generating a description of the content

of an image as a natural-language sentence) [18] to object detection

(localizing istances of specific objects) [19] to image classification (as-

signing a single textual label to the whole image), the last being the

task tackled in Chapter 5 and thus the focus of our brief introduction

to this class of problems.

Why is image classification a complex problem? First of all, the

space of all possible images (even with a fixed dimension) is huge:

a 256×256 colour image can be trivially represented as a (roughly)

200,000-dimension vector, but it would be hardly useful for any kind of

non-trivial analysis. Therefore, the first problem is to find a more com-

pact representation which retains all distinguishing features from the

original image. Although there exist approaches which employ global

descriptors to encode a whole image’s content, such as histograms

of the distribution of colour values [20], local descriptors (describing

small but significant features) have been commonly employed in the

last two decades, particularly in combination with a technique called

“bag of words”, which models an image as the distribution of a set

of characteristic local visual features, just as a text document can be

described by the distribution of its words [21, 22, 23, 24, 25]. Using

a relatively small number of local descriptors to describe a whole im-

age allows to greatly reduce the dimensionality of the problem (typical

descriptor sizes are usually below 5,000 elements) and to make the rep-

resentation more stable to global-level changes such as illumination,

translation, rotation, scaling, and so on. The next main problem then

becomes how to extract local descriptors from an image, i.e., how to

choose which are the distinguishing features. Probably the most suc-
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cessful approach used for extracting so-called keypoints is SIFT [26],

which also defines a representation of such keypoints based on his-

tograms of intensity gradients.

However, half a decade ago the image classification field was rev-

olutionized by the (re-)discovery of Convolutional Neural Networks

(CNNs) [1, 2, 27, 28], a technique from a class of algorithms collec-

tivetly referred to as “deep learning”, dating back to the eighties and

recently come back in fashion thanks to the advent of GPUs for gen-

eral purpose algorithm parallelization and to the availability of large-

scale datasets such as ImageNet [29], with over a million images. The

main advantage of CNNs over traditional methods is their capability

of automatically learning how to detect discriminative and generaliz-

able visual features at different complexity levels, from simple edges

to complex structures, thus relieving the system designer of the choice

between a large set of manually-crafted features. Currently, CNNs

are the state of the art for image classification, as demonstrated by

their results in the recent editions of the ImageNet Large-Scale Visual

Recognition Challenge [27, 28, 30].

2.2 Interactive methods

Once it became clear that computer vision was not going to be a prob-

lem with an easy solution, and that emulating the human vision system

still lacked the necessary knowledge of the relevant physiological and

cognitive processes, researchers turned to harness human potential in

a more straightforward way: put people directly inside the algorithm

pipeline. Thus was born the human-in-the-loop paradigm, and a new
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family of interactive or semi-supervised methods.

In the beginning, interactive approaches attracted a lot of interest

from researchers on image segmentation, and became very popular

with the GrabCut [31] algorithm, which paved the way to a whole class

of methods [32, 33, 34, 35, 36] based on asking a user to annotate an

image in the form of clicks or strokes separating the background from

the foreground, and using these annotations as an input to automated

segmentation algorithms.

Though less popular or successful than their still-image counter-

parts, similar interactive approaches were devised for video processing

[37, 38, 39], in the attempt to overcome the limitations of automated

unsupervised methods, which suffer from oversegmentation in pres-

ence of camera motion and occlusions between targets. Most of these

methods rely on users to provide input as clicks or strokes, and employ

optical flow [40] or models based on Markov chains [41, 42] to make

temporal connections between frames; unfortunately, they work well

only in simple cases, failing in defining object boundaries precisely.

Other approaches pose segmentation as a graph-based or Markov Ran-

dom Field optimization problem [43, 44], with user input specifying

constraints in the cost function. In some works [45], temporal linking

between superpixels is done manually: although these methods are

able to alleviate human effort for video annotation, at large scale they

are ineffective and still too time-consuming.

Another option to support low-level computer vision tasks is to

understand how humans perform them and to seek how human infer-

ence/reasoning can be integrated into computer programs. Examples

include systems which ask people to provide explicitly annotation ra-

tionales [46, 47] or to elicit the kinds of visual features employed to
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discriminate between image/object classes [48, 49, 34].

Besides their effectiveness in solving these tasks, the current main

limitation of interactive approaches is that, unlike computers, humans

need incentives to carry out a task. Under this scenario, on-line games

represent an effective mechanism to involve people in solving challeng-

ing problems [50, 51, 52, 53, 33]. Two popular approaches exploiting

web games for collecting human feedback for computer vision are the

ESP Game [54] and Peekaboom [55]. Both approaches make use of hu-

man collective intelligence by having two players collaborate to guess

(and thus provide to the system) appropriate labels for images. Since

their release, thousands of people have played them, generating mil-

lions of annotations. However, these games are devised only for image

analysis and, although they have inspired applications to video tag-

ging [56, 57], to the best of our knowledge no similar approaches have

been proposed to support video object segmentation.

If gamification has risen as a way to attract users while keeping the

same interaction modalities, an alternative to traditional approaches,

aimed at alleviating the effort of carrying out the tasks, consists in

making the interaction less demanding from the users, in terms of

both time and concentration. In this context, eye-tracking techniques

fit perfectly as a way to capture human feedback in a simple, non-

invasive and non-demanding way. In addition, they also caught our

interest as eye gaze is a very reliable indicator of what attracts peo-

ple attention (hence, what are significant visual features), and at the

same time it allows to design bottom-up interaction protocols, with-

out constraining the user with an imposed — and more tiring — task.

Eye-tracking also satisfies our “implicitness” requirements: ideally, we

can imagine a future with eye-tracking devices incorporated into reg-



16 Chapter 2. Literature Review

ular glasses, where scientists would be able to gather huge amounts of

data associating human activity and gaze direction without forcing the

user to do anything than his or her own regular everyday routines. At

present, however, eye-tracking devices are not as portable: commonly-

employed video-based trackers are often incorporated into computer

screens, and exploit infrared reflection on the cornea to assess gaze

direction, after a calibration procedure of the subject.

In science, even before the computer era, eye-tracking had been

extensively used to study the relations between eye movements and

attention [58]. More recently, they have been used to conduct studies

on human–computer interaction [59] or on website attention patterns

[60], with applications, for instance, to optimal advertisement place-

ment.

In the computer vision literature, eye-gaze analysis has been typi-

cally used for image tagging [61], image indexing/retrieval [62, 63] and

image segmentation [64, 65]. Still-image analysis has the advantage of

allowing users to look at and “explore” an image for a relatively long

time; in a video, things may be more complicated: although common

eye-trackers can reach a capture frequency of 60 Hz, this may still be

not enough to accumulate a significant number of gaze points on each

frame of a normal video played at 25 frames per second, which is one

of the challenges we have to deal with in the second part of Chapter 4.
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2.3 Human-driven computation systems

for visual tasks

Moving along the line of bottom-up user involvement approches ap-

plied to computer vision, at its extreme we currently find the class of

methods where interaction is as implicit and involuntary as possible,

i.e. those based on the analysis of brain activity patterns correspond-

ing to perceptual and cognitive processes.

The idea of reading the mind of people performing specific tasks

has been long investigated, especially for building brain–computer in-

terfaces. Most of these studies have targeted EEG-data analysis for

detecting the presence of absence of a specific pattern, e.g., P300 de-

tection [66] or seizure detection [67].

The recent deep learning explosion also affected research in brain

signal analysis, in particular thanks to a class of models known as

Recurrent Neural Networks (RNNs) [68], which are particularly suit-

able for learning and predicting sequential/temporal patterns as those

recorded through EEG. For example, RNNs and CNNs have been

used to learn EEG representations for cognitive load classification

[69], while a similar approach has been studied to classify EEG tracks

evoked when listening to music [70].

As far as vision is concerned, several cognitive neuroscience stud-

ies [71, 72, 73] have investigated which parts of human visual cortex

and brain are responsible for vision-related cognitive processes, but no

clear explanation has emerged yet. At least, it is has been acknowl-

edged that brain activity recordings contain information about visual

object categories [74, 75, 76, 77, 78, 79, 80]. However, such evidence
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has not been fully exploited yet, as few methods have been developed

to address the problem of decoding visual information from EEG data

[81, 82, 83, 79, 84], and most of these methods focused on binary clas-

sification (i.e, presence or absence of a given object class). One of the

most recent and comprehensive methods was proposed by Kaneshiro

et al. [79], who trained a classifier able to distinguish EEG brain sig-

nals evoked by twelve different visual object classes, with an accuracy

of about 29% that represents the state-of-art performance so far, and

the starting point of the research presented in Chapter 5.



CHAPTER

THREE

AUTOMATIC VIDEO OBJECT

SEGMENTATION

Our journey towards human-driven computer vision starts with a work

which does not envisage direct human involvement, but rather aims

at including principles of human perception into the problem of video

object segmentation.

3.1 Introduction

The algorithm we propose is inspired by similar approaches based on

superpixel segmentation and energy minimization [14], but it aims at

efficiency, by avoiding to compute optical flow to identify candidate

motion regions, instead analyzing those where significant variations

on superpixel segmentation in consecutive frames have been observed.

The initial coarse foreground segmentation proposes a set of location

19



20 Chapter 3. Automatic Video Object Segmentation

priors, which are used as the basis for splitting the task into smaller

segmentation problems. Each of these problems is solved by minimiz-

ing an energy function which takes into account how combinations of

superpixels resemble both foreground/background models and “real-

world” objects. Our algorithm aims at emulating the capability of

humans to capture the whole from the parts [85] by including con-

straints on perceptual organization, defined by the Gestalt principles

of attachment, similarity, continuity and symmetry.

The performance evaluation carried out on three standard datasets

shows that the proposed approach: 1) is able to deal with complex

scenes, with several non-rigid objects undergoing sudden appearance

changes, and with fast varying and multimodal backgrounds; 2) is

able to generalize over different object classes since no offline train-

ing or a priori knowledge is required; 3) outperforms existing and

more powerful video object segmentation approaches, e.g., [9, 14]; 4)

achieves encouraging results on challenging datasets such as SegTrack

[86], Underwater Dataset [10], I2R [87].

3.2 Overview

The basic principles which led the design of the algorithm are the

following:

• Superpixels as segmentation units : Working with pixels is sus-

ceptible to noise and fuzzy region boundaries, besides being in

general more computationally expensive as the number of ele-

ments to analyze becomes very large. Superpixels extraction,

instead, allows to greatly simplify the problem, both in terms of
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formulation and from a computational perspective.

• Objects as superpixel aggregations : Since superpixels typically

tend to largely oversegment an image, we can assume that ob-

ject boundaries always correspond to superpixel boundaries —

i.e. no superpixel spans two objects. Therefore, as superpixel

segmentation already guarantees a fairly robust boundary detec-

tion, we can formulate the segmentation task as the identification

of connected foreground and background superpixels.

• Motion superpixels as location priors : Assuming that static

video regions produce no motion superpixels, defined as super-

pixels on which we detect motion activity in two consecutive

frames, we can limit our analysis to areas where motion su-

perpixels aggregate, and process them independently as several

subtasks, which is more efficient than performing a global seg-

mentation on all superpixels and yields better results.

• Appearance similarity : By managing foreground and back-

ground models, we are able to know what objects look like in

terms of color. Therefore, the segmentation algorithm should

try and keep similar superpixels together.

• Perceptual organization: Objects in the real world have a gen-

erally regular and compact geometrical structure, according to

the Gestalt principles of attachment, similarity, continuity and

symmetry. Enforcing such principles in the way superpixels are

combined together can help to compute segments which are more

likely to match the actual objects in the scene.



22 Chapter 3. Automatic Video Object Segmentation

Based on these criteria, our algorithm consists of the following

steps:

Initial foreground estimation. In this phase, motion re-

gions, defined as the bounding boxes (expanded by Dpad = 3 pixels)

around connected groups of motion superpixels, are identified. Unlike

previous methods [14], this preliminary segmentation is carried out

without computing optical flow, but simply analyzing superpixel

segmentation changes in consecutive frames (see Figure 3.1). Ideally,

in two consecutive frames, superpixel segmentation changes only in

areas with moving objects. This gives a straightforward condition to

rapidly identify foreground but, practically, background object move-

ments and light changes may generate false positives that need to be

removed. Each motion region is then treated as a single optimization

problem for the subsequent accurate object segmentation step.

Background/foreground models estimation. Usually back-

ground subtraction approaches maintain a model for each background

pixel, which is initialized in an off-line phase where only background

frames are taken into account and then updated using the classifica-

tion map. In our approach, we do not build a background model for

each pixel; instead, we have an on-line model for each background

region and each foreground object.

Accurate object segmentation. The goal of this step is to

accurately identify object boundaries by refining the segmenta-

tion initialized by the motion regions in order to enforce spatial

smoothness. To obtain an accurate object segmentation, we group
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superpixels by optimizing an energy function which includes appear-

ance similarity to the background/foreground models and perceptual

organization principles. This energy minimization process is done

for each detected motion region, as opposed to global minimization

approaches [14] (see Figure 3.3). We do not impose any constraints

on motion smoothness (unlike [14, 15]) since it makes the entire

process too dependent on the frame rate of the analyzed videos.

3.3 Method

3.3.1 Initial foreground segmentation

Our approach starts with superpixel segmentation carried out by

means of SLIC [88], which is an efficient adaptation of k-means in

the labxy image space for robust superpixel generation. This step op-

erates on pairs of consecutive frames (t, t + 1) and identifies motion

regions based on the consideration that superpixel segmentation, in

two subsequent frames, remains more or less stable in background

regions, while it changes substantially in the case of moving objects.

Let St and St+1 be the sets of the superpixels computed, respec-

tively, at frame t and t + 1. For each superpixel sit+1 ∈ St+1 we com-

pute the Jaccard distances (dJ) between its backprojection at time t

(sit+1→t) and all the superpixels in St. If the minimum of such distances

is above a threshold, we mark the superpixel as “motion superpixel”

(see Figure 3.2). Therefore, the initial foreground mask M t+1 at time
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Figure 3.1: (a) and (b) two input frames. (c) Set of motion su-

perpixels: false positives — filtered out at this stage — are shown in

red, while correct ones are shown in green. (d) Motion regions built

according to the filtered motion superpixels. In each motion region, we

then perform accurate segmentation by energy minimization.
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Figure 3.2: Example of motion superpixel identification: superpixel

sit+1 at frame t+1 is backprojected on frame t, overlapping four super-

pixels. sit+1 is marked as “motion superpixel” if the Jaccard distance

between it and the superpixel with the highest overlap (i.e. minimum

Jaccard distance) is above threshold T .



26 Chapter 3. Automatic Video Object Segmentation

Figure 3.3: (a) Output mask obtained by [14] performing energy

minimization of the whole image; (b) Output mask of our method when

excluding location priors, thus performing energy minimization taking

into account all image superpixels; (c) Output mask of our approach

with location priors.
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t+ 1 is given by:

M t+1
sit+1

=

1 if mins∈St dJ(s
i
t+1→t, s) > T

0 otherwise
(3.1)

The threshold T is adaptively computed as the average of the min-

imum Jaccard distance between all superpixels in frame t + 1: this

allows to handle, even in this early stage, slow object motion (T will

be low, enabling the detection of fine superpixel variations) and camera

motion (T will be high, and many superpixels with apparent motion

will be filtered). To further remove false positives (red-coloured super-

pixels in Figure 3.1), isolated motion superpixels or small groups of

connected superpixels are discarded. Moreover, as soon as the back-

ground/foreground models become reliable (after three frames; see

Section 3.3.2) they are used to remove background superpixels mis-

classified as motion ones, by fitting a Mixture of Gaussians (MoG) to

each superpixel and computing the Kullback-Leibler divergence from

the background/foreground models.

3.3.2 Background/foreground model estimation

In order to include constraints on the visual appearance of the objects

in the scene, we maintain a set of background and foreground color

models. Using several models for background and foreground, instead

of only one each (as in [14]), allows to handle appearance multimodal-

ity: this is critical when several moving objects are present in the

scene, so that each can be modeled and matched independently. It is

important to understand that, although in this section we will describe

the construction of the models from a pixel-based point of view (and
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necessarily so, due to the nature of colour features), all other parts

of the proposed method (from the identification of motion superpixels

to segmentation as a minimization problem, in the next section) deal

with superpixels as a basic and atomic unit.

