
Università degli Studi di Catania

Dipartimento di Matematica ed Informatica

Dottorato di Ricerca in Matematica Pura ed Applicata XXVI ciclo

Orazio Puglisi

Authenticating Computation on
Groups: New Homomorphic
Primitives and Applications

Advisor:

Ch.mo Prof. Dario Catalano

ANNO ACCADEMICO 2013-2014



Contents

Contents i

Acknowledgments iv

1 Introduction 1

1.1 A few words about cryptography history . . . . . . . . . . . . 1

1.2 From Encryption to Homomorphic Encryption . . . . . . . . . 3

1.3 What about homomorphic signatures? . . . . . . . . . . . . . 4

1.4 From a concrete problem to a new primitive . . . . . . . . . . 6

1.5 Organization of this thesis . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries and notations 10

2.1 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Probabilistic notation . . . . . . . . . . . . . . . . . . . 10

2.1.2 Number Theory . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Pairings . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Computational assumptions . . . . . . . . . . . . . . . 12

2.2 Primitives and Security . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Users and primitives . . . . . . . . . . . . . . . . . . . 13

2.2.2 Indistinguishability under CPA and CCA . . . . . . . . 15

2.2.3 The asymptotic approach . . . . . . . . . . . . . . . . 16

2.2.4 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4.1 Hash Function . . . . . . . . . . . . . . . . . 17

2.2.4.2 Chameleon Hash Function . . . . . . . . . . . 18

2.2.4.3 Public Key Encryption . . . . . . . . . . . . . 19

i



CONTENTS ii

2.2.4.3.1 Security for Public Key Encryption

Schemes. . . . . . . . . . . . . . . . 20

2.2.4.3.2 Paillier Encryption Scheme . . . . . 22

2.2.4.4 Signatures . . . . . . . . . . . . . . . . . . . . 23

2.2.4.4.1 Security for Digital Signatures Schemes 24

2.2.4.4.2 Waters Signature . . . . . . . . . . . 26

2.2.4.5 Authenticated Encryption . . . . . . . . . . . 27

2.2.4.6 Sigma Protocol . . . . . . . . . . . . . . . . . 28

2.2.4.6.1 Schnorr Sigma Protocol . . . . . . . 30

2.2.5 Homomorphic primitives . . . . . . . . . . . . . . . . . 30

3 A linearly homomorphic signature scheme to sign elements

in bilinear groups 32

3.1 Linear Network Coding and Linearly Homomorphic Signatures 33

3.2 Homomorphic Signatures scheme . . . . . . . . . . . . . . . . 34

3.2.1 Correctness and Security for Homomorphic Signatures 35

3.3 LHSG: Definition . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 LHSG: Correctness and Security . . . . . . . . . . . . . 38

3.4 A random message secure construction . . . . . . . . . . . . . 43

3.4.1 Scheme security . . . . . . . . . . . . . . . . . . . . . . 45

3.5 From random message security to chosen message security . . 49

3.6 A practical instantiation from our LHSG . . . . . . . . . . . . 53

4 (Publicly) Verifiable delegation of computation on outsourced

ciphertexts 63

4.1 Definition and security . . . . . . . . . . . . . . . . . . . . . . 63

4.2 An instantiation supporting Paillier’s encryption . . . . . . . . 67

4.2.1 Proof of theorem 8 . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Proof of theorem 9 . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Instantiating the underlying signature scheme . . . . . 72

4.3 A General Result . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Proof of theorem 11 . . . . . . . . . . . . . . . . . . . . 81

5 Applications to On-Line/Off-Line Homomorphic Signatures 84

5.1 On-line/Off-line signatures . . . . . . . . . . . . . . . . . . . . 85



CONTENTS iii

5.2 Linearly Homomorphic On-line/Off-line signatures . . . . . . . 85

5.3 Vector and Homomorphic Σ-protocols . . . . . . . . . . . . . . 88

5.3.1 Schnorr 1-n Σ-Protocol . . . . . . . . . . . . . . . . . . 91

5.4 Signatures and Σ-Protocols . . . . . . . . . . . . . . . . . . . 91

5.5 A Linearly Homomorphic On-Line/Off-Line Signature . . . . . 92

6 Conclusions 96

Bibliography 98



Acknowledgments

First of all I want to thank my Ph.D. advisor Prof. Dario Catalano. He

was like a mentor for my studies. I met him during my master degree in

math and he impressed me with the cryptographic world since I had never

known it before. Every talk with him inspired my studies, was a relevant

opportunity to my personal and professional growth, and helped me to be

now ready to discuss this thesis. For all these and other reasons I am very

thankful to him.

Moreover I want to thank Prof. Riccardo Re for introducing me in the crypto-

graphic science during my bachelor degree in his course of ”Teoria dei Codici

e Crittografia”, and thank to him because he introduced me to Dario.

During my Ph.D. I spent one year at the University of Californina in San

Diedo (UCSD). I want to thank all people I knew during this amazing expe-

rience, in particular Prof. Daniele Micciancio. It was an honor to know him

and take his class.

I gratefully acknowledge the funding sources that made my Ph.D. studies

possible. In particular I want to thank my Ph.D. program chair Prof. Gio-

vanni Russo, and the Department chair Prof. Giuseppe Mulone.

My time in Catania was enriched by others friend. I want to thank each of

them, in particular Antonio, co-author of the paper on which is based this

thesis.

Lastly, I would like to thank my life partner Cecilia, my brother, my family

and all my friends for supporting and encouraging me during this experience.

Ad Maiora!

iv



Chapter 1

Introduction

During the last 10 years we have seen a huge development of many on-line

activities: looking at internet web pages, sharing personal information on so-

cial networks, making payments on online store, or connecting to the network

through personal mobile phones. All these activities have become standard

daily activities.

Recently network security has become more popular but, in the mean time,

even more breaks are found on big company servers and personal data are

revealed by anonymous hackers (very recently there were two very big at-

tacks: one on the Apple iCloud and one on the JPMorgan Servers).

A possible reason of this is that the very fast expansion of Internet, and

the growing demand for specific service by users, don’t go together with the

actual security offer.

In this context the role of cryptography is to provide the appropriate tools

in response to the user’s network security safety request.

1.1 A few words about cryptography history

The original, and also historical, purpose of cryptography was to keep secrets

in communications.

First applications of cryptography can be found in military and government

service. The Cesar’s cipher is an example of what is called ”Classical Cryp-

1



CHAPTER 1. INTRODUCTION 2

tography”. It can be easily described by a shifting of the alphabetical letters

by some number of positions. For several centuries, cryptography was re-

lated only to military, government or diplomatic applications, and its only

purpose, as said before, was to preserve confidentiality of communications.

Classical cryptography was followed by Modern Cryptography which provide

not just secrecy, but other services too like Authenticity, Non Repudiation,

Data Integrity1

It’s commonly accepted that Modern Cryptography starts whit the paper

”Communication Theory of Secrecy Systems” of Shannon in 1949 [71].

In this paper Shannon looks at cryptography from an information theory

point of view and introduces formally the concept of perfect security.

In this scenario the request of security growth and cryptographic research

was related not only for government applications, but for private users too.

In this period cryptography become a science.

1976 was the year of the milestone of modern cryptography. W. Diffie and M.

Hellman in this year publish the paper New Direction in Cryptography [33].

There they introduced the concept of public key encryption and propose a

new key exchange mechanism to share the same key using a public channel.

Security of this construction is based on the hardness of the Discrete Loga-

rithmic problem (that will be defined in the next chapter).

We will focus in chapter 2 on public key encryption. Here we give just the

basic idea.

In secret key cryptography users need to share the same secret key to com-

municate secretly, .

In public key cryptography, instead, there are two keys. The public key,

revelated to everyone, allow users to communicate whit the owner of the as-

sociate secret key. The secret key must be keep private by the owner which

use this key to decrypt the conversation.

1formal definition of those cryptographic goals can be found in chapter 2



CHAPTER 1. INTRODUCTION 3

1.2 From Encryption to Homomorphic En-

cryption

The work of Diffie and Helmann was followed by many other contributions in

public key setting. One of them is the work of Rivest, Adleman and Shamir

”A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”

[67] in 1978. The encryption scheme there described, today is known as RSA.

In 1979 Rivest, Adleman ad Dertouzos in ”On Data Bank and privacy homo-

morphism”[65] analyze the problem of construct a cryptographic primitive

in which ciphertext can be manipulated, so that can be possible to execute

arbitrary functions on them. They call a such property privacy homomor-

phism. They also propose some constructions, which unfortunately have been

proven to be insecure [21]

Homomorphic encryption has many useful applications in different areas.

For example it enables private queries to search engine, search over encrypted

data, multiparty computation, NIZK proofs. In 1996 D. Boneh and R. Lipton

in [16] have proven that every deterministic algebraic homomorphic scheme2

is not secure.

After this negative result many researcher started to think that fully homo-

morphic encryption might be impossible to achieve. Surprisingly in 2009, C.

Gentry (a PhD student at the Stanford University) show in [44] and later in

[45] the first fully homomorphic encryption scheme.

This result solves the Rivest, Adleman and Dertouzos problem after more

than 30 years and now is consider to be an important milestone in crypto-

graphic history.

After this result homomorphic encryption become one of the mostly inves-

tigated cryptographic topic, and many papers propose different versions of

homomorphic encryption schemes [73, 20, 31, 47, 72], mostly of them follow-

ing the same Gentry’s blueprint. Many of those constructions have a fairly

poor performance.

Recently Gentry and Halevi in [46], and Brakerski and Vaikuntanathan in

2An encryption scheme is said to be algebraic homomorphic if from E(x1) and E(x2)

is possible to compute E(x1 + x2) and E(x1 · x2), where E is the encryption algorithm

and x1, x2 two messages.



CHAPTER 1. INTRODUCTION 4

[19] found a different way to obtain FHE. Following [19] Brakerski, Gentry

and Vaikuntanathan in [18] present a new FHE scheme achieving better per-

formance than the previous scheme. This last scheme was later implemented

by S. Halevi and V. Shoup in [53]. There they propose the new C++ library,

HElib, that is the best optimized open source implementation of [18].

1.3 What about homomorphic signatures?

Cryptography, as said before, is not just encryption. Another important

primitive is digital signature. Very briefly, signatures allows users to be con-

vinced of authenticity of a digital message.

As for encryption scheme is possible to define homomorphic signatures schemes.

The concept of homomorphic signature scheme was originally introduced in

1992 by Desmedt [32],and then refined by Johnson, Molnar, Song, Wagner

in 2002 [55].

Very informally homomorphic signatures allow user to validate computation

over authenticated data3.

Regard homomorphic signatures, it’s possible, and useful, define a weak ho-

momorphic property called linear homomorphism[13]4. That is, instead to

validate a generic computation f over authenticated data, here f must be a

linear function. Following [13] many other works further explored the notion

of homomorphic signatures by proposing new frameworks and realizations

[42, 9, 15, 14, 27, 10, 28, 38, 11, 26]. In the symmetric setting construc-

tions of homomorphic message authentication codes have been proposed by

[13, 43, 25].

Recently Libert et al. [61] introduced and realized the notion of Linearly

Homomorphic Structure Preserving signatures (LHSPS for short). Structure

Preserving cryptography provides a simple and elegant methodology to com-

3That is a signer holding a dataset {mi}i=1,...,t can produce corresponding signatures

σi = Sign(sk,mi) and store the signed dataset can on a remote server. Later the server

can (publicly) compute m = f(m1, . . . ,mt) together with a (succinct) valid signature σ

on it.
4See chapter 3 for a very useful application of linearly homomorphic signatures to

prevent pollution attacks in network coding



CHAPTER 1. INTRODUCTION 5

pose algebraic tools within the framework of Groth Sahai proof systems [52].

In the last years, this methodology has been widely used to design simple

and modular realizations of cryptographic protocols and primitives. These in-

clude structure preserving signatures (SPS) [5, 3, 4, 1, 2, 22, 29, 30, 39, 51, 54],

commitments [50, 6] and encryption schemes [23].

Informally LHSPS are like ordinary SPS but they come equipped with

a linearly homomorphic property that makes them interesting even beyond

their usage within the Groth Sahai framework. In particular Libert et al.

showed that LHSPS can be used to enable simple verifiable computation

mechanisms on encrypted data. More surprisingly, they observed that lin-

early homomorphic SPS (generically) yield efficient simulation sound trap-

door commitment schemes [40], which in turn imply non malleable trapdoor

commitments [34] to group elements.

In chapter 3 we will define a new primitive called Linearly homomorphic

signature scheme to sign element in bilinear groups (LHSG for short) and

propose a very simple construction of it which RMA-security5 will based

on a variant of the Computational Diffie-Hellman assumption introduced by

Kunz-Pointcheval in [60].

The main difference between LHSG and LHSPS is that the first allow for

more flexibility, as the signature is explicit allowed to contain components

which are not group elements.

However, as explained in remark 4, if it’s possible set the file identifier fid as

a group element then our LHSG will be an LHSPS.

As an interesting application we will show how this simple primitive can

be use in the context of OnLine/OffLine (linearly homomorphic) signatures.

Very informally, on-line/off-line signatures allow to split the cost of signing

in two phases. An (expensive) offline phase that can be carried out without

needing to know the message m to be signed and a much more efficient on-

line phase that is done once m becomes available.

In this sense, on-line/off-line homomorphic signature could bring similar effi-

ciency benefits to protocols relying on homomorphic signatures. For instance,

5Later we will discuss about different kind of possible attack to a signature scheme.

The Random Message Attack is one of them and will be carefully described in section

2.2.4.4



CHAPTER 1. INTRODUCTION 6

they could be used to improve the overall efficiency of linear network coding

routing mechanisms employing homomorphic signatures to fight pollution

attacks6.

We show that RMA-secure LHSG naturally fit this more demanding on-

line/off-line scenario. Specifically, we prove that if one combines a RMA-

secure LHSG with (vector) Σ protocols with some specific homomorphic

properties, one gets a fully fledged linearly homomorphic signature achieving

a very efficient online phase. Moreover, since the resulting signature scheme

supports vectors of arbitrary dimensions as underlying message space, our

results readily generalize to the case of network coding signatures [13].

Finally we present a generic methodology to convert an LHSG secure under

RMA attacks into ones CMA-secure. This transformation is totally generic

and can be use for linearly homomorphic signatures in general.

1.4 From a concrete problem to a new prim-

itive

Lets now consider the follows scenario. Suppose that a teacher wants to store

the grades of homework of his students on a cloud server. A possible way can

be as follows: he creates a file identifier fid for each class, and set a generic

record as (fid, STUD ID,GRADE), where STUD ID is a student identifier.

Then he signs each record and stores everything off line. This solution have

two problems. First, since data are stored in clear, outsourcing them off line

might violated the privacy of students. Second, suppose that the teacher

want to compute a linear function on the grades previous stored, how do

that without download all data locally?

To solve those two problems we search for a primitive such that the following

properties are satisfied:

Privacy: to assure student grades privacy.

6This is because the sender could preprocess many off-line computations at night or

when the network traffic is low and then use the efficient online signing procedure to

perform better when the traffic is high.



CHAPTER 1. INTRODUCTION 7

Authenticity: to assure that nobody can modify a record.

Homomorphicity: to allow evaluate and validate, using just a public key,

computations over encrypted (and authenticated) data.

To do that we define in chapter 4 a new primitives that we call Linearly

Homomorphic Authenticated Encryption with Public Verifiability (LAEPUV

for short). Informally, this primitive allows to authenticate computation on

(outsourced) encrypted data, with the additional benefit that the correctness

of the computation can be publicly verified.

We will show an efficient realization of this primitive supporting Paillier’s ci-

phertext [64]. It works by combining Paillier’s encryption scheme with some

appropriate additively homomorphic signature scheme. The main idea is as

follows. One first encrypts the message in a ciphertext C. Then decrypts

a ”masking” of C and signs this masked plaintext using a linearly homo-

morphic signature. In all we validate the computation on the ciphertext by

basically authenticating computations on the masked plaintext.

So, in this way, we will obtain the first simple and efficient LAEPuV based

on Paillier cryptosystem.

Previous (efficient) solutions for this problem rely on linearly homomorphic

structure preserving signatures [61] and, as such, only supported cryptosys-

tem defined over pairing-friendly groups. Since, no (linearly homomorphic)

encryption scheme supporting exponentially large message spaces is known

to exist in such groups, our construction appears to be the first one achieving

this level of flexibility.

On the negative side, our construction is proved secure in the random oracle

model.

Another result provided by us in this area is a generalization of our scheme.

In particular, we will show how to replace Paillier encryption scheme with any

other encryption scheme which had some well defined homomorphic proper-

ties.

Interestingly, this includes many well known linearly homomorphic encryp-

tion schemes such as [49, 63, 57].

An important feature of LAEPuV is that they allow for public verifiability.

This means that everybody can verify correctness of the computation, even



CHAPTER 1. INTRODUCTION 8

though the possibility of decrypting the result remains feasible only for the

holder of the secret decryption key. In the context of verifiable computation

on encrypted data, we believe that public verifiability is important for (at

least) two reasons. First, it implies that learning whether or not a given com-

putation has been carried out correctly or not does not compromise security

in any way. This is in sharp contrast with privately verifiable schemes where

revealing this same information might create security concerns (and this was

actually the case, for instance, for the verifiable computation scheme from

[41], see [41] for details). Second, in case of dispute, public verifiability allows

third parties to determine whether or not the computation was performed

correctly, without requiring the client to disclose his/her private key. This

means, once again, that the privacy of the underlying data remains preserved

when settling such disputes.

1.5 Organization of this thesis

This thesis is divided in 5 chapters organized as follows:

Chapter 2: Preliminaries and notations. This chapter provides the

reader all basic cryptographic tools so that it can be possible to under-

stand all the results of this thesis.

Chapter 3: Linearly homomorphic signatures scheme to sign ele-

ments in bilinear groups. In this chapter we provide formal def-

inition for Linearly homomorphic signatures and introduce the new

concept of Linearly homomorphic signature scheme to sign elements in

bilinear groups (LHSG).

Another goal of this chapter is to achieve a general conversion method

for LHSG from Random Message Security to Chosen Message Security.

Chapter 4: (Publicly) Verifiable delegation of computation on out-

sourced ciphertexts. In this chapter, we first describe a new primi-

tive that we call Linearly Homomorphic Authenticated Encryption with

Public Verifiability (LAEPuV). Next we provide two instantiations of

this primitive.



CHAPTER 1. INTRODUCTION 9

Chapter 5: Applications to On-Line/Off-Line Linearly Homomor-

phic signatures. In this chapter we formally provide definition for

On-Line/Off-Line Linearly Homomorphic signatures and for vector Σ

protocols. Then we show how to combine a RMA-secure LHSG with

a vector Σ protocol to construct an On-Line/Off-Line Linearly Homo-

morphic signatures

Chapter 6: Conclusions It contains a summary of the main results of this

thesis and some open problems



Chapter 2

Preliminaries and notations

2.1 Basic Notations

If n ∈ N, we denote by 1n the unary vector of dimension n. We denote

by {0, 1}n the set of n-bit dimension string (or vector), by {0, 1}∗ the set

of binary string without any limitation on the dimension and by [n] the set

{1, . . . , n}.

If x and y are two arbitrary binary string we denote by x‖y the concatenation

of the strings.

If x is a binary string we denote by |x| its length and by [x]i its i-th bit.

2.1.1 Probabilistic notation

In this paper we use standard probabilistic notation well known in cryptog-

raphy. Let A be a non empty finite set. We denote by a←
X

A the procedure

consisting of sampling an element a from the set A according to a probability

distribution X. When X is omitted we’ll refer to the uniform distribution.

An algorithm A is said to be PPT if it’s modeled as a probabilistic Turing

machine that runs in polynomial time in its inputs.

A function f is said to be negligible if for all polynomial p there exists n0 ∈ N

such that for each n > n0

|f(n)| <
1

p(n)
.

10



CHAPTER 2. PRELIMINARIES AND NOTATIONS 11

Given two algorithms M and A we denote by MA(x) the output of the

algorithm M on input x, when given oracle access1 to A.

2.1.2 Number Theory

We denote with N the set of natural numbers, with Z the set of integers,

with Zp the set of integers modulo p, with Z∗
p the multiplicative group of

invertible integers modulo p .

Let G be a group.

Definition 1 The number of elements of G, denoted by |G| is called the

order of G. We said that a group G is finite iff |G| is finite.

Definition 2 We say that an element g ∈ G is a generator of G if ∀a ∈

G ∃i ∈ N such that a = gi.

2.1.3 Pairings

Definition 3 Let P denote a generator of G1, where G1 is a group of prime

order p, and let GT another multiplicative group such that |G1| = |GT |. A

pairing is a map

e : G1 ×G1 → GT

such that the following properties are true:

• The map e is bilinear: Given Q,W,Z ∈ G1 we have

e(Q,W · Z) = e(Q,W ) · e(Q,Z) and e(Q · Z,W ) = e(Q,W ) · e(Z,W ).

So, for any a, b ∈ Zq:

e(Qa,W b) = e(Q,W )ab = e(Qab,W ) = e(Q,W ab)

• The map e is non-degenerate: e(P, P ) 6= 1GT
where 1GT

is the identity

element of GT .

• The map e is efficiently computable.

1That is, M can ask for the result of A(x) using a black box access to the algorithm A



CHAPTER 2. PRELIMINARIES AND NOTATIONS 12

Remark 1 It’s very easy to verify that such map is symmetric, that is

e(Q,W ) = e(W,Q) for all Q,W ∈ G1.

Remark 2 The previous definition can be trivially adapted to the case when

G1 is an additive group (for example the group of points on an elliptic curve

over a finite field.)

2.1.4 Computational assumptions

Most of cryptographic primitives are based on number theoretical problems.

Here we recall a few computational assumptions used to prove the security

of our constructions.

Let G be a finite (multiplicative) group of prime order p.

Definition 4 (DL) We say that the discrete logarithm assumption hold in

G if, given a random generator g ∈ G, there exist no PPT adversary A that

on input (g, gx) outputs x with more than negligible probability. Here the

probability is taken on the uniform choice of x and the internal coin tosses

of A.

Definition 5 (CDH) We say that the Computational Diffie-Hellman as-

sumption holds in G if, given a random generator g ∈ G, there exists no

PPT A that on input g, ga, gb outputs gab with more than negligible probabil-

ity. Here the probability is taken over the uniform choices of a, b
$
← Zp and

the internal coin tosses of A.

The CDH problem, introduced by Diffie and Hellman in [33] is trivially re-

lated to de Discrete Logarithm (DL) problem. It’s easy to prove that using

a DL oracle we can solve the CDH problem. So CDH is at least as strong

as DL hardness assumption. In some groups [37], [62] it’s possible to prove

the viceversa, and so these the two assumption are equivalent, but in general

proving equivalence of these two problems is an open question.

The 2-out-of-3 Computational Diffie-Hellman assumption was introduced by

Kunz-Jacques and Pointcheval in [59] as a relaxation of the standard CDH

assumption. It is defined as follows.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 13

Definition 6 (2-3CDH) We say that the 2-out-of-3 Computational Diffie-

Hellmann assumption holds in G if, given a random generator g ∈ G, there

exists no PPT A that on input (g, ga, gb) (for random a, b
$
← Zp) outputs

h, hab (h 6= 1) with more than negligible probability.

It’s simple to prove that 2-out-of-3 CDH is at most as difficult as CDH.

All the previous computational problems are strictly related to the first prob-

lem, the DL problem. Another class of computational problems, instead, are

based on a different problem, the factorization problem. The Decisional Com-

posite Residuosity Assumption, described below, was introduced by Paillier

in [64] and it’s possible to prove that solving this problem is more difficult

than factoring.

