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INTRODUCTION

raphene, a monolayer of sp?-bonded carbon atoms, is not only the basis for graphite

but also a new material with immense potential in microelectronics for its exceptional

electrical transport properties, like high conductivity and high charge mobility. Although
graphene or single layers of graphite have been subject of research since the 1960s, the special and
unique properties of this material have become more popular after 2004. This was mainly pushed
forward by the pioneering work of Andre Geim and Konstantin Novoselov who received the
Nobel Prize in Physics in 2010. Within the last years the excellent and unique electronic, optical
and mechanical characteristics of graphene were systematically analyzed and explored, making
this material ideally suiting for various applications. As a result of the promising properties of
graphene, it seems to be an ideal candidate to take over from silicon for the next generation of
faster and smaller electronic devices [21]. Yet, graphene is semi-metallic with no band gap, which
severely limits its applications in electronics because - as is widely known- the electronic band
gap plays a central role in modern device physics and technology and controls the performance
of semiconductor devices. Moreover, it is a property inherent to semiconductors and insulators
which considerably govern their transport and optical properties [69]. It has been possible to open
and tune the band gap of graphene bilayers through selective control of carrier concentration in
the single layers by applying an electric field [69] or by doping [53]. These results have profound
implications for potential applications of graphene in electronics and for graphene-based devices
modeling.

To deal with the basic kinetic transport equations remains too expensive for real life appli-
cations. Nevertheless from transport equations it is possible to derive simpler fluid dynamic
equations for macroscopic quantities like particle, velocity, or energy densities. They represent a
good compromise between physical accuracy and computational cost.

Recently, the Hilbert or Chapman-Enskog techniques have been applied to different situations
arising in a hierarchy of macroscopic models [24]. They amounts to asymptotic expansions of the
distribution function in terms of Knudsen number, i.e. the ratio of the particle mean free path to
a characteristic (physical) length scale.

Close to equilibrium, simple models based on drift-diffusion equations are able to capture and
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reproduce quantitatively the main particle transport characteristics. Nevertheless the description
of high-field phenomena such as hot electron propagation, impact ionization and heat generation
in modern electron devices requires an accurate modeling of energy transport in semiconductors
which the standard drift-diffusion models cannot describe properly because they don’t include -
among dynamic variables - the energy. In the presence of high electric fields, in the stationary
equations involved, the convective and the drift terms are dominant. This can be handled by the
Scharfetter-Gummel discretization technique [62]. The key idea is to approximate the current
density along each edge in a mesh by a constant, yielding an exponential approximation of the
electric potential. This technique is related to mixed finite-element and finite-volume methods.

Furthermore, for many applications in optoelectronics one needs to describe the transient
interaction of electromagnetic radiation with carriers in complex semiconductor materials and
since the characteristic times are of order of the electron momentum or energy flux relaxation
times, some higher moments of the distribution function must be necessarily involved [32]. There-
fore these phenomena cannot be described within the framework of the drift-diffusion equations
(which are valid only in the quasi-stationary limit) and generalizations of the drift-diffusion
equations have been developed which would incorporate energy as a dynamic variable and also
would not be restricted to quasi-stationary situations. These models are generally speaking
called hydrodynamic models and the present work aims at formulating models of this type for a
properly description of charge transport in graphene, which is extremely important for growing
technological development in Computer-Aided Design (CAD) tools.

A standard approach to derive macroscopic models, like drift-diffusion, energy transport or
hydrodynamic ones, is the moments method. Intrinsic to this procedure is closure condition that
completes the evolution equation for the moments. To close the system, approximations for the
Boltzmann equation were originally employed by Grad [22]. Grad’s closure relies on an expansion
of the one-particle distribution in Hermite polynomials (for more details see also [24]).

An alternative method is to choose the moments of interest and assume that the correspond-
ing approximate distribution function be that the one with highest entropy among all those that
satisfy the constraints of our prior knowledge. Moment closures obtained in this manner appear
to have many desirable mathematical properties including hyperbolicity. In fact, in contrast
to Grad’s classical closure [22, 23], the hyperbolicity of the equations is not lost for states far
from equilibrium, so that entropy-based closures can be used for the simulation of strongly
non-equilibrium processes.

This approach, generally known as Maximum Entropy Principle, will be exploited to close the
hierarchy of moment equations obtained in the models presented below.

The plan of the Thesis is as follows.

Chapter 1 provides an overview of the electronic band structure of graphene, while in Chapter
2 the semiclassical kinetic model is briefly recalled.

Basic elements of the Maximum Entropy Principle (hereafter MEP) are recalled in Chapter 3,



starting from the definition of "entropy". Furthermore we show as it is possible to employ it as an
inference method to obtain the results achieved in the context of the statistical mechanics (see
[26, 48]).

The original results of this Thesis are presented in Chapter 4 and 5.

Chapter 4 focuses on the formulation of semi-classical hydrodynamic models based on the
MEP without taking into account quantum effects and it is mainly concerned with describing
models formulated in [34, 35] by L. Luca, V. Romano. The models presented in this Chapter
differ in the choice of moments to assume as basic field variables. Firstly main features of the
semiclassical transport equation in graphene are recalled and general considerations regarding
semi-classical hydrodynamic models are presented.

Then the first model analyzed is the linear hydrodynamic model formulated in [12] and a
new model with the same moments has been developed in [35] but taking into account fully non
linear closure relations. The comparison indicates that non-linear closure relations do not lead to
a better result than the linearized ones. Secondly we try to get better results by adding further
field variables. We analyze the case in which the moments added are expectation values of powers
of energy [34] and it has been found that these further moments do not improve the accuracy of
the model. In this last case we have considered only the linear closure relations since fully non
linear closure relations lead to problems of integrability of the functions involved.

Then another model based on MEP is proposed but including - among the field variables
- the deviatoric part of the stress tensor [35]. For this choice of moments both linear and non
linear closure relations have been considered and it has been found that for low and moderate
electric fields both models are reasonably acceptable but it is crucial to include - among the
variables - the deviatoric part of the stress tensor to maintain good accuracy in a wider range
of applied electric fields. Therefore apparently the results confirm that the nonlinearity is not
critical for accuracy and this agrees with the literature in other fields like phonon transport
[18] and radiative transport [39]. The validity of all the models presented in this Chapter is
assessed by comparing the mean values of energy and velocity with those obtained from the
direct solutions of the Boltzmann equation proposed in [15, 61] in the simple case of suspended
monolayer graphene for several values of the Fermi energy and electric field.

To take into account quantum phenomena, in the last Chapter a quantum hydrodynamic
model for charge transport in graphene is derived from a moment expansion of the Wigner-
Boltzmann equation and a preliminary analysis of the mathematical structure of the model is
performed [36]. The analogous formulation of MEP for the Wigner function w is not straightfor-
ward mainly because w is not a probability density function. Therefore this hydrodynamic model

has been obtained under the following assumptions (see also [58]):

1. aregime in which quantum effects can be considered only a perturbation of the semiclassical

model;

2. the collision term has the same form as the semiclassical case, an approximation widely

3
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Figure 0.1: Schematic rappresentation of the strategy adopted for development of Quantum
Corrected Hydrodynamic models

discussed in [56].

The needed closure relations are obtained by adding quantum corrections based on the
equilibrium Wigner function to the semiclassical model formulated in [12, 34, 35] by exploiting
the Maximum Entropy Principle. In other terms, the strategy adopted for formulating these
models combined quantum and semi-classical approaches as shown in Fig. 0.1.

The expression of the equilibrium Wigner function which takes into account the energy band
of graphene has been obtained by solving the corresponding Bloch equation. To assess the validity
of the proposed model numerical simulations are under current investigation.

Lastly, starting from this hydrodynamic model a quantum energy-transport and a quantum
drift-diffusion models are deduced in the long time asymptotic limit.

Some details of models are postponed in Appendices.



CHAPTER

THE ELECTRONIC BAND STRUCTURE OF GRAPHENE

Graphene has a honeycomb crystal lattice as shown in Fig. 1.1 (a). The four valence electrons of
carbon atoms in the lattice occupies three in-plane sp? hybrid orbitals that are responsible for
the covalent bonding, and the p, orbital extending out of the basal plane.

The atoms in graphene form two interpenetrating triangular Bravais sub-lattices and each
unit cell of graphene is defined by the 2D lattice vectors a; and ag [13]. There are two carbon
atoms in the sublattices A and B, respectively. The vectors a; and ag can be espressed as

BERE (3 VB
MMy ) BT

where a ~ 1.42A is the nearest-neighbour distance which is the length of covalent bonds between
carbon atoms in the A and B sites. This value is close to that in the benzene molecule, and
intermediate between the single (C-C) and double (C=C) bonds with lengths of 1.54A and 1.31A.

The reciprocal lattice vectors by and by defined by the condition a;-b; = 276;; are

by = 2% (1LV3), b= 2 (1.-v3).
3a 3a

From these definitions, one could notice that the first Brillouin zone of the reciprocal lattice is
bounded by the planes bisecting the vectors to the nearest reciprocal lattice points. This gives
a first Brillouin zone of the same form as the original hexagons of the honeycomb lattice, but
rotated with respect to them by 7.
The valence () and conduction bands (7*) of graphene touch at high symmetric six points which
include, in the first Brillouin zone, two type of the corners, generally labeled with K and K’ as
shown in the Fig. 1.1 (b). Explicitly, their positions in momentum space are given by

27 (. V3 _ 2n (1 _ \/_§ )

K=— 17_ ) K/—_
3a 3 3a 3
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Three nearest-neighbor vectors in real space are given by
a a
J1=5(1,V3)  83=5(1,-V3)  83=-a(1,0)
while the six second-nearest neighbors are located at
01 =ta; 52’ =+ag 63/ =+(ag—ay).

The valence electrons of carbon are strongly bound to the ions in graphene, and the crystalline

Figure 1.1: a) The hexagonal lattice of graphene, with the nearest neighbor §; and the primitive
vectors aj. b) The Brillouin zone of graphene, with the Dirac points K and K’ indicated. Close to
these points, the dispersion of graphene is conical and the density of states is proportional to the
absolute value of the energy.

orbitals are not significantly distorted from the atomic orbitals for electrons. Consequently, the
electron structures of graphene could be described through the tight-binding model, where the
lattice symmetry is included as a periodic perturbation of electrons occupying the atomic orbitals.

The sp? hybridized states form fully occupied (empty) o (¢*) bands with a huge gap of ~ 12
eV, whereas the 7* () states form a single band with conical self-crossing points at K and K’ at
the corners of the Brillouin zone of graphene. The conical feature of graphene band structure
with a linear dispersion at the Fermi level is the origin of its unique electronic properties.

Due to the presence of a wide gap between the bonding o and anti-bonding ¢* bands, they are
frequently neglected as they are too far away from the Fermi level to play a role and a simplified
tight-binding model can be constructed by considering only the hopping of electrons between the
nearest-neighbour and second-nearest-neighbour p, orbitals in the electronic Hamiltonian, that
is

H=-t ) (a;?iba,j +H.c)-t' ) (a;’iag,j + b;,iba,j +H.c.)
@0 @00
where H.c. denotes the hermitian conjugate terms, a* (a) are the creation (annihilation) operators
for electrons with spin o in the sublattice A. Similarly, b* (b) creates (annihilates) an electron on

sublattice B. t = 2.7 eV is the hopping parameter between nearest-neighbour orbitals in the A

6



and B sublattices, while ¢’ is the hopping parameter for nearest hopping within the same A or
B sublattices. This model was firstly used by Wallace in 1947 [67] to study the band structure
of graphene and graphite. Solving the one-electron Schrondinger equation yields the relation

between energy & and wave vector k = (ky,k,) is
E:(k) = +t\/3+f(k) —t'f(k),

where the function f is

f (&) = 4cos (%lkx) cos(a\/gky) +2cos (a\/g'ky).

The sign + refers to conduction band, while the sign — refers to the valence band.

A nonzero value of ¢’ breaks the electron-hole symmetry between 7 and 7* bands with respect

Figure 1.2: The electronic band structure calculated from the tight-binding model, with hopping
parameters ¢ = 2.7 eV and ¢’ = —0.2¢

to & =0, and shift the conical point from & =0 to & = 3t. In Fig. 1.2 the 7 (7*) bands of electrons
in graphene are plotted with ¢’ set to be —0.2¢, from which one could conclude that the Fermi
surface is located at the K and K’ points in the Brillouin zone.

For a typical semiconductor, the energy dispersion at band edge can usually be expandend as

p2

2m*

5¢(p)= +
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where m* is the effective mass of an electron (hole), p is the modulus of the crystal momentum

p = ik and A the reduced Planck’s constant. The electronic velocity is

that is a function of energy & and effective mass m™, which is finite.

In contrast to the parabolic energy-momentum dispersion relation for electrons in a typical
semiconductor, the linear dispersion near the Fermi level (at K and K') in graphene indicates
that the electrons behave as massless Dirac fermions. This relation between & and k is known as
Dirac cone, and the K (K') points in the Brillouin zone are called the Dirac points.

At these points &.(k) = 0 and by assuming that ¢/ = 0, the Hamiltonian describing the low

energy excitations near the Dirac points ( for |k|a << 1) 1 can be written in the form

H=vF( 0 px+ipy)

px_ipy 0

where the components of the operator 6 are the usual Pauli matrices and vy = % ~1.1x 106%
is the Fermi velocity of electronic states at the Fermi surface. Hence near the Dirac points, the

eigenvalues of H give the following linear dispersion relation
&(p)=+tvrp (1.1

Electrons, which mostly contribute to the charge transport in pristine graphene, are indeed those
being in the two valleys around the Dirac points. Therefore, four populations of electrons will be
taken into account, which will be labeled by ¢ = K, K’ for the valley and A = ,7* for the bands,

respectively. On account of (1.1), their energy is given by
Era(k)=sahvplk—kyl, (1.2)

with k, the position of the Dirac point ¢ and
-1 if A=n
SA =
1 if A=n"

If we assume t' # 0 in the tight-binding approximation, the Hamiltonian describing the energy

in the proximity of Dirac points can then be written in the form

a +1
H=UF( Dx py)

Px_ipy -

with eigenvalues

&E(p) = zvp\/ p? +a? (1.3)

1For simplicity, here and in the following expressions wave vectors are measured with respect to the K (K') point

8



introducing an energy gap a at the Dirac points.
For the formulation of semi-classical hydrodynamic models we adopt the linear dispersion
relation (1.1), while, to develop quantum corrected hydrodynamic model in the last Chapter, ¢ is

not neglected and the regularization (1.3) is used.






CHAPTER

SEMI-CLASSICAL KINETIC MODEL

In a semi-classical kinetic setting, the charge transport in graphene is described by two Boltzmann
equations, one for electrons in the valence () band and one for electrons in the conduction (7*)

band in each set of equivalent Dirac points (K or K')

ofA(r,k,t)

- +vAK) -V A K, ) — %E Vi Ak, 1) = €Ak, ), A =7, 1",

where fA(r,k,t) represents the distribution function of charge carriers in the A-band at position
r, time ¢ and wave vector k. To simplify explicit references to the valleys around K or K’ have
been omitted.

V, and Vi are the gradients with respect to the position and wave vector respectively, g is
the elementary (positive) charge, while the microscopic velocity v4 is related to the energy band
by vA(k) = %Vkéaa JK)=ax vF%. In the models presented below the electric field E is assumed
external and constant.

%4 is the collision term representing the interactions of electrons with acoustic phonons (ac),
longitudinal (LO) and transversal (T'O) optical phonons, and K—phonons.

The LO and T'O phonons are in-plane (with respect to the plane of the lattice) modes, which
give rise to electron intravalley transitions, which mostly involve phonons with wave vectors
near to the center I' of the Brillouin zone (for this reason they are also called I phonons). The
wave vectors q of these phonons are near to zero and for their dispersion relations the Einstein
approximation can be used, according to which hw = const, with w the phonon frequency. Such
transitions can be both intraband and interband.

The K—phonons are not a real phonon branch. Their name derives from their wave vectors
being close to the K or K’ point [33]. They belong to an optical branch and induce intervalley

scatterings. An Einstein approximation with a mean phonon energy is used for them. Interaction

11
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of electrons with out-of-plane phonon modes, the so-called Z phonons, or with in-plane phonons
having wave vectors far from the I' or K point is negligible [5], even though these phonons can
play some role in thermal effects. For an accurate description of phonon dispersion relations
and thermal conductivity in graphene, we refer to [17, 52, 55] while, for a general review about
mesoscopic theories of heat transport in nanosystems, the interested reader is referred to [63].
As above, the collision term is given by summing the contributions from the several types of
scatterings. The generic term due to a single scattering from a state k in the A-band to a state k'

in the B-band reads (omitting the dependence on space and time for simplifying the notation)

cg(s) (k)

f [ (s) (k/ k)f k) (1 f (k)) (s) (k k,)fA(k)(l fB(kl)] dk,
s=ac,LO,TO,K, 2.1)

(2m)?

where w(s) (k,K') is the transition rate. If A = B, there is an intra-band scattering, otherwise it
is an inter-band scattering. The first Brillouin zone has been extended to all R2. It is important
to remark that, due to the peculiar band structure, in particular the zero energy gap, the Pauli
exclusion principle plays a significant role and the use of a linearized collision operator is not
physically accurate.
In the case of acoustic phonons, the elastic approximation is usually considered. Therefore,
the collision is intraband and can be written as
€A (k) = (2% f WOk W) (FA ) - A0 dK, 2.2)
)% Jr2
aD2 kpTr

20hv2,
convex angle between k and k/, D?I . 1s the acoustic phonon coupling constant, v, is the sound

where w@)(k',k) = A1 +cos0")5(&y, (k') — &y, (k) with A = . Here 0" is the

speed in graphene, ¢ is the graphene areal density, kg the Boltzmann constant and 77, the
graphene lattice temperature, which will be kept constant.
For a generic optical phonon interaction and a K-phonon interaction from a state in band A

to a state in band B the transition rate splits as
ws (k) = w0 k) + w7k K), s=LO,TO,K,

where w(s +)(k k') and wf: B)(k k') represent emission and absorption processes respectively.
In the case s =LO,TO we get

w Pk, k) = AYD2 [1-n,apapcos(d +6")] (NB 1 %)6(8B(k’)—é"A(k)ihw)

where A® = n/ows, D% is the optical phonon coupling constant and Ny, is the Bose-Einstein

distribution



with hws phonon energy. 6 and 6’ are the convex angles between k and k' —k and between k'’ and

k' — k. 1, is a parameter which assumes the following values

[ 1 if s=LO
5= _1 if s=TO

Hereafter hwyro and hwpgo, according to literature data, are considered equal with a common
value denoted by hwop. Therefore, the distributions of LO and T'O phonons will be the same and
will be denoted by N9”.

If s = K the transition rate is given by

1 1

5%5 5((503(k,)—<5"A(k)i th),

where A®) = 1/cwg and D?{ is the K-phonon coupling constant.
At equilibrium the distribution of electrons, both in the conduction and valence band, are

given by the Fermi-Dirac distribution

1
é?(k)—eF)’
kpTy,

fro(r,k,t) = —00 < &(k) < +o0, 2.3)

1+exp(

where ep is the Fermi energy. The lattice temperature T7, will be considered constant and equal
to 300 K. In pristine graphene er = 0 but applying a gate voltage it is possible to modify the value
of er creating a kind of doping like in conventional semiconductors. If e is positive and high
enough, there is a sort of n-doping and the only significant contribution to the current is from
electrons in the conduction band. Analogously, if er < 0 there is a sort of p-doping.

From now on, to simplify, we will only consider the conduction band but the results can be
easily extended to include the valence band. Therefore we will consider a unique Boltzmann
equation

of (r,k,t)
—

1
(2m) s=ac,LO,TO,K R2

+v(k) - Vef (e, Kk, 1) — %E Vi (K, ) =

for the distribution f(r,K, ) of electrons in the conduction band. Of course in the collision term
only intraband scatterings are now present. In the k-space, a reference frame centered at the

Dirac point will be assumed.

13






CHAPTER

INFORMATION THEORY APPROACH TO STATISTICAL MECHANICS

In the context of the Bayesian interpretation of probability, Maximum Entropy Principle
(MEP) is being increasingly applied to construct descriptive and predictive models of complex
physical systems, from large experimental data sets. Both its wide applicability and the success it
obtained in different contexts are given by its conceptual simplicity and mathematical soundness.
MEP is based on the information theory of Shannon and was devised for applications in statistical
physics by Jaynes [26] (for a general review of the application of MEP to semiconductors the
interested reader is referred to [11, 44]). The central idea of this principle is to estimate the
distribution of the particles of the system among the microstates, on the basis of the partial
knowledge of some macroscopic data. The latter informations are specified in the form of some
simple moment constraints. Here we concisely review the basic elements of MEP, starting from
the notion of "entropy", and we show that it is possible to obtain all the expressions of statistical

mechanics by maximizing it.

3.1 Definition of Entropy

Entropy is defined as the quantitative measure of disorder or randomness in a system. The
notion of Entropy was first introduced by Clausius in the setting of Physics, and it deals with the
transfer of heat and energy within a system. Later Boltzmann provided the statistical analogue
of thermodynamic entropy linking the concept of entropy with molecular disorder or chaos with
the well-known relation: Entropy S is proportional to the natural logarithm of a quantity W
representing the maximum number of microscopic ways in which the macroscopic state (such as

temperature, pressure, volume, etc.) can be realized, that is
S=kpInW,

15



CHAPTER 3. INFORMATION THEORY APPROACH TO STATISTICAL MECHANICS

in which kg is the Boltzmann constant.

In information theory in 1948, Shannon borrowed the concept of entropy from thermodynamics

introducing a unique quantity H that measures the amount of uncertainty of an unknown or
random quantity. Because of the similarity of the mathematical structure and physical meaning,
the quantity H is also named entropy, as is the quantity S introduced in thermodynamics and
statistical mechanics.
Unlike Clausius-Boltzmann entropy, since Shannon’s entropy can be interpreted as a measure of
our ignorance about a system, it is not a property of the system, but of our knowledge about it.
Then it is dependent on the observer/experimenter interacting with the system.