Model initialization is performed at the first processable frame (i.e.

the second video frame, when the first motion superpixel segmentation

is available) by fitting a set of mixtures of Gaussians1 to each back-

ground region and foreground region: background regions are obtained

using adaptive k-means clustering on the whole image excluding mo-

tion superpixels and very small clusters, whereas foreground regions

simply consist in connected sets of motion superpixels, ideally associ-

ated to each moving object in the scene. Having separate foreground

models rather than a single global one allows us to have simpler mod-

els (i.e., with a smaller number of components in the mixture) and to

avoid “contamination” between models associated to different objects.

After model initialization is performed, we have a set of back-

ground models {ψb,1, ψb,2, . . . , ψb,Nb
} and one of foreground models

ψf,1, ψf,2, . . . , ψf,Nf


, where Nb is the number of clusters obtained

from the adaptive k-means on the background pixels and Nf is the

number of foreground regions from the initial motion superpixel seg-

mentation.

Background model re-initialization is performed at the second pro-

cessable frame (i.e., the third video frame, when the first object seg-

mentation is available) and after every Tinit frames, since as time passes

scene conditions may change and the models may become outdated:

this happens, for example, if foreground regions become stable and

1The number of components is adaptively set by minimizing the Akaike infor-

mation criterion.
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are absorbed into the background, or if new moving objects appear.

Moreover, the need for re-initializing the background model at the

second processable frame comes from the fact that the initial models

are based on the inaccurate segmentation provided when using motion

superpixels only, whereas at this point we can use the accurate object

segmentation map for the previous frame to separate background and

foreground regions.

Model update is performed at every frame (except when the model

is re-initialized) after segmentation is completed. The update process

for the background models at frame t consists of the following steps:

1. Initialize sets Pb,1 = ∅, . . . , Pb,Nb
= ∅, representing the sets of

pixel values (as RGB triplets) which will be used to update the

corresponding background model.

2. Put into each Pb,i all pixel values from frame t − 1 which had

been associated to background model ψb,i.

3. Compute background model priors π1, . . . , πNb
as the ratios be-

tween the number of pixels belonging to each model and the

total number of background pixels at frame t− 1.

4. For each pixel p belonging to superpixels labeled as background,

add it to set Pb,i according to a maximum-a-posteriori criterion,

i.e. such that: i = argmaxj P (ψb,j|p).
5. Fit a MoG ψbi from each set Pb,i, using the current models as

initial conditions for the expectation-maximization algorithm.

6. Remove models ψb,i from the model set if Pb,i = ∅.

Using also pixels from the previous frame to fit the models (item 2)

helps to prevent problems with the fitting algorithm when the initial

conditions are too different from the target data set.
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Foreground models are updated on a per-object basis, as follows:

1. Initialize sets Pf,1, . . . , Pf,Nf
, similarly as above.

2. For each foreground object Oi segmented at frame t which con-

tains at least one motion superpixel (see Section 3.3.3), fit a

MoG Γi on the object’s pixels.

3. Identify the foreground model ψf,j which best matches Oi using

the Kullback-Leibler (KL) divergence: j = argmink dKL(ψf,k,Γi)

4. If the KL divergence between ψf,j and Γi is smaller than a thresh-

old Tfg, add Oi’s pixels to Pf,j. Otherwise, create a new set

Pf,Nf+1 containing Oi’s pixels, and increase Nf by 1.

5. Fit a MoG ψfi from each set Pf,i, similarly as above.

6. Remove models ψf,i from the model set if it has matched no

objects for the past Tf frames.

3.3.3 Accurate object segmentation

The initial segmentation based on motion superpixels is not accurate

enough, as it does not take into account any information on visual ap-

pearance or on how well a set of superpixels geometrically fit together,

as shown in Figure 3.1. Nevertheless, motion regions provide initial

location priors for accurate segmentation based on appearance similar-

ity and perceptual organization. These location priors are combined

with the latest foreground map to allow segmenting objects which be-

come temporarily stationary. However, in order to avoid a self-feeding

effect on background regions incorrectly identified as foreground, and

to let the algorithm “forget” foreground regions which are absorbed

into the background, foreground models for appearance are updated

only from superpixels belonging to regions which originally contained
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motion superpixels.

Then, for each motion region, a local segmentation subtask is de-

fined by taking into account also non-motion superpixels intersecting

the region’s bounding box. Depending on the size of the object, the

number of superpixels involved in each subtask is relatively small (in

the order of the tens), which allows to solve the problem efficiently.

If several motion regions intersect, we join them into a unique re-

gion. After that, considering each subtask independently, we pose the

segmentation task as an energy minimization problem, where higher

segmentation costs are due when the algorithm assigns different la-

bels to similar contiguous superpixels or to contiguous superpixels

which perceptually fit together. Formally, given the set of superpixels

S = {s1, . . . , sN} and a set of corresponding labels L = {l1, . . . , lN},
where each li ∈ {0 : background, 1 : foreground}, the overall energy

function is as follows:

E(L) = A(L) + P (L) (3.2)

A(L) =

li∈L

a1(li) +


(li,lj)∈N (L,S)

a2(li, lj) (3.3)

P (L) =


(li,lj)∈N (L,S)

p(li, lj) (3.4)

where A(L) and P (L) respectively represent the overall appearance

and perceptual organization energies, N (L, S) is the set of all pairs

of neighbor superpixels (i.e., with part of boundary in common), and

the potentials a1(·), a2(·, ·) and p(·, ·) enforce our design principles

on visual similarity and perceptual organization. As shown below,

these potentials are defined so that E(L) is a binary pairwise function

with sub-modular pairwise potentials, thus efficiently minimizable us-
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ing graph cuts in order to obtain the final segmentation:

L = argmin
L

E(L) (3.5)

In the following, each potential function is described in detail.

Background/foreground similarity

The unary potential a1(·) indicates whether a superpixel is best as-

sociated to the foreground or the background. Given superpixel

si = {p1, . . . , pn}, let us assume we want to compute the cost of as-

signing label 0 (i.e., background) to si. For each pixel pj ∈ si and

for each background model ψb,k, we compute the posterior probability

P (ψb,k|pj). We then average these probabilities for each background

model and choose the maximum among the averages as the overall

background probability Pb for si; the negative log-posterior is then

used as value for a1(0) (since we are considering the background case).

If li is 1 (foreground), the prior for model ψf,k is c · 1
tk+Nf

, where

tk denotes how many frames ago the model was last updated and c is

a normalization factor.

Mathematically, the overall formula can be written as:

a1(li) = − logmax

 1

|si|

pj∈si

P (ψx,k|pj)


k=1...Nx

(3.6)

where |si| is the number of pixels in si and the pair (ψx,k, Nx) depends

on li:

(ψx,k, Nx) =

(ψb,k, Nb) if li = 0

(ψf,k, Nf ) if li = 1
(3.7)
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Local similarity

The binary potential a2(·, ·) defines the cost of assigning different la-

bels to two neighbor superpixels, based on their color similarity. Our

approach on estimating this quantity is based on the following consid-

eration: the similarity of two superpixels can be seen as the probability

that their union is generated by the same color distribution, be it a

background or a foreground one; if they are not similar, their union

will be unlikely to be generated by any background/foreground model.

Thus, given superpixels si and sj, we fit a MoG Γij from the pixels

belonging to si ∪ sj, then compute the minimum KL divergence be-

tween Γij and all background and foreground models, and use it as

a dissimilarity measure between si and sj; in order to guarantee sub-

modularity [89], the final value of potential a2(li, lj) is non-zero only

if li ̸= lj.

Formally, the potential function is:

a2(li, lj) = [li ̸= lj]

1−min {dKL(Γij, ψ)}ψ∈Ψ


(3.8)

where [li ̸= lj] is 1 if the labels are different and 0 otherwise, dKL(·) is
the KL divergence function, and Ψ =


ψb,1, . . . , ψb,Nb

, ψf,1, . . . , ψf,Nf


is the set of all background and foreground models. Comparing the

superpixels’ union to the background/foreground models helps to pre-

vent problems when fitting the pixel distribution to a MoG, since

superpixels, by construction, are small and internally homogenous.

Sometimes, when pixels from both superpixels are almost identical

and some color channels are practically constant, it is impossible to

compute Γij: in such cases, we set a2(li, lj) = [li ̸= lj], which reflects

the high similarity between the two superpixels. The reduced number
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of neighbor pairs (due to the small number of superpixels in each seg-

mentation subtask) and the small number of pixels in each superpixel

makes the evaluation of a2(·, ·) very fast, in spite of the number of

models to build.

Perceptual organization

The binary potential p(·, ·) defines the cost of assigning different labels
to two neighbor superpixels, based on how well they fit together from

a perceptual and geometrical point of view. To estimate this quantity,

we employ a variant of the approach proposed by [85]. The potential

function is computed as:

p(li, lj) = [li ̸= lj]e
−θ·[B(si,sj),C(si,sj)] (3.9)

where θ = [18, 3.5] is a weighing vector (suggested in [85]), B(si, sj)

is the boundary complexity of region si ∪ sj, and C(si, sj) is the cohe-

siveness between superpixels si and sj.

Boundary complexity measures the regularity of the contour ob-

tained by joining two superpixels: intuitively, if they belong to the

same object, the contour of their union should be ideally as smooth as

if it were a single object in the first place; similarly, if the contour of

the union is not regular, it is less likely that they belong to the same

image segment. In order to numerically encode this principle, an anal-

ysis of convexity and of the number of notches (non-convex angles) on

the contour is performed: as we compute boundary complexity in the

same way as in [85], we refer the reader to that paper for details.

Cohesiveness also measures how well two superpixels fit to each

other, but is defined according to principles of symmetry, continuity,
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and attachment strength. If the superpixels’ sizes are similar (i.e. their

sizes’ ratio is smaller than 3), it is computed as:

C(si, sj) = λij(ϕij + φij) (3.10)

The symmetry score, ϕij, evaluates whether the centers of mass of

si and sj are aligned vertically (same x coordinates) or horizontally

(same y coordinates). If we define (xi, yi) and (xj, yj) to be the centers

of mass of superpixels si and sj respectively, the symmetry score is

computed as:

ϕij = min {|xi − xj|, 1} ·min {|yi − yj|, 1} (3.11)

which will return a small value if the differences between either pair

of corresponding coordinates is close to zero.

The continuity property indicates whether the line along which si

and sj’s common boundary is oriented does not intersect either object

at any other points. When this condition is verified, the union of

the two superpixels yields an object with a perceptual impression of

“continuity”, in the sense that it is not evident that it is made up of

two distinct regions. The corresponding score, φij, is defined as:

φij =

0 if e(∂ij) ∩ ∂i = ∅ ∧ e(∂ij) ∩ ∂j = ∅

1 otherwise
(3.12)

where ∂i is si’s contour, ∂j is sj’s contour, ∂ij is the common bound-

ary, and e(∂ij) is the portion of the line passing by the extrema of the

common boundary, excluding the segment between the extrema.

Attachment strength depends on how large the common boundary

is with respect to the superpixels’ whole boundaries:

λij = βe−α
L(∂ij)

L(∂i)+L(∂j) (3.13)
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where β = 3 and α = 20 are two parameters (again, suggested in

[85]), and L(·) returns the length in pixels of a boundary. In other

words, if two objects are “well-attached” (imagine two halves of a

disk), the length of the common boundary should be large; similarly,

if the attachment is weak (imagine two tangent circles), the length of

common boundary will be very small in comparison to the superpixels’

contour lengths.

In the particular case when one superpixel (say, si) is markedly

larger than the other (sj), symmetry and continuity may not be mean-

ingful. Therefore, our cohesiveness score for these situations becomes:

C ′(si, sj) = λ′ij = βe−α
L(∂ij)
L(∂j) (3.14)

that is, we only evaluate attachment strength on the smallest super-

pixel only.

Once all potentials in the energy function are defined, we can per-

form graph cut-based minimization to find the optimal segmentation.

However, since each segmentation subtask is performed locally on a

small set of superpixels, it may happen that the region we are analyz-

ing is included into a large object, only a part of which was initially

detected by the motion superpixels2. Therefore, the above approach

is iteratively applied until no changes are detected in consecutive iter-

ations, both to capture large objects and to refine the obtained masks.

At each iteration, we perform motion region–based segmentation (as

2Of course, the opposite case is not a problem: if a set of connected motion

superpixels span a much larger area than the actual object, the excess part will

be segmented out by the energy minimization phase.
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above) with the difference that the object blobs detected at previ-

ous iterations are now considered as single large superpixels (hard-

constrained to be labeled as foreground), thus allowing to iteratively

refine object segmentation at a low processing cost, since all superpix-

els merged into blobs in previous iterations do not need to be processed

again.

3.4 Experimental results

In this section we present qualitative and quantitative results of our

approach on three datasets — the Underwater dataset [10], SegTrack

v2 [86], and I2R [87] — to show how our method performs in cases

of slow motion, camera motion, small objects and cluttered scenes.

The parameters Tinit, Tfg and Tf are set, respectively, to 15, 0.8 and

10 for all the employed datasets. Superpixel size was set to 7×7, as

a compromise between the risk of segmentation errors, sensitivity of

threshold T to noise, and processing speed. As [14] is also based on

superpixel segmentation, but employs optical flow, it was used as the

main baseline in all evaluations, using the public source code with

default parameters.

3.4.1 Underwater Dataset

The underwater dataset is a collection of 14 “real-life” underwater

videos (10-minute videos with spatial resolution from 320×240 to

640×480, at 5 fps) taken with static cameras to monitor Taiwan

coral reef, and is featured by small objects and cluttered scenes. The

videos are classified into seven different classes: Blurred (low-contrast
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scenes with well-separated background and foreground), Complex

Background (background featuring complex textures, thus suitable to

test superpixel-based methods), Crowded (highly cluttered scenes with

several occlusions), Dynamic Background (background movements,

e.g., due to plants), Luminosity Change (abrupt light changes), Hy-

brid (plant movements together with luminosity changes), Camouflage

Foreground Object (e.g., objects very similar to the background). The

dataset provides also ground-truth, consisting of about 20 frames per

video segmented at pixel level. We compared our method to some

background modeling state-of-the-art approaches [8, 90, 9, 10] and also

included the well-known Gaussian Mixture Model [7] as baseline. For

these methods we report their performance as stated in [10] where the

original implementations (provided by the respective authors) were

used, thus avoiding implementation bias in the performance analy-

sis. The evaluations in terms of F-measure scores (computed at pixel-

level) are shown in Table 3.1: on average, our method outperformed

the other approaches in all videos, achieving good results in handling

light changes, deformable objects and cluttered scenes. Figure 3.3

shows a qualitative comparison between our method and [14]; it is

possible to notice how our method was able to identify objects hidden

in background areas (see the fish on the right side in Figure 3.3) while

[14] missed them.

3.4.2 SegTrack Dataset

SegTrack [86], originally built for testing tracking algorithms, has been

widely employed as a video object segmentation benchmark [91]. It

contains six videos (monkeydog, girl, birdfall, parachute, cheetah, pen-
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Figure 3.4: Example results for Underwater Dataset. Each

row shows two images from a video, with our final mask superimposed

in green. From top to bottom: Crowded, Dynamic, Luminosity.
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Figure 3.5: Example results for SegTrack. Each row shows two

images from a video, with our final mask superimposed in green. From

top to bottom: cheetah, girl, monkeydog.
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Figure 3.6: Example results for I2R. Each row shows two images

from a video, with our final mask superimposed in green. From top to

bottom: AirportHall, Lobby, Fountain.
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Class [14] [7] [90] [9] [10] Our method

Blurred 35.1 83.3 70.3 85.1 93.3 89.8

Complex 36.1 67.0 83.7 74.2 81.8 86.3

Crowded 73.7 85.2 79.8 84.6 84.2 84.2

Dynamic 18.6 62.0 77.5 67.0 75.6 83.7

Hybrid 5.5 62.7 72.2 79.8 82.6 88.9

Luminosity 53.1 63.1 82.7 70.4 73.0 89.6

Camouflage 18.4 66.3 73.5 76.3 82.2 85.7

Avg 34.3 69.9 77.1 76.7 81.8 86.9

Std 23.2 9.2 4.9 6.4 6.0 2.4

Table 3.1: Results on the Underwater dataset. F-measure

scores (in percentage) for different methods on the Underwater dataset.

Our method is very robust to light changes and background movements

(see rows 4 and 6).

guin) and the ground truth provides pixel-level foreground object

annotations for each video frame. The dataset is known for being

very challenging due to camera motion, slow object motion, object-

background similarity, non-rigid deformations and articulated objects.