Definition 7 (DCRA) We say that the Decisional composite residuosity

assumption (DCRA) holds if there exists no PPT A that can distinguish

between a random element from Z∗
N2 and one from the set {zN |z ∈ Z∗

N2}

(i.e. the set of the N-th residues modulo N2), when N is the product of two

random primes of proper size.

2.2 Primitives and Security

2.2.1 Users and primitives

Users and primitives are the two main character in cryptography. Users,

sometimes called players, are algorithms which use cryptographic primitives

to achieve a fixed object: i.e. to secretly share some information they use

a specific primitive called Asymmetric Encryption scheme, but they can’t

use the same primitive to achieve others object (for example to prove the

authenticity of a message). Other commonly used primitives are:

• One Way (Hash) Function

• Symmetric Encryption (called also Private Key Encryption )

• Digital signatures



CHAPTER 2. PRELIMINARIES AND NOTATIONS 14

A detailed explanation of such primitives can be found in the next section.

However, in concrete instantiations, it’s necessary to achieve more than one

of the security property guaranteed by each one of those primitives.

There are two possible solutions: combine different cryptographic primitives

to make a security protocol, or define new primitives (with related security

definitions) matching the fixed problem.

The first method, though it may seem simpler, is affected by errors due to

the way the primitives are implemented, combined and used.

In chapter 4 of this thesis we’ll follow the second approach by defining a new

primitive, LAEPuV, described very informally in the introduction. Before

starting a detailed explanation of the primitives used in this thesis, we want

to focus on the definition of security.

Cryptography and security are two very related concept. Indeed we often

use the word ”secure” in the introduction, but we did not explain what this

formally means.

Let us start by considering a specific primitive, i.e. private key encryption.

Informally it consists of 3 algorithms: KeyGen, Enc, Dec. KeyGen pro-

duces a secret key sk, Enc produces an encryption for a message m given

as input using the secret key sk, Dec decrypts a ciphertext c given as input

using the secret key sk.

Suppose that two users (Alice and Bob), use such primitive to have a ”secure”

conversation. Supposing they shared the same private key sk, Alice sends

to Bob an encryption c of a message m through a public channel. What’s

security in this contest? Suppose there exists a user (called Adversary) able

to capture any ciphertext that flows on the channel between the two parties.

Thus he can collect a set of ciphertext and try to extract some information

from them. For example, if there exists an adversary able to extract the se-

cret key sk after seeing a polynomial number of ciphertext, then the scheme

used by Alice and Bob is trivially insecure. But it’s not the only case! If an

adversary A can recover just a single bit of the message m from its cipher-

text c without knowing the key sk then the scheme should also be considered

insecure. Indeed the specific bit recovered by A contains information about

the message.

Overall there are some information that are known from any user and adver-



CHAPTER 2. PRELIMINARIES AND NOTATIONS 15

sary: for example the dimension of the message space, the dimension of the

key, the language used in the conversation and sometimes the main topic of

the conversation.

So we desire a definition which captures security in the stronger possible

sense, as described very informally above.

Now there are two formalization of security: perfect security and computa-

tional (or provable) security.

The first is a very strong notion, introduced by Shannon [71] based on in-

formation theory . In this notion even when adversary has an unlimited

computing power, ciphertext must provide no information about the plain-

text, beyond the a priori information it had before seeing the ciphertext.

Unfortunately, achieving perfect security implies a key as long as the message

and this is a very bad limitation.

In 1982 Goldwasser and Micali in [48] introduced a new notion of security,

called semantic security, but from this definition is very difficult to prove

security of any scheme. So, some year later in [49] they prove that this def-

inition is equivalent to another practical definition called computational (or

indistinguishability) security.

In the next subsection we’ll formalize this security notion providing formal

definitions.

2.2.2 Indistinguishability under CPA and CCA

Let SE = (KeyGen,Enc,Dec) a symmetric (or private key) encryption

scheme, and let A an adversary. Suppose he has access to an oracle O. This

oracle receives in input two message M0 and M1 of the same length and re-

turns a ciphertext c. c can be computed in two ways, corresponding to two

possible worlds in which adversary ”lives” (world-0, world-1).

In the world-0 A receives an encryption on the message M0, In the world-1

A receives an encryption on the message M1

He can ask a polynomial number of such couples (M0,M1). Finally A out-

puts a bit: 0 if he thinks to be in the world 0, 1 if he thinks to be in the world

1. Formally we can describe this game through the following experiments,

where K is the key space:



CHAPTER 2. PRELIMINARIES AND NOTATIONS 16

ExpIND−CPA−1
SE (A) ExpIND−CPA−0

SE (A)

k
$
← K k

$
← K

d← AEnck(LR(·,·,1)) d← AEnck(LR(·,·,0))

return d return d

where the function LR(·, ·, b) takes as input two message m0, m1 and a bit b

and outputs the message mb. Finally we define the IND-CPA advantage of

A as

AdvIND−CPA
SE (A) = Pr

[

ExpIND−CPA−1
SE (A) = 1

]

−Pr
[

ExpIND−CPA−0
SE (A) = 1

]

The advantage is a number in [0, 1]. If it is large (close to 1), it means that

A is able to distinguish the difference of the worlds, so SE is not secure.

If it’s close to zero, than it means that A is outputting 1 about as often in

world-0 as in world-1.

Clearly if for a specific adversary A its advantage is close to zero, it’s not

really true that SE is secure. Indeed it’s possible that exist another unknown

adversary B such that AdvIND−CPA
SE (B) ≈ 1.

So, to be SE secure, it must be that AdvIND−CPA
SE (A) ≈ 0 for all PPT

adversary A.

2.2.3 The asymptotic approach

Throughout this thesis we will adopt the computational security model, us-

ing the asymptotic approach to define the adversary’s advantage, success

probability, running time and moreover.

More formally, the keys generation algorithm of each primitive will take as

input a security parameter λ. Each algorithm, and adversaries too, will be

PPT, so, for some constants a, c the algorithm will run in time aλc. However

the adversary, although requested to run in polynomial time, may be much

more powerful than the honest parties, like in the real world2.

2For example, an user to login in its bank account can perform all operations using

his mobile phone, which have a very limited computational power. However bad organi-

zations can perform attacks using very expensive hardware with big (but anyway PPT)

computational power.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 17

Using asymptotic notation we can said that a scheme is secure if every PPT

adversary A has negligible advantage in the security parameter λ.

About the choice of λ, it depends first on the computational assumption

on which is based the security proof. Longevity and potential attacks are

other elements to keep in mind in order to fix this parameter. A very ex-

haustive description of possible values for λ can be found at the website

www.keylength.com.

2.2.4 Primitives

In the following sections we will describe some cryptographic primitives,

along with their security definitions, that are related to this work.

2.2.4.1 Hash Function

Strictly speaking an hash function is a function that compress: it takes as

input a string in {0, 1}∗ and output a short element in {0, 1}ℓ for some fixed

ℓ. So the output is shorter than the input.

Formally an hash function can be defined as follow.

Definition 8 An hash function family H is a couple of algorithms H =

(Gen,H) such that

Gen(1λ) takes as input a security parameter λ and outputs a key K;

H(K, x) takes as input a secret key K and a string x ∈ {0, 1}∗ and out-

puts H(K, x) ∈ {0, 1}ℓ where ℓ is some fixed polynomial related to the

function H

Remark 3 Sometimes, during this thesis, we will refer to an hash function

as a function of the family {H : K ×D → R} where K is the key space, D

is the domain of H, and R its range. Of course to be an hash function we

need |R| ≪ |D|

A collision for an hash function HK ∈ H is a pair of distinct elements

x1, x2 ∈ D such that HK(x1) = HK(x2). A very important property related

to hash functions is the collision resistance. This property can be defined by



CHAPTER 2. PRELIMINARIES AND NOTATIONS 18

the following experiment:

ExpCR
A,H(λ)

K ← Gen(1λ)

(x1, x2)← A(K)

If x1 6= x2 and HK(x1) = KK(x2) return 1 else return 0

The CR property measure the capability of an adversary to find a collision

for an instance of a family of H.

By the previous experiment we can define the advantage of A to break the

CR property for H as:

AdvCR
H (A) = Pr[ExpCR

A,H(λ) = 1]

Definition 9 An hash functions family H defined as above have the CR

property if for all PPT adversary A, AdvCR
H (A) is a negligible function in

the security parameter λ.

Several construction of CR hash functions are known [66, 69]

2.2.4.2 Chameleon Hash Function

Here we describe a slightly different variant of CR hash functions. Roughly

speaking chameleon hash functions are hash functions with the additional

property that given a ”trapdoor” one can efficiently generate collisions. For-

mally we have the follows definition

Definition 10 Let H a set of functions hek : {0, 1}∗ × Γ→ {0, 1}ℓ where Γ

is a sufficiently large set used as randomness space, ℓ is a fixed number (or

polynomial in the security parameter λ) which defines the image of hek and

each function is identified by a key ek.

The family of Hash Function H is a chameleon hash function family if there

exist a tuple of algorithm (Gen,Eval,Coll) working as follows:

Gen(1λ) Takes as input the security parameter λ and outputs an evaluating

key ek and a trapdoor key td.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 19

Eval(ek,m, ρ) Takes as input the key ek, which identifies a function hek ∈

H, a message m ∈ {0, 1}∗ and a randomness ρ. It outputs c ∈ {0, 1}ℓ.

Coll(td,m1, ρ1,m2) Takes as input the trapdoor key td, two messages m1,m2 ∈

{0, 1}∗ and a random element ρ1 ∈ Γ. It outputs ρ2 ∈ Γ such that

Eval(ek,m1, ρ1) = Eval(ek,m2, ρ2).

Moreover we require the following properties:

Uniformity Property There exists a distribution over Γ denoted by DΓ

such that for all m ∈ {0, 1}∗ the distributions (ek, h(ek,m, r)) and

(ek, y) are statistical indistinguishable, where (ek, tp)← Gen(1λ), r ←

DΓ, y
$
← {0, 1}ℓ.

Collision Resistance There exists no PPT adversary A such that on input

H and ek can find m1,m2, ρ1, ρ2 such that

hek(m1, ρ1) = hek(m2, ρ2).

Formally

Pr[(m1, ρ1) 6= (m2, ρ2), hek(m1, ρ1) = hek(m2, ρ2) :

(ek, tp)← Gen(1λ); (m1, ρ1,m2, ρ2)← A(ek,H)]

is negligible for all PPT adversary A.

2.2.4.3 Public Key Encryption

A Public Key Encryption (PKE) scheme is defined by a tuple of PPT algo-

rithms (KeyGen,Enc,Dec) working as follows

KeyGen(1λ) It takes as input the security parameter λ and outputs a public

key pk and a secret key sk.

Enc(pk,m) It takes as input the public key pk and a message m lying in the

message spaceM that may depend on the public key pk. It outputs a

ciphertext c.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 20

Dec(sk, c) It takes as input the secret key sk and a ciphertext c. It outputs

a message m or ⊥ (failure).

We need an additional property which guarantees the correct decryption of

a ciphertext.

Correctness

Pr[Dec(sk,Enc(pk,m)) = m] = 1− f(λ)

where the probability is over all the possible (pk, sk) ← KeyGen(1λ)

and f is a negligible function in the security parameter λ.

2.2.4.3.1 Security for Public Key Encryption Schemes. Now we’ll

describe two security models for PKE. Specifically we will define indistin-

guishablity against adaptive chosen plaintext attack (CPA) and indistin-

guishability under chosen ciphertext attack (CCA).

We refer the reader to [12] for a discussion on security notion candidate for

PKE and relations among them.

Chosen Plaintext Attack (CPA). We start by the basic security notion

for Public Key Encryption scheme: security against chosen plaintext attack

(CPA). We formalize this security notion by the follow experiment.

Consider a PKE scheme E = (KeyGen,Enc,Dec) and an adversary A play-

ing the follow experiment:

ExpIND−CPA
A,E (k)

(pk, sk)← KeyGen(k)

b
$
← {0, 1}

(m0,m1)← A(pk)

c← Enc(pk,mb)

b′ ← A(c)

If b′ = b return 1 else return 0

Here k is the security parameter. We can suppose that it’s still public, as

the public key.

We said that A wins the game if he guesses the correct bit b (that is

ExpIND−CPA
A,E (k) = 1 ). Informally to win this game the adversary A must be



CHAPTER 2. PRELIMINARIES AND NOTATIONS 21

able to distinguish the encryption of two different ciphertexts of his choice.

Two observations about this game:

• Differently from Private Encryption adversary A can compute itself

encryption for different messages so in the queries phase there is just

one query.

• From the first observation we can observe that no PKE scheme with a

deterministic encryption algorithm can be IND-CPA secure.

We define the advantage

AdvIND−CPA
E (A) = |2 · Pr

[

ExpIND−CPA
A,E (k) = 1

]

− 1|

Definition 11 A PKE sheme E = (KeyGen,Enc,Dec) is IND-CPA se-

cure if for all PPT adversaries A, the advantage AdvIND−CPA
E (A) is at most

a negligible function in the security parameter k.

Chosen Ciphertext Attack. Security in the Chosen Ciphertext Attack

(CCA) model is a trivial extension of CPA security model. Here we allow

adversary to ask for decryption queries.

Formally it can be defined by the follow experiment: Let E = (KeyGen,Enc,

Dec) a PKE scheme and A an adversary playing the follow experiment:

ExpIND−CCA
A,E (k)

(pk, sk)← KeyGen(k)

b
$
← {0, 1}

(m0,m1)← A
Dec(sk,·)(pk)

c← Enc(pk,mb)

b′ ← ADec(sk,·)(c)

If b′ = b return 1 else return 0

The goal of A, similarly in the CPA game, is to guess whether c is an encryp-

tion of m0 or m1. However A has access to a decryption oracle (that can be

consider like a black box algorithm) through that he can decrypt ciphertexts

of his choice.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 22

Of course, in the second decryption phase (line 5) he cannot ask for a de-

cryption on the challenge ciphertext c. In this case, the challenger return ⊥.

We define the IND-CCA advantage for an adversary A as

AdvIND−CCA
A,E = |2 · Pr

[

ExpIND−CPA
A,E (k) = 1

]

− 1|.

Finally we have the follow definition:

Definition 12 A PKE sheme E = (KeyGen,Enc,Dec) is IND-CCA se-

cure if for all PPT adversaries A, the advantage AdvIND−CCA
E (A) is at most

a negligible function in the security parameter k.

It’s very easy to check that AdvIND−CCA
A,E ≥ AdvIND−CPA

A,E . In particular, if

E is IND-CCA secure then it’s also IND-CPA secure and if E is not IND-CPA

secure then it’s not IND-CCA secure.

Now, for sake of completeness and as example of encryption scheme we

present the Paillier encryption scheme, very useful in the rest of this the-

sis.

2.2.4.3.2 Paillier Encryption Scheme First of all we define the fol-

lowing standard functions in group theory:

• let n = pq, p, q primes. λ(n) = lcm(p− 1, q − 1).

• Let SN the set of integers u such that {u < N2‖u ≡ 1 mod N}. Then

we define for each u ∈ SN

L(u) =
u− 1

N
.

Note that L(u) ∈ Z ∀u ∈ SN .

• We will denote with Bα the subgroup of Z∗
N2 whose elements have order

αN (α 6= 0) and with B the disjoint union of Bα, α = 1, . . . , N α | λ(N).

Let g ∈ B. It’s possible to prove that the function Eg : ZN × Z∗
N → Z∗

N2

defined as follows

Eg(x, y) = gxyN

is a bijection.

Now we are ready to present the Paillier encryption scheme:



CHAPTER 2. PRELIMINARIES AND NOTATIONS 23

Key Generation Let k the security parameter. The algorithm chooses two

primes p and q of equal length k and an element g ∈ B. It sets N =

pq, computes µ = L(gλ(N) mod N2)−1 mod N and sets (g,N) as the

public key, (λ(N), µ) as the private decryption key

Encryption Let m < N a message. It chooses random r ∈ Z∗
N and com-

putes the ciphertext c as:

c = gmrN mod N2.

Decryption To decrypt a ciphertext c the algorithm first checks that

c < N2. If yes it’s possible retrieve the message m as

m = L(cλ(N) mod N2) · µ mod N

otherwise it returns ⊥

Theorem 1 If the Decisional Composite Residues Assumption (DCRA) hold,

the scheme described above is IND-CPA secure.

2.2.4.4 Signatures

So far we have only described security models for cryptographic primitives

that guarantees privacy, through indistinguishability games. However many

times users need a different kind of security.

Suppose the Department of Homeland Security intends to issue a public

warning. So the message is public, no encryption scheme is needed, but

in this case people want to be sure that the message comes from the HS

department and no one has modified it.

So we need two different properties by this new primitive:

Authenticity : like in a real signature, everyone must be sure of the au-

thenticity of the message. Moreover no one can generate a valid ”digital

signature” for a different user without some private information

Integrity : everyone can be sure that the message have been not modify by

a third part.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 24

Another important property is the non repudiation, that is, the signer cannot

deny to have signed a message.

Now we formally describe a signature scheme by the follow definition.

Definition 13 A Digital Signature Scheme (DSS) S is defined by a triple of

algorithms S = (KeyGen,Sign,Verify) such that

KeyGen(1λ) is a PPT algorithm which on input a security parameter λ out-

puts a signing key sk and a verification key vk. This algorithm implicitly

defines a message spaceM and a signature space Σ.

Sign(sk,m) is a PPT algorithm which takes as input the signing key sk and

a message m and outputs a string σ called signature of m.

Verify(vk, σ,m) is a PPT algorithm which given a verification key vk, a

signature σ and a message m returns 1 (accept) or 0 (reject).

We also require the follow correctness property: if (sk, vk) ← KeyGen(1λ)

and σ ← Sign(sk,m) then for all messages m ∈M

Pr [Verify(vk, σ,m) = 1] ≈ 1

2.2.4.4.1 Security for Digital Signatures Schemes Now we want to

focus on the security definition for Digital Signatures. First of all we observe

that there are three basic kind of attacks:

1. Key only Attack: the Adversary knows only the verification key vk.

2. Random Message Attack: The Adversary knows the verification key

vk and can ask for couples (m, σ) where m is chosen random by the

challenger and σ is a valid signature for the message m.

3. Chosen Message Attack: Similar to the random message attack, but, in

this case, Adversary chooses the message m signed by the challenger.

About the success of Adversary in the previous attacks, we can distinguish

the following forgeries:



CHAPTER 2. PRELIMINARIES AND NOTATIONS 25

Existential Forgery Adversary outputs a valid signature on a new mes-

sage, not necessary of its choice.

Strong Existential Forgery Like Existential Forgery but in this case mes-

sage can be one of previously seen message. Of course, in this case, the

related signature must be different from the signature previously seen.

Selective Forgery The adversary outputs a signature for a message of his

choice.

Universal Forgery The adversary is able to output a signature on any

message.

Total Break Adversary can compute the secret key sk.

Now, in order to clarify those definitions, we describe formally the security

games with CMA for each different forgery.

Definition 14 Let S = (KeyGen,Sign,Verify) a Digital Signature Scheme.

S is UF-CMA secure if for all PPT adversary A, AdvUF−CMA(A) is neg-

ligible in the security parameter λ, where AdvUF−CMA(A) is the probability

of winning the follow game:

Setup Challenger runs KeyGen(1λ) to obtain sk, vk. The verification key

vk is given to A.

Queries Adversary A can asks for a polynomial number of queries (m1, . . . ,mq)

to the signer to obtain the signatures corresponding to each queried mes-

sage.

Forgery A output a forgery (m∗, σ∗).

• A wins the UF-CMA game ifVerify(m∗, σ∗) = 1 andm∗ 6∈ (m1, . . . ,mq).

• A wins the SUF-CMA game if Verify(m∗, σ∗) = 13.

3Of course, if m∗ ∈ (m1, . . . ,mq) then σ∗ must be different from the signature previ-

ously seen.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 26

• A wins the SF-CMA game if Verify(m∗, σ∗) = 1 where m∗ was chosen

by A before the start of the attack.

• A wins the UF-CMA game if Verify(m∗, σ∗) = 1 where m∗ was given

to A before the start of the attack.

In the next section we describe an example of signature scheme, the Waters

signature schemes [74], which will be used in some constructions presented

in this paper.

2.2.4.4.2 Waters Signature Let G, GT be groups of prime order p such

that e : G×G→ GT is a bilinear map.

KeyGen(p) : It sets l ← ⌈log p⌉ and chooses g, g2
$
← G, α

$
← Zp and

A0, A1 . . . , Al
$
← G. Then it sets g1 ← gα and returns vk = (g, g1, g2, A0,

A1, . . . , Al), sk = gα2

Sign(m, sk) : This algorithm chooses a random r
$
← Zp and sets σ ← gr

and τ ← gα2

(

A0

∏l

ζ=1 A
[m]ζ
ζ

)r

. Then it returns Σ = (σ, τ)

Verify(vk,m,Σ) : It checks that

e(g, τ) = e(σ,A0

l
∏

ζ=1

A
[m]ζ
ζ ) · e(g1, g2).

If the above equation holds it returns 1, else it returns 0.

Theorem 2 If the CDH assumption hold then the above signature scheme

is UF-CMA secure

In [17] a strongly secure variant of the previously described scheme (under

the same computational assumption) is provided. We will refer to this latter

scheme as the Strong Waters Signature Scheme.

The Strong Waters Signature Scheme works as follows.

Let G, GT be groups of prime order p such that e : G×G→ GT is a bilinear



CHAPTER 2. PRELIMINARIES AND NOTATIONS 27

map and H = {HK}K∈K (where K is the keys’ space) a family of collision

resistant hash functions

KeyGen(p) : It sets l ← ⌈log p⌉ and chooses g, g2, h
$
← G, α

$
← Zp,

A0, A1 . . . , Al
$
← G, K

$
← K. Then it sets g1 ← gα and returns

vk = (g, g1, g2, h, A0, A1, . . . , Al, k), sk = gα2

Sign(m, sk) : This algorithm chooses random r, s
$
← Zp and sets σ ← gr.

Then it computes

t← H(m‖σ), M ← H(gths), τ ← gα2

(

A0

l
∏

ζ=1

A
[M ]ζ
ζ

)r

.

Next it returns Σ = (σ, τ, s).

Verify(vk,m,Σ) : To verify a signature Σ = (σ, τ, s) the algorithm com-

putes t← H(m‖σ), M ← H(gths). Then it checks that

e(g, τ) = e(σ,A0

l
∏

ζ=1

A
[M ]ζ
ζ ) · e(g1, g2).

If the above equation holds it returns 1, else it returns 0.

Theorem 3 If the CDH assumption hold then the above signature scheme

is SF-CMA secure

2.2.4.5 Authenticated Encryption

Until now we have introduced two primitives related respectively to two

different security goals:

• encryption scheme ⇒ privacy

• digital signature scheme ⇒ authenticity/integrity



CHAPTER 2. PRELIMINARIES AND NOTATIONS 28

In many case users need a primitive achieving both kind of security. Such a

primitive is called authenticated encryption scheme.

There are many possible ways to obtain an authenticated encryption scheme.

In the symmetric setting a class of possible ways to achieve AE is called

Generic Composition Method. That is combine standard symmetric encryp-

tion scheme with Message Authentication Code (which is the equivalent of

signature in the symmetric setting) to achieve the desired primitive.

In the asymmetric setting it’s possible to generalize those constructions

replacing symmetric encryption with public key encryption and MAC with

digital signature.