First of all, let us consider the discrete case. Let X be a descrete random variable taking the

values x1,x9,...,xn such that

pr=1

M=

k=1

where py, is the prior probability that X assumes the value x;. Let us suppose that we don’t know
the prior probability but we have only a partial knowledge about it. Therefore we require that

the measure of the uncertainty H satisfy the following three conditions
1) H(p1,p2,...,pnN) is a continuous function of p;, for i =1,...,N;

2) If all p; are equal, the quantity H (%, e %) is a monotonically increasing function of N;

3) The composition law. If the values are arbitrarily divided into m groups (x11,...,%1%,),(x21, ..., X2p,),

o (Xm1, .., Xme,, ), and the corresponding probabilities are w1 =p11+p12+... + P1kys o0y Wm =

Pm1+Pm2+...+Dmk, , then we must have

H(p1,p2,....pN) =Hwi,wa,...wy)+wiH(p11lwi,...,p1p, [w1)+... 4w H(pm, W, ..., Dk, [ Wm)

3.1)
where the vertical bar denotes conditional probability. The composition law is also called con-
sistency or additivity, which means that the uncertainty measure H must be independent

of the type of probabilistic test, or of the grouping of the values.

The first axiom represent just a technical assumption and the second one is a formalization
of the intuitive idea that more choice means greater uncertainty. The third axiom is the least
obvious. We justify it when the values of X are collected into two disjoint sets A = {x1,x9,...,x,}
and B = {x;+1,...,4,} by constructing a compound experiment: one of the two sets, A or B, is
selected with probability w1 and wq respectively. If the set A is chosen then we select x; with the

conditional probability
% ifx;e A
PX =x;]A)={ "
0 otherwise
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3.1. DEFINITION OF ENTROPY

Similarly if the group B is chosen.
Let Y be the result of the compound experiment. If x; € A,

P(Y =x;)=P(A)P(Y =x;|A) = w1% =p; =PX =x;).
1
We get the same result if x; € B. Therefore X and Y have the same distribution. The uncertainty
before the experiment H(p1,po,...,pn) is the sum of the amount of uncertainty H(wi,w2) and a
weighted sum of the entropies conditioned on each group. In fact when the group A or B is chosen,
L 3 3 P D Pr Pre Pr+ Prin
the remaining uncertainty is H (w—i, w—j, ey w_l) or H( w—zl, w—zz, ey w—2). Thus, after the group has
been specified, the average uncertainty is

Py g essy

(& P2 . &)+w2H(pr+1 DPr+2 pr+n).
wy  wa wy
We expect that the uncertainty about the compound experiment minus that removed by selecting

the group must equal the average uncertainty after the group is specified, that is

H(p1,p2,....,pn)—H(wi,wg) = le(ﬂ,Q,---,&) +W2H(pr+1,pr+2,...,pr+n),
w1 wi w1 w9 ws w2

which is the third axiom in the particular case of two subsets.

Proposition 3.1. Let k € R* a constant depending on the unit to be used, the measure H have the

unique form:
N

H(p1,p2,....pN)=—k )_pilogp; (3.2)

i=1
where we adopt the convention that 0log0 :=0.

Different logarithmic bases result in different entropy units and the constant % is usually set
to unity. The unit has no relevance in maximizing entropy. For convenience, the logarithmic base
is always assumed to be e (the Nepero number) in Maximum Entropy Method. Therefore, unless
otherwise specified, we assume log =log, =In.

To prove that (3.2) is the only function satisfying the axioms 1)-3) we need the following

lemma.

Lemma 3.1. Let X be a discrete random variable uniformly distributed on the finite set {x1,...,xn}.
Then H(+,...,~) = kInN with ke R".

Proof. Let divide the N values {x1,...,xn} into £ groups. Each group contains r; values, such
that Y% | r; = N. Applying (3.1) we have

L g my,yrig(t L
H(N""’N)_H(N""’N)+ZNH(ri""’r,-)'

i=1
Now consider the special case of r1 =rg =... =r; = m. Every group has m values, mk = N. Then
11 1 1y &m_ (1 1 1 1 11
H|(—,..—|=H|-,.,—-|+) —H|—,...,—|=H|—,...,—|+H|—,...,—
(N’ ’N) (k’ k) i:le (m m) (k k) (m m)

17



CHAPTER 3. INFORMATION THEORY APPROACH TO STATISTICAL MECHANICS

Let denote with f

1 1

we have
f(N)=f(mk)=f(m)+ f(k) withm,k positive integers

The special case in which m =1 and N =1 implies f(1) = H(1) = 0 confirming that Entropy is zero

when one outcome is certain to occur. By induction it is straightforward to prove that
f(N®)=RF(N). (3.3)

Thus we observe that f(IN) = kIn N where k is an arbitrary integer satisfies the previous func-
tional equation. Let’s show that it is the sole family of solutions.
Let s and ¢ be two positive integers with ¢ > s > 2. It is possible to find two integers m,n defined

up to a common factor, such that

m _Int_m+l (3.4)
n Ins n
which implies

mlns<nlnt<(m+1lns — s™ <¢* <s™*L.

From the monotonicity of the function f we have f(s™) < f(t*) < f(s™*1) and applying (3.3) we

obtain
mf(s)snf()<(m+1)f(s). 3.5)
From (3.4) and (3.5) we get
f@ Int|] 1
f(s) Ins = n’ 3.6)

Since n can be chosen arbitrarily large

% = E—z = constant. 3.7

We now prove that the only expression that satisfies the axioms 1)-3) is Shannon’s entropy
(3.2). Hereafter we use simplified notation S(A) to indicate the entropy associated to generic
random variable A. Therefore S(AB) denotes the joint entropy of random variables A and B,
while S(A|B) denotes the conditional entropy which represents a misure of our ignorance of state
internal to the system A, given the states of one or more specified other system B with which it

has correlation.

Proof. Next, let us consider any rational numbers

pi=%  i=1..N

8
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3.1. DEFINITION OF ENTROPY

where g; are any positive integers and g = Zﬁ\i 18i- -The system Q = {x1,...,xn} is assumed to be
described by the probability distribution {p; = %}izlmN.

Consider N statistically independent systems, %81, %o, ..., %8N , each of which contains g; equally
likely states {b;1,...,b;4,}. We construct the system 28 dependent on Q as follows. 28 contains g
events which are partitioned into N groups: %8;,%s,...,%n and if Q is in the state x; then the
system 9; is chosen. Since %;(1 <i < N) has g; events, from Lemma A.1 f(g;)=H (é,..., é) =
Clng;. Let S(B|Q2) be the mean conditional entropy of the system 28 conditioned on Q2

N
SBIY=C) pilng;,
i=1

where C > 0 is a constant depending on the unit to be used. If we now consider the compound
system Q, the joint probability to have () in the state x; and 28 in a specific state of 28; is given
by p; x é = é, then the system Q2 has a uniform distribution with g states. This implies that
S(QAB) = H(é, ey é) =Cln g. Applying the composition law we get

S(QB)=S(Q)+S(AB|Q),
which implies
H(p1,p2,-,pn) = S(Q) = S(QB) - S(BI) = Clng ~C}_pilng;=-C} pilnp;.
i i
By employing continuity axiom, the proof extends to the case of real values. |

Proposition 3.2. The uniform distribution on the finite set {x1,...,xN} is the maximum entropy

distribution among all discrete distributions supported on this set, that is

1 1
H(N,---:N)ZH(Pl,pZ,---,Pn)- (38)

Equality holds if and only if p; = % foralli=1,...,N.

Proof. The maximum value of the entropy can be obtained calculating the maximum value of

the function H(p1, pe, ..., pN) subject to the constraint:

=

pi=1
1

~
1l

The above problem is a constrained optimization problem, which is usually addressed by the

method of Lagrange. Consider the Lagrangian functional ¥

N N N
L(p1,02,-,PnsA) =H(p1,pz,...,pzv)—/1(l— pr,) =—-k) pilnp; —A(l— Zpi)
z:l l=1 l=1
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CHAPTER 3. INFORMATION THEORY APPROACH TO STATISTICAL MECHANICS

where A is the Lagrange multiplier associated with the constraint. Maximizing the unconstraint

Lagrangian £ we obtain a solution to the constrained maximum entropy problem. This can be

achieved by setting:
0L _ : _ _ A .
ﬂ—O L—].,...,N, pi—exp(z—l) l—l,.-.,N,
AL _ N . _
51 = 0. 1-31,pi=0.

Note that the probabilities p; do not depend on index i. Therefore

% lﬁi (A 1) 1> (/1 1) !
i = X _— = X _ - = —
izlp izlep k P k N

from which it can be deduced that
1 .
pi:ﬁ l:1,....,N.

It follows that the uniform distribution p; = % is the only stationary distribution for £. To see

that, now we prove that the entropy is maximized by the uniform distribution, namely that

N 1Y 1
—Zpilnpi 2——Zln— =InN.

i=1 N
Indeed
N N N N N 1 N
InN + Zpilnpi: pilnN + Zpilnpiz pi(lnN+lnpi):Zpiln(Npi):NZNpiln(Npi)EO.
=1 i=1 i=1 =1 i=1 1=1

The last inequality! follows because xInx = x — 1, x € R,.. It is obvious that the equality occurs if

andonly if p; = +,i=1,..,N. [ ]

Hence, given no information about a discrete distribution, the maximum entropy distribution
is the uniform distribution. This result suggests a theoretical justification of the Laplace’s
principle of indifference (sometimes called the principle of insufficient reason) which states that
given mutually exclusive and exhaustive indistinguishable possibilities, each possibility should

be assigned equal probability of %

Proposition 3.3. Consider a system of two components X, Y taking on values in Q ={x1,...,%nneN
and I'={y1,y2, ..., ym}menN respectively. Assume that X and Y have the joint probability rj; that
X and Y occupy the states xj, and y; respectively. The classical (Shannon) entropy S(XY) of the

composite system is

S(XY)=) S(XIY =) +S(X).
l

1Here we used again the convention that 01In0:= 0
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3.1. DEFINITION OF ENTROPY

Proof. Let {py,...,pn} and {q1,...,gm} be the probability distributions of X and Y respectively,
such that:

pr=PX =x3)
q1 =P =y).

Let cj; the conditional probability of X, given Y

PX =x,Y=y) rum

cp=PX =x3|Y =y)) = = .
H k I P(Y =y)) q1

The entropy of the composite system is

S(XY):=H(r11,712, -, "nm) =H(c11q1,¢12q2, -, Camqm) = =k Y_ qrcr In(grcpy) =
ki

(3.9)
=Y q (—75201@1 1n0kl) kY qilng (chl)-
l k l k
Since cj; is a probability density, it satisfy Zzzl cp;=1,withl=1,...,m.Then
S(XY):=qu (—l%chllnckl)—l%qulnql. (3.10)
l k l

Recall that the conditional entropy of X given Y is defined as the weighted sum of S(X|Y = y;)

over all possible values y; that Y may take.

S(XIY):=) q;SX|Y =y) =) qiH(c1,co1,.,cn1) = ) q1 (—EZCkz lanz), (3.11)
7 7 7 k

From (3.1), (3.10) and (3.11) we get

S(XY)=) S(X|Y =y)+SX).
[

As an immediate consequence of this proposition, we have the following result.

Corollary 3.1. If X and Y are independent random variables, then
S(XY)=SX)+S({).

Shannon’s entropy is an extensive quantity for statistically independent subsystems, a well
known property of the Clausius-Boltzmann entropy in classical thermodynamics.
Another property of the entropy is that it is unaffected by inclusion of the outcomes with zero
probability
H(pi,p2,....,pNn-1)=H(p1,p2,...,bN-1,0)  for allN eN.
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CHAPTER 3. INFORMATION THEORY APPROACH TO STATISTICAL MECHANICS

We have discussed the case of discrete variables. Shannon’s entropy defined for a discrete random
variable can be extended to situations when the random variable X is continuous. The concept of
entropy for continuous distribution was also presented in Shannon’s original paper [64] and is
referred to as the differential entropy. In this case, the distribution of X is expressed in terms of
probability density function (p.d.f.) p(x), which is assumed to be a continuous one for simplicity

and the differential entropy is defined as

+00
S(p(x)):= —Cf px)In p(x)dx. (3.12)

Differential entropy retains many of the properties of its descrete counterpart, but with some
important differences. For example, the entropy of a discrete random variable remains invariant
under a change of variable, however with a continuous random variable the entropy does not
necessarily remain invariant. Indeed if f € C L(R) is an arbitrary invertible transformation of a
random variable X such that x = f(¢) and ;é 0 for all ¢ € R then:

S(p(F ) = ~C f p(f(t))lnp(f(t))‘a—';‘dt

, it is evident that

where |g is the Jacobian of the transformation. Setting p(¢) = p(f (t))|%
when the Jacobian | | # 1 the entropy

+00
S(p@) = S((F() := —C f FUFENIn p(f(1)dt

does not preserve the previous structure. In order to overcome this difficulty, we introduce a
measure m(x) in the entropy expression which may or may not be normalized and we define the
so-called relative entropy as follow:
plx)
S(p(x)||m(x)) := —C p( )In dx. (3.13)
m(x)
If p(x) changes, m(x) also changes in the same manner so that the value of S remains unchanged.
In fact setting m(x) = m(f(¢)) | ?3_]; it is clear that

+00
S(p@)lImx) = ~C f 5(HIn (p((t)))dt

remains invariant under the generic change of variable x = f(¢) previously considered. In Maxi-
mum Entropy Method m(x) is the so-called prior (estimate) of the solution of model.
By analogy with continuous case, the discrete version of the relative entropy is defined as follows
= Pi
S(pllm):=-C Zpiln(—).
i=1 mi

Remark. If m(x) is assumed to be a probability distribution and consequently properly normal-

ized and p(x) is absolutely continuous with respect to m, the expression 2
_ +o00o p( )
S(pllm):= p@)In|{——|dx, (3.14)
—00 m(x)

2Motivated by continuity, we set 0ln % :=0.
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3.2. MAXIMUM ENTROPY INFERENCE OF A DISTRIBUTION: THE DISCRETE CASE

is known as the Kullback-Leibler divergence and represents a measure of the distance between
the two probability distributions p(x) and m(x) over a continuous random variable X. Clearly,
the discrete version is defined as follows

S(pllm):= Zpiln(p—i_).
=1

1 i

Unlike discrete entropy, differential entropy (3.12) can takes negative values. In contrast with
(3.12) the espression (3.14) remains non-negative. To prove this important property we have to

use the well know Jensen’s inequality
Proposition 3.4. Jensen’s inequality states that for any convex function f(x), we have

E[f ()] = £ [E(x)] (3.15)
where E[f (x)] is the expected value of a random variable x after applying a convex function f to it.

Note that an analogue of Jensen’s inequality exists for concave functions where the inequality
simply changes sign. This inequality allows us to establish that Kullback-Leibler divergence is

non-negative which is a fundamental result in information theory.

Theorem 3.1. Given p and m probability functions for which Kullback-Leibler divergence is
defined. Then
S(p(x)lm(x)) = 0,

and equality holds if and only if p = m almost everywhere.

Proof. Let ¥ ={x: p(x) > 0} be the support set of p. After observing that (3.14) is the expectated

value E,, [—ln (’;((;C)) )] with respect to a reference measure m, we have

S(p(x)|Im(x)) = —f p(x)In (M) dx=-1n (f p(x) (M) dx) (by Jensen’s inequality)
% p(x) b p(x)

=—In (j m(x)dx) =0.
S

(3.16)

Since Inx is a strictly concave function of x, we have equality if and only if 'I’)L((;‘)) =1 everywhere,
i.e., p(x) =m(x).

|

3.2 Maximum entropy inference of a distribution: the discrete

case

Let consider a discrete random variable X with n possible outcomes x1,x2,...,x,. Let us suppose

that some averages < f,(x) >=3"_

1Pifr(xi), r=1,2,...,m are known where f;. : {x1,x2,...,x,} — R

23



CHAPTER 3. INFORMATION THEORY APPROACH TO STATISTICAL MECHANICS

are assigned functions. We want to estimate the unknown probabilities p(x1), p(x9),..., p(x,) when
only the knowledge of the previous mean values is available.
The maximum entropy method consists of seeking the probability distribution which maximizes

the entropy of the system, subject to the previous constraints:

maxS|[p] subject to
P

n

Y. pi=1,

i=1
n

<frx)>=) pifr(x), r=1,..,m.
i=1

where p =(p1,p2,..., pn) ranges over the set of n-dimensional probability vectors.

This constrained optimization problem is typically solved by using the method of Lagrange
multipliers. Therefore let A, r = 1,...,m the Lagrange multipliers associated to the constraints,
we have to solve the following unconstrained optimization problem

n

n . m n
5”/=—CZpiln&—/10( pi_l)_z/lr <fr@)>=) pifrx;)|.
i=1 m; i=1 r=1 i=1

14

Applying the optimality condition

0’ ~0
ap;
one gets
pi= mie—ﬂo—Zflzl Arfr(xi)’ (317)

where the constant C has been included into the multipliers by means of the trasformation

1+ "—CO — Ag, % — A,. Using the normalizing condition and the other constraints we get

m; m .
pi= _le—):r=1 /lrfr(xz), AO =1nZ

VA
where
m ~
Z — Z mie_z.:n:;[lrfr(xi)
i=1

is the partition function.

The following lemma allow us to prove that (3.17) is a maximum for S.

Lemma 3.2. If (p1,p2,...,,Pn) and (q1,q92,...,q») are two probability vectors then the inequality

-y giln==<-)Y ¢g;ln— (3.18)
i=1 mi i=1 m;

holds.
Proof. Relation (3.18) is equivalent to

n .
Zqilnﬂ =>0.

i=1 Di
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3.2. MAXIMUM ENTROPY INFERENCE OF A DISTRIBUTION: THE DISCRETE CASE

From the elementary inequality xInx = x —1 valid for x = 0 (the case x = 0 of course must be
intended as limit), one has
n

Y giln==>p L —zz (——1) 0.
i=1 Di ] i=1

i=1 Pi

Now we can prove the following property

Theorem 3.2. The distribution
pi= mie—/lo—Z;":l Ar fr(xi)

is a maximum for S.

Proof. for p; = mje ML Ar/+@) we obtain that the value of entropy is

§= _Czpiln% =-C (_AO_ Z Arfr(xi))-
4 r=1

i=1 l

Let (¢1,99,...,9») an arbitrary probability vector satisfying the constraints. By the previous

lemma we get

—CZqiln% <-CY ¢;In 2L =—C(—A0—Z)err(xi)) -3

i=1 i i=1 m; r=1

Remark. If the random variable X taking values in a countable set, often additional technical
hypotheses must be necessarily introduced to ensure convergence of the series present in the

maximum entropy estimator. This usually gives restriction on the choice of the functions f;.

3.2.1 Maximum entropy distributions in Statistical Mechanics

Now, assuming X to be some microscopic quantity of a physical system, we show, with some
basic examples, how MEP has been used to derive all distributions of statistical mechanics by

maximizing the entropy of the system subject to some given constraints.

3.2.1.1 Maxwell-Boltzmann distribution

In statistical mechanics, Maxwell-Boltzmann statistics describes the average distribution of
identical but distinguishable non-interacting particles over various energy states in thermal
equilibrium, and is applicable when the temperature is high enough or the particle density is low
enough to render quantum effects negligible.

A fundamental physical assumption in statistical mechanics is that in the absence of addi-

tional information, for an isolated system of N particles at thermodynamical equilibrium, all the
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CHAPTER 3. INFORMATION THEORY APPROACH TO STATISTICAL MECHANICS

accessible microstates are equally probable. Hence, a macrostate corresponding to the largest
number of microstates is the most probable.

Suppose G; distinct quantum states have the same energy ¢;, i.e., G; is the degeneracy of
energy level ¢;. It is found that the number of microstates corresponding to the distribution of

particles {n;} is
N! .
G
[1in;! U '

where N is the total number of particles. Using the Stirling formula for the factorial expansion

W(n;}) =

Inm!=m(nm —1) (m >> 1), one gets

an:NlnN—Znilnni+ZnilnGi. (3.19)
2 2

Maximizing In W under the constraints

Y n;=N, (3.20)

Y €in;=E, (3.21)
i

yields the most probable distribution {rn;}:

n; Gl —PBe;
— T — 3 l22
N~ z° ©.22)

where Z is the partition function,
Z=Y Gie . (3.23)
i

Equation (3.22) are the Boltzmann distribution of particles among energy levels. Now we present
how this distribution is predicted by applying the maximum-entropy principle. Let p; be the
probability that a particle is found to be in energy level €; (i.e., in anyone of the G; quantum

states) and let S be the relative entropy defined as

S=-Ypilnt (3.24)

with m; as G; (the degeneracy of €;). Defining the average energy as ¢ = % the constraints read

Ypi=1, (3.25)

Y piei=¢. (3.26)
i

To maximize the entropy (3.24) under the constraints (3.25) and (3.26), we introduce the Lagrange

multipliers, A and § and we look for the maximum of the auxiliary function:
L(D1,P2; s Pn) = —Zpiln% +A (Zpi - 1) -p (Zeipi —E) :
i ! 14 i
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Applying the optimality condition, we get

0L Di )
= — l — 4+ 1 + Az - ;] — 0-
p; ( nGi Pei
The solution is
% — eA—le—ﬂ(:‘i ) (327)

The constants A and f are then obtained from the constraints:

Zpi =1= ZGieA_le_ﬁei =1,
i i

whence
1
Ml —— (3.28)
Y Gie P
If we denote the partition function as
Z=Y GieFe, (3.29)
i
from (3.27) and (3.28) we have
G _
pi= 7‘ pei (3.30)

which is the same form as (3.22).

In the thermodynamic limit (N — oo and the number density of particles remains constant),
by the law of large numbers the proportion % is approximately equal to the probability p;, and
(3.30) is equivalent to (3.22). The constraints (3.25),(3.26) are also equivalent to (3.20),(3.21).
Equation (3.19) becomes

nj

an:—NZ%ln((N)/Gi)z—NZpiln(pi/Gi)=N§ (3.31)

where S is the relative entropy per particle, NS is the relative entropy of the system. For a system
in equilibrium, both InW and NS attain the maximum values. On the other hand, according to

the Boltzmann relation, for the thermodynamic entropy S, it holds that
S=kplnW
where kp is the Boltzmann constant. Combining the last two expressions yields the relation
S =kpNS. (3.32)

From previous considerations we see that maximizing InW and maximizing NS are equivalent.
Therefore the two methods give the same results but the second approach is based on fewer

assumptions and is more systematic.
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3.2.1.2 Fermi-Dirac and Bose-Einstein distributions

Consider a system consisting of particles identical and indistinguishable (nonlocalized), and
hence Fermi-Dirac or Bose-Einstein statistics applies. The method used here also relies on the
assumption of equiprobabilities. Under the constraints of the total number of particles and the
total energy, (3.20) and (3.21), the most probable distribution {n;} is determined by maximizing
the corresponding number of quantum states. Being different from the situation in deriving
the Boltzmann distribution, particles here are not only identical but also indistinguishable. In
addition, for a system consisting of Fermions Pauli’s exclusion principle takes effect: a single
quantum state can contain at most one particle. The number of quantum states corresponding to

the distribution {n;} of particles is given by the following expressions

G;!
\i4 N=l|———— Fermi t
#p({n;}) l:[ 2 G =) (Fermion system),
_ (ni +Gi -1
Wpr(n;}) = l:[ G- (Boson system).