We compared our method to [91, 92, 38, 9] and reported their perfor-

mance as stated in [14]. Table 3.2 shows the achieved performance

as the average number of misclassified pixels per frame. Our method

performed remarkably well when compared to the other methods, es-

pecially on the girl video where our method shows its ability to seg-

ment articulated objects. In fact, we were able to segment very well
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[14] [91] [92] [38] [9] Our method

Birdfall 217 288 155 468 606 278

Cheetah 890 905 633 1968 11210 824

Girl 3859 1785 1488 7595 26409 1029

Monkey 284 521 365 1434 12662 192

Parachute 855 201 220 1113 40251 251

Table 3.2: Results on SegTrack. The penguin video was discarded

since the annotations provided in the ground truth were not reliable as

only one penguin in a group of penguins was segmented.

also legs and arms, which were missed by [14].

3.4.3 I2R Dataset

The last evaluation was carried out on the I2R Dataset [87], which

contains nine videos (at 120×160 resolution) taken with static

cameras showing people in different indoor and outdoor scenes. This

dataset is commonly employed for testing video object segmentation

approaches and presents several challenges including slow motion,

cluttered scenes, non-rigid deformations, articulated objects, camou-

flage. The ground truth consists of 20 labeled frames (at pixel-level)

per video. Table 3.3 compares the F-measure scores of our method

to the ones achieved by the recent background modeling approaches

[12], [93], [10] that, similarly to our approach, model (at pixel-level)

background and foreground and use combination of visual cues
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including texture. Our method outperformed all the other methods

on the I2R dataset, especially on crowded scenes (e.g. AirportHall)

and with articulated objects (e.g. Escalator). The high performance

obtained on the Escalator class is remarkable given the presence of

many occlusions.

Figures 3.4, 3.5, 3.6 show some example results where it is pos-

sible to appreciate the capability of our approach to adapt to different

complex scenes (e.g., with very sudden light changes, as in Figure 3.4)

and targets (from highly deformable ones, e.g., fish, to articulated

ones, e.g., girl) without performance loss.

We believe that including perceptual organization constraints into

the method has effectively boosted its performance: as further con-

firmation, the overall segmentation accuracy decreased by more than

30% when excluding the P (L) term in Eq. 3.2.

3.4.4 Processing times

Our method takes on average 0.2 seconds per frame on the Underwater

and SegTrack datasets (image resolution about 320×240) and 0.05

sec/frame on the I2R dataset (image resolution of 160×120), which

is fast enough to be used for “on-the-fly” video processing. This is

remarkable given that [14] takes 0.5 sec/frame on the SegTrack dataset

without considering optical flow and superpixel processing times, that

take processing time to about 3 seconds per frame. The reason of the

increased speed of our approach is mainly due to modeling/classifying

superpixels instead on single pixels and to local energy minimization.
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Class [14] [12] [93] [10] Our Method

AirportHall 29.6 68.0 71.3 69.2 77.4

Bootstrap 17.9 72.9 76.9 76.5 81.0

Curtain 23.2 92.4 94.1 94.9 96.3

Escalator 26.1 68.7 49.4 72.0 84.8

Fountain 15.1 85.0 86.0 83.2 84.1

ShoppingMall 13.1 79.7 83.0 78.5 86.7

Lobby 5.0 79.2 60.8 66.3 82.5

Trees 21.6 67.8 87.9 81.9 89.0

WaterSurface 83.7 83.2 92.6 92.5 93.9

Avg 26.1 77.4 78.0 79.5 86.2

Std 24.3 8.2 14.2 9.3 5.7

Table 3.3: Results on I2R. F-measure scores (in percentage) for

different methods on the I2R dataset. Our method outperforms all the

reported methods, especially on the Escalator class.
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Of course, faster methods exist, e.g. [10] achieving 0.05 sec/frame on

the Underwater dataset (although it relied on a C++ implementation,

while our method is currently written in Matlab 2013a), but we believe

that our method shows a good speed/accuracy trade-off.

3.4.5 Discussion

Automatic video object segmentation is still a complex and unsolved

problem, due to the variety of contexts and scenarios. In this chap-

ter, we present our initial attempt at solving the problem without

constraints and the specific application settings, by extending state-

of-the-art approaches and combining them with principles of human

perceptual organization. The result is a method which achieves a sat-

isfactory trade-off between computation time and accuracy, thanks

to our initial foreground estimation based on superpixel differences,

rather than the less efficient optical flow computation. The energy-

based setting of the problem allowed to easily integrate perceptual

organization constraints into the solution without altering the general

framework, which had proved effective in the literature.

Of course, human involvement in this work is practically absent,

and all analysis is limited to bare visual processing. In the next chap-

ter, we will see how this approach can be modified to include humans

in the process and how the provided feedback can be used to guide

and enhance automatic analysis.
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3.5 Publications

The approach described in this paper was presented at the Computer

Vision and Pattern Recognition conference in Boston, USA, 2015 [94].



48 Chapter 3. Automatic Video Object Segmentation



CHAPTER

FOUR

GAMIFICATION VERSUS EYE-TRACKING

FOR INTERACTIVE VIDEO OBJECT

SEGMENTATION

In the previous chapter we introduced the problem of automatic video

object segmentation and illustrated an algorithm combining a state-

of-the-art approach based on energy minimization with principles of

perceptual organization, as performed by humans according to Gestalt

laws [85].

It is time to see how humans can concretely be involved in a com-

puter vision task, and how the information they provide can enhance

the performance of automatic algorithms. In this chapter we will

compare the performance of two different strategies of human involve-

ment: gamification and eye-tracking–based participation. These two

approaches share the nature of the feedback that they produce —

punctual screen coordinates — but are very dissimilar in many im-

49
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portant ways.

As mentioned in Chapter 2, gamification — the process of “disguis-

ing” a job as an entertaining activity, in order to provide an incentive

to potential participants — is one of the most successful approaches

for human involvement in computer vision tasks. However, it is still a

rather explicit interaction modality: users have to dedicate their time

to playing the game, and as entertaining as this may sound, a less

“invasive” involvement strategy may be desirable. Moreover, gamifi-

cation is extremely task-oriented: the design of the game and the kind

of generated human feedback are directly mapped to a set of rules or

instructions imposed to the user.

Instead, eye-tracking technologies can alleviate the effort de-

manded from participants, since “watching” is in general a less in-

tense activity than “playing”. Also, leaving the user’s attention focus

on objects or regions according to bottom-up saliency allows to draw

from a well of information inaccessible to explicit approaches, where

user attention is guided and constrained by what the system designer

wants to obtain.

4.1 Gamification-based video object seg-

mentation

A straightforward way to involve users into the process of identify-

ing moving objects in videos is to have them click, using a computer

mouse, on the relevant regions. We can then turn this task into a

game by adding a scoring system associated to click locations and

make the clicking process non-trivial, e.g., by increasing the videos’
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playing speed. This is the basic idea for the gamification approach

described in this chapter: although clicking on moving regions can be

a boring task per se, the simplicity of the game and the addition of

the competitiveness factor make it attractive to occasional users, who

are actually more motivated by playing against their friends than by

contributing to the advancement of academic research.

Unfortunately, making a game popular and involving a lot of users

is only an aspect of the whole problem. First of all, the quality of

the generated feedback data is questionable: sometimes users only

play half-mindedly, which may result in either too little clicking (not

enough data provided) or too much (higher risk of noise); in general,

they do not care about the accuracy of their clicks, unless the scoring

system forces them to — which gives an idea of the importance of

choosing a scoring system embodying all required constraints.

Finally, it may be tricky to translate human feedback into algo-

rithmic input. For example, how much should the algorithm trust the

correctness of the input and how can we modify existing approaches to

deal with the additional information? In the following, we will describe

a variant of the energy minimization–based approach from Chapter 3,

and add terms in the energy potentials which take into consideration

which superpixels have been the target of user clicks, and whether

being a target resulted from intentional and accurate clicking or from

noise and imprecision.

The interactive video object segmentation approach associated to

our gamification strategy can be seen as a two-step spatio-temporal

optimization problem: the first one with a cost function exploiting

spatial information at the frame level and encoding user feedback and

appearance cues in order to extract homogeneous object regions; and
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the second one enforcing spatio-temporal consistency between the seg-

mented object regions in consecutive frames, thus refining the prelim-

inary segmentation.

There are three main modules in the whole approach:

• The game: The starting point of the whole process, our game

is thought to gather user clicks in correspondence of objects of

interest in videos. The game is designed to be challenging and

competitive, so that users are encouraged to play: while this

helps keeping the competition between users, game difficulty of-

ten affects the noisiness of the generated data.

• Superclick extraction: The initial stage of our algorithm con-

verts the noisy set of clicks into a set of more accurate “clicked

superpixels”, or superclicks. Posing the problem in terms of su-

perpixels rather than pixels reduces the numerical complexity

of the task and enforces spatial coherency between clicked ob-

ject regions. On top of this viewpoint, we identify and group

together superclicks as an energy minimization problem.

• Temporal smoothing : Single-frame superclick extraction pro-

duces a fairly accurate segmentation of the objects in the scene,

however it ignores temporal consistency between frames, which

can be exploited to further improve the segmentation. Based on

the superclicks extracted from a span of consecutive frames, a

spatio-temporal energy function is designed in order to transfer

information on the labels assigned to corresponding superpixels

at different frames.
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4.1.1 The game

Human visual attention is the process of gating visual information to

be processed by the brain, according to the intrinsic characteristics

of visual scenes (bottom-up process), and to the task to be performed

(top-down process) [95]. In particular, bottom-up visual attention is an

uncontrolled process, which operates as a zoom lens highlighting areas

of high contrast (both spatial and temporal) of the processed visual

scenes. Top-down visual attention is, instead, a volition-controlled

process that depends mainly on the task to be performed. We ex-

ploited these mechanisms, together with principles of game simplicity

and competition for effective players’ engagement, to design our game

where players have simply to take photos of most salient objects in

videos. In detail, its main features are:

• The game activates both bottom-up and top-down attention

mechanisms. Bottom-up process: showing fast video sequences

forces players’ attention towards the most salient objects (usu-

ally the biggest and high-contrast moving ones). Top-down pro-

cess: at the same time, the goal of hitting moving objects, makes

players follow objects across consecutive frames.

• Videos usually contain multiple objects, and we want users to

clicks on all (or most) of them. Although it is already known

that gamers are able to monitor effectively multiple objects while

playing [96], we added an inhibition-of-return mechanism (which

blurs the most salient objects, i.e. those that have received most

clicks, thus shifting saliency to the next most salient ones) in

order to drive visual attention to all objects in the displayed
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videos.

• The game strategy, i.e. taking photos of moving objects, was in-

tentionally devised simple in order to enable the general public

(without any knowledge of computer vision and machine learn-

ing) to play the game. No interaction with the video (e.g., paus-

ing on a frame, moving forward and backward) other than click-

ing was allowed.

• The competition mechanism consisted of awarding points to cor-

rect clicks and making players complete game levels upon the

achievement of a goal score for each level. All-time ranking of

the best scores is shown in the game main page and at the end

of each game, in order to favor competition between players.

4.1.2 Game interface

Figure 4.1 shows an example of a typical in-game screenshot. The

video for the current level is, of course, the most important element of

the interface and takes up most of the space; the current score obtained

by the user is shown at the top; the remaining time before the level’s

end is shown on the top-left corner (indicated by the oxygen icon—a

legacy from the initial underwater-oriented application of the game),

and the number of points needed to pass the current level is at the

bottom of the screen. The mouse cursor is shaped like a camera reticle,

and at each click the taken “photo” is shown at the bottom-left corner

of the screen. When the user clicks correctly on a target, points are

awarded, shown as upward-floating bubbles (“+81” in the example

image). Finally, further option buttons are shown at the top-right
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Figure 4.1: In-game screenshot of the user interface.

corner of the screen.

Levels

Each level in the game is associated to an input video, which is sup-

posed to be at least 30 seconds long at 10 frames per second (if longer,

only the first 30 seconds will be shown). In order to pass a level, a cer-

tain amount of points must be scored, starting from 4000 at the first
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level, and increasing by 2000 at each successive level. As the game is

actually relatively simple, this increase represents the main challenge,

since it makes it more and more difficult to achieve the required points.

Level-video association is done randomly at each game: i.e., in

different game sessions, the video ordering changes to prevent players

from knowing in advance where objects might be located. This is

necessary since players often tend to maximize their scores also using

tricks.

A related issue was the saliency bias of some objects with respect

to others, which caused users to click always on the same objects (the

most salient ones) in a scene even if several others were present (see

Figure 4.2 — left image). In order to induce players to click on all

available objects, we applied an inhibition-of-return mechanism by

blurring videos in areas where clicks (by all users) accumulate: this

reduced the saliency of underlying objects, and led users to click to

other objects in the scene (see Figure 4.2 — right image). Note that

users were not instructed not to click on blurred regions: they did this

naturally, as those regions became less salient to the human visual

attention mechanism. Video blurring was performed by estimating

a click density function by means of kernel density estimation, us-

ing normal kernels centered at click locations, and blending the frame

image with a smoothed version of itself using the click density estima-

tion as blending coefficients for each pixel. This simple, but effective,

mechanism allowed us to gather clicks on multiple objects as shown

in Figure 4.2.
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Figure 4.2: (Left to right and top to bottom) Initially, users tend

mainly to click only over the left person. As clicks accumulate on

him, the corresponding region is blurred, thus making players shift

their attention towards the right person.
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Points

As in any gamification process, it is necessary to pose the task as a

competitive one, providing the users with a feedback on how good they

are with respect to their previous results or their friends. We employ

a point-based system to reflect users’ performance on the game, and

keep an all-time ranking of the best scores. Points are awarded by

clicking correctly on an object of interest, depending on the size of

the object and on previous clicks: bigger objects are awarded more

points, but successive clicks in the same area earn the user less and

less points, according to the formula:

P+ = max


A · F1 ·


1− t

d


, Pmin


(4.1)

where P+ is number of points earned for a correct click, A is the area

in pixels of the clicked object, F1 represents the weight that object

with area A has for score computation, t is the number of consecutive

clicks within a M ×M pixels region and d is a weighting factor of the

number of clicks. In practice, A · F1 (in our case F1 = 0.05, i.e. 5%

of the object area A) is the maximum score awarded for a click on a

certain object, but this score is progressively reduced (by the quantity
t
d
) down to a minimum of Pmin points if the user keeps clicking on

the same spot: when the most salient objects get too many clicks, this

reduction forces users to click on different objects to earn more points,

while at the same time helps to provide data on as many objects as

possible. It may seem that our scoring method tends to favor bigger

objects, but the maximum score for a click is only a fraction (in our

case only 5%) of the clicked object’s area and it is reduced if objects

are clicked many times. Therefore, t is the most influencing factor
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and it allows us to obtain data on multiple objects by shifting saliency

progressively to all objects in the scenes.

In order to reduce noisy clicks, we foresee a penalty mechanism, which

reduces points awarded by users in case they click too far from targets;

the penalty is computed as:

P− = F2 · t (4.2)

where P− is the amount of points subtracted to the current score

due to a wrong click, t is the number of consecutive clicks falling fur-

ther than Z pixels from the closest correct object and F2 is a weight-

ing factor. Penalties prevent users from clicking randomly across the

frame and force them to be as more accurate as possible. The values

of F2, M , Z depend on frame resolution and in our case, since all

videos are rescaled to 640×480 to fit the game interface, they were set

to 20, 30 and 200, respectively; d, instead, is a parameter balancing

the trade-off between object areas and clicks in the score assignment

and was set to 10 in our experiments; Pmin was set to 5. The overall

score per level is achieved by summing up P+ and P−.

However, to award points to players we need object segmentations

(not necessarily highly accurate) on the input videos to tell whether

clicks hit or miss objects. In order to have a reference signal — score

video segmentation — according to which we assign points to players,

we use the output of the system itself. When the system is first set

up and no data is available yet, the initial video object segmentation

is obtained by running a classic background modeling method ([9] in

our case); although in the beginning this may not be enough to cover

all and only objects in the scene, it still provides an adequate base

for setting the game up. After users have started to play, the object
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segmentation is simply updated based on users’ clicks by running the

algorithm presented in this paper. It is not strictly necessary for the

score video segmentation to be extremely accurate: scores are only

provided for the benefit of users, in order to keep them interested by

means of competition.