However this is just one method to achieve this primitive. In the rest of

this thesis we’ll refer to AE in the asymmetric setting considering it as new

primitive matching both security goals. For this reason privacy and security

notions are exactly the same in encryption scheme and signatures, so are

omitted.

2.2.4.6 Sigma Protocol

Now we introduce the last cryptographic tool used in this thesis.

Let R ⊆ {0, 1}∗ × {0, 1}∗ be an arbitrary binary relation, with the only

restriction that if (x, w) ∈ R, then the length of w is polynomial in the length

of x (typically, (x, w) ∈ R if x is part of an NP language L and w is one of its

associated witnesses). A Σ-Protocol for R is an interactive (three rounds)

protocol involving two parties: a prover P and a verifier V . We assume

that both parties are PPT machines and that they agree on some value x in

advance, and the goal of the protocol is to let the prover convince the verifier

that he knows w such that (x, w) ∈ R. The three rounds are carried out as

follows: in the first round P sends a message to V, who replies with a string

(chosen at random from a well defined set and called a challenge string), and

finally gets back a third message from P and outputs 1 or 0 depending on

whether he is convinced by this interaction.

More formally, a Σ protocol consists of four PPT algorithms Σ = (Σ-Setup,

Σ-Com,Σ-Resp,Σ-Verify) defined as follows:

Σ-Setup(1λ,R)→ (x, w) . It takes as input a security parameter λ and



CHAPTER 2. PRELIMINARIES AND NOTATIONS 29

a relation R. It returns a statement x and a witness w such that

(x, w) ∈ R .

Σ-Com(x)→ (R, r) Is a probabilistic algorithm run by the prover to get

the first message R to be sent to the verifier and some private state r

to be stored and used later in the protocol.

Σ-Resp(x, w, r, c)→ s is an algorithm run by the prover to compute the

last (third) message of the protocol (to be sent to the verifier). It takes

as input the statement x, its witness w, the challenge string (chosen

at random by V in a well defined set ChSp and sent as the second

message of the protocol), and some state information r. It outputs the

third message of the protocol.

Σ-Verify(x,R, c, s)→ {0, 1} is the verification algorithm that on input the

message R, a challenge c ∈ ChSp and a response s, outputs 1 (accept)

or 0 (reject).

We assume that the protocol satisfies the following three properties:

Completeness ∀(x, w) ∈ R, any (R, r) ← Σ-Com(x, r), any c ∈ ChSp

and s← Σ-Resp(x, w, r, c) then

Σ-Verify(x,R, c, s) = 1

with overwhelming probability.

Special Soundness There exists an extractor algorithm Σ-Ext such that

∀x ∈ L, ∀R, c, s, c′, s′ such that Σ-Verify(x,R, c, s) = 1 and

Σ-Verify(x,R, c′, s′) = 1 , Σ-Ext(x,R, c, s, c′, s′) = w′ such that

(x, w′) ∈ R

Special Honest Verifier Zero Knowledge (HVZK) There exists a PPT

algorithm S such that ∀c ∈ ChSp, S(x, c) generates a pair (R, s)

such that Σ-Verify(x,R, c, s) = 1 and the probability distribution of

(R, c, s) is identical to that obtained by running the real algorithms.



CHAPTER 2. PRELIMINARIES AND NOTATIONS 30

2.2.4.6.1 Schnorr Sigma Protocol Here we briefly describe a well know

Sigma Protocol, the Schnorr Identification Protocol. This protocol was in-

troduced by Schnorr in [68]. It works as follow.

Definition 15 (Schnorr Σ-Protocol) Let G a group of prime order p and

R the DL relation on G, DL= {(x, w)|x = (p, g, h), h = gw}. Let g ∈ G

a group generator. We define DLg = {(x, w)|x = gw} the restriction of the

DL relation to g = g.

The Schnorr Σ-Protocol consists of four PPT algorithm Σn = (Σ-Setup,

Σ-Com,Σ-Resp,Σ-Verify) defined as follows:

Σn-Setup(1
λ, n,R) It chooses a random group generator g ∈ G and a

witness w
$
← Zp. Then it computes the statement x← gw and outputs

(x, w).

Σn-Com(x) It chooses a random r ∈ Zp, sets R← gr and returns (r, R).

Σn-Resp(x, w, c) Let c ∈ Zp the second message of the protocol. This algo-

rithm outputs s← r + cw.

Σn-Verify(x,R, c) It checks that

gs = Rxc.

If the above equation holds, it outputs 1, else outputs 0.

2.2.5 Homomorphic primitives

In the rest of this thesis we will focus on cryptographic primitives with a

structure very similar to homomorphism in group theory. Informally a cryp-

tographic primitive P with message spaceM is said to be homomorphic with

respect to a class of functions F if there exists an algorithm Combine such

that, for all f ∈ F

Combine(f,P(m1), . . . ,P(mn)) = P(f(m1, . . . ,mn)).

We remark that Combine algorithm need no secret information, so every-

one can compute P(f(m1, . . . ,mn)). If we have no restriction on F a such



CHAPTER 2. PRELIMINARIES AND NOTATIONS 31

primitive it’s said to be fully homomorphic.

If instead in F there are only linear functions we will call it Linearly Homo-

morphic4

4Formally definition for linearly homomorphic encryption and signatures can be found

in the following chapters.



Chapter 3

A linearly homomorphic

signature scheme to sign

elements in bilinear groups

In this chapter we provide formal definitions for Linearly homomorphic sig-

natures and introduce the new concept of Linearly homomorphic signature

scheme to sign elements in bilinear groups (LHSG).

We recall that homomorphic signatures allow users, knowing signatures on

messages m1, . . . ,mn, to compute a signature on f(m1, . . . ,mn) without us-

ing the signing key.

About the function f , if it can be chosen without any specific limitation, the

scheme will be called Fully Homomorphic Signature Scheme.

In this chapter we will focus on Linearly Homomorphic signature, that are

signatures where the function f is a linear function. We will provide a formal

definition below.

Another goal of this chapter is to achieve a general conversion method for

LHSG from Random Message Security to Chosen Message Security. Finally

we will observe that this last result works in other contexts as well, like

structure preserving signatures.

32



LHSG 33

3.1 Linear Network Coding and Linearly Ho-

momorphic Signatures

In existing computer network, information is transmitted from the source

node to the destination node through a chain of intermediate nodes. Network

coding, in contrast with the store and forward routing, refers to a routing

mechanism where each intermediate node modifies data packets in transit.

There are two main advantages in this routing strategy:

• increase the throughput in certain network topologies[58].

• improving robustness against random network failure.

In Linear Network Coding a file is interpreted as an ordered sequence of

n-dimensional vectors ~v1, . . . , ~vm ∈ Fn
p , where p is prime.

Before transmitting, each vector is modified by the source node appending a

canonical basis vector to each ~vi in this way: vi = (~vi‖ei), where ei ∈ Zm is

the i-th vector of the canonical basis.

Then the source sends these vectors as packets in the network. Each interme-

diate node of the network after receiving some packets w1, . . . ,wτ , computes

a linear combination w =
∑τ

i=1 αiwi for some random αi i = 1, . . . , τ and

sends w to the next node(s).

The receiver can recover the original file knowing m linear independents

vectors w1, . . .wm. Formally the last node parses wi = (ṽi‖ẽi), such that

ẽi ∈ Zm. Then it computes the matrix

G =







ẽ1
...

ẽm







−1

Finally it can recover the original file







~v1

...

~vm






= G ·







ṽ1

...

ṽm









LHSG 34

Of course, it can compute the matrix G only if the received vectors are linear

independent.

Linear Network Coding, as described until now, is affected by the pollution

attack. That is, if a malicious adversary corrupts a node, he can send ran-

dom packets through the network and finally the receiver cannot recover the

original file, due to errors introduced in the network by the random packet.

Indeed just a single error introduced by a node will be propagated by every

nodes following it.

In [13] authors propose a cryptographic approach to this problem and show

how linearly homomorphic signatures can be a solution for it.

Specifically their solution works in this way:

• Source node signs each augmented vector of the original file using a LHS

scheme and sends these vectors together with corresponding signatures

through the network.

• each node, after receiving vectors w1, . . . ,wτ together with correspond-

ing signatures, checks each signature using the public verification algo-

rithm (he rejects no-verified vectors).

• each node generates a new linear combination only for vectors that have

passed the previous test, together with a signature on this combination

(he can compute such signature using the homomorphic property of

LHS scheme)

It’s easy to check that by this strategy is possible to avoid the pollution at-

tack described above.

3.2 Homomorphic Signatures scheme

First here we recall the notion of Homomorphic Signatures as defined by D.

M. Freeman in [38].

Definition 16 An Homomorphic Signature Scheme is a tuple of PPT algo-

rithms (HKeyGen,HSign, HVerify,HEval) defined as following:



LHSG 35

• HKeyGen (1λ, k) Take as input a security parameter λ and a max-

imum data set size k. Return a secret key sk and a verification key

vk (used for function evaluation and verification); the public key vk

implicitly defines a message spaceM which is also a group, a file iden-

tifier space D, a signature space Σ and a set F of admissible function

f :Mk →M.

• HSign(sk, τ,m, i) Take as input the signing key sk, a dataset identifier

τ , a message m ∈ M and an index i ∈ {1, . . . k}. Output a signature

σ ∈ Σ.

• HVerify(vk, τ,m, σ, f) Take as input the verification key vk, a dataset

identifier τ , a message m ∈ M, a signature σ ∈ Σ and an admissible

function f ∈ F . Return 0 (reject) or 1 (accept)

• HEval(vk, τ, f, σ) Take as input the verification key vk, a dataset iden-

tifier fid, a function f ∈ F and a vector of signature σ = (σ1, . . . , σk) ∈

Σk. Return σ ∈ Σ.

3.2.1 Correctness and Security for Homomorphic Sig-

natures

Let (sk, vk)← HKeyGen(1λ, k). For correctness we require that

• Let πi the standard projection function (i.e. πi(m1, . . . ,mk) = mi).

Then πi ∈ F for all i ∈ [k].

• ∀τ ∈ {0, 1}λ,m ∈ M, i ∈ [k], if σ ← HSign(sk, τ,m, i) then

HVerify(pk, τ,m, σ, πi) = 1

• Let τ ∈ {0, 1}λ, µ = (µ1, . . . , µk) ∈ M
k, f ∈ F . Let σ = (σ1, . . . , σk) ∈

Σk signatures produced by zero or more iterative application of HEval

on the outputs of HSign(sk, τ, µi, i) and let (f1, . . . , fk, g) ∈ F
k+1be

any tuple of admissible functions. If

– HVerify(vk, τ,mi, fi) = 1 for some m1, . . . ,mk ∈M;

– g(m1, . . . ,mk) ∈M ;



LHSG 36

– g ◦ f1 is admissible;

then, with overwhelming probability

HVerify(vk, τ, g(m),HEval(vk, τ, g, σ), g ◦ f) = 1

For what concerns security, it’s possible to introduce the concept of unforge-

ability for homomorphic signatures as follows

Definition 17 Let S = (HKeyGen,HSign,HVerify,HEval). Homomor-

phic unforgeability is defined by the following game between a challenger and

an adversary A.

Setup The challenger runs (sk, vk) ← HKeyGen(1λ, k). Then it gives vk

to the adversary A. Finally let Q be an empty set.

Queries For each query, A chooses a filename F ∈ {0, 1}∗ and a message

m. If F 6∈ Q the challenger chooses a tag τF
$
← {0, 1}∗, gives it to A

and set a counter iF = 1 and Q = Q ∪ {F}. Otherwise, the challenger

retrieves the associated τF from Q and increments iF by 1 (if iF >

k, the query is answered with ⊥). Then it gives the signature σ ←

HSign(sk, τF ,m, iF ) to A.

The adversary A can ask polynomially many such queries. Let VF the

tuple of elements m queried for filename F , listed in the order they

were queried.

Forgery A outputs (τ ∗,m∗, σ∗, f ∗), where σ∗ is a signature, m∗ ∈ M τ ∗ a

dataset identifier and f ∗ an admissible function.

We say a function f is well-defined on F if either iF = k or iF < k and

f(VF ,miF+1, . . . ,mk) does not depend on miF+1, . . . ,mk.

The Adversary wins the game if HVerify(vk, fid∗,m∗, σ∗, f ∗) = 1 and one of

the following conditions hold:

1 τ ∗ 6= τF∀F queried by A.

1Here by g ◦ f we denote the function that maps x = (x1, . . . , xk) to g(f1(x), . . . , f1(x))



LHSG 37

2 τ ∗ = τF for some filename F , f is well-defined on F and m∗ 6= f ∗(VF )

3 τ ∗ = τF for filename F and f ∗ is not well-defined on F 2.

Finally we define the advantage AdvH−Uf (A) of A as the probability that A

wins the game.

We say that an Homomorphic Signature scheme is Unforgeable secure if

AdvH−Uf (A) = negl(λ) for any PPT adversary A.

3.3 LHSG: Definition

Following [61, 38], our definition of LHSG is essentially equivalent to the one

of linearly homomorphic signature scheme (in its strongest variant derived

from [7]). To adapt it to our results, we assume that the message space is

some bilinear groupM and

• We use as set of functions F the set of linear combinations of elements

of the group, so each function f ∈ F can be uniquely expressed as

f(m1, . . . ,mk) =
∏k

i=1 m
αi

i , and therefore can be identified by a proper

vector (α1, . . . , αk) ∈ Zk.

• We identify each dataset by a string fid ∈ {0, 1}∗, and use an additional

argument i ∈ {1, . . . , n} for the signing algorithm to specify that the

signed message can be used only as the i-th argument for each function

f ∈ F .

Definition 18 (LHSG) A Linearly homomorphic signature scheme to sign

elements in bilinear groups is a tuple of 4 PPT algorithms (KeyGen, Sign,

Verify, Eval) such that:

2In [38] author proves the following. Let S a Linearly Homomorphic Signature on a

ring R. If S is secure against type 2 forgery, then it’s secure against type 3 forgery.



LHSG 38

• KeyGen(1λ, n, k) takes as input the security parameter λ, an integer

n denoting the length of vectors to be signed and an upper bound k

for the number of messages signed in each dataset. It outputs a secret

signing key sk and a public verification key vk; the public key implicitly

defines a message space of the form M = Gn, a file identifier space

D = {0, 1}nd and a signature space Σ, for some nd ∈ poly(λ).

• Sign(sk,m, fid, i) takes as input the secret key, an element m ∈ M, a

dataset identifier fid, an index i ∈ {1, . . . , k} and outputs a signature

σ.

• Verify (vk, σ, m, fid, f) takes as input the public key vk, a signature

σ ∈ Σ, a message m ∈ M a dataset identifier fid ∈ D and a function

f ∈ F and outputs 1 (accept) or 0 (reject).

• Eval (vk, fid, f, {σi}i=1...k) takes as input the public key vk, a dataset

identifier fid, an admissible function f in its vector form (α1, . . . , αk),

a set of k signatures {σi}i=1...k and outputs a signature σ ∈ Σ. Note that

this algorithm should also work if less than k signatures are provided,

as long as their respective coefficients in the function f are 0, but we

don’t explicitly account this to avoid heavy notation.

3.3.1 LHSG: Correctness and Security

The correctness conditions of our scheme are the following:

• Let (sk, vk)← KeyGen(1λ, n, k) be an honestly generated keypair, m ∈

M, fid any dataset identifier and i ∈ 1, . . . , k. If σ ← Sign(sk,m, fid, i),

then with overwhelming probability

Verify(vk, σ,m, fid, ei) = 1,

where ei is the i-th vector of the standard basis of Zk.

• Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair,

m1, . . . ,mk ∈ M any tuple of messages signed w.r.t the same fid, and

let σ1, . . . , σk ∈ Σ, f1, . . . , fk ∈ F such that for all i ∈ {1, . . . , k},



LHSG 39

Verify(vk, σi,mi, fid, fi) = 1. Then, for any admissible function f =

(α1, . . . , αk) ∈ Zk, with overwhelming probability

Verify(vk,Eval(vk, fid, f, {σi}i=1...k), f(m1, . . . ,mk), fid,
k
∑

i=0

αifi) = 1

About security, roughly speaking, a LHSG is said to be secure if no PPT

adversary A can produce with more than negligible probability one of the

following:

• A signature for a message w.r.t. a new fid (i.e. one that it has never

seen before)

• A signature w.r.t. a previously seen identifier, for a messagem different

from the one obtained applying the f to the previously signed messages

of the same dataset

• A signature it has not seen but that has been used in the Eval algo-

rithm to compute signatures it has seen (under certain independence

constraints, see the formal definition for details).

We distinguish between notions where the adversary has no control over the

signed messages he can see, and the standard one where he can adaptively

choose them by itself.

Definition 19 (Random message attack security) An LHSG is unforge-

able against a random message attack if for all n, k the advantage of any PPT

adversary A in the following game is negligible in the security parameter λ:

Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The mes-

sage spaceM, the signature space Σ and the dataset space D are all implicitly

defined by the verification key.

Queries A can ask a polynomial number of queries of the following types:

• Signing Queries A asks for a new message/signature couple w.r.t. to

a specific fid ∈ D and a specific index i ∈ {1, . . . , k} . The challenger

checks that this query has not been previously answered (otherwise it

returns ⊥), then it picks a random message m
$
← M and uses the



LHSG 40

secret key sk to compute a signature σ for m w.r.t. fid and the index

i. Finally it picks a handle h (from a proper set of identifiers), stores

(h, (fid,m, σ, ei)) in a table T and returns h to A. Note that A does not

see neither the message nor the signature, and that here ei ∈ Zk is the

i-th vector of the canonical basis, used to indicate the (trivial) function

with respect to which the signature has been issued.

• Derivation Queries A chooses a set of handles h = (h1, . . . , hk)

and a vector of coefficients f = (α1, . . . , αk). The challenger retrieves

{(hi, (fidi,mi, σi, fi))}i=1,...k from T and returns ⊥ if any of these does

not exist or if fidi 6= fidj for some i, j ∈ {1, . . . , k} (i 6= j). Else,

it computes m =
∏k

i=1 m
αi

i , σ = Eval(vk, fid, f, {σi}i=1...k), chooses a

handle h, stores (h, (fid,m, σ,
∑k

i=0 αifi)) in T and returns h to A.

• Reveal Queries A chooses a handle h. If this handle is not in T , the

challenger returns ⊥. Otherwise it retrieves the corresponding record

(h, (fid,m, σ, f)) from table T and gives (fid,m, σ, f) to A. Next it adds

(h, (fid,m, σ, f)) to a different table Q.

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗

and a function f ∗.

Let Qfid∗ = {(hi, (fid
∗,mi, σi, fi))}i=1,...,s ⊆ Q be the set of entries in Q for

which fid = fid∗.

The Adversary wins the game if Verify(vk, fid∗,m∗, σ∗, f ∗) = 1 and one of

the following conditions hold:

1 Qfid∗ is empty

2 f ∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for any

α1, . . . , αs such that f =
∑s

i=1 αifi, it holds m∗ 6=
∏s

i=1 m
αi

i

3 f ∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLHSG−RMA(A) of A as the probability

that A wins the game.



LHSG 41

Now we give two more flavors of unforgeability for the LHSG scheme defined

above. Roughly speaking first we extend the definition 19 to consider two

stronger adversarial model (that we call Known Random Message Attack

security and Chosen Message Attack security). It’s very easy to check that

the second security model is stronger than the first.

Definition 20 (Known Random Message Security) Informally the

KRMA security game is almost identical to the RMA game. The only differ-

ence concerns Signing queries

Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The mes-

sage space M and the signature space Σ are implicitly defined by the

verification key.

Queries A can ask a polynomial number of queries of the following types:

• Signing Queries A asks for a new message/signature couple

w.r.t. to a specific fid ∈ D and a specific index i ∈ {1, . . . , k}.

The challenger checks that this query has not been previously an-

swered (otherwise it returns ⊥), then it picks a random message

m
$
←M and uses the secret key sk to compute a signature σ for

m w.r.t. fid and the index i. Finally it picks a handle h (from

a proper set of identifiers), stores (h, (fid,m, σ, ei)) in a table T

and returns h and m to A. Thus, in this case A actually knows

the (random) message (but not the corresponding signature) being

signed by the challenger.

• Derivation Queries A chooses a set of handles h = (h1, . . . , hk)

and a vector of coefficients f = (α1, . . . , αk). The challenger re-

trieves {(hi, (fidi,mi, σi, fi))}i=1,...k from T and returns ⊥ if any of

these does not exist or if fidi 6= fidj for some i, j ∈ {1, . . . , k} (i 6=

j). Else, it computesm =
∏k

i=1 m
αi

i , σ = Eval(vk, fid, f, {σi}i=1...k),

chooses a handle h, stores (h, (fid,m, σ,
∑k

i=0 αifi)) in T and re-

turns h to A.

• Reveal Queries A chooses a handle h. If this handle is not in T ,

the challenger returns ⊥. Otherwise it retrieves the corresponding



LHSG 42

record (h, (fid,m, σ, f)) from table T and gives (fid,m, σ, f) to A.

Next it adds (h, (fid,m, σ, f)) to a different table Q.

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗

and a function f ∗.

Let Qfid∗ = {(hi, (fid
∗,mi, σi, fi))}i=1,...,s ⊆ Q be the set of entries in Q

for which fid = fid∗.

The Adversary wins the game if Verify(vk, fid∗,m∗, σ∗, f ∗) = 1 and one

of the following conditions hold:

1 Qfid∗ is empty

2 f ∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for

any α1, . . . , αs such that f =
∑s

i=1 αifi, it holds m∗ 6=
∏s

i=1 m
αi

i

3 f ∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Definition 21 (Chosen message attack security) An LHSG is unforge-

able against chosen message attack if for all n, k the advantage of any PPT

adversary A in the following game is negligible in the security parameter λ:

Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The mes-

sage space M and the signature space Σ are implicitly defined by the

verification key.

Queries A can ask a polynomial number of queries of the following types:

• Signing Queries When A asks for a signature on the triple

(fid,m, i) (where fid is a file identifier, m ∈ M and i ∈ 1, . . . , k),

the challenger first checks that no other signature of the form

(fid, ·, i) has been requested (if this is not the case, it returns ⊥).

Then it uses the secret key sk to compute a signature σ for m w.r.t.

fid and the index i. Finally it picks a handle h (from a proper set

of identifiers), stores (h, (fid,m, σ, ei)) in a table T and returns h.

• Derivation Queries A chooses a set of handles h = (h1, . . . , hk)

and a set of coefficients f = (α1, . . . , αk). The challenger retrieves

{(hi, (fidi,mi, σi))}i=1,...k from T and returns ⊥ if any of these

does not exists or if fidi 6= fidj for some i, j ∈ 1, . . . , k. Else, it



LHSG 43

computes m =
∏k

i=1 m
αi

i , σ = Eval(vk, fid, f, {σi}i=1...k), chooses

a handle h, stores (h, (fid,m, σ,
∑k

i=0 αifi)) in T and returns h to

A.

• Reveal Queries A chooses a handle h. If this handle is not in T ,

the challenger returns ⊥. Otherwise it retrieves the corresponding

record (h, (fid,m, σ, f)) from table T and gives (fid,m, σ, f) to A.

Next it adds (h, (fid,m, σ, f)) to a different table Q.

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗

and a function f ∗.

Let Qfid∗ = {(hi, (fid
∗,mi, σi, fi)}i=1,...,s ⊆ Q be the set of entries in Q

for which fid = fid∗.