Using the Stirling formula, one gets

InWrp = Z—nilnni+GilnGi—(Gi—ni)ln(Gi—ni) (Fermion system), (3.33)

1

Z—nilnni -G;InG; +(G; —n;)In(G; —n;) (Boson system). (3.34)

i

InWgg

1

Then, after some algebra similar to that in deriving the Boltzmann distribution, we obtain that

the most probable distributions {n;} are

G.

n; = QATE:'F]. (Fermion system) (3.35)
G.

n, = m (Boson system) (3.36)

where A and  are the Lagrange multipliers introduced to take into account the constraints
(3.20)-(3.21).

Now we show how to obtain these distributions by applying the maximum-entropy principle.
Let p;;n be the probability that the j-th quantum state of the energy level €; contains n particles.

The average number of particles in the energy level ¢; is

Gi
<n;>=) Y pijnn. (3.37)
j:]_ n

Maximizing the following expression of entropy of the system

@

S=-3Y Y pijnlnpijn (3.38)
1in

i
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subject to the constraints

Gi

Y pijan=N, (3.39)
n

i 1

5

j:
G;
Y pijane; =E, (3.40)
j=1n

we obtain that the probability that the j-th quantum state of the energy level ¢; contains n
particles is given by

e~ MitAzein
Pijn="——7 oo (3.41)

Y, e~ Arthzem
where 11 and A2 are the Lagrange multipliers associated with the constraints (3.39)-(3.40),

respectively.

In the specific case of Fermi-Dirac Distribution, according to Pauli’s exclusion principle,

n =0, 1. Therefore (3.41) becomes
e_(Al +/12€i)n
Pijn = 1+ o-Chi+1ze)) (3.42)

The Maximum Entropy solution {< n; >} is obtained by substituting (3.42) in (3.37):

Gi  p~(1+Age) ~ Gie—(ﬂ1+7tz€i) G;

<n;>= = =
t ng 1 + e—(/‘L1+/'LQ€i) 1 + e—(/l1+/12€i) e/11+12€i + 1 ’

(3.43)

where the spin is included in the degeneracy factor G;. We observe that in this case it must be
n; <G;.

Furthermore, substituting (3.42) in (3.38) (with n = 0,1) and utilizing Stirling’s formula yields
the entropy of the system,

S=-Y <ni>In<n;>-G;InG; +(G;— <n; >)In(G;— <n; >). (3.44)
i

Comparing (3.43) with (3.35), we see that in the thermodynamic limit (n; =< n; >) the Maximum
Entropy solution is the same as those in statistical mechanics. Furthermore, comparing (3.44)
with (3.33), we see that the entropy S and InWgp are equal. From the Boltzmann relation
S =kpInW, it follows that S = kgS.

Similarly, we derive the Bose-Einstein distribution for a system of indistinguishable bosons
which are particles that do not obey the Pauli Exclusion Principle. Thus an unlimited number of
bosons can co-exist simultaneously in the same quantum state. Since in this case n =0,1,2,...
(3.41) becomes

e~ (A1+Azei)n
(3.45)

Dijn= Z;zofo e~ (A1 +Aze)m
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The Maximum Entropy solution {< n; >} is obtained by substituting (3.45) in (3.37):

Gi22$e4h+hﬂmn

<n; >=j=1 Z;:Z%e—(ﬂtﬁ/lzei)n . (3.46)
By applying the following formulae
n=0 n=0
the solution (3.46) reads
<n;>= # (3.47)

provided that A; + Ag€; > 0.
Furthermore, substituting (3.45) in (3.38) (with n =0, 1,...) and using Stirling’s formula yields
the entropy of the system,

S=-Y <n;>In<n; >+G;InG; - (G;— <n; >)In(G;— <n; >). (3.48)
i

Comparing (3.47) with (3.36), we see that in the thermodynamic limit the Maximum Entropy
solution is the same as those in statistical mechanics. Furthermore, comparing (3.48) with (3.34),
we see that the entropy S and InWgp are equal. From the Boltzmann relation S = kgln W, it
follows that S = kpS.

The Lagrange multipliers 11 and Ag introduced in the above distributions are determined from
the constraints (3.39) and (3.40) and they can be related to the thermodynamic temperature T,

so that if we set

u

A =——

1 kT
1

Ao = ——

2= T

where p is the chemical potential, we get the classical Fermi-Dirac or Bose-Einstein distribution

in the discrete form

n; 1
flen=g" , (3.49)

1
- . = €—u
i e/11+7L2€, i]. ezﬁ 41

"non

where the sign "+" refers to fermions and the sign

non

to bosons. The expression ?Ti represents the
i-th occupation number. It is clear that for fermions this number is always less or equal to one.
These examples show that the Maximum Entropy Principle and the conventional statistical
mechanics method give exactly the same results. In addition we observe that, applying the
Maximum Entropy Principle, the well known results of statistical mechanics are obtained with a

fewer number of physical assumptions.
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3.3 Maximum entropy inference of a distribution: the
continuous case
The above results can be extended in the case of continuous random variables. Here the probability

distribution is expressed in terms of probability density function (p.d.f.) f : R* — Rar , which is

assumed to be a continuous one for simplicity. Let consider the following weight functions
wa:R'—R¥M,  A=1_..N

with d4 and N integers, such that the mean values defined as

<Ya >=[ WA (x)dx A=1,..,.N
[Rn

there exist and are finite.
We want to estimate the unknown probability density f based on the knowledge of some of

averages <4 >, A=1,...,N. Let introduce the following functional space
Fy = {g :R” —»Ra' such thatf wax)gx)dx, A=1,...,N, there exist and are ﬁnite}.
Rn

On the analogy of the discrete case, we estimate f by maximizing the (relative) entropy

Sig]= _f 2(0)In g(x)
Re m(x)

dx with g €

subject to constraints
<ya >:f wa(x)g(x)dx A=1,.N.
[Rn

As usual, this constrained maximization problem is solved by the Lagrange multiplier method.

Specifically, let introduce the objective functional £

N
Zlgl=Slgl- Z Aa (< WA > —fR wA(x)g(x)dx)
A=1 "

where 14, A =1,...,.%, are the Lagrange multipliers associated with the constraint. Let the
variation of £ with respect to g(x) be zero, i. e.,

In
g + ) Adawalx)
1

0=60L=-
m(x) AT

Rn

1+1n

ogdx.

Since 6g is arbitrary, the quantity in the square brackets must be zero. Therefore we get the

Maximum Entropy Estimator

Jn
fuEp(x) = m(x)exp (—1— Y AAwA(x)).
A=1

where the Lagrange multipliers 14, A =1,...,N are determined by the constraints

<Wa >=f[R waA@)fuEp(x)dx A=1,..,N.

Clearly, to obtain an integrable solution, the weight functions 14 have to be chosen appropriately.
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CHAPTER

SEMI-CLASSICAL HYDRODYNAMIC MODELS BASED ON THE
MAXIMUM ENTROPY PRINCIPLE

This Chapter is based on [34, 35].

4.1 Semi-classical Hydrodynamic models: general

considerations

The starting point for the derivation of semi-classical hydrodynamic models is the semi-classical
Boltzmann equation (2.4).

Numerical solutions of eq.(2.4) can be obtained, for example, via Direct Monte Carlo Simulation
(DSMC)[15, 61] or by finite difference schemes [33] or by discontinuous Galerkin (DG) methods
[15]. However, these simulations have been obtained for simple cases like pristine graphene
under the effect of a constant external electric field. With a view to more complex situations,
like those represented by a metal-oxide-semiconductor field-effect transistor (MOSFET) with a
graphene channel, it is better to benefit from simpler models like drift-diffusion, energy transport
or hydrodynamic ones. These directly provide balance equations for macroscopic quantities like
electron density, average velocity or current, average energy, etc., and, therefore, are more suited
as models for CAD tools.

The macroscopic quantities are related to the distribution function because they represent
average values of some functions of the wave vector k. For example, the density n(r,#) is given by
(2;21)2 Az [,k t)dk.
Similarly the average energy W(r, ) is given by the relation

2
(2m?

n(r,t) =

n(r,t)W(r,t) = / f@ Kk, )E k) k.
R2
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Generally speaking, given a weight function y(k), the corresponding macroscopic quantity is the

expectation value
2

(2m)2

where the factor 2 is included to take into account the two states of spin, whereas the valley

M(r,t) = fz k) f(r, k, t)dk,
R

degeneracy is disregarded.
The evolution equation for M(r,?) is deduced by multiplying eq.(2.4) for ¢(k) and by integrating
with respect to k

oM .. f £ 20 oak - IE. f V5 Clfldk.  (4.1)
ot R2 h R2

2y(Kk) dk = f 2y (k)
(2m)2 R

@2 Jre 2n)?

Note that the moment equations depend only on the independent variables r,¢. This consider-
ably reduces numerical complexity.

The macroscopic models differ in the different expressions of w(k) employed in the moment
equations, e.g. the drift-diffusion models only use the balance equation for density while the
energy-transport models use, in addition, the balance equation for energy. Analogous to fluid-
dynamics, we talk about hydrodynamic models if, at least, the balance equations for density,
velocity and energy are included.

The main issue related to any model based on balance equations deduced as moment equations
of type (4.1) is that there are more unknowns than introduced moments in the evolution equations,
and the so-called closure problem arises. This arises from expressing the additional unknowns,

that is the extra fluxes and production terms

2y(k) 2y(k) f 2y(k)
fR o vk, fR sk [ ik

as functions of the basic moments.

A systematic way to get the needed closure relations is employing the Maximum Entropy
Principle (MEP). Firstly, we have to determine the expression of entropy in the continuum
approximation. To achieve this, recalling that f; = ?T’l we observe that the entropy for fermions in
the discrete case is given by

S[f1=kn

ZGilnGi —Znilnni —Z(Gi —-n)In(G; —n;)

=kp

ZGi InG; - Z(fiGi)ln(fiGi) - Z(Gi - fiG)In(G; — fiGi)] =

:—kBZGi[filnfi+(1—fi)1n(1—fi)]-

In the continuum limit, we resort the following standard formula valid for any regular enough
function h(k) [25]

2V
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where V is the spatial volume (that of the crystal in the case of semiconductors). The sum must
be intended over all the discrete wave vectors k; inside the first Brillouin zone. Therefore the

entropy of the system in the semi-classical approximation reads

2kp
(2m)?

SIf1== 2 [ 1fInf +(=fIn(-pldk. (4.2)

Let us suppose that a certain number of moments M4 (r,t), A =1,2,---,N, relative to the
weight functions w4 (k), are known. According to MEP, the electron distribution function is
estimated with the distribution fj;zp obtained by solving the following constrained optimization

problem: for fixed r and ¢,

rfnang [f1 subject to the constraints:
€
0<f<l, (4.3)
2
Ma= [ waGOfkodk, A=12:.N, (4.4)
(27)? Jge

where S[f]is the entropy of the system (4.2). Recall that & is the space of the function g(k) such
that 4 (k)g(k) € LY (R?) for A=1,2,--- ,N.

Here with L'(R?) we have denoted the usual Banach space of the summable functions defined
over R2,

To take into account bilateral constraints let us introduce the Lagrange multipliers Ay,
A=1,2,---,N, and the Legendre transform of S

2
(2m)2

S’=S+ZAA(MA— fR2fWA(k)dk)
A

Let the variation of S’ with respect to f be zero, i.e.,

0=59 = _2FB f
2m)? Jre

5fdk.

1
Inf-In(1-£)+-—Y yaks

Since 6f is arbitrary, the quantity in the square brackets must be zero; we get

1

(r,k,t) = )
fuEp(r 1+exp[XawaKAa(r,t)]

which also fulfills the unilateral constraints (4.3).

The multiplicative constant % has been included into the multipliers for simplicity.

To complete the optimization procedure, it is necessary to invert the relations (4.4) and
express the Lagrangian multipliers as functions of the basic variables. This can generally be
achieved only numerically or by some approximation, e.g. expanding around the equilibrium
state.

Apart from the above problem of inversion, once one gets fy/gp, the needed closure relations

are obtained by evaluating the extra fluxes and production terms with f)/gp instead of f.
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It should be mentioned that full non-linear closure, when it is inserted in the moment
equations, leads to a hyperbolic system in the time direction [27, 48]. If fy/gp is obtained in an

approximate form, the hyperbolicity of the moment equations has to be checked case by case.

The goodness of the models obtained with different choices of basic moments can be assessed
by comparing the results obtained by directly integrating the transport equation.

In the Appendix A we recall a known uniforme convergence result by Borwein and Huang
[8] for truncated moment problems defined on a compact set as the Brillouin zone, when the
Fermi-Dirac type entropy is used as objective function. Nevertheless, while the case of moment
problems defined on a compact support was known long before [6, 8], similar problems, as
those considered in this Thesis, with unbounded support (or unbounded moments a;) are usually
difficult and still studied. Specifically, in the models formulated below, the weight functions chosen
are not necessarily on L>°(%,) and the Brillouin zone is extended to all space R%. Consequently
the integrals involved are defined on the unbounded domain R%. We will see that numerical
computations seem to suggest heuristically that for similar problems with unbounded support (or
unbounded moments ¥4 ) the Maximum Entropy estimator converges to the unknown density
function f, although theoretical convergence is still an open problem, see [2].

In the next sections several models will be analyzed for homogeneous graphene in a constant

electric field, by considering both linear and non-linear closure relations.

4.2 Comparing linear and non-linear 6-moment models

A hydrodynamic model based on the maximum entropy principle (MEP) has been formulated
in [12] using a set of field variables which has been proved to be successful for traditional
semiconductors like silicon [30, 31, 40, 43, 49, 57, 58], gallium arsernide [39, 40], silicon carbide
[1]. Here we compare the solutions obtained with such a model with the direct simulation of
the Boltzmann equation provided by the DG method proposed in [15, 61]. The results are quite
acceptable for low and moderate electric fields but not completely satisfactory for higher fields.

The model is based on the following moments

2 .

n = 7 fsz(r’k’t)dk density, (4.5)
2

nw = 2 f f(rk,t)é(k)dk energy density, (4.6)
(2m)? Jpe
2

nV = f [, Kk, t)v(k)dk linear momentum density, 4.7
(27m)? Jge
2

nS = j fr k,t)(k)v(k)dk energy-flux density. 4.8)
2m)2 Jre
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The corresponding evolution equations are given by

0

&TL'FV,-(T’LV) = O,

0

a(nW)+Vr(nS)+ gnE-V=nCy,
%(nV)+Vr (nF(O)) + qnG(O) :E=nCy,
%(nS)+Vr (nF(l)) + qnG(l) :E=nCs.

Besides the average densities, velocities, energies and energy fluxes, additional quantities appear!

nCw = @n )2f Ek)€(k)dk, nCg= @ )2f Ek)v(k)€(k)dk
F(O) 2 1
FO | = mez( &(k) )V(k)®V(k)f(r’k’ Hek,

G 2 f £k, )V v ) o
n e — , )
GO | @2 Jp *l em)vk)

which must be expressed as a function of the basic variables n, V, W, S.
Regarding the production terms, they are given by summing the contributions from the

different types of phonon scattering

Cu=CE+ Y Y,
$s=LO,TO,K
with M =n,W,V,S.
In [12] the following expression of the distribution function deduced by MEP

1
e ke, ) = e D+ A, 0E®) + Ay (. ) + B0 As(r. ) - v(k) (4.9)

has been used in the linearized form 2

1 oMt h
fuep,k,t) = Tt e b (14l hub)2

Av+EAg)-v. (4.10)

Explicit closure relations have been obtained in [12] in the case of fygp linearized with
respect to the vectorial Lagrange multipliers.
For better readability, the non-linear closure relations obtained in the case of non-linear fygp,
are summarized in the Appendix B.

The linear model has been proved [14] to be hyperbolic in the physical relevant region W > 0.

Lthe symbol ® denotes the tensor product of vectors
21n the following the explicit dependence on r,k, ¢ is omitted for the sake of simplifying the notation.
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To evaluate the soundness of the model we consider the simple case of pristine graphene in a
constant electric field E. The physical situation we simulate is that of a strip of graphene which
is infinitely long in the transversal direction with respect to that of the electric field (see Fig. 4.1).
This allows to look for solutions which are not depending on space and to avoid any effect related

to the boundary conditions.

Figure 4.1: Schematic representation of a suspended monolayer graphene. In the direction
orthogonal to the contacts the material is infinitely long. In each contact there is a constant
electrostatic potential.

The evolution equations are reduced to a system of ordinary differential equations (ODE’s).
The only significant component of each equation is along direction of E. If we choose a reference

frame such that E is parallel to the x-axis, the evolution equations read

d
—n=0 4.11
i’ ( )
d
E(nW)= —gnE-V+nCy, (4.12)
d
E(nV) = —qnG(O) :E+nCy, (4.13)
%(nS): —qnGY :E+nCs. (4.14)

As initial conditions we assume thermodynamic equilibrium. As a consequence, the initial

conditions for the macroscopic variables are

2
n(0) = wa frp(k)dk, (4.15)
n(O)W() = _2_ f frp&)EdK, (4.16)
2n)? Jne
n(0)V(0) = 0, 4.17)
n(0)S(0) = 0, (4.18)

where frp(K) is the Fermi-Dirac distribution (2.3).

In Fig. 4.2, for several values of the Fermi energy and electric field, we compare the results
obtained with the linearized 6-moment model (L6MM) and those obtained by a direct simulation
of the Boltzmann equation with the approach based on the Discontinuous Galerkin (DG) method
proposed in [15, 61]. First the case e = 0.4 €V has been analyzed. Regarding average energy, the

results of the MEP model are quite satisfactory. In the steady regime the maximum relative error
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is about 2.8 % and is reached when E = 6 kV/cm. In the other cases we have a relative error of 1.6
% for E =4 kV/cm, 0.04 % for E =2 kV/cm.

The relative error for the velocity is greater. The discrepancy has a maximum for £ = 6 kV/cm
of about 19.5 %. For E = 4 kV/cm the relative error is 15.2 %, for E = 2 kV/em 8 %. It is evident
that the model is quite acceptable for low and moderate fields but less adequate at high fields.

To understand if the Fermi energy influences the accuracy of the MEP model, we performed
similar simulations with er = 0.6 eV (Fig. 4.3). The qualitative behaviour is similar to the case
er =0.4 eV but with a better agreement between the DG and hydrodynamic results. One finds a
relative error for the energy not greater than 1 % while the error in the velocity is 9 % if E =6
kV/em, 7 % if E =4 kV/cm, 0.8 % if E = 2 kV/cm. Apparently, increasing the Fermi energy, or
equivalently the electron density, improves the performance of the hydrodynamic model. This
seems to agree with classical gasdynamics where the higher density, the more accurate are
fluid-dynamic equations.

Although the overall discrepancy is reasonable for the applications, it is likely that some
non-linear terms need to be included in the velocity and energy-flux or additional moments.

As a first attempt, the full non-linear 6-moment model (6MM), obtained with the full non-
linear distribution function (4.9), is numerically solved to assess the influence of the linear
approximation. Inverting the basic moments-Lagrange multipliers can be performed numerically
but such a cumbersome numerical procedure was avoided by assuming the Lagrange multipliers

as field variables, therefore

on  0On  On  On

oL 91, OAy Ols 1
w oW oW W
oL oA, OAy Ols d | Aw

= — . (4.19)
oV 9V oV oV dt | Ay
0r O9A, OAy O2as
As

8 08 08 IS
X 0, OAv Ols

Sl
n < =3

The components of the Jacobian matrix were obtained by differentiating under the integral sign
thanks to the integrability conditions of fygp. The numerical evaluation of the integrals was
performed with Gaussian quadrature formulas.

The results are reported in Figs. 4.2, 4.3 where the same cases for the linear model were

considered. It is evident that the non-linear terms do not help in improving the model.
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Figure 4.2: Comparing the energy and velocity obtained with a direct solution of the Boltzmann
equation (DG method) (dashed lines), the 6MM (crossed lines) and its linearized version (L6MM)
(continuous line) for the electric fields £ = 2 kV/ecm, E =4 kV/em, E = 6 kV/cm by considering a
constant lattice temperature of 300 K and a Fermi energy equal to 0.4 eV.
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Figure 4.3: Comparing the energy and velocity obtained with a direct solution of the Boltzmann
equation (DG method) (dashed lines), the 6MM (crossed lines) and its linearized version (L6MM)
(continuous line) for the electric fields £ =2 kV/cm, E =4 kV/cm, E = 6 kV/cm by considering a
constant lattice temperature of 300 K and a Fermi energy equal to 0.6 eV.