Click quality

We also estimate the “quality” (in the sense of “accuracy of clicks with

respect to objects”) of the data provided by users while playing the

game. Quality score is computed on a per-level and per-user basis, as

the fraction of user clicks hitting the objects in the level. The quality

score Qu,l for user u and level l is defined as:

Qu,l =
1

Cu,l

Cu,l
i=1

I(ci ∈ S) (4.3)

where Cu,l is the overall number of clicks by user u in the game level

l, I is the indicator function, while S is the set of objects’ superpixels

for level l.

We assume that all clicked pixels in a game level by a user gets

the same quality score computed as above. We could have computed a

global quality score for a single game (i.e., the sequence of levels a user

plays before completing the game) or for the user, however different

levels may return very different quality scores even within the same

game session, due to each video’s scene and object characteristics, so

a global score would become too generic to describe individual click

quality in a level’s context.
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4.1.3 Superclick extraction

The clicks collected through the web game are used to extract infor-

mation on the location of objects in the scene for each video frame and

to carry out a preliminary object segmentation. We pose the prob-

lem as a binary segmentation task (background and foreground) by

means of the minimization of an energy function defining the cost of

a segmentation. Like some of the most recent methods for video ob-

ject segmentation [94, 14, 15], we use superpixels (computed by SLIC

[88]) as basic image parts instead of pixels as they provide two main

advantages: 1) reducing the number of variables greatly speeds up

the minimization algorithm (the number of variables is scaled down

by a factor of 30-50, depending on superpixel settings); 2) the initial

segmentation provided by superpixels is usually effective in detecting

edges, which allows to simply focus on finding the optimal aggregation,

taking boundary detection for granted.

The first processing step, given our target frame F , consists of su-

perclick extraction, where a superclick is the intuitive extension of the

concept of clicks to superpixels. This step is necessary to be able to

pose the problem in terms of superpixels only, by “converting” point

data (e.g., clicks) to superpixel-oriented ones. Of course, the princi-

ple behind this operation is that superpixels containing clicked pixels

should be more likely to be marked as superclicks, which are then

converted into optimization constraints. However, clicks are gener-

ally noisy, thus other factors, such as click density, click quality (as

defined previously), closeness to other clicked superpixels need to be

taken into account for superclick identification.

Before explaining how superclicks are computed, a more basic ques-
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tion is: what clicks should we use to analyze a certain frame? Depend-

ing on video frame rate and target speed, users’ reaction times may

introduce a delay which results in a shift between the frame at which

the user clicks on an object and the frame at which the user intended

to click. Figure 4.3 shows a few examples: it is possible to notice that

the delay effect is more visible on some videos than others, mainly ac-

cording to objects’ speed. Since this issue involves complex biological

phenomena [97], which are out of the scope of the paper, we adopt a

simple but effective empirical approach: we assume that all clicks are

delayed by a constant number of frames for all videos. In detail, we

empirically found that shifting all clicks back by 2 frames (although

the optimal delay may vary from 1 to 4 frames which depends on

several factors, one above all the video frame rate) represents a good

trade-off between accuracy and complexity.

Let C = {c1, c2, . . . , cnC
} = {(x1, y1), (x2, y2), . . . , (xnC

, ynC
)} be

the players’ clicks for frame F , with corresponding quality scores

Q =

qc1 , qc2 , . . . , qcNC


(each click gets the quality score assigned

to the user who did it on a per-level basis). We define a graph-

representable energy function [89] over the set of F ’s superpixels

S = {s1, s2, . . . , snS
}, with a cost function able to model the “clicked-

ness” of each superpixel independently, and at the same time, to en-

force constraints on visual smoothness and click continuity. Our main

assumptions are:

1. Superpixels containing a large number of clicks should be marked

as superclicks (and vice versa), i.e., they can be seen as hard

constraints for segmentation.

2. Clicked pixels should be weighed by the relative quality when
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Figure 4.3: Due to users’ reaction times, clicks may be delayed with

respect to the “intended” frame. It is possible to notice that this phe-

nomenon may be more or less evident even within the same image,

depending not only on the user but also on the objects in the scene.
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evaluating their contribution to a superclick.

3. Unclicked superpixels which are close to clicked and visually-

similar superclicks should be marked as superclicks as well, since

they are likely to belong to the same object.

4. Isolated clicked superpixels (even if in small groups) should be

ignored as being likely noise.

Translating these assumptions into energy potentials, we obtain the

following cost function for energy optimization:

E1(L) = α1


s∈S

V1(s, ls, C) +


(s1,s2)∈N (S)

V2(s1, s2, ls1 , ls2) (4.4)

where L =

ls1 , ls2 , . . . , lsnS


is the superclick label assignment (lsi is

the binary superclick label for superpixel si), N (S) is the set of pairs

of neighbor superpixels (that is, having part of boundary in common;

we will also use the notation N (s) to denote the set of neighbors of

the single superpixel s), and α1 is a weighing factor.

Unary potential V1 models whether superpixel s is likely to be a

superclick or not. This “likeliness” depends on the number and quality

of clicks inside the superpixel’s region and on the vicinity to clicked

superpixels1. Therefore, V1 is defined by the following contributions:

1The reader might think that “vicinity to clicked superpixels” should be mod-

eled as a pairwise potential, rather than unary. In fact, it should be modeled as

unary because it is not an indication of whether two elements should be assigned

the same label (which is what pairwise potentials represent); instead, it uses lo-

cal information to indicate whether that item, individually, is more likely to be

assigned to a specific label (1 for “superclick” or 0 for “not superclick”)
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• Clickedness Ks: the more (high-quality) clicks a superpixel

has received, the more it is likely to be a good candidate su-

perclick. The clickedness score Ks for superpixel s is:

Ks =
|C ∩ s|

max
t∈S

|C ∩ t|  
(4.5a)

1

|C ∩ s|

c∈C∩s

qc  
(4.5b)

=


c∈C∩s

qc

max
t∈S

|C ∩ t|
(4.5)

where C ∩ s is the set of clicks hitting superpixel s and |·| is set
cardinality. The first (unreduced) version explains more clearly

what this formula is meant for: Eq. term (4.5a) indicates how

many clicks superpixel s contains with respect to the superpixel

containing most clicks in the processed frame; Eq. term (4.5b)

is, instead, the average quality of clicks inside s, and encodes

quality information in the score. The way this score is computed

thus addresses items 1 and 2 of the above design principles.

• Proximity to clicked superpixels Vs: if s has not received

many clicks but is close to superpixels which did, we might want

to take it into consideration as a potential superclick. Of course,

being close to clicked superpixels by itself is not enough: any

superpixel just outside an object’s boundary satisfies this re-

quirement; this issue will be addressed by the pairwise potential

V2.

Our proximity score Vs is computed as the fraction of neighbor

superpixels with clickedness score Ksn > 0.5, with sn ∈ N (s):

Vs =
|{sn ∈ N (s) : Ksn > 0.5}|

|N (s)|
(4.6)
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If s gets enough clicks but is isolated, Vs will be low and Ks

won’t suffice to label it as a superclick. Thus, Vs balances items

3 and 4 of our design principles.

• Unclicked regularizer: the point of introducing the Vs score

is to allow a superpixel with few or no clicks to be labeled as

superclick if its neighborhood hints that it should; however, if an

unclicked superpixel is not adjacent to any clicked superpixels,

its V1 potential is zero, which is something we want to avoid.

Consider, for example, the case of an object consisting of a

large uniform region with a non-uniform users’ click distribution

(which is actually often the case, as users tend to click at

the center of objects): by setting unclicked superpixels to a

low (but not null) potential, we allow labels to “spread” from

superclicks (as per item 3 of our design principles above)—as

long as uniformity requirements, defined by potential V2, apply.

For this reason, we add a constant Us term to the V1 potential,

which should be small enough not to “push” too much toward

the “superclick” label (since clickedness and vicinity clues

suggest it should not be), but not so small that it cannot ever

be labeled as such.

The definitions of Ks, Vs and Us have been chosen so that the

sum of those terms (clipped to 1 if necessary) can be interpreted as

the probability that superpixel s belongs to class “superclick”, Ps,1 =

P (ls = 1|C, S) = min (Ks + Vs + Us, 1). Similarly, the complementary

probability Ps,0 = P (ls = 0|C, S) = 1 − Ps,1 is the probability that s

is “not a superclick”. In the energy function, V1 is meant to represent
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the cost of assigning a certain label to each superpixel: such costs can

be computed as the negative log-likelihood of the two probabilities

above:

V1(s, ls, C) =

− logPs,1 if ls = 1

− logPs,0 if ls = 0
(4.7)

Pairwise potential V2 is the cost of assigning different labels to two

adjacent superpixels s1 and s2: ideally, it should be large for “similar”

superpixels (so that they are assigned the same label) and small for

superpixels which are too visually dissimilar to be likely to belong to

the same class. Although in general this function could depend on the

specific labels being assigned (so that, for example, the cost of assign-

ing labels (ls1 = 1, ls2 = 0) might be different than the cost of assigning

labels (ls1 = 0, ls2 = 1)), in our case we focus only on estimating the

optimal separation point between the “superclick”/“non-superclick”

regions, based on visual similarity.

Therefore, potential V2 is simply expressed as follows:

V2(s1, s2, ls1 , ls2) = exp

−β1χ2(Hs1 , Hs2)


I(ls1 ̸= ls2) (4.8)

where χ2(·, ·) is the Chi-square distance, Hsi is the RGB color his-

togram of superpixel si, β1 is a constant, and I(ls1 ̸= ls2) ensures that

V2 is a submodular function, thus making the whole energy function

graph-representable [89]. Using a simple similarity measure such as

the color histogram has a twofold justification: 1) by construction,

superpixels have very little internal structure, so using more complex

descriptors is unnecessary; 2) since the function has to be evaluated for

all pairs of adjacent superpixels, it is important to perform as efficient

operations as possible, in order to keep computation times reasonable.
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Once E1(L) has been minimized by means of graph cut, the ex-

tracted superclicks already provide a good approximated segmenta-

tion of the objects of interest in the scene, as shown by the examples

in Figure 4.4. Nevertheless, output images at this stage can show

segmentation errors, e.g., holes, oversegmentations, etc., and further

processing by taking into account motion information is carried out

to refine the obtained segmentation masks.

4.1.4 Temporal smoothing

The superclick extraction step turns a set of noisy clicks into a set

of spatial coherent superclicks per frame, but ignores any temporal

information which, instead, is a key factor for video analysis. There-

fore, the next step for segmentation refinement consists in exploiting

the temporal consistency between consecutive frames to “transfer” la-

bels across segmentations. The idea is that if a set of consecutive (in

time) segmentations all mark a certain object as foreground, then it

is likely that they are correct; similarly, if no (or only few) segmen-

tations include that object, it is probably safer to ignore it in the

final output, especially if it is relatively isolated from other candidate

foreground objects. Two issues arise when trying to implement the

above criterion: first, superclick segmentations are defined in terms of

superpixels, and superpixel segmentation is not consistent in presence

of motion; second, objects in a video typically move, thus the notion

of “a certain object” across several frames implies the employment of

an object/point tracking method.

Our approach addresses both issues: 1) we define a temporal link-

ing between superclicks by extending the energy function employed
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Figure 4.4: Output examples for superclick identification: blue dots

are users’ clicks while green regions show the yielded segmentation

masks. Segmentation refinement is carried out by including temporal

constraints.
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for superclick extraction to take into account visual similarity be-

tween spatio-temporal regions; 2) we employ optical flow [16] to esti-

mate where superpixels in frame t may have moved in frame t+ 1: in

practice, we introduce pairwise potentials on all pairs of superpixels

{st, st+1} such that st contains at least one pixel pt whose projection

pt + vpt into frame t + 1 under the motion vector vpt (i.e. vpt is the

motion vector computed between frame t and frame t+1 for location

pt) is part of superpixel st+1 in frame t + 1. Of course, it is unlikely

that each superpixel will appear in only one such link, which allows

to better “explore” the space around the estimated motion area, thus

reducing the amount of error due to the optical flow and performing

a more comprehensive analysis on the surrounding superpixels.

In the definition of the cost function employed for the temporal

smoothing across frames t− T and t + T , where t is the current pro-

cessed frame and T is a constant which affects the number of frames

involved in the temporal smoothing (i.e., 2T + 1), we assume to have

identified superclicks for all the involved frames. In particular, we will

refer to the same quantities as defined in Section 4.1.3 and add an

apex relative to the frame they refer to: for example, lts is the su-

perclick label for superpixel s in frame t, St+1 is the set of superpixels

in frame t+1, and so on. The output label set will be identified by L,
and each label by ls, without the temporal apex, and they refer to the

segmentation of the current processed frame. We can now introduce
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the energy function used for the final segmentation:

E2(L) =
t+T

τ=t−T


α2


s∈Sτ

W1(s, ls, l
τ
s )


+

+
t+T

τ=t−T

 
(s1,s2)∈N (Sτ )

V2(s1, s2, ls1 , ls2)

+

+


(s1,s2)∈NT (∪t+T
τ=t−TS

τ )

V2(s1, s2, ls1 , ls2)

(4.9)

The first two lines of the cost function includes single-frame po-

tentials, which consist of, respectively, unary potentials for each iden-

tified superpixel (first line) and pairwise potentials (second line) for

each pair of superpixels belonging to the same frame. The last term

(third line) enforces temporal smoothing, and consists of pairwise po-

tentials computed over the set NT (∪t+Tτ=t−TS
τ ), which represents all

pairs of superpixels (from all the frames in the considered time inter-

val) satisfying the “temporal linking” criterion described above, i.e.

such that the two superpixels in each pair belong to temporally con-

secutive frames, and that at least one pixel belonging to one of them

is projected onto the other by means of optical flow.

Similarly to V1 (defined in Section 4.1.3 ), unary potentialW1 mod-

els whether superpixel s is more likely to be assigned to background or

foreground per se. In this stage, we simply assign a constant value to

the potential depending on whether it had been identified, at the pre-

vious stage (see Section 4.1.3), as a superclick or not (i.e. depending

on lτs ). In detail, given superpixel s, we set its corresponding fore-

ground cost and background cost ; the value of each cost depends on

lτs : if s was labeled as a superclick, we expect it to be more likely that
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it is foreground, so the background cost should be higher, and vice

versa. W1 is therefore computed as follows:

W1(s, ls, l
τ
s ) =

γ1 if (ls = 1 ∧ lτs = 1) ∨ (ls = 0 ∧ lτs = 0)

γ2 otherwise
(4.10)

with γ1 < γ2.

Pairwise potential V2 is defined as in Section 4.1.3, but in the last

term (third line of Formula 4.9) of E2 we employ it to evaluate the sim-

ilarity not only between adjacent superpixels in the same frame, but

also “temporally-adjacent” (according to NT ) superpixels in consecu-

tive frames. In order to deal with errors in optical flow computation,

we do not simply assign a constant based on the presence or absence

of a temporal link between two superpixels in consecutive frames, but

also verify that they are visually similar and in fact refer to the same

object/region in both frames. Thus, we manage to enforce the crite-

ria according to which superpixels overlaying the same region across

different frames should all be assigned the same label.

Both E1 and E2 are binary pairwise energy functions with sub-

modular pairwise potentials, and as such we minimize them exactly

by graph-cuts in order to get the final segmentation for frame t.

Some qualitative examples are shown in Figures 4.5 and 4.6 (com-

pared to those obtained by using only superclick extraction shown in

Figure 4.4): it is easy to notice the difference in terms of segmentation

quality achieved by analyzing a single frame only and by employing

temporal smoothing, which is able to extract much better objects’

shapes. It should also be noted that most of the processing (e.g. su-

perpixel extraction and optical flow) can be shared when processing

frames one after another, thus reducing the main processing time to
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Figure 4.5: Qualitative comparison between segmentations obtained

when excluding (first column, see Fig. 4.4) and including temporal

smoothing (second column): examples from the ETH BIWI and I2R

datasets.

superpixel segmentation and computation of optical flow for a single

frame only.

4.1.5 Experimental results

In this section we present the experimental results obtained by testing

our gamification approach and link them to the state of the art on
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Figure 4.6: Qualitative comparison between segmentations obtained

when excluding (first column, see Fig. 4.4) and including temporal

smoothing (second column): examples from the SegTrack dataset.



4.1. Gamification-based video object segmentation 75

interactive video annotation and automated video object segmentation

methods.