The Adversary wins the game if Verify(vk, fid∗,m∗, σ∗, f ∗) = 1 and one

of the following conditions hold:

1 Qfid∗ is empty

2 f ∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for

any α1, . . . , αs such that f =
∑s

i=1 αifi, it holds m
∗ 6=

∏s

i=1 m
αi

i

3 f ∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLHSG−CMA(A) of A the probability that

A wins the game.

3.4 A random message secure construction

Here we present a randomly secure instantiation for the case where n = 1,

that is when the vectors in the message space have only one component.

In section 3.6 we show how to to derive a fully secure scheme using the

conversion methodology described in section 3.53. Our construction uses as

underlying building block a generic signature scheme.

3More precisely the scheme proposed in section 3.6 is a slightly optimized version of

what one would get by naively converting our random message secure scheme. See section

3.6 for details.



LHSG 44

Let G, GT be groups of prime order p such that e : G×G→ GT is a bilinear

map and S = (KeyGen,Sign,Verify) a standard signature with message

spaceM. The scheme works as follows:

HKeyGen(1λ, 1, k): Choose a random generator g ∈ G and runKeyGen(1λ)

to obtain a signing key sk1 and a verification key vk1. Pick random

w
$
← Zp and set W ← gw. Select random group elements h1, . . . , hk,

$
←

G.

Set vk← (vk1, g,W, h1, . . . , hk) as the public verification key and sk =

(sk1, w) as the secret signing key.

HSign(sk,m, fid, i): This algorithm stores a list L of all previously returned

dataset identifiers fid (together with the related secret information r

and public information σ, τ defined below) and works according to the

type of fid it is given in input):

If fid 6∈ L, then choose r
$
← Zp, set σ ← gr , τ ← Sign(sk, fid, σ)

Else if fid ∈ L, then retrieve the associated r, σ, τ from memory.

Then set M ← mw, V ← (hiM)r (if a signature for the same fid and

the same index i was already issued, then abort). Finally output π ←

(σ, τ, V,M) as a signature for m w.r.t. the function ei (where ei is the

i-th vector of the canonical basis of Zn).

HVerify(vk, π,m, fid, f): Parse the signature π as (σ, τ, V,M) and f as

(f1, . . . , fk). Then check that:

Verify(vk, τ, (fid, σ)) = 1

e(M, g) = e(m,W )

e(V, g) = e(
k
∏

i=1

hfi
i M,σ)

If all the above equations hold output 1, else output 0.



LHSG 45

HEval (vk, α, π1, . . . , πk): Parse α as (α1, . . . , αk) and πi as (σi, τi, Vi,Mi),

∀i = 1, . . . , k. Then, compute V ←
∏k

i=1 V
αi

i , M ←
∏k

i=1 M
αi

i and

output π = (σ1, τ1, V,M) (or ⊥ if the σi are not all equal).

The security of the scheme follows from the following theorem.

3.4.1 Scheme security

Theorem 4 If the 2-3CDH assumption holds and S is a signature scheme

unforgeable under adaptive chosen message attack then the scheme described

above is a LHSG scheme secure against a random message attack according

to definition 19.

Proof. Proving correctness is straightforward, given the bilinear property

of the pairing function. For what concerns security, we split the proof in 3

different cases. In each of them, we will show how an adversary that breaks

the security of the scheme can be used to build a simulator that breaks

the 2-3CDH assumption (or the security of the underlying signature scheme

S). In particular, let m∗, π∗ = (fid∗, σ∗, τ ∗, V ∗,M∗), f ∗ be the forgery re-

turned by the adversary A, Q the set of answers returned to A in response

to its reveal queries, and let Qfid∗ = {(hη, (fid
∗,mη, πη, fη))}η=1,...,ν ⊆ Q be

the set of signatures seen by A for which the file identifier is fid∗, where

πη = (fidη, ση, τη, Vη,Mη).

Then (at least) one of the following conditions hold:

Case 1: Qfid∗ is empty, or (fid∗, σ∗) 6= (fidη, ση) for all η = 1, . . . , ν (note that,

by construction, all the signatures in Qfid∗ share the same σ∗ component).

Case 2: (fid∗, σ∗) = (fidη, ση) for all η = 1, . . . , ν, f ∗ (interpreted as a vector)

is in the span of {f1, . . . , fν} but, for any α1, . . . , αν such that f =
∑ν

η=1 αηfη,

it holds m∗ 6=
∏ν

η=1 m
αη
η .

Case 3: (fid∗, σ∗) = (fidη, ση) for all η = 1, . . . , ν and f ∗ (interpreted as a

vector) is not in the span of {f1, . . . , fν}.

As one can notice, the simulator can guess in which case he will be in

advance with probability at least 1/3.



LHSG 46

Case 1. In this case it is possible to reduce the security to the one of the

underlying signature scheme S. The simulator is quite simple: it uses its

signing oracle for S to compute the component of each signature authenti-

cating the fid (i.e. τ), and can easily compute the remaining parts of each

signature by creating the rest of the secret and public key as in the real case.

When A outputs a forgery, by definition of this case the simulator can output

((fid∗, σ∗), τ ∗) as a forgery for S.

Case 2. First of all one can notice that, because the forgery must satisfy

(in particular) the third and fourth verification equations, it must be that

M∗ = (m∗)w and V ∗ =

(

k
∏

i=1

h
α∗
i

i M∗

)r

Moreover, the same two equations must also hold for the honestly computed

signature for the function f ∗ on the messages signed by the challenger (we

call m,π such couple). So it must be that:

V ∗V
−1

=

(

k
∏

i=1

M∗M
−α∗

i

i

)r

If the left hand side of the equation is equal to 1 we don’t have any forgery

(in fact M∗ =
∏k

i=1 M
αi

i and V ∗ = V ).

Else, in the case when

m∗

k
∏

i=1

m
−α∗

i

i 6= 1

we describe a simulator B that uses A to break the 2-3CDH assumption. B

works as follows. It takes in input a 2-3CDH tuple (g, gw, gr) and guesses the

dataset identifier fid′ for which it will receive a forgery4.

Key Generation B initializes an empty table T (as described in the de-

scription of the security game), runs (sk1, vk1)← KeyGen(1λ) and sets

4 Note that the simulator does not need to predict the exact value of the identifier it

will receive a forgery about, but only to pick one among the ones it will be asked to sign

(for example, it might pick a random integer i from a large enough domain and choose fid′

to be the i-th identifier it will be queried about). So the probability to guess correctly is

not negligible and the reduction still works.



LHSG 47

W ← gw (so w is implicitly part of the secret key). It selects bi
$
← Zp

for i = 1, . . . , k and for each bi it computes mi = gbi , hi = gδim−w
i , for

random δ1, . . . , δk
$
← Zp. Finally it gives (vk1, g,W, h1, . . . , hk) to A.

Signing Queries To answer to the queries about the dataset fid′ and index

i from A, B uses the previously created messages mi and answers with

the following.

if fid′ 6∈ T , it sets

σ = gr,

τ ← Sign(sk, fid′, σ),

and stores this data in memory.

if fid′ ∈ T , it retrieves the corresponding (σ, τ) from memory.

Then it sets V ← σδi and M ← W bi = mw
i . By inspection, one can

check that τ , M and V are correctly distributed as in the real case.

To answer the other queries with dataset identifier fid 6= fid′ w.r.t.

index i it does the following.

if fid 6∈ T , it chooses fresh random r
$
← Zp and sets

σ ← gr,

τ ← Sign(sk, fid, σ),

and stores this data in memory.

if fid ∈ T , it retrieves the corresponding (σ, r, τ) from memory.

Then it sets m← gbi for a random bi
$
← Zp, V ← (hiMi)

r, M ← W bi .

In both cases, the signature is not directly returned to A but associated

with a new handle h and stored in a table T.

Derivation and Reveal Queries are handled as in the real experiment.



LHSG 48

Forgery Assume that the adversaryA produced a forgery π∗ for the function

f ∗ = (α∗
1, . . . , α

∗
k) w.r.t fid

∗. If fid∗ 6= fid′, then it aborts. Otherwise it

proceeds as follows.

Considering the signature π = (fid, σ, τ , V ,M) for the message m and

the function f ∗ (that the simulator can compute by the Eval algorithm

from the function f ∗ provided by A and the messages mi chosen by the

simulator itself), we can and extract a 2-3CDH solution by the couple
(

m∗

∏k
i=1 m

α∗
i

i

, V
∗

V

)

; in-fact the elements of the couple are not trivial by the

definition of this subcase.

Case 3. In this case we can use exactly the same simulation of case 2, and

assume, just to simplify the notation, that the adversary asks for exactly k

signing queries (otherwise the simulator can just compute them on his own).

In fact, since f ∗ is not in the span of the vectors {f1, . . . , fν}, the probability

that f ∗(m1, . . . ,mk) = m∗ (where m1, . . . ,mk are the vectors signed by the

simulator in response to signing queries) is negligible and so we can extract

a 2-3CDH solution as in the previous case. This is true because, in response

to a signing query, the adversary is not even given the message that the

simulator chooses at random, but only a handle. So the only information the

adversary learns about those messages are the outputs of the reveal queries

(where it can basically choose a vector f = (α1, . . . , αk) and learn m such

that m =
∏k

i=1 m
αi

i . Therefore, by the definition of this case, f ∗(m1, . . . ,mk)

is information theoretically hidden from the adversary, and it can only guess

it with negligible probability.

Remark 4 If the practical application allows the fid to be a group element

and not simply a string, we can replace the signature S with a Structure

preserving Signature satisfying the same hypothesis of theorem 4 to obtain

the first example of a linearly homomorphic structure preserving signature

scheme (LHSPS) where all parts of the signature are actually elements of the

group (as opposed to [61], where the fid is inherently used as a bit string). In

addition, if the identifier can be chosen at random by the signer and not by

the adversary, we can even define σ to be the identifier itself and thus further

improve efficiency. In practical instantiation it’s possible to use the SPS of

[4].



LHSG 49

3.5 From random message security to chosen

message security

In this section we present a general transform to construct an LHSG secure

against chosen message attack from one secure under random message attack.

This transform comes in two flavours, depending on whether the underlying

scheme is RMA secure or known RMA secure. In this latter case the conver-

sion is totally generic. In the first case, on the other hand, the RMA secure

scheme needs to satisfy some additional, but reasonable, requirements. In

particular we require it to be almost deterministic. Informally, this means

that given a file identifier fid ∈ D and a signature on a message m with

respect to fid, the signature of any other m′ ∈ M w.r.t. to any admissible

function f ∈ F and the same fid is uniquely determined.

Remark 5 We stress that while we present our theorems in the context of

linearly homomorphic signatures (LHSG), if they are applied to linearly ho-

momorphic structure preserving signatures, the structure preserving property

is preserved.

Let S = (HKeyGen,HSign,HVerify,HEval) be a LHSG which is either

known RMA-secure or RMA-secure and almost deterministic. The transfor-

mation below shows how to produce a new LHSG T = (TKeyGen,TSign,

TVerify,TEval) which is secure under CMA.

• TKeyGen(1λ, n, k) takes as input the security parameter λ, the vec-

tor size n and an upper bound k for the number of messages signed

in each dataset. It runs two times the HKeyGen algorithm to obtain

(sk1, vk1)← HKeyGen(1λ, n, k) and (sk2, vk2)← HKeyGen(1λ, n, k).

It outputs sk = (sk1, sk2) as the secret signing key and vk = (vk1, vk2)

as the public verification key. The message spaceM is the same of S.

• TSign(sk,m, fid, i) It chooses random m1 = (m1,1, . . . ,m1,n)
$
← M

and computes m2 ←
(

m1

m1,1
, . . . , mn

m1,n

)

(where m = (m1, . . . ,mn)).

Then it computes σ1 ← HSign(sk1,m1, i, fid), σ2 ← HSign(sk2,m2, i, fid)

and outputs σ = (fid,m1, σ1, σ2).



LHSG 50

• TVerify(vk, σ,m, fid, f) parses σ as (fid,m1, σ1, σ2), computes m2 ←
(

m1

m1,1
, . . . , mn

m1,n

)

and checks that the following equations hold:

HVerify(vki,mi, σi, fid, f) = 1 for i = 1, 2.

• Eval(vk, fid, f, {σ(i)}i=1...k) parses σ
(i) as (fid(i),m

(i)
1 , σ

(i)
1 , σ

(i)
2 ) and f as

(α1, . . . , αk), then checks that fid = fid(i) for all i and, if not, aborts.

Finally it sets

σ1 ← HEval(vk1, fid, {σ
(i)
1 }i=1...k, f),

σ2 ← HEval(vk2, fid, {σ
(i)
2 }i=1...k, f),

m1 =

(

k
∏

i=1

(m
(i)
1,1)

αi , . . . ,

k
∏

i=1

(m
(i)
1,n)

αi

)

and returns

σ ← (fid,m1, σ1, σ2)

Theorem 5 Suppose S is a LHSG secure against a random message attack

with almost deterministic signatures. Moreover assume that the underlying

message space is a group where one can efficiently solve systems of group

equations. Then the scheme T described above is a LHSG secure against a

chosen message attack.

Proof. We prove the theorem by reducing the security of T to the one of S,

and showing how to build a simulator B that uses an adversary A against T

to break the RMA security of S.

First of all one can notice that, by construction, if (m∗, π∗ = (fid∗,m∗
1, π

∗
1, π

∗
2),

f ∗) is a forgery for T then at least one between (m∗
1, π

∗
1, f

∗) (case 1) and

(m∗/m∗
1, π

∗
2, f

∗) (case 2) is a forgery for the corresponding instance of S.

The simulator B works as follows:

It receives a public key vk′ for an instance of S from its challenger. First of

all it flips a coin to guess in which case he will be (as usual, his guess will

be right with probability at least 1/2). Without loss of generality, we will

describe the simulation in the case where its guess is case 1.



LHSG 51

Setup B runs once theHKeyGen algorithm to obtain (sk2, vk2), sets vk1 ←

vk′ and gives vk = (vk1, vk2) to A.

Signing Queries Each time A asks a query of the form (fid,m, i), B for-

wards a query of the form (fid, i) to its challenger and gets back an

handle h (if the challenger returns an error ⊥, B simply forwards

it to A). Then it chooses a random message5 m2, computes π2 ←

Sign(sk2,m2, fid2, i) and returns h to A. The handle h, the messages

m and m2, the signature π2 and the index i are stored in a table T,

like in the real experiment.

Derivation Queries In response to a derivation query (h1, . . . , hk, f), the

simulator forwards the query to its challenger, and gets back a new

handle h (or an error ⊥, which gets forwarded to A). Then it exe-

cutes itself the query on the second part of the signature by comput-

ing π(h) ← Eval(vk, fid, f, {π(hi)}i=1,...,k), computes the corresponding

messages m(h) =
∏k

i=1(m
(hi))fi , m

(h)
2 =

∏k

i=1(m
(hi)
2 )fi (the components

m(hi),m
(hi)
2 , π(hi) corresponding to each handle hi are retrieved from

the table T ). Finally, B gives h to A and stores the messages, signa-

ture, handles and function f in T .

Reveal Queries When A provides a handle h in a reveal query, B forwards

the reveal query to the challenger. If the answer is ⊥, B simply for-

wards it to A. Otherwise, it gets a tuple (fid,m1, π1, f). Since the

adversary expects to receive a valid signature for a certain message m

(that the simulator knows since it is stored in its own table T together

with the handle h, the message m2 and signature π2), it must now

modify the table T in such a way that it is compliant with the infor-

mation that the adversary has requested and the ones it has already

5We stress that, since the simulator does not know what random message m1 the chal-

lenger has chosen to sign, at this point there is no guarantee that m = m1m2. However,

the adversary only gets a random handle, and we will deal with this problem later.



LHSG 52

obtained in the previous reveal queries. In particular, for each reveal

query (associated with a function f), the adversary knows a message

m2 such that, called m
(1)
2 , . . . ,m

(k)
2 the messages corresponding to the

second part of the signatures issued by the simulator in response to the

signing queries for the same fid, it holds that m2 =
∏k

i=1(m
(hi)
2 )fi . It

can modify the table by choosing a random simultaneous solution for

all these equations6 (in the unknowns m
(1)
2 , . . . ,m

(k)
2 ) and computing

new signatures7 for each entry in T (except for those who have been

already given to the adversary) by either using the Sign or the Eval

algorithm. Finally, it can compute m1 = m/m2 and give the updated

signature to A in response to the query.

Forgery Suppose A returns m∗, π∗ = (fid∗,m∗
1, π

∗
1, π

∗
2), f

∗ as a valid forgery

and that B’s guess was correct. Then B can return (fid∗,m∗
1, π

∗
1, f

∗) as

a valid forgery against S to its challenger.

We remark that the proof above becomes much simpler if the simulator

were allowed to know the messages signed by the challenger when answering

signing queries. Formalizing this observation leads to the following theorem

(whose proof is omitted):

Theorem 6 If S is a LHSG secure against known random message attack

the scheme T described above is a LHSG secure against a chosen message

attack.

6A solution always exists, since if the simulator was given the actual messages chosen

by the challenger, he could set m
(i)
2 = m/mi

1 for all i. Moreover, we assumed that such a

solution can be efficiently computed
7by the the property that the scheme is almost deterministic, the adversary cannot

distinguish whether or not the signatures it has not seen have been modified during the

game because for each message there is only one signature and therefore this signature

does not contain any information about how it was generated.



LHSG 53

3.6 A practical instantiation from our LHSG

One can notice that the previous construction can be instantiated using the

LHSPS provided in section 3.4. For the sake of completeness, a slightly opti-

mized version of such construction in presented here. Briefly, instead of sign

twice the file identifier fid, it’s possible to sign it appropriately just one time,

reducing the key dimension and the signature dimension too. For this rea-

son security proof for such scheme cannot be trivially derived from theorem 5.

Let G, GT be groups of prime order p such that e : G × G → GT is a

bilinear map,and let S = (KeyGen,Sign,Verify) an LHSG with message

spaceM = G3.

HKeyGen(1λ, k):Runs KeyGen(1λ) to obtain a signing key sk1 and a

verification key vk1.

Picks random g ∈ G w1, w2
$
← Zp and sets W1 ← gw1 ,W2 ← gw2 .

Selects random group elements h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2

$
← G.

Sets vk← (vk1, g,W1,W2, A0, . . . , Al, h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2 ) as the

public verification key and sk = (sk1, w1, w2) as the secret signing key.

HSign(sk,m,fid, i): Stores a list L of all previously returned dataset iden-

tifiers fid (together with the related secret information r and public

information σ, τ defined below) and works according to the type of fid

it is given in input:

If fid 6∈ L, then it chooses r1, r2
$
← Zp and sets σ1 ← gr1 , σ2 ← gr2 ,

τ ← Sign(sk1, fid, σ1, σ2).

Else if fid ∈ L, then it retrieves the associated r1, r2, σ1, σ2, τ from

memory.

The message m to be signed is written as m1m2 by choosing ran-

dom m1
$
← M and computing m2 ← m(m1)

−1. Then it sets M1 ←

m1
w1 ,M2 ← m2

w2 , T1 ← (h
(1)
i M1)

r1 , T2 ← (h
(2)
i M2)

r2 (if a signature for

the same fid and the same index i was already issued, then it aborts).

Finally it outputs the signature Sign ← (fid, σ1, σ2, τ, T1, T2,m1,M1,

M2, ej), where ei is the i-th vector of the canonical base of Zk



LHSG 54

HVerify (vk,m,Sign, ~f): Parses the signature Sign as (fid, σ1, σ2, τ, T1,

T2,m1,M1,M2) and ~f as (f1, . . . , fk), computes m2 ← mm−1
1 . Then it

checks that:

HVerify(vk1, fid, σ1, σ2) = 1

e(M1, g) = e(m1,W1)

e(M2, g) = e(m2,W2)

e(T1, g) = e(
k
∏

i=1

h
(i)
1

fi
M1, σ1)

e(T2, g) = e(
k
∏

i=1

h
(i)
2

fi
M2, σ2)

If all the above equations hold outputs 1, else outputs 0.

HEval (vk, ~α,Sign1, . . . ,Signk): Parse ~α as (α1, . . . , αk) and Signi as

(fidi, σ
(i)
1 , σ

(i)
2 , τ (i), T

(i)
1 , T

(i)
2 ,m

(i)
1 ,M

(i)
1 ,M

(i)
2 , si) ∀i = 1, . . . , k.

Then check that all Signi share the same fid, σ1, σ2, τ components and,

if not, reject. Otherwise, compute T1 ←
∏k

i=1 T
(i)
1

αi

, T2 ←
∏k

i=1 T
(i)
2

αi

,

M1 ←
∏k

i=1 M
(i)
1

αi

,M2 ←
∏k

i=1 M
(i)
2

αi

and m1 ←
∏k

i=1 m
(i)
1

αi

. Finally

output Sign = (fid, σ1, σ2, τ, T1, T2,m1,M1,M2).

Theorem 7 If 2-3CDH and the discrete logarithm (DL) assumptions hold

and Sign is a randomly secure LHSG scheme, then the scheme described

above is an LHSG scheme unforgeable against chosen message attack.

Proof. Letm∗,Sign∗ = (fid∗, σ∗
1, σ

∗
2, τ

∗, T ∗
1 , T

∗
2 ,m

∗
1,M

∗
1 ,M

∗
2 ), f

∗ be the forgery

returned by the adversary A, Q the set of answers returned to A in response

to its reveal queries, and let Qfid∗ = {(hη, (fid
∗,mη, ση, fη))}η=1,...,ν ⊆ Q be

the set of signatures seen by A for which fid = fid∗.

Then (at least) one of the following conditions hold:

Case 1: (fid∗, σ∗
1, σ

∗
2, τ

∗) 6= (fid(η), σ
(η)
1 , σ

(η)
2 , τη) for all η = 1, . . . , ν

Case 2: Qfid∗ is not empty, (σ∗
1, σ

∗
2, τ

∗) = (σ
(η)
1 , σ

(η)
2 , τη) for all η = 1, . . . , ν,



LHSG 55

the function f ∗ (interpreted as a vector) is in the span of {f1, . . . , fν} but,

for any α1, . . . , αν such that f =
∑ν

η=1 αηfη, it holds m
∗ 6=

∏ν

η=1 m
αη
η .

Case 3: Qfid∗ is not empty, (σ∗
1, σ

∗
2, τ

∗) = (σ
(η)
1 , σ

(η)
2 , τη) for all η = 1, . . . , ν

and f ∗ (interpreted as a vector) is not in the span of {f1, . . . , fν}.

As one can notice, the simulator can guess in which case he will be in advance

with probability at least 1/3.

Case 1. In this case we construct a simulator B that solves CDH using an

adversary A against the signature scheme described above. The simulator

receives as input (g, ga, gb) (for a and b he does not know), and behaves as

follows:

Key Generation It sets g1 ← ga, g2 ← gb (thus implicitly defining part of

the secret key as ga2 = gab) and picks an hash function HK
$
← H. Then

it chooses w1, w2
$
← Zp and sets W1 ← gw1 ,W2 ← gw2 , selects ran-

dom group elements h
(1)
1 = gl

(1)
1 , . . . , h

(k)
1 = gl

(k)
1 , h

(1)
2 = gl

(1)
2 , . . . , h

(k)
2 =

gl
(k)
2 , h = gℓ ∈ G for random ℓ, l

(1)
1 , . . . , l

(k)
1 , l

(1)
2 , . . . , l

(k)
2 ∈ Zp.