4.3 The case of moments based on energy powers.

In the previous section a 6-moment model has been formulated by taking as fundamental
variables the electron density, linear momentum, energy and energy flux. Numerical results
show, however, that this choise of moments is, in case of high electric fields, not sufficient for

accurate modeling. Here we try to get better results by including additional moments which are
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averages involving higher powers of energy. Explicitly, we consider the following weight functions
{1,8(k), v,<§’(k)v(k),<§"2(k)v(k), ...,é?N (k)v(k)} to which the following moments

n = (2 v f f(rk,t)dk, (4.20)
W= o fR frk DERdK, (4.21)
nV = (22)2 f £k, )v(k)dk, (4.22)
nS = (2 2 f ek, )8k vk)dk, (4.23)

n8? = O f .k, )6 k)vk)dk (4.24)
nSW = G f f,k, )N k)vk)dk (4.25)

correspond. Their evolution equations are obtained by taking the moments of the Boltzmann

equation with respect to weight functions and they read

d
Sn + Ve V)=nCy, (4.26)

3
a(nW)+Vr(n S)+gnE-V=nCy, (4.27)
%(nV) +V, (n F(O)) +qnGO . E=nCy, (4.28)
2(nS)+Vr (n F(l)) +qnGY  E=nCs, (4.29)
(nS(2))+V (n F(2)) +qnG? :E=nC?, (4.30)
%(nS(N))+Vr(n FY) 4 gnGN E=nCy". 4.31)

The additional quantities, appearing in the previous balance equations and must be expressed in
terms of n, WV, S, 8@ ... 8™ are the production terms

nCy = % |, Cdk, (4.32)
L f ERC(K)dK, (4.33)
nCy = ﬁ [, voocadx (4.34)
nCs = (2 o f ERVKIC(K)d, (4.35)
nCy = G f &*k)v(k)C(k)dk, (4.36)

42



4.3. THE CASE OF MOMENTS BASED ON ENERGY POWERS.

™ _ 2 f N
nCg" = s | ¥ tovaacaoax, (4.37)
and the fluxes®
2
o) _
s fR ek, DV, (4.38)
2
o _ _ =
R fR ek OV ERV)dK, (4.39)
nG? - mzzn)z fR ek, DS RV, (4.40)
G- 2 (2 o f £k, OV(EN W)k, (4.41)
nFO = (22)2 [ v e viorek ndx (4.42)
nFD = (2 P f Ekv(k) ® v(k)f (r,k, t)dKk, (4.43)
nFD = 2o f £2()v(k) @ v(K)f (r,k, t)dk, (4.44)
nF<N>—(2 B f &N Rv(k) @ v(k)f (r,k, t)dk. (4.45)

Regarding the production terms, they are given by summing the contributions from the different
types of phonon scattering

_ (ac) (s)
nCy = nCM + Z nCM
s=LO,TO K

with M =n,W,V,S,8@ . ™
By exploiting MEP, the following estimator of the distribution function is obtained

1
fuep(k,t)= , (4.46)

1+ exp (A, )+ Ay (1, (0 + (A (x, ) + EAIAS(x, 1)+ 2R g, ) V() + .. + EN (R) Ao (x, 1) - v()|

where 1, 1, 1s, /1(52) ) ees A(SN) are the set of Lagrange multipliers relative to the basic fields.

If one linearizes by considering the vectorial quantities as first order terms because they
vanish at equilibrium, the MEP estimator can be written as
M A6

1+ e/l+/1wé?)2

fup @k, 1) = Ty Ay +EAs + AL + ...+ ENAL) - v. (4.47)

This is the expression we will use in the following and for the sake of clarity the closure relations

obtained by adopting this distribution function are postponed to the Appendix C.

3the symbol ® denotes the tensor product of vectors
4The explicit dependence on r, K, is omitted for the sake of simplifying the notation.
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4.3.1 Mathematical structure of the model with 8 moments

Before investigating the accuracy of the model and presenting some numerical results, we deduce

its main mathematical features taking into account the particular case of 8 moment model with

the flux of the squared power of energy. A generalization of this study in the case of a model with

an arbitrary number of moments is under current investigation.
Explicitly, we consider the following weight functions {1,8(Kk),v,&(k)v(k),& 2(k)v(k)} to which

the following moments

n = (2 )2f f(r,k,t)dk,

nW = (2 B f [k, )Ek)dk,
nV = (2 2 f f .k, Ovk)dk,

nS = (2n)2 f f .k, )E()v(k)dk,
nsS® = G f ek, 8% k)v(k)dk

correspond. Their evolution equations are

To study its main proprieties let introduce the following quantities

+oo

Jn(/ly /1w) = f
0

0

an +Ve(nV)=nC,,

%(nW)+Vr(n, S)+gnE-V=nCy,
%(nV)+Vr (n F(O)) +qnG(O) :E=nCy,

3
() + Vs (n F<1>) +qnGY E=nCs,

0
a(n S@y + Vr (n F(z)) +qn G? .E= nC(SQ),

EN MM

(1+ eamwg)? 2nh2v

d&, KnAAy):= ! J(/lﬂl)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

Theorem 4.1. There is a local one-to-one correspondence between Lagrange multipliers and field

variables.

Proof. Let us introduce the vectors U = (n,W) and UED = (A, Ay). The Jacobian matrix is

given by

_a(n,W) 1 Jl J2
O Aw)  mh2v2 \Jy J3)

Let us consider the quadratic form associated to the matrix B

8(E) = (£1,E)B(E1,E9)" VE=(£1,89) € R
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One has

(E1+&&)* d6E.

1 +00 ge/l+/lw<5"
g = fo

_”hzvlz? (1+ eMAuwb)2
Since {1 +&¢&g is zero at most in a set of zero measure, g is negative definite and there is a local

one-to-one correspondence between UL and Uél).

Regarding the vectorial fields, one finds

J1IA, ) Ja(AAy)  J3(A,4,)

nV . . Ay
nS |= “ o0l Jo(A,Ay)  J3(AA)  JaAA) || As | =C | As

nS@ g 1@ 1@
J3(/L/1w) J4(A; /’tw) J5(/1,Aw) S S

Let us consider the quadratic form associated to the matrix C

R(&) = (81,89,E3)C(E1,80,83) T VE=(E1,82,83) € RE.

One has

(61 + 88 +6%3)° dé.

1 too @ A+ &
h©) = - fo ¢

2mh? (1+ e Awé)2
Since &1 + &&9 + +&2&5 is zero at most in a set of zero measure, A is negative definite and there is

a local one-to-one correspondence between Lagrange multipliers and field variables. O

Theorem 4.2. The evolution equations closed with MEP form a hyperbolic system of balance laws

in the time direction.

Proof. Thanks to the previous theorem, we can use the Lagrange multipliers as field variables.

In term of the Lagrange multipliers the evolution equations become

1 -1
d w B 02x3
v |= 9, (4.58)

dt As O3x2 C

@
AS

where O,, «, denote the zero matrix of size m by n and

0 C,

\' Cw
G=|-qn|GO|-E+n| Cy
G\ Cs

(2) (2)

G Cg

Denoting with (x1,x2) the spatial variables, the evolution equations can be written in the form

oA oA oA
Ay + A+ ey =G 4.59
%%t T ox; P oxg (4.59)
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where

A = (A) Aw, /’thASp /’ts(lz)a AVZ) A’SQ’ /"'S(ZZ))Ta

oy = VaFo with Fo=(n,nW,nV1,nS1,nSP, nVe,nS2,nSP)7,

= VaF with F1=aVy,nS1,nFQ nFY nF2 nFD nFL FE)T,
sy = VpaFs with Fp=(nVa,nSe,nF\ ), nF\Y nF\2 nF) nF) nF)T.

Here V; and S; i = 1,2 are the components of V and S and FL{?), FE}),Fg) i,j=1,2 are the compo-
nents of the tensors F(@, FO and F® respectively.

We prove that det(«#)) # 0. Omitting the dependence on Lagrangian multipliers A and A,, for
the sake of simplicity, explicitly <, reads

-ZK -ZK» 0 0 0 0 0
_UiKZ _éKd 0 0 0 0 0
onV onV-
ﬂl ﬁ_lg;l -vpK1 -vpKe9 -uvpKs 0 0 0
ﬂnil %’; 1 -vpKg9 -vpKs -vpKy 0 0 0
y=| ons® ansf”

p) 0/16’ —UFK3 —UFK4 —UFK5 0 0 0
6”‘/{2 ?7—2 0 0 0 -vpK1 -vpKg -vpKs
ISy ‘;"fy? 0 0 0  -vpKy -vpKz -vpKy
@ s

A 0w 0 0 0 —UFK3 —UFK4 —UFK5

We can factorize the determinant of <, as

1 (JrJaeds — J1ds? + 2aed gl — Jo2ds — J5%)7 (J1 5 — Jo2)

64 n8h16y4

Since the two matrices

J1 Jo
I Jdy 1 J2 J3
, Jo Jz Ja

Jo J3
Js Jy Js

are positive definite, in virtue of theorem 4.1, it follows that det (<) > 0 for any value of the fields.

For arbitrary n = (n1,n3) belonging to the unit circle of R?, the eigenvalue equation is
det (n 141 + noalo — ,ud()) =0

which has the following roots:

1 0 with multiplicity four,

2
p23 = i7v r both with multiplicity two.
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To complete the analysis of the hyperbolicity, we study the rank of the matrix M(u) = nyof; +
nosfe — efy which explicitly is given by
le 1nl M (nV)+

Zl 1"igx (nV )+ -n1K1 -n1Ky -n1K3 —ngKyq —ngKo —ngKs

UF Ky ”F
le 1nlM(nS)+pWJ2 Z% 1nle(nS )+,uﬁJ3 -n1Ke -n1K3 -n1K4 -n9Kg -ngKs —ngKy
onVy onVy
n1 & @F9)- le nlM aF\9)- pg‘Tgl uKy 1Ky uKs 0 0 0
0; S 0.
n1fnF{) -t nle(nF“h— - 1Ko K3 uK4 0 0 0
@ ""5(12) @ ""SJ)
nlaﬂ(nF )—u ”10A (nFi) - M\W uK3 uKy uKs 0 0 0
0 V 0.
ng & FS) - pa"—SZ nzM (nF(Q%)) ngAZ 0 0 0 ukq 1Ko, K3
1 n 1 n.
nQBA("F(QZ)) ,LL—(Z) nzM (nFéz)) 'UBTZ) 0 0 0 uKg LK3 uKy4
onsS, onS
ng G (nF ) - p—52— nzM nFE) - I 0 0 0 uK3 uKy uKs

Let us denote by m;; the generic element of the matrix M(u).

1. Case u=0.

By taking into account the fact that nF(k) = an;), k =1,2, from the definition of ¢/, it
follows that the third, fourth and fifth rows of the matrix M (0) are proportional to the sixth,

seventh and eighth rows, respectively. In fact

ng(msi,...,msj,...,m3g) —ni(mei,...,mgj, ...,mgg) = 0,
na(mayi,...,myj,...,mag) —ni1(mq,...,mq;,...,mqg) =0,

na(msi,...,msj,...,msg) —ni(mgi,...,mgj,...,mgg) = 0.

Therefore, the rank is not greater than six. Moreover, the determinant of the minor of order

four obtained by eliminating the last four rows and the last four columns is equal to

1t (Jad3 - o?)”
16 wth8

which is different from zero because we have previously proved that the quantity JJ3 —Jo?
is positive. Therefore, apart from the case 3 A(nF(k ) = A( Fg;)) =0,%k=1,2, the rank of
M(0) is four. From a direct verification, the expressions M(nF(k)) and M(nF(k)) k=12,
obtained with MEP, are different from zero. Therefore the rank of M(0) is always four.

2. Case u= \/TEUF.

By taking into account the fact that nF\) = nF{®) & = 1,2, from the definition of J, it

follows that the third row of the matrix M (‘/T—v ) 18 a linear combination of the first and
sixth rows while the fourth is a linear combination of the second and seventh ones. In fact

one has

nl(mgl,...,m3j,...,m38)+,u(m11,...,m1j,...,m18)+nz(mgl,...,mej,...,mgg) =0,

nl(m41,...,m4j,...,m43)+/,t(m21,...,m2j,...,mgg)+n2(m71,...,m7j,...,m78) =0.
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Moreover, the determinant of the sub-matrix obtained by eliding the first two rows and the

first two columns is

1 U6 (J1J3J5 - J1J42 +2Jodyds — J22J5 - J33)2
512 nbh12 ’

which is different from zero because the matrix of C of theorem 4.1 is positive definite.
Therefore the rank of M (‘/Tgv F) 1S SiX.

vz

3. Case u= —Tzv 7. The same considerations of the previous case hold.

4.3.2 Numerical results of 8 moments model

As already done for the previous model, to assess the validity of the model, we consider the
case of pristine suspended graphene under the effect of a constant electric field E. The evolution
equations are reduced to a system of Ordinary Differential Equations (ODE’s). The only significant

component of each equation is that along the direction of E. Therefore, the evolution equations

read
d
Zn=0, (4.60)
d
E(n W)= —-gnE-V+n Cy, (4.61)
d
E(nV)= —qgn GY:E+n Cv, (4.62)
%(n S)= —gnGY:E+nCg, (4.63)
d
;18 =-qnG?:E+nCg. (4.64)

We assume initially thermodynamic equilibrium and the results are plotted in Fig.s 4.4, 4.5 for
Fermi energy 0.4 eV and in Fig.s 4.10, 4.11 for Fermi energy 0.6 eV. We have compared the results
obtained with the 8-moment model (8MM) presented in this section with those obtained with
the 6-moment model (6MM) in [12]. As reference solutions we have taken those given by a direct
numerical integration of the Boltzmann equation with the Discontinuous Galerkin approach
proposed in [15, 61].

For low electric fields the velocity predicted by 6MM is more accurate than that obtained with
8MM. In the presence of higher electric fields, the difference between 6 MM and 8MM is smaller
but in any case 6MM performs better or no worse than 8MM. Differences are smaller in energy
but again 6MM reveals no worse than 8MM. These considerations do not depend on the Fermi
energy. Moreover, the hydrodynamic results systematically overestimate those obtained by the
direct solution of the Boltzmann equation. It is likely that this effect is due to an underestimation

of the dissipative character of the collision terms.
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It is clear that the inclusion of the variable S® does not improve the model. We have tried to
get better results by adding further moments like S® and S® but from a qualitative point of
view no real improvements are obtained. There is a strong numerical evidence that increasing
the hierarchy of the field variables with additional terms of the type

2

S(N) —
" (2m)?

f [k, HENvdk,
R

with IV a positive integer, is not promising.
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Figure 4.4: Comparison of the average velocity obtained with a direct solution of the Boltzmann
equation (DG method) (continuous line), the 8MM (circled line) and the 6MM (dashed lines) for
electric fields E =2 kV/ecm, E =4 kV/cm, E =6 kV/cm, E =8 kV/ecm, E =10 kV/cm, E = 20 kV/cm
by considering a constant lattice temperature of 300 K and a Fermi energy equal to 0.4 eV.

In summary a hydrodynamic model for charge transport in graphene has been presented
trying to improve the results in [12] with the inclusion of additional moments related to quadratic
power of energy. In pristine graphene, the numerical solutions given by such a model have
been compared with those of the semiclassical Boltzmann equation obtained by a DG method.
Apparently no real improvement is achieved with respect to the model in [12]. Therefore, the

formulation of models more accurate than that in [12] has to be based on a different set of weight

50



4.3. THE CASE OF MOMENTS BASED ON ENERGY POWERS.
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Figure 4.5: Comparison of the average energy obtained with a direct solution of the Boltzmann
equation (DG method) (continuous line), the 8MM (circled line) and the 6MM (dashed lines) for
electric fields £ =2 kV/em, E =4 kV/cm, E =6 kV/ecm, E =8 kV/em, E =10 kV/ecm, E =20 kV/cm
by considering a constant lattice temperature of 300 K and a Fermi energy equal to 0.4 eV.
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Figure 4.6: Comparison of the average velocity obtained with a direct solution of the Boltzmann
equation (DG method) (continuous line), the 8MM (circled line) and the 6MM (dashed lines) for
electric fields £ =2 kV/em, E =4 kV/em, E =6 kV/ecm, E =8 kV/ecm, E = 10 kV/cm, E =20 kV/em
by considering a constant lattice temperature of 300 K and a Fermi energy equal to 0.6 eV.
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Figure 4.7: Comparison of the average energy obtained with a direct solution of the Boltzmann
equation (DG method) (continuous line), the 8MM (circled line) and the 6MM (dashed lines) for
electric fields £ =2 kV/em, E =4 kV/cm, E =6 kV/ecm, E =8 kV/em, E =10 kV/ecm, E =20 kV/cm
by considering a constant lattice temperature of 300 K and a Fermi energy equal to 0.6 eV.
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function, for example including higher-order terms in the velocity as will be shown in the next

section.

4.4 The case of moments based on velocity powers

In this section a new 8-moment model based on MEP is obtained by adding a further field variable
representing the average value of the tensorial product of the microscopic velocity. Let us consider

the weight functions {1,&,v,&v,v ® v} to which the following average quantities correspond

- ; f £k, )dk, (4.65)

nW = o7 f £k, 0EdK, (4.66)
(2 . f £k, )vdk, 4.67)
- % f £k, 06 vdk, (4.68)
"t f .k, v @ vdk, (4.69)

where the new field T is the stress tensor.

To have the independent field variables, since the trace of n'T is given by nv%, we consider its

deviatoric part

2
nD = 2n )2/ [k, t)v®vdk——nvFI (4.70)

where I is the identity tensor. It is enough to consider the evolution of the components nD11 and

nD1s because nD11+nDgg =0.

The balance equations are now

%n+Vr(nV)=nCm 4.71)
%nw +Ve(nS)+qnE-V = nCy, (4.72)
%nV+ Ve(nF ) 4+ gnG : E = nCy, (4.73)
%nS+Vr(nFa))+qnGm :E=nCsg, (4.74)
%nD +Ve(nH®) + gnLQ . E = nCp, (4.75)

54



4.4. THE CASE OF MOMENTS BASED ON VELOCITY POWERS

where
nFO = ﬁ f vev/(rk,)dk,
nF® = o f Evevf(r,k,t)dk,
G (;ﬂz fsz®(v®v—%vF )f(rk Ddk= s fmezv«@v@vf(r,k,t)dk
—%v%nV@ I,
nG? = h(z oD f f @k, t)Viv(k)dk,
nGY = h(z v j F @Kk, ) V(& &)v(K))dK,
nL©@ = h(2 7 f Fr, Kk, t)Vi(vev)dk,

and similar definitions for the production terms.
Also in this case, the production terms are given by summing the contributions from the

different types of phonon scattering

_ lac) (s)
Cu=C+ Y C{
s=LO,TO,K

with M =n,W,V,S,D.

The MEP distribution function corresponding to the previous choice of weight functions is

given by

1
(rk,0)= , (4.76)
fue 1+expA+ A& +(Ay + EA) v+ 22 o Aij(wiv; — 302.6,))

1,j=1

where v; are the components of v.

On account of the symmetry of tensor D, A;; = ;. Moreover, it is convenient to introduce
Ap = A11 — Agg and consider as independent components Ap and A1 by taking into account that
D is traceless.

In view of the numerical application, we evaluate the closure relations according to the
hypothesis that Ay, Ag are parallel. This holds true in the case of 1D problems as we will consider
in the next section. For the sake of better readability, non-linear closure relations are summarized

in Appendix D.1.

4.4.0.1 Numerical results

We again consider the 1D case. Let us introduce the field variables
U= (n,nW,nD11,nD12,nV,nS)"
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and the relative Lagrange multipliers A = A A, AD, A12,Av, As)T where V and S are the sig-
nificant components of V and S and D11 and D2 the significant components of the tensor D.
Moreover, let us denote by B the Jacobian matrix

B 0(n,nW,nD11,nD12,nV ,nS)
a(ﬂ'7/1M))/’l‘D)/’L12’AV7/’“S)

(4.77)

From general theory it follows that B is invertible and the evolution equations can be written in

the form

aU:—qn I E+nC (4.78)

where C = (C,,Cw,Cp,,,Cp,,,Cv,Cs)".
If we introduce the quantity ¥:

G =—gn| X |E+nC,

we have
4 N-pg. (4.79)
dt
We compare the results obtained by the 8-moment model (8MM) with those obtained by the
direct solution of the transport equation through the DG method and we also include the results
obtained by the linearized version (LBMM) deduced by linearizing the MEP distribution function

as follows ®

fuep(e,Xk, ) = fO+ f@, (4.80)
where
f(l) 1 f(a) el+ﬂ.w(§ (A +gA ) 4 i /’l ( 1 2 5 )
1+ eMAu6 (1+eMAu)2 [V s 5 ij \Vilj = 5 UF Oij

For clarity, the closure relations obtained by adopting the previous distribution function are
postponed to Appendix D.2.
The results are plotted in Figs. 4.8, 4.9 for Fermi energy 0.4 eV and in Figs. 4.10, 4.11 for

Fermi energy 0.6 eV. The improvement, compared to the previous models, is evident. A significant

51n the one dimensional case A19 = 0.
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Figure 4.8: Comparing the average velocity obtained with a direct solution of the Boltzmann
equation (DG method) (dashed lines), the 8MM (circles lines) and its linearized version (L8MM)
(continuous line) for electric fields £ =2 kV/ecm, E =4 kV/cm, E =6 kV/cm, E =8 kV/ecm, E =10
kV/em, E =20 kV/ecm by considering a constant lattice temperature of 300 K and a Fermi energy
equal to 0.4 eV.
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Figure 4.9: Comparing the average energy obtained with a direct solution of the Boltzmann
equation (DG method) (dashed lines), the 8MM (circles lines) and its linearized version (L8MM)
(continuous line) for electric fields £ =2 kV/em, E =4 kV/cm, E =6 kV/ecm, E =8 kV/em, E =10
kV/em, E = 20 kV/ecm by considering a constant lattice temperature of 300 K and a Fermi energy
equal to 0.4 eV.
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Figure 4.10: Comparing the average velocity obtained with a direct solution of the Boltzmann
equation (DG method) (dashed lines), the 8MM (circles lines) and its linearized version (L8MM)
(continuous line) for electric fields £ =2 kV/cm, E =4 kV/cm, E =6 kV/cm, E =8 kV/ecm, E =10
kV/em, E =20 kV/ecm by considering a constant lattice temperature of 300 K and a Fermi energy
equal to 0.6 eV.
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Figure 4.11: Comparing the average energy obtained with a direct solution of the Boltzmann
equation (DG method) (dashed lines), the 8MM (circles lines) and its linearized version (L8MM)
(continuous line) for electric fields £ =2 kV/em, E =4 kV/cm, E =6 kV/ecm, E =8 kV/em, E =10
kV/em, E = 20 kV/ecm by considering a constant lattice temperature of 300 K and a Fermi energy
equal to 0.6 eV.
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point is that the non-linear model again does not present better performance compared to the
linear one. At higher Fermi energy the agreement is better.

As expected, at low electric fields the difference between 8MM and L8MM is slight. At higher
electric fields LBMM is more accurate. Apparently, LSMM can be considered a good compromise to
reasonably simulate charge transport in graphene by a hydrodynamic model. Of course, additional
tensorial quantities of higher order in the velocity could be added but we believe that LEMM
presented above is already a good model from a computational point of view. A very high number
of field variables increases computational complexity and a hydrodynamic model is viable only
if the numerical effort for integrating it remains appreciably lower than that required for the
original transport equation.

The last important issue is that in the general non-linear case the hyperbolicity of the model
is assured while in the linearized version it must be checked. A good model should have a wide
enough hyperbolicity region to cover the physically significant part of the field variable domain.
Hence, let us analyze the hyperbolicity condition in the linear 1D case.