Datasets

For testing the accuracy of our method we created 24 game levels (each

one 300 frames long) using 73 videos from standard video benchmark-

ing datasets: YouTube Objects [98], FBMS-59 [99], VSB-100 [100],

Underwater Dataset [10], I2R [87], ETH BIWI [101], SegTrack v2 [86].

In order to avoid any bias in the results, the 73 videos (we did not

use all videos since it would have needed too many players and too

long time to obtain meaningful results) were chosen randomly from

the pool (1318 videos, of which 1116 from YouTube Objects only) of

all available videos, in such a way as to have the same number of

videos from each dataset. All selected videos were downsampled or

upsampled in time, in order to have each video be played at a chal-

lenging speed. The first frame of each video was replicated 5 times, to

allow collecting clicks from the very beginning of each video sequence.

Videos were separated through black images in order to prevent users

from inertially clicking across video boundaries.

Collected data

Our experiments involved 63 players, who were simply asked to com-

pete with each other by achieving the highest possible score. The fol-

lowing information describes the amount of collected data and playing

statistics:

• Level time: 30 seconds.
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• Game time (24 levels): 12 minutes.

• Played games: 136.

• Total play time: 27.1 hours. On average, each participant

played for about 26 minutes.

• Total number of clicks: 597,802.

Algorithm parameters

In Sections 4.1.3 and 4.1.4, we introduced some parameters which

control the trade-off between clicks and visual regularity in the seg-

mentation process. We empirically set the values for those parameters,

as follows: α1 = 1/4, α2 = 1/5, Us = 0.4, β1 = 5, T = 2, γ1 = 0.1,

γ2 = 0.9.

These parameter values were used to compute the results shown in

the next section. It is important to note that the same parameters were

used for all videos, although they have distinct differences in scenery,

type of targets, motion patterns, motion speed, frame rate, etc. It is

foreseeable that applying the same method to videos belonging to a

more homogeneous set of videos would yield higher accuracy.

Segmentation results

The metrics employed for performance analysis were pixel-level pre-

cision (Pr), recall (Rec), F-measure (F1) and average Pascal Overlap

Measure (POM : intersection over union between ground truth and

output segmentations masks). Such metrics are computed for each

video, and results are reported by dataset as the average values of

those metrics for the videos in the dataset.
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Precision and recall are defined in terms of true positives (TP),

false positives (FP) and false negatives (FN ). For a given video, TP

is defined as the cumulative (i.e., summing across all frames) number

of pixels correctly labeled as foreground; FP and FN are computed

analogously. Then, precision, recall and F-measure are computed as:

Pr =
TP

TP + FP
(4.11)

Rec =
TP

TP + FN
(4.12)

F1 = 2 · Pr · Rec
Pr + Rec

(4.13)

Instead, by its nature, POM is computed frame by frame, and the

overall score for a video is obtained by averaging across frames. More

precisely, if we let T be the number of frames in a video, Gi the ground

truth mask for frame i, Si the output segmentation mask for frame

i, and | · | the operator returning the number of “true” pixels in a

boolean mask, the POM score for a video is:

POM =
1

T

T
i=1

|Gi ∩ Si|
|Gi ∪ Si|

(4.14)

Role of spatio-temporal segmentation refinement

Figures 4.5 and 4.6 show a qualitative comparison in terms of seg-

mentation outputs when employing only superclick extraction phase

(see Section 4.1.3) and when exploiting the temporal consistency be-

tween consecutive frames of superclicks. Table 4.1 reports quantita-

tively how including spatio-temporal based refinement enhanced the
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segmentation accuracy. It can be noted that in some cases the ac-

curacy gain was lower (ETH BIWI, I2R, YouTube Objects) than in

others (VSB-100, Fish, SegTrack v2). This depends on the dynamics

of the video sequences in each dataset: for example, ETH BIWI, I2R

and YouTube Objects all feature slow objects or static cameras or

camera-compensated motion, which make it easier for players to click

on the objects, thus reducing the impact that spatio-temporal refine-

ment provides. Conversely, videos in SegTrack v2 or VSB-100 are

characterized by strong camera and object motion, resulting in noisier

input data: in these cases, spatio-temporal refinement demonstrated

effective to recover users’ failures in identifying objects.

For all the following evaluations, we used the variant including the

spatio-temporal segmentation refinement.

Accuracy w.r.t. users’ play time

Figure 4.7 shows how segmentation results vary in relation to the

amount of users’ play time in terms of pixel-level precision, recall

and F-measure. Users’ play time is computed cumulatively from the

number of games users have played at a certain point. For example,

the results at 5 hours of users’ play time were obtained by considering

the clicks from the first 25 games (12 minutes per game × 25 games =

5 hours) played on the system by all users. Of course, the longer the

play time, the larger the number of clicks used by the segmentation

algorithm.

At the moment we interrupted the experiment, for some datasets

the accuracy had already stopped improving, and in some cases it

had even started to decrease as the participants played more games
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Superclick extraction Spatio-temporal refinement

Dataset Pr Rec F1 Pr Rec F1

Youtube Objects 0.925 0.466 0.596 0.929 0.498 0.621

FBMS-29 0.618 0.843 0.698 0.655 0.861 0.728

VSB-100 0.571 0.783 0.627 0.622 0.789 0.660

SegTrack v2 0.606 0.860 0.703 0.685 0.898 0.773

ETH BIWI 0.640 0.765 0.697 0.656 0.819 0.728

I2R 0.621 0.694 0.655 0.633 0.722 0.675

Fish Videos 0.579 0.927 0.705 0.636 0.972 0.760

Average 0.651 0.762 0.668 0.688 0.794 0.706

Table 4.1: Average segmentation accuracy for the video categories

employed in our game in terms of precision, recall and F-measure,

when we employ only superclick extraction (first column) and when

we refine the output segmentation by means of spatio-temporal linking

between superclicks in consecutive frames (second column).
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Figure 4.7: Average F1 measure over different datasets as cumula-

tive users’ play time increases. The results for a certain value T of

cumulative play time are obtained by considering the clicks from the

first T/12 games played on the system, where 12 is the duration in

minutes of each game.
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(i.e. as more clicks were being collected). This is likely a limitation of

the proposed segmentation approach: as soon as enough clicks have

been collected which allow to sufficiently highlight superclicks from

background, additional correct clicks do not provide any new useful

information to the algorithm, while additional incorrect clicks increase

the amount of noise. Nevertheless, this limitation did not prevent our

method to achieve satisfactory results, especially in comparison to

the state of the art (see Section 4.1.5). Furthermore, discovering and

highlighting this kind of problems provides useful indications on how

to improve effectively the approach, e.g., driving players to click on

those object parts (especially at the borders) and/or to correct wrong

annotations, which may indeed enhance segmentation performance.

Comparison with interactive video annotation methods

We then compared the accuracy of the gamification approach to ex-

isting interactive video segmentation ones [102, 45, 44]. While [44]

is a pure interactive video object segmentation approach, [45] and

[102] are, respectively, a semi-supervised method for video annota-

tion and an approach for optimizing segmentation energies, thus they

were adapted to our case. More specifically, for the method in [45] we

asked a user to provide accurate annotations to initial frames; these

annotations were then propagated to consecutive frames for the final

segmentation. As for the method in [102] we used the L2 metric be-

tween user-provided shape priors (as suggested by the authors) and

target geometric shape moments for foreground segmentation, thus

making the method an interactive segmentation one.

For a single user the interaction time of our method depends only
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on the video length, i.e. there is a linear dependency between the

number of annotated frames and annotation times, while existing in-

teractive methods [102, 45, 44] show a non-linear (exponential) depen-

dency. Nevertheless, using data generated by a single user in a single

played game would result in poor accuracy performance (as discussed

in the previous section), thus we consider, for comparison with the

state of the art, the cumulative time spent by a single user in mul-

tiple game sessions (generally one frame is shown for 0.2 seconds in

our game, thus if we select the clicks of one user in five game ses-

sions, the whole interaction time would be of 1 second). We selected

randomly 10 frames from SegTrack v2 and assessed how the segmen-

tation accuracy changed with respect to interaction times. For our

method, we considered the clicks of the user who played most games.

Quantitatively, Table 4.2 reports the achieved segmentation accuracy

(expressed by POM in percentage) over the 10 considered frames by

all the comparing methods in two cases: a) within 50 seconds of anno-

tation and b) the maximum achieved accuracy. Let us recall that the

interaction time 50 seconds (corresponding to about 25 game sessions)

for our method is given by the playtime of a single user, and that the

same value can be achieved by involving 25 users, in parallel, playing

only one game session, i.e. with a very little human annotation effort

as opposed to the other solutions [102, 45, 44].

Comparison with automated video segmentation methods

Despite the proposed method is more inline with the research on in-

teractive video annotation, it can be seen as a video object segmen-

tation approach (with very little human intervention) and as such
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POM within 50 secs Maximum POM

[102] 39.8 56.6 (∼1,200 secs)

[45] 42.2 65.2 (∼500 secs)

[44] 61.5 84.3 (∼1,400 secs)

Our method 72.4 72.4 (∼50 sec)

Table 4.2: Comparison in terms of segmentation accuracy — mea-

sured as average POM in percentage, respectively, achieved within the

first 50 secs of annotation (first row) and maximum value (with the

related interaction times) — between our approach and other interac-

tive video annotation methods on a subset of 10 frames extracted from

SegTrack v2 dataset.

it is useful to link its performance with the state of the art on the

automated methods. The comparison was performed on the Youtube-

Objects dataset (largely employed as a benchmarking dataset for

video object segmentation), and we selected as comparing methods

those exploiting superpixels for video object segmentation, namely,

[99, 103, 104, 105, 14, 45]. The results, in terms of average POM in

percentage, are reported in Table 4.3.

Tables 4.2 and 4.3 indicate that our method performs better than

automated video object segmentation methods and slightly worse than

interactive video annotation approaches. This is not surprising, since

interactive video annotation tools require users to spend more time in

providing accurate annotations; this may be an advantage for small

problems, but makes such methods hardly applicable to large video

datasets (such as Youtube-Objects). In this sense, our gamification
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[99] [103] [104] [105] [14] [45] Ours

Category

aeroplane 13.7 17.8 73.6 75.8 70.9 86.3 56.6

bird 12.2 19.8 56.1 60.8 70.6 81.0 67.6

boat 10.8 22.5 57.8 43.7 42.5 68.6 68.3

car 23.7 38.3 33.9 71.1 65.2 69.4 78.9

cat 18.6 23.6 30.5 46.5 52.1 58.9 50.0

cow 16.3 26.8 41.8 54.6 44.5 68.6 74.8

dog 18.0 23.7 36.8 55.5 65.3 61.8 74.2

horse 11.5 14.0 44.3 54.9 53.5 54.0 89.0

motorbike 10.6 12.5 48.9 42.4 44.2 60.9 63.1

train 19.6 40.4 39.2 31.4 29.6 66.3 66.2

average 15.5 23.9 46.3 53.7 53.8 67.6 68.9

Table 4.3: POM in percentage for the Youtube-Objects dataset
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approach provides an interesting trade-off between accuracy and an-

notation times.

As an additional test, we computed the performance of our seg-

mentation algorithm assuming absolute correctness of input clicks. To

do so, we artificially computed “clicks” by selecting points in a grid

pattern from all ground truth masks (the density of the grid varying in

order to obtain the same average number of clicks as from our previous

experiments), as shown in Figure 4.8. In this test, we obtained an av-

erage POM score of 0.78, computed over all videos from the employed

datasets, which is a markedly higher value than the tested start-of-the-

art methods (the average POM score we achieved on Youtube-objects

dataset was 0.73) and sensibly outperformed the methods reported in

Table 4.3).

Processing times

Using T = 2, processing a single frame requires minimizing five energy

functions for superclick extraction and one (with the added temporal

dimension) for accurate segmentation. Our Matlab implementation,

running on a PC with a quad-core i7 CPU and 8 GB RAM, takes 3

seconds for superclick extraction in a single frame and 30 seconds for

the temporal optimization (actually, for the four optical flow compu-

tations which link superpixels in time; graph-based minimization time

is negligible), which would amount to 45 seconds in total. However,

after the initial bootstrap phase, segmenting a new frame can benefit

from having already extracted superpixels and computer the optical

flows for previous frames, so processing is reduced to a single super-

pixel extraction and a single optical flow computation, resulting in a
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Figure 4.8: Output segmentations when using only points within

objects of interest (i.e. taken from ground truth segmentation masks):

blue dots are ground truth points while green regions show the output

segmentation masks.
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frame processing time of 10.5 seconds.

4.2 Eye-tracking–based video object seg-

mentation

So far, we saw that video object segmentation accuracy can be en-

hanced by having users click with a computer mouse on object loca-

tions — even if approximately. Now, it is time to see what results can

be obtained when we take the mouse away and let the user choose

autonomously where to look in a video, while following his or her gaze

with an eye-tracker.

Modern eye-tracking devices are able to follow a user’s gaze quite

accurately — e.g., the error committed by the Tobii T60 eye-tracker

employed in these experiments amounts to about 5 mm at 65 cm2

— and can be reliably used to detect where a user is looking on a

screen. Moreover, the typical operating frequency of 60 Hz is usually

high enough to accurately follow eye movements and identify fixations

(steadily maintaining the visual gaze on a single location) and saccades

(quick movements between fixations). Given these premises, making

the switch from mouse clicks to gaze points may seem a seamless

transition. However, there are some aspects worth investigation. First

of all, the degree of control over one’s own eyes is not as precise the

hands; often, it is guided by involuntary attention shifts (bottom-up

saliency), which in our application may arise as a source of noise.

On the other hand, not even the most enthusiastic player can click

2http://www.tobiipro.com/siteassets/tobii-pro/

product-descriptions/tobii-pro-tx-product-description.pdf

http://www.tobiipro.com/siteassets/tobii-pro/product-descriptions/tobii-pro-tx-product-description.pdf
http://www.tobiipro.com/siteassets/tobii-pro/product-descriptions/tobii-pro-tx-product-description.pdf
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sixty times a second, which suggests that the cost in precision may be

compensated by being able to collect a larger mass of data in a shorter

interaction time.

The experiments we present in this chapter were carried out in

a laboratory settings using a video-based eye-tracker, which still re-

quires users to interact with a computer and to perform specific tasks

— hardly a less explicit modality than playing a game. However, as

we noted in Chapter 1, while playing a game requires someone’s ded-

ication regardless of the playing modalities, the commitment needed

to undergo an eye-tracking experiment is only related to the specific

technological implementation; future developments, e.g., eye-trackers

on phone front cameras or on glasses, will allow to remove this limi-

tation and make eye-tracking a background process during everyday

activities.

Given the substantially homogeneous nature of mouse clicks and

eye gazes, both being sources of punctual data, we employ a similar

energy-minimization framework as the one shown previously in this

chapter, in order to reduce the bias in the comparison due to algorith-

mic differences rather than data reliability.

Therefore, our interactive video segmentation method is posed as a

region labelling problem with two labels (foreground and background)

treated as a spatio-temporal energy minimization problem. In the

first step, we propose a spatial frame segmentation by defining a cost

function which takes into account both visual cues and gaze data. In

the second step, we refine the initial segmentation by enforcing spatio-

temporal consistency between the segmented objects in consecutive

frames.
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4.2.1 Initial frame segmentation

As above, the first step of the algorithm performs image segmentation

at the frame level, which is treated as a binary pixel labeling task

(background and foreground). We start from superpixel segmentation

(again, using SLIC [88]) and then group superpixels through mini-

mization of an energy cost which enforces spatial and visual coherency

between superpixels as well as including gaze data, as constraints, in

the labeling cost.

The energy function is defined over the set of superpixels S =

{s1, . . . , snS
} in order to identify superpixels “looked at” by users and,

at the same time, to enforce spatial constraints on visual smoothness

at the frame level. The objectives of the definitions are: 1) superpix-

els containing gaze points should be candidates for being part of the

foreground, but the constraint must not be hard, due to the noisiness

of the data; 2) fixation points should be considered more reliable than

saccades; 3) superpixels without gaze points but which are spatially

close and visually-similar to those containing gaze points should be

included as soft constraints; 4) isolated superpixels with gaze points

should be ignored as being likely noise; 5) spatial regularity over the

assigned labels should be encouraged.