Next it chooses A0, A1, . . . , Al in the same way as in security proof of

Waters’ signature [74]. Because of this choice, there exist two functions

J,K : {0, 1}l → Z (these functions are all kept internal to the simu-

lator) hidden to the adversary such that, for any string fid ∈ {0, 1}l,

the expression Y (fid)
def
= A0

∏l

ζ=1 A
[fid]ζ
ζ can be written as Y (fid) =

g
J(fid)
2 gK(fid). In addition, it was proven that for any distinct τ, τ1, . . . , τq ∈

{0, 1}l we will have J(τ) = 0 mod p and J(τi) 6= 0 ∀i ∈ {1, . . . , q} with

non negligible probability η = 1
8q(l+1)

.

Finally, B creates two empty tables T and Q (used to store the output

of signing and reveal queries, as explained in the security definition)

and gives vk to A.

Signing queries When A asks a new signing query (m, fid, i) for a message

m w.r.t. dataset identifier fid and index i, B does the following:

if fid ∈ T , it retrieves the corresponding (σ1, σ2, r, τ, s) from memory.



LHSG 56

if fid 6∈ T , it chooses a random γ ∈ Zp and sets fid ← HK(g
γ). if

J(fid) = 0 mod p it aborts. Else it chooses random r1, r2
$
← Zp

and sets8

τ ← (Y (fid))r1+r2g
−

K(fid)

J(fid)

1

σ1 ← gr1g
− 1

J(fid)

1 ; σ2 ← gr2

Then B sets t← HK(fid‖σ1‖σ2) and s← γ−t

ℓ

The rest of the signature is computed as follows. First B chooses a

random λ
$
← Zp and sets m1 = gλ, m2 = m/m1. Then it sets M1 ←

mw1
1 , M2 ← mw2

2 , T1 ← σ
l
(i)
1 +λ1w

1 =
(

h
(i)
1 M1

)r′1
, T2 ←

(

h
(i)
2 M2

)r′2
. The

signature (fid, σ1, σ2, τ, T1, T2,m1,M1,M2, s) and the messagem are not

directly returned to A, but associated with a new handle h (together

with the trivial function ei) and stored in the table T .

Derivation and Reveal Queries are handled as in the real experiment

Forgery Once A provides a forgery Sign∗ = (fid∗, σ∗
1, σ

∗
2, τ

∗, T ∗
1 , T

∗
2 ,m

∗
1,M

∗
1 ,

M∗
2 , s

∗) B computes J(fid
∗
) and aborts if J(fid

∗
) 6= 0

From this forgery, A can extract a CDH solution as follows. First, notice

that by correctness the components τ ∗,σ∗
1 and σ∗

2 of the forgery will be of the

form

τ ∗ = gab
(

Y (fid
∗
)
)r′1+r′2

σ∗
1 = gr

′
1 σ∗

2 = gr
′
2

Thus the solution of the CDH instance can be computed as

gab = τ/(σ∗
1σ

∗
2)

K(fid∗)

Case 2. In this case, the adversary produces a forgery for a fid it has seen

a signature about, but the part of the forgery used to verify the fid, namely

(σ∗
1, σ

∗
2, τ

∗, s∗), is different from what the simulator stored in the table Q (to

fix the notation, we will assume (m,Sign = (fid∗, σ1, σ2, τ, T1, T2,m1,M1,M2,

s), f) is recorded in Q during the simulation).

8These values are correctly distributed, as one can easily check that they can be written

as τ = gab(Y (fid))r
′

1
+r′

2 , σ1 = gr
′

1 , σ1 = gr
′

2 where r′1 = r1 −
a

J(fid)
, r′2 = r2.



LHSG 57

Let t∗ ← HK(fid
∗‖σ∗

1‖σ
∗
2), fid

∗
← HK(g

HK(fid∗‖σ∗
1‖σ

∗
2)hs∗),and let t, fid the

corresponding values computed from (m,Sign) (as in the real experiment,

signatures in Qfid∗ will all lead to the same values). Depending on these

quantities, we have three different sub-cases:

2.a fid∗ = fid and t∗ = t

2.b fid∗ = fid and t∗ 6= t

2.c fid∗ 6= fid

Case 2.a. It is easy to build a simulator against the collision resistance

of H. Namely, the simulator B receives in input an hash key k′ and has

to come up with a couple of elements (y1, y2) such that Hk′(y1) = Hk′(y2).

Supposing he will get a forgery in this sub-case, B can just run the ideal

experiment but set K ← k′ as the hashing key inside vk. When A outputs

a forgery (fid∗, σ∗
1, σ

∗
2, τ

∗, T ∗
1 , T

∗
2 ,m

∗
1,M

∗
1 ,M

∗
2 , s

∗), by the fact that fid∗ = fid,

we have HK(g
t∗hs∗) = HK(g

ths). So if s 6= s∗, because t = t∗, we already

have a collision (here we require that each element of the group G and each

value in Zp have a unique encoding). Otherwise, if s = s∗, it must be that

(σ∗
1, σ

∗
2) 6= (σ1, σ2) (if this was not the case, then it must be that τ ∗ = τ and

therefore this cannot be a case 2 forgery).

So we have thatHK(fid
∗‖σ∗

1‖σ
∗
2) = t∗ = t = HK(fid

∗‖σ1‖σ2) but fid
∗‖σ∗

1‖σ
∗
2 6=

fid∗‖σ1‖σ2, and B can return those values as a collision against the hash func-

tion.

Case 2.b. In this case, we can build a simulator B that breaks the DL

problem. B receives in input a couple (g′, h′), and its goal is to output β

such that g′β = h′. B can run the simulation as follows:

Key Generation B sets g ← g′, h← h′, and computes the other elements

of the public key vk as in the real case. Then it gives vk to A and

stores the secret key sk.

Queries All types of queries are handled as in the real experiment.

Forgery Suppose A returns a type 2.b forgery. Then it must be that

HK(g
t∗hs∗) = HK(g

ths) and t∗ 6= t. If gt
∗

hs∗ 6= gths then we have



LHSG 58

a collision for HK (and we can run a simulation similar to the previous

case). If gt
∗

hs∗ = gths, then B can return β = t−t∗

s∗−s
as a solution for the

DL instance (note that it can’t be s∗ = s because otherwise t∗ = t).

Case 2.c. Suppose A returns a 2.c type forgery. In this case, we want

to reduce the security of this scheme to the one of Waters’ weak signature

scheme, by showing how to construct a simulator B that uses A to break

that scheme. B receives in input a public key vk = (g, g1, g2, A0, A1, . . . , Al)

for Waters’ weak signature scheme. It needs to output a valid forgery for

this scheme.

Key Generation B chooses HK ← H, a
$
← Zp and sets h ← ga. Then

it chooses w1, w2
$
← Zp and sets W1 ← gw1 ,W2 ← gw2 , selects ran-

dom l
(1)
1 , . . . , l

(k)
1 , l

(1)
2 , . . . , l

(k)
2 ∈ Zp and sets h

(1)
1 ← gl

(1)
1 , . . . , h

(k)
1 ←

gl
(k)
1 , h

(1)
2 ← gl

(1)
2 , . . . , h

(k)
2 ← gl

(k)
2 . Finally a B gives to A the public key

vk1 = (g, g1, g2,W1,W2, A0, . . . , Al, h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2 , K).

Signing Queries Each time A asks for a new query (m, fid, i) on a message

m w.r.t. dataset fid and index i, B responds in this way.

if fid ∈ T it retrieves the corresponding (σ1, σ2, τ, s) from the memory.

if fid 6∈ T it sets fid = HK(g
β) for β

$
← Zp; then it asks its challenger

for a signature on fid and receives (σ1, τ1). Next it chooses a

random r2
$
← Zp and sets σ2 ← gr2 t ← Hk(fid‖σ1‖σ2), s ←

β−t

a
.

Then it chooses λ
$
← Zp and sets:

m1 ← gλ; m2 ← m/m1

M1 ← (m1)
w1 ; M2 ← (m2)

w2

T1 ← σ
l
(i)
1 +λw1

1 ; T2 ← (h
(i)
2 M2)

r2

τ ← τ1(A0

l
∏

ζ=1

A
[fid]ζ
ζ )r2 .

As in the real experiment, the signature (fid, σ1, σ2, τ, T1, T2,m1,M1,

M2, s) is stored in the table T together with an handle h which is

returned to A.



LHSG 59

Derivation and Reveal Queries are handled as in the real experiment.

Forgery When A returns a type 2.c forgery (fid∗, σ∗
1, σ

∗
2, τ

∗, T ∗
1 , T

∗
2 ,m

∗
1,M

∗
1 ,

M∗
2 , s

∗), B computes t∗ ← Hk(fid
∗, ‖σ∗

1‖σ
∗
2), fid

∗ ← H(gths∗) and out-

puts (fid∗, σ∗
1σ

∗
2, τ

∗) as a forgery against Waters’ scheme.

We stress that this is a valid forgery for the signature scheme, as no other

signature has been requested by the simulator for fid∗. In fact, by definition

of this subcase we have that fid∗ 6= fid (where fid is the one computed from

the signatures in Qfid∗). In addition, if there were another fid′ ∈ Q such that

fid∗ = fid′ then it would be trivial to find a collision for HK .

Case 3. First of all one can notice that, by definition of a valid forgery, it

must be that

M∗
1 = (m∗

1)
w1 and T ∗

1 =

(

M∗
1

k
∏

i=1

(h
(i)
1 )α

∗
i

)r1

M∗
2 = (m∗

2)
w2 and T ∗

2 =

(

M∗
2

k
∏

i=1

(h
(i)
2 )α

∗
i

)r2

Moreover, the same two equations must also hold for the honestly com-

puted signature for the function f ∗ computed on the messages originally

signed by the simulator (we call m =
∏k

i=1(m
(i))α

∗
i ,Sign such couple, and

(m(i),Sign(i)) each of the message/signature made by the simulator in re-

sponse to a query for index i and dataset fid∗) . So it must be that:

T ∗
1 T

−1
1 =

(

M∗
1

k
∏

i=1

M
(i)
1

−α∗
i

)r1

, T ∗
2 T

−1
2 =

(

M∗
2

k
∏

i=1

M
(i)
2

−α∗
i

)r2

(3.1)

By the assumption of this subcase, it cannot be that both the left hand sides

of these equations are 1. In fact

m∗
1m

∗
2 = m∗ 6= m = m1m2 =

k
∏

i=1

(m
(i)
1 )

α∗
i
(m

(i)
2 )

α∗
i

and therefore

m∗
b

k
∏

i=1

m
(i)
b

−α∗
i
6= 1



LHSG 60

for at least one value of b ∈ {1, 2}. In this case, we describe a simulator B

that uses A to break the 2-3CDH assumption. B works as follows. It takes

in input a 2-3CDH tuple (g, gw, gr) and guesses9 the dataset identifier fid′ for

which it will receive a forgery and the value b ∈ {1, 2} for which the previous

inequality will hold. For the sake of simplicity (and wlog), in the following

we will assume it chooses bit b = 1

Key Generation B chooses a random hash key HK
$
← H and random

elements g2, h
$
← G, sets W1 ← gw (so w1 = w is not known by

the simulator but is implicitly part of the secret key), α
$
← Zp and

g1 ← gα. Next it chooses bi
$
← Zp for i = 1, . . . , k and for each bi it

computes m
(i)
1 ← gbi , M

(i)
1 ← m

(i)
1

w1

= W1
bi , h

(i)
1 ← gδim

(i)
1

−w1

, for

random δ1, . . . , δk
$
← Zp. Finally it picks random a0, a1, . . . , al

$
← Zp

and defines Ai ← gai , i = 0, . . . , l. The other parts of the public

key are generated as in the real experiment. Finally B gives vk =

(g, g1, g2,W1,W2, A0, . . . , Al, h, h
(1)
1 , . . . , h

(k)
1 , h

(1)
2 , . . . , h

(k)
2 , K) to A and

stores all the other computed values in memory.

Signing Queries To answer to the queries (m(i), fid′, i) about identifier fid′

and index i asked by A, B works as follows.

First, if this is the first query asked for identifier fid′ by A, it chooses

random s, r2
$
← Zp, sets σ1 ← gr (note that it does not know r) and

computes

σ2 ← gr2 , t← HK(fid
′‖σ1‖σ2), fid′ ← HK(g

ths),

τ ← gα2

(

σa0
1

l
∏

ζ=1

σaζ [fid
′]ζ

)(

A0

l
∏

ζ=1

A
[fid′]ζ
ζ

)r2

= gα2

(

A0

l
∏

ζ=1

A
[fid′]ζ
ζ

)r+r2

.

Otherwise, it retrieves all this information from memory.

Then, it fetches the values m
(i)
1 ,M

(i)
1 generated in the previous phase

from memory and computes m
(i)
2 ← m(i)/m

(i)
1 (so that m(i) = m

(i)
1 m

(i)
2

), M
(i)
2 ← m

(i)
2 , T

(i)
1 ← σδi

1 , T
(i)
2 ← (h

(i)
2 M

(i)
2 )r2 (it is easy to check

9The probability of guessing correctly is polynomial. See footnote 4 for details.



LHSG 61

that the signature is valid and each of its components is correctly dis-

tributed).

To answer queries (m(i), fid, i) about an identifier fid 6= fid′, B works in

a different way.

First, if this is the first query asked for identifier fid by A, it chooses

random s, r1, r2
$
← Zp and sets

σ1 ← gr1 , σ2 ← gr2 ,

t← HK(fid‖σ1‖σ2), fid← HK(g
ths), τ ← gα2 (A0

l
∏

ζ=1

A
[fid]ζ
ζ )r1+r2

Otherwise, it retrieves all this information from memory.

Then, it chooses c
$
← Zp, and computes m

(i)
1 ← gc,m

(i)
2 ← m(i)/m

(i)
1

(so that m(i) = m
(i)
1 m

(i)
2 ),

M
(i)
1 ← W c

1 , M
(i)
2 ← (m

(i)
2 )

w2

, T
(i)
1 ← (h

(i)
1 M

(i)
1 )r1 , T

(i)
2 ← (h

(i)
2 M

(i)
2 )r2 .

In both cases, the signatures are not directly returned to A but asso-

ciated with a new handle h and stored in a table T .

Derivation and Reveal Queries are handled as in the real experiment.

Forgery Assume that the adversary A produced a forgery Sign∗ for the

function f ∗ = (α∗
1, . . . , α

∗
k) and the identifier fid∗. If fid∗ was not guessed

correctly, B aborts.

Otherwise it proceeds as follows.

Consider the signature Sign = (fid∗, σ∗
1, σ

∗
2, τ

∗, T1, T2,m1,M1,M2, s
∗)

for the function f ∗ and the message m =
∏k

i=1 (m
(i))

α∗
i computed using

the Eval algorithm on the couples (m(i),Sign(i)) stored in T in re-

sponse to the signing queries made by A. Then, by the assumption of

this subcase and supposing B guessed the correct index b (otherwise it

aborts), it must be that m∗
b

∏k

i=1 (m
(i)
b )

−α∗
i
6= 1 ). Therefore B can ex-

tract a 2-out-of-3 CDH solution by computing

(

m∗
b

∏k
i=1 (m

(i)
b

)
α∗
i
,
T ∗
b

Tb

)

(this

can be easily verified by recalling equation 3.1).



LHSG 62

Case 4. The idea to handle this case is the same as the one used in the

analogous case 4 of theorem 4. Basically, we use the same simulator of

case 3, because the probability that f ∗(m
(1)
b , . . . ,m

(k)
b ) = m∗

b is negligible (as

in this case f ∗(m
(1)
b , . . . ,m

(k)
b ) is information theoretically hidden from the

adversary).



Chapter 4

(Publicly) Verifiable delegation

of computation on outsourced

ciphertexts

This chapter contains the main result of this thesis: we introduce a new

primitive that we call Linearly Homomorphic Authenticated Encryption with

Public Verifiability (LAEPuV). This is done by essentially adapting the gen-

eral definition of Joo and Yun [56] of homomorphic authenticated encryption

to the linear case and adding the useful requirement of public verifiability.

We also propose an instantiation of this primitive supporting Paillier’s scheme

as the underlying encryption mechanism.

4.1 Definition and security

Definition 22 (LAEPuV) A LAEPuV scheme is a tuple of 5 PPT algo-

rithms (AKeyGen, AEncrypt, ADecrypt, AVerify, AEval) such that:

• AKeyGen(1λ, k) takes as input the security parameter λ, and an up-

per bound k for the number of messages encrypted in each dataset. It

outputs a secret key sk and a public key vk (used for function evaluation

and verification); the public key implicitly defines a message space M

which is also a group, a file identifier space D and a ciphertext space

63



64

C.

• AEncrypt(sk, fid, i,m) is a probabilistic algorithm which takes as input

the secret key, an element m ∈ M, a dataset identifier fid, an index

i ∈ {1, . . . , k} and outputs a ciphertext c.

• AVerify(vk, fid, c, f) takes as input the pubic key vk, a ciphertext c ∈ C,

an identifier fid ∈ D and f ∈ F . It return 1 (accepts) or 0 (rejects).

• ADecrypt(sk, fid, c, f) takes as input the secret key sk, a ciphertext

c ∈ C, an identifier fid ∈ D and f ∈ F and outputs m ∈ M or ⊥ (if c

is not considered valid).

• AEval(vk, f, fid, {ci}i=1...k) takes as input the public key vk, an admis-

sible function f in its vector form (α1, . . . , αk), an identifier fid, a set

of k ciphertexts {ci}i=1...k and outputs a ciphertext c ∈ C. Note that

this algorithm should also work if less than k signatures are provided,

as long as their respective coefficients in the function f are 0, but we

don’t explicitly account this to avoid heavy notation.

The correctness conditions of our scheme are the following:

• For any (sk, vk) ← AKeyGen(1λ, k) honestly generated keypair, any

m ∈ M, any dataset identifier fid and any i ∈ {1, . . . , k}, with over-

whelming probability

ADecrypt(sk, fid,AEncrypt(sk, fid, i,m), ei) = m

where ei is the i-th vector of the standard basis of Zk.

• For any (sk, vk) ← AKeyGen(1λ, k) honestly generated keypair, any

c ∈ C

AVerify(vk, fid, c, f) = 1 ⇐⇒ ∃m ∈M : ADecrypt(sk, fid, c, f) = m

• Let (sk, vk) ← AKeyGen(1λ, k) be an honestly generated keypair, fid

any dataset identifier, c1, . . . , ck ∈ C any tuple of ciphertexts such that



65

mi = ADecrypt(sk, fid, ci, fi). Then, for any admissible function f =

(α1, . . . , αk) ∈ Zk, with overwhelming probability

ADecrypt(sk, fid,AEval(vk, f, fid, {ci}i=1...k),
k
∑

i=0

αifi) = f(m1, . . . ,mk)

Now we define a linearly homomorphic version of the IND-CCA security

game for public key encryption. Although this might seem surprising at

first, as CCA encryption is usually deployed to prevent malleability of the

ciphertexts, it is possible to give a meaningful definition also in the context

of homomorphic encryption. Namely, since we want to allow the ciphertexts

to be manipulated only up to a certain extent (i.e. linear operations where

the function applied is publicly declared), the best thing that we can do is

explicitly disallow the decryption queries on a ciphertext legitimately derived

from the challange cyphertext (as they could reveal information about the

hidden bit the adversary is trying to guess).

Again, our definition is adapted to the linear case from [56].

Definition 23 (LH-IND-CCA) Let H = (AKeyGen,AEncrypt,

ADecrypt,AVerify,AEval) a LAEPuV scheme. Linearly Homomorphic

IND-CCA is defined by the following game between a challenger and an ad-

versary A:

LH-IND-CCAH,A(1
λ, k) :

• Setup The challenger runs (sk, vk) ← AKeyGen(1λ, k). Then it ini-

tializes an empty set S and gives vk to the adversary A.

• Queries I A can ask a polynomial number of encryption and decryp-

tion queries. Firsts are of the form (fid,mi, i) (where fid is a dataset

identifier, mi ∈ M is a message and i ∈ {1, . . . , k} is an index). The

challenger computes ci ← AEncrypt(sk, fid, i,m), gives ci to A and

updates the set S ← S ∪ {(fid,mi, i, ci)}. No two queries differing

only on the mi component can be asked by the adversary (if this hap-

pens, the answer to the second query is ⊥). Decryption queries in-

stead are of the form (fid, ci, f) and A gets the corresponding output of



66

ADecrypt(sk, fid, c, f) (It can be ⊥ if c is a not valid ciphertext).

• Challenge A produces a challenge tuple (fid∗, i∗,m0,m1) (as in the

previous phase, if a query of the form (fid∗, i∗, ·) has already been an-

swered, the challenger returns ⊥). The challenger chooses a random

bit b
$
← {0, 1} and gives c∗ ← AEncrypt(sk, fid, i,mb) to A. Then it

updates the set S ← S ∪ {(fid,mb, i, ci)}.

• Queries II This phase is carried out as the previous one, the only dif-

ference being that the decryption queries made w.r.t. fid∗ and a function

f where fi∗ 6= 0 are answered with ⊥.

• Output Finally A outputs a bit b′. The challenger outputs 1 if b = b′,

and 0 otherwise.

The advantage of A in the LH-IND-CCA game is defined as

AdvLH-IND-CCA
H (A)

def
=

∣

∣

∣

∣

Pr
[

LH-IND-CCAH,A(1
λ) = 1

]

−
1

2

∣

∣

∣

∣

We say that a LAEPuV scheme is secure against a LH-IND-CCA attack if

AdvLH-IND-CCA
H (A) = negl(λ) for any PPT adversary A.

Definition 24 (LH-Uf-CCA) A LAEPuV scheme is Linearly Homomor-

phic Unforgeable against chosen ciphertext attack if the advantage of any PPT

adversary A in the following game is negligible in the security parameter λ:

• Setup The challenger runs (sk, vk) ← AKeyGen(1λ, k). Then it ini-

tializes an empty set Q and gives vk to the adversary A.

• Queries A can ask a polynomial number of encryption and decryp-

tion queries. First are of the form (fid,mi, i) (where fid is a dataset



PRACTICAL INSTANTIATION 67

identifier, mi ∈ M is a message and i ∈ {1, . . . , k} is an index). The

challenger computes ci ← AEncrypt(sk, fid, i,m), gives ci to A and

updates the set Q ← Q ∪ {(fid,mi, ci, ei)}. No two queries differing

only on the mi component can be asked by the adversary (if this hap-

pens, the answer to the second query is ⊥). Decryption queries in-

stead are of the form (fid, ci, f) and A gets the corresponding output of

ADecrypt(sk, fid, c, f) (It can be ⊥ if c is a not valid ciphertext).

• Forgery A outputs (fid∗, c∗, f ∗), where c∗ is a ciphertext, fid∗ a file

identifier and f ∗ an admissible function.

Let Qfid∗ = {(fid∗,mi, ci, fi)}i=1,...,s ⊆ Q be the set of entries in Q for

which fid = fid∗.

The Adversary wins the game if ADecrypt(vk, fid∗, c∗, f ∗) = m∗ 6=⊥ and

one of the following conditions hold:

1 Qfid∗ is empty

2 f ∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for any

α1, . . . , αs such that f ∗ =
∑s

i=1 αifi, it holds m
∗ 6=

∏s

i=1 m
αi

i

3 f ∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLH-Uf-CCA(A) of A as the probability that

A wins the game.

4.2 An instantiation supporting Paillier’s en-

cryption

Let (HKeyGen,HSign,HVerify,HEval) be a secure linearly homomor-

phic signature scheme whose message space is ZN (where N is the product of

two distinct (safe) primes). Moreover, let H be a family of collision resistant

hash functions (whose images can be interpreted as elements of Z∗
N2). Then

we can construct a LAEPuV scheme as follows.