Denoting the spatial variable by x, the evolution equations become

oA A
&foa +da = (481)
where
Ay = VaZFy with Fo=(n,nW,nD11,nV,nS)"
o = VpaF1 with Fi=0V,nS,nHi,nFQ, nF))7.
By setting
+00 éane/1+/1wéf’
ot = | e
+00 gne/l+/lwé° +00 éaneZ(/l+/lwé°)
K4, Aw) [0 (1+erMb)2 fo (1+eit+/lw6")3dg’
explicitly «fy reads
“z i)~ Ja( ) 0 0 0
“m 2 A) i Ja(AAw) 0 0 0
_| o2 v
o= | -t ApK1(4, Aw)  —g 25 ApKa(A, Aw) =gz J1(4, Aw) 0 0
i il 0 —s i Aw)  — 52 da(d, Aw)
o o 0 ~5Ez oA Aw)  — 5 s (A, Auw)

(4.82)
Omitting the dependence on Lagrangian multipliers A and A,, for simplicity, we can factorize the

determinant of < as

det(d)——i(LfJ (Jys —J2)?
0=~z \gmz) 1l da)
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Since J1 >0 and
Ji1 Jy
Jo  J3
is positive definite, it follows that det (<) < 0 for any value of the fields. The eigenvalue equation
det (usto—Z) =0

has the following roots:

3
pH1=0,uz3 = iTUF,

1 2 -
pas =+~ V2o \/UF27L]_) (K32 +K1J2 —2J1J2K3) + 41 (J1d5— J2?%) .

4 J1 (J1J3 — Jo?)

The eigenvalues are all real if and only if the quantity
g =vrAp (K3J2 + K1J2 - 2J1J2K3) + 41 (J1J3 — J22)

is non negative.
The high non-linearity of such an expression makes it very difficult to prove analytically that
these eigenvalues are real for all significant values of the field variables. To estimate this, we

evaluated the function g and found that it is always positive along the solutions of Figs. 4.8-4.11.
V2

Moreover the eigenvalues are distinct; in fact with a very good approximation p45 = iTU F.
This is a strong index of the hyperbolicity of the LEMM at least in the simulated cases.
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CHAPTER

QUANTUM CORRECTED HYDRODYNAMIC MODELS

Introduction

Nanoscale semiconductor devices are playing an increasingly important role in advanced micro-
electronic applications, including multiple-state logic and memory devices. Therefore, in modeling
and simulations of semiconductor devices of ultra-small size (say nano-size) in a strong electric
field, quantum mechanical effects have to be taken into account. Graphene, consisting of an
isolated single atomic layer of graphite, is an ideal candidate for the channel of ultimate scaled
electron devices.

In this Chapter, based on [36] by L.Luca and V.Romano, the typical physical situation we
want to describe is the case when the main contribution to the charge transport can be consid-
ered semiclassical while the quantum effects can be assumed to enter as small perturbations.
For example, this is reasonable for devices like MOSFETSs of characteristic length of about ten
nanometers under the effect of strong electric fields.

To take into account quantum phenomena, the semiclassical Boltzmann equation is not enough
to describe charge transport. As a starting point for deriving of the quantum corrections to
the semiclassical model, we consider the Wigner equation. At zero order we recover the semi-
classical models developed in [12, 34, 35, 45] by exploiting the Maximum Entropy Principle
(MEP). By following the idea developed in [58] for silicon, /2 order corrections are obtained
from the scaling of high field and collision dominated regime. In the limit of high collisional
frequency of the quantum correction to the collision operator, this is equivalent to determine
the 72 order corrections with the equilibrium Wigner function, similarly to what done in [19].
The problem to find out the equilibrium Wigner function in the case of an arbitrary energy band

has been discussed in [60] where the corresponding Bloch equation is written and solved for sil-
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Figure 5.1: Qualitative behaviour of the energy dispersion relation.

icon in the Kane dispersion relation approximation. Here the same approach is used for graphene.

One important issue is related to the conical shape of the energy band around the Dirac
points of the first Brillouin zone. This fact makes singular some term of the expansion if a sharp
zero gap between the conduction and the valence band is assumed. However, see for example [13],
from a theoretical point of view it is possible the presence, although very small, of a gap which is
related to the first and second neighbourd hopping energy. Therefore, around the Dirac points
we employ a regularized energy band. Explicit formulas are obtained and the resulting model is
given by a set of dispersive PDEs.

Other approaches for formulating quantum hydrodynamic models can be found for example
in [3, 4, 46, 47] where asymptotic expansions, like the Chapman-Enskog one, are employed along
with a quantum version of MEP. Of course it is also possile to try to numerically solve directly
the Wigner equation but major computational difficulties arise and at the present time it seems
far from being a standard feasible tool for the design of electron devices. The interested reader
can see the monograph [56] and the paper [15, 50, 61] for recent advances of the algoritms in
stochastic approaches.

In this Chapter explicit result for a quantum corrected six moment model are obtained and a
preliminary analysis of the mathematical structure of the model is performed. Some details are
postponed in the Appendix E. To develop this model # must not be neglected, hence the symmetry
between the valence and the conduction bands is broken and a gap appears. To take into account
such an effects but still retaining an analytical expression useful for the purposes of devising
hydrodynamic models, we modify the gapless expression of the dispersion relation and adopt the

following regularization (see Fig. 5.1)

E(p)=vp\/p2+a?,

where a is a small parameter related to the nearest-neighbour and next nearest-neighbour

hopping energies and p is the modulus of the crystal momentum p = k. Hence, the components
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of the electron velocity v are given by
o0& Di
opi Vp2+a?

and the higher-order derivatives are approximated in the following way

v; =

0%8(p) ~p piPj . 0ij
=Up|— ,
0pidp; (p2+a2P2 | /p2 1 2
6°&(p) 1 PiD;Pk )
TP vp | (PiBjk + P Oin + PRO) + B,
0piOp;opp UF( (p2 +a?)32 (pi0je+pjBik +Pr0ij) (p2 + a2)p2
0*&(p) 3
= RUF |5 55 PiP0jr+Pipibir + 8;i+6,1pibh+0,1piDr+0rPiD i)~
Opiapjapkapl UF((a2+p2)5/2(plpl jk TPjPIOik T PRPIO; ilPjPrTOjIPiDE klplp])
1 PiPjPrPI
_m(b‘izéjk +610ir +5lk5ij)—l5m),

where §;; is the Kronecker delta.
Note that if a # 0 the modulus v of the velocity is no longer constant and electrons don’t behave

as massless Dirac fermions.

5.1 Derivation of Quantum corrected hydrodynamic model

Let us introduce the single-particle density matrix, p(r,s,¢) which is related to the wave function
v by
p(r,s,t) =y(r,t)y(s,t) forany r,seR? (5.1)
It satisfies the relation
p(r,r,t) = n(r,?), (56.2)

with n(r,t) the (average) electron density.

The time evolution of the density matrix is described by the von Neumann equation
0
ihap(r,s, t)=(H,—Hg)p(r,s,t) (5.3)

where H, and Hg represent the Hamiltonians acting with respect to the r and s variables
respectively.
If &(p) is the energy band in terms of the crystal momentum p = 7k, the symbol of the
Hamiltonian reads
H(r,p) = &(p) — q®(r,1) (5.4)

where the external potential ®@(r,t) here is assumed to be real. Moreover, we assume that &(p) is
a even function of the modulus of p.
On account of the quantum mechanics correspondence principle p — —ihV,, the von Neu-

mann equation reads

ih%p(r, s,t) =(8(—1hVy) — E(—1hVg))p(r,s,t) — q(D(r,t) — D(s,1))p(r, s, t). (5.5)

65



CHAPTER 5. QUANTUM CORRECTED HYDRODYNAMIC MODELS

We have to specify the meaning of the operator §(—ihV,).
Given a function g € L1(R?) let us denote by Z[g](n) its Fourier transform

Flglng) = fRZ g(W)e Vi dy, (5.6)

and let us denote by %! the inverse Fourier transform

1

-1 _
F~ [h(m]= 22

fR X h(pe¥dy. (5.7

The operator &(—ihVy)p(r,s,t) is defined as a multiplication operator in the Fourier transform

space and then mapped back in the r-space

E(—1hVy)p(r,s,t) = é?’(n)p(r',s, t)e_i"'(r_gr)dndr'. (5.8)

1
(27Th)2 .[[R2 x[R2

where 7 is the momentum conjugate to r'.
In order to derive a transport equation, let us introduce the single electron Wigner quasi-

distribution w(x,p,t), depending on the position X, momentum p and time ¢, defined as

wXx,p,t)=F [p (x+g,x—g,t)](x,p,t):pr(x+g,x—g,t)e_ip'y/hdy (5.9)

If we set u(x,y,?):=p (x+ %,x— %,t) then w = %[u] and of course

u(x,y,t)=F wl= f w(x,p, £ePYhqp. (5.10)
R

1
(2mh)2

Now we are denoting with p the momentum conjugate with y. Using the change of coordinates

r=x+=, s=x-1<,
2 2
and after observing that
r+s
xX=—-"), =r-s,
2 y

the expressions of V,. and Vg are

1 1
Ve=Vx+Vy, Ve= o Vx-Vy,

and the symbols associated to &(—ihV,) and &(-ihVg) become
. 1 . 1
é"(—thr)zé"(p+§nJ, g(—zﬁvs):g(p—énj,

where the fact that & is an even function has been used.

Fourier transforming eq. (5.5) gives

0 1 1
ihag[u](x’p’ H=F [(g (p + 5") -& (p - 511)) u(x,y,t) — q(@(r,t) — O(s, u(x,y, ) | (x,p,?).
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From (5.8) and (5.9), one has

1 1
F [(é" (p+ 511) —é"(p— —n)) u(x,y, t)] (x,p,?) =

2
f & +l _1 u(x' t)ei"'(x__ff/)d dx'| =
(27Th)2 IRQ XRZ p 211 p 211 ,y, n
1 1 . (5.11)
Z -z in %X —ipy
(2nh)2 R, B2 (‘g (‘” z") (p 2")) ue,y. e dndx'dy =
. 1 ( t) i 5 d d
(2nﬁ)2 R, 2 Elp+ 11 p_éﬂ wx',p,t)e n x/,
and
gz[(@(ﬁ ) <I>( ——))u(xy,t)](xp,t)_
= 1 y y / ip’y/h g 1| _
=@z’ fmz (@(x+5) -2 [x-3))weep 0P ¥ dp'| = (5.12)
1 y y 0/ —p)
= G s (003 5) -0 (=)0 0P dplay.
] 2xR?,
Altogether, the Wigner function satisfies the equation
0 t
% +S[€Tw(x,p,t) - ¢0lETw(x,p,t) = Clw] (5.13)

which is the quantum counterpart of the semiclassical Boltzmann transport equation. S[&] and

01&] represent the pseudo-differential operators

S[Ew(x,p,t) = w,p, e FPVax'dy,  (5.14)

i h h
—h(2n)2 fmzi,xmz% & (p+ EV’ t) -& (p— év,t)

i h h
() —-n,t|-®|x——-n,t
h(zn)Z jl;i,xR% [ (X+ 211, ) (X 2"9 )

The Wigner equation must be augmented with the Poisson one for the electrostatic potentiall

0lETw(x, p,t) = wx,p,0)e!® P gp'dy.  (5.15)

V- (eV®)=—-q(Np —n). (5.16)

Approximating with the Taylor expansion centered at A =0 we get

h h 1 8%€(p)
g( +—v,t)—£’( ——v,t) Vo&(p)-hv+ — ———R3v,vv; + O(°), (5.17)
p 2 p 2 peip 240p;p;pr Ik
h h 1 3d(x) 5
) —n,t|-0x—— Vi ® —— " Bnn; . 1
(x+2n,t) (x 5™ ) (x)-hn +24 ax,axjaxkh nin Nk +O(R’) (5.18)

IThe unipolar case with a positive Fermi energy is considered. Obvious changes must be introduced in the bipolar
case.
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Substituting the previous relations into (5.14) and (5.15) we obtain

1 0% o
Vp&(p)-hv + —¢h3vivjvk wx',p,t)e "X Vax'dv

t)=

L
h(2m)? fuei,xueg
_ 4 . / —i(x'=x)v g/
= @2 Vpé&(p) fu&i,x[m% vw(x,p,te dx'dv

. i 1 0°8(p)
(27)2 24 0p;0p jOpr

h2f2 vivivew(x,p, e XXV ax' dv
R2, xR2

W 33&(p) SPwx,p,t)
=Vy,&(p)-V t)— — L
L SL Y S, J S P o o

(5.19)

and

1 3dx) 4 o/
Vo ®(x)-hp+ ———— B3n.n; AL -y i P N
x®()-hy+ o 5:0%,00 ninjne | wx,p’,t)e pdn

n? Pox) 0° ¢
=-Vx®(x) - Vowx,p,t)+ — (x) w(x,p, )'

i
o1& Dr——
[ ]LU(X,p’ ) h(zﬂ)z ‘[Ri/szn

(5.20)

We suppose that the expansion
w=w?+ 12w + 0t

holds. By proceeding in a formal way, as h — 0 the Wigner equation gives the semiclassical

Boltzmann equation, therefore we identify w¥(x, p,¢) with the semiclassical distribution (4.10)

wOx,p,t) = fyuEpX,p,1).

At first order in /2 one finds

1 36 *wO%x,p,t)

owV(x,p, 1) 1
24 0p;0pjOpy 0x;0x;0xp

ot
g 03D(x) 63w(0)(x,p,t)
24 0x;0xj0x}, Op;0p;Opp

+v- wa(l)(x,p, t)—

+qVx®(x)- VpwP(x,p, t)—
(5.21)

= ¢lwPIx,p, ).

To go on we need an approximation for w' and for €¢[w"]. We expand the collision term up to
second order in h
€lw] = €lw 1+ €],

where €[w®] is the semiclassical collision operator. Following [58] we model the second term as
follows
1 1 1
B = v [t}

where wfalq) is the second order term in % of the equilibrium Wigner function and v plays the role

of a collision frequency which in general can depend on p.
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In the limit v — 400 one formally gets w® = wg} Hereafter, we will suppose that w® = wfj}

with a good approximation (a similar assumption was made also in [19]). Therefore, it is necessary

(1)

to find out the expression of wq.

5.2 Equilibrium Wigner function
Let us denote with p the density matrix operator. It is related to p by the relation

(px.0= [ pxy. 09wy,
for any suitable test function ¢. In other words, p(x,y,t) is the kernel of p. This solves the
operatorial Liouville von-Neumann equation

0
 h—p=I[H,p
i 0tp [H,p],

where [H,pl=Hp — pH is the commutator. In a steady state, and in particular at equilibrium,
%ﬁ =0 and therefore [H, p] =0, that is H commutes with g. As well-known, if one assumes for

simplicity a Boltzmann statistics, the equilibrium density matrix operator is given by [20]
Peq = exp(=P(H = pr)), (5.22)

where @ is the quasi-Fermi potential and § = ﬁ, Ty, being the lattice temperature (here as-
sumed constant). We will denote by p.,(r,s, ) the density matrix at equilibrium. The dependence
on B has been explicitly included.
Observe that the factor exp(¢r) plays only the role of a normalization factor. Therefore, one
first can consider the case ¢ =0 and then rescales by multiplying by exp(¢r). Let ¢F be zero.
Expanding exp(—fH) it is possible to get an approximation of p.,(r,s, f) at different orders
in h. An alternative approach is based on the Bloch equation as follows. By deriving with respect

to B, one has

aﬁeq A 1 A A
W = _Hpeq = —é(HPeq + PeqH),
where the commutation relation between I and p., has been used. For any suitable test function
¢, we have
0peq(r,s,p) 1
f 0Peq ™8 0) g — f [Hypeq(r,8, ) + pog 5, HHp()Ids.
R2 0p 2 Jr2

From general considerations in quantum mechanics, we require that H must be self-adjoint

~[[R2 Peq(r,S,ﬁ)Hsz(S)dS=L2Hspeq(r,5,ﬁ)¢(s)ds

and therefore from the previous relations we get the Bloch equation

apeq(r,SnB) _ 1
T - _Z[Hrpeq(r’s’ﬂ)+H5p€q(r’s’ﬂ)]'
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Let consider a Hamiltonian of the general form (5.4). After the change of variable

+h
r=x+-— S=X-——
oM PRA

and by Fourier transforming, the Bloch equation reads

a ' s 3 i (x'
" 1{ : I, 8(p+ﬁv)+£’(p—ﬁv)weq<x’,p,ﬁ)e-l<x-X”dx’dv—
IRZ XIRQ 2 2

ap (2m)?
h B (5.23)
__9 n _n ! 3PP g
(27)2 fRi,xR%@(x-l_ 277)+q)(x 271)weq(X,P ,Ble dp'dng,
where w,.q(x,p, B) is the equilibrium Wigner function.
Since for =0 we must have p., = 1, it follows
AZ p(r,s,0)p(s)ds = ¢(r),
which implies 2
o(r,s,0) =46(s—r),
wherefrom
Weq(x,p,0)=1. (5.24)

Eq. (5.23) augmented with (5.24) allows us to determine w.,. In view of the application in the

next sections, we look for solution of the form

Weq(x,P, f) = wD(x,p, B) + h*w ) (x,p, B).

By taking into account that

h h 1 a2£(p) 9 9
- -= 2 2
éf’(p+2v)+é?(p 2v) 6®)+ 4 5o 5o Vil ol (5.25)
h h 10%d(x ) 9 9
@(x+ 5n)+<b(x—§n) 2(D(X)+ZO o, -1ninih" + o(h), (5.26)
at first-order approximation in %2 the Bloch equation reads
aweq(X,py [5)) 12 628([’) a2weq(X, | )]

= _g(p)weq(x>p’ﬁ)+_ +qq)(x)weq(X,PnB)+

op 8 0piOp; 0x;0x; (5.27)
qh2 02®(X) a21”@(1(}(7 P, ﬁ) '
8 0x;0x; O0p;0p; '
At zero order one has
aw(o)(x p, ,B)
— éa(p)w(o)(x P, B) +q®(x) w(O)(x p,B) (5.28)

ap

2we let & denote the Dirac distribution.
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whose solution with w(o)(x p,0)=11is

w2 (x,p, B) = exp [-BE (p) + ¢ P (%)) .
At first order in /2 one has

owdx,p, p_ 1 02&(p) *wiV(x,p, f)

—& 1) + = +q ® (1) +
ap P)weg . D+ g op,  oxiox, ®weq (P, P) 5.29)
q 220(x) Pw(x,p, p) '
80x10xj 0pidp;
We solve the last equation via separation of variables by looking for solution of the form
wil(x,p, f) =w(x,p, Hg(x,p, B) (5.30)
with the function g satisfying the equation
28(x,p,pf) 1 028 (p) *wi)(x,p, B) _ P0(x) Pw(x,p, p) 5.51)
0p  8wQx.p.p |0piop; 0xidx; Toxion;,  opiop; |’ '
and the initial condition g(x,p,0) =0.
One finds
20%6(p) ?d(x) Piq | 0%6(p) 0D(x)0D(x) 02D (x)
g(x,p,p) = aF P + Fa [ P - i j] (5.32)
8 0piOp; Ox;0x; 24 Op;iOp; O0x; 0x; 0x;0x

where v; are the components of v (we recall that v = V,E(p) is the electron velocity).
Altogether, including now also the presence of a nonzero quasi-Fermi potential, we get the

equilibrium Wigner function in the case of a general energy band
Weq(X,p, f) = w(x,p, B) + h*wl}(x,p, B) + o(h?) (5.33)

where
w(x,p, B) = exp(q@x)P) exp(— f(E(p) — ¢F)) (5.34)
qp? 025’(p) 02(I>(x)+

8 0piOp; Ox;0x;
s B2 e 9*&(p) 0P(x) 0P(x) . P D(x) } _

24 Op;0p; 0x; Ox; 0x;0x;
Note that for a quadratic energy band the expression already found by Wigner [68] is recovered.

wi(x,p, B) = exp(gP(x)p) exp(—B(&E(p) - «,oF»{
(5.35)

viv;

Remark. The zero order term of the equilibrium Wigner function does not coincide with the
Fermi Dirac distribution but gives the Boltzmann-Maxwell low density limit. In the following we
will make use only of the /2 term and the previous concern will not really matter. However, from
a theoretical point of view we would address a bit better the issue.

The expression (5.22) of the equilibrium density matrix operator stems from the expression

of the quantum entropy according to von Neumann [51] S, = —kgTr(plogp), where Tr is the
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trace operator. Indeed, (5.22) maximizes such a quantum entropy. One of the main matter of
debate is the fact that the von Neumann entropy does not include the Fermi or the Bose statistics.
Moreover, as pointed out in recent papers [54, 65], in a closed system S, must be conserved
because the evolution of the system is described by unitary operators. Instead, in a open system,
like a semiconductor electron device, there is a fast decay of the off-diagonal terms and practically
only the diagonal contribution to S, survives. Arguing on such a remark, Polkovnikov [54] has
suggested to use as entropy only the diagonal contribution S; and has proved that it increase in
time according to the second law of thermodynamics. A further modification, pointed out in [65],

could be used to introduce a new definition of entropy
—kp ) [< prrlog < Prr > F(1+ < Ppri >)og(l+ < prr >)], (5.36)
k

where the < 33 >’s are the expectation values of the diagonal elements of pz; which can be
interpreted as occupation numbers, the upper sign being valid for Bosons and the lower one for
Fermions .

This could solve the problem of the limit of the equilibrium Wigner function but the needed
calculations become much more involved to carry out analytically. We are confident that the
quantum correction given by (5.35) is good enough for determining the quantum extension of the
semiclassical hydrodynamic model. These issues are under current investigation and will be the

subject of a forthcoming article.

5.3 A 6-moment model with quantum corrections

In this section we consider a 6-moment model obtained by choosing as weight functions {1,&,v,&v}.
Explicit closure relation has been obtained in [12] and [45] the crystal heating effects have been
also included. Comparisons with Direct Simulation Monte Carlo [15, 16, 37, 38, 61] have shown a
good accuracy of the model. In this Section the general guideline for getting quantum corrections
to the semiclassical hydryodynamic models will be delineated. The model is based on the same

moments (4.5)-(4.8) as in the semiclassical case but defined now as

n(x,l) = (th)z A; wix,p.0dp, (5.37)
nx, ) W(x,t) = #A;Qw(x,p,t)éa(p)dp, (5.38)
nx,OV(x,1) = # fR w(x,p,OV(P)dp, (5.39)
nx 080 = fR w(x,p,0E@V(D)dp, (5.40)

1)

where w(x,p,t) = fuep(X,p,t) + hzweq (x,p, ) is the Wigner function instead of the distribution

function®.