The cost function for energy optimization reflecting these assump-

tions can be defined as:

E1(L) =

s∈S

V1(s, ls) +


(s1,s2)∈N (S)

V2(s1, s2, ls1 , ls2) (4.15)

where L =

ls1 , ls2 , . . . , lsnS


is the superclick label assignment (lsi is

the binary superclick label for superpixel si), N (S) is the set of pairs

of neighbor superpixels (that is, having part of boundary in common;
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we will also use the notation N (s) to denote the set of neighbors of

the single superpixel s).

Unary potential V1 models whether a selected superpixel s should

be considered as part of the foreground or not. In order to encode

the required constraints on gaze point location, we compute for each

superpixel s a Gs score, taking into account the distance between a

superpixel’s centroid and the closest gaze point (either fixations or sac-

cades) and the duration of the fixation (mesured in frames) associated

to the relevant gaze points:

Gs = e
− d2(s,ŝ)

σ2
d

− 1

t̂σ2
t (4.16)

where d2(s, ŝ) is the squared distance between superpixel s’s centroid

and the centroid of its closest superpixel with gaze points, ŝ, and t̂ is

the longest eye fixation duration associated to the gaze points in ŝ,

thus giving more importance to longer and more “reliable” fixations;

σ2
d and σ2

t are two constants. In practice, Gs is higher (up to 1) if a

superpixel is likely to belong to the foreground, based on gaze point

constraints only.

The value of unary potential V1 is computed based on Gs and

on the assigned label: if Gs is high, then the costs of assigning it

to the foreground (ls = 1) or to the background (ls = 0) should be

respectively low and high; the contrary applies if Gs is low. Using a

standard negative log-likelihood representation, the resulting V1 can

be formulated as:

V1(s, ls) =

− logGs if ls = 1

− log(1−Gs) if ls = 0
(4.17)
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Pairwise potential V2 is the cost of assigning different labels to two

adjacent and visually similar superpixels s1 and s2 and in our case is

expressed as:

V2(s1, s2, ls1 , ls2) = e−β1χ
2(Hs1 ,Hs2 )I(ls1 ̸= ls2) (4.18)

where χ2(·, ·) is the Chi-square distance, Hsi is the RGB color his-

togram of superpixel si and β1 is a constant; I is the indicator func-

tion, as required in order to guarantee submodularity and efficiently

solve the minimization problem [89].

The initial per-frame segmentation is then yielded by minimizing

E1(L) through graph cut.

4.2.2 Temporal-based segmentation refinement

The previous step converts noisy gaze data into a set of spatial coher-

ent superpixels per frame, but does not take into account any tem-

poral consistency between superpixels over consecutive frames, which,

instead, is necessary to cope with per-frame segmentation errors. The

idea is that if a set of time-consecutive segmentations all mark a certain

object as “interesting”, then it is likely that they are correct; similarly,

if no (or only few) segmentations include that object, it is probably

safer to ignore it in the final output. However, two aspects need to

be taken into account: 1) superpixel segmentation is not consistent in

presence of motion; 2) the employment of a tracking method might be

necessary to link per-frame segmentations in consecutive frames. Our

temporal-based segmentation refinement method addresses both is-

sues: 1) we link temporally superpixels by defining an energy function

able to take into account visual similarity between spatio-temporal re-
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gions; 2) we employ optical flow [16] to estimate where superpixels in

frame t may have moved in frame t + 1. In practice, we “temporally

link” superpixels in consecutive frames by introducing pairwise poten-

tials on all pairs of superpixels {st, st+1} such that st contains at least

one pixel pt whose projection p
vpt
t→t+1 = pt + vpt into frame t+ 1 under

the motion vector vpt (i.e., vpt is the motion vector computed between

frame t and frame t + 1 for location pt) is part of superpixel st+1 in

frame t+1. Of course, it is unlikely that each superpixel will appear in

only one such link, which allows to better “explore” the space around

the estimated motion area, thus reducing the amount of error due to

the optical flow and performing a more comprehensive analysis on the

surrounding superpixels.

In the definition of the cost function employed for the temporal-

based segmentation refinement in 2T+1 consecutive frames from t−T
to t+T , with t being the current processed frame, we assume to have

the segmentations maps (the ones coming from per-frame segmenta-

tion defined in Sect. 4.2.1) for all the 2T + 1 involved frames. The

energy function used for the spatio-temporal segmentation is defined
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as follows3:

E2(L) =
t+T

τ=t−T


s∈Sτ

W1(s, ls, l
τ
s )


+

+
t+T

τ=t−T

 
(s1,s2)∈N (Sτ )

V2(s1, s2, ls1 , ls2)

+

+


(s1,s2)∈NT (∪t+T
τ=t−TS

τ )

V2(s1, s2, ls1 , ls2)

(4.19)

The first two lines of Eq. 4.19 are, respectively, a unary potential

for each identified superpixel (first line) and a pairwise potential for

each pair of superpixels belonging to the same frame (second line). The

last term (third line), instead, aims at enforcing temporal smoothing

through a pairwise potential defined over the set NT (∪t+Tτ=t−TS
τ ), i.e.

the set of all pairs of superpixels in the 2T + 1 “temporally linked”,

as described above. Unary potential W1 models whether superpixel

s is more likely to be background or foreground: if s was labeled as

foreground in the frame-segmentation we expect it to be more likely

that it is foreground (with a cost lower than being background), and

vice versa. W1 is therefore computed as:

W1(s, ls, l
τ
s ) =

− log γ1 if (ls = 1 ∧ lτs = 1) ∨ (ls = 0 ∧ lτs = 0)

− log γ2 otherwise

(4.20)

with γ1 > γ2.

Pairwise potential V2 is defined as in Section 4.2.1, but in the last

term (third line of Formula 4.19) of E2 we employ it to evaluate the

3We employ the same symbols of Section 4.2.1 adding an apex relative to the

frame they refer to: e.g., lts is the superclick label for superpixel s in frame t, etc.



94 Chapter 4. Gamification versus eye-tracking

similarity not only between adjacent superpixels in the same frame,

but also “temporally-adjacent” (according to NT ) superpixels in con-

secutive frames. E2, similarly to E1, is minimized by graph-cut in

order to get the output segmentation for frame t.

4.2.3 Experimental results

Experiment settings

The eye-gaze experiments involved 16 subjects, who were asked to

watch freely a set of short videos with moving objects; no further

instructions on what they were supposed to look at were given. During

the experiments, users’ gaze was recorded by a Tobii T60 eye tracker

(capturing 60 gaze points per second), which provides information on

saccades and fixation duration.

The method’s parameters were identified by exhaustive search on

the parameter space and set as follows: σ2
d = 10000, σ2

t = 1
3
, β1 = 1,

γ1 = 0.8, γ2 = 0.4. Superpixel segmentation was carried out through

SLIC [88] and superpixel size was set to 7×7, as a compromise between

segmentation errors, sensitivity to noise, and processing speed.

Datasets and baselines

Performance evaluation was carried out on 9 video sequences, with

pixel-accurate segmentation of moving objects, taken from three visual

benchmarks for video object segmentation: SegTrack v2 [86], FBMS-

59 [99], and VSB-100 [100]. The selected videos included features such

as: camera motion, slow object motion, object-background similarity,

non-rigid deformations and articulated objects. The superpixel-based
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automated video object segmentation method in [14], using public

source code and default parameters, was used as baseline.

Moreover, we set up the gamification approach previously de-

scribed in this chapter on the 9 videos employed for the eye-tracking

experiments, in order to perform a comparison between on the two

strategies of human involvement.

Collected data

Each eye-gaze experiment took 2 minutes per subject, and provided

on average 35.7 points per frame in 32-minute user engagement time.

In order to make the comparison fair, we had a certain number of

participants (who had not been involved in the eye-tracking experi-

ment and did not know the videos in advance) play the game until

the resulting average number of clicks per frame was comparable to

the number of gaze points. In the end, 12 subjects played the game

experiment for approximately 9.5 minutes each, which resulted in the

collection of 40.4 clicks per frame on average, corresponding to a total

engagement time of 115 minutes.

This difference in the amount of time required to collect similar

amounts of data was expected, due to the higher acquisition rate of

the eye-tracker compared to human clicking speed.

4.3 Comparison

The accuracy of the baseline method and of the devised approach,

using eye-gaze data and game click data, on the target dataset is

shown in Table 4.4, in terms of F-measure at pixel level, averaged



96 Chapter 4. Gamification versus eye-tracking

over frames. Some examples of segmentation outputs are illustrated

in Figures 4.9, 4.10 and 4.11.

While both the proposed gaze-based algorithm and the game-based

segmentation outperform the baseline, it can be seen that, although

the number of clicks per frame were approximately the same, using

players’ clicks from the game yields a markedly better performance

(shown in the “ClicksM” columns in Table 4.4) than when using eye-

tracking points as input source (column “Gaze”). The primary ex-

planation for the lower performance of the eye-gaze–based approach

lies in the noisy nature of eye movements: eye gaze, indeed, involves

both fixations and saccades with the latter spanning the whole visual

scene from fixation to fixation. Thus, the approach tended to perform

fairly well in presence of isolated objects (fixations and saccades were

close), while in case of multiple objects it failed, as also exemplified in

Figures 4.9, 4.10 and 4.11.

However, there is an unfairness element which the simple count of

average points per frame is not able to capture. In our experiment,

game players were allowed to play the game for little less than 10 min-

utes, on average, which implied that they were able to play the game

more than once. This is actually a big advantage, since playing mul-

tiple games provides the user with information on where objects are

located and what to expect, and this is exactly the kind of tips that

game players tend to exploit as much as they can in order to maximize

their scores. The eye-tracking experiment participants, however, were

allowed to watch the video only once. In order to estimate how much

this factor affected the comparison, we also computed the results for

the game taking into account only the clicks generated by the 16 sub-

jects the first time they played the game. The achieved performance
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Video [14] Gaze ClicksS ClicksM

animal chase (VSB) 0.39 0.62 0.26 0.78

sled dog race (VSB) 0.42 0.52 0.53 0.76

tennis (VSB) 0.42 0.26 0.57 0.62

cheetah (SegT) 0.41 0.67 0.52 0.68

frog (SegT) 0.37 0.57 0.57 0.74

monkeydog (SegT) 0.36 0.43 0.40 0.64

camel01 (FBMS) 0.49 0.65 0.52 0.59

rabbits02 (FBMS) 0.37 0.70 0.72 0.89

rabbits04 (FBMS) 0.23 0.50 0.76 0.77

Average 0.38 0.55 0.54 0.72

Table 4.4: F-measure scores obtained on the tested videos for [14]

and the proposed method, using either eye-gaze data or user-click data.

As for user-click we performed two evaluations: a) exploiting clicks of

first-time-play by users in order to eliminate the bias due to prior

knowledge on object location (column ClicksS), and b) using all col-

lected clicks (column ClicksM).

is shown in the column “ClicksS” of Table 4.4: in this case, it is pos-

sible to notice how the comparison with the eye-gaze results is more

balanced, thus indicating that object location prior is a key factor for

accurate results.
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Figure 4.9: Segmentation output examples. First row: user clicks

from the game and segmentation output. Second row: eye-gaze points

and segmentation output.
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Figure 4.10: Segmentation output examples. First row: user clicks

from the game and segmentation output. Second row: eye-gaze points

and segmentation output.

‘



100 Chapter 4. Gamification versus eye-tracking

Figure 4.11: Segmentation output examples. First row: user clicks

from the game and segmentation output. Second row: eye-gaze points

and segmentation output.

‘
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4.4 Discussion

The interactive video object segmentation method described in this

chapter allows to combine effectively the “games with a purpose”

strategy with collaborative human efforts. In spite of the noisiness of

the human input data, we are able to obtain a satisfactory accuracy

by setting soft constraints on clicked superpixels and by employing a

two-phase minimization, which performs a “smoothing” of superpixel

labels in multiple frames, thus further reducing the impact of clicks

on background superpixels. Unlike the fully-automatic method pre-

sented in Chapter 3, we chose to employ optical flow in this approach,

at the cost of higher computation time. However, this was necessary

in order to have a more precise linking between superpixels in time,

which compensated the initial per-frame noisy segmentation. The per-

formance analysis showed a gain over the automated approach, which

can easily be attributed to the higher quality of players’ annotations

with respect to the analysis of motion superpixels in Chapter 3.

We then proceeded in comparing the performance of the gamifi-

cation approach with those obtained when using a more implicit and

bottom-up user involvement modality, by having subjects watch at

videos and employing the recorded eye-gaze data as input to a simi-

lar automated algorithm as the one employed for user clicks from the

game.

The average number of user clicks or gaze points per frame be-

ing equal, we found that the gamification approach achieves a higher

accuracy than the eye-tracking–based one. An explanation for this

difference has been suggested in Section 4.3, and lies in the higher

noisiness of gaze data, which in turn is related to the lower degree of
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voluntary control of one’s own eyes, compared to when clicking using

a computer mouse.

Another aspect which biased the evaluation in favour of the gam-

ification approach was the possibility of game players to watch the

videos multiple times, as they played more and more, which allowed

them to exploit the acquired prior knowledge to improve their own

score and therefore the accuracy of the collected data.

However, two more factors are worth being taken into account:

saliency direction and engagement time.

A critical difference in the two feedback collection modalities con-

sists in how users’ attention was directed in the experiments. In the

eye-gaze experiment, bottom-up visual saliency was enforced since

subjects were left free to analyze the scenes shown in the videos; how-

ever, in the game, user behaviour was driven by the reward mechanism

imposed through the scoring system, which induced a top-down (or

volition-controlled) visual saliency and limited the amount of “explo-

ration” that the players would perform, by directing them explicitly

towards moving objects.

Finally, it should be noted that the results computed for the game

were based on a total interaction time of 115 minutes, versus a total

of 32 minutes required of the eye-tracking participants. If we also

take into account the difference in explicitness of the data gathering

modalities (i.e., ideally, unlike playing the game, eye-tracking could

have been performed in the background of whatever activity a user

had been carrying out), the accuracy obtained using gaze data, albeit

lower, is actually a very satisfactory and promising achievement in

the way towards automated visual analysis through the employment

of implicit eye-tracking data collection strategies.
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4.5 Publications

A preliminary version of the eye-tracking–based segmentation ap-

proach was presented at ACM International Conference on Multime-

dia, Brisbane, Australia, 2015.

In September 2016, the gamification approach presented in this

chapter has been accepted for publication on IEEE Transactions of

Pattern Analysis and Machine Intelligence.
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CHAPTER

FIVE

BRAIN-DRIVEN COMPUTATION FOR IMAGE

CLASSIFICATION

In the previous chapter, we investigated the potential impact of human

integration approaches into automated video segmentation methods.

Our preliminary results found that implicit human feedback may pro-

vide an effective comprimise between the higher accuracy that can be

achieved when using more explicit feedback sources and the higher

engagement effort that such more explicit modalities demand of users

when collecting the required data.

Encouraged by the results, we further pushed the limits of human

feedback implicitness: switching to the problem of image classification,

we explored whether it is possible to identify the type of the image

that a person is looking at by analyzing the patterns of brain activity

recorder through an EEG.

105
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5.1 Introduction

No person can help but remain fascinated by the possibility of reading

the mind. Unfortunately, no scientific evidence has been found that

it is actually possible, but if genuine telepathy might be destined to

be relegated to the realm of fiction, “artificial” telepathy may actually

give scientists more satisfaction, as technology has allowed to record

brain activity signals that can be connected to mental processes asso-

ciated to specific tasks.

In this chapter, we focus on the role of electroencephalography

(EEG) in uncovering the processes associated to visual analysis, thus

reaching probably the highest level of implicitness that can be hoped

for in the context of capturing human feedback for employment in

automated computer vision methods.

The intuition at the foundation of this work is simple. Current

computer vision methods analyze images by extracting numeric de-

scriptors (features) of the represented content. Such features may

be either hand-crafted (e.g., SIFT [26], HOG [106]) or learned by

mathematical models (e.g., CNNs). However, the fact remains that

human capabilities in understanding the visual world largely surpass

machines’. Given that, instead of devising or having a model learn

visual features, why not try to copy the features that humans use, by

studying the relevant activity happening in the brain?

In the remainder of this chapter, we will see how this approach

can be applied to the problem of image classification, i.e. the task of

assigning a short label to an image describing its overall content.
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5.2 Method

Figure 5.1: Overview of the proposed approach. Top: a low-

dimensional representation for temporal EEG signals recorded while

users looked at images is learned by the encoder module; the computed

EEG features are employed to train an image classifier. Bottom: a

CNN is trained to estimate EEG features directly from images; then,

the classifier trained in the previous stage can be used for automated

classification without the need of EEG data for new images.