PRACTICAL INSTANTIATION 68

AKeyGen(1λ, k): Choose two primes p, q of size λ/2, set N ← pq and

choose a random element g ∈ Z∗
N2 of orderN . Run1 HKeyGen(1λ, k, N)

to obtain a signing key sk′ and a verification key vk′. Pick a hash func-

tion H ← H. Return vk← (vk′, g, N,H) as the public verification key

and sk = (sk′, p, q) as the secret signing key.

AEncrypt(sk,m, fid, i): Choose random β ← Z∗
N2 , compute C ← gmβN

mod N2. Set R← H(fid||i), and use the factorization of N to compute

(a, b) ∈ ZN × Z∗
N such that gabN = RC mod N2. Compute σ ←

HSign(sk′, fid, i, a) and return c = (C, a, b, σ).

AVerify(vk, fid, c, f): Parse c = (C, a, b, σ) and vk ← (vk′, g, N,H), then

check that:

HVerify(vk′, fid, a, f, σ) = 1

gabN = C

k
∏

i=1

H(fid||i)fi mod N2

If both the above equations hold output 1, else output 0.

ADecrypt(sk, fid, c, f): If AVerify(vk, fid, c, f) = 0, return ⊥. Otherwise,

use the factorization of N to compute (m, β) such that gmβN = C

mod N2 and return m.

AEval(vk, α, fid, c1, . . . , ck): Parse α = (α1, . . . , αk) and ci = (Ci, ai, bi, σi),

set

C ←

k
∏

i=i

Cαi

i mod N2, a←

k
∑

i=i

aiαi mod N,

b←
k
∏

i=i

bαi

i mod N2, σ ← HEval(vk′, fid, f, {σi}i=1,...,k)

and return c = (C, a, b, σ).

1Notice that the signature scheme must support ZN as underlying message space. This

is why we give N to the HKeyGen algorithm as additional parameter. Note that, this

means that, in general, the signature algorithm cannot not use the factorization of N as

part of its private key.



PRACTICAL INSTANTIATION 69

Remark 6 (Supporting datasets of arbitrary size). In the construc-

tion above the number k of ciphertext supported by each dataset needs to be

fixed once and for all at setup time. This might be annoying in practical

scenarios where more flexibility is preferable. We remark, that in the ran-

dom oracle model, the scheme can be straightforwardly modified in order to

remove this limitation. The idea would be to use the random oracle also in

the underlying (homomorphic) signature scheme given in section 4.2.3. More

precisely, rather than publishing the hi as part of the public key, one computes

different hi’s on the fly for each dataset by setting hi = H ′(fid, i)(where H ′ is

some appropriate random oracle). Slightly more in detail, the elements from

dataset fid are then authenticated by replacing the hi with hfid,i = H ′(fid, i).

Using this simple trick brings the additional benefit that the public key can be

reduced to constant size.

The security of the scheme is provided by the following theorems:

Theorem 8 Assuming that the DCRA holds, if (HKeyGen,HSign,

HVerify,HEval) is a secure linearly homomorphic signature scheme for

messages in ZN and H is a random oracle, the scheme described above is

LH-IND-CCA secure according to definition 23.

Theorem 9 If Σ = (HKeyGen,HSign,HVerify,HEval) is a secure lin-

early homomorphic signature scheme for messages in ZN then the scheme

described above is LH-Uf-CCA secure according to definition 24.

4.2.1 Proof of theorem 8

We reduce the security of the scheme to the one of the DCRA: we use an

adversary A that wins the LH-IND-CCA game to build a distinguisher D

against the DCRA with advantage AdvD > AdvA. The distinguisher D

receives in input (y,N) and runs the simulation as follows:

Key generation phase The distinguisher chooses g ∈ Z∗
N2 as a random

element of order N , runs (sk′, vk′) ← HKeyGen(1λ, k, N) and gives

(vk′, g, N) to A (the function H is substituted with a random oracle).



PRACTICAL INSTANTIATION 70

Queries The adaptively chosen queries asked by A are handled as follows.

Random Oracle Queries D guesses in advance on which couple (fid∗, i∗)

the adversary will ask its challenge (since A is polynomial, D

will be right with non negligible probability). It chooses u∗, v∗

at random and sets R∗ ← gu
∗

v∗Ny−1 mod N2 as the output of

H(fid∗||i∗). For any other oracle query (fid, i) it chooses ran-

dom u, v and sets R = guvN mod N2 as the output. It stores

(fid, i, u, v) in a table T (and, if the same query is asked more than

once, the same answer computed from the table T is returned).

Encryption Queries On input a query (fid, i,m), D retrieves the as-

sociated u, v from the table T (if the query (fid, i) has not been

already asked, D simulates it and populates the table T accord-

ingly). Then it computes C ← gmβN for a random β, a← u+m,

b← βv, σ ← Sign(sk′, fid, i, a) and returns c = (C, a, b, σ) to A

Decryption Queries On input a triple (fid, c, f), where c = (C, a, b, σ)

is a ciphertext, fid an identifier and f an admissible function, D

verifies the signature on a and that the equation

gabN = C
k
∏

i=1

H(fid||i)fi mod N2

holds (the oracle queries appearing in the above equation with

non-zero exponents must exist in T, otherwise D can just assign to

these queries a value that does not satisfy the equation and return

⊥ to A). If this is not the case, it returns ⊥ to A. Otherwise,

it retrieves the couples (ui, vi) associated with each query (fid, i)

from the table T. Then it computesm← a−
∑k

i=1 fiui and returns

m to A. It is easy to see that if c is a valid ciphertext, than the

message m is a correct decryption.

Challenge query On input (fid∗, i∗,m0,m1), if D guessed the right fid and

index, it chooses a bit z, computes C ← gmzβNy for a random β, a←

u + mz, b ← βv, σ ← Sign(sk′, fid, i, a) and returns c∗ = (C, a, b, σ).

Otherwise, the simulation is aborted.



PRACTICAL INSTANTIATION 71

Queries II after the challenge phase another queries phase takes place and

all queries are handled as before, the only exception being that de-

cryption queries involving identifier fid∗ and a function f whose i∗-th

component is non-zero are answered with ⊥.

Output phase When A outputs a bit z′, D guesses that y is a residue if

z = z′ and that y is not a residue if z 6= z′ or if A aborts at any time.

First of all, one can notice that all the answers to the queries made by A

(apart from the challenge query) are distributed as in the real case. Moreover,

this is also the case for the challenge query provided y is an N -th residue,

while c∗ contains no information about the bit z in the other case. This is

because, if we write y as gy1yN2 , from c∗ an unconditionally powerful adversary

could deduce 3 dependent equations in the 3 variables y1,mz, u
∗, which makes

their simultaneous solution undetermined.

Therefore, in the case where y is not a residueA is playing the proper security

game and D wins as long as A is successful, which happens with probability

1/2 + AdvA, and in the case where y is not a residue A can only guess at

random, which makes D successful with probability at most 1/2. In sum,

since we are assuming the DCRA problem to be hard, it must be that

negl(n) > AdvD ≥ |1/2 +AdvA − 1/2| ≥ AdvA

which is our thesis.

4.2.2 Proof of theorem 9

The reduction is very simple because, since we are not breaking any assump-

tion related to the modulus N , its factors can be known by the simulator

D. D receives in input a public key vk′ for Σ, and prepares the public key

for A as in the real case, with the only difference that it uses vk′ instead

of running the key generation algorithm of Σ. The encryption and decryp-

tion queries are handled as in the real case, with the only exception that

the σ component of each ciphertext is requested by D to its signing oracle

instead of being computed by D itself. When A outputs a forged ciphertext



PRACTICAL INSTANTIATION 72

c∗ = (C∗, a∗, b∗, σ∗) w.r.t. an identifier fid and a function f ∗, its σ∗ compo-

nent must be a valid forgery for Σ. If this was not the case, it would imply

that, called ci = (Ci, ai, bi, σi) the signatures returned by the simulator to A

in response to its query (fid, i,mi),

(

b∗
∏k

i=1 b
f∗
i

i

)N

=
C∗

∏k

i=1 C
f∗
i

i

.

Therefore this would not be a forgery as C∗ would be in the same residuosity

class (and hence contain the same plaintext) of the ciphertext obtained by

computing the function f ∗ on the honestly generated ciphertext c1, . . . , cn.

4.2.3 Instantiating the underlying signature scheme

As a concrete instantiation of the linearly homomorphic signature scheme

(HKeyGen, HSign,HVerify, HEval), one can use use a simple variant of

the (Strong) RSA based scheme from [28] adapted to use ZN as underlying

message space. In this section we will describe such signature scheme and

prove its security.

In [28] Catalano et al. present a Network Coding signature scheme based on

the strong RSA assumption. Here we describe a simple variant of the scheme

that allows a user to sign messages in a bigger space.

KeyGen(1k, N) Let N product of two arbitrary safe primes each one of

length k′/2. TheKeyGen algorithm chooses two random (safe) primes

p̂, q̂ of length k/2 each such that gcd(N, φ(N̂)) = 12 where N̂ = p̂q̂ and

proceeds by choosing g, g1, h1, . . . , hm at random (in Z∗
N̂
). Moreover it

chooses a chameleon hash function H : {0, 1}∗ → {0, 1}ℓ that maps to

primes of length ℓ < k′/2. The public key is set as (N,H, N̂, g, g1, h1, . . . ,

hm), while the secret key is (p̂, q̂).

Sign(sk, fid,M, i) Let ei the i-th vector of the canonical basis on Zm. The

signing algorithm proceeds as follows. First it chooses a randomness ρ

2Supposing p̂ and q̂ are two safe prime of equal length k/2 we can write p̂ = 2p̂′ + 1

and q̂ = 2q̂′ + 1 so φ(N̂) = 4p̂′q̂′ where |p̂′| = |q̂′| ≈ k
2 − 1. So, fixed N , it’s enough choose

p̂, q̂ of length at least k′/2 + 2 to verify gcd(N,φ(N̂)) = 1



PRACTICAL INSTANTIATION 73

and maps the random identifier fid to prime: e← H(ρ, fid). It chooses

random elements s ∈ ZeN and uses its knowledge of p̂ and q̂ to solve

the following equation

xeN = gshig
M
1 mod N̂

We denote with σ = (ρ, e, s, x) the signature for the message M w.r.t.

the function ei and the identifier fid.

Verify(vk, σ,M, f) To verify a signature σ for a message M w.r.t. an iden-

tifier fid and a function f , the verification algorithm proceeds as follows

• Compute e← H(ρ, fid)

• Check that M, s are in ZeN .

• Define f ′ = f−f mod eN
eN

and x̂ = x
∏m

j=1 h
f ′
j

j

• Finally check that the equation

x̂eN = gs
m
∏

j=1

h
fj
j gM1

is satisfied

• If all the checks above are satisfied, output 1, otherwise 0.

Combine(vk, fid, f̂ , σ1, . . . , σm) To combine signatures σi, (corresponding

to the messages Mi) sharing the same fid it works as follows. Let

f̂ = (α1, . . . , αm). It sets s =
∑m

i=1 αisi mod eN , s′ = (
∑m

i=1 αisi −

s)/(eN). It outputs the signature σ = (ρ, e, s, fid, x) which is obtained

by computing

x =

∏m

i=1 x
αi

i

gs′
mod N̂ .

Security follows very easily from the proof of the original signature scheme

in [28]. For completness we explicitly prove it again here.

Theorem 10 Under the Strong-RSA assumption, the scheme described above

is an unforgeable signature scheme under chosen messages attack according

to [14] definition.



PRACTICAL INSTANTIATION 74

Let A be an efficient adversary against the security of the scheme. This

means that, with non negligible probability, A is able to produce a valid

forgery σ∗ = (ρ∗, e∗, s∗, x∗) for the message M∗ w.r.t. a function f ∗ and an

identifier fid∗. We show how to build an efficient adversary B that ”uses” it

to break the strong RSA assumption (for the case when the challenge is a

quadratic residue). Let t be the maximum number of signatures queried by

A. Let ej = H(fidj). Using a chameleon hash function it is possible to fix

its the possible output at the beginning of the game. More details are given

below. If one considers e∗ and the set {e1, . . . , et} it is possible distinguish

two types of forgeries:

Type I the adversary outputs a signature containing anNe∗ such thatNe∗ ∤

N t
∏t

i=1 ei,

Type II the adversary outputs a signature containing an Ne∗ such that

Ne∗ | N t
∏t

i=1 ei.

At the beginning of the game we guess on the type of forgery will be provided

by A in order to set up an appropriate simulation accordingly. This guess

will be right with probability at least 1/2.

Type I. B takes as input (N̂ , τ) where N̂ is the product of two safe primes

p̂, q̂ (where p̂ = 2p′ + 1 and q̂ = 2q′ + 1) and τ ∈ QRN . The goal here is to

find an e-th root y of τ for e of B’s choice.

In the following we describe the simulator B during the three phases of

the simulation.

Setup B chooses a function H and an integer N as prescribed by the

KeyGen algorithm and randomly chooses t random file identifiers

fid1, . . . , fidt of the appropriate length. Next it chooses a randomness

ρ and computes ei = H(ρ, fidi) ∀1 = 1, . . . , t. Then it generates the

public key as follows.

• pick random α0, α1, β1, . . . , βm ← {1, . . . , N̂
2}

• let E = N t
∏t

i=1 ei and set g = τEα0 , g1 = gα1 and hi = gβi for all

i = 1 to m.



PRACTICAL INSTANTIATION 75

Finally B gives vk = (N,H, g, h1 . . . , hm, g1) to A

let α1 = bp′q′+ c where 0 ≤ c < p′q′. Since α1 is chosen from a suitably

large interval, the distributions of (α1 mod p′q′) is statistically indistin-

guishable from the uniform distribution over Zp′q′ . So g1 is distributed

like random quadratic residues of ZN̂ . Moreover the conditional distri-

bution of b given c is statistically indistinguishable from the uniform

distribution over {0, . . . , ⌊N̂2/p′q′⌋}. The same argument applies to g

and all the hi’s.

Signing queries At this stage A is allowed to adaptively query signatures

on messages M w.r.t an identifier fid and a position i.

By these positions each signature query is managed as follows. It uses

the private chameleon hash key to compute ρ̃k such that ek = H(ρ̃k, fid)

and chooses at random si ∈ ZNek , . Next, B computes the solution of

xNek
i = gsi · hi · g

M
1 as follows:

• let Ek = N t−1
∏t

j=1,j 6=k ej

• ∀i = 1, . . . ,m : xi = (τEkα0)si+βi+Mα1

Finally B gives σ = (ρ̃k, ek, si, i,M, fidk, xi) to A. It is easy to see that

xi are valid solution for the equation above (and that the equation is

distributed as in the real case).

Challenge Once the previous phase is over, A is supposed to output a

forgery σ∗ = (ρ∗, e∗, s∗, f ∗,M∗, fid∗, x∗) . By definition of valid forgery

it has to be the case that

xNe∗ = gs
∗

·

m
∏

j=1

h
f∗
j

j · g
M∗

1 = τEα0(s∗+
∑m

j=1 fjβj+M∗α1).

Let E ′ = Eα0(s
∗+
∑m

j=1 f
∗
j βj+M∗α1) and d = gcd(Ne∗, E ′). Provided

that Ne∗ ∤ E ′ B can use standard techniques (i.e. Shamir’s trick) to

extract an (Ne∗/d)-th root y of τ and thus it can output (e∗/d, yN) to

break Strong-RSA.



PRACTICAL INSTANTIATION 76

Therefore we are left with the task of showing that Ne∗ ∤ E ′ with non-

negligible probability. About e∗, since all the e exponents are primes and we

are assuming a Type I forgery, it has to be the case that e∗ ∤ E. It remains

to show that e∗ ∤ α0(s
∗+
∑m

j=1 f
∗
j βj +M∗α1) with non-negligible probability.

As pointed out before, we set α1 = bp′q′ + c. Since each b is information

theoretically hidden to A, e∗ might depend only on c (the same holds for

the βi’s). Moreover as e∗ ∤ p′q′ the probability that e∗ | α0(s
∗ +

∑m

j=1 f
∗
j βj +

M∗α1), or equivalently α0(s
∗ +

∑m

j=1 f
∗
j βj + M∗α1) = 0 mod e∗, is close to

1/e∗. This means that e∗ ∤ E ′ with probability close to 1− 1/e∗.

Type II. This encompasses the case when A ”reuses” some previously seen

exponent when producing its forgery. This is because, being all the ei’s

primes, the fact that Ne∗ | N t
∏t

i=1 ei, implies that e∗ = ek for some k.

Again let σ∗ = (ρ∗, e∗, s∗, x∗) be the forgery provided by the adversary for

the message M∗ w.r.t. a function f ∗ and an identifier fid∗. Since in this case

we assume that e∗ = ek, fid
∗ = fidk. Thus, in order for the provided signature

to be a valid forgery, it has to be the case that M∗ 6=
∑m

i=1 fiMi mod Ne∗

or ρ∗ 6= ρk. In the last case the adversary trivially break the chameleon

hash function so it has to be that M∗ 6=
∑m

i=1 fiMi mod Ne∗. Let z =

M∗ −
∑m

i=1 fiMi mod Ne∗ 6= 0 mod Ne∗.

In what follows we will require the simulator to guess both the index k

Thus, B’s guess will be correct with probability 1/t. Now, if we consider

the forgery provided by the adversary and the values x1, . . . , xm obtained

from the signatures on the identifier ek = e∗ provided by the simulator, we

distinguish two additional subcases

(a) x∗ =
∏m

j=1 x
f∗
j

j mod N̂

(b) x∗ 6=
∏m

j=1 x
f∗
j

j mod N̂

We provide different simulations for the two cases. In particular we de-

scribe Type-II.b first.

Type-II.b We describe a simulator B that solves Strong RSA for the case

of Type-II.b forgeries.



PRACTICAL INSTANTIATION 77

Setup B chooses fid1, . . . , fidt at random, ρi in the random space and com-

putes ei = H(ρi, fidi) ∀i = 1, . . . , t. Next, α1, ω1, . . . , ωm, β1, . . . , βm ←

{1, . . . , 2N̂}.

Let E = N t
∏t

i=1 ei and Ek = N t−1
∏t

i=1,i 6=k ei. B proceeds by creating

the public key as follows. g = τEk , g1 = gα1 , hi = gekωi−βi ∀i =

1, . . . ,m. Finally it gives the public key toA. It is easy to get convinced

that the distribution of the so generated public key is statistically close

to that of a ”true” public key.

Signing queries B answers A’s signature queries as follows.

Let fidi be the i-th queried identifier. For all i ∈ {1, . . . , t}\{k} B

first it use the private chameleon hash key to compute ρ̃i such that

ei = H(ρ̃i, fid) it sets ei ← H(fidi). Supposing to sign a message M in

the position j it chooses random sj ∈ ZNei and sets

xj = (τ
∏

l 6=k,i el)sj+ekωj−βj+α1M .

It is easy to verify that xj is such that xNei
j = gsj ·

∏m

l=1 h
u
(j)
l

l · gM1 .

For i = k a different machinery is required. Let j the position for which

M must be signed, B sets s = βj − α1M mod Nei and computes

xj = τEkωj · = Nek

√

gs · hj · g1M.

Finally B provides the signature created above to A. Notice that such

signature follows a distribution which is statistically close with respect

to that that would have been produced by a genuine signer.

Challenge In this phaseA will output a type II forgery (defined by (ρ∗, e∗, s∗,

f ∗,M∗, fid∗, x∗)), we show that B can extract an e∗-th root of τ as fol-

lows.

First, let

xNek
1 = gs1h1g

M1
1

...

xNek
m = gsmhmg

Mm

1

(4.1)



PRACTICAL INSTANTIATION 78

denote the verification equations arising from B’s signatures on position

1, . . . ,m. Combining them with the received forgery one gets.

(

x∗

∏m
j=1 x

f∗
j

j

)Ne∗

= g(s
∗−

∑m
l=1 f

∗
l
sl)g

(M∗−
∑m

l=1 f
∗
l
Mj)

1

= (τEk)(s
∗−

∑m
l=1 f

∗
l
sl)+α1z

Thus we can rewrite the equation above as









x∗

∏m

j=1 x
f∗
j

j









Ne∗

= τEk(s
∗−

∑m
l=1 f

∗
l
sl+α1z).

Let E ′ = Ek(s
∗−
∑m

l=1 f
∗
l sl + ανzν). In order to extract a root of τ we

have to show that Ne∗ ∤ E ′ with non-negligible probability. Observe

that e∗ ∤ Ek and that α1 = bp′q′ + c where b ∈ {0, 1} (with probability

close to 1) and b is information theoretically hidden to the adversary.

We show that Pr[Ne∗ ∤ (s∗ −
∑m

l=1 f
∗
l sl + α1z)] is at least 1/2. To see

this, assume by contradiction that Pr[Ne∗ | (s∗ −
∑m

l=1 f
∗
l sl + α1z)]

is non-negligibly higher than 1/2. Then it must be that Ne∗ | (s∗ −
∑m

l=1 f
∗
l sl + cz) and Ne∗|(s∗−

∑m

l=1 f
∗
l sl + (φ(N̂) + c)z), which implies

that Ne∗|zφ(N̂). Now z ∈ ZNe∗ so Ne∗ ∤ z. Thus Ne∗ must be a non

trivial factor of φ(N̂). Therefore Ne∗ ∤ E ′ with probability at least 1/2

and in this case B can use standard techniques (i.e., Shamir’s trick) to

extract an (Ne∗/d)-th root y of τ where d = gcd(Ne∗, E ′).

Type-II.a For the case of Type-II.a forgeries the simulator performs basi-

cally the same Setup and Signing queries phases as in the Type-I simulation.

The only difference here is that in the setup we set g1 = τE. Once a forgery

is provided (ρ∗, e∗, s∗, f ∗,m∗, fid∗, x∗) being it a Type-II.a one we have that

gs
∗

m
∏

j=1

h
f∗
j

j gM
∗

1 = g
∑m

l=1 slf
∗
l

m
∏

j=1

h
f∗
l

j g
∑m

l=1 Mlf
∗
l

1

This leads to the following

τE(α0(s∗−
∑m

j=1 sjf
∗
j )+z = 1 mod N̂



PRACTICAL INSTANTIATION 79

where, again, z is M∗−
∑m

j=1 f
∗
j Mj mod Ne∗. Let γ = (α0(s

∗−
∑m

j=1 sjf
∗
j )+

z). Notice that each αj = bjp
′q′ + cj where bj is information theoretically

hidden to the adversary and that z 6= 0 mod Ne∗ (this is the simulator’s

guess). Therefore, with non-negligible probability we have an integer Eγ 6= 0

such that Eγ = 0 mod φ(N̂), that allows to factor and thus to trivially solve

the Strong RSA problem.

4.3 A General Result

In this section we show how to generalize our results to support arbitrary

encryption schemes satisfying some well defined homomorphic properties.

In such schemes, the message, randomness and ciphertext spaces are assumed

to be finite groups, respectively denoted with M,R, C (the key spaces are

treated implicitly). To adhere with the notation used in the previous sec-

tion, we will denote the operation over M additively and the ones over R

and C multiplicatively. We assume T to be an IND-CPA secure public key

encryption scheme satisfying the following additional properties:

• We require the group operation and the inverse of an element to be

efficiently computable over all groups, as well as efficient sampling of

random elements. The integer linear combinations are thus defined and

computed by repeatedly applying these operations.

• For any m1,m2 ∈M, r1, r2 ∈ R, any valid public key pk it holds

Encpk(m1, r1) · Encpk(m2, r2) = Encpk(m1 +m2, r1 · r2)

• For any honest key pair (pk, sk) and any c ∈ C there exists m ∈ M

and r ∈ R such that Encpk(m, r) = c (i.e. the encryption function is

surjective over the group C). Moreover, we assume that such m and r

are efficiently computable given the secret key.