3From now on, fi/gp is expressed in terms of the crystal momentum p instead of the wave-vector k.
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The corresponding evolution equations, obtained by taking the moments of the Wigner
equation, up to /2 terms, are given by

=0, (5.41)
24 0xj0xp,

0x;

2 02 (n(x, t)T“” (x,1)
0 n(x t)+ i (n(x tVi(x,t)— h ( )

Xi

6 o o)
—(n(x HW(x,1)) + e n(x,08i(x,1) - 24 Oxj0xp, "

OD(x) qh* Pox)
t)V; _—
0x; Tl OVilx )+ 24 Ox;0x;0x,

—q n(x, t)Ti%(x, ) = nCwlw®lx, 1), (5.42)

2 02 (nx, 0H'O) (x, t))) .

K 0 (0)
(n(X HVi(x,8) + 3 (n(x DF;; (x,0) = 24 0xp,0x]

xj

0D(x) o) gh? o) )
tG T —— ,t)L
ox; nx, G, 0+ 5 00,057 n DLy

2 02 (n(x,)HY (x,1)
—(n(x t)S;(x,)) + ai (n(x t)F(l)(x £ — h ( ijkl ) .

—q =nCy [wPx,2), (5.43)

X 24 0xp0x]

2 3
0= x nGPex, e I OO LD

ox; o 3 oo M DL (.0 = nCs, [ 16, 1), (5.44)
J jOXE0X]

—-q
supplemented by the Poisson equation for the electric potential
V-(eV®)=—-q(Np —n). (5.45)

Note that the production terms are identical to the semiclassical case. A discussion about the
regime of validity of such approximation can be found, for example, in [56].
Besides the average densities, velocities, energies and energy fluxes, the additional quantities

appear

7O (£ ¢ 5
n(x,t) le(X )):LL( 1 ) wOx,p.t) 0°E(p) d
R

T | @rh? Jee | &(p) 0pidpjOph
H? (x,0) 2 1 33&(p)
ot ijkl _ / © _98W) .,
n(X ) H(l) Z(X t) ) (27-[]‘:02 R? ( é’a(p) ) ( )Oplapjapk v ap
G(.O.)(x £) 2 1 %&(p)
B T = f Pt dp,
n(x,t) G(.l.)(x 5 ) 21 h)?2 Rz( &) w(x,p )Oplapj P

n(x.8) L(Okl(x t) 2 f 1 O p.) *6(p)
’ L‘” ,(x,0) LI A 0pi0p jOpi0p;

n(x,t)

=— w(x,p,Hv;v;dp.
PO |~ @ah? Je| sy | PR

that must be expressed as function of the basic variables n, W, V, S. The closure relations are

obtained by inserting w(x,p,t) = fyep(X,p,t) + hzw(l)(x P, %) into the previous relations. For the
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sake of better readability, the closure relations are summarized in the Appendix E. The results

can be extended to the bipolar case in a straightforward way with similar considerations.

We observe that regarding the production terms, they are given by summing the contributions

from different types of phonon scattering.

Further moments can be added, e.g. the deviatoric part of the stress tensor as in [35], and

corresponding closure relations can be obatined with the same procedure.

5.4 Preliminary classification of the 1D quantum

hydrodynamic equations in the six moment case

Here, a prelimary analysis of the mathematical properties of the six moment quantum hydrody-

namic model is performed in the 1D case. If we denote by x; the only relevant space variable, the

h? term of the equilibrium Wigner function becomes

weq (x,p, ) = exp(g ) P) exp(~B(&(p) ~ pr))

ap® 3*6(p) o)  p° q2025(p)(a¢(x))2_ I*D(x) ,
8 oap? ox? 24| op? ox !

)

0x1

and the 1D evolution equations reads

d d 12 33 (n(x, T, (x,1))
—n(x,t)+ —nx,)Vi(x,t)— — =0
atn(x, ) oa1 n(x,t)Vi(x,t) 24 o3 ,

0 ) 2 3% (n(x, )TV, (x,1))
—n(x,t)W —n(x,t - —
atn(x, ) (X’t)+6x1 n(x,t)S1(x,t) 21 axi’ +

AD(x) qh? 33d(x)
. HV: )+ —
o1 n(x, HVi(x,t) + 1 ME

n(x, )T, (x,t) = nCylwlx, 1),

—-q

d d 12 03 (n(x, HH Y, (x,1)
— t £+ — F(O) e — > 1111\
th(x’ Wix, )+0x1 n(x,t)F{(x,1t) 91 ax‘;’ +

0D(x)

qh? 33 d(x)
—q qn o /x)
0x1

3
24 0x]

- (x, )G (x, 1) + n(x, LYY (%,0) = nCy,[w ¥ 1(x, 1),

9 0 o
an(x, )S1(x,t)+ a—xln(x, OF 7 (x,1)

1111
24 Gxi

0D(x) h? 33D (x)
-q o1 -n(x,t)G(lll)(X,t)Jrq2—4 27 n(x,t)L(lll)ll(x,t):nCsi[w(O)](X,t)-

R2 03(n(x, OHY, | (x,1)) .

Let us introduce the vector of the field variables

U=(n,nW,nVy,nS1)T

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

and the relative Lagrange multipliers A = (/l, /lw,/lvl,itsl)T. Moreover, let us denote by Ay the

Jacobian matrix
_0(n,nW,nVq, nSq)

A= .
0 O(A)AW7/"‘V17A'S1)
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5.4. PRELIMINARY CLASSIFICATION OF THE 1D QUANTUM HYDRODYNAMIC
EQUATIONS IN THE SIX MOMENT CASE

From the general theory it follows that A is invertible (for more details see [12, 34, 35]) and

the evolution equations can be written in the form

nVi 0
0 0 S C
Sy | M =M, (5.52)
ot 0x1|nFj; nCy,
nFill) nCg,
where o
0
nTi1; 0 0

:h_26_3 nTI(lll)l 0d(x) | nV1 _q_h263(1)(x) nT(l(i)l
24 0 | nHY) T om; nGQ| 24 953 [2LQ

1111 1111
(1) 1) 1)
nHiT) nGy{ nLijy

Let us consider the case of zero electric field. Hence

(0)

nTi7;

2 a3 (1)
=h_ 0 nTlll
3 (0)

24 0xy | nHyj)y

1)
nHi7

Moreover we assume that the relaxation times of energy, velocity and energy flux are much longer
than the characteristic time of the evolution of the system and, in consequence, we neglect the
production terms Cywl[w@1(x, ), Cy, [wO(x, 1), Csi[w(o)](x, t). Indeed, the production terms are
not relevant to the aim of classifying the nature of the PDEs.

The resulting evolution equations can be written in the form

oA oA
Ag—+A1— =
% "o

4
where A1 = VaZ1, with F1 = (nV1,nS1,nFQ,nF{Y).

Let (X,Iw,Ivl,isl) = (_kg_lh’ ﬁ,0,0) be the equilibrium solution at assigned Fermi level
EF.

Now, we perturb the equilibrium solution with a Fourier mode and linearize the partial

differential equations (PDEs) with respect to the perturbation. Set

A A 51
Aw — ilw +e—0t+ik~x 5Aw
7LV1 AVI 57LV1
As, As, 5131

To go on it is necessary to linearize the macroscopic variable n,nW,nVy1,nS1. For example,
the density is approximated in this way

—ot+ikx On(l_\)é/“_ an(/_\)(s/l

5.53
oA o, ¥ (5:53)

n=Np +e
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and similarly

_ 1o [O(RW(A o(nW(A

nW =nW(A)+e"”+lk'x( (nWH ))5)L+ {n W ))mw), (5.54)
oA 0y
- - A A

nV1 =nV1(A)+ e—0t+Lk~x (Mé/’lvl + wéasl) , (5.55)

oAy, 0As,

_ 1 [0(nS1(A a(nS1(A

nS1 =nS1(A)+ e 0likx (MMVI + Mmsl) . (5.56)

oAy, 0As,

Denoting by A4 the generic component of A, we write the linearized model as follows:
- - ) (A
on(N) an(A) O(nVl(A)) 3h? 0T (N)
- oA +ik ———————61,=0 5.57
U( or " Ton, ) kY o 2> op,  OMa=0 (65D
1 (A
anW(A) anW(A) O(nSl(A)) . gh? 0T (N)
+ik°— ) —————01,4=0,(5.58
U( EYm ) Z i z4§ A 4 = 0,(5.58)
Vi(A an F“”(A)) 2 . O(nH Y (M)
= O(n 1( ))MLA +ik) ————— zk3 Z &MLA =0 (5.59)
0nS1(A) OnFy) () gh? o OH,, (A)
+ik OAg+ikP— ) ————=—=—651,=0 5.60
U§ 1A § A 24 Z BN A= (5-60)
which in compact form reads

LI6A,8My,0Ay,,045,17 =0, (5.61)

where £ is the matrix representing the symbol of the linearized system (5.57)-(5.60).

The roots of the determinant P(o) of the matrix £ determine the mathematical type of the

PDE system. There are two physically interesting cases to consider:

1) h =0 (semi-classical model). The roots of P(¢0) and corresponding modes are

V2

+ik = hyperbolic, multiplicity 2
2

—ik \/7_‘ hyperbolic, multiplicity 2

forallepand a<1.
2) h# 0 (quantum corrected model).
a) If |k| — oo the dispersive modes are dominant
+iC(a,ep)i2E> hyperbolic dispersion, multiplicity 2

—iC(a,ep)hE? hyperbolic dispersion, multiplicity 2

where C(a,er) is a constant depending on the numerical value of parameters a and

EF.
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b

~

If |k| — 0 the hyperbolic modes are dominant
+iD(a,ep)hk? hyperbolic, multiplicity 2

—iD(a,ep)hk? hyperbolic, multiplicity 2

where D(a,er) is a constant depending on the numerical value of parameters a and

ER.

~

¢) If 0 < |Kk| < +00 the corresponding modes are
4,4 2,2
tkci(a,er) [02(a,£F)h k* +cg(aep)h”k” + cqla,er)
1172
+12R%\ Whtes(a,ep) + h2R2co(a,er) +er(a,er) |

with multiplicity 2.

cila,ep), cola,ep), cs(a,er), cala, er), cs(a, er), cgla, er), c7(a, ep) are constants depend-
ing on the numerical value of parameters a and er.The high nonlinearity of such
expression makes very difficult to assess analytically the sign of the argument of the
roots for all positive a. To have a guess about that, we have numerically evaluated,

the functions

F(a, B, k) = cal@h*R* + ca(@h?R? + ca(a) + h2h%\ H4RAcs(@) + W2R2co(@) + or(@)

and
gla, k) = itk cs(a) + B2k cg(a) + c7(a)

for meaningfull values of e, a and hk. It has been found that f is always negative,
while g is always positive. For example in Fig.5.2 the case of Fermi level e = 0.4 eV is

shown. Similar results have been obtained for other values of 5.

This leads to be confident that also in this last case the modes are pure immaginary.

Craph of fanetion g with Trrmi Tl e — 04 oV Graph af Fursion £ with T Tews] ey — 04 2%

Figure 5.2: Graphics of g (on the left) and f (on the right) with Fermi level e = 0.4 eV, for a € [1073,1071]
and hk €[0,100].
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5.5 Energy-transport and drift-diffusion limit models

From the hydrodynamic model it is possible to deduce an energy-transport one under a suitable
scaling. In the semiclassical case the advantages of the energy-transport formulation are a better
regularity of the solutions and the possibility of applying efficient numerical schemes like the
Scharfetter-Gummel one [57]. In the presence of quantum corrections we expect also better
features of solutions and a better performance of the numerical scheme. If we consider a long
time scaling, the evolution equations (5.63)-(5.64) tend to the stationary case. In particular, the

equations for nV and nS become a linear system for these variables

c11 cC12 nVi b(iO)
n =1 .o )
co1 €22 nS; b;

where the coefficients c;; depends on the energy W (for explicit expressions see [35]) while

2 0% nix, t)Hg?}d))

9 9
b = T(n(x,t)Fg)—— - q=— ) n(x, G}

Y 24 Oxp0x 0x;
qh? 3d(x) ©
o A A AL t)L
24 axjaxkaxl n(x,t) ijkl’
2 (1)
0 B2 0 (n(x,t)Hi 'kl) 5
p» = L o PO 0 v na
i Oxj (n(X, ) ii 94 0x0x; qaxj (x)-n(x,t) £ n(x,t) ¥
qh? 3d(x) a
o A A AL YL .
24 axjaxkaxl n(x,t) ijkl
One gets
nVi 1 c99 —c12 bEO)
" c11caz—c1aca1 6h) (5.62)
nS; ci11ca2—cizc21 | —co1 11 3

and by inserting these relations into the equations for n and nW, one obtains the following

stationary quantum energy-transport model

0 1

2 (0)
52 0 (nx, )T )
— | —————(e22b? — 98P | - — —— | =0, 5.63
O0x; | c11c92 — c12C21 (622 iTeno ) 24 0xj0xp, ( )
2 (1)
- —(—0126(0)+611b(.1))———( ij)
0x; | c11¢c22 — c12¢921 l v 24 0xj0xp,
0 qh2 03CI)(X) (0)
—q—Px) nx,1)V,+ — ———nx, )T, =C . 5.64
L (®)-n(x,)V; on axi&cjaxkn(x )Ty, = Cwlw] (5.64)

Moreover, let us model the energy collision term in the relaxation approximation

W-Wy
w

Cwlw]l=-
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with Ty the energy relaxation time and Wy the equilibrium energy.
In the limit the scaled 7w tend to zero, from the equation (5.64) one has formally W = W and

remain only the equation (5.63) which is equivalent to the conservation of the total current o, i. e.

R (x0T )

Ji= !
! 24 0Ox;0xp,

0 1
= (szb(i )—021b§ ))
€11C22 —C12C21

=dJ;,i=1,2, (5.65)
J; being constant values. Equation (5.65) coupled with the Poisson equation for the electrostatic
potential constitutes the limiting stationary drift-diffusion model deduced from the energy-
transport one. It is a generalization of the standard quantum model based on the Bohm potential
(see [28] for a review of the current models known in the literature).

The quantities involving (5.65) can be explicitly evaluated in terms of the Fermi energy er
and the electrostatic potential ® (we omit the details of the derivation. The interested reader can

get it starting from the results in [36]).
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CONCLUSIONS AND FUTURE WORK

Semi-classical hydrodynamic models for charge transport in graphene have been presented. In
pristine graphene, the numerical solutions given by those models have been compared with those
of the semiclassical Boltzmann equation obtained by a DG method. Apparently the nonlinearity
does not improve the results. This agrees with literature in other fields like phonon transport
[18] and radiative transport [39]. Moreover it has been found that it is crucial to include - among
the variables - the deviatoric part of the stress tensor in order to maintain a good accuracy in a
wider range of applied electric fields.

Then to include quantum effects, the proposed models can be extended by incorporating the
first quantum corrections. Therefore in the last chapter an example of quantum hydrodynamic
model for charge transport in graphene has been formulated. It is composed of the semicassical
model presented in [12, 34, 35] augmented with quantum corrections at /2 order deduced by
exploiting the equilibrium Wigner function obtained by solving the Bloch equation in the case of
graphene. As h— 0, the proposed model of course reduces to the semiclassical one which turned
out to be accurate enough by comparison with DSMC results [34, 35]. Several strategies can
be found in the literature for devising quantum hydrodynamic models (the interested reader is
referred to [28] for a comprehensive review) but usually strong approximations on the collision
terms or on the energy bands are introduced and the semiclassical limit leads to semiclassical
models whose soundness is questionable. To asses the validity of the proposed model numerical
simulations are under current investigation and they will be presented in a forthcoming article.
Furthermore, quantum energy-transport and drift-diffusion models have been formally derived
from the quantum hydrodynamic equations in the long time asymptotic limit. In analogy with
the semiclassical case we are confident that the energy-transport and drift-diffusion models have

mathematical properties which allow an easier numerical treatment.
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APPENDIX

UNIFORM CONVERGENCE FOR MOMENT PROBLEMS WITH
FERMI-DIRAC TYPE ENTROPIES

Using the maximum entropy method to solve a moment problem requires maximizing a measure
of entropy/information, a convex integral functional of probability density function f subject to
given moment constraints. We show that under certain assumptions on the objective functional,
as the number n of moments increases to infinity, the estimates f, converges in L*> norm to the
unknown density function f.

By introducing a convex integrand as the entropic objective for a truncated moment problem,

we have to solve the following optimization problem:
S
Ilpea; [£]
(P st Ma— 25 [ va®fkdk=0 A=12...7, (A1
f e LY(%r)

where 2r is the Brillouin zone, which is a complete finite misure space, w4 € L*(%r) for

A=1,2,...,.%, (an increasing sequence of finite index sets). The entropy S[f] can be written as

SIf1= f% S(F(r.k, 1)k,

where ok
¢(f)=-——Z[fInf +(1-lnd-f)] (A2)
(27)

Note that ¢ is a Fermi-Dirac type entropy which satisfies:
1) dom(¢)=1(0,1);
2) The function ¢ is strictly convex and differentiable on dom(¢), with the derivative satisfying

fl_ig(1)+<b(f)=—oo fill}_(/)(f)=+oo.
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The conjugate function of ¢ is defined as

P (g) = geﬁ%@{f g—P(fH}.

When the function ¢ satisfies the above assumptions, the conjugate function is everywhere finite,
strictly convex and differentiable on dom(¢), with a very useful property ¢* =(¢)~L. The dual

problem for (£2,) is then an unconstrained minimization problem:

. P * n
@) {mm S |01 A0, 0p A QOf (K, 1) = 9" (Z51, A, DY ()| de s

Aa(r, t) € R¥A),

where x(A) is the order of corresponding tensor M 4. Of course x(A) may not be exactly n.

Hereafter we assume r and ¢ fixed. By well-known duality results (see [7]) the optima of
both (£2,) and (2,) are attained and equal, provided that the following form of a constraint
qualification holds:

there exists f € L1(%r) such that

Mp = [pvsa®fkdk, A=1,..,9%,

) Ja (A.4)
0<f<1, a.e. on Br

S, $())dk < +oc.

Moreover, if A = (Xl,iz, ,X #,) 1s an optimal solution to (92,), then the unique solution to (27,)

can be reconstructed by
T
fn=0¢" (Z AAU/A)-
A=1
The uniqueness of the solution follows from the strict convexity of ¢.
Note that we have ¢/(f,,) € span{y,A =1,...,.%,}, which implies

0<frnk)<1l, a.e.onABr
We will discuss the uniform norm of f,, — f, which is defined as
Ifn = flloo = esssup{lfn(k) - f(K)| : k € Br}.

A.0.1 Some Inequalities

First of all some preliminary definitions and known results in convex analysis are recalled.
Let X be a real Banach space and X * be the topological dual space of X. The set of subgradients
of f at xg € dom(f) is defined to be

0f (x0) i ={x" € X" <x™,x—x0>< f(x)— f(xp),for all x € X}.
It has the following properties.
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Proposition A.1. If a convex function f is continuous at xg € dom(f), then 0f (xg) is a nonempty,

convex, and weak*-compact subset in X*.

For any functional f : X —]—o00, +o0[ and its convex conjugate f* : X * —]—o00, +oo[, Fenchel’s

inequality (also known as the Fenchel-Young inequality) holds for any x € X and x € X *:
&™)+ flx)=<x,x" > (A.5)

The proof of (A.5) follows immediately from the definition of convex conjugate and the equality
holds exactly for x* € af (x).

Definition A.1. For x € dom(f), h € X, if the limit
1
O0F(x;h) = lim —[F(x+ ah)—F(x)]
a—0a

exists, it is called the Gateaux differential of F' at x with increment 4. If the above limit exists for
each 4 € X, then F is said to be Gateaux differentiable at x and the Gateaux differential will be
denoted by F'(x).

Definition A.2. If §F(x;-) — R is linear and continuous such that
|1F(x+h)—F(x)—6F(x;h)|
im =0,
IR1—0 21
then F' is said to be Frechet differentiable at x.

It is obvious that the Frechet differentiability implies the Gateaux differentiability but not
usually vice versa. For a lower semicontinuous convex function on a Banach space, the Gateaux

differential is always linear and continuous and we have
OF (x) = {F'(x)}.
In this case, the Fenchel-Young inequality becomes
<F'(x),x>=F(x) + F*(F'(x)). (A.6)

We will use this property frequently in proving theorems we will present below.
Given an integer n and g € L°°(%r), for our convenience, the best approximation of g by

{wa,A=1,...,%,}is the number defined as

/'lA € RK(A) }

B
E,(g):= inf{ Y wala-g
A=1

(o9}

For a given choice of ¢ and a density function f, we write:

E (¢ £/ (f) e L(%B
£ e { @) &'(f) € L®(Br) an

+00 otherwise.

Let denote by V(22,) and V(2,,) the optimal values of problems (£,) and (2,,) respectively. Then

we can prove the following inequalities.
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Theorem A.1. (weak duality)
V(2,) =V (D). (A.8)

Proof. This follows directly from the convexity of ¢ and the Fenchel-Young inequality (A.5)

S,
V(@n)zfg3 (p(f)dk>f Z A, yaf ek, t)—¢p* (Z )LA(r,t)u/A(k))dk:V(@n).

Br A=1 A=1
|
Theorem A.2. Let E,, < +oco then
V(@) 2[ O(f)dk —mis(Br)E, (A9)
Br

Proof. Since E,, < +00, the function ¢(f) is almost everywhere finite.
From Fenchel-Young equality (A.6), for almost k € Br, we have that ¢'(f(k)) is finite, and so

GE+O P N=FP'(F)

For each n, we can find A} € R¥A) A =1,2,...,.%, such that

2,
f H(f)dk -V (D) = f Hf)+ " (Z AAu/A) Zagw dk=
A=1
I I
f |f¢(f) </>(q>(f))+</>*( Aﬁw) £y Ayva|dk=
A=1 A=1

Bl

f [ (d)(f)—ZAAwA) (¢*(¢(f)) ¢ (:ZIAAWA))

Since ¢* is strictly convex, it follows

J.