The work described in this paper relies on three key intuitions:

• EEG signals recorded while a subject looks at an image convey

feature-level and cognitive-level information about the image con-

tent.

• A low-dimensional manifold within the multi-dimensional and
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temporally-varying EEG signals exists and can be extracted to ob-

tain a 1D representation which we refer to as EEG features.

• EEG features are assumed to mainly encode visual data, thus it is

possible to extract the corresponding image features for automated

classification.

These three ideas provide the design basis for the overall two-stage

image classification architecture proposed in this work and shown in

Figure 5.1.

The first stage of our approach aims to find a low-dimensional

manifold within the two-dimensional (channels and time) EEG space,

such that the representation within that manifold is discriminant over

object classes. In order to learn this representation, we employed EEG

data recorded while users looked at images on a screen. Then, we

trained an encoder network (implemented through recurrent neural

networks – RNNs – for temporal analysis) to extract EEG features

from raw EEG signals; the training process is supervised by the class

of the images for which each input EEG sequences were recorded, and

a classifier for EEG features is jointly trained in the process.

Of course, it is unreasonable to assume the availability of EEG

data for each image to be classified. Therefore, the second stage of

the method aims at extracting EEG features directly from images,

by learning a mapping from CNN image features to EEG features

(learned through RNN encoder). After that, new images can be clas-

sified by simply estimating their EEG features through the trained

CNN-based regressor and employ the stage-one classifier to predict

the corresponding image class.
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Number of classes 40

Number of images per class 50

Total number of images 2000

Visualization order Sequential

Time for each image 0.5 s

Pause time between classes 10 s

Number of sessions 4

Session running time 350 s

Total running time 1400 s

Table 5.1: The parameters of the experimental protocol.

5.2.1 EEG data acquisition

Seven subjects (six male and one female) were shown visual stimuli

of objects while EEG data was recorded. All subjects were homoge-

neous in terms of age, education level and cultural background and

were evaluated by a professional physicist in order to exclude possible

conditions (e.g., diseases) interfering with the acquisition process.

The dataset used for visual stimuli was a subset of ImageNet [29],

containing 40 classes of easily recognizable objects1. During the ex-

periment, 2,000 images (50 from each class) were shown in bursts for

0.5 seconds each. A burst lasts for 25 seconds, followed by a 10-second

1ImageNet classes used: dog, cat, butterfly, sorrel, capuchin, elephant, panda,

fish, airliner, broom, canoe, phone, mug, convertible, computer, watch, guitar,

locomotive, espresso, chair, golf, piano, iron, jack, mailbag, missile, mitten, bike,

tent, pajama, parachute, pool, radio, camera, gun, shoe, banana, pizza, daisy and

bolete (fungus)
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pause where a black image was shown for a total running time of 1,400

seconds (23 minutes and 20 seconds). A summary of the adopted ex-

perimental paradigm is shown in Table 5.1.

The experiments were conducted using a 32-channel cap with

passive, low-impedance electrodes distributed according to the 10-20

placement system. Three out of the 32 electrodes did not convey

any useful information (ground, reference and an auxiliary electrode

for removing heart-related artifacts) reducing the number of effective

signals to 29. Brainvision2 DAQs and amplifiers were used for the ac-

quisition of the EEG signals. Sampling frequency and data resolution

were set, respectively, to 250 Hz and 16 bits.

A notch filter (49-51 Hz) and a second-order band-pass Butter-

worth filter (low cut-off frequency 14 Hz, high cut-off frequency 71

Hz) were set up so that the recorded signal included the Beta (15-31

Hz) and Gamma (32-70 Hz) bands, as they convey information about

the cognitive processes involved in the visual perception [107]. From

each recorded EEG sequence, the first 10 samples (40 ms) for each im-

age were discarded in order to exclude any possible interference from

the previously shown image (i.e., to permit the stimulus to propa-

gate from the retina through the optical tract to the primary visual

cortex [108]). The following 110 (440 ms) samples were used for the

experiments.

By using the protocol described above we acquired 14,000 (2,000

images for 7 subjects) multi-channel (29 channels) EEG sequences.

In the following descriptions, we will refer to a generic input EEG

sequence as s(c, t), where c (from 1 to 29) indexes a channel and t

2http://www.brainvision.com/
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(from 1 to 110) indexes a sample in time. We will also use the symbol

(·) to indicate “all values”, so s(·, t) represents the vector of all channel
values at time t, and s(c, ·) represents the whole set of time samples

for channel c.

5.2.2 Learning EEG manifold

The first type of analysis aims at translating an input multi-channel

temporal EEG sequence into a low dimensional feature vector summa-

rizing the relevant content of the input sequence. Previous approaches

[79, 83] simply concatenate time sequences from multiple channels

into a single feature vector, ignoring temporal dynamics, which, in-

stead, contains fundamental information for EEG activity analysis

[79]. In order to include such dynamics in our representation, we

employ LSTM recurrent neural networks [68], which are commonly

used for the analysis of several kinds of sequence data, thanks to their

capability to track long-term dependencies in the input data.

In an LSTM cell model, the cell input is modulated by an input gate

it; the cell state is updated by combining the modulated cell input, the

previous cell state (fed back through a fixed-weight connection called

constant error carousel) and a forget gate, which allows to reset the

cell state. Similarly, the cell output is computed by modulating the

cell state through an output gate. Each gate implements a learnable

biased linear combination between current cell input, previous cell

state and previous cell output; in the case of a layer of cells, all cell

states and outputs from the previous time step are fed to each cell in

the current time step. A commonly-employed variant of the model,

also used in this work, discards the cell state in the gate equations,



112 Chapter 5. Brain-driven Computation for Image Classification

thus producing the following LSTM update equations:

it = σ (Wxixt +Whiht−1 + bi) (5.1)

ft = σ (Wxfxt +Whfht−1 + bf ) (5.2)

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) (5.3)

ot = σ (Wxoxt +Whoht−1 + bo) (5.4)

ht = ot tanh (ct) (5.5)

where σ is the logistic sigmoid function, it, ft, ot are respectively

the input, forget and output gates, ct and ht are the cell state and out-

put (hidden) vectors, and the W matrices and b vectors are learnable

parameters.

The top half of Figure 5.1 shows the general architecture of our

EEG manifold representation model. The EEG multi-channel tempo-

ral signals, preprocessed as described in Section 5.2.1, are provided as

input to an encoder module, which processes the whole time sequence

and outputs an EEG feature vector as a compact representation of

the input. Ideally, if an input sequence consists of the EEG signals

recorded while looking at an image, our objective is to have the re-

sulting output vector encode relevant brain activity information for

discriminating different image classes. The encoder network is trained

by adding, at its output, a classification module (in all our experi-

ments, it will be a softmax layer), and using gradient descent to learn
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Figure 5.2: Tested encoder architectures: a) common LSTM; b)

channel LSTM + common LSTM; c) common LSTM + output layer.

the whole model’s parameters end-to-end. In our experiments, we

tested several configurations of the encoder network:

• Common LSTM (Figure 5.2a): the encoder network is made

up of a stack of LSTM layers. At each time step t, the first

layer takes the input s(·, t) (in this sense, “common” means that

all EEG channels are initially fed into the same LSTM layer);

if other LSTM layers are present, the output of the first layer

(which may have a different size than the original input) is pro-

vided as input to the second layer and so on. The output of the

deepest LSTM layer at the last time step is used as the EEG

feature representation for the whole input sequence.
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• Channel LSTM + Common LSTM (Figure 5.2b): the first en-

coding layer consists of several LSTMs, each connected to only

one input channel: for example, the first LSTM processes input

data s(1, ·), the second LSTM processes s(2, ·), and so on. In

this way, the output of each “channel LSTM” is a summary of a

single channel’s data. The second encoding layer then performs

inter-channel analysis, by receiving as input the concatenated

output vectors of all channel LSTMs. As above, the output of

the deepest LSTM at the last time step is used as the encoder’s

output vector.

• Common LSTM + output layer (Fig. 5.2c): similar to the com-

mon LSTM architecture, but an additional output layer (linear

combinations of input, followed by ReLU nonlinearity) is added

after the LSTM, in order to increase model capacity at little

computational expenses (if compared to the two-layer common

LSTM architecture). In this case, the encoded feature vector is

the output of the final layer.

Encoder and classifier training is performed through gradient descent

by providing the class label associated to the image shown while each

EEG sequence was recorded. After training, the encoder can be used

to generate EEG features from an input EEG sequences, while the

classification network will be used to predict the image class for an

input EEG feature representation, which can be computed from either

EEG signals or images, as described in the next section.
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5.2.3 CNN-based EEG manifold regression

In order to employ the RNN learned feature representation for general

images, it is necessary to bypass the EEG recording stage and extract

features directly from the image, which should be possible by our

assumption that the learned EEG features reflect the image content

which evoked the original EEG signals.We employed two CNN-based

approaches to extract EEG features (or, at least, a close approxima-

tion) from an input image:

• Fine-tuning. The first approach is to train a CNN to map im-

ages to corresponding EEG feature vectors. Typically, the first

layers of CNN attempt to learn the general (global) features of

the images, which are common between many tasks, thus we ini-

tialize the weights of these layers using pre-trained models, and

then learn the weights of last layers from scratch. In particular,

we used the pre-trained AlexNet CNN [2], and modified it by

replacing the softmax classification layer with a regression layer

(containing as many neurons as the dimensionality of the EEG

feature vectors), using Euclidean loss as objective function.

• Deep feature extraction. The second approach consists of ex-

tracting image features using pre-trained CNN models and

then employ regression methods to map image features to

EEG feature vectors. We used our fine-tuned AlexNet [2],

GoogleNet [109] and VGG [110] as feature extractors by reading

the output of the last fully-connected layer, and then applied

several regression methods (namely, k-NN regression, ridge re-

gression, random forest regression) to obtain the predicted fea-

ture vectors.
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We opted to fine-tune only AlexNet, instead of GoogleNet and VGG,

because these two CNNs contain more convolutional layers and, as

such, they were more prone to overfitting given the relatively small

dataset size. The resulting CNN-based regressor allows to extract the

brain-learned features from any input image; the extracted features

can then be fed to the classifier trained during EEG feature learning

to perform automated visual classification.

5.3 Performance analysis

Performance analysis is split into three parts since our method consists

of: 1) learning visual stimuli–evoked EEG data using RNN (imple-

mented in Torch); 2) CNN-based regression to map images to RNN-

learned EEG-based features (implemented in Caffe); 3) the combina-

tion of the above two steps to implement automated visual classifiers.

5.3.1 Learning EEG representations

We first tested the three architectures reported in Sect. 5.2.2 using

our EEG dataset. Our dataset was split into training, validation and

test sets, with respective fractions 80% (1600 images), 10% (200), 10%

(200). We ensured that the signals generated by all participants for a

single image are all included in a single split. All model architecture

choices were taken only based on the results on the validation split,

making the test split a reliable and “uncontaminated” quality indica-

tor for final evaluations. The overall number of EEG sequences used

for training the RNN encoder was 13,944 out of the available 14,000,

since some of them were strongly affected by environmental noise.
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Existing works, such as [111, 69], employing Support Vector Ma-

chines (SVM), Random Forests and Sparse Logistic Regression for

learning EEG representation, cannot be employed as baseline since

they do not operate on whole brain signals (but on feature vectors)

and are applied to other tasks (e.g., music classification, seizure de-

tection, etc.) than visual object–evoked EEG data.

Table 5.2 reports the achieved performance by the three encoder con-

figurations with various architecture details. The classifier used to

compute the accuracy is the one jointly trained in the encoder; we

will use the same classifier (without any further training) also for au-

tomated visual classification on CNN-regressed EEG features. The

proposed RNN-based approach was able to reach about 40% classifi-

cation accuracy, which greatly outperforms the state-of-the-art perfor-

mance of 29% achieved by [79], with fewer image classes (12 against

40 of our work).

To further contribute to the research on how visual scenes are pro-

cessed by the human brain, we investigated how image visualization

times may affect classification performance. Thus far, it has been

known that feature extraction for object recognition in humans hap-

pens during the first 50-120 ms [108] (stimuli propagation time from

the eye to the visual cortex), whereas less is known after 120 ms. Since

in our experiments, we displayed each image for 500 ms; we evaluated

classification performance in different visualization time ranges, i.e.,

[40–480 ms], [40–160 ms], [40–320 ms] and [320–480 ms]. Table 5.3

shows the achieved accuracies when using the RNN model which ob-

tained the highest validation accuracy (see Table 5.2), i.e., the common

128-neuron LSTM followed by the 128-neuron output layer. Contrary

to what was expected, the best performance was obtained in the time
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Model Details Max VA TA at max VA

Common

64 common 34.8% 34.4%

128 common 37.6% 36.5%

64,64 common 37.8% 38.2%

128,64 common 39.0% 36.7%

128,128 common 39.2% 37.8%

Channel + Common
5 channel, 32 common 34.2% 31.9%

5 channel, 64 common 34.9% 36.6%

Common + output
128 common, 64 output 38.3% 34.4%

128 common, 128 output 40.1% 35.8%

Table 5.2: Maximum validation accuracy (“Max VA”) and corre-

sponding test accuracy (“TA at max VA”) for different configurations

of the three RNN architectures shown in Sect. 5.2.2. The model yield-

ing the best validation results is in bold.

range [320–480 ms], instead of during the first 120 ms. This suggests

that a key role in visual classification may be played by neural pro-

cesses outside the visual cortex that are activated after initial visual

recognition and might be responsible for the conception part men-

tioned in the introduction. Of course, this needs further and deeper

investigations that are outside the scope of this paper.

5.3.2 CNN-based regression

CNN-based regression aims at projecting visual images onto the

learned EEG manifold. According to the results shown in the pre-

vious section, the best encoding performance is obtained given by the

common 128-neuron LSTM followed by the 128-neuron output layer.
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Visualization time Max VA TA at max VA

40-480 ms 40.1% 35.8%

40-160 ms 38.1% 32.2%

40-320 ms 39.3% 35.4%

320-480 ms 41.8% 35.9%

Table 5.3: Classification accuracy achieved by the RNN encoder us-

ing different portions of EEG signal data. Best results in bold.

This implies that our regressor takes as input single images and pro-

vides as output a 128-feature vector, which should ideally resemble

the one learned by encoder.

To test the regressor performance, we used the ImageNet subset

presented in Section 5.2.1 and the same image splits employed for

the RNN encoder. However, unlike the encoder training stage, where

different subjects generated different EEG signal tracks even when

looking at the same image, for CNN-based regression we require that

each image be associated to only one EEG feature vector, in order to

avoid “confusing” the network by providing different target outputs

for the same input. We tested two different approaches for selecting

the single feature vector associated to each image:

• average: the EEG feature vector associated to an image is com-

puted as the average over all subjects when viewing that image.

• best features : for each image, the associated EEG feature vector

is the one having the smallest classification loss over all subjects

during RNN encoder training.
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Table 5.4 shows the mean square error (MSE) obtained with each

of the tested regression approaches. The lowest-error configuration,

i.e., feature extraction with GoogleNet combined to k-NN regressor,

was finally employed as EEG feature extractor from arbitrary images.

Note that the accuracy values for average are markedly better than

the best features ’ one. This is in line with the literature on cognitive

neuroscience, for which changes in EEG signals elicited by visual ob-

ject stimuli are typically observed when averaging data from multiple

trials and subjects [83].

5.3.3 Automated visual classification

Our automated visual classifier consists of the combination of the

CNN-based feature regressor achieving the lowest MSE (GoogleNet

features with k-NN regressor, trained on average features) with the

softmax classifier trained during EEG manifold learning. We evalu-

ated image classification performance on the images from our dataset’s

test split, which were never used in either EEG manifold learning or

CNN-based feature regression, obtaining a mean classification accu-

racy of 85.1%, which, albeit lower than state-of-the-art CNN perfor-

mance3, demonstrates the effectiveness of our approach.