Now, let (HKeyGen,HSign,HVerify,HEval) be a secure linearly ho-

momorphic signature scheme for elements inM, let H be a family of collision

resistant hash functionsHK : {0, 1}∗ → C and let T = {KeyGen,Enc,Dec}

be an encryption scheme as above.

We construct a LAEPuV scheme as follows:



PRACTICAL INSTANTIATION 80

AKeyGen(1λ, k): Run HKeyGen(1λ, k) to obtain a signing key sk′ and a

verification key vk′ and KeyGen(1λ) to obtain a public key pk and a

secret key sk. Pick a hash function H ← H. Return vk← (vk′, pk, H)

as the public verification key and sk = (sk′, sk) as the secret key.

AEncrypt(sk,m, fid, i): Choose random r ← R, compute C ← Encpk(m, r)

and compute, using the secret key sk, m and r such that Encpk(m, r) =

H(fid||i). Compute σ ← HSign(sk′, fid, i,m + m) and return c =

(C,m+m, r · r, σ).

AVerify(vk, fid, c, f): Parse c = (C, a, b, σ) and vk← (vk′, pk), then check

that:

HVerify(vk′, fid, a, f, σ) = 1

Encpk(a, b) = C

k
∏

i=1

H(fid||i)fi

If both the above equations hold output 1, else output 0.

ADecrypt(sk, fid, c, f): Parse c = (C, a, b, σ). If AVerify(vk, fid, c, f) = 0,

return ⊥. Otherwise, use the secret key sk to compute m← Decsk(C)

AEval(vk, α, fid, c1, . . . , ck): Parse α = (α1, . . . , αk) and ci = (Ci, ai, bi, σi),

set

C ←
k
∏

i=i

Cαi

i , a←
k
∑

i=i

aiαi,

b←

k
∏

i=i

bαi

i , σ ← HEval(vk′, fid, f, {σi}i=1,...,k)

and return c = (C, a, b, σ).

Theorem 11 Assuming T is an is IND-CPA secure public key encryption

scheme satisfying the conditions detailed above, (HKeyGen, HSign, HVerify,

HEval) is a secure linearly homomorphic signature scheme supporting M

as underlying message space and H is a random oracle, then the scheme

described above has indistinguishable encryption according to definition 23.



PRACTICAL INSTANTIATION 81

Theorem 12 If Σ = (HKeyGen,HSign,HVerify,HEval) is a secure lin-

early homomorphic signature scheme for messages in M then the scheme

described above is unforgeable according to definition 24.

4.3.1 Proof of theorem 11

We reduce the security of the scheme to the one of the encryption scheme: we

use an adversary A that wins the LH-IND-CCA game to build a distinguisher

D against the IND-CPA with advantage AdvD > AdvA. The distinguisher

D receives in input p̄k, set the challenge as m0,m1
$
←M, receives a challenge

ciphertext y∗ ∈ C and runs the simulation as follows:

Key generation phase The distinguisher runs

(sk′, vk′)← HKeyGen(1λ, k, N)

and gives (vk′, p̄k) to A (the function H is substituted with a random

oracle).

Queries The adaptively chosen queries asked by A are handled as follows.

Random Oracle Queries D guesses in advance on which couple

(fid∗, i∗) the adversary will ask its challenge (since A is polyno-

mial, D will be right with non negligible probability). It chooses

m̄, r̄ at random and sets R∗ ← Enc(m̄, r̄)y∗−1 as the output of

H(fid∗||i∗). For any other oracle query (fid, i) it chooses random

u, r and sets R = Enc(u, r) as the output. It stores (fid, i, u, r)

in a table T (and, if the same query is asked more than once, the

same answer computed from the table T is returned).

Encryption Queries On input a query (fid, i,m), D retrieves the

associated u, r from the table T (if the query (fid, i) has not

been already asked, D simulates it and populates the table T

accordingly). Then it computes C ← Enc(m, r1) for a random

r1, a ← u + m, b ← rr1, σ ← Sign(sk′, fid, i, a) and returns

c = (C, a, b, σ) to A



PRACTICAL INSTANTIATION 82

Decryption Queries On input a triple (fid, c, f), where c = (C, a, b, σ)

is a ciphertext, fid an identifier and f an admissible function, D

verifies the signature on a and that the equation

Enc(a, b) = C
k
∏

i=1

H(fid||i)fi

holds (the oracle queries appearing in the above equation with

non-zero exponents must exist in T, otherwise D can just assign to

these queries a value that does not satisfy the equation and return

⊥ to A). If this is not the case, it returns ⊥ to A. Otherwise,

it retrieves the couples (ui, ri) associated with each query (fid, i)

from the table T. Then it computesm← a−
∑k

i=1 fiui and returns

m to A. It is easy to see that if c is a valid ciphertext, than the

message m is a correct decryption.

Challenge query On input (fid∗, i∗,m0,m1), if D guessed the right fid and

index, it chooses a bit z, computes C ← Enc(mz, r)y
∗ for a random

r, a ← m̄ + mz, b ← r̄r, σ ← Sign(sk′, fid, i, a) and returns ĉ∗ =

(C, a, b, σ). Otherwise, the simulation is aborted.

Queries II after the challenge phase another queries phase takes place and

all queries are handled as before, the only exception being that de-

cryption queries involving identifier fid∗ and a function f whose i∗-th

component is non-zero are answered with ⊥.

Output phase When A outputs a bit z′, if z = z′ then D output 0 else if

z 6= z′ or A abort, D output 1.

First of all, one can notice that all the answers to the queries made by A

(apart from the challenge query) are distributed as in the real case. Moreover,

if z 6= z′ this is also the case for the challenge query provided c∗ is an correct

encryption for one of the two messages, while ĉ∗ contains no information

about the bit z. In the other case the challenger query c∗ is again a correct

encryption, but in this case ĉ∗ contain some information about the bit z

Therefore, let b the bit chooses by the challenger in the game of D. In the



PRACTICAL INSTANTIATION 83

case where b = 0 A is playing the proper security game and D wins as long

as A is successful, which happens with probability 1/2 +AdvA, and in the

case where b = 1 A can only guess at random, which makes D successful

with probability at most 1/2. In sum, since we are assuming the underlying

encryption scheme is IND-CPA secure, it must be that

negl(n) > AdvD ≥ |1/2 +AdvA − 1/2| ≥ AdvA

which is our thesis. .



Chapter 5

Applications to

On-Line/Off-Line

Homomorphic Signatures

In this chapter, we show a general construction to build (efficient) on-line/off-

line homomorphic (and network coding) signature schemes by combining

LHSG unforgeable against a random message attack (like the one described

in section 3.4) with a certain class of sigma protocols. The intuitive idea is

that in order to sign a certain message m, one can choose a Σ-Protocol whose

challenge space containsm, next one signs the first message of the Σ-Protocol

with a standard signature (this can be done off-line) and use its knowledge

of the witness of the protocol to later compute the response (third message)

of the protocol associated to the challenge m. This is secure because, if an

adversary is able to produce a second signature with respect to the same

first message, by the special soundness of the Σ-Protocol, he would be able

to recover the witness itself. We show how, if both the signature scheme and

the Σ-Protocol have specific homomorphic properties, this construction can

be extended to build (linearly) homomorphic signatures as well.

Informally the properties we require from the underlying sigma protocol are:

(1) it is linearly homomorphic, (2) its challenge space can be seen as a vector

space and (3) the third message of the protocol can be computed in a very

efficient way (as it is used in the online phase of the resulting scheme). First,

84



LHOOS 85

we adapt the definition of linearly homomorphic signature (LHSG) to the

On-line/Off-line case. Then, we precisely define the properties required by

the sigma protocol, and as a last step we will describe and prove the security

of our construction.

5.1 On-line/Off-line signatures

On-Line/Off-Line digital signature were introduced by Even, Goldreich and

Micali in [35]. In such schemes the signature process consists of two parts: a

computationally intensive one that can be done Off-Line (i.e. when the mes-

sage to be signed is not known) and a much more efficient online phase that

is done once the message becomes available. There are two general ways to

construct on-line/off-line signatures: using one time signatures [35] or using

chameleon hash [70].

The first construction works by combining two different kind of digital sig-

natures: standard signatures and one time signatures1.

The second construction works by combining standard signatures with

chameleon hash functions.

In [24] Catalano et al., unified the two approaches by showing that they can

be seen as different instantiations of the same paradigm.

5.2 Linearly Homomorphic On-line/Off-line

signatures

First, we remark that the only difference between a LHSG and a LHOOS is in

the signing algorithm. When signingm the latter can use some data prepared

in advance (by running a dedicated algorithm OffSign) to speed up the

signature process. The definitions of unforgeability are therefore analogous

to the ones of traditional LHSG schemes and are omitted to avoid repetition2.

1Differently form the first, One Time signatures allow users to sign only one message

using the same signing key.
2We stress, however, that those definitions are stronger than the ones traditionally

introduced for network coding (i.e. the adversary is more powerful and there are more



LHOOS 86

Definition 25 (LHOOS) A Linearly Homomorphic On-line/Off-line sig-

nature scheme is a tuple of PPT algorithms (KeyGen, OffSign, OnSign,

Verify, Eval) such that:

• KeyGen(1λ, n, k) takes as input the security parameter λ, an integer n

denoting the length of vectors to be signed and an upper bound k for the

number of messages signed in each dataset. It outputs a secret signing

key sk and a public verification key vk; the public key implicitly defines

a message space that can be seen as a vector space of the formM = Fn

(where F is a field), a file identifier space D and a signature space Σ.

• OffSign(sk) takes as input the secret key and outputs some information

I.

• OnSign(sk, fid, I,m, i) takes as input the secret key, an element m ∈

M, an index i ∈ {1, . . . , k}, a dataset identifier fid and an instance of I

output by OffSign. This algorithm must ensure that all the signatures

issued for the same fid are computed using the same information I (i.e.

by associating each fid with one specific I and storing these couples on

a table). It outputs a signature σ.

• Verify (vk, σ,m, fid, f) takes as input the public key vk, a signature

σ ∈ Σ, a message m ∈ M, a dataset identifier fid ∈ D and a function

f ∈ Zk; it outputs 1 (accept) or 0 (reject).

• Eval(vk, fid, f, {σi}i=1...k) takes as input the public key vk, a dataset

identifier fid, an admissible function f in its vector form (α1, . . . , αk),

a set of k signatures {σi}i=1...k and outputs a signature σ ∈ Σ. Note that

this algorithm should also work if less than k signatures are provided,

as long as their respective coefficients in the function f are 0, but we

don’t to explicitly account this to avoid heavy notation.

The correctness conditions of our scheme are the following:

types of forgeries), and therefore our efficient instantiation perfectly integrates in that

framework.



LHOOS 87

• Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair,

m ∈M, fid any dataset identifier and i ∈ 1, . . . , k.

If σ ← Sign(sk, fid,OffSign(sk),m, i), then with overwhelming proba-

bility

Verify(vk, σ,m, fid, ei) = 1,

where ei is the ith vector of the standard basis of Zk.

• Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair,

m1, . . . ,mk ∈ M any tuple of messages signed (or derived from mes-

sages originally signed) w.r.t the same fid (and therefore using the same

offline information I), and let σ1, . . . , σk ∈ Σ, f1, . . . , fk ∈ F such that

for all i ∈ {1, . . . , k}, Verify(vk, σi,mi, fid, fi) = 1. Then, for any ad-

missible function f = (α1, . . . , αk) ∈ Zk, with overwhelming probability

Verify(vk,Eval(vk, fid, f, {σi}i=1...k), f(m1, . . . ,mk), fid,
k
∑

i=0

αifi) = 1

Remark 7 As for the case of LHSG, relaxing the requirements for the fid

(i.e. assuming that it can be chosen offline independently of the message

or that it can even be completely random) typically improves efficiency. See

remark 9 for an example of how this idea applies to our instantiation.

Definition 26 (LHOOS CMA) An LHOOS is unforgeable against a cho-

sen message attack if for all n the advantage of any PPT adversary A in the

following game is negligible in the security parameter λ:

Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The mes-

sage spaceM, the signature space Σ and the dataset space D are all implicitly

defined by the verification key.

Signing Queries A can ask a polynomial number of queries of the form

(mi, fid, i) (where mi ∈ M is a message, fid is a dataset identifier and

i ∈ {1, . . . , k} is an index), and get the corresponding signatures by the chal-

lenger. No two queries where only the message mi changes can be asked by

the adversary (if this happens, the answer to the second query is ⊥).

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗

and a vector α∗ ∈ Zk.



LHOOS 88

The Adversary wins the game if Verify(vk, fid∗,m∗, σ∗, α∗) = 1 and, called

m1, . . . ,mk the messages (possibly) queried by the adversary for the identifier

fid∗, either

• there exists i such that α∗
i 6= 0, but no message w.r.t. index i and fid∗

has been queried by the adversary.

• the previous condition does not occur, and m∗ 6=
∑k

i=1 αimi

Finally we define the advantage AdvLHOOS−RMA(A) of A as the probability

that A wins the game.

One can give an analogous notion of strong security against a chosen message

attack, where even a new signature for a previously received (or derived)

message is considered a forgery. Formally second condition can be replace

by:

• The previous condition does not occur, m∗ =
∑k

i=1 αimi but σ∗ 6=

Eval(vk, fid, (αi)i=1,...,k, {σi}i=1,...,k).

5.3 Vector and Homomorphic Σ-protocols

Briefly speaking, a Σ-Protocol can be described as a tuple of four algorithms

(Σ-Setup, Σ-Com, Σ-Resp, Σ-Verify), where the first one generates a

statement/witness couple, Σ-Com and Σ-Resp generate the first and third

message of the protocol, and Σ-Verify is used by the verifier to decide on

the validity of the proof (a more formal and detailed description was given

in section 2.2.4.6). This notion can be extended to the vector case3. For

this purpose we adapt the notion of Homomorphic Identification Protocol

originally introduced in [8] to the Sigma protocol framework.

Given a language L and an integer n ∈ N, we can consider the language

Ln = {(x1, . . . , xn) | xi ∈ L ∀i = 1, . . . , n}. A natural witness for a tuple

(vector) in this language is the tuple of the witnesses of each of its components

3The intuition is that it should be more efficient to run a vector Σ-Protocol once than

a standard Σ-Protocol multiple times in parallel)



LHOOS 89

for the language L. As before we can consider the relation Rn associated

to Ln, where (~x, ~w) = (x1, . . . , xn, w1, . . . , wn) ∈ R
n if (x1, . . . , xn) is part

of Ln and wi is a witness for xi. A vector Σ-Protocol for Rn is a three

rounds protocol defined similarly as above with the relaxation that the special

soundness property is required to hold in a weaker form. Namely, we require

the existence of an efficient extractor algorithm Σn-Ext such that ∀ ~x ∈

Ln, ∀ R,~c, ~s, ~c′, ~s′ such that (c, s) 6= (c′, s′), Σn-Verify(~x,R,~c, ~s) = 1 and

Σn-Verify(~x,R, ~c′, ~s′) = 1, outputs (x, w) ← Σn-Ext(~x,R,~c, ~s, ~c′, ~s′) where

x is one of the components of ~x and (x, w) ∈ R.

Another important requirement for our construction to work is the following

property.

Definition 27 A Σ-Protocol Σ = (Σ-Setup,Σ-Com,Σ-Resp,Σ-Verify)

for a relation R is called group homomorphic if

• The outputs of the Σ-Com algorithm and the challenge space of the

protocol can be seen as elements of two groups (G1,⊙) and (G2,⊗2)

respectively

• There exists a PPT algorithm Combine such that, for all (x, w) ∈ R

and all α ∈ Zn, if transcripts {(Ri, ci, si)}i=1,...,n are such that

Σ-Verify(x,Ri, ci, si) = 1 for all i, then

Σ-Verify

(

x,

n
⊙

i=1

Rαi

i ,

n
⊗

i=1

cαi

i ,Combine(x, α, {(Ri, ci, si)}i=1,...,n)

)

= 1

Although it is given for the standard case, this property can easily be ex-

tended to vector Σ-Protocols: in particular, the group G2 can be seen as the

group of vectors of elements taken from another group G.

To sum up, we define a class of vector Σ-Protocols having all the proper-

ties required by our construction:

Definition 28 (1-n (vector) Σ-Protocol) Let (G1,⊙), (G2,⊗) be two com-

putational groups. A 1-n vector sigma protocol consists of four PPT algo-

rithm Σn = (Σn-Setup,Σn-Com,Σn-Resp, Σn-Verify) defined as follows:



LHOOS 90

Σn-Setup(1
λ, n,Rn)→ (x,w) . It takes as input a security parameter λ, a

vector size n and a relation Rn over a language Ln. It returns a vec-

tor of statements and witnesses (x1, . . . , xn, w1, . . . , wn). The challenge

space is required to be ChSp⊆ Gn
2 .

Σn-Com(x)→ (R, r) . It’s a PPT algorithm run by the prover to get the

first message R to send to the verifier and some private state to be

stored. We require that R ∈ G1.

Σn-Resp(x,w, r, c)→ s . It’s a PPT algorithm run by the prover to com-

pute the last message of the protocol. It takes as input the statements

and witnesses (x,w) the challenge string c ∈ChSp (sent as second

message of the protocol) and some state information r. It outputs the

third message of the protocol, s.

Σn-Verify(x, R, c, s)→ {0, 1} . It’s the verification algorithm that on input

the message R, the challenger c ∈ChSp and a response s it outputs 1

(accept) or 0 (reject).

We require this protocol to be group homomorphic and to satisfy the com-

pleteness and special honest verifier zero knowledge properties. Moreover, the

protocol must guarantee either the vector special soundness outlined above

or a stronger soundness property that we define below. Roughly speaking,

this property requires that the extractor, upon receiving the witnesses for all

but one statements of the vector ~x, has to come up with a witness for the

remaining one.

Definition 29 (Strong (Vector) Special Soundness) Let Σ = (Σ-Setup,

Σ-Com,Σ-Resp, Σ-Verify) be a 1-n Σ-Protocol for a relation Rn. We say

that Σ has the Strong Special Soundness property if there exist an efficient ex-

tractor algorithm Σn-Ext such that ∀ ~x ∈ Ln, ∀j∗ ∈ {1, . . . , n}, ∀ R,~c, ~s, ~c′, ~s′

such that cj∗ 6= c′j∗, Σn-Verify(~x,R,~c, ~s) = 1 and Σn-Verify(~x,R, ~c′, ~s′) = 1,

outputs wj∗ ← Σn-Ext(~x,R,~c, ~s, ~c′, ~s′, {wj}j 6=j∗) such that (xj∗ , wj∗) ∈ R.

In the next section we show that a simple variant of the well known

identification protocol by Schnorr is a 1-n Σ-Protocol (with Strong Vector

Special Soundness).



LHOOS 91

5.3.1 Schnorr 1-n Σ-Protocol

Here we describe a 1-n vector Σ-Protocol satisfying the Strong Vector Special

Soundness Property.

Definition 30 (Schnorr 1-n Σ-Protocol) Let G a group of prime order p

and R the DL relation on G, DL= {(x, w)|x = (p, g, h), h = gw}. Let g ∈ G

a group generator. We define DLg = {(x, w)|x = gw} the restriction of the

DL relation to g = g.

The (Strong) Schnorr (Vector) 1-n Σ-Protocol consists of four PPT algorithm

Σn = (Σn-Setup, Σn-Com,Σn-Resp,Σn-Verify) defined as follows:

Σn-Setup(1
λ, n,R) It chooses a random group generator g ∈ G and a vector

of witnesses ~w = (w1, . . . , wn)
$
← Zn

p . Then it computes the vector of

statements (x1, . . . , xn) ← (gw1 , . . . , gwn) and sets ~x ← (x1, . . . , xn, g).

Then it outputs (~x, ~w). Obviously the couple (xj, wj) ∈ DLg ∀j =

1, . . . , n.

Σn-Com(~x) It chooses a random r ∈ Zp, sets R← gr and returns (r, R).

Σn-Resp(~x, ~w, r,~c) Let ~c ∈ Zn
p the second message of the protocol. This

algorithm outputs s← r +
∑n

j=1 cjwj.

Σn-Verify(~x,R,~c, s) It checks that

gs = R

n
∏

j=1

x
cj
j .

If the above equation holds, it outputs 1, else outputs 0.

5.4 Signatures and Σ-Protocols

Signatures and Σ-Protocols are very related. In this section we recall the

Fiat-Shamir method to transform Identification Protocols in Digital Signa-

tures as described in [36]. This construction work as follow.

Let Σ = (Σ-Setup,Σ-Com,Σ-Resp,Verify) a standard sigma protocol



LHOOS INSTANTIATION 92

where the Special Soundness property holds and H a family of CR hash func-

tions. Then we can construct a signature scheme S = (KeyGen,Sign,Verify)

where:

KeyGen(1λ). It runs (x, w)← Σ-Setup(1λ). Then it picks an hash func-

tion H ∈ H and sets vk← (w,H), sk← x.

Sign(sk,m). It runs (r, R)← Σ-Com(x), sets c← H(R,m) and produces

z ← Σ-Resp(x, w, r, c). Then output σ ← (R, z).

Verify(vk,m, σ). Let σ = (R, z). It compute c← H(R,m). If Σ-Verify(x,

R, c, z) = 1 then accept else reject.

Theorem 13 If Σ = (Σ-Setup,Σ-Com,Σ-Resp,Verify) is a standard

sigma protocol where the Special Soundness property holds and H a family

of CR hash functions then the signature scheme S is uf-cma secure in the

random oracle model.

5.5 A Linearly Homomorphic On-Line/Off-

Line Signature

Suppose S = (KeyGen,Sign,Verify,Eval) is a randomly secure LHSG

(even one that only allows to sign scalars), Σn = (Σn-Setup ,Σn-Com

,Σn-Resp ,Σn-Verify ) is a 1-n Σ-Protocol and H = (CHGen,CHEval,

CHFindColl) defines a family of chameleon hash functions4. Moreover,

suppose that the LHSG’s message space is the same as the group G1 of the

outputs of Σn-Com. Our generic construction uses the challange space of

the Σ-Protocol as a message space and works as follows:

ON/OFFKeyGen (1λ, k, n): It runs (vk1, sk1) ← KeyGen(1λ, 1, k),

(x,w) ←Σn-Setup (1λ, n,Rn) and (hk, ck) ← CHGen(1λ). It out-

puts vk← (vk1,x, hk), sk← (sk1,w, ck).

4a formal definition of chameleon hash functions can be found in section 2.2.4



LHOOS INSTANTIATION 93

OFFSign (sk): This algorithm runs the Σn-Com algorithm k times to

obtain (Ri, ri) ←Σn-Com (x), chooses a random string fid′ from the

dataset identifiers’ space and randomness ρ′ and sets fid← CHEval(hk,

fid′, ρ′). Then it signs each Ri using the LHSG signing algorithm σi ←

Sign(sk1, Ri, fid, i) and outputs Ifid′ = {(i, ri, Ri, σi, fid
′, ρ′)}i=1,...,k.

ONSign (vk, sk,m, fid, Ifid′ , i): It parses Ifid′ as {(i, ri, Ri, σi, fid
′, ρ′)}i=1,...,k,

computes s←Σn-Resp (x,w, ri,m), ρ← CHFindColl(ck, fid′, ρ′, fid)

and outputs σ ← (Ri, σi, s, ρ). As explained in the definition, this al-

gorithm must ensure that all the messages signed with respect to the

same fid are computed from the same information Ifid′

ON/OFFVerify (vk, σ,m, fid, f): It parses σ as (R, σ, s, ρ) and vk as

(vk1,x, hk). Then it checks thatVerify(vk1, σ, R,CHEval(fid, ρ), f) =

1 and Σn-Verify(x, R,m, s) = 1. If both the above equations hold it

returns 1, else it returns 0.