=/ [ (cp (-3 AAwA) (z )LAwA)((p -5 ,LAWA)

[ (cp(f)—ZﬂAWA)( (Z”A‘”A))

The last inequality comes from the definition of E, and the property that qb*/ = (qb/)_1 € [0,1].

Therefore,

dk <

f(¢ (f)- Z AAwA) - (</>*(¢’(f))—¢ (Z AAwA))

dk=

dk < E,mis(ABr).

f O(f)dk -V (2,) <E,mis(%Br).
Br
[ ]

Corollary A.1. Suppose that ¢* is twice differentiable and its second derivative is bounded above
by some constant J >0 on R, Then

V(@)= f S(F)dk— Tmis(Br)E2 (A.10)
Br
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Proof. Asin the proof of Theorem A.2, for 17} € R4 A =1,.., .9, we have

(¢> (- Z AAwA)( (Z AAwA))

f H)dk-V(@,) < f

e (Z AAwA) dk=E, | 16" @ ()-¢’ (Z AAwA) dk =
for some v(k) € {({)'( ), Zn: ANywa } using the Mean Value Theorem
A=1
" In In
¢* (k) (¢’(f)— > Agw) &' ()= Y. AViya|dk < JE2 mis(SBr).
r A=1 r A=1

The proof of the next Theorem can be found in [6]. It supplies a necessary condition for f, to

be an optimum of (£2,).

Theorem A.3. Suppose [, is the optimal solution to (2,). Let f be any feasible solution for (22,),
then

fgg O (fB)(f (k) - fr(k)dk = 0. (A.11)

In particular, we have

f% &' (Fn ) (k) - fr(k))dk = 0. (A.12)

If we further assume that (CQ) holds (stated in (A.4)), then equality holds in the above inequalities.

Theorems on norm convergence, in the sense of

Ifn=Ffllp:= (fgg Ifn&) - fIPdk p——»O, 1<p<+oo (A.13)

has been proved in [6, 66] assuming the strict convexity of the integral functional I := [, 2, PK)dk.
Here we want to prove a uniform convergence theorem for moment problems considered in this

work. In the next result, we require the function ¢ to be in C%([0,1])

Theorem A.4. Let ¢ be twice continuously differentiable on [0,1]. Assume that for some constant

1n >0, we have

¢"(g)=2n, Vgelo,1l.
Let f,, be the optimal solution to (2,). Then
f@ [p(f) = p(f)ld =l f = fr I3 (A.14)
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Proof. By Theorem A.3 and the Mean Value Theorem,

f% [A(f) - P(fr))dk = j% [D(F) = P(fn) = ' (fnR(f (k) — fr,(K))]dk =

1
=3 L ¢"(EW)(fr (k) - f () dk =7 fﬂ (fa(K) — FR)2dk =l fn - 112,
for some ¢ € {f,,(k), f(k)} (0, 1).

A.0.2 Main Theorem

To relate norm convergence to uniform convergence, for given {y4,A =1,...,.%,} and each n € N,

we define some renorming constants

lglloo
lglp

App:= sup{ ,8Espan{yp, A= 1,...,ﬂn},g7£0}. (A.15)

Noting that
1
lgllp < lglloc(mis(ABr))»

it is always true that

Anp = (mis(Br) 7 >0 (A.16)

Here, we will use only A, o.

To obtain uniform bounds for {f,, — f}, we not only require (in Theorem A.4) ¢ to have the
second derivative bounded below by 21 > 0, but also must require ¢* to satisfy the following
assumptions: for each fixed number M > 0, there exists a strictly positive and non increasing
function I'ys : Rt — R*, with

lgminfl"M(f)cf >0 (A.17)
such that
o™ (w)—¢* )| = Tar(JuDlu —vl, (A.18)

for any u,veR, [u|<M.

Before establishing the main Theorem, we prove a Lemma.

Lemma A.1. Let ¢* satisfy (A.17) and (A.18), let uy,,v, € span{wa,A=1,...,.%,}, and |uplloo < M,

for some M >0 and large enough n. Further suppose
An2llp™ (un) =" Wpllz —0  asn— oco. (A.19)

Then

An,2”un —Uplla —0 asn — oQ. (A.20)
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Proof. By (A.18), for each k € Br, we have

16" (1 (1) = ™ (0 ) = Tpr (0 p WDl (K) — v ()| =
= Iy (lop B + 1 n — vg lloo)lun(K) — v, (K|
since I'jsis nonincreasing (A.21)
= Iy(lop () +An 2lln —valplun (k) —v,(K)|
by the definition of A, 9.

Then
An2 ||<P*,(un) - (P*/(vn)llz = 'y (v (R +Ap2llun —vnllp)An 2l un(k) — v (K) 2. (A.22)
Now we claim that {A,, 2[lu,(K) —v,(K)|2} is boundend. If not, for some subsequence {n;} we have
Ap2lliun, (K)— vy, (K)llg — oo, asn; — oo (A.23)

and hence
M+An’2 IIuni(k)—vni(k)Ilg — O0. asn; — 00 (A.24)

By (A.17)

Hminf T o (M -+ A 2 e, () = 0, () I2XM -+ A e, () = 03, (0)12) > HiminfT(©) 0. (A.25)
—00

1—00

By (A.23) and since I'js is a nonincreasing function we obtain

HminfTp (M + Ap 2lluy, (K) = vy, ) 2)(An 2llup, (K) — vy, (K)l2) > 0

1—>00

which is in contradiction with (A.19) and (A.22). Therefore {A, 2llup, — vy [I2} is bounded, that is to
say there exists M such that

An,2”un —vplle =M.

Therefore
Ty (A 2llten, (&) — v, (K)l2) > Ty (M) > 0

and consequently
Ta(M + D 2llten, (K) = vy, (K)12) > Tar (M + M) > 0.

Finally, from (A.19) and (A.22) we deduce

Apgllup—vpllag—0 asn — oo.

We are now able to prove the main Theorem.
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Theorem A.5. In problem (A.1) suppose that is the Fermi-Dirac type entropic function with
its second derivative bounded below by 21> 0. Suppose that for each M > 0 there is a function
Iy : R — R* satisfying (A.17) and (A.18). Assume f € LY(8Br), ¢/'(f) € L®(%r), and

ApoE, — 0, as n — oo. (A.26)
Let f,, be the optimal solution to (22,). Then
16" (F)=¢'(f)lo — 0,  asn— oo, (A.27)

and also
If = frlloo— 0, as n — oo. (A.28)

Proof. We choose 1} € R<A) A =1,2,...,n so that

O')=Y NVya| =E, (A.29)
A (e 0]
then
avall <En+1¢ (Pl (A.30)
By Theorem A.4
j [6(F) = p(F)Idk = Il f = foll2. (A31)
Note that ¢" =1 > 0 implies gb < oo from the property c/) = (c/) )~L. As in the proof of corollary

A.1, we have

f )k -V (Dy) < j

(¢ (- Z AAwA)( (Z AAwA))
-9 (Z AAwA)

dk= dk =

@ im-¢7 ( > AAwA)
for some v(k) € {(,b'( 1), Zn: Aywa } using the Mean Value Theorem
dk < <

</> (- Z A ldk < —E2 mis(Br).

* (v(k)) (f,b (fH- Z Ay WA)

Since V(£2,) = V(2,) and [, is the optimal solution to (£2,) then
1
f% Sk —V(P,) = f% )= pf ke = - B mis(Br). (A.32)

Then (A.31), (A.32) lead to
2If = Foll2 < B2 mis(Br),

consequently

An,2n”f _fn lo = An,ZE'n V mis(%Br). (A.33)
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From (A.26) we get
Ap2lf —fallz—0  asn— oo. (A.34)

Let consider the following quantity

An,Z

In
" (P (fu)) =" (Z AZWA)
A=1 2

Since ¢* = (¢')~! we have

An,2 = An,2

2

<

2

7,
fn_(pb* (Z AXWA)

A=1

7,
" (@ (D) =" ( > ALWA)

A=1

<An2 (”fn —fllz+

' In
f-¢" (Z AZWA)
A=1

=An2 (”fn —flg+

jn
O @ (N-* (Z Aj;wA)
A=1

)

2

A
by the Mean Value Theorem there exists é(k) € {¢'(f), Z Ay wa}such that
A=1

<Ang (”fn —flz+

" In 1
¢ (k) ((P'(f)— ( ) AZWA)) ) <Apg (Ilfn —flg+ EE% mis(%r)) .
A=1

2

Using (A.26) and (A.34) we get

In
Ana ||¢* (@' (fn))— (Z /wﬁﬂA) —0 as n — oo. (A.35)
A=1 2
Since ¢'(fn),La Ay wa € span(ya,A =1,...,.%,) and
H
Y Aava| =1¢(Plloo+E, < +oo, (A.36)
A=1 .
using Lemma (A.1) we have
Apo (Pl(fn)—Z/lZWA — 0,as n — oo. (A.37)
A 2
By definition of A, o
O(fr) =Y AMawall <Dnz|d'(f)—Y Axwa (A.38)
A o A 9
Hence
(P,(fn)—ZAZ\wA — 0,as n — oo. (A.39)
A oo
Therefore, since
6" F) =" (Do < |#'F) =Y Aqwa| +[DAawa—' ()| =[¢'(F)=d Aswa| +En
A o] A 0o A oo
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by (A.39) we have
lo'(F)-¢'(H)|,—0 asn—oo. (A.40)

In order to prove (A.40) we had to require E,, — 0 which is true if ¢'(f) € spanf{wa,A € U oInt 2
LY(%,).
1

In conclusion, applying the Mean Value Theorem and qb*// < = < oo we obtain

=

1fn=Fllo = |

/ / 1
¢Wdumr¢fwaﬁmmsﬁMWUM—quw. (A41)

Using (A.40) we have

Ifn=flloc—0O asn — oo.

In our case, it easy to check that

o(=14 4.

— >
fo1-f
To make Theorem A.5 applicable, we only need to check the existence of I'y; which satisfies (A.17)
and (A.18). We can derive following inequality using elementary calculations.

Lemma A.2. For any C >0, Ty >0, the following inequality is true for |t| < Ty:

[1-e’| £
> . A.42
Crel ~ (C+D(To+1) (A-42)

Proof. Recall that

el>t—-1 forallteR (A.43)

For fixed values of C > 0 and Ty > 0 such that |¢] < T:

e If =0, using the relation (A.43) we get

i-¢f| -1 __ C+1__ C+1 _ &t _ t
C+et C+et =~ CHet C+t+1 C+t+1 (C+To)To+1)

The last inequality follows because C+t+1<C+Tog+1<C+CTo+To+1.

e Ift <0 the same considerations of the previous case hold.

Proposition A.2. For ¢ defined in (A.2) there exists a function Iy satisfying (A.17) and (A.18).
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Proof. We computed that
¢*(g) =In(1+e*)

and
! eg
¢ &=
for any h,g € R and || < M, we have
6" (h)— 6" )l_‘ el e | 1 el — e 1 1-e8™h
¢ ¢ 8)l= 1+eh 1+e8| 1+eh|1+e8 | 1+4el|ehtesh|™
1 1—e87h 1 lg—hl
> =Ty(h -h
T2 oM | oM toa | = QMR Man w1 MURDIE=R]

The last inequalities is given by applying the previous Lemma with ¢t =g—h, To =M +|h| and
C=eM,

It easy to see that I'js is a nonnegative and decreasing function and

Jim T (¢ = REPhe

and (A.17) follows.
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APPENDIX

NON-LINEAR CLOSURE RELATIONS FOR THE 6 MOMENT MODEL

Assuming that the Lagrangian multipliers Ay and Ag are collinear, we choose a reference frame
(e1,eg) in a way that Ay = Ay e1, As = Ase;, E = Ee; and introduce polar coordinates (&, ¢);
taking into account the dispersion relation (1.2), the wave vector k can be written in terms of the

energy & and the angle ¢

k= % (cos</)e1 +sin(/>e2).

Therefore

dk=kdkdp= %dé’dgb

with & €10, +ocl and ¢ €[0,27].

Explicitly we have
Frpp(ek,0) = ! ®B.1)
MEPES S ™ 1 ¥ exp(A + A€ + vp cos p(Ay + ENg)) '
where v =vpcos¢pe; +vrsinpes.

The constraints read

2 fznd f+°o &de& (B.2)
n=———— )
@2rhvr)? Jo ¢ 0 l+exp(A+21,8 +vpcosPp(Ay +EAg)’
2 2n +00 g2déo
W=—— d B.3
" (QJTth)Z/O ¢f0 1+ expA+ Ap& +vp cosp(Ay + EAg)’ (©.3)
2 2m too Ecospdé
V=—2f d¢f alid e1, (B.4)
@rh)vr Jo o0 l+exp(A+A,E +vpcosPp(Ay+ENLg)
2 2n +oo &2 cospd&
S=——— d B.5
" (2nh)2vpfo (Pfo 1+exp(/1+/1w£’+ch0s</>(7Lv+£’/ls)e1’ (B:5)
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The other terms of the evolution equations can be estimated by fyrzp as

E (2 +oo dé&sin? ¢
GO .Ee, = f d f , B.6
" =02 )y )y TTexp(At A +opcosgpliy + E4g) " (B.6)
21 +00 &de&
GV Fe: = j' d f . B.7
" 1= onen2 0 ¢ 0 1+exp(/1+/1w<§’+vpcos¢(itv+£’/ls)e1 (B.7)

B.0.0.1 Production terms

Regarding the production terms, the estimators listed below are obtained.

The productions arising from the scattering with acoustic phonons are

nC;aC) - 0, (B8)
nCy? =0, (B.9)
(@) A(ac) +00 2 )
nCy® = _—87137141;% {fo dé"jo cosyé f(é?,w,t)dw} e, (B.10)
A(ac) +00 2n
nCg? = T Ao374.3 {f dé"j cosy & f(8,y, t)du/} e1, (B.11)
8r3nhtvy, LJo 0

where ¥ = ¢+ 60" and, recalling that 0" is the angle between k and k',

(gol
k'= [cos(¢p+6")eq +sin(¢p+0")es].
hvg
1
We set = T and denote by H the Heaviside function. The productions arising from the
scattering with optical phonons are
nCOP) -, (B.12)
AOPD2NOP  on + on
nCOP =— LB f de f " 624 f d0" {[(& - hw,e )1 - F(&,@))E — h)H(6 — hw)
4h,4v%,n4 0 0 0
+ ePhOF(& 4 hw,e! )1 - F(&,e)E + hw)] (B.13)
- [eﬁh‘” f(&,e)1-F(& - ho,e ))& - hw)H(E - hw)
+f(8,e)1-f(& +hw,e ))& +hw)]},
AOPD2NOP 2 + 2
P or g — s : f " do f " eds f ”cos</>d6"{[f(é"— hw,e')(1- f(&,e))& - hw)H(& — hw)
antvdat Jo 0 o
+ eﬁhwf(é" +hw, e )1-f(&,e)& + hw)] (B.14)
=[PP (8, €)1 = (&~ i, & )& - o) H (& ~ o)
+ f(&,e)1—f(& + hw,e ))& + hw)]} ey,
AOPDQNOP 271. + 27.[
neg? =—— 8 f de f ~g246 f cospd0" {[f(& - hw,e')(1 - f(&,e)NE — hw)H(E - hw)
antodat Jo 0 0

+ P f(8 + ho, €)1~ 18,6 + o) (B.15)
~ [P 18,001 16 ~ hv, &/ X& ~ henH(& ~ Fw)

+ [(&.e)1~f(& + i, )& + i) ey,
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In the previous relations e = cos¢pe; +sin¢ ez while €’ = cosy e; +siny es.

The productions arising from the scattering with K-phonons are

nC'®) =, (B.16)
AKD2 NK 2 + 2
nc0 2 KB f deb f * s { f 40" (1 cos0") [ 626 ~ ha)f (& ~ i, @Y1~ (&, €DH(E ~ hw)
8n4h4v%. 0 0 0
+82ePM(E + ) (& + T, &)1~ (8, €)] (B.17
2
- fo d0"(1-cos8") [£2eﬁh‘” £(&,e)1 - f(& —hw),e' & - hw)H(E - liw) + E2 F(&,e)(1 - f(& + liw,e )& + hw)] }
AKD2 NK ron + 2
nCE =#f dq;f oo{f d0"(1-cos0") [(& — hw) f(E — hw,e')Y(1 - F(&,e)H(E - huw)
srintv2 Jo o 0
+ PO 4 h) (& + T, X1 [(&,0))|
2n
- fo d6"(1-cos8”) [eﬁh”’f(g,e)(l —f(& - Tw),e' )& — hw)H(E - Tiw) + f(&,e)(1 - f(& + Tiw,e )& + hw)] }é”cosd) dé&eyq,
(B.18)
AKD2Z NK o + o
ned -Z KB f o f Oo{ f 46"(1- 06" [(& — h)f (& — hov, & )(1 — (&, DH(& ~ o)
srintvs Jo 0 0

+ePho(g 4 hw)f(& + ho,e")(1 - f(é’,e))]

2w
- fo d0"(1-cos0") [eﬁﬁ‘“ F(&,e)1—f(& —hw),e' V& - hw)H(E — hw) + [(&,e)(1 - f(& + ho,e )& + hw)] }62 cospdéeyq,
(B.19)
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APPENDIX

CLOSURE RELATIONS FOR MODEL WITH AN ARBITRARY NUMBER
OF MOMENTS: THE CASE OF MOMENTS BASED ON ENERGY POWERS

One of the advantages of linearization lies in the fact that the field variables can be expressed as
the sum of integrals. Therefore it is possible to calculate each addend with respect to a suitable

base, greatly simplifying the calculations. For example, the average velocity

2 1 ettt 2,@ N 4@
nV=(27,)2[“%2(1”“%/3—(1+eA+Awg)sz+mS+g A2+ + 6NN ))v(k)dk,

can be written in this way

At+A, & A+Ayé

2
AV . V(k)dk - 2 —(1 n e/l"'/lwéa)z

- (2m)2 (Lz 1 + eAMAwé vik)dk ~ r2 (14 eA+Awé)2

e/1+itw£’ v
+fm (g ohndy s & v(k)dk).

nV

As-Evk)dk +...

(C.1n

The integral

eMAwé
Jo vt vk

can be evaluated by using a base adapted to Ay, i.e. we introduce a reference frame (e, ez) such
that Ay = Ay e; and we use adapted polar coordinates for v:

VvV =vpcos¢e] + vF sinpes.

Analogously the addend

eA+Aw€
LZ WAS . gV(k)dk,
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APPENDIX C. CLOSURE RELATIONS FOR MODEL WITH AN ARBITRARY NUMBER OF
MOMENTS: THE CASE OF MOMENTS BASED ON ENERGY POWERS

can be evaluated by using a base adapted to Ag. The same considerations holds to the remaining
addends.

Thus, the relations between fields and Lagrange multipliers are given by

= dég, C.2
" nhZUIQ,fO 1+ eMMwé (€2)

1 +oo &2
nWo= ﬂhzv% L 1+ eA A€ dg’ (C.3)

1 +00 éaeiwxlwé?
T 2nh2up fo (1+ A Awé)2

1 +00 ébe/1+ilwé° +00 528/1+/1wé° c
=- d&A +[ ————d&s+ (C4)
onh2up {fo (1+ eMMb)2 VTl @t et Mb)2 S

+00 £3el+lw|5 +00 éaN+1e/'l+lwé"
L (1+ e/1+/1w8)2

nV= Ay +EAg+E% Agw +++-+ EN Agm)d & =

dé?/ls(z)+'~-+f

nS=

1 +00 (gerﬂ+7Lwé”
f W +EAs+E% g + -+ EN Agm))dE =
0

T onh2 (1 + eMAwé)2

1 +00 éaQe/l+/lw<§’ +00 g3e/1+/1wé°
=— d&Av + f ——— —d&g+ (C.5)
2nh2vp {fo (14 eMAwé)2 V7)o 1+ et mb)2 S

+00 éa4e7L+/1wc‘§' +00 ébN+Ze/1+7Lw£’
fo

1+ e’“’lw& )2

déb/ls(z)+“-+f

0 (1+eMAwé)2 g }
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1 +00 éa3e7L+/1wc‘§’
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1 +o0 £3 A+ & +00 g4 A+ A&
- { f o _gsaiv+ f 2 " geae+ (C.6)
0 0

2nhZvg (14 eAAwé)2 (1 + eMAw8)2

+00 858/14-/1,,,8 +00 £N+3e/1+7twé?
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0

ettt |

b —(1+eA+Aw£)2dgAS(N)}

nSM™ — _

1 +00 gm+1e/l+ﬂtwé?’
f Oy +Eg+EAger +---+ EN )& =
0

27 h2 (1+ eAtAuéy2

1 +00 gm+le/1+/lw£

B _2nh20F {/(; (1+eMMwé)2
+00 éam+3e)t+)twé”

+ —_—
fO 1+ e)L+/lw£’)2

+o0 gm+2€/l+/1w€
déa +f —————d&Ag+ (C.7)
VTl Qe 2 ®’s

+00 éaN+m+le)L+/1w£

déaAS(2)+"'+'/(; W

d&Agm }

(/1V+éa/13+é§’27ts(2> +---+<5”N/15<N))dé§’ =

1 f+m éaN+1e)L+Aw€
0 1+ eA+)lw£)2

1 +oo @N+1,A+1,& +oo @N+2,A+1,6
= _ZthvF {j() Wdé{vtv-l'j; Wdﬁﬂs+ (C.8)

f+oo éoN+3e}t+}Lwo‘;’ +00 g2n+1eﬂt+/1wé;’
0

1 +e)L+)L,,,€)2
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These relations have been obtained by writing the wave vector k in terms of energy & and the
angle ¢.
Regarding the relevant components of fluxes we have

2

FO__2 f Fuep(@,k,Hd’k Uk f 2”d</> f " &4 cos? Ofurpr,k,t)
= 1ORR Y = CcOo
11 (27_[)2 2 1V1/MEP\Y, K, (27_[th)2 0 0 MEP\Y, K,

. (C.9
~ 27v%, {f+°° & dé"}
T @uhvp2 \Jo  1+eMé ’
202 2 +00
anll) f &viv1 fuep @k, t)d%k = —Ff d¢>f &2d& cos® pfurp(rk,t)
(27)2 Qrhvg)? Jo 0 (C.10)

- 27'[UF {f+00 602 dg}
@rhvp)? |Jo  1+erté ’
2

9 20 21 +oo
FO _ f o2 Kk, 0)d’k = —Ff d f &3dé& cos? Kk,
nF 20 vivifuep(r ) (27_[th)2 s ¢ : coS (PfMEP(I' )

2”UF {f+m (5"3 d(g,}
(27‘[th)2 0 1l+eMMé ’

(C.11)
P = &N (r.k, )d%k = 25 (™ o [T 6N 4 cos? (r.k, 1)
11 - (27_[)2/ UlvlfMEP r (2ﬂhUF)2L ¢L CcoSs ()beEP r’ ’
27‘[1) +00 N+1
Al e
T @rhvp)2 \Jo 1+erAé
(C.12)
o -2 f vivefuep@,k,t)d’k = 0 (C.13)
12 (27_[)2 Rz 9 ARy ’ .
1) _ 2
nF12 (2]_[)2[ Svivefuep, Kk, t)d“k =0, (C.149)
nF®) = 2[ &%v1vafurp,k,)d’k = 0, (C.15)
(2m)
”Fg)‘(znﬂf ENvivafyupp(rk, )d’k = 0, (C.16)
o_ 2 2 205, 2m oo . 9
nky) = 2[ vove fuEp(r,k, 1)d k= —2f dﬁbf &d&sin” fyrp(r,k, 1)
(271)2 Jg2 @Qrhvr)? Jo 0 (C.17)

ZJIU%, { +oo & dé?’}
" 2rhvg)2 fo 1+ eAMMé ’
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2

FU = | EvavafuEp( kt)al?k—zi 2nd ™ 62 4 sin? fuep@,k,t)
nFo = on )2 vovefmEP(r @t Jo ¢ A sin” ¢fmep(rk,

5 2nuF {j'+oo &2 dé"}
@2rhvp)? |Jo  14+ertwé ’

(C.18)

@ 9 2012? 21 +00 3 9
F &2 k,H)d’k=——— d E°d& si Kt
nky, = (271)2[ vovafmEP(r,K, 1) (2ﬂth)2j0 (’bjo sin® pfmep(r,K, 1)
2]‘[1) +00 3
G Trermee]
T @rhvp)2 \Jo  1+ertt
(C.19)
F(N) f 6@ ( k )de 2U% fQﬂd f+oo£;N+ldéa 2 ( k )
¢ =—< b
nFo = Gt vove fuEP(r, @nhor? Jo ¢ A sin®pfmEep(r,
- 27TUF {[+oo gN+l déa}
@Crhvp)? |Jo  14erwé ’
(C.20)
where v; are the components of v.
The drift terms are estimated as follows
E +oo 1
) . _ ) g _
nG"” :Ee1=nG|E= 2h2n,[() 1+eﬂt+/1wé"dg’ (C.21)
. Op_ B (T &
G Ee —nG E— hznﬁ 1+e/1—+/1wgdéa’ (022)
3E +00 32
2) . _ @) _
nG .Eel—nGllE—zhznfO 1+e)t+/1wéad£>’ (C.23)
G . Loy = noWg = B+ D [t &Y C.24
n ey =nlgy o2R21r Jo  1+erAwé (C.24)
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C.0.0.1 Production terms

Regarding the production terms, the estimators listed below are obtained.