In order to test the generalization capabilities of our brain-learned

features, we also performed an evaluation of the proposed method as

a feature extraction technique, and compared it to using VGG and

GoogleNet (we did not test AlexNet given its lower performance as

shown in Table 5.4) as feature extractors. We tested the three ap-

proaches on a 30-class subset of Caltech-101 [112] (chosen so as to

3http://image-net.org/challenges/LSVRC/2015/results
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Feature set

Regressor Average Best

AlexNet FT 2.0 2.4

AlexNet FE

k-NN 1.8 2.1

Ridge 1.7 1.8

RF 1.7 1.9

GoogleNet

k-NN 0.8 3.8

Ridge 2.0 7.8

RF 1.1 4.2

VGG

k-NN 0.9 3.8

Ridge 1.7 7.2

RF 1.1 4.1

Table 5.4: Mean square error (MSE) values obtained by different

regression methods for extracting EEG features from images. “FT”:

fine-tuned; “FE”: feature extractor. Best performance underlined and

in bold.
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avoid overlap with the classes used for developing our model) by train-

ing separate SVM classifiers and comparing by classification accuracy.

The results are reported in Table 5.5.

Although our approach achieves lower accuracy than the compared

models, it is actually an impressive result, considering that VGG and

GoogleNet were trained on ImageNet, which is basically a superset of

Caltech-101, while our EEG encoder and regressor were trained not

only on a different set of object classes, but mainly on a feature space

not even directly related to visual features.

GoogleNet VGG Our method

92.6% 80.0% 69.3%

Table 5.5: Classification accuracy achieved when using GoogleNet,

VGG and the proposed method as image feature extractors for training

an SVM classifier on a subset of Caltech-101.

5.4 Discussion

In this chapter, we investigated the possibility of extracting infor-

mation related to the content of an image shown from EEG tracks

recorded while showing that image to a subject. Our approach

consisted first in learning a representation which mapped the high-

dimensional, temporal, raw EEG signals into a compact feature vec-

tor encoding information relevant to the classification task; then, the

learnt manifold was taught to a CNN model so that the EEG-inspired
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features could be extracted from any image, without having to record

the corresponding EEG signals from a user.

The results are very promising in both aspects of the work. The

EEG features extracted from raw signals (i.e. with no additional vi-

sual input) allow to achieve a 35.8% correct classification rate over 40

classes, thus improving the previous state-of-the-art result obtained

by [79] (on a different dataset with 12 classes).

The learnt CNN regression model allows to extract EEG features

from images, without the need of undergoing the EEG recording pro-

tocol, which makes the method fully suitable for automatic image

analysis.

Finally, the feature themselves demonstrate generalization capa-

bilities and are able to obtain satisfactory results in the classification

of images from different categories than the ones used to train the

models.

The promising results achieved in this initial work make us hope

that human brain processes involved in visual recognition can be ef-

fectively decoded for further inclusion into automated methods.

Moreover, we demonstrated how this kind of human feedback,

while absolutely implicit and out of direct control by a subject, con-

veys extremely meaningful and usable information, and represents a

potential step forward towards intedisciplinary research across com-

puter vision, machine learning and cognitive neuroscience for under-

standing how this information can be exploited to gain further insight

on vision and on its applications to computer vision.
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CHAPTER

SIX

CONCLUSIONS

In this thesis, we delved into the study of several modalities for har-

nessing human vision capabilities to support automated computer vi-

sion tasks. We tried to go deeper and deeper in the investigation of

implicit or bottom-up interaction strategies, where the human compo-

nent is not treated as a “black box” which magically solves task that

our algorithms cannot handle, but rather as a resource, whose inter-

nal workings are largely unknown to us and currently impossibile to

replicate with sufficient approximation, but whose collateral feedback

“signals” (from voluntary clicks to partially-voluntary gaze movements

to completely uncontrolled brain activity measurements) can be stud-

ied and decoded to both support automated methods directly, and

learn human-inspired representations of visual phenomena.

Our journey started with a fully-automated method for video ob-

ject segmentation based on energy minimization of superpixel back-

ground/foreground labeling. The innovative aspect of this work lay

125
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in the inclusion of energy potentials inspired by the Gestalt percep-

tual organization principles of attachment, similarity, continuity and

symmetry, which are believed to encode human criteria for recogniz-

ing structure in the real-world contexts, and which proved effective in

enhancing the performance of the devised method.

We then went on to explore strategies which involved people con-

cretely. Gamification is naturally one of the most interesting partici-

pation strategies, thanks to its attractivity to occasional players and

to the possibility of clearly defining the interaction modality in order

to support a certain application. However, this possibility is also its

main limitation, from our point of view, since it guides and constrains

the user to perform a certain activity in a top-down fashion, without

leaving room for individual bottom-up initiatives — in addition to

being a rather demanding modality on user time, concentration and

effort. Therefore, the natural “antagonist” of such approach had to be

based on something which provided a similar kind of punctual feed-

back to make comparison fair, but where any top-down guidance had

been removed, and all generated feedback data was a sole reaction to

the visual stimulus: in our case, that “something” was eye gaze data.

Our comparison between the two involvement strategies, both com-

bined with similar segmentation methods to reduce any bias due to

the automated components, showed that gamification allows to gather

more high-quality — but still noisy — feedback (where the concept of

“quality” is relative to the capability of the automated method to use

it), which positively affected the segmentation accuracy. Eye-gaze–

based methods, however, provided promising results: segmentation

accuracy, while not as good as that achieved through gamification,

still outperformed more complex fully-automated segmentation ap-
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proaches. Besides, eye-tracking requires a kind of involvement much

less intense and demanding from the user than gamification, in terms

of time, concentration and effort; therefore, as technology advances

and eye-tracking devices become more portable and integrated into

personal computers and smartphones, it is easy to envisage that this

kind of approaches will attract more and more interest from the re-

search community.

Finally, we adventured into the realm of human mind — or, at

least, the part of human mind that is accessible to us by means of

brain activity responses recorded by EEG. We developed an approach

for mapping raw EEG signals into a compact vector representation

encoding visual information useful to identify the category of the image

being watched by the subject. Our method was able to outperform

the current state of the art of image classification from EEG data

only, by increasing both the achieved accuracy and the number of

object categories taken into account. Moreover, in order to provide

a fully-automated variant of the method, we trained a CNN model

to project images onto the same brain-inspired representation space,

thus allowing to perform classification also on images for which no

EEG signals are available.

All in all, the techniques presented in this thesis demonstrated how

useful human involvement can be to support computer vision methods,

not only as a “work force” but, much more importantly, as a source

of knowledge. Even if we may not know how to replicate this knowl-

edge yet, we now know that can tap it by studying and analyzing the

variegated kinds of feedback that people provide when performing an

activity requiring visual analysis, whether with supervised guidance or

freely during everyday routines — of course, with proper technological
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support.

The potential for future developments of this kind of human-based

computation systems is huge (and not even limited to computer vi-

sion). In particular, we intend to focus on brain-activity analysis for

supporting computer vision tasks: for example, the combination of

gaze data and brain signals has an immediate application to attention

prediction and saliency detection. However, much more fascinating

challenges lie in the “reading the mind” direction. Since understand-

ing the content of an image, if generically, seems to be possible, it

would be interesting to explore the level of visual detail encoded in

EEG tracks or in functional MRI images, and see how feasible it is to

reconstruct an entire image from brain activity patterns only. Maybe

this is a näıve hope, and we will find out that the amount of informa-

tion that we can access using this kind of machinery is too coarse for

achieving the goal. Or maybe, dream recording is not that far away

in the future...
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[5] S. Brutzer, B. Höferlin, and G. Heidemann, “Evaluation of

background subtraction techniques for video surveillance,” in

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1937–1944, jun 2011.

129



130 BIBLIOGRAPHY

[6] Z. Zivkovic, “Improved adaptive Gaussian mixture model for

background subtraction,” in International Conference on Pat-

tern Recognition (ICPR), (Cambridge, UK), 2004.

[7] C. Stauffer and W. E. L. Grimson, “Adaptive background mix-

ture models for real-time tracking,” IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), vol. 2, pp. 246–

252, 1999.

[8] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes

for object detection,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 27, no. 11, pp. 1778–1792, 2005.

[9] O. Barnich and M. Van Droogenbroeck, “ViBe: A universal

background subtraction algorithm for video sequences,” IEEE

Transactions on Image Processing, vol. 20, pp. 1709–1724, jun

2011.

[10] C. Spampinato, S. Palazzo, and I. Kavasidis, “A Texton-based

Kernel Density Estimation Approach for Background Modeling

under Extreme Conditions,” Computer Vision and Image Un-

derstanding, vol. 122, pp. 74–83, 2014.

[11] B. Han and L. S. Davis, “Density-based multifeature background

subtraction with support vector machine,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 34, no. 5,

pp. 1017–1023, 2012.

[12] S. Liao, G. Zhao, V. Kellokumpu, M. Pietikainen, and S. Z.

Li, “Modeling pixel process with scale invariant local patterns



BIBLIOGRAPHY 131

for background subtraction in complex scenes,” IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1301–1306, 2010.

[13] B. Zhang, Y. Gao, S. Zhao, and B. Zhong, “Kernel similarity

modeling of texture pattern flow for motion detection in complex

background,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 21, no. 1, pp. 29–38, 2011.

[14] A. Papazoglou and V. Ferrari, “Fast object segmentation in un-

constrained video,” in IEEE International Conference on Com-

puter Vision, (Sidney, Australia), pp. 1777–1784, 2013.

[15] J. Lim and B. Han, “Generalized Background Subtraction Using

Superpixels with Label Integrated,” in IEEE European Confer-

ence on Computer Vision (ECCV), pp. 173–187, 2014.

[16] C. Liu, Beyond Pixels: Exploring New Representations and Ap-

plications for Motion Analysis. PhD thesis, MIT.

[17] R. B. Fisher, Y.-H. Chen-Burger, D. Giordano, L. Hardman, and

F.-P. Lin, Fish4Knowledge: Collecting and Analyzing Massive

Coral Reef Fish Video Data, vol. 104. Springer, 2016.

[18] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and

Tell: Lessons learned from the 2015 MSCOCO Image Captioning

Challenge,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. PP, no. 99, p. 1, 2016.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: To-

wards Real-Time Object Detection with Region Proposal Net-



132 BIBLIOGRAPHY

works,” in Conference on Neural Information Processing Sys-

tems (NIPS), (Montreal, Canada), 2015.

[20] O. Chapelle, P. Haffner, and V. Vapnik, “SVMs for Histogram-

Based Image Classification,” tech. rep., 1999.

[21] S. Lazebnik and C. Schmid, “Beyond Bags of Features : Spatial

Pyramid Matching for Recognizing Natural Scene Categories,”

in IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), (New York, USA), pp. 2169–2178, 2006.

[22] C. S. Venegas-Barrera and J. Manjarrez, “Patrones espaciales

de la riqueza especifica de las culebras Thamnophis en Mexico,”

Revista Mexicana de Biodiversidad, vol. 82, no. 1, pp. 179–191,

2011.

[23] L. Fei-Fei and P. Perona, “A Bayesian Hierarchical Model for

Learning Natural Scene Categories,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), vol. 2, (San

Diego, USA), pp. 524–531, 2005.

[24] T. Serre and T. Poggio, “Object Recognition with Features In-

spired by Visual Cortex,” in IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), vol. 2, (San Diego, USA),

pp. 994–1000, 2005.

[25] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local

Features and Kernels for Classication of Texture and Object

Categories: A Comprehensive Study,” International Journal of

Computer Vision, vol. 73, no. 2, pp. 213–238, 2007.



BIBLIOGRAPHY 133

[26] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” International Journal of Computer Vision, vol. 60,

no. 2, pp. 91–110, 2004.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

“Rethinking the Inception Architecture for Computer Vision,”

in IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), (Las Vegas, USA), 2016.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning

for Image Recognition,” in IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), (Las Vegas, USA), 2016.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei, “ImageNet: A large-scale hierarchical image database,” in

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), (Miami, USA), 2009.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, and Oth-

ers, “Imagenet large scale visual recognition challenge,” Interna-

tional Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,

2015.

[31] C. Rother and V. Kolmogorov, “Grabcut: Interactive Fore-

ground Extraction Using Iterated Graph Cuts,” ACM Trans-

actions on Graphics, vol. 23, no. 3, pp. 309–314, 2004.

[32] J. Wu, Y. Zhao, J.-Y. Zhu, S. Luo, and Z. Tu, “MILCut: A

Sweeping Line Multiple Instance Learning Paradigm for Inter-

active Image Segmentation,” in IEEE Conference on Computer



134 BIBLIOGRAPHY

Vision and Pattern Recognition (CVPR), (Columbus, USA),

2014.

[33] S. Vijayanarasimhan and K. Grauman, “Large-scale live ac-

tive learning: Training object detectors with crawled data and

crowds,” International Journal of Computer Vision, vol. 108,

pp. 97–114, apr 2014.

[34] B. Peng, L. Zhang, D. Zhang, and J. Yang, “Image segmentation

by iterated region merging with localized graph cuts,” Pattern

Recognition, vol. 44, no. 10-11, pp. 2527–2538, 2011.

[35] G. Druck, B. Settles, and A. McCallum, “Active learning by la-

beling features,” in Conference on Empirical Methods in Natural

Language Processing, (Singapore), 2009.

[36] I. Kavasidis, C. Spampinato, and D. Giordano, “Generation of

ground truth for object detection while playing an online game:

Productive gaming or recreational working?,” in IEEE Confer-

ence on Computer Vision and Pattern Recognition Workshops

(CVPRW), (Portland, USA), pp. 694–699, jun 2013.

[37] V. Badrinarayanan, F. Galasso, and R. Cipolla, “Label prop-

agation in video sequences,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), (San Francisco, USA),

pp. 3265–3272, 2010.

[38] P. Ochs and T. Brox, “Object segmentation in video: A hier-

archical variational approach for turning point trajectories into

dense regions,” in IEEE International Conference on Computer

Vision (ICCV), (Barcelona, Spain), pp. 1583–1590, 2011.



BIBLIOGRAPHY 135

[39] V. Badrinarayanan, I. Budvytis, and R. Cipolla, “Mixture of

trees probabilistic graphical model for video segmentation,” In-

ternational Journal of Computer Vision, vol. 110, no. 1, pp. 14–

29, 2014.

[40] A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg, “Combining

Self Training and Active Learning for Video Segmentation,” in

British Machine Vision Conference, (Dundee, UK), 2011.

[41] B. L. Price, B. S. Morse, and S. Cohen, “LIVEcut: Learning-

based interactive video segmentation by evaluation of multiple

propagated cues,” in IEEE International Conference on Com-

puter Vision (ICCV), (Kyoto, Japan), pp. 779–786, 2009.

[42] I. Budvytis, V. Badrinarayanan, and R. Cipolla, “Semi-

supervised video segmentation using tree structured graphical

models,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 11, pp. 2257–2264, 2011.

[43] Y. Li, J. Sun, and H.-Y. Shum, “Video object cut and paste,”

ACM Transactions on Graphics, vol. 24, no. 3, p. 595, 2005.

[44] N. Shankar Nagaraja, F. R. Schmidt, and T. Brox, “Video Seg-

mentation With Just a Few Strokes,” in IEEE International

Conference on Computer Vision (ICCV), (Santiago, Chile),

pp. 3235–3243, dec 2015.

[45] S. D. Jain and K. Grauman, “Supervoxel-Consistent Fore-

ground Propagation in Video,” in IEEE European Conference

on Computer Vision (ECCV) (D. Fleet, T. Pajdla, B. Schiele,



136 BIBLIOGRAPHY

and T. Tuytelaars, eds.), Lecture Notes in Computer Science,

(Zurich, Switzerland), Springer International Publishing, 2014.

[46] J. Donahue and K. Grauman, “Annotator rationales for visual

recognition,” in IEEE International Conference on Computer

Vision (ICCV), (Barcelona, Spain), Ieee, nov 2011.

[47] S. Maji, “Discovering a lexicon of parts and attributes,” in IEEE

European Conference on Computer Vision (ECCV), (Florence,

Italy), 2012.

[48] A. Vedaldi, S. Mahendran, R. Girshick, J. Kannala, M. B.

Blaschko, D. Weiss, N. Saphra, S. Tsogkas, S. Maji, B. Taskar,

K. Simonyan, and S. Mohamed, “Understanding Objects in

Detail with Fine-grained Attributes,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), (Columbus,

USA), 2014.

[49] J. Deng, J. Krause, and L. Fei-Fei, “Fine-grained crowdsourcing

for fine-grained recognition,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), (Portland, USA),

2013.

[50] L. von Ahn and L. Dabbish, “Designing games with a purpose,”

Communications of the ACM, vol. 51, p. 57, aug 2008.

[51] D. Morrison, S. Marchand-Maillet, and É. Bruno, “Tag-
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