ON/OFFEval (vk, α, σ1, . . . , σk): it parses σi as (Ri, σi, si, ρ) for each i =

1, . . . , k and vk as (vk1,x). Then it computes:

R← Rα1
1 ⊙ · · · ⊙Rαk

k , σ ← Eval(vk1, α, σ1, . . . , σk),

s← Combine (~x, α, {(Ri, ci, si)}i=1,...,k) .

Finally it returns (R, σ, s, ρ) (as a signature for the message mα1
1 ⊗· · ·⊗

mαk

k ).

Remark 8 The construction presented above applies to any LHSG. How-

ever, if the LHGS itself is obtained as described in section 3.4, the use of

the chameleon hash function could be avoided by substituting the signature

scheme S used for the fid with an on-line/off-line one. This improves effi-

ciency.

Remark 9 Loosening the requirements on the fid can also help improving the

performance of the scheme. For example, if the fid is allowed to be chosen

randomly by the signer and not by the adversary, the use of the chameleon

hash function can be avoided. Moreover, in this case one could use a LHSG

that achieves better efficiency by choosing the fid itself (an example is de-

scribed in remark 4).



LHOOS INSTANTIATION 94

Theorem 14 If S = (KeyGen,Sign,Verify,Eval) is a randomly secure

LHSG, Σn = (Σn-Setup ,Σn-Com ,Σn-Resp ,Σn-Verify ) is a 1-n Σ-

Protocol for a non trivial relationRn, andH implements a family of chameleon

hash functions then the LHOOS described above is secure against a chosen

message attack according to definition 21.

Proof of theorem 14 Here we present a proof sketch in the simplified case

where each signing query is immediately followed by the corresponding re-

veal query. In this setting we can just assume that the evaluation queries are

computed by the adversary itself and that for each encryption query it gets

the corresponding message/signature couple. A more detailed proof for the

general case is deferred to a full version of the paper.

Suppose m∗, (R∗, σ∗, s∗) is the forgery returned by an adversary A w.r.t

the identifier fid∗ and the vector ~α∗ = (α∗
1, . . . , α

∗
k). Let {σ1, . . . , σk} the

set of signatures seen by A w.r.t. the same identifier fid∗ and the mes-

sages (m1, . . . ,mk). Note that, because S is secure against random message

attacks, and H is collision resistant, it must be that
∏k

i=1 R
αi

i = R∗ and

fid∗ = fid for some fid that A has received during the security game. There-

fore, by the security definition, the only kind of forgery the adversary can

make is one where m∗ 6= m
α∗
1

1 ⊗ · · · ⊗m
α∗
k

k .

In this case we describe a simulator B that uses A to extract a witness for

the language L such that Ln is the language associated to the relation Rn.

We will assume first that the underlying Σ-Protocol has the vector special

soundness, and explain later how to modify the proof in the case where the

strong vector special soundness holds. B takes as input a vector of statements

~x ∈ Ln. It must then return a couple (x, w) such that x is a component of ~x

and (x, w) ∈ R. It works as follows.

Key Generation. B runs (vk1, sk1) ← KeyGen(1λ, k, n) and gives to A

vk = (vk1, ~x). It is easy to check that this key is correctly distributed as in

the real case.

Signing queries. Each time A asks for a signature on a message mi w.r.t.

an identifier fid and to an index i ∈ 1, . . . , k, B uses the HVZK simulator of

the sigma protocol to compute (Ri, si)← S(x,m). Then it computes a signa-

ture σi ← Sign(sk1, fid, Ri, i) on Ri and returns the signature σ ← (Ri, σi, si)

to A.



LHOOS INSTANTIATION 95

Forgery Suppose A returns a forgery of type 1 (R∗, σ∗, s∗) for the message

m∗. Let m = m
α∗
1

1 ⊗· · ·⊗m
α∗
k

k and s = Combine (x, α∗, {(Ri,mi, si)}i=1,...,k)

.

B uses the extractor (x, w)←Σ-Ext (x, R,m∗, s∗,m, s) from the vector spe-

cial soundness to obtain a witness for one of the components of ~x.

In the case where the strong vector special soundness holds, since m∗ 6=

m
α∗
1

1 ⊗ · · · ⊗m
α∗
k

k , there exists and index j such that the j-th components

of the two sides of the equation are different. B can guess the index j in

advance and prepare the public key by generating n− 1 couples (xi, wi) ∈ L

for i ∈ {1, . . . , n} \ j, setting xj ← x (where x is the statement B received

in input) and ~x ← (x1, . . . , xn). The rest of the public key and the other

phases of the simulation are carried as in the previous case. When A pro-

vides a forgery, assuming B guessed the correct index (this will happen with

non negligible probability, otherwise B aborts), B can use the extractor for

the strong vector special soundness to get the missing witness wj ←Σ-Ext

(x, R,m∗, s∗,m, s, {wi}i 6=j).

The security obtained by this construction can be strengthened by assuming

additional properties on the underlying LHSG scheme: if S is strongly se-

cure against a random message attack, then we can prove that the resulting

construction is strongly secure (against a CMA) as well.

Theorem 15 If S = (KeyGen,Sign,Verify,Eval) is a LHSG scheme

strongly unforgeable against a random message attack and Σn = (Σn-Setup,

Σn-Com,Σn-Resp,Σn-Verify) is a 1-n Σ-Protocol for a non trivial relation

Rn, then the on-line/off-line scheme described above is strongly unforgeable

against chosen message attacks.

The proof is straightforward and similar to the previous one and therefore is

omitted.



Chapter 6

Conclusions

In this thesis we focus on linearly homomorphic primitives and, in particu-

lar, we concentrate our attention on the homomorphic version of two different

primitives: signatures scheme and authenticated encryption schemes.

This thesis essentially consists of two parts: the first (chapter 1) contains

some standard definitions related to signatures and encryption schemes and

it can be considered like a briefly summary, in order to provide the reader all

basic notions related to the following chapters. Each chapter of the second

part (chapters 2 and following), instead, focuses on a new different primitives

(LAEPuV, LHSG, LHOOS).

Each of these last chapters is divided in two parts: in the first part we for-

mally provide definitions for each new primitives, then we propose different

instantiations for each of them.

More in detail. About LHSG we show first a random message secure con-

struction based on the 2-3 CDH problem. Then we show a general transform

to construct CMA LHSG from RMA LHSG. Finally we propose a concrete

instantiation, slightly optimized, of a CMA secure LHSG.

These results about LHSG are interesting for two reasons. First the trans-

formation from RMA to CMA secure LHSG can be applied to structure

preserving signatures too. Second, in chapter 5 we show that the RMA se-

cure version of our LHSG in enough to construct an LHOOS secure against

chosen message attack.

About LAEPuV, first we present an instantiation supporting Paillier’s ci-

96



97

phertexts, then we show how to generalize our result to support arbitrary

schemes satisfying some well defined homomorphic properties.

This result is very interesting because it’s the first efficient construction of a

Linearly Homomorphic Authenticated Encryption Scheme. We additionally

show,in the introduction chapter, a nice application, in order to motivate this

primitive. This example is related to the increasing relevant scenario where

a user wants to store encrypted data on the cloud in a way such that he can

later delegate the cloud to perform computation on this data.

Our research also leaves open some interesting questions:

• First we observe that our LGSG scheme can support only a polynomial

size bounded dataset identifier. Indeed, if we want to sign a dataset

with exponential size, we need an exponentially bigger key. A first way

to attempt to this observation is to use a random oracle H. More in

detail, it is possible to prove that the proposed LHSG is still secure

by replacing the public key elements hi with a random oracle H and

setting hi = H(i). However, in this case, it is possible to prove the

security of such modified scheme only in the random oracle model. A

first interesting question is: is it possible to sign an exponential bigger

(or unbounded) dataset, in the standard model, using a short public

key?

• The second open question is related to our LAEPuV construction. We

prove its security only in the random oracle model. Prove its security

in the standard model can be an interesting problem.

• The final open question is related again to our LAEPuV construction.

A bad limitation of our construction is that it can be applied only to

linear functions. Is it possible to extend it to a wider functionalities

class?



Bibliography

[1] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo

Nishimaki, and Miyako Ohkubo. Constant-size structure-preserving

signatures: Generic constructions and simple assumptions. In Xi-

aoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASI-

ACRYPT 2012, volume 7658 of Lecture Notes in Computer Science,

pages 4–24. Springer, December 2012.

[2] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki,

and Miyako Ohkubo. Tagged one-time signatures: Tight security and

optimal tag size. In Kaoru Kurosawa and Goichiro Hanaoka, editors,

PKC 2013: 16th International Workshop on Theory and Practice in

Public Key Cryptography, volume 7778 of Lecture Notes in Computer

Science, pages 312–331. Springer, February / March 2013.

[3] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,

and Miyako Ohkubo. Structure-preserving signatures and commitments

to group elements. In Tal Rabin, editor, Advances in Cryptology –

CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,

pages 209–236. Springer, August 2010.

[4] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako

Ohkubo. Optimal structure-preserving signatures in asymmetric bi-

linear groups. In Phillip Rogaway, editor, Advances in Cryptology –

CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,

pages 649–666. Springer, August 2011.

98



BIBLIOGRAPHY 99

[5] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing

on elements in bilinear groups for modular protocol design. Cryptology

ePrint Archive, Report 2010/133, 2010. http://eprint.iacr.org/.

[6] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Group to

group commitments do not shrink. In David Pointcheval and Thomas Jo-

hansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume

7237 of Lecture Notes in Computer Science, pages 301–317. Springer,

April 2012.

[7] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi

Shelat, and Brent Waters. Computing on authenticated data. In Ronald

Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, vol-

ume 7194 of Lecture Notes in Computer Science, pages 1–20. Springer,

March 2012.

[8] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage

from homomorphic identification protocols. In Mitsuru Matsui, editor,

Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture

Notes in Computer Science, pages 319–333. Springer, December 2009.

[9] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network cod-

ing signatures in the standard model. In Dario Catalano, Nelly Fazio,

Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th In-

ternational Workshop on Theory and Practice in Public Key Cryptogra-

phy, volume 6571 of Lecture Notes in Computer Science, pages 17–34.

Springer, March 2011.

[10] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Comput-

ing on authenticated data: New privacy definitions and constructions.

In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology –

ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science,

pages 367–385. Springer, December 2012.

[11] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Efficient

completely context-hiding quotable and linearly homomorphic signa-

tures. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013:



BIBLIOGRAPHY 100

16th International Workshop on Theory and Practice in Public Key

Cryptography, volume 7778 of Lecture Notes in Computer Science, pages

386–404. Springer, February / March 2013.

[12] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.

Relations among notions of security for public-key encryption schemes.

In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, vol-

ume 1462 of Lecture Notes in Computer Science, pages 26–45. Springer,

August 1998.

[13] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Sign-

ing a linear subspace: Signature schemes for network coding. In Stanis-

law Jarecki and Gene Tsudik, editors, PKC 2009: 12th International

Conference on Theory and Practice of Public Key Cryptography, vol-

ume 5443 of Lecture Notes in Computer Science, pages 68–87. Springer,

March 2009.

[14] Dan Boneh and David Mandell Freeman. Homomorphic signatures for

polynomial functions. In Kenneth G. Paterson, editor, Advances in

Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-

puter Science, pages 149–168. Springer, May 2011.

[15] Dan Boneh and David Mandell Freeman. Linearly homomorphic signa-

tures over binary fields and new tools for lattice-based signatures. In

Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, ed-

itors, PKC 2011: 14th International Workshop on Theory and Practice

in Public Key Cryptography, volume 6571 of Lecture Notes in Computer

Science, pages 1–16. Springer, March 2011.

[16] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and

their application to cryptography (extended abstract). In Neal Koblitz,

editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture

Notes in Computer Science, pages 283–297. Springer, August 1996.

[17] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signa-

tures based on computational Diffie-Hellman. In Moti Yung, Yevgeniy



BIBLIOGRAPHY 101

Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006: 9th Inter-

national Conference on Theory and Practice of Public Key Cryptogra-

phy, volume 3958 of Lecture Notes in Computer Science, pages 229–240.

Springer, April 2006.

[18] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)

fully homomorphic encryption without bootstrapping. In Proceedings of

the 3rd Innovations in Theoretical Computer Science Conference, ITCS

12, pages 309–325. ACM, 2012.

[19] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-

phic encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd

Annual Symposium on Foundations of Computer Science, pages 97–106.

IEEE Computer Society Press, October 2011.

[20] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-

tion from ring-LWE and security for key dependent messages. In Phillip

Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841

of Lecture Notes in Computer Science, pages 505–524. Springer, August

2011.

[21] Ernest F. Brickell and Yacov Yacobi. On privacy homomorphisms (ex-

tended abstract). In David Chaum and Wyn L. Price, editors, Advances

in Cryptology – EUROCRYPT’87, volume 304 of Lecture Notes in Com-

puter Science, pages 117–125. Springer, April 1988.

[22] Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. Effi-

cient structure-preserving signature scheme from standard assumptions.

In Ivan Visconti and Roberto De Prisco, editors, SCN 12: 8th Interna-

tional Conference on Security in Communication Networks, volume 7485

of Lecture Notes in Computer Science, pages 76–94. Springer, September

2012.

[23] Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon,

and Vincent Naessens. Structure preserving CCA secure encryption and

applications. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances



BIBLIOGRAPHY 102

in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in

Computer Science, pages 89–106. Springer, December 2011.

[24] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Rosario Gen-

naro. Off-line/on-line signatures: Theoretical aspects and experimental

results. In Ronald Cramer, editor, PKC 2008: 11th International Con-

ference on Theory and Practice of Public Key Cryptography, volume

4939 of Lecture Notes in Computer Science, pages 101–120. Springer,

March 2008.

[25] Dario Catalano and Dario Fiore. Practical homomorphic macs for arith-

metic circuits. In Thomas Johansson and Phong Q. Nguyen, editors,

Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture

Notes in Computer Science, pages 336–352. Springer, May 2013.

[26] Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos

Vamvourellis. Algebraic (trapdoor) one-way functions and their appli-

cations. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography

Conference, volume 7785 of Lecture Notes in Computer Science, pages

680–699. Springer, mar 2012.

[27] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Adaptive pseudo-

free groups and applications. In Kenneth G. Paterson, editor, Advances

in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in

Computer Science, pages 207–223. Springer, May 2011.

[28] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network

coding signatures in the standard model. In Marc Fischlin, Johannes

Buchmann, and Mark Manulis, editors, PKC 2012: 15th International

Workshop on Theory and Practice in Public Key Cryptography, volume

7293 of Lecture Notes in Computer Science, pages 680–696. Springer,

May 2012.

[29] Julien Cathalo, Benôıt Libert, and Moti Yung. Group encryption: Non-

interactive realization in the standard model. In Mitsuru Matsui, editor,

Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture

Notes in Computer Science, pages 179–196. Springer, December 2009.



BIBLIOGRAPHY 103

[30] Melissa Chase and Markulf Kohlweiss. A new hash-and-sign approach

and structure-preserving signatures from DLIN. In Ivan Visconti and

Roberto De Prisco, editors, SCN 12: 8th International Conference on

Security in Communication Networks, volume 7485 of Lecture Notes in

Computer Science, pages 131–148. Springer, September 2012.

[31] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi

Tibouchi. Fully homomorphic encryption over the integers with shorter

public keys. In Phillip Rogaway, editor, Advances in Cryptology –

CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,

pages 487–504. Springer, August 2011.

[32] Yvo Desmedt. Computer security by redefining what a computer is.

NSPW, 1993.

[33] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.

IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[34] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptog-

raphy. In 23rd Annual ACM Symposium on Theory of Computing, pages

542–552. ACM Press, May 1991.

[35] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital

signatures. Journal of Cryptology, 9(1):35–67, 1996.

[36] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions

to identification and signature problems. In Andrew M. Odlyzko, editor,

Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in

Computer Science, pages 186–194. Springer, August 1987.

[37] David Fifield. The equivalence of the computational diffie–hellman and

discrete logarithm problems in certain groups, 2012.

[38] David Mandell Freeman. Improved security for linearly homomorphic

signatures: A generic framework. In Marc Fischlin, Johannes Buch-

mann, and Mark Manulis, editors, PKC 2012: 15th International Work-

shop on Theory and Practice in Public Key Cryptography, volume 7293



BIBLIOGRAPHY 104

of Lecture Notes in Computer Science, pages 697–714. Springer, May

2012.

[39] Georg Fuchsbauer. Automorphic signatures in bilinear groups and an ap-

plication to round-optimal blind signatures. Cryptology ePrint Archive,

Report 2009/320, 2009. http://eprint.iacr.org/.

[40] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-

knowledge protocols using signatures. In Eli Biham, editor, Advances

in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in

Computer Science, pages 177–194. Springer, May 2003.

[41] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive ver-

ifiable computing: Outsourcing computation to untrusted workers. In

Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume

6223 of Lecture Notes in Computer Science, pages 465–482. Springer,

August 2010.

[42] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Se-

cure network coding over the integers. In Phong Q. Nguyen and David

Pointcheval, editors, PKC 2010: 13th International Conference on The-

ory and Practice of Public Key Cryptography, volume 6056 of Lecture

Notes in Computer Science, pages 142–160. Springer, May 2010.

[43] Rosario Gennaro and Daniel Wichs. Fully homomorphic message au-

thenticators. In Xiaoyun Wang and Kazue Sako, editors, Advances in

Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes in Com-

puter Science, page 290. Springer, December 2012.

[44] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,

Stanford University, 2009.

[45] Craig Gentry. Toward basing fully homomorphic encryption on worst-

case hardness. In Tal Rabin, editor, Advances in Cryptology –

CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,

pages 116–137. Springer, August 2010.



BIBLIOGRAPHY 105

[46] Craig Gentry and Shai Halevi. Fully homomorphic encryption without

squashing using depth-3 arithmetic circuits. In Rafail Ostrovsky, editor,

52nd Annual Symposium on Foundations of Computer Science, pages

107–109. IEEE Computer Society Press, October 2011.

[47] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-

homomorphic encryption scheme. In Kenneth G. Paterson, editor, Ad-

vances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture

Notes in Computer Science, pages 129–148. Springer, May 2011.

[48] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to

play mental poker keeping secret all partial information. STOC ’82 Pro-

ceedings of the fourteenth annual ACM symposium on Theory of com-

puting, pages 365–377, 1982.

[49] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal

of Computer and System Sciences, 28(2):270–299, 1984.

[50] J. Groth. Homomorphic trapdoor commitments to group el-

ements. Cryptology ePrint Archive, Report 2009/007, 2009.

http://eprint.iacr.org/.

[51] Jens Groth. Simulation-sound NIZK proofs for a practical language and

constant size group signatures. In Xuejia Lai and Kefei Chen, editors,

Advances in Cryptology – ASIACRYPT 2006, volume 4284 of Lecture

Notes in Computer Science, pages 444–459. Springer, December 2006.

[52] Jens Groth and Amit Sahai. Efficient non-interactive proof systems

for bilinear groups. In Nigel P. Smart, editor, Advances in Cryptology –

EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,

pages 415–432. Springer, April 2008.

[53] Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in Cryp-

tology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa

Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 554–

571, 2014.



BIBLIOGRAPHY 106

[54] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-

key encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,

Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes

in Computer Science, pages 590–607. Springer, August 2012.

[55] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wag-

ner. Homomorphic signature schemes. In Bart Preneel, editor, Topics in

Cryptology – CT-RSA 2002, volume 2271 of Lecture Notes in Computer

Science, pages 244–262. Springer, February 2002.

[56] Chihong Joo and Aaram Yun. Homomorphic authenticated encryption

secure against chosen-ciphertext attack. Cryptology ePrint Archive, Re-

port 2013/726, 2013. http://eprint.iacr.org/.

[57] Marc Joye and Benoit Libert. Efficient cryptosystems from 2k-th power

residue symbols. In Thomas Johansson and Phong Q. Nguyen, editors,

Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture

Notes in Computer Science, pages 76–92. Springer, May 2013.

[58] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft.

Xors in the air: practical wireless network coding. volume 16, pages

497–510, 2008.

[59] Sébastien Kunz-Jacques and David Pointcheval. About the security of

MTI/C0 and MQV. In Roberto De Prisco and Moti Yung, editors,

SCN 06: 5th International Conference on Security in Communication

Networks, volume 4116 of Lecture Notes in Computer Science, pages

156–172. Springer, September 2006.

[60] Sébastien Kunz-Jacques and David Pointcheval. A new key exchange

protocol based on MQV assuming public computations. In Roberto De

Prisco and Moti Yung, editors, SCN 06: 5th International Conference

on Security in Communication Networks, volume 4116 of Lecture Notes

in Computer Science, pages 186–200. Springer, September 2006.

[61] Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly

homomorphic structure-preserving signatures and their applications.



BIBLIOGRAPHY 107

In Ran Canetti; Juan A. Garay, editor, Advances in Cryptology –

CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science,

pages 289–307. Springer, August 2013.

[62] Ueli Maurer and Stefan Wolf. The relationship between breaking the

Diffie-Hellman protocol and computing discrete logarithms, 1999.

[63] David Naccache and Jacques Stern. A new public key cryptosystem

based on higher residues. In ACM CCS 98: 5th Conference on Com-

puter and Communications Security, pages 59–66. ACM Press, Novem-

ber 1998.

[64] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In Jacques Stern, editor, Advances in Cryptology –

EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science,

pages 223–238. Springer, May 1999.

[65] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy

homomorphisms. Foundations of Secure Computation, Academia Press,

pages 169–179, 1978.

[66] Ronald L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm.

Internet Activities Board, April 1992.

[67] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method

for obtaining digital signature and public-key cryptosystems. Commu-

nications of the Association for Computing Machinery, 21(2):120–126,

1978.

[68] Claus-Peter Schnorr. Efficient identification and signatures for smart

cards (abstract) (rump session). In Jean-Jacques Quisquater and Joos

Vandewalle, editors, Advances in Cryptology – EUROCRYPT’89, vol-

ume 434 of Lecture Notes in Computer Science, pages 688–689. Springer,

April 1990.

[69] Secure hash standard. National Institute of Standards and Technology,

NIST FIPS PUB 180-1, U.S. Department of Commerce, April 1995.



BIBLIOGRAPHY 108

[70] Adi Shamir and Yael Tauman. Improved online/offline signature

schemes. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,

volume 2139 of Lecture Notes in Computer Science, pages 355–367.

Springer, August 2001.

[71] Claude E. Shannon. Communication theory of secrecy systems. Bell

Systems Technical Journal, 28(4):656–715, 1949.

[72] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption

with relatively small key and ciphertext sizes. In Phong Q. Nguyen and

David Pointcheval, editors, PKC 2010: 13th International Conference

on Theory and Practice of Public Key Cryptography, volume 6056 of

Lecture Notes in Computer Science, pages 420–443. Springer, May 2010.

[73] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.

Fully homomorphic encryption over the integers. In Henri Gilbert, edi-

tor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lec-

ture Notes in Computer Science, pages 24–43. Springer, May 2010.

[74] Brent R. Waters. Efficient identity-based encryption without random

oracles. In Ronald Cramer, editor, Advances in Cryptology – EURO-

CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages

114–127. Springer, May 2005.