The productions arising from the scattering with acoustic phonons are given by

nC,@ = o, (C.25)
nC%? = o, (C.26)
1 +00 526A+Aw£
nC%w) = WA(QC)L W—+Méb)2(lv+gls+gzﬂs(2) '|‘""|'(g»‘)lvlsN)dé»a (C.27)
F
(@c) 1 (@c) +00 éa3e/1+/lw€ 9 N
nCcg? = WA | —(1+e“ﬁwg)2(/lv+é‘>its+€ Ag@ +-+ & Agn)dE (C.28)
F
ce = L1 pwe [TV Mm ENg +E2A &N Agn)dE (C.29)
e T g2 0 (1+er+Awé)2 viedstedse Tt s '
F
1 +00 gm+ze}t+)tw€
nC(Sa(fn)) = WA((IC)[O W(AV + gls + (g)z)ls(2) +-e 4 éaleN)dg (C30)
F
(@c) 1 +00 éoN+2€)t+/1w6” 9 N
nCon = WA(“) [O AT oriEg W +EAs+ 6 Agw +--+ 6V Ag0)dé (C.31)
F

1
If we set f= T the productions arising from the scattering with optical phonons read
B1L

nc, O = o, (C.32)
nCcOP) = % haeMwho - gbhw) fo O + o) (%) £(& + ho)dé, (€.33)
ncOP = % { fo " [rO@+(1-7 D)) P (%uv +(E+ ho)dg +-+ (& + ho)N Ayn))| 68 + ho)d s+

+ fo ™ [ePRe D& + ooy + (1- 1D (6 + hon)| (%uv v+ +EN g @ + rw)gdg} (C.34)
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AOFD2ZN, +oo | . . A+ A (6+Faw)
(opP)  _ B (i) g ol Bho e N 3
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oo , . AAws , N
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AOPDENg A A (E+ho)

(OP) _ *OOT (i) _ £ g)) oBH00 o u N+1
R = S {fo [F9@)+ (1- 1) P T AV + 6+ Bl -6+ B A )| 06 + VL +
F e (C.38)
400 . . +Aw &
hy o o € o o N o oN+1 ;0
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The productions arising from the scattering with K-phonons can be written as

nc,® = o (C.39)
AKD2 NK 400 . A A&
(K) _ K 'B Awho _ Bho (i) e
nCE = Ty ry (etwho _ ophuyp, fo f (g)(l e GTRe )g<g+ hw)dé, (C.40)
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APPENDIX

CLOSURE RELATIONS FOR THE 8 MOMENT MODEL: THE CASE OF
MOMENTS BASED ON VELOCITY POWERS

D.1 Non-linear closure relations

Assuming that the Lagrangian multipliers Ay and Ag are collinear, we choose a reference frame
(e1,e2) in a way that Ay = Ay e1, As = Ag ey, E = E e; and introduce polar coordinates. Explicitly

we have )
fmep(r.k, )= (D.1)
1+exp(A+ Ay & +vpcosPp(Ay + EAg) + )LD(U%, cos2p— %vl%,) + 2112v1%, cos¢sing)

where v=vpcospe; +vrsinges.
The constraints read

&dE&

2 2 +00
" Gt 2 o o2 Zompeing
whvg)® Jo 0 1+exp(A+Ay& +vpcosdpAy + EAG) + Ap (Vg cos® p — 5u) + 2A 19V cosPpsing)
9 2n +00 &2d&
=mf d¢>f 2.2, 12 2 R (D.3)
nhug)* Jo 0 l+exp(A+Ay& +vpcosPp(Ay +EAG) + Ap (v cos® ¢ — 5v3) + 21907 cos Ppsing)
2 2 +oo Ecospd&
nh)“vE Jo 0 +exp(A+Aw& +up cosPp(Ay + EAG) + Ap (v cos® ¢ — 5v7) + 211907, cos Psin)
2 2n +oo &2 cospd&
ns=—2] dgbf ¢ 1 5 —e;, (D5)
@rh)2vp Jo 0 1+exp(/1+/1wéa+chos¢(AV+£AS)+AD(chos ¢—§vF)+2/112chos¢sm(p)
D 2 f2”j+°° &dE& cos?
1= 59
@rh? [Jo Jo 1+exp(A+ A6 +vpcosp(ly +EAg)+ Ap (% cos? ¢ — %) +2119v% cos psin )
(D.6)
_EUZ fZﬂf+oo &dE ’
2 )0 Jo 1+exp(d+ A& +vp cos Ay + EA) + Ap (v% cos® p— Fv2) + 241902 cos Psin p)
2 21 p+oo &d& sinpcos
nDip= —— f f poosd ————¢. @D
@rh)= [Jo Jo 1+exp(A+Awé& +vp cosplAy +EAG) +Ap (g cos? p— 5v5) + 241905, cosdsinp)
The other terms of the evolution equations can be estimated by fygp as
2 +00 d€si 2
nGO: Ee, = Wf dgbf S ¢2 S 13 5 —ey, (D.8)
2h4w= Jo 0 1+exp(A+Ay& +vpcosPp(Ay +EAG) +Ap (v cos” P — Svg) + 219V cos psing)
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E 27 +00 cde
nGY:Eeq = e 2[ dgbf : o o)
2h=m= Jo 0 1+exp(A+Aw€+vFcos¢(AV+€AS)+AD(U%COSz¢_EU%HMIZU%COS(I)Sm(p)
E +00 2
LBy = L f dgf d‘l)fMEP(r»kyt)(cosd)—cos3¢)y D10)
ﬁzﬂZ 0 0
E +00 2
(nL(O):E)12 = 22F2ﬂ2/(; déa_/; d(PfMEP(r,k,t)(—2cos2¢>sin¢+sin¢), (D.11)
2 9 1
nHy1p = _(2n)2 jl‘ﬂ viviv1 fmep (K, 0)d k_§nV1
2 (" o (r,k,0- 20V (D.12)
= . |
(Znth)2f0 ¢f() cos” ¢ fmEp(rk, 2n 1,
3
i = G, A ) [ a0 [ sassinpeos? otmpieren, @13
@m? Jg2 @rhvg)? Jo o

where the wave vector k must be written in terms of the energy & and the angle ¢

13
k=—(cos¢pey +singpeg).
hvg

D.1.0.1 Production terms

Regarding the production terms, general expressions of an:S) with¢t=n,W,V,Sand s=ac,OP,K
are the same as those introduced in Appendix B for non-linear 6 moments model, now evaluated
with the expression (D.1) of fygp.

The new production terms, added in this model, arising from the scattering with acoustic phonons

are
(@) A(ac) +oo 21 9 9
)= m {fo | E°f(&,y,t)(1—2cos w)dw}, (D.14)
(ac) _
nC9 =0, (D.15)

where ¥ = ¢+ 60" and, recalling that 6" is the angle between k and k’,

!

k' =
hvg

[cos(¢p+6") ey +sin(p+0")es].

1
We set = T and denote by H the Heaviside function. The new productions arising from

the scattering with optical phonons are

op _AODENGE pom e 22 o '
nCP =—— B [Tay [ ede [ cos? 00" {[£(6 ~ho. €)1~ £(6,e)(6 ~ h)H(E = o)
11 4k U 0 0 0
+ P& + ho,e N1~ (8.6 + o) (D.16)
_ [ P £ e)(1- F(& - how,e ))& — ho)H(E — hw)
+ f(&,e)(1-f(& +ho,e)) & +ho)},
op AOP D% NgP 2 +00 2m
ncOP =17 f o f &ds f sineospd0” {| F(& - hw,e' X1 - F(&, ))& — Fo)H(& — Fwo)
12 4ﬁ4v%,n4 0 0 0

+ eﬁhwf(6°+ﬁw,e/)(l—f(fg’,e))(g"’ﬁw)] (DD
_ [eﬁhu)f(éo,e)(l -f(&- ha),e'))(é" — hw)H(& - hw)

+ f(&,e)1—f(& +hw,e))& +hw)|}.
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In the previous relations e = cos¢pe; + sin¢ ez while e’ = cosy ey +siny es.

The new productions arising from the scattering with K-phonons are

AKDZ NK
nC(K) _ K 'B

21 +00 2 " " ,
Dll_mfo d [ d0" 1~ c0s0") (6 ~ (6 - ho 1~ £(6, N H(E - )

+eP0(& + o) (& +ho, €)1~ (8, e)

2
- fo d8"(1-cos8") [eﬁh‘“ F(&,e)1—f(&—Tw),e' (& - hw)H(E - liw) + [(&,e)(1 - [(& + Tw,e )& + nw)] }gcosz $de&,
(D.18)

Kp2 arK
(K) _A DKNB

2 +oo ( 21 ” " ,
w _Wfo ap [ {fo d0"(1-cos0") (& — ) (& o, €)1~ [(&, NH(E ~ o)

+ePRO& 1 ) (& + haov,e')(1 = f(£,e))] +

21
- fo d6"(1-cos0") [eﬁ"’w £(&,e)(1—[(& —hw),e' & - hw)H(E - hw) + f(&,e)(1— f(& + hw,e )& + hw)] }g singcos dé.
(D.19)

D.2 Linear closure relations

By approximating the distribution function with the linearized MEP (4.80)", the relations between
the field variables and the Lagrange multipliers are given by

1 [t &
"o nh2v%f0 1+e1+/1w‘5°dg’ (D-20)
2

W = nh;l)% fo +°°1+e‘imwgdg, (D.21)

A+A,E A+A,E
AV = _Flhz{[w%dmw[w(f;—;mdms}, (D.22)
uS = _Flhz{fw%d&w[w%dﬁs}, (D.23)
nDi = -Bf;izap fo +m%dé". (D.24)

IWe recall that the 1D case is considered
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Regarding the relevant components of fluxes we have

©) 2 9 21)127 2 +00 9
F = K 0)d k= ———— d &d& K, L
nkiy 202 fszlvﬁMEp(r ) (Znth)Qfo CP/O cos” pfmrp(r,K,?)
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F 2
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27TU2 +0oo {-;’2 1 +00 éoZe/l+Awé”
F 2
~ -d& ——vi A f —déa}, D.26
(2nth)2 {fo 1+ eMAwé 4UF D 0 (1 + eArAwé)2 ( )
1 2
nHi11 + énv%VI = —(27'[)2 fR2 vlvlvlfMEp(r,k,t)dzk

The drift terms are estimated as follows

E +00 1 A +00 A+ &
nG :Ee; =nGYE = { f ——dg+2 f e—déa}, (D.28)
0 0

2n%n 1+ eMhé 4 (1 +eMAwé)2
& o, B (T &
nG :Ee1=nG11E=%fO ]_-l-eA—"'Awéa &. (D29)
A bit more involved is the estimation of
2 222 v v,
LO:.E:= E (f K, ¢ (—’ o+ -—’)ko) (®e;. D.30
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Since
0 Oin, vrk;ky
—V; = Uf— — ,
ok ' Tkl kP
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©0) 2E 1 e 21 Vg 3
(nL™ :E)11= —j d& dos& (r,k,t) [ 2— (cos¢p —cos
11 h@n? 1202 o A PEfmEP Ikl( ¢ )
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D.2.0.1 Production terms

The production terms due to the scattering with the acoustic phonons are given by

ncﬁlac) = 0, (D.32)
Oy’ =0, (D.33)
clao)  _ 1 A +oo  @2,A+A,E N .
nCy - 8n2h4v% fo W( v+EAs) , (D.34)
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Aled too  ©2,A+AyE
(ac) _
I T { fo RESEavi } : (D.36)

The production terms due to the scattering with the optical phonons read

ncOP = o, (D.37)
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My + gas)) (& + hw)&? (D.40)

N [eﬁhwfm(gme (1_f<i>(g+hw))] dé*’},
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cop _ ATDNg [[ehuho —epho)
D1y 16142 P
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APPENDIX D. CLOSURE RELATIONS FOR THE 8 MOMENT MODEL: THE CASE OF
MOMENTS BASED ON VELOCITY POWERS

The production terms due to the scattering with the K-phonons are given by

nc® = o, (D.42)
AKD2 NK +o0 . A+Awé&
(K) _ K''B  Awho _ pho (i) €
S el fo f (g)( T )g(@ T hw)dé, (D.43)
3AKD2 NK ( r+o0 A+ Aw (E+hw)
(K) _ KB e
nel) = KR 2 { fo (—(1 @ V6 hwms)) 8(8 + hw)
. . +00 e/l+/1wé°
x [ FP@+a-rDenefho|as + fo (—(1 T MV +6’As>) 88 +hw) (D-44)
e

x [1—f(i)(é”+hw)+f(i)(é’+hw)e’3hw] ds},

() AKD%{Ng +00 A+ Aw(E+hw)
nc® - W{fo (3g+2nw)(mu‘,+(5+hwms))g(g+hw)

) )¢ oy, Bh oo e
12 1 7o) >
x [f &)+ (-1 (&)e ]déa+f0 (3g+hw)(m(ﬁv+gﬁs))g(g+ﬁw) (D.45)
« [1 — D&+ hw) + FOE+ hw)ef‘h“’] as},
AKDp2Z NK
(K) _ K 'B Ay B R
"o T e =)
+o00o . . . .
x fo 1DE + Fw) (1 - f(l)(é-")) E(& + 1) [[D(& + Tiw) - fD(&))d& (D.46)

+ . .
+(ePTo 4 prwhoy fo * FOE + hw)(l— f“)(g)] E(& + o) dg}.
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APPENDIX

CLOSURE RELATIONS FOR QUANTUM CORRECTED 6 MOMENT

MODEL
Let us introduce!
X = qp? 0>°d(x) N B2q? 0D(x) 0D(x) L qp3 2d(x)
Y 8 Ox;0x; 24 0x; Ox; ’ V24 axiaxj.
The field variables in terms of the Lagrange multipliers read
n~—1 {fwo—gp dp+v h2exp(q¢>(x)ﬂ) +°oexp( BE(p)—pF)) | X11+X22) p2 + 2 +
“onizJo 1t erAwbp) L fo - —PF W22 = o 423
" ‘ pe Verta? ) gy
p?
—vF—5—5 (Y11 +Y92) pdp},
pe+ta
VR +oo 2py/p? +a? 9 +00 2
nW = o2 {fo —IHAng(p)dPMFﬁ/ eXP(qCD(x)ﬁ)fo exp(=p(E(p) - o)) | (X11 +X22) T2 +2|+
(E.2)
pZ
—vp ————= (Y11 +Y22) pdp},
pi+a
v +00 3 e/'l+/'h,,é” +00 3 g(p)e/l+ﬂ,w5
v = L f P dph f P dpls E.
n thz{ o p2ra® Lrert b2 PV TR 0% (11 ehthwtye OPIS (E.3)
3 + 3 A+ A& + 3 A+ A&
nS = __F_ f ©_» ¢ dp/lv+f C_p Eple dpAg p. (E.4)
k2 o /_p2+a2 (1+e)l,+/lwé?)2 o /p2+a2 (1+e/1+/1wé”)2
Regarding the expression of the fluxes we have
2 A+Aw&(p) .
o _ _Ur f € Pn PnPiPjPE
nTO = (v, +E@As )| —2e—(pi6 5 + P j0in + PrOij) — 3 — L2 G,
ik T oh)2 Jeo (14 erthubyz Vo T OIS\ (T g IO R T POk T PO TS 5T 23
(E.5)

IHereafter we don’t use Einstein’s summation convention.
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We observe that the previous tensor is completey symmetric. Its only relevant components

are given by

(0) U%v +oo e/1+/1w<§’(p) p2 3 p4
nT ;= o2 fo (1 + eAMAub(P))2 Ay, +E(p)As,) ((p2 Ta2? 1Pt ad)p )pdp, r#l, (E.6)

and an.e)r = 3nT§2.

The same considerations are valid concerning the tensors TV, G© and G'V. Hence we have

3 A+ A E(p) .
@ _ _Ur e __Pn s s . y_gPnPiPjPk
ik 2(mh)2 fm 1+ e“*wg(l”ﬂmv” +g(p)/ls")((ﬁ +a2)32 (Pi0jk* Pi0ik * PKOL) 3(p2 + a2)5/2)
(E.7)
and the only relevant components are given by
3 +00 A+, E(p) 2 4
a__F e P _3_»p
Il = 9np2 fo (1+ er M6 (P))2 (Av, +6(p)As,) ((pz a2 4 (p2+a2))P dp  (E.8)
and nTiir)r = 3nT§i)l, for i =0,1;
©) v% 1 pipPi6jr +p;pi6ir +PrpPidij _ DPiPjPkPI
W)~ - +3 dap, (E.9)
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3
D Vg 1 piP10jr +pjp16ir +PrP1Oij _ PiPjPEPI
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and only relevant components are given by
2
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fori=0,1.
The components of G and G read
© _ 2mop ~+00 1 2p p3 nix,t) (1 r+oo PP p°
nG; = (2nh)? {./0 1+ eMAwED) (\/}m_(p2+a2)3/2]dp+thQ_A0(ﬁ) 2X”‘/0 exp(—p(&(p) wp))—(p2+u2)3dp+
2 N +oo 1 p5 2p3 2p A(B) p3 2p
+J§1X”f0 exp(—ﬁ(é”(P)—lﬂF))(Z (P21a2)3  (pZ+a2? + P2ia? My ((p2+a2)3/2 - \/p2+a2')) dp+ .

3

5

p 2 +00
—2)5/2dp+vFJ§1ijj(; exp(—pE(D) —pp)

(p2+a

+00
(Xlzfo exp(—B(&E(p) — )

1P p
4 (p2 + a2)5/2 (1-72 +q2)32

1 +00
+§UFYii[J exp(—pED) —pp)

__Bp P 2 dp
U%Ao(ﬁ) (p2+a2)3/2 \/p2+a2'

p5 +00 p5
dp+vpY- f exp(—pED) - pp)——L——dp|,
p+upYig A p(-B(&(p) - op (P2 +a2pl p

2
) _ e n(x,t)
(p2+a2)3

217 (27)2 Ag(p)

) _
nG12 =n

(E.15)

112



+00 . P5
5 i fo XPpED) =P e dp

2mv2 +00 2 t
G =~ a {f P - (1+ 2a 2)dp+vph2n(x )
0 peta

it (orh)2 1+ eAAwé(p) Ao(p)
2 5 3 3
B p 2p 2p A(B) D
+J§1X”f exp(-p(&(p) - ¢F))(4(p2+a2)5/2 (p2+a2)3/2 \/ 2 +vFA0(ﬁ) P2+ra? )dp+
(E.16)
too 5 3
+= UFY”f exp(-f(&(p) - t,DF))—z)ZdP“‘UFZ f exp(=p(&(p) - (PF))(Z(Z_p'_—az)g_#_
B(f) 3
- —2p||dp|},
v%Aom)(pzwz p)) P }
2 5 +o0 5
O _ 1 TUF nxb) +oo P
nGY =nGY) ~ @n 20D X19 A eXp(—ﬁ(g(p)—(pF))mdp+UFY12 A exp(—p(&(p) - ‘PF»W p|
(E.17)
and those of F© and F read
2 3 4
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Finally the tensors L(® and LV are given by
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whose only non zero components are

+00 2
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+00 2 4
©0 . UF D 6p _ 2 _ E p
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2 +00 2
o U p 9p
nLirp = o h2 j(; 1+ e € (a2 + p2)2 dp, (E.26)
2 +00 2 4
ST By S S B SN PR
PP 9nh2 0 1+ eAtAwé (a,2 +p2)2 a2 +p2 4 (az +p2)3
nL%pp = 3nL(rlr)pp

fori=0,1.
